Sample records for force balance system

  1. Single-Vector Calibration of Wind-Tunnel Force Balances

    NASA Technical Reports Server (NTRS)

    Parker, P. A.; DeLoach, R.

    2003-01-01

    An improved method of calibrating a wind-tunnel force balance involves the use of a unique load application system integrated with formal experimental design methodology. The Single-Vector Force Balance Calibration System (SVS) overcomes the productivity and accuracy limitations of prior calibration methods. A force balance is a complex structural spring element instrumented with strain gauges for measuring three orthogonal components of aerodynamic force (normal, axial, and side force) and three orthogonal components of aerodynamic torque (rolling, pitching, and yawing moments). Force balances remain as the state-of-the-art instrument that provide these measurements on a scale model of an aircraft during wind tunnel testing. Ideally, each electrical channel of the balance would respond only to its respective component of load, and it would have no response to other components of load. This is not entirely possible even though balance designs are optimized to minimize these undesirable interaction effects. Ultimately, a calibration experiment is performed to obtain the necessary data to generate a mathematical model and determine the force measurement accuracy. In order to set the independent variables of applied load for the calibration 24 NASA Tech Briefs, October 2003 experiment, a high-precision mechanical system is required. Manual deadweight systems have been in use at Langley Research Center (LaRC) since the 1940s. These simple methodologies produce high confidence results, but the process is mechanically complex and labor-intensive, requiring three to four weeks to complete. Over the past decade, automated balance calibration systems have been developed. In general, these systems were designed to automate the tedious manual calibration process resulting in an even more complex system which deteriorates load application quality. The current calibration approach relies on a one-factor-at-a-time (OFAT) methodology, where each independent variable is incremented individually throughout its full-scale range, while all other variables are held at a constant magnitude. This OFAT approach has been widely accepted because of its inherent simplicity and intuitive appeal to the balance engineer. LaRC has been conducting research in a "modern design of experiments" (MDOE) approach to force balance calibration. Formal experimental design techniques provide an integrated view to the entire calibration process covering all three major aspects of an experiment; the design of the experiment, the execution of the experiment, and the statistical analyses of the data. In order to overcome the weaknesses in the available mechanical systems and to apply formal experimental techniques, a new mechanical system was required. The SVS enables the complete calibration of a six-component force balance with a series of single force vectors.

  2. Method of Calibrating a Force Balance

    NASA Technical Reports Server (NTRS)

    Parker, Peter A. (Inventor); Rhew, Ray D. (Inventor); Johnson, Thomas H. (Inventor); Landman, Drew (Inventor)

    2015-01-01

    A calibration system and method utilizes acceleration of a mass to generate a force on the mass. An expected value of the force is calculated based on the magnitude and acceleration of the mass. A fixture is utilized to mount the mass to a force balance, and the force balance is calibrated to provide a reading consistent with the expected force determined for a given acceleration. The acceleration can be varied to provide different expected forces, and the force balance can be calibrated for different applied forces. The acceleration may result from linear acceleration of the mass or rotational movement of the mass.

  3. In-Situ Load System for Calibrating and Validating Aerodynamic Properties of Scaled Aircraft in Ground-Based Aerospace Testing Applications

    NASA Technical Reports Server (NTRS)

    Lynn, Keith C. (Inventor); Acheson, Michael J. (Inventor); Commo, Sean A. (Inventor); Landman, Drew (Inventor)

    2016-01-01

    An In-Situ Load System for calibrating and validating aerodynamic properties of scaled aircraft in ground-based aerospace testing applications includes an assembly having upper and lower components that are pivotably interconnected. A test weight can be connected to the lower component to apply a known force to a force balance. The orientation of the force balance can be varied, and the measured forces from the force balance can be compared to applied loads at various orientations to thereby develop calibration factors.

  4. Automatic force balance calibration system

    NASA Technical Reports Server (NTRS)

    Ferris, Alice T. (Inventor)

    1995-01-01

    A system for automatically calibrating force balances is provided. The invention uses a reference balance aligned with the balance being calibrated to provide superior accuracy while minimizing the time required to complete the calibration. The reference balance and the test balance are rigidly attached together with closely aligned moment centers. Loads placed on the system equally effect each balance, and the differences in the readings of the two balances can be used to generate the calibration matrix for the test balance. Since the accuracy of the test calibration is determined by the accuracy of the reference balance and current technology allows for reference balances to be calibrated to within +/-0.05% the entire system has an accuracy of +/-0.2%. The entire apparatus is relatively small and can be mounted on a movable base for easy transport between test locations. The system can also accept a wide variety of reference balances, thus allowing calibration under diverse load and size requirements.

  5. Automatic force balance calibration system

    NASA Technical Reports Server (NTRS)

    Ferris, Alice T. (Inventor)

    1996-01-01

    A system for automatically calibrating force balances is provided. The invention uses a reference balance aligned with the balance being calibrated to provide superior accuracy while minimizing the time required to complete the calibration. The reference balance and the test balance are rigidly attached together with closely aligned moment centers. Loads placed on the system equally effect each balance, and the differences in the readings of the two balances can be used to generate the calibration matrix for the test balance. Since the accuracy of the test calibration is determined by the accuracy of the reference balance and current technology allows for reference balances to be calibrated to within .+-.0.05%, the entire system has an accuracy of a .+-.0.2%. The entire apparatus is relatively small and can be mounted on a movable base for easy transport between test locations. The system can also accept a wide variety of reference balances, thus allowing calibration under diverse load and size requirements.

  6. A Single-Vector Force Calibration Method Featuring the Modern Design of Experiments

    NASA Technical Reports Server (NTRS)

    Parker, P. A.; Morton, M.; Draper, N.; Line, W.

    2001-01-01

    This paper proposes a new concept in force balance calibration. An overview of the state-of-the-art in force balance calibration is provided with emphasis on both the load application system and the experimental design philosophy. Limitations of current systems are detailed in the areas of data quality and productivity. A unique calibration loading system integrated with formal experimental design techniques has been developed and designated as the Single-Vector Balance Calibration System (SVS). This new concept addresses the limitations of current systems. The development of a quadratic and cubic calibration design is presented. Results from experimental testing are compared and contrasted with conventional calibration systems. Analyses of data are provided that demonstrate the feasibility of this concept and provide new insights into balance calibration.

  7. Force Measurements in Magnetic Suspension and Balance System

    NASA Technical Reports Server (NTRS)

    Kuzin, Alexander; Shapovalov, George; Prohorov, Nikolay

    1996-01-01

    The description of an infrared telemetry system for measurement of drag forces in Magnetic Suspension and Balance Systems (MSBS) is presented. This system includes a drag force sensor, electronic pack and transmitter placed in the model which is of special construction, and receiver with a microprocessor-based measuring device, placed outside of the test section. Piezosensitive resonators as sensitive elements and non-magnetic steel as the material for the force sensor are used. The main features of the proposed system for load measurements are discussed and the main characteristics are presented.

  8. A novel free floating accelerometer force balance system for shock tunnel applications

    NASA Astrophysics Data System (ADS)

    Joarder, R.; Mahaptra, D. R.; Jagadeesh, G.

    In order to overcome the interference of the model mounting system with the external aerodynamics of the body during shock tunnel testing, a new free floating internally mountable balance system that ensures unrestrained model motion during testing has been designed, fabricated and tested. Minimal friction ball bearings are used for ensuring the free floating condition of the model during tunnel testing. The drag force acting on a blunt leading edge flat plate at hypersonic Mach number has been measured using the new balance system. Finite element model (FEM) and CFD are exhaustively used in the design as well as for calibrating the new balance system. The experimentally measured drag force on the blunt leading edge flat plate at stagnation enthalpy of 0.7 and 1.2 MJ/kg and nominal Mach number of 5.75 matches well with FEM results. The concept can also be extended for measuring all the three fundamental aerodynamic forces in short duration test facilities like free piston driven shock tunnels.

  9. Design, calibration and testing of a force balance for a hypersonic shock tunnel

    NASA Astrophysics Data System (ADS)

    Vadassery, Pravin

    The forces acting on a flight vehicle are critical for determining its performance. Of particular interest is the hypersonic regime. Force measurements are much more complex in hypersonic flows, where those speeds are simulated in shock tunnels. A force balance for such facilities contains sensitive gages that measure stress waves and ultimately determine the different components of force acting on the model. An external force balance was designed and fabricated for the UTA Hypersonic shock tunnel to measure drag at Mach 10. Static and dynamic calibrations were performed to find the transfer function of the system. Forces were recovered using a deconvolution procedure. To validate the force balance, experiments were conducted on a blunt cone. The measured forces were compared to Newtonian theory.

  10. A force balance system for the measurement of skin friction drag force

    NASA Technical Reports Server (NTRS)

    Moore, J. W.; Mcvey, E. S.

    1971-01-01

    Research on force balance instrumentation to measure the skin friction of hypersonic vehicles at extreme temperatures, high altitudes and in a vibration field is discussed. A rough overall summary and operating instructions for the equipment are presented.

  11. Adaptive Equilibrium Regulation: A Balancing Act in Two Timescales

    PubMed Central

    Boker, Steven M.

    2015-01-01

    An equilibrium involves a balancing of forces. Just as one maintains upright posture in standing or walking, many self-regulatory and interpersonal behaviors can be framed as a balancing act between an ever changing environment and within-person processes. The emerging balance between person and environment, the equilibria, are dynamic and adaptive in response to development and learning. A distinction is made between equilibrium achieved solely due to a short timescale balancing of forces and a longer timescale preferred equilibrium which we define as a state towards which the system slowly adapts. Together, these are developed into a framework that this article calls Adaptive Equilibrium Regulation (ÆR), which separates a regulatory process into two timescales: a faster regulation that automatically balances forces and a slower timescale adaptation process that reconfigures the fast regulation so as to move the system towards its preferred equilibrium when an environmental force persists over the longer timescale. This way of thinking leads to novel models for the interplay between multiple timescales of behavior, learning, and development. PMID:27066197

  12. Mechanical design of a rotary balance system for NASA. Langley Research Center's vertical spin tunnel

    NASA Technical Reports Server (NTRS)

    Allred, J. W.; Fleck, V. J.

    1992-01-01

    A new lightweight Rotary Balance System is presently being fabricated and installed as part of a major upgrade to the existing 20 Foot Vertical Spin Tunnel. This upgrade to improve model testing productivity of the only free spinning vertical wind tunnel includes a modern fan/drive and tunnel control system, an updated video recording system, and the new rotary balance system. The rotary balance is a mechanical apparatus which enables the measurement of aerodynamic force and moment data under spinning conditions (100 rpm). This data is used in spin analysis and is vital to the implementation of large amplitude maneuvering simulations required for all new high performance aircraft. The new rotary balance system described in this report will permit greater test efficiency and improved data accuracy. Rotary Balance testing with the model enclosed in a tare bag can also be performed to obtain resulting model forces from the spinning operation. The rotary balance system will be stored against the tunnel sidewall during free flight model testing.

  13. Validation of Moticon’s OpenGo sensor insoles during gait, jumps, balance and cross-country skiing specific imitation movements

    PubMed Central

    Stöggl, Thomas; Martiner, Alex

    2017-01-01

    ABSTRACT The purpose of this study was the experimental validation of the OpenGo sensor insole system compared to PedarX sensor insole and AMTI force-plate systems. Sixteen healthy participants performed trials in walking, running, jumping (drop and counter movement jumps), imitation drills and balance, with simultaneous measures of all three systems. Detected ground contact and flight times with OpenGo during walking, running and jumping were similar to those of AMTI. Force–time curves revealed comparable shapes between all three systems. Force impulses were 13–34% lower with OpenGo when compared to AMTI. Despite differences in mean values in some exercise modes, correlations towards AMTI were between r = 0.8 and r = 1.0 in most situations. During fast motions, with high force and impact, OpenGo provided lower force and latency in force kinetics. During balance tasks, discrepancy in the centre of pressure was found medio-lateral, while anterio–posterior direction was closer to AMTI. With awareness of these limitations, OpenGo can be applied in both clinical and research settings to evaluate temporal, force and balance parameters during different types of motion. The fully mobile OpenGo system allows for the easy and quick system application, analysis and feedback under complex field conditions, as well. PMID:27010531

  14. Impact and Estimation of Balance Coordinate System Rotations and Translations in Wind-Tunnel Testing

    NASA Technical Reports Server (NTRS)

    Toro, Kenneth G.; Parker, Peter A.

    2017-01-01

    Discrepancies between the model and balance coordinate systems lead to biases in the aerodynamic measurements during wind-tunnel testing. The reference coordinate system relative to the calibration coordinate system at which the forces and moments are resolved is crucial to the overall accuracy of force measurements. This paper discusses sources of discrepancies and estimates of coordinate system rotation and translation due to machining and assembly differences. A methodology for numerically estimating the coordinate system biases will be discussed and developed. Two case studies are presented using this methodology to estimate the model alignment. Examples span from angle measurement system shifts on the calibration system to discrepancies in actual wind-tunnel data. The results from these case-studies will help aerodynamic researchers and force balance engineers to better the understand and identify potential differences in calibration systems due to coordinate system rotation and translation.

  15. Initial Flight Tests of the NASA F-15B Propulsion Flight Test Fixture

    NASA Technical Reports Server (NTRS)

    Palumbo, Nathan; Moes, Timothy R.; Vachon, M. Jake

    2002-01-01

    Flights of the F-15B/Propulsion Flight Test Fixture (PFTF) with a Cone Drag Experiment (CDE) attached have been accomplished at NASA Dryden Flight Research Center. Mounted underneath the fuselage of an F-15B airplane, the PFTF provides volume for experiment systems and attachment points for propulsion experiments. A unique feature of the PFTF is the incorporation of a six-degree-of-freedom force balance. The force balance mounts between the PFTF and experiment and measures three forces and moments. The CDE has been attached to the force balance for envelope expansion flights. This experiment spatially and inertially simulates a large propulsion test article. This report briefly describes the F-15B airplane, the PFTF, and the force balance. A detailed description of the CDE is provided. Force-balance ground testing and stiffness modifications are described. Flight profiles and selected flight data from the envelope expansion flights are provided and discussed, including force-balance data, the internal PFTF thermal and vibration environment, a handling qualities assessment, and performance capabilities of the F-15B airplane with the PFTF installed.

  16. Variable Acceleration Force Calibration System (VACS)

    NASA Technical Reports Server (NTRS)

    Rhew, Ray D.; Parker, Peter A.; Johnson, Thomas H.; Landman, Drew

    2014-01-01

    Conventionally, force balances have been calibrated manually, using a complex system of free hanging precision weights, bell cranks, and/or other mechanical components. Conventional methods may provide sufficient accuracy in some instances, but are often quite complex and labor-intensive, requiring three to four man-weeks to complete each full calibration. To ensure accuracy, gravity-based loading is typically utilized. However, this often causes difficulty when applying loads in three simultaneous, orthogonal axes. A complex system of levers, cranks, and cables must be used, introducing increased sources of systematic error, and significantly increasing the time and labor intensity required to complete the calibration. One aspect of the VACS is a method wherein the mass utilized for calibration is held constant, and the acceleration is changed to thereby generate relatively large forces with relatively small test masses. Multiple forces can be applied to a force balance without changing the test mass, and dynamic forces can be applied by rotation or oscillating acceleration. If rotational motion is utilized, a mass is rigidly attached to a force balance, and the mass is exposed to a rotational field. A large force can be applied by utilizing a large rotational velocity. A centrifuge or rotating table can be used to create the rotational field, and fixtures can be utilized to position the force balance. The acceleration may also be linear. For example, a table that moves linearly and accelerates in a sinusoidal manner may also be utilized. The test mass does not have to move in a path that is parallel to the ground, and no re-leveling is therefore required. Balance deflection corrections may be applied passively by monitoring the orientation of the force balance with a three-axis accelerometer package. Deflections are measured during each test run, and adjustments with respect to the true applied load can be made during the post-processing stage. This paper will present the development and testing of the VASC concept.

  17. Force Measurement Improvements to the National Transonic Facility Sidewall Model Support System

    NASA Technical Reports Server (NTRS)

    Goodliff, Scott L.; Balakrishna, Sundareswara; Butler, David; Cagle, C. Mark; Chan, David; Jones, Gregory S.; Milholen, William E., II

    2016-01-01

    The National Transonic Facility is a transonic pressurized cryogenic facility. The development of the high Reynolds number semi-span capability has advanced over the years to include transonic active flow control and powered testing using the sidewall model support system. While this system can be used in total temperatures down to -250Â F for conventional unpowered configurations, it is limited to temperatures above -60Â F when used with powered models that require the use of the high-pressure air delivery system. Thermal instabilities and non-repeatable mechanical arrangements revealed several data quality shortfalls by the force and moment measurement system. Recent modifications to the balance cavity recirculation system have improved the temperature stability of the balance and metric model-to-balance hardware. Changes to the mechanical assembly of the high-pressure air delivery system, particularly hardware that interfaces directly with the model and balance, have improved the repeatability of the force and moment measurement system. Drag comparisons with the high-pressure air system removed will also be presented in this paper.

  18. Challenging the Sacred Assumption: A Call for a Systemic Review of Army Aviation Maintenance

    DTIC Science & Technology

    2017-05-25

    structure , training, equipping and sustainment. Each study intends to optimize the force structure to achieve a balance between the modernization and...operational budgets. Since 1994, Army Aviation force structures , training resources, available equipment and aircraft have changed significantly. Yet...and are focused on force structure , training, equipping and sustainment. Each study intends to optimize the force structure to achieve a balance

  19. Design concepts and cost studies for magnetic suspension and balance systems. [wind tunnel apparatus

    NASA Technical Reports Server (NTRS)

    Bloom, H. L.

    1982-01-01

    The application of superconducting magnets for suspension and balance of wind tunnel models was studied. Conceptual designs are presented for magnetic suspension and balance system (MSBS) configurations compatible with three high Reynolds number cases representing specified combinations of test conditions and model sizes. Concepts in general met initially specified performance requirements such as duty cycle, force and moment levels, model angular displacement and positioning accuracy with nominal design requirements for support subsystems. Other performance requirements, such as forced model sinusoidal oscillations, and control force magnitude and frequency, were modified so as to alleviate the magnitude of magnet, power, and cryogenic design requirements.

  20. Using the Wii Balance Board in Elevator Physics

    NASA Astrophysics Data System (ADS)

    Mullenax, Donna

    2013-04-01

    The Wii Balance Board is a popular accessory to the wireless video system the Wii. In the past few years, the Wii Remote™ and Wii Balance Board accessories to the Wii have made their way into physics labs as sensors to measure force and acceleration. In most introductory physics courses, the forces experienced while on an elevator are discussed and calculated. The Wii Balance Board is a very good tool for having students measure the forces experienced on an elevator and calculating the acceleration of the elevator when it starts to move and then while it is coming to a stop.

  1. Thermal and Pressure Characterization of a Wind Tunnel Force Balance Using the Single Vector System. Experimental Design and Analysis Approach to Model Pressure and Temperature Effects in Hypersonic Wind Tunnel Research

    NASA Technical Reports Server (NTRS)

    Lynn, Keith C.; Commo, Sean A.; Johnson, Thomas H.; Parker, Peter A,

    2011-01-01

    Wind tunnel research at NASA Langley Research Center s 31-inch Mach 10 hypersonic facility utilized a 5-component force balance, which provided a pressurized flow-thru capability to the test article. The goal of the research was to determine the interaction effects between the free-stream flow and the exit flow from the reaction control system on the Mars Science Laboratory aeroshell during planetary entry. In the wind tunnel, the balance was exposed to aerodynamic forces and moments, steady-state and transient thermal gradients, and various internal balance cavity pressures. Historically, these effects on force measurement accuracy have not been fully characterized due to limitations in the calibration apparatus. A statistically designed experiment was developed to adequately characterize the behavior of the balance over the expected wind tunnel operating ranges (forces/moments, temperatures, and pressures). The experimental design was based on a Taylor-series expansion in the seven factors for the mathematical models. Model inversion was required to calculate the aerodynamic forces and moments as a function of the strain-gage readings. Details regarding transducer on-board compensation techniques, experimental design development, mathematical modeling, and wind tunnel data reduction are included in this paper.

  2. A variable acceleration calibration system

    NASA Astrophysics Data System (ADS)

    Johnson, Thomas H.

    2011-12-01

    A variable acceleration calibration system that applies loads using gravitational and centripetal acceleration serves as an alternative, efficient and cost effective method for calibrating internal wind tunnel force balances. Two proof-of-concept variable acceleration calibration systems are designed, fabricated and tested. The NASA UT-36 force balance served as the test balance for the calibration experiments. The variable acceleration calibration systems are shown to be capable of performing three component calibration experiments with an approximate applied load error on the order of 1% of the full scale calibration loads. Sources of error are indentified using experimental design methods and a propagation of uncertainty analysis. Three types of uncertainty are indentified for the systems and are attributed to prediction error, calibration error and pure error. Angular velocity uncertainty is shown to be the largest indentified source of prediction error. The calibration uncertainties using a production variable acceleration based system are shown to be potentially equivalent to current methods. The production quality system can be realized using lighter materials and a more precise instrumentation. Further research is needed to account for balance deflection, forcing effects due to vibration, and large tare loads. A gyroscope measurement technique is shown to be capable of resolving the balance deflection angle calculation. Long term research objectives include a demonstration of a six degree of freedom calibration, and a large capacity balance calibration.

  3. Ergonomically neutral arm support system

    DOEpatents

    Siminovitch, Michael J; Chung, Jeffrey Y; Dellinges, Steven; Lafever, Robin E

    2005-08-02

    An ergonomic arm support system maintains a neutral position for the forearm. A mechanical support structure attached to a chair or other mounting structure supports the arms of a sitting or standing person. The system includes moving elements and tensioning elements to provide a dynamic balancing force against the forearms. The support structure is not fixed or locked in a rigid position, but is an active dynamic system that is maintained in equipoise by the continuous operation of the opposing forces. The support structure includes an armrest connected to a flexible linkage or articulated or pivoting assembly, which includes a tensioning element such as a spring. The pivoting assembly moves up and down, with the tensioning element providing the upward force that balances the downward force of the arm.

  4. F-4 Beryllium Rudders; A Precis of the Design, Fabrication, Ground and Flight Test Demonstrations

    DTIC Science & Technology

    1975-05-01

    Wright-Patterson Air Force Base , Ohio 45433. AIR FORCE FLIGHT DYNAMICS LABORATORY AIR FORCE SYSTEMS COMMAND WRIGHT-PATTERSON AIR FORCE BASE , OHIO 45433...rudder. These sequential ground tests include: - A 50,000 cycle fatigue test of upper balance weight support structure. A static test to...Design Details 6. Design Analysis 7. Rudder Mass Balance 8, Rudder Moment of Inertia 9, Rudder Weight RUDDER FABRICATION AND ASSEMBLY 1. 2

  5. DOD Financial Management: Improved Documentation Needed to Support the Air Force’s Military Payroll and Meet Audit Readiness Goals

    DTIC Science & Technology

    2015-12-01

    balances to match Treasury balances. 19The financial reporting system collects and consolidates information for financial statement presentation...2The financial reporting system collects and consolidates information for financial statement presentation. 3Subsistence...efforts to achieve auditability of its financial statements , the Air Force in July 2014 asserted audit readiness for its Schedule of Budgetary

  6. Calibration and Data Analysis of the MC-130 Air Balance

    NASA Technical Reports Server (NTRS)

    Booth, Dennis; Ulbrich, N.

    2012-01-01

    Design, calibration, calibration analysis, and intended use of the MC-130 air balance are discussed. The MC-130 balance is an 8.0 inch diameter force balance that has two separate internal air flow systems and one external bellows system. The manual calibration of the balance consisted of a total of 1854 data points with both unpressurized and pressurized air flowing through the balance. A subset of 1160 data points was chosen for the calibration data analysis. The regression analysis of the subset was performed using two fundamentally different analysis approaches. First, the data analysis was performed using a recently developed extension of the Iterative Method. This approach fits gage outputs as a function of both applied balance loads and bellows pressures while still allowing the application of the iteration scheme that is used with the Iterative Method. Then, for comparison, the axial force was also analyzed using the Non-Iterative Method. This alternate approach directly fits loads as a function of measured gage outputs and bellows pressures and does not require a load iteration. The regression models used by both the extended Iterative and Non-Iterative Method were constructed such that they met a set of widely accepted statistical quality requirements. These requirements lead to reliable regression models and prevent overfitting of data because they ensure that no hidden near-linear dependencies between regression model terms exist and that only statistically significant terms are included. Finally, a comparison of the axial force residuals was performed. Overall, axial force estimates obtained from both methods show excellent agreement as the differences of the standard deviation of the axial force residuals are on the order of 0.001 % of the axial force capacity.

  7. Rotating Balances Used for Fluid Pump Testing

    NASA Technical Reports Server (NTRS)

    Skelley, Stephen; Mulder, Andrew

    2014-01-01

    Marshall Space Flight Center has developed and demonstrated two direct read force and moment balances for sensing and resolving the hydrodynamic loads on rotating fluid machinery. These rotating balances consist of a series of stainless steel flexures instrumented with semiconductor type, unidirectional strain gauges arranged into six bridges, then sealed and waterproofed, for use fully submerged in degassed water at rotational speeds up to six thousand revolutions per minute. The balances are used to measure the forces and moments due to the onset and presence of cavitation or other hydrodynamic phenomena on subscale replicas of rocket engine turbomachinery, principally axial pumps (inducers) designed specifically to operate in a cavitating environment. The balances are inserted into the drive assembly with power to and signal from the sensors routed through the drive shaft and out through an air-cooled twenty-channel slip ring. High frequency data - balance forces and moments as well as extensive, flush-mounted pressures around the rotating component periphery - are acquired via a high-speed analog to digital data acquisition system while the test rig conditions are varied continuously. The data acquisition and correction process is described, including the in-situ verifications that are performed to quantify and correct for known system effects such as mechanical imbalance, "added mass," buoyancy, mechanical resonance, and electrical bias. Examples of four types of cavitation oscillations for two typical inducers are described in the laboratory (pressure) and rotating (force) frames: 1) attached, symmetric cavitation, 2) rotating cavitation, 3) attached, asymmetric cavitation, and 4) cavitation surge. Rotating and asymmetric cavitation generate a corresponding unbalanced radial force on the rotating assembly while cavitation surge generates an axial force. Attached, symmetric cavitation induces no measurable force. The frequency of the forces can be determined a priori from the pressure environment while the magnitude of the hydrodynamic force is proportional to the pressure unsteadiness.

  8. Application of Balancing Tabs to Ailerons

    NASA Technical Reports Server (NTRS)

    Sears, Richard I.

    1942-01-01

    Analysis was made to determine characteristics required of a balancing-tab system for ailerons in order to reduce aileron stick forces to any desired magnitude. Series of calculations based on section data were made to determine balancing-tab systems of various chord tabs and ailerons that will give, for a particular airplane, zero rate of aileron hinge moment with aileron deflection and yet will produce same maximum rate of roll as a plain unbalanced 15-percent chord aileron of same span. Effects of rolling velocity and of forces in tab link on aileron hinge moments have been included.

  9. Experimental Aerodynamic Facilities of the Aerodynamics Research and Concepts Assistance Section

    DTIC Science & Technology

    1983-02-01

    experimental data desired. Internal strain gage balances covering a range of sizes and load capabilities are available for static force and moment tests...tunnel. Both sting and side wall model mounts are available which can be adapted to a variety of internal strain gage balance systems for force and...model components or liquids in the test section. A selection of internal and external strain gage balances and associated mounting fixtures are

  10. Interchangeability of the Wii Balance Board for Bipedal Balance Assessment.

    PubMed

    Bonnechère, Bruno; Jansen, Bart; Omelina, Lubos; Rooze, Marcel; Van Sint Jan, Serge

    2015-08-27

    Since 2010, an increasing interest in more portable and flexible hardware for balance and posture assessment led to previously published studies determining whether or not the Wii Balance Board could be used to assess balance and posture, both scientifically and clinically. However, no previous studies aimed at comparing results from different Wii Balance Boards for clinical balance evaluation exist. The objective of this crossover study is to assess the interchangeability of the Wii Balance Board. A total of 6 subjects participated in the study and their balance was assessed using 4 different Wii Balance Boards. Trials were recorded simultaneously with Wii Balance Boards and with a laboratory force plate. Nine relevant clinical parameters were derived from center of pressure displacement data obtained from Wii Balance Board and force plate systems. Intraclass correlation coefficients (ICC), F tests, and Friedman tests were computed to assess the agreement between trials and to compare the Wii Balance Board and force plate results. Excellent correlations were found between the Wii Balance Board and force plate (mean ρ =.83). With the exception of 2 parameters, strong to excellent agreements were found for the 7 remaining parameters (ICC=.96). No significant differences were found between trials recorded with different Wii Balance Boards. Our results indicate that for most of the parameters analyzed, balance and posture assessed with one Wii Balance Board were statistically similar to results obtained from another. Furthermore, the good correlation between the Wii Balance Board and force plate results shows that Wii Balance Boards can be reliably used for scientific assessment using most of the parameters analyzed in this study. These results also suggest that the Wii Balance Board could be used in multicenter studies and therefore, would allow for the creation of larger populations for clinical studies. Ethical Committee of the Erasme Hospital (CCB B406201215142). ©Bruno Bonnechère, Bart Jansen, Lubos Omelina, Marcel Rooze, Serge Van Sint Jan. Originally published in JMIR Rehabilitation and Assistive Technology (http://rehab.jmir.org), 27.08.2015.

  11. Interchangeability of the Wii Balance Board for Bipedal Balance Assessment

    PubMed Central

    Jansen, Bart; Omelina, Lubos; Rooze, Marcel; Van Sint Jan, Serge

    2015-01-01

    Background Since 2010, an increasing interest in more portable and flexible hardware for balance and posture assessment led to previously published studies determining whether or not the Wii Balance Board could be used to assess balance and posture, both scientifically and clinically. However, no previous studies aimed at comparing results from different Wii Balance Boards for clinical balance evaluation exist. Objective The objective of this crossover study is to assess the interchangeability of the Wii Balance Board. Methods A total of 6 subjects participated in the study and their balance was assessed using 4 different Wii Balance Boards. Trials were recorded simultaneously with Wii Balance Boards and with a laboratory force plate. Nine relevant clinical parameters were derived from center of pressure displacement data obtained from Wii Balance Board and force plate systems. Intraclass correlation coefficients (ICC), F tests, and Friedman tests were computed to assess the agreement between trials and to compare the Wii Balance Board and force plate results. Results Excellent correlations were found between the Wii Balance Board and force plate (mean ρ =.83). With the exception of 2 parameters, strong to excellent agreements were found for the 7 remaining parameters (ICC=.96). No significant differences were found between trials recorded with different Wii Balance Boards. Conclusions Our results indicate that for most of the parameters analyzed, balance and posture assessed with one Wii Balance Board were statistically similar to results obtained from another. Furthermore, the good correlation between the Wii Balance Board and force plate results shows that Wii Balance Boards can be reliably used for scientific assessment using most of the parameters analyzed in this study. These results also suggest that the Wii Balance Board could be used in multicenter studies and therefore, would allow for the creation of larger populations for clinical studies. Trial Registration Ethical Committee of the Erasme Hospital (CCB B406201215142). PMID:28582237

  12. On the theory of intensity distributions of tornadoes and other low pressure systems

    NASA Astrophysics Data System (ADS)

    Schielicke, Lisa; Névir, Peter

    Approaching from a theoretical point of view, this work presents a theory which unifies intensity distributions of different low pressure systems, based on an energy of displacement. Resulting from a generalized Boltzmann distribution, the expression of this energy of displacement is obtained by radial integration over the forces which are in balance with the pressure gradient force in the horizontal equation of motion. A scale analysis helps to find out which balance of forces prevail. According to the prevailing balances, the expression of the energy of displacement differs for various depressions. Investigating the system at the moment of maximum intensity, the energy of displacement can be interpreted as the work that has to be done to generate and finally eliminate the pressure anomaly, respectively. By choosing the appropriate balance of forces, number-intensity (energy of displacement) distributions show exponential behavior with the same decay rate β for tornadoes and cyclones, if tropical and extra-tropical cyclones are investigated together. The decay rate is related to a characteristic (universal) scale of the energy of displacement which has approximately the value Eu = β- 1 ≈ 1000 m 2s - 2 . In consequence, while the different balances of forces cause the scales of velocity, the energy of displacement scale seems to be universal for all low pressure systems. Additionally, if intensity is expressed as lifetime minimum pressure, the number-intensity (pressure) distributions should be power law distributed. Moreover, this work points out that the choice of the physical quantity which represents the intensity is important concerning the behavior of intensity distributions. Various expressions of the intensity like velocity, kinetic energy, energy of displacement and pressure are possible, but lead to different behavior of the distributions.

  13. Air Force: Actions Needed to Strengthen Management of Unmanned Aerial System Pilots

    DTIC Science & Technology

    2014-04-01

    demands on RPA pilots limit the time they have available for training and development and negatively affects their work - life balance . In addition, the... balance . To understand the working conditions of RPA pilots that may affect their quality of life , we analyzed Air Force studies that evaluated the...servicemember needs. DOD has broadly defined quality of life to include such factors as morale, health and wellness, and work - life balance . To understand these

  14. An exergame system based on force platforms and body key-point detection for balance training.

    PubMed

    Lavarda, Marcos D; de Borba, Pedro A; Oliveira, Matheus R; Borba, Gustavo B; de Souza, Mauren A; Gamba, Humberto R

    2016-08-01

    Postural instability affects a large number of people and can compromise even simple activities of the daily routine. Therapies for balance training can strongly benefit from auxiliary devices specially designed for this purpose. In this paper, we present a system for balance training that uses the metaphor of a game, what contributes to the motivation and engagement of the patients during a treatment. Such approach is usually named exergame, in which input devices for posturographic assessment and a visual output perform the interaction with the subject. The proposed system uses two force platforms, one positioned under the feet and the other under the hip of the subject. The force platforms employ regular load cells and a microcontroller-based signal acquisition module to capture and transmit the samples to a computer. Moreover, a computer vision module performs body key-point detection, based on real time segmentation of markers attached to the subject. For the validation of the system, we conducted experiments with 20 neurologically intact volunteers during two tests: comparison of the stabilometric parameters obtained from the system with those obtained from a commercial baropodometer and the practice of several exergames. Results show that the proposed system is completely functional and can be used as a versatile tool for balance training.

  15. SOFIA 2 model telescope wind tunnel test report

    NASA Technical Reports Server (NTRS)

    Keas, Paul

    1995-01-01

    This document outlines the tests performed to make aerodynamic force and torque measurements on the SOFIA wind tunnel model telescope. These tests were performed during the SOFIA 2 wind tunnel test in the 14 ft wind tunnel during the months of June through August 1994. The test was designed to measure the dynamic cross elevation moment acting on the SOFIA model telescope due to aerodynamic loading. The measurements were taken with the telescope mounted in an open cavity in the tail section of the SOFIA model 747. The purpose of the test was to obtain an estimate of the full scale aerodynamic disturbance spectrum, by scaling up the wind tunnel results (taking into account differences in sail area, air density, cavity dimension, etc.). An estimate of the full scale cross elevation moment spectrum was needed to help determine the impact this disturbance would have on the telescope positioning system requirements. A model of the telescope structure, made of a light weight composite material, was mounted in the open cavity of the SOFIA wind tunnel model. This model was mounted via a force balance to the cavity bulkhead. Despite efforts to use a 'stiff' balance, and a lightweight model, the balance/telescope system had a very low resonant frequency (37 Hz) compared to the desired measurement bandwidth (1000 Hz). Due to this mechanical resonance of the balance/telescope system, the balance alone could not provide an accurate measure of applied aerodynamic force at the high frequencies desired. A method of measurement was developed that incorporated accelerometers in addition to the balance signal, to calculate the aerodynamic force.

  16. Stick balancing with reflex delay in case of parametric forcing

    NASA Astrophysics Data System (ADS)

    Insperger, Tamas

    2011-04-01

    The effect of parametric forcing on a PD control of an inverted pendulum is analyzed in the presence of feedback delay. The stability of the time-periodic and time-delayed system is determined numerically using the first-order semi-discretization method in the 5-dimensional parameter space of the pendulum's length, the forcing frequency, the forcing amplitude, the proportional and the differential gains. It is shown that the critical length of the pendulum (that can just be balanced against the time-delay) can significantly be decreased by parametric forcing even if the maximum forcing acceleration is limited. The numerical analysis showed that the critical stick length about 30 cm corresponding to the unforced system with reflex delay 0.1 s can be decreased to 18 cm with keeping maximum acceleration below the gravitational acceleration.

  17. Comparison of digital controllers used in magnetic suspension and balance systems

    NASA Technical Reports Server (NTRS)

    Kilgore, William A.

    1990-01-01

    Dynamic systems that were once controlled by analog circuits are now controlled by digital computers. Presented is a comparison of the digital controllers presently used with magnetic suspension and balance systems. The overall responses of the systems are compared using a computer simulation of the magnetic suspension and balance system and the digital controllers. The comparisons include responses to both simulated force and position inputs. A preferred digital controller is determined from the simulated responses.

  18. Dynamic stability requirements during gait and standing exergames on the wii fit® system in the elderly

    PubMed Central

    2012-01-01

    Background In rehabilitation, training intensity is usually adapted to optimize the trained system to attain better performance (overload principle). However, in balance rehabilitation, the level of intensity required during training exercises to optimize improvement in balance has rarely been studied, probably due to the difficulty in quantifying the stability level during these exercises. The goal of the present study was to test whether the stabilizing/destabilizing forces model could be used to analyze how stability is challenged during several exergames, that are more and more used in balance rehabilitation, and a dynamic functional task, such as gait. Methods Seven healthy older adults were evaluated with three-dimensional motion analysis during gait at natural and fast speed, and during three balance exergames (50/50 Challenge, Ski Slalom and Soccer). Mean and extreme values for stabilizing force, destabilizing force and the ratio of the two forces (stability index) were computed from kinematic and kinetic data to determine the mean and least level of dynamic, postural and overall balance stability, respectively. Results Mean postural stability was lower (lower mean destabilizing force) during the 50/50 Challenge game than during all the other tasks, but peak postural instability moments were less challenging during this game than during any of the other tasks, as shown by the minimum destabilizing force values. Dynamic stability was progressively more challenged (higher mean and maximum stabilizing force) from the 50/50 Challenge to the Soccer and Slalom games, to the natural gait speed task and to the fast gait speed task, increasing the overall stability difficulty (mean and minimum stability index) in the same manner. Conclusions The stabilizing/destabilizing forces model can be used to rate the level of balance requirements during different tasks such as gait or exergames. The results of our study showed that postural stability did not differ much between the evaluated tasks (except for the 50/50 Challenge), compared to dynamic stability, which was significantly less challenged during the games than during the functional tasks. Games with greater centre of mass displacements and changes in the base of support are likely to stimulate balance control enough to see improvements in balance during dynamic functional tasks, and could be tested in pathological populations with the approach used here. PMID:22607025

  19. Is the Climatic Impact of Solar Luminosity Change Fortuitously Balanced by Paleogeographic Change over the last 300 million years?

    NASA Astrophysics Data System (ADS)

    Lunt, D. J.; Farnsworth, A.; Bragg, F.

    2016-12-01

    The climate of the Earth is ultimately controlled by tectonic and solar forcings, with the occasional meteorite thrown in for good measure. A third forcing of greenhouse gases can also be considered if the carbon cycle is considered as external to the system. In this case, the tectonic forcing reduces to a paleogeographic forcing (through changes in atmospheric and ocean circulation related to changes in mountain height/position and gateway/bathymetry changes). There is no reason to expect any link between this paleogeographic forcing and the solar forcing. However, as we show here, a suite of climate model simulations through the last 300 million years show remarkably constant global mean temperature under constant greenhouse gas forcing, despite a varying solar luminosity. We attribute this to a fortuitous balancing of the solar forcing with paleogeographic forcing, related to the continental breakup of Pangea. This provides an alternative hypothesis to the existing paradigm in which solar luminosity is balanced by greenhouse gas forcing through weathering-related feedbacks.

  20. Shake Test Results and Dynamic Calibration Efforts for the Large Rotor Test Apparatus

    NASA Technical Reports Server (NTRS)

    Russell, Carl R.

    2014-01-01

    A shake test of the Large Rotor Test Apparatus (LRTA) was performed in an effort to enhance NASAscapability to measure dynamic hub loads for full-scale rotor tests. This paper documents the results of theshake test as well as efforts to calibrate the LRTA balance system to measure dynamic loads.Dynamic rotor loads are the primary source of vibration in helicopters and other rotorcraft, leading topassenger discomfort and damage due to fatigue of aircraft components. There are novel methods beingdeveloped to reduce rotor vibrations, but measuring the actual vibration reductions on full-scale rotorsremains a challenge. In order to measure rotor forces on the LRTA, a balance system in the non-rotatingframe is used. The forces at the balance can then be translated to the hub reference frame to measure therotor loads. Because the LRTA has its own dynamic response, the balance system must be calibrated toinclude the natural frequencies of the test rig.

  1. Torsion balances with fibres of zero length

    NASA Astrophysics Data System (ADS)

    Speake, Clive C.; Collins, Christopher J.

    2018-04-01

    Torsion balances have good immunity to tilt and low rotational stiffness. However precise control of the position of the suspended torsion 'bob' is difficult in the presence of ground vibrations and tilt and this is a limiting factor in applications where Casimir forces or putative non-Newtonian short-range forces are being measured. We describe how the desirable characteristics of torsion balances can be reproduced in a rigid body that is suspended using applied forces rather than a torsion fibre. The suspension system can then provide a more precise control of the degrees of freedom of the suspended body. We apply these ideas to a superconducting levitated torsion balance, developed by the authors, and a generic electrostatic suspension. We present results of preliminary experiments that provide support for our analyses.

  2. [Optimal solution and analysis of muscular force during standing balance].

    PubMed

    Wang, Hongrui; Zheng, Hui; Liu, Kun

    2015-02-01

    The present study was aimed at the optimal solution of the main muscular force distribution in the lower extremity during standing balance of human. The movement musculoskeletal system of lower extremity was simplified to a physical model with 3 joints and 9 muscles. Then on the basis of this model, an optimum mathematical model was built up to solve the problem of redundant muscle forces. Particle swarm optimization (PSO) algorithm is used to calculate the single objective and multi-objective problem respectively. The numerical results indicated that the multi-objective optimization could be more reasonable to obtain the distribution and variation of the 9 muscular forces. Finally, the coordination of each muscle group during maintaining standing balance under the passive movement was qualitatively analyzed using the simulation results obtained.

  3. Improving substructure identification accuracy of shear structures using virtual control system

    NASA Astrophysics Data System (ADS)

    Zhang, Dongyu; Yang, Yang; Wang, Tingqiang; Li, Hui

    2018-02-01

    Substructure identification is a powerful tool to identify the parameters of a complex structure. Previously, the authors developed an inductive substructure identification method for shear structures. The identification error analysis showed that the identification accuracy of this method is significantly influenced by the magnitudes of two key structural responses near a certain frequency; if these responses are unfavorable, the method cannot provide accurate estimation results. In this paper, a novel method is proposed to improve the substructure identification accuracy by introducing a virtual control system (VCS) into the structure. A virtual control system is a self-balanced system, which consists of some control devices and a set of self-balanced forces. The self-balanced forces counterbalance the forces that the control devices apply on the structure. The control devices are combined with the structure to form a controlled structure used to replace the original structure in the substructure identification; and the self-balance forces are treated as known external excitations to the controlled structure. By optimally tuning the VCS’s parameters, the dynamic characteristics of the controlled structure can be changed such that the original structural responses become more favorable for the substructure identification and, thus, the identification accuracy is improved. A numerical example of 6-story shear structure is utilized to verify the effectiveness of the VCS based controlled substructure identification method. Finally, shake table tests are conducted on a 3-story structural model to verify the efficacy of the VCS to enhance the identification accuracy of the structural parameters.

  4. An Engineering Model of Human Balance Control-Part I: Biomechanical Model.

    PubMed

    Barton, Joseph E; Roy, Anindo; Sorkin, John D; Rogers, Mark W; Macko, Richard

    2016-01-01

    We developed a balance measurement tool (the balanced reach test (BRT)) to assess standing balance while reaching and pointing to a target moving in three-dimensional space according to a sum-of-sines function. We also developed a three-dimensional, 13-segment biomechanical model to analyze performance in this task. Using kinematic and ground reaction force (GRF) data from the BRT, we performed an inverse dynamics analysis to compute the forces and torques applied at each of the joints during the course of a 90 s test. We also performed spectral analyses of each joint's force activations. We found that the joints act in a different but highly coordinated manner to accomplish the tracking task-with individual joints responding congruently to different portions of the target disk's frequency spectrum. The test and the model also identified clear differences between a young healthy subject (YHS), an older high fall risk (HFR) subject before participating in a balance training intervention; and in the older subject's performance after training (which improved to the point that his performance approached that of the young subject). This is the first phase of an effort to model the balance control system with sufficient physiological detail and complexity to accurately simulate the multisegmental control of balance during functional reach across the spectra of aging, medical, and neurological conditions that affect performance. Such a model would provide insight into the function and interaction of the biomechanical and neurophysiological elements making up this system; and system adaptations to changes in these elements' performance and capabilities.

  5. An Engineering Model of Human Balance Control—Part I: Biomechanical Model

    PubMed Central

    Barton, Joseph E.; Roy, Anindo; Sorkin, John D.; Rogers, Mark W.; Macko, Richard

    2016-01-01

    We developed a balance measurement tool (the balanced reach test (BRT)) to assess standing balance while reaching and pointing to a target moving in three-dimensional space according to a sum-of-sines function. We also developed a three-dimensional, 13-segment biomechanical model to analyze performance in this task. Using kinematic and ground reaction force (GRF) data from the BRT, we performed an inverse dynamics analysis to compute the forces and torques applied at each of the joints during the course of a 90 s test. We also performed spectral analyses of each joint's force activations. We found that the joints act in a different but highly coordinated manner to accomplish the tracking task—with individual joints responding congruently to different portions of the target disk's frequency spectrum. The test and the model also identified clear differences between a young healthy subject (YHS), an older high fall risk (HFR) subject before participating in a balance training intervention; and in the older subject's performance after training (which improved to the point that his performance approached that of the young subject). This is the first phase of an effort to model the balance control system with sufficient physiological detail and complexity to accurately simulate the multisegmental control of balance during functional reach across the spectra of aging, medical, and neurological conditions that affect performance. Such a model would provide insight into the function and interaction of the biomechanical and neurophysiological elements making up this system; and system adaptations to changes in these elements' performance and capabilities. PMID:26328608

  6. In-shoe foot force sensor to assess hoof balance determined by radiographic method in ponies trotting on a treadmill.

    PubMed

    Caudron, I; Grulke, S; Farnir, F; Vanschepdael, P; Serteyn, D

    1998-10-01

    Adaptation of an in-foot shoe force sensor and the gait analysis system 'Fscan' makes it possible to monitor the distribution of the vertical forces under the equine foot in motion. The aim of this study is to investigate the effects of two different trimmings on forces under the foot during the trot. The first one increased the height of the lateral hoof wall and the second one restored the mediolateral balance of the foot. These two trimmings were examined by using a radiographical method that quantifies the interphalangeal articular asymmetries due to asymmetrical bearing. The location of the centre of force of the weight-bearing foot and the distribution of the forces applied to the lateral and medial solar surfaces during a stride were analyzed. After optimal trimming, the centre of force of the weight-bearing foot tended to approach the centre of the palmar figure, perpendicular to the distal interphalangeal joint centre. The sum of the forces recorded under the lateral and medial parts respectively of the foot during one stride tended to balance out after corrective trimming.

  7. Wind Tunnel Force Balance Calibration Study - Interim Results

    NASA Technical Reports Server (NTRS)

    Rhew, Ray D.

    2012-01-01

    Wind tunnel force balance calibration is preformed utilizing a variety of different methods and does not have a direct traceable standard such as standards used for most calibration practices (weights, and voltmeters). These different calibration methods and practices include, but are not limited to, the loading schedule, the load application hardware, manual and automatic systems, re-leveling and non-re-leveling. A study of the balance calibration techniques used by NASA was undertaken to develop metrics for reviewing and comparing results using sample calibrations. The study also includes balances of different designs, single and multi-piece. The calibration systems include, the manual, and the automatic that are provided by NASA and its vendors. The results to date will be presented along with the techniques for comparing the results. In addition, future planned calibrations and investigations based on the results will be provided.

  8. Active Vibration Reduction of the Advanced Stirling Convertor

    NASA Technical Reports Server (NTRS)

    Wilson, Scott D.; Metscher, Jonathan F.; Schifer, Nicholas A.

    2016-01-01

    Stirling Radioisotope Power Systems (RPS) are being developed as an option to provide power on future space science missions where robotic spacecraft will orbit, flyby, land or rove. A Stirling Radioisotope Generator (SRG) could offer space missions a more efficient power system that uses one fourth of the nuclear fuel and decreases the thermal footprint compared to the current state of the art. The Stirling Cycle Technology Development (SCTD) Project is funded by the RPS Program to developing Stirling-based subsystems, including convertors and controller maturation efforts that have resulted in high fidelity hardware like the Advanced Stirling Radioisotope Generator (ASRG), Advanced Stirling Convertor (ASC), and ASC Controller Unit (ACU). The SCTD Project also performs research to develop less mature technologies with a wide variety of objectives, including increasing temperature capability to enable new environments, improving system reliability or fault tolerance, reducing mass or size, and developing advanced concepts that are mission enabling. Active vibration reduction systems (AVRS), or "balancers", have historically been developed and characterized to provide fault tolerance for generator designs that incorporate dual-opposed Stirling convertors or enable single convertor, or small RPS, missions. Balancers reduce the dynamic disturbance forces created by the power piston and displacer internal moving components of a single operating convertor to meet spacecraft requirements for induced disturbance force. To improve fault tolerance for dual-opposed configurations and enable single convertor configurations, a breadboard AVRS was implemented on the Advanced Stirling Convertor (ASC). The AVRS included a linear motor, a motor mount, and a closed-loop controller able to balance out the transmitted peak dynamic disturbance using acceleration feedback. Test objectives included quantifying power and mass penalty and reduction in transmitted force over a range of ASC operating parameters and mounting conditions. All tests were performed at three different piston amplitudes, 3.0 mm, 3.75 mm, and 4.5 mm. Overall, the transmitted force was reduced to 2% of the total unbalanced force by actively balancing out only the first fundamental frequency, with balancer motor power remaining under one watt. The test results will be used to guide future balancer designs.

  9. Active Vibration Reduction of the Advanced Stirling Convertor

    NASA Technical Reports Server (NTRS)

    Wilson, Scott D.; Metscher, Jonathan F.; Schifer, Nicholas A.

    2016-01-01

    Stirling Radioisotope Power Systems (RPS) are being developed as an option to provide power on future space science missions where robotic spacecraft will orbit, flyby, land or rove. A Stirling Radioisotope Generator (SRG) could offer space missions a more efficient power system that uses one fourth of the nuclear fuel and decreases the thermal footprint compared to the current state of the art. The Stirling Cycle Technology Development (SCTD) Project is funded by the RPS Program to developing Stirling-based subsystems, including convertors and controller maturation efforts that have resulted in high fidelity hardware like the Advanced Stirling Radioisotope Generator (ASRG), Advanced Stirling Convertor (ASC), and ASC Controller Unit (ACU). The SCTD Project also performs research to develop less mature technologies with a wide variety of objectives, including increasing temperature capability to enable new environments, improving system reliability or fault tolerance, reducing mass or size, and developing advanced concepts that are mission enabling. Active vibration reduction systems (AVRS), or "balancers", have historically been developed and characterized to provide fault tolerance for generator designs that incorporate dual-opposed Stirling convertors or enable single convertor, or small RPS, missions. Balancers reduce the dynamic disturbance forces created by the power piston and displacer internal moving components of a single operating convertor to meet spacecraft requirements for induced disturbance force. To improve fault tolerance for dual-opposed configurations and enable single convertor configurations, a breadboard AVRS was implemented on the Advanced Stirling Convertor (ASC). The AVRS included a linear motor, a motor mount, and a closed-loop controller able to balance out the transmitted peak dynamic disturbance using acceleration feedback. Test objectives included quantifying power and mass penalty and reduction in transmitted force over a range of ASC operating parameters and mounting conditions. All tests were performed at three different piston amplitudes, 3.0, 3.75, and 4.5 mm. Overall, the transmitted force was reduced to 2 percent of the total unbalanced force by actively balancing out only the first fundamental frequency, with balancer motor power remaining under 1 watt. The test results will be used to guide future balancer designs.

  10. Development of a quantitative in-shoe measurement system for assessing balance: sixteen-sensor insoles.

    PubMed

    Bamberg, Stacy M; Lastayo, Paul; Dibble, Lee; Musselman, Josh; Raghavendra, Swarna Kiran Dasa

    2006-01-01

    This work presents the first phase in the development of an in-shoe sensor system designed to evaluate balance. Sixteen force-sensitive resistors were strategically mounted to a removable insole, and the bilateral outputs were recorded. The initial results indicate that these sensors are capable of detecting subtle changes in weight distribution, corresponding to the subject's ability to balance. Preliminary analysis of this data found a clear correlation between the ability to balance and the state of health of the subject.

  11. A Virtual Reality-Cycling Training System for Lower Limb Balance Improvement.

    PubMed

    Yin, Chieh; Hsueh, Ya-Hsin; Yeh, Chun-Yu; Lo, Hsin-Chang; Lan, Yi-Ting

    2016-01-01

    Stroke survivors might lose their walking and balancing abilities, but many studies pointed out that cycling is an effective means for lower limb rehabilitation. However, during cycle training, the unaffected limb tends to compensate for the affected one, which resulted in suboptimal rehabilitation. To address this issue, we present a Virtual Reality-Cycling Training System (VRCTS), which senses the cycling force and speed in real-time, analyzes the acquired data to produce feedback to patients with a controllable VR car in a VR rehabilitation program, and thus specifically trains the affected side. The aim of the study was to verify the functionality of the VRCTS and to verify the results from the ten stroke patients participants and to compare the result of Asymmetry Ratio Index (ARI) between the experimental group and the control group, after their training, by using the bilateral pedal force and force plate to determine any training effect. The results showed that after the VRCTS training in bilateral pedal force it had improved by 0.22 (p = 0.046) and in force plate the stand balance has also improved by 0.29 (p = 0.031); thus both methods show the significant difference.

  12. Civilian Human Capital Strategic Plan 2006-2010

    DTIC Science & Technology

    2006-07-01

    operations.” “ In a reconfigured Total Force, a new balance of skills must be coupled with greater accessibility to people so that the right forces...Plan for transforming DoD training) and promoting work life balance opportunities. Never before have the challenges facing DoD been greater as it...recruitment, retention, development, worklife , and workforce management strategies and systems in closing mission critical competency gaps—ensuring the right

  13. Hypersonic force measurements using internal balance based on optical micromachined Fabry-Perot interferometry.

    PubMed

    Qiu, Huacheng; Min, Fu; Zhong, Shaolong; Song, Xin; Yang, Yanguang

    2018-03-01

    Force measurements using wind tunnel balance are necessary for determining a variety of aerodynamic performance parameters, while the harsh environment in hypersonic flows requires that the measurement instrument should be reliable and robust, in against strong electromagnetic interference, high vacuum, or metal (oxide) dusts. In this paper, we demonstrated a three-component internal balance for hypersonic aerodynamic force measurements, using novel optical micromachined Fabry-Perot interferometric (FPI) strain gauges as sensing elements. The FPI gauges were fabricated using Micro-Opto-Electro-Mechanical Systems (MOEMS) surface and bulk fabrication techniques. High-reflectivity coatings are used to form a high-finesse Fabry-Perot cavity, which benefits a high resolution. Antireflective and passivation coatings are used to reduce unwanted interferences. The FPI strain gauge based balance has been calibrated and evaluated in a Mach 5 hypersonic flow. The results are compared with the traditional technique using the foil resistive strain gauge balance, indicating that the proposed balance based on the MOEMS FPI strain gauge is reliable and robust and is potentially suitable for the hypersonic wind tunnel harsh environment.

  14. Hypersonic force measurements using internal balance based on optical micromachined Fabry-Perot interferometry

    NASA Astrophysics Data System (ADS)

    Qiu, Huacheng; Min, Fu; Zhong, Shaolong; Song, Xin; Yang, Yanguang

    2018-03-01

    Force measurements using wind tunnel balance are necessary for determining a variety of aerodynamic performance parameters, while the harsh environment in hypersonic flows requires that the measurement instrument should be reliable and robust, in against strong electromagnetic interference, high vacuum, or metal (oxide) dusts. In this paper, we demonstrated a three-component internal balance for hypersonic aerodynamic force measurements, using novel optical micromachined Fabry-Perot interferometric (FPI) strain gauges as sensing elements. The FPI gauges were fabricated using Micro-Opto-Electro-Mechanical Systems (MOEMS) surface and bulk fabrication techniques. High-reflectivity coatings are used to form a high-finesse Fabry-Perot cavity, which benefits a high resolution. Antireflective and passivation coatings are used to reduce unwanted interferences. The FPI strain gauge based balance has been calibrated and evaluated in a Mach 5 hypersonic flow. The results are compared with the traditional technique using the foil resistive strain gauge balance, indicating that the proposed balance based on the MOEMS FPI strain gauge is reliable and robust and is potentially suitable for the hypersonic wind tunnel harsh environment.

  15. Wind-Tunnel Balance Characterization for Hypersonic Research Applications

    NASA Technical Reports Server (NTRS)

    Lynn, Keith C.; Commo, Sean A.; Parker, Peter A.

    2012-01-01

    Wind-tunnel research was recently conducted at the NASA Langley Research Center s 31-Inch Mach 10 Hypersonic Facility in support of the Mars Science Laboratory s aerodynamic program. Researchers were interested in understanding the interaction between the freestream flow and the reaction control system onboard the entry vehicle. A five-component balance, designed for hypersonic testing with pressurized flow-through capability, was used. In addition to the aerodynamic forces, the balance was exposed to both thermal gradients and varying internal cavity pressures. Historically, the effect of these environmental conditions on the response of the balance have not been fully characterized due to the limitations in the calibration facilities. Through statistical design of experiments, thermal and pressure effects were strategically and efficiently integrated into the calibration of the balance. As a result of this new approach, researchers were able to use the balance continuously throughout the wide range of temperatures and pressures and obtain real-time results. Although this work focused on a specific application, the methodology shown can be applied more generally to any force measurement system calibration.

  16. Balance Improvement Effects of Biofeedback Systems with State-of-the-Art Wearable Sensors: A Systematic Review.

    PubMed

    Ma, Christina Zong-Hao; Wong, Duo Wai-Chi; Lam, Wing Kai; Wan, Anson Hong-Ping; Lee, Winson Chiu-Chun

    2016-03-25

    Falls and fall-induced injuries are major global public health problems. Balance and gait disorders have been the second leading cause of falls. Inertial motion sensors and force sensors have been widely used to monitor both static and dynamic balance performance. Based on the detected performance, instant visual, auditory, electrotactile and vibrotactile biofeedback could be provided to augment the somatosensory input and enhance balance control. This review aims to synthesize the research examining the effect of biofeedback systems, with wearable inertial motion sensors and force sensors, on balance performance. Randomized and non-randomized clinical trials were included in this review. All studies were evaluated based on the methodological quality. Sample characteristics, device design and study characteristics were summarized. Most previous studies suggested that biofeedback devices were effective in enhancing static and dynamic balance in healthy young and older adults, and patients with balance and gait disorders. Attention should be paid to the choice of appropriate types of sensors and biofeedback for different intended purposes. Maximizing the computing capacity of the micro-processer, while minimizing the size of the electronic components, appears to be the future direction of optimizing the devices. Wearable balance-improving devices have their potential of serving as balance aids in daily life, which can be used indoors and outdoors.

  17. Balance Improvement Effects of Biofeedback Systems with State-of-the-Art Wearable Sensors: A Systematic Review

    PubMed Central

    Ma, Christina Zong-Hao; Wong, Duo Wai-Chi; Lam, Wing Kai; Wan, Anson Hong-Ping; Lee, Winson Chiu-Chun

    2016-01-01

    Falls and fall-induced injuries are major global public health problems. Balance and gait disorders have been the second leading cause of falls. Inertial motion sensors and force sensors have been widely used to monitor both static and dynamic balance performance. Based on the detected performance, instant visual, auditory, electrotactile and vibrotactile biofeedback could be provided to augment the somatosensory input and enhance balance control. This review aims to synthesize the research examining the effect of biofeedback systems, with wearable inertial motion sensors and force sensors, on balance performance. Randomized and non-randomized clinical trials were included in this review. All studies were evaluated based on the methodological quality. Sample characteristics, device design and study characteristics were summarized. Most previous studies suggested that biofeedback devices were effective in enhancing static and dynamic balance in healthy young and older adults, and patients with balance and gait disorders. Attention should be paid to the choice of appropriate types of sensors and biofeedback for different intended purposes. Maximizing the computing capacity of the micro-processer, while minimizing the size of the electronic components, appears to be the future direction of optimizing the devices. Wearable balance-improving devices have their potential of serving as balance aids in daily life, which can be used indoors and outdoors. PMID:27023558

  18. An alternative to the balance error scoring system: using a low-cost balance board to improve the validity/reliability of sports-related concussion balance testing.

    PubMed

    Chang, Jasper O; Levy, Susan S; Seay, Seth W; Goble, Daniel J

    2014-05-01

    Recent guidelines advocate sports medicine professionals to use balance tests to assess sensorimotor status in the management of concussions. The present study sought to determine whether a low-cost balance board could provide a valid, reliable, and objective means of performing this balance testing. Criterion validity testing relative to a gold standard and 7 day test-retest reliability. University biomechanics laboratory. Thirty healthy young adults. Balance ability was assessed on 2 days separated by 1 week using (1) a gold standard measure (ie, scientific grade force plate), (2) a low-cost Nintendo Wii Balance Board (WBB), and (3) the Balance Error Scoring System (BESS). Validity of the WBB center of pressure path length and BESS scores were determined relative to the force plate data. Test-retest reliability was established based on intraclass correlation coefficients. Composite scores for the WBB had excellent validity (r = 0.99) and test-retest reliability (R = 0.88). Both the validity (r = 0.10-0.52) and test-retest reliability (r = 0.61-0.78) were lower for the BESS. These findings demonstrate that a low-cost balance board can provide improved balance testing accuracy/reliability compared with the BESS. This approach provides a potentially more valid/reliable, yet affordable, means of assessing sports-related concussion compared with current methods.

  19. Statistical foundations of liquid-crystal theory: I. Discrete systems of rod-like molecules.

    PubMed

    Seguin, Brian; Fried, Eliot

    2012-12-01

    We develop a mechanical theory for systems of rod-like particles. Central to our approach is the assumption that the external power expenditure for any subsystem of rods is independent of the underlying frame of reference. This assumption is used to derive the basic balance laws for forces and torques. By considering inertial forces on par with other forces, these laws hold relative to any frame of reference, inertial or noninertial. Finally, we introduce a simple set of constitutive relations to govern the interactions between rods and find restrictions necessary and sufficient for these laws to be consistent with thermodynamics. Our framework provides a foundation for a statistical mechanical derivation of the macroscopic balance laws governing liquid crystals.

  20. We-Measure: Toward a low-cost portable posturography for patients with multiple sclerosis using the commercial Wii balance board.

    PubMed

    Castelli, Letizia; Stocchi, Luca; Patrignani, Maurizio; Sellitto, Giovanni; Giuliani, Manuela; Prosperini, Luca

    2015-12-15

    This study was aimed at investigating whether postural sway measures derived from a standard force platform were similar to those generated by a custom-written software ("We-Measure") acquiring and processing data from a commercial Nintendo balance board (BB). For this purpose, 90 patients with multiple sclerosis (MS) and 50 healthy controls (HC) were tested in a single-day session with a reference standard force platform and a BB-based system. Despite its acceptable between-device agreement (tested by visual evaluation of Bland-Altman plot), the low-cost BB-based system tended to overestimate postural sway when compared to the reference standard force platform in both MS and HC groups (on average +30% and +54%, respectively). Between-device reliability was just adequate (MS: 66%, HC: 47%), while test-retest reliability was excellent (MS: 84%, HC: 88%). Concurrent validity evaluation showed similar performance between the reference standard force platform and the BB-based system in discriminating fallers and non-fallers among patients with MS. All these findings may encourage the use of this balance board-based new device in longitudinal study, rather than in cross-sectional design, thus providing a potential useful tool for multicenter settings. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. The desmoplakin–intermediate filament linkage regulates cell mechanics

    PubMed Central

    Broussard, Joshua A.; Yang, Ruiguo; Huang, Changjin; Nathamgari, S. Shiva P.; Beese, Allison M.; Godsel, Lisa M.; Hegazy, Marihan H.; Lee, Sherry; Zhou, Fan; Sniadecki, Nathan J.; Green, Kathleen J.; Espinosa, Horacio D.

    2017-01-01

    The translation of mechanical forces into biochemical signals plays a central role in guiding normal physiological processes during tissue development and homeostasis. Interfering with this process contributes to cardiovascular disease, cancer progression, and inherited disorders. The actin-based cytoskeleton and its associated adherens junctions are well-established contributors to mechanosensing and transduction machinery; however, the role of the desmosome–intermediate filament (DSM–IF) network is poorly understood in this context. Because a force balance among different cytoskeletal systems is important to maintain normal tissue function, knowing the relative contributions of these structurally integrated systems to cell mechanics is critical. Here we modulated the interaction between DSMs and IFs using mutant forms of desmoplakin, the protein bridging these structures. Using micropillar arrays and atomic force microscopy, we demonstrate that strengthening the DSM–IF interaction increases cell–substrate and cell–cell forces and cell stiffness both in cell pairs and sheets of cells. In contrast, disrupting the interaction leads to a decrease in these forces. These alterations in cell mechanics are abrogated when the actin cytoskeleton is dismantled. These data suggest that the tissue-specific variability in DSM–IF network composition provides an opportunity to differentially regulate tissue mechanics by balancing and tuning forces among cytoskeletal systems. PMID:28495795

  2. Potential landscape and flux field theory for turbulence and nonequilibrium fluid systems

    NASA Astrophysics Data System (ADS)

    Wu, Wei; Zhang, Feng; Wang, Jin

    2018-02-01

    Turbulence is a paradigm for far-from-equilibrium systems without time reversal symmetry. To capture the nonequilibrium irreversible nature of turbulence and investigate its implications, we develop a potential landscape and flux field theory for turbulent flow and more general nonequilibrium fluid systems governed by stochastic Navier-Stokes equations. We find that equilibrium fluid systems with time reversibility are characterized by a detailed balance constraint that quantifies the detailed balance condition. In nonequilibrium fluid systems with nonequilibrium steady states, detailed balance breaking leads directly to a pair of interconnected consequences, namely, the non-Gaussian potential landscape and the irreversible probability flux, forming a 'nonequilibrium trinity'. The nonequilibrium trinity characterizes the nonequilibrium irreversible essence of fluid systems with intrinsic time irreversibility and is manifested in various aspects of these systems. The nonequilibrium stochastic dynamics of fluid systems including turbulence with detailed balance breaking is shown to be driven by both the non-Gaussian potential landscape gradient and the irreversible probability flux, together with the reversible convective force and the stochastic stirring force. We reveal an underlying connection of the energy flux essential for turbulence energy cascade to the irreversible probability flux and the non-Gaussian potential landscape generated by detailed balance breaking. Using the energy flux as a center of connection, we demonstrate that the four-fifths law in fully developed turbulence is a consequence and reflection of the nonequilibrium trinity. We also show how the nonequilibrium trinity can affect the scaling laws in turbulence.

  3. Stress Transmission in Granular Packings: Localization and Cooperative Response

    NASA Astrophysics Data System (ADS)

    Ramola, Kabir

    We develop a framework for stress transmission in two dimensional granular media that respects vector force balance at the microscopic level. For a packing of grains interacting via pairwise contact forces, we introduce local gauge degrees of freedom that determine the response of the system to external perturbations. This allows us to construct unique force-balanced solutions that determine the change in contact forces as a response to external stress. By mapping this response to diffusion in the underlying contact network, we show that this naturally leads to spatial localization of forces. We present numerical evidence for stress localization using exact diagonalization studies of network Laplacians associated with soft disk packings. We use this formalism to characterize the deviation from elastic behaviour as the amount of disorder in the underlying network is varied. We discuss generalizations to systems with large friction between grains and other networks that display topological disorder. This work has been supported by NSF-DMR 1409093 and the W. M. Keck Foundation.

  4. Posturography using the Wii Balance Board™: A feasibility study with healthy adults and adults post-stroke.

    PubMed

    Llorens, Roberto; Latorre, Jorge; Noé, Enrique; Keshner, Emily A

    2016-01-01

    Posturography systems that incorporate force platforms are considered to assess balance and postural control with greater sensitivity and objectivity than conventional clinical tests. The Wii Balance Board (WBB) system has been shown to have similar performance characteristics as other force platforms, but with lower cost and size. To determine the validity and reliability of a freely available WBB-based posturography system that combined the WBB with several traditional balance assessments, and to assess the performance of a cohort of stroke individuals with respect to healthy individuals. Healthy subjects and individuals with stroke were recruited. Both groups were assessed using the WBB-based posturography system. Individuals with stroke were also assessed using a laboratory grade posturography system and a battery of clinical tests to determine the concurrent validity of the system. A group of subjects were assessed twice with the WBB-based system to determine its reliability. A total of 144 healthy individuals and 53 individuals with stroke participated in the study. Concurrent validity with another posturography system was moderate to high. Correlations with clinical scales were consistent with previous research. The reliability of the system was excellent in almost all measures. In addition, the system successfully characterized individuals with stroke with respect to the healthy population. The WBB-based posturography system exhibited excellent psychometric properties and sensitivity for identifying balance performance of individuals with stroke in comparison with healthy subjects, which supports feasibility of the system as a clinical tool. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Nanolevitation Phenomena in Real Plane-Parallel Systems Due to the Balance between Casimir and Gravity Forces

    PubMed Central

    2015-01-01

    We report on the theoretical analysis of equilibrium distances in real plane-parallel systems under the influence of Casimir and gravity forces at thermal equilibrium. Due to the balance between these forces, thin films of Teflon, silica, or polystyrene in a single-layer configuration and immersed in glycerol stand over a silicon substrate at certain stable or unstable positions depending on the material and the slab thickness. Hybrid systems containing silica and polystyrene, materials which display Casimir forces and equilibrium distances of opposite nature when considered individually, are analyzed in either bilayer arrangements or as composite systems made of a homogeneous matrix with small inclusions inside. For each configuration, equilibrium distances and their stability can be adjusted by fine-tuning of the volume occupied by each material. We find the specific conditions under which nanolevitation of realistic films should be observed. Our results indicate that thin films of real materials in plane-parallel configurations can be used to control suspension or stiction phenomena at the nanoscale. PMID:26405466

  6. Drag measurements on a laminar-flow body of revolution in the 13-inch magnetic suspension and balance system

    NASA Technical Reports Server (NTRS)

    Dress, David A.

    1989-01-01

    Low speed wind tunnel drag force measurements were taken on a laminar flow body of revolution free of support interference. This body was tested at zero incidence in the NASA Langley 13 in. Magnetic Suspension and Balance System (MSBS). The primary objective of these tests was to substantiate the drag force measuring capabilities of the 13 in. MSBS. The drag force calibrations and wind-on repeatability data provide a means of assessing these capabilities. Additional investigations include: (1) the effects of fixing transition; (2) the effects of fins installed in the tail; and (3) surface flow visualization using both liquid crystals and oil flow. Also two simple drag prediction codes were used to assess their usefulness in estimating overall body drag.

  7. Crafting a Balanced System of Assessment in Wisconsin. Recommendations of the Next Generation Assessment Task Force

    ERIC Educational Resources Information Center

    Wisconsin Department of Public Instruction, 2009

    2009-01-01

    The Next Generation Assessment Task Force was convened to formulate Wisconsin's path forward. Task force members listened to leaders from business and technology sectors as well as leaders from PK-12 and higher education. This summary shares the process, definitions, assumptions, and recommendations of the task force. This paper aims to use these…

  8. Possible role of laser phototherapy in laser immunotherapy

    NASA Astrophysics Data System (ADS)

    Hode, Tomas; Hode, Lars

    2009-02-01

    Laser immunotherapy is a promising cancer treatment method that induces antitumor immunity and appears to be effective both locally and systemically. In this context, an important factor is the overall state of the immune system, both locally and systemically. The success of any immunotherapy treatment depends on the balance between the local immunosuppressive forces induced by the tumor and the immune response of the host organism. Factors that influence this balance include heat-shock proteins (for example HSP70), transforming growth factor β (TGF-β), tumor necrosis factor α (TNF-α), interleukins, and more. Laser phototherapy, which is based on non-thermal photobiological processes, has been shown to modulate the body's own immune response, both locally and systemically, with a strong influence on for example cytokine production and heat-shock protein synthesis. Laser phototherapy may therefore be an important component in the overall efficacy of laser immunotherapy, and may tip the balance between the immunosuppressive and immunostimulatory forces in favor of immunostimulation.

  9. A self-calibrating multicomponent force/torque measuring system

    NASA Astrophysics Data System (ADS)

    Marangoni, Rafael R.; Schleichert, Jan; Rahneberg, Ilko; Hilbrunner, Falko; Fröhlich, Thomas

    2018-07-01

    A multicomponent self-calibrating force and torque sensor is presented. In this system, the principle of a Kibble balance is adapted for the traceable force and torque measurement in three orthogonal directions. The system has two operating modes: the velocity mode and the force/torque sensing mode. In the velocity mode, the calibration of the sensor is performed, while in the force/torque sensing mode, forces and torques are measured by using the principle of the electromagnetic force compensation. Details about the system are provided, with the main components of the sensor and a description of the operational procedure. A prototype of the system is currently being implemented for measuring forces and torques in a range of  ±2 N and  ±0.1 N · m respectively. A maximal relative expanded measurement uncertainty (k  =  2) of 1 · 10‑4 is expected for the force and torque measurements.

  10. The strategic balance, the MX-system and deficiencies in the SALT Treaty

    NASA Astrophysics Data System (ADS)

    Karlsson, H.

    1982-04-01

    The Strategic Arms Limitation Treaty project SALT 2 is shown to have fundamental deficiencies. An asymetric development of the USA's and the USSR's strategic forces and their military doctrines led to increasing vulnerability of these forces. According to the American intimidation theory, nonvulnerable retaliation forces are a precondition for strategic stability, therefore the USA developed the MX-system, a more reliable land-based system for intercontinental missiles. The characteristics of the MX are not definitely defined yet.

  11. 57. Building 105, another view of ion return RF balance ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    57. Building 105, another view of ion return RF balance tube system, and beginning of waveguide return connections to right of photograph; note bottoms of waveguide systems around circumference of scanner switch in upper part of photograph. - Clear Air Force Station, Ballistic Missile Early Warning System Site II, One mile west of mile marker 293.5 on Parks Highway, 5 miles southwest of Anderson, Anderson, Denali Borough, AK

  12. Measurement of ultrasound power using a calorimeter

    NASA Astrophysics Data System (ADS)

    Morgado, G.; Miqueleti, S.; Costa-Felix, R. P. B.

    2018-03-01

    This paper presents a comparison between the ultrasound power of a 1 MHz therapy equipment on the water using a calorimeter and a radiation force balance. For a range of 5 to 10 W, the results presented a normalized error less than 1, disclosing compatibility of the results from the developed system and the radiation force balance. The calorimetric method might be used as a faster and cheaper means for the verification of the ultrasonic power emitted by an equipment for physiotherapeutic treatment.

  13. Predicting water-to-cyclohexane partitioning of the SAMPL5 molecules using dielectric balancing of force fields.

    PubMed

    Paranahewage, S Shanaka; Gierhart, Cassidy S; Fennell, Christopher J

    2016-11-01

    Alchemical transformation of solutes using classical fixed-charge force fields is a popular strategy for assessing the free energy of transfer in different environments. Accurate estimations of transfer between phases with significantly different polarities can be difficult because of the static nature of the force fields. Here, we report on an application of such calculations in the SAMPL5 experiment that also involves an effort in balancing solute and solvent interactions via their expected static dielectric constants. This strategy performs well with respect to predictive accuracy and correlation with unknown experimental values. We follow this by performing a series of retrospective investigations which highlight the potential importance of proper balancing in these systems, and we use a null hypothesis analysis to explore potential biases in the comparisons with experiment. The collective findings indicate that considerations of force field compatibility through dielectric behavior is a potential strategy for future improvements in transfer processes between disparate environments.

  14. 56. Building 105, close view of ion return RF balance ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    56. Building 105, close view of ion return RF balance tube adjustment controls. - Clear Air Force Station, Ballistic Missile Early Warning System Site II, One mile west of mile marker 293.5 on Parks Highway, 5 miles southwest of Anderson, Anderson, Denali Borough, AK

  15. [Human skull development and voice disorders].

    PubMed

    Piron, A; Roch, J B

    2006-01-01

    The hominisation of the skull comes with the bipedic posture, due to a network of muscular and aponevrotic forces applied to the cranio-facial skeleton. A brief sight of the morphogenetic origine and issues of these forces help to understand more clearly the postural statement of the larynx, his functions, and his many extrinsic biomechanical bounds; then further his most frequently dysfunctions. The larynx is surrounded by several effective systems of protection: active, activo-passive, passive. The architectural features of the components of the laryngeal system allows us to consider the laryngeal function as an auto-balanced system. All the forces engaged are auto-balanced in a continuum of tension. This lead us to the concept of tensegrity system, neologism coming from tensional integrity described by Buckminster Fuller. The laryngeal employement by extrinsic system is pathological in case of chronicity. Any osteopathic treatment, which aims to restore the losses of laryngeal mobility, has to release first the peripherical structures involved in the laryngeal defense, before normalising the larynx itself Finally, the larynx recovers his functions in a tensegrity system.

  16. Simultaneous drag and flow measurements of Olympic skeleton athletes

    NASA Astrophysics Data System (ADS)

    Moon, Yae Eun; Digiulio, David; Peters, Steve; Wei, Timothy

    2009-11-01

    The Olympic sport of skeleton involves an athlete riding a small sled face first down a bobsled track at speeds up to 130 km/hr. In these races, the difference between gold and missing the medal stand altogether can be hundredths of a second per run. As such, reducing aerodynamic drag through proper body positioning is of first order importance. To better study the flow behavior and to improve the performance of the athletes, we constructed a static force balance system on a mock section of a bobsled track. Athlete and the sled are placed on the force balance system which is positioned at the exit of an open loop wind tunnel. Simultaneous drag force and DPIV velocity field measurements were made along with video recordings of body position to aid the athletes in determining their optimal aerodynamic body position.

  17. A multi-harmonic generalized energy balance method for studying autonomous oscillations of nonlinear conservative systems

    NASA Astrophysics Data System (ADS)

    Balaji, Nidish Narayanaa; Krishna, I. R. Praveen; Padmanabhan, C.

    2018-05-01

    The Harmonic Balance Method (HBM) is a frequency-domain based approximation approach used for obtaining the steady state periodic behavior of forced dynamical systems. Intrinsically these systems are non-autonomous and the method offers many computational advantages over time-domain methods when the fundamental period of oscillation is known (generally fixed as the forcing period itself or a corresponding sub-harmonic if such behavior is expected). In the current study, a modified approach, based on He's Energy Balance Method (EBM), is applied to obtain the periodic solutions of conservative systems. It is shown that by this approach, periodic solutions of conservative systems on iso-energy manifolds in the phase space can be obtained very efficiently. The energy level provides the additional constraint on the HBM formulation, which enables the determination of the period of the solutions. The method is applied to the linear harmonic oscillator, a couple of nonlinear oscillators, the elastic pendulum and the Henon-Heiles system. The approach is used to trace the bifurcations of the periodic solutions of the last two, being 2 degree-of-freedom systems demonstrating very rich dynamical behavior. In the process, the advantages offered by the current formulation of the energy balance is brought out. A harmonic perturbation approach is used to evaluate the stability of the solutions for the bifurcation diagram.

  18. An investigation into force-moment calibration techniques applicable to a magnetic suspension and balance system. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Eskins, Jonathan

    1988-01-01

    The problem of determining the forces and moments acting on a wind tunnel model suspended in a Magnetic Suspension and Balance System is addressed. Two calibration methods were investigated for three types of model cores, i.e., Alnico, Samarium-Cobalt, and a superconducting solenoid. Both methods involve calibrating the currents in the electromagnetic array against known forces and moments. The first is a static calibration method using calibration weights and a system of pulleys. The other method, dynamic calibration, involves oscillating the model and using its inertia to provide calibration forces and moments. Static calibration data, found to produce the most reliable results, is presented for three degrees of freedom at 0, 15, and -10 deg angle of attack. Theoretical calculations are hampered by the inability to represent iron-cored electromagnets. Dynamic calibrations, despite being quicker and easier to perform, are not as accurate as static calibrations. Data for dynamic calibrations at 0 and 15 deg is compared with the relevant static data acquired. Distortion of oscillation traces is cited as a major source of error in dynamic calibrations.

  19. Portable dual field gradient force multichannel flow cytometer device with a dual wavelength low noise detection scheme

    DOEpatents

    James, Conrad D; Galambos, Paul C; Derzon, Mark S; Graf, Darin C; Pohl, Kenneth R; Bourdon, Chris J

    2012-10-23

    Systems and methods for combining dielectrophoresis, magnetic forces, and hydrodynamic forces to manipulate particles in channels formed on top of an electrode substrate are discussed. A magnet placed in contact under the electrode substrate while particles are flowing within the channel above the electrode substrate allows these three forces to be balanced when the system is in operation. An optical detection scheme using near-confocal microscopy for simultaneously detecting two wavelengths of light emitted from the flowing particles is also discussed.

  20. Soft tissue balance changes depending on joint distraction force in total knee arthroplasty.

    PubMed

    Nagai, Kanto; Muratsu, Hirotsugu; Matsumoto, Tomoyuki; Miya, Hidetoshi; Kuroda, Ryosuke; Kurosaka, Masahiro

    2014-03-01

    The influence of joint distraction force on intraoperative soft tissue balance was evaluated using Offset Repo-Tensor® for 78 knees that underwent primary posterior-stabilized total knee arthroplasty. The joint center gap and varus ligament balance were measured between osteotomized surfaces using 20, 40 and 60 lbs of joint distraction force. These values were significantly increased at extension and flexion as the distraction force increased. Furthermore, lateral compartment stiffness was significantly lower than medial compartment stiffness. Thus, larger joint distraction forces led to larger varus ligament balance and joint center gap, because of the difference in soft tissue stiffness between lateral and medial compartments. These findings indicate the importance of the strength of joint distraction force in the assessment of soft tissue balance, especially when using gap-balancing technique. © 2014.

  1. Escape rate for nonequilibrium processes dominated by strong non-detailed balance force

    NASA Astrophysics Data System (ADS)

    Tang, Ying; Xu, Song; Ao, Ping

    2018-02-01

    Quantifying the escape rate from a meta-stable state is essential to understand a wide range of dynamical processes. Kramers' classical rate formula is the product of an exponential function of the potential barrier height and a pre-factor related to the friction coefficient. Although many applications of the rate formula focused on the exponential term, the prefactor can have a significant effect on the escape rate in certain parameter regions, such as the overdamped limit and the underdamped limit. There have been continuous interests to understand the effect of non-detailed balance on the escape rate; however, how the prefactor behaves under strong non-detailed balance force remains elusive. In this work, we find that the escape rate formula has a vanishing prefactor with decreasing friction strength under the strong non-detailed balance limit. We both obtain analytical solutions in specific examples and provide a derivation for more general cases. We further verify the result by simulations and propose a testable experimental system of a charged Brownian particle in electromagnetic field. Our study demonstrates that a special care is required to estimate the effect of prefactor on the escape rate when non-detailed balance force dominates.

  2. High-Reynolds Number Active Blowing Semi-Span Force Measurement System Development

    NASA Technical Reports Server (NTRS)

    Lynn, Keith C.; Rhew, Ray D.; Acheson, Michael J.; Jones, Gregory S.; Milholen, William E.; Goodliff, Scott L.

    2012-01-01

    Recent wind-tunnel tests at the NASA Langley Research Center National Transonic Facility utilized high-pressure bellows to route air to the model for evaluating aircraft circulation control. The introduction of these bellows within the Sidewall Model Support System significantly impacted the performance of the external sidewall mounted semi-span balance. As a result of this impact on the semi-span balance measurement performance, it became apparent that a new capability needed to be built into the National Transonic Facility s infrastructure to allow for performing pressure tare calibrations on the balance in order to properly characterize its performance under the influence of static bellows pressure tare loads and bellows thermal effects. The objective of this study was to design both mechanical calibration hardware and an experimental calibration design that can be employed at the facility in order to efficiently and precisely perform the necessary loadings in order to characterize the semi-span balance under the influence of multiple calibration factors (balance forces/moments and bellows pressure/temperature). Using statistical design of experiments, an experimental design was developed allowing for strategically characterizing the behavior of the semi-span balance for use in circulation control and propulsion-type flow control testing at the National Transonic Facility.

  3. Strain Gauge Balance Uncertainty Analysis at NASA Langley: A Technical Review

    NASA Technical Reports Server (NTRS)

    Tripp, John S.

    1999-01-01

    This paper describes a method to determine the uncertainties of measured forces and moments from multi-component force balances used in wind tunnel tests. A multivariate regression technique is first employed to estimate the uncertainties of the six balance sensitivities and 156 interaction coefficients derived from established balance calibration procedures. These uncertainties are then employed to calculate the uncertainties of force-moment values computed from observed balance output readings obtained during tests. Confidence and prediction intervals are obtained for each computed force and moment as functions of the actual measurands. Techniques are discussed for separate estimation of balance bias and precision uncertainties.

  4. Differential force balances during levitation

    NASA Astrophysics Data System (ADS)

    Todd, Paul

    The simplest arithmetic of inertial, buoyant, magnetic and electrokinetic levitation is explored in the context of a model living system with “acceleration-sensitive structures” in which motion, if allowed, produces a biological effect. The simple model is a finite-sized object enclosed within another finite-sized object suspended in an outer fluid (liquid or vapor) medium. The inner object has density and electrical and magnetic properties quantitatively different from those of the outer object and the medium. In inertial levitation (“weightlessness”) inertial accelerations are balanced, and the forces due to them are canceled in accordance with Newton’s third law. In the presence of inertial acceleration (gravity, centrifugal) motionlessness depends on a balance between the levitating force and the inertial force. If the inner and outer objects differ in density one or the other will be subjected to an unbalanced force when one object is levitated by any other force (buoyant, magnetic, electrokinetic). The requirements for motionlessness of the internal object in the presence of a levitating force are equality of density in the case of buoyant levitation, equality of magnetic susceptibility in the case of magnetic levitation, and equality of zeta potential and dielectric constant in the case of electrokinetic levitation. Examples of internal “acceleration-sensitive structures” are cellular organelles and the organs of advanced plants and animals. For these structures fundamental physical data are important in the interpretation of the effects of forces used for levitation.

  5. Stress Response of Granular Systems

    NASA Astrophysics Data System (ADS)

    Ramola, Kabir; Chakraborty, Bulbul

    2017-10-01

    We develop a framework for stress response in two dimensional granular media, with and without friction, that respects vector force balance at the microscopic level. We introduce local gauge degrees of freedom that determine the response of contact forces between constituent grains on a given, disordered, contact network, to external perturbations. By mapping this response to the spectral properties of the graph Laplacian corresponding to the underlying contact network, we show that this naturally leads to spatial localization of forces. We present numerical evidence for localization using exact diagonalization studies of network Laplacians of soft disk packings. Finally, we discuss the role of other constraints, such as torque balance, in determining the stability of a granular packing to external perturbations.

  6. Statistical foundations of liquid-crystal theory

    PubMed Central

    Seguin, Brian; Fried, Eliot

    2013-01-01

    We develop a mechanical theory for systems of rod-like particles. Central to our approach is the assumption that the external power expenditure for any subsystem of rods is independent of the underlying frame of reference. This assumption is used to derive the basic balance laws for forces and torques. By considering inertial forces on par with other forces, these laws hold relative to any frame of reference, inertial or noninertial. Finally, we introduce a simple set of constitutive relations to govern the interactions between rods and find restrictions necessary and sufficient for these laws to be consistent with thermodynamics. Our framework provides a foundation for a statistical mechanical derivation of the macroscopic balance laws governing liquid crystals. PMID:23772091

  7. Three-Component Force Measurements on a Scramjet in a Reflected-Shock Tunnel

    NASA Technical Reports Server (NTRS)

    Tsai, C.-Y.; Bakos, R. J.; Mee, D. J.

    1998-01-01

    A three-component stress-wave force-balance for a large scramjet has been designed, calibrated and tested in the HYPULSE reflected shock tunnel at GASL Inc., New York. The scramjet model is over 3-foot long and weighs in excess of 90 Ibm. The stress-wave force-balance is comprised of three stress bars which are attached to the model. Calibration results indicate that the force balance responds well within about 1 ms and that the sensitivity of the balance to the distribution of load is not large. Results with and without fuel injection were obtained in the tunnel operated for Mach 7 and Mach 10 flight simulation. These tests showed the force-balance can resolve axial force increments due to combustion of about 40 lb in the presence of model lift forces of 500-700 lb.

  8. Use of the Nintendo Wii Balance Board for Studying Standing Static Balance Control: Technical Considerations, Force-Plate Congruency, and the Effect of Battery Life.

    PubMed

    Weaver, Tyler B; Ma, Christine; Laing, Andrew C

    2017-02-01

    The Nintendo Wii Balance Board (WBB) has become popular as a low-cost alternative to research-grade force plates. The purposes of this study were to characterize a series of technical specifications for the WBB, to compare balance control metrics derived from time-varying center of pressure (COP) signals collected simultaneously from a WBB and a research-grade force plate, and to investigate the effects of battery life. Drift, linearity, hysteresis, mass accuracy, uniformity of response, and COP accuracy were assessed from a WBB. In addition, 6 participants completed an eyes-closed quiet standing task on the WBB (at 3 battery life levels) mounted on a force plate while sway was simultaneously measured by both systems. Characterization results were all associated with less than 1% error. R 2 values reflecting WBB sensor linearity were > .99. Known and measured COP differences were lowest at the center of the WBB and greatest at the corners. Between-device differences in quiet stance COP summary metrics were of limited clinical significance. Lastly, battery life did not affect WBB COP accuracy, but did influence 2 of 8 quiet stance WBB parameters. This study provides general support for the WBB as a low-cost alternative to research-grade force plates for quantifying COP movement during standing.

  9. Force-Balance Dynamic Display

    NASA Technical Reports Server (NTRS)

    Ferris, Alice T.; White, William C.

    1988-01-01

    Balance dynamic display unit (BDDU) is compact system conditioning six dynamic analog signals so they are monitored simultaneously in real time on single-trace oscilloscope. Typical BDDU oscilloscope display in scan mode shows each channel occupying one-sixth of total trace. System features two display modes usable with conventional, single-channel oscilloscope: multiplexed six-channel "bar-graph" format and single-channel display. Two-stage visual and audible limit alarm provided for each channel.

  10. Theoretical analysis for the design of the French watt balance experiment force comparator

    NASA Astrophysics Data System (ADS)

    Pinot, Patrick; Genevès, Gerard; Haddad, Darine; David, Jean; Juncar, Patrick; Lecollinet, Michel; Macé, Stéphane; Villar, François

    2007-09-01

    This paper presents a preliminary analysis for designing a force comparator to be used in the French watt balance experiment. The first stage of this experiment consists in a static equilibrium, by means of a mechanical beam balance, between a gravitational force (a weight of an artefact having a known mass submitted to the acceleration due to the gravity) and a vertical electromagnetic force acting on a coil driven by a current subject to the magnetic induction field provided by a permanent magnet. The principle of the force comparison in the French experiment is explained. The general design configuration of the force balance using flexure strips as pivots is discussed and theoretical calculation results based on realistic assumptions of the static and dynamic behaviors of the balance are presented.

  11. Theoretical analysis for the design of the French watt balance experiment force comparator.

    PubMed

    Pinot, Patrick; Genevès, Gerard; Haddad, Darine; David, Jean; Juncar, Patrick; Lecollinet, Michel; Macé, Stéphane; Villar, François

    2007-09-01

    This paper presents a preliminary analysis for designing a force comparator to be used in the French watt balance experiment. The first stage of this experiment consists in a static equilibrium, by means of a mechanical beam balance, between a gravitational force (a weight of an artefact having a known mass submitted to the acceleration due to the gravity) and a vertical electromagnetic force acting on a coil driven by a current subject to the magnetic induction field provided by a permanent magnet. The principle of the force comparison in the French experiment is explained. The general design configuration of the force balance using flexure strips as pivots is discussed and theoretical calculation results based on realistic assumptions of the static and dynamic behaviors of the balance are presented.

  12. A calibration rig for multi-component internal strain gauge balance using the new design-of-experiment (DOE) approach

    NASA Astrophysics Data System (ADS)

    Nouri, N. M.; Mostafapour, K.; Kamran, M.

    2018-02-01

    In a closed water-tunnel circuit, the multi-component strain gauge force and moment sensor (also known as balance) are generally used to measure hydrodynamic forces and moments acting on scaled models. These balances are periodically calibrated by static loading. Their performance and accuracy depend significantly on the rig and the method of calibration. In this research, a new calibration rig was designed and constructed to calibrate multi-component internal strain gauge balances. The calibration rig has six degrees of freedom and six different component-loading structures that can be applied separately and synchronously. The system was designed based on the applicability of formal experimental design techniques, using gravity for balance loading and balance positioning and alignment relative to gravity. To evaluate the calibration rig, a six-component internal balance developed by Iran University of Science and Technology was calibrated using response surface methodology. According to the results, calibration rig met all design criteria. This rig provides the means by which various methods of formal experimental design techniques can be implemented. The simplicity of the rig saves time and money in the design of experiments and in balance calibration while simultaneously increasing the accuracy of these activities.

  13. When Equal Masses Don't Balance

    ERIC Educational Resources Information Center

    Newburgh, Ronald; Peidle, Joseph; Rueckner, Wolfgang

    2004-01-01

    We treat a modified Atwood's machine in which equal masses do not balance because of being in an accelerated frame of reference. Analysis of the problem illuminates the meaning of inertial forces, d'Alembert's principle, the use of free-body diagrams and the selection of appropriate systems for the diagrams. In spite of the range of these…

  14. Optical force rectifiers based on PT-symmetric metasurfaces

    NASA Astrophysics Data System (ADS)

    Alaee, Rasoul; Gurlek, Burak; Christensen, Johan; Kadic, Muamer

    2018-05-01

    We introduce here the concept of optical force rectifier based on parity-time symmetric metasurfaces. Directly linked to the properties of non-Hermitian systems engineered by balanced loss and gain constituents, we show that light can exert asymmetric pulling or pushing forces on metasurfaces depending on the direction of the impinging light. This generates a complete force rectification in the vicinity of the exceptional point. Our findings have the potential to spark the design of applications in optical manipulation where the forces, strictly speaking, act unidirectionally.

  15. The F-15B Propulsion Flight Test Fixture: A New Flight Facility For Propulsion Research

    NASA Technical Reports Server (NTRS)

    Corda, Stephen; Vachon, M. Jake; Palumbo, Nathan; Diebler, Corey; Tseng, Ting; Ginn, Anthony; Richwine, David

    2001-01-01

    The design and development of the F-15B Propulsion Flight Test Fixture (PFTF), a new facility for propulsion flight research, is described. Mounted underneath an F-15B fuselage, the PFTF provides volume for experiment systems and attachment points for propulsion devices. A unique feature of the PFTF is the incorporation of a six-degree-of-freedom force balance. Three-axis forces and moments can be measured in flight for experiments mounted to the force balance. The NASA F-15B airplane is described, including its performance and capabilities as a research test bed aircraft. The detailed description of the PFTF includes the geometry, internal layout and volume, force-balance operation, available instrumentation, and allowable experiment size and weight. The aerodynamic, stability and control, and structural designs of the PFTF are discussed, including results from aerodynamic computational fluid dynamic calculations and structural analyses. Details of current and future propulsion flight experiments are discussed. Information about the integration of propulsion flight experiments is provided for the potential PFTF user.

  16. An efficient algorithm using matrix methods to solve wind tunnel force-balance equations

    NASA Technical Reports Server (NTRS)

    Smith, D. L.

    1972-01-01

    An iterative procedure applying matrix methods to accomplish an efficient algorithm for automatic computer reduction of wind-tunnel force-balance data has been developed. Balance equations are expressed in a matrix form that is convenient for storing balance sensitivities and interaction coefficient values for online or offline batch data reduction. The convergence of the iterative values to a unique solution of this system of equations is investigated, and it is shown that for balances which satisfy the criteria discussed, this type of solution does occur. Methods for making sensitivity adjustments and initial load effect considerations in wind-tunnel applications are also discussed, and the logic for determining the convergence accuracy limits for the iterative solution is given. This more efficient data reduction program is compared with the technique presently in use at the NASA Langley Research Center, and computational times on the order of one-third or less are demonstrated by use of this new program.

  17. Structural Truss Elements and Forces

    ERIC Educational Resources Information Center

    Troyer, Steve; Griffis, Kurt; Shackelford, Ray

    2005-01-01

    In the field of construction, most structures are supported by several groups of truss systems working together synergistically. A "truss" is a group of centered and balanced elements combined to carry a common load (Warner, 2003). Trusses provide strength against loads and forces within a structure. Though a complex field of study, structural…

  18. Study on process design of partially-balanced, hydraulically lifting vertical ship lift

    NASA Astrophysics Data System (ADS)

    Xin, Shen; Xiaofeng, Xu; Lu, Zhang; Bing, Zhu; Fei, Li

    2017-11-01

    The hub ship lift in Panjin is the first navigation structure in China for the link between the inland and open seas, which adopts a novel partially-balanced, hydraulically lifting ship lift; it can meet such requirements as fast and sharp water level change in open sea, large draft of a yacht, and launching of a ship reception chamber; its balancing weight system can effectively reduce the load of the primary lifting cylinder, and optimize the force distribution of the ship reception chamber. The paper provides an introduction to main equipment, basic principles, main features and system composition of a ship lift. The unique power system and balancing system of the completed ship lift has offered some experience for the construction of the tourism-type ship lifts with a lower lifting height.

  19. Review of Potential Wind Tunnel Balance Technologies

    NASA Technical Reports Server (NTRS)

    Burns, Devin E.; Williams, Quincy L.; Phillips, Ben D.; Commo, Sean A.; Ponder, Jonathon D.

    2016-01-01

    This manuscript reviews design, manufacture, materials, sensors, and data acquisition technologies that may benefit wind tunnel balances for the aerospace research community. Current state-of-the-art practices are used as the benchmark to consider advancements driven by researcher and facility needs. Additive manufacturing is highlighted as a promising alternative technology to conventional fabrication and has the potential to reduce both the cost and time required to manufacture force balances. Material alternatives to maraging steels are reviewed. Sensor technologies including piezoresistive, piezoelectric, surface acoustic wave, and fiber optic are compared to traditional foil based gages to highlight unique opportunities and shared challenges for implementation in wind tunnel environments. Finally, data acquisition systems that could be integrated into force balances are highlighted as a way to simplify the user experience and improve data quality. In summary, a rank ordering is provided to support strategic investment in exploring the technologies reviewed in this manuscript.

  20. High-precision horizontally directed force measurements for high dead loads based on a differential electromagnetic force compensation system

    NASA Astrophysics Data System (ADS)

    Vasilyan, Suren; Rivero, Michel; Schleichert, Jan; Halbedel, Bernd; Fröhlich, Thomas

    2016-04-01

    In this paper, we present an application for realizing high-precision horizontally directed force measurements in the order of several tens of nN in combination with high dead loads of about 10 N. The set-up is developed on the basis of two identical state-of-the-art electromagnetic force compensation (EMFC) high precision balances. The measurement resolution of horizontally directed single-axis quasi-dynamic forces is 20 nN over the working range of  ±100 μN. The set-up operates in two different measurement modes: in the open-loop mode the mechanical deflection of the proportional lever is an indication of the acting force, whereas in the closed-loop mode it is the applied electric current to the coil inside the EMFC balance that compensates deflection of the lever to the offset zero position. The estimated loading frequency (cutoff frequency) of the set-up in the open-loop mode is about 0.18 Hz, in the closed-loop mode it is 0.7 Hz. One of the practical applications that the set-up is suitable for is the flow rate measurements of low electrically conducting electrolytes by applying the contactless technique of Lorentz force velocimetry. Based on a previously developed set-up which uses a single EMFC balance, experimental, theoretical and numerical analyses of the thermo-mechanical properties of the supporting structure are presented.

  1. Performance measurements of a pilot superconducting solenoid model core for a wind tunnel magnetic suspension and balance system

    NASA Technical Reports Server (NTRS)

    Goodyer, M. J.; Britcher, C. P.

    1983-01-01

    The results of experimental demonstrations of a superconducting solenoid model core in the Southampton University Magnetic Suspension and Balance System are detailed. Technology and techniques relevant to large-scale wind tunnel MSBSs comprise the long term goals. The magnetic moment of solenoids, difficulties peculiar to superconducting solenoid cores, lift force and pitching moment, dynamic lift calibration, and helium boil-off measurements are discussed.

  2. General Purpose Force Capability; the Challenge of Versatility and Achieving Balance Along the Widest Possible Spectrum of Conflict

    DTIC Science & Technology

    2010-04-01

    billion dollar systems and platforms. In the looming era of limited resources for defense spending, military and civilian leaders light of recent...conventional systems .”28 Finding the Proper Balance Abandoning our military superiority in conventional warfare would b On the other hand, swinging...Defense Strategy published in March 2005. The 2005 version of the National Defense Strategy recognized that, “we are confronting fundamentally

  3. Recent Investments by NASA's National Force Measurement Technology Capability

    NASA Technical Reports Server (NTRS)

    Commo, Sean A.; Ponder, Jonathan D.

    2016-01-01

    The National Force Measurement Technology Capability (NFMTC) is a nationwide partnership established in 2008 and sponsored by NASA's Aeronautics Evaluation and Test Capabilities (AETC) project to maintain and further develop force measurement capabilities. The NFMTC focuses on force measurement in wind tunnels and provides operational support in addition to conducting balance research. Based on force measurement capability challenges, strategic investments into research tasks are designed to meet the experimental requirements of current and future aerospace research programs and projects. This paper highlights recent and force measurement investments into several areas including recapitalizing the strain-gage balance inventory, developing balance best practices, improving calibration and facility capabilities, and researching potential technologies to advance balance capabilities.

  4. Disruptive Technology: An Uncertain Future

    DTIC Science & Technology

    2005-05-21

    Technology that overturns market -- Military - Technology that causes a fundamental change in force structure, basing, and capability balance * Disruptive Technologies may arise from systems or enabling technology.

  5. Balance decrements are associated with age-related muscle property changes.

    PubMed

    Hasson, Christopher J; van Emmerik, Richard E A; Caldwell, Graham E

    2014-08-01

    In this study, a comprehensive evaluation of static and dynamic balance abilities was performed in young and older adults and regression analysis was used to test whether age-related variations in individual ankle muscle mechanical properties could explain differences in balance performance. The mechanical properties included estimates of the maximal isometric force capability, force-length, force-velocity, and series elastic properties of the dorsiflexors and individual plantarflexor muscles (gastrocnemius and soleus). As expected, the older adults performed more poorly on most balance tasks. Muscular maximal isometric force, optimal fiber length, tendon slack length, and velocity-dependent force capabilities accounted for up to 60% of the age-related variation in performance on the static and dynamic balance tests. In general, the plantarflexors had a stronger predictive role than the dorsiflexors. Plantarflexor stiffness was strongly related to general balance performance, particularly in quiet stance; but this effect did not depend on age. Together, these results suggest that age-related differences in balance performance are explained in part by alterations in muscular mechanical properties.

  6. Effects of wide step walking on swing phase hip muscle forces and spatio-temporal gait parameters.

    PubMed

    Bajelan, Soheil; Nagano, Hanatsu; Sparrow, Tony; Begg, Rezaul K

    2017-07-01

    Human walking can be viewed essentially as a continuum of anterior balance loss followed by a step that re-stabilizes balance. To secure balance an extended base of support can be assistive but healthy young adults tend to walk with relatively narrower steps compared to vulnerable populations (e.g. older adults and patients). It was, therefore, hypothesized that wide step walking may enhance dynamic balance at the cost of disturbed optimum coupling of muscle functions, leading to additional muscle work and associated reduction of gait economy. Young healthy adults may select relatively narrow steps for a more efficient gait. The current study focused on the effects of wide step walking on hip abductor and adductor muscles and spatio-temporal gait parameters. To this end, lower body kinematic data and ground reaction forces were obtained using an Optotrak motion capture system and AMTI force plates, respectively, while AnyBody software was employed for muscle force simulation. A single step of four healthy young male adults was captured during preferred walking and wide step walking. Based on preferred walking data, two parallel lines were drawn on the walkway to indicate 50% larger step width and participants targeted the lines with their heels as they walked. In addition to step width that defined walking conditions, other spatio-temporal gait parameters including step length, double support time and single support time were obtained. Average hip muscle forces during swing were modeled. Results showed that in wide step walking step length increased, Gluteus Minimus muscles were more active while Gracilis and Adductor Longus revealed considerably reduced forces. In conclusion, greater use of abductors and loss of adductor forces were found in wide step walking. Further validation is needed in future studies involving older adults and other pathological populations.

  7. A Retrospective Analysis of Post-Stroke Berg Balance Scale Scores: How Should Normal and At-Risk Scores Be Interpreted?

    PubMed Central

    Inness, Elizabeth; McIlroy, William E.; Mansfield, Avril

    2017-01-01

    Purpose: The Berg Balance Scale (BBS) is a performance-based measure of standing balance commonly used by clinicians working with individuals post-stroke. Performance on the BBS can be influenced by compensatory strategies, but measures derived from two force plates can isolate compensatory strategies and thus better indicate balance impairment. This study examined BBS scores that reflect “normal” and disordered balance with respect to dual force-plate measures of standing balance in individuals post-stroke. Methods: BBS and force-plate measures were extracted from 75 patient charts. Individuals were classified by BBS score with respect to (1) age-matched normative values and (2) values that suggested increased risk of falls. Multiple analysis of variance was used to examine the effect of group assignment on force-plate measures of standing balance. Results: Individuals with BBS scores within and below normative values did not differ in force-plate measures. Individuals with BBS scores below the falls risk cutoff loaded their affected leg less than individuals with BBS scores above the cutoff. There were no other differences in force-plate measures between these two groups. Conclusions: BBS scores indicating either normal or disordered balance function are not necessarily associated with normal or disordered quiet standing-balance control measured by two force plates. This finding suggests that the BBS may reflect a capacity for compensation rather than any underlying impairments. PMID:28539694

  8. Regularity in an environment produces an internal torque pattern for biped balance control.

    PubMed

    Ito, Satoshi; Kawasaki, Haruhisa

    2005-04-01

    In this paper, we present a control method for achieving biped static balance under unknown periodic external forces whose periods are only known. In order to maintain static balance adaptively in an uncertain environment, it is essential to have information on the ground reaction forces. However, when the biped is exposed to a steady environment that provides an external force periodically, uncertain factors on the regularity with respect to a steady environment are gradually clarified using learning process, and finally a torque pattern for balancing motion is acquired. Consequently, static balance is maintained without feedback from ground reaction forces and achieved in a feedforward manner.

  9. Validity and Reliability of a Portable Balance Tracking System, BTrackS, in Older Adults.

    PubMed

    Levy, Susan S; Thralls, Katie J; Kviatkovsky, Shiloah A

    Falls are the leading cause of disability, injury, hospital admission, and injury-related death among older adults. Balance limitations have consistently been identified as predictors of falls and increased fall risk. Field measures of balance are limited by issues of subjectivity, ceiling effects, and low sensitivity to change. The gold standard for measuring balance is the force plate; however, its field use is untenable due to high cost and lack of portability. Thus, a critical need is observed for valid objective field measures of balance to accurately assess balance and identify limitations over time. The purpose of this study was to examine the concurrent validity and 3-day test-retest reliability of Balance Tracking System (BTrackS) in community-dwelling older adults. Minimal detectable change values were also calculated to reflect changes in balance beyond measurement error. Postural sway data were collected from community-dwelling older adults (N = 49, mean [SD] age = 71.3 [7.3] years) with a force plate and BTrackS in multitrial eyes open (EO) and eyes closed (EC) static balance conditions. Force sensors transmitted BTrackS data via a USB to a computer running custom software. Three approaches to concurrent validity were taken including calculation of Pearson product moment correlation coefficients, repeated-measures ANOVAs, and Bland-Altman plots. Three-day test-retest reliability of BTrackS was examined in a second sample of 47 community-dwelling older adults (mean [SD] age = 75.8 [7.7] years) using intraclass correlation coefficients and MDC values at 95% CI (MDC95) were calculated. BTrackS demonstrated good validity using Pearson product moment correlations (r > 0.90). Repeated-measures ANOVA and Bland-Altman plots indicated some BTrackS bias with center of pressure (COP) values higher than FP COP values in the EO (mean [SD] bias = 4.0 [6.8]) and EC (mean [SD] bias = 9.6 [12.3]) conditions. Test-retest reliability using intraclass correlation coefficients (ICC2.1 was excellent (0.83) and calculated MDC95 for EO (9.6 cm) and EC (19.4 cm) and suggested that postural sway changes of these amounts are meaningful. BTrackS showed some bias with values exceeding force plate values in both EO and EC conditions. Excellent test-retest reliability and resulting MDC95 values indicated that BTrackS has the potential to identify meaningful changes in balance that may warrant intervention. BTrackS is an objective measure of balance that can be used to monitor balance in community-dwelling older adults over time. It can reliably identify changes that may require further attention (eg, fall-prevention strategies, declines in physical function) and shows promise for assessing intervention efficacy in this growing segment of the population.

  10. Thermal Characterization of the Air Force Institute of Technology Solar Simulation Thermal Vacuum Chamber

    DTIC Science & Technology

    2014-03-27

    mass and surface area, Equation 12 demonstrates an energy balance for the material, assuming the rest of the surfaces of the material are isothermal...radiation in order to dissipate heat from 18 the spacecraft [8]. As discussed in the system thermal energy balance defined previously, emission of IR... energy balance calculations will be utilized. The Monte Carlo/Ray Trace Radiation Method The Monte Carlo/Ray Trace method is utilized in order to

  11. Effect of self-consistent magnetic field on plasma sheet penetration to the inner magnetosphere: Rice convection model simulations combined with modified Dungey force-balanced magnetic field solver

    NASA Astrophysics Data System (ADS)

    Gkioulidou, Matina; Wang, Chih-Ping; Lyons, Larry R.

    2011-12-01

    Transport of plasma sheet particles into the inner magnetosphere is crucial to the development of the region 2 (R2) field-aligned current system (FAC), which results in the shielding of the penetration electric field and the formation of subauroral polarization streams (SAPS) and the Harang reversal, phenomena closely associated with storms and substorms. In addition to the electric field, this transport is also strongly affected by the magnetic field, which changes with plasma pressure and is distinctly different from the dipole field in the inner plasma sheet. To determine the feedback of force-balanced magnetic field to the transport, we have integrated the Rice convection model (RCM) with a modified Dungey magnetic field solver to obtain the required force balance in the equatorial plane. Comparing our results with those from a RCM run using a T96 magnetic field, we find that transport under a force-balanced magnetic field results in weaker pressure gradients and thus weaker R2 FAC in the near-Earth region and weaker shielding of the penetration electric field. As a result, plasma sheet protons and electrons penetrate farther earthward, and their inner edges become closer together and more azimuthally symmetric than in the T96 case. The Harang reversal extends farther dawnward, and the SAPS become more confined in radial and latitudinal extents. The magnitudes of azimuthal pressure gradient, the inner edges of thermal protons and electrons, the latitudinal range of the Harang reversal, and the radial and latitudinal widths of the SAPS from the force-balanced run are found to be more consistent with observations.

  12. An Analysis of Bubble Deformation by a Sphere Relevant to the Measurements of Bubble-Particle Contact Interaction and Detachment Forces.

    PubMed

    Sherman, H; Nguyen, A V; Bruckard, W

    2016-11-22

    Atomic force microscopy makes it possible to measure the interacting forces between individual colloidal particles and air bubbles, which can provide a measure of the particle hydrophobicity. To indicate the level of hydrophobicity of the particle, the contact angle can be calculated, assuming that no interfacial deformation occurs with the bubble retaining a spherical profile. Our experimental results obtained using a modified sphere tensiometry apparatus to detach submillimeter spherical particles show that deformation of the bubble interface does occur during particle detachment. We also develop a theoretical model to describe the equilibrium shape of the bubble meniscus at any given particle position, based on the minimization of the free energy of the system. The developed model allows us to analyze high-speed video captured during detachment. In the system model deformation of the bubble profile is accounted for by the incorporation of a Lagrange multiplier into both the Young-Laplace equation and the force balance. The solution of the bubble profile matched to the high-speed video allows us to accurately calculate the contact angle and determine the total force balance as a function of the contact point of the bubble on the particle surface.

  13. Cryogenic Balance Technology at the National Transonic Facility

    NASA Technical Reports Server (NTRS)

    Parker, P. A.

    2001-01-01

    This paper provides an overview of force measurement at the National Transonic Facility (NTF). The NTF has unique force measurement requirements that dictate an integration of all aspects of balance design, production, and calibration. An overview of current force measurement capabilities is provided along with new balance development efforts. Research activities in the areas of thermal compensation and balance calibration are presented. Also, areas of future research are detailed.

  14. Vestibular control of standing balance is enhanced with increased cognitive load.

    PubMed

    McGeehan, Michael A; Woollacott, Marjorie H; Dalton, Brian H

    2017-04-01

    When cognitive load is elevated during a motor task, cortical inhibition and reaction time are increased; yet, standing balance control is often unchanged. This disconnect is likely explained by compensatory mechanisms within the balance system such as increased sensitivity of the vestibulomotor pathway. This study aimed to determine the effects of increased cognitive load on the vestibular control of standing balance. Participants stood blindfolded on a force plate with their head facing left and arms relaxed at their sides for two trials while exposed to continuous electrical vestibular stimulation (EVS). Participants either stood quietly or executed a cognitive task (double-digit arithmetic). Surface electromyography (EMG) and anterior-posterior ground-body forces (APF) were measured in order to evaluate vestibular-evoked balance responses in the frequency (coherence and gain) and time (cumulant density) domains. Total distance traveled for anterior-posterior center of pressure (COP) was assessed as a metric of balance variability. Despite similar distances traveled for COP, EVS-medial gastrocnemius (MG) EMG and EVS-APF coherence and EVS-TA EMG and EVS-MG EMG gain were elevated for multiple frequencies when standing with increased cognitive load. For the time domain, medium-latency peak amplitudes increased by 13-54% for EVS-APF and EVS-EMG relationships with the cognitive task compared to without. Peak short-latency amplitudes were unchanged. These results indicate that reliance on vestibular control of balance is enhanced when cognitive load is elevated. This augmented neural strategy may act to supplement divided cortical processing resources within the balance system and compensate for the acute neuromuscular modifications associated with increased cognitive demand.

  15. Research concerning the balancing of a plane mechanism

    NASA Astrophysics Data System (ADS)

    Bădoiu, D.; Petrescu, M. G.; Antonescu, N. N.; Toma, G.

    2018-01-01

    By statically balancing of the plane mechanisms and especially those functioning at high speeds is being pursued the decrease of the value of the resultant force of all inertia forces that work on the component elements, thus obtaining a significant decrease in vibrations and shocks during the functioning. On the other hand, the existence of balancing masses which ensure the balancing of the mechanism leads to increased gauge and its mass. In this paper are presented some possibilities of statically balancing a plane mechanism which is composed of three independent contours. First is analyzed the case when the mechanism is totally balanced. Then a solution is proposed for a partial balancing of the mechanism based on the balancing of the first harmonic of the inertia force developed in a piston of the mechanism. Finally, are presented some simulation results concerning the variation of the value of the resultant inertia force during a cinematic cycle when the mechanism is unbalanced and when it is partially balanced. Also, it is analyzed the variation of the motor moment when the mechanism is unbalanced and when is totally and partially balanced.

  16. The Influence of Joint Distraction Force on the Soft-Tissue Balance Using Modified Gap-Balancing Technique in Posterior-Stabilized Total Knee Arthroplasty.

    PubMed

    Nagai, Kanto; Muratsu, Hirotsugu; Takeoka, Yoshiki; Tsubosaka, Masanori; Kuroda, Ryosuke; Matsumoto, Tomoyuki

    2017-10-01

    During modified gap-balancing technique, there is no consensus on the best method for obtaining appropriate soft-tissue balance and determining the femoral component rotation. Sixty-five varus osteoarthritic patients underwent primary posterior-stabilized total knee arthroplasty using modified gap-balancing technique. The influence of joint distraction force on the soft-tissue balance measurement during the modified gap-balancing technique was evaluated with Offset Repo-Tensor between the osteotomized surfaces at extension, and between femoral posterior condyles and tibial osteotomized surface at flexion of the knee before the resection of femoral posterior condyles. The joint center gap (millimeters) and varus ligament balance (°) were measured under 20, 40, and 60 pounds of joint distraction forces, and the differences in these values at extension and flexion (the value at flexion minus the value at extension) were also calculated. The differences in joint center gap (-6.7, -6.8, and -6.9 mm for 20, 40, and 60 pounds, respectively) and varus ligament balance (3.5°, 3.8°, and 3.8°) at extension and flexion were not significantly different among different joint distraction forces, although the joint center gap and varus ligament balance significantly increased stepwise at extension and flexion as the joint distraction force increased. The difference in joint center gap and varus ligament balance at extension and flexion were consistent even among the different joint distraction forces. This novel index would be useful for the determination of femoral component rotation during the modified gap-balancing technique. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Factors Affecting the Military Environment of North Norway: Its History, International Relations, Physical Characteristics, and Balance of Military Forces.

    DTIC Science & Technology

    1988-01-01

    by the United States Air Force under Contract F49620-86-C-0008. Further information may be obtained from the Long Range Planning and Doctrine Division...published simultaneously with this Note. The work was performed under the Project AIR FORCE project entitled "Concept Development and Project Formulation...warfare aircraft, and 130 ground attack fighters. Norway can field a total armed force of about 366,500 men under a system of universal conscription and

  18. Optical Pulling and Pushing Forces in Bilayer P T -Symmetric Structures

    NASA Astrophysics Data System (ADS)

    Alaee, Rasoul; Christensen, Johan; Kadic, Muamer

    2018-01-01

    We investigate the optical force exerted on a parity-time-symmetric bilayer made of balanced gain and loss. We show that an asymmetric optical pulling or pushing force can be exerted on this system depending on the direction of impinging light. The optical pulling or pushing force has a direct physical link to the optical characteristics embedded in the non-Hermitian bilayer. Furthermore, we suggest taking advantage of the optically generated asymmetric force to launch vibrations of an arbitrary shape, which is useful for the contactless probing of mechanical deformations.

  19. Flexural Fillet Geometry Optimization for Design of Force Transducers Used in Aeronautics Testing

    NASA Technical Reports Server (NTRS)

    Lynn, Keith C.; Dixon, Genevieve

    2014-01-01

    Force transducer designs used in the ground testing aeronautics community have seen minimal change over the last few decades. With increased focus on data quality and long- term performance capabilities over the life of these instruments, it is critical to investigate new methods that improve these designs. One area of focus in the past few years at NASA has been on the design of the exural elements of traditional force balance transducers. Many of the heritage balances that have been heavily used over the last few decades have started to develop fatigue cracks. The recent focus on the exural design of traditional single-piece force balances revolves around the design of these elements such that stress concentrations are minimized, with the overall goal of increasing the fatigue life of the balance. Recent research in the area of using conic shaped llets in the highly stressed regions of traditional force balances will be discussed, with preliminary numerical and experimental data results. A case study will be presented which discusses integration of this knowledge into a new high-capacity semi-span force balance

  20. Flexural Fillet Geometry Optimization for Design of Force Transducers Used in Aeronautics Testing

    NASA Technical Reports Server (NTRS)

    Lynn, Keith C.; Dixon, Genevieve

    2015-01-01

    Force transducer designs used in the ground testing aeronautics community have seen minimal change over the last few decades. With increased focus on data quality and long-term performance capabilities over the life of these instruments, it is critical to investigate new methods that improve these designs. One area of focus in the past few years at NASA has been on the design of the flexural elements of traditional force balance transducers. Many of the heritage balances that have been heavily used over the last few decades have started to develop fatigue cracks. The recent focus on the flexural design of traditional single-piece force balances revolves around the design of these elements such that stress concentrations are minimized, with the overall goal of increasing the fatigue life of the balance. Recent research in the area of using conic shaped fillets in the highly stressed regions of traditional force balances will be discussed, with preliminary numerical and experimental data results. A case study will be presented which discusses integration of this knowledge into a new high-capacity semi-span force balance.

  1. Calibration Variable Selection and Natural Zero Determination for Semispan and Canard Balances

    NASA Technical Reports Server (NTRS)

    Ulbrich, Norbert M.

    2013-01-01

    Independent calibration variables for the characterization of semispan and canard wind tunnel balances are discussed. It is shown that the variable selection for a semispan balance is determined by the location of the resultant normal and axial forces that act on the balance. These two forces are the first and second calibration variable. The pitching moment becomes the third calibration variable after the normal and axial forces are shifted to the pitch axis of the balance. Two geometric distances, i.e., the rolling and yawing moment arms, are the fourth and fifth calibration variable. They are traditionally substituted by corresponding moments to simplify the use of calibration data during a wind tunnel test. A canard balance is related to a semispan balance. It also only measures loads on one half of a lifting surface. However, the axial force and yawing moment are of no interest to users of a canard balance. Therefore, its calibration variable set is reduced to the normal force, pitching moment, and rolling moment. The combined load diagrams of the rolling and yawing moment for a semispan balance are discussed. They may be used to illustrate connections between the wind tunnel model geometry, the test section size, and the calibration load schedule. Then, methods are reviewed that may be used to obtain the natural zeros of a semispan or canard balance. In addition, characteristics of three semispan balance calibration rigs are discussed. Finally, basic requirements for a full characterization of a semispan balance are reviewed.

  2. A Study of Factors Affecting the Attraction and Retention of High Caliber Personnel to Department of Defense Contracting.

    DTIC Science & Technology

    1987-09-01

    from studies of met expectations: (1) The decision to participate or withdraw from an organization may be looked upon as a process of balancing ...was included in this study tu provide some balance and because a large number of Air Force contract specialists are employed at Aeronautical Systems...thirteen days of sick leave per year. Vacation or leave is accrued constantly with an updated balance provided at the end of each pay period

  3. Balancing the Interactions of Ions, Water, and DNA in the Drude Polarizable Force Field

    PubMed Central

    2015-01-01

    Recently we presented a first-generation all-atom Drude polarizable force field for DNA based on the classical Drude oscillator model, focusing on optimization of key dihedral angles followed by extensive validation of the force field parameters. Presently, we describe the procedure for balancing the electrostatic interactions between ions, water, and DNA as required for development of the Drude force field for DNA. The proper balance of these interactions is shown to impact DNA stability and subtler conformational properties, including the conformational equilibrium between the BI and BII states, and the A and B forms of DNA. The parametrization efforts were simultaneously guided by gas-phase quantum mechanics (QM) data on small model compounds and condensed-phase experimental data on the hydration and osmotic properties of biologically relevant ions and their solutions, as well as theoretical predictions for ionic distribution around DNA oligomer. In addition, fine-tuning of the internal base parameters was performed to obtain the final DNA model. Notably, the Drude model is shown to more accurately reproduce counterion condensation theory predictions of DNA charge neutralization by the condensed ions as compared to the CHARMM36 additive DNA force field, indicating an improved physical description of the forces dictating the ionic solvation of DNA due to the explicit treatment of electronic polarizability. In combination with the polarizable DNA force field, the availability of Drude polarizable parameters for proteins, lipids, and carbohydrates will allow for simulation studies of heterogeneous biological systems. PMID:24874104

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sorin Zaharia; C.Z. Cheng

    In this paper, we study whether the magnetic field of the T96 empirical model can be in force balance with an isotropic plasma pressure distribution. Using the field of T96, we obtain values for the pressure P by solving a Poisson-type equation {del}{sup 2}P = {del} {center_dot} (J x B) in the equatorial plane, and 1-D profiles on the Sun-Earth axis by integrating {del}P = J x B. We work in a flux coordinate system in which the magnetic field is expressed in terms of Euler potentials. Our results lead to the conclusion that the T96 model field cannot bemore » in equilibrium with an isotropic pressure. We also analyze in detail the computation of Birkeland currents using the Vasyliunas relation and the T96 field, which yields unphysical results, again indicating the lack of force balance in the empirical model. The underlying reason for the force imbalance is likely the fact that the derivatives of the least-square fitted model B are not accurate predictions of the actual magnetospheric field derivatives. Finally, we discuss a possible solution to the problem of lack of force balance in empirical field models.« less

  5. Accurate calibration and uncertainty estimation of the normal spring constant of various AFM cantilevers.

    PubMed

    Song, Yunpeng; Wu, Sen; Xu, Linyan; Fu, Xing

    2015-03-10

    Measurement of force on a micro- or nano-Newton scale is important when exploring the mechanical properties of materials in the biophysics and nanomechanical fields. The atomic force microscope (AFM) is widely used in microforce measurement. The cantilever probe works as an AFM force sensor, and the spring constant of the cantilever is of great significance to the accuracy of the measurement results. This paper presents a normal spring constant calibration method with the combined use of an electromagnetic balance and a homemade AFM head. When the cantilever presses the balance, its deflection is detected through an optical lever integrated in the AFM head. Meanwhile, the corresponding bending force is recorded by the balance. Then the spring constant can be simply calculated using Hooke's law. During the calibration, a feedback loop is applied to control the deflection of the cantilever. Errors that may affect the stability of the cantilever could be compensated rapidly. Five types of commercial cantilevers with different shapes, stiffness, and operating modes were chosen to evaluate the performance of our system. Based on the uncertainty analysis, the expanded relative standard uncertainties of the normal spring constant of most measured cantilevers are believed to be better than 2%.

  6. A Baseline Load Schedule for the Manual Calibration of a Force Balance

    NASA Technical Reports Server (NTRS)

    Ulbrich, N.; Gisler, R.

    2013-01-01

    A baseline load schedule for the manual calibration of a force balance is defined that takes current capabilities at the NASA Ames Balance Calibration Laboratory into account. The chosen load schedule consists of 18 load series with a total of 194 data points. It was designed to satisfy six requirements: (i) positive and negative loadings should be applied for each load component; (ii) at least three loadings should be applied between 0 % and 100 % load capacity; (iii) normal and side force loadings should be applied at the forward gage location, aft gage location, and the balance moment center; (iv) the balance should be used in "up" and "down" orientation to get positive and negative axial force loadings; (v) the constant normal and side force approaches should be used to get the rolling moment loadings; (vi) rolling moment loadings should be obtained for 0, 90, 180, and 270 degrees balance orientation. In addition, three different approaches are discussed in the paper that may be used to independently estimate the natural zeros, i.e., the gage outputs of the absolute load datum of the balance. These three approaches provide gage output differences that can be used to estimate the weight of both the metric and non-metric part of the balance. Data from the calibration of a six-component force balance will be used in the final manuscript of the paper to illustrate characteristics of the proposed baseline load schedule.

  7. A Baseline Load Schedule for the Manual Calibration of a Force Balance

    NASA Technical Reports Server (NTRS)

    Ulbrich, N.; Gisler, R.

    2013-01-01

    A baseline load schedule for the manual calibration of a force balance was developed that takes current capabilities at the NASA Ames Balance Calibration Laboratory into account. The load schedule consists of 18 load series with a total of 194 data points. It was designed to satisfy six requirements: (i) positive and negative loadings should be applied for each load component; (ii) at least three loadings should be applied between 0 % and 100 % load capacity; (iii) normal and side force loadings should be applied at the forward gage location, the aft gage location, and the balance moment center; (iv) the balance should be used in UP and DOWN orientation to get axial force loadings; (v) the constant normal and side force approaches should be used to get the rolling moment loadings; (vi) rolling moment loadings should be obtained for 0, 90, 180, and 270 degrees balance orientation. Three different approaches are also reviewed that may be used to independently estimate the natural zeros of the balance. These three approaches provide gage output differences that may be used to estimate the weight of both the metric and non-metric part of the balance. Manual calibration data of NASA s MK29A balance and machine calibration data of NASA s MC60D balance are used to illustrate and evaluate different aspects of the proposed baseline load schedule design.

  8. Detailed Drawings for the Force Balance Test Apparatus

    EPA Pesticide Factsheets

    The American Society of Mechanical Engineers (ASME)/Canadian Standards Association (CSA) Joint Harmonization Task Force on water-efficient showerheads used the force balance test apparatus shown in these drawings.

  9. Force instrumentation for cryogenic wind tunnels using one-piece strain-gage balances

    NASA Technical Reports Server (NTRS)

    Ferris, A. T.

    1980-01-01

    The use of cryogenic temperatures in wind tunnels to achieve high Reynolds numbers has imposed a harsh operating environment on the force balance. Laboratory tests were conducted to study the effect cryogenic temperatures have on balance materials, gages, wiring, solder, adhesives, and moisture proofing. Wind tunnel tests were conducted using a one piece three component balance to verify laboratory results. These initial studies indicate that satisfactory force data can be obtained under steady state conditions.

  10. The cross-over to magnetostrophic convection in planetary dynamo systems

    PubMed Central

    King, E. M.

    2017-01-01

    Global scale magnetostrophic balance, in which Lorentz and Coriolis forces comprise the leading-order force balance, has long been thought to describe the natural state of planetary dynamo systems. This argument arises from consideration of the linear theory of rotating magnetoconvection. Here we test this long-held tenet by directly comparing linear predictions against dynamo modelling results. This comparison shows that dynamo modelling results are not typically in the global magnetostrophic state predicted by linear theory. Then, in order to estimate at what scale (if any) magnetostrophic balance will arise in nonlinear dynamo systems, we carry out a simple scaling analysis of the Elsasser number Λ, yielding an improved estimate of the ratio of Lorentz and Coriolis forces. From this, we deduce that there is a magnetostrophic cross-over length scale, LX≈(Λo2/Rmo)D, where Λo is the linear (or traditional) Elsasser number, Rmo is the system scale magnetic Reynolds number and D is the length scale of the system. On scales well above LX, magnetostrophic convection dynamics should not be possible. Only on scales smaller than LX should it be possible for the convective behaviours to follow the predictions for the magnetostrophic branch of convection. Because LX is significantly smaller than the system scale in most dynamo models, their large-scale flows should be quasi-geostrophic, as is confirmed in many dynamo simulations. Estimating Λo≃1 and Rmo≃103 in Earth’s core, the cross-over scale is approximately 1/1000 that of the system scale, suggesting that magnetostrophic convection dynamics exists in the core only on small scales below those that can be characterized by geomagnetic observations. PMID:28413338

  11. The cross-over to magnetostrophic convection in planetary dynamo systems.

    PubMed

    Aurnou, J M; King, E M

    2017-03-01

    Global scale magnetostrophic balance, in which Lorentz and Coriolis forces comprise the leading-order force balance, has long been thought to describe the natural state of planetary dynamo systems. This argument arises from consideration of the linear theory of rotating magnetoconvection. Here we test this long-held tenet by directly comparing linear predictions against dynamo modelling results. This comparison shows that dynamo modelling results are not typically in the global magnetostrophic state predicted by linear theory. Then, in order to estimate at what scale (if any) magnetostrophic balance will arise in nonlinear dynamo systems, we carry out a simple scaling analysis of the Elsasser number Λ , yielding an improved estimate of the ratio of Lorentz and Coriolis forces. From this, we deduce that there is a magnetostrophic cross-over length scale, [Formula: see text], where Λ o is the linear (or traditional) Elsasser number, Rm o is the system scale magnetic Reynolds number and D is the length scale of the system. On scales well above [Formula: see text], magnetostrophic convection dynamics should not be possible. Only on scales smaller than [Formula: see text] should it be possible for the convective behaviours to follow the predictions for the magnetostrophic branch of convection. Because [Formula: see text] is significantly smaller than the system scale in most dynamo models, their large-scale flows should be quasi-geostrophic, as is confirmed in many dynamo simulations. Estimating Λ o ≃1 and Rm o ≃10 3 in Earth's core, the cross-over scale is approximately 1/1000 that of the system scale, suggesting that magnetostrophic convection dynamics exists in the core only on small scales below those that can be characterized by geomagnetic observations.

  12. Design of a pulse-type strain gauge balance for a long-test-duration hypersonic shock tunnel

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Liu, Y.; Jiang, Z.

    2016-11-01

    When the measurement of aerodynamic forces is conducted in a hypersonic shock tunnel, the inertial forces lead to low-frequency vibrations of the model, and its motion cannot be addressed through digital filtering because a sufficient number of cycles cannot be obtained during a tunnel run. This finding implies restrictions on the model size and mass as the natural frequencies are inversely proportional to the length scale of the model. Therefore, the force measurement still has many problems, particularly for large and heavy models. Different structures of a strain gauge balance (SGB) are proposed and designed, and the measurement element is further optimized to overcome the difficulties encountered during the measurement of aerodynamic forces in a shock tunnel. The motivation for this study is to assess the structural performance of the SGB used in a long-test-duration JF12 hypersonic shock tunnel, which has more than 100 ms of test time. Force tests were conducted for a large-scale cone with a 10^° semivertex angle and a length of 0.75 m in the JF12 long-test-duration shock tunnel. The finite element method was used for the analysis of the vibrational characteristics of the Model-Balance-Sting System (MBSS) to ensure a sufficient number of cycles, particularly for the axial force signal during a shock tunnel run. The higher-stiffness SGB used in the test shows good performance, wherein the frequency of the MBSS increases because of the stiff construction of the balance. The experimental results are compared with the data obtained in another wind tunnel and exhibit good agreement at M = 7 and α =5°.

  13. Assessment of a flow-through balance for hypersonic wind tunnel models with scramjet exhaust flow simulation

    NASA Technical Reports Server (NTRS)

    Huebner, Lawrence D.; Kniskern, Marc W.; Monta, William J.

    1993-01-01

    The purpose of this investigation were twofold: first, to determine whether accurate force and moment data could be obtained during hypersonic wind tunnel tests of a model with a scramjet exhaust flow simulation that uses a representative nonwatercooled, flow-through balance; second, to analyze temperature time histories on various parts of the balance to address thermal effects on force and moment data. The tests were conducted in the NASA Langley Research Center 20-Inch Mach 6 Wind Tunnel at free-stream Reynolds numbers ranging from 0.5 to 7.4 x 10(exp 6)/ft and nominal angles of attack of -3.5 deg, 0 deg, and 5 deg. The simulant exhaust gases were cold air, hot air, and a mixture of 50 percent Argon and 50 percent Freon by volume, which reached stagnation temperatures within the balance of 111, 214, and 283 F, respectively. All force and moment values were unaffected by the balance thermal response from exhaust gas simulation and external aerodynamic heating except for axial-force measurements, which were significantly affected by balance heating. This investigation showed that for this model at the conditions tested, a nonwatercooled, flow-through balance is not suitable for axial-force measurements during scramjet exhaust flow simulation tests at hypersonic speeds. In general, heated exhaust gas may produce unacceptable force and moment uncertainties when used with thermally sensitive balances.

  14. Contact-free calibration of an asymmetric multi-layer interferometer for the surface force balance

    NASA Astrophysics Data System (ADS)

    Balabajew, Marco; van Engers, Christian D.; Perkin, Susan

    2017-12-01

    The Surface Force Balance (SFB, also known as Surface Force Apparatus, SFA) has provided important insights into many phenomena within the field of colloid and interface science. The technique relies on using white light interferometry to measure the distance between surfaces with sub-nanometer resolution. Up until now, the determination of the distance between the surfaces required a so-called "contact calibration," an invasive procedure during which the surfaces are brought into mechanical contact. This requirement for a contact calibration limits the range of experimental systems that can be investigated with SFB, for example, it precludes experiments with substrates that would be irreversibly modified or damaged by mechanical contact. Here we present a non-invasive method to measure absolute distances without performing a contact calibration. The method can be used for both "symmetric" and "asymmetric" systems. We foresee many applications for this general approach including, most immediately, experiments using single layer graphene electrodes in the SFB which may be damaged when brought into mechanical contact.

  15. TIGER: Development of Thermal Gradient Compensation Algorithms and Techniques

    NASA Technical Reports Server (NTRS)

    Hereford, James; Parker, Peter A.; Rhew, Ray D.

    2004-01-01

    In a wind tunnel facility, the direct measurement of forces and moments induced on the model are performed by a force measurement balance. The measurement balance is a precision-machined device that has strain gages at strategic locations to measure the strain (i.e., deformations) due to applied forces and moments. The strain gages convert the strain (and hence the applied force) to an electrical voltage that is measured by external instruments. To address the problem of thermal gradients on the force measurement balance NASA-LaRC has initiated a research program called TIGER - Thermally-Induced Gradients Effects Research. The ultimate goals of the TIGER program are to: (a) understand the physics of the thermally-induced strain and its subsequent impact on load measurements and (b) develop a robust thermal gradient compensation technique. This paper will discuss the impact of thermal gradients on force measurement balances, specific aspects of the TIGER program (the design of a special-purpose balance, data acquisition and data analysis challenges), and give an overall summary.

  16. A new approach to implant alignment and ligament balancing in total knee arthroplasty focussing on joint loads.

    PubMed

    Zimmermann, Frauke; Schwenninger, Christoph; Nolten, Ulrich; Firmbach, Franz Peter; Elfring, Robert; Radermacher, Klaus

    2012-05-06

    Preservation and recovery of the mechanical leg axis as well as good rotational alignment of the prosthesis components and well-balanced ligaments are essential for the longevity of total knee arthroplasty (TKA). In the framework of the OrthoMIT project, the genALIGN system, a new navigated implantation approach based on intra-operative force-torque measurements, has been developed. With this system, optical or magnetic position tracking as well as any fixation of invasive rigid bodies are no longer necessary. For the alignment of the femoral component along the mechanical axis, a sensor-integrated instrument measures the torques resulting from the deviation between the instrument's axis and the mechanical axis under manually applied axial compression load. When both axes are coaxial, the resulting torques equal zero, and the tool axis can be fixed with respect to the bone. For ligament balancing and rotational alignment of the femoral component, the genALIGN system comprises a sensor-integrated tibial trial inlay measuring the amplitude and application points of the forces transferred between femur and tibia. Hereby, the impact of ligament tensions on knee joint loads can be determined over the whole range of motion. First studies with the genALIGN system, including a comparison with an imageless navigation system, show the feasibility of the concept.

  17. Deformation of an Elastic Substrate Due to a Resting Sessile Droplet

    NASA Astrophysics Data System (ADS)

    Bardall, Aaron; Daniels, Karen; Shearer, Michael

    2017-11-01

    On a sufficiently soft substrate, a resting fluid droplet will cause significant deformation of the substrate. This deformation is driven by a combination of capillary forces at the contact line and the fluid pressure at the solid surface. These forces are balanced at the surface by the solid traction stress induced by the substrate deformation. Young's Law, which predicts the equilibrium contact angle of the droplet, also indicates an a priori radial force balance for rigid substrates, but not necessarily for soft substrates which deform under loading. It remains an open question whether the contact line transmits a non-zero force tangent to the substrate surface in addition to the conventional normal force. This talk will present a model for the static deformation of the substrate that includes a non-zero tangential contact line force as well as general interfacial energy conditions governing the angle of a two-dimensional droplet. We discuss extensions of this model to non-symmetric droplets and their effect on the static configuration of the droplet/substrate system. NSF #DMS-1517291.

  18. Understanding uncertainty in precipitation changes in a balanced perturbed-physics ensemble under multiple climate forcings

    NASA Astrophysics Data System (ADS)

    Millar, R.; Ingram, W.; Allen, M. R.; Lowe, J.

    2013-12-01

    Temperature and precipitation patterns are the climate variables with the greatest impacts on both natural and human systems. Due to the small spatial scales and the many interactions involved in the global hydrological cycle, in general circulation models (GCMs) representations of precipitation changes are subject to considerable uncertainty. Quantifying and understanding the causes of uncertainty (and identifying robust features of predictions) in both global and local precipitation change is an essential challenge of climate science. We have used the huge distributed computing capacity of the climateprediction.net citizen science project to examine parametric uncertainty in an ensemble of 20,000 perturbed-physics versions of the HadCM3 general circulation model. The ensemble has been selected to have a control climate in top-of-atmosphere energy balance [Yamazaki et al. 2013, J.G.R.]. We force this ensemble with several idealised climate-forcing scenarios including carbon dioxide step and transient profiles, solar radiation management geoengineering experiments with stratospheric aerosols, and short-lived climate forcing agents. We will present the results from several of these forcing scenarios under GCM parametric uncertainty. We examine the global mean precipitation energy budget to understand the robustness of a simple non-linear global precipitation model [Good et al. 2012, Clim. Dyn.] as a better explanation of precipitation changes in transient climate projections under GCM parametric uncertainty than a simple linear tropospheric energy balance model. We will also present work investigating robust conclusions about precipitation changes in a balanced ensemble of idealised solar radiation management scenarios [Kravitz et al. 2011, Atmos. Sci. Let.].

  19. Lift, drag and thrust measurement in a hypersonic impulse facility

    NASA Technical Reports Server (NTRS)

    Tuttle, S. L.; Mee, D. J.; Simmons, J. M.

    1995-01-01

    This paper reports the extension of the stress wave force balance to the measurement of forces on models which are non-axisymmetric or which have non-axisymmetric load distributions. Recent results are presented which demonstrate the performance of the stress wave force balance for drag measurement, for three-component force measurement and preliminary results for thrust measurement on a two-dimensional scramjet nozzle. In all cases, the balances respond within a few hundred microseconds.

  20. Annual Cycle of Cloud Forcing of Surface Radiation Budget

    NASA Technical Reports Server (NTRS)

    Wilber, Anne C.; Smith, G. Louis; Stackhouse, Paul W., Jr.; Gupta, Shashi K.

    2006-01-01

    The climate of the Earth is determined by its balance of radiation. The incoming and outgoing radiation fluxes are strongly modulated by clouds, which are not well understood. The Earth Radiation Budget Experiment (Barkstrom and Smith, 1986) provided data from which the effects of clouds on radiation at the top of the atmosphere (TOA) could be computed (Ramanathan, 1987). At TOA, clouds increase the reflected solar radiation, tending to cool the planet, and decrease the OLR, causing the planet to retain its heat (Ramanathan et al., 1989; Harrison et al., 1990). The effects of clouds on radiation fluxes are denoted cloud forcing. These shortwave and longwave forcings counter each other to various degrees, so that in the tropics the result is a near balance. Over mid and polar latitude oceans, cloud forcing at TOA results in large net loss of radiation. Here, there are large areas of stratus clouds and cloud systems associated with storms. These systems are sensitive to surface temperatures and vary strongly with the annual cycle. During winter, anticyclones form over the continents and move to the oceans during summer. This movement of major cloud systems causes large changes of surface radiation, which in turn drives the surface temperature and sensible and latent heat released to the atmosphere.

  1. Systematic study of error sources in supersonic skin-friction balance measurements

    NASA Technical Reports Server (NTRS)

    Allen, J. M.

    1976-01-01

    An experimental study was performed to investigate potential error sources in data obtained with a self-nulling, moment-measuring, skin-friction balance. The balance was installed in the sidewall of a supersonic wind tunnel, and independent measurements of the three forces contributing to the balance output (skin friction, lip force, and off-center normal force) were made for a range of gap size and element protrusion. The relatively good agreement between the balance data and the sum of these three independently measured forces validated the three-term model used. No advantage to a small gap size was found; in fact, the larger gaps were preferable. Perfect element alignment with the surrounding test surface resulted in very small balance errors. However, if small protrusion errors are unavoidable, no advantage was found in having the element slightly below the surrounding test surface rather than above it.

  2. Physical Constraints on Seismic Waves from Chemical and Nuclear Explosions

    DTIC Science & Technology

    1992-04-22

    AIR FORCE SYSTEMS COMMAND HANSCOM AIR FORCE BASE , MASSACHUSETTS 01731-5000 92-23124 9 2 8 1 9 5 9 IIII!I!I l1!j lIII ii SPONSORED BY Defense Advanced...in good agreement with seismic yield esti- improve the detection capabilities of new systems. Given mates [Sykes and Ekstrom, 1989]. (1990) reports...nuclear ,eismology. physical model for spall; (4) Determination of energy balance in Many questions still remain, particularly those associated with the

  3. Comparative Effects of Different Balance-Training-Progression Styles on Postural Control and Ankle Force Production: A Randomized Controlled Trial.

    PubMed

    Cuğ, Mutlu; Duncan, Ashley; Wikstrom, Erik

    2016-02-01

    Despite the effectiveness of balance training, the exact parameters needed to maximize the benefits of such programs remain unknown. One such factor is how individuals should progress to higher levels of task difficulty within a balance-training program. Yet no investigators have directly compared different balance-training-progression styles. To compare an error-based progression (ie, advance when proficient at a task) with a repetition-based progression (ie, advance after a set amount of repetitions) style during a balance-training program in healthy individuals. Randomized controlled trial. Research laboratory. A total of 28 (16 women, 12 men) physically healthy young adults (age = 21.57 ± 3.95 years, height = 171.60 ± 11.03 cm, weight = 72.96 ± 16.18 kg, body mass index = 24.53 ± 3.7). All participants completed 12 supervised balance-training sessions over 4 weeks. Each session consisted of a combination of dynamic unstable-surface tasks that incorporated a BOSU ball and lasted about 30 minutes. Static balance from an instrumented force plate, dynamic balance as measured via the Star Excursion Balance Test, and ankle force production in all 4 cardinal planes of motion as measured with a handheld dynamometer before and after the intervention. Selected static postural-control outcomes, dynamic postural control, and ankle force production in all planes of motion improved (P < .05). However, no differences between the progression styles were observed (P > .05) for any of the outcome measures. A 4-week balance-training program consisting of dynamic unstable-surface exercises on a BOSU ball improved dynamic postural control and ankle force production in healthy young adults. These results suggest that an error-based balance-training program is comparable with but not superior to a repetition-based balance-training program in improving postural control and ankle force production in healthy young adults.

  4. A theory of wheelchair wheelie performance.

    PubMed

    Kauzlarich, J J; Thacker, J G

    1987-01-01

    The results of this analytical study of wheelchair wheelie performance can be summarized into two wheelchair design equations, or rules of thumb, as developed in the paper. The equation containing the significant parameters involved in popping a wheelie for curb climbing is: fh = 0.8 mg theta c.g. [A] where fh is handrim force, m is the mass of the wheelchair + user less rear wheels, g is acceleration of gravity (9.807 m/s2), and theta c.g. is "c.g. angle," i.e., the angle between the vertical through the rear axle and a line connecting the rear axle and the system center-of-gravity. Equation [A] shows that reducing the mass and/or the c.g. angle will make it easier to pop a wheelie. The c.g. angle is reduced by moving the rear axle position forward on the wheelchair. Wheelie balance is the other aspect of performance considered; where the user balances the wheelchair on the rear wheels for going down curbs or just for fun. The ease with which a system can be controlled (balanced) is related to the static stability of the system. The static stability is defined as: omega 2 = mgl/J [B] where J is the mass moment of inertia at the center of gravity of the system about the direction perpendicular to the sideframe. For better wheelchair control during wheelchair balance the static stability should be reduced. Measurements of the value for the polar mass moment of inertia for a typical wheelchair + user of m = 90 kg was found to be J = 8.7 kg-m2. In order to decrease the value of the static stability, Equation [B], one can increase J or decrease m and/or l, where l is the distance from the rear axle to the c.g. of the system. It is also shown that balancing a rod in the palm of the hand (inverted pendulum) is a mathematical problem similar to the wheelie balance problem, and a rod of length 1.56 meters is similar to a wheelchair + user system mass of 90 kg. However, balancing a rod is done primarily by using visual perception, whereas wheelie balance involves human joint proprioceptors and visual plus vestibular (inner ear) perception. Thus, a simple test of determining the shortest length of rod one can balance in the palm of the hand (plus measuring handrim force capability and simple reaction time) may indicate if a wheelchair user will find it easy to do a wheelie balance.

  5. All about Motion & Balance. Physical Science for Children[TM]. Schlessinger Science Library. [Videotape].

    ERIC Educational Resources Information Center

    2000

    Walking on a balance beam or riding a bike both require motion and balance. This program will reveal how unbalanced forces create motion, while balanced forces keep things still. Students also learn how concepts like velocity, acceleration, and momentum fit into this puzzle. A unique hands-on activity combined with vivid imagery and graphics…

  6. Mechanical analysis and force chain determination in granular materials using digital image correlation.

    PubMed

    Chen, Fanxiu; Zhuang, Qi; Zhang, Huixin

    2016-06-20

    The mechanical behaviors of granular materials are governed by the grain properties and microstructure of the materials. We conducted experiments to study the force transmission in granular materials using plane strain tests. The large amount of nearly continuous displacement data provided by the advanced noncontact experimental technique of digital image correlation (DIC) has provided a means to quantify local displacements and strains at the particle level. The average strain of each particle could be calculated based on the DIC method, and the average stress could be obtained using Hooke's law. The relationship between the stress and particle force could be obtained based on basic Newtonian mechanics and the balance of linear momentum at the particle level. This methodology is introduced and validated. In the testing procedure, the system is tested in real 2D particle cases, and the contact forces and force chain are obtained and analyzed. The system has great potential for analyzing a real granular system and measuring the contact forces and force chain.

  7. The force balance of sea ice in a numerical model of the Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Steele, Michael; Zhang, Jinlun; Rothrock, Drew; Stern, Harry

    1997-09-01

    The balance of forces in the sea ice model of Hibler [1979] is examined. The model predicts that internal stress gradients are an important force in much of the Arctic Ocean except in summer, when they are significant only off the northern coasts of Greenland and the Canadian Archipelago. A partition of the internal stress gradient between the pressure gradient and the viscous terms reveals that both are significant, although they operate on very different timescales. The acceleration term is generally negligible, while the sum of Coriolis plus sea surface tilt is small. Thus the seasonal average force balance in fall, winter, and spring is mostly between three terms of roughly equal magnitudes: air drag, water drag, and internal stress gradients. This is also true for the monthly average force balance. However, we find that there is a transition around the weekly timescale and that on a daily basis the force balance at a particular location and time is often between only two terms: either between air drag and water drag or between air drag and internal stress gradients. The model is in agreement with the observations of Thorndike and Colony [1982] in that the correlation between geostrophic wind forcing and the model's ice velocity field is high. This result is discussed in the context of the force balance; we show that the presence of significant internal stress gradients does not preclude high wind-ice correlation. A breakdown of the internal stress gradient into component parts reveals that the shear viscous force is far from negligible, which casts strong doubt on the theoretical validity of the cavitating fluid approximation (in which this component is neglected). Finally, the role of ice pressure is examined by varying the parameter P*. We find a strong sensitivity in terms of the force balance, as well as ice thickness and velocity.

  8. Exploring the Mass Balance and Sea Level Contribution of Global Glaciers During the Last Interglaciation and Mid-Holocene

    NASA Astrophysics Data System (ADS)

    Smith, S.; Ullman, D. J.; He, F.; Carlson, A. E.; Marzeion, B.; Maussion, F.

    2017-12-01

    Understanding the behavior of the world's glaciers during previous interglaciations is key to interpreting the sensitivity and behavior of the cryosphere under scenarios of future anthropogenic warming. Previous studies of the Last Interglaciation (LIG, 130 ka to 116 ka) indicate elevated global temperatures and higher sea levels than the Holocene, but most assessments of the impact on the cryosphere have focused on the mass balance and volume change of polar ice sheets. In assessing sea-level sources, most studies assume complete deglacation of global glaciers, but this has yet to be tested. In addition, the significant changes in orbital forcing during the LIG and the associated impacts on climate seasonality and variability may have led to unique glacier evolution.Here, we explore the effect of LIG climate on the global glacier budget. We employ the Open Global Glacier Model (OGGM), forced by simulated LIG equilibrium climate anomalies (127 ka) from the Community Climate System Model Version 3 (CCSM3). OGGM is a glacier mass balance and dynamics model, specifically designed to reconstruct global glacier volume change. Our simulations have been conducted in an equilibrium state to determine the effect of the prolonged climate forcing of the LIG. Due to unknown flow characteristics of glaciers during the LIG, we explore the parametric uncertainty in the mass balance and flow sensitivity parameters. As a point of comparison, we also conduct a series of simulations using forcing anomalies from the CCSM3 mid-Holocene (6 ka) experiment. Results from both experiments show that glacier mass balance is highly sensitive to these sensitivity parameters, pointing at the need for glacier margin calibration for OGGM in paleoclimate applications.

  9. Model based manipulator control

    NASA Technical Reports Server (NTRS)

    Petrosky, Lyman J.; Oppenheim, Irving J.

    1989-01-01

    The feasibility of using model based control (MBC) for robotic manipulators was investigated. A double inverted pendulum system was constructed as the experimental system for a general study of dynamically stable manipulation. The original interest in dynamically stable systems was driven by the objective of high vertical reach (balancing), and the planning of inertially favorable trajectories for force and payload demands. The model-based control approach is described and the results of experimental tests are summarized. Results directly demonstrate that MBC can provide stable control at all speeds of operation and support operations requiring dynamic stability such as balancing. The application of MBC to systems with flexible links is also discussed.

  10. Three dimensional force balance of asymmetric droplets

    NASA Astrophysics Data System (ADS)

    Kim, Yeseul; Lim, Su Jin; Cho, Kun; Weon, Byung Mook

    2016-11-01

    An equilibrium contact angle of a droplet is determined by a horizontal force balance among vapor, liquid, and solid, which is known as Young's law. Conventional wetting law is valid only for axis-symmetric droplets, whereas real droplets are often asymmetric. Here we show that three-dimensional geometry must be considered for a force balance for asymmetric droplets. By visualizing asymmetric droplets placed on a free-standing membrane in air with X-ray microscopy, we are able to identify that force balances in one side and in other side control pinning behaviors during evaporation of droplets. We find that X-ray microscopy is powerful for realizing the three-dimensional force balance, which would be essential in interpretation and manipulation of wetting, spreading, and drying dynamics for asymmetric droplets. This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2016R1D1A1B01007133).

  11. Can Intraoperative Sensors Determine the "Target" Ligament Balance? Early Outcomes in Total Knee Arthroplasty.

    PubMed

    Meneghini, Robert M; Ziemba-Davis, Mary M; Lovro, Luke R; Ireland, Phillip H; Damer, Brent M

    2016-10-01

    The optimal "target" ligament balance for each patient undergoing total knee arthroplasty (TKA) remains unknown. The study purpose was to determine if patient outcomes are affected by intraoperative ligament balance measured with force-sensing implant trials and if an optimal "target" balance exists. A multicenter, retrospective study reviewed consecutive TKAs performed by 3 surgeons. TKA's were performed with standard surgical techniques and ligament releases. After final implants were made, sensor-embedded smart tibial trials were inserted, and compartment forces recorded throughout the range of motion. Clinical outcome measures were obtained preoperatively and at 4 months. Statistical analysis correlated ligament balance with clinical outcomes. One hundred eighty-nine consecutive TKAs were analyzed. Patients were grouped by average medial and lateral compartment force differences. Twenty-nine TKAs (15%) were balanced within 15 lbs and 53 (28%) were "balanced" greater than 75 lbs. Greater improvement in University of California Los Angeles activity level was associated with a mediolateral force difference <60 lbs. (P = .006). Knee Society objective, function, and satisfaction scores, and self-reported health state were unrelated to mediolateral balance in the knee. Intraoperative force-sensing has potential in providing real-time objective data to optimize TKA outcomes. These data support some early outcomes may improve by balancing TKAs within 60 lbs difference. Close follow-up is warranted to determine if gait pattern adaptations affect longer term outcomes with greater or less ligament "imbalance." Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Feasibility of a Low-Cost, Interactive Gaming System to Assess Balance in Older Women.

    PubMed

    Hall, Courtney D; Clevenger, Carolyn K; Wolf, Rachel A; Lin, James S; Johnson, Theodore M; Wolf, Steven L

    2016-01-01

    The use of low-cost interactive game technology for balance rehabilitation has become more popular recently, with generally good outcomes. Very little research has been undertaken to determine whether this technology is appropriate for balance assessment. The Wii balance board has good reliability and is comparable to a research-grade force plate; however, recent studies examining the relationship between Wii Fit games and measures of balance and mobility demonstrate conflicting findings. This study found that the Wii Fit was feasible for community-dwelling older women to safely use the balance board and quickly learn the Wii Fit games. The Ski Slalom game scores were strongly correlated with several balance and mobility measures, whereas Table Tilt game scores were not. Based on these findings, the Ski Slalom game may have utility in the evaluation of balance problems in community-dwelling older adults.

  13. Partnership for the Revitalization of National Wind Tunnel Force Measurement Capability

    NASA Technical Reports Server (NTRS)

    Rhew, Ray D.; Skelley, Marcus L.; Woike, Mark R.; Bader, Jon B.; Marshall, Timothy J.

    2009-01-01

    Lack of funding and lack of focus on research over the past several years, coupled with force measurement capabilities being decentralized and distributed across the National Aeronautics and Space Administration (NASA) research centers, has resulted in a significant erosion of (1) capability and infrastructure to produce and calibrate force measurement systems; (2) NASA s working knowledge of those systems; and (3) the quantity of high-quality, full-capability force measurement systems available for use in aeronautics testing. Simultaneously, and at proportional rates, the capability of industry to design, manufacture, and calibrate these test instruments has been eroding primarily because of a lack of investment by the aeronautics community. Technical expertise in this technology area is a core competency in aeronautics testing; it is highly specialized and experience-based, and it represents a niche market for only a few small precision instrument shops in the United States. With this backdrop, NASA s Aeronautics Test Program (ATP) chartered a team to examine the issues and risks associated with the problem, focusing specifically on strain- gage balances. The team partnered with the U.S. Air Force s Arnold Engineering Development Center (AEDC) to exploit their combined capabilities and take a national level government view of the problem. This paper describes the team s approach, its findings, and its recommendations, and the current status for revitalizing the government s balance capability with respect to designing, fabricating, calibrating, and using the instruments.

  14. Accurate Calibration and Uncertainty Estimation of the Normal Spring Constant of Various AFM Cantilevers

    PubMed Central

    Song, Yunpeng; Wu, Sen; Xu, Linyan; Fu, Xing

    2015-01-01

    Measurement of force on a micro- or nano-Newton scale is important when exploring the mechanical properties of materials in the biophysics and nanomechanical fields. The atomic force microscope (AFM) is widely used in microforce measurement. The cantilever probe works as an AFM force sensor, and the spring constant of the cantilever is of great significance to the accuracy of the measurement results. This paper presents a normal spring constant calibration method with the combined use of an electromagnetic balance and a homemade AFM head. When the cantilever presses the balance, its deflection is detected through an optical lever integrated in the AFM head. Meanwhile, the corresponding bending force is recorded by the balance. Then the spring constant can be simply calculated using Hooke’s law. During the calibration, a feedback loop is applied to control the deflection of the cantilever. Errors that may affect the stability of the cantilever could be compensated rapidly. Five types of commercial cantilevers with different shapes, stiffness, and operating modes were chosen to evaluate the performance of our system. Based on the uncertainty analysis, the expanded relative standard uncertainties of the normal spring constant of most measured cantilevers are believed to be better than 2%. PMID:25763650

  15. Army Sustainment Capabilities in FOrced Entry Operations: The Impact of Private Contracting on Army Sustainment’s Capabilities to Sustain Forces in Forced Entry Operations

    DTIC Science & Technology

    2012-06-08

    contractors and U.S. Army sustainment capabilities. These two cases suggest a need to maintain the correct balance of military sustainment capabilities...cases suggest a need to maintain the correct balance of military sustainment capabilities with maneuver forces in the U.S. Army. Not achieving this...a renewed focus to down size the U.S. Army. This monograph seeks to warn Army leaders that finding a correct balance between readiness to respond to

  16. A Force Balanced Fragmentation Method for ab Initio Molecular Dynamic Simulation of Protein.

    PubMed

    Xu, Mingyuan; Zhu, Tong; Zhang, John Z H

    2018-01-01

    A force balanced generalized molecular fractionation with conjugate caps (FB-GMFCC) method is proposed for ab initio molecular dynamic simulation of proteins. In this approach, the energy of the protein is computed by a linear combination of the QM energies of individual residues and molecular fragments that account for the two-body interaction of hydrogen bond between backbone peptides. The atomic forces on the caped H atoms were corrected to conserve the total force of the protein. Using this approach, ab initio molecular dynamic simulation of an Ace-(ALA) 9 -NME linear peptide showed the conservation of the total energy of the system throughout the simulation. Further a more robust 110 ps ab initio molecular dynamic simulation was performed for a protein with 56 residues and 862 atoms in explicit water. Compared with the classical force field, the ab initio molecular dynamic simulations gave better description of the geometry of peptide bonds. Although further development is still needed, the current approach is highly efficient, trivially parallel, and can be applied to ab initio molecular dynamic simulation study of large proteins.

  17. Design analysis and performance assessment of hybrid magnetic bearings for a rotary centrifugal blood pump.

    PubMed

    Ren, Zhaohui; Jahanmir, Said; Heshmat, Hooshang; Hunsberger, Andrew Z; Walton, James F

    2009-01-01

    A hybrid magnetic bearing system was designed for a rotary centrifugal blood pump being developed to provide long-term circulatory support for heart failure patients. This design consists of two compact bearings to suspend the rotor in five degrees-of-freedom with single axis active control. Permanent magnets are used to provide passive radial support and electromagnets to maintain axial stability of the rotor. Characteristics of the passive radial and active thrust magnetic bearing system were evaluated by the electromagnetic finite element analysis. A proportional-integral-derivative controller with force balance algorithm was implemented for closed loop control of the magnetic thrust bearing. The control position is continuously adjusted based on the electrical energy in the bearing coils, and thus passive magnetic forces carry static thrust loads to minimize the bearing current. Performance of the magnetic bearing system with associated control algorithm was evaluated at different operating conditions. The bearing current was significantly reduced with the force balance control method and the power consumption was below 0.5 W under various thrust loads. The bearing parameters predicted by the analysis were validated by the experimental data.

  18. Interpreting lateral dynamic weight shifts using a simple inverted pendulum model.

    PubMed

    Kennedy, Michael W; Bretl, Timothy; Schmiedeler, James P

    2014-01-01

    Seventy-five young, healthy adults completed a lateral weight-shifting activity in which each shifted his/her center of pressure (CoP) to visually displayed target locations with the aid of visual CoP feedback. Each subject's CoP data were modeled using a single-link inverted pendulum system with a spring-damper at the joint. This extends the simple inverted pendulum model of static balance in the sagittal plane to lateral weight-shifting balance. The model controlled pendulum angle using PD control and a ramp setpoint trajectory, and weight-shifting was characterized by both shift speed and a non-minimum phase (NMP) behavior metric. This NMP behavior metric examines the force magnitude at shift initiation and provides weight-shifting balance performance information that parallels the examination of peak ground reaction forces in gait analysis. Control parameters were optimized on a subject-by-subject basis to match balance metrics for modeled results to metric values calculated from experimental data. Overall, the model matches experimental data well (average percent error of 0.35% for shifting speed and 0.05% for NMP behavior). These results suggest that the single-link inverted pendulum model can be used effectively to capture lateral weight-shifting balance, as it has been shown to model static balance. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Balances for the measurement of multiple components of force in flows of a millisecond duration

    NASA Technical Reports Server (NTRS)

    Mee, D. J.; Daniel, W. J.; Tuttle, S. L.; Simmons, J. M.

    1995-01-01

    This paper reports a new balance for the measurement of three components of force - lift, drag and pitching moment - in impulsively starting flows which have a duration of about one millisecond. The basics of the design of the balance are presented and results of tests on a 15 deg semi-angle cone set at incidence in the T4 shock tunnel are compared with predictions. These results indicate that the prototype balance performs well for a 1.9 kg, 220 mm long model. Also presented are results from initial bench tests of another application of the deconvolution force balance to the measurement of thrust produced by a 2D scramjet nozzle.

  20. The effect of vision on postural strategies in Prader-Willi patients.

    PubMed

    Cimolin, Veronica; Galli, Manuela; Vismara, Luca; Grugni, Graziano; Priano, Lorenzo; Capodaglio, Paolo

    2011-01-01

    The aim of this study was to quantify the role of visual contribution in patients with Prader-Willi syndrome (PWS) on balance maintenance using a force platform. We enrolled 14 individuals with PWS free from conditions associated with impaired balance, 44 obese (OG) and 20 healthy controls (CG). Postural sway was measured for 60s while standing on a force platform (Kistler, CH; acquisition frequency: 500 Hz) integrated with a video system. Patients maintained an upright standing position with Open Eyes (OE) and then with Closed Eyes (CE). The ratio between the value of the parameter under OE and CE conditions was measured. Under OE condition PWS and OG were characterized by higher postural instability than CG, with the PWS group showing poorer balance capacity than OG. The Romberg ratio showed that while OG and CG had lower balance without vision, PWS maintained the same performance changing from OE to CE. The integration of different sensory inputs appears similar in OG and CG with higher postural stability under OE than CE. Balance in PWS is not influenced by the elimination of visual input. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. One-dimensional Vlasov-Maxwell equilibrium for the force-free Harris sheet.

    PubMed

    Harrison, Michael G; Neukirch, Thomas

    2009-04-03

    In this Letter, the first nonlinear force-free Vlasov-Maxwell equilibrium is presented. One component of the equilibrium magnetic field has the same spatial structure as the Harris sheet, but whereas the Harris sheet is kept in force balance by pressure gradients, in the force-free solution presented here force balance is maintained by magnetic shear. Magnetic pressure, plasma pressure and plasma density are constant. The method used to find the equilibrium is based on the analogy of the one-dimensional Vlasov-Maxwell equilibrium problem to the motion of a pseudoparticle in a two-dimensional conservative potential. The force-free solution can be generalized to a complete family of equilibria that describe the transition between the purely pressure-balanced Harris sheet to the force-free Harris sheet.

  2. Design and Test Requirements for Space Flight Pressurized Systems

    DTIC Science & Technology

    2014-11-26

    5.7.2 Fire Resistant Fluids ......................................................................................... 24 5.7.3 Accumulators...5.1.7 Threaded Parts [5.1.7-1] All threaded parts in components shall be securely locked to resist uncoupling forces by acceptable safe design...event of force balance on both inlet ports may occur, thus causing the shutoff valve to restrict flow from the outlet port. 5.7.2 Fire Resistant

  3. On the Stability of a Can of Soda

    ERIC Educational Resources Information Center

    Benesh, G. A.; Olafsen, J. S.

    2014-01-01

    Stability is often an important consideration in both static and dynamic systems. While introductory students soon grasp the balance of forces required for constant velocity motion, it generally takes longer for them to reliably identify the various torques involved in producing rotational equilibrium. Accelerating systems have the additional…

  4. Effect of unilateral knee extensor fatigue on force and balance of the contralateral limb.

    PubMed

    Arora, Shruti; Budden, Shawn; Byrne, Jeannette M; Behm, David G

    2015-10-01

    Fatigue in one limb can decrease force production in the homologous muscle as well as other muscles of the non-fatigued limb affecting balance. The objective of the study was to examine the effect of unilateral knee extensor fatigue on the non-fatigued limb's standing balance, muscle force and activation. Sixteen healthy male subjects performed pre-fatigue balance trials, warm-up exercises, maximum voluntary isometric contractions, a knee extensors fatigue protocol, and post-fatigue balance trials. The fatigue protocol consisted of sets of 15 consecutive isometric contractions of 16 s each with 4 s recovery between repetitions, which were performed at 30% peak force for the dominant knee extensor muscles. Additional sets of contractions continued until a 50% decrease in MVIC knee extensor force was observed. Pre- and post-fatigue balance assessment consisted of transition from double to single leg standing and also single leg standing trials, which were performed bilaterally and in randomized order. The peak force and F100 were significantly decreased by 44.8% (ES = 2.54) and 39.9% (ES = 0.59), respectively, for the fatigued limb post-fatigue. There were no significant changes in the non-fatigued limb's muscle force, activation, muscle onset timing or postural stability parameters. While the lack of change in non-fatigued limb force production is in agreement with some of the previous literature in this area, the lack of effect on postural measures directly contradicts earlier work. It is hypothesized that discrepancies in the duration and the intensity of the fatigue protocol may have accounted for this discrepancy.

  5. Drag measurements on a laminar flow body of revolution in Langley's 13 inch magnetic suspension and balance system. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Dress, David A.

    1988-01-01

    Low-speed wind tunnel drag force measurements were taken on a laminar flow body of revolution free of support interference. This body was tested at zero incidence in the NASA Langley 13 inch Magnetic Suspension and Balance System (MSBS). The primary objective of these tests was to substantiate the drag force measuring capabilities of the 13 inch MSBS. A secondary objective was to obtain support interference free drag measurements on an axisymmetric body of interest. Both objectives were met. The drag force calibrations and wind-on repeatability data provide a means of assessing the drag force measuring capabilities of the 13 inch MSBS. The measured drag coefficients for this body are of interest to researchers actively involved in designing minimum drag fuselage shapes. Additional investigations included: the effects of fixing transition; the effects of fins installed in the tail; surface flow visualizations using both liquid crystals and oil flow; and base pressure measurements using a one-channel telemetry system. Two drag prediction codes were used to assess their usefulness in estimating overall body drag. These theoretical results did not compare well with the measured values because of the following: incorrect or non-existent modeling of a laminar separation bubble on the body and incorrect of non-existent estimates of base pressure drag.

  6. Comparative Effects of Different Balance-Training–Progression Styles on Postural Control and Ankle Force Production: A Randomized Controlled Trial

    PubMed Central

    Cuğ, Mutlu; Duncan, Ashley; Wikstrom, Erik

    2016-01-01

    Context:  Despite the effectiveness of balance training, the exact parameters needed to maximize the benefits of such programs remain unknown. One such factor is how individuals should progress to higher levels of task difficulty within a balance-training program. Yet no investigators have directly compared different balance-training–progression styles. Objective:  To compare an error-based progression (ie, advance when proficient at a task) with a repetition-based progression (ie, advance after a set amount of repetitions) style during a balance-training program in healthy individuals. Design:  Randomized controlled trial. Setting:  Research laboratory. Patients or Other Participants:  A total of 28 (16 women, 12 men) physically healthy young adults (age = 21.57 ± 3.95 years, height = 171.60 ± 11.03 cm, weight = 72.96 ± 16.18 kg, body mass index = 24.53 ± 3.7). Intervention(s):  All participants completed 12 supervised balance-training sessions over 4 weeks. Each session consisted of a combination of dynamic unstable-surface tasks that incorporated a BOSU ball and lasted about 30 minutes. Main Outcome Measure(s):  Static balance from an instrumented force plate, dynamic balance as measured via the Star Excursion Balance Test, and ankle force production in all 4 cardinal planes of motion as measured with a handheld dynamometer before and after the intervention. Results:  Selected static postural-control outcomes, dynamic postural control, and ankle force production in all planes of motion improved (P < .05). However, no differences between the progression styles were observed (P > .05) for any of the outcome measures. Conclusions:  A 4-week balance-training program consisting of dynamic unstable-surface exercises on a BOSU ball improved dynamic postural control and ankle force production in healthy young adults. These results suggest that an error-based balance-training program is comparable with but not superior to a repetition-based balance-training program in improving postural control and ankle force production in healthy young adults. PMID:26878257

  7. Wind Energy Management System Integration Project Incorporating Wind Generation and Load Forecast Uncertainties into Power Grid Operations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Makarov, Yuri V.; Huang, Zhenyu; Etingov, Pavel V.

    2010-09-01

    The power system balancing process, which includes the scheduling, real time dispatch (load following) and regulation processes, is traditionally based on deterministic models. Since the conventional generation needs time to be committed and dispatched to a desired megawatt level, the scheduling and load following processes use load and wind power production forecasts to achieve future balance between the conventional generation and energy storage on the one side, and system load, intermittent resources (such as wind and solar generation) and scheduled interchange on the other side. Although in real life the forecasting procedures imply some uncertainty around the load and windmore » forecasts (caused by forecast errors), only their mean values are actually used in the generation dispatch and commitment procedures. Since the actual load and intermittent generation can deviate from their forecasts, it becomes increasingly unclear (especially, with the increasing penetration of renewable resources) whether the system would be actually able to meet the conventional generation requirements within the look-ahead horizon, what the additional balancing efforts would be needed as we get closer to the real time, and what additional costs would be incurred by those needs. In order to improve the system control performance characteristics, maintain system reliability, and minimize expenses related to the system balancing functions, it becomes necessary to incorporate the predicted uncertainty ranges into the scheduling, load following, and, in some extent, into the regulation processes. It is also important to address the uncertainty problem comprehensively, by including all sources of uncertainty (load, intermittent generation, generators’ forced outages, etc.) into consideration. All aspects of uncertainty such as the imbalance size (which is the same as capacity needed to mitigate the imbalance) and generation ramping requirement must be taken into account. The latter unique features make this work a significant step forward toward the objective of incorporating of wind, solar, load, and other uncertainties into power system operations. In this report, a new methodology to predict the uncertainty ranges for the required balancing capacity, ramping capability and ramp duration is presented. Uncertainties created by system load forecast errors, wind and solar forecast errors, generation forced outages are taken into account. The uncertainty ranges are evaluated for different confidence levels of having the actual generation requirements within the corresponding limits. The methodology helps to identify system balancing reserve requirement based on a desired system performance levels, identify system “breaking points”, where the generation system becomes unable to follow the generation requirement curve with the user-specified probability level, and determine the time remaining to these potential events. The approach includes three stages: statistical and actual data acquisition, statistical analysis of retrospective information, and prediction of future grid balancing requirements for specified time horizons and confidence intervals. Assessment of the capacity and ramping requirements is performed using a specially developed probabilistic algorithm based on a histogram analysis incorporating all sources of uncertainty and parameters of a continuous (wind forecast and load forecast errors) and discrete (forced generator outages and failures to start up) nature. Preliminary simulations using California Independent System Operator (California ISO) real life data have shown the effectiveness of the proposed approach. A tool developed based on the new methodology described in this report will be integrated with the California ISO systems. Contractual work is currently in place to integrate the tool with the AREVA EMS system.« less

  8. When equal masses don't balance

    NASA Astrophysics Data System (ADS)

    Newburgh, Ronald; Peidle, Joseph; Rueckner, Wolfgang

    2004-05-01

    We treat a modified Atwood's machine in which equal masses do not balance because of being in an accelerated frame of reference. Analysis of the problem illuminates the meaning of inertial forces, d'Alembert's principle, the use of free-body diagrams and the selection of appropriate systems for the diagrams. In spite of the range of these applications the analysis does not require calculus, so the ideas are accessible even to first-year students.

  9. Validity of a jump training apparatus using Wii Balance Board.

    PubMed

    Yamamoto, Keizo; Matsuzawa, Mamoru

    2013-05-01

    The dynamic quantification of jump ability is useful for sports performance evaluation. We developed a force measurement system using the Wii Balance Board (WBB). This study was conducted to validate the system in comparison with a laboratory-grade force plate (FP). For a static validation, weights of 10-180kg were put progressively on the WBB put on the FP. The vertical component of the ground reaction force (vGRF) was measured using both devices and compared. For the dynamic validation, 10 subjects without lower limb pathology participated in the study and performed vertical jumping twice on the WBB on the FP. The range of analysis was set from the landing after the first jump to taking off of the second jump. The peak values during the landing phase and jumping phase were obtained and the force-time integral (force impulse) was measured. The relations of the values measured using each device were compared using Pearson's correlation coefficient test and Bland-Altman plots (BAP). Significant correlation (P<.01, r=.99) was found between the values of both devices in the static and the dynamic test. Examination of the BAP revealed a proportion error in the landing phase and showed no relation in the jumping phase between the difference and the mean in the dynamic test. The WBB detects the vGRF in the jumping phase with high precision. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Passive force balancing of an active magnetic regenerative liquefier

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Teyber, R.; Meinhardt, K.; Thomsen, E.

    Active magnetic regenerators (AMR) have the potential for high efficiency cryogen liquefaction. One active magnetic regenerative liquefier (AMRL) configuration consists of dual magnetocaloric regenerators that reciprocate in a persistent-mode superconducting solenoid. Issues with this configuration are the spatial and temporal magnetization gradients that induce large magnetic forces and winding currents. To solve the coupled problem, we present a force minimization approach using passive magnetic material to balance a dual-regenerator AMR. A magnetostatic model is developed and simulated force waveforms are compared with experimental measurements. A genetic algorithm identifies force-minimizing passive structures with virtually ideal balancing characteristics. Finally, implementation details aremore » investigated which affirm the potential of the proposed methodology.« less

  11. Passive force balancing of an active magnetic regenerative liquefier

    DOE PAGES

    Teyber, R.; Meinhardt, K.; Thomsen, E.; ...

    2017-11-02

    Active magnetic regenerators (AMR) have the potential for high efficiency cryogen liquefaction. One active magnetic regenerative liquefier (AMRL) configuration consists of dual magnetocaloric regenerators that reciprocate in a persistent-mode superconducting solenoid. Issues with this configuration are the spatial and temporal magnetization gradients that induce large magnetic forces and winding currents. To solve the coupled problem, we present a force minimization approach using passive magnetic material to balance a dual-regenerator AMR. A magnetostatic model is developed and simulated force waveforms are compared with experimental measurements. A genetic algorithm identifies force-minimizing passive structures with virtually ideal balancing characteristics. Finally, implementation details aremore » investigated which affirm the potential of the proposed methodology.« less

  12. Passive force balancing of an active magnetic regenerative liquefier

    NASA Astrophysics Data System (ADS)

    Teyber, R.; Meinhardt, K.; Thomsen, E.; Polikarpov, E.; Cui, J.; Rowe, A.; Holladay, J.; Barclay, J.

    2018-04-01

    Active magnetic regenerators (AMR) have the potential for high efficiency cryogen liquefaction. One active magnetic regenerative liquefier (AMRL) configuration consists of dual magnetocaloric regenerators that reciprocate in a persistent-mode superconducting solenoid. Issues with this configuration are the spatial and temporal magnetization gradients that induce large magnetic forces and winding currents. To solve the coupled problem, we present a force minimization approach using passive magnetic material to balance a dual-regenerator AMR. A magnetostatic model is developed and simulated force waveforms are compared with experimental measurements. A genetic algorithm identifies force-minimizing passive structures with virtually ideal balancing characteristics. Implementation details are investigated which affirm the potential of the proposed methodology.

  13. Cryogenic strain gage techniques used in force balance design for the National Transonic Facility

    NASA Technical Reports Server (NTRS)

    Ferris, A. T.

    1986-01-01

    A force balance is a strain gage transducer used in wind tunnels to measure the forces and moments on aerodynamic models. Techniques have been established for temperature-compensation of force balances to allow their use over the operating temperature range of a cryogenic wind tunnel (-190C to 60C) without thermal control. This was accomplished by using a patented strain gage matching process to minimize inherent thermal differences, and a thermal compensation procedure to reduce the remaining thermally-induced outputs to acceptable levels. A method of compensating for mechanical movement of the axial force measuring beam caused by thermally-induced stresses under transient temperatures was also included.

  14. The effect of a haptic biofeedback system on postural control in patients with stroke: An experimental pilot study.

    PubMed

    Yasuda, Kazuhiro; Kaibuki, Naomi; Harashima, Hiroaki; Iwata, Hiroyasu

    2017-06-01

    Impaired balance in patients with hemiparesis caused by stroke is frequently related to deficits in the central integration of afferent inputs, and traditional rehabilitation reinforces excessive visual reliance by focusing on visual compensation. The present study investigated whether a balance task involving a haptic biofeedback (BF) system, which provided supplementary vibrotactile sensory cues associated with center-of-foot-pressure displacement, improved postural control in patients with stroke. Seventeen stroke patients were assigned to two groups: the Vibrotactile BF and Control groups. During the balance task (i.e., standing on a foam mat), participants in the Vibrotactile BF group tried to stabilize their postural sway while wearing the BF system around the pelvic girdle. In the Control group, participants performed an identical postural task without the BF system. Pre- and post-test measurements of postural control using a force plate revealed that the stability of bipedal posture in the Vibrotactile BF group was markedly improved compared with that in the Control group. A balance task involving a vibrotactile BF system improved postural stability in patients with stroke immediately. This confirms the potential of a haptic-based BF system for balance training, both in routine clinical practice and in everyday life.

  15. Jet Exit Rig Six Component Force Balance

    NASA Technical Reports Server (NTRS)

    Castner, Raymond; Wolter, John; Woike, Mark; Booth, Dennis

    2012-01-01

    A new six axis air balance was delivered to the NASA Glenn Research Center. This air balance has an axial force capability of 800 pounds, primary airflow of 10 pounds per second, and a secondary airflow of 3 pounds per second. Its primary use was for the NASA Glenn Jet Exit Rig, a wind tunnel model used to test both low-speed, and high-speed nozzle concepts in a wind tunnel. This report outlines the installation of the balance in the Jet Exit Rig, and the results from an ASME calibration nozzle with an exit area of 8 square-inches. The results demonstrated the stability of the force balance for axial measurements and the repeatability of measurements better than 0.20 percent.

  16. US defense policy, US Air Force doctrine and strategic nuclear weapon systems, 1958-1964: the case of the Minuteman ICBM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reed, G.A.

    This study examines the efforts of the US Air Force during 1958-1964 to develop doctrine for strategic nuclear weapon systems. These years were characterized by rapid, extensive change in the technology of nuclear weapons delivery systems, centering in ICBMs replacing bombers as the chief vehicles. Simultaneously, national military strategy changed with the transfer of power from the Eisenhower to the Kennedy Administrations, shifting from reliance on overwhelming nuclear retaliation to emphasis on balanced conventional and nuclear forces. Against this background, the study poses the question: did the Air Force, when confronted with major changes in technology and national policy, developmore » doctrine for strategic nuclear weapon systems that was politically acceptable, technically feasible, and strategically sound. Using the development of the Minuteman ICBM as a case study, the study examines the evolution of Air Force doctrine and concludes that the Air Force did not, because of conceptual problems and bureaucratic exigencies, develop a doctrine adequate to the requirements of deterrence in the dawning era of solid-fuel ICBMs.« less

  17. Experimental Analysis of Propeller Interactions With a Flexible Wing Micro-Air-Vehicle

    DTIC Science & Technology

    2006-03-23

    Wing (Freestream Only) Momentum Balance Results.............. 94 Table 10. Flexible/ Rigid Wing (Freestream and Propeller Running) Momentum Balance ...107 Table 18. Propeller/MAV Forces and Moments at 14,000 RPM ( Rigid Wing) ............ 107 Table 19. Balance Data (Raw and Corrected...velocity field around the vehicle. A limited number of tests have been performed to assess the technique in comparison to force balance data. 4

  18. Development of a 5-Component Balance for Water Tunnel Applications

    NASA Technical Reports Server (NTRS)

    Suarez, Carlos J.; Kramer, Brian R.; Smith, Brooke C.

    1999-01-01

    The principal objective of this research/development effort was to develop a multi-component strain gage balance to measure both static and dynamic forces and moments on models tested in flow visualization water tunnels. A balance was designed that allows measuring normal and side forces, and pitching, yawing and rolling moments (no axial force). The balance mounts internally in the model and is used in a manner typical of wind tunnel balances. The key differences between a water tunnel balance and a wind tunnel balance are the requirement for very high sensitivity since the loads are very low (typical normal force is 90 grams or 0.2 lbs), the need for water proofing the gage elements, and the small size required to fit into typical water tunnel models. The five-component balance was calibrated and demonstrated linearity in the responses of the primary components to applied loads, very low interactions between the sections and no hysteresis. Static experiments were conducted in the Eidetics water tunnel with delta wings and F/A-18 models. The data were compared to forces and moments from wind tunnel tests of the same or similar configurations. The comparison showed very good agreement, providing confidence that loads can be measured accurately in the water tunnel with a relatively simple multi-component internal balance. The success of the static experiments encouraged the use of the balance for dynamic experiments. Among the advantages of conducting dynamic tests in a water tunnel are less demanding motion and data acquisition rates than in a wind tunnel test (because of the low-speed flow) and the capability of performing flow visualization and force/moment (F/M) measurements simultaneously with relative simplicity. This capability of simultaneous flow visualization and for F/M measurements proved extremely useful to explain the results obtained during these dynamic tests. In general, the development of this balance should encourage the use of water tunnels for a wider range of quantitative and qualitative experiments, especially during the preliminary phase of aircraft design.

  19. Children with nocturnal enuresis have posture and balance disorders.

    PubMed

    Pavione Rodrigues Pereira, R; Nascimento Fagundes, S; Surry Lebl, A; Azevedo Soster, L; Machado, M G; Koch, V H; Tanaka, C

    2016-08-01

    Integration of the neuromuscular system is required for maintaining balance and adequate voiding function. Children with enuresis have delayed maturation of the motor cortex, with changes in the sensory and motor systems. Along with various alterations, including the genetic, hormonal, behavioral, and sleep disturbances, and neuromotor and sensory deficits associated with nocturnal enuresis (NE) in children and adults, a consistent alteration in the posture of children with NE has been observed in the current practice. Because posture and the balance control system are strongly connected, this study aimed to investigate posture and balance in children and teenagers with NE. A total of 111 children with enuresis were recruited to the enuretic group (EG) and 60 asymptomatic children made up the control group (CG). The participants were divided into two age subgroups: (A) 7-11 years old, N = 77 for EG/A, N = 38 for CG/A; and (B) 12-16 years old, N = 34 for EG/B, N = 22 for CG/B. Balance was assessed using an electronic force plate (100 Hz) to calculate the area of the center of pressure (COP) displacement. The COP is the point that results from the action of vertical forces projected onto the force plate. Sensory integration was analyzed using a 60-s trial with the subject standing under four conditions: (1) eyes open, stable surface; (2) eyes closed, stable surface; (3) eyes open, unstable surface; (4) eyes closed, unstable surface. Posture was assessed by placing reflective anatomical landmarks on the anterior superior iliac spine, the posterior superior iliac spine, the greater trochanter, and lateral malleolus. A photograph was taken while the subject stood quietly. The angles were obtained from landmark connections using software to assess the following posture variables: pelvic ante/retroversion and pelvic ante/retropulsion. The EG showed a greater area of COP displacement compared with the CG under all four sensory conditions and both subgroups, except for EG/B in condition 3. Regarding posture, EG showed higher pelvic anteversion angles than CG. Enuretic children showed forward inclination of the pelvis and had worse balance compared with control children. Copyright © 2016 Journal of Pediatric Urology Company. Published by Elsevier Ltd. All rights reserved.

  20. A Dynamic Calibration Method for Experimental and Analytical Hub Load Comparison

    NASA Technical Reports Server (NTRS)

    Kreshock, Andrew R.; Thornburgh, Robert P.; Wilbur, Matthew L.

    2017-01-01

    This paper presents the results from an ongoing effort to produce improved correlation between analytical hub force and moment prediction and those measured during wind-tunnel testing on the Aeroelastic Rotor Experimental System (ARES), a conventional rotor testbed commonly used at the Langley Transonic Dynamics Tunnel (TDT). A frequency-dependent transformation between loads at the rotor hub and outputs of the testbed balance is produced from frequency response functions measured during vibration testing of the system. The resulting transformation is used as a dynamic calibration of the balance to transform hub loads predicted by comprehensive analysis into predicted balance outputs. In addition to detailing the transformation process, this paper also presents a set of wind-tunnel test cases, with comparisons between the measured balance outputs and transformed predictions from the comprehensive analysis code CAMRAD II. The modal response of the testbed is discussed and compared to a detailed finite-element model. Results reveal that the modal response of the testbed exhibits a number of characteristics that make accurate dynamic balance predictions challenging, even with the use of the balance transformation.

  1. Stimulus Characteristics for Vestibular Stochastic Resonance to Improve Balance Function

    NASA Technical Reports Server (NTRS)

    Mulavara, Ajitkumar; Fiedler, Matthew; Kofman, Igor; Peters, Brian; Wood, Scott; Serrado, Jorge; Cohen, Helen; Reschke, Millard; Bloomberg, Jacob

    2010-01-01

    Stochastic resonance (SR) is a mechanism by which noise can enhance the response of neural systems to relevant sensory signals. Studies have shown that imperceptible stochastic vestibular electrical stimulation, when applied to normal young and elderly subjects, significantly improved their ocular stabilization reflexes in response to whole-body tilt as well as balance performance during postural disturbances. The goal of this study was to optimize the amplitude characteristics of the stochastic vestibular signals for balance performance during standing on an unstable surface. Subjects performed a standard balance task of standing on a block of foam with their eyes closed. Bipolar stochastic electrical stimulation was applied to the vestibular system using constant current stimulation through electrodes placed over the mastoid process behind the ears. Amplitude of the signals varied in the range of 0-700 microamperes. Balance performance was measured using a force plate under the foam block, and inertial motion sensors were placed on the torso and head. Balance performance with stimulation was significantly greater (10%-25%) than with no stimulation. The signal amplitude at which performance was maximized was in the range of 100-300 microamperes. Optimization of the amplitude of the stochastic signals for maximizing balance performance will have a significant impact on development of vestibular SR as a unique system to aid recovery of function in astronauts after long-duration space flight or in patients with balance disorders.

  2. Clinical correlates of between-limb synchronization of standing balance control and falls during inpatient stroke rehabilitation.

    PubMed

    Mansfield, Avril; Mochizuki, George; Inness, Elizabeth L; McIlroy, William E

    2012-01-01

    Stroke-related sensorimotor impairment potentially contributes to impaired balance. Balance measures that reveal underlying limb-specific control problems, such as a measure of the synchronization of both lower limbs to maintain standing balance, may be uniquely informative about poststroke balance control. This study aimed to determine the relationships between clinical measures of sensorimotor control, functional balance, and fall risk and between-limb synchronization of balance control. The authors conducted a retrospective chart review of 100 individuals with stroke admitted to inpatient rehabilitation. Force plate-based measures were obtained while standing on 2 force plates, including postural sway (root mean square of anteroposterior and mediolateral center of pressure [COP]), stance load asymmetry (percentage of body weight borne on the less-loaded limb), and between-limb synchronization (cross-correlation of the COP recordings under each foot). Clinical measures obtained were motor impairment (Chedoke-McMaster Stroke Assessment), plantar cutaneous sensation, functional balance (Berg Balance Scale), and falls experienced in rehabilitation. Synchronization was significantly related to motor impairment and prospective falls, even when controlling for other force plate-based measures of standing balance control (ie, postural sway and stance load symmetry). Between-limb COP synchronization for standing balance appears to be a uniquely important index of balance control, independent of postural sway and load symmetry during stance.

  3. Low-power circuits design for the wireless force measurement system of the total knee arthroplasty.

    PubMed

    Chen, Hong; Liu, Ming; Wan, Weiyi; Jia, Chen; Zhang, Chun; Wang, Zihua

    2010-01-01

    This paper proposes a novel wireless force measurement system for the Total Knee Arthroplasty (TKA) to improve the ligament balancing procedure during TKA. The force measurement system is comprised of a Wireless Force Measurement Spacer (WFMS) and the display part. They communicate with each other by the Radio Frequency (RF) signal. The WFMS is designed to measure the force between the WFMS and the femoral component of the artificial implants and to transmit the force data wirelessly by a low power transceiver. The display part demonstrates the force data in 3D images in real time. The WFMS composes of a sensors array, a Universal Transducer Interfaces (UTIs) array, a low-power sub-threshold microprocessor and a transceiver. The sub-threshold 8-bit microprocessor is taped out with 0.18 microm CMOS technology. The testing results of the microprocessor show that the leakage power of 46nW and the dynamic power of 385nW@165kHz are achieved with the operating voltage of 350 mV. The test results of the system are given and the errors of the system are analyzed. The results verified the reliability of the system. The future work is to design the microprocessor and a lower power transceiver within a single chip.

  4. Defects formation and wave emitting from defects in excitable media

    NASA Astrophysics Data System (ADS)

    Ma, Jun; Xu, Ying; Tang, Jun; Wang, Chunni

    2016-05-01

    Abnormal electrical activities in neuronal system could be associated with some neuronal diseases. Indeed, external forcing can cause breakdown even collapse in nervous system under appropriate condition. The excitable media sometimes could be described by neuronal network with different topologies. The collective behaviors of neurons can show complex spatiotemporal dynamical properties and spatial distribution for electrical activities due to self-organization even from the regulating from central nervous system. Defects in the nervous system can emit continuous waves or pulses, and pacemaker-like source is generated to perturb the normal signal propagation in nervous system. How these defects are developed? In this paper, a network of neurons is designed in two-dimensional square array with nearest-neighbor connection type; the formation mechanism of defects is investigated by detecting the wave propagation induced by external forcing. It is found that defects could be induced under external periodical forcing under the boundary, and then the wave emitted from the defects can keep balance with the waves excited from external forcing.

  5. Horizontal film balance having wide range and high sensitivity

    DOEpatents

    Abraham, B.M.; Miyano, K.; Ketterson, J.B.

    1981-03-05

    A thin-film, horizontal balance instrument is provided for measuring surface tension (surface energy) of thin films suspended on a liquid substrate. The balance includes a support bearing and an optical feedback arrangement for wide-range, high sensitivity measurements. The force on the instrument is balanced by an electromagnet, the current through the magnet providing a measure of the force applied to the instrument. A novel float construction is also disclosed.

  6. Horizontal film balance having wide range and high sensitivity

    DOEpatents

    Abraham, B.M.; Miyano, K.; Ketterson, J.B.

    1983-11-08

    A thin-film, horizontal balance instrument is provided for measuring surface tension (surface energy) of thin films suspended on a liquid substrate. The balance includes a support bearing and an optical feedback arrangement for wide-range, high sensitivity measurements. The force on the instrument is balanced by an electromagnet, the current through the magnet providing a measure of the force applied to the instrument. A novel float construction is also disclosed. 5 figs.

  7. Horizontal film balance having wide range and high sensitivity

    DOEpatents

    Abraham, Bernard M.; Miyano, Kenjiro; Ketterson, John B.

    1983-01-01

    A thin-film, horizontal balance instrument is provided for measuring surface tension (surface energy) of thin films suspended on a liquid substrate. The balance includes a support bearing and an optical feedback arrangement for wide-range, high sensitivity measurements. The force on the instrument is balanced by an electromagnet, the current through the magnet providing a measure of the force applied to the instrument. A novel float construction is also disclosed.

  8. Influence of Primary Gage Sensitivities on the Convergence of Balance Load Iterations

    NASA Technical Reports Server (NTRS)

    Ulbrich, Norbert Manfred

    2012-01-01

    The connection between the convergence of wind tunnel balance load iterations and the existence of the primary gage sensitivities of a balance is discussed. First, basic elements of two load iteration equations that the iterative method uses in combination with results of a calibration data analysis for the prediction of balance loads are reviewed. Then, the connection between the primary gage sensitivities, the load format, the gage output format, and the convergence characteristics of the load iteration equation choices is investigated. A new criterion is also introduced that may be used to objectively determine if the primary gage sensitivity of a balance gage exists. Then, it is shown that both load iteration equations will converge as long as a suitable regression model is used for the analysis of the balance calibration data, the combined influence of non linear terms of the regression model is very small, and the primary gage sensitivities of all balance gages exist. The last requirement is fulfilled, e.g., if force balance calibration data is analyzed in force balance format. Finally, it is demonstrated that only one of the two load iteration equation choices, i.e., the iteration equation used by the primary load iteration method, converges if one or more primary gage sensitivities are missing. This situation may occur, e.g., if force balance calibration data is analyzed in direct read format using the original gage outputs. Data from the calibration of a six component force balance is used to illustrate the connection between the convergence of the load iteration equation choices and the existence of the primary gage sensitivities.

  9. Approaching a realistic force balance in geodynamo simulations

    PubMed Central

    Yadav, Rakesh K.; Gastine, Thomas; Christensen, Ulrich R.; Wolk, Scott J.; Poppenhaeger, Katja

    2016-01-01

    Earth sustains its magnetic field by a dynamo process driven by convection in the liquid outer core. Geodynamo simulations have been successful in reproducing many observed properties of the geomagnetic field. However, although theoretical considerations suggest that flow in the core is governed by a balance between Lorentz force, rotational force, and buoyancy (called MAC balance for Magnetic, Archimedean, Coriolis) with only minute roles for viscous and inertial forces, dynamo simulations must use viscosity values that are many orders of magnitude larger than in the core, due to computational constraints. In typical geodynamo models, viscous and inertial forces are not much smaller than the Coriolis force, and the Lorentz force plays a subdominant role; this has led to conclusions that these simulations are viscously controlled and do not represent the physics of the geodynamo. Here we show, by a direct analysis of the relevant forces, that a MAC balance can be achieved when the viscosity is reduced to values close to the current practical limit. Lorentz force, buoyancy, and the uncompensated (by pressure) part of the Coriolis force are of very similar strength, whereas viscous and inertial forces are smaller by a factor of at least 20 in the bulk of the fluid volume. Compared with nonmagnetic convection at otherwise identical parameters, the dynamo flow is of larger scale and is less invariant parallel to the rotation axis (less geostrophic), and convection transports twice as much heat, all of which is expected when the Lorentz force strongly influences the convection properties. PMID:27790991

  10. Validity and reliability of balance assessment software using the Nintendo Wii balance board: usability and validation

    PubMed Central

    2014-01-01

    Background A balance test provides important information such as the standard to judge an individual’s functional recovery or make the prediction of falls. The development of a tool for a balance test that is inexpensive and widely available is needed, especially in clinical settings. The Wii Balance Board (WBB) is designed to test balance, but there is little software used in balance tests, and there are few studies on reliability and validity. Thus, we developed a balance assessment software using the Nintendo Wii Balance Board, investigated its reliability and validity, and compared it with a laboratory-grade force platform. Methods Twenty healthy adults participated in our study. The participants participated in the test for inter-rater reliability, intra-rater reliability, and concurrent validity. The tests were performed with balance assessment software using the Nintendo Wii balance board and a laboratory-grade force platform. Data such as Center of Pressure (COP) path length and COP velocity were acquired from the assessment systems. The inter-rater reliability, the intra-rater reliability, and concurrent validity were analyzed by an intraclass correlation coefficient (ICC) value and a standard error of measurement (SEM). Results The inter-rater reliability (ICC: 0.89-0.79, SEM in path length: 7.14-1.90, SEM in velocity: 0.74-0.07), intra-rater reliability (ICC: 0.92-0.70, SEM in path length: 7.59-2.04, SEM in velocity: 0.80-0.07), and concurrent validity (ICC: 0.87-0.73, SEM in path length: 5.94-0.32, SEM in velocity: 0.62-0.08) were high in terms of COP path length and COP velocity. Conclusion The balance assessment software incorporating the Nintendo Wii balance board was used in our study and was found to be a reliable assessment device. In clinical settings, the device can be remarkably inexpensive, portable, and convenient for the balance assessment. PMID:24912769

  11. Validity and reliability of balance assessment software using the Nintendo Wii balance board: usability and validation.

    PubMed

    Park, Dae-Sung; Lee, GyuChang

    2014-06-10

    A balance test provides important information such as the standard to judge an individual's functional recovery or make the prediction of falls. The development of a tool for a balance test that is inexpensive and widely available is needed, especially in clinical settings. The Wii Balance Board (WBB) is designed to test balance, but there is little software used in balance tests, and there are few studies on reliability and validity. Thus, we developed a balance assessment software using the Nintendo Wii Balance Board, investigated its reliability and validity, and compared it with a laboratory-grade force platform. Twenty healthy adults participated in our study. The participants participated in the test for inter-rater reliability, intra-rater reliability, and concurrent validity. The tests were performed with balance assessment software using the Nintendo Wii balance board and a laboratory-grade force platform. Data such as Center of Pressure (COP) path length and COP velocity were acquired from the assessment systems. The inter-rater reliability, the intra-rater reliability, and concurrent validity were analyzed by an intraclass correlation coefficient (ICC) value and a standard error of measurement (SEM). The inter-rater reliability (ICC: 0.89-0.79, SEM in path length: 7.14-1.90, SEM in velocity: 0.74-0.07), intra-rater reliability (ICC: 0.92-0.70, SEM in path length: 7.59-2.04, SEM in velocity: 0.80-0.07), and concurrent validity (ICC: 0.87-0.73, SEM in path length: 5.94-0.32, SEM in velocity: 0.62-0.08) were high in terms of COP path length and COP velocity. The balance assessment software incorporating the Nintendo Wii balance board was used in our study and was found to be a reliable assessment device. In clinical settings, the device can be remarkably inexpensive, portable, and convenient for the balance assessment.

  12. Manual physical balance assistance of therapists during gait training of stroke survivors: characteristics and predicting the timing.

    PubMed

    Haarman, Juliet A M; Maartens, Erik; van der Kooij, Herman; Buurke, Jaap H; Reenalda, Jasper; Rietman, Johan S

    2017-12-02

    During gait training, physical therapists continuously supervise stroke survivors and provide physical support to their pelvis when they judge that the patient is unable to keep his balance. This paper is the first in providing quantitative data about the corrective forces that therapists use during gait training. It is assumed that changes in the acceleration of a patient's COM are a good predictor for therapeutic balance assistance during the training sessions Therefore, this paper provides a method that predicts the timing of therapeutic balance assistance, based on acceleration data of the sacrum. Eight sub-acute stroke survivors and seven therapists were included in this study. Patients were asked to perform straight line walking as well as slalom walking in a conventional training setting. Acceleration of the sacrum was captured by an Inertial Magnetic Measurement Unit. Balance-assisting corrective forces applied by the therapist were collected from two force sensors positioned on both sides of the patient's hips. Measures to characterize the therapeutic balance assistance were the amount of force, duration, impulse and the anatomical plane in which the assistance took place. Based on the acceleration data of the sacrum, an algorithm was developed to predict therapeutic balance assistance. To validate the developed algorithm, the predicted events of balance assistance by the algorithm were compared with the actual provided therapeutic assistance. The algorithm was able to predict the actual therapeutic assistance with a Positive Predictive Value of 87% and a True Positive Rate of 81%. Assistance mainly took place over the medio-lateral axis and corrective forces of about 2% of the patient's body weight (15.9 N (11), median (IQR)) were provided by therapists in this plane. Median duration of balance assistance was 1.1 s (0.6) (median (IQR)) and median impulse was 9.4Ns (8.2) (median (IQR)). Although therapists were specifically instructed to aim for the force sensors on the iliac crest, a different contact location was reported in 22% of the corrections. This paper presents insights into the behavior of therapists regarding their manual physical assistance during gait training. A quantitative dataset was presented, representing therapeutic balance-assisting force characteristics. Furthermore, an algorithm was developed that predicts events at which therapeutic balance assistance was provided. Prediction scores remain high when different therapists and patients were analyzed with the same algorithm settings. Both the quantitative dataset and the developed algorithm can serve as technical input in the development of (robot-controlled) balance supportive devices.

  13. A point of application study to determine the accuracy, precision and reliability of a low-cost balance plate for center of pressure measurement.

    PubMed

    Goble, Daniel J; Khan, Ehran; Baweja, Harsimran S; O'Connor, Shawn M

    2018-04-11

    Changes in postural sway measured via force plate center of pressure have been associated with many aspects of human motor ability. A previous study validated the accuracy and precision of a relatively new, low-cost and portable force plate called the Balance Tracking System (BTrackS). This work compared a laboratory-grade force plate versus BTrackS during human-like dynamic sway conditions generated by an inverted pendulum device. The present study sought to extend previous validation attempts for BTrackS using a more traditional point of application (POA) approach. Computer numerical control (CNC) guided application of ∼155 N of force was applied five times to each of 21 points on five different BTrackS Balance Plate (BBP) devices with a hex-nose plunger. Results showed excellent agreement (ICC > 0.999) between the POAs and measured COP by the BBP devices, as well as high accuracy (<1% average percent error) and precision (<0.1 cm average standard deviation of residuals). The ICC between BBP devices was exceptionally high (ICC > 0.999) providing evidence of almost perfect inter-device reliability. Taken together, these results provide an important, static corollary to the previously obtained dynamic COP results from inverted pendulum testing of the BBP. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Dynamically balanced absolute sea level of the global ocean derived from near-surface velocity observations

    NASA Astrophysics Data System (ADS)

    Niiler, Pearn P.; Maximenko, Nikolai A.; McWilliams, James C.

    2003-11-01

    The 1992-2002 time-mean absolute sea level distribution of the global ocean is computed for the first time from observations of near-surface velocity. For this computation, we use the near-surface horizontal momentum balance. The velocity observed by drifters is used to compute the Coriolis force and the force due to acceleration of water parcels. The anomaly of horizontal pressure gradient is derived from satellite altimetry and corrects the temporal bias in drifter data distribution. NCEP reanalysis winds are used to compute the force due to Ekman currents. The mean sea level gradient force, which closes the momentum balance, is integrated for mean sea level. We find that our computation agrees, within uncertainties, with the sea level computed from the geostrophic, hydrostatic momentum balance using historical mean density, except in the Antarctic Circumpolar Current. A consistent horizontally and vertically dynamically balanced, near-surface, global pressure field has now been derived from observations.

  15. Pre-Test Assessment of the Use Envelope of the Normal Force of a Wind Tunnel Strain-Gage Balance

    NASA Technical Reports Server (NTRS)

    Ulbrich, N.

    2016-01-01

    The relationship between the aerodynamic lift force generated by a wind tunnel model, the model weight, and the measured normal force of a strain-gage balance is investigated to better understand the expected use envelope of the normal force during a wind tunnel test. First, the fundamental relationship between normal force, model weight, lift curve slope, model reference area, dynamic pressure, and angle of attack is derived. Then, based on this fundamental relationship, the use envelope of a balance is examined for four typical wind tunnel test cases. The first case looks at the use envelope of the normal force during the test of a light wind tunnel model at high subsonic Mach numbers. The second case examines the use envelope of the normal force during the test of a heavy wind tunnel model in an atmospheric low-speed facility. The third case reviews the use envelope of the normal force during the test of a floor-mounted semi-span model. The fourth case discusses the normal force characteristics during the test of a rotated full-span model. The wind tunnel model's lift-to-weight ratio is introduced as a new parameter that may be used for a quick pre-test assessment of the use envelope of the normal force of a balance. The parameter is derived as a function of the lift coefficient, the dimensionless dynamic pressure, and the dimensionless model weight. Lower and upper bounds of the use envelope of a balance are defined using the model's lift-to-weight ratio. Finally, data from a pressurized wind tunnel is used to illustrate both application and interpretation of the model's lift-to-weight ratio.

  16. Defense.gov Special Report: 2013 Fiscal Budget

    Science.gov Websites

    the fiscal 2013 budget would balance the armed forces' needs with the nation's economic situation, the Remain Superior Force Hale: Budget Request Shows Balance Navy Official Outlines New Budget Priorities

  17. Static and dynamic force/moment measurements in the Eidetics water tunnel

    NASA Technical Reports Server (NTRS)

    Suarez, Carlos J.; Malcolm, Gerald N.

    1994-01-01

    Water tunnels have been utilized in one form or another to explore fluid mechanics and aerodynamics phenomena since the days of Leonardo da Vinci. Water tunnel testing is attractive because of the relatively low cost and quick turn-around time to perform flow visualization experiments and evaluate the results. The principal limitation of a water tunnel is that the low flow speed, which provides for detailed visualization, also results in very small hydrodynamic (aerodynamic) forces on the model, which, in the past, have proven to be difficult to measure accurately. However, the advent of semi-conductor strain gage technology and devices associated with data acquisition such as low-noise amplifiers, electronic filters, and digital recording have made accurate measurements of very low strain levels feasible. The principal objective of this research effort was to develop a multi-component strain gage balance to measure forces and moments on models tested in flow visualization water tunnels. A balance was designed that allows measuring normal and side forces, and pitching, yawing and rolling moments (no axial force). The balance mounts internally in the model and is used in a manner typical of wind tunnel balances. The key differences between a water tunnel balance and a wind tunnel balance are the requirement for very high sensitivity since the loads are very low (typical normal force is 0.2 lbs), the need for water proofing the gage elements, and the small size required to fit into typical water tunnel models.

  18. Balance training and center-of-pressure location in participants with chronic ankle instability.

    PubMed

    Mettler, Abby; Chinn, Lisa; Saliba, Susan A; McKeon, Patrick O; Hertel, Jay

    2015-04-01

    Chronic ankle instability (CAI) occurs in some people after a lateral ankle sprain and often results in residual feelings of instability and episodes of the ankle's giving way. Compared with healthy people, patients with CAI demonstrated poor postural control and used a more anteriorly and laterally positioned center of pressure (COP) during a single-limb static-balance task on a force plate. Balance training is an effective means of altering traditional COP measures; however, whether the overall location of the COP distribution under the foot also changes is unknown. To determine if the spatial locations of COP data points in participants with CAI change after a 4-week balance-training program. Randomized controlled trial. Laboratory. Thirty-one persons with self-reported CAI. Participants were randomly assigned to a 4-week balance-training program or no balance training. We collected a total of 500 COP data points while participants balanced using a single limb on a force plate during a 10-second trial. The location of each COP data point relative to the geometric center of the foot was determined, and the frequency count in 4 sections (anteromedial, anterolateral, posteromedial, posterolateral) was analyzed for differences between groups. Overall, COP position in the balance-training group shifted from being more anterior to less anterior in both eyes-open trials (before trial = 319.1 ± 165.4, after trial = 160.5 ± 149.5; P = .006) and eyes-closed trials (before trial = 387.9 ± 123.8, after trial = 189.4 ± 102.9; P < .001). The COP for the group that did not perform balance training remained the same in the eyes-open trials (before trial = 214.1 ± 193.3, after trial = 230.0 ± 176.3; P = .54) and eyes-closed trials (before trial = 326.9 ± 134.3, after trial = 338.2 ± 126.1; P = .69). In participants with CAI, the balance-training program shifted the COP location from anterolateral to posterolateral. The program may have repaired some of the damaged sensorimotor system pathways, resulting in a more optimally functioning and less constrained system.

  19. Theory and computation of general force balance in non-axisymmetric tokamak equilibria

    NASA Astrophysics Data System (ADS)

    Park, Jong-Kyu; Logan, Nikolas; Wang, Zhirui; Kim, Kimin; Boozer, Allen; Liu, Yueqiang; Menard, Jonathan

    2014-10-01

    Non-axisymmetric equilibria in tokamaks can be effectively described by linearized force balance. In addition to the conventional isotropic pressure force, there are three important components that can strongly contribute to the force balance; rotational, anisotropic tensor pressure, and externally given forces, i.e. ∇ --> p + ρv-> . ∇ --> v-> + ∇ --> . <-->Π + f-> = j-> × B-> , especially in, but not limited to, high β and rotating plasmas. Within the assumption of nested flux surfaces, Maxwell equations and energy minimization lead to the modified-generalized Newcomb equation for radial displacements with simple algebraic relations for perpendicular and parallel displacements, including an inhomogeneous term if any of the forces are not explicitly dependent on displacements. The general perturbed equilibrium code (GPEC) solves this force balance consistent with energy and torque given by external perturbations. Local and global behaviors of solutions will be discussed when ∇ --> . <-->Π is solved by the semi-analytic code PENT and will be compared with MARS-K. Any first-principle transport code calculating ∇ --> . <-->Π or f-> , e.g. POCA, can also be incorporated without demanding iterations. This work was supported by DOE Contract DE-AC02-09CH11466.

  20. Balancing a force on the fingertip of a two-dimensional finger model without intrinsic muscles.

    PubMed

    Spoor, C W

    1983-01-01

    A slightly flexed human middle finger can balance an external force on the fingertip. Internal stabilization is also possible, which means that the externally unloaded finger can be kept stiff. We want to analyse whether in these situations the intrinsic hand muscles are needed. Distances from tendons to flexion axes are taken from the literature and are substituted in the moment equilibrium equations of a two-dimensional finger model. Diagrams illustrate the statically indeterminate problem of solving tendon forces. The possibilities for equilibrium without intrinsics appear to depend mainly on four tendon-to-joint distances. These distances determine to which of two groups a finger belongs: (1) one in which intrinsics are not necessary for internal stabilization nor for balancing a force on the fingertip in any direction in the sagittal plane; (2) one in which, without intrinsics, internal stabilization is impossible and only dorso-distally directed forces on the fingertip can be balanced.

  1. Strong-field dynamo action in rapidly rotating convection with no inertia.

    PubMed

    Hughes, David W; Cattaneo, Fausto

    2016-06-01

    The earth's magnetic field is generated by dynamo action driven by convection in the outer core. For numerical reasons, inertial and viscous forces play an important role in geodynamo models; however, the primary dynamical balance in the earth's core is believed to be between buoyancy, Coriolis, and magnetic forces. The hope has been that by setting the Ekman number to be as small as computationally feasible, an asymptotic regime would be reached in which the correct force balance is achieved. However, recent analyses of geodynamo models suggest that the desired balance has still not yet been attained. Here we adopt a complementary approach consisting of a model of rapidly rotating convection in which inertial forces are neglected from the outset. Within this framework we are able to construct a branch of solutions in which the dynamo generates a strong magnetic field that satisfies the expected force balance. The resulting strongly magnetized convection is dramatically different from the corresponding solutions in which the field is weak.

  2. Finding the cell center by a balance of dynein and myosin pulling and microtubule pushing: a computational study.

    PubMed

    Zhu, Jie; Burakov, Anton; Rodionov, Vladimir; Mogilner, Alex

    2010-12-01

    The centrosome position in many types of interphase cells is actively maintained in the cell center. Our previous work indicated that the centrosome is kept at the center by pulling force generated by dynein and actin flow produced by myosin contraction and that an unidentified factor that depends on microtubule dynamics destabilizes position of the centrosome. Here, we use modeling to simulate the centrosome positioning based on the idea that the balance of three forces-dyneins pulling along microtubule length, myosin-powered centripetal drag, and microtubules pushing on organelles-is responsible for the centrosome displacement. By comparing numerical predictions with centrosome behavior in wild-type and perturbed interphase cells, we rule out several plausible hypotheses about the nature of the microtubule-based force. We conclude that strong dynein- and weaker myosin-generated forces pull the microtubules inward competing with microtubule plus-ends pushing the microtubule aster outward and that the balance of these forces positions the centrosome at the cell center. The model also predicts that kinesin action could be another outward-pushing force. Simulations demonstrate that the force-balance centering mechanism is robust yet versatile. We use the experimental observations to reverse engineer the characteristic forces and centrosome mobility.

  3. A Sensitivity Analysis of an Inverted Pendulum Balance Control Model.

    PubMed

    Pasma, Jantsje H; Boonstra, Tjitske A; van Kordelaar, Joost; Spyropoulou, Vasiliki V; Schouten, Alfred C

    2017-01-01

    Balance control models are used to describe balance behavior in health and disease. We identified the unique contribution and relative importance of each parameter of a commonly used balance control model, the Independent Channel (IC) model, to identify which parameters are crucial to describe balance behavior. The balance behavior was expressed by transfer functions (TFs), representing the relationship between sensory perturbations and body sway as a function of frequency, in terms of amplitude (i.e., magnitude) and timing (i.e., phase). The model included an inverted pendulum controlled by a neuromuscular system, described by several parameters. Local sensitivity of each parameter was determined for both the magnitude and phase using partial derivatives. Both the intrinsic stiffness and proportional gain shape the magnitude at low frequencies (0.1-1 Hz). The derivative gain shapes the peak and slope of the magnitude between 0.5 and 0.9 Hz. The sensory weight influences the overall magnitude, and does not have any effect on the phase. The effect of the time delay becomes apparent in the phase above 0.6 Hz. The force feedback parameters and intrinsic stiffness have a small effect compared with the other parameters. All parameters shape the TF magnitude and phase and therefore play a role in the balance behavior. The sensory weight, time delay, derivative gain, and the proportional gain have a unique effect on the TFs, while the force feedback parameters and intrinsic stiffness contribute less. More insight in the unique contribution and relative importance of all parameters shows which parameters are crucial and critical to identify underlying differences in balance behavior between different patient groups.

  4. Pressure anisotropy and radial stress balance in the Jovian neutral sheet

    NASA Technical Reports Server (NTRS)

    Paranicas, C. P.; Mauk, B. H.; Krimigis, S. M.

    1991-01-01

    By examining particle and magnetic field data from the Voyager 1 and 2 spacecraft, signatures were found indicating that the (greater than about 28 keV) particle pressure parallel to the magnetic field is greater than the pressure perpendicular to the field within the nightside neutral sheet (three nightside neutral sheet crossings, with favorable experimental conditions, were used). By incorporating the pressure anisotropy into the calculation of radial forces within the hightside neutral sheet, it is found that (1) force balance is approximately achieved and (2) the anisotropy force term provides the largest contribution of the other particle forces considered (pressure gradients and the corotation centrifugal force). With regard to the problem of understanding the balance of radial forces within the dayside neutral sheet (McNutt, 1984; Mauk and Krimigis, 1987), the nightside pressure anisotropy force is larger than the dayside pressure gradient forces at equivalent radial distances; however, a full accounting of the dayside regions remains to be achieved.

  5. Wind tunnel balance system for determination of wind-induced vibrations of a rigid shuttle model in the launch configuration

    NASA Technical Reports Server (NTRS)

    1971-01-01

    A wind tunnel balance system was designed to determine the wind-induced vibrations of a space shuttle model. The balance utilizes a flexible sting mounting in conjunction with a geometrically scaled rigid model. Bending and torsional displacements are determined through strain-gauge-instrumented spring bar mechanisms. The natural frequency of the string-model system can be varied continuously throughout the expected scaled frequency range of the shuttle vehicle while a test is in progress by the use of moveable riders on the spring bar mechanism. Through the use of a frequency analyzer, the output can be used to determine troublesome vibrational frequencies. A dimensional analysis of the wind-induced vibration problem is also presented which suggests a test procedure. In addition a computer program for analytical studies of the forced vibration problem is presented.

  6. On computing stress in polymer systems involving multi-body potentials from molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Fu, Yao; Song, Jeong-Hoon

    2014-08-01

    Hardy stress definition has been restricted to pair potentials and embedded-atom method potentials due to the basic assumptions in the derivation of a symmetric microscopic stress tensor. Force decomposition required in the Hardy stress expression becomes obscure for multi-body potentials. In this work, we demonstrate the invariance of the Hardy stress expression for a polymer system modeled with multi-body interatomic potentials including up to four atoms interaction, by applying central force decomposition of the atomic force. The balance of momentum has been demonstrated to be valid theoretically and tested under various numerical simulation conditions. The validity of momentum conservation justifies the extension of Hardy stress expression to multi-body potential systems. Computed Hardy stress has been observed to converge to the virial stress of the system with increasing spatial averaging volume. This work provides a feasible and reliable linkage between the atomistic and continuum scales for multi-body potential systems.

  7. Static calibration of the RSRA active-isolator rotor balance system

    NASA Technical Reports Server (NTRS)

    Acree, C. W., Jr.

    1987-01-01

    The Rotor Systems Research Aircraft (RSRA) active-isolator system is designed to reduce rotor vibrations transmitted to the airframe and to simultaneously measure all six forces and moments generated by the rotor. These loads are measured by using a combination of load cells, strain gages, and hydropneumatic active isolators with built-in pressure gages. The first static calibration of the complete active-isolator rotor balance system was performed in l983 to verify its load-measurement capabilities. Analysis of the data included the use of multiple linear regressions to determine calibration matrices for different data sets and a hysteresis-removal algorithm to estimate in-flight measurement errors. Results showed that the active-isolator system can fulfill most performance predictions. The results also suggested several possible improvements to the system.

  8. A new orthodontic force system for moment control utilizing the flexibility of common wires: Evaluation of the effect of contractile force and hook length.

    PubMed

    Lai, Wei-Jen; Midorikawa, Yoshiyuki; Kanno, Zuisei; Takemura, Hiroshi; Suga, Kazuhiro; Soga, Kohei; Ono, Takashi; Uo, Motohiro

    2018-01-01

    The application of an appropriate force system is indispensable for successful orthodontic treatments. Second-order moment control is especially important in many clinical situations, so we developed a new force system composed of a straight orthodontic wire and two crimpable hooks of different lengths to produce the second-order moment. The objective of this study was to evaluate this new force system and determine an optimum condition that could be used in clinics. We built a premolar extraction model with two teeth according to the concept of a modified orthodontic simulator. This system was activated by applying contractile force from two hooks that generated second-order moment and force. The experimental device incorporated two sensors, and forces and moments were measured along six axes. We changed the contractile force and hook length to elucidate their effects. Three types of commercial wires were tested. The second-order moment was greater on the longer hook side of the model. Vertical force balanced the difference in moments between the two teeth. Greater contractile force generated a greater second-order moment, which reached a limit of 150 g. Excessive contractile force induced more undesired reactions in the other direction. Longer hooks induced greater moment generation, reaching their limit at 10 mm in length. The system acted similar to an off-center V-bend and can be applied in clinical practice as an unconventional loop design. We suggest that this force system has the potential for second-order moment control in clinical applications. Copyright © 2017. Published by Elsevier B.V.

  9. Adaptation of multijoint coordination during standing balance in healthy young and healthy old individuals

    PubMed Central

    Pasma, J. H.; Schouten, A. C.; Aarts, R. G. K. M.; Meskers, C. G. M.; Maier, A. B.; van der Kooij, H.

    2015-01-01

    Standing balance requires multijoint coordination between the ankles and hips. We investigated how humans adapt their multijoint coordination to adjust to various conditions and whether the adaptation differed between healthy young participants and healthy elderly. Balance was disturbed by push/pull rods, applying two continuous and independent force disturbances at the level of the hip and between the shoulder blades. In addition, external force fields were applied, represented by an external stiffness at the hip, either stabilizing or destabilizing the participants' balance. Multivariate closed-loop system-identification techniques were used to describe the neuromuscular control mechanisms by quantifying the corrective joint torques as a response to body sway, represented by frequency response functions (FRFs). Model fits on the FRFs resulted in an estimation of time delays, intrinsic stiffness, reflexive stiffness, and reflexive damping of both the ankle and hip joint. The elderly generated similar corrective joint torques but had reduced body sway compared with the young participants, corresponding to the increased FRF magnitude with age. When a stabilizing or destabilizing external force field was applied at the hip, both young and elderly participants adapted their multijoint coordination by lowering or respectively increasing their neuromuscular control actions around the ankles, expressed in a change of FRF magnitude. However, the elderly adapted less compared with the young participants. Model fits on the FRFs showed that elderly had higher intrinsic and reflexive stiffness of the ankle, together with higher time delays of the hip. Furthermore, the elderly adapted their reflexive stiffness around the ankle joint less compared with young participants. These results imply that elderly were stiffer and were less able to adapt to external force fields. PMID:26719084

  10. A Theoretical Investigation of Longitudinal Stability of Airplane with Free Controls Including Effect of Friction in Control System

    NASA Technical Reports Server (NTRS)

    Greenberg, Harry; Sternfield, Leonard

    1944-01-01

    The relation between the elevator hinge-moment parameters and the control-forces for changes in forward speed and in maneuvers is shown for several values of static stability and elevator mass balance.

  11. A Measurement of the Force between Two Current-Carrying Wires

    ERIC Educational Resources Information Center

    Straulino, S.; Cartacci, A.

    2014-01-01

    The measurement of the force acting between two parallel, current-carrying wires is known as Ampère's experiment. A mechanical balance was historically employed to measure that force. We report a simple experiment based on an electronic precision balance that is useful in clearly showing students the existence of this interaction and how to…

  12. High temperature skin friction measurement

    NASA Technical Reports Server (NTRS)

    Tcheng, Ping; Holmes, Harlan K.; Supplee, Frank H., Jr.

    1989-01-01

    Skin friction measurement in the NASA Langley hypersonic propulsion facility is described. The sensor configuration utilized an existing balance, modified to provide thermal isolation and an increased standoff distance. For test run times of about 20 sec and ambient-air cooling of the test section and balance, the modified balance performed satisfactorily, even when it was subjected to acoustic and structural vibration. The balance is an inertially balanced closed-loop servo system where the current to a moving-coil motor needed to restore or null the output from the position sensor is a measure of the force or skin friction tending to displace the moving element. The accuracy of the sensor is directly affected by the position sensor in the feedback loop, in this case a linear-variable differential transformer which has proven to be influenced by temperature gradients.

  13. Theory Z Management. Can It Be Used Effectively in the Air Force?

    DTIC Science & Technology

    1983-04-11

    performance will be recognized by promotion in the long run. (31;86, 103) Control Systems Theory Z suggests the use of a balanced implicit and explicit... worklife that was popular in the early 1970’s. Finally, the implementation of Theory Z principles would, he feels, work against the competitive advantages...Japanese management for use in the United States. Several American companies are now using Theory Z, and all seem to have prospered. On balance , critics

  14. AN INITIAL EVALUATION OF THE BTRACKS BALANCE PLATE AND SPORTS BALANCE SOFTWARE FOR CONCUSSION DIAGNOSIS

    PubMed Central

    Manyak, Kristin A.; Abdenour, Thomas E.; Rauh, Mitchell J.; Baweja, Harsimran S.

    2016-01-01

    Background As recently dictated by the American Medical Society, balance testing is an important component in the clinical evaluation of concussion. Despite this, previous research on the efficacy of balance testing for concussion diagnosis suggests low sensitivity (∼30%), based primarily on the popular Balance Error Scoring System (BESS). The Balance Tracking System (BTrackS, Balance Tracking Systems Inc., San Diego, CA, USA) consists of a force plate (BTrackS Balance Plate) and software (BTrackS Sport Balance) which can quickly (<2 min) perform concussion balance testing with gold standard accuracy. Purpose The present study aimed to determine the sensitivity of the BTrackS Balance Plate and Sports Balance Software for concussion diagnosis. Study Design Cross-Sectional Study Methods Preseason baseline balance testing of 519 healthy Division I college athletes playing sports with a relatively high risk for concussions was performed with the BTrackS Balance Test. Testing was administered by certified athletic training staff using the BTrackS Balance Plate and Sport Balance software. Of the baselined athletes, 25 later experienced a concussion during the ensuing sport season. Post-injury balance testing was performed on these concussed athletes within 48 of injury and the sensitivity of the BTrackS Balance Plate and Sport Balance software was estimated based on the number of athletes showing a balance decline according to the criteria specified in the Sport Balance software. This criteria is based on the minimal detectable change statistic with a 90% confidence level (i.e. 90% specificity). Results Of 25 athletes who experienced concussions, 16 had balance declines relative to baseline testing results according to the BTrackS Sport Balance software criteria. This corresponds to an estimated concussion sensitivity of 64%, which is twice as great as that reported previously for the BESS. Conclusions The BTrackS Balance Plate and Sport Balance software has the greatest concussion sensitivity of any balance testing instrument reported to date. Level of Evidence Level 2 (Individual cross sectional diagnostic study) PMID:27104048

  15. Introductory Physics Experiments Using the Wii Balance Board

    NASA Astrophysics Data System (ADS)

    Starr, Julian; Sobczak, Robert; Iqbal, Zohaib; Ochoa, Romulo

    2010-02-01

    The Wii, a video game console by Nintendo, utilizes several different controllers, such as the Wii remote (Wiimote) and the balance board, for game-playing. The balance board was introduced in early 2008. It contains four strain gauges and has Bluetooth connectivity at a relatively low price. Thanks to available open source code, such as GlovePie, any PC with Bluetooth capability can detect the information sent out by the balance board. Based on the ease with which the forces measured by each strain gauge can be obtained, we have designed several experiments for introductory physics courses that make use of this device. We present experiments to measure the forces generated when students lift their arms with and without added weights, distribution of forces on an extended object when weights are repositioned, and other normal forces cases. The results of our experiments are compared with those predicted by Newtonian mechanics. )

  16. Evolution of Edge Pedestal Profiles Over the L-H Transition

    NASA Astrophysics Data System (ADS)

    Sayer, M. S.; Stacey, W. M.; Floyd, J. P.; Groebner, R. J.

    2012-10-01

    The detailed time evolution of thermal diffusivities, electromagnetic forces, pressure gradients, particle pinch and momentum transport frequencies (which determine the diffusion coefficient) have been analyzed during the L-H transition in a DIII-D discharge. Density, temperature, rotation velocity and electric field profiles at times just before and after the L-H transition are analyzed in terms of these quantities. The analysis is based on the fluid particle balance, energy balance, force balance and heat conduction equations, as in Ref. [1], but with much greater time resolution and with account for thermal ion orbit loss. The variation of diffusive and non-diffusive transport over the L-H transition is determined from the variation in the radial force balance (radial electric field, VxB force, and pressure gradient) and the variation in the interpreted diffusive transport coefficients. 6pt [1] W.M. Stacey and R.J. Groebner, Phys. Plasmas 17, 112512 (2010).

  17. Use of information systems in Air Force medical treatment facilities in strategic planning and decision-making.

    PubMed

    Yap, Glenn A; Platonova, Elena A; Musa, Philip F

    2006-02-01

    An exploratory study used Ansoff's strategic planning model as a framework to assess perceived effectiveness of information systems in supporting strategic business plan development at Air Force medical treatment facilities (MTFs). Results showed information systems were most effective in supporting historical trend analysis, strategic business plans appeared to be a balance of operational and strategic plans, and facilities perceived a greater need for new clinical, vice administrative, information systems to support strategic planning processes. Administrators believed information systems should not be developed at the local level and perceived information systems have the greatest impact on improving clinical quality outcomes, followed by ability to deliver cost effective care and finally, ability to increase market share.

  18. Turbine interstage seal with self-balancing capability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mills, Jacob A; Jones, Russell B; Sexton, Thomas D

    An interstage seal for a turbine of a gas turbine engine, the interstage seal having a seal carrier with an axial extending seal tooth movable with a stator of the engine, and a rotor with a seal surface that forms the interstage seal with the seal tooth, where a magnetic force produced by two magnets and a gas force produced by a gas pressure acting on the seal carrier forms a balancing force to maintain a close clearance of the seal without the seal tooth contacting the rotor seal surfaces during engine operation. In other embodiments, two pairs of magnetsmore » produce first and second magnetic forces that balance the seal in the engine.« less

  19. A Saturation Balancing Control Method for Enhancing Dynamic Vehicle Stability (PREPRINT)

    DTIC Science & Technology

    2011-03-01

    force estimation; axle saturation level; independent drive; torque biasing; 1. Introduction Vehicle stability control ( VSC ) systems have widely been...shown to reduce accidents by minimizing driver’s loss of control during aggressive emergency maneuvers. VSC systems manipulate one or more of the... VSC (also referred to as vehicle dynamics control (VDC)) systems available on the market today are brake-based systems which extend the functionality

  20. Design and characterization of a nano-Newton resolution thrust stand

    NASA Astrophysics Data System (ADS)

    Soni, J.; Roy, S.

    2013-09-01

    The paper describes the design, calibration, and characterization of a thrust stand capable of nano-Newton resolution. A low uncertainty calibration method is proposed and demonstrated. A passive eddy current based damper, which is non-contact and vacuum compatible, is employed. Signal analysis techniques are used to perform noise characterization, and potential sources are identified. Calibrated system noise floor suggests thrust measurement resolution of the order of 10 nN is feasible under laboratory conditions. Force measurement from this balance for a standard macroscale dielectric barrier discharge (DBD) plasma actuator is benchmarked with a commercial precision balance of 9.8 μN resolution and is found to be in good agreement. Published results of a microscale DBD plasma actuator force measurement and low pressure characterization of conventional plasma actuators are presented for completeness.

  1. Upregulation of gene expression in reward-modulatory striatal opioid systems by sleep loss.

    PubMed

    Baldo, Brian A; Hanlon, Erin C; Obermeyer, William; Bremer, Quentin; Paletz, Elliott; Benca, Ruth M

    2013-12-01

    Epidemiological studies have shown a link between sleep loss and the obesity 'epidemic,' and several observations indicate that sleep curtailment engenders positive energy balance via increased palatable-food 'snacking.' These effects suggest alterations in reward-modulatory brain systems. We explored the effects of 10 days of sleep deprivation in rats on the expression of striatal opioid peptide (OP) genes that subserve food motivation and hedonic reward, and compared effects with those seen in hypothalamic energy balance-regulatory systems. Sleep-deprived (Sleep-Dep) rats were compared with yoked forced-locomotion apparatus controls (App-Controls), food-restricted rats (Food-Restrict), and unmanipulated controls (Home-Cage). Detection of mRNA levels with in situ hybridization revealed a subregion-specific upregulation of striatal preproenkephalin and prodynorhin gene expression in the Sleep-Dep group relative to all other groups. Neuropeptide Y (NPY) gene expression in the hippocampal dentate gyrus and throughout neocortex was also robustly upregulated selectively in the Sleep-Dep group. In contrast, parallel gene expression changes were observed in the Sleep-Dep and Food-Restrict groups in hypothalamic energy-sensing systems (arcuate nucleus NPY was upregulated, and cocaine- and amphetamine-regulated transcript was downregulated), in alignment with leptin suppression in both groups. Together, these results reveal a novel set of sleep deprivation-induced transcriptional changes in reward-modulatory peptide systems, which are dissociable from the energy-balance perturbations of sleep loss or the potentially stressful effects of the forced-locomotion procedure. The recruitment of telencephalic food-reward systems may provide a feeding drive highly resistant to feedback control, which could engender obesity through the enhancement of palatable feeding.

  2. Neural Control of Posture in Individuals with Persisting Postconcussion Symptoms.

    PubMed

    Helmich, Ingo; Berger, Alisa; Lausberg, Hedda

    2016-12-01

    Postural instability has been shown to characterize individuals who suffered from long-term symptoms after mild traumatic brain injury. However, recordings of neural processes during postural control are difficult to realize with standard neuroimaging techniques. Thus, we used functional nearinfrared spectroscopy to investigate brain oxygenation of individuals with persistent postconcussion symptoms (pPCS) during postural control in altered environments. We compared brain oxygenation and postural sway during balance control in three groups: individuals suffering from pPCS, individuals with a history of mild traumatic brain injury but without pPCS, and healthy controls. Individuals were investigated during postural control tasks with six different conditions: i) eyes opened, ii) eyes closed, and iii) blurred visual input, each while standing a) on a stable and b) an unstable surface. In all groups, during the eyes closed/unstable surface condition as compared with the other conditions, the postural sway increased as well as the brain oxygenation in frontal brain cortices. In the most difficult balance condition, as compared with the other two groups, subjects with pPCS applied more force over time to keep balance as measured by the force plate system with a significantly greater activation in frontopolar/orbitofrontal areas of the right hemisphere. As subjects with pPCS applied more force over time to control balance, we propose that with regard to cognitive processes, the increase of cerebral activation in these individuals indicates an increase of attention-demanding processes during postural control in altered environments.

  3. A new approach of the Star Excursion Balance Test to assess dynamic postural control in people complaining from chronic ankle instability.

    PubMed

    Pionnier, Raphaël; Découfour, Nicolas; Barbier, Franck; Popineau, Christophe; Simoneau-Buessinger, Emilie

    2016-03-01

    The purpose of this study was to quantitatively and qualitatively assess dynamic balance with accuracy in individuals with chronic ankle instability (CAI). To this aim, a motion capture system was used while participants performed the Star Excursion Balance Test (SEBT). Reached distances for the 8 points of the star were automatically computed, thereby excluding any dependence to the experimenter. In addition, new relevant variables were also computed, such as absolute time needed to reach each distance, lower limb ranges of motion during unipodal stance, as well as absolute error of pointing. Velocity of the center of pressure and range of variation of ground reaction forces have also been assessed during the unipodal phase of the SEBT thanks to force plates. CAI group exhibited smaller reached distances and greater absolute error of pointing than the control group (p<0.05). Moreover, the ranges of motion of lower limbs joints, the velocity of the center of pressure and the range of variation of the ground reaction forces were all significantly smaller in the CAI group (p<0.05). These reduced quantitative and qualitative performances highlighted a lower dynamic postural control. The limited body movements and accelerations during the unipodal stance in the CAI group could highlight a protective strategy. The present findings could help clinicians to better understand the motor strategies used by CAI patients during dynamic balance and may guide the rehabilitation process. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. A macro-micro robot for precise force applications

    NASA Technical Reports Server (NTRS)

    Marzwell, Neville I.; Wang, Yulun

    1993-01-01

    This paper describes an 8 degree-of-freedom macro-micro robot capable of performing tasks which require accurate force control. Applications such as polishing, finishing, grinding, deburring, and cleaning are a few examples of tasks which need this capability. Currently these tasks are either performed manually or with dedicated machinery because of the lack of a flexible and cost effective tool, such as a programmable force-controlled robot. The basic design and control of the macro-micro robot is described in this paper. A modular high-performance multiprocessor control system was designed to provide sufficient compute power for executing advanced control methods. An 8 degree of freedom macro-micro mechanism was constructed to enable accurate tip forces. Control algorithms based on the impedance control method were derived, coded, and load balanced for maximum execution speed on the multiprocessor system.

  5. Development of a multicomponent force and moment balance for water tunnel applications, volume 1

    NASA Technical Reports Server (NTRS)

    Suarez, Carlos J.; Malcolm, Gerald N.; Kramer, Brian R.; Smith, Brooke C.; Ayers, Bert F.

    1994-01-01

    The principal objective of this research effort was to develop a multicomponent strain gauge balance to measure forces and moments on models tested in flow visualization water tunnels. An internal balance was designed that allows measuring normal and side forces, and pitching, yawing and rolling moments (no axial force). The five-components to applied loads, low interactions between the sections and no hysteresis. Static experiments (which are discussed in this Volume) were conducted in the Eidetics water tunnel with delta wings and a model of the F/A-18. Experiments with the F/A-18 model included a thorough baseline study and investigations of the effect of control surface deflections and of several Forebody Vortex Control (FVC) techniques. Results were compared to wind tunnel data and, in general, the agreement is very satisfactory. The results of the static tests provide confidence that loads can be measured accurately in the water tunnel with a relatively simple multicomponent internal balance. Dynamic experiments were also performed using the balance, and the results are discussed in detail in Volume 2 of this report.

  6. Finding the Cell Center by a Balance of Dynein and Myosin Pulling and Microtubule Pushing: A Computational Study

    PubMed Central

    Zhu, Jie; Burakov, Anton; Rodionov, Vladimir

    2010-01-01

    The centrosome position in many types of interphase cells is actively maintained in the cell center. Our previous work indicated that the centrosome is kept at the center by pulling force generated by dynein and actin flow produced by myosin contraction and that an unidentified factor that depends on microtubule dynamics destabilizes position of the centrosome. Here, we use modeling to simulate the centrosome positioning based on the idea that the balance of three forces—dyneins pulling along microtubule length, myosin-powered centripetal drag, and microtubules pushing on organelles—is responsible for the centrosome displacement. By comparing numerical predictions with centrosome behavior in wild-type and perturbed interphase cells, we rule out several plausible hypotheses about the nature of the microtubule-based force. We conclude that strong dynein- and weaker myosin-generated forces pull the microtubules inward competing with microtubule plus-ends pushing the microtubule aster outward and that the balance of these forces positions the centrosome at the cell center. The model also predicts that kinesin action could be another outward-pushing force. Simulations demonstrate that the force-balance centering mechanism is robust yet versatile. We use the experimental observations to reverse engineer the characteristic forces and centrosome mobility. PMID:20980619

  7. Quantification of the trade-off between force attenuation and balance impairment in the design of compliant safety floors.

    PubMed

    Glinka, Michal N; Cheema, Kim P; Robinovitch, Stephen N; Laing, Andrew C

    2013-10-01

    Safety floors (also known as compliant floors) may reduce the risk of fall-related injuries by attenuating impact force during falls, but are only practical if they do not negatively affect balance and mobility. In this study, we evaluated seven safety surfaces based on their ability to attenuate peak femoral neck force during simulated hip impacts, and their influence on center of pressure (COP) sway during quiet and tandem stance. Overall, we found that some safety floors can attenuate up to 33.7% of the peak femoral impact force without influencing balance. More specifically, during simulated hip impacts, force attenuation for the safety floors ranged from 18.4 (SD 4.3)% to 47.2 (3.1)%, with each floor significantly reducing peak force compared with a rigid surface. For quiet stance, only COP root mean square was affected by flooring (and increased for only two safety floors). During tandem stance, COP root mean square and mean velocity increased in the medial-lateral direction for three of the seven floors. Based on the substantial force attenuation with no concomitant effects on balance for some floors, these results support the development of clinical trials to assess the effectiveness of safety floors at reducing fall-related injuries in high-risk settings.

  8. Assessment of the Local Residual Stresses of 7050-T7452 Aluminum Alloy in Microzones by the Instrumented Indentation with the Berkovich Indenter

    NASA Astrophysics Data System (ADS)

    He, M.; Huang, C. H.; Wang, X. X.; Yang, F.; Zhang, N.; Li, F. G.

    2017-10-01

    The local residual stresses in microzones are investigated by the instrumented indentation method with the Berkovich indenter. The parameters required for determination of residual stresses are obtained from indentation load-penetration depth curves constructed during instrumented indentation tests on flat square 7050-T7452 aluminum alloy specimens with a central hole containing the compressive residual stresses generated by the cold extrusion process. The force balance system with account of the tensile and compressive residual stresses is used to explain the phenomenon of different contact areas produced by the same indentation load. The effect of strain-hardening exponent on the residual stress is tuned-off by application of the representative stress σ_{0.033} in the average contact pressure assessment using the Π theorem, while the yield stress value is obtained from the constitutive function. Finally, the residual stresses are calculated according to the proposed equations of the force balance system, and their feasibility is corroborated by the XRD measurements.

  9. Selfbound quantum droplets

    NASA Astrophysics Data System (ADS)

    Langen, Tim; Wenzel, Matthias; Schmitt, Matthias; Boettcher, Fabian; Buehner, Carl; Ferrier-Barbut, Igor; Pfau, Tilman

    2017-04-01

    Self-bound many-body systems are formed through a balance of attractive and repulsive forces and occur in many physical scenarios. Liquid droplets are an example of a self-bound system, formed by a balance of the mutual attractive and repulsive forces that derive from different components of the inter-particle potential. On the basis of the recent finding that an unstable bosonic dipolar gas can be stabilized by a repulsive many-body term, it was predicted that three-dimensional self-bound quantum droplets of magnetic atoms should exist. Here we report on the observation of such droplets using dysprosium atoms, with densities 108 times lower than a helium droplet, in a trap-free levitation field. We find that this dilute magnetic quantum liquid requires a minimum, critical number of atoms, below which the liquid evaporates into an expanding gas as a result of the quantum pressure of the individual constituents. Consequently, around this critical atom number we observe an interaction-driven phase transition between a gas and a self-bound liquid in the quantum degenerate regime with ultracold atoms.

  10. Postural perturbations: new insights for treatment of balance disorders

    NASA Technical Reports Server (NTRS)

    Horak, F. B.; Henry, S. M.; Shumway-Cook, A.; Peterson, B. W. (Principal Investigator)

    1997-01-01

    This article reviews the neural control of posture as understood through studies of automatic responses to mechanical perturbations. Recent studies of responses to postural perturbations have provided a new view of how postural stability is controlled, and this view has profound implications for physical therapy practice. We discuss the implications for rehabilitation of balance disorders and demonstrate how an understanding of the specific systems underlying postural control can help to focus and enrich our therapeutic approaches. By understanding the basic systems underlying control of balance, such as strategy selection, rapid latencies, coordinated temporal spatial patterns, force control, and context-specific adaptations, therapists can focus their treatment on each patient's specific impairments. Research on postural responses to surface translations has shown that balance is not based on a fixed set of equilibrium reflexes but on a flexible, functional motor skill that can adapt with training and experience. More research is needed to determine the extent to which quantification of automatic postural responses has practical implications for predicting falls in patients with constraints in their postural control system.

  11. Apical extrusion of debris and irrigants using two hand and three engine-driven instrumentation techniques.

    PubMed

    Ferraz, C C; Gomes, N V; Gomes, B P; Zaia, A A; Teixeira, F B; Souza-Filho, F J

    2001-07-01

    To evaluate the weight of debris and irrigant volume extruded apically from extracted teeth in vitro after endodontic instrumentation using the balanced force technique, a hybrid hand instrumentation technique, and three engine-driven techniques utilizing nickel-titanium instruments (ProFile .04, Quantec 2000 and Pow-R). Five groups of 20 extracted human teeth with single canals were instrumented using one or other of five techniques: balanced force, hybrid, Quantec 2000, ProFile .04, or Pow-R. Debris extruded from the apical foramen during instrumentation were collected into preweighed 1.5 mL tubes. Following instrumentation, the volume of extruded irrigant fluid was determined by visual comparison to control centrifuge tubes filled with 0.25 mL increments of distilled water. The weight of dry extruded dentine debris was also established. Overall, the engine-driven techniques extruded less debris than the manual ones. However, there was no statistical difference between the balanced force technique and the engine-driven methods. The volume of irrigant extruded through the apex was directly associated with the weight of extruded debris, except within the ProFile group. The hybrid technique was associated with the greatest extrusion of both debris and irrigant. Overall, the engine-driven nickel-titanium systems were associated with less apical extrusion.

  12. Surface Mass Balance of the Columbia Glacier, Alaska, 1978 and 2010 Balance Years

    USGS Publications Warehouse

    O'Neel, Shad

    2012-01-01

    Although Columbia Glacier is one of the largest sources of glacier mass loss in Alaska, surface mass balance measurements are sparse, with only a single data set available from 1978. The dearth of surface mass-balance data prohibits partitioning of the total mass losses between dynamics and surface forcing; however, the accurate inclusion of calving glaciers into predictive models requires both dynamic and climatic forcing of total mass balance. During 2010, the U.S. Geological Survey collected surface balance data at several locations distributed over the surface of Columbia Glacier to estimate the glacier-wide annual balance for balance year 2010 using the 2007 area-altitude distribution. This report also summarizes data collected in 1978, calculates the 1978 annual surface balance, and uses these observations to constrain the 2010 values, particularly the shape of the balance profile. Both years exhibit balances indicative of near-equilibrium surface mass-balance conditions, and demonstrate the importance of dynamic processes during the rapid retreat.

  13. Load balancing and closed chain multiple arm control

    NASA Technical Reports Server (NTRS)

    Kreutz, Kenneth; Lokshin, Anatole

    1988-01-01

    The authors give the general dynamical equations for several rigid link manipulators rigidly grasping a commonly held rigid object. It is shown that the number of arm-configuration degrees of freedom lost due to imposing the closed-loop kinematic constraints is the same as the number of degrees of freedom gained for controlling the internal forces of the closed-chain system. This number is equal to the dimension of the kernel of the Jacobian operator which transforms contact forces to the net forces acting on the held object, and it is shown that this kernel can be identified with the subspace of controllable internal forces of the closed-chain system. Control of these forces makes it possible to regulate the grasping forces imparted to the held object or to control the load taken by each arm. It is shown that the internal forces can be influenced without affecting the control of the configuration degrees of freedom. Control laws of the feedback linearization type are shown to be useful for controlling the location and attitude of a frame fixed with respect to the held object, while simultaneously controlling the internal forces of the closed-chain system. Force feedback can be used to linearize and control the system even when the held object has unknown mass properties. If saturation effects are ignored, an unconstrained quadratic optimization can be performed to distribute the load optimally among the joint actuators.

  14. Calibration Designs for Non-Monolithic Wind Tunnel Force Balances

    NASA Technical Reports Server (NTRS)

    Johnson, Thomas H.; Parker, Peter A.; Landman, Drew

    2010-01-01

    This research paper investigates current experimental designs and regression models for calibrating internal wind tunnel force balances of non-monolithic design. Such calibration methods are necessary for this class of balance because it has an electrical response that is dependent upon the sign of the applied forces and moments. This dependency gives rise to discontinuities in the response surfaces that are not easily modeled using traditional response surface methodologies. An analysis of current recommended calibration models is shown to lead to correlated response model terms. Alternative modeling methods are explored which feature orthogonal or near-orthogonal terms.

  15. The Clinical Relevance of Force Platform Measures in Multiple Sclerosis: A Review

    PubMed Central

    Prosperini, Luca; Pozzilli, Carlo

    2013-01-01

    Balance impairment and falls are frequent in patients with multiple sclerosis (PwMS), and they may occur even at the earliest stage of the disease and in minimally impaired patients. The introduction of computer-based force platform measures (i.e., static and dynamic posturography) has provided an objective and sensitive tool to document both deficits and improvements in balance. By using more challenging test conditions, force platform measures can also reveal subtle balance disorders undetectable by common clinical scales. Furthermore, posturographic techniques may also allow to reliably identify PwMS who are at risk of accidental falls. Although force platform measures offer several theoretical advantages, only few studies extensively investigated their role in better managing PwMS. Standardised procedures, as well as clinical relevance of changes detected by static or dynamic posturography, are still lacking. In this review, we summarized studies which investigated balance deficit by means of force platform measures, focusing on their ability in detecting patients at high risk of falls and in estimating rehabilitation-induced changes, highlighting the pros and the cons with respect to clinical scales. PMID:23766910

  16. A vorticity budget for the Gulf Stream

    NASA Astrophysics Data System (ADS)

    Le Bras, Isabela; Toole, John

    2017-04-01

    We develop a depth-averaged vorticity budget framework to diagnose the dynamical balance of the Gulf Stream, and apply this framework to observations and the ECCO state estimate (Wunsch and Heimbach 2013) above the thermocline in the subtropical North Atlantic. Using the hydrographic and ADCP data along the WOCE/CLIVAR section A22 and a variety of wind stress data products, we find that the advective vorticity flux out of the western region is on the same order as the wind stress forcing over the eastern portion of the gyre. This is consistent with a large-scale balance between a negative source of vorticity from wind stress forcing and a positive source of vorticity in the western region. Additionally, the form of the vorticity flux indicates that the Gulf Stream has a significant inertial component. In the ECCO state estimate, we diagnose a seasonal cycle in advective vorticity flux across a meridional section associated with seasonal fluctuations in Gulf Stream transport. This vorticity flux is forced by wind stress over the eastern subtropical North Atlantic and balanced by lateral friction with the western boundary. The lateral friction in ECCO is a necessary parameterization of smaller scale processes that occur in the real ocean, and quantifying these remains an open and interesting question. This simplified framework provides a means to interpret large scale ocean dynamics. In our application, it points to wind stress forcing over the subtropical North Altantic as an important regulator of the Gulf Stream and hence the climate system.

  17. Deficits in Lower Limb Muscle Reflex Contraction Latency and Peak Force Are Associated With Impairments in Postural Control and Gross Motor Skills of Children With Developmental Coordination Disorder: A Cross-Sectional Study.

    PubMed

    Fong, Shirley S M; Ng, Shamay S M; Guo, X; Wang, Yuling; Chung, Raymond C K; Stat, Grad; Ki, W Y; Macfarlane, Duncan J

    2015-10-01

    This cross-sectional, exploratory study aimed to compare neuromuscular performance, balance and motor skills proficiencies of typically developing children and those with developmental coordination disorder (DCD) and to determine associations of these neuromuscular factors with balance and motor skills performances in children with DCD.One hundred thirty children with DCD and 117 typically developing children participated in the study. Medial hamstring and gastrocnemius muscle activation onset latencies in response to an unexpected posterior-to-anterior trunk perturbation were assessed by electromyography and accelerometer. Hamstring and gastrocnemius muscle peak force and time to peak force were quantified by dynamometer, and balance and motor skills performances were evaluated with the Movement Assessment Battery for Children (MABC).Independent t tests revealed that children with DCD had longer hamstring and gastrocnemius muscle activation onset latencies (P < 0.001) and lower isometric peak forces (P < 0.001), but not times to peak forces (P > 0.025), than the controls. Multiple regression analysis accounting for basic demographics showed that gastrocnemius peak force was independently associated with the MABC balance subscore and ball skills subscore, accounting for 5.7% (P = 0.003) and 8.5% (P = 0.001) of the variance, respectively. Gastrocnemius muscle activation onset latency also explained 11.4% (P < 0.001) of the variance in the MABC ball skills subscore.Children with DCD had delayed leg muscle activation onset times and lower isometric peak forces. Gastrocnemius peak force was associated with balance and ball skills performances, whereas timing of gastrocnemius muscle activation was a determinant of ball skill performance in the DCD population.

  18. 55. View from ground level in building no. 105 showing ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    55. View from ground level in building no. 105 showing lower radar scanner switch with eighty-eight 1-1/2" diameter copper ion return RF balance tube systems. - Clear Air Force Station, Ballistic Missile Early Warning System Site II, One mile west of mile marker 293.5 on Parks Highway, 5 miles southwest of Anderson, Anderson, Denali Borough, AK

  19. Controlling direct contact force for wet adhesion with different wedged film stabilities

    NASA Astrophysics Data System (ADS)

    Li, Meng; Xie, Jun; Shi, Liping; Huang, Wei; Wang, Xiaolei

    2018-04-01

    In solid–liquid–solid adhesive systems, wedged films often feature instability at microscopic thicknesses, which can easily disrupt the adhesive strength of their remarkable direct contact force. Here, sodium dodecyl sulfate (SDS) was employed to tune the instability of adhesion in wedged glass–water–rubber films, achieving controllable direct contact. Experimental results showed that the supplement of SDS molecules significantly weakened the direct contact force for wet adhesion and eliminated it at high concentrations. The underlying reason was suggested to be the repulsive double-layer force caused by SDS molecules, which lowers the instability of the wedged film and balances the preload, disrupting the direct contact in wet adhesion.

  20. Inverse Dynamics Model for the Ankle Joint with Applications in Tibia Malleolus Fracture

    NASA Astrophysics Data System (ADS)

    Budescu, E.; Merticaru, E.; Chirazi, M.

    The paper presents a biomechanical model of the ankle joint, in order to determine the force and the torque of reaction into the articulation, through inverse dynamic analysis, in various stages of the gait. Thus, knowing the acceleration of the foot and the reaction force between foot and ground during the gait, determined by experimental measurement, there was calculated, for five different positions of the foot, the joint reaction forces, on the basis of dynamic balance equations. The values numerically determined were compared with the admissible forces appearing in the technical systems of osteosynthesis of tibia malleolus fracture, in order to emphasize the motion restrictions during bone healing.

  1. Field Balancing of Magnetically Levitated Rotors without Trial Weights

    PubMed Central

    Fang, Jiancheng; Wang, Yingguang; Han, Bangcheng; Zheng, Shiqiang

    2013-01-01

    Unbalance in magnetically levitated rotor (MLR) can cause undesirable synchronous vibrations and lead to the saturation of the magnetic actuator. Dynamic balancing is an important way to solve these problems. However, the traditional balancing methods, using rotor displacement to estimate a rotor's unbalance, requiring several trial-runs, are neither precise nor efficient. This paper presents a new balancing method for an MLR without trial weights. In this method, the rotor is forced to rotate around its geometric axis. The coil currents of magnetic bearing, rather than rotor displacement, are employed to calculate the correction masses. This method provides two benefits when the MLR's rotation axis coincides with the geometric axis: one is that unbalanced centrifugal force/torque equals the synchronous magnetic force/torque, and the other is that the magnetic force is proportional to the control current. These make calculation of the correction masses by measuring coil current with only a single start-up precise. An unbalance compensation control (UCC) method, using a general band-pass filter (GPF) to make the MLR spin around its geometric axis is also discussed. Experimental results show that the novel balancing method can remove more than 92.7% of the rotor unbalance and a balancing accuracy of 0.024 g mm kg−1 is achieved.

  2. 76 FR 59389 - Privacy Act of 1974; System of Records

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-26

    ... balances and leave history. Deductions from Pay: Tax information (Federal, state and local) based on... data bases via the Enterprise Information Web (EIW). AF-IPPS will also allow Air Force Manpower and... duties related to approved research projects, and for processing and adjudicating claims, determining...

  3. Low-g simulation testing of propellant systems using neutral buoyancy

    NASA Technical Reports Server (NTRS)

    Balzer, D. L.; Lake, R. J., Jr.

    1972-01-01

    A two liquid, neutral buoyancy technique is being used to simulate propellant behavior in a weightless environment. By equalizing the density of two immiscible liquids within a container (propellant tank), the effect of gravity at the liquid interface is balanced. Therefore the surface-tension forces dominate to control the liquid/liquid system configuration in a fashion analogous to a liquid/gas system in a zero gravity environment.

  4. Low stiffness floors can attenuate fall-related femoral impact forces by up to 50% without substantially impairing balance in older women.

    PubMed

    Laing, Andrew C; Robinovitch, Stephen N

    2009-05-01

    Low stiffness floors such as carpet appear to decrease hip fracture risk by providing a modest degree of force attenuation during falls without impairing balance. It is unknown whether other compliant floors can more effectively reduce impact loads without coincident increases in fall risk. We used a hip impact simulator to assess femoral neck force for four energy-absorbing floors (SmartCell, SofTile, Firm Foam, Soft Foam) compared to a rigid floor. We also assessed the influence of these floors on balance/mobility in 15 elderly women. We observed differences in the mean attenuation in peak femoral neck force provided by the SmartCell (24.5%), SofTile (47.2%), Firm Foam (76.6%), and Soft Foam (52.4%) floors. As impact velocity increased from 2 to 4m/s, force attenuation increased for SmartCell (from 17.3% to 33.7%) and SofTile (from 44.9% to 51.2%), but decreased for the Firm Foam (from 87.0% to 64.5%) and Soft Foam (from 66.1% to 37.9%) conditions. Regarding balance, there were no significant differences between the rigid, SmartCell, and SofTile floors in proportion of successful trials, Get Up and Go time, balance confidence or utility ratings. SofTile, Firm Foam, and Soft Foam caused significant increases (when compared to the rigid floor) in postural sway in the anterior-posterior and medial-lateral directions during standing. However, SmartCell increased sway only in the anterior-posterior direction. This study demonstrates that two commercially available compliant floors can attenuate femoral impact force by up to 50% while having only limited influence on balance in older women, and supports development of clinical trials to test their effectiveness in high-risk settings.

  5. Earths Climate Sensitivity: Apparent Inconsistencies in Recent Assessments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schwartz, Stephen E.; Charlson, Robert J.; Kahn, Ralph

    Earth's equilibrium climate sensitivity (ECS) and forcing of Earth's climate system over the industrial era have been re-examined in two new assessments: the Fifth Assessment Report (AR5) of the Intergovernmental Panel on Climate Change (IPCC), and a study by Otto et al. (2013). The ranges of these quantities given in these assessments and also in the Fourth (2007) IPCC Assessment are analyzed here within the framework of a planetary energy balance model, taking into account the observed increase in global mean surface temperature over the instrumental record together with best estimates of the rate of increase of planetary heat content.more » This analysis shows systematic differences among the several assessments and apparent inconsistencies within individual assessments. Importantly, the likely range of ECS to doubled CO₂ given in AR5, 1.5–4.5 K/(3.7 W m⁻²) exceeds the range inferred from the assessed likely range of forcing, 1.2–2.9 K/(3.7 W m⁻²), where 3.7 W ⁻² denotes the forcing for doubled CO₂. Such differences underscore the need to identify their causes and reduce the underlying uncertainties. Explanations might involve underestimated negative aerosol forcing, overestimated total forcing, overestimated climate sensitivity, poorly constrained ocean heating, limitations of the energy balance model, or a combination of effects.« less

  6. Earths Climate Sensitivity: Apparent Inconsistencies in Recent Assessments

    DOE PAGES

    Schwartz, Stephen E.; Charlson, Robert J.; Kahn, Ralph; ...

    2014-12-08

    Earth's equilibrium climate sensitivity (ECS) and forcing of Earth's climate system over the industrial era have been re-examined in two new assessments: the Fifth Assessment Report (AR5) of the Intergovernmental Panel on Climate Change (IPCC), and a study by Otto et al. (2013). The ranges of these quantities given in these assessments and also in the Fourth (2007) IPCC Assessment are analyzed here within the framework of a planetary energy balance model, taking into account the observed increase in global mean surface temperature over the instrumental record together with best estimates of the rate of increase of planetary heat content.more » This analysis shows systematic differences among the several assessments and apparent inconsistencies within individual assessments. Importantly, the likely range of ECS to doubled CO₂ given in AR5, 1.5–4.5 K/(3.7 W m⁻²) exceeds the range inferred from the assessed likely range of forcing, 1.2–2.9 K/(3.7 W m⁻²), where 3.7 W ⁻² denotes the forcing for doubled CO₂. Such differences underscore the need to identify their causes and reduce the underlying uncertainties. Explanations might involve underestimated negative aerosol forcing, overestimated total forcing, overestimated climate sensitivity, poorly constrained ocean heating, limitations of the energy balance model, or a combination of effects.« less

  7. Development of a two-dimensional skin friction balance nulling circuit using multivariable control theory

    NASA Technical Reports Server (NTRS)

    Tripp, John S.; Patek, Stephen D.

    1988-01-01

    Measurement of planar skin friction forces in aerodynamic testing currently requires installation of two perpendicularly mounted, single-axis balances; consequently, force components must be sensed at two distinct locations. A two-axis instrument developed at the Langley Research Center to overcome this disadvantage allows measurement of a two-dimensional force at one location. This paper describes a feedback-controlled nulling circuit developed for the NASA two-axis balance which, without external compensation, is inherently unstable because of its low friction mechanical design. Linear multivariable control theory is applied to an experimentally validated mathematical model of the balance to synthesize a state-variable feedback control law. Pole placement techniques and computer simulation studies are employed to select eigenvalues which provide ideal transient response with decoupled sensing dynamics.

  8. Single Vector Calibration System for Multi-Axis Load Cells and Method for Calibrating a Multi-Axis Load Cell

    NASA Technical Reports Server (NTRS)

    Parker, Peter A. (Inventor)

    2003-01-01

    A single vector calibration system is provided which facilitates the calibration of multi-axis load cells, including wind tunnel force balances. The single vector system provides the capability to calibrate a multi-axis load cell using a single directional load, for example loading solely in the gravitational direction. The system manipulates the load cell in three-dimensional space, while keeping the uni-directional calibration load aligned. The use of a single vector calibration load reduces the set-up time for the multi-axis load combinations needed to generate a complete calibration mathematical model. The system also reduces load application inaccuracies caused by the conventional requirement to generate multiple force vectors. The simplicity of the system reduces calibration time and cost, while simultaneously increasing calibration accuracy.

  9. Using the Wii Fit as a tool for balance assessment and neurorehabilitation: the first half decade of "Wii-search".

    PubMed

    Goble, Daniel J; Cone, Brian L; Fling, Brett W

    2014-02-08

    The Nintendo Wii Fit was released just over five years ago as a means of improving basic fitness and overall well-being. Despite this broad mission, the Wii Fit has generated specific interest in the domain of neurorehabilitation as a biobehavioral measurement and training device for balance ability. Growing interest in Wii Fit technology is likely due to the ubiquitous nature of poor balance and catastrophic falls, which are commonly seen in older adults and various disability conditions. The present review provides the first comprehensive summary of Wii Fit balance research, giving specific insight into the system's use for the assessment and training of balance. Overall, at the time of the fifth anniversary, work in the field showed that custom applications using the Wii Balance Board as a proxy for a force platform have great promise as a low cost and portable way to assess balance. On the other hand, use of Wii Fit software-based balance metrics has been far less effective in determining balance status. As an intervention tool, positive balance outcomes have typically been obtained using Wii Fit balance games, advocating their use for neurorehabilitative training. Despite this, limited sample sizes and few randomized control designs indicate that research regarding use of the Wii Fit system for balance intervention remains subject to improvement. Future work aimed at conducting studies with larger scale randomized control designs and a greater mechanistic focus is recommended to further advance the efficacy of this impactful neurorehabilitation tool.

  10. Position versus force control: using the 2-DOF robotic ankle trainer to assess ankle's motor control.

    PubMed

    Farjadian, Amir B; Nabian, Mohsen; Hartman, Amber; Corsino, Johnathan; Mavroidis, Constantinos; Holden, Maureen K

    2014-01-01

    An estimated of 2,000,000 acute ankle sprains occur annually in the United States. Furthermore, ankle disabilities are caused by neurological impairments such as traumatic brain injury, cerebral palsy and stroke. The virtually interfaced robotic ankle and balance trainer (vi-RABT) was introduced as a cost-effective platform-based rehabilitation robot to improve overall ankle/balance strength, mobility and control. The system is equipped with 2 degrees of freedom (2-DOF) controlled actuation along with complete means of angle and torque measurement mechanisms. Vi-RABT was used to assess ankle strength, flexibility and motor control in healthy human subjects, while playing interactive virtual reality games on the screen. The results suggest that in the task with 2-DOF, subjects have better control over ankle's position vs. force.

  11. Effect of gender, facial dimensions, body mass index and type of functional occlusion on bite force.

    PubMed

    Koç, Duygu; Doğan, Arife; Bek, Bülent

    2011-01-01

    Some factors such as gender, age, craniofacial morphology, body structure, occlusal contact patterns may affect the maximum bite force. Thus, the purposes of this study were to determine the mean maximum bite force in individuals with normal occlusion, and to examine the effect of gender, facial dimensions, body mass index (BMI), type of functional occlusion (canine guidance and group function occlusion) and balancing side interferences on it. Thirty-four individuals aged 19-20 years-old were selected for this study. Maximum bite force was measured with strain-gauge transducers at first molar region. Facial dimensions were defined by standardized frontal photographs as follows: anterior total facial height (ATFH), bizygomathic facial width (BFW) and intergonial width (IGW). BMI was calculated using the equation weight/height². The type of functional occlusion and the balancing side interferences of the subjects were identified by clinical examination. Bite force was found to be significantly higher in men than women (p<0.05). While there was a negative correlation between the bite force and ATFH/BFW, ATFH/IGW ratios in men (p<0.05), women did not show any statistically significant correlation (p>0.05). BMI and bite force correlation was not statistically significant (p>0.05). The average bite force did not differ in subjects with canine guidance or group function occlusion and in the presence of balancing side interferences (p>0.05). Data suggest that bite force is affected by gender. However, BMI, type of functional occlusion and the presence of balancing side interferences did not exert a meaningful influence on bite force. In addition, transverse facial dimensions showed correlation with bite force in only men.

  12. Design and control of a macro-micro robot for precise force applications

    NASA Technical Reports Server (NTRS)

    Wang, Yulun; Mangaser, Amante; Laby, Keith; Jordan, Steve; Wilson, Jeff

    1993-01-01

    Creating a robot which can delicately interact with its environment has been the goal of much research. Primarily two difficulties have made this goal hard to attain. The execution of control strategies which enable precise force manipulations are difficult to implement in real time because such algorithms have been too computationally complex for available controllers. Also, a robot mechanism which can quickly and precisely execute a force command is difficult to design. Actuation joints must be sufficiently stiff, frictionless, and lightweight so that desired torques can be accurately applied. This paper describes a robotic system which is capable of delicate manipulations. A modular high-performance multiprocessor control system was designed to provide sufficient compute power for executing advanced control methods. An 8 degree of freedom macro-micro mechanism was constructed to enable accurate tip forces. Control algorithms based on the impedance control method were derived, coded, and load balanced for maximum execution speed on the multiprocessor system. Delicate force tasks such as polishing, finishing, cleaning, and deburring, are the target applications of the robot.

  13. Evaluation of a load cell model for dynamic calibration of the rotor systems research aircraft

    NASA Technical Reports Server (NTRS)

    Duval, R. W.; Bahrami, H.; Wellman, B.

    1985-01-01

    The Rotor Systems Research Aircraft uses load cells to isolate the rotor/transmission system from the fuselage. An analytical model of the relationship between applied rotor loads and the resulting load cell measurements is derived by applying a force-and-moment balance to the isolated rotor/transmission system. The model is then used to estimate the applied loads from measured load cell data, as obtained from a ground-based shake test. Using nominal design values for the parameters, the estimation errors, for the case of lateral forcing, were shown to be on the order of the sensor measurement noise in all but the roll axis. An unmodeled external load appears to be the source of the error in this axis.

  14. Spectrin-ankyrin interaction mechanics: A key force balance factor in the red blood cell membrane skeleton.

    PubMed

    Saito, Masakazu; Watanabe-Nakayama, Takahiro; Machida, Shinichi; Osada, Toshiya; Afrin, Rehana; Ikai, Atsushi

    2015-01-01

    As major components of red blood cell (RBC) cytoskeleton, spectrin and F-actin form a network that covers the entire cytoplasmic surface of the plasma membrane. The cross-linked two layered structure, called the membrane skeleton, keeps the structural integrity of RBC under drastically changing mechanical environment during circulation. We performed force spectroscopy experiments on the atomic force microscope (AFM) as a means to clarify the mechanical characteristics of spectrin-ankyrin interaction, a key factor in the force balance of the RBC cytoskeletal structure. An AFM tip was functionalized with ANK1-62k and used to probe spectrin crosslinked to mica surface. A force spectroscopy study gave a mean unbinding force of ~30 pN under our experimental conditions. Two energy barriers were identified in the unbinding process. The result was related to the well-known flexibility of spectrin tetramer and participation of ankyrin 1-spectrin interaction in the overall balance of membrane skeleton dynamics. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. The defence technique in Tai Chi Push Hands: a case study.

    PubMed

    Chen, Hui-Chuan; Cheng, Kuang-You B; Liu, Yu-Jen; Chiu, Hung-Ta; Cheng, Kuang-Yu

    2010-12-01

    Developed from traditional Chinese martial arts, Tai Chi exercise includes different forms and interactive Push Hands but biomechanical analyses have focused on the former only. To analyse the techniques of Push Hands, an experienced master was asked to defend pushing by four opponents. Movements were videotaped and digitized using a motion analysis system. Surface electrodes were used to record the electromyographic activity of ten muscle groups. Two force plates were used to measure the ground reaction force on each foot. Inexperienced individuals performed the same procedure to serve as the control group. The results indicate that the master adopted a postural adjustment to maintain balance. A clear shift of body weight from the front to the rear foot and mediolateral displacement of the centre of gravity was observed. Low electromyographic activity was observed in the upper body muscle groups, while high electromyographic activity was observed in the right rectus femoris and very high activity in the left rectus femoris during the defence. All inexperienced participants lost their balance in resisting pushing. It is concluded that the Tai Chi defensive technique includes a subtle postural adjustment that slightly changes the pushing force direction, and allows the rear leg to resist the incoming force.

  16. The surface diffusion coefficient for an arbitrarily curved fluid-fluid interface. (I). General expression

    NASA Astrophysics Data System (ADS)

    M. C. Sagis, Leonard

    2001-03-01

    In this paper, we develop a theory for the calculation of the surface diffusion coefficient for an arbitrarily curved fluid-fluid interface. The theory is valid for systems in hydrodynamic equilibrium, with zero mass-averaged velocities in the bulk and interfacial regions. We restrict our attention to systems with isotropic bulk phases, and an interfacial region that is isotropic in the plane parallel to the dividing surface. The dividing surface is assumed to be a simple interface, without memory effects or yield stresses. We derive an expression for the surface diffusion coefficient in terms of two parameters of the interfacial region: the coefficient for plane-parallel diffusion D (AB)aa(ξ) , and the driving force d(B)I||(ξ) . This driving force is the parallel component of the driving force for diffusion in the interfacial region. We derive an expression for this driving force using the entropy balance.

  17. Reliability of Single-Leg Balance and Landing Tests in Rugby Union; Prospect of Using Postural Control to Monitor Fatigue

    PubMed Central

    Troester, Jordan C.; Jasmin, Jason G.; Duffield, Rob

    2018-01-01

    The present study examined the inter-trial (within test) and inter-test (between test) reliability of single-leg balance and single-leg landing measures performed on a force plate in professional rugby union players using commercially available software (SpartaMARS, Menlo Park, USA). Twenty-four players undertook test – re-test measures on two occasions (7 days apart) on the first training day of two respective pre-season weeks following 48h rest and similar weekly training loads. Two 20s single-leg balance trials were performed on a force plate with eyes closed. Three single-leg landing trials were performed by jumping off two feet and landing on one foot in the middle of a force plate 1m from the starting position. Single-leg balance results demonstrated acceptable inter-trial reliability (ICC = 0.60-0.81, CV = 11-13%) for sway velocity, anterior-posterior sway velocity, and mediolateral sway velocity variables. Acceptable inter-test reliability (ICC = 0.61-0.89, CV = 7-13%) was evident for all variables except mediolateral sway velocity on the dominant leg (ICC = 0.41, CV = 15%). Single-leg landing results only demonstrated acceptable inter-trial reliability for force based measures of relative peak landing force and impulse (ICC = 0.54-0.72, CV = 9-15%). Inter-test results indicate improved reliability through the averaging of three trials with force based measures again demonstrating acceptable reliability (ICC = 0.58-0.71, CV = 7-14%). Of the variables investigated here, total sway velocity and relative landing impulse are the most reliable measures of single-leg balance and landing performance, respectively. These measures should be considered for monitoring potential changes in postural control in professional rugby union. Key points Single-leg balance demonstrated acceptable inter-trial and inter-test reliability. Single-leg landing demonstrated good inter-trial and inter-test reliability for measures of relative peak landing force and relative impulse, but not time to stabilization. Of the variables investigated, sway velocity and relative landing impulse are the most reliable measures of single-leg balance and landing respectively, and should considered for monitoring changes in postural control. PMID:29769817

  18. Control at stability's edge minimizes energetic costs: expert stick balancing

    PubMed Central

    Meyer, Ryan; Zhvanetsky, Max; Ridge, Sarah; Insperger, Tamás

    2016-01-01

    Stick balancing on the fingertip is a complex voluntary motor task that requires the stabilization of an unstable system. For seated expert stick balancers, the time delay is 0.23 s, the shortest stick that can be balanced for 240 s is 0.32 m and there is a ° dead zone for the estimation of the vertical displacement angle in the saggital plane. These observations motivate a switching-type, pendulum–cart model for balance control which uses an internal model to compensate for the time delay by predicting the sensory consequences of the stick's movements. Numerical simulations using the semi-discretization method suggest that the feedback gains are tuned near the edge of stability. For these choices of the feedback gains, the cost function which takes into account the position of the fingertip and the corrective forces is minimized. Thus, expert stick balancers optimize control with a combination of quick manoeuvrability and minimum energy expenditures. PMID:27278361

  19. A patellar bandage improves mobility but not static balance in elderly female fallers.

    PubMed

    Scheicher, Marcos Eduardo; Fonseca, Ligia Cristiane Santos; Bortolloto, Tiago Buso; de Carvalho, Isabela Feitosa

    2018-04-01

    The deterioration in the somatosensory and motor systems observed with increasing age can cause balance problems. Studies have shown that the use of infrapatellar bandages can enhance proprioception and improve postural balance. To evaluate the effect of an infrapatellar bandage on static balance and mobility in elderly female fallers and non-fallers. Forty older women (20 fallers and 20 non-fallers) were evaluated. Mobility (Timed Up and Go test) and balance (force platform) were measured in the presence and absence of additional sensory information (elastic infrapatellar bandage). Mobility differed in fallers (p = 0.0001), but not in non-fallers (p = 0.27), when the patellar bandage was applied. Additional sensory information did not improve static balance in either group (p > 0.05), but a trend towards improvement was observed in fallers. Additional sensory input from an infrapatellar bandage improves mobility but not bipedal stance in elderly fallers. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Ankle taping does not impair performance in jump or balance tests.

    PubMed

    Abián-Vicén, Javier; Alegre, Luis M; Fernández-Rodríguez, J Manuel; Lara, Amador J; Meana, Marta; Aguado, Xavier

    2008-01-01

    This study aimed to investigate the influence of prophylactic ankle taping on two balance tests (static and dynamic balance) and one jump test, in the push off and the landing phase. Fifteen active young subjects (age: 21.0 ± 4.4 years) without previous ankle injuries volunteered for the study. Each participant performed three tests in two different situations: with taping and without taping. The tests were a counter movement jump, static balance, and a dynamic posturography test. The tests and conditions were randomly performed. The path of the center of pressures was measured in the balance tests, and the vertical ground reaction forces were recorded during the push-off and landing phases of the counter movement jump. Ankle taping had no influence on balance performance or in the push off phase of the jump. However, the second peak vertical force value during the landing phase of the jump was 12% greater with ankle taping (0.66 BW, 95% CI -0.64 to 1.96). The use of prophylactic ankle taping had no influence on the balance or jump performance of healthy young subjects. In contrast, the taped ankle increased the second peak vertical force value, which could be related to a greater risk of injury produced by the accumulation of repeated impacts in sports where jumps are frequently performed. Key pointsAnkle taping has no influence on balance performance.Ankle taping does not impair performance during the push-off phase of the jump.Ankle taping could increase the risk of injury during landings by increasing peak forces.

  1. Ankle Taping Does Not Impair Performance in Jump or Balance Tests

    PubMed Central

    Abián-Vicén, Javier; Alegre, Luis M.; Fernández-Rodríguez, J. Manuel; Lara, Amador J.; Meana, Marta; Aguado, Xavier

    2008-01-01

    This study aimed to investigate the influence of prophylactic ankle taping on two balance tests (static and dynamic balance) and one jump test, in the push off and the landing phase. Fifteen active young subjects (age: 21.0 ± 4.4 years) without previous ankle injuries volunteered for the study. Each participant performed three tests in two different situations: with taping and without taping. The tests were a counter movement jump, static balance, and a dynamic posturography test. The tests and conditions were randomly performed. The path of the center of pressures was measured in the balance tests, and the vertical ground reaction forces were recorded during the push-off and landing phases of the counter movement jump. Ankle taping had no influence on balance performance or in the push off phase of the jump. However, the second peak vertical force value during the landing phase of the jump was 12% greater with ankle taping (0.66 BW, 95% CI -0.64 to 1.96). The use of prophylactic ankle taping had no influence on the balance or jump performance of healthy young subjects. In contrast, the taped ankle increased the second peak vertical force value, which could be related to a greater risk of injury produced by the accumulation of repeated impacts in sports where jumps are frequently performed. Key pointsAnkle taping has no influence on balance performance.Ankle taping does not impair performance during the push-off phase of the jump.Ankle taping could increase the risk of injury during landings by increasing peak forces. PMID:24149902

  2. Alongshore Momentum Balance Over Shoreface-Connected Ridges, Fire Island, NY

    NASA Astrophysics Data System (ADS)

    Ofsthun, C.; Wu, X.; Voulgaris, G.; Warner, J. C.

    2016-12-01

    he momentum balance of alongshore flows over straight, uniform shelfs has been analyzed extensively over the last few decades. More recently, the effect of coastline curvature and how this might alter the relative significance of the momentum terms has received additional attention. In this contribution, the alongshore momentum over shelves with straight coastline, but non-uniform bathymetry is examined. Hydrodynamic and hydrographic data collected by the US Geological Survey (Fire Island Coastal Change project) on the inner shelf of Fire Island, NY over a region of shore-face connected ridges (SFCRs) are used to describe wind-induced circulation and the terms of the alongshore momentum balance equation. Analysis of the data revealed a predominantly alongshore circulation, under westward wind forcing, with localized offshore (onshore) current veering over the ridge crests (troughs). Momentum balance analysis hinted that local acceleration, advective acceleration, and bottom stress are balanced by wind stress and regional (>100 km) pressure gradient force. In addition, a numerical model using an idealized SFCR bathymetry, forced by our observed winds, was employed to compare the momentum balance relationships identified by the data and those under steady-state conditions published earlier (Warner et al., 2014). A synthesis of the numerical and experimental data revealed that the true pressure gradient force results from the sum of local pressure gradient force, which maintains a Bernoulli-like relationship with alongshore advective acceleration, and regional pressure gradient force, which maintains a strong, negative relationship with wind stress. The differences between steady-state and realistic conditions is mainly on the contributions of regional scale pressure gradients that develop under realistic conditions, and the reduced contribution of local scale pressure gradients which develop best under steady-state conditions. Our analysis indicates that current veering over ridge crests, a consistent occurrence, is a combination of a cross-shore gradient in the inconsistent relationship between local advective acceleration and pressure gradient and frictional-torque with the latter being the dominant mechanism under realistic forcing.

  3. Magnetic Suspension and Balance Systems: A Selected, Annotated Bibliography

    NASA Technical Reports Server (NTRS)

    Tuttle Marie H.; Kilgore, Robert A.; Boyden, Richmond P.

    1983-01-01

    This publication, containing 206 entries, supersedes an earlier bibliography, NASA TM-80225 (April 1980). Citations for 18 documents have been added in this updated version. Most of the additions report results of recent studies aimed at increasing the research capabilities of magnetic suspension and balance systems, e.g., increasing force and torque capability, increasing angle of attack capability, and increasing overall system reliability. Some of the additions address the problem of scaling from the relatively small size of existing systems to much larger sizes. The purpose of this bibliography is to provide an up-to-date list of publications that might be helpful to persons interested in magnetic suspension and balance systems for use in wind tunnels. The arrangement is generally chronological by date of publication. However, papers presented at conferences or meetings are placed under dates of presentation. The numbers assigned to many of the citations have been changed from those used in the previous bibliography. This has been done in order to allow outdated citations to be removed and some recently discovered older works to be included in their proper chronological order.

  4. Solving Nonlinear Coupled Differential Equations

    NASA Technical Reports Server (NTRS)

    Mitchell, L.; David, J.

    1986-01-01

    Harmonic balance method developed to obtain approximate steady-state solutions for nonlinear coupled ordinary differential equations. Method usable with transfer matrices commonly used to analyze shaft systems. Solution to nonlinear equation, with periodic forcing function represented as sum of series similar to Fourier series but with form of terms suggested by equation itself.

  5. The Balanced Scorecard: A Management System for Wilford Hall Medical Center - The Premier Air Force Medical Enterprise

    DTIC Science & Technology

    1999-04-01

    meanings and functions of human actions. These meanings and functions take the form of qualitative descriptions and explanations ( Denzin , Lincoln 1994...a value-free framework ( Denzin , 1994). Equally important was the learning and educating about performance drivers versus outcome measures. Performance

  6. Accuracy of force and center of pressure measures of the Wii Balance Board.

    PubMed

    Bartlett, Harrison L; Ting, Lena H; Bingham, Jeffrey T

    2014-01-01

    The Nintendo Wii Balance Board (WBB) is increasingly used as an inexpensive force plate for assessment of postural control; however, no documentation of force and COP accuracy and reliability is publicly available. Therefore, we performed a standard measurement uncertainty analysis on 3 lightly and 6 heavily used WBBs to provide future users with information about the repeatability and accuracy of the WBB force and COP measurements. Across WBBs, we found the total uncertainty of force measurements to be within ± 9.1N, and of COP location within ± 4.1mm. However, repeatability of a single measurement within a board was better (4.5 N, 1.5mm), suggesting that the WBB is best used for relative measures using the same device, rather than absolute measurement across devices. Internally stored calibration values were comparable to those determined experimentally. Further, heavy wear did not significantly degrade performance. In combination with prior evaluation of WBB performance and published standards for measuring human balance, our study provides necessary information to evaluate the use of the WBB for analysis of human balance control. We suggest the WBB may be useful for low-resolution measurements, but should not be considered as a replacement for laboratory-grade force plates. Published by Elsevier B.V.

  7. Accuracy of force and center of pressure measures of the Wii Balance Board

    PubMed Central

    Bartlett, Harrison L.; Ting, Lena H.; Bingham, Jeffrey T.

    2013-01-01

    The Nintendo Wii Balance Board (WBB) is increasingly used as an inexpensive force plate for assessment of postural control; however, no documentation of force and COP accuracy and reliability is publicly available. Therefore, we performed a standard measurement uncertainty analysis on 3 lightly and 6 heavily used WBBs to provide future users with information about the repeatability and accuracy of the WBB force and COP measurements. Across WBBs, we found the total uncertainty of force measurements to be within ±9.1 N, and of COP location within ±4.1 mm. However, repeatability of a single measurement within a board was better (4.5 N, 1.5 mm), suggesting that the WBB is best used for relative measures using the same device, rather than absolute measurement across devices. Internally stored calibration values were comparable to those determined experimentally. Further, heavy wear did not significantly degrade performance. In combination with prior evaluation of WBB performance and published standards for measuring human balance, our study provides necessary information to evaluate the use of the WBB for analysis of human balance control. We suggest the WBB may be useful for low-resolution measurements, but should not be considered as a replacement for laboratory-grade force plates. PMID:23910725

  8. Effect of body mass index and fat mass on balance force platform measurements during a one-legged stance in older adults.

    PubMed

    Pereira, Camila; Silva, Rubens A da; de Oliveira, Marcio R; Souza, Rejane D N; Borges, Renata J; Vieira, Edgar R

    2018-05-01

    The purpose of this study was to evaluate the impact of body mass index (BMI) and fat mass on balance force platform measurements in older adults. The sample consisted of 257 participants who were stratified into four groups by BMI: low weight, normal weight, pre-obesity and obesity. For fat mass variables, older individuals were classified into low and high-fat mass. All groups investigated performed three trials of one-legged stance balance on a force platform. Center of pressure (COP) domain parameters were computed from the mean across trials. Analysis of variance results revealed no significant interactions for groups and sexes for all COP parameters. Comparable balance results were found for BMI and fat groups for all COP parameters. A statistical effect (P < 0.05) was only reported for sex differences for COP parameters, regardless of BMI and fat mass variables. Overall, women presented better balance than men. In conclusion, BMI and fat mass do not seem to influence the balance of older adults during a one-leg stance task.

  9. Convection Induced by Traveling Magnetic Fields in Semiconductor Melts

    NASA Technical Reports Server (NTRS)

    Konstantin, Mazuruk

    2000-01-01

    Axisymmetric traveling magnetic fields (TMF) can be beneficial for crystal growth applications. such as the vertical Bridgman, float zone or traveling heater methods. TMF induces a basic flow in the form of a single roll. This type of flow can enhance mass and heat transfer to the growing crystal. More importantly, the TMF Lorentz body force induced in the system can counterbalance the buoyancy forces, so the resulting convection can be much smaller and even the direction of it can be changed. In this presentation, we display basic features of this novel technique. In particular, numerical calculations of the Lorentz force for arbitrary frequencies will be presented along with induced steady-state fluid flow profiles. Also, numerical modeling of the TMF counter-balancing natural convection in vertical Bridgman systems will be demonstrated.

  10. Dynamic Wind-Tunnel Testing of a Sub-Scale Iced S-3B Viking

    NASA Technical Reports Server (NTRS)

    Lee, Sam; Barnhart, Billy; Ratvasky, Thomas P.

    2012-01-01

    The effect of ice accretion on a 1/12-scale complete aircraft model of S-3B Viking was studied in a rotary-balance wind tunnel. Two types of ice accretions were considered: ice protection system failure shape and runback shapes that form downstream of the thermal ice protection system. The results showed that the ice shapes altered the stall characteristics of the aircraft. The ice shapes also reduced the control surface effectiveness, but mostly near the stall angle of attack. There were some discrepancies with the data with the flaps deflected that were attributed to the low Reynolds number of the test. Rotational and forced-oscillation studies showed that the effects of ice were mostly in the longitudinal forces, and the effects on the lateral forces were relatively minor.

  11. The Characteristics of Vibration Isolation System with Damping and Stiffness Geometrically Nonlinear

    NASA Astrophysics Data System (ADS)

    Lu, Ze-Qi; Chen, Li-Qun; Brennan, Michael J.; Li, Jue-Ming; Ding, Hu

    2016-09-01

    The paper concerns an investigation into the use of both stiffness and damping nonlinearity in the vibration isolator to improve its effectiveness. The nonlinear damping and nonlinear stiffness are both achieved by horizontal damping and stiffness as the way of the geometrical nonlinearity. The harmonic balance method is used to analyze the force transmissibility of such vibration isolation system. It is found that as the horizontal damping increasing, the height of the force transmissibility peak is decreased and the high-frequency force transmissibility is almost the same. The results are also validated by some numerical method. Then the RMS of transmissibility under Gaussian white noise is calculated numerically, the results demonstrate that the beneficial effects of the damping nonlinearity can be achieved under random excitation.

  12. Strain Gauge Balance Calibration and Data Reduction at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Ferris, A. T. Judy

    1999-01-01

    This paper will cover the standard force balance calibration and data reduction techniques used at Langley Research Center. It will cover balance axes definition, balance type, calibration instrumentation, traceability of standards to NIST, calibration loading procedures, balance calibration mathematical model, calibration data reduction techniques, balance accuracy reporting, and calibration frequency.

  13. Effects of the visual-feedback-based force platform training with functional electric stimulation on the balance and prevention of falls in older adults: a randomized controlled trial.

    PubMed

    Li, Zhen; Wang, Xiu-Xia; Liang, Yan-Yi; Chen, Shu-Yan; Sheng, Jing; Ma, Shao-Jun

    2018-01-01

    Force platform training with functional electric stimulation aimed at improving balance may be effective in fall prevention for older adults. Aim of the study is to evaluate the effects of the visual-feedback-based force platform balance training with functional electric stimulation on balance and fall prevention in older adults. A single-centre, unblinded, randomized controlled trial was conducted. One hundred and twenty older adults were randomly allocated to two groups: the control group ( n  = 60, one-leg standing balance exercise, 12 min/d) or the intervention group ( n  = 60, force platform training with functional electric stimulation, 12 min/d). The training was provided 15 days a month for 3 months by physical therapists. Medial-lateral and anterior-posterior maximal range of sway with eyes open and closed, the Berg Balance Scale, the Barthel Index, the Falls Efficacy scale-International were assessed at baseline and after the 3-month intervention. A fall diary was kept by each participant during the 6-month follow-up. On comparing the two groups, the intervention group showed significantly decreased ( p  < 0.01) medial-lateral and anterior-posterior maximal range of sway with eyes open and closed. There was significantly higher improvement in the Berg Balance Scale ( p  < 0.05), the Barthel Index ( p  < 0.05) and the Falls Efficacy Scale-International ( p  < 0.05), along with significantly lesser number of injurious fallers ( p  < 0.05), number of fallers ( p  < 0.05), and fall rates ( p  < 0.05) during the 6-month follow-up in the intervention group. This study showed that the visual feedback-based force platform training with functional electric stimulation improved balance and prevented falls in older adults.

  14. Comparison of jump-landing protocols with Biodex Balance System as measures of dynamic postural stability in athletes.

    PubMed

    Krkeljas, Zarko

    2017-07-21

    The objective of the study was to determine whether a relationship exists between the two common methods for assessing postural stability in athletes: the time-to-stabilisation (TTS) via force-plate and the Biodex Balance System (BBS). The conditions under which these measurements assess dynamic postural control may not provide sufficient feedback to practitioners. Fourty-four amateur soccer players with no history of musculoskeletal disorders volunteered for the study. Pearson correlation was used to compare the anterior-posterior (AP), medio-lateral (ML), and the overall stability indexes measured by BBS, with the corresponding parameters of TTS assessed via force plate. There was no significant correlation between any parameters of dynamic stability measured by force-plate and the stability indexes. However, there was a significant correlation between the resulting vectors and the AP component of TTS for each jump protocol. Furthermore, forward drop landing exhibited shortest TTS in AP direction, while lateral drop landing resulted in longer ML TTS relative to both forward jumps (p < 0.001). These results demonstrate that the TTS and BBS stability indexes should be used as distinct measures of dynamic postural stability. TTS protocols may be modified to target a specific training conditions or athletic population.

  15. On computing stress in polymer systems involving multi-body potentials from molecular dynamics simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fu, Yao, E-mail: fu5@mailbox.sc.edu, E-mail: jhsong@cec.sc.edu; Song, Jeong-Hoon, E-mail: fu5@mailbox.sc.edu, E-mail: jhsong@cec.sc.edu

    2014-08-07

    Hardy stress definition has been restricted to pair potentials and embedded-atom method potentials due to the basic assumptions in the derivation of a symmetric microscopic stress tensor. Force decomposition required in the Hardy stress expression becomes obscure for multi-body potentials. In this work, we demonstrate the invariance of the Hardy stress expression for a polymer system modeled with multi-body interatomic potentials including up to four atoms interaction, by applying central force decomposition of the atomic force. The balance of momentum has been demonstrated to be valid theoretically and tested under various numerical simulation conditions. The validity of momentum conservation justifiesmore » the extension of Hardy stress expression to multi-body potential systems. Computed Hardy stress has been observed to converge to the virial stress of the system with increasing spatial averaging volume. This work provides a feasible and reliable linkage between the atomistic and continuum scales for multi-body potential systems.« less

  16. Ablative Laser Propulsion Using Multi-Layered Material Systems

    NASA Technical Reports Server (NTRS)

    Nehls, Mary; Edwards, David; Gray, Perry; Schneider, T.

    2002-01-01

    Experimental investigations are ongoing to study the force imparted to materials when subjected to laser ablation. When a laser pulse of sufficient energy density impacts a material, a small amount of the material is ablated. A torsion balance is used to measure the momentum produced by the ablation process. The balance consists of a thin metal wire with a rotating pendulum suspended in the middle. The wire is fixed at both ends. Recently, multi-layered material systems were investigated. These multi-layered materials were composed of a transparent front surface and opaque sub surface. The laser pulse penetrates the transparent outer surface with minimum photon loss and vaporizes the underlying opaque layer.

  17. Issues in the design of high dexterity, force reflective teleoperators

    NASA Technical Reports Server (NTRS)

    Jacobsen, Stephen C.; Iversen, E. K.; Davis, C. C.; Biggers, K. B.; Backman, D. K.

    1991-01-01

    The Center for Engineering and Design at the University of Utah is developing an anthropomorphic, hydraulically actuated, teleoperated arm. The system includes a sixteen degree-of-freedom slave manipulator controlled by a kinematically identical, sixteen degree-of-freedom force-reflective, exoskeletal master. The project has focused on four areas: (1) formulating a realistic set of design objectives which balance, against technical realities, the desire for performance, reliability and economy; (2) understanding control issues; (3) designing and fabricating new subsystems necessary for the construction of a successful machine; and (4) integrating subsystems, through a series of prototype stages, into an operational teleoperation system.

  18. Nonlinear normal modes modal interactions and isolated resonance curves

    DOE PAGES

    Kuether, Robert J.; Renson, L.; Detroux, T.; ...

    2015-05-21

    The objective of the present study is to explore the connection between the nonlinear normal modes of an undamped and unforced nonlinear system and the isolated resonance curves that may appear in the damped response of the forced system. To this end, an energy balance technique is used to predict the amplitude of the harmonic forcing that is necessary to excite a specific nonlinear normal mode. A cantilever beam with a nonlinear spring at its tip serves to illustrate the developments. Furthermore, the practical implications of isolated resonance curves are also discussed by computing the beam response to sine sweepmore » excitations of increasing amplitudes.« less

  19. Collocation of equilibria in gravitational field of triangular body via mass redistribution

    NASA Astrophysics Data System (ADS)

    Burov, Alexander A.; Guerman, Anna D.; Nikonov, Vasily I.

    2018-05-01

    We consider a gravitating system with triangular mass distribution that can be used as approximation of gravitational field for small irregular celestial bodies. In such system, the locations of equilibrium points, that is, the points where the gravitational forces are balanced, are analyzed. The goal is to find the mass distribution which provides equilibrium in a pre-assigned location near the triangular system, and to study the stability of this equilibrium.

  20. Dynamic Calibration of the NASA Ames Rotor Test Apparatus Steady/Dynamic Rotor Balance

    NASA Technical Reports Server (NTRS)

    Peterson, Randall L.; vanAken, Johannes M.

    1996-01-01

    The NASA Ames Rotor Test Apparatus was modified to include a Steady/Dynamic Rotor Balance. The dynamic calibration procedures and configurations are discussed. Random excitation was applied at the rotor hub, and vibratory force and moment responses were measured on the steady/dynamic rotor balance. Transfer functions were computed using the load cell data and the vibratory force and moment responses from the rotor balance. Calibration results showing the influence of frequency bandwidth, hub mass, rotor RPM, thrust preload, and dynamic loads through the stationary push rods are presented and discussed.

  1. Virtual reality stimuli for force platform posturography.

    PubMed

    Tossavainen, Timo; Juhola, Martti; Ilmari, Pyykö; Aalto, Heikki; Toppila, Esko

    2002-01-01

    People relying much on vision in the control of posture are known to have an elevated risk of falling. Dependence on visual control is an important parameter in the diagnosis of balance disorders. We have previously shown that virtual reality methods can be used to produce visual stimuli that affect balance, but suitable stimuli need to be found. In this study the effect of six different virtual reality stimuli on the balance of 22 healthy test subjects was evaluated using force platform posturography. According to the tests two of the stimuli have a significant effect on balance.

  2. Effect of large deformation and surface stiffening on the transmission of a line load on a neo-Hookean half space.

    PubMed

    Wu, Haibin; Liu, Zezhou; Jagota, Anand; Hui, Chung-Yuen

    2018-03-07

    A line force acting on a soft elastic solid, say due to the surface tension of a liquid drop, can cause significant deformation and the formation of a kink close to the point of force application. Analysis based on linearized elasticity theory shows that sufficiently close to its point of application, the force is borne entirely by the surface stress, not by the elasticity of the substrate; this local balance of three forces is called Neumann's triangle. However, it is not difficult to imagine realistic properties for which this force balance cannot be satisfied. For example, if the line force corresponds to surface tension of water, the numerical values of (unstretched) solid-vapor and solid-liquid surface stresses can easily be such that their sum is insufficient to balance the applied force. In such cases conventional (or naïve) Neumann's triangle of surface forces must break down. Here we study how force balance is rescued from the breakdown of naïve Neumann's triangle by a combination of (a) large hyperelastic deformations of the underlying bulk solid, and (b) increase in surface stress due to surface elasticity (surface stiffening). For a surface with constant surface stress (no surface stiffening), we show that the linearized theory remains accurate if the applied force is less than about 1.3 times the solid surface stress. For a surface in which the surface stress increases linearly with the surface stretch, we find that the Neumann's triangle construction works well as long as we replace the constant surface stress in the naïve Neumann triangle by the actual surface stress underneath the line load.

  3. Assessing the feasibility of hydrate deposition on pipeline walls--adhesion force measurements of clathrate hydrate particles on carbon steel.

    PubMed

    Nicholas, Joseph W; Dieker, Laura E; Sloan, E Dendy; Koh, Carolyn A

    2009-03-15

    Adhesive forces between cyclopentane (CyC5) hydrates and carbon steel (CS) were measured. These forces were found to be substantially lower than CyC5 hydrate-CyC5 hydrate particle measurements and were also lower than ice-CS measurements. The measured adhesive forces were used in a force balance to predict particle removal from the pipeline wall, assuming no free water was present. The force balance predicted entrained hydrate particles of 3 microns and larger diameter would be removed at typical operating flow rates in offshore oil and gas pipelines. These predictions also suggest that hydrate deposition will not occur in stabilized (cold) flow practices.

  4. Home-based balance training using the Wii balance board: a randomized, crossover pilot study in multiple sclerosis.

    PubMed

    Prosperini, Luca; Fortuna, Deborah; Giannì, Costanza; Leonardi, Laura; Marchetti, Maria Rita; Pozzilli, Carlo

    2013-01-01

    To evaluate the effectiveness of a home-based rehabilitation of balance using the Nintendo Wii Balance Board System (WBBS) in patients affected by multiple sclerosis (MS). In this 24-week, randomized, 2-period crossover pilot study, 36 patients having an objective balance disorder were randomly assigned in a 1:1 ratio to 2 counterbalanced arms. Group A started a 12-week period of home-based WBBS training followed by a 12-week period without any intervention; group B received the treatment in reverse order. As endpoints, we considered the mean difference (compared with baseline) in force platform measures (i.e., the displacement of body center of pressure in 30 seconds), 4-step square test (FSST), 25-foot timed walking test (25-FWT), and 29-item MS Impact Scale (MSIS-29), as evaluated after 12 weeks and at the end of the 24-week study period. The 2 groups did not differ in baseline characteristics. Repeated-measures analyses of variance showed significant time × treatment effects, indicating that WBBS was effective in ameliorating force platform measures (F = 4.608, P = .016), FSST (F = 3.745, P = .034), 25-FWT (F = 3.339, P = .048), and MSIS-29 (F = 4.282, P = .023). Five adverse events attributable to the WBSS training (knee or low back pain) were recorded, but only 1 patient had to retire from the study. A home-based WBBS training might potentially provide an effective, engaging, balance rehabilitation solution for people with MS. However, the risk of WBBS training-related injuries should be carefully balanced with benefits. Further studies, including cost-effectiveness analyses, are warranted to establish whether WBBS may be useful in the home setting.

  5. Balancing selection on immunity genes: review of the current literature and new analysis in Drosophila melanogaster.

    PubMed

    Croze, Myriam; Živković, Daniel; Stephan, Wolfgang; Hutter, Stephan

    2016-08-01

    Balancing selection has been widely assumed to be an important evolutionary force, yet even today little is known about its abundance and its impact on the patterns of genetic diversity. Several studies have shown examples of balancing selection in humans, plants or parasites, and many genes under balancing selection are involved in immunity. It has been proposed that host-parasite coevolution is one of the main forces driving immune genes to evolve under balancing selection. In this paper, we review the literature on balancing selection on immunity genes in several organisms, including Drosophila. Furthermore, we performed a genome scan for balancing selection in an African population of Drosophila melanogaster using coalescent simulations of a demographic model with and without selection. We find very few genes under balancing selection and only one novel candidate gene related to immunity. Finally, we discuss the possible causes of the low number of genes under balancing selection. Copyright © 2016 The Authors. Published by Elsevier GmbH.. All rights reserved.

  6. Hemispheric symmetry of the Earth's Energy Balance as a fundamental constraint on the Earth's climate

    NASA Astrophysics Data System (ADS)

    Stephens, G. L.; Webster, P. J.; OBrien, D. M.

    2013-12-01

    We currently lack a quantitative understanding of how the Earth's energy balance and the poleward energy transport adjust to different forcings that determine climate change. Currently, there are no constraints that guide this understanding. We will demonstrate that the Earth's energy balance exhibits a remarkable symmetry about the equator, and that this symmetry is a necessary condition of a steady state climate. Our analysis points to clouds as the principal agent that highly regulates this symmetry and sets the steady state. The existence of this thermodynamic steady-state constraint on climate and the symmetry required to sustain it leads to important inferences about the synchronous nature of climate changes between hemispheres, offering for example insights on mechanisms that can sustain global ice ages forced by asymmetric hemispheric solar radiation variations or how climate may respond to increases in greenhouse gas concentration. Further inferences regarding cloud effects on climate can also be deduced without resorting to the complex and intricate processes of cloud formation, whose representation continues to challenge the climate modeling community. The constraint suggests cloud feedbacks must be negative buffering the system against change. We will show that this constraint doesn't exist in the current CMIP5 model experiments and the lack of such a constraint suggests there is insufficient buffering in models in response to external forcings

  7. The nervous system does not compensate for an acute change in the balance of passive force between synergist muscles.

    PubMed

    Lacourpaille, Lilian; Nordez, Antoine; Hug, François

    2017-10-01

    It is unclear how muscle activation strategies adapt to differential acute changes in the biomechanical characteristics between synergist muscles. This issue is fundamental to understanding the control of almost every joint in the body. The aim of this human experiment was to determine whether the relative activation of the heads of the triceps surae [gastrocnemius medialis (GM), gastrocnemius lateralis (GL) and soleus (SOL)] compensates for differential changes in passive force between these muscles. Twenty-four participants performed isometric ankle plantarflexion at 20 N m and 20% of the active torque measured during a maximal contraction, at three ankle angles (30 deg of plantarflexion, 0 and 25 deg of dorsiflexion; knee fully extended). Myoelectric activity (electromyography, EMG) provided an index of neural drive. Muscle shear modulus (elastography) provided an index of muscle force. Passive dorsiflexion induced a much larger increase in passive shear modulus for GM (+657.6±257.7%) than for GL (+488.7±257.9%) and SOL (+106.6±93.0%). However, the neural drive during submaximal tasks did not compensate for this change in the balance of the passive force. Instead, when considering the contraction at 20% MVC, GL root mean square (RMS) EMG was reduced at both 0 deg (-39.4±34.5%) and 25 deg dorsiflexion (-20.6±58.6%) compared with 30 deg plantarflexion, while GM and SOL RMS EMG did not change. As a result, the GM/GL ratio of shear modulus was higher at 0 deg and 25 deg dorsiflexion than at 30 deg plantarflexion, indicating that the greater the dorsiflexion angle, the stronger the bias of force to GM compared with GL. The magnitude of this change in force balance varied greatly between participants. © 2017. Published by The Company of Biologists Ltd.

  8. A new look at the atomic level virial stress: on continuum-molecular system equivalence

    NASA Astrophysics Data System (ADS)

    Zhou, Min

    2003-09-01

    The virial stress is the most commonly used definition of stress in discrete particle systems. This quantity includes two parts. The first part depends on the mass and velocity (or, in some versions, the fluctuation part of the velocity) of atomic particles, reflecting an assertion that mass transfer causes mechanical stress to be applied on stationary spatial surfaces external to an atomic-particle system. The second part depends on interatomic forces and atomic positions, providing a continuum measure for the internal mechanical interactions between particles. Historic derivations of the virial stress include generalization from the virial theorem of Clausius (1870) for gas pressure and solution of the spatial equation of balance of momentum. The virial stress is stress-like a measure for momentum change in space. This paper shows that, contrary to the generally accepted view, the virial stress is not a measure for mechanical force between material points and cannot be regarded as a measure for mechanical stress in any sense. The lack of physical significance is both at the individual atom level in a time-resolved sense and at the system level in a statistical sense. It is demonstrated that the interatomic force term alone is a valid stress measure and can be identified with the Cauchy stress. The proof in this paper consists of two parts. First, for the simple conditions of rigid translation, uniform tension and tension with thermal oscillations, the virial stress yields clearly erroneous interpretations of stress. Second, the conceptual flaw in the generalization from the virial theorem for gas pressure to stress and the confusion over spatial and material equations of balance of momentum in theoretical derivations of the virial stress that led to its erroneous acceptance as the Cauchy stress are pointed out. Interpretation of the virial stress as a measure for mechanical force violates balance of momentum and is inconsistent with the basic definition of stress. The versions of the virial-stress formula that involve total particle velocity and the thermal fluctuation part of the velocity are demonstrated to be measures of spatial momentum flow relative to, respectively, a fixed reference frame and a moving frame with a velocity equal to the part of particle velocity not included in the virial formula. To further illustrate the irrelevance of mass transfer to the evaluation of stress, an equivalent continuum (EC) for dynamically deforming atomistic particle systems is defined. The equivalence of the continuum to discrete atomic systems includes (i) preservation of linear and angular momenta, (ii) conservation of internal, external and inertial work rates, and (iii) conservation of mass. This equivalence allows fields of work- and momentum-preserving Cauchy stress, surface traction, body force and deformation to be determined. The resulting stress field depends only on interatomic forces, providing an independent proof that as a measure for internal material interaction stress is independent of kinetic energy or mass transfer.

  9. Eddy-resolving simulation of plankton ecosystem dynamics in the California Current System

    NASA Astrophysics Data System (ADS)

    Gruber, Nicolas; Frenzel, Hartmut; Doney, Scott C.; Marchesiello, Patrick; McWilliams, James C.; Moisan, John R.; Oram, John J.; Plattner, Gian-Kasper; Stolzenbach, Keith D.

    2006-09-01

    We study the dynamics of the planktonic ecosystem in the coastal upwelling zone within the California Current System using a three-dimensional (3-D), eddy-resolving circulation model coupled to an ecosystem/biogeochemistry model. The physical model is based on the Regional Oceanic Modeling System (ROMS), configured at a resolution of 15 km for a domain covering the entire US West Coast, with an embedded child grid covering the central California upwelling region at a resolution of 5 km. The model is forced with monthly mean boundary conditions at the open lateral boundaries as well as at the surface. The ecological/biogeochemical model is nitrogen based, includes single classes for phytoplankton and zooplankton, and considers two detrital pools with different sinking speeds. The model also explicitly simulates a variable chlorophyll-to-carbon ratio. Comparisons of model results with either remote sensing observations (AVHRR, SeaWiFS) or in-situ measurements from the CalCOFI program indicate that our model is capable of replicating many of the large-scale, time-averaged features of the coastal upwelling system. An exception is the underestimation of the chlorophyll levels in the northern part of the domain, perhaps because of the lack of short-term variations in the atmospheric forcing. Another shortcoming is that the modeled thermocline is too diffuse, and that the upward slope of the isolines toward the coast is too small. Detailed time-series comparisons with observations from Monterey Bay reveal similar agreements and discrepancies. We attribute the good agreement between the modeled and observed ecological properties in large part to the accuracy of the physical fields. In turn, many of the discrepancies can be traced back to our use of monthly mean forcing. Analysis of the ecosystem structure and dynamics reveal that the magnitude and pattern of phytoplankton biomass in the nearshore region are determined largely by the balance of growth and zooplankton grazing, while in the offshore region, growth is balanced by mortality. The latter appears to be inconsistent with in situ observations and is a result of our consideration of only one zooplankton size class (mesozooplankton), neglecting the importance of microzooplankton grazing in the offshore region. A comparison of the allocation of nitrogen into the different pools of the ecosystem in the 3-D results with those obtained from a box model configuration of the same ecosystem model reveals that only a few components of the ecosystem reach a local steady-state, i.e. where biological sources and sinks balance each other. The balances for the majority of the components are achieved by local biological source and sink terms balancing the net physical divergence, confirming the importance of the 3-D nature of circulation and mixing in a coastal upwelling system.

  10. Wind Energy Management System EMS Integration Project: Incorporating Wind Generation and Load Forecast Uncertainties into Power Grid Operations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Makarov, Yuri V.; Huang, Zhenyu; Etingov, Pavel V.

    2010-01-01

    The power system balancing process, which includes the scheduling, real time dispatch (load following) and regulation processes, is traditionally based on deterministic models. Since the conventional generation needs time to be committed and dispatched to a desired megawatt level, the scheduling and load following processes use load and wind and solar power production forecasts to achieve future balance between the conventional generation and energy storage on the one side, and system load, intermittent resources (such as wind and solar generation), and scheduled interchange on the other side. Although in real life the forecasting procedures imply some uncertainty around the loadmore » and wind/solar forecasts (caused by forecast errors), only their mean values are actually used in the generation dispatch and commitment procedures. Since the actual load and intermittent generation can deviate from their forecasts, it becomes increasingly unclear (especially, with the increasing penetration of renewable resources) whether the system would be actually able to meet the conventional generation requirements within the look-ahead horizon, what the additional balancing efforts would be needed as we get closer to the real time, and what additional costs would be incurred by those needs. To improve the system control performance characteristics, maintain system reliability, and minimize expenses related to the system balancing functions, it becomes necessary to incorporate the predicted uncertainty ranges into the scheduling, load following, and, in some extent, into the regulation processes. It is also important to address the uncertainty problem comprehensively by including all sources of uncertainty (load, intermittent generation, generators’ forced outages, etc.) into consideration. All aspects of uncertainty such as the imbalance size (which is the same as capacity needed to mitigate the imbalance) and generation ramping requirement must be taken into account. The latter unique features make this work a significant step forward toward the objective of incorporating of wind, solar, load, and other uncertainties into power system operations. Currently, uncertainties associated with wind and load forecasts, as well as uncertainties associated with random generator outages and unexpected disconnection of supply lines, are not taken into account in power grid operation. Thus, operators have little means to weigh the likelihood and magnitude of upcoming events of power imbalance. In this project, funded by the U.S. Department of Energy (DOE), a framework has been developed for incorporating uncertainties associated with wind and load forecast errors, unpredicted ramps, and forced generation disconnections into the energy management system (EMS) as well as generation dispatch and commitment applications. A new approach to evaluate the uncertainty ranges for the required generation performance envelope including balancing capacity, ramping capability, and ramp duration has been proposed. The approach includes three stages: forecast and actual data acquisition, statistical analysis of retrospective information, and prediction of future grid balancing requirements for specified time horizons and confidence levels. Assessment of the capacity and ramping requirements is performed using a specially developed probabilistic algorithm based on a histogram analysis, incorporating all sources of uncertainties of both continuous (wind and load forecast errors) and discrete (forced generator outages and start-up failures) nature. A new method called the “flying brick” technique has been developed to evaluate the look-ahead required generation performance envelope for the worst case scenario within a user-specified confidence level. A self-validation algorithm has been developed to validate the accuracy of the confidence intervals.« less

  11. Assessing balance through the use of a low-cost head-mounted display in older adults: a pilot study

    PubMed Central

    Saldana, Santiago J; Marsh, Anthony P; Rejeski, W Jack; Haberl, Jack K; Wu, Peggy; Rosenthal, Scott; Ip, Edward H

    2017-01-01

    Introduction As the population ages, the prevention of falls is an increasingly important public health problem. Balance assessment forms an important component of fall-prevention programs for older adults. The recent development of cost-effective and highly responsive virtual reality (VR) systems means new methods of balance assessment are feasible in a clinical setting. This proof-of-concept study made use of the submillimeter tracking built into modern VR head-mounted displays (VRHMDs) to assess balance through the use of visual–vestibular conflict. The objective of this study was to evaluate the validity, acceptability, and reliability of using a VRHMD to assess balance in older adults. Materials and methods Validity was assessed by comparing measurements from the VRHMD to measurements of postural sway from a force plate. Acceptability was assessed through the use of the Simulator Sickness Questionnaire pre- and postexposure to assess possible side effects of the visual–vestibular conflict. Reliability was assessed by measuring correlations between repeated measurements 1 week apart. Variables of possible importance that were found to be reliable (r≥0.9) between tests separated by a week were then tested for differences compared to a control group. Assessment was performed as a cross-sectional single-site community center-based study in 13 older adults (≥65 years old, 80.2±7.3 years old, 77% female, five at risk of falls, eight controls). The VR balance assessment consisted of four modules: a baseline module, a reaction module, a balance module, and a seated assessment. Results There was a significant difference in the rate at which participants with a risk of falls changed their tilt in the anteroposterior direction compared to the control group. Participants with a risk of falls changed their tilt in the anteroposterior direction at 0.7°/second vs 0.4°/second for those without a history of falls. No significant differences were found between pre/postassessment for oculomotor score or total Simulator Sickness Questionnaire score. Both the force plate and the head-mounted display balance-assessment system were able to detect differences between conditions meant to mask visual and proprioceptive information. Conclusion This VRHMD is both affordable and portable, causes minimal simulator sickness, and produces repeatable results that can be used to assess balance in older adults. PMID:28883717

  12. Assessing balance through the use of a low-cost head-mounted display in older adults: a pilot study.

    PubMed

    Saldana, Santiago J; Marsh, Anthony P; Rejeski, W Jack; Haberl, Jack K; Wu, Peggy; Rosenthal, Scott; Ip, Edward H

    2017-01-01

    As the population ages, the prevention of falls is an increasingly important public health problem. Balance assessment forms an important component of fall-prevention programs for older adults. The recent development of cost-effective and highly responsive virtual reality (VR) systems means new methods of balance assessment are feasible in a clinical setting. This proof-of-concept study made use of the submillimeter tracking built into modern VR head-mounted displays (VRHMDs) to assess balance through the use of visual-vestibular conflict. The objective of this study was to evaluate the validity, acceptability, and reliability of using a VRHMD to assess balance in older adults. Validity was assessed by comparing measurements from the VRHMD to measurements of postural sway from a force plate. Acceptability was assessed through the use of the Simulator Sickness Questionnaire pre- and postexposure to assess possible side effects of the visual-vestibular conflict. Reliability was assessed by measuring correlations between repeated measurements 1 week apart. Variables of possible importance that were found to be reliable ( r ≥0.9) between tests separated by a week were then tested for differences compared to a control group. Assessment was performed as a cross-sectional single-site community center-based study in 13 older adults (≥65 years old, 80.2±7.3 years old, 77% female, five at risk of falls, eight controls). The VR balance assessment consisted of four modules: a baseline module, a reaction module, a balance module, and a seated assessment. There was a significant difference in the rate at which participants with a risk of falls changed their tilt in the anteroposterior direction compared to the control group. Participants with a risk of falls changed their tilt in the anteroposterior direction at 0.7°/second vs 0.4°/second for those without a history of falls. No significant differences were found between pre/postassessment for oculomotor score or total Simulator Sickness Questionnaire score. Both the force plate and the head-mounted display balance-assessment system were able to detect differences between conditions meant to mask visual and proprioceptive information. This VRHMD is both affordable and portable, causes minimal simulator sickness, and produces repeatable results that can be used to assess balance in older adults.

  13. Modeling the Enceladus Plasma and Neutral Torus in Saturn's Inner Magnetosphere

    NASA Astrophysics Data System (ADS)

    Jia, Yingdong; Russell, C. T.; Khurana, K. K.; Gombosi, T. I.

    2010-10-01

    Saturn's moon Enceladus, produces hundreds of kilograms of water vapor every second. These water molecules form a neutral torus which is comparable to the Io torus in the Jovian system. These molecules become ionized producing a plasma disk in the inner magnetosphere of Saturn which exchanges momentum with the "corotating” magnetospheric plasma. To balance the centripetal force of this plasma disk, Saturn's magnetic field is stretched in the radial direction and to accelerate the azimuthal speed to corotational values, the field is stretched in the azimuthal direction. At Enceladus the massive pickup of new ions from its plume slows down the corotating flow and breaks this force balance, causing plasma flows in the radial direction. Such radial flows in the inner magnetosphere of Saturn are supported by Cassini observations using various particle and field instruments. In this study we develop a global model of the inner magnetosphere of Saturn in an attempt to reproduce such processes.

  14. Air Force Journal of Logistics: Logistics Dimensions Improving Bare Base Agile Combat Support, The Path to Integration. Volume 28, Number 2

    DTIC Science & Technology

    2004-01-01

    the system is balanced, there is the right flow of new pilots to match the availability of instructors for initial training missions, the right mix of...which attempted to redesign and streamline the DoD global distribution system , significantly improved delivery time to test locations.4 During its...somewhat confusing priority system that does not guarantee cargo delivery at a specific time and a pricing system that does not adequately differentiate

  15. Nordic Balance: Sweden, a Case Study.

    DTIC Science & Technology

    A strategic appraisal of the Swedish Armed Forces is set against the background of other elements of national power. Although Sweden is a small country, the analysis leads to the conclusion that the strength of the Swedish Armed Forces contributes significantly to the military balance of the Scandinavian region. Situated between the major power blocs represented by NATO and the Warsaw Pact countries, Sweden pursues an alliance-free foreign policy which also enhances regional military/ political stability , termed ’Nordic Balance’. (Modified author abstract)

  16. Powered Upper Limb Orthosis Actuation System Based on Pneumatic Artificial Muscles

    NASA Astrophysics Data System (ADS)

    Chakarov, Dimitar; Veneva, Ivanka; Tsveov, Mihail; Venev, Pavel

    2018-03-01

    The actuation system of a powered upper limb orthosis is studied in the work. To create natural safety in the mutual "man-robot" interaction, an actuation system based on pneumatic artificial muscles (PAM) is selected. Experimentally obtained force/contraction diagrams for bundles, consisting of different number of muscles are shown in the paper. The pooling force and the stiffness of the pneumatic actuators is assessed as a function of the number of muscles in the bundle and the supply pressure. Joint motion and torque is achieved by antagonistic actions through pulleys, driven by bundles of pneumatic muscles. Joint stiffness and joint torques are determined on condition of a power balance, as a function of the joint position, pressure, number of muscles and muscles

  17. Planning and Implementing Total Quality Management in the Royal Australian Air Force: A Multiple Case Study Analysis

    DTIC Science & Technology

    1990-09-01

    change barriers, and necessary checks and balances built into processes. Furthermore, this assessment should address management system variables which...organisation’s 69 immediate product and their worklife . Focus must be maintained on improving RAAF processes. In addition to a quality committee structure as

  18. Shaping abilities of two different engine-driven rotary nickel titanium systems or stainless steel balanced-force technique in mandibular molars.

    PubMed

    Matwychuk, Michael J; Bowles, Walter R; McClanahan, Scott B; Hodges, Jim S; Pesun, Igor J

    2007-07-01

    The purpose of this study was to compare apical transportation, working-length changes, and instrumentation time by using nickel-titanium (Ni-Ti) rotary file systems (crown-down method) or stainless steel hand files (balanced-force technique) in mesiobuccal canals of extracted mandibular molars. The curvature of each canal was determined and teeth placed into three equivalent groups. Group 1 was instrumented with Sequence (Brasseler USA, Savannah, GA) rotary files, group 2 with Liberator (Miltex Inc, York, PA) rotary files, and group 3 with Flex-R (Union Broach, New York, NY) files. Pre- and postoperative radiographs were superimposed to measure loss of working length and apical transportation as shown by changes in radius of curvature and the long-axis canal angle. Sequence rotary files, Liberator rotary files, and Flex-R hand files had similar effects on apical canal transportation and changes in working length, with no significant differences detected among the 3 groups. Hand instrumentation times were longer than with either Ni-Ti rotary group, whereas the rotary NiTi groups had a higher incidence of fracture.

  19. Verifying Magnetic Force on a Conductor

    ERIC Educational Resources Information Center

    Ganci, Salvatore

    2011-01-01

    The laboratory measurement of the magnetic force acting on a straight wire of length "l" carrying a current of intensity "i" in a magnetic field "B" is usually made using current balances, which are offered by various physics apparatus suppliers' catalogues. These balances require an adequate magnet and commonly allow only the measurement of the…

  20. An improved method for determining force balance calibration accuracy

    NASA Technical Reports Server (NTRS)

    Ferris, Alice T.

    1993-01-01

    The results of an improved statistical method used at Langley Research Center for determining and stating the accuracy of a force balance calibration are presented. The application of the method for initial loads, initial load determination, auxiliary loads, primary loads, and proof loads is described. The data analysis is briefly addressed.

  1. The Influence of Subglacial Hydrology on Ice Stream Velocity in a Physical Model

    NASA Astrophysics Data System (ADS)

    Wagman, B. M.; Catania, G.; Buttles, J. L.

    2011-12-01

    We use a physical model to investigate how changes in subglacial hydrology affect ice motion in ice streams found in the West Antarctic Ice Sheet. Ice streams are modeled using silicone polymer placed over a thin water layer to simulate ice flow dominated by basal sliding. Dynamic similarity between modeled and natural ice streams is achieved through direct comparison of the glacier force balance using the conditions on Whillans Ice Stream (WIS) as our goal.This ice stream has a force balance that has evolved through time due to increased basal resistance. Currently, between 50-90% of the driving stress is supported by the ice stream shear margins [Stearns et al., JGlac 2005]. A similar force balance can be achieved in our model with a surface slope of 0.025. We test two hypotheses; 1) the distribution and thickness of the subglacial water layer influences the ice flow speed and thus the force balance and can reproduce the observed slowdown of WIS and; 2) shear margins are locations where transitions in water layer thickness occur.

  2. The Challenge and the Promise: Strengthening the Force, Preventing Suicide and Saving Lives : The Report of the DOD Suicide Prevention Task Force

    DTIC Science & Technology

    2011-01-26

    Balance  The years since 2002 have placed unprecedented demands on our Armed Forces and military families.  Military operational requirements have...of Service Members, leaders, and families to enhance skills Restoring the Balance Chronic Pain Guilt Anger, Shame Exposure to Trauma Sense of...Investigation Boards , placing investigations in Service safety offices, working to get civilian autopsy/investigation data quickly & consistently to

  3. Research of the BWS system for lower extremity rehabilitation robot.

    PubMed

    Zhang, Xiao; Li, Weida; Li, Juan; Cai, Xiaowei

    2017-07-01

    Body weight support (BWS) system is increasingly used in conjunction with treadmills to assist the patients with neurological impairments. Owing to lower limbs of the patients unable to bear the whole weight during the rehabilitation training, some weight can be removed to help the patients recover the basic walking ability gradually. Therefore, considering the man-machine relationship and the effects of the rehabilitation, a wire-driven BWS system is designed. The main unit of the system is an active closed-loop controlled drive to generate the exact desired force. The force acted on the body is through the adjustment of the length of the rope which is connected to the harness worn by the patient. The structure designed in the research is easy to operate to realize the goal of the rehabilitation. To verify the effectiveness and practicability of the BWS system, some experiments have been curried out. From the results, not only the constant unloading force can be realized, but also the response time is limited in a small range which can bring a positive effect on correcting gait, improving balance and reducing muscle spasms. Also, compared to the traditional body weight support system, such as static system or passive elastic system, it has the advantages of the fast response, small errors and constant unloading force.

  4. Numerical Estimation of Balanced and Falling States for Constrained Legged Systems

    NASA Astrophysics Data System (ADS)

    Mummolo, Carlotta; Mangialardi, Luigi; Kim, Joo H.

    2017-08-01

    Instability and risk of fall during standing and walking are common challenges for biped robots. While existing criteria from state-space dynamical systems approach or ground reference points are useful in some applications, complete system models and constraints have not been taken into account for prediction and indication of fall for general legged robots. In this study, a general numerical framework that estimates the balanced and falling states of legged systems is introduced. The overall approach is based on the integration of joint-space and Cartesian-space dynamics of a legged system model. The full-body constrained joint-space dynamics includes the contact forces and moments term due to current foot (or feet) support and another term due to altered contact configuration. According to the refined notions of balanced, falling, and fallen, the system parameters, physical constraints, and initial/final/boundary conditions for balancing are incorporated into constrained nonlinear optimization problems to solve for the velocity extrema (representing the maximum perturbation allowed to maintain balance without changing contacts) in the Cartesian space at each center-of-mass (COM) position within its workspace. The iterative algorithm constructs the stability boundary as a COM state-space partition between balanced and falling states. Inclusion in the resulting six-dimensional manifold is a necessary condition for a state of the given system to be balanced under the given contact configuration, while exclusion is a sufficient condition for falling. The framework is used to analyze the balance stability of example systems with various degrees of complexities. The manifold for a 1-degree-of-freedom (DOF) legged system is consistent with the experimental and simulation results in the existing studies for specific controller designs. The results for a 2-DOF system demonstrate the dependency of the COM state-space partition upon joint-space configuration (elbow-up vs. elbow-down). For both 1- and 2-DOF systems, the results are validated in simulation environments. Finally, the manifold for a biped walking robot is constructed and illustrated against its single-support walking trajectories. The manifold identified by the proposed framework for any given legged system can be evaluated beforehand as a system property and serves as a map for either a specified state or a specific controller's performance.

  5. Defence Test and Evaluation Roadmap

    DTIC Science & Technology

    2008-01-01

    T&E can be employed to prove, demonstrate or assess the ability of proposed and existing capability systems, new or upgraded, to satisfy specified...t&e T&E is a process to obtain information to support the objective assessment of a Capability System with known confidence, and to confirm whether...for the ADF is a ‘balanced, networked, and deployable force, staffed by dedicated and professional people, that operates within a culture of

  6. Feasibility and Efficacy of the Nintendo Wii Gaming System to Improve Balance Performance Post-Stroke: Protocol of a Phase II Randomized Controlled Trial in an Inpatient Rehabilitation Setting.

    PubMed

    Bower, Kelly J; Clark, Ross A; McGinley, Jennifer L; Martin, Clarissa L; Miller, Kimberly J

    2013-04-01

    Balance deficits following stroke are common and debilitating. Commercially available gaming systems, such as the Nintendo(®) (Kyoto, Japan) Wii™, have been widely adopted clinically; however, there is limited evidence supporting their feasibility and efficacy for improving balance performance following stroke. The aim of this trial is to investigate the clinical feasibility and efficacy of using the Nintendo Wii gaming system as an adjunct to standard care to improve balance performance following stroke in an inpatient rehabilitation setting. Thirty participants undergoing inpatient stroke rehabilitation will be recruited into this Phase II, single-blind, randomized controlled trial. Participants will be allocated into a Balance or Upper Limb Group, and both groups will perform activities using the Nintendo Wii in addition to their standard care. Participants will attend three 45-minute sessions per week, for a minimum of 2 and a maximum of 4 weeks. The main focus of the study is to investigate the feasibility of the intervention protocol. This will be evaluated through recruitment, retention, adherence, acceptability, and safety. The Step Test and Functional Reach Test will be the primary efficacy outcomes. Secondary outcomes will include force platform, mobility, and upper limb measures. Assessments will occur at baseline, 2 weeks, and 4 weeks after study entry. To the authors' knowledge, this will be the largest randomized clinical trial to investigate the feasibility and efficacy of the Nintendo Wii gaming system for improving balance performance in a stroke population. The results will inform the design of a Phase III multicenter trial.

  7. Automatic recognition of falls in gait-slip training: Harness load cell based criteria.

    PubMed

    Yang, Feng; Pai, Yi-Chung

    2011-08-11

    Over-head-harness systems, equipped with load cell sensors, are essential to the participants' safety and to the outcome assessment in perturbation training. The purpose of this study was to first develop an automatic outcome recognition criterion among young adults for gait-slip training and then verify such criterion among older adults. Each of 39 young and 71 older subjects, all protected by safety harness, experienced 8 unannounced, repeated slips, while walking on a 7m walkway. Each trial was monitored with a motion capture system, bilateral ground reaction force (GRF), harness force, and video recording. The fall trials were first unambiguously indentified with careful visual inspection of all video records. The recoveries without balance loss (in which subjects' trailing foot landed anteriorly to the slipping foot) were also first fully recognized from motion and GRF analyses. These analyses then set the gold standard for the outcome recognition with load cell measurements. Logistic regression analyses based on young subjects' data revealed that the peak load cell force was the best predictor of falls (with 100% accuracy) at the threshold of 30% body weight. On the other hand, the peak moving average force of load cell across 1s period, was the best predictor (with 100% accuracy) separating recoveries with backward balance loss (in which the recovery step landed posterior to slipping foot) from harness assistance at the threshold of 4.5% body weight. These threshold values were fully verified using the data from older adults (100% accuracy in recognizing falls). Because of the increasing popularity in the perturbation training coupling with the protective over-head-harness system, this new criterion could have far reaching implications in automatic outcome recognition during the movement therapy. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. AUTOMATIC RECOGNITION OF FALLS IN GAIT-SLIP: A HARNESS LOAD CELL BASED CRITERION

    PubMed Central

    Yang, Feng; Pai, Yi-Chung

    2012-01-01

    Over-head-harness systems, equipped with load cell sensors, are essential to the participants’ safety and to the outcome assessment in perturbation training. The purpose of this study was to first develop an automatic outcome recognition criterion among young adults for gait-slip training and then verify such criterion among older adults. Each of 39 young and 71 older subjects, all protected by safety harness, experienced 8 unannounced, repeated slips, while walking on a 7-m walkway. Each trial was monitored with a motion capture system, bilateral ground reaction force (GRF), harness force and video recording. The fall trials were first unambiguously indentified with careful visual inspection of all video records. The recoveries without balance loss (in which subjects’ trailing foot landed anteriorly to the slipping foot) were also first fully recognized from motion and GRF analyses. These analyses then set the gold standard for the outcome recognition with load cell measurements. Logistic regression analyses based on young subjects’ data revealed that peak load cell force was the best predictor of falls (with 100% accuracy) at the threshold of 30% body weight. On the other hand, the peak moving average force of load cell across 1-s period, was the best predictor (with 100% accuracy) separating recoveries with backward balance loss (in which the recovery step landed posterior to slipping foot) from harness assistance at the threshold of 4.5% body weight. These threshold values were fully verified using the data from older adults (100% accuracy in recognizing falls). Because of the increasing popularity in the perturbation training coupling with the protective over-head-harness system, this new criterion could have far reaching implications in automatic outcome recognition during the movement therapy. PMID:21696744

  9. Derivation of energy-based base shear force coefficient considering hysteretic behavior and P-delta effects

    NASA Astrophysics Data System (ADS)

    Ucar, Taner; Merter, Onur

    2018-01-01

    A modified energy-balance equation accounting for P-delta effects and hysteretic behavior of reinforced concrete members is derived. Reduced hysteretic properties of structural components due to combined stiffness and strength degradation and pinching effects, and hysteretic damping are taken into account in a simple manner by utilizing plastic energy and seismic input energy modification factors. Having a pre-selected yield mechanism, energy balance of structure in inelastic range is considered. P-delta effects are included in derived equation by adding the external work of gravity loads to the work of equivalent inertia forces and equating the total external work to the modified plastic energy. Earthquake energy input to multi degree of freedom (MDOF) system is approximated by using the modal energy-decomposition. Energy-based base shear coefficients are verified by means of both pushover analysis and nonlinear time history (NLTH) analysis of several RC frames having different number of stories. NLTH analyses of frames are performed by using the time histories of ten scaled ground motions compatible with elastic design acceleration spectrum and fulfilling duration/amplitude related requirements of Turkish Seismic Design Code. The observed correlation between energy-based base shear force coefficients and the average base shear force coefficients of NLTH analyses provides a reasonable confidence in estimation of nonlinear base shear force capacity of frames by using the derived equation.

  10. The braking force in walking: age-related differences and improvement in older adults with exergame training.

    PubMed

    Maillot, Pauline; Perrot, Alexandra; Hartley, Alan; Do, Manh-Cuong

    2014-10-01

    The purposes of this present research were, in the first study, to determine whether age impacts a measure of postural control (the braking force in walking) and, in a second study, to determine whether exergame training in physically-simulated sport activity would show transfer, increasing the braking force in walking and also improving balance assessed by clinical measures, functional fitness, and health-related quality of life in older adults. For the second study, the authors developed an active video game training program (using the Wii system) with a pretest-training-posttest design comparing an experimental group (24 1-hr sessions of training) with a control group. Participants completed a battery comprising balance (braking force in short and normal step conditions), functional fitness (Senior Fitness Test), and health-related quality of life (SF-36). Results show that 12 weeks of video game-based exercise program training improved the braking force in the normal step condition, along with the functional fitness of lower limb strength, cardiovascular endurance, and motor agility, as measured by the Senior Fitness Test. Only the global mental dimension of the SF-36 was sensitive to exergame practice. Exergames appear to be an effective way to train postural control in older adults. Because of the multimodal nature of the activity, exergames provide an effective tool for remediation of age-related problems.

  11. Self-bound droplets of a dilute magnetic quantum liquid

    NASA Astrophysics Data System (ADS)

    Schmitt, Matthias; Wenzel, Matthias; Böttcher, Fabian; Ferrier-Barbut, Igor; Pfau, Tilman

    2016-11-01

    Self-bound many-body systems are formed through a balance of attractive and repulsive forces and occur in many physical scenarios. Liquid droplets are an example of a self-bound system, formed by a balance of the mutual attractive and repulsive forces that derive from different components of the inter-particle potential. It has been suggested that self-bound ensembles of ultracold atoms should exist for atom number densities that are 108 times lower than in a helium droplet, which is formed from a dense quantum liquid. However, such ensembles have been elusive up to now because they require forces other than the usual zero-range contact interaction, which is either attractive or repulsive but never both. On the basis of the recent finding that an unstable bosonic dipolar gas can be stabilized by a repulsive many-body term, it was predicted that three-dimensional self-bound quantum droplets of magnetic atoms should exist. Here we report the observation of such droplets in a trap-free levitation field. We find that this dilute magnetic quantum liquid requires a minimum, critical number of atoms, below which the liquid evaporates into an expanding gas as a result of the quantum pressure of the individual constituents. Consequently, around this critical atom number we observe an interaction-driven phase transition between a gas and a self-bound liquid in the quantum degenerate regime with ultracold atoms. These droplets are the dilute counterpart of strongly correlated self-bound systems such as atomic nuclei and helium droplets.

  12. Self-bound droplets of a dilute magnetic quantum liquid.

    PubMed

    Schmitt, Matthias; Wenzel, Matthias; Böttcher, Fabian; Ferrier-Barbut, Igor; Pfau, Tilman

    2016-11-10

    Self-bound many-body systems are formed through a balance of attractive and repulsive forces and occur in many physical scenarios. Liquid droplets are an example of a self-bound system, formed by a balance of the mutual attractive and repulsive forces that derive from different components of the inter-particle potential. It has been suggested that self-bound ensembles of ultracold atoms should exist for atom number densities that are 10 8 times lower than in a helium droplet, which is formed from a dense quantum liquid. However, such ensembles have been elusive up to now because they require forces other than the usual zero-range contact interaction, which is either attractive or repulsive but never both. On the basis of the recent finding that an unstable bosonic dipolar gas can be stabilized by a repulsive many-body term, it was predicted that three-dimensional self-bound quantum droplets of magnetic atoms should exist. Here we report the observation of such droplets in a trap-free levitation field. We find that this dilute magnetic quantum liquid requires a minimum, critical number of atoms, below which the liquid evaporates into an expanding gas as a result of the quantum pressure of the individual constituents. Consequently, around this critical atom number we observe an interaction-driven phase transition between a gas and a self-bound liquid in the quantum degenerate regime with ultracold atoms. These droplets are the dilute counterpart of strongly correlated self-bound systems such as atomic nuclei and helium droplets.

  13. Balance versus resistance training on postural control in patients with Parkinson's disease: a randomized controlled trial.

    PubMed

    Santos, Suhaila M; da Silva, Rubens A; Terra, Marcelle B; Almeida, Isabela A; de Melo, Lúcio B; Ferraz, Henrique B

    2017-04-01

    Evidences have shown that physiotherapy programs may improve the balance of individuals with Parkinson's disease (PD), although it is not clear which specific exercise program is better. The aim of this study was to compare the effectiveness of balance versus resistance training on postural control measures in PD patients. Randomized controlled trial. The study was conducted in a physiotherapy outpatient clinic of a university hospital. A total of 40 PD participants were randomly divided into two groups: balance training (BT) and resistance training (RT). The BT group focused on balance training, functional independence and gait while the RT group performed resistance exercises emphasizing the lower limbs and trunk, both supervised by trained physiotherapists. Therapy sessions were held twice a week (at 60 minutes), totaling 24 sessions. The primary outcome was evaluated by force platform with center of pressure sway measures in different balance conditions and the secondary outcome was evaluated by Balance Evaluation Systems Test (BESTest) scale to determine the effects of the intervention on postural control. Significant improvement of postural control (pre vs. post 15.1 vs. 9.6 cm2) was only reported in favor of BT group (d=1.17) for one-legged stand condition on force platform. The standardized mean difference between groups was significantly (P<0.02), with 36% of improvement for BT vs. 0.07% for RT on this condition. Significant improvement (P<0.05) was also observed in favor of BT (in mean 3.2%) for balance gains in some BESTest scores, when compared to RT group (-0.98%). Postural control in Parkinson's disease is improved when training by a directional and specific balance program than a resistance training program. Balance training is superior to resistance training in regard to improving postural control of individuals with PD. Gold standard instruments (high in cost and difficult to access) were used to assess balance, as well as scales with clinical applicability (low cost, easily acceptable, applicable and valid), which can guide the management of physiotherapists both in their decision-making and in clinical practice.

  14. Force balance on two-dimensional superconductors with a single moving vortex

    NASA Astrophysics Data System (ADS)

    Chung, Chun Kit; Arahata, Emiko; Kato, Yusuke

    2014-03-01

    We study forces on two-dimensional superconductors with a single moving vortex based on a recent fully self-consistent calculation of DC conductivity in an s-wave superconductor (E. Arahata and Y. Kato, arXiv:1310.0566). By considering momentum balance of the whole liquid, we attempt to identify various contributions to the total transverse force on the vortex. This provides an estimation of the effective Magnus force based on the quasiclassical theory generalized by Kita [T. Kita, Phys. Rev. B, 64, 054503 (2001)], which allows for the Hall effect in vortex states.

  15. Broken detailed balance and non-equilibrium dynamics in living systems: a review

    NASA Astrophysics Data System (ADS)

    Gnesotto, F. S.; Mura, F.; Gladrow, J.; Broedersz, C. P.

    2018-06-01

    Living systems operate far from thermodynamic equilibrium. Enzymatic activity can induce broken detailed balance at the molecular scale. This molecular scale breaking of detailed balance is crucial to achieve biological functions such as high-fidelity transcription and translation, sensing, adaptation, biochemical patterning, and force generation. While biological systems such as motor enzymes violate detailed balance at the molecular scale, it remains unclear how non-equilibrium dynamics manifests at the mesoscale in systems that are driven through the collective activity of many motors. Indeed, in several cellular systems the presence of non-equilibrium dynamics is not always evident at large scales. For example, in the cytoskeleton or in chromosomes one can observe stationary stochastic processes that appear at first glance thermally driven. This raises the question how non-equilibrium fluctuations can be discerned from thermal noise. We discuss approaches that have recently been developed to address this question, including methods based on measuring the extent to which the system violates the fluctuation-dissipation theorem. We also review applications of this approach to reconstituted cytoskeletal networks, the cytoplasm of living cells, and cell membranes. Furthermore, we discuss a more recent approach to detect actively driven dynamics, which is based on inferring broken detailed balance. This constitutes a non-invasive method that uses time-lapse microscopy data, and can be applied to a broad range of systems in cells and tissue. We discuss the ideas underlying this method and its application to several examples including flagella, primary cilia, and cytoskeletal networks. Finally, we briefly discuss recent developments in stochastic thermodynamics and non-equilibrium statistical mechanics, which offer new perspectives to understand the physics of living systems.

  16. Broken detailed balance and non-equilibrium dynamics in living systems: a review.

    PubMed

    Gnesotto, F S; Mura, F; Gladrow, J; Broedersz, C P

    2018-06-01

    Living systems operate far from thermodynamic equilibrium. Enzymatic activity can induce broken detailed balance at the molecular scale. This molecular scale breaking of detailed balance is crucial to achieve biological functions such as high-fidelity transcription and translation, sensing, adaptation, biochemical patterning, and force generation. While biological systems such as motor enzymes violate detailed balance at the molecular scale, it remains unclear how non-equilibrium dynamics manifests at the mesoscale in systems that are driven through the collective activity of many motors. Indeed, in several cellular systems the presence of non-equilibrium dynamics is not always evident at large scales. For example, in the cytoskeleton or in chromosomes one can observe stationary stochastic processes that appear at first glance thermally driven. This raises the question how non-equilibrium fluctuations can be discerned from thermal noise. We discuss approaches that have recently been developed to address this question, including methods based on measuring the extent to which the system violates the fluctuation-dissipation theorem. We also review applications of this approach to reconstituted cytoskeletal networks, the cytoplasm of living cells, and cell membranes. Furthermore, we discuss a more recent approach to detect actively driven dynamics, which is based on inferring broken detailed balance. This constitutes a non-invasive method that uses time-lapse microscopy data, and can be applied to a broad range of systems in cells and tissue. We discuss the ideas underlying this method and its application to several examples including flagella, primary cilia, and cytoskeletal networks. Finally, we briefly discuss recent developments in stochastic thermodynamics and non-equilibrium statistical mechanics, which offer new perspectives to understand the physics of living systems.

  17. Load Balancing Strategies for Multiphase Flows on Structured Grids

    NASA Astrophysics Data System (ADS)

    Olshefski, Kristopher; Owkes, Mark

    2017-11-01

    The computation time required to perform large simulations of complex systems is currently one of the leading bottlenecks of computational research. Parallelization allows multiple processing cores to perform calculations simultaneously and reduces computational times. However, load imbalances between processors waste computing resources as processors wait for others to complete imbalanced tasks. In multiphase flows, these imbalances arise due to the additional computational effort required at the gas-liquid interface. However, many current load balancing schemes are only designed for unstructured grid applications. The purpose of this research is to develop a load balancing strategy while maintaining the simplicity of a structured grid. Several approaches are investigated including brute force oversubscription, node oversubscription through Message Passing Interface (MPI) commands, and shared memory load balancing using OpenMP. Each of these strategies are tested with a simple one-dimensional model prior to implementation into the three-dimensional NGA code. Current results show load balancing will reduce computational time by at least 30%.

  18. Bubble dynamics in microchannels: inertial and capillary migration forces

    NASA Astrophysics Data System (ADS)

    Rivero-Rodriguez, Javier; Scheid, Benoit

    2018-05-01

    This work focuses on the dynamics of a train of unconfined bubbles flowing in microchan- nels. We investigate the transverse position of a train of bubbles, its velocity and the associated pressure drop when flowing in a microchannel depending on the internal forces due to viscosity, inertia and capillarity. Despite the small scales of the system, inertia, referred to as inertial migration force, play a crucial role in determining the transverse equilibrium position of the bubbles. Beside inertia and viscosity, other effects may also affect the transverse migration of bubbles such as the Marangoni surface stresses and the surface deformability. We look at the influence of surfactants in the limit of infinite Marangoni effect which yields rigid bubble interface. The resulting migration force may balance external body forces if present such as buoyancy, Dean or magnetic ones. This balance not only determines the transverse position of the bubbles but, consequently, the surrounding flow structure, which can be determinant for any mass/heat transfer process involved. Finally, we look at the influence of the bubble deformation on the equilibrium position and compare it to the inertial migration force at the centred position, explaining the stable or unstable character of this position accordingly. A systematic study of the influence of the parameters - such as the bubble size, uniform body force, Reynolds and capillary numbers - has been carried out using numerical simulations based on the Finite Element Method, solving the full steady Navier-Stokes equations and its asymptotic counterpart for the limits of small Reynolds and/or capillary numbers.

  19. Relative performance of empirical and physical models in assessing the seasonal and annual glacier surface mass balance of Saint-Sorlin Glacier (French Alps)

    NASA Astrophysics Data System (ADS)

    Réveillet, Marion; Six, Delphine; Vincent, Christian; Rabatel, Antoine; Dumont, Marie; Lafaysse, Matthieu; Morin, Samuel; Vionnet, Vincent; Litt, Maxime

    2018-04-01

    This study focuses on simulations of the seasonal and annual surface mass balance (SMB) of Saint-Sorlin Glacier (French Alps) for the period 1996-2015 using the detailed SURFEX/ISBA-Crocus snowpack model. The model is forced by SAFRAN meteorological reanalysis data, adjusted with automatic weather station (AWS) measurements to ensure that simulations of all the energy balance components, in particular turbulent fluxes, are accurately represented with respect to the measured energy balance. Results indicate good model performance for the simulation of summer SMB when using meteorological forcing adjusted with in situ measurements. Model performance however strongly decreases without in situ meteorological measurements. The sensitivity of the model to meteorological forcing indicates a strong sensitivity to wind speed, higher than the sensitivity to ice albedo. Compared to an empirical approach, the model exhibited better performance for simulations of snow and firn melting in the accumulation area and similar performance in the ablation area when forced with meteorological data adjusted with nearby AWS measurements. When such measurements were not available close to the glacier, the empirical model performed better. Our results suggest that simulations of the evolution of future mass balance using an energy balance model require very accurate meteorological data. Given the uncertainties in the temporal evolution of the relevant meteorological variables and glacier surface properties in the future, empirical approaches based on temperature and precipitation could be more appropriate for simulations of glaciers in the future.

  20. Biomechanical influences on balance recovery by stepping.

    PubMed

    Hsiao, E T; Robinovitch, S N

    1999-10-01

    Stepping represents a common means for balance recovery after a perturbation to upright posture. Yet little is known regarding the biomechanical factors which determine whether a step succeeds in preventing a fall. In the present study, we developed a simple pendulum-spring model of balance recovery by stepping, and used this to assess how step length and step contact time influence the effort (leg contact force) and feasibility of balance recovery by stepping. We then compared model predictions of step characteristics which minimize leg contact force to experimentally observed values over a range of perturbation strengths. At all perturbation levels, experimentally observed step execution times were higher than optimal, and step lengths were smaller than optimal. However, the predicted increase in leg contact force associated with these deviations was substantial only for large perturbations. Furthermore, increases in the strength of the perturbation caused subjects to take larger, quicker steps, which reduced their predicted leg contact force. We interpret these data to reflect young subjects' desire to minimize recovery effort, subject to neuromuscular constraints on step execution time and step length. Finally, our model predicts that successful balance recovery by stepping is governed by a coupling between step length, step execution time, and leg strength, so that the feasibility of balance recovery decreases unless declines in one capacity are offset by enhancements in the others. This suggests that one's risk for falls may be affected more by small but diffuse neuromuscular impairments than by larger impairment in a single motor capacity.

  1. Reliability of Single-Leg Balance and Landing Tests in Rugby Union; Prospect of Using Postural Control to Monitor Fatigue.

    PubMed

    Troester, Jordan C; Jasmin, Jason G; Duffield, Rob

    2018-06-01

    The present study examined the inter-trial (within test) and inter-test (between test) reliability of single-leg balance and single-leg landing measures performed on a force plate in professional rugby union players using commercially available software (SpartaMARS, Menlo Park, USA). Twenty-four players undertook test - re-test measures on two occasions (7 days apart) on the first training day of two respective pre-season weeks following 48h rest and similar weekly training loads. Two 20s single-leg balance trials were performed on a force plate with eyes closed. Three single-leg landing trials were performed by jumping off two feet and landing on one foot in the middle of a force plate 1m from the starting position. Single-leg balance results demonstrated acceptable inter-trial reliability (ICC = 0.60-0.81, CV = 11-13%) for sway velocity, anterior-posterior sway velocity, and mediolateral sway velocity variables. Acceptable inter-test reliability (ICC = 0.61-0.89, CV = 7-13%) was evident for all variables except mediolateral sway velocity on the dominant leg (ICC = 0.41, CV = 15%). Single-leg landing results only demonstrated acceptable inter-trial reliability for force based measures of relative peak landing force and impulse (ICC = 0.54-0.72, CV = 9-15%). Inter-test results indicate improved reliability through the averaging of three trials with force based measures again demonstrating acceptable reliability (ICC = 0.58-0.71, CV = 7-14%). Of the variables investigated here, total sway velocity and relative landing impulse are the most reliable measures of single-leg balance and landing performance, respectively. These measures should be considered for monitoring potential changes in postural control in professional rugby union.

  2. Ephemeral penalty functions for contact-impact dynamics

    NASA Technical Reports Server (NTRS)

    De La Fuente, Horacio M.; Felippa, Carlos A.

    1991-01-01

    The use of penalty functions to treat a class of structural contact-impact problems is investigated, with emphasis on ones in which the impact phenomena are primarily nondestructive in nature and in which only the gross characterization of the response is required. The dynamic equations of motion are integrated by the difference method. The penalty is represented as an ephemeral fictitious nonlinear spring that is inserted on anticipation of contact. The magnitude and variation of the penalty force is determined through energy balancing considerations. The 'bell shape' of the penalty force function for positive gap was found to be satisfactory, as it depends on only two parameters that can be directly assigned the physical meaning of force and distance. The determination of force law parameters by energy balance worked well. The incorporation of restitution coefficients by the area balancing method yielded excellent results, and no substantial modifications are anticipated. Extensional penalty springs are obviously sufficient for the simple examples treated.

  3. Analysis of a six-component, flow-through, strain-gage, force balance used for hypersonic wind tunnel models with scramjet exhaust flow simulation. M.S. Thesis Final Report

    NASA Technical Reports Server (NTRS)

    Kniskern, Marc W.

    1990-01-01

    The thermal effects of simulant gas injection and aerodynamic heating at the model's surface on the measurements of a non-watercooled, flow through balance were investigated. A stainless steel model of a hypersonic air breathing propulsion cruise missile concept (HAPCM-50) was used to evaluate this balance. The tests were conducted in the 20-inch Mach 6 wind tunnel at NASA-Langley. The balance thermal effects were evaluated at freestream Reynolds numbers ranging from .5 to 7 x 10(exp 6) ft and angles of attack between -3.5 to 5 deg at Mach 6. The injection gases considered included cold air, hot air, and a mixture of 50 percent Argon and 50 percent Freon-12. The stagnation temperatures of the cold air, hot air, and Ar-Fr(12) reached 111, 214, and 283 F, respectively within the balance. A bakelite sleeve was inserted into the inner tube of the balance to minimize the thermal effects of these injection gases. Throughout the tests, the normal force, side force, yaw moment, roll moment, and pitching moment balance measurements were unaffected by the balance thermal effects of the injection gases and the wind tunnel flow. However, the axial force (AF) measurement was significantly affected by balance heating. The average zero shifts in the AF measurements were 1.9, 3.8, and 5.9 percent for cold air, hot air, and Ar-Fr(12) injection, respectively. The AF measurements decreased throughout these tests which lasted from 70 to 110 seconds. During the cold air injection tests, the AF measurements were accurate up to at least ten seconds after the model was injected into the wind tunnel test section. For the hot air and Ar-Fr(12) tests, the AF measurements were accurate up to at least five seconds after model injection.

  4. Ion-Neutral Coupling in Solar Prominences

    NASA Technical Reports Server (NTRS)

    Gilbert, Holly

    2011-01-01

    Interactions between ions and neutrals in a partially ionized plasma are important throughout heliophysics, including near the solar surface in prominences. Understanding how ion-neutral coupling affects formation, support, structure, and dynamics of prominences will advance our physical understanding of magnetized systems involving a transition from a weakly ionized dense gas to a fully ionized tenuous plasma. We address the fundamental physics of prominence support, which is normally described in terms of a magnetic force on the prominence plasma that balances the solar gravitational force, and the implications for observations. Because the prominence plasma is only partially ionized, it is necessary to consider the support of the both the ionized and neutral components. Support of the neutrals is accomplished through a frictional interaction between the neutral and ionized components of the plasma, and its efficacy depends strongly on the degree of ionization of the plasma. More specifically, the frictional force is proportional to the relative flow of neutral and ion species, and for a sufficiently weakly ionized plasma, this flow must be relatively large to produce a frictional force that balances gravity. A large relative flow, of course, implies significant draining of neutral particles from the prominence. We evaluate the importance of this draining effect for a hydrogen-helium plasma, and consider the observational evidence for cross-field diffusion of neutral prominence material.

  5. A Force Transducer from a Junk Electronic Balance

    ERIC Educational Resources Information Center

    Aguilar, Horacio Munguia; Aguilar, Francisco Armenta

    2009-01-01

    It is shown how the load cell from a junk electronic balance can be used as a force transducer for physics experiments. Recovering this device is not only an inexpensive way of getting a valuable laboratory tool but also very useful didactic work on electronic instrumentation. Some experiments on mechanics with this transducer are possible after a…

  6. People First Mission Always: A Historical Examination of the Need to Find the Balance Between Protecting the Force and Achieving the Mission

    DTIC Science & Technology

    2013-06-13

    PEOPLE FIRST, MISSION ALWAYS: A HISTORICAL EXAMINATION OF THE NEED TO FIND THE BALANCE BETWEEN PROTECTING THE FORCE AND ACHIEVING THE...MISSION A thesis presented to the Faculty of the U.S. Army Command and General Staff College in partial fulfillment of the requirements

  7. Disentangling the Roles of Atmospheric and Oceanic Forcing on the Last Deglaciation of the Greenland Ice Sheet

    NASA Astrophysics Data System (ADS)

    Keisling, B. A.; Deconto, R. M.

    2017-12-01

    Today the Greenland Ice Sheet loses mass via both oceanic and atmospheric processes. However, the relative importance of these mass balance components is debated, especially their potential impact on ongoing and future mass imbalance. Discerning the impact of oceanic versus atmospheric forcing during past periods of mass loss provides potential insight into the future behavior of the ice sheet. Here we present an ensemble of Greenland Ice Sheet simulations of the last deglaciation, designed to assess separately the roles of the ocean and the atmosphere in driving mass loss over the last twenty thousand years. We use twenty-eight different ocean forcing scenarios along with a cutting-edge reconstruction of time-evolving atmospheric conditions based on climate model output and δ15N-based temperature reconstructions to generate a range of ice-sheet responses during the deglaciation. We then compare the simulated timing of ice-retreat in individual catchments with estimates based on both 10Be (exposure) and 14C (minimum-limiting) dates. These experiments allow us to identify the ocean forcing scenario that best match the data on a local-to-regional (i.e., 100-1000 km) scales, providing an assessment of the relative importance of ocean and atmospheric forcing components around the periphery of Greenland. We use these simulations to quantify the importance of the three major mass balance terms (calving, oceanic melting, and surface melting) and assess the uncertainty of the relative influence of these factors during the most recent periods of major ice loss. Our results show that mass balance components around different sectors of the ice sheet respond differently to forcing, with oceanic components driving the majority of retreat in south and east Greenland and atmospheric forcing dominating in west and north Greenland In addition, we target three areas at high spatial resolution ( 1 km) around Greenland currently undergoing substantial change (Jakobshavn, Petermann, and Nioghalvfjerdsfjord/Zakariae) to directly compare simulated deglacial retreat rates with those implied by submarine and subaerial moraine systems.

  8. Self-similarity and scaling transitions during rupture of thin free films of Newtonian fluids

    NASA Astrophysics Data System (ADS)

    Thete, Sumeet Suresh; Anthony, Christopher; Doshi, Pankaj; Harris, Michael T.; Basaran, Osman A.

    2016-09-01

    Rupture of thin liquid films is crucial in many industrial applications and nature such as foam stability in oil-gas separation units, coating flows, polymer processing, and tear films in the eye. In some of these situations, a liquid film may have two free surfaces (referred to here as a free film or a sheet) as opposed to a film deposited on a solid substrate that has one free surface. The rupture of such a free film or a sheet of a Newtonian fluid is analyzed under the competing influences of inertia, viscous stress, van der Waals pressure, and capillary pressure by solving a system of spatially one-dimensional evolution equations for film thickness and lateral velocity. The dynamics close to the space-time singularity where the film ruptures is asymptotically self-similar and, therefore, the problem is also analyzed by reducing the transient partial differential evolution equations to a corresponding set of ordinary differential equations in similarity space. For sheets with negligible inertia, it is shown that the dominant balance of forces involves solely viscous and van der Waals forces, with capillary force remaining negligible throughout the thinning process in a viscous regime. On the other hand, for a sheet of an inviscid fluid for which the effect of viscosity is negligible, it is shown that the dominant balance of forces is between inertial, capillary, and van der Waals forces as the film evolves towards rupture in an inertial regime. Real fluids, however, have finite viscosity. Hence, for real fluids, it is further shown that the viscous and the inertial regimes are only transitory and can only describe the initial thinning dynamics of highly viscous and slightly viscous sheets, respectively. Moreover, regardless of the fluid's viscosity, it is shown that for sheets that initially thin in either of these two regimes, their dynamics transition to a late stage or final inertial-viscous regime in which inertial, viscous, and van der Waals forces balance each other while capillary force remains negligible, in accordance with the results of Vaynblat, Lister, and Witelski.

  9. A thickness-weighted average perspective of force balance in an idealized circumpolar current

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ringler, Todd Darwin; Saenz, Juan Antonio; Wolfram, Jr., Phillip Justin

    The exact, three-dimensional thickness-weighted averaged (TWA) Boussinesq equations are used to diagnose eddy-mean flow interaction in an idealized circumpolar current (ICC). The force exerted by mesoscale eddies on the TWA velocity is expressed as the divergence of the Eliassen-Palm flux tensor. Consistent with previous findings, the analysis indicates that the dynamically relevant definition of the ocean surface layer is comprised of the set of buoyancy coordinates that ever reside at the ocean surface at a given horizontal position. The surface layer is found to be a physically distinct object with a diabatic- and force-balance that is largely isolated from themore » underlying adiabatic region in the interior. Within the ICC surface layer, the TWA meridional velocity is southward/northward in the top/bottom half, and has a value near zero at the bottom. In the top half of the surface layer, the zonal forces due to wind stress and meridional advection of potential vorticity act to accelerate the TWA zonal velocity; equilibrium is obtained by eddies decelerating the zonal flow via a downward flux of eastward momentum that increases with depth. In the bottom half of the surface layer, the accelerating force of the wind stress is balanced by the eddy force and meridional advection of potential vorticity. The bottom of the surface layer coincides with the location where the zonal eddy force, meridional advection of potential vorticity and zonal wind stress force are all zero. The net meridional transport, S f, within the surface layer is a small residual of its southward and northward TWA meridional flows. Furthermore, the mean meridional gradient of surface-layer buoyancy is advected by S f to balance the surface buoyancy fluxs.« less

  10. A thickness-weighted average perspective of force balance in an idealized circumpolar current

    DOE PAGES

    Ringler, Todd Darwin; Saenz, Juan Antonio; Wolfram, Jr., Phillip Justin; ...

    2016-11-22

    The exact, three-dimensional thickness-weighted averaged (TWA) Boussinesq equations are used to diagnose eddy-mean flow interaction in an idealized circumpolar current (ICC). The force exerted by mesoscale eddies on the TWA velocity is expressed as the divergence of the Eliassen-Palm flux tensor. Consistent with previous findings, the analysis indicates that the dynamically relevant definition of the ocean surface layer is comprised of the set of buoyancy coordinates that ever reside at the ocean surface at a given horizontal position. The surface layer is found to be a physically distinct object with a diabatic- and force-balance that is largely isolated from themore » underlying adiabatic region in the interior. Within the ICC surface layer, the TWA meridional velocity is southward/northward in the top/bottom half, and has a value near zero at the bottom. In the top half of the surface layer, the zonal forces due to wind stress and meridional advection of potential vorticity act to accelerate the TWA zonal velocity; equilibrium is obtained by eddies decelerating the zonal flow via a downward flux of eastward momentum that increases with depth. In the bottom half of the surface layer, the accelerating force of the wind stress is balanced by the eddy force and meridional advection of potential vorticity. The bottom of the surface layer coincides with the location where the zonal eddy force, meridional advection of potential vorticity and zonal wind stress force are all zero. The net meridional transport, S f, within the surface layer is a small residual of its southward and northward TWA meridional flows. Furthermore, the mean meridional gradient of surface-layer buoyancy is advected by S f to balance the surface buoyancy fluxs.« less

  11. Force fields of charged particles in micro-nanofluidic preconcentration systems

    NASA Astrophysics Data System (ADS)

    Gong, Lingyan; Ouyang, Wei; Li, Zirui; Han, Jongyoon

    2017-12-01

    Electrokinetic concentration devices based on the ion concentration polarization (ICP) phenomenon have drawn much attention due to their simple setup, high enrichment factor, and easy integration with many subsequent processes, such as separation, reaction, and extraction etc. Despite significant progress in the experimental research, fundamental understanding and detailed modeling of the preconcentration systems is still lacking. The mechanism of the electrokinetic trapping of charged particles is currently limited to the force balance analysis between the electric force and fluid drag force in an over-simplified one-dimensional (1D) model, which misses many signatures of the actual system. This letter studies the particle trapping phenomena that are not explainable in the 1D model through the calculation of the two-dimensional (2D) force fields. The trapping of charged particles is shown to significantly distort the electric field and fluid flow pattern, which in turn leads to the different trapping behaviors of particles of different sizes. The mechanisms behind the protrusions and instability of the focused band, which are important factors determining overall preconcentration efficiency, are revealed through analyzing the rotating fluxes of particles in the vicinity of the ion-selective membrane. The differences in the enrichment factors of differently sized particles are understood through the interplay between the electric force and convective fluid flow. These results provide insights into the electrokinetic concentration effect, which could facilitate the design and optimization of ICP-based preconcentration systems.

  12. Combination of BTrackS and Geri-Fit as a targeted approach for assessing and reducing the postural sway of older adults with high fall risk

    PubMed Central

    Goble, Daniel J; Hearn, Mason C; Baweja, Harsimran S

    2017-01-01

    Atypically high postural sway measured by a force plate is a known risk factor for falls in older adults. Further, it has been shown that small, but significant, reductions in postural sway are possible with various balance exercise interventions. In the present study, a new low-cost force-plate technology called the Balance Tracking System (BTrackS) was utilized to assess postural sway of older adults before and after 90 days of a well-established exercise program called Geri-Fit. Results showed an overall reduction in postural sway across all participants from pre- to post-intervention. However, the magnitude of effects was significantly influenced by the amount of postural sway demonstrated by individuals prior to Geri-Fit training. Specifically, more participants with atypically high postural sway pre-intervention experienced an overall postural sway reduction. These reductions experienced were typically greater than the minimum detectable change statistic for the BTrackS Balance Test. Taken together, these findings suggest that BTrackS is an effective means of identifying older adults with elevated postural sway, who are likely to benefit from Geri-Fit training to mitigate fall risk. PMID:28228655

  13. Combination of BTrackS and Geri-Fit as a targeted approach for assessing and reducing the postural sway of older adults with high fall risk.

    PubMed

    Goble, Daniel J; Hearn, Mason C; Baweja, Harsimran S

    2017-01-01

    Atypically high postural sway measured by a force plate is a known risk factor for falls in older adults. Further, it has been shown that small, but significant, reductions in postural sway are possible with various balance exercise interventions. In the present study, a new low-cost force-plate technology called the Balance Tracking System (BTrackS) was utilized to assess postural sway of older adults before and after 90 days of a well-established exercise program called Geri-Fit. Results showed an overall reduction in postural sway across all participants from pre- to post-intervention. However, the magnitude of effects was significantly influenced by the amount of postural sway demonstrated by individuals prior to Geri-Fit training. Specifically, more participants with atypically high postural sway pre-intervention experienced an overall postural sway reduction. These reductions experienced were typically greater than the minimum detectable change statistic for the BTrackS Balance Test. Taken together, these findings suggest that BTrackS is an effective means of identifying older adults with elevated postural sway, who are likely to benefit from Geri-Fit training to mitigate fall risk.

  14. Erosion in radial inflow turbines. Volume 2: Balance of centrifugal and radial drag forces on erosive particles

    NASA Technical Reports Server (NTRS)

    Clevenger, W. B., Jr.; Tabakoff, W.

    1974-01-01

    The particle motion in two-dimensional free and forced inward flowing vortices is considered. A particle in such a flow field experiences a balance between the aerodynamic drag forces that tend to drive erosive particles toward the axis, and centrifugal forces that prevent these particles from traveling toward the axis. Results predict that certain sizes of particles will achieve a stable orbit about the turbine axis in the inward flowing free vortex. In this condition, the radial drag force is equal to the centrifugal force. The sizes of particles that will achieve a stable orbit is shown to be related to the gas flow velocity diagram at a particular radius. A second analysis yields a description of particle sizes that will experience a centrifugal force that is greater than the radial component of the aerodynamic drag force for a more general type of particle motion.

  15. Force Balance at the Magnetopause Determined with MMS: Application to Flux Transfer Events

    NASA Technical Reports Server (NTRS)

    Zhao, C.; Russell, C. T.; Strangeway, R. J.; Petrinec, S. M.; Paterson, W. R.; Zhou, M.; Anderson, B. J.; Baumjohann, W.; Bromund, K. R.; Chutter, M.; hide

    2016-01-01

    The Magnetospheric Multiscale mission (MMS) consists of four identical spacecraft forming a closely separated (less than or equal to 10 km) and nearly regular tetrahedron. This configuration enables the decoupling of spatial and temporal variations and allows the calculation of the spatial gradients of plasma and electromagnetic field quantities. We make full use of the well cross-calibrated MMS magnetometers and fast plasma instruments measurements to calculate both the magnetic and plasma forces in flux transfer events (FTEs) and evaluate the relative contributions of different forces to the magnetopause momentum variation. This analysis demonstrates that some but not all FTEs, consistent with previous studies, are indeed force-free structures in which the magnetic pressure force balances the magnetic curvature force. Furthermore, we contrast these events with FTE events that have non-force-free signatures.

  16. Uncertainties of Large-Scale Forcing Caused by Surface Turbulence Flux Measurements and the Impacts on Cloud Simulations at the ARM SGP Site

    NASA Astrophysics Data System (ADS)

    Tang, S.; Xie, S.; Tang, Q.; Zhang, Y.

    2017-12-01

    Two types of instruments, the eddy correlation flux measurement system (ECOR) and the energy balance Bowen ratio system (EBBR), are used at the Atmospheric Radiation Measurement (ARM) program Southern Great Plains (SGP) site to measure surface latent and sensible fluxes. ECOR and EBBR typically sample different land surface types, and the domain-mean surface fluxes derived from ECOR and EBBR are not always consistent. The uncertainties of the surface fluxes will have impacts on the derived large-scale forcing data and further affect the simulations of single-column models (SCM), cloud-resolving models (CRM) and large-eddy simulation models (LES), especially for the shallow-cumulus clouds which are mainly driven by surface forcing. This study aims to quantify the uncertainties of the large-scale forcing caused by surface turbulence flux measurements and investigate the impacts on cloud simulations using long-term observations from the ARM SGP site.

  17. Self-adjusting magnetic bearing systems

    DOEpatents

    Post, Richard F.

    1998-01-01

    A self-adjusting magnetic bearing automatically adjusts the parameters of an axially unstable magnetic bearing such that its force balance is maintained near the point of metastable equilibrium. Complete stabilization can be obtained with the application of weak restoring forces either from a mechanical bearing (running at near-zero load, thus with reduced wear) or from the action of residual eddy currents in a snubber bearing. In one embodiment, a torque is generated by the approach of a slotted pole to a conducting plate. The torque actuates an assembly which varies the position of a magnetic shunt to change the force exerted by the bearing. Another embodiment achieves axial stabilization by sensing vertical displacements in a suspended bearing element, and using this information in an electrical servo system. In a third embodiment, as a rotating eddy current exciter approaches a stationary bearing, it heats a thermostat which actuates an assembly to weaken the attractive force between the two bearing elements. An improved version of an electromechanical battery utilizing the designs of the various embodiments is described.

  18. Self-adjusting magnetic bearing systems

    DOEpatents

    Post, R.F.

    1998-07-21

    A self-adjusting magnetic bearing automatically adjusts the parameters of an axially unstable magnetic bearing such that its force balance is maintained near the point of metastable equilibrium. Complete stabilization can be obtained with the application of weak restoring forces either from a mechanical bearing (running at near-zero load, thus with reduced wear) or from the action of residual eddy currents in a snubber bearing. In one embodiment, a torque is generated by the approach of a slotted pole to a conducting plate. The torque actuates an assembly which varies the position of a magnetic shunt to change the force exerted by the bearing. Another embodiment achieves axial stabilization by sensing vertical displacements in a suspended bearing element, and using this information in an electrical servo system. In a third embodiment, as a rotating eddy current exciter approaches a stationary bearing, it heats a thermostat which actuates an assembly to weaken the attractive force between the two bearing elements. An improved version of an electromechanical battery utilizing the designs of the various embodiments is described. 7 figs.

  19. Development of a second generation torsion balance based on a spherical superconducting suspension

    NASA Astrophysics Data System (ADS)

    Hammond, Giles D.; Speake, Clive C.; Matthews, Anthony J.; Rocco, Emanuele; Peña-Arellano, Fabian

    2008-02-01

    This paper describes the development of a second generation superconducting torsion balance to be used for a precision measurement of the Casimir force and a short range test of the inverse square law of gravity at 4.2K. The instrument utilizes niobium (Nb) as the superconducting element and employs passive damping of the parasitic modes of oscillation. Any contact potential difference between the torsion balance and its surroundings is nulled to within ≈50mV by applying known DC biases and fitting the resulting parabolic relationship between the measured torque and the applied voltage. A digital proportional-integral-derivative servo system has been developed and characterized in order to control the azimuthal position of the instrument. The angular acceleration and displacement noise are currently limited by the capacitive sensor at the level 3×10-8rads-2/√Hz and 30nm/√Hz at 100mHz. The possibility of lossy dielectric coatings on the surface of the torsion balance test masses is also investigated. Our measurements show that the loss angles δ are (1.5±2.3)×10-4 and (2.0±2.2)×10-4 at frequencies of 5 and 10mHz, respectively. These values of loss are not significant sources of error for measurements of the Casimir force using this experimental setup.

  20. Development of a second generation torsion balance based on a spherical superconducting suspension.

    PubMed

    Hammond, Giles D; Speake, Clive C; Matthews, Anthony J; Rocco, Emanuele; Peña-Arellano, Fabian

    2008-02-01

    This paper describes the development of a second generation superconducting torsion balance to be used for a precision measurement of the Casimir force and a short range test of the inverse square law of gravity at 4.2 K. The instrument utilizes niobium (Nb) as the superconducting element and employs passive damping of the parasitic modes of oscillation. Any contact potential difference between the torsion balance and its surroundings is nulled to within approximately 50 mV by applying known DC biases and fitting the resulting parabolic relationship between the measured torque and the applied voltage. A digital proportional-integral-derivative servo system has been developed and characterized in order to control the azimuthal position of the instrument. The angular acceleration and displacement noise are currently limited by the capacitive sensor at the level 3x10(-8) rad s(-2)/ squarerootHz and 30 nm/ squarerootHz at 100 mHz. The possibility of lossy dielectric coatings on the surface of the torsion balance test masses is also investigated. Our measurements show that the loss angles delta are (1.5+/-2.3)x10(-4) and (2.0+/-2.2)x10(-4) at frequencies of 5 and 10 mHz, respectively. These values of loss are not significant sources of error for measurements of the Casimir force using this experimental setup.

  1. Reliability and validity of the Wii Balance Board for assessment of standing balance: A systematic review.

    PubMed

    Clark, Ross A; Mentiplay, Benjamin F; Pua, Yong-Hao; Bower, Kelly J

    2018-03-01

    The use of force platform technologies to assess standing balance is common across a range of clinical areas. Numerous researchers have evaluated the low-cost Wii Balance Board (WBB) for its utility in assessing balance, with variable findings. This review aimed to systematically evaluate the reliability and concurrent validity of the WBB for assessment of static standing balance. Articles were retrieved from six databases (Medline, SCOPUS, EMBASE, CINAHL, Web of Science, Inspec) from 2007 to 2017. After independent screening by two reviewers, 25 articles were included. Two reviewers performed the data extraction and quality assessment. Test-retest reliability was investigated in 12 studies, with intraclass correlation coefficients or Pearson's correlation values showing a range from poor to excellent reliability (range: 0.27 to 0.99). Concurrent validity (i.e. comparison with another force platform) was examined in 21 studies, and was generally found to be excellent in studies examining the association between the same outcome measures collected on both devices. For studies reporting predominantly poor to moderate validity, potentially influential factors included the choice of 1) criterion reference (e.g. not a common force platform), 2) test duration (e.g. <30 s for double leg), 3) outcome measure (e.g. comparing a centre of pressure variable from the WBB with a summary score from the force platform), 4) data acquisition platform (studies using Apple iOS reported predominantly moderate validity), and 5) low sample size. In conclusion, evidence suggests that the WBB can be used as a reliable and valid tool for assessing standing balance. Protocol registration number: PROSPERO 2017: CRD42017058122. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. On the Skill of Balancing While Riding a Bicycle

    PubMed Central

    Cain, Stephen M.; Ashton-Miller, James A.; Perkins, Noel C.

    2016-01-01

    Humans have ridden bicycles for over 200 years, yet there are no continuous measures of how skill differs between novice and expert. To address this knowledge gap, we measured the dynamics of human bicycle riding in 14 subjects, half of whom were skilled and half were novice. Each subject rode an instrumented bicycle on training rollers at speeds ranging from 1 to 7 m/s. Steer angle and rate, steer torque, bicycle speed, and bicycle roll angle and rate were measured and steering power calculated. A force platform beneath the roller assembly measured the net force and moment that the bicycle, rider and rollers exerted on the floor, enabling calculations of the lateral positions of the system centers of mass and pressure. Balance performance was quantified by cross-correlating the lateral positions of the centers of mass and pressure. The results show that all riders exhibited similar balance performance at the slowest speed. However at higher speeds, the skilled riders achieved superior balance performance by employing more rider lean control (quantified by cross-correlating rider lean angle and bicycle roll angle) and less steer control (quantified by cross-correlating steer rate and bicycle roll rate) than did novice riders. Skilled riders also used smaller steering control input with less variation (measured by average positive steering power and standard deviations of steer angle and rate) and less rider lean angle variation (measured by the standard deviation of the rider lean angle) independent of speed. We conclude that the reduction in balance control input by skilled riders is not due to reduced balance demands but rather to more effective use of lean control to guide the center of mass via center of pressure movements. PMID:26910774

  3. Dynamic analysis of a magnetic bearing system with flux control

    NASA Technical Reports Server (NTRS)

    Knight, Josiah; Walsh, Thomas; Virgin, Lawrence

    1994-01-01

    Using measured values of two-dimensional forces in a magnetic actuator, equations of motion for an active magnetic bearing are presented. The presence of geometric coupling between coordinate directions causes the equations of motion to be nonlinear. Two methods are used to examine the unbalance response of the system: simulation by direct integration in time; and determination of approximate steady state solutions by harmonic balance. For relatively large values of the derivative control coefficient, the system behaves in an essentially linear manner, but for lower values of this parameter, or for higher values of the coupling coefficient, the response shows a split of amplitudes in the two principal directions. This bifurcation is sensitive to initial conditions. The harmonic balance solution shows that the separation of amplitudes actually corresponds to a change in stability of multiple coexisting solutions.

  4. NATO: Continuity and Change. The Atlantic Alliance as an Institution, Organization and Force by Reference to Articles 4, 5 and 6 of the Washington Treaty

    DTIC Science & Technology

    2004-12-01

    Origins of Alliances by Stephen M . Walt The Balance of Power: Stability in International Systems by Emerson M . S. Niou, Peter C . Ordeshook and...Stability in International Systems by Emerson M . S. Niou, Peter C . Ordeshook and Gregory F. Rose." International Organization, no. 45 (Winter 1991...1 B. MAIN QUESTIONS AND ARGUMENTS .............................................. 2 C . METHODOLOGY AND SOURCES

  5. Does aging impair the capacity to use stored visuospatial information or online visual control to guide reach-to-grasp reactions evoked by unpredictable balance perturbation?

    PubMed

    Cheng, Kenneth C; McKay, Sandra M; King, Emily C; Maki, Brian E

    2012-11-01

    Rapid reach-to-grasp reactions are a prevalent response to sudden loss of balance and play an important role in preventing falls. A previous study indicated that young adults are able to guide functionally effective grasping reactions using visuospatial information (VSI) stored in working memory. The present study addressed whether healthy older adults are also able to use "stored" VSI in this manner or are more dependent on "online" visual control. Liquid-crystal goggles were used to force reliance on either stored or online VSI while reaching to grasp a small handhold in response to unpredictable platform perturbations. A motor-driven device varied the handhold location unpredictably for each trial. Twelve healthy older adults (65-79 years) were compared with 12 young adults (19-29 years) tested in a previous study. Reach-to-grasp reactions were slower and more variable in older adults, regardless of the nature of the available VSI. When forced to rely on stored VSI, both age groups showed a reduction in reach accuracy; however, a tendency to undershoot the handhold was exacerbated in the older adults. Forced reliance on online VSI led to similar delays in both age groups; however, the older adults were more likely to reach with the "wrong" limb (contralateral to the handhold) and/or raise both arms initially (possibly to "buy" more time for final limb selection). Situations that force the central nervous system to rely on either stored or online VSI tend to exacerbate age-related reductions in speed and accuracy of reach-to-grasp balance-recovery reactions. Further work is needed to determine if this increases risk of falling in daily life.

  6. Kinesthetic Force Feedback and Belt Control for the Treadport Locomotion Interface.

    PubMed

    Hejrati, Babak; Crandall, Kyle L; Hollerbach, John M; Abbott, Jake J

    2015-01-01

    This paper describes an improved control system for the Treadport immersive locomotion interface, with results that generalize to any treadmill that utilizes an actuated tether to enable self-selected walking speed. A new belt controller is implemented to regulate the user's position; when combined with the user's own volition, this controller also enables the user to naturally self-select their walking speed as they would when walking over ground. A new kinesthetic-force-feedback controller is designed for the tether that applies forces to the user's torso. This new controller is derived based on maintaining the user's sense of balance during belt acceleration, rather than by rendering an inertial force as was done in our prior work. Based on the results of a human-subjects study, the improvements in both controllers significantly contribute to an improved perception of realistic walking on the Treadport. The improved control system uses intuitive dynamic-system and anatomical parameters and requires no ad hoc gain tuning. The control system simply requires three measurements to be made for a given user: the user's mass, the user's height, and the height of the tether attachment point on the user's torso.

  7. Prediction Interval Development for Wind-Tunnel Balance Check-Loading

    NASA Technical Reports Server (NTRS)

    Landman, Drew; Toro, Kenneth G.; Commo, Sean A.; Lynn, Keith C.

    2014-01-01

    Results from the Facility Analysis Verification and Operational Reliability project revealed a critical gap in capability in ground-based aeronautics research applications. Without a standardized process for check-loading the wind-tunnel balance or the model system, the quality of the aerodynamic force data collected varied significantly between facilities. A prediction interval is required in order to confirm a check-loading. The prediction interval provides an expected upper and lower bound on balance load prediction at a given confidence level. A method has been developed which accounts for sources of variability due to calibration and check-load application. The prediction interval method of calculation and a case study demonstrating its use is provided. Validation of the methods is demonstrated for the case study based on the probability of capture of confirmation points.

  8. Characterizing left-right gait balance using footstep-induced structural vibrations

    NASA Astrophysics Data System (ADS)

    Fagert, Jonathon; Mirshekari, Mostafa; Pan, Shijia; Zhang, Pei; Noh, Hae Young

    2017-04-01

    In this paper, we introduce a method for estimating human left/right walking gait balance using footstep-induced structural vibrations. Understanding human gait balance is an integral component of assessing gait, neurological and musculoskeletal conditions, overall health status, and risk of falls. Existing techniques utilize pressure- sensing mats, wearable devices, and human observation-based assessment by healthcare providers. These existing methods are collectively limited in their operation and deployment; often requiring dense sensor deployment or direct user interaction. To address these limitations, we utilize footstep-induced structural vibration responses. Based on the physical insight that the vibration energy is a function of the force exerted by a footstep, we calculate the vibration signal energy due to a footstep and use it to estimate the footstep force. By comparing the footstep forces while walking, we determine balance. This approach enables non-intrusive gait balance assessment using sparsely deployed sensors. The primary research challenge is that the floor vibration signal energy is also significantly affected by the distance between the footstep location and the vibration sensor; this function is unclear in real-world scenarios and is a mixed function of wave propagation and structure-dependent properties. We overcome this challenge through footstep localization and incorporating structural factors into an analytical force-energy-distance function. This function is estimated through a nonlinear least squares regression analysis. We evaluate the performance of our method with a real-world deployment in a campus building. Our approach estimates footstep forces with a RMSE of 61.0N (8% of participant's body weight), representing a 1.54X improvement over the baseline.

  9. Balance in Academic Leadership: Voices of Women from Turkey and the United States of America (US)

    ERIC Educational Resources Information Center

    Hacifazlioglu, Ozge

    2010-01-01

    This comparative study examines the experiences of women leaders in Turkey and the US. It argues that the theme of "balance in leadership" appeared to be the most influential driving force in women leaders' stories. It further shows that balance in leadership is associated with balance in two areas: balancing private and professional…

  10. Hidden Connections between Regression Models of Strain-Gage Balance Calibration Data

    NASA Technical Reports Server (NTRS)

    Ulbrich, Norbert

    2013-01-01

    Hidden connections between regression models of wind tunnel strain-gage balance calibration data are investigated. These connections become visible whenever balance calibration data is supplied in its design format and both the Iterative and Non-Iterative Method are used to process the data. First, it is shown how the regression coefficients of the fitted balance loads of a force balance can be approximated by using the corresponding regression coefficients of the fitted strain-gage outputs. Then, data from the manual calibration of the Ames MK40 six-component force balance is chosen to illustrate how estimates of the regression coefficients of the fitted balance loads can be obtained from the regression coefficients of the fitted strain-gage outputs. The study illustrates that load predictions obtained by applying the Iterative or the Non-Iterative Method originate from two related regression solutions of the balance calibration data as long as balance loads are given in the design format of the balance, gage outputs behave highly linear, strict statistical quality metrics are used to assess regression models of the data, and regression model term combinations of the fitted loads and gage outputs can be obtained by a simple variable exchange.

  11. Gait-force model and inertial measurement unit-based measurements: A new approach for gait analysis and balance monitoring.

    PubMed

    Li, Xinan; Xu, Hongyuan; Cheung, Jeffrey T

    2016-12-01

    This work describes a new approach for gait analysis and balance measurement. It uses an inertial measurement unit (IMU) that can either be embedded inside a dynamically unstable platform for balance measurement or mounted on the lower back of a human participant for gait analysis. The acceleration data along three Cartesian coordinates is analyzed by the gait-force model to extract bio-mechanics information in both the dynamic state as in the gait analyzer and the steady state as in the balance scale. For the gait analyzer, the simple, noninvasive and versatile approach makes it appealing to a broad range of applications in clinical diagnosis, rehabilitation monitoring, athletic training, sport-apparel design, and many other areas. For the balance scale, it provides a portable platform to measure the postural deviation and the balance index under visual or vestibular sensory input conditions. Despite its simple construction and operation, excellent agreement has been demonstrated between its performance and the high-cost commercial balance unit over a wide dynamic range. The portable balance scale is an ideal tool for routine monitoring of balance index, fall-risk assessment, and other balance-related health issues for both clinical and household use.

  12. Voyager Saturnian ring measurements and the early history of the solar system

    NASA Technical Reports Server (NTRS)

    Alfven, H.; Axnaes, I.; Brenning, N.; Lindquist, P. A.

    1985-01-01

    The mass distribution in the Saturnian ring system is investigated and compared with predictions from plasma cosmogony. According to this theory, the matter in the rings was once a magnetized plasma, in which gravitation is balanced by the centrifugal and electromagnetic forces. As the plasma is neutralized, the electromagnetic forces disappear and the matter falls in to 2/3 of the original saturnocentric distance. This causes the cosmogonic shadow effect, demonstrated for the large scale structure of the Saturnian ring system. It is shown that many structures of the present ring system can be understood as shadows and antishadows of cosmogonic origin. These appear in the form of double rings centered around a position a factor 0.64 (slightly 2/3) closer to Saturn than the causing feature. Voyager data agree with an accuracy 1%.

  13. Socio-hydrologic perspectives of the co-evolution of humans and groundwater in Cangzhou, North China Plain

    NASA Astrophysics Data System (ADS)

    Han, S.; Tian, F.; Liu, Y.

    2017-12-01

    This study presents a historical analysis from socio-hydrologic perspectives of the coupled human-groundwater system of the Cangzhou region in the North China Plain. The history of the "pendulum swing" for water allocation between the economic development and aquifer environmental health of the system is divided into five eras (i.e., natural, exploitation, degradation and restoration, drought-triggered deterioration, and returning to the balance). The system evolution was interpreted using the Taiji-Tire model. Over-exploitation was considered as the main cause of aquifer depletion and the groundwater utilization pattern was affected by the varying groundwater table. The aquifer depletion enhanced the community sensitivity of humans toward environmental issues, and upgraded the social productive force for restoration. The evolution of the system was substantially impacted by two droughts. The drought in 1965 induced the system from natural condition to groundwater exploiting. The drought from 1997 to 2002 resulted a pulse in further groundwater abstraction and dramatic aquifer deterioration, and the community sensitivity increased rapidly and induced the social productive force to a tipping point. From then on, the system is returning the balance through new policies and water-saving technologies. Along with the establishment of a strict water resource management strategy and the launch of the South-to-North Water Diversion Project, further restorations of groundwater environment would be implemented. However, a comprehensive and coordinated drought management plan should be devised to avoid the irreversible change of the system.

  14. Home-based balance training programme using Wii Fit with balance board for Parkinsons's disease: a pilot study.

    PubMed

    Esculier, Jean-Francois; Vaudrin, Joanie; Bériault, Patrick; Gagnon, Karine; Tremblay, Louis E

    2012-02-01

    To evaluate the effects of a home-based balance training programme using visual feedback (Nintendo Wii Fit game with balance board) on balance and functional abilities in subjects with Parkinson's disease, and to compare the effects with a group of paired healthy subjects. Ten subjects with moderate Parkinson's disease and 8 healthy elderly subjects. Subjects participated in a 6-week home-based balance training programme using Nintendo Wii Fit and balance board. Baseline measures were taken before training for the Sit-to-Stand test (STST), Timed-Up-and-Go (TUG), Tinetti Performance Oriented Mobility Assessment (POMA), 10-m walk test, Community Balance and Mobility assessment (CBM), Activities-specific Balance and Confidence scale (ABC), unipodal stance duration, and a force platform. All measurements were taken again after 3 and 6 weeks of training. The Parkinson's disease group significantly improved their results in TUG, STST, unipodal stance, 10-m walk test, CBM, POMA and force platform at the end of the 6-week training programme. The healthy subjects group significantly improved in TUG, STST, unipodal stance and CBM. This pilot study suggests that a home-based balance programme using Wii Fit with balance board could improve static and dynamic balance, mobility and functional abilities of people affected by Parkinson's disease.

  15. Asymmetries in reactive and anticipatory balance control are of similar magnitude in Parkinson's disease patients.

    PubMed

    Boonstra, Tjitske A; van Kordelaar, Joost; Engelhart, Denise; van Vugt, Jeroen P P; van der Kooij, Herman

    2016-01-01

    Many Parkinson's disease (PD) patients show asymmetries in balance control during quiet stance and in response to perturbations (i.e., reactive balance control) in the sagittal plane. In addition, PD patients show a reduced ability to anticipate to self-induced disturbances, but it is not clear whether these anticipatory responses can be asymmetric too. Furthermore, it is not known how reactive balance control and anticipatory balance control are related in PD patients. Therefore, we investigated whether reactive and anticipatory balance control are asymmetric to the same extent in PD patients. 14 PD patients and 10 controls participated. Reactive balance control (RBC) was investigated by applying external platform and force perturbations and relating the response of the left and right ankle torque to the body sway angle at the excited frequencies. Anticipatory postural adjustments (APAs) were investigated by determining the increase in the left and right ankle torque just before the subjects released a force exerted with the hands against a force sensor. The symmetry ratio between the contribution of the left and right ankle was used to express the asymmetry in reactive and anticipatory balance control; the correlation between the two ratio's was investigated with Spearman's rank correlation coefficients. PD patients were more asymmetric in anticipatory (p=0.026) and reactive balance control (p=0.004) compared to controls and the symmetry ratios were significantly related (ρ=0.74; p=0.003) in PD patients. These findings suggest that asymmetric reactive balance control during bipedal stance may share a common pathophysiology with asymmetries in the anticipation of voluntary perturbations during, for instance, gait initiation. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Measurement of sitting balance using the Manchester Active Position Seat (MAPS): a feasibility study.

    PubMed

    Powell, E S; Pyburn, R E; Hill, E; Smith, K S; Ribbands, M S; Mickelborough, J; Pomeroy, V M

    2002-09-01

    Evaluation of the effectiveness of therapy to improve sitting balance has been hampered by the limited number of sensitive objective clinical measures. We developed the Manchester Active Position Seat (MAPS) to provide a portable system to track change in the position of centre of force over time. (1) To investigate whether there is correspondence between the measurement of position change by a forceplate and by MAPS. (2) To explore whether and how MAPS measures changes in position when seated healthy adults change posture. A feasibility study. (1) An adult subject sat on MAPS placed on top of a forceplate. The x and y coordinates of the centre of pressure recorded from the forceplate and centre of force from MAPS during movement were compared graphically. (2) Four adults sat on MAPS using a standardized starting position and moving into six sets of six standardized target postures in a predetermined randomized order. The absolute shift in centre of force from the starting position was calculated. (1) The pattern of change of position over time was similar for the forceplate and for MAPS although there was a measurement difference, which increased with distance from the centre. (2) The direction of change of position corresponded to the direction of movement to the target postures but the amount of change varied between subjects. MAPS shows promise as an objective clinical measure of sitting balance, but peripheral accuracy of measurement needs to be improved.

  17. Geostrophic balance with a full Coriolis Force: implications for low latitutde studies

    NASA Technical Reports Server (NTRS)

    Juarez, M. de la Torre

    2002-01-01

    In its standard form, geostrophic balance uses a partial representation of the Coriolis force. The resulting formation has a singularity at the equator, and violates mass and momentum conservation. When the horizontal projection of the planetary rotation vector is considered, the singularity at the equator disappears, continuity can be preserved, and quasigeostrophy can be formulated at planetary scale.

  18. Flood Tides and Aging Swimmers: An Exploration into the Supply and Demand for Teachers.

    ERIC Educational Resources Information Center

    Kerchner, Charles T.

    The teacher supply and demand problem is considered along three dimensions: (1) the aggregate balance between supply and demand, and the balance in different education specialties and different areas of the country; (2) the composition of the teacher work force, its age, and level of training; and (3) the apparent quality of the work force and the…

  19. Update: Partnership for the Revitalization of National Wind Tunnel Force Measurement Technology Capability

    NASA Technical Reports Server (NTRS)

    Rhew, Ray D.

    2010-01-01

    NASA's Aeronautics Test Program (ATP) chartered a team to examine the issues and risks associated with the lack of funding and focus on force measurement over the past several years, focusing specifically on strain-gage balances. NASA partnered with the U.S. Air Force's Arnold Engineering Development Center (AEDC) to exploit their combined capabilities and take a national level government view of the problem and established the National Force Measurement Technology Capability (NFMTC) project. This paper provides an update on the team's status for revitalizing the government's balance capability with respect to designing, fabricating, calibrating, and using the these critical measurement devices.

  20. Thermodynamically Feasible Kinetic Models of Reaction Networks

    PubMed Central

    Ederer, Michael; Gilles, Ernst Dieter

    2007-01-01

    The dynamics of biological reaction networks are strongly constrained by thermodynamics. An holistic understanding of their behavior and regulation requires mathematical models that observe these constraints. However, kinetic models may easily violate the constraints imposed by the principle of detailed balance, if no special care is taken. Detailed balance demands that in thermodynamic equilibrium all fluxes vanish. We introduce a thermodynamic-kinetic modeling (TKM) formalism that adapts the concepts of potentials and forces from irreversible thermodynamics to kinetic modeling. In the proposed formalism, the thermokinetic potential of a compound is proportional to its concentration. The proportionality factor is a compound-specific parameter called capacity. The thermokinetic force of a reaction is a function of the potentials. Every reaction has a resistance that is the ratio of thermokinetic force and reaction rate. For mass-action type kinetics, the resistances are constant. Since it relies on the thermodynamic concept of potentials and forces, the TKM formalism structurally observes detailed balance for all values of capacities and resistances. Thus, it provides an easy way to formulate physically feasible, kinetic models of biological reaction networks. The TKM formalism is useful for modeling large biological networks that are subject to many detailed balance relations. PMID:17208985

  1. Diminution of contact angle hysteresis under the influence of an oscillating force.

    PubMed

    Manor, Ofer

    2014-06-17

    We suggest a simple quantitative model for the diminution of contact angle hysteresis under the influence of an oscillatory force invoked by thermal fluctuations, substrate vibrations, acoustic waves, or oscillating electric fields. Employing force balance rather than the usual description of contact angle hysteresis in terms of Gibbs energy, we highlight that a wetting system, such as a sessile drop or a bubble adhered to a solid substrate, appears at long times to be partially or fully independent of contact angle hysteresis and thus independent of static friction forces, as a result of contact line pinning. We verify this theory by studying several well-known experimental observations such as the approach of an arbitrary contact angle toward the Young contact angle and the apparent decrease (or increase) in an advancing (or a receding) contact angle under the influence of an external oscillating force.

  2. Muscle Coactivation during Stability Exercises in Rhythmic Gymnastics: A Two-Case Study.

    PubMed

    Rutkowska-Kucharska, Alicja; Szpala, Agnieszka; Jaroszczuk, Sebastian; Sobera, Małgorzata

    2018-01-01

    Balance exercises in rhythmic gymnastics are performed on tiptoes, which causes overload of foot joints. This study aimed to evaluate the engagement of muscles stabilizing ankle and knee joints in balance exercises and determine exercises which may lead to ankle and knee joint injuries. It was hypothesized that long-term training has an influence on balance control and efficient use of muscles in their stabilizing function. Two rhythmic gymnasts (8 and 21 years old) performed balances on tiptoes (side split with hand support, ring with hand support) and on a flat foot (back split without hand support exercise). Surface electromyography, ground reaction forces, and kinematic parameters of movement were measured. The measuring systems applied were synchronized with the BTS SMART system. The results show the necessity to limit balance exercises on tiptoes in children because gastrocnemius medialis (GM) and gastrocnemius lateralis (GL) activity significantly exceeds their activity. Ankle joint stabilizing activity of GM and GL muscles in the younger gymnast was more important than in the older one. Performing this exercise, the younger gymnast distributed load on the anterior side of the foot while the older one did so on its posterior. Gymnastics coaches should be advised to exclude ring with hand support exercise from the training of young gymnasts.

  3. Muscle Coactivation during Stability Exercises in Rhythmic Gymnastics: A Two-Case Study

    PubMed Central

    Jaroszczuk, Sebastian

    2018-01-01

    Balance exercises in rhythmic gymnastics are performed on tiptoes, which causes overload of foot joints. This study aimed to evaluate the engagement of muscles stabilizing ankle and knee joints in balance exercises and determine exercises which may lead to ankle and knee joint injuries. It was hypothesized that long-term training has an influence on balance control and efficient use of muscles in their stabilizing function. Two rhythmic gymnasts (8 and 21 years old) performed balances on tiptoes (side split with hand support, ring with hand support) and on a flat foot (back split without hand support exercise). Surface electromyography, ground reaction forces, and kinematic parameters of movement were measured. The measuring systems applied were synchronized with the BTS SMART system. The results show the necessity to limit balance exercises on tiptoes in children because gastrocnemius medialis (GM) and gastrocnemius lateralis (GL) activity significantly exceeds their activity. Ankle joint stabilizing activity of GM and GL muscles in the younger gymnast was more important than in the older one. Performing this exercise, the younger gymnast distributed load on the anterior side of the foot while the older one did so on its posterior. Gymnastics coaches should be advised to exclude ring with hand support exercise from the training of young gymnasts. PMID:29808099

  4. Dynamic Wind-Tunnel Testing of a Sub-Scale Iced Business Jet

    NASA Technical Reports Server (NTRS)

    Lee, Sam; Barnhart, Billy P.; Ratvasky, Thomas P.; Dickes, Edward; Thacker, Michael

    2006-01-01

    The effect of ice accretion on a 1/12-scale complete aircraft model of a business jet was studied in a rotary-balance wind tunnel. Three types of ice accretions were considered: ice protection system failure shape, pre-activation roughness, and runback shapes that form downstream of the thermal ice protection system. The results were compared with those from a 1/12-scale semi-span wing of the same aircraft at similar Reynolds number. The data showed that the full aircraft and the semi-span wing models showed similar characteristics, especially post stall behavior under iced configuration. However, there were also some discrepancies, such as the magnitude in the reductions in the maximum lift coefficient. Most of the ice-induced effects were limited to longitudinal forces. Rotational and forced oscillation studies showed that the effects of ice on lateral forces were relatively minor.

  5. Current ethical and other problems in the practice of African traditional medicine.

    PubMed

    Omonzejele, Peter

    2003-01-01

    Medicine in Africa is regarded as possessing its own "life force", not just using a system of prescribing. This is because health problems are not only attributed to pathological explanations alone, but also to other "forces". Hence, traditional healers utter incantations to take care of negative forces which militate against achieving cure. Treatment in African traditional medicine (ATM) is holistic. It seeks to strike a balance between the patients' body, soul and spirit. The problems arise from the infiltration of charlatans into the field, the practice of using mystical explanations for ill-health, and inadequate knowledge of the properties and clinical use of herbal remedies. Despite its problems, ATM can work in parallel with orthodox medicine using its strengths rather than its weaknesses. ATM has to be applied within a uniform ethical system. Practitioners of ATM must follow the principles of autonomy and confidentiality.

  6. Critical Comparison of Biomembrane Force Fields: Protein-Lipid Interactions at the Membrane Interface.

    PubMed

    Sandoval-Perez, Angelica; Pluhackova, Kristyna; Böckmann, Rainer A

    2017-05-09

    Molecular dynamics (MD) simulations offer the possibility to study biological processes at high spatial and temporal resolution often not reachable by experiments. Corresponding biomolecular force field parameters have been developed for a wide variety of molecules ranging from inorganic ligands and small organic molecules over proteins and lipids to nucleic acids. Force fields have typically been parametrized and validated on thermodynamic observables and structural characteristics of individual compounds, e.g. of soluble proteins or lipid bilayers. Less strictly, due to the added complexity and missing experimental data to compare to, force fields have hardly been tested on the properties of mixed systems, e.g. on protein-lipid systems. Their selection and combination for mixed systems is further complicated by the partially differing parametrization strategies. Additionally, the presence of other compounds in the system may shift the subtle balance of force field parameters. Here, we assessed the protein-lipid interactions as described in the four atomistic force fields GROMOS54a7, CHARMM36 and the two force field combinations Amber14sb/Slipids and Amber14sb/Lipid14. Four observables were compared, focusing on the membrane-water interface: the conservation of the secondary structure of transmembrane proteins, the positioning of transmembrane peptides relative to the lipid bilayer, the insertion depth of side chains of unfolded peptides absorbed at the membrane interface, and the ability to reproduce experimental insertion energies of Wimley-White peptides at the membrane interface. Significant differences between the force fields were observed that affect e.g. membrane insertion depths and tilting of transmembrane peptides.

  7. Transport aircraft loading and balancing system: Using a CLIPS expert system for military aircraft load planning

    NASA Technical Reports Server (NTRS)

    Richardson, J.; Labbe, M.; Belala, Y.; Leduc, Vincent

    1994-01-01

    The requirement for improving aircraft utilization and responsiveness in airlift operations has been recognized for quite some time by the Canadian Forces. To date, the utilization of scarce airlift resources has been planned mainly through the employment of manpower-intensive manual methods in combination with the expertise of highly qualified personnel. In this paper, we address the problem of facilitating the load planning process for military aircraft cargo planes through the development of a computer-based system. We introduce TALBAS (Transport Aircraft Loading and BAlancing System), a knowledge-based system designed to assist personnel involved in preparing valid load plans for the C130 Hercules aircraft. The main features of this system which are accessible through a convivial graphical user interface, consists of the automatic generation of valid cargo arrangements given a list of items to be transported, the user-definition of load plans and the automatic validation of such load plans.

  8. Surfzone alongshore advective accelerations: observations and modeling

    NASA Astrophysics Data System (ADS)

    Hansen, J.; Raubenheimer, B.; Elgar, S.

    2014-12-01

    The sources, magnitudes, and impacts of non-linear advective accelerations on alongshore surfzone currents are investigated with observations and a numerical model. Previous numerical modeling results have indicated that advective accelerations are an important contribution to the alongshore force balance, and are required to understand spatial variations in alongshore currents (which may result in spatially variable morphological change). However, most prior observational studies have neglected advective accelerations in the alongshore force balance. Using a numerical model (Delft3D) to predict optimal sensor locations, a dense array of 26 colocated current meters and pressure sensors was deployed between the shoreline and 3-m water depth over a 200 by 115 m region near Duck, NC in fall 2013. The array included 7 cross- and 3 alongshore transects. Here, observational and numerical estimates of the dominant forcing terms in the alongshore balance (pressure and radiation-stress gradients) and the advective acceleration terms will be compared with each other. In addition, the numerical model will be used to examine the force balance, including sources of velocity gradients, at a higher spatial resolution than possible with the instrument array. Preliminary numerical results indicate that at O(10-100 m) alongshore scales, bathymetric variations and the ensuing alongshore variations in the wave field and subsequent forcing are the dominant sources of the modeled velocity gradients and advective accelerations. Additional simulations and analysis of the observations will be presented. Funded by NSF and ASDR&E.

  9. Plasma forces on microparticles on a surface: an experimental investigation

    NASA Astrophysics Data System (ADS)

    Heijmans, L. C. J.; Neelis, T. W. C.; van Leuken, D. P. J.; Bouchut, A.; Nijdam, S.

    2017-07-01

    A plasma causes a force on particles on a surface. We quantitatively measure this force by means of two different setups, which use different methods to balance the forces on these particles: one using vibrations, the other a centrifuge. From this, we deduce both the adhesion that sticks the particles to the surface, and how the application of a plasma affects the adhesion of the particles. We show that the plasma alters the force balance on 100 μ {{m}} diameter particles with a force in the order of micronewtons. We can conclude, from both additional experiments and comparison to theory, that the main plasma effect is not an electrostatic force on a charged particle; its magnitude is orders of magnitude larger than what would be expected from electrostatic theory. The plasma likely has an effect on the particle adhesion, possibly caused by evaporation of water.

  10. Shaping up synthetic cells

    NASA Astrophysics Data System (ADS)

    Mulla, Yuval; Aufderhorst-Roberts, Anders; Koenderink, Gijsje H.

    2018-07-01

    How do the cells in our body reconfigure their shape to achieve complex tasks like migration and mitosis, yet maintain their shape in response to forces exerted by, for instance, blood flow and muscle action? Cell shape control is defined by a delicate mechanical balance between active force generation and passive material properties of the plasma membrane and the cytoskeleton. The cytoskeleton forms a space-spanning fibrous network comprising three subsystems: actin, microtubules and intermediate filaments. Bottom-up reconstitution of minimal synthetic cells where these cytoskeletal subsystems are encapsulated inside a lipid vesicle provides a powerful avenue to dissect the force balance that governs cell shape control. Although encapsulation is technically demanding, a steady stream of advances in this technique has made the reconstitution of shape-changing minimal cells increasingly feasible. In this topical review we provide a route-map of the recent advances in cytoskeletal encapsulation techniques and outline recent reports that demonstrate shape change phenomena in simple biomimetic vesicle systems. We end with an outlook toward the next steps required to achieve more complex shape changes with the ultimate aim of building a fully functional synthetic cell with the capability to autonomously grow, divide and move.

  11. Comparison of a laboratory grade force platform with a Nintendo Wii Balance Board on measurement of postural control in single-leg stance balance tasks.

    PubMed

    Huurnink, Arnold; Fransz, Duncan P; Kingma, Idsart; van Dieën, Jaap H

    2013-04-26

    Training and testing of balance have potential applications in sports and medicine. Laboratory grade force plates (FP) are considered the gold standard for the measurement of balance performance. Measurements in these systems are based on the parameterization of center of pressure (CoP) trajectories. Previous research validated the inexpensive, widely available and portable Nintendo Wii Balance Board (WBB). The novelty of the present study is that FP and WBB are compared on CoP data that was collected simultaneously, by placing the WBB on the FP. Fourteen healthy participants performed ten sequences of single-leg stance tasks with eyes open (EO), eyes closed (EC) and after a sideways hop (HOP). Within trial comparison of the two systems showed small root-mean-square differences for the CoP trajectories in the x and y direction during the three tasks (mean±SD; EO: 0.33±0.10 and 0.31±0.16 mm; EC: 0.58±0.17 and 0.63±0.19 mm; HOP: 0.74±0.34 and 0.74±0.27 mm, respectively). Additionally, during all 420 trials, comparison of FP and WBB revealed very high Pearson's correlation coefficients (r) of the CoP trajectories (x: 0.999±0.002; y: 0.998±0.003). A general overestimation was found on the WBB compared to the FP for 'CoP path velocity' (EO: 5.3±1.9%; EC: 4.0±1.4%; HOP: 4.6±1.6%) and 'mean absolute CoP sway' (EO: 3.5±0.7%; EC: 3.7±0.5%; HOP: 3.6±1.0%). This overestimation was highly consistent over the 140 trials per task (r>0.996). The present findings demonstrate that WBB is sufficiently accurate in quantifying CoP trajectory, and overall amplitude and velocity during single-leg stance balance tasks. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Wave-current interaction in Willapa Bay

    USGS Publications Warehouse

    Olabarrieta, Maitane; Warner, John C.; Kumar, Nirnimesh

    2011-01-01

    This paper describes the importance of wave-current interaction in an inlet-estuary system. The three-dimensional, fully coupled, Coupled Ocean-Atmosphere-Wave-Sediment Transport (COAWST) modeling system was applied in Willapa Bay (Washington State) from 22 to 29 October 1998 that included a large storm event. To represent the interaction between waves and currents, the vortex-force method was used. Model results were compared with water elevations, currents, and wave measurements obtained by the U.S. Army Corp of Engineers. In general, a good agreement between field data and computed results was achieved, although some discrepancies were also observed in regard to wave peak directions in the most upstream station. Several numerical experiments that considered different forcing terms were run in order to identify the effects of each wind, tide, and wave-current interaction process. Comparison of the horizontal momentum balances results identified that wave-breaking-induced acceleration is one of the leading terms in the inlet area. The enhancement of the apparent bed roughness caused by waves also affected the values and distribution of the bottom shear stress. The pressure gradient showed significant changes with respect to the pure tidal case. During storm conditions the momentum balance in the inlet shares the characteristics of tidal-dominated and wave-dominated surf zone environments. The changes in the momentum balance caused by waves were manifested both in water level and current variations. The most relevant effect on hydrodynamics was a wave-induced setup in the inner part of the estuary.

  13. 49 CFR 375.805 - If I am forced to relinquish a collect-on-delivery shipment before the payment of ALL charges...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 5 2010-10-01 2010-10-01 false If I am forced to relinquish a collect-on-delivery shipment before the payment of ALL charges, how do I collect the balance? 375.805 Section 375.805... the balance? On “collect-on-delivery” shipments, you must present your freight bill for all...

  14. 49 CFR 375.805 - If I am forced to relinquish a collect-on-delivery shipment before the payment of ALL charges...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 5 2011-10-01 2011-10-01 false If I am forced to relinquish a collect-on-delivery shipment before the payment of ALL charges, how do I collect the balance? 375.805 Section 375.805... the balance? On “collect-on-delivery” shipments, you must present your freight bill for all...

  15. Motion and Balance. Physical Science in Action[TM]. Schlessinger Science Library. [Videotape].

    ERIC Educational Resources Information Center

    2000

    Motion allows things to get done, to communicate and to travel. But is motion controlled? Students will learn about the universal laws that apply to motion, the forces that cause it and how it is related to balance. They will also discover why motion occurs when forces are out of control and learn more about this interesting concept by viewing…

  16. An analytical model for the detection of levitated nanoparticles in optomechanics

    NASA Astrophysics Data System (ADS)

    Rahman, A. T. M. Anishur; Frangeskou, A. C.; Barker, P. F.; Morley, G. W.

    2018-02-01

    Interferometric position detection of levitated particles is crucial for the centre-of-mass (CM) motion cooling and manipulation of levitated particles. In combination with balanced detection and feedback cooling, this system has provided picometer scale position sensitivity, zeptonewton force detection, and sub-millikelvin CM temperatures. In this article, we develop an analytical model of this detection system and compare its performance with experimental results allowing us to explain the presence of spurious frequencies in the spectra.

  17. 10. Credit USAF, 1945. Original housed in the Muroc Flight ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. Credit USAF, 1945. Original housed in the Muroc Flight Test Base, Unit History, 1 September 1942 30 June 1945. Alfred F. Simpson Historical Research Agency. United States Air Force. Maxwell AFB, Alabama. View of jet engine rotor balancing machine with engine rotor in place for balancing operations. Original caption reads "Balancing bucket wheel of jet engine, Muroc Flight Test Base, Oct. 1945"; personnel not identified. Location where photograph was taken not determined, but presumed to be in shops of Building 4505. - Edwards Air Force Base, North Base, Hangar, End of North Base Road, Boron, Kern County, CA

  18. A versatile computer package for mechanism analysis, part 2: Dynamics and balance

    NASA Astrophysics Data System (ADS)

    Davies, T.

    The algorithms required for the shaking force components, the shaking moment about the crankshaft axis, and the input torque and bearing load components are discussed using the textile machine as a focus for the discussion. The example is also used to provide illustrations of the output for options on the hodograph of the shaking force vector. This provides estimates of the optimum contrarotating masses and their locations for a generalized primary Lanchester balancer. The suitability of generalized Lanchester balancers particularly for textile machinery, and the overall strategy used during the development of the package are outlined.

  19. Design of a solar energy assisted air conditioning system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Varlet, J.L.P.; Johnson, B.R.; Vora, J.N.

    1976-03-24

    Energy consumption in air conditioning systems can be reduced by reducing the water content of air before cooling. This reduction in humidity can be accomplished by contacting the humid air with a hygroscopic solution in a spray tower. The hydroscopic solution, diluted by water from the air, can be reconcentrated in a solar evaporator. A solar evaporator for this purpose was evaluated by formulating simultaneous energy and mass balances for forced air convection through the evaporator. Temperatures in the evaporator were calculated by numerical integration of the mathematical model. The calculations indicated that the salt solution cannot be reconcentrated inmore » a forced convection evaporator because of the large energy losses associated with the air stream passing through the evaporator.« less

  20. Rehabilitation Tool

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Biotran, or Fastex as named by Cybex, the company that manufactures it, is a force sensing system that helps physicians and physical therapists treat people with movement deficiencies. Based on NASA sensor technology, it also has applications in sports training and evaluation. Biotran provides a means of testing weight-bearing capabilities that may have been compromised by injury or disease. It also assists in the rehabilitation process by putting patients through a course of computer-directed exercises designed to improve strength and balance reaction time. The system tests and documents progress until maximum medical improvement is achieved. Lewis Research Center also assisted the company in the selection of the material used in the Biotran force sensing platforms. Biotran is currently manufactured by Cybex under the name Fastex.

  1. Delays, Scaling and the Acquisition of Motor Skill

    NASA Astrophysics Data System (ADS)

    Cabrera, Juan Luis; Milton, John

    2003-05-01

    Motion analysis in three dimensions reveals a number of surprising features of the neural control of stick balancing at the fingertip, namely, 1) on-off intermittency in the controlled variable, and 2) controlling motor forces that exhibit self-similarity. The growing evidence in support of scaling and critical behaviors in neural motor control necessitates a re-thinking of how the nervous systems works.

  2. Dynamic analysis and numerical experiments for balancing of the continuous single-disc and single-span rotor-bearing system

    NASA Astrophysics Data System (ADS)

    Wang, Aiming; Cheng, Xiaohan; Meng, Guoying; Xia, Yun; Wo, Lei; Wang, Ziyi

    2017-03-01

    Identification of rotor unbalance is critical for normal operation of rotating machinery. The single-disc and single-span rotor, as the most fundamental rotor-bearing system, has attracted research attention over a long time. In this paper, the continuous single-disc and single-span rotor is modeled as a homogeneous and elastic Euler-Bernoulli beam, and the forces applied by bearings and disc on the shaft are considered as point forces. A fourth-order non-homogeneous partial differential equation set with homogeneous boundary condition is solved for analytical solution, which expresses the unbalance response as a function of position, rotor unbalance and the stiffness and damping coefficients of bearings. Based on this analytical method, a novel Measurement Point Vector Method (MPVM) is proposed to identify rotor unbalance while operating. Only a measured unbalance response registered for four selected cross-sections of the rotor-shaft under steady-state operating conditions is needed when using the method. Numerical simulation shows that the detection error of the proposed method is very small when measurement error is negligible. The proposed method provides an efficient way for rotor balancing without test runs and external excitations.

  3. Home-Based Risk of Falling Assessment Test Using a Closed-Loop Balance Model.

    PubMed

    Ayena, Johannes C; Zaibi, Helmi; Otis, Martin J-D; Menelas, Bob-Antoine J

    2016-12-01

    The aim of this study is to improve and facilitate the methods used to assess risk of falling at home among older people through the computation of a risk of falling in real time in daily activities. In order to increase a real time computation of the risk of falling, a closed-loop balance model is proposed and compared with One-Leg Standing Test (OLST). This balance model allows studying the postural response of a person having an unpredictable perturbation. Twenty-nine volunteers participated in this study for evaluating the effectiveness of the proposed system which includes seventeen elder participants: ten healthy elderly ( 68.4 ±5.5 years), seven Parkinson's disease (PD) subjects ( 66.28 ±8.9 years), and twelve healthy young adults ( 28.27 ±3.74 years). Our work suggests that there is a relationship between OLST score and the risk of falling based on center of pressure measurement with four low cost force sensors located inside an instrumented insole, which could be predicted using our suggested closed-loop balance model. For long term monitoring at home, this system could be included in a medical electronic record and could be useful as a diagnostic aid tool.

  4. Force testing manual for the Langley 20-inch Mach 6 tunnel

    NASA Technical Reports Server (NTRS)

    Keyes, J. W.

    1977-01-01

    Data reduction and procedures for conducting force tests in a 20 inch Mach 6 tunnel are described. A discussion of pretest and testing phases are included. Items that are to be checked during model design and construction are outlined as well as safety requirements, starting loads tests, instructions for data acquisition and model installation. Measurement of balance and model misalignment and instructions for calibrating the angle of attack screen are covered. Procedures for making reference pressure, attitude tare, and data runs are included. The 20 inch tunnel force program is examined, and a description of data recording system input and load contrast sheets is given. An appendix presents a description, operating characteristics, and Mach number calibration of the tunnel, as well as tunnel characteristics.

  5. Use of force sensors to detect and analyse lameness in dairy cows.

    PubMed

    Kujala, M; Pastell, M; Soveri, T

    2008-03-22

    Force sensors were used to detect lameness in dairy cows in two trials. In the first trial, leg weights were recorded during approximately 12,000 milkings with balances built into the floor of the milking robot. Cows that put less weight on one leg or kicked frequently during milking were checked first with a locomotion scoring system and then with a clinical inspection. A locomotion score of more than 2 was considered lame, and these cows' hooves were examined at hoof trimming to determine the cause and to identify any hoof lesions. In the second trial 315 locomotion scores were recorded and compared with force sensor data. The force sensors proved to be a good method for recognising lameness. Computer curves drawn from force sensor data helped to find differences between leg weights, thus indicating lameness and its duration. Sole ulcers and white line disease were identified more quickly by force sensors than by locomotion scoring, but joint problems were more easily detected by locomotion scoring.

  6. The influence of crystal habit on the prediction of dry powder inhalation formulation performance using the cohesive-adhesive force balance approach.

    PubMed

    Hooton, Jennifer C; Jones, Matthew D; Harris, Haggis; Shur, Jagdeep; Price, Robert

    2008-09-01

    The aim of this investigation was to study the influence of crystalline habit of active pharmaceutical ingredients on the cohesive-adhesive force balance within model dry powder inhaler (DPI) formulations and the corresponding affect on DPI formulation performance. The cohesive-adhesive balance (CAB) approach to colloid probe atomic force microscopy (AFM) was employed to determine the cohesive and adhesive interactions of micronized budesonide particles against the {102} and {002} faces of budesonide single crystals and crystalline substrates of different sugars (cyclodextrin, lactose, trehalose, raffinose, and xylitol), respectively. These data were used to measure the relative level of cohesion and adhesion via CAB and the possible influence on in vitro performance of a carrier-based DPI formulation. Varying the crystal habit of the drug had a significant effect on the cohesive measurement of micronized budesonide probes, with the cohesive values on the {102} faces being approximately twice that on the {002} crystal faces. However, although different CAB values were measured with the sugars with respect to the crystal faces chosen for the cohesive-based measurement, the overall influence on the rank order of the CAB values was not directly influenced. For these data sets, the CAB gradient indicated that a decrease in the dominance of the adhesive forces led to a concomitant increase in fine particle delivery, reaching a plateau as the cohesive forces became dominant. The study suggested that crystal habit of the primary drug crystals influences the cohesive interactions and the resulting force balance measurements of colloid probe CAB analysis.

  7. The Cassie-Wenzel transition of fluids on nanostructured substrates: Macroscopic force balance versus microscopic density-functional theory.

    PubMed

    Tretyakov, Nikita; Papadopoulos, Periklis; Vollmer, Doris; Butt, Hans-Jürgen; Dünweg, Burkhard; Daoulas, Kostas Ch

    2016-10-07

    Classical density functional theory is applied to investigate the validity of a phenomenological force-balance description of the stability of the Cassie state of liquids on substrates with nanoscale corrugation. A bulk free-energy functional of third order in local density is combined with a square-gradient term, describing the liquid-vapor interface. The bulk free energy is parameterized to reproduce the liquid density and the compressibility of water. The square-gradient term is adjusted to model the width of the water-vapor interface. The substrate is modeled by an external potential, based upon the Lennard-Jones interactions. The three-dimensional calculation focuses on substrates patterned with nanostripes and square-shaped nanopillars. Using both the force-balance relation and density-functional theory, we locate the Cassie-to-Wenzel transition as a function of the corrugation parameters. We demonstrate that the force-balance relation gives a qualitatively reasonable description of the transition even on the nanoscale. The force balance utilizes an effective contact angle between the fluid and the vertical wall of the corrugation to parameterize the impalement pressure. This effective angle is found to have values smaller than the Young contact angle. This observation corresponds to an impalement pressure that is smaller than the value predicted by macroscopic theory. Therefore, this effective angle embodies effects specific to nanoscopically corrugated surfaces, including the finite range of the liquid-solid potential (which has both repulsive and attractive parts), line tension, and the finite interface thickness. Consistently with this picture, both patterns (stripes and pillars) yield the same effective contact angles for large periods of corrugation.

  8. Effects of Gravity on Cells, Tissues, and Organisms: Their Implications on Habitat and Human Support in Microgravity

    NASA Technical Reports Server (NTRS)

    Kizito, John

    2004-01-01

    This presentation will demonstrate that gravity plays a major role in advanced human life support in a closed habitat. The examples include, but are not limited to, control of purity in drinking water supplies (application of biocides), control of urine in space rodent habitats and operation of space septic tanks (waste management). Our goal is to understand and determine possible mechanisms that describe the process by which cells anchor to a substrate to form dynamic, vibrant communities of cells which influence human health in absence of gravity. The balance of all forces (mechanotransduction) acting on a cell will determine whether a cell thrives and multiplies or dies in a process called apoptosis and/or necrosis. The balance of forces are tightly coupled to the transport of nutrients and metabolic products (biochemotransduction) to and from the cell interface. We will highlight our effort to improve astronaut health by showing that microgravity life support systems have to be designed differently from those on Earth.

  9. Greenhouse Effect, Radiative Forcing and Climate Sensitivity

    NASA Astrophysics Data System (ADS)

    Ponater, Michael; Dietmüller, Simone; Sausen, Robert

    Temperature conditions and climate on Earth are controlled by the balance between absorbed solar radiation and outgoing terrestrial radiation. The greenhouse effect is a synonym for the trapping of infrared radiation by radiatively active atmospheric constituents. It generally causes a warming of the planet's surface, compared to the case without atmosphere. Perturbing the radiation balance of the planet, e.g., by anthropogenic greenhouse gas emissions, induces climate change. Individual contributions to a total climate impact are usually quantified and ranked in terms of their respective radiative forcing. This method involves some limitations, because the effect of the external forcing is modified by radiative feedbacks. Here the current concept of radiative forcing and potential improvements are explained.

  10. Forces between permanent magnets: experiments and model

    NASA Astrophysics Data System (ADS)

    González, Manuel I.

    2017-03-01

    This work describes a very simple, low-cost experimental setup designed for measuring the force between permanent magnets. The experiment consists of placing one of the magnets on a balance, attaching the other magnet to a vertical height gauge, aligning carefully both magnets and measuring the load on the balance as a function of the gauge reading. A theoretical model is proposed to compute the force, assuming uniform magnetisation and based on laws and techniques accessible to undergraduate students. A comparison between the model and the experimental results is made, and good agreement is found at all distances investigated. In particular, it is also found that the force behaves as r -4 at large distances, as expected.

  11. Drag balance Cubesat attitude motion effects on in-situ thermosphere density measurements

    NASA Astrophysics Data System (ADS)

    Felicetti, Leonard; Santoni, Fabio

    2014-08-01

    The dynamics of Cubesats carrying a drag balance instrument (DBI) for in situ atmosphere density measurements is analyzed. Atmospheric drag force is measured by the displacement of two light plates exposed to the incoming particle flow. This system is well suited for a distributed sensor network in orbit, to get simultaneous in situ local (non orbit averaged) measurements in multiple positions and orbit heights, contributing to the development and validation of global atmosphere models. The implementation of the DBI leads to orbit normal pointing spinning two body system. The use of a spin-magnetic attitude control system is suggested, based only on magnetometer readings, contributing to making the system simple, inexpensive, and reliable. It is shown, by an averaging technique, that this system provides for orbit normal spin axis pointing. The effect of the coupling between the attitude dynamics and the DBI is evaluated, analyzing its frequency content and showing that no frequency components arise, affecting the DBI performance. The analysis is confirmed by Monte Carlo numerical simulation results.

  12. An analytical force balance model for dust particles with size up to several Debye lengths

    NASA Astrophysics Data System (ADS)

    Aussems, D. U. B.; Khrapak, S. A.; Doǧan, I.; van de Sanden, M. C. M.; Morgan, T. W.

    2017-11-01

    In this study, we developed a revised stationary force balance model for particles in the regime a / λ D < 10 . In contrast to other analytical models, the pressure and dipole force were included too, and for anisotropic plasmas, a novel contribution to the dipole moment was derived. Moreover, the Coulomb logarithm and collection cross-section were modified. The model was applied on a case study where carbon dust is formed near the plasma sheath in the linear plasma device Pilot-PSI. The pressure force and dipole force were found to be significant. By tracing the equilibrium position, the particle radius was determined at which the particle deposits. The obtained particle radius agrees well with the experimentally obtained size and suggests better agreement as compared to the unrevised model.

  13. The hydrodynamics of bubble rise and impact with solid surfaces.

    PubMed

    Manica, Rogerio; Klaseboer, Evert; Chan, Derek Y C

    2016-09-01

    A bubble smaller than 1mm in radius rises along a straight path in water and attains a constant speed due to the balance between buoyancy and drag force. Depending on the purity of the system, within the two extreme limits of tangentially immobile or mobile boundary conditions at the air-water interface considerably different terminal speeds are possible. When such a bubble impacts on a horizontal solid surface and bounces, interesting physics can be observed. We study this physical phenomenon in terms of forces, which can be of colloidal, inertial, elastic, surface tension and viscous origins. Recent advances in high-speed photography allow for the observation of phenomena on the millisecond scale. Simultaneous use of such cameras to visualize both rise/deformation and the dynamics of the thin film drainage through interferometry are now possible. These experiments confirm that the drainage process obeys lubrication theory for the spectrum of micrometre to millimetre-sized bubbles that are covered in this review. We aim to bridge the colloidal perspective at low Reynolds numbers where surface forces are important to high Reynolds number fluid dynamics where the effect of the surrounding flow becomes important. A model that combines a force balance with lubrication theory allows for the quantitative comparison with experimental data under different conditions without any fitting parameter. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Photogrammetric Deflection Measurements for the Tiltrotor Test Rig (TTR) Multi-Component Rotor Balance Calibration

    NASA Technical Reports Server (NTRS)

    Solis, Eduardo; Meyn, Larry

    2016-01-01

    Calibrating the internal, multi-component balance mounted in the Tiltrotor Test Rig (TTR) required photogrammetric measurements to determine the location and orientation of forces applied to the balance. The TTR, with the balance and calibration hardware attached, was mounted in a custom calibration stand. Calibration loads were applied using eleven hydraulic actuators, operating in tension only, that were attached to the forward frame of the calibration stand and the TTR calibration hardware via linkages with in-line load cells. Before the linkages were installed, photogrammetry was used to determine the location of the linkage attachment points on the forward frame and on the TTR calibration hardware. Photogrammetric measurements were used to determine the displacement of the linkage attachment points on the TTR due to deflection of the hardware under applied loads. These measurements represent the first photogrammetric deflection measurements to be made to support 6-component rotor balance calibration. This paper describes the design of the TTR and the calibration hardware, and presents the development, set-up and use of the photogrammetry system, along with some selected measurement results.

  15. Development of a Force Measurement Device for Lower-Body Muscular Strength Measuring of Skaters

    NASA Astrophysics Data System (ADS)

    Kim, Dong Ki; Lee, Jeong Tae

    This paper presents a force measurement system that can measure a lower-body muscular strength of skaters. The precise measurement and analysis of the left and right lower-body strength of skaters is necessary, because a left/right lower-body strength balance is helpful to improve the athletes' performance and to protect them from injury. The system is constructed with a skate sliding board, a couple of sensor-units with load cell, indicator and control box, guard, force pad, and support bracket. The developed force measurement system is calibrated by the calibration setup, and the uncertainty of the force sensing unit on the left is within 0.087% and the uncertainty of the force sensing unit on the right is within 0.109%. In order to check the feasibility of the developed measurement device, a kinematic analysis is conducted with skater. As a result, the subject shows the deviation of left and right of 12.1 N with respect to average strength and 39.1 N with respect to the maximum strength. This evaluation results are reliable enough to make it possible to measure a lower-body muscular strength of skaters. The use of this measurement system will be expected to correct the posture of skaters and record the sports dynamics data for each athlete. It is believed that through the development of this equipment, skaters in elementary, middle, high schools, colleges, and the professional level have the systematic training to compete with world-class skaters.

  16. Evaluation of aerodynamic derivatives from a magnetic balance system

    NASA Technical Reports Server (NTRS)

    Raghunath, B. S.; Parker, H. M.

    1972-01-01

    The dynamic testing of a model in the University of Virginia cold magnetic balance wind-tunnel facility is expected to consist of measurements of the balance forces and moments, and the observation of the essentially six degree of freedom motion of the model. The aerodynamic derivatives of the model are to be evaluated from these observations. The basic feasibility of extracting aerodynamic information from the observation of a model which is executing transient, complex, multi-degree of freedom motion is demonstrated. It is considered significant that, though the problem treated here involves only linear aerodynamics, the methods used are capable of handling a very large class of aerodynamic nonlinearities. The basic considerations include the effect of noise in the data on the accuracy of the extracted information. Relationships between noise level and the accuracy of the evaluated aerodynamic derivatives are presented.

  17. Haptic-Based Perception-Empathy Biofeedback Enhances Postural Motor Learning During High-Cognitive Load Task in Healthy Older Adults

    PubMed Central

    Yasuda, Kazuhiro; Saichi, Kenta; Iwata, Hiroyasu

    2018-01-01

    Falls and fall-induced injuries are major global public health problems, and sensory input impairment in older adults results in significant limitations in feedback-type postural control. A haptic-based biofeedback (BF) system can be used for augmenting somatosensory input in older adults, and the application of this BF system can increase the objectivity of the feedback and encourage comparison with that provided by a trainer. Nevertheless, an optimal BF system that focuses on interpersonal feedback for balance training in older adults has not been proposed. Thus, we proposed a haptic-based perception-empathy BF system that provides information regarding the older adult's center-of-foot pressure pattern to the trainee and trainer for refining the motor learning effect. The first objective of this study was to examine the effect of this balance training regimen in healthy older adults performing a postural learning task. Second, this study aimed to determine whether BF training required high cognitive load to clarify its practicability in real-life settings. Twenty older adults were assigned to two groups: BF and control groups. Participants in both groups tried balance training in the single-leg stance while performing a cognitive task (i.e., serial subtraction task). Retention was tested 24 h later. Testing comprised balance performance measures (i.e., 95% confidence ellipse area and mean velocity of sway) and dual-task performance (number of responses and correct answers). Measurements of postural control using a force plate revealed that the stability of the single-leg stance was significantly lower in the BF group than in the control group during the balance task. The BF group retained the improvement in the 95% confidence ellipse area 24 h after the retention test. Results of dual-task performance during the balance task were not different between the two groups. These results confirmed the potential benefit of the proposed balance training regimen in designing successful motor learning programs for preventing falls in older adults. PMID:29868597

  18. Haptic-Based Perception-Empathy Biofeedback Enhances Postural Motor Learning During High-Cognitive Load Task in Healthy Older Adults.

    PubMed

    Yasuda, Kazuhiro; Saichi, Kenta; Iwata, Hiroyasu

    2018-01-01

    Falls and fall-induced injuries are major global public health problems, and sensory input impairment in older adults results in significant limitations in feedback-type postural control. A haptic-based biofeedback (BF) system can be used for augmenting somatosensory input in older adults, and the application of this BF system can increase the objectivity of the feedback and encourage comparison with that provided by a trainer. Nevertheless, an optimal BF system that focuses on interpersonal feedback for balance training in older adults has not been proposed. Thus, we proposed a haptic-based perception-empathy BF system that provides information regarding the older adult's center-of-foot pressure pattern to the trainee and trainer for refining the motor learning effect. The first objective of this study was to examine the effect of this balance training regimen in healthy older adults performing a postural learning task. Second, this study aimed to determine whether BF training required high cognitive load to clarify its practicability in real-life settings. Twenty older adults were assigned to two groups: BF and control groups. Participants in both groups tried balance training in the single-leg stance while performing a cognitive task (i.e., serial subtraction task). Retention was tested 24 h later. Testing comprised balance performance measures (i.e., 95% confidence ellipse area and mean velocity of sway) and dual-task performance (number of responses and correct answers). Measurements of postural control using a force plate revealed that the stability of the single-leg stance was significantly lower in the BF group than in the control group during the balance task. The BF group retained the improvement in the 95% confidence ellipse area 24 h after the retention test. Results of dual-task performance during the balance task were not different between the two groups. These results confirmed the potential benefit of the proposed balance training regimen in designing successful motor learning programs for preventing falls in older adults.

  19. Measuring center of pressure signals to quantify human balance using multivariate multiscale entropy by designing a force platform.

    PubMed

    Huang, Cheng-Wei; Sue, Pei-Der; Abbod, Maysam F; Jiang, Bernard C; Shieh, Jiann-Shing

    2013-08-08

    To assess the improvement of human body balance, a low cost and portable measuring device of center of pressure (COP), known as center of pressure and complexity monitoring system (CPCMS), has been developed for data logging and analysis. In order to prove that the system can estimate the different magnitude of different sways in comparison with the commercial Advanced Mechanical Technology Incorporation (AMTI) system, four sway tests have been developed (i.e., eyes open, eyes closed, eyes open with water pad, and eyes closed with water pad) to produce different sway displacements. Firstly, static and dynamic tests were conducted to investigate the feasibility of the system. Then, correlation tests of the CPCMS and AMTI systems have been compared with four sway tests. The results are within the acceptable range. Furthermore, multivariate empirical mode decomposition (MEMD) and enhanced multivariate multiscale entropy (MMSE) analysis methods have been used to analyze COP data reported by the CPCMS and compare it with the AMTI system. The improvements of the CPCMS are 35% to 70% (open eyes test) and 60% to 70% (eyes closed test) with and without water pad. The AMTI system has shown an improvement of 40% to 80% (open eyes test) and 65% to 75% (closed eyes test). The results indicate that the CPCMS system can achieve similar results to the commercial product so it can determine the balance.

  20. Measuring Center of Pressure Signals to Quantify Human Balance Using Multivariate Multiscale Entropy by Designing a Force Platform

    PubMed Central

    Huang, Cheng-Wei; Sue, Pei-Der; Abbod, Maysam F.; Jiang, Bernard C.; Shieh, Jiann-Shing

    2013-01-01

    To assess the improvement of human body balance, a low cost and portable measuring device of center of pressure (COP), known as center of pressure and complexity monitoring system (CPCMS), has been developed for data logging and analysis. In order to prove that the system can estimate the different magnitude of different sways in comparison with the commercial Advanced Mechanical Technology Incorporation (AMTI) system, four sway tests have been developed (i.e., eyes open, eyes closed, eyes open with water pad, and eyes closed with water pad) to produce different sway displacements. Firstly, static and dynamic tests were conducted to investigate the feasibility of the system. Then, correlation tests of the CPCMS and AMTI systems have been compared with four sway tests. The results are within the acceptable range. Furthermore, multivariate empirical mode decomposition (MEMD) and enhanced multivariate multiscale entropy (MMSE) analysis methods have been used to analyze COP data reported by the CPCMS and compare it with the AMTI system. The improvements of the CPCMS are 35% to 70% (open eyes test) and 60% to 70% (eyes closed test) with and without water pad. The AMTI system has shown an improvement of 40% to 80% (open eyes test) and 65% to 75% (closed eyes test). The results indicate that the CPCMS system can achieve similar results to the commercial product so it can determine the balance. PMID:23966184

  1. The effects of isolated ankle strengthening and functional balance training on strength, running mechanics, postural control and injury prevention in novice runners: design of a randomized controlled trial.

    PubMed

    Baltich, Jennifer; Emery, Carolyn A; Stefanyshyn, Darren; Nigg, Benno M

    2014-12-04

    Risk factors have been proposed for running injuries including (a) reduced muscular strength, (b) excessive joint movements and (c) excessive joint moments in the frontal and transverse planes. To date, many running injury prevention programs have focused on a "top down" approach to strengthen the hip musculature in the attempt to reduce movements and moments at the hip, knee, and/or ankle joints. However, running mechanics did not change when hip muscle strength increased. It could be speculated that emphasis should be placed on increasing the strength of the ankle joint for a "ground up" approach. Strengthening of the large and small muscles crossing the ankle joint is assumed to change the force distribution for these muscles and to increase the use of smaller muscles. This would be associated with a reduction of joint and insertion forces, which could have a beneficial effect on injury prevention. However, training of the ankle joint as an injury prevention strategy has not been studied. Ankle strengthening techniques include isolated strengthening or movement-related strengthening such as functional balance training. There is little knowledge about the efficacy of such training programs on strength alteration, gait or injury reduction. Novice runners will be randomly assigned to one of three groups: an isolated ankle strengthening group (strength, n = 40), a functional balance training group (balance, n = 40) or an activity-matched control group (control, n = 40). Isokinetic strength will be measured using a Biodex System 3 dynamometer. Running kinematics and kinetics will be assessed using 3D motion analysis and a force platform. Postural control will be assessed by quantifying the magnitude and temporal structure of the center of pressure trace during single leg stance on a force platform. The change pre- and post-training in isokinetic strength, running mechanics, and postural control variables will be compared following the interventions. Injuries rates will be compared between groups over 6 months. Avoiding injury will allow individuals to enjoy the benefits of participating in aerobic activities and reduce the healthcare costs associated with running injuries. Current Controlled Trial NCT01900262.

  2. The influence of internal variability on Earth's energy balance framework and implications for estimating climate sensitivity

    NASA Astrophysics Data System (ADS)

    Dessler, Andrew E.; Mauritsen, Thorsten; Stevens, Bjorn

    2018-04-01

    Our climate is constrained by the balance between solar energy absorbed by the Earth and terrestrial energy radiated to space. This energy balance has been widely used to infer equilibrium climate sensitivity (ECS) from observations of 20th-century warming. Such estimates yield lower values than other methods, and these have been influential in pushing down the consensus ECS range in recent assessments. Here we test the method using a 100-member ensemble of the Max Planck Institute Earth System Model (MPI-ESM1.1) simulations of the period 1850-2005 with known forcing. We calculate ECS in each ensemble member using energy balance, yielding values ranging from 2.1 to 3.9 K. The spread in the ensemble is related to the central assumption in the energy budget framework: that global average surface temperature anomalies are indicative of anomalies in outgoing energy (either of terrestrial origin or reflected solar energy). We find that this assumption is not well supported over the historical temperature record in the model ensemble or more recent satellite observations. We find that framing energy balance in terms of 500 hPa tropical temperature better describes the planet's energy balance.

  3. Development of an interactive game-based rehabilitation tool for dynamic balance training.

    PubMed

    Lange, BeLinda; Flynn, Sheryl; Proffitt, Rachel; Chang, Chien-Yen; Rizzo, Albert Skip

    2010-01-01

    Conventional physical therapy techniques have been shown to improve balance, mobility, and gait following neurological injury. Treatment involves training patients to transfer weight onto the impaired limb to improve weight shift while standing and walking. Visual biofeedback and force plate systems are often used for treatment of balance and mobility disorders. Researchers have also been exploring the use of video game consoles such as the Nintendo Wii Fit as rehabilitation tools. Case studies have demonstrated that the use of video games may have promise for balance rehabilitation. However, initial usability studies and anecdotal evidence suggest that the current commercial games are not compatible with controlled, specific exercise required to meet therapy goals. Based on focus group data and observations with patients, a game has been developed to specifically target weight shift training using an open source game engine and the Nintendo Wii Fit Balance Board. The prototype underwent initial usability testing with a sample of clinicians and with persons with neurological injury. Overall, feedback was positive, and areas for improvement were identified. This preliminary research provides support for the development of a game that caters specifically to the key requirements of balance rehabilitation.

  4. Tibiofemoral forces for the native and post-arthroplasty knee: relationship to maximal laxity through a functional arc of motion.

    PubMed

    Manning, William A; Ghosh, Kanishka; Blain, Alasdair; Longstaff, Lee; Deehan, David John

    2017-06-01

    Accurate soft tissue balance must be achieved to improve functional outcome after total knee arthroplasty (TKA). Sensor-integrated tibial trials have been introduced that allow real-time measurement of tibiofemoral kinematics during TKA. This study examined the interplay between tibiofemoral force and laxity, under defined intraoperative conditions, so as to quantify the kinematic behaviour of the CR femoral single-radius knee. TKA was undertaken in eight loaded cadaveric specimens. Computer navigation in combination with sensor data defined laxity and tibiofemoral contact force, respectively, during manual laxity testing. Fixed-effect linear modelling allowed quantification of the effect for flexion angle, direction of movement and TKA implantation upon the knee. An inverse relationship between laxity and contact force was demonstrated. With flexion, laxity increased as contact force decreased under manual stress. Change in laxity was significant beyond 30° for coronal plane laxity and beyond 60° for rotatory laxity (p < 0.01). Rotational stress in mid-flexion demonstrated the greatest mismatch in inter-compartmental forces. Contact point position over the tibial sensor demonstrated paradoxical roll-forward with knee flexion. Traditional balancing techniques may not reliably equate to uniform laxity or contact forces across the tibiofemoral joint through a range of flexion and argue for the role of per-operative sensor use to aid final balancing of the knee.

  5. Sensorimotor and neuropsychological correlates of force perturbations that induce stepping in older adults.

    PubMed

    Sturnieks, Daina L; Menant, Jasmine; Vanrenterghem, Jos; Delbaere, Kim; Fitzpatrick, Richard C; Lord, Stephen R

    2012-07-01

    Inappropriate stepping in response to unexpected balance perturbations is more prevalent in older people and in those at risk of falling. This study examined responses to force-controlled waist pulls in young and older people, and sought to identify physiological and cognitive correlates of the force threshold for stepping. 242 older (79.7±4.2 years) and 15 young (29.5±5.3 years) adults underwent waist pull perturbations and assessments of physiological and neuropsychological functioning, general health and falls efficacy. Perturbation force that induced stepping, stepping strategy and number of steps were measured. The older group withstood less forceful perturbations with a feet-in-place strategy, compared to young. Likewise, older adults with high falls risk withstood less force than those with low risk. After controlling for body weight and gender, sway and lower limb strength were independent predictors of anterior stepping thresholds, reaction time was an independent predictor of posterior thresholds, and executive functioning and lower limb strength were independent predictors of the lateral thresholds. These results suggest that balance, strength and agility training, in addition to cognitive exercises may enhance the ability to withstand unexpected balance perturbations and reduce the risk of falls in older people. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Development of a multicomponent force and moment balance for water tunnel applications, volume 2

    NASA Technical Reports Server (NTRS)

    Suarez, Carlos J.; Malcolm, Gerald N.; Kramer, Brian R.; Smith, Brooke C.; Ayers, Bert F.

    1994-01-01

    The principal objective of this research effort was to develop a multicomponent strain gauge balance to measure forces and moments on models tested in flow visualization water tunnels. Static experiments (which are discussed in Volume 1 of this report) were conducted, and the results showed good agreement with wind tunnel data on similar configurations. Dynamic experiments, which are the main topic of this Volume, were also performed using the balance. Delta wing models and two F/A-18 models were utilized in a variety of dynamic tests. This investigation showed that, as expected, the values of the inertial tares are very small due to the low rotating rates required in a low-speed water tunnel and can, therefore, be ignored. Oscillations in pitch, yaw and roll showed hysteresis loops that compared favorably to data from dynamic wind tunnel experiments. Pitch-up and hold maneuvers revealed the long persistence, or time-lags, of some of the force components in response to the motion. Rotary-balance experiments were also successfully performed. The good results obtained in these dynamic experiments bring a whole new dimension to water tunnel testing and emphasize the importance of having the capability to perform simultaneous flow visualization and force/moment measurements during dynamic situations.

  7. Experimental and Theoretical Investigations of a Mechanical Lever System Driven by a DC Motor

    NASA Astrophysics Data System (ADS)

    Nana, B.; Fautso Kuiate, G.; Yamgoué, S. B.

    This paper presents theoretical and experimental results on the investigation of the dynamics of a nonlinear electromechanical system made of a lever arm actuated by a DC motor and controlled through a repulsive magnetic force. We use the method of harmonic balance to derive oscillatory solutions. Theoretical tools such as, bifurcation diagrams, Lyapunov exponents, phase portraits, are used to unveil the rich nonlinear behavior of the system including chaos and hysteresis. The experimental results are in close accordance with the theoretical predictions.

  8. A balanced ATP driving force module for enhancing photosynthetic biosynthesis of 3-hydroxybutyrate from CO2.

    PubMed

    Ku, Jason T; Lan, Ethan I

    2018-03-01

    Using engineered photoautotrophic microorganisms for the direct chemical synthesis from CO 2 is an attractive direction for both sustainability and CO 2 mitigation. However, the behaviors of non-native metabolic pathways may be difficult to control due to the different intracellular contexts between natural and heterologous hosts. While most metabolic engineering efforts focus on strengthening driving forces in pathway design to favor biochemical production in these organisms, excessive driving force may be detrimental to product biosynthesis due to imbalanced cellular intermediate distribution. In this study, an ATP-hydrolysis based driving force module was engineered into cyanobacterium Synechococcus elongatus PCC 7942 to produce 3-hydroxybutyrate (3HB), a valuable chemical feedstock for the synthesis of biodegradable plastics and antibiotics. However, while the ATP driving force module is effective for increasing product formation, uncontrolled accumulation of intermediate metabolites likely led to metabolic imbalance and thus to cell growth inhibition. Therefore, the ATP driving force module was reengineered by providing a reversible outlet for excessive carbon flux. Upon expression of this balanced ATP driving force module with 3HB biosynthesis, engineered strain produced 3HB with a cumulative titer of 1.2 g/L, a significant increase over the initial strain. This result highlighted the importance of pathway reversibility as an effective design strategy for balancing driving force and intermediate accumulation, thereby achieving a self-regulated control for increased net flux towards product biosynthesis. Copyright © 2018 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  9. Design and analysis of coiled fiber reinforced soft pneumatic actuator.

    PubMed

    Singh, Gaurav; Xiao, Chenzhang; Hsiao-Wecksler, Elizabeth T; Krishnan, Girish

    2018-04-18

    Fiber reinforced elastomeric enclosures (FREEs) are soft pneumatic actuators that can contract and generate forces upon pressurization. Typical engineering applications utilize FREEs in their straight cylindrical configuration and derive actuation displacement and forces from their ends. However, there are several instances in nature, such as an elephant trunk, snakes and grapevine tendrils, where a spiral configuration of muscle systems is used for gripping, thereby establishing a mechanical connection with uniform force distribution. Inspired by these examples, this paper investigates the constricting behavior of a contracting FREE actuator deployed in a spiral or coiled configuration around a cylindrical object. Force balance is used to model the blocked force of the FREE, which is then related to the constriction force using a string model. The modeling and experimental findings reveal an attenuation in the blocked force, and thus the constriction force caused by the coupling of peripheral contact forces acting in the spiral configuration. The usefulness of the coiled FREE configuration is demonstrated in a soft arm orthosis for crutch users that provides a constriction force around the forearm. This design minimizes injury risk by reducing wrist load and improving wrist posture.

  10. Inducer Hydrodynamic Forces in a Cavitating Environment

    NASA Technical Reports Server (NTRS)

    Skelley, Stephen E.

    2004-01-01

    Marshall Space Flight Center has developed and demonstrated a measurement device for sensing and resolving the hydrodynamic loads on fluid machinery. The device - a derivative of the six-component wind tunnel balance - senses the forces and moments on the rotating device through a weakened shaft section instrumented with a series of strain gauges. This rotating balance was designed to directly measure the steady and unsteady hydrodynamic loads on an inducer, thereby defining the amplitude and frequency content associated with operating in various cavitation modes. The rotating balance was calibrated statically using a dead-weight load system in order to generate the 6 x 12 calibration matrix later used to convert measured voltages to engineering units. Structural modeling suggested that the rotating assembly first bending mode would be significantly reduced with the balance s inclusion. This reduction in structural stiffness was later confirmed experimentally with a hammer-impact test. This effect, coupled with the relatively large damping associated with the rotating balance waterproofing material, limited the device s bandwidth to approximately 50 Hertz Other pre-test validations included sensing the test article rotating assembly built-in imbalance for two configurations and directly measuring the assembly mass and buoyancy while submerged under water. Both tests matched predictions and confirmed the device s sensitivity while stationary and rotating. The rotating balance was then demonstrated in a water test of a full-scale Space Shuttle Main Engine high-pressure liquid oxygen pump inducer. Experimental data was collected a scaled operating conditions at three flow coefficients across a range of cavitation numbers for the single inducer geometry and radial clearance. Two distinct cavitation modes were observed symmetric tip vortex cavitation and alternate-blade cavitation. Although previous experimental tests on the same inducer demonstrated two additional cavitation modes at lower inlet pressures, these conditions proved unreachable with the rotating balance installed due to the intense dynamic environment. The sensed radial load was less influenced by flow coefficient than by cavitation number or cavitation mode although the flow coefficient range was relatively narrow. Transition from symmetric tip vortex to alternate-blade cavitation corresponded to changes in both radial load magnitude and radial load orientation relative to the inducer. Sensed moments indicated that the effective load center moved downstream during this change in cavitation mode. An occurrence of "higher+rdex cavitation" was also detected in both the stationary pressures and the rotating balance data although the frequency of the phenomena was well above the reliable bandwidth of the rotating balance. In summary the experimental tests proved both the concept and device s capability despite the limitations and confirmed that hydrodynamically-induced forces and moments develop in response to the unbalanced pressure field, which is, in turn, a product of the cavitation environment.

  11. Upper Blue Nile basin water budget from a multi-model perspective

    NASA Astrophysics Data System (ADS)

    Jung, Hahn Chul; Getirana, Augusto; Policelli, Frederick; McNally, Amy; Arsenault, Kristi R.; Kumar, Sujay; Tadesse, Tsegaye; Peters-Lidard, Christa D.

    2017-12-01

    Improved understanding of the water balance in the Blue Nile is of critical importance because of increasingly frequent hydroclimatic extremes under a changing climate. The intercomparison and evaluation of multiple land surface models (LSMs) associated with different meteorological forcing and precipitation datasets can offer a moderate range of water budget variable estimates. In this context, two LSMs, Noah version 3.3 (Noah3.3) and Catchment LSM version Fortuna 2.5 (CLSMF2.5) coupled with the Hydrological Modeling and Analysis Platform (HyMAP) river routing scheme are used to produce hydrological estimates over the region. The two LSMs were forced with different combinations of two reanalysis-based meteorological datasets from the Modern-Era Retrospective analysis for Research and Applications datasets (i.e., MERRA-Land and MERRA-2) and three observation-based precipitation datasets, generating a total of 16 experiments. Modeled evapotranspiration (ET), streamflow, and terrestrial water storage estimates were evaluated against the Atmosphere-Land Exchange Inverse (ALEXI) ET, in-situ streamflow observations, and NASA Gravity Recovery and Climate Experiment (GRACE) products, respectively. Results show that CLSMF2.5 provided better representation of the water budget variables than Noah3.3 in terms of Nash-Sutcliffe coefficient when considering all meteorological forcing datasets and precipitation datasets. The model experiments forced with observation-based products, the Climate Hazards group Infrared Precipitation with Stations (CHIRPS) and the Tropical Rainfall Measuring Mission (TRMM) Multi-Satellite Precipitation Analysis (TMPA), outperform those run with MERRA-Land and MERRA-2 precipitation. The results presented in this paper would suggest that the Famine Early Warning Systems Network (FEWS NET) Land Data Assimilation System incorporate CLSMF2.5 and HyMAP routing scheme to better represent the water balance in this region.

  12. Influence of inhomogeneous surface heat capacity on the estimation of radiative response coefficients in a two-zone energy balance model

    NASA Astrophysics Data System (ADS)

    Park, Jungmin; Choi, Yong-Sang

    2018-04-01

    Observationally constrained values of the global radiative response coefficient are pivotal to assess the reliability of modeled climate feedbacks. A widely used approach is to measure transient global radiative imbalance related to surface temperature changes. However, in this approach, a potential error in the estimate of radiative response coefficients may arise from surface inhomogeneity in the climate system. We examined this issue theoretically using a simple two-zone energy balance model. Here, we dealt with the potential error by subtracting the prescribed radiative response coefficient from those calculated within the two-zone framework. Each zone was characterized by the different magnitude of the radiative response coefficient and the surface heat capacity, and the dynamical heat transport in the atmosphere between the zones was parameterized as a linear function of the temperature difference between the zones. Then, the model system was forced by randomly generated monthly varying forcing mimicking time-varying forcing like an observation. The repeated simulations showed that inhomogeneous surface heat capacity causes considerable miscalculation (down to -1.4 W m-2 K-1 equivalent to 31.3% of the prescribed value) in the global radiative response coefficient. Also, the dynamical heat transport reduced this miscalculation driven by inhomogeneity of surface heat capacity. Therefore, the estimation of radiative response coefficients using the surface temperature-radiation relation is appropriate for homogeneous surface areas least affected by the exterior.

  13. Improved determination of dynamic balance using the centre of mass and centre of pressure inclination variables in a complete golf swing cycle.

    PubMed

    Choi, Ahnryul; Sim, Taeyong; Mun, Joung Hwan

    2016-01-01

    Golf requires proper dynamic balance to accurately control the club head through a harmonious coordination of each human segment and joint. In this study, we evaluated the ability for dynamic balance during a golf swing by using the centre of mass (COM)-centre of pressure (COP) inclination variables. Twelve professional, 13 amateur and 10 novice golfers participated in this study. Six infrared cameras, two force platforms and SB-Clinic software were used to measure the net COM and COP trajectories. In order to evaluate dynamic balance ability, the COM-COP inclination angle, COM-COP inclination angular velocity and normalised COM-COP inclination angular jerk were used. Professional golfer group revealed a smaller COM-COP inclination angle and angular velocity than novice golfer group in the lead/trail direction (P < 0.01). In the normalised COM-COP inclination angular jerk, the professional golfer group showed a lower value than the other two groups in all directions. Professional golfers tend to exhibit improved dynamic balance, and this can be attributed to the neuromusculoskeletal system that maintains balance with proper postural control. This study has the potential to allow for an evaluation of the dynamic balance mechanism and will provide useful basic information for swing training and prevention of golf injuries.

  14. Perspective: Ab initio force field methods derived from quantum mechanics

    NASA Astrophysics Data System (ADS)

    Xu, Peng; Guidez, Emilie B.; Bertoni, Colleen; Gordon, Mark S.

    2018-03-01

    It is often desirable to accurately and efficiently model the behavior of large molecular systems in the condensed phase (thousands to tens of thousands of atoms) over long time scales (from nanoseconds to milliseconds). In these cases, ab initio methods are difficult due to the increasing computational cost with the number of electrons. A more computationally attractive alternative is to perform the simulations at the atomic level using a parameterized function to model the electronic energy. Many empirical force fields have been developed for this purpose. However, the functions that are used to model interatomic and intermolecular interactions contain many fitted parameters obtained from selected model systems, and such classical force fields cannot properly simulate important electronic effects. Furthermore, while such force fields are computationally affordable, they are not reliable when applied to systems that differ significantly from those used in their parameterization. They also cannot provide the information necessary to analyze the interactions that occur in the system, making the systematic improvement of the functional forms that are used difficult. Ab initio force field methods aim to combine the merits of both types of methods. The ideal ab initio force fields are built on first principles and require no fitted parameters. Ab initio force field methods surveyed in this perspective are based on fragmentation approaches and intermolecular perturbation theory. This perspective summarizes their theoretical foundation, key components in their formulation, and discusses key aspects of these methods such as accuracy and formal computational cost. The ab initio force fields considered here were developed for different targets, and this perspective also aims to provide a balanced presentation of their strengths and shortcomings. Finally, this perspective suggests some future directions for this actively developing area.

  15. Reliability and Validity of Computerized Force Platform Measures of Balance Function in Healthy Older Adults.

    PubMed

    Harro, Cathy C; Garascia, Chelsea

    2018-01-10

    Postural control declines with aging and is an independent risk factor for falls in older adults. Objective examination of balance function is warranted to direct fall prevention strategies. Force platform (FP) systems provide quantitative measures of postural control and analysis of different aspects of balance. The purpose of this study was to examine the reliability and validity of FP measures in healthy older adults. This study enrolled 46 healthy elderly adults, mean age 67.67 (5.1) years, who had no history of falls. They were assessed on 3 standardized tests on the NeuroCom Equitest FP system: limits of stability (LOS), motor control test (MCT), and sensory organization test (SOT). The test battery was administered twice within a 10-day period for test-retest reliability; intraclass correlation coefficients (ICCs), standard error of measurement (SEM), and minimal detectable change based on a 95% confidence interval (MDC95) were calculated. FP measures were compared with criterion clinical balance (Mini-BESTest and Functional Gait Assessment) and gait (10-m walk and 6-minute walk) measures to examine concurrent validity using Pearson correlation coefficients. Multiple linear regression analysis examined whether age and activity level were associated with FP performance. The α level was set at P < .05. SOT composite equilibrium scores, MCT average latency, and LOS end point excursion measures all demonstrated excellent test-retest reliability (ICC = 0.90, 0.85, and 0.77, respectively), whereas moderate to good reliability was found for SOT vestibular ratio score (ICC = 0.71). There was large variability in performance in this healthy elderly cohort, resulting in relatively large MDC95 for these measures, especially for the LOS test. Fair correlations were found between LOS end point excursion and clinical balance and gait measures (r = 0.31-0.49), and between MCT average latency and gait measures only (r = -0.32). No correlations were found between SOT measures and clinical balance and gait measures. Age was only marginally significantly (P = .055) associated with LOS end point excursion but was not associated with SOT or MCT measures, and activity level was not associated with any of the FP measures. FP measures provided reliable information on balance function in healthy older adults; however, small learning effects were evident, particularly for the SOT. The SEM and MDC95 for the LOS and SOT measures were relatively large for this healthy elderly cohort. A relationship between FP measures, which assess underlying balance mechanisms, and clinical balance and gait measures was not strongly supported in this study. Further research is needed to justify the value of adding FP measures to a test battery for balance assessment in older adults without a history of falls.

  16. The role of employee flexible spending accounts in health care financing.

    PubMed

    Schweitzer, M; Asch, D A

    1996-08-01

    Employee flexible spending accounts for health care represent one component of the current health care financing system that merits serious reform. These accounts create a system of undesirable incentives, force employees and employers to take complicated gambles, reduce tax revenues, and fail to meet their purported policy objectives. This paper describes shortcomings in these accounts from both a theoretical and an empirical perspective. Some proposed alternatives; including medical spending accounts and zero balance accounts, resolve many of these concerns but not all of them.

  17. Mapping land water and energy balance relations through conditional sampling of remote sensing estimates of atmospheric forcing and surface states

    NASA Astrophysics Data System (ADS)

    Farhadi, Leila; Entekhabi, Dara; Salvucci, Guido

    2016-04-01

    In this study, we develop and apply a mapping estimation capability for key unknown parameters that link the surface water and energy balance equations. The method is applied to the Gourma region in West Africa. The accuracy of the estimation method at point scale was previously examined using flux tower data. In this study, the capability is scaled to be applicable with remotely sensed data products and hence allow mapping. Parameters of the system are estimated through a process that links atmospheric forcing (precipitation and incident radiation), surface states, and unknown parameters. Based on conditional averaging of land surface temperature and moisture states, respectively, a single objective function is posed that measures moisture and temperature-dependent errors solely in terms of observed forcings and surface states. This objective function is minimized with respect to parameters to identify evapotranspiration and drainage models and estimate water and energy balance flux components. The uncertainty of the estimated parameters (and associated statistical confidence limits) is obtained through the inverse of Hessian of the objective function, which is an approximation of the covariance matrix. This calibration-free method is applied to the mesoscale region of Gourma in West Africa using multiplatform remote sensing data. The retrievals are verified against tower-flux field site data and physiographic characteristics of the region. The focus is to find the functional form of the evaporative fraction dependence on soil moisture, a key closure function for surface and subsurface heat and moisture dynamics, using remote sensing data.

  18. Post-capture vibration suppression of spacecraft via a bio-inspired isolation system

    NASA Astrophysics Data System (ADS)

    Dai, Honghua; Jing, Xingjian; Wang, Yu; Yue, Xiaokui; Yuan, Jianping

    2018-05-01

    Inspired by the smooth motions of a running kangaroo, a bio-inspired quadrilateral shape (BIQS) structure is proposed to suppress the vibrations of a free-floating spacecraft subject to periodic or impulsive forces, which may be encountered during on-orbit servicing missions. In particular, the BIQS structure is installed between the satellite platform and the capture mechanism. The dynamical model of the BIQS isolation system, i.e. a BIQS structure connecting the platform and the capture mechanism at each side, is established by Lagrange's equations to simulate the post-capture dynamical responses. The BIQS system suffering an impulsive force is dealt with by means of a modified version of Lagrange's equations. Furthermore, the classical harmonic balance method is used to solve the nonlinear dynamical system subject to periodic forces, while for the case under impulsive forces the numerical integration method is adopted. Due to the weightless environment in space, the present BIQS system is essentially an under-constrained dynamical system with one of its natural frequencies being identical to zero. The effects of system parameters, such as the number of layers in BIQS, stiffness, assembly angle, rod length, damping coefficient, masses of satellite platform and capture mechanism, on the isolation performance of the present system are thoroughly investigated. In addition, comparisons between the isolation performances of the presently proposed BIQS isolator and the conventional spring-mass-damper (SMD) isolator are conducted to demonstrate the advantages of the present isolator. Numerical simulations show that the BIQS system has a much better performance than the SMD system under either periodic or impulsive forces. Overall, the present BIQS isolator offers a highly efficient passive way for vibration suppressions of free-floating spacecraft.

  19. Task Force II: Energy and Its Socioeconomic Impacts

    ERIC Educational Resources Information Center

    Appalachia, 1977

    1977-01-01

    Summarizing the Task Force Issues Paper presented at the Appalachian Conference on Balanced Growth and Economic Development (1977), this article presents selected comments by Task Force participants, and Task Force recommendations re: a national severence tax on extraction of nonrenewable energy resources; socioeconomic costs of nuclear energy; a…

  20. Wind-Tunnel Investigation of the Characteristics of Blunt-Nose Ailerons on a Tapered Wing

    NASA Technical Reports Server (NTRS)

    Toll, Thomas A.

    1943-01-01

    Characteristics are determined for various modifications of 0.155-chord blunt-nose aileron on semispan model of tapered fighter plane wing. Ailerons with 40 percent nose balance reduced high-speed stick forces. Increased balance chord increases effectiveness and reduces high-speed stick forces. Increased balance chord increases effectiveness and reduces adverse effects of gap at aileron hose. Increase of nose radii increased negative slope of curve hinge-movement coefficient plotted against deflection. Extended deflection range decreased aileron effectiveness for small deflections but increased it at large deflections. Peak pressures at noses of ailerons are relatively high at moderate deflections.

  1. Feasibility of Wii Fit training to improve clinical measures of balance in older adults.

    PubMed

    Bieryla, Kathleen A; Dold, Neil M

    2013-01-01

    Numerous interventions have been proposed to improve balance in older adults with varying degrees of success. A novel approach may be to use an off-the-shelf video game system utilizing real-time force feedback to train older adults. The purpose of this study is to investigate the feasibility of using Nintendo's Wii Fit for training to improve clinical measures of balance in older adults and to retain the improvements after a period of time. Twelve healthy older adults (aged >70 years) were randomly divided into two groups. The experimental group completed training using Nintendo's Wii Fit game three times a week for 3 weeks while the control group continued with normal activities. Four clinical measures of balance were assessed before training, 1 week after training, and 1 month after training: Berg Balance Scale (BBS), Fullerton Advanced Balance (FAB) scale, Functional Reach (FR), and Timed Up and Go (TUG). Friedman two-way analysis of variance by ranks was conducted on the control and experimental group to determine if training using the Wii Balance Board with Wii Fit had an influence on clinical measures of balance. Nine older adults completed the study (experimental group n = 4, control group n = 5). The experimental group significantly increased their BBS after training while the control group did not. There was no significant change for either group with FAB, FR, and TUG. Balance training with Nintendo's Wii Fit may be a novel way for older adults to improve balance as measured by the BBS.

  2. Role of arm motion in feet-in-place balance recovery.

    PubMed

    Cheng, Kuangyou B; Wang, Kuan-Mao; Kuo, Shih-Yu

    2015-09-18

    Although considerable arm movements have been observed at loss of balance, research on standing balance focused primarily on the ankle and hip strategies. This study aimed to investigate the effect of arm motion on feet-in-place balance recovery. Participants stood on a single force plate and leaned forward with a straight body posture. They were then released from three forward-lean angles and regained balance without moving their forefeet under arm-swing (AS) and arm-constrained (AC) conditions. Higher success rates and shorter recovery times were found with arm motion under moderate balance perturbations. Recovery time was significantly correlated with peak linear momentum of the arms. Circumduction arm motion caused initial shoulder extension (backward arm movement) to generate reaction forces to pull the body forward, but later forward linear momentum of the arms helped move the whole body backward to avoid forward falling. However, greater lean angles increased difficulty in balance recovery, making the influences of the arms less significant. Since arm motions were observed in all participants with significantly enhanced performance under moderate balance perturbation, it was concluded that moving the arms should also be considered (together with the ankles and hips) as an effective strategy for balance recovery. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Using the Wii Fit as a tool for balance assessment and neurorehabilitation: the first half decade of “Wii-search”

    PubMed Central

    2014-01-01

    The Nintendo Wii Fit was released just over five years ago as a means of improving basic fitness and overall well-being. Despite this broad mission, the Wii Fit has generated specific interest in the domain of neurorehabilitation as a biobehavioral measurement and training device for balance ability. Growing interest in Wii Fit technology is likely due to the ubiquitous nature of poor balance and catastrophic falls, which are commonly seen in older adults and various disability conditions. The present review provides the first comprehensive summary of Wii Fit balance research, giving specific insight into the system’s use for the assessment and training of balance. Overall, at the time of the fifth anniversary, work in the field showed that custom applications using the Wii Balance Board as a proxy for a force platform have great promise as a low cost and portable way to assess balance. On the other hand, use of Wii Fit software-based balance metrics has been far less effective in determining balance status. As an intervention tool, positive balance outcomes have typically been obtained using Wii Fit balance games, advocating their use for neurorehabilitative training. Despite this, limited sample sizes and few randomized control designs indicate that research regarding use of the Wii Fit system for balance intervention remains subject to improvement. Future work aimed at conducting studies with larger scale randomized control designs and a greater mechanistic focus is recommended to further advance the efficacy of this impactful neurorehabilitation tool. PMID:24507245

  4. Laboratory study of low-β forces in arched, line-tied magnetic flux ropes

    NASA Astrophysics Data System (ADS)

    Myers, C. E.; Yamada, M.; Ji, H.; Yoo, J.; Jara-Almonte, J.; Fox, W.

    2016-11-01

    The loss-of-equilibrium is a solar eruption mechanism whereby a sudden breakdown of the magnetohydrodynamic force balance in the Sun's corona ejects a massive burst of particles and energy into the heliosphere. Predicting a loss-of-equilibrium, which has more recently been formulated as the torus instability, relies on a detailed understanding of the various forces that hold the pre-eruption magnetic flux rope in equilibrium. Traditionally, idealized analytical force expressions are used to derive simplified eruption criteria that can be compared to solar observations and modeling. What is missing, however, is a validation that these idealized analytical force expressions can be applied to the line-tied, low-aspect-ratio conditions of the corona. In this paper, we address this shortcoming by using a laboratory experiment to study the forces that act on long-lived, arched, line-tied magnetic flux ropes. Three key force terms are evaluated over a wide range of experimental conditions: (1) the upward hoop force; (2) the downward strapping force; and (3) the downward toroidal field tension force. First, the laboratory force measurements show that, on average, the three aforementioned force terms cancel to produce a balanced line-tied equilibrium. This finding validates the laboratory force measurement techniques developed here, which were recently used to identify a dynamic toroidal field tension force that can prevent flux rope eruptions [Myers et al., Nature 528, 526 (2015)]. The verification of magnetic force balance also confirms the low-β assumption that the plasma thermal pressure is negligible in these experiments. Next, the measured force terms are directly compared to corresponding analytical expressions. While the measured and analytical forces are found to be well correlated, the low-aspect-ratio, line-tied conditions in the experiment are found to both reduce the measured hoop force and increase the measured tension force with respect to analytical expectations. These two co-directed effects combine to generate laboratory flux rope equilibria at lower altitudes than are predicted analytically. Such considerations are expected to modify the loss-of-equilibrium eruption criteria for analogous flux ropes in the solar corona.

  5. Laboratory study of low- β forces in arched, line-tied magnetic flux ropes

    DOE PAGES

    Myers, C. E.; Yamada, M.; Ji, H.; ...

    2016-11-04

    Here, the loss-of-equilibrium is a solar eruption mechanism whereby a sudden breakdown of the magnetohydrodynamic force balance in the Sun's corona ejects a massive burst of particles and energy into the heliosphere. Predicting a loss-of-equilibrium, which has more recently been formulated as the torus instability, relies on a detailed understanding of the various forces that hold the pre-eruption magnetic flux rope in equilibrium. Traditionally, idealized analytical force expressions are used to derive simplified eruption criteria that can be compared to solar observations and modeling. What is missing, however, is a validation that these idealized analytical force expressions can be appliedmore » to the line-tied, low-aspect-ratio conditions of the corona. In this paper, we address this shortcoming by using a laboratory experiment to study the forces that act on long-lived, arched, line-tied magnetic flux ropes. Three key force terms are evaluated over a wide range of experimental conditions: (1) the upward hoop force; (2) the downward strapping force; and (3) the downward toroidal field tension force. First, the laboratory force measurements show that, on average, the three aforementioned force terms cancel to produce a balanced line-tied equilibrium. This finding validates the laboratory force measurement techniques developed here, which were recently used to identify a dynamic toroidal field tension force that can prevent flux rope eruption. The verification of magnetic force balance also confirms the low-beta assumption that the plasma thermal pressure is negligible in these experiments. Next, the measured force terms are directly compared to corresponding analytical expressions. While the measured and analytical forces are found to be well correlated, the low-aspect-ratio, line-tied conditions in the experiment are found to both reduce the measured hoop force and increase the measured tension force with respect to analytical expectations. These two co-directed effects combine to generate laboratory flux rope equilibria at lower altitudes than are predicted analytically. Such considerations are expected to modify the loss-of-equilibrium eruption criteria for analogous flux ropes in the solar corona.« less

  6. Laboratory study of low- β forces in arched, line-tied magnetic flux ropes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Myers, C. E.; Yamada, M.; Ji, H.

    Here, the loss-of-equilibrium is a solar eruption mechanism whereby a sudden breakdown of the magnetohydrodynamic force balance in the Sun's corona ejects a massive burst of particles and energy into the heliosphere. Predicting a loss-of-equilibrium, which has more recently been formulated as the torus instability, relies on a detailed understanding of the various forces that hold the pre-eruption magnetic flux rope in equilibrium. Traditionally, idealized analytical force expressions are used to derive simplified eruption criteria that can be compared to solar observations and modeling. What is missing, however, is a validation that these idealized analytical force expressions can be appliedmore » to the line-tied, low-aspect-ratio conditions of the corona. In this paper, we address this shortcoming by using a laboratory experiment to study the forces that act on long-lived, arched, line-tied magnetic flux ropes. Three key force terms are evaluated over a wide range of experimental conditions: (1) the upward hoop force; (2) the downward strapping force; and (3) the downward toroidal field tension force. First, the laboratory force measurements show that, on average, the three aforementioned force terms cancel to produce a balanced line-tied equilibrium. This finding validates the laboratory force measurement techniques developed here, which were recently used to identify a dynamic toroidal field tension force that can prevent flux rope eruption. The verification of magnetic force balance also confirms the low-beta assumption that the plasma thermal pressure is negligible in these experiments. Next, the measured force terms are directly compared to corresponding analytical expressions. While the measured and analytical forces are found to be well correlated, the low-aspect-ratio, line-tied conditions in the experiment are found to both reduce the measured hoop force and increase the measured tension force with respect to analytical expectations. These two co-directed effects combine to generate laboratory flux rope equilibria at lower altitudes than are predicted analytically. Such considerations are expected to modify the loss-of-equilibrium eruption criteria for analogous flux ropes in the solar corona.« less

  7. Steady state magnetic field configurations for the earth's magnetotail

    NASA Technical Reports Server (NTRS)

    Hau, L.-N.; Wolf, R. A.; Voigt, G.-H.; Wu, C. C.

    1989-01-01

    A two-dimensional, force-balance magnetic field model is presented. The theoretical existence of a steady state magnetic field configuration that is force-balanced and consistent with slow, lossless, adiabatic, earthward convection within the limit of the ideal MHD is demonstrated. A numerical solution is obtained for a two-dimensional magnetosphere with a rectangular magnetopause and nonflaring tail. The results are consistent with the convection time sequences reported by Erickson (1985).

  8. Modeling and experimental validation of sawing based lander anchoring and sampling methods for asteroid exploration

    NASA Astrophysics Data System (ADS)

    Zhang, Jun; Dong, Chengcheng; Zhang, Hui; Li, Song; Song, Aiguo

    2018-05-01

    This paper presents a novel lander anchoring system based on sawing method for asteroid exploration. The system is composed of three robotic arms, three cutting discs, and a control system. The discs mounted at the end of the arms are able to penetrate into the rock surface of asteroids. After the discs cut into the rock surface, the self-locking function of the arms provides forces to fix the lander on the surface. Modeling, trajectory planning, simulations, mechanism design, and prototype fabrication of the anchoring system are discussed, respectively. The performances of the system are tested on different kinds of rocks, at different sawing angles, locations, and speeds. Results show that the system can cut 15 mm deep into granite rock in 180 s at sawing angle of 60°, with the average power of 58.41 W, and the "weight on bit" (WOB) of 8.637 N. The 7.8 kg anchoring system is capable of providing omni-directional anchoring forces, at least 225 N normal and 157 N tangent to the surface of the rock. The system has the advantages of low-weight, low energy consumption and balance forces, high anchoring efficiency and reliability, and could enable the lander to move and sample or assist astronauts and robots in walking and sampling on asteroids.

  9. Particle orbits in a force-balanced, wave-driven, rotating torus

    DOE PAGES

    Ochs, I. E.; Fisch, N. J.

    2017-09-01

    A wave-driven rotating torus is a recently proposed fusion concept where the rotational transform is provided by the E × B drift resulting from a minor radial electric field. This field can be produced, for instance, by the RF-wave-mediated extraction of fusion-born alpha particles. In this paper, we discuss how macroscopic force balance, i.e., balance of the thermal hoop force, can be achieved in such a device. We show that this requires the inclusion of a small plasma current and vertical magnetic field and identify the desirable reactor regime through free energy considerations. We then analyze particle orbits in thismore » desirable regime, identifying velocity-space anisotropies in trapped (banana) orbits, resulting from the cancellation of rotational transforms due to the radial electric and poloidal magnetic fields. The potential neoclassical effects of these orbits on the perpendicular conductivity, current drive, and transport are discussed.« less

  10. Particle orbits in a force-balanced, wave-driven, rotating torus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ochs, I. E.; Fisch, N. J.

    A wave-driven rotating torus is a recently proposed fusion concept where the rotational transform is provided by the E × B drift resulting from a minor radial electric field. This field can be produced, for instance, by the RF-wave-mediated extraction of fusion-born alpha particles. In this paper, we discuss how macroscopic force balance, i.e., balance of the thermal hoop force, can be achieved in such a device. We show that this requires the inclusion of a small plasma current and vertical magnetic field and identify the desirable reactor regime through free energy considerations. We then analyze particle orbits in thismore » desirable regime, identifying velocity-space anisotropies in trapped (banana) orbits, resulting from the cancellation of rotational transforms due to the radial electric and poloidal magnetic fields. The potential neoclassical effects of these orbits on the perpendicular conductivity, current drive, and transport are discussed.« less

  11. Particle orbits in a force-balanced, wave-driven, rotating torus

    NASA Astrophysics Data System (ADS)

    Ochs, I. E.; Fisch, N. J.

    2017-09-01

    A wave-driven rotating torus is a recently proposed fusion concept where the rotational transform is provided by the E × B drift resulting from a minor radial electric field. This field can be produced, for instance, by the RF-wave-mediated extraction of fusion-born alpha particles. In this paper, we discuss how macroscopic force balance, i.e., balance of the thermal hoop force, can be achieved in such a device. We show that this requires the inclusion of a small plasma current and vertical magnetic field and identify the desirable reactor regime through free energy considerations. We then analyze particle orbits in this desirable regime, identifying velocity-space anisotropies in trapped (banana) orbits, resulting from the cancellation of rotational transforms due to the radial electric and poloidal magnetic fields. The potential neoclassical effects of these orbits on the perpendicular conductivity, current drive, and transport are discussed.

  12. RSRA sixth scale wind tunnel test. Tabulated balance data, volume 2

    NASA Technical Reports Server (NTRS)

    Ruddell, A.; Flemming, R.

    1974-01-01

    Summaries are presented of all the force and moment data acquired during the RSRA Sixth Scale Wind Tunnel Test. These data include and supplement the data presented in curve form in previous reports. Each summary includes the model configuration, wing and empennage incidences and deflections, and recorded balance data. The first group of data in each summary presents the force and moment data in full scale parametric form, the dynamic pressure and velocity in the test section, and the powered nacelle fan speed. The second and third groups of data are the balance data in nondimensional coefficient form. The wind axis coefficient data corresponds to the parametric data divided by the wing area for forces and divided by the product of the wing area and wing span or mean aerodynamic chord for moments. The stability axis data resolves the wind axis data with respect to the angle of yaw.

  13. Radiation Pressure Measurements on Micron Size Individual Dust Grains

    NASA Technical Reports Server (NTRS)

    Abbas, M. M.; Craven, P.D.; Spann, J. F.; Tankosic, D.; Witherow, W. K.; LeClair, A.; West, E.; Sheldon, R.; Gallagher, D. L.; Adrian, M. L.

    2003-01-01

    Measurements of electromagnetic radiation pressure have been made on individual silica (SiO2) particles levitated in an electrodynamic balance. These measurements were made by inserting single charged particles of known diameter in the 0.2 micron to 6.82 micron range and irradiating them from above with laser radiation focused to beam-widths of approx. 175-400 micron, at ambient pressures approx. 10(exp -3) to 10(exp -4) torr. The downward displacement of the particle due to the radiation force is balanced by the electrostatic force indicated by the compensating dc potential applied to the balance electrodes, providing a direct measure of the radiation force on the levitated particle. Theoretical calculations of the radiation pressure with a least-squares fit to the measured data yield the radiation pressure efficiencies of the particles, and comparisons with Mie scattering theory calculations provide the imaginary part of the refractive index of silica and the corresponding extinction and scattering efficiencies.

  14. Radiation Pressure Measurements on Micron-Size Individual Dust Grains

    NASA Technical Reports Server (NTRS)

    Abbas, M. M.; Craven, P. D.; Spann, J. F.; Witherow, W. K.; West, E. A.; Gallagher, D. L.; Adrian, M. L.; Fishman, G. J.; Tankosic, D.; LeClair, A.

    2003-01-01

    Measurements of electromagnetic radiation pressure have been made on individual silica (SiO2) particles levitated in an electrodynamic balance. These measurements were made by inserting single charged particles of known diameter in the 0.2- to 6.82-micron range and irradiating them from above with laser radiation focused to beam widths of approximately 175- 400 microns at ambient pressures particle due to the radiation force is balanced by the electrostatic force indicated by the compensating dc potential applied to the balance electrodes, providing a direct measure of the radiation force on the levitated particle. Theoretical calculations of the radiation pressure with a least-squares fit to the measured data yield the radiation pressure efficiencies of the particles, and comparisons with Mie scattering theory calculations provide the imaginary part of the refractive index of SiO2 and the corresponding extinction and scattering efficiencies.

  15. Flexture plate motion-transfer mechanism, beam-splitter assembly, and interferometer incorporating the same

    DOEpatents

    Carangelo, R.M.; Dettori, M.D.; Grigely, L.J.; Murray, T.C.; Solomon, P.R.; Dine, C.P. Van; Wright, D.D.

    1996-01-23

    A multiplicity of one-piece flexure plates are assembled in pairs to provide a support system on which a retroreflector may be mounted for reciprocal motion. Combined with balance bodies, the flexure plates provide a support system having portions that are dynamically and statically balanced with one another, irrespective of orientation, so as to thereby immunize the unit against extraneous forces. The motion transfer assembly is especially adapted for use to support a moving retroreflector in a two-arm interferometer that may further include a beamsplitter assembly constructed from a one-piece, integrally formed body, the body having convergent, optically flat planar surfaces of specular reflectance, and means for adjustably mounting a beamsplitter therein. The spectrometer is of modular construction, and employs an integrated clocking sub-assembly as well as a light-weight voice-coil motor. 15 figs.

  16. Flexture plate motion-transfer mechanism, beam-splitter assembly, and interferometer incorporating the same

    DOEpatents

    Carangelo, Robert M.; Dettori, Mark D.; Grigely, Lawrence J.; Murray, Terence C.; Solomon, Peter R.; Van Dine, C. Peter; Wright, David D.

    1996-01-01

    A multiplicity of one-piece flexure plates are assembled in pairs to provide a support system on which a retroreflector may be mounted for reciprocal motion. Combined with balance bodies, the flexure plates provide a support system having portions that are dynamically and statically balanced with one another, irrespective of orientation, so as to thereby immunize the unit against extraneous forces. The motion transfer assembly is especially adapted for use to support a moving retroreflector in a two-arm interferometer that may further include a beamsplitter assembly constructed from a one-piece, integrally formed body, the body having convergent, optically flat planar surfaces of specular reflectance, and means for adjustably mounting a beamsplitter therein. The spectrometer is of modular construction, and employs an integrated clocking sub-assembly as well as a light-weight voice-coil motor.

  17. Braking system for use with an arbor of a microscope

    DOEpatents

    Norgren, Duane U.

    1984-01-01

    A balanced braking system comprising a plurality of braking assemblies located about a member to be braked. Each of the braking assemblies consists of a spring biased piston of a first material fitted into a body of a different material which has a greater contraction upon cooling than the piston material. The piston is provided with a recessed head portion over which is positioned a diaphragm and forming a space therebetween to which is connected a pressurized fluid supply. The diaphragm is controlled by the fluid in the space to contact or withdraw from the member to be braked. A cooling device causes the body within which the piston is fitted to contract more than the piston, producing a tight shrink fit therebetween. The braking system is particularly applicable for selectively braking an arbor of an electron microscope which immobilizes, for example, a vertically adjustable low temperature specimen holder during observation. The system provides balanced braking forces which can be easily removed and re-established with minimal disturbance to arbor location.

  18. Braking system

    DOEpatents

    Norgren, D.U.

    1982-09-23

    A balanced braking system comprising a plurality of braking assemblies located about a member to be braked. Each of the braking assemblies consists of a spring biased piston of a first material fitted into a body of a different material which has a greater contraction upon cooling than the piston material. The piston is provided with a recessed head portion over which is positioned a diaphragm and forming a space therebetween to which is connected a pressurized fluid supply. The diaphragm is controlled by the fluid in the space to contact or withdraw from the member to be braked. A cooling means causes the body within which the piston is fitted to contract more than the piston, producing a tight shrink fit therebetween. The braking system is particularly applicable for selectively braking an arbor of an electron microscope which immobilizes, for example, a vertically adjustable low temperature specimen holder during observation. The system provides balanced braking forces which can be easily removed and re-established with minimal disturbance to arbor location.

  19. Muscle force output and electromyographic activity in squats with various unstable surfaces.

    PubMed

    Saeterbakken, Atle H; Fimland, Marius S

    2013-01-01

    The purpose of the study was to compare force output and muscle activity of leg and trunk muscles in isometric squats executed on stable surface (i.e., floor), power board, BOSU ball, and balance cone. Fifteen healthy men (23.3 ± 2.7 years, mass: 80.5 ± 8.5 kg, height: 1.81 ± 0.09 m) volunteered. The force output and electromyographic (EMG) activities of the rectus femoris, vastus medialis, vastus lateralis, biceps femoris, soleus, rectus abdominis, oblique external, and erector spinae were assessed. The order of the surfaces was randomized. One familiarization session was executed before the experimental test. Compared with stable surface (749 ± 222 N), the force output using power board was similar (-7%, p = 0.320) but lower for BOSU ball (-19%, p = 0.003) and balance cone (-24%, p ≤ 0.001). The force output using BOSU ball and balance cone was approximately 13% (p = 0.037) and approximately 18% (p = 0.001) less than the power board. There were similar EMG activities between the surfaces in all muscles except for rectus femoris, in which stable squat provided greater EMG activity than did the other exercises (p = 0.004-0.030). Lower EMG activity was observed in the rectus femoris using balance cone compared with the BOSU ball (p = 0.030). In conclusion, increasing the instability of the surface during maximum effort isometric squats usually maintains the muscle activity of lower-limb and superficial trunk muscles although the force output is reduced. This suggests that unstable surfaces in the squat may be beneficial in rehabilitation and as a part of periodized training programs, because similar muscle activity can be achieved with reduced loads.

  20. The Influence of Future Command, Control, Communications, and Computers (C4) on Doctrine and the Operational Commander's Decision-Making Process

    NASA Technical Reports Server (NTRS)

    Mayer, Michael G.

    1996-01-01

    Future C4 systems will alter the traditional balance between force and information, having a profound influence on doctrine and the operational commander's decision making process. The Joint Staff's future vision of C4 is conceptualized in 'C4I for the Warrior' which envisions a joint C4I architecture providing timely sensor to shoot information direct to the warfighter. C4 system must manage and filter an overwhelming amount of information; deal with interoperability issues; overcome technological limitations; meet emerging security requirements; and protect against 'Information Warfare.' Severe budget constraints necessitate unified control of C4 systems under singular leadership for the common good of all the services. In addition, acquisition policy and procedures must be revamped to allow new technologies to be fielded quickly; and the commercial marketplace will become the preferred starting point for modernization. Flatter command structures are recommended in this environment where information is available instantaneously. New responsibilities for decision making at lower levels are created. Commanders will have to strike a balance between exerting greater control and allowing subordinates enough flexibility to maintain initiative. Clearly, the commander's intent remains the most important tool in striking this balance.

  1. Thrust Stand for Electric Propulsion Performance Evaluation

    NASA Technical Reports Server (NTRS)

    Polzin, Kurt A.; Markusic, Thomas E.; Stanojev, Boris J.; Dehoyos, Amado; Spaun, Benjamin

    2006-01-01

    An electric propulsion thrust stand capable of supporting testing of thrusters having a total mass of up to 125 kg and producing thrust levels between 100 microN to 1 N has been developed and tested. The design features a conventional hanging pendulum arm attached to a balance mechanism that converts horizontal deflections produced by the operating thruster into amplified vertical motion of a secondary arm. The level of amplification is changed through adjustment of the location of one of the pivot points linking the system. Response of the system depends on the relative magnitudes of the restoring moments applied by the displaced thruster mass and the twisting torsional pivots connecting the members of the balance mechanism. Displacement is measured using a non-contact, optical linear gap displacement transducer and balance oscillatory motion is attenuated using a passive, eddy-current damper. The thrust stand employs an automated leveling and thermal control system. Pools of liquid gallium are used to deliver power to the thruster without using solid wire connections, which can exert undesirable time-varying forces on the balance. These systems serve to eliminate sources of zero-drift that can occur as the stand thermally or mechanically shifts during the course of an experiment. An in-situ calibration rig allows for steady-state calibration before, during and after thruster operation. Thrust measurements were carried out on a cylindrical Hall thruster that produces mN-level thrust. The measurements were very repeatable, producing results that compare favorably with previously published performance data, but with considerably smaller uncertainty.

  2. The Relationship between Work-Life Conflict/Work-Life Balance and Operational Effectiveness in the Canadian Forces

    DTIC Science & Technology

    2006-12-01

    life conflict/ work - life balance and performance has primarily used non-military populations . Accordingly, the findings that are discussed in this... using CF personnel but also more generally to the research on work - life conflict/ work - life balance . As discussed previously, most of the recent research...conflict/ work - life balance and operational effectiveness in CF members. Work -family conflict,

  3. Vestibular Stochastic Resonance as a Method to Improve Balance Function: Optimization of Stimulus Characteristics

    NASA Technical Reports Server (NTRS)

    Mulavara, Ajitkumar; Fiedler, Matthew; Kofman, Igor; Peters, Brian; Wood, Scott; Serrador, Jorge; Cohen, Helen; Reschke, Millard; Bloomberg, Jacob

    2010-01-01

    Stochastic resonance (SR) is a mechanism by which noise can assist and enhance the response of neural systems to relevant sensory signals. Application of imperceptible SR noise coupled with sensory input through the proprioceptive, visual, or vestibular sensory systems has been shown to improve motor function. Specifically, studies have shown that that vestibular electrical stimulation by imperceptible stochastic noise, when applied to normal young and elderly subjects, significantly improved their ocular stabilization reflexes in response to whole-body tilt as well as balance performance during postural disturbances. The goal of this study was to optimize the characteristics of the stochastic vestibular signals for balance performance during standing on an unstable surface. Subjects performed a standardized balance task of standing on a block of 10 cm thick medium density foam with their eyes closed for a total of 40 seconds. Stochastic electrical stimulation was applied to the vestibular system through electrodes placed over the mastoid process behind the ears during the last 20 seconds of the test period. A custom built constant current stimulator with subject isolation delivered the stimulus. Stimulation signals were generated with frequencies in the bandwidth of 1-2 Hz and 0.01-30 Hz. Amplitude of the signals were varied in the range of 0- +/-700 micro amperes with the RMS of the signal increased by 30 micro amperes for each 100 micro amperes increase in the current range. Balance performance was measured using a force plate under the foam block and inertial motion sensors placed on the torso and head segments. Preliminary results indicate that balance performance is improved in the range of 10-25% compared to no stimulation conditions. Subjects improved their performance consistently across the blocks of stimulation. Further the signal amplitude at which the performance was maximized was different in the two frequency ranges. Optimization of the frequency and amplitude of the signal characteristics of the stochastic noise signals on maximizing balance performance will have a significant impact in its development as a unique system to aid recovery of function in astronauts after long duration space flight or for people with balance disorders.

  4. Air Circulation and Heat Exchange Under Reduced Pressures

    NASA Technical Reports Server (NTRS)

    Rygalov, V.; Wheeler, R.; Dixon, M.; Fowler, P.; Hillhouse, L.

    2010-01-01

    Heat exchange rates decrease non-linearly with reductions in atmospheric pressure. This decrease creates risk of thermal stress (elevated leaf temperatures) for plants under reduced pressures. Forced convection (fans) significantly increases heat exchange rate under almost all pressures except below 10 kPa. Plant cultivation techniques under reduced pressures will require forced convection. The cooling curve technique is a reliable means of assessing the influence of environmental variables like pressure and gravity on gas exchange of plant. These results represent the extremes of gas exchange conditions for simple systems under variable pressures. In reality, dense plant canopies will exhibit responses in between these extremes. More research is needed to understand the dependence of forced convection on atmospheric pressure. The overall thermal balance model should include latent and radiative exchange components.

  5. Development of a pneumatic tensioning device for gap measurement during total knee arthroplasty.

    PubMed

    Kwak, Dai-Soon; Kong, Chae-Gwan; Han, Seung-Ho; Kim, Dong-Hyun; In, Yong

    2012-09-01

    Despite the importance of soft tissue balancing during total knee arthroplasty (TKA), all estimating techniques are dependent on a surgeon's manual distraction force or subjective feeling based on experience. We developed a new device for dynamic gap balancing, which can offer constant load to the gap between the femur and tibia, using pneumatic pressure during range of motion. To determine the amount of distraction force for the new device, 3 experienced surgeons' manual distraction force was measured using a conventional spreader. A new device called the consistent load pneumatic tensor was developed on the basis of the biomechanical tests. Reliability testing for the new device was performed using 5 cadaveric knees by the same surgeons. Intraclass correlation coefficients (ICCs) were calculated. The distraction force applied to the new pneumatic tensioning device was determined to be 150 N. The interobserver reliability was very good for the newly tested spreader device with ICCs between 0.828 and 0.881. The new pneumatic tensioning device can enable us to properly evaluate the soft tissue balance throughout the range of motion during TKA with acceptable reproducibility.

  6. Mountain Glaciers and Ice Caps

    USGS Publications Warehouse

    Ananichheva, Maria; Arendt, Anthony; Hagen, Jon-Ove; Hock, Regine; Josberger, Edward G.; Moore, R. Dan; Pfeffer, William Tad; Wolken, Gabriel J.

    2011-01-01

    Projections of future rates of mass loss from mountain glaciers and ice caps in the Arctic focus primarily on projections of changes in the surface mass balance. Current models are not yet capable of making realistic forecasts of changes in losses by calving. Surface mass balance models are forced with downscaled output from climate models driven by forcing scenarios that make assumptions about the future rate of growth of atmospheric greenhouse gas concentrations. Thus, mass loss projections vary considerably, depending on the forcing scenario used and the climate model from which climate projections are derived. A new study in which a surface mass balance model is driven by output from ten general circulation models (GCMs) forced by the IPCC (Intergovernmental Panel on Climate Change) A1B emissions scenario yields estimates of total mass loss of between 51 and 136 mm sea-level equivalent (SLE) (or 13% to 36% of current glacier volume) by 2100. This implies that there will still be substantial glacier mass in the Arctic in 2100 and that Arctic mountain glaciers and ice caps will continue to influence global sea-level change well into the 22nd century.

  7. Factors predicting dynamic balance and quality of life in home-dwelling elderly women.

    PubMed

    Karinkanta, S; Heinonen, A; Sievanen, H; Uusi-Rasi, K; Kannus, P

    2005-01-01

    Proper balance seems to be a critical factor in terms of fall prevention among the elderly. The purpose of this cross-sectional study was to examine factors that are associated with dynamic balance and health-related quality of life in home-dwelling elderly women. One hundred and fifty-three healthy postmenopausal women (mean age: 72 years, height: 159 cm, weight: 72 kg) were examined. General health and physical activity were assessed by a questionnaire. Quality of life was measured using a health-related quality of life questionnaire (Rand 36-Item Health Survey 1.0). Dynamic balance (agility) was tested by a figure-of-eight running test. Static balance (postural sway) was tested on an unstable platform. Maximal isometric strength of the leg extensors was measured with a leg press dynamometer. Dynamic muscle strength of lower limbs was tested by measuring ground reaction forces with a force platform during common daily activities (sit-to-stand and step-on-a-stair tests). Concerning physical activity, 33% of the subjects reported brisk exercise (walking, Nordic walking, cross-country skiing, swimming and aquatic exercises) at least twice a week, and 22% some kind of brisk activity once a week in addition to lighter physical exercise. The remaining 45% did not exercise regularly and were classified as sedentary. The correlations of step-on-a-stair and sit-to-stand ground reaction forces, and leg extensor strength to dynamic balance were from -0.32 to -0.43 (the better the strength, the better the balance). In the regression analysis with backward elimination, step-on-a-stair and sit-to-stand ground reaction forces, and leg extensor strength, age, brisk physical activity, number of diseases and dynamic postural stability explained 42% of the variance in the dynamic balance. Similarly, dynamic balance (figure-of-eight running time), number of diseases and walking more than 3 km per day explained 14% of the variance in the quality of life score. Of these, figure-of-eight running time was the strongest predictor of the quality of life score, explaining 9% of its variance. This study emphasizes the concept that in home-dwelling elderly women good muscle strength in lower limbs is crucial for proper body balance and that dynamic balance is an independent predictor of a standardized quality of life estimate. The results provide important and useful information when planning meaningful contents for studies related to fall prevention and quality of life and interventions in elderly women. Copyright (c) 2005 S. Karger AG, Basel.

  8. Maintenance of exercise-induced benefits in physical functioning and bone among elderly women.

    PubMed

    Karinkanta, S; Heinonen, A; Sievänen, H; Uusi-Rasi, K; Fogelholm, M; Kannus, P

    2009-04-01

    This study showed that about a half of the exercise-induced gain in dynamic balance and bone strength was maintained one year after cessation of the supervised high-intensity training of home-dwelling elderly women. However, to maintain exercise-induced gains in lower limb muscle force and physical functioning, continued training seems necessary. Maintenance of exercise-induced benefits in physical functioning and bone structure was assessed one year after cessation of 12-month randomized controlled exercise intervention. Originally 149 healthy women 70-78 years of age participated in the 12-month exercise RCT and 120 (81%) of them completed the follow-up study. Self-rated physical functioning, dynamic balance, leg extensor force, and bone structure were assessed. During the intervention, exercise increased dynamic balance by 7% in the combination resistance and balance-jumping training group (COMB). At the follow-up, a 4% (95% CI: 1-8%) gain compared with the controls was still seen, while the exercise-induced isometric leg extension force and self-rated physical functioning benefits had disappeared. During the intervention, at least twice a week trained COMB subjects obtained a significant 2% benefit in tibial shaft bone strength index compared to the controls. A half of this benefit seemed to be maintained at the follow-up. Exercise-induced benefits in dynamic balance and rigidity in the tibial shaft may partly be maintained one year after cessation of a supervised 12-month multi-component training in initially healthy elderly women. However, to maintain the achieved gains in muscle force and physical functioning, continued training seems necessary.

  9. Optimum dimensions of power solenoids for magnetic suspension

    NASA Technical Reports Server (NTRS)

    Kaznacheyev, B. A.

    1985-01-01

    Design optimization of power solenoids for controllable and stabilizable magnetic suspensions with force compensation in a wind tunnel is shown. It is assumed that the model of a levitating body is a sphere of ferromagnetic material with constant magnetic permeability. This sphere, with a radius much smaller than its distance from the solenoid above, is to be maintained in position on the solenoid axis by balance of the vertical electromagnetic force and the force of gravitation. The necessary vertical (axial) force generated by the solenoid is expressed as a function of relevant system dimensions, solenoid design parameters, and physical properties of the body. Three families of curves are obtained which depict the solenoid power for a given force as a function of the solenoid length with either outside radius or inside radius as a variable parameter and as a function of the outside radius with inside radius as a variable parameter. The curves indicate the optimum solenoid length and outside radius, for minimum power, corresponding to a given outside radius and inside radius, respectively.

  10. Force platform measurements as predictors of falls among older people - a review.

    PubMed

    Piirtola, Maarit; Era, Pertti

    2006-01-01

    Poor postural balance is one of the major risk factors for falling. A great number of reports have analyzed the risk factors and predictors of falls but the results have for the most part been unclear and partly contradictory. Objective data on these matters are thus urgently needed. The force platform technique has widely been used as a tool to assess balance. However, the ability of force platform measures to predict falls remains unknown. The purpose of this systematic review was to extract and critically review the findings of prospective studies where force platform measurements have been used as predictors of falls among elderly populations. The study was done as a systematic literature review. PubMed, the Cochrane Central Register of Controlled Trials, and CINAHL databases from 1950 to April 2005 were used. The review includes prospective follow-up studies using the force platform as a tool to measure postural balance. Nine original prospective studies were included in the final analyses. In five studies fall-related outcomes were associated with some force platform measures and in the remaining four studies associations were not found. For the various parameters derived on the basis of the force platform data, the mean speed of the mediolateral (ML) movement of the center of pressure (COP) during normal standing with the eyes open and closed, the mean amplitude of the ML movement of the COP with the eyes open and closed, and the root-mean-square value of the ML displacement of COP were the indicators that showed significant associations with future falls. Measures related to dynamic posturography (moving platforms) were not predictive of falls. Despite a wide search only a few prospective follow-up studies using the force platform technique to measure postural balance and a reliable registration of subsequent falls were found. The results suggest that certain aspects of force platform data may have predictive value for subsequent falls, especially various indicators of the lateral control of posture. However, the small number of studies available makes it difficult to draw definitive conclusions. Copyright 2006 S. Karger AG, Basel.

  11. Consideration of Optimal Input on Semi-Active Shock Control System

    NASA Astrophysics Data System (ADS)

    Kawashima, Takeshi

    In press working, unidirectional transmission of mechanical energy is expected in order to maximize the life of the dies. To realize this transmission, the author has developed a shock control system based on the sliding mode control technique. The controller makes a collision-receiving object effectively deform plastically by adjusting the force of the actuator inserted between the colliding objects, while the deformation of the colliding object is held at the necessity minimum. However, the actuator has to generate a large force corresponding to the impulsive force. Therefore, development of such an actuator is a formidable challenge. The author has proposed a semi-active shock control system in which the impulsive force is adjusted by a brake mechanism, although the system exhibits inferior performance. Thus, the author has also designed an actuator using a friction device for semi-active shock control, and proposed an active seatbelt system as an application. The effectiveness has been confirmed by a numerical simulation and model experiment. In this study, the optimal deformation change of the colliding object is theoretically examined in the case that the collision-receiving object has perfect plasticity and the colliding object has perfect elasticity. As a result, the optimal input condition is obtained so that the ratio of the maximum deformation of the collision-receiving object to the maximum deformation of the colliding object becomes the maximum. Additionally, the energy balance is examined.

  12. Aeroservoelastic Wind-Tunnel Tests of a Free-Flying, Joined-Wing SensorCraft Model for Gust Load Alleviation

    NASA Technical Reports Server (NTRS)

    Scott, Robert C.; Castelluccio, Mark A.; Coulson, David A.; Heeg, Jennifer

    2011-01-01

    A team comprised of the Air Force Research Laboratory (AFRL), Boeing, and the NASA Langley Research Center conducted three aeroservoelastic wind-tunnel tests in the Transonic Dynamics Tunnel to demonstrate active control technologies relevant to large, exible vehicles. In the first of these three tests, a full-span, aeroelastically scaled, wind-tunnel model of a joined-wing SensorCraft vehicle was mounted to a force balance to acquire a basic aerodynamic data set. In the second and third tests, the same wind-tunnel model was mated to a new, two-degree-of-freedom, beam mount. This mount allowed the full-span model to translate vertically and pitch. Trimmed flight at -10% static margin and gust load alleviation were successfully demonstrated. The rigid body degrees of freedom required that the model be own in the wind tunnel using an active control system. This risky mode of testing necessitated that a model arrestment system be integrated into the new mount. The safe and successful completion of these free-flying tests required the development and integration of custom hardware and software. This paper describes the many systems, software, and procedures that were developed as part of this effort. The balance and free ying wind-tunnel tests will be summarized. The design of the trim and gust load alleviation control laws along with the associated results will also be discussed.

  13. Shallow-water sloshing in a moving vessel with variable cross-section and wetting-drying using an extension of George's well-balanced finite volume solver

    NASA Astrophysics Data System (ADS)

    Alemi Ardakani, Hamid; Bridges, Thomas J.; Turner, Matthew R.

    2016-06-01

    A class of augmented approximate Riemann solvers due to George (2008) [12] is extended to solve the shallow-water equations in a moving vessel with variable bottom topography and variable cross-section with wetting and drying. A class of Roe-type upwind solvers for the system of balance laws is derived which respects the steady-state solutions. The numerical solutions of the new adapted augmented f-wave solvers are validated against the Roe-type solvers. The theory is extended to solve the shallow-water flows in moving vessels with arbitrary cross-section with influx-efflux boundary conditions motivated by the shallow-water sloshing in the ocean wave energy converter (WEC) proposed by Offshore Wave Energy Ltd. (OWEL) [1]. A fractional step approach is used to handle the time-dependent forcing functions. The numerical solutions are compared to an extended new Roe-type solver for the system of balance laws with a time-dependent source function. The shallow-water sloshing finite volume solver can be coupled to a Runge-Kutta integrator for the vessel motion.

  14. Earth radiation balance and climate: Why the Moon is the wrong place to observe the Earth

    NASA Astrophysics Data System (ADS)

    Kandel, Robert S.

    1994-06-01

    Increasing 'greenhouse' gases in the Earth's atmosphere will perturb the Earth's radiation balance, forcing climate change over coming decades. Climate sensitivity depends critically on cloud-radiation feedback: its evaluation requires continual observation of changing patterns of Earth radiation balance and cloud cover. The Moon is the wrong place for such observations, with many disadvantages compared to an observation system combining platforms in low polar, intermediate-inclination and geostationary orbits. From the Moon, active observations are infeasible; thermal infrared observations require very large instruments to reach spatial resolutions obtained at much lower cost from geostationary or lower orbits. The Earth's polar zones are never well observed from the Moon; other zones are invisible more than half the time. The monthly illumination cycle leads to further bias in radiation budget determinations. The Earth will be a pretty sight from the Earth-side of the Moon, but serious Earth observations will be made elsewhere.

  15. Aerosol influence on energy balance of the middle atmosphere of Jupiter.

    PubMed

    Zhang, Xi; West, Robert A; Irwin, Patrick G J; Nixon, Conor A; Yung, Yuk L

    2015-12-22

    Aerosols are ubiquitous in planetary atmospheres in the Solar System. However, radiative forcing on Jupiter has traditionally been attributed to solar heating and infrared cooling of gaseous constituents only, while the significance of aerosol radiative effects has been a long-standing controversy. Here we show, based on observations from the NASA spacecraft Voyager and Cassini, that gases alone cannot maintain the global energy balance in the middle atmosphere of Jupiter. Instead, a thick aerosol layer consisting of fluffy, fractal aggregate particles produced by photochemistry and auroral chemistry dominates the stratospheric radiative heating at middle and high latitudes, exceeding the local gas heating rate by a factor of 5-10. On a global average, aerosol heating is comparable to the gas contribution and aerosol cooling is more important than previously thought. We argue that fractal aggregate particles may also have a significant role in controlling the atmospheric radiative energy balance on other planets, as on Jupiter.

  16. Understanding gas-surface interactions from direct force measurements using a specialized torsion balance

    NASA Technical Reports Server (NTRS)

    Cook, S. R.; Hoffbauer, M. A.

    1996-01-01

    The first comprehensive measurements of the magnitude and direction of the forces exerted on surfaces by molecular beams are discussed and used to obtain information about the microscopic properties of the gas-surface interactions. This unique approach is not based on microscopic measurements of the scattered molecules. The reduced force coefficients are introduced as a new set of parameters that completely describe the macroscopic average momentum transfer to a surface by an incident molecular beam. By using a specialized torsion balance and molecular beams of N2, CO, CO2, and H2, the reduced force coefficients are determined from direct measurements of the force components exerted on surface of a solar panel array material, Kapton, SiO2-coated Kapton, and Z-93 as a function of the angle of incidence ranging from 0 degrees to 85 degrees. The absolute flux densities of the molecular beams were measured using a different torsion balance with a beam-stop that nullified the force of the scattered molecules. Standard time-of-flight techniques were used to determine the flux-weighted average velocities of the various molecular beams ranging from 1600 m/s to 4600 m/s. The reduced force coefficients can be used to directly obtain macroscopic average properties of the scattered molecules, such as the flux-weighted average velocity and translational energy, that can then be used to determine microscopic details concerning gas-surface interactions without the complications associated with averaging microscopic measurements.

  17. Continental-scale footprint of balancing and positive selection in a small rodent (Microtus arvalis).

    PubMed

    Fischer, Martin C; Foll, Matthieu; Heckel, Gerald; Excoffier, Laurent

    2014-01-01

    Genetic adaptation to different environmental conditions is expected to lead to large differences between populations at selected loci, thus providing a signature of positive selection. Whereas balancing selection can maintain polymorphisms over long evolutionary periods and even geographic scale, thus leads to low levels of divergence between populations at selected loci. However, little is known about the relative importance of these two selective forces in shaping genomic diversity, partly due to difficulties in recognizing balancing selection in species showing low levels of differentiation. Here we address this problem by studying genomic diversity in the European common vole (Microtus arvalis) presenting high levels of differentiation between populations (average F ST = 0.31). We studied 3,839 Amplified Fragment Length Polymorphism (AFLP) markers genotyped in 444 individuals from 21 populations distributed across the European continent and hence over different environmental conditions. Our statistical approach to detect markers under selection is based on a Bayesian method specifically developed for AFLP markers, which treats AFLPs as a nearly codominant marker system, and therefore has increased power to detect selection. The high number of screened populations allowed us to detect the signature of balancing selection across a large geographic area. We detected 33 markers potentially under balancing selection, hence strong evidence of stabilizing selection in 21 populations across Europe. However, our analyses identified four-times more markers (138) being under positive selection, and geographical patterns suggest that some of these markers are probably associated with alpine regions, which seem to have environmental conditions that favour adaptation. We conclude that despite favourable conditions in this study for the detection of balancing selection, this evolutionary force seems to play a relatively minor role in shaping the genomic diversity of the common vole, which is more influenced by positive selection and neutral processes like drift and demographic history.

  18. Defense.gov Special Report: 2015 Fiscal Budget

    Science.gov Websites

    . Story Chairman Stresses Need for Military Balance in Hearing Pay and compensation are only one part of a broader challenge to the Defense Department to maintain the balance the military needs to fight the Priorities DOD Strives for Balance Between Lifestyle, Readiness Pacom, U.S. Forces Korea Commanders Discuss

  19. Newton's Third Law on a Scale Balance

    ERIC Educational Resources Information Center

    Nopparatjamjomras, Suchai; Panijpan, Bhinyo; Huntula, Jiradawan

    2009-01-01

    We propose a series of experiments involving balance readings of an object naturally floating or forced to be partially or fully immersed in water contained in a beaker sitting on an electronic scale balance. Students were asked to predict, observe and explain each case. The teacher facilitated the learning by asking probing questions, giving…

  20. Misalignment in Gas Foil Journal Bearings: An Experimental Study

    NASA Technical Reports Server (NTRS)

    Howard, Samuel A.

    2008-01-01

    As gas foil journal bearings become more prevalent in production machines, such as small gas turbine propulsion systems and microturbines, system-level performance issues must be identified and quantified in order to provide for successful design practices. Several examples of system-level design parameters that are not fully understood in foil bearing systems are thermal management schemes, alignment requirements, balance requirements, thrust load balancing, and others. In order to address some of these deficiencies and begin to develop guidelines, this paper presents a preliminary experimental investigation of the misalignment tolerance of gas foil journal bearing systems. Using a notional gas foil bearing supported rotor and a laser-based shaft alignment system, increasing levels of misalignment are imparted to the bearing supports while monitoring temperature at the bearing edges. The amount of misalignment that induces bearing failure is identified and compared to other conventional bearing types such as cylindrical roller bearings and angular contact ball bearings. Additionally, the dynamic response of the rotor indicates that the gas foil bearing force coefficients may be affected by misalignment.

  1. Validation of balance-quality assessment using a modified bathroom scale.

    PubMed

    Hewson, D J; Duchêne, J; Hogrel, J-Y

    2015-02-01

    The balance quality tester (BQT), based on a standard electronic bathroom scale has been developed in order to assess balance quality. The BQT includes automatic detection of the person to be tested by means of an infrared detector and bluetooth communication capability for remote assessment when linked to a long-distance communication device such as a mobile phone. The BQT was compared to a standard force plate for validity and agreement. The two most widely reported parameters in balance literature, the area of the centre of pressure (COP) displacement and the velocity of the COP displacement, were compared for 12 subjects, each of whom was tested on ten occasions on each of the 2 days. No significant differences were observed between the BQT and the force plate for either of the two parameters. In addition a high level of agreement was observed between both devices. The BQT is a valid device for remote assessment of balance quality, and could provide a useful tool for long-term monitoring of people with balance problems, particularly during home monitoring.

  2. Assessment of the terrestrial water balance using the global water availability and use model WaterGAP - status and challenges

    NASA Astrophysics Data System (ADS)

    Müller Schmied, Hannes; Döll, Petra

    2017-04-01

    The estimation of the World's water resources has a long tradition and numerous methods for quantification exists. The resulting numbers vary significantly, leaving room for improvement. Since some decades, global hydrological models (GHMs) are being used for large scale water budget assessments. GHMs are designed to represent the macro-scale hydrological processes and many of those models include human water management, e.g. irrigation or reservoir operation, making them currently the first choice for global scale assessments of the terrestrial water balance within the Anthropocene. The Water - Global Assessment and Prognosis (WaterGAP) is a model framework that comprises both the natural and human water dimension and is in development and application since the 1990s. In recent years, efforts were made to assess the sensitivity of water balance components to alternative climate forcing input data and, e.g., how this sensitivity is affected by WaterGAP's calibration scheme. This presentation shows the current best estimate of terrestrial water balance components as simulated with WaterGAP by 1) assessing global and continental water balance components for the climate period 1971-2000 and the IPCC reference period 1986-2005 for the most current WaterGAP version using a homogenized climate forcing data, 2) investigating variations of water balance components for a number of state-of-the-art climate forcing data and 3) discussing the benefit of the calibration approach for a better observation-data constrained global water budget. For the most current WaterGAP version 2.2b and a homogenized combination of the two WATCH Forcing Datasets, global scale (excluding Antarctica and Greenland) river discharge into oceans and inland sinks (Q) is assessed to be 40 000 km3 yr-1 for 1971-2000 and 39 200 km3 yr-1 for 1986-2005. Actual evapotranspiration (AET) is close to each other with around 70 600 (70 700) km3 yr-1 as well as water consumption with 1000 (1100) km3 yr-1. The main reason for differing Q is varying precipitation (P, 111 600 km3 yr-1 vs. 110 900 km3 yr-1). The sensitivity of water balance components to alternative climate forcing data is high. Applying 5 state-of-the-art climate forcing data sets, long term average P differs globally by 8000 km3 yr-1, mainly due to different handling of precipitation undercatch correction (or neglecting it). AET differs by 5500 km3 yr-1 whereas Q varies by 3000 km3 yr-1. The sensitivity of human water consumption to alternative climate input data is only about 5%. WaterGAP's calibration approach forces simulated long-term river discharge to be approximately equal to observed values at 1319 gauging stations during the time period selected for calibration. This scheme greatly reduces the impact of uncertain climate input on simulated Q data in these upstream drainage basins (as well as downstream). In calibration areas, the Q variation among the climate input data is much lower (1.6%) than in non-calibrated areas (18.5%). However, variation of Q at the grid cell-level is still high (an average of 37% for Q in grid cells in calibration areas vs. 74% outside). Due to the closed water balance, variation of AET is higher in calibrated areas than in non-calibrated areas. Main challenges in assessing the world's water resources by GHMs like WaterGAP are 1) the need of consistent long-term climate forcing input data sets, especial considering a suitable handling of P undercatch, 2) the accessibility of in-situ data for river discharge or alternative calibration data for currently non-calibrated areas, and 3) an improved simulation in semi-arid and arid river basins. As an outlook, a multi-model, multi-forcing study of global water balance components within the frame of the Inter-Sectoral Impact Model Intercomparison Project is proposed.

  3. Determine Optimal Stimulus Amplitude for Using Vestibular Stochastic Stimulation to Improve Balance Function

    NASA Technical Reports Server (NTRS)

    Goel, R.; Kofman, I.; DeDios, Y. E.; Jeevarajan, J.; Stepanyan, V.; Nair, M.; Congdon, S.; Fregia, M.; Cohen, H.; Bloomberg, J.J.; hide

    2015-01-01

    Sensorimotor changes such as postural and gait instabilities can affect the functional performance of astronauts when they transition across different gravity environments. We are developing a method, based on stochastic resonance (SR), to enhance information transfer by applying non-zero levels of external noise on the vestibular system (vestibular stochastic resonance, VSR). Our previous work has shown the advantageous effects of VSR in a balance task of standing on an unstable surface [1]. This technique to improve detection of vestibular signals uses a stimulus delivery system that provides imperceptibly low levels of white noise-based binaural bipolar electrical stimulation of the vestibular system. The goal of this project is to determine optimal levels of stimulation for SR applications by using a defined vestibular threshold of motion detection. A series of experiments were carried out to determine a robust paradigm to identify a vestibular threshold that can then be used to recommend optimal stimulation levels for sensorimotor adaptability (SA) training applications customized to each crewmember. The amplitude of stimulation to be used in the VSR application has varied across studies in the literature such as 60% of nociceptive stimulus thresholds [2]. We compared subjects' perceptual threshold with that obtained from two measures of body sway. Each test session was 463s long and consisted of several 15s long sinusoidal stimuli, at different current amplitudes (0-2 mA), interspersed with 20-20.5s periods of no stimulation. Subjects sat on a chair with their eyes closed and had to report their perception of motion through a joystick. A force plate underneath the chair recorded medio-lateral shear forces and roll moments. Comparison of threshold of motion detection obtained from joystick data versus body sway suggests that perceptual thresholds were significantly lower. In the balance task, subjects stood on an unstable surface and had to maintain balance, and the stimulation was administered from 20-400% of subjects' vestibular threshold. Optimal stimulation amplitude was determined at which the balance performance was best compared to control (no stimulation). Preliminary results show that, in general, using stimulation amplitudes at 40-60% of perceptual motion threshold significantly improved the balance performance. We hypothesize that VSR stimulation will act synergistically with SA training to improve adaptability by increasing utilization of vestibular information and therefore will help us to optimize and personalize a SA countermeasure prescription. This combination may help to significantly reduce the number of days required to recover functional performance to preflight levels after long-duration spaceflight.

  4. The influence of moving auditory stimuli on standing balance in healthy young adults and the elderly.

    PubMed

    Tanaka, T; Kojima, S; Takeda, H; Ino, S; Ifukube, T

    2001-12-15

    The maintenance of postural balance depends on effective and efficient feedback from various sensory inputs. The importance of auditory inputs in this respect is not, as yet, fully understood. The purpose of this study was to analyse how the moving auditory stimuli could affect the standing balance in healthy adults of different ages. The participants of the study were 12 healthy volunteers, who were divided into two age categories: the young group (mean = 21.9 years) and the elderly group (mean = 68.9 years). The instrument used for evaluation of standing balance was a force plate for measuring body sway parameters. The toe pressure was measured using the F-scan Tactile Sensor System. The moving auditory stimulus produced a white-noise sound and binaural cue using the Beachtron Affordable 3D Audio system. The moving auditory stimulus conditions were employed by having the sound come from the right to left or vice versa at the height of the participant's ears. Participants were asked to stand on the force plate in the Romberg position for 20 s with either eyes opened or eyes closed for analysing the effect of visual input. Simultaneously, all participants tried to remain in the standing position with and without auditory stimulation that the participants heard from the headphone. In addition, the variables of body sway were measured under four conditions for analysing the effect of decreased tactile sensation of toes and feet soles: standing on the normal surface (NS) or soft surface (SS) with and without auditory stimulation. The participants were asked to stand in a total of eight conditions. The results showed that the lateral body sway of the elderly group was more influenced than that of the young group by the lateral moving auditory stimulation. The analysis of toe pressure indicated that all participants used their left feet more than their right feet to maintain balance. Moreover, the elderly had the tendency to be stabilized mainly by use of their heels. The young group were mainly stabilized by the toes of their feet. The results suggest that the elderly may need a more appropriate stimulus of tactile and auditory sense as a feedback system than the young for maintaining and control of their standing postures.

  5. Study and Analyses on the Structural Performance of a Balance

    NASA Technical Reports Server (NTRS)

    Karkehabadi, R.; Rhew, R. D.; Hope, D. J.

    2004-01-01

    Strain-gauge balances for use in wind tunnels have been designed at Langley Research Center (LaRC) since its inception. Currently Langley has more than 300 balances available for its researchers. A force balance is inherently a critically stressed component due to the requirements of measurement sensitivity. The strain-gauge balances have been used in Langley s wind tunnels for a wide variety of aerodynamic tests, and the designs encompass a large array of sizes, loads, and environmental effects. There are six degrees of freedom that a balance has to measure. The balance s task to measure these six degrees of freedom has introduced challenging work in transducer development technology areas. As the emphasis increases on improving aerodynamic performance of all types of aircraft and spacecraft, the demand for improved balances is at the forefront. Force balance stress analysis and acceptance criteria are under review due to LaRC wind tunnel operational safety requirements. This paper presents some of the analyses and research done at LaRC that influence structural integrity of the balances. The analyses are helpful in understanding the overall behavior of existing balances and can be used in the design of new balances to enhance performance. Initially, a maximum load combination was used for a linear structural analysis. When nonlinear effects were encountered, the analysis was extended to include nonlinearities using MSC.Nastran . Because most of the balances are designed using Pro/Mechanica , it is desirable and efficient to use Pro/Mechanica for stress analysis. However, Pro/Mechanica is limited to linear analysis. Both Pro/Mechanica and MSC.Nastran are used for analyses in the present work. The structural integrity of balances and the possibility of modifying existing balances to enhance structural integrity are investigated.

  6. Energy balance and runoff modelling of glaciers in the Kongsfjord basin in northwestern Svalbard

    NASA Astrophysics Data System (ADS)

    Kohler, J.; Pramanik, A.; van Pelt, W.

    2016-12-01

    Glaciers and ice caps cover 36,000 Km2 or 60% of the land area of the Svalbard archipelago. Roughly 60% of the glaciated area drains to the ocean through tidewater glacier fronts. Runoff from tidewater glaciers is posited to have a significant impact on fjord circulation and thereby on fjord ecosystems. Ocean circulation modelling underway in the Kongsfjord system requires specification of the freshwater amounts contributed by both tidewater and land-terminating glaciers in its basin. The total basin area of Kongsfjord is 1850 km2. We use a coupled surface energy-balance and firn model (Van Pelt et al. 2015) to calculate mass balance and runoff from the Kongsfjord glaciers for the period 1969-2015. Meteorological data from the nearby station at Ny-Ålesund is used for climate forcing in the model domain, with mass balance data at four glaciers in the Kongsfjord watershed used to calibrate model parameters. Precipitation and temperature lapse rates are adjusted on the study glaciers through repeated model runs at mass balance stake locations to match observed and modelled surface mass balance. Long-term discharge measurement at two sites in this region are used to validate the modelled runoff. Spatial and temporal evolution of melt, refreezing and runoff are analyzed, along with the vertical evolution of subsurface conditions. Reference: Van Pelt, W.J.J. & J. Kohler. 2015. Modelling the long-term mass balance and firn evolution of glaciers around Kongsfjorden, Svalbard. J. Glaciol, 61(228), 731-744. Glaciers and ice caps cover 36,000 Km2 or 60% of the land area of the Svalbard archipelago. Roughly 60% of the glaciated area drains to the ocean through tidewater glacier fronts. Runoff from tidewater glaciers is posited to have a significant impact on fjord circulation and thereby on fjord ecosystems. Ocean circulation modelling underway in the Kongsfjord system requires specification of the freshwater amounts contributed by both tidewater and land-terminating glaciers in its basin. The total basin area of Kongsfjord is 1850 km2. We use a coupled surface energy-balance and firn model (Van Pelt et al. 2015) to calculate mass balance and runoff from the Kongsfjord glaciers for the period 1969-2015. Meteorological data from the nearby station at Ny-Ålesund is used for climate forcing in the model domain, with mass balance data at four glaciers in the Kongsfjord watershed used to calibrate model parameters. Precipitation and temperature lapse rates are adjusted on the study glaciers through repeated model runs at mass balance stake locations to match observed and modelled surface mass balance. Long-term discharge measurement at two sites in this region are used to validate the modelled runoff. Spatial and temporal evolution of melt, refreezing and runoff are analyzed, along with the vertical evolution of subsurface conditions. Reference: Van Pelt, W.J.J. & J. Kohler. 2015. Modelling the long-term mass balance and firn evolution of glaciers around Kongsfjorden, Svalbard. J. Glaciol, 61(228), 731-744.

  7. Motor intensive anti-gravity training improves performance in dynamic balance related tasks in persons with Parkinson's disease.

    PubMed

    Malling, Anne Sofie B; Jensen, Bente R

    2016-01-01

    Recent studies indicate that the effect of training on motor performance in persons with Parkinson's disease (PDP) is dependent on motor intensity. However, training of high motor intensity can be hard to apply in PDP due to e.g. bradykinesia, rigidity, tremor and postural instability. Therefore, the aim was to study the effect of motor intensive training performed in a safe anti-gravity environment using lower-body positive pressure (LBPP) technology on performance during dynamic balance related tasks. Thirteen male PDP went through an 8-week control period followed by 8 weeks of motor intensive antigravity training. Seventeen healthy males constituted a control group (CON). Performance during a five repetition sit-to-stand test (STS; sagittal plane) and a dynamic postural balance test (DPB; transversal plane) was evaluated. Effect measures were completion time, functional rates of force development, directional changes and force variance. STS completion time improved by 24% to the level of CON which was explained by shorter sitting-time and standing-time and larger numeric rate of force change during lowering to the chair, indicating faster vertical directional change and improved relaxation. DPB completion time tended to improve and was accompanied by improvements of functional medial and lateral rates of force development and higher vertical force variance during DPB. Our results suggest that the performance improvements may relate to improved inter-limb coordination. It is concluded that 8 weeks of motor intensive training in a safe LBPP environment improved performance during dynamic balance related tasks in PDP. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Modeling Enceladus and its torus in Saturn's magnetosphere (Invited)

    NASA Astrophysics Data System (ADS)

    Jia, Y.; Russell, C. T.; Khurana, K. K.; Gombosi, T. I.

    2010-12-01

    The dynamics of the saturnian magnetosphere is controlled by the planetary spin at a rate of about 10.5 hours. The second icy moon of Saturn, Enceladus, orbits at 4 planetary radii deep in the inner magnetosphere. Enceladus creates neutrals at a rate of hundreds of kilograms per second. These neutrals are ionized and picked up by the ambient plasma and spun up to the corotational velocity to form a plasma disk. Consequently, the gas and plasma density peak close to the Enceladus orbit. In the gas torus, the majority of the gas particles travel at their keplerian speed of 14 km/s, while the bulk of the plasma rotates at 30-40 km/s as a response to the rigid spinning of the saturnian magnetic field. The corotating plasma torus feels a centrifugal force that is balanced by the magnetic tension force. To balance the centripetal force of this plasma disk, Saturn’s magnetic field is stretched in both radial and azimuthal directions. At Enceladus the massive pickup of new ions from its plume slows down the corotating flow and breaks this force balance to cause plasma flows in the radial direction of Saturn. Such radial flows in the inner magnetosphere of Saturn are supported by Cassini observations using various particle and field instruments. In this study we summarize the lessons learned from recent Cassini observations and our numerical simulation effort of the local interactions at Enceladus, and model the inner magnetosphere of Saturn to reproduce the force balance processes. The neutral torus is treated as a background in this axis-symmetric model.

  9. Health Belief Systems and the Psychobiology of War

    PubMed Central

    Elgee, Neil J.

    1984-01-01

    Belief systems overlie powerful biological and psychological forces that are root causes of war. Much as in medicine where an appreciation of health belief systems is necessary in the control of illness and disease, so the paths to the control of war may lie in an understanding of belief systems and ways to circumvent them. Such understanding gives strong theoretical support to many time-honored but underutilized international initiative and educational ventures. The effort of the medical community to educate the public about biomedical aspects of nuclear war should gain more balance and sophistication with an appreciation of belief systems in the psychobiology of war. PMID:6741137

  10. Meeting the challenge of corporate entrepreneurship.

    PubMed

    Garvin, David A; Levesque, Lynne C

    2006-10-01

    To be competitive, companies must grow innovative new businesses. Corporate entrepreneurship, however, isn't easy. New ventures face innumerable barriers and seldom mesh smoothly with well-established systems, processes, and cultures. Nonetheless, success requires a balance of old and new organizational traits-and unless companies keep those opposing forces in equilibrium, their new businesses will flounder. The authors describe the challenges companies face when they pursue new businesses, as well as the usual problematic responses to those challenges. Such companies, they say, must perform three balancing acts: Develop strategy by trial and error, which includes narrowing potential choices, learning from small samples, using prototypes to test business models, tracking progress through nonfinancial measures, and knowing how and when to pull the plug on a new venture. Find the best combination of old and new operational processes by staffing new ventures with "mature turks", changing veterans' thinking, knowing which capabilities to develop and which to acquire, and having old and new businesses share responsibility for operating decisions. Strike the right balance of integration and autonomy by assigning both corporate and operating sponsors to new ventures, establishing criteria for handoffs to existing divisions, and using creative organizational structures. The authors provide a detailed look at IBM's Emerging Business Opportunity system, which manages all these balancing acts simultaneously.

  11. A New Load Residual Threshold Definition for the Evaluation of Wind Tunnel Strain-Gage Balance Data

    NASA Technical Reports Server (NTRS)

    Ulbrich, N.; Volden, T.

    2016-01-01

    A new definition of a threshold for the detection of load residual outliers of wind tunnel strain-gage balance data was developed. The new threshold is defined as the product between the inverse of the absolute value of the primary gage sensitivity and an empirical limit of the electrical outputs of a strain{gage. The empirical limit of the outputs is either 2.5 microV/V for balance calibration or check load residuals. A reduced limit of 0.5 microV/V is recommended for the evaluation of differences between repeat load points because, by design, the calculation of these differences removes errors in the residuals that are associated with the regression analysis of the data itself. The definition of the new threshold and different methods for the determination of the primary gage sensitivity are discussed. In addition, calibration data of a six-component force balance and a five-component semi-span balance are used to illustrate the application of the proposed new threshold definition to different types of strain{gage balances. During the discussion of the force balance example it is also explained how the estimated maximum expected output of a balance gage can be used to better understand results of the application of the new threshold definition.

  12. Force instrumentation for cryogenic wind tunnels using one-piece strain-gage balances

    NASA Technical Reports Server (NTRS)

    Ferris, A. T.; Moore, T. C.

    1981-01-01

    Materials and techniques for a transducer capable of obtaining accurate force measurements at cryogenic temperatures (down to 77 K) and high pressures (up to 9 atm) have been determined. Areas of high stress concentration are minimized by balance design, and model and sting attachment methods able to withstand cryogenic temperatures are used. Maraging 200 is the material used for the balances, due to its high impact strength and simple heat treatment procedure. Test results verify that the balances produce reliable, repeatable, and predictable data from 300 K to 110 K under steady state conditions. Techniques have been developed to reduce the temperature-induced bridge output, such as the use of bridges with two gages mounted transverse to the principal stress direction. Under these conditions, the results given by the balances should be equally good during transient temperatures on five of the six components. The work will be used at the National Transonic Facility (NTF) at NASA Langley.

  13. New modified multi-level residue harmonic balance method for solving nonlinearly vibrating double-beam problem

    NASA Astrophysics Data System (ADS)

    Rahman, Md. Saifur; Lee, Yiu-Yin

    2017-10-01

    In this study, a new modified multi-level residue harmonic balance method is presented and adopted to investigate the forced nonlinear vibrations of axially loaded double beams. Although numerous nonlinear beam or linear double-beam problems have been tackled and solved, there have been few studies of this nonlinear double-beam problem. The geometric nonlinear formulations for a double-beam model are developed. The main advantage of the proposed method is that a set of decoupled nonlinear algebraic equations is generated at each solution level. This heavily reduces the computational effort compared with solving the coupled nonlinear algebraic equations generated in the classical harmonic balance method. The proposed method can generate the higher-level nonlinear solutions that are neglected by the previous modified harmonic balance method. The results from the proposed method agree reasonably well with those from the classical harmonic balance method. The effects of damping, axial force, and excitation magnitude on the nonlinear vibrational behaviour are examined.

  14. A Time to Reap, a Time to Sow: Mitophagy and Biogenesis in Cardiac Pathophysiology

    PubMed Central

    Andres, Allen M.; Stotland, Aleksandr; Queliconi, Bruno B.; Gottlieb, Roberta A.

    2014-01-01

    Balancing mitophagy and mitochondrial biogenesis is essential for maintaining a healthy population of mitochondria and cellular homeostasis. Coordinated interplay between these two forces that govern mitochondrial turnover plays an important role as an adaptive response against various cellular stresses that can compromise cell survival. Failure to maintain the critical balance between mitophagy and mitochondrial biogenesis or homeostatic turnover of mitochondria results in a population of dysfunctional mitochondria that contribute to various disease processes. In this review we outline the mechanics and relationships between mitophagy and mitochondrial biogenesis, and discuss the implications of a disrupted balance between these two forces, with an emphasis on cardiac physiology. PMID:25444712

  15. Decadal-scale sensitivity of Northeast Greenland ice flow to errors in surface mass balance using ISSM

    NASA Astrophysics Data System (ADS)

    Schlegel, N.-J.; Larour, E.; Seroussi, H.; Morlighem, M.; Box, J. E.

    2013-06-01

    The behavior of the Greenland Ice Sheet, which is considered a major contributor to sea level changes, is best understood on century and longer time scales. However, on decadal time scales, its response is less predictable due to the difficulty of modeling surface climate, as well as incomplete understanding of the dynamic processes responsible for ice flow. Therefore, it is imperative to understand how modeling advancements, such as increased spatial resolution or more comprehensive ice flow equations, might improve projections of ice sheet response to climatic trends. Here we examine how a finely resolved climate forcing influences a high-resolution ice stream model that considers longitudinal stresses. We simulate ice flow using a two-dimensional Shelfy-Stream Approximation implemented within the Ice Sheet System Model (ISSM) and use uncertainty quantification tools embedded within the model to calculate the sensitivity of ice flow within the Northeast Greenland Ice Stream to errors in surface mass balance (SMB) forcing. Our results suggest that the model tends to smooth ice velocities even when forced with extreme errors in SMB. Indeed, errors propagate linearly through the model, resulting in discharge uncertainty of 16% or 1.9 Gt/yr. We find that mass flux is most sensitive to local errors but is also affected by errors hundreds of kilometers away; thus, an accurate SMB map of the entire basin is critical for realistic simulation. Furthermore, sensitivity analyses indicate that SMB forcing needs to be provided at a resolution of at least 40 km.

  16. Numerical simulations of katabatic jumps in coats land, Antartica

    NASA Astrophysics Data System (ADS)

    Yu, Ye; Cai, Xiaoming; King, John C.; Renfrew, Ian A.

    A non-hydrostatic numerical model, the Regional Atmospheric Modeling System (RAMS), has been used to investigate the development of katabatic jumps in Coats Land, Antarctica. In the control run with a 5 m s-1downslope directed initial wind, a katabatic jump develops near the foot of the idealized slope. The jump is manifested as a rapid deceleration of the downslope flow and a change from supercritical to subcritical flow, in a hydraulic sense, i.e., the Froude number (Fr) of the flow changes from Fr > 1 to Fr> 1. Results from sensitivity experiments show that an increase in the upstream flow rate strengthens the jump, while an increase in the downstream inversion-layer depth results in a retreat of the jump. Hydraulic theory and Bernoulli''s theorem have been used to explain the surface pressure change across the jump. It is found that hydraulic theory always underestimates the surface pressure change, while Bernoulli''s theorem provides a satisfactory estimation. An analysis of the downs balance for the katabatic jump indicates that the important forces are those related to the pressure gradient, advection and, to a lesser extent, the turbulent momentum divergence. The development of katabatic jumps can be divided into two phases. In phase I, the t gradient force is nearly balanced by advection, while in phase II, the pressure gradient force is counterbalanced by turbulent momentum divergence. The upslope pressure gradient force associated with a pool of cold air over the ice shelf facilitates the formation of the katabatic jump.

  17. Well-balanced Arbitrary-Lagrangian-Eulerian finite volume schemes on moving nonconforming meshes for the Euler equations of gas dynamics with gravity

    NASA Astrophysics Data System (ADS)

    Gaburro, Elena; Castro, Manuel J.; Dumbser, Michael

    2018-06-01

    In this work, we present a novel second-order accurate well-balanced arbitrary Lagrangian-Eulerian (ALE) finite volume scheme on moving nonconforming meshes for the Euler equations of compressible gas dynamics with gravity in cylindrical coordinates. The main feature of the proposed algorithm is the capability of preserving many of the physical properties of the system exactly also on the discrete level: besides being conservative for mass, momentum and total energy, also any known steady equilibrium between pressure gradient, centrifugal force, and gravity force can be exactly maintained up to machine precision. Perturbations around such equilibrium solutions are resolved with high accuracy and with minimal dissipation on moving contact discontinuities even for very long computational times. This is achieved by the novel combination of well-balanced path-conservative finite volume schemes, which are expressly designed to deal with source terms written via non-conservative products, with ALE schemes on moving grids, which exhibit only very little numerical dissipation on moving contact waves. In particular, we have formulated a new HLL-type and a novel Osher-type flux that are both able to guarantee the well balancing in a gas cloud rotating around a central object. Moreover, to maintain a high level of quality of the moving mesh, we have adopted a nonconforming treatment of the sliding interfaces that appear due to the differential rotation. A large set of numerical tests has been carried out in order to check the accuracy of the method close and far away from the equilibrium, both, in one- and two-space dimensions.

  18. On the Meaning of Feedback Parameter, Transient Climate Response, and the Greenhouse Effect: Basic Considerations and the Discussion of Uncertainties

    NASA Astrophysics Data System (ADS)

    Kramm, Gerhard

    2010-07-01

    In this paper we discuss the meaning of feedback parameter, greenhouse effect and transient climate response usually related to the globally averaged energy balance model of Schneider and Mass. After scrutinizing this model and the corresponding planetary radiation balance we state that (a) the this globally averaged energy balance model is flawed by unsuitable physical considerations, (b) the planetary radiation balance for an Earth in the absence of an atmosphere is fraught by the inappropriate assumption of a uniform surface temperature, the so-called radiative equilibrium temperature of about 255 K, and (c) the effect of the radiative anthropogenic forcing, considered as a perturbation to the natural system, is much smaller than the uncertainty involved in the solution of the model of Schneider and Mass. This uncertainty is mainly related to the empirical constants suggested by various authors and used for predicting the emission of infrared radiation by the Earth's skin. Furthermore, after inserting the absorption of solar radiation by atmospheric constituents and the exchange of sensible and latent heat between the Earth and the atmosphere into the model of Schneider and Mass the surface temperatures become appreciably lesser than the radiative equilibrium temperature. Moreover, neither the model of Schneider and Mass nor the Dines-type two-layer energy balance model for the Earth-atmosphere system, both contain the planetary radiation balance for an Earth in the absence of an atmosphere as an asymptotic solution, do not provide evidence for the existence of the so-called atmospheric greenhouse effect if realistic empirical data are used.

  19. Experimental measure of retinal impact force resulting from intraocular foreign body dropped onto retina through media of differing viscosity.

    PubMed

    Ernst, Benjamin J; Velez-Montoya, Raul; Kujundzic, Damir; Kujundzic, Elmira; Olson, Jeffrey L

    2013-07-01

    To evaluate and compare the perfluorocarbon liquid, silicone oil, and viscoelastic against standard saline, in their ability to dampen the impact force of a foreign body, dropped within the eye. In an experimental surgical model in where cohesive and adhesive forces of the substances are not enough to float heavy-than-water foreign bodies. A model of ophthalmic surgery was constructed. A BB pellet was dropped from 24 mm onto a force transducer through four different fluids: balanced salt solution, perfluoro-n-octane, viscoelastic, and silicone oil. The impact energy (force) for each case was measured and recorded by the force transducer. The mean force of impact for each fluid was compared using the Student t-test. Silicone oil resulted in the lowest force of impact. Both silicone oil and viscoelastic dampened the impact an order of magnitude more than perfluoro-n-octane and balanced salt solution. Silicone oil and viscoelastic cushioned the force from a dropped BB. They may be useful adjuncts to prevent iatrogenic retinal injury during vitrectomy for intraocular foreign body removal. © 2012 The Authors. Clinical and Experimental Ophthalmology © 2012 Royal Australian and New Zealand College of Ophthalmologists.

  20. Feasibility of Wii Fit training to improve clinical measures of balance in older adults

    PubMed Central

    Bieryla, Kathleen A; Dold, Neil M

    2013-01-01

    Background and purpose Numerous interventions have been proposed to improve balance in older adults with varying degrees of success. A novel approach may be to use an off-the-shelf video game system utilizing real-time force feedback to train older adults. The purpose of this study is to investigate the feasibility of using Nintendo’s Wii Fit for training to improve clinical measures of balance in older adults and to retain the improvements after a period of time. Methods Twelve healthy older adults (aged >70 years) were randomly divided into two groups. The experimental group completed training using Nintendo’s Wii Fit game three times a week for 3 weeks while the control group continued with normal activities. Four clinical measures of balance were assessed before training, 1 week after training, and 1 month after training: Berg Balance Scale (BBS), Fullerton Advanced Balance (FAB) scale, Functional Reach (FR), and Timed Up and Go (TUG). Friedman two-way analysis of variance by ranks was conducted on the control and experimental group to determine if training using the Wii Balance Board with Wii Fit had an influence on clinical measures of balance. Results Nine older adults completed the study (experimental group n = 4, control group n = 5). The experimental group significantly increased their BBS after training while the control group did not. There was no significant change for either group with FAB, FR, and TUG. Conclusion Balance training with Nintendo’s Wii Fit may be a novel way for older adults to improve balance as measured by the BBS. PMID:23836967

  1. Surface Stresses and a Force Balance at a Contact Line.

    PubMed

    Liang, Heyi; Cao, Zhen; Wang, Zilu; Dobrynin, Andrey V

    2018-06-26

    Results of the coarse-grained molecular dynamics simulations are used to show that the force balance analysis at the triple-phase contact line formed at an elastic substrate has to include a quartet of forces: three surface tensions (surface free energies) and an elastic force per unit length. In the case of the contact line formed by a droplet on an elastic substrate an elastic force is due to substrate deformation generated by formation of the wetting ridge. The magnitude of this force f el is proportional to the product of the ridge height h and substrate shear modulus G. Similar elastic line force should be included in the force analysis at the triple-phase contact line of a solid particle in contact with an elastic substrate. For this contact problem elastic force obtained from contact angles and surface tensions is a sum of the elastic forces acting from the side of a solid particle and an elastic substrate. By considering only three line forces acting at the triple-phase contact line, one implicitly accounts the bulk stress contribution as a part of the resultant surface stresses. This "contamination" of the surface properties by a bulk contribution could lead to unphysically large values of the surface stresses in soft materials.

  2. Magnetic suspension and balance system advanced study

    NASA Technical Reports Server (NTRS)

    Boom, R. W.; Eyssa, Y. M.; Mcintosh, G. E.; Abdelsalam, M. K.

    1985-01-01

    An improved compact design for a superconducting magnetic suspension and balance system for an 8 ft. x 8 ft. transonic wind tunnel is developed. The original design of an MSBS in NASA Cr-3802 utilized 14 external superconductive coils and a superconductive solenoid in the airplane test model suspended in a wind tunnel. The improvements are in the following areas: test model solenoid options, dynamic force limits on the model, magnet cooling options, structure and cryogenic designs, power supply specifications, and cost and performance evaluations. The improvements are: MSBS cost reduction of 28%, weight; reduction of 43%, magnet system ampere-meter reduction of 38%, helium liquifier capacity reduction by 33%, magnet system stored energy reduction by 55%, AC loss to liquid helium reduced by 76%, system power supply reduced by 68%, test coil pole strength increased by 19%, wing magnetization increased by 40%, and control frequency limit increased by 200% from 10 Hz to 30 Hz. The improvements are due to: magnetic holmium coil forms in the test model, better rare earth permanent magnets in the wings, fiberglass-epoxy structure replacing stainless steel, better coil configuration, and new saddle roll coil design.

  3. Implementation of the vortex force formalism in the coupled ocean-atmosphere-wave-sediment transport (COAWST) modeling system for inner shelf and surf zone applications

    USGS Publications Warehouse

    Kumar, Nirnimesh; Voulgaris, George; Warner, John C.; Olabarrieta, Maitane

    2012-01-01

    Model results from the planar beach case show good agreement with depth-averaged analytical solutions and with theoretical flow structures. Simulation results for the DUCK' 94 experiment agree closely with measured profiles of cross-shore and longshore velocity data from and . Diagnostic simulations showed that the nonlinear processes of wave roller generation and wave-induced mixing are important for the accurate simulation of surf zone flows. It is further recommended that a more realistic approach for determining the contribution of wave rollers and breaking induced turbulent mixing can be formulated using non-dimensional parameters which are functions of local wave parameters and the beach slope. Dominant terms in the cross-shore momentum balance are found to be the quasi-static pressure gradient and breaking acceleration. In the alongshore direction, bottom stress, breaking acceleration, horizontal advection and horizontal vortex forces dominate the momentum balance. The simulation results for the bar/rip channel morphology case clearly show the ability of the modeling system to reproduce horizontal and vertical circulation patterns similar to those found in laboratory studies and to numerical simulations using the radiation stress representation. The vortex force term is found to be more important at locations where strong flow vorticity interacts with the wave-induced Stokes flow field. Outside the surf zone, the three-dimensional model simulations of wave-induced flows for non-breaking waves closely agree with flow observations from MVCO, with the vertical structure of the simulated flow varying as a function of the vertical viscosity as demonstrated by Lentz et al. (2008).

  4. Electroacoustic analysis, design, and implementation of a small balanced armature speaker.

    PubMed

    Bai, Mingsian R; You, Bo-Cheng; Lo, Yi-Yang

    2014-11-01

    This paper presents a new design and implementation of a balanced armature speaker (BAS), which is composed of permanent magnetic circuits, a moving armature, and a coil. The armature rocks about a pivot with the coil at one end and the permanent magnet on another. A magnetic circuit analysis is conducted for the designed BAS to formulate the force factor, which is required for modeling the coupling between the electrical and mechanical systems. In addition, an electromechanoacoustical analogous circuit is established for the BAS, which bears the same structure as the moving coil loudspeaker, except that the force factor is different. A hybrid model, which combines the lumped parameter model in the electrical and acoustical domains with a finite element model in the mechanical domain, is developed to model the high-frequency response because of the high-order modes of the membrane, the drive rod, and the armature. The electroacoustic analysis is experimentally verified. The results indicate that the sound pressure response that is simulated using the hybrid model is in superior agreement with the measured response to that simulated using the lumped parameter model.

  5. Forced convective melting at an evolving ice-water interface

    NASA Astrophysics Data System (ADS)

    Ramudu, Eshwan; Hirsh, Benjamin; Olson, Peter; Gnanadesikan, Anand

    2015-11-01

    The intrusion of warm Circumpolar Deep Water into the ocean cavity between the base of ice shelves and the sea bed in Antarctica causes melting at the ice shelves' basal surface, producing a turbulent melt plume. We conduct a series of laboratory experiments to investigate how the presence of forced convection (turbulent mixing) changes the delivery of heat to the ice-water interface. We also develop a theoretical model for the heat balance of the system that can be used to predict the change in ice thickness with time. In cases of turbulent mixing, the heat balance includes a term for turbulent heat transfer that depends on the friction velocity and an empirical coefficient. We obtain a new value for this coefficient by comparing the modeled ice thickness against measurements from a set of nine experiments covering one order of magnitude of Reynolds numbers. Our results are consistent with the altimetry-inferred melting rate under Antarctic ice shelves and can be used in climate models to predict their disintegration. This work was supported by NSF grant EAR-110371.

  6. Use of Mobile Device Accelerometry to Enhance Evaluation of Postural Instability in Parkinson Disease.

    PubMed

    Ozinga, Sarah J; Linder, Susan M; Alberts, Jay L

    2017-04-01

    To determine the accuracy of inertial measurement unit data from a mobile device using the mobile device relative to posturography to quantify postural stability in individuals with Parkinson disease (PD). Criterion standard. Motor control laboratory at a clinic. A sample (N=28) of individuals with mild to moderate PD (n=14) and age-matched community-dwelling individuals without PD (n=14) completed the study. Not applicable. Center of mass (COM) acceleration measures were compared between the mobile device and the NeuroCom force platform to determine the accuracy of mobile device measurements during performance of the Sensory Organization Test (SOT). Analyses examined test-retest reliability of both systems and sensitivity of (1) the equilibrium score from the SOT and (2) COM acceleration measures from the force platform and mobile device to quantify postural stability across populations. Metrics of COM acceleration from inertial measurement unit data and the NeuroCom force platform were significantly correlated across balance conditions and groups (Pearson r range, .35 to .97). The SOT equilibrium scores failed to discriminate individuals with and without PD. However, the multiplanar measures of COM acceleration from the mobile device exhibited good to excellent reliability across SOT conditions and were able to discriminate individuals with and without PD in conditions with the greatest balance demands. Metrics employing medial-lateral movement produce a more sensitive outcome than the equilibrium score in identifying postural instability associated with PD. Overall, the output from the mobile device provides an accurate and reliable method of rapidly quantifying balance in individuals with PD. The portable and affordable nature of a mobile device with the application makes it ideally suited to use biomechanical data to aid in clinical decision making. Copyright © 2016 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  7. UK Higher Education: Competitive Forces in the 21st Century.

    ERIC Educational Resources Information Center

    Webber, G. C.

    2000-01-01

    Considers United Kingdom higher education in the context of Michael Porter's book, "Competitive Strategy," which discusses five forces governing competition. Focusing mainly, but not exclusively, on teaching, the monograph identifies critical factors that have influenced the balance of competitive forces in higher education and…

  8. Postural sway and exposure to jet propulsion fuel 8 among US Air Force personnel.

    PubMed

    Maule, Alexis L; Heaton, Kristin J; Rodrigues, Ema; Smith, Kristen W; McClean, Michael D; Proctor, Susan P

    2013-04-01

    To determine whether short-term jet propulsion fuel 8 (JP-8) exposure is associated with balance measurements in JP-8-exposed air force personnel. As part of a larger neuroepidemiology study, balance tasks were completed by JP-8-exposed individuals (n = 37). Short-term JP-8 exposure was measured using personal breathing zone levels and urinary biomarkers. Multivariate linear regression analyses were conducted to examine the relationship between workday JP-8 exposure and postural sway. Balance control decreased as the task became more challenging. Workday exposure to JP-8, measured by either personal air or urinary metabolite levels, was not significantly related to postural sway. Increases in workday postural sway were associated with demographic variables, including younger age, being a current smoker, and higher body mass index. Results suggest that short-term workday JP-8 exposure does not significantly contribute to diminished balance control.

  9. Balance assessment during squatting exercise: A comparison between laboratory grade force plate and a commercial, low-cost device.

    PubMed

    Mengarelli, Alessandro; Verdini, Federica; Cardarelli, Stefano; Di Nardo, Francesco; Burattini, Laura; Fioretti, Sandro

    2018-04-11

    Testing balance through squatting exercise is a central part of many rehabilitation programs and sports and plays also an important role in clinical evaluation of residual motor ability. The assessment of center of pressure (CoP) displacement and its parametrization is commonly used to describe and analyze squat movement and the laboratory-grade force plates (FP) are the gold standard for measuring balance performances from a dynamic view-point. However, the Nintendo Wii Balance Board (NWBB) has been recently proposed as an inexpensive and easily available device for measuring ground reaction force and CoP displacement in standing balance tasks. Thus, this study aimed to compare the NWBB-CoP data with those obtained from a laboratory FP during a dynamic motor task, such as the squat task. CoP data of forty-eight subjects were acquired simultaneously from a NWBB and a FP and the analyses were performed over the descending squatting phase. Outcomes showed a very high correlation (r) and limited root-mean-square differences between CoP trajectories in anterior-posterior (r > 0.99, 1.63 ± 1.27 mm) and medial-lateral (r > 0.98, 1.01 ± 0.75 mm) direction. Spatial parameters computed from CoP displacement and ground reaction force peak presented fixed biases between NWBB and FP. Errors showed a high consistency (standard deviation < 2.4% of the FP outcomes) and a random spread distribution around the mean difference. Mean velocity is the only parameter which exhibited a tendency towards proportional values. Findings of this study suggested the NWBB as a valid device for the assessment and parametrization of CoP displacement during squatting movement. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Evaluation of a specific balance and coordination programme for individuals with a traumatic brain injury.

    PubMed

    Dault, Mylène Claude; Dugas, Claude

    2002-03-01

    The purpose of this study was to evaluate the effectiveness of an aerobic dancing training, designed to reduce postural imbalance and coordination deficits for individuals who had sustained a traumatic brain injury (TBI). A two group experimental design was conducted. A control group participated in a traditional muscular training (TMT) programme while participants in the experimental group were assigned to an aerobic dancing, Slide and Step training programme (specific training group (ST)). Participants were evaluated pre- and post-training. Balance was quantified using a force platform and coordination using a Peak Performance system to compare the velocity profiles of a modified Jumping jack test. Results showed that temporal variables were significantly different pre- and post-training for the ST group, but no changes were found in the TMT group. The results of the balance test indicated a significant reduction of postural sway area in the ST group but not in the TMT group. Overall, the combination workout with Step and Slide is more effective in reducing balance and coordination deficits when compared to muscular based training.

  11. Short-term climatic fluctuations forced by thermal anomalies

    NASA Technical Reports Server (NTRS)

    Hanna, A. F.

    1982-01-01

    A two level, global, spectral model using pressure as a vertical coordinate was developed. The system of equations describing the model is nonlinear and quasi-geostrophic (linear balance). Static stability is variable in the model. A moisture budget is calculated in the lower layer only. Convective adjustment is used to avoid supercritical temperature lapse rates. The mechanical forcing of topography is introduced as a vertical velocity at the lower boundary. Solar forcing is specified assuming a daily mean zenith angle. The differential diabatic heating between land and sea is paramterized. On land and sea ice surfaces, a steady state thermal energy equation is solved to calculate the surface temperature. On the oceans, the sea surface temperature is specified as the climatological average for January. The model is used to simulate the January, February and March circulations.

  12. Position control system for use with micromechanical actuators

    DOEpatents

    Guckel, Henry; Stiers, Eric W.

    2000-01-01

    A positioning system adapted for use with micromechanical actuators provides feedback control of the position of the movable element of the actuator utilizing a low Q sensing coil. The effective inductance of the sensing coil changes with position of the movable element to change the frequency of oscillation of a variable oscillator. The output of the variable oscillator is compared in a phase detector to a reference oscillator signal. The phase detector provides a pulsed output having a pulse duty cycle related to the phase or frequency difference between the oscillator signals. The output of the phase detector is provided to a drive coil which applies a magnetic force to the movable element which balances the force of a spring. The movable element can be displaced to a new position by changing the frequency of the reference oscillator.

  13. Dynamic Modelling of the DEP Controlled Boiling in a Microchannel

    NASA Astrophysics Data System (ADS)

    Lackowski, Marcin; Kwidzinski, Roman

    2018-04-01

    The paper presents theoretical analysis of flow dynamics in a heated microchannel in which flow rate may be controlled by dielectrophoretic (DEP) forces. Proposed model equations were derived in terms of lumped parameters characterising the system comprising of DEP controller and the microchannel. In result, an equation for liquid height of rise in the controller was obtained from momentum balances in the two elements of the considered system. In the model, the boiling process in the heated section of microchannel is taken into account through a pressure drop, which is a function of flow rate and uniform heat flux. Presented calculation results show that the DEP forces influence mainly the flow rate in the microchannel. In this way, by proper modulation of voltage applied to the DEP controller, it is possible to lower the frequency of Ledinegg instabilities.

  14. Magnelok technology: a complement to magnetorheological fluids

    NASA Astrophysics Data System (ADS)

    Carlson, J. David

    2004-07-01

    Magnetorheological or MR fluids have been successfully used to enable highly effective semi-active control systems in automobile primary suspensions to control unwanted motions in civil engineering structures and to provide force-feedback in steer-by-wire systems. A key to the successful use of MR fluids is an appreciation and understanding of the balance and trade-off between the magnetically controlled on-state force and the ever-present off-state viscous force. In all MR fluid applications, one must deal with the fact that MR fluids never fully decouple or go to zero force in their off-state. Magnelok devices are a magnetically controlled compliment to traditional MR fluid devices that have been developed to enable a true force decoupling in the off-state. Magnelok devices may be embodied as linear or rotary dampers, brakes, lockable struts or position holding devices. They are particularly suitable for lock/un-lock applications. Unlike MR fluid devices they contain no fluid yet they do provide a variable level of friction damping that is controlled by the magnitude of the applied magnetic field. Magnelok devices are low cost as they easily accommodate relatively loose mechanical tolerances and require no seals or accumulator. A variety of controllable Magnelok devices and applications are described.

  15. Further explorations of cosmogonic shadow effects in the Saturnian rings

    NASA Technical Reports Server (NTRS)

    Alfven, H.; Axnaes, I.; Brenning, N.; Lindqvist, P. A.

    1985-01-01

    The mass distribution in the Saturnian ring system is compared with predictions from the cosmogonic theory of Alfven and Arrhenius (1975) in which matter in the rings was once a magnetized plasma, with gravitation balanced by centrifugal force and by the magnetic field. As the plasma is neutralized, the magnetic force disappears and the matter can be shown to fall in to a distance 2/3 of the original. This supports the cosmogonic shadow effect, also demonstrated for the astroidal belt and in the large scale structure of the Saturnian ring system. The relevance of the comogonic shadow effect for parts of the finer structures of the Saturnian ring system is investigated. It is shown that many structures of the present ring system can be understood as shadows and antishadows of cosmogonic origin. These appear in the form of double rings centered around a position a factor 0.64 (slightly 2/3) closer to Saturn than the causing feature.

  16. Experimental and Numerical Study of Nozzle Plume Impingement on Spacecraft Surfaces

    NASA Astrophysics Data System (ADS)

    Ketsdever, A. D.; Lilly, T. C.; Gimelshein, S. F.; Alexeenko, A. A.

    2005-05-01

    An experimental and numerical effort was undertaken to assess the effects of a cold gas (To=300K) nozzle plume impinging on a simulated spacecraft surface. The nozzle flow impingement is investigated experimentally using a nano-Newton resolution force balance and numerically using the Direct Simulation Monte Carlo (DSMC) numerical technique. The Reynolds number range investigated in this study is from 0.5 to approximately 900 using helium and nitrogen propellants. The thrust produced by the nozzle was first assessed on a force balance to provide a baseline case. Subsequently, an aluminum plate was attached to the same force balance at various angles from 0° (parallel to the plume flow) to 10°. For low Reynolds number helium flow, a 16.5% decrease in thrust was measured for the plate at 0° relative to the free plume expansion case. For low Reynolds number nitrogen flow, the difference was found to be 12%. The thrust degradation was found to decrease at higher Reynolds numbers and larger plate angles.

  17. Secondary currents in a curved, stratified, estuarine channel

    USGS Publications Warehouse

    Lacy, J.R.; Monismith, Stephen G.

    2001-01-01

    This paper presents a study of secondary circulation in a curved stratified channel in northern San Francisco Bay over a 12.5-hour tidal cycle. Secondary currents were strong at times (varying by up to 35 cm/s from top to bottom) but relatively transient, as the balance between centrifugal and lateral baroclinic forcing changed over time. The short travel time around the bend did not allow a steady state balance to develop between centrifugal and lateral baroclinic forcing. During the flood tide the confluence of two streams with different velocities produced a strong lateral gradient in streamwise velocity. As a result, lateral advection was a significant term in the streamwise momentum balance, having the same order of magnitude as the barotropic and baroclinic pressure gradients, and the frictional terms. During the first part of the ebb, secondary currents were induced by lateral baroclinic forcing. The direction of the secondary circulation reversed later in the ebb, as the baroclinic forcing became weaker than the centrifugal acceleration. The gradient Richardson number showed that stratification was stable over most of the tidal cycle, decreasing the importance of friction and allowing secondary currents to persist. Copyright 2001 by the American Geophysical Union.

  18. Early regimes of water capillary flow in slit silica nanochannels.

    PubMed

    Oyarzua, Elton; Walther, Jens H; Mejía, Andrés; Zambrano, Harvey A

    2015-06-14

    Molecular dynamics simulations are conducted to investigate the initial stages of spontaneous imbibition of water in slit silica nanochannels surrounded by air. An analysis is performed for the effects of nanoscopic confinement, initial conditions of liquid uptake and air pressurization on the dynamics of capillary filling. The results indicate that the nanoscale imbibition process is divided into three main flow regimes: an initial regime where the capillary force is balanced only by the inertial drag and characterized by a constant velocity and a plug flow profile. In this regime, the meniscus formation process plays a central role in the imbibition rate. Thereafter, a transitional regime takes place, in which, the force balance has significant contributions from both inertia and viscous friction. Subsequently, a regime wherein viscous forces dominate the capillary force balance is attained. Flow velocity profiles identify the passage from an inviscid flow to a developing Poiseuille flow. Gas density profiles ahead of the capillary front indicate a transient accumulation of air on the advancing meniscus. Furthermore, slower capillary filling rates computed for higher air pressures reveal a significant retarding effect of the gas displaced by the advancing meniscus.

  19. Examining the Forces That Guide Teaching Decisions

    ERIC Educational Resources Information Center

    Griffith, Robin; Massey, Dixie; Atkinson, Terry S.

    2013-01-01

    This study of two successful first grade teachers examines the forces that guide their instructional decisions. Findings reveal the complexities of forces that influence the moment-to-moment decisions made by these teachers. Teachers repeatedly attempted to balance their desires to be student-centered while addressing state standards and…

  20. In-School Military Recruiting: A Counseling Perspective.

    ERIC Educational Resources Information Center

    Ciborowski, Paul J.

    1980-01-01

    The counselor's goal is to strike an acceptable balance between the needs of students and those of the armed forces. The approach outlined emphasizes the need for balanced information, counselor involvement, and well-organized and coordinated recruitment activities. (Author)

Top