A comparison of force control algorithms for robots in contact with flexible environments
NASA Technical Reports Server (NTRS)
Wilfinger, Lee S.
1992-01-01
In order to perform useful tasks, the robot end-effector must come into contact with its environment. For such tasks, force feedback is frequently used to control the interaction forces. Control of these forces is complicated by the fact that the flexibility of the environment affects the stability of the force control algorithm. Because of the wide variety of different materials present in everyday environments, it is necessary to gain an understanding of how environmental flexibility affects the stability of force control algorithms. This report presents the theory and experimental results of two force control algorithms: Position Accommodation Control and Direct Force Servoing. The implementation of each of these algorithms on a two-arm robotic test bed located in the Center for Intelligent Robotic Systems for Space Exploration (CIRSSE) is discussed in detail. The behavior of each algorithm when contacting materials of different flexibility is experimentally determined. In addition, several robustness improvements to the Direct Force Servoing algorithm are suggested and experimentally verified. Finally, a qualitative comparison of the force control algorithms is provided, along with a description of a general tuning process for each control method.
Kim, Yeoun Jae; Seo, Jong Hyun; Kim, Hong Rae; Kim, Kwang Gi
2017-06-01
Clinicians who frequently perform ultrasound scanning procedures often suffer from musculoskeletal disorders, arthritis, and myalgias. To minimize their occurrence and to assist clinicians, ultrasound scanning robots have been developed worldwide. Although, to date, there is still no commercially available ultrasound scanning robot, many control methods have been suggested and researched. These control algorithms are either image based or force based. If the ultrasound scanning robot control algorithm was a combination of the two algorithms, it could benefit from the advantage of each one. However, there are no existing control methods for ultrasound scanning robots that combine force control and image analysis. Therefore, in this work, a control algorithm is developed for an ultrasound scanning robot using force feedback and ultrasound image analysis. A manipulator-type ultrasound scanning robot named 'NCCUSR' is developed and a control algorithm for this robot is suggested and verified. First, conventional hybrid position-force control is implemented for the robot and the hybrid position-force control algorithm is combined with ultrasound image analysis to fully control the robot. The control method is verified using a thyroid phantom. It was found that the proposed algorithm can be applied to control the ultrasound scanning robot and experimental outcomes suggest that the images acquired using the proposed control method can yield a rating score that is equivalent to images acquired directly by the clinicians. The proposed control method can be applied to control the ultrasound scanning robot. However, more work must be completed to verify the proposed control method in order to become clinically feasible. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Formation control of robotic swarm using bounded artificial forces.
Qin, Long; Zha, Yabing; Yin, Quanjun; Peng, Yong
2013-01-01
Formation control of multirobot systems has drawn significant attention in the recent years. This paper presents a potential field control algorithm, navigating a swarm of robots into a predefined 2D shape while avoiding intermember collisions. The algorithm applies in both stationary and moving targets formation. We define the bounded artificial forces in the form of exponential functions, so that the behavior of the swarm drove by the forces can be adjusted via selecting proper control parameters. The theoretical analysis of the swarm behavior proves the stability and convergence properties of the algorithm. We further make certain modifications upon the forces to improve the robustness of the swarm behavior in the presence of realistic implementation considerations. The considerations include obstacle avoidance, local minima, and deformation of the shape. Finally, detailed simulation results validate the efficiency of the proposed algorithm, and the direction of possible futrue work is discussed in the conclusions.
Formation Control of Robotic Swarm Using Bounded Artificial Forces
Zha, Yabing; Peng, Yong
2013-01-01
Formation control of multirobot systems has drawn significant attention in the recent years. This paper presents a potential field control algorithm, navigating a swarm of robots into a predefined 2D shape while avoiding intermember collisions. The algorithm applies in both stationary and moving targets formation. We define the bounded artificial forces in the form of exponential functions, so that the behavior of the swarm drove by the forces can be adjusted via selecting proper control parameters. The theoretical analysis of the swarm behavior proves the stability and convergence properties of the algorithm. We further make certain modifications upon the forces to improve the robustness of the swarm behavior in the presence of realistic implementation considerations. The considerations include obstacle avoidance, local minima, and deformation of the shape. Finally, detailed simulation results validate the efficiency of the proposed algorithm, and the direction of possible futrue work is discussed in the conclusions. PMID:24453809
Implementation and control of a 3 degree-of-freedom, force-reflecting manual controller
NASA Astrophysics Data System (ADS)
Kim, Whee-Kuk; Bevill, Pat; Tesar, Delbert
1991-02-01
Most available manual controllers which are used in bilateral or force-reflecting teleoperator systems can be characterized by their bulky size heavy weight high cost low magnitude of reflecting-force lack of smoothness insufficient transparency and simplified architectures. A compact smooth lightweight portable universal manual controller could provide a markedly improved level of transparency and be able to drive a broad spectrum of slave manipulators. This implies that a single stand-off position could be used for a diverse population of remote systems and that a standard environment for training of operators would result in reduced costs and higher reliability. In the implementation presented in this paper a parallel 3 degree-of-freedom (DOF) spherical structure (for compactness and reduced weight) is combined with high gear-ratio reducers using a force control algorithm to produce a " power steering" effect for enhanced smoothness and transparency. The force control algorithm has the further benefit of minimizing the effect of the system friction and non-linear inertia forces. The fundamental analytical description for the spherical force-reflecting manual controller such as forward position analysis reflecting-force transformation and applied force control algorithm are presented. Also a brief description of the system integration its actual implementation and preliminary test results are presented in the paper.
Control Software for a High-Performance Telerobot
NASA Technical Reports Server (NTRS)
Kline-Schoder, Robert J.; Finger, William
2005-01-01
A computer program for controlling a high-performance, force-reflecting telerobot has been developed. The goal in designing a telerobot-control system is to make the velocity of the slave match the master velocity, and the environmental force on the master match the force on the slave. Instability can arise from even small delays in propagation of signals between master and slave units. The present software, based on an impedance-shaping algorithm, ensures stability even in the presence of long delays. It implements a real-time algorithm that processes position and force measurements from the master and slave and represents the master/slave communication link as a transmission line. The algorithm also uses the history of the control force and the slave motion to estimate the impedance of the environment. The estimate of the impedance of the environment is used to shape the controlled slave impedance to match the transmission-line impedance. The estimate of the environmental impedance is used to match the master and transmission-line impedances and to estimate the slave/environment force in order to present that force immediately to the operator via the master unit.
NASA Astrophysics Data System (ADS)
Joa, Eunhyek; Park, Kwanwoo; Koh, Youngil; Yi, Kyongsu; Kim, Kilsoo
2018-04-01
This paper presents a tyre slip-based integrated chassis control of front/rear traction distribution and four-wheel braking for enhanced performance from moderate driving to limit handling. The proposed algorithm adopted hierarchical structure: supervisor - desired motion tracking controller - optimisation-based control allocation. In the supervisor, by considering transient cornering characteristics, desired vehicle motion is calculated. In the desired motion tracking controller, in order to track desired vehicle motion, virtual control input is determined in the manner of sliding mode control. In the control allocation, virtual control input is allocated to minimise cost function. The cost function consists of two major parts. First part is a slip-based tyre friction utilisation quantification, which does not need a tyre force estimation. Second part is an allocation guideline, which guides optimally allocated inputs to predefined solution. The proposed algorithm has been investigated via simulation from moderate driving to limit handling scenario. Compared to Base and direct yaw moment control system, the proposed algorithm can effectively reduce tyre dissipation energy in the moderate driving situation. Moreover, the proposed algorithm enhances limit handling performance compared to Base and direct yaw moment control system. In addition to comparison with Base and direct yaw moment control, comparison the proposed algorithm with the control algorithm based on the known tyre force information has been conducted. The results show that the performance of the proposed algorithm is similar with that of the control algorithm with the known tyre force information.
Algorithmic formulation of control problems in manipulation
NASA Technical Reports Server (NTRS)
Bejczy, A. K.
1975-01-01
The basic characteristics of manipulator control algorithms are discussed. The state of the art in the development of manipulator control algorithms is briefly reviewed. Different end-point control techniques are described together with control algorithms which operate on external sensor (imaging, proximity, tactile, and torque/force) signals in realtime. Manipulator control development at JPL is briefly described and illustrated with several figures. The JPL work pays special attention to the front or operator input end of the control algorithms.
NASA Astrophysics Data System (ADS)
Morita, Yoshifumi; Hirose, Akinori; Uno, Takashi; Uchid, Masaki; Ukai, Hiroyuki; Matsui, Nobuyuki
2007-12-01
In this paper we propose a new rehabilitation training support system for upper limbs. The proposed system enables therapists to quantitatively evaluate the therapeutic effect of upper limb motor function during training, to easily change the load of resistance of training and to easily develop a new training program suitable for the subjects. For this purpose we develop control algorithms of training programs in the 3D force display robot. The 3D force display robot has parallel link mechanism with three motors. The control algorithm simulating sanding training is developed for the 3D force display robot. Moreover the teaching/training function algorithm is developed. It enables the therapists to easily make training trajectory suitable for subject's condition. The effectiveness of the developed control algorithms is verified by experiments.
Algorithm Optimally Allocates Actuation of a Spacecraft
NASA Technical Reports Server (NTRS)
Motaghedi, Shi
2007-01-01
A report presents an algorithm that solves the following problem: Allocate the force and/or torque to be exerted by each thruster and reaction-wheel assembly on a spacecraft for best performance, defined as minimizing the error between (1) the total force and torque commanded by the spacecraft control system and (2) the total of forces and torques actually exerted by all the thrusters and reaction wheels. The algorithm incorporates the matrix vector relationship between (1) the total applied force and torque and (2) the individual actuator force and torque values. It takes account of such constraints as lower and upper limits on the force or torque that can be applied by a given actuator. The algorithm divides the aforementioned problem into two optimization problems that it solves sequentially. These problems are of a type, known in the art as semi-definite programming problems, that involve linear matrix inequalities. The algorithm incorporates, as sub-algorithms, prior algorithms that solve such optimization problems very efficiently. The algorithm affords the additional advantage that the solution requires the minimum rate of consumption of fuel for the given best performance.
NASA Astrophysics Data System (ADS)
Bäumer, Richard; Terrill, Richard; Wollnack, Simon; Werner, Herbert; Starossek, Uwe
2018-01-01
The twin rotor damper (TRD), an active mass damper, uses the centrifugal forces of two eccentrically rotating control masses. In the continuous rotation mode, the preferred mode of operation, the two eccentric control masses rotate with a constant angular velocity about two parallel axes, creating, under further operational constraints, a harmonic control force in a single direction. In previous theoretical work, it was shown that this mode of operation is effective for the damping of large, harmonic vibrations of a single degree of freedom (SDOF) oscillator. In this paper, the SDOF oscillator is assumed to be affected by a stochastic excitation force and consequently responds with several frequencies. Therefore, the TRD must deviate from the continuous rotation mode to ensure the anti-phasing between the harmonic control force of the TRD and the velocity of the SDOF oscillator. It is found that the required deviation from the continuous rotation mode increases with lower vibration amplitude. Therefore, an operation of the TRD in the continuous rotation mode is no longer efficient below a specific vibration-amplitude threshold. To additionally dampen vibrations below this threshold, the TRD can switch to another, more energy-consuming mode of operation, the swinging mode in which both control masses oscillate about certain angular positions. A power-efficient control algorithm is presented which uses the continuous rotation mode for large vibrations and the swinging mode for small vibrations. To validate the control algorithm, numerical and experimental investigations are performed for a single degree of freedom oscillator under stochastic excitation. Using both modes of operation, it is shown that the control algorithm is effective for the cases of free and stochastically forced vibrations of arbitrary amplitude.
Model Predictive Control Based Motion Drive Algorithm for a Driving Simulator
NASA Astrophysics Data System (ADS)
Rehmatullah, Faizan
In this research, we develop a model predictive control based motion drive algorithm for the driving simulator at Toronto Rehabilitation Institute. Motion drive algorithms exploit the limitations of the human vestibular system to formulate a perception of motion within the constrained workspace of a simulator. In the absence of visual cues, the human perception system is unable to distinguish between acceleration and the force of gravity. The motion drive algorithm determines control inputs to displace the simulator platform, and by using the resulting inertial forces and angular rates, creates the perception of motion. By using model predictive control, we can optimize the use of simulator workspace for every maneuver while simulating the vehicle perception. With the ability to handle nonlinear constraints, the model predictive control allows us to incorporate workspace limitations.
Sensor-less force-reflecting macro-micro telemanipulation systems by piezoelectric actuators.
Amini, H; Farzaneh, B; Azimifar, F; Sarhan, A A D
2016-09-01
This paper establishes a novel control strategy for a nonlinear bilateral macro-micro teleoperation system with time delay. Besides position and velocity signals, force signals are additionally utilized in the control scheme. This modification significantly improves the poor transparency during contact with the environment. To eliminate external force measurement, a force estimation algorithm is proposed for the master and slave robots. The closed loop stability of the nonlinear micro-micro teleoperation system with the proposed control scheme is investigated employing the Lyapunov theory. Consequently, the experimental results verify the efficiency of the new control scheme in free motion and during collision between the slave robot and the environment of slave robot with environment, and the efficiency of the force estimation algorithm. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
Force-sensed interface for control and training space robot
NASA Astrophysics Data System (ADS)
Moiseev, O. S.; Sarsadskikh, A. S.; Povalyaev, N. D.; Gorbunov, V. I.; Kulakov, F. M.; Vasilev, V. V.
2018-05-01
A method of positional and force-torque control of robots is proposed. Prototypes of the system and the master handle have been created. Algorithm of bias estimation and gravity compensation for force-torque sensor and force-torque trajectory correction are described.
Control of equipment isolation system using wavelet-based hybrid sliding mode control
NASA Astrophysics Data System (ADS)
Huang, Shieh-Kung; Loh, Chin-Hsiung
2017-04-01
Critical non-structural equipment, including life-saving equipment in hospitals, circuit breakers, computers, high technology instrumentations, etc., is vulnerable to strong earthquakes, and on top of that, the failure of the vibration-sensitive equipment will cause severe economic loss. In order to protect vibration-sensitive equipment or machinery against strong earthquakes, various innovative control algorithms are developed to compensate the internal forces that to be applied. These new or improved control strategies, such as the control algorithms based on optimal control theory and sliding mode control (SMC), are also developed for structures engineering as a key element in smart structure technology. The optimal control theory, one of the most common methodologies in feedback control, finds control forces through achieving a certain optimal criterion by minimizing a cost function. For example, the linear-quadratic regulator (LQR) was the most popular control algorithm over the past three decades, and a number of modifications have been proposed to increase the efficiency of classical LQR algorithm. However, except to the advantage of simplicity and ease of implementation, LQR are susceptible to parameter uncertainty and modeling error due to complex nature of civil structures. Different from LQR control, a robust and easy to be implemented control algorithm, SMC has also been studied. SMC is a nonlinear control methodology that forces the structural system to slide along surfaces or boundaries; hence this control algorithm is naturally robust with respect to parametric uncertainties of a structure. Early attempts at protecting vibration-sensitive equipment were based on the use of existing control algorithms as described above. However, in recent years, researchers have tried to renew the existing control algorithms or developing a new control algorithm to adapt the complex nature of civil structures which include the control of both structures and non-structural components. The aim of this paper is to develop a hybrid control algorithm on the control of both structures and equipments simultaneously to overcome the limitations of classical feedback control through combining the advantage of classic LQR and SMC. To suppress vibrations with the frequency contents of strong earthquakes differing from the natural frequencies of civil structures, the hybrid control algorithms integrated with the wavelet-base vibration control algorithm is developed. The performance of classical, hybrid, and wavelet-based hybrid control algorithms as well as the responses of structure and non-structural components are evaluated and discussed through numerical simulation in this study.
Shen, Gang; Zhu, Zhencai; Zhao, Jinsong; Zhu, Weidong; Tang, Yu; Li, Xiang
2017-03-01
This paper focuses on an application of an electro-hydraulic force tracking controller combined with an offline designed feedback controller (ODFC) and an online adaptive compensator in order to improve force tracking performance of an electro-hydraulic force servo system (EHFS). A proportional-integral controller has been employed and a parameter-based force closed-loop transfer function of the EHFS is identified by a continuous system identification algorithm. By taking the identified system model as a nominal plant model, an H ∞ offline design method is employed to establish an optimized feedback controller with consideration of the performance, control efforts, and robustness of the EHFS. In order to overcome the disadvantage of the offline designed controller and cope with the varying dynamics of the EHFS, an online adaptive compensator with a normalized least-mean-square algorithm is cascaded to the force closed-loop system of the EHFS compensated by the ODFC. Some comparative experiments are carried out on a real-time EHFS using an xPC rapid prototype technology, and the proposed controller yields a better force tracking performance improvement. Copyright © 2016. Published by Elsevier Ltd.
Design and control of a macro-micro robot for precise force applications
NASA Technical Reports Server (NTRS)
Wang, Yulun; Mangaser, Amante; Laby, Keith; Jordan, Steve; Wilson, Jeff
1993-01-01
Creating a robot which can delicately interact with its environment has been the goal of much research. Primarily two difficulties have made this goal hard to attain. The execution of control strategies which enable precise force manipulations are difficult to implement in real time because such algorithms have been too computationally complex for available controllers. Also, a robot mechanism which can quickly and precisely execute a force command is difficult to design. Actuation joints must be sufficiently stiff, frictionless, and lightweight so that desired torques can be accurately applied. This paper describes a robotic system which is capable of delicate manipulations. A modular high-performance multiprocessor control system was designed to provide sufficient compute power for executing advanced control methods. An 8 degree of freedom macro-micro mechanism was constructed to enable accurate tip forces. Control algorithms based on the impedance control method were derived, coded, and load balanced for maximum execution speed on the multiprocessor system. Delicate force tasks such as polishing, finishing, cleaning, and deburring, are the target applications of the robot.
Kianmajd, Babak; Carter, David; Soshi, Masakazu
2016-10-01
Robotic total hip arthroplasty is a procedure in which milling operations are performed on the femur to remove material for the insertion of a prosthetic implant. The robot performs the milling operation by following a sequential list of tool motions, also known as a toolpath, generated by a computer-aided manufacturing (CAM) software. The purpose of this paper is to explain a new toolpath force prediction algorithm that predicts cutting forces, which results in improving the quality and safety of surgical systems. With a custom macro developed in the CAM system's native application programming interface, cutting contact patch volume was extracted from CAM simulations. A time domain cutting force model was then developed through the use of a cutting force prediction algorithm. The second portion validated the algorithm by machining a hip canal in simulated bone using a CNC machine. Average cutting forces were measured during machining using a dynamometer and compared to the values predicted from CAM simulation data using the proposed method. The results showed the predicted forces matched the measured forces in both magnitude and overall pattern shape. However, due to inconsistent motion control, the time duration of the forces was slightly distorted. Nevertheless, the algorithm effectively predicted the forces throughout an entire hip canal procedure. This method provides a fast and easy technique for predicting cutting forces during orthopedic milling by utilizing data within a CAM software.
Dideriksen, Jakob Lund; Feeney, Daniel F; Almuklass, Awad M; Enoka, Roger M
2017-08-01
Force trajectories during isometric force-matching tasks involving isometric contractions vary substantially across individuals. In this study, we investigated if this variability can be explained by discrete time proportional, integral, derivative (PID) control algorithms with varying model parameters. To this end, we analyzed the pinch force trajectories of 24 subjects performing two rapid force-matching tasks with visual feedback. Both tasks involved isometric contractions to a target force of 10% maximal voluntary contraction. One task involved a single action (pinch) and the other required a double action (concurrent pinch and wrist extension). 50,000 force trajectories were simulated with a computational neuromuscular model whose input was determined by a PID controller with different PID gains and frequencies at which the controller adjusted muscle commands. The goal was to find the best match between each experimental force trajectory and all simulated trajectories. It was possible to identify one realization of the PID controller that matched the experimental force produced during each task for most subjects (average index of similarity: 0.87 ± 0.12; 1 = perfect similarity). The similarities for both tasks were significantly greater than that would be expected by chance (single action: p = 0.01; double action: p = 0.04). Furthermore, the identified control frequencies in the simulated PID controller with the greatest similarities decreased as task difficulty increased (single action: 4.0 ± 1.8 Hz; double action: 3.1 ± 1.3 Hz). Overall, the results indicate that discrete time PID controllers are realistic models for the neural control of force in rapid force-matching tasks involving isometric contractions.
NASA Astrophysics Data System (ADS)
Xiong, Yan; Chen, Yang; Sun, Zhiyong; Hao, Lina; Dong, Jie
2014-07-01
Ionic polymer metal composites (IPMCs) are a type of electroactive polymer (EAP) that can be used as both sensors and actuators. An IPMC has enormous potential application in the field of biomimetic robotics, medical devices, and so on. However, an IPMC actuator has a great number of disadvantages, such as creep and time-variation, making it vulnerable to external disturbances. In addition, the complex actuation mechanism makes it difficult to model and the demand of the control algorithm is laborious to implement. In this paper, we obtain a creep model of the IPMC by means of model identification based on the method of creep operator linear superposition. Although the mathematical model is not approximate to the IPMC accurate model, it is accurate enough to be used in MATLAB to prove the control algorithm. A controller based on the active disturbance rejection control (ADRC) method is designed to solve the drawbacks previously given. Because the ADRC controller is separate from the mathematical model of the controlled plant, the control algorithm has the ability to complete disturbance estimation and compensation. Some factors, such as all external disturbances, uncertainty factors, the inaccuracy of the identification model and different kinds of IPMCs, have little effect on controlling the output block force of the IPMC. Furthermore, we use the particle swarm optimization algorithm to adjust ADRC parameters so that the IPMC actuator can approach the desired block force with unknown external disturbances. Simulations and experimental examples validate the effectiveness of the ADRC controller.
Li, Yang; Bechhoefer, John
2009-01-01
We introduce an algorithm for calculating, offline or in real time and with no explicit system characterization, the feedforward input required for repetitive motions of a system. The algorithm is based on the secant method of numerical analysis and gives accurate motion at frequencies limited only by the signal-to-noise ratio and the actuator power and range. We illustrate the secant-solver algorithm on a stage used for atomic force microscopy.
Trajectory Control of Rendezvous with Maneuver Target Spacecraft
NASA Technical Reports Server (NTRS)
Zhou, Zhinqiang
2012-01-01
In this paper, a nonlinear trajectory control algorithm of rendezvous with maneuvering target spacecraft is presented. The disturbance forces on the chaser and target spacecraft and the thrust forces on the chaser spacecraft are considered in the analysis. The control algorithm developed in this paper uses the relative distance and relative velocity between the target and chaser spacecraft as the inputs. A general formula of reference relative trajectory of the chaser spacecraft to the target spacecraft is developed and applied to four different proximity maneuvers, which are in-track circling, cross-track circling, in-track spiral rendezvous and cross-track spiral rendezvous. The closed-loop differential equations of the proximity relative motion with the control algorithm are derived. It is proven in the paper that the tracking errors between the commanded relative trajectory and the actual relative trajectory are bounded within a constant region determined by the control gains. The prediction of the tracking errors is obtained. Design examples are provided to show the implementation of the control algorithm. The simulation results show that the actual relative trajectory tracks the commanded relative trajectory tightly. The predicted tracking errors match those calculated in the simulation results. The control algorithm developed in this paper can also be applied to interception of maneuver target spacecraft and relative trajectory control of spacecraft formation flying.
A convex optimization method for self-organization in dynamic (FSO/RF) wireless networks
NASA Astrophysics Data System (ADS)
Llorca, Jaime; Davis, Christopher C.; Milner, Stuart D.
2008-08-01
Next generation communication networks are becoming increasingly complex systems. Previously, we presented a novel physics-based approach to model dynamic wireless networks as physical systems which react to local forces exerted on network nodes. We showed that under clear atmospheric conditions the network communication energy can be modeled as the potential energy of an analogous spring system and presented a distributed mobility control algorithm where nodes react to local forces driving the network to energy minimizing configurations. This paper extends our previous work by including the effects of atmospheric attenuation and transmitted power constraints in the optimization problem. We show how our new formulation still results in a convex energy minimization problem. Accordingly, an updated force-driven mobility control algorithm is presented. Forces on mobile backbone nodes are computed as the negative gradient of the new energy function. Results show how in the presence of atmospheric obscuration stronger forces are exerted on network nodes that make them move closer to each other, avoiding loss of connectivity. We show results in terms of network coverage and backbone connectivity and compare the developed algorithms for different scenarios.
A force-controllable macro-micro manipulator and its application to medical robots
NASA Technical Reports Server (NTRS)
Marzwell, Neville I.; Uecker, Darrin R.; Wang, Yulun
1994-01-01
This paper describes an 8-degrees-of-freedom macro-micro robot. This robot is capable of performing tasks that require accurate force control, such as polishing, finishing, grinding, deburring, and cleaning. The design of the macro-micro mechanism, the control algorithms, and the hardware/software implementation of the algorithms are described in this paper. Initial experimental results are reported. In addition, this paper includes a discussion of medical surgery and the role that force control may play. We introduce a new class of robotic systems collectively called Robotic Enhancement Technology (RET). RET systems introduce the combination of robotic manipulation with human control to perform manipulation tasks beyond the individual capability of either human or machine. The RET class of robotic systems offers new challenges in mechanism design, control-law development, and man/machine interface design. We believe force-controllable mechanisms such as the macro-micro structure we have developed are a necessary part of RET. Work in progress in the area of RET systems and their application to minimally invasive surgery is presented, along with future research directions.
Flight Evaluation of an Aircraft with Side and Center Stick Controllers and Rate-Limited Ailerons
NASA Technical Reports Server (NTRS)
Deppe, P. R.; Chalk, C. R.; Shafer, M. F.
1996-01-01
As part of an ongoing government and industry effort to study the flying qualities of aircraft with rate-limited control surface actuators, two studies were previously flown to examine an algorithm developed to reduce the tendency for pilot-induced oscillation when rate limiting occurs. This algorithm, when working properly, greatly improved the performance of the aircraft in the first study. In the second study, however, the algorithm did not initially offer as much improvement. The differences between the two studies caused concern. The study detailed in this paper was performed to determine whether the performance of the algorithm was affected by the characteristics of the cockpit controllers. Time delay and flight control system noise were also briefly evaluated. An in-flight simulator, the Calspan Learjet 25, was programmed with a low roll actuator rate limit, and the algorithm was programmed into the flight control system. Side- and center-stick controllers, force and position command signals, a rate-limited feel system, a low-frequency feel system, and a feel system damper were evaluated. The flight program consisted of four flights and 38 evaluations of test configurations. Performance of the algorithm was determined to be unaffected by using side- or center-stick controllers or force or position command signals. The rate-limited feel system performed as well as the rate-limiting algorithm but was disliked by the pilots. The low-frequency feel system and the feel system damper were ineffective. Time delay and noise were determined to degrade the performance of the algorithm.
LQC control for the Mini-Mast experiment
NASA Technical Reports Server (NTRS)
Montgomery, R. C.; Ghosh, D.
1988-01-01
The Mini-Mast system is briefly reviewed, and results of a simulation study of the LQG control for the Mini-Mast experiment are reported. In particular, attention is given to problems and limitations related to the testing of control laws using reaction mass actuators, such as accounting for force and stroke limits of these devices. The local controller used in the study and the algorithm for converting the force commands of the LQG algorithm to position commands for the reaction mass device are described. It is shown that the LQG generated damping is reduced when a local controller is used and the position command is not saturated; it drops still further when the position command is saturated.
Kamnik, Roman; Bajd, Tadej
2007-11-01
The paper presents a novel control approach for the robot-assisted motion augmentation of disabled subjects during the standing-up manoeuvre. The main goal of the proposal is to integrate the voluntary activity of a person in the control scheme of the rehabilitation robot. The algorithm determines the supportive force to be tracked by a robot force controller. The basic idea behind the calculation of supportive force is to quantify the deficit in the dynamic equilibrium of the trunk. The proposed algorithm was implemented as a Kalman filter procedure and evaluated in a simulation environment. The simulation results proved the adequate and robust performance of "patient-driven" robot-assisted standing-up training. In addition, the possibility of varying the training conditions with different degrees of the subject's initiative is demonstrated.
Effects of secondary loudspeaker properties on broadband feedforward active duct noise control.
Chan, Yum-Ji; Huang, Lixi; Lam, James
2013-07-01
Dependence of the performance of feedforward active duct noise control on secondary loudspeaker parameters is investigated. Noise reduction performance can be improved if the force factor of the secondary loudspeaker is higher. For example, broadband noise reduction improvement up to 1.6 dB is predicted by increasing the force factor by 50%. In addition, a secondary loudspeaker with a larger force factor was found to have quicker convergence in the adaptive algorithm in experiment. In simulations, noise reduction is improved in using an adaptive algorithm by using a secondary loudspeaker with a heavier moving mass. It is predicted that an extra broadband noise reduction of more than 7 dB can be gained using an adaptive filter if the force factor, moving mass and coil inductance of a commercially available loudspeaker are doubled. Methods to increase the force factor beyond those of commercially available loudspeakers are proposed.
NASA Astrophysics Data System (ADS)
Li, Liang; Jia, Gang; Chen, Jie; Zhu, Hongjun; Cao, Dongpu; Song, Jian
2015-08-01
Direct yaw moment control (DYC), which differentially brakes the wheels to produce a yaw moment for the vehicle stability in a steering process, is an important part of electric stability control system. In this field, most control methods utilise the active brake pressure with a feedback controller to adjust the braked wheel. However, the method might lead to a control delay or overshoot because of the lack of a quantitative project relationship between target values from the upper stability controller to the lower pressure controller. Meanwhile, the stability controller usually ignores the implementing ability of the tyre forces, which might be restrained by the combined-slip dynamics of the tyre. Therefore, a novel control algorithm of DYC based on the hierarchical control strategy is brought forward in this paper. As for the upper controller, a correctional linear quadratic regulator, which not only contains feedback control but also contains feed forward control, is introduced to deduce the object of the stability yaw moment in order to guarantee the yaw rate and side-slip angle stability. As for the medium and lower controller, the quantitative relationship between the vehicle stability object and the target tyre forces of controlled wheels is proposed to achieve smooth control performance based on a combined-slip tyre model. The simulations with the hardware-in-the-loop platform validate that the proposed algorithm can improve the stability of the vehicle effectively.
Vibration Reduction of Helicopter Blade Using Variable Dampers: A Feasibility Study
NASA Technical Reports Server (NTRS)
Lee, George C.; Liang, Zach; Gan, Quan; Niu, Tiecheng
2002-01-01
In the report, the investigation of controlling helicopter-blade lead-lag vibration is described. Current practice of adding passive damping may be improved to handle large dynamic range of the blade with several peaks of vibration resonance. To minimize extra-large damping forces that may damage the control system of blade, passive dampers should have relatively small damping coefficients, which in turn limit the effectiveness. By providing variable damping, a much larger damping coefficient to suppress the vibration can be realized. If the damping force reaches the maximum allowed threshold, the damper will be automatically switched into the mode with smaller damping coefficient to maintain near-constant damping force. Furthermore, the proposed control system will also have a fail-safe feature to guarantee the basic performation of a typical passive damper. The proposed control strategy to avoid resonant regions in the frequency domain is to generate variable damping force in combination with the supporting stiffness to manipulate the restoring force and conservative energy of the controlled blade system. Two control algorithms are developed and verified by a prototype variable damper, a digital controller and corresponding algorithms. Primary experiments show good potentials for the proposed variable damper: about 66% and 82% reductions in displacement at 1/3 length and the root of the blade respectively.
A comparison of two adaptive algorithms for the control of active engine mounts
NASA Astrophysics Data System (ADS)
Hillis, A. J.; Harrison, A. J. L.; Stoten, D. P.
2005-08-01
This paper describes work conducted in order to control automotive active engine mounts, consisting of a conventional passive mount and an internal electromagnetic actuator. Active engine mounts seek to cancel the oscillatory forces generated by the rotation of out-of-balance masses within the engine. The actuator generates a force dependent on a control signal from an algorithm implemented with a real-time DSP. The filtered-x least-mean-square (FXLMS) adaptive filter is used as a benchmark for comparison with a new implementation of the error-driven minimal controller synthesis (Er-MCSI) adaptive controller. Both algorithms are applied to an active mount fitted to a saloon car equipped with a four-cylinder turbo-diesel engine, and have no a priori knowledge of the system dynamics. The steady-state and transient performance of the two algorithms are compared and the relative merits of the two approaches are discussed. The Er-MCSI strategy offers significant computational advantages as it requires no cancellation path modelling. The Er-MCSI controller is found to perform in a fashion similar to the FXLMS filter—typically reducing chassis vibration by 50-90% under normal driving conditions.
FINITE-STATE APPROXIMATIONS TO DENUMERABLE-STATE DYNAMIC PROGRAMS,
AIR FORCE OPERATIONS, LOGISTICS), (*INVENTORY CONTROL, DYNAMIC PROGRAMMING), (*DYNAMIC PROGRAMMING, APPROXIMATION(MATHEMATICS)), INVENTORY CONTROL, DECISION MAKING, STOCHASTIC PROCESSES, GAME THEORY, ALGORITHMS, CONVERGENCE
Nam, Kanghyun
2015-11-11
This article presents methods for estimating lateral vehicle velocity and tire cornering stiffness, which are key parameters in vehicle dynamics control, using lateral tire force measurements. Lateral tire forces acting on each tire are directly measured by load-sensing hub bearings that were invented and further developed by NSK Ltd. For estimating the lateral vehicle velocity, tire force models considering lateral load transfer effects are used, and a recursive least square algorithm is adapted to identify the lateral vehicle velocity as an unknown parameter. Using the estimated lateral vehicle velocity, tire cornering stiffness, which is an important tire parameter dominating the vehicle's cornering responses, is estimated. For the practical implementation, the cornering stiffness estimation algorithm based on a simple bicycle model is developed and discussed. Finally, proposed estimation algorithms were evaluated using experimental test data.
2006-12-01
intelligent control algorithm embedded in the FADEC . This paper evaluates the LEC, based on critical components research, to demonstrate how an...control action, engine component life usage, and designing an intelligent control algorithm embedded in the FADEC . This paper evaluates the LEC, based on...simulation code for each simulator. One is typically configured to operate as a Full- Authority Digital Electronic Controller ( FADEC
NASA Astrophysics Data System (ADS)
Zarchi, Milad; Attaran, Behrooz
2017-11-01
This study develops a mathematical model to investigate the behaviour of adaptable shock absorber dynamics for the six-degree-of-freedom aircraft model in the taxiing phase. The purpose of this research is to design a proportional-integral-derivative technique for control of an active vibration absorber system using a hydraulic nonlinear actuator based on the bees algorithm. This optimization algorithm is inspired by the natural intelligent foraging behaviour of honey bees. The neighbourhood search strategy is used to find better solutions around the previous one. The parameters of the controller are adjusted by minimizing the aircraft's acceleration and impact force as the multi-objective function. The major advantages of this algorithm over other optimization algorithms are its simplicity, flexibility and robustness. The results of the numerical simulation indicate that the active suspension increases the comfort of the ride for passengers and the fatigue life of the structure. This is achieved by decreasing the impact force, displacement and acceleration significantly.
A Force-Controllable Macro-Micro Manipulator and its Application to Medical Robotics
NASA Technical Reports Server (NTRS)
Marzwell, Neville I.; Uecker, Darrin R.; Wang, Yulun
1993-01-01
This paper describes an 8-degrees-of-freedom macro-micro robot. This robot is capable of performing tasks that require accurate force control, such as polishing, finishing, grinding, deburring, and cleaning. The design of the macro-micro mechanism, the control algorithms, and the hardware/sofware implemtation of the algotithms are described in this paper. Initial experimental results are reported.
Application of Novel Lateral Tire Force Sensors to Vehicle Parameter Estimation of Electric Vehicles
Nam, Kanghyun
2015-01-01
This article presents methods for estimating lateral vehicle velocity and tire cornering stiffness, which are key parameters in vehicle dynamics control, using lateral tire force measurements. Lateral tire forces acting on each tire are directly measured by load-sensing hub bearings that were invented and further developed by NSK Ltd. For estimating the lateral vehicle velocity, tire force models considering lateral load transfer effects are used, and a recursive least square algorithm is adapted to identify the lateral vehicle velocity as an unknown parameter. Using the estimated lateral vehicle velocity, tire cornering stiffness, which is an important tire parameter dominating the vehicle’s cornering responses, is estimated. For the practical implementation, the cornering stiffness estimation algorithm based on a simple bicycle model is developed and discussed. Finally, proposed estimation algorithms were evaluated using experimental test data. PMID:26569246
The force control and path planning of electromagnetic induction-based massage robot.
Wang, Wendong; Zhang, Lei; Li, Jinzhe; Yuan, Xiaoqing; Shi, Yikai; Jiang, Qinqin; He, Lijing
2017-07-20
Massage robot is considered as an effective physiological treatment to relieve fatigue, improve blood circulation, relax muscle tone, etc. The simple massage equipment quickly spread into market due to low cost, but they are not widely accepted due to restricted massage function. Complicated structure and high cost caused difficulties for developing multi-function massage equipment. This paper presents a novel massage robot which can achieve tapping, rolling, kneading and other massage operations, and proposes an improved reciprocating path planning algorithm to improve massage effect. The number of coil turns, the coil current and the distance between massage head and yoke were chosen to investigate the influence on massage force by finite element method. The control system model of the wheeled massage robot was established, including control subsystem of the motor, path algorithm control subsystem, parameter module of the massage robot and virtual reality interface module. The improved reciprocating path planning algorithm was proposed to improve regional coverage rate and massage effect. The influence caused by coil current, the number of coil turns and the distance between massage head and yoke were simulated in Maxwell. It indicated that coil current has more important influence compared to the other two factors. The path planning simulation of the massage robot was completed in Matlab, and the results show that the improved reciprocating path planning algorithm achieved higher coverage rate than the traditional algorithm. With the analysis of simulation results, it can be concluded that the number of coil turns and the distance between the moving iron core and the yoke could be determined prior to coil current, and the force can be controllable by optimizing structure parameters of massage head and adjusting coil current. Meanwhile, it demonstrates that the proposed algorithm could effectively improve path coverage rate during massage operations, therefore the massage effect can be improved.
Distributed Autonomous Control of Multiple Spacecraft During Close Proximity Operations
2007-12-01
programs may be the XSS-11. The AFRL Space Vehicle Directorate at Kirtland Air Force Base in New Mexico developed the XSS-11 in order to exhibit the...the LQR/APF algorithm appears to be a promising new development for the field of multiple spacecraft close proximity maneuver control. Monte...dissertation reports the development of an autonomous distributed control algorithm for multiple spacecraft during close proximity operations
Applied Joint-Space Torque and Stiffness Control of Tendon-Driven Fingers
NASA Technical Reports Server (NTRS)
Abdallah, Muhammad E.; Platt, Robert, Jr.; Wampler, Charles W.; Hargrave, Brian
2010-01-01
Existing tendon-driven fingers have applied force control through independent tension controllers on each tendon, i.e. in the tendon-space. The coupled kinematics of the tendons, however, cause such controllers to exhibit a transient coupling in their response. This problem can be resolved by alternatively framing the controllers in the joint-space of the manipulator. This work presents a joint-space torque control law that demonstrates both a decoupled and significantly faster response than an equivalent tendon-space formulation. The law also demonstrates greater speed and robustness than comparable PI controllers. In addition, a tension distribution algorithm is presented here to allocate forces from the joints to the tendons. It allocates the tensions so that they satisfy both an upper and lower bound, and it does so without requiring linear programming or open-ended iterations. The control law and tension distribution algorithm are implemented on the robotic hand of Robonaut-2.
Survey of Visual and Force/Tactile Control of Robots for Physical Interaction in Spain
Garcia, Gabriel J.; Corrales, Juan A.; Pomares, Jorge; Torres, Fernando
2009-01-01
Sensors provide robotic systems with the information required to perceive the changes that happen in unstructured environments and modify their actions accordingly. The robotic controllers which process and analyze this sensory information are usually based on three types of sensors (visual, force/torque and tactile) which identify the most widespread robotic control strategies: visual servoing control, force control and tactile control. This paper presents a detailed review on the sensor architectures, algorithmic techniques and applications which have been developed by Spanish researchers in order to implement these mono-sensor and multi-sensor controllers which combine several sensors. PMID:22303146
NASA Technical Reports Server (NTRS)
Ghosh, D.; Montgomery, R. C.
1987-01-01
The work being done at NASA LaRC on developing control laws for the Mini-Mast experimental facility is reviewed with particular attention given to the problems associated with the stroke limit of the reaction mass actuators used in conjunction with the LQG control. An algorithm for converting the force commands of the LQG algorithm into position command for the reaction mass devices is described. It is shown that the position command can be used as an input to a local controller so that the relative position of the reaction mass would track the commanded relative position. The stabilization of the integration scheme makes it possible to avoid the position drift arising in the direct double integration method of converting force commands to position commands.
Flight Test of ASAC Aircraft Interior Noise Control System
NASA Technical Reports Server (NTRS)
Palumbo, Dan; Cabell, Ran; Cline, John; Sullivan, Brenda
1999-01-01
A flight test is described in which an active structural/acoustic control system reduces turboprop induced interior noise on a Raytheon Aircraft Company 1900D airliner. Control inputs to 21 inertial force actuators were computed adaptively using a transform domain version of the multichannel filtered-X LMS algorithm to minimize the mean square response of 32 microphones. A combinatorial search algorithm was employed to optimize placement of the force actuators on the aircraft frame. Both single frequency and multi-frequency results are presented. Reductions of up to 15 dB were obtained at the blade passage frequency (BPF) during single frequency control tests. Simultaneous reductions of the BPF and next 2 harmonics of 10 dB, 2.5 dB and 3.0 dB, were obtained in a multi-frequency test.
Force modeling for incisions into various tissues with MRF haptic master
NASA Astrophysics Data System (ADS)
Kim, Pyunghwa; Kim, Soomin; Park, Young-Dai; Choi, Seung-Bok
2016-03-01
This study proposes a new model to predict the reaction force that occurs in incisions during robot-assisted minimally invasive surgery. The reaction force is fed back to the manipulator by a magneto-rheological fluid (MRF) haptic master, which is featured by a bi-directional clutch actuator. The reaction force feedback provides similar sensations to laparotomy that cannot be provided by a conventional master for surgery. This advantage shortens the training period for robot-assisted minimally invasive surgery and can improve the accuracy of operations. The reaction force modeling of incisions can be utilized in a surgical simulator that provides a virtual reaction force. In this work, in order to model the reaction force during incisions, the energy aspect of the incision process is adopted and analyzed. Each mode of the incision process is classified by the tendency of the energy change, and modeled for realistic real-time application. The reaction force model uses actual reaction force information with three types of actual tissues: hard tissue, medium tissue, and soft tissue. This modeled force is realized by the MRF haptic master through an algorithm based on the position and velocity of a scalpel using two different control methods: an open-loop algorithm and a closed-loop algorithm. The reaction forces obtained from the proposed model are compared with a desired force in time domain.
NASA Astrophysics Data System (ADS)
Hasbullah Mohd Isa, Wan; Taha, Zahari; Mohd Khairuddin, Ismail; Majeed, Anwar P. P. Abdul; Fikri Muhammad, Khairul; Abdo Hashem, Mohammed; Mahmud, Jamaluddin; Mohamed, Zulkifli
2016-02-01
This paper presents the modelling and control of a two degree of freedom upper extremity exoskeleton by means of an intelligent active force control (AFC) mechanism. The Newton-Euler formulation was used in deriving the dynamic modelling of both the anthropometry based human upper extremity as well as the exoskeleton that consists of the upper arm and the forearm. A proportional-derivative (PD) architecture is employed in this study to investigate its efficacy performing joint-space control objectives. An intelligent AFC algorithm is also incorporated into the PD to investigate the effectiveness of this hybrid system in compensating disturbances. The Mamdani Fuzzy based rule is employed to approximate the estimated inertial properties of the system to ensure the AFC loop responds efficiently. It is found that the IAFC-PD performed well against the disturbances introduced into the system as compared to the conventional PD control architecture in performing the desired trajectory tracking.
Real time control for NASA robotic gripper
NASA Technical Reports Server (NTRS)
Salter, Carole A.; Baras, John S.
1990-01-01
The ability to easily manipulate objects in a zero gravity environment will pay a key role in future space activities. Emphasis will be placed on robotic manipulation. This will serve to increase astronaut safety and utility in addition to several other benefits. The aim is to develop control laws for the zero gravity robotic end effectors. A hybrid force/position controller will be used. Sensory data available to the controller are obtained from an array of strain gauges and a linear potentiometer. Applying well known optimal control theoretical principles, the control which minimizes the transition time between positions is obtained. A robust force control scheme is developed which allows the desired holding force to be achieved smoothly without oscillation. In addition, an algorithm is found to determine contact force and contact location.
Terminal iterative learning control based station stop control of a train
NASA Astrophysics Data System (ADS)
Hou, Zhongsheng; Wang, Yi; Yin, Chenkun; Tang, Tao
2011-07-01
The terminal iterative learning control (TILC) method is introduced for the first time into the field of train station stop control and three TILC-based algorithms are proposed in this study. The TILC-based train station stop control approach utilises the terminal stop position error in previous braking process to update the current control profile. The initial braking position, or the braking force, or their combination is chosen as the control input, and corresponding learning law is developed. The terminal stop position error of each algorithm is guaranteed to converge to a small region related with the initial offset of braking position with rigorous analysis. The validity of the proposed algorithms is verified by illustrative numerical examples.
Multidigit force control during unconstrained grasping in response to object perturbations
Haschke, Robert; Ritter, Helge; Santello, Marco; Ernst, Marc O.
2017-01-01
Because of the complex anatomy of the human hand, in the absence of external constraints, a large number of postures and force combinations can be used to attain a stable grasp. Motor synergies provide a viable strategy to solve this problem of motor redundancy. In this study, we exploited the technical advantages of an innovative sensorized object to study unconstrained hand grasping within the theoretical framework of motor synergies. Participants were required to grasp, lift, and hold the sensorized object. During the holding phase, we repetitively applied external disturbance forces and torques and recorded the spatiotemporal distribution of grip forces produced by each digit. We found that the time to reach the maximum grip force during each perturbation was roughly equal across fingers, consistent with a synchronous, synergistic stiffening across digits. We further evaluated this hypothesis by comparing the force distribution of human grasping vs. robotic grasping, where the control strategy was set by the experimenter. We controlled the global hand stiffness of the robotic hand and found that this control algorithm produced a force pattern qualitatively similar to human grasping performance. Our results suggest that the nervous system uses a default whole hand synergistic control to maintain a stable grasp regardless of the number of digits involved in the task, their position on the objects, and the type and frequency of external perturbations. NEW & NOTEWORTHY We studied hand grasping using a sensorized object allowing unconstrained finger placement. During object perturbation, the time to reach the peak force was roughly equal across fingers, consistently with a synergistic stiffening across fingers. Force distribution of a robotic grasping hand, where the control algorithm is based on global hand stiffness, was qualitatively similar to human grasping. This suggests that the central nervous system uses a default whole hand synergistic control to maintain a stable grasp. PMID:28228582
Progress towards a Drag-free SmallSat
NASA Astrophysics Data System (ADS)
Saraf, Shailendhar
The net force acting on a drag-free satellite is purely gravitational as all other forces, mainly atmospheric drag and solar radiation pressure, are canceled out. In order to achieve this, a free floating reference (test mass) inside the satellite is shielded against all forces but gravity and a system of thrusters is commanded by a control algorithm such that the relative displacement between the reference and the satellite stays constant. The main input to that control algorithm is the output of a sensor which measures the relative displacement between the satellite and the test mass. Internal disturbance forces such as electrostatic or magnetic forces cannot be canceled out his way and have to be minimized by a careful design of the satellite. A drag-free technology package is under development at Stanford since 2004. It includes an optical displacement sensor to measure the relative position of the test mass inside the satellite, a caging mechanism to lock the test mass during launch, a UV LED based charge management system to minimize the effect of electrostatic forces, a thermal enclosure, and the drag-free control algorithms. Possible applications of drag-free satellites in fundamental physics (Gravity Probe B, LISA), geodesy (GOCE), and navigation (TRIAD I). In this presentation we will highlight the progress of the technology development towards a drag-free mission. The planned mission on a SaudiSat bus will demonstrate drag-free technology on a small spacecraft at a fraction of the cost of previous drag-free missions. The target acceleration noise is 10-12 m/sec2. With multiple such satellites a GRACE-like mission with improved sensitivity and potentially improved spatial and temporal resolution can be achieved.
NASA Astrophysics Data System (ADS)
Hadi, Muhammad N. S.; Uz, Mehmet E.
2015-02-01
This study proposes the optimal passive and active damper parameters for achieving the best results in seismic response mitigation of coupled buildings connected to each other by dampers. The optimization to minimize the H2 and H∞ norms in the performance indices is carried out by genetic algorithms (GAs). The final passive and active damper parameters are checked for adjacent buildings connected to each other under El Centro NS 1940 and Kobe NS 1995 excitations. Using real coded GA in H∞ norm, the optimal controller gain is obtained by different combinations of the measurement as the feedback for designing the control force between the buildings. The proposed method is more effective than other metaheuristic methods and more feasible, although the control force increased. The results in the active control system show that the response of adjacent buildings is reduced in an efficient manner.
A macro-micro robot for precise force applications
NASA Technical Reports Server (NTRS)
Marzwell, Neville I.; Wang, Yulun
1993-01-01
This paper describes an 8 degree-of-freedom macro-micro robot capable of performing tasks which require accurate force control. Applications such as polishing, finishing, grinding, deburring, and cleaning are a few examples of tasks which need this capability. Currently these tasks are either performed manually or with dedicated machinery because of the lack of a flexible and cost effective tool, such as a programmable force-controlled robot. The basic design and control of the macro-micro robot is described in this paper. A modular high-performance multiprocessor control system was designed to provide sufficient compute power for executing advanced control methods. An 8 degree of freedom macro-micro mechanism was constructed to enable accurate tip forces. Control algorithms based on the impedance control method were derived, coded, and load balanced for maximum execution speed on the multiprocessor system.
Ren, Zhaohui; Jahanmir, Said; Heshmat, Hooshang; Hunsberger, Andrew Z; Walton, James F
2009-01-01
A hybrid magnetic bearing system was designed for a rotary centrifugal blood pump being developed to provide long-term circulatory support for heart failure patients. This design consists of two compact bearings to suspend the rotor in five degrees-of-freedom with single axis active control. Permanent magnets are used to provide passive radial support and electromagnets to maintain axial stability of the rotor. Characteristics of the passive radial and active thrust magnetic bearing system were evaluated by the electromagnetic finite element analysis. A proportional-integral-derivative controller with force balance algorithm was implemented for closed loop control of the magnetic thrust bearing. The control position is continuously adjusted based on the electrical energy in the bearing coils, and thus passive magnetic forces carry static thrust loads to minimize the bearing current. Performance of the magnetic bearing system with associated control algorithm was evaluated at different operating conditions. The bearing current was significantly reduced with the force balance control method and the power consumption was below 0.5 W under various thrust loads. The bearing parameters predicted by the analysis were validated by the experimental data.
Venugopal, G; Deepak, P; Ghosh, Diptasree M; Ramakrishnan, S
2017-11-01
Surface electromyography is a non-invasive technique used for recording the electrical activity of neuromuscular systems. These signals are random, complex and multi-component. There are several techniques to extract information about the force exerted by muscles during any activity. This work attempts to generate surface electromyography signals for various magnitudes of force under isometric non-fatigue and fatigue conditions using a feedback model. The model is based on existing current distribution, volume conductor relations, the feedback control algorithm for rate coding and generation of firing pattern. The result shows that synthetic surface electromyography signals are highly complex in both non-fatigue and fatigue conditions. Furthermore, surface electromyography signals have higher amplitude and lower frequency under fatigue condition. This model can be used to study the influence of various signal parameters under fatigue and non-fatigue conditions.
Note: Hybrid active/passive force feedback actuator using hydrostatic transmission.
Park, Yea-Seok; Lee, Juwon; Kim, Kyung-Soo; Kim, Soohyun
2017-12-01
A hybrid actuator for haptic devices is proposed in this paper. The actuator is composed of a DC motor and a magneto-rheological (MR) brake to realize transparency and stable force control. Two piston cylinders are connected with a flexible tube to lighten the weight of the structures on the endpoint that interacts with an operator. Also, the MR brake is designed to be suitable for hydraulic transmission. For the proposed hybrid actuator, a cooperative force control method using a pressure sensor instead of a force sensor is proposed. To verify the proposed control algorithm, a virtual wall collision experiment was conducted using a developed prototype of the hybrid actuator.
Note: Hybrid active/passive force feedback actuator using hydrostatic transmission
NASA Astrophysics Data System (ADS)
Park, Yea-Seok; Lee, Juwon; Kim, Kyung-Soo; Kim, Soohyun
2017-12-01
A hybrid actuator for haptic devices is proposed in this paper. The actuator is composed of a DC motor and a magneto-rheological (MR) brake to realize transparency and stable force control. Two piston cylinders are connected with a flexible tube to lighten the weight of the structures on the endpoint that interacts with an operator. Also, the MR brake is designed to be suitable for hydraulic transmission. For the proposed hybrid actuator, a cooperative force control method using a pressure sensor instead of a force sensor is proposed. To verify the proposed control algorithm, a virtual wall collision experiment was conducted using a developed prototype of the hybrid actuator.
A computer-based servo system for controlling isotonic contractions of muscle.
Smith, J P; Barsotti, R J
1993-11-01
We have developed a computer-based servo system for controlling isotonic releases in muscle. This system is a composite of commercially available devices: an IBM personal computer, an analog-to-digital (A/D) board, an Akers AE801 force transducer, and a Cambridge Technology motor. The servo loop controlling the force clamp is generated by computer via the A/D board, using a program written in QuickBASIC 4.5. Results are shown that illustrate the ability of the system to clamp the force generated by either skinned cardiac trabeculae or single rabbit psoas fibers down to the resolution of the force transducer within 4 ms. This rate is independent of the level of activation of the tissue and the size of the load imposed during the release. The key to the effectiveness of the system consists of two algorithms that are described in detail. The first is used to calculate the error signal to hold force to the desired level. The second algorithm is used to calculate the appropriate gain of the servo for a particular fiber and the size of the desired load to be imposed. The results show that the described computer-based method for controlling isotonic releases in muscle represents a good compromise between simplicity and performance and is an alternative to the custom-built digital/analog servo devices currently being used in studies of muscle mechanics.
Applying Workspace Limitations in a Velocity-Controlled Robotic Mechanism
NASA Technical Reports Server (NTRS)
Abdallah, Muhammad E. (Inventor); Hargrave, Brian (Inventor); Platt, Robert J., Jr. (Inventor)
2014-01-01
A robotic system includes a robotic mechanism responsive to velocity control signals, and a permissible workspace defined by a convex-polygon boundary. A host machine determines a position of a reference point on the mechanism with respect to the boundary, and includes an algorithm for enforcing the boundary by automatically shaping the velocity control signals as a function of the position, thereby providing smooth and unperturbed operation of the mechanism along the edges and corners of the boundary. The algorithm is suited for application with higher speeds and/or external forces. A host machine includes an algorithm for enforcing the boundary by shaping the velocity control signals as a function of the reference point position, and a hardware module for executing the algorithm. A method for enforcing the convex-polygon boundary is also provided that shapes a velocity control signal via a host machine as a function of the reference point position.
Feedback control in deep drawing based on experimental datasets
NASA Astrophysics Data System (ADS)
Fischer, P.; Heingärtner, J.; Aichholzer, W.; Hortig, D.; Hora, P.
2017-09-01
In large-scale production of deep drawing parts, like in automotive industry, the effects of scattering material properties as well as warming of the tools have a significant impact on the drawing result. In the scope of the work, an approach is presented to minimize the influence of these effects on part quality by optically measuring the draw-in of each part and adjusting the settings of the press to keep the strain distribution, which is represented by the draw-in, inside a certain limit. For the design of the control algorithm, a design of experiments for in-line tests is used to quantify the influence of the blank holder force as well as the force distribution on the draw-in. The results of this experimental dataset are used to model the process behavior. Based on this model, a feedback control loop is designed. Finally, the performance of the control algorithm is validated in the production line.
Song, Qi; Song, Yong-Duan
2011-12-01
This paper investigates the position and velocity tracking control problem of high-speed trains with multiple vehicles connected through couplers. A dynamic model reflecting nonlinear and elastic impacts between adjacent vehicles as well as traction/braking nonlinearities and actuation faults is derived. Neuroadaptive fault-tolerant control algorithms are developed to account for various factors such as input nonlinearities, actuator failures, and uncertain impacts of in-train forces in the system simultaneously. The resultant control scheme is essentially independent of system model and is primarily data-driven because with the appropriate input-output data, the proposed control algorithms are capable of automatically generating the intermediate control parameters, neuro-weights, and the compensation signals, literally producing the traction/braking force based upon input and response data only--the whole process does not require precise information on system model or system parameter, nor human intervention. The effectiveness of the proposed approach is also confirmed through numerical simulations.
Estimation of excitation forces for wave energy converters control using pressure measurements
NASA Astrophysics Data System (ADS)
Abdelkhalik, O.; Zou, S.; Robinett, R.; Bacelli, G.; Wilson, D.
2017-08-01
Most control algorithms of wave energy converters require prediction of wave elevation or excitation force for a short future horizon, to compute the control in an optimal sense. This paper presents an approach that requires the estimation of the excitation force and its derivatives at present time with no need for prediction. An extended Kalman filter is implemented to estimate the excitation force. The measurements in this approach are selected to be the pressures at discrete points on the buoy surface, in addition to the buoy heave position. The pressures on the buoy surface are more directly related to the excitation force on the buoy as opposed to wave elevation in front of the buoy. These pressure measurements are also more accurate and easier to obtain. A singular arc control is implemented to compute the steady-state control using the estimated excitation force. The estimated excitation force is expressed in the Laplace domain and substituted in the control, before the latter is transformed to the time domain. Numerical simulations are presented for a Bretschneider wave case study.
Sequential reconstruction of driving-forces from nonlinear nonstationary dynamics
NASA Astrophysics Data System (ADS)
Güntürkün, Ulaş
2010-07-01
This paper describes a functional analysis-based method for the estimation of driving-forces from nonlinear dynamic systems. The driving-forces account for the perturbation inputs induced by the external environment or the secular variations in the internal variables of the system. The proposed algorithm is applicable to the problems for which there is too little or no prior knowledge to build a rigorous mathematical model of the unknown dynamics. We derive the estimator conditioned on the differentiability of the unknown system’s mapping, and smoothness of the driving-force. The proposed algorithm is an adaptive sequential realization of the blind prediction error method, where the basic idea is to predict the observables, and retrieve the driving-force from the prediction error. Our realization of this idea is embodied by predicting the observables one-step into the future using a bank of echo state networks (ESN) in an online fashion, and then extracting the raw estimates from the prediction error and smoothing these estimates in two adaptive filtering stages. The adaptive nature of the algorithm enables to retrieve both slowly and rapidly varying driving-forces accurately, which are illustrated by simulations. Logistic and Moran-Ricker maps are studied in controlled experiments, exemplifying chaotic state and stochastic measurement models. The algorithm is also applied to the estimation of a driving-force from another nonlinear dynamic system that is stochastic in both state and measurement equations. The results are judged by the posterior Cramer-Rao lower bounds. The method is finally put into test on a real-world application; extracting sun’s magnetic flux from the sunspot time series.
Experimental and simulated control of lift using trailing edge devices
NASA Astrophysics Data System (ADS)
Cooperman, A.; Blaylock, M.; van Dam, C. P.
2014-12-01
Two active aerodynamic load control (AALC) devices coupled with a control algorithm are shown to decrease the change in lift force experienced by an airfoil during a change in freestream velocity. Microtabs are small (1% chord) surfaces deployed perpendicular to an airfoil, while microjets are pneumatic jets with flow perpendicular to the surface of the airfoil near the trailing edge. Both devices are capable of producing a rapid change in an airfoil's lift coefficient. A control algorithm for microtabs has been tested in a wind tunnel using a modified S819 airfoil, and a microjet control algorithm has been simulated for a NACA 0012 airfoil using OVERFLOW. In both cases, the AALC devices have shown the ability to mitigate the changes in lift during a gust.
[Research of joint-robotics-based design of biomechanics testing device on human spine].
Deng, Guoyong; Tian, Lianfang; Mao, Zongyuan
2009-12-01
This paper introduces the hardware and software of a biomechanical robot-based testing device. The bottom control orders, posture and torque data transmission, and the control algorithms are integrated in a unified visual control platform by Visual C+ +, with easy control and management. By using hybrid force-displacement control method to load the human spine, we can test the organizational structure and the force state of the FSU (Functional spinal unit) well, which overcomes the shortcomings due to the separation of the force and displacement measurement, thus greatly improves the measurement accuracy. Also it is esay to identify the spinal degeneration and the load-bearing impact on the organizational structure of the FSU after various types of surgery.
Xie, Yu; Liu, Shuang; Sun, Dong
2018-01-01
Robot-assisted surgery is of growing interest in the surgical and engineering communities. The use of robots allows surgery to be performed with precision using smaller instruments and incisions, resulting in shorter healing times. However, using current technology, an operator cannot directly feel the operation because the surgeon-instrument and instrument-tissue interaction force feedbacks are lost during needle insertion. Advancements in force feedback and control not only help reduce tissue deformation and needle deflection but also provide the surgeon with better control over the surgical instruments. The goal of this review is to summarize the key components surrounding the force feedback and control during robot-assisted needle insertion. The literature search was conducted during the middle months of 2017 using mainstream academic search engines with a combination of keywords relevant to the field. In total, 166 articles with valuable contents were analyzed and grouped into five related topics. This survey systemically summarizes the state-of-the-art force control technologies for robot-assisted needle insertion, such as force modeling, measurement, the factors that influence the interaction force, parameter identification, and force control algorithms. All studies show force control is still at its initial stage. The influence factors, needle deflection or planning remain open for investigation in future. PMID:29439539
Yang, Chongjun; Xie, Yu; Liu, Shuang; Sun, Dong
2018-02-12
Robot-assisted surgery is of growing interest in the surgical and engineering communities. The use of robots allows surgery to be performed with precision using smaller instruments and incisions, resulting in shorter healing times. However, using current technology, an operator cannot directly feel the operation because the surgeon-instrument and instrument-tissue interaction force feedbacks are lost during needle insertion. Advancements in force feedback and control not only help reduce tissue deformation and needle deflection but also provide the surgeon with better control over the surgical instruments. The goal of this review is to summarize the key components surrounding the force feedback and control during robot-assisted needle insertion. The literature search was conducted during the middle months of 2017 using mainstream academic search engines with a combination of keywords relevant to the field. In total, 166 articles with valuable contents were analyzed and grouped into five related topics. This survey systemically summarizes the state-of-the-art force control technologies for robot-assisted needle insertion, such as force modeling, measurement, the factors that influence the interaction force, parameter identification, and force control algorithms. All studies show force control is still at its initial stage. The influence factors, needle deflection or planning remain open for investigation in future.
Control of a haptic gear shifting assistance device utilizing a magnetorheological clutch
NASA Astrophysics Data System (ADS)
Han, Young-Min; Choi, Seung-Bok
2014-10-01
This paper proposes a haptic clutch driven gear shifting assistance device that can help when the driver shifts the gear of a transmission system. In order to achieve this goal, a magnetorheological (MR) fluid-based clutch is devised to be capable of the rotary motion of an accelerator pedal to which the MR clutch is integrated. The proposed MR clutch is then manufactured, and its transmission torque is experimentally evaluated according to the magnetic field intensity. The manufactured MR clutch is integrated with the accelerator pedal to transmit a haptic cue signal to the driver. The impending control issue is to cue the driver to shift the gear via the haptic force. Therefore, a gear-shifting decision algorithm is constructed by considering the vehicle engine speed concerned with engine combustion dynamics, vehicle dynamics and driving resistance. Then, the algorithm is integrated with a compensation strategy for attaining the desired haptic force. In this work, the compensator is also developed and implemented through the discrete version of the inverse hysteretic model. The control performances, such as the haptic force tracking responses and fuel consumption, are experimentally evaluated.
Simultaneous vibration control and energy harvesting using actor-critic based reinforcement learning
NASA Astrophysics Data System (ADS)
Loong, Cheng Ning; Chang, C. C.; Dimitrakopoulos, Elias G.
2018-03-01
Mitigating excessive vibration of civil engineering structures using various types of devices has been a conspicuous research topic in the past few decades. Some devices, such as electromagnetic transducers, which have a capability of exerting control forces while simultaneously harvesting energy, have been proposed recently. These devices make possible a self-regenerative system that can semi-actively mitigate structural vibration without the need of external energy. Integrating mechanical, electrical components, and control algorithms, these devices open up a new research domain that needs to be addressed. In this study, the feasibility of using an actor-critic based reinforcement learning control algorithm for simultaneous vibration control and energy harvesting for a civil engineering structure is investigated. The actor-critic based reinforcement learning control algorithm is a real-time, model-free adaptive technique that can adjust the controller parameters based on observations and reward signals without knowing the system characteristics. It is suitable for the control of a partially known nonlinear system with uncertain parameters. The feasibility of implementing this algorithm on a building structure equipped with an electromagnetic damper will be investigated in this study. Issues related to the modelling of learning algorithm, initialization and convergence will be presented and discussed.
Kinematics of the six-degree-of-freedom force-reflecting Kraft Master
NASA Technical Reports Server (NTRS)
Williams, Robert L., II
1991-01-01
Presented here are kinematic equations for a six degree of freedom force-reflecting hand controller. The forward kinematics solution is developed and shown in simplified form. The Jacobian matrix, which uses terms from the forward kinematics solution, is derived. Both of these kinematic solutions require joint angle inputs. A calibration method is presented to determine the hand controller joint angles given the respective potentiometer readings. The kinematic relationship describing the mechanical coupling between the hand and controller shoulder and elbow joints is given. These kinematic equations may be used in an algorithm to control the hand controller as a telerobotic system component. The purpose of the hand controller is two-fold: operator commands to the telerobotic system are entered using the hand controller, and contact forces and moments from the task are reflected to the operator via the hand controller.
NASA Astrophysics Data System (ADS)
Roslund, Jonathan; Shir, Ofer M.; Bäck, Thomas; Rabitz, Herschel
2009-10-01
Optimization of quantum systems by closed-loop adaptive pulse shaping offers a rich domain for the development and application of specialized evolutionary algorithms. Derandomized evolution strategies (DESs) are presented here as a robust class of optimizers for experimental quantum control. The combination of stochastic and quasi-local search embodied by these algorithms is especially amenable to the inherent topology of quantum control landscapes. Implementation of DES in the laboratory results in efficiency gains of up to ˜9 times that of the standard genetic algorithm, and thus is a promising tool for optimization of unstable or fragile systems. The statistical learning upon which these algorithms are predicated also provide the means for obtaining a control problem’s Hessian matrix with no additional experimental overhead. The forced optimal covariance adaptive learning (FOCAL) method is introduced to enable retrieval of the Hessian matrix, which can reveal information about the landscape’s local structure and dynamic mechanism. Exploitation of such algorithms in quantum control experiments should enhance their efficiency and provide additional fundamental insights.
A Bidirectional Brain-Machine Interface Algorithm That Approximates Arbitrary Force-Fields
Semprini, Marianna; Mussa-Ivaldi, Ferdinando A.; Panzeri, Stefano
2014-01-01
We examine bidirectional brain-machine interfaces that control external devices in a closed loop by decoding motor cortical activity to command the device and by encoding the state of the device by delivering electrical stimuli to sensory areas. Although it is possible to design this artificial sensory-motor interaction while maintaining two independent channels of communication, here we propose a rule that closes the loop between flows of sensory and motor information in a way that approximates a desired dynamical policy expressed as a field of forces acting upon the controlled external device. We previously developed a first implementation of this approach based on linear decoding of neural activity recorded from the motor cortex into a set of forces (a force field) applied to a point mass, and on encoding of position of the point mass into patterns of electrical stimuli delivered to somatosensory areas. However, this previous algorithm had the limitation that it only worked in situations when the position-to-force map to be implemented is invertible. Here we overcome this limitation by developing a new non-linear form of the bidirectional interface that can approximate a virtually unlimited family of continuous fields. The new algorithm bases both the encoding of position information and the decoding of motor cortical activity on an explicit map between spike trains and the state space of the device computed with Multi-Dimensional-Scaling. We present a detailed computational analysis of the performance of the interface and a validation of its robustness by using synthetic neural responses in a simulated sensory-motor loop. PMID:24626393
NASA Astrophysics Data System (ADS)
Lei, Meizhen; Wang, Liqiang
2018-01-01
The halbach-type linear oscillatory motor (HT-LOM) is multi-variable, highly coupled, nonlinear and uncertain, and difficult to get a satisfied result by conventional PID control. An incremental adaptive fuzzy controller (IAFC) for stroke tracking was presented, which combined the merits of PID control, the fuzzy inference mechanism and the adaptive algorithm. The integral-operation is added to the conventional fuzzy control algorithm. The fuzzy scale factor can be online tuned according to the load force and stroke command. The simulation results indicate that the proposed control scheme can achieve satisfied stroke tracking performance and is robust with respect to parameter variations and external disturbance.
Data Driven, Force Based Interaction for Quadrotors
NASA Astrophysics Data System (ADS)
McKinnon, Christopher D.
Quadrotors are small and agile, and are becoming more capable for their compact size. They are expected perform a wide variety of tasks including inspection, physical interaction, and formation flight. In all of these tasks, the quadrotors can come into close proximity with infrastructure or other quadrotors, and may experience significant external forces and torques. Reacting properly in each case is essential to completing the task safely and effectively. In this thesis, we develop an algorithm, based on the Unscented Kalman Filter, to estimate such forces and torques without making assumptions about the source of the forces and torques. We then show in experiment how the proposed estimation algorithm can be used in conjunction with controls and machine learning to choose the appropriate actions in a wide variety of tasks including detecting downwash, tracking the wind induced by a fan, and detecting proximity to the wall.
NASA Astrophysics Data System (ADS)
Kumar, Gaurav; Kumar, Ashok
2017-11-01
Structural control has gained significant attention in recent times. The standalone issue of power requirement during an earthquake has already been solved up to a large extent by designing semi-active control systems using conventional linear quadratic control theory, and many other intelligent control algorithms such as fuzzy controllers, artificial neural networks, etc. In conventional linear-quadratic regulator (LQR) theory, it is customary to note that the values of the design parameters are decided at the time of designing the controller and cannot be subsequently altered. During an earthquake event, the response of the structure may increase or decrease, depending the quasi-resonance occurring between the structure and the earthquake. In this case, it is essential to modify the value of the design parameters of the conventional LQR controller to obtain optimum control force to mitigate the vibrations due to the earthquake. A few studies have been done to sort out this issue but in all these studies it was necessary to maintain a database of the earthquake. To solve this problem and to find the optimized design parameters of the LQR controller in real time, a fast Fourier transform and particle swarm optimization based modified linear quadratic regulator method is presented here. This method comprises four different algorithms: particle swarm optimization (PSO), the fast Fourier transform (FFT), clipped control algorithm and the LQR. The FFT helps to obtain the dominant frequency for every time window. PSO finds the optimum gain matrix through the real-time update of the weighting matrix R, thereby, dispensing with the experimentation. The clipped control law is employed to match the magnetorheological (MR) damper force with the desired force given by the controller. The modified Bouc-Wen phenomenological model is taken to recognize the nonlinearities in the MR damper. The assessment of the advised method is done by simulation of a three-story structure having an MR damper at the ground floor level subjected to three different near-fault historical earthquake time histories, and the outcomes are equated with those of simple conventional LQR. The results establish that the advised methodology is more effective than conventional LQR controllers in reducing inter-storey drift, relative displacement, and acceleration response.
Electromyography data for non-invasive naturally-controlled robotic hand prostheses
Atzori, Manfredo; Gijsberts, Arjan; Castellini, Claudio; Caputo, Barbara; Hager, Anne-Gabrielle Mittaz; Elsig, Simone; Giatsidis, Giorgio; Bassetto, Franco; Müller, Henning
2014-01-01
Recent advances in rehabilitation robotics suggest that it may be possible for hand-amputated subjects to recover at least a significant part of the lost hand functionality. The control of robotic prosthetic hands using non-invasive techniques is still a challenge in real life: myoelectric prostheses give limited control capabilities, the control is often unnatural and must be learned through long training times. Meanwhile, scientific literature results are promising but they are still far from fulfilling real-life needs. This work aims to close this gap by allowing worldwide research groups to develop and test movement recognition and force control algorithms on a benchmark scientific database. The database is targeted at studying the relationship between surface electromyography, hand kinematics and hand forces, with the final goal of developing non-invasive, naturally controlled, robotic hand prostheses. The validation section verifies that the data are similar to data acquired in real-life conditions, and that recognition of different hand tasks by applying state-of-the-art signal features and machine-learning algorithms is possible. PMID:25977804
A Force-Sensing System on Legs for Biomimetic Hexapod Robots Interacting with Unstructured Terrain
Wu, Rui; Li, Changle; Zang, Xizhe; Zhang, Xuehe; Jin, Hongzhe; Zhao, Jie
2017-01-01
The tiger beetle can maintain its stability by controlling the interaction force between its legs and an unstructured terrain while it runs. The biomimetic hexapod robot mimics a tiger beetle, and a comprehensive force sensing system combined with certain algorithms can provide force information that can help the robot understand the unstructured terrain that it interacts with. This study introduces a complicated leg force sensing system for a hexapod robot that is the same for all six legs. First, the layout and configuration of sensing system are designed according to the structure and sizes of legs. Second, the joint toque sensors, 3-DOF foot-end force sensor and force information processing module are designed, and the force sensor performance parameters are tested by simulations and experiments. Moreover, a force sensing system is implemented within the robot control architecture. Finally, the experimental evaluation of the leg force sensor system on the hexapod robot is discussed and the performance of the leg force sensor system is verified. PMID:28654003
NASA Astrophysics Data System (ADS)
Li, Chunguang; Inoue, Yoshio; Liu, Tao; Shibata, Kyoko; Oka, Koichi
Master-slave control is becoming increasingly popular in the development of robotic systems which can provide rehabilitation training for hemiplegic patients with a unilaterally disabled limb. However, the system structures and control strategies of existent master-slave systems are always complex. An innovative master-slave system implementing force feedback and motion tracking for a rehabilitation robot is presented in this paper. The system consists of two identical motors with a wired connection, and the two motors are located at the master and slave manipulator sites respectively. The slave motor tracks the motion of the master motor directly driven by a patient. As well, the interaction force produced at the slave site is fed back to the patient. Therefore, the impaired limb driven by the slave motor can imitate the motion of the healthy limb controlling the master motor, and the patient can regulate the control force of the healthy limb properly according to the force sensation. The force sensing and motion tracking are achieved simultaneously with neither force sensors nor sophisticated control algorithms. The system is characterized by simple structure, bidirectional controllability, energy recycling, and force feedback without a force sensor. Test experiments on a prototype were conducted, and the results appraise the advantages of the system and demonstrate the feasibility of the proposed control scheme for a rehabilitation robot.
Algorithm For Optimal Control Of Large Structures
NASA Technical Reports Server (NTRS)
Salama, Moktar A.; Garba, John A..; Utku, Senol
1989-01-01
Cost of computation appears competitive with other methods. Problem to compute optimal control of forced response of structure with n degrees of freedom identified in terms of smaller number, r, of vibrational modes. Article begins with Hamilton-Jacobi formulation of mechanics and use of quadratic cost functional. Complexity reduced by alternative approach in which quadratic cost functional expressed in terms of control variables only. Leads to iterative solution of second-order time-integral matrix Volterra equation of second kind containing optimal control vector. Cost of algorithm, measured in terms of number of computations required, is of order of, or less than, cost of prior algoritms applied to similar problems.
Diffeomorphic demons: efficient non-parametric image registration.
Vercauteren, Tom; Pennec, Xavier; Perchant, Aymeric; Ayache, Nicholas
2009-03-01
We propose an efficient non-parametric diffeomorphic image registration algorithm based on Thirion's demons algorithm. In the first part of this paper, we show that Thirion's demons algorithm can be seen as an optimization procedure on the entire space of displacement fields. We provide strong theoretical roots to the different variants of Thirion's demons algorithm. This analysis predicts a theoretical advantage for the symmetric forces variant of the demons algorithm. We show on controlled experiments that this advantage is confirmed in practice and yields a faster convergence. In the second part of this paper, we adapt the optimization procedure underlying the demons algorithm to a space of diffeomorphic transformations. In contrast to many diffeomorphic registration algorithms, our solution is computationally efficient since in practice it only replaces an addition of displacement fields by a few compositions. Our experiments show that in addition to being diffeomorphic, our algorithm provides results that are similar to the ones from the demons algorithm but with transformations that are much smoother and closer to the gold standard, available in controlled experiments, in terms of Jacobians.
Theory, Design, and Algorithms for Optimal Control of wireless Networks
2010-06-09
The implementation of network-centric warfare technologies is an abiding, critical interest of Air Force Science and Technology efforts for the Warfighter. Wireless communications, strategic signaling are areas of critical Air Force Mission need. Autonomous networks of multiple, heterogeneous Throughput enhancement and robust connectivity in communications and sensor networks are critical factors in net-centric USAF operations. This research directly supports the Air Force vision of information dominance and the development of anywhere, anytime operational readiness.
NASA Technical Reports Server (NTRS)
Sorenson, R. L.; Steger, J. L.
1983-01-01
An algorithm for generating computational grids about arbitrary three-dimensional bodies is developed. The elliptic partial differential equation (PDE) approach developed by Steger and Sorenson and used in the NASA computer program GRAPE is extended from two to three dimensions. Forcing functions which are found automatically by the algorithm give the user the ability to control mesh cell size and skewness at boundary surfaces. This algorithm, as is typical of PDE grid generators, gives smooth grid lines and spacing in the interior of the grid. The method is applied to a rectilinear wind-tunnel case and to two body shapes in spherical coordinates.
A spatial operator algebra for manipulator modeling and control
NASA Technical Reports Server (NTRS)
Rodriguez, G.; Kreutz, K.; Jain, A.
1989-01-01
A spatial operator algebra for modeling the control and trajectory design of manipulation is discussed, with emphasis on its analytical formulation and implementation in the Ada programming language. The elements of this algebra are linear operators whose domain and range spaces consist of forces, moments, velocities, and accelerations. The effect of these operators is equivalent to a spatial recursion along the span of the manipulator. Inversion is obtained using techniques of recursive filtering and smoothing. The operator alegbra provides a high-level framework for describing the dynamic and kinematic behavior of a manipulator and control and trajectory design algorithms. Implementable recursive algorithms can be immediately derived from the abstract operator expressions by inspection, thus greatly simplifying the transition from an abstract problem formulation and solution to the detailed mechanization of a specific algorithm.
A theoretical and experimental investigation of impact control for manipulators
NASA Technical Reports Server (NTRS)
Volpe, Richard; Khosla, Pradeep
1993-01-01
This article describes a simple control strategy for stable hardon-hard contact of a manipulator with the environment. The strategy is motivated by recognition of the equivalence of proportional gain explicit force control and impedance control. It is shown that negative proportional force gains, or impedance mass ratios less than unity, can equivalently provide excellent impact response without bouncing. This result is indicated by an analysis performed with an experimentally determined arm/sensor/environment model. The results are corroborated by experimental data from implementation of the control algorithms on the CMU DD Arm II system. The results confirm that manipulator impact against a stiff environment without bouncing can be readily handled by this novel control strategy.
Recent National Transonic Facility Test Process Improvements (Invited)
NASA Technical Reports Server (NTRS)
Kilgore, W. A.; Balakrishna, S.; Bobbitt, C. W., Jr.; Adcock, J. B.
2001-01-01
This paper describes the results of two recent process improvements; drag feed-forward Mach number control and simultaneous force/moment and pressure testing, at the National Transonic Facility. These improvements have reduced the duration and cost of testing. The drag feed-forward Mach number control reduces the Mach number settling time by using measured model drag in the Mach number control algorithm. Simultaneous force/moment and pressure testing allows simultaneous collection of force/moment and pressure data without sacrificing data quality thereby reducing the overall testing time. Both improvements can be implemented at any wind tunnel. Additionally the NTF is working to develop and implement continuous pitch as a testing option as an additional method to reduce costs and maintain data quality.
Recent National Transonic Facility Test Process Improvements (Invited)
NASA Technical Reports Server (NTRS)
Kilgore, W. A.; Balakrishna, S.; Bobbitt, C. W., Jr.; Adcock, J. B.
2001-01-01
This paper describes the results of two recent process improvements; drag feed-forward Mach number control and simultaneous force/moment and pressure testing, at the National Transonic Facility. These improvements have reduced the duration and cost of testing. The drag feedforward Mach number control reduces the Mach number settling time by using measured model drag in the Mach number control algorithm. Simultaneous force/moment and pressure testing allows simultaneous collection of force/moment and pressure data without sacrificing data quality thereby reducing the overall testing time. Both improvements can be implemented at any wind tunnel. Additionally the NTF is working to develop and implement continuous pitch as a testing option as an additional method to reduce costs and maintain data quality.
A power autonomous monopedal robot
NASA Astrophysics Data System (ADS)
Krupp, Benjamin T.; Pratt, Jerry E.
2006-05-01
We present the design and initial results of a power-autonomous planar monopedal robot. The robot is a gasoline powered, two degree of freedom robot that runs in a circle, constrained by a boom. The robot uses hydraulic Series Elastic Actuators, force-controllable actuators which provide high force fidelity, moderate bandwidth, and low impedance. The actuators are mounted in the body of the robot, with cable drives transmitting power to the hip and knee joints of the leg. A two-stroke, gasoline engine drives a constant displacement pump which pressurizes an accumulator. Absolute position and spring deflection of each of the Series Elastic Actuators are measured using linear encoders. The spring deflection is translated into force output and compared to desired force in a closed loop force-control algorithm implemented in software. The output signal of each force controller drives high performance servo valves which control flow to each of the pistons of the actuators. In designing the robot, we used a simulation-based iterative design approach. Preliminary estimates of the robot's physical parameters were based on past experience and used to create a physically realistic simulation model of the robot. Next, a control algorithm was implemented in simulation to produce planar hopping. Using the joint power requirements and range of motions from simulation, we worked backward specifying pulley diameter, piston diameter and stroke, hydraulic pressure and flow, servo valve flow and bandwidth, gear pump flow, and engine power requirements. Components that meet or exceed these specifications were chosen and integrated into the robot design. Using CAD software, we calculated the physical parameters of the robot design, replaced the original estimates with the CAD estimates, and produced new joint power requirements. We iterated on this process, resulting in a design which was prototyped and tested. The Monopod currently runs at approximately 1.2 m/s with the weight of all the power generating components, but powered from an off-board pump. On a test stand, the eventual on-board power system generates enough pressure and flow to meet the requirements of these runs and we are currently integrating the power system into the real robot. When operated from an off-board system without carrying the weight of the power generating components, the robot currently runs at approximately 2.25 m/s. Ongoing work is focused on integrating the power system into the robot, improving the control algorithm, and investigating methods for improving efficiency.
Use of tactile feedback to control exploratory movements to characterize object compliance.
Su, Zhe; Fishel, Jeremy A; Yamamoto, Tomonori; Loeb, Gerald E
2012-01-01
Humans have been shown to be good at using active touch to perceive subtle differences in compliance. They tend to use highly stereotypical exploratory strategies, such as applying normal force to a surface. We developed similar exploratory and perceptual algorithms for a mechatronic robotic system (Barrett arm/hand system) equipped with liquid-filled, biomimetic tactile sensors (BioTac(®) from SynTouch LLC). The distribution of force on the fingertip was measured by the electrical resistance of the conductive liquid trapped between the elastomeric skin and a cluster of four electrodes on the flat fingertip surface of the rigid core of the BioTac. These signals provided closed-loop control of exploratory movements, while the distribution of skin deformations, measured by more lateral electrodes and by the hydraulic pressure, were used to estimate material properties of objects. With this control algorithm, the robot plus tactile sensor was able to discriminate the relative compliance of various rubber samples.
Experiments in cooperative-arm object manipulation with a two-armed free-flying robot. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Koningstein, Ross
1990-01-01
Developing computed-torque controllers for complex manipulator systems using current techniques and tools is difficult because they address the issues pertinent to simulation, as opposed to control. A new formulation of computed-torque (CT) control that leads to an automated computer-torque robot controller program is presented. This automated tool is used for simulations and experimental demonstrations of endpoint and object control from a free-flying robot. A new computed-torque formulation states the multibody control problem in an elegant, homogeneous, and practical form. A recursive dynamics algorithm is presented that numerically evaluates kinematics and dynamics terms for multibody systems given a topological description. Manipulators may be free-flying, and may have closed-chain constraints. With the exception of object squeeze-force control, the algorithm does not deal with actuator redundancy. The algorithm is used to implement an automated 2D computed-torque dynamics and control package that allows joint, endpoint, orientation, momentum, and object squeeze-force control. This package obviates the need for hand-derivation of kinematics and dynamics, and is used for both simulation and experimental control. Endpoint control experiments are performed on a laboratory robot that has two arms to manipulate payloads, and uses an air bearing to achieve very-low drag characteristics. Simulations and experimental data for endpoint and object controllers are presented for the experimental robot - a complex dynamic system. There is a certain rather wide set of conditions under which CT endpoint controllers can neglect robot base accelerations (but not motions) and achieve comparable performance including base accelerations in the model. The regime over which this simplification holds is explored by simulation and experiment.
Active Flap Control of the SMART Rotor for Vibration Reduction
NASA Technical Reports Server (NTRS)
Hall, Steven R.; Anand, R. Vaidyanathan; Straub, Friedrich K.; Lau, Benton H.
2009-01-01
Active control methodologies were applied to a full-scale active flap rotor obtained during a joint Boeing/ DARPA/NASA/Army test in the Air Force National Full-Scale Aerodynamic Complex 40- by 80-foot anechoic wind tunnel. The active flap rotor is a full-scale MD 900 helicopter main rotor with each of its five blades modified to include an on-blade piezoelectric actuator-driven flap with a span of 18% of radius, 25% of chord, and located at 83% radius. Vibration control demonstrated the potential of active flaps for effective control of vibratory loads, especially normal force loads. Active control of normal force vibratory loads using active flaps and a continuous-time higher harmonic control algorithm was very effective, reducing harmonic (1-5P) normal force vibratory loads by 95% in both cruise and approach conditions. Control of vibratory roll and pitch moments was also demonstrated, although moment control was less effective than normal force control. Finally, active control was used to precisely control blade flap position for correlation with pretest predictions of rotor aeroacoustics. Flap displacements were commanded to follow specific harmonic profiles of 2 deg or more in amplitude, and the flap deflection errors obtained were less than 0.2 deg r.m.s.
Insight into efficient image registration techniques and the demons algorithm.
Vercauteren, Tom; Pennec, Xavier; Malis, Ezio; Perchant, Aymeric; Ayache, Nicholas
2007-01-01
As image registration becomes more and more central to many biomedical imaging applications, the efficiency of the algorithms becomes a key issue. Image registration is classically performed by optimizing a similarity criterion over a given spatial transformation space. Even if this problem is considered as almost solved for linear registration, we show in this paper that some tools that have recently been developed in the field of vision-based robot control can outperform classical solutions. The adequacy of these tools for linear image registration leads us to revisit non-linear registration and allows us to provide interesting theoretical roots to the different variants of Thirion's demons algorithm. This analysis predicts a theoretical advantage to the symmetric forces variant of the demons algorithm. We show that, on controlled experiments, this advantage is confirmed, and yields a faster convergence.
NASA Astrophysics Data System (ADS)
Seki, Hirokazu; Tadakuma, Susumu
This paper describes a novel straight and circular road driving control scheme for electric power assisted wheelchairs. “Electric power assisted wheelchair” which assists the driving force by electric motors is expected to be widely used as a mobility support system for elderly people and disabled people, however, the performance of the straight and circular road driving must be further improved because the two wheels drive independently. This paper proposes a novel driving control scheme based on fuzzy algorithm to realize the stable and reliable driving on straight and circular roads. The suitable assisted torque of the right and left wheels is determined by fuzzy algorithm based on the posture angular velocity of the wheelchair and the human input torque proportion of the right and left wheels. Some experiments on the practical roads show the effectiveness of the proposed control system.
NASA Astrophysics Data System (ADS)
Murakami, Hiroki; Seki, Hirokazu; Minakata, Hideaki; Tadakuma, Susumu
This paper describes a novel operationality improvement control for electric power assisted wheelchairs. “Electric power assisted wheelchair” which assists the driving force by electric motors is expected to be widely used as a mobility support system for elderly people and disabled people, however, the performance of the straight and circular road driving must be further improved because the two wheels drive independently. This paper proposes a novel operationality improvement control by fuzzy algorithm to realize the stable driving on straight and circular roads. The suitable assisted torque of the right and left wheels is determined by fuzzy algorithm based on the posture angular velocity, the posture angle of the wheelchair, the human input torque proportion and the total human torque of the right and left wheels. Some experiments on the practical roads show the effectiveness of the proposed control system.
Haarman, Juliet A M; Maartens, Erik; van der Kooij, Herman; Buurke, Jaap H; Reenalda, Jasper; Rietman, Johan S
2017-12-02
During gait training, physical therapists continuously supervise stroke survivors and provide physical support to their pelvis when they judge that the patient is unable to keep his balance. This paper is the first in providing quantitative data about the corrective forces that therapists use during gait training. It is assumed that changes in the acceleration of a patient's COM are a good predictor for therapeutic balance assistance during the training sessions Therefore, this paper provides a method that predicts the timing of therapeutic balance assistance, based on acceleration data of the sacrum. Eight sub-acute stroke survivors and seven therapists were included in this study. Patients were asked to perform straight line walking as well as slalom walking in a conventional training setting. Acceleration of the sacrum was captured by an Inertial Magnetic Measurement Unit. Balance-assisting corrective forces applied by the therapist were collected from two force sensors positioned on both sides of the patient's hips. Measures to characterize the therapeutic balance assistance were the amount of force, duration, impulse and the anatomical plane in which the assistance took place. Based on the acceleration data of the sacrum, an algorithm was developed to predict therapeutic balance assistance. To validate the developed algorithm, the predicted events of balance assistance by the algorithm were compared with the actual provided therapeutic assistance. The algorithm was able to predict the actual therapeutic assistance with a Positive Predictive Value of 87% and a True Positive Rate of 81%. Assistance mainly took place over the medio-lateral axis and corrective forces of about 2% of the patient's body weight (15.9 N (11), median (IQR)) were provided by therapists in this plane. Median duration of balance assistance was 1.1 s (0.6) (median (IQR)) and median impulse was 9.4Ns (8.2) (median (IQR)). Although therapists were specifically instructed to aim for the force sensors on the iliac crest, a different contact location was reported in 22% of the corrections. This paper presents insights into the behavior of therapists regarding their manual physical assistance during gait training. A quantitative dataset was presented, representing therapeutic balance-assisting force characteristics. Furthermore, an algorithm was developed that predicts events at which therapeutic balance assistance was provided. Prediction scores remain high when different therapists and patients were analyzed with the same algorithm settings. Both the quantitative dataset and the developed algorithm can serve as technical input in the development of (robot-controlled) balance supportive devices.
Simulation of two-dimensional turbulent flows in a rotating annulus
NASA Astrophysics Data System (ADS)
Storey, Brian D.
2004-05-01
Rotating water tank experiments have been used to study fundamental processes of atmospheric and geophysical turbulence in a controlled laboratory setting. When these tanks are undergoing strong rotation the forced turbulent flow becomes highly two dimensional along the axis of rotation. An efficient numerical method has been developed for simulating the forced quasi-geostrophic equations in an annular geometry to model current laboratory experiments. The algorithm employs a spectral method with Fourier series and Chebyshev polynomials as basis functions. The algorithm has been implemented on a parallel architecture to allow modelling of a wide range of spatial scales over long integration times. This paper describes the derivation of the model equations, numerical method, testing and performance of the algorithm. Results provide reasonable agreement with the experimental data, indicating that such computations can be used as a predictive tool to design future experiments.
NASA Astrophysics Data System (ADS)
Zalogin, Stanislav M.; Zalogin, M. S.
1997-02-01
The problem for construction of control algorithm in OEST the information track of the optical record carrier the realization of which is based on the use of accelerations is considered. Such control algorithms render the designed system the properties of adaptability, feeble sensitivity to the system parameter change and the action of disturbing forces what gives known advantages to information carriers with such system under operation in hard climate conditions as well as at maladjustment, workpieces wear and change of friction in the system. In the paper are investigated dynamic characteristics of a closed OEST, it is shown, that the designed stable system with given quality indices is a high-precision one. The validated recommendations as to design of control algorithms parameters are confirmed by results of mathematical simulation of controlled processes. The proposed methods for OEST synthesis on the basis of the control acceleration principle can be recommended for the use at industrial production of optical information record carriers.
Jiang, Zhongliang; Sun, Yu; Gao, Peng; Hu, Ying; Zhang, Jianwei
2016-01-01
Robots play more important roles in daily life and bring us a lot of convenience. But when people work with robots, there remain some significant differences in human-human interactions and human-robot interaction. It is our goal to make robots look even more human-like. We design a controller which can sense the force acting on any point of a robot and ensure the robot can move according to the force. First, a spring-mass-dashpot system was used to describe the physical model, and the second-order system is the kernel of the controller. Then, we can establish the state space equations of the system. In addition, the particle swarm optimization algorithm had been used to obtain the system parameters. In order to test the stability of system, the root-locus diagram had been shown in the paper. Ultimately, some experiments had been carried out on the robotic spinal surgery system, which is developed by our team, and the result shows that the new controller performs better during human-robot interaction.
A Car Transportation System in Cooperation by Multiple Mobile Robots for Each Wheel: iCART II
NASA Astrophysics Data System (ADS)
Kashiwazaki, Koshi; Yonezawa, Naoaki; Kosuge, Kazuhiro; Sugahara, Yusuke; Hirata, Yasuhisa; Endo, Mitsuru; Kanbayashi, Takashi; Shinozuka, Hiroyuki; Suzuki, Koki; Ono, Yuki
The authors proposed a car transportation system, iCART (intelligent Cooperative Autonomous Robot Transporters), for automation of mechanical parking systems by two mobile robots. However, it was difficult to downsize the mobile robot because the length of it requires at least the wheelbase of a car. This paper proposes a new car transportation system, iCART II (iCART - type II), based on “a-robot-for-a-wheel” concept. A prototype system, MRWheel (a Mobile Robot for a Wheel), is designed and downsized less than half the conventional robot. First, a method for lifting up a wheel by MRWheel is described. In general, it is very difficult for mobile robots such as MRWheel to move to desired positions without motion errors caused by slipping, etc. Therefore, we propose a follower's motion error estimation algorithm based on the internal force applied to each follower by extending a conventional leader-follower type decentralized control algorithm for cooperative object transportation. The proposed algorithm enables followers to estimate their motion errors and enables the robots to transport a car to a desired position. In addition, we analyze and prove the stability and convergence of the resultant system with the proposed algorithm. In order to extract only the internal force from the force applied to each robot, we also propose a model-based external force compensation method. Finally, proposed methods are applied to the car transportation system, the experimental results confirm their validity.
NASA Astrophysics Data System (ADS)
Fu, Liyue; Song, Aiguo
2018-02-01
In order to improve the measurement precision of 6-axis force/torque sensor for robot, BP decoupling algorithm optimized by GA (GA-BP algorithm) is proposed in this paper. The weights and thresholds of a BP neural network with 6-10-6 topology are optimized by GA to develop decouple a six-axis force/torque sensor. By comparison with other traditional decoupling algorithm, calculating the pseudo-inverse matrix of calibration and classical BP algorithm, the decoupling results validate the good decoupling performance of GA-BP algorithm and the coupling errors are reduced.
A reductionist approach to the analysis of learning in brain-computer interfaces.
Danziger, Zachary
2014-04-01
The complexity and scale of brain-computer interface (BCI) studies limit our ability to investigate how humans learn to use BCI systems. It also limits our capacity to develop adaptive algorithms needed to assist users with their control. Adaptive algorithm development is forced offline and typically uses static data sets. But this is a poor substitute for the online, dynamic environment where algorithms are ultimately deployed and interact with an adapting user. This work evaluates a paradigm that simulates the control problem faced by human subjects when controlling a BCI, but which avoids the many complications associated with full-scale BCI studies. Biological learners can be studied in a reductionist way as they solve BCI-like control problems, and machine learning algorithms can be developed and tested in closed loop with the subjects before being translated to full BCIs. The method is to map 19 joint angles of the hand (representing neural signals) to the position of a 2D cursor which must be piloted to displayed targets (a typical BCI task). An investigation is presented on how closely the joint angle method emulates BCI systems; a novel learning algorithm is evaluated, and a performance difference between genders is discussed.
Decentralized Adaptive Control For Robots
NASA Technical Reports Server (NTRS)
Seraji, Homayoun
1989-01-01
Precise knowledge of dynamics not required. Proposed scheme for control of multijointed robotic manipulator calls for independent control subsystem for each joint, consisting of proportional/integral/derivative feedback controller and position/velocity/acceleration feedforward controller, both with adjustable gains. Independent joint controller compensates for unpredictable effects, gravitation, and dynamic coupling between motions of joints, while forcing joints to track reference trajectories. Scheme amenable to parallel processing in distributed computing system wherein each joint controlled by relatively simple algorithm on dedicated microprocessor.
NASA Astrophysics Data System (ADS)
Song, Qi; Song, Y. D.; Cai, Wenchuan
2011-09-01
Although backstepping control design approach has been widely utilised in many practical systems, little effort has been made in applying this useful method to train systems. The main purpose of this paper is to apply this popular control design technique to speed and position tracking control of high-speed trains. By integrating adaptive control with backstepping control, we develop a control scheme that is able to address not only the traction and braking dynamics ignored in most existing methods, but also the uncertain friction and aerodynamic drag forces arisen from uncertain resistance coefficients. As such, the resultant control algorithms are able to achieve high precision train position and speed tracking under varying operation railway conditions, as validated by theoretical analysis and numerical simulations.
NASA Technical Reports Server (NTRS)
Manchala, Daniel W.; Palazzolo, Alan B.; Kascak, Albert F.; Montague, Gerald T.; Brown, Gerald V.; Lawrence, Charles; Klusman, Steve
1994-01-01
Jet Engines may experience severe vibration due to the sudden imbalance caused by blade failure. This research investigates employment of on board magnetic bearings or piezoelectric actuators to cancel these forces in flight. This operation requires identification of the source of the vibrations via an expert system, determination of the required phase angles and amplitudes for the correction forces, and application of the desired control signals to the magnetic bearings or piezo electric actuators. This paper will show the architecture of the software system, details of the control algorithm used for the sudden imbalance correction project described above, and the laboratory test results.
NASA Technical Reports Server (NTRS)
Lee, Soo Han
1988-01-01
The efficiency and positional accuracy of a lightweight flexible manipulator are limited by its flexural vibrations, which last after a gross motion is completed. The vibration delays subsequent operations. In the proposed work, the vibration is suppressed by inertial force of a small arm in addition to the joint actuators and passive damping treatment. The proposed approach is: (1) Dynamic modeling of a combined system, a large flexible manipulator and a small arm, (2) Determination of optimal sensor location and controller algorithm, and (3) Verification of the fitness of model and the performance of controller.
NASA Technical Reports Server (NTRS)
Iliff, Kenneth W.; Wang, Kon-Sheng Charles Wang
1996-01-01
The lateral-directional stability and control derivatives of the X-29A number 2 are extracted from flight data over an angle-of-attack range of 4 degrees to 53 degrees using a parameter identification algorithm. The algorithm uses the linearized aircraft equations of motion and a maximum likelihood estimator in the presence of state and measurement noise. State noise is used to model the uncommanded forcing function caused by unsteady aerodynamics over the aircraft at angles of attack above 15 degrees. The results supported the flight-envelope-expansion phase of the X-29A number 2 by helping to update the aerodynamic mathematical model, to improve the real-time simulator, and to revise flight control system laws. Effects of the aircraft high gain flight control system on maneuver quality and the estimated derivatives are also discussed. The derivatives are plotted as functions of angle of attack and compared with the predicted aerodynamic database. Agreement between predicted and flight values is quite good for some derivatives such as the lateral force due to sideslip, the lateral force due to rudder deflection, and the rolling moment due to roll rate. The results also show significant differences in several important derivatives such as the rolling moment due to sideslip, the yawing moment due to sideslip, the yawing moment due to aileron deflection, and the yawing moment due to rudder deflection.
Generalization in Adaptation to Stable and Unstable Dynamics
Kadiallah, Abdelhamid; Franklin, David W.; Burdet, Etienne
2012-01-01
Humans skillfully manipulate objects and tools despite the inherent instability. In order to succeed at these tasks, the sensorimotor control system must build an internal representation of both the force and mechanical impedance. As it is not practical to either learn or store motor commands for every possible future action, the sensorimotor control system generalizes a control strategy for a range of movements based on learning performed over a set of movements. Here, we introduce a computational model for this learning and generalization, which specifies how to learn feedforward muscle activity in a function of the state space. Specifically, by incorporating co-activation as a function of error into the feedback command, we are able to derive an algorithm from a gradient descent minimization of motion error and effort, subject to maintaining a stability margin. This algorithm can be used to learn to coordinate any of a variety of motor primitives such as force fields, muscle synergies, physical models or artificial neural networks. This model for human learning and generalization is able to adapt to both stable and unstable dynamics, and provides a controller for generating efficient adaptive motor behavior in robots. Simulation results exhibit predictions consistent with all experiments on learning of novel dynamics requiring adaptation of force and impedance, and enable us to re-examine some of the previous interpretations of experiments on generalization. PMID:23056191
Force/torque and tactile sensors for sensor-based manipulator control
NASA Technical Reports Server (NTRS)
Vanbrussel, H.; Belieen, H.; Bao, Chao-Ying
1989-01-01
The autonomy of manipulators, in space and in industrial environments, can be dramatically enhanced by the use of force/torque and tactile sensors. The development and future use of a six-component force/torque sensor for the Hermes Robot Arm (HERA) Basic End-Effector (BEE) is discussed. Then a multifunctional gripper system based on tactile sensors is described. The basic transducing element of the sensor is a sheet of pressure-sensitive polymer. Tactile image processing algorithms for slip detection, object position estimation, and object recognition are described.
Methods of and system for swing damping movement of suspended objects
Jones, J.F.; Petterson, B.J.; Strip, D.R.
1991-03-05
A payload suspended from a gantry is swing damped in accordance with a control algorithm based on the periodic motion of the suspended mass or by servoing on the forces induced by the suspended mass. 13 figures.
Dynamic performance analysis of permanent magnet contactor with a flux-weakening control strategy
NASA Astrophysics Data System (ADS)
Wang, Xianbing; Lin, Heyun; Fang, Shuhua; Jin, Ping; Wang, Junhua; Ho, S. L.
2011-04-01
A new flux-weakening control strategy for permanent magnet contactors is proposed. By matching the dynamic attraction force and the antiforce, the terminal velocity and collision energy of the movable iron in the closing process are significantly reduced. The movable iron displacement is estimated by detecting the closing voltage and current with the proposed control. A dynamic mathematical model is also established under four kinds of excitation scenarios. The attraction force and flux linkage are predicted by finite element method and the dynamics of the closing process is simulated using the 4th-order Runge-Kutta algorithm. Experiments are carried out on a 250A prototype with an intelligent control unit to verify the proposed control strategy.
Inverse dynamics of adaptive structures used as space cranes
NASA Technical Reports Server (NTRS)
Das, S. K.; Utku, S.; Wada, B. K.
1990-01-01
As a precursor to the real-time control of fast moving adaptive structures used as space cranes, a formulation is given for the flexibility induced motion relative to the nominal motion (i.e., the motion that assumes no flexibility) and for obtaining the open loop time varying driving forces. An algorithm is proposed for the computation of the relative motion and driving forces. The governing equations are given in matrix form with explicit functional dependencies. A simulator is developed to implement the algorithm on a digital computer. In the formulations, the distributed mass of the crane is lumped by two schemes, vz., 'trapezoidal' lumping and 'Simpson's rule' lumping. The effects of the mass lumping schemes are shown by simulator runs.
Liu, Xiaozheng; Yuan, Zhenming; Zhu, Junming; Xu, Dongrong
2013-12-07
The demons algorithm is a popular algorithm for non-rigid image registration because of its computational efficiency and simple implementation. The deformation forces of the classic demons algorithm were derived from image gradients by considering the deformation to decrease the intensity dissimilarity between images. However, the methods using the difference of image intensity for medical image registration are easily affected by image artifacts, such as image noise, non-uniform imaging and partial volume effects. The gradient magnitude image is constructed from the local information of an image, so the difference in a gradient magnitude image can be regarded as more reliable and robust for these artifacts. Then, registering medical images by considering the differences in both image intensity and gradient magnitude is a straightforward selection. In this paper, based on a diffeomorphic demons algorithm, we propose a chain-type diffeomorphic demons algorithm by combining the differences in both image intensity and gradient magnitude for medical image registration. Previous work had shown that the classic demons algorithm can be considered as an approximation of a second order gradient descent on the sum of the squared intensity differences. By optimizing the new dissimilarity criteria, we also present a set of new demons forces which were derived from the gradients of the image and gradient magnitude image. We show that, in controlled experiments, this advantage is confirmed, and yields a fast convergence.
Optimizing phase to enhance optical trap stiffness.
Taylor, Michael A
2017-04-03
Phase optimization offers promising capabilities in optical tweezers, allowing huge increases in the applied forces, trap stiff-ness, or measurement sensitivity. One key obstacle to potential applications is the lack of an efficient algorithm to compute an optimized phase profile, with enhanced trapping experiments relying on slow programs that would take up to a week to converge. Here we introduce an algorithm that reduces the wait from days to minutes. We characterize the achievable in-crease in trap stiffness and its dependence on particle size, refractive index, and optical polarization. We further show that phase-only control can achieve almost all of the enhancement possible with full wavefront shaping; for instance phase control allows 62 times higher trap stiffness for 10 μm silica spheres in water, while amplitude control and non-trivial polarization further increase this by 1.26 and 1.01 respectively. This algorithm will facilitate future applications in optical trapping, and more generally in wavefront optimization.
Qin, J; Choi, K S; Ho, Simon S M; Heng, P A
2008-01-01
A force prediction algorithm is proposed to facilitate virtual-reality (VR) based collaborative surgical simulation by reducing the effect of network latencies. State regeneration is used to correct the estimated prediction. This algorithm is incorporated into an adaptive transmission protocol in which auxiliary features such as view synchronization and coupling control are equipped to ensure the system consistency. We implemented this protocol using multi-threaded technique on a cluster-based network architecture.
Design and Verification of a Digital Controller for a 2-Piece Hemispherical Resonator Gyroscope.
Lee, Jungshin; Yun, Sung Wook; Rhim, Jaewook
2016-04-20
A Hemispherical Resonator Gyro (HRG) is the Coriolis Vibratory Gyro (CVG) that measures rotation angle or angular velocity using Coriolis force acting the vibrating mass. A HRG can be used as a rate gyro or integrating gyro without structural modification by simply changing the control scheme. In this paper, differential control algorithms are designed for a 2-piece HRG. To design a precision controller, the electromechanical modelling and signal processing must be pre-performed accurately. Therefore, the equations of motion for the HRG resonator with switched harmonic excitations are derived with the Duhamel Integral method. Electromechanical modeling of the resonator, electric module and charge amplifier is performed by considering the mode shape of a thin hemispherical shell. Further, signal processing and control algorithms are designed. The multi-flexing scheme of sensing, driving cycles and x, y-axis switching cycles is appropriate for high precision and low maneuverability systems. The differential control scheme is easily capable of rejecting the common mode errors of x, y-axis signals and changing the rate integrating mode on basis of these studies. In the rate gyro mode the controller is composed of Phase-Locked Loop (PLL), amplitude, quadrature and rate control loop. All controllers are designed on basis of a digital PI controller. The signal processing and control algorithms are verified through Matlab/Simulink simulations. Finally, a FPGA and DSP board with these algorithms is verified through experiments.
Distributed control using linear momentum exchange devices
NASA Technical Reports Server (NTRS)
Sharkey, J. P.; Waites, Henry; Doane, G. B., III
1987-01-01
MSFC has successfully employed the use of the Vibrational Control of Space Structures (VCOSS) Linear Momentum Exchange Devices (LMEDs), which was an outgrowth of the Air Force Wright Aeronautical Laboratory (AFWAL) program, in a distributed control experiment. The control experiment was conducted in MSFC's Ground Facility for Large Space Structures Control Verification (GF/LSSCV). The GF/LSSCV's test article was well suited for this experiment in that the LMED could be judiciously placed on the ASTROMAST. The LMED placements were such that vibrational mode information could be extracted from the accelerometers on the LMED. The LMED accelerometer information was processed by the control algorithms so that the LMED masses could be accelerated to produce forces which would dampen the vibrational modes of interest. Experimental results are presented showing the LMED's capabilities.
Diffusion control for a tempered anomalous diffusion system using fractional-order PI controllers.
Juan Chen; Zhuang, Bo; Chen, YangQuan; Cui, Baotong
2017-05-09
This paper is concerned with diffusion control problem of a tempered anomalous diffusion system based on fractional-order PI controllers. The contribution of this paper is to introduce fractional-order PI controllers into the tempered anomalous diffusion system for mobile actuators motion and spraying control. For the proposed control force, convergence analysis of the system described by mobile actuator dynamical equations is presented based on Lyapunov stability arguments. Moreover, a new Centroidal Voronoi Tessellation (CVT) algorithm based on fractional-order PI controllers, henceforth called FOPI-based CVT algorithm, is provided together with a modified simulation platform called Fractional-Order Diffusion Mobile Actuator-Sensor 2-Dimension Fractional-Order Proportional Integral (FO-Diff-MAS2D-FOPI). Finally, extensive numerical simulations for the tempered anomalous diffusion process are presented to verify the effectiveness of our proposed fractional-order PI controllers. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
A parameter estimation algorithm for spatial sine testing - Theory and evaluation
NASA Technical Reports Server (NTRS)
Rost, R. W.; Deblauwe, F.
1992-01-01
This paper presents the theory and an evaluation of a spatial sine testing parameter estimation algorithm that uses directly the measured forced mode of vibration and the measured force vector. The parameter estimation algorithm uses an ARMA model and a recursive QR algorithm is applied for data reduction. In this first evaluation, the algorithm has been applied to a frequency response matrix (which is a particular set of forced mode of vibration) using a sliding frequency window. The objective of the sliding frequency window is to execute the analysis simultaneously with the data acquisition. Since the pole values and the modal density are obtained from this analysis during the acquisition, the analysis information can be used to help determine the forcing vectors during the experimental data acquisition.
The Air Force Deployment Transition Center: Assessment of Program Structure, Process, and Outcomes
2016-01-01
treatment and control group across a much broader range of factors. The use of the TWANG algorithm to produce the weights allows researchers to...employing a difference-in- difference design to assess for confounding history effects) and a synchronous control group , while the PRSAG report used...Synchronous Controls . . . . . . . . 55 B. Investigating the Differences Between the RAND and the Psychology Research Service Analytic Group’s Analyses
NASA Technical Reports Server (NTRS)
Arnold, D. A.; Dobrowolny, M.
1981-01-01
An algorithm for using electric currents to control pendular oscillations induced by various perturbing forces on the Skyhook wire is considered. Transverse and vertical forces on the tether; tether instability modes and causes during retrieval by space shuttle; simple and spherical pendulum motion and vector damping; and current generation and control are discussed. A computer program for numerical integration of the in-plane and out-of-plane displacements of the tether vs time was developed for heuristic study. Some techniques for controlling instabilities during payload retrieval and methods for employing the tether for launching satellites from the space shuttle are considered. Derivations and analyses of a general nature used in all of the areas studied are included.
Real-Time Gait Event Detection Based on Kinematic Data Coupled to a Biomechanical Model.
Lambrecht, Stefan; Harutyunyan, Anna; Tanghe, Kevin; Afschrift, Maarten; De Schutter, Joris; Jonkers, Ilse
2017-03-24
Real-time detection of multiple stance events, more specifically initial contact (IC), foot flat (FF), heel off (HO), and toe off (TO), could greatly benefit neurorobotic (NR) and neuroprosthetic (NP) control. Three real-time threshold-based algorithms have been developed, detecting the aforementioned events based on kinematic data in combination with a biomechanical model. Data from seven subjects walking at three speeds on an instrumented treadmill were used to validate the presented algorithms, accumulating to a total of 558 steps. The reference for the gait events was obtained using marker and force plate data. All algorithms had excellent precision and no false positives were observed. Timing delays of the presented algorithms were similar to current state-of-the-art algorithms for the detection of IC and TO, whereas smaller delays were achieved for the detection of FF. Our results indicate that, based on their high precision and low delays, these algorithms can be used for the control of an NR/NP, with the exception of the HO event. Kinematic data is used in most NR/NP control schemes and is thus available at no additional cost, resulting in a minimal computational burden. The presented methods can also be applied for screening pathological gait or gait analysis in general in/outside of the laboratory.
High performance bilateral telerobot control.
Kline-Schoder, Robert; Finger, William; Hogan, Neville
2002-01-01
Telerobotic systems are used when the environment that requires manipulation is not easily accessible to humans, as in space, remote, hazardous, or microscopic applications or to extend the capabilities of an operator by scaling motions and forces. The Creare control algorithm and software is an enabling technology that makes possible guaranteed stability and high performance for force-feedback telerobots. We have developed the necessary theory, structure, and software design required to implement high performance telerobot systems with time delay. This includes controllers for the master and slave manipulators, the manipulator servo levels, the communication link, and impedance shaping modules. We verified the performance using both bench top hardware as well as a commercial microsurgery system.
Van der Loos, H F Machiel; Worthen-Chaudhari, Lise; Schwandt, Douglas; Bevly, David M; Kautz, Steven A
2010-08-01
This paper presents a novel computer-controlled bicycle ergometer, the TiltCycle, for use in human biomechanics studies of locomotion. The TiltCycle has a tilting (reclining) seat and backboard, a split pedal crankshaft to isolate the left and right loads to the feet of the pedaler, and two belt-driven, computer-controlled motors to provide assistance or resistance loads independently to each crank. Sensors measure the kinematics and force production of the legs to calculate work performed, and the system allows for goniometric and electromyography signals to be recorded. The technical description presented includes the mechanical design, low-level software and control algorithms, system identification and validation test results.
NASA Astrophysics Data System (ADS)
Wang, Tao; Wang, Guilin; Zhu, Dengchao; Li, Shengyi
2015-02-01
In order to meet the requirement of aerodynamics, the infrared domes or windows with conformal and thin-wall structure becomes the development trend of high-speed aircrafts in the future. But these parts usually have low stiffness, the cutting force will change along with the axial position, and it is very difficult to meet the requirement of shape accuracy by single machining. Therefore, on-machine measurement and compensating turning are used to control the shape errors caused by the fluctuation of cutting force and the change of stiffness. In this paper, on the basis of ultra precision diamond lathe, a contact measuring system with five DOFs is developed to achieve on-machine measurement of conformal thin-wall parts with high accuracy. According to high gradient surface, the optimizing algorithm is designed on the distribution of measuring points by using the data screening method. The influence rule of sampling frequency is analyzed on measuring errors, the best sampling frequency is found out based on planning algorithm, the effect of environmental factors and the fitting errors are controlled within lower range, and the measuring accuracy of conformal dome is greatly improved in the process of on-machine measurement. According to MgF2 conformal dome with high gradient, the compensating turning is implemented by using the designed on-machine measuring algorithm. The shape error is less than PV 0.8μm, greatly superior compared with PV 3μm before compensating turning, which verifies the correctness of measuring algorithm.
Development of an analytical guidance algorithm for lunar descent
NASA Astrophysics Data System (ADS)
Chomel, Christina Tvrdik
In recent years, NASA has indicated a desire to return humans to the moon. With NASA planning manned missions within the next couple of decades, the concept development for these lunar vehicles has begun. The guidance, navigation, and control (GN&C) computer programs that will perform the function of safely landing a spacecraft on the moon are part of that development. The lunar descent guidance algorithm takes the horizontally oriented spacecraft from orbital speeds hundreds of kilometers from the desired landing point to the landing point at an almost vertical orientation and very low speed. Existing lunar descent GN&C algorithms date back to the Apollo era with little work available for implementation since then. Though these algorithms met the criteria of the 1960's, they are cumbersome today. At the basis of the lunar descent phase are two elements: the targeting, which generates a reference trajectory, and the real-time guidance, which forces the spacecraft to fly that trajectory. The Apollo algorithm utilizes a complex, iterative, numerical optimization scheme for developing the reference trajectory. The real-time guidance utilizes this reference trajectory in the form of a quartic rather than a more general format to force the real-time trajectory errors to converge to zero; however, there exist no guarantees under any conditions for this convergence. The proposed algorithm implements a purely analytical targeting algorithm used to generate two-dimensional trajectories "on-the-fly"' or to retarget the spacecraft to another landing site altogether. It is based on the analytical solutions to the equations for speed, downrange, and altitude as a function of flight path angle and assumes two constant thrust acceleration curves. The proposed real-time guidance algorithm has at its basis the three-dimensional non-linear equations of motion and a control law that is proven to converge under certain conditions through Lyapunov analysis to a reference trajectory formatted as a function of downrange, altitude, speed, and flight path angle. The two elements of the guidance algorithm are joined in Monte Carlo analysis to prove their robustness to initial state dispersions and mass and thrust errors. The robustness of the retargeting algorithm is also demonstrated.
Control of joint motion simulators for biomechanical research
NASA Technical Reports Server (NTRS)
Colbaugh, R.; Glass, K.
1992-01-01
The authors present a hierarchical adaptive algorithm for controlling upper extremity human joint motion simulators. A joint motion simulator is a computer-controlled, electromechanical system which permits the application of forces to the tendons of a human cadaver specimen in such a way that the cadaver joint under study achieves a desired motion in a physiologic manner. The proposed control scheme does not require knowledge of the cadaver specimen dynamic model, and solves on-line the indeterminate problem which arises because human joints typically possess more actuators than degrees of freedom. Computer simulation results are given for an elbow/forearm system and wrist/hand system under hierarchical control. The results demonstrate that any desired normal joint motion can be accurately tracked with the proposed algorithm. These simulation results indicate that the controller resolved the indeterminate problem redundancy in a physiologic manner, and show that the control scheme was robust to parameter uncertainty and to sensor noise.
Shang, Weijian; Su, Hao; Li, Gang; Fischer, Gregory S.
2014-01-01
This paper presents a surgical master-slave tele-operation system for percutaneous interventional procedures under continuous magnetic resonance imaging (MRI) guidance. This system consists of a piezoelectrically actuated slave robot for needle placement with integrated fiber optic force sensor utilizing Fabry-Perot interferometry (FPI) sensing principle. The sensor flexure is optimized and embedded to the slave robot for measuring needle insertion force. A novel, compact opto-mechanical FPI sensor interface is integrated into an MRI robot control system. By leveraging the complementary features of pneumatic and piezoelectric actuation, a pneumatically actuated haptic master robot is also developed to render force associated with needle placement interventions to the clinician. An aluminum load cell is implemented and calibrated to close the impedance control loop of the master robot. A force-position control algorithm is developed to control the hybrid actuated system. Teleoperated needle insertion is demonstrated under live MR imaging, where the slave robot resides in the scanner bore and the user manipulates the master beside the patient outside the bore. Force and position tracking results of the master-slave robot are demonstrated to validate the tracking performance of the integrated system. It has a position tracking error of 0.318mm and sine wave force tracking error of 2.227N. PMID:25126446
Shang, Weijian; Su, Hao; Li, Gang; Fischer, Gregory S
2013-01-01
This paper presents a surgical master-slave tele-operation system for percutaneous interventional procedures under continuous magnetic resonance imaging (MRI) guidance. This system consists of a piezoelectrically actuated slave robot for needle placement with integrated fiber optic force sensor utilizing Fabry-Perot interferometry (FPI) sensing principle. The sensor flexure is optimized and embedded to the slave robot for measuring needle insertion force. A novel, compact opto-mechanical FPI sensor interface is integrated into an MRI robot control system. By leveraging the complementary features of pneumatic and piezoelectric actuation, a pneumatically actuated haptic master robot is also developed to render force associated with needle placement interventions to the clinician. An aluminum load cell is implemented and calibrated to close the impedance control loop of the master robot. A force-position control algorithm is developed to control the hybrid actuated system. Teleoperated needle insertion is demonstrated under live MR imaging, where the slave robot resides in the scanner bore and the user manipulates the master beside the patient outside the bore. Force and position tracking results of the master-slave robot are demonstrated to validate the tracking performance of the integrated system. It has a position tracking error of 0.318mm and sine wave force tracking error of 2.227N.
Teleoperation with virtual force feedback
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, R.J.
1993-08-01
In this paper we describe an algorithm for generating virtual forces in a bilateral teleoperator system. The virtual forces are generated from a world model and are used to provide real-time obstacle avoidance and guidance capabilities. The algorithm requires that the slaves tool and every object in the environment be decomposed into convex polyhedral Primitives. Intrusion distance and extraction vectors are then derived at every time step by applying Gilbert`s polyhedra distance algorithm, which has been adapted for the task. This information is then used to determine the compression and location of nonlinear virtual spring-dampers whose total force is summedmore » and applied to the manipulator/teleoperator system. Experimental results validate the whole approach, showing that it is possible to compute the algorithm and generate realistic, useful psuedo forces for a bilateral teleoperator system using standard VME bus hardware.« less
NASA Technical Reports Server (NTRS)
Pholsiri, Chalongrath; English, James; Seberino, Charles; Lim, Yi-Je
2010-01-01
The Excavator Design Validation tool verifies excavator designs by automatically generating control systems and modeling their performance in an accurate simulation of their expected environment. Part of this software design includes interfacing with human operations that can be included in simulation-based studies and validation. This is essential for assessing productivity, versatility, and reliability. This software combines automatic control system generation from CAD (computer-aided design) models, rapid validation of complex mechanism designs, and detailed models of the environment including soil, dust, temperature, remote supervision, and communication latency to create a system of high value. Unique algorithms have been created for controlling and simulating complex robotic mechanisms automatically from just a CAD description. These algorithms are implemented as a commercial cross-platform C++ software toolkit that is configurable using the Extensible Markup Language (XML). The algorithms work with virtually any mobile robotic mechanisms using module descriptions that adhere to the XML standard. In addition, high-fidelity, real-time physics-based simulation algorithms have also been developed that include models of internal forces and the forces produced when a mechanism interacts with the outside world. This capability is combined with an innovative organization for simulation algorithms, new regolith simulation methods, and a unique control and study architecture to make powerful tools with the potential to transform the way NASA verifies and compares excavator designs. Energid's Actin software has been leveraged for this design validation. The architecture includes parametric and Monte Carlo studies tailored for validation of excavator designs and their control by remote human operators. It also includes the ability to interface with third-party software and human-input devices. Two types of simulation models have been adapted: high-fidelity discrete element models and fast analytical models. By using the first to establish parameters for the second, a system has been created that can be executed in real time, or faster than real time, on a desktop PC. This allows Monte Carlo simulations to be performed on a computer platform available to all researchers, and it allows human interaction to be included in a real-time simulation process. Metrics on excavator performance are established that work with the simulation architecture. Both static and dynamic metrics are included.
Ehsani, Hossein; Rostami, Mostafa; Gudarzi, Mohammad
2016-02-01
Computation of muscle force patterns that produce specified movements of muscle-actuated dynamic models is an important and challenging problem. This problem is an undetermined one, and then a proper optimization is required to calculate muscle forces. The purpose of this paper is to develop a general model for calculating all muscle activation and force patterns in an arbitrary human body movement. For this aim, the equations of a multibody system forward dynamics, which is considered for skeletal system of the human body model, is derived using Lagrange-Euler formulation. Next, muscle contraction dynamics is added to this model and forward dynamics of an arbitrary musculoskeletal system is obtained. For optimization purpose, the obtained model is used in computed muscle control algorithm, and a closed-loop system for tracking desired motions is derived. Finally, a popular sport exercise, biceps curl, is simulated by using this algorithm and the validity of the obtained results is evaluated via EMG signals.
Wang, Xue; Wang, Sheng; Ma, Jun-Jie
2007-01-01
The effectiveness of wireless sensor networks (WSNs) depends on the coverage and target detection probability provided by dynamic deployment, which is usually supported by the virtual force (VF) algorithm. However, in the VF algorithm, the virtual force exerted by stationary sensor nodes will hinder the movement of mobile sensor nodes. Particle swarm optimization (PSO) is introduced as another dynamic deployment algorithm, but in this case the computation time required is the big bottleneck. This paper proposes a dynamic deployment algorithm which is named “virtual force directed co-evolutionary particle swarm optimization” (VFCPSO), since this algorithm combines the co-evolutionary particle swarm optimization (CPSO) with the VF algorithm, whereby the CPSO uses multiple swarms to optimize different components of the solution vectors for dynamic deployment cooperatively and the velocity of each particle is updated according to not only the historical local and global optimal solutions, but also the virtual forces of sensor nodes. Simulation results demonstrate that the proposed VFCPSO is competent for dynamic deployment in WSNs and has better performance with respect to computation time and effectiveness than the VF, PSO and VFPSO algorithms.
A Nonlinear, Human-Centered Approach to Motion Cueing with a Neurocomputing Solver
NASA Technical Reports Server (NTRS)
Telban, Robert J.; Cardullo, Frank M.; Houck, Jacob A.
2002-01-01
This paper discusses the continuation of research into the development of new motion cueing algorithms first reported in 1999. In this earlier work, two viable approaches to motion cueing were identified: the coordinated adaptive washout algorithm or 'adaptive algorithm', and the 'optimal algorithm'. In this study, a novel approach to motion cueing is discussed that would combine features of both algorithms. The new algorithm is formulated as a linear optimal control problem, incorporating improved vestibular models and an integrated visual-vestibular motion perception model previously reported. A control law is generated from the motion platform states, resulting in a set of nonlinear cueing filters. The time-varying control law requires the matrix Riccati equation to be solved in real time. Therefore, in order to meet the real time requirement, a neurocomputing approach is used to solve this computationally challenging problem. Single degree-of-freedom responses for the nonlinear algorithm were generated and compared to the adaptive and optimal algorithms. Results for the heave mode show the nonlinear algorithm producing a motion cue with a time-varying washout, sustaining small cues for a longer duration and washing out larger cues more quickly. The addition of the optokinetic influence from the integrated perception model was shown to improve the response to a surge input, producing a specific force response with no steady-state washout. Improved cues are also observed for responses to a sway input. Yaw mode responses reveal that the nonlinear algorithm improves the motion cues by reducing the magnitude of negative cues. The effectiveness of the nonlinear algorithm as compared to the adaptive and linear optimal algorithms will be evaluated on a motion platform, the NASA Langley Research Center Visual Motion Simulator (VMS), and ultimately the Cockpit Motion Facility (CMF) with a series of pilot controlled maneuvers. A proposed experimental procedure is discussed. The results of this evaluation will be used to assess motion cueing performance.
Feed forward and feedback control for over-ground locomotion in anaesthetized cats
NASA Astrophysics Data System (ADS)
Mazurek, K. A.; Holinski, B. J.; Everaert, D. G.; Stein, R. B.; Etienne-Cummings, R.; Mushahwar, V. K.
2012-04-01
The biological central pattern generator (CPG) integrates open and closed loop control to produce over-ground walking. The goal of this study was to develop a physiologically based algorithm capable of mimicking the biological system to control multiple joints in the lower extremities for producing over-ground walking. The algorithm used state-based models of the step cycle each of which produced different stimulation patterns. Two configurations were implemented to restore over-ground walking in five adult anaesthetized cats using intramuscular stimulation (IMS) of the main hip, knee and ankle flexor and extensor muscles in the hind limbs. An open loop controller relied only on intrinsic timing while a hybrid-CPG controller added sensory feedback from force plates (representing limb loading), and accelerometers and gyroscopes (representing limb position). Stimulation applied to hind limb muscles caused extension or flexion in the hips, knees and ankles. A total of 113 walking trials were obtained across all experiments. Of these, 74 were successful in which the cats traversed 75% of the 3.5 m over-ground walkway. In these trials, the average peak step length decreased from 24.9 ± 8.4 to 21.8 ± 7.5 (normalized units) and the median number of steps per trial increased from 7 (Q1 = 6, Q3 = 9) to 9 (8, 11) with the hybrid-CPG controller. Moreover, within these trials, the hybrid-CPG controller produced more successful steps (step length ≤ 20 cm ground reaction force ≥ 12.5% body weight) than the open loop controller: 372 of 544 steps (68%) versus 65 of 134 steps (49%), respectively. This supports our previous preliminary findings, and affirms that physiologically based hybrid-CPG approaches produce more successful stepping than open loop controllers. The algorithm provides the foundation for a neural prosthetic controller and a framework to implement more detailed control of locomotion in the future.
Feed forward and feedback control for over-ground locomotion in anaesthetized cats
Mazurek, K A; Holinski, B J; Everaert, D G; Stein, R B; Etienne-Cummings, R; Mushahwar, V K
2012-01-01
The biological central pattern generator (CPG) integrates open and closed loop control to produce over-ground walking. The goal of this study was to develop a physiologically based algorithm capable of mimicking the biological system to control multiple joints in the lower extremities for producing over-ground walking. The algorithm used state-based models of the step cycle each of which produced different stimulation patterns. Two configurations were implemented to restore over-ground walking in five adult anaesthetized cats using intramuscular stimulation (IMS) of the main hip, knee and ankle flexor and extensor muscles in the hind limbs. An open loop controller relied only on intrinsic timing while a hybrid-CPG controller added sensory feedback from force plates (representing limb loading), and accelerometers and gyroscopes (representing limb position). Stimulation applied to hind limb muscles caused extension or flexion in the hips, knees and ankles. A total of 113 walking trials were obtained across all experiments. Of these, 74 were successful in which the cats traversed 75% of the 3.5 m over-ground walkway. In these trials, the average peak step length decreased from 24.9 ± 8.4 to 21.8 ± 7.5 (normalized units) and the median number of steps per trial increased from 7 (Q1=6, Q3 = 9) to 9 (8, 11) with the hybrid-CPG controller. Moreover, these trials, the hybrid-CPG controller produced more successful steps (step length ≤ 20 cm; ground reaction force ≥ 12.5% body weight) than the open loop controller: 372 of 544 steps (68%) versus 65 of 134 steps (49%), respectively. This supports our previous preliminary findings, and affirms that physiologically based hybrid-CPG approaches produce more successful stepping than open loop controllers. The algorithm provides the foundation for a neural prosthetic controller and a framework to implement more detailed control of locomotion in the future. PMID:22328615
Design and Verification of a Digital Controller for a 2-Piece Hemispherical Resonator Gyroscope
Lee, Jungshin; Yun, Sung Wook; Rhim, Jaewook
2016-01-01
A Hemispherical Resonator Gyro (HRG) is the Coriolis Vibratory Gyro (CVG) that measures rotation angle or angular velocity using Coriolis force acting the vibrating mass. A HRG can be used as a rate gyro or integrating gyro without structural modification by simply changing the control scheme. In this paper, differential control algorithms are designed for a 2-piece HRG. To design a precision controller, the electromechanical modelling and signal processing must be pre-performed accurately. Therefore, the equations of motion for the HRG resonator with switched harmonic excitations are derived with the Duhamel Integral method. Electromechanical modeling of the resonator, electric module and charge amplifier is performed by considering the mode shape of a thin hemispherical shell. Further, signal processing and control algorithms are designed. The multi-flexing scheme of sensing, driving cycles and x, y-axis switching cycles is appropriate for high precision and low maneuverability systems. The differential control scheme is easily capable of rejecting the common mode errors of x, y-axis signals and changing the rate integrating mode on basis of these studies. In the rate gyro mode the controller is composed of Phase-Locked Loop (PLL), amplitude, quadrature and rate control loop. All controllers are designed on basis of a digital PI controller. The signal processing and control algorithms are verified through Matlab/Simulink simulations. Finally, a FPGA and DSP board with these algorithms is verified through experiments. PMID:27104539
Robot Would Climb Steep Terrain
NASA Technical Reports Server (NTRS)
Kennedy, Brett; Ganino, Anthony; Aghazarian, Hrand; Hogg, Robert; McHerny, Michael; Garrett, Michael
2007-01-01
This brief describes the steep terrain access robot (STAR) -- a walking robot that has been proposed for exploring steep terrain on remote planets. The STAR would be able to climb up or down on slopes as steep as vertical, and even beyond vertical to overhangs. Its system of walking mechanisms and controls would be to react forces and maintain stability. To enable the STAR to anchor itself in the terrain on steep slopes to maintain stability and react forces, it would be necessary to equip the tips of the walking legs with new ultrasonic/ sonic drill corers (USDCs) and to develop sensors and control algorithms to enable robust utilization of the USDCs.
Autopilot for frequency-modulation atomic force microscopy.
Kuchuk, Kfir; Schlesinger, Itai; Sivan, Uri
2015-10-01
One of the most challenging aspects of operating an atomic force microscope (AFM) is finding optimal feedback parameters. This statement applies particularly to frequency-modulation AFM (FM-AFM), which utilizes three feedback loops to control the cantilever excitation amplitude, cantilever excitation frequency, and z-piezo extension. These loops are regulated by a set of feedback parameters, tuned by the user to optimize stability, sensitivity, and noise in the imaging process. Optimization of these parameters is difficult due to the coupling between the frequency and z-piezo feedback loops by the non-linear tip-sample interaction. Four proportional-integral (PI) parameters and two lock-in parameters regulating these loops require simultaneous optimization in the presence of a varying unknown tip-sample coupling. Presently, this optimization is done manually in a tedious process of trial and error. Here, we report on the development and implementation of an algorithm that computes the control parameters automatically. The algorithm reads the unperturbed cantilever resonance frequency, its quality factor, and the z-piezo driving signal power spectral density. It analyzes the poles and zeros of the total closed loop transfer function, extracts the unknown tip-sample transfer function, and finds four PI parameters and two lock-in parameters for the frequency and z-piezo control loops that optimize the bandwidth and step response of the total system. Implementation of the algorithm in a home-built AFM shows that the calculated parameters are consistently excellent and rarely require further tweaking by the user. The new algorithm saves the precious time of experienced users, facilitates utilization of FM-AFM by casual users, and removes the main hurdle on the way to fully automated FM-AFM.
Autopilot for frequency-modulation atomic force microscopy
NASA Astrophysics Data System (ADS)
Kuchuk, Kfir; Schlesinger, Itai; Sivan, Uri
2015-10-01
One of the most challenging aspects of operating an atomic force microscope (AFM) is finding optimal feedback parameters. This statement applies particularly to frequency-modulation AFM (FM-AFM), which utilizes three feedback loops to control the cantilever excitation amplitude, cantilever excitation frequency, and z-piezo extension. These loops are regulated by a set of feedback parameters, tuned by the user to optimize stability, sensitivity, and noise in the imaging process. Optimization of these parameters is difficult due to the coupling between the frequency and z-piezo feedback loops by the non-linear tip-sample interaction. Four proportional-integral (PI) parameters and two lock-in parameters regulating these loops require simultaneous optimization in the presence of a varying unknown tip-sample coupling. Presently, this optimization is done manually in a tedious process of trial and error. Here, we report on the development and implementation of an algorithm that computes the control parameters automatically. The algorithm reads the unperturbed cantilever resonance frequency, its quality factor, and the z-piezo driving signal power spectral density. It analyzes the poles and zeros of the total closed loop transfer function, extracts the unknown tip-sample transfer function, and finds four PI parameters and two lock-in parameters for the frequency and z-piezo control loops that optimize the bandwidth and step response of the total system. Implementation of the algorithm in a home-built AFM shows that the calculated parameters are consistently excellent and rarely require further tweaking by the user. The new algorithm saves the precious time of experienced users, facilitates utilization of FM-AFM by casual users, and removes the main hurdle on the way to fully automated FM-AFM.
Autopilot for frequency-modulation atomic force microscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuchuk, Kfir; Schlesinger, Itai; Sivan, Uri, E-mail: phsivan@tx.technion.ac.il
2015-10-15
One of the most challenging aspects of operating an atomic force microscope (AFM) is finding optimal feedback parameters. This statement applies particularly to frequency-modulation AFM (FM-AFM), which utilizes three feedback loops to control the cantilever excitation amplitude, cantilever excitation frequency, and z-piezo extension. These loops are regulated by a set of feedback parameters, tuned by the user to optimize stability, sensitivity, and noise in the imaging process. Optimization of these parameters is difficult due to the coupling between the frequency and z-piezo feedback loops by the non-linear tip-sample interaction. Four proportional-integral (PI) parameters and two lock-in parameters regulating these loopsmore » require simultaneous optimization in the presence of a varying unknown tip-sample coupling. Presently, this optimization is done manually in a tedious process of trial and error. Here, we report on the development and implementation of an algorithm that computes the control parameters automatically. The algorithm reads the unperturbed cantilever resonance frequency, its quality factor, and the z-piezo driving signal power spectral density. It analyzes the poles and zeros of the total closed loop transfer function, extracts the unknown tip-sample transfer function, and finds four PI parameters and two lock-in parameters for the frequency and z-piezo control loops that optimize the bandwidth and step response of the total system. Implementation of the algorithm in a home-built AFM shows that the calculated parameters are consistently excellent and rarely require further tweaking by the user. The new algorithm saves the precious time of experienced users, facilitates utilization of FM-AFM by casual users, and removes the main hurdle on the way to fully automated FM-AFM.« less
NASA Astrophysics Data System (ADS)
Kang, Shuo; Yan, Hao; Dong, Lijing; Li, Changchun
2018-03-01
This paper addresses the force tracking problem of electro-hydraulic load simulator under the influence of nonlinear friction and uncertain disturbance. A nonlinear system model combined with the improved generalized Maxwell-slip (GMS) friction model is firstly derived to describe the characteristics of load simulator system more accurately. Then, by using particle swarm optimization (PSO) algorithm combined with the system hysteresis characteristic analysis, the GMS friction parameters are identified. To compensate for nonlinear friction and uncertain disturbance, a finite-time adaptive sliding mode control method is proposed based on the accurate system model. This controller has the ability to ensure that the system state moves along the nonlinear sliding surface to steady state in a short time as well as good dynamic properties under the influence of parametric uncertainties and disturbance, which further improves the force loading accuracy and rapidity. At the end of this work, simulation and experimental results are employed to demonstrate the effectiveness of the proposed sliding mode control strategy.
Path planning for mobile robot using the novel repulsive force algorithm
NASA Astrophysics Data System (ADS)
Sun, Siyue; Yin, Guoqiang; Li, Xueping
2018-01-01
A new type of repulsive force algorithm is proposed to solve the problem of local minimum and the target unreachable of the classic Artificial Potential Field (APF) method in this paper. The Gaussian function that is related to the distance between the robot and the target is added to the traditional repulsive force, solving the problem of the goal unreachable with the obstacle nearby; variable coefficient is added to the repulsive force component to resize the repulsive force, which can solve the local minimum problem when the robot, the obstacle and the target point are in the same line. The effectiveness of the algorithm is verified by simulation based on MATLAB and actual mobile robot platform.
Surface EMG in advanced hand prosthetics.
Castellini, Claudio; van der Smagt, Patrick
2009-01-01
One of the major problems when dealing with highly dexterous, active hand prostheses is their control by the patient wearing them. With the advances in mechatronics, building prosthetic hands with multiple active degrees of freedom is realisable, but actively controlling the position and especially the exerted force of each finger cannot yet be done naturally. This paper deals with advanced robotic hand control via surface electromyography. Building upon recent results, we show that machine learning, together with a simple downsampling algorithm, can be effectively used to control on-line, in real time, finger position as well as finger force of a highly dexterous robotic hand. The system determines the type of grasp a human subject is willing to use, and the required amount of force involved, with a high degree of accuracy. This represents a remarkable improvement with respect to the state-of-the-art of feed-forward control of dexterous mechanical hands, and opens up a scenario in which amputees will be able to control hand prostheses in a much finer way than it has so far been possible.
A spatial operator algebra for manipulator modeling and control
NASA Technical Reports Server (NTRS)
Rodriguez, G.; Kreutz, Kenneth; Jain, Abhinandan
1989-01-01
A recently developed spatial operator algebra, useful for modeling, control, and trajectory design of manipulators is discussed. The elements of this algebra are linear operators whose domain and range spaces consist of forces, moments, velocities, and accelerations. The effect of these operators is equivalent to a spatial recursion along the span of a manipulator. Inversion of operators can be efficiently obtained via techniques of recursive filtering and smoothing. The operator algebra provides a high level framework for describing the dynamic and kinematic behavior of a manipulator and control and trajectory design algorithms. The interpretation of expressions within the algebraic framework leads to enhanced conceptual and physical understanding of manipulator dynamics and kinematics. Furthermore, implementable recursive algorithms can be immediately derived from the abstract operator expressions by inspection. Thus, the transition from an abstract problem formulation and solution to the detailed mechanizaton of specific algorithms is greatly simplified. The analytical formulation of the operator algebra, as well as its implementation in the Ada programming language are discussed.
Single-pass incremental force updates for adaptively restrained molecular dynamics.
Singh, Krishna Kant; Redon, Stephane
2018-03-30
Adaptively restrained molecular dynamics (ARMD) allows users to perform more integration steps in wall-clock time by switching on and off positional degrees of freedoms. This article presents new, single-pass incremental force updates algorithms to efficiently simulate a system using ARMD. We assessed different algorithms for speedup measurements and implemented them in the LAMMPS MD package. We validated the single-pass incremental force update algorithm on four different benchmarks using diverse pair potentials. The proposed algorithm allows us to perform simulation of a system faster than traditional MD in both NVE and NVT ensembles. Moreover, ARMD using the new single-pass algorithm speeds up the convergence of observables in wall-clock time. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Controlling under-actuated robot arms using a high speed dynamics process
NASA Technical Reports Server (NTRS)
Jain, Abhinandan (Inventor); Rodriguez, Guillermo (Inventor)
1994-01-01
The invention controls an under-actuated manipulator by first obtaining predetermined active joint accelerations of the active joints and the passive joint friction forces of the passive joints, then computing articulated body qualities for each of the joints from the current positions of the links, and finally computing from the articulated body qualities and from the active joint accelerations and the passive joint forces, active joint forces of the active joints. Ultimately, the invention transmits servo commands to the active joint forces thus computed to the respective ones of the joint servos. The computation of the active joint forces is accomplished using a recursive dynamics algorithm. In this computation, an inward recursion is first carried out for each link, beginning with the outermost link in order to compute the residual link force of each link from the active joint acceleration if the corresponding joint is active, or from the known passive joint force if the corresponding joint is passive. Then, an outward recursion is carried out for each link in which the active joint force is computed from the residual link force if the corresponding joint is active or the passive joint acceleration is computed from the residual link force if the corresponding joint is passive.
A self-tuning automatic voltage regulator designed for an industrial environment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Flynn, D.; Hogg, B.W.; Swidenbank, E.
Examination of the performance of fixed parameter controllers has resulted in the development of self-tuning strategies for excitation control of turbogenerator systems. In conjunction with the advanced control algorithms, sophisticated measurement techniques have previously been adopted on micromachine systems to provide generator terminal quantities. In power stations, however, a minimalist hardware arrangement would be selected leading to relatively simple measurement techniques. The performance of a range of self-tuning schemes is investigated on an industrial test-bed, employing a typical industrial hardware measurement system. Individual controllers are implemented on a standard digital automatic voltage regulator, as installed in power stations. This employsmore » a VME platform, and the self-tuning algorithms are introduced by linking to a transputer network. The AVR includes all normal features, such as field forcing, VAR limiting and overflux protection. Self-tuning controller performance is compared with that of a fixed gain digital AVR.« less
Large Angle Reorientation of a Solar Sail Using Gimballed Mass Control
NASA Astrophysics Data System (ADS)
Sperber, E.; Fu, B.; Eke, F. O.
2016-06-01
This paper proposes a control strategy for the large angle reorientation of a solar sail equipped with a gimballed mass. The algorithm consists of a first stage that manipulates the gimbal angle in order to minimize the attitude error about a single principal axis. Once certain termination conditions are reached, a regulator is employed that selects a single gimbal angle for minimizing both the residual attitude error concomitantly with the body rate. Because the force due to the specular reflection of radiation is always directed along a reflector's surface normal, this form of thrust vector control cannot generate torques about an axis normal to the plane of the sail. Thus, in order to achieve three-axis control authority a 1-2-1 or 2-1-2 sequence of rotations about principal axes is performed. The control algorithm is implemented directly in-line with the nonlinear equations of motion and key performance characteristics are identified.
NASA Astrophysics Data System (ADS)
Huang, Chengjun; Chen, Xiang; Cao, Shuai; Qiu, Bensheng; Zhang, Xu
2017-08-01
Objective. To realize accurate muscle force estimation, a novel framework is proposed in this paper which can extract the input of the prediction model from the appropriate activation area of the skeletal muscle. Approach. Surface electromyographic (sEMG) signals from the biceps brachii muscle during isometric elbow flexion were collected with a high-density (HD) electrode grid (128 channels) and the external force at three contraction levels was measured at the wrist synchronously. The sEMG envelope matrix was factorized into a matrix of basis vectors with each column representing an activation pattern and a matrix of time-varying coefficients by a nonnegative matrix factorization (NMF) algorithm. The activation pattern with the highest activation intensity, which was defined as the sum of the absolute values of the time-varying coefficient curve, was considered as the major activation pattern, and its channels with high weighting factors were selected to extract the input activation signal of a force estimation model based on the polynomial fitting technique. Main results. Compared with conventional methods using the whole channels of the grid, the proposed method could significantly improve the quality of force estimation and reduce the electrode number. Significance. The proposed method provides a way to find proper electrode placement for force estimation, which can be further employed in muscle heterogeneity analysis, myoelectric prostheses and the control of exoskeleton devices.
Enhanced Particle Swarm Optimization Algorithm: Efficient Training of ReaxFF Reactive Force Fields.
Furman, David; Carmeli, Benny; Zeiri, Yehuda; Kosloff, Ronnie
2018-06-12
Particle swarm optimization (PSO) is a powerful metaheuristic population-based global optimization algorithm. However, when it is applied to nonseparable objective functions, its performance on multimodal landscapes is significantly degraded. Here we show that a significant improvement in the search quality and efficiency on multimodal functions can be achieved by enhancing the basic rotation-invariant PSO algorithm with isotropic Gaussian mutation operators. The new algorithm demonstrates superior performance across several nonlinear, multimodal benchmark functions compared with the rotation-invariant PSO algorithm and the well-established simulated annealing and sequential one-parameter parabolic interpolation methods. A search for the optimal set of parameters for the dispersion interaction model in the ReaxFF- lg reactive force field was carried out with respect to accurate DFT-TS calculations. The resulting optimized force field accurately describes the equations of state of several high-energy molecular crystals where such interactions are of crucial importance. The improved algorithm also presents better performance compared to a genetic algorithm optimization method in the optimization of the parameters of a ReaxFF- lg correction model. The computational framework is implemented in a stand-alone C++ code that allows the straightforward development of ReaxFF reactive force fields.
Naturally selecting solutions: the use of genetic algorithms in bioinformatics.
Manning, Timmy; Sleator, Roy D; Walsh, Paul
2013-01-01
For decades, computer scientists have looked to nature for biologically inspired solutions to computational problems; ranging from robotic control to scheduling optimization. Paradoxically, as we move deeper into the post-genomics era, the reverse is occurring, as biologists and bioinformaticians look to computational techniques, to solve a variety of biological problems. One of the most common biologically inspired techniques are genetic algorithms (GAs), which take the Darwinian concept of natural selection as the driving force behind systems for solving real world problems, including those in the bioinformatics domain. Herein, we provide an overview of genetic algorithms and survey some of the most recent applications of this approach to bioinformatics based problems.
External force/velocity control for an autonomous rehabilitation robot
NASA Astrophysics Data System (ADS)
Saekow, Peerayuth; Neranon, Paramin; Smithmaitrie, Pruittikorn
2018-01-01
Stroke is a primary cause of death and the leading cause of permanent disability in adults. There are many stroke survivors, who live with a variety of levels of disability and always need rehabilitation activities on daily basis. Several studies have reported that usage of rehabilitation robotic devices shows the better improvement outcomes in upper-limb stroke patients than the conventional therapy-nurses or therapists actively help patients with exercise-based rehabilitation. This research focuses on the development of an autonomous robotic trainer designed to guide a stroke patient through an upper-limb rehabilitation task. The robotic device was designed and developed to automate the reaching exercise as mentioned. The designed robotic system is made up of a four-wheel omni-directional mobile robot, an ATI Gamma multi-axis force/torque sensor used to measure contact force and a microcontroller real-time operating system. Proportional plus Integral control was adapted to control the overall performance and stability of the autonomous assistive robot. External force control was successfully implemented to establish the behavioral control strategy for the robot force and velocity control scheme. In summary, the experimental results indicated satisfactorily stable performance of the robot force and velocity control can be considered acceptable. The gain tuning for proportional integral (PI) velocity control algorithms was suitably estimated using the Ziegler-Nichols method in which the optimized proportional and integral gains are 0.45 and 0.11, respectively. Additionally, the PI external force control gains were experimentally tuned using the trial and error method based on a set of experiments which allow a human participant moves the robot along the constrained circular path whilst attempting to minimize the radial force. The performance was analyzed based on the root mean square error (E_RMS) of the radial forces, in which the lower the variation in radial forces, the better the performance of the system. The outstanding performance of the tests as specified by the E_RMS of the radial force was observed with proportional and integral gains of Kp = 0.7 and Ki = 0.75, respectively.
GPU Acceleration of DSP for Communication Receivers.
Gunther, Jake; Gunther, Hyrum; Moon, Todd
2017-09-01
Graphics processing unit (GPU) implementations of signal processing algorithms can outperform CPU-based implementations. This paper describes the GPU implementation of several algorithms encountered in a wide range of high-data rate communication receivers including filters, multirate filters, numerically controlled oscillators, and multi-stage digital down converters. These structures are tested by processing the 20 MHz wide FM radio band (88-108 MHz). Two receiver structures are explored: a single channel receiver and a filter bank channelizer. Both run in real time on NVIDIA GeForce GTX 1080 graphics card.
Development of a Robotic Colonoscopic Manipulation System, Using Haptic Feedback Algorithm.
Woo, Jaehong; Choi, Jae Hyuk; Seo, Jong Tae; Kim, Tae Il; Yi, Byung Ju
2017-01-01
Colonoscopy is one of the most effective diagnostic and therapeutic tools for colorectal diseases. We aim to propose a master-slave robotic colonoscopy that is controllable in remote site using conventional colonoscopy. The master and slave robot were developed to use conventional flexible colonoscopy. The robotic colonoscopic procedure was performed using a colonoscope training model by one expert endoscopist and two unexperienced engineers. To provide the haptic sensation, the insertion force and the rotating torque were measured and sent to the master robot. A slave robot was developed to hold the colonoscopy and its knob, and perform insertion, rotation, and two tilting motions of colonoscope. A master robot was designed to teach motions of the slave robot. These measured force and torque were scaled down by one tenth to provide the operator with some reflection force and torque at the haptic device. The haptic sensation and feedback system was successful and helpful to feel the constrained force or torque in colon. The insertion time using robotic system decreased with repeated procedures. This work proposed a robotic approach for colonoscopy using haptic feedback algorithm, and this robotic device would effectively perform colonoscopy with reduced burden and comparable safety for patients in remote site.
A Vibrating Jaw Crusher with Auteresonant Electric Motor Drive of Swinging Movement
NASA Astrophysics Data System (ADS)
Zagrivniy, E. A.; Poddubniy, D. A.
2018-01-01
The article relates to a vibrating jaw crusher with pendulum vibrating exciter auteresonant electric motor drive and with elastic element rational force distribution, with limited peak-to-peak swing. Its design and its math model are presented. Also disclosed is the operating principle of a vibrating jaw crusher and the control algorithm for controlling the crushing jaw for maintaining the operating mode at resonant frequency.
Design framework of a teleoperating system for a magnetically levitated robot with force feedback
NASA Astrophysics Data System (ADS)
Tsuda, Naoaki; Kato, Norihiko; Nomura, Yoshihiko; Matsui, Hirokazu
2002-02-01
Precise works and manipulating micro objects are tough jobs for operators both mentally and physically. To execute these jobs smoothly without feeling wrongness, use of master-slave system is preferable because position and force are able to be scaled up and down as well under the system. In this study we develop a master-slave system where the size of a slave robot is very small and the slave robot is levitated by magnetic forces. In distinction from ordinary master- slave systems, the levitated robot does not get any other contact forces from outside. Thus we introduce a method using an impedance model for constructing the master-slave system. We confirmed the effectiveness of the positioning control algorithm through experiments.
TEAM: efficient two-locus epistasis tests in human genome-wide association study.
Zhang, Xiang; Huang, Shunping; Zou, Fei; Wang, Wei
2010-06-15
As a promising tool for identifying genetic markers underlying phenotypic differences, genome-wide association study (GWAS) has been extensively investigated in recent years. In GWAS, detecting epistasis (or gene-gene interaction) is preferable over single locus study since many diseases are known to be complex traits. A brute force search is infeasible for epistasis detection in the genome-wide scale because of the intensive computational burden. Existing epistasis detection algorithms are designed for dataset consisting of homozygous markers and small sample size. In human study, however, the genotype may be heterozygous, and number of individuals can be up to thousands. Thus, existing methods are not readily applicable to human datasets. In this article, we propose an efficient algorithm, TEAM, which significantly speeds up epistasis detection for human GWAS. Our algorithm is exhaustive, i.e. it does not ignore any epistatic interaction. Utilizing the minimum spanning tree structure, the algorithm incrementally updates the contingency tables for epistatic tests without scanning all individuals. Our algorithm has broader applicability and is more efficient than existing methods for large sample study. It supports any statistical test that is based on contingency tables, and enables both family-wise error rate and false discovery rate controlling. Extensive experiments show that our algorithm only needs to examine a small portion of the individuals to update the contingency tables, and it achieves at least an order of magnitude speed up over the brute force approach.
Market-based control strategy for long-span structures considering the multi-time delay issue
NASA Astrophysics Data System (ADS)
Li, Hongnan; Song, Jianzhu; Li, Gang
2017-01-01
To solve the different time delays that exist in the control device installed on spatial structures, in this study, discrete analysis using a 2 N precise algorithm was selected to solve the multi-time-delay issue for long-span structures based on the market-based control (MBC) method. The concept of interval mixed energy was introduced from computational structural mechanics and optimal control research areas, and it translates the design of the MBC multi-time-delay controller into a solution for the segment matrix. This approach transforms the serial algorithm in time to parallel computing in space, greatly improving the solving efficiency and numerical stability. The designed controller is able to consider the issue of time delay with a linear controlling force combination and is especially effective for large time-delay conditions. A numerical example of a long-span structure was selected to demonstrate the effectiveness of the presented controller, and the time delay was found to have a significant impact on the results.
NASA Technical Reports Server (NTRS)
Platt, Robert (Inventor); Wampler, II, Charles W. (Inventor); Abdallah, Muhammad E. (Inventor)
2013-01-01
A robotic system includes a robot having manipulators for grasping an object using one of a plurality of grasp types during a primary task, and a controller. The controller controls the manipulators during the primary task using a multiple-task control hierarchy, and automatically parameterizes the internal forces of the system for each grasp type in response to an input signal. The primary task is defined at an object-level of control, e.g., using a closed-chain transformation, such that only select degrees of freedom are commanded for the object. A control system for the robotic system has a host machine and algorithm for controlling the manipulators using the above hierarchy. A method for controlling the system includes receiving and processing the input signal using the host machine, including defining the primary task at the object-level of control, e.g., using a closed-chain definition, and parameterizing the internal forces for each of grasp type.
An enhanced nonlinear damping approach accounting for system constraints in active mass dampers
NASA Astrophysics Data System (ADS)
Venanzi, Ilaria; Ierimonti, Laura; Ubertini, Filippo
2015-11-01
Active mass dampers are a viable solution for mitigating wind-induced vibrations in high-rise buildings and improve occupants' comfort. Such devices suffer particularly when they reach force saturation of the actuators and maximum extension of their stroke, which may occur in case of severe loading conditions (e.g. wind gust and earthquake). Exceeding actuators' physical limits can impair the control performance of the system or even lead to devices damage, with consequent need for repair or substitution of part of the control system. Controllers for active mass dampers should account for their technological limits. Prior work of the authors was devoted to stroke issues and led to the definition of a nonlinear damping approach, very easy to implement in practice. It consisted of a modified skyhook algorithm complemented with a nonlinear braking force to reverse the direction of the mass before reaching the stroke limit. This paper presents an enhanced version of this approach, also accounting for force saturation of the actuator and keeping the simplicity of implementation. This is achieved by modulating the control force by a nonlinear smooth function depending on the ratio between actuator's force and saturation limit. Results of a numerical investigation show that the proposed approach provides similar results to the method of the State Dependent Riccati Equation, a well-established technique for designing optimal controllers for constrained systems, yet very difficult to apply in practice.
Bio-inspired online variable recruitment control of fluidic artificial muscles
NASA Astrophysics Data System (ADS)
Jenkins, Tyler E.; Chapman, Edward M.; Bryant, Matthew
2016-12-01
This paper details the creation of a hybrid variable recruitment control scheme for fluidic artificial muscle (FAM) actuators with an emphasis on maximizing system efficiency and switching control performance. Variable recruitment is the process of altering a system’s active number of actuators, allowing operation in distinct force regimes. Previously, FAM variable recruitment was only quantified with offline, manual valve switching; this study addresses the creation and characterization of novel, on-line FAM switching control algorithms. The bio-inspired algorithms are implemented in conjunction with a PID and model-based controller, and applied to a simulated plant model. Variable recruitment transition effects and chatter rejection are explored via a sensitivity analysis, allowing a system designer to weigh tradeoffs in actuator modeling, algorithm choice, and necessary hardware. Variable recruitment is further developed through simulation of a robotic arm tracking a variety of spline position inputs, requiring several levels of actuator recruitment. Switching controller performance is quantified and compared with baseline systems lacking variable recruitment. The work extends current variable recruitment knowledge by creating novel online variable recruitment control schemes, and exploring how online actuator recruitment affects system efficiency and control performance. Key topics associated with implementing a variable recruitment scheme, including the effects of modeling inaccuracies, hardware considerations, and switching transition concerns are also addressed.
Stephens, Trevor K; Kong, Nathan J; Dockter, Rodney L; O'Neill, John J; Sweet, Robert M; Kowalewski, Timothy M
2018-06-01
Surgical robots are increasingly common, yet routine tasks such as tissue grasping remain potentially harmful with high occurrences of tissue crush injury due to the lack of force feedback from the grasper. This work aims to investigate whether a blended shared control framework which utilizes real-time identification of the object being grasped as part of the feedback may help address the prevalence of tissue crush injury in robotic surgeries. This work tests the proposed shared control framework and tissue identification algorithm on a custom surrogate surgical robotic grasping setup. This scheme utilizes identification of the object being grasped as part of the feedback to regulate to a desired force. The blended shared control is arbitrated between human and an implicit force controller based on a computed confidence in the identification of the grasped object. The online identification is performed using least squares based on a nonlinear tissue model. Testing was performed on five silicone tissue surrogates. Twenty grasps were conducted, with half of the grasps performed under manual control and half of the grasps performed with the proposed blended shared control, to test the efficacy of the control scheme. The identification method resulted in an average of 95% accuracy across all time samples of all tissue grasps using a full leave-grasp-out cross-validation. There was an average convergence time of [Formula: see text] ms across all training grasps for all tissue surrogates. Additionally, there was a reduction in peak forces induced during grasping for all tissue surrogates when applying blended shared control online. The blended shared control using online identification more successfully regulated grasping forces to the desired target force when compared with manual control. The preliminary work on this surrogate setup for surgical grasping merits further investigation on real surgical tools and with real human tissues.
Counterbalance of cutting force for advanced milling operations
NASA Astrophysics Data System (ADS)
Tsai, Nan-Chyuan; Shih, Li-Wen; Lee, Rong-Mao
2010-05-01
The goal of this work is to concurrently counterbalance the dynamic cutting force and regulate the spindle position deviation under various milling conditions by integrating active magnetic bearing (AMB) technique, fuzzy logic algorithm and an adaptive self-tuning feedback loop. Since the dynamics of milling system is highly determined by a few operation conditions, such as speed of spindle, cut depth and feedrate, therefore the dynamic model for cutting process is more appropriate to be constructed by experiments, instead of using theoretical approach. The experimental data, either for idle or cutting, are utilized to establish the database of milling dynamics so that the system parameters can be on-line estimated by employing the proposed fuzzy logic algorithm as the cutting mission is engaged. Based on the estimated milling system model and preset operation conditions, i.e., spindle speed, cut depth and feedrate, the current cutting force can be numerically estimated. Once the current cutting force can be real-time estimated, the corresponding compensation force can be exerted by the equipped AMB to counterbalance the cutting force, in addition to the spindle position regulation by feedback of spindle position. On the other hand, for the magnetic force is nonlinear with respect to the applied electric current and air gap, the characteristics of the employed AMB is investigated also by experiments and a nonlinear mathematic model, in terms of air gap between spindle and electromagnetic pole and coil current, is developed. At the end, the experimental simulations on realistic milling are presented to verify the efficacy of the fuzzy controller for spindle position regulation and the capability of the dynamic cutting force counterbalance.
New nonlinear control algorithms for multiple robot arms
NASA Technical Reports Server (NTRS)
Tarn, T. J.; Bejczy, A. K.; Yun, X.
1988-01-01
Multiple coordinated robot arms are modeled by considering the arms as closed kinematic chains and as a force-constrained mechanical system working on the same object simultaneously. In both formulations, a novel dynamic control method is discussed. It is based on feedback linearization and simultaneous output decoupling technique. By applying a nonlinear feedback and a nonlinear coordinate transformation, the complicated model of the multiple robot arms in either formulation is converted into a linear and output decoupled system. The linear system control theory and optimal control theory are used to design robust controllers in the task space. The first formulation has the advantage of automatically handling the coordination and load distribution among the robot arms. In the second formulation, it was found that by choosing a general output equation it became possible simultaneously to superimpose the position and velocity error feedback with the force-torque error feedback in the task space.
Cavity parameters identification for TESLA control system development
NASA Astrophysics Data System (ADS)
Czarski, Tomasz; Pozniak, Krysztof T.; Romaniuk, Ryszard S.; Simrock, Stefan
2005-08-01
Aim of the control system development for TESLA cavity is a more efficient stabilization of the pulsed, accelerating EM field inside resonator. Cavity parameters identification is an essential task for the comprehensive control algorithm. TESLA cavity simulator has been successfully implemented using high-speed FPGA technology. Electromechanical model of the cavity resonator includes Lorentz force detuning and beam loading. The parameters identification is based on the electrical model of the cavity. The model is represented by state space equation for envelope of the cavity voltage driven by current generator and beam loading. For a given model structure, the over-determined matrix equation is created covering long enough measurement range with the solution according to the least-squares method. A low-degree polynomial approximation is applied to estimate the time-varying cavity detuning during the pulse. The measurement channel distortion is considered, leading to the external cavity model seen by the controller. The comprehensive algorithm of the cavity parameters identification was implemented in the Matlab system with different modes of operation. Some experimental results were presented for different cavity operational conditions. The following considerations have lead to the synthesis of the efficient algorithm for the cavity control system predicted for the potential FPGA technology implementation.
Computing Satellite Maneuvers For A Repeating Ground Track
NASA Technical Reports Server (NTRS)
Shapiro, Bruce
1994-01-01
TOPEX/POSEIDON Ground Track Maintenance Maneuver Targeting Program (GTARG) assists in designing maneuvers to maintain orbit of TOPEX/POSEIDON satellite. Targeting strategies used either maximize time between maneuvers or force control band exit to occur at specified intervals. Runout mode allows for ground-track propagation without targeting. GTARG incorporates analytic mean-element propagation algorithm accounting for all perturbations known to cause significant variations in ground track. Perturbations include oblateness of Earth, luni-solar gravitation, drag, thrusts associated with impulsive maneuvers, and unspecified fixed forces acting on satellite in direction along trajectory. Written in VAX-FORTRAN.
Power maximization of a point absorber wave energy converter using improved model predictive control
NASA Astrophysics Data System (ADS)
Milani, Farideh; Moghaddam, Reihaneh Kardehi
2017-08-01
This paper considers controlling and maximizing the absorbed power of wave energy converters for irregular waves. With respect to physical constraints of the system, a model predictive control is applied. Irregular waves' behavior is predicted by Kalman filter method. Owing to the great influence of controller parameters on the absorbed power, these parameters are optimized by imperialist competitive algorithm. The results illustrate the method's efficiency in maximizing the extracted power in the presence of unknown excitation force which should be predicted by Kalman filter.
A portable back massage robot based on Traditional Chinese Medicine.
Wang, Wendong; Liang, Chaohong; Zhang, Peng; Shi, Yikai
2018-05-30
A portable back massage robot which can complete the massage operations such as tapping, kneading and rolling was designed to improve the level of intelligence and massage effect. An efficient full covered path planning algorithm was put forward for a portable back massage robot to improve the coverage. Currently, massage robots has become one of important research focuses with the increasing requirements for healthcare. The massage robot is difficult to be widely accepted as there are problems of massage robot in control, structure, and coverage path planning. The 3D electromagnetic simulation model was established to optimize electromagnetic force. By analyzing the Traditional Chinese Medicine massage operation and the demands, the path planning algorithm models were established. The experimental platform of the massage robot was built. The simulation results show presented path planning algorithm is suitable for back massage, which ensures that the massage robot traverse the entire back area with improved massage coverage. The tested results show that the massage effect is best when the duty cycle is in the range of 1/8 to 1/2, and the massage force increases with the increase of the input voltage. The massage robot eventually achieved the desired massage effect, and the proposed efficient algorithm can effectively improve the coverage and promote the massage effect.
Recursive Deadbeat Controller Design
NASA Technical Reports Server (NTRS)
Juang, Jer-Nan; Phan, Minh Q.
1997-01-01
This paper presents a recursive algorithm for a deadbeat predictive controller design. The method combines together the concepts of system identification and deadbeat controller designs. It starts with the multi-step output prediction equation and derives the control force in terms of past input and output time histories. The formulation thus derived satisfies simultaneously system identification and deadbeat controller design requirements. As soon as the coefficient matrices are identified satisfying the output prediction equation, no further work is required to compute the deadbeat control gain matrices. The method can be implemented recursively just as any typical recursive system identification techniques.
Telemanipulation of cooperative robots: a case of study
NASA Astrophysics Data System (ADS)
Pliego-Jiménez, Javier; Arteaga-Pérez, Marco
2018-06-01
This article addresses the problem of dexterous robotic grasping by means of a telemanipulation system composed of a single master and two slave robot manipulators. The slave robots are analysed as a cooperative system where it is assumed that the robots can push but not pull the object. In order to achieve a stable rigid grasp, a centralised adaptive position-force control algorithm for the slave robots is proposed. On the other hand, a linear velocity observer for the master robot is developed to avoid numerical differentiation. A set of experiments with different human operators were carried out to show the good performance and capabilities of the proposed control-observer algorithm. In addition, the dynamic model and closed-loop dynamics of the telemanipulation is presented.
NASA Astrophysics Data System (ADS)
Rajaram, Vignesh; Subramanian, Shankar C.
2016-07-01
An important aspect from the perspective of operational safety of heavy road vehicles is the detection and avoidance of collisions, particularly at high speeds. The development of a collision avoidance system is the overall focus of the research presented in this paper. The collision avoidance algorithm was developed using a sliding mode controller (SMC) and compared to one developed using linear full state feedback in terms of performance and controller effort. Important dynamic characteristics such as load transfer during braking, tyre-road interaction, dynamic brake force distribution and pneumatic brake system response were considered. The effect of aerodynamic drag on the controller performance was also studied. The developed control algorithms have been implemented on a Hardware-in-Loop experimental set-up equipped with the vehicle dynamic simulation software, IPG/TruckMaker®. The evaluation has been performed for realistic traffic scenarios with different loading and road conditions. The Hardware-in-Loop experimental results showed that the SMC and full state feedback controller were able to prevent the collision. However, when the discrepancies in the form of parametric variations were included, the SMC provided better results in terms of reduced stopping distance and lower controller effort compared to the full state feedback controller.
Development of a force-reflecting robotic platform for cardiac catheter navigation.
Park, Jun Woo; Choi, Jaesoon; Pak, Hui-Nam; Song, Seung Joon; Lee, Jung Chan; Park, Yongdoo; Shin, Seung Min; Sun, Kyung
2010-11-01
Electrophysiological catheters are used for both diagnostics and clinical intervention. To facilitate more accurate and precise catheter navigation, robotic cardiac catheter navigation systems have been developed and commercialized. The authors have developed a novel force-reflecting robotic catheter navigation system. The system is a network-based master-slave configuration having a 3-degree of freedom robotic manipulator for operation with a conventional cardiac ablation catheter. The master manipulator implements a haptic user interface device with force feedback using a force or torque signal either measured with a sensor or estimated from the motor current signal in the slave manipulator. The slave manipulator is a robotic motion control platform on which the cardiac ablation catheter is mounted. The catheter motions-forward and backward movements, rolling, and catheter tip bending-are controlled by electromechanical actuators located in the slave manipulator. The control software runs on a real-time operating system-based workstation and implements the master/slave motion synchronization control of the robot system. The master/slave motion synchronization response was assessed with step, sinusoidal, and arbitrarily varying motion commands, and showed satisfactory performance with insignificant steady-state motion error. The current system successfully implemented the motion control function and will undergo safety and performance evaluation by means of animal experiments. Further studies on the force feedback control algorithm and on an active motion catheter with an embedded actuation mechanism are underway. © 2010, Copyright the Authors. Artificial Organs © 2010, International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.
Can genetic algorithms help virus writers reshape their creations and avoid detection?
NASA Astrophysics Data System (ADS)
Abu Doush, Iyad; Al-Saleh, Mohammed I.
2017-11-01
Different attack and defence techniques have been evolved over time as actions and reactions between black-hat and white-hat communities. Encryption, polymorphism, metamorphism and obfuscation are among the techniques used by the attackers to bypass security controls. On the other hand, pattern matching, algorithmic scanning, emulation and heuristic are used by the defence team. The Antivirus (AV) is a vital security control that is used against a variety of threats. The AV mainly scans data against its database of virus signatures. Basically, it claims a virus if a match is found. This paper seeks to find the minimal possible changes that can be made on the virus so that it will appear normal when scanned by the AV. Brute-force search through all possible changes can be a computationally expensive task. Alternatively, this paper tries to apply a Genetic Algorithm in solving such a problem. Our proposed algorithm is tested on seven different malware instances. The results show that in all the tested malware instances only a small change in each instance was good enough to bypass the AV.
In-Vivo Real-Time Control of Protein Expression from Endogenous and Synthetic Gene Networks
Orabona, Emanuele; De Stefano, Luca; Ferry, Mike; Hasty, Jeff; di Bernardo, Mario; di Bernardo, Diego
2014-01-01
We describe an innovative experimental and computational approach to control the expression of a protein in a population of yeast cells. We designed a simple control algorithm to automatically regulate the administration of inducer molecules to the cells by comparing the actual protein expression level in the cell population with the desired expression level. We then built an automated platform based on a microfluidic device, a time-lapse microscopy apparatus, and a set of motorized syringes, all controlled by a computer. We tested the platform to force yeast cells to express a desired fixed, or time-varying, amount of a reporter protein over thousands of minutes. The computer automatically switched the type of sugar administered to the cells, its concentration and its duration, according to the control algorithm. Our approach can be used to control expression of any protein, fused to a fluorescent reporter, provided that an external molecule known to (indirectly) affect its promoter activity is available. PMID:24831205
A comparison of kinematic algorithms to estimate gait events during overground running.
Smith, Laura; Preece, Stephen; Mason, Duncan; Bramah, Christopher
2015-01-01
The gait cycle is frequently divided into two distinct phases, stance and swing, which can be accurately determined from ground reaction force data. In the absence of such data, kinematic algorithms can be used to estimate footstrike and toe-off. The performance of previously published algorithms is not consistent between studies. Furthermore, previous algorithms have not been tested at higher running speeds nor used to estimate ground contact times. Therefore the purpose of this study was to both develop a new, custom-designed, event detection algorithm and compare its performance with four previously tested algorithms at higher running speeds. Kinematic and force data were collected on twenty runners during overground running at 5.6m/s. The five algorithms were then implemented and estimated times for footstrike, toe-off and contact time were compared to ground reaction force data. There were large differences in the performance of each algorithm. The custom-designed algorithm provided the most accurate estimation of footstrike (True Error 1.2 ± 17.1 ms) and contact time (True Error 3.5 ± 18.2 ms). Compared to the other tested algorithms, the custom-designed algorithm provided an accurate estimation of footstrike and toe-off across different footstrike patterns. The custom-designed algorithm provides a simple but effective method to accurately estimate footstrike, toe-off and contact time from kinematic data. Copyright © 2014 Elsevier B.V. All rights reserved.
Trajectory Tracking of a Planer Parallel Manipulator by Using Computed Force Control Method
NASA Astrophysics Data System (ADS)
Bayram, Atilla
2017-03-01
Despite small workspace, parallel manipulators have some advantages over their serial counterparts in terms of higher speed, acceleration, rigidity, accuracy, manufacturing cost and payload. Accordingly, this type of manipulators can be used in many applications such as in high-speed machine tools, tuning machine for feeding, sensitive cutting, assembly and packaging. This paper presents a special type of planar parallel manipulator with three degrees of freedom. It is constructed as a variable geometry truss generally known planar Stewart platform. The reachable and orientation workspaces are obtained for this manipulator. The inverse kinematic analysis is solved for the trajectory tracking according to the redundancy and joint limit avoidance. Then, the dynamics model of the manipulator is established by using Virtual Work method. The simulations are performed to follow the given planar trajectories by using the dynamic equations of the variable geometry truss manipulator and computed force control method. In computed force control method, the feedback gain matrices for PD control are tuned with fixed matrices by trail end error and variable ones by means of optimization with genetic algorithm.
Efficient molecular dynamics simulations with many-body potentials on graphics processing units
NASA Astrophysics Data System (ADS)
Fan, Zheyong; Chen, Wei; Vierimaa, Ville; Harju, Ari
2017-09-01
Graphics processing units have been extensively used to accelerate classical molecular dynamics simulations. However, there is much less progress on the acceleration of force evaluations for many-body potentials compared to pairwise ones. In the conventional force evaluation algorithm for many-body potentials, the force, virial stress, and heat current for a given atom are accumulated within different loops, which could result in write conflict between different threads in a CUDA kernel. In this work, we provide a new force evaluation algorithm, which is based on an explicit pairwise force expression for many-body potentials derived recently (Fan et al., 2015). In our algorithm, the force, virial stress, and heat current for a given atom can be accumulated within a single thread and is free of write conflicts. We discuss the formulations and algorithms and evaluate their performance. A new open-source code, GPUMD, is developed based on the proposed formulations. For the Tersoff many-body potential, the double precision performance of GPUMD using a Tesla K40 card is equivalent to that of the LAMMPS (Large-scale Atomic/Molecular Massively Parallel Simulator) molecular dynamics code running with about 100 CPU cores (Intel Xeon CPU X5670 @ 2.93 GHz).
Energy to the Edge (E2E) U.S. Army Rapid Equipping Force
2014-03-21
generators, parallel multiple sources, prioritize loads, and balance loads. Smart grids are based on complex algorithms and controls. 3. Reduce...stations are not able to be s rviced by prim power because of their location in the middle of a very active airfield and fueling a syst m that c ist
NASA Astrophysics Data System (ADS)
Prawin, J.; Rama Mohan Rao, A.
2018-01-01
The knowledge of dynamic loads acting on a structure is always required for many practical engineering problems, such as structural strength analysis, health monitoring and fault diagnosis, and vibration isolation. In this paper, we present an online input force time history reconstruction algorithm using Dynamic Principal Component Analysis (DPCA) from the acceleration time history response measurements using moving windows. We also present an optimal sensor placement algorithm to place limited sensors at dynamically sensitive spatial locations. The major advantage of the proposed input force identification algorithm is that it does not require finite element idealization of structure unlike the earlier formulations and therefore free from physical modelling errors. We have considered three numerical examples to validate the accuracy of the proposed DPCA based method. Effects of measurement noise, multiple force identification, different kinds of loading, incomplete measurements, and high noise levels are investigated in detail. Parametric studies have been carried out to arrive at optimal window size and also the percentage of window overlap. Studies presented in this paper clearly establish the merits of the proposed algorithm for online load identification.
Wang, Lingling; Fu, Li
2018-01-01
In order to decrease the velocity sculling error under vibration environments, a new sculling error compensation algorithm for strapdown inertial navigation system (SINS) using angular rate and specific force measurements as inputs is proposed in this paper. First, the sculling error formula in incremental velocity update is analytically derived in terms of the angular rate and specific force. Next, two-time scale perturbation models of the angular rate and specific force are constructed. The new sculling correction term is derived and a gravitational search optimization method is used to determine the parameters in the two-time scale perturbation models. Finally, the performance of the proposed algorithm is evaluated in a stochastic real sculling environment, which is different from the conventional algorithms simulated in a pure sculling circumstance. A series of test results demonstrate that the new sculling compensation algorithm can achieve balanced real/pseudo sculling correction performance during velocity update with the advantage of less computation load compared with conventional algorithms. PMID:29346323
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chandrasekhar Potluri,; Madhavi Anugolu; Marco P. Schoen
2013-08-01
In this work, an array of three surface Electrography (sEMG) sensors are used to acquired muscle extension and contraction signals for 18 healthy test subjects. The skeletal muscle force is estimated using the acquired sEMG signals and a Non-linear Wiener Hammerstein model, relating the two signals in a dynamic fashion. The model is obtained from using System Identification (SI) algorithm. The obtained force models for each sensor are fused using a proposed fuzzy logic concept with the intent to improve the force estimation accuracy and resilience to sensor failure or misalignment. For the fuzzy logic inference system, the sEMG entropy,more » the relative error, and the correlation of the force signals are considered for defining the membership functions. The proposed fusion algorithm yields an average of 92.49% correlation between the actual force and the overall estimated force output. In addition, the proposed fusionbased approach is implemented on a test platform. Experiments indicate an improvement in finger/hand force estimation.« less
Effects of walking speed and age on the muscle forces of unimpaired gait subjects
NASA Astrophysics Data System (ADS)
Fliger, Carlos G.; Crespo, Marcos J.; Braidot, Ariel A.; Ravera, Emiliano P.
2016-04-01
Clinical gait analysis provides great contributions to the understanding of gait disorders and also provides a mean for a more comprehensive treatment plan. However, direct measures of muscle forces are difficult to obtain in clinical settings because it generally requires invasive techniques. Techniques of musculoskeletal modeling have been used for several decades to improve the benefits of clinical gait analysis, but many of the previous studies were focused on analyzing separately the muscle forces distribution of children or adult subjects with only one condition of walking speed. For these reason, the present study aims to enhance the current literature by describing the age and speed gait effects on muscle forces during walking. We used a musculoskeletal model with 23 degrees of freedom and 92 musculotendon actuators to represent 76 muscles in the lower extremities and torso. The computed muscle control algorithm was used to estimate the muscle forces from the kinematics and to adjust the model obtained in the residual reduction algorithm. We find that hamstrings has an important peak in the mid-stance phase in the adult group but this peak disappears in the children group with the same walking speed condition. Furthermore, the rectus femoris presents an increase in the muscle force during the pre- and mid-swing in concordance with the increment in the walking speed of subjects. This behavior could be associated with the role that the rectus femoris has in the acceleration of the knee joint. Finally, we show that the soleus is the muscle that perform the major force throughout the gait cycle regardless of age and walking speed.
Kim, Wangdo; Espanha, Margarida M.; Veloso, António P.; Araújo, Duarte; João, Filipa; Carrão, Luis; Kohles, Sean S.
2013-01-01
Traditional locomotion studies emphasize an optimization of the desired movement trajectories while ignoring sensory feedback. We propose an information based theory that locomotion is neither triggered nor commanded but controlled. The basis for this control is the information derived from perceiving oneself in the world. Control therefore lies in the human-environment system. In order to test this hypothesis, we derived a mathematical foundation characterizing the energy that is required to perform a rotational twist, with small amplitude, of the instantaneous axes of the knee (IAK). We have found that the joint’s perception of the ground reaction force may be replaced by the co-perception of muscle activation with appropriate intensities. This approach generated an accurate comparison with known joint forces and appears appropriate in so far as predicting the effect on the knee when it is free to twist about the IAK. PMID:24932433
NASA Technical Reports Server (NTRS)
Fijany, A.; Featherstone, R.
1999-01-01
This paper presents a new formulation of the Constraint Force Algorithm that corrects a major limitation in the original, and sheds new light on the relationship between it and other dynamics algoritms.
Development of a Robotic Colonoscopic Manipulation System, Using Haptic Feedback Algorithm
Woo, Jaehong; Choi, Jae Hyuk; Seo, Jong Tae
2017-01-01
Purpose Colonoscopy is one of the most effective diagnostic and therapeutic tools for colorectal diseases. We aim to propose a master-slave robotic colonoscopy that is controllable in remote site using conventional colonoscopy. Materials and Methods The master and slave robot were developed to use conventional flexible colonoscopy. The robotic colonoscopic procedure was performed using a colonoscope training model by one expert endoscopist and two unexperienced engineers. To provide the haptic sensation, the insertion force and the rotating torque were measured and sent to the master robot. Results A slave robot was developed to hold the colonoscopy and its knob, and perform insertion, rotation, and two tilting motions of colonoscope. A master robot was designed to teach motions of the slave robot. These measured force and torque were scaled down by one tenth to provide the operator with some reflection force and torque at the haptic device. The haptic sensation and feedback system was successful and helpful to feel the constrained force or torque in colon. The insertion time using robotic system decreased with repeated procedures. Conclusion This work proposed a robotic approach for colonoscopy using haptic feedback algorithm, and this robotic device would effectively perform colonoscopy with reduced burden and comparable safety for patients in remote site. PMID:27873506
Sail Plan Configuration Optimization for a Modern Clipper Ship
NASA Astrophysics Data System (ADS)
Gerritsen, Margot; Doyle, Tyler; Iaccarino, Gianluca; Moin, Parviz
2002-11-01
We investigate the use of gradient-based and evolutionary algorithms for sail shape optimization. We present preliminary results for the optimization of sheeting angles for the rig of the future three-masted clipper yacht Maltese Falcon. This yacht will be equipped with square-rigged masts made up of yards of circular arc cross sections. This design is especially attractive for megayachts because it provides a large sail area while maintaining aerodynamic and structural efficiency. The rig remains almost rigid in a large range of wind conditions and therefore a simple geometrical model can be constructed without accounting for the true flying shape. The sheeting angle optimization studies are performed using both gradient-based cost function minimization and evolutionary algorithms. The fluid flow is modeled by the Reynolds-averaged Navier-Stokes equations with the Spallart-Allmaras turbulence model. Unstructured non-conforming grids are used to increase robustness and computational efficiency. The optimization process is automated by integrating the system components (geometry construction, grid generation, flow solver, force calculator, optimization). We compare the optimization results to those done previously by user-controlled parametric studies using simple cost functions and user intuition. We also investigate the effectiveness of various cost functions in the optimization (driving force maximization, ratio of driving force to heeling force maximization).
Description of a Normal-Force In-Situ Turbulence Algorithm for Airplanes
NASA Technical Reports Server (NTRS)
Stewart, Eric C.
2003-01-01
A normal-force in-situ turbulence algorithm for potential use on commercial airliners is described. The algorithm can produce information that can be used to predict hazardous accelerations of airplanes or to aid meteorologists in forecasting weather patterns. The algorithm uses normal acceleration and other measures of the airplane state to approximate the vertical gust velocity. That is, the fundamental, yet simple, relationship between normal acceleration and the change in normal force coefficient is exploited to produce an estimate of the vertical gust velocity. This simple approach is robust and produces a time history of the vertical gust velocity that would be intuitively useful to pilots. With proper processing, the time history can be transformed into the eddy dissipation rate that would be useful to meteorologists. Flight data for a simplified research implementation of the algorithm are presented for a severe turbulence encounter of the NASA ARIES Boeing 757 research airplane. The results indicate that the algorithm has potential for producing accurate in-situ turbulence measurements. However, more extensive tests and analysis are needed with an operational implementation of the algorithm to make comparisons with other algorithms or methods.
A Demons algorithm for image registration with locally adaptive regularization.
Cahill, Nathan D; Noble, J Alison; Hawkes, David J
2009-01-01
Thirion's Demons is a popular algorithm for nonrigid image registration because of its linear computational complexity and ease of implementation. It approximately solves the diffusion registration problem by successively estimating force vectors that drive the deformation toward alignment and smoothing the force vectors by Gaussian convolution. In this article, we show how the Demons algorithm can be generalized to allow image-driven locally adaptive regularization in a manner that preserves both the linear complexity and ease of implementation of the original Demons algorithm. We show that the proposed algorithm exhibits lower target registration error and requires less computational effort than the original Demons algorithm on the registration of serial chest CT scans of patients with lung nodules.
NASA Technical Reports Server (NTRS)
Schkolnik, Gerard S.
1993-01-01
The application of an adaptive real-time measurement-based performance optimization technique is being explored for a future flight research program. The key technical challenge of the approach is parameter identification, which uses a perturbation-search technique to identify changes in performance caused by forced oscillations of the controls. The controls on the NASA F-15 highly integrated digital electronic control (HIDEC) aircraft were perturbed using inlet cowl rotation steps at various subsonic and supersonic flight conditions to determine the effect on aircraft performance. The feasibility of the perturbation-search technique for identifying integrated airframe-propulsion system performance effects was successfully shown through flight experiments and postflight data analysis. Aircraft response and control data were analyzed postflight to identify gradients and to determine the minimum drag point. Changes in longitudinal acceleration as small as 0.004 g were measured, and absolute resolution was estimated to be 0.002 g or approximately 50 lbf of drag. Two techniques for identifying performance gradients were compared: a least-squares estimation algorithm and a modified maximum likelihood estimator algorithm. A complementary filter algorithm was used with the least squares estimator.
NASA Technical Reports Server (NTRS)
Schkolnik, Gerald S.
1993-01-01
The application of an adaptive real-time measurement-based performance optimization technique is being explored for a future flight research program. The key technical challenge of the approach is parameter identification, which uses a perturbation-search technique to identify changes in performance caused by forced oscillations of the controls. The controls on the NASA F-15 highly integrated digital electronic control (HIDEC) aircraft were perturbed using inlet cowl rotation steps at various subsonic and supersonic flight conditions to determine the effect on aircraft performance. The feasibility of the perturbation-search technique for identifying integrated airframe-propulsion system performance effects was successfully shown through flight experiments and postflight data analysis. Aircraft response and control data were analyzed postflight to identify gradients and to determine the minimum drag point. Changes in longitudinal acceleration as small as 0.004 g were measured, and absolute resolution was estimated to be 0.002 g or approximately 50 lbf of drag. Two techniques for identifying performance gradients were compared: a least-squares estimation algorithm and a modified maximum likelihood estimator algorithm. A complementary filter algorithm was used with the least squares estimator.
NASA Astrophysics Data System (ADS)
Kiso, Atsushi; Murakami, Hiroki; Seki, Hirokazu
This paper describes a novel obstacle avoidance control scheme of electric powered wheelchairs for realizing the safe driving in various environments. The “electric powered wheelchair” which generates the driving force by electric motors is expected to be widely used as a mobility support system for elderly people and disabled people; however, the driving performance must be further improved because the number of driving accidents caused by elderly operator's narrow sight and joystick operation errors is increasing. This paper proposes a novel obstacle avoidance control scheme based on fuzzy algorithm to prevent driving accidents. The proposed control system determines the driving direction by fuzzy algorithm based on the information of the joystick operation and distance to obstacles measured by ultrasonic sensors. Fuzzy rules to determine the driving direction are designed surely to avoid passers-by and walls considering the human's intent and driving environments. Some driving experiments on the practical situations show the effectiveness of the proposed control system.
Walter, Jonathan P; Pandy, Marcus G
2017-10-01
The aim of this study was to perform multi-body, muscle-driven, forward-dynamics simulations of human gait using a 6-degree-of-freedom (6-DOF) model of the knee in tandem with a surrogate model of articular contact and force control. A forward-dynamics simulation incorporating position, velocity and contact force-feedback control (FFC) was used to track full-body motion capture data recorded for multiple trials of level walking and stair descent performed by two individuals with instrumented knee implants. Tibiofemoral contact force errors for FFC were compared against those obtained from a standard computed muscle control algorithm (CMC) with a 6-DOF knee contact model (CMC6); CMC with a 1-DOF translating hinge-knee model (CMC1); and static optimization with a 1-DOF translating hinge-knee model (SO). Tibiofemoral joint loads predicted by FFC and CMC6 were comparable for level walking, however FFC produced more accurate results for stair descent. SO yielded reasonable predictions of joint contact loading for level walking but significant differences between model and experiment were observed for stair descent. CMC1 produced the least accurate predictions of tibiofemoral contact loads for both tasks. Our findings suggest that reliable estimates of knee-joint loading may be obtained by incorporating position, velocity and force-feedback control with a multi-DOF model of joint contact in a forward-dynamics simulation of gait. Copyright © 2017 IPEM. Published by Elsevier Ltd. All rights reserved.
Evaluation of a pulse control law for flexible spacecraft
NASA Technical Reports Server (NTRS)
1985-01-01
The following analytical and experimental studies were conducted: (1) A simple algorithm was developed to suppress the structural vibrations of 3-dimensional distributed parameter systems, subjected to interface motion and/or directly applied forces. The algorithm is designed to cope with structural oscillations superposed on top of rigid-body motion: a situation identical to that encountered by the SCOLE components. A significant feature of the method is that only local measurements of the structural displacements and velocities relative to the moving frame of reference are needed. (2) A numerical simulation study was conducted on a simple linear finite element model of a cantilevered plate which was subjected to test excitations consisting of impulsive base motion and of nonstationary wide-band random excitation applied at its root. In each situation, the aim was to suppress the vibrations of the plate relative to the moving base. (3) A small mechanical model resembling an aircraft wing was designed and fabricated to investigate the control algorithm under realistic laboratory conditions.
NASA Astrophysics Data System (ADS)
Xiong, Lu; Yu, Zhuoping; Wang, Yang; Yang, Chen; Meng, Yufeng
2012-06-01
This paper focuses on the vehicle dynamic control system for a four in-wheel motor drive electric vehicle, aiming at improving vehicle stability under critical driving conditions. The vehicle dynamics controller is composed of three modules, i.e. motion following control, control allocation and vehicle state estimation. Considering the strong nonlinearity of the tyres under critical driving conditions, the yaw motion of the vehicle is regulated by gain scheduling control based on the linear quadratic regulator theory. The feed-forward and feedback gains of the controller are updated in real-time by online estimation of the tyre cornering stiffness, so as to ensure the control robustness against environmental disturbances as well as parameter uncertainty. The control allocation module allocates the calculated generalised force requirements to each in-wheel motor based on quadratic programming theory while taking the tyre longitudinal/lateral force coupling characteristic into consideration. Simulations under a variety of driving conditions are carried out to verify the control algorithm. Simulation results indicate that the proposed vehicle stability controller can effectively stabilise the vehicle motion under critical driving conditions.
Bunderson, Nathan E.; Bingham, Jeffrey T.; Sohn, M. Hongchul; Ting, Lena H.; Burkholder, Thomas J.
2015-01-01
Neuromusculoskeletal models solve the basic problem of determining how the body moves under the influence of external and internal forces. Existing biomechanical modeling programs often emphasize dynamics with the goal of finding a feed-forward neural program to replicate experimental data or of estimating force contributions or individual muscles. The computation of rigid-body dynamics, muscle forces, and activation of the muscles are often performed separately. We have developed an intrinsically forward computational platform (Neuromechanic, www.neuromechanic.com) that explicitly represents the interdependencies among rigid body dynamics, frictional contact, muscle mechanics, and neural control modules. This formulation has significant advantages for optimization and forward simulation, particularly with application to neural controllers with feedback or regulatory features. Explicit inclusion of all state dependencies allows calculation of system derivatives with respect to kinematic states as well as muscle and neural control states, thus affording a wealth of analytical tools, including linearization, stability analyses and calculation of initial conditions for forward simulations. In this review, we describe our algorithm for generating state equations and explain how they may be used in integration, linearization and stability analysis tools to provide structural insights into the neural control of movement. PMID:23027632
Bunderson, Nathan E; Bingham, Jeffrey T; Sohn, M Hongchul; Ting, Lena H; Burkholder, Thomas J
2012-10-01
Neuromusculoskeletal models solve the basic problem of determining how the body moves under the influence of external and internal forces. Existing biomechanical modeling programs often emphasize dynamics with the goal of finding a feed-forward neural program to replicate experimental data or of estimating force contributions or individual muscles. The computation of rigid-body dynamics, muscle forces, and activation of the muscles are often performed separately. We have developed an intrinsically forward computational platform (Neuromechanic, www.neuromechanic.com) that explicitly represents the interdependencies among rigid body dynamics, frictional contact, muscle mechanics, and neural control modules. This formulation has significant advantages for optimization and forward simulation, particularly with application to neural controllers with feedback or regulatory features. Explicit inclusion of all state dependencies allows calculation of system derivatives with respect to kinematic states and muscle and neural control states, thus affording a wealth of analytical tools, including linearization, stability analyses and calculation of initial conditions for forward simulations. In this review, we describe our algorithm for generating state equations and explain how they may be used in integration, linearization, and stability analysis tools to provide structural insights into the neural control of movement. Copyright © 2012 John Wiley & Sons, Ltd.
Input Forces Estimation for Nonlinear Systems by Applying a Square-Root Cubature Kalman Filter.
Song, Xuegang; Zhang, Yuexin; Liang, Dakai
2017-10-10
This work presents a novel inverse algorithm to estimate time-varying input forces in nonlinear beam systems. With the system parameters determined, the input forces can be estimated in real-time from dynamic responses, which can be used for structural health monitoring. In the process of input forces estimation, the Runge-Kutta fourth-order algorithm was employed to discretize the state equations; a square-root cubature Kalman filter (SRCKF) was employed to suppress white noise; the residual innovation sequences, a priori state estimate, gain matrix, and innovation covariance generated by SRCKF were employed to estimate the magnitude and location of input forces by using a nonlinear estimator. The nonlinear estimator was based on the least squares method. Numerical simulations of a large deflection beam and an experiment of a linear beam constrained by a nonlinear spring were employed. The results demonstrated accuracy of the nonlinear algorithm.
Scholl, Zackary N.; Marszalek, Piotr E.
2013-01-01
The benefits of single molecule force spectroscopy (SMFS) clearly outweigh the challenges which include small sample sizes, tedious data collection and introduction of human bias during the subjective data selection. These difficulties can be partially eliminated through automation of the experimental data collection process for atomic force microscopy (AFM). Automation can be accomplished using an algorithm that triages usable force-extension recordings quickly with positive and negative selection. We implemented an algorithm based on the windowed fast Fourier transform of force-extension traces that identifies peaks using force-extension regimes to correctly identify usable recordings from proteins composed of repeated domains. This algorithm excels as a real-time diagnostic because it involves <30 ms computational time, has high sensitivity and specificity, and efficiently detects weak unfolding events. We used the statistics provided by the automated procedure to clearly demonstrate the properties of molecular adhesion and how these properties change with differences in the cantilever tip and protein functional groups and protein age. PMID:24001740
Real Time Energy Management Control Strategies for Hybrid Powertrains
NASA Astrophysics Data System (ADS)
Zaher, Mohamed Hegazi Mohamed
In order to improve fuel efficiency and reduce emissions of mobile vehicles, various hybrid power-train concepts have been developed over the years. This thesis focuses on embedded control of hybrid powertrain concepts for mobile vehicle applications. Optimal robust control approach is used to develop a real time energy management strategy for continuous operations. The main idea is to store the normally wasted mechanical regenerative energy in energy storage devices for later usage. The regenerative energy recovery opportunity exists in any condition where the speed of motion is in opposite direction to the applied force or torque. This is the case when the vehicle is braking, decelerating, or the motion is driven by gravitational force, or load driven. There are three main concepts for regernerative energy storing devices in hybrid vehicles: electric, hydraulic, and flywheel. The real time control challenge is to balance the system power demand from the engine and the hybrid storage device, without depleting the energy storage device or stalling the engine in any work cycle, while making optimal use of the energy saving opportunities in a given operational, often repetitive cycle. In the worst case scenario, only engine is used and hybrid system completely disabled. A rule based control is developed and tuned for different work cycles and linked to a gain scheduling algorithm. A gain scheduling algorithm identifies the cycle being performed by the machine and its position via GPS, and maps them to the gains.
A new algorithm for modeling friction in dynamic mechanical systems
NASA Technical Reports Server (NTRS)
Hill, R. E.
1988-01-01
A method of modeling friction forces that impede the motion of parts of dynamic mechanical systems is described. Conventional methods in which the friction effect is assumed a constant force, or torque, in a direction opposite to the relative motion, are applicable only to those cases where applied forces are large in comparison to the friction, and where there is little interest in system behavior close to the times of transitions through zero velocity. An algorithm is described that provides accurate determination of friction forces over a wide range of applied force and velocity conditions. The method avoids the simulation errors resulting from a finite integration interval used in connection with a conventional friction model, as is the case in many digital computer-based simulations. The algorithm incorporates a predictive calculation based on initial conditions of motion, externally applied forces, inertia, and integration step size. The predictive calculation in connection with an external integration process provides an accurate determination of both static and Coulomb friction forces and resulting motions in dynamic simulations. Accuracy of the results is improved over that obtained with conventional methods and a relatively large integration step size is permitted. A function block for incorporation in a specific simulation program is described. The general form of the algorithm facilitates implementation with various programming languages such as FORTRAN or C, as well as with other simulation programs.
NASA Astrophysics Data System (ADS)
Kovalenko, Iaroslav; Verron, Sylvain; Garan, Maryna; Šafka, Jiří; Moučka, Michal
2017-04-01
This article describes a method of in-situ process monitoring in the digital light processing (DLP) 3D printer. It is based on the continuous measurement of the adhesion force between printing surface and bottom of a liquid resin bath. This method is suitable only for the bottom-up DPL printers. Control system compares the force at the moment of unsticking of printed layer from the bottom of the tank, when it has the largest value in printing cycle, with theoretical value. Implementation of suggested algorithm can make detection of faults during the printing process possible.
A grouping method based on grid density and relationship for crowd evacuation simulation
NASA Astrophysics Data System (ADS)
Li, Yan; Liu, Hong; Liu, Guang-peng; Li, Liang; Moore, Philip; Hu, Bin
2017-05-01
Psychological factors affect the movement of people in the competitive or panic mode of evacuation, in which the density of pedestrians is relatively large and the distance among them is small. In this paper, a crowd is divided into groups according to their social relations to simulate the actual movement of crowd evacuation more realistically and increase the attractiveness of the group based on social force model. The force of group attraction is the synthesis of two forces; one is the attraction of the individuals generated by their social relations to gather, and the other is that of the group leader to the individuals within the group to ensure that the individuals follow the leader. The synthetic force determines the trajectory of individuals. The evacuation process is demonstrated using the improved social force model. In the improved social force model, the individuals with close social relations gradually present a closer and coordinated action while following the leader. In this paper, a grouping algorithm is proposed based on grid density and relationship via computer simulation to illustrate the features of the improved social force model. The definition of the parameters involved in the algorithm is given, and the effect of relational value on the grouping is tested. Reasonable numbers of grids and weights are selected. The effectiveness of the algorithm is shown through simulation experiments. A simulation platform is also established using the proposed grouping algorithm and the improved social force model for crowd evacuation simulation.
Adaptive neuron-to-EMG decoder training for FES neuroprostheses
NASA Astrophysics Data System (ADS)
Ethier, Christian; Acuna, Daniel; Solla, Sara A.; Miller, Lee E.
2016-08-01
Objective. We have previously demonstrated a brain-machine interface neuroprosthetic system that provided continuous control of functional electrical stimulation (FES) and restoration of grasp in a primate model of spinal cord injury (SCI). Predicting intended EMG directly from cortical recordings provides a flexible high-dimensional control signal for FES. However, no peripheral signal such as force or EMG is available for training EMG decoders in paralyzed individuals. Approach. Here we present a method for training an EMG decoder in the absence of muscle activity recordings; the decoder relies on mapping behaviorally relevant cortical activity to the inferred EMG activity underlying an intended action. Monkeys were trained at a 2D isometric wrist force task to control a computer cursor by applying force in the flexion, extension, ulnar, and radial directions and execute a center-out task. We used a generic muscle force-to-endpoint force model based on muscle pulling directions to relate each target force to an optimal EMG pattern that attained the target force while minimizing overall muscle activity. We trained EMG decoders during the target hold periods using a gradient descent algorithm that compared EMG predictions to optimal EMG patterns. Main results. We tested this method both offline and online. We quantified both the accuracy of offline force predictions and the ability of a monkey to use these real-time force predictions for closed-loop cursor control. We compared both offline and online results to those obtained with several other direct force decoders, including an optimal decoder computed from concurrently measured neural and force signals. Significance. This novel approach to training an adaptive EMG decoder could make a brain-control FES neuroprosthesis an effective tool to restore the hand function of paralyzed individuals. Clinical implementation would make use of individualized EMG-to-force models. Broad generalization could be achieved by including data from multiple grasping tasks in the training of the neuron-to-EMG decoder. Our approach would make it possible for persons with SCI to grasp objects with their own hands, using near-normal motor intent.
Dikin-type algorithms for dextrous grasping force optimization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buss, M.; Faybusovich, L.; Moore, J.B.
1998-08-01
One of the central issues in dextrous robotic hand grasping is to balance external forces acting on the object and at the same time achieve grasp stability and minimum grasping effort. A companion paper shows that the nonlinear friction-force limit constraints on grasping forces are equivalent to the positive definiteness of a certain matrix subject to linear constraints. Further, compensation of the external object force is also a linear constraint on this matrix. Consequently, the task of grasping force optimization can be formulated as a problem with semidefinite constraints. In this paper, two versions of strictly convex cost functions, onemore » of them self-concordant, are considered. These are twice-continuously differentiable functions that tend to infinity at the boundary of possible definiteness. For the general class of such cost functions, Dikin-type algorithms are presented. It is shown that the proposed algorithms guarantee convergence to the unique solution of the semidefinite programming problem associated with dextrous grasping force optimization. Numerical examples demonstrate the simplicity of implementation, the good numerical properties, and the optimality of the approach.« less
Design of safety-oriented control allocation strategies for overactuated electric vehicles
NASA Astrophysics Data System (ADS)
de Castro, Ricardo; Tanelli, Mara; Esteves Araújo, Rui; Savaresi, Sergio M.
2014-08-01
The new vehicle platforms for electric vehicles (EVs) that are becoming available are characterised by actuator redundancy, which makes it possible to jointly optimise different aspects of the vehicle motion. To do this, high-level control objectives are first specified and solved with appropriate control strategies. Then, the resulting virtual control action must be translated into actual actuator commands by a control allocation layer that takes care of computing the forces to be applied at the wheels. This step, in general, is quite demanding as far as computational complexity is considered. In this work, a safety-oriented approach to this problem is proposed. Specifically, a four-wheel steer EV with four in-wheel motors is considered, and the high-level motion controller is designed within a sliding mode framework with conditional integrators. For distributing the forces among the tyres, two control allocation approaches are investigated. The first, based on the extension of the cascading generalised inverse method, is computationally efficient but shows some limitations in dealing with unfeasible force values. To solve the problem, a second allocation algorithm is proposed, which relies on the linearisation of the tyre-road friction constraints. Extensive tests, carried out in the CarSim simulation environment, demonstrate the effectiveness of the proposed approach.
Lin, Di; Labeau, Fabrice; Yao, Yuanzhe; Vasilakos, Athanasios V; Tang, Yu
2016-07-01
Wireless technologies and vehicle-mounted or wearable medical sensors are pervasive to support ubiquitous healthcare applications. However, a critical issue of using wireless communications under a healthcare scenario rests at the electromagnetic interference (EMI) caused by radio frequency transmission. A high level of EMI may lead to a critical malfunction of medical sensors, and in such a scenario, a few users who are not transmitting emergency data could be required to reduce their transmit power or even temporarily disconnect from the network in order to guarantee the normal operation of medical sensors as well as the transmission of emergency data. In this paper, we propose a joint power and admission control algorithm to schedule the users' transmission of medical data. The objective of this algorithm is to minimize the number of users who are forced to disconnect from the network while keeping the EMI on medical sensors at an acceptable level. We show that a fixed point of proposed algorithm always exists, and at the fixed point, our proposed algorithm can minimize the number of low-priority users who are required to disconnect from the network. Numerical results illustrate that the proposed algorithm can achieve robust performance against the variations of mobile hospital environments.
An Evaluation of a Flight Deck Interval Management Algorithm Including Delayed Target Trajectories
NASA Technical Reports Server (NTRS)
Swieringa, Kurt A.; Underwood, Matthew C.; Barmore, Bryan; Leonard, Robert D.
2014-01-01
NASA's first Air Traffic Management (ATM) Technology Demonstration (ATD-1) was created to facilitate the transition of mature air traffic management technologies from the laboratory to operational use. The technologies selected for demonstration are the Traffic Management Advisor with Terminal Metering (TMA-TM), which provides precise timebased scheduling in the terminal airspace; Controller Managed Spacing (CMS), which provides controllers with decision support tools enabling precise schedule conformance; and Interval Management (IM), which consists of flight deck automation that enables aircraft to achieve or maintain precise in-trail spacing. During high demand operations, TMA-TM may produce a schedule and corresponding aircraft trajectories that include delay to ensure that a particular aircraft will be properly spaced from other aircraft at each schedule waypoint. These delayed trajectories are not communicated to the automation onboard the aircraft, forcing the IM aircraft to use the published speeds to estimate the target aircraft's estimated time of arrival. As a result, the aircraft performing IM operations may follow an aircraft whose TMA-TM generated trajectories have substantial speed deviations from the speeds expected by the spacing algorithm. Previous spacing algorithms were not designed to handle this magnitude of uncertainty. A simulation was conducted to examine a modified spacing algorithm with the ability to follow aircraft flying delayed trajectories. The simulation investigated the use of the new spacing algorithm with various delayed speed profiles and wind conditions, as well as several other variables designed to simulate real-life variability. The results and conclusions of this study indicate that the new spacing algorithm generally exhibits good performance; however, some types of target aircraft speed profiles can cause the spacing algorithm to command less than optimal speed control behavior.
Adjustment of gripping force by optical systems
NASA Astrophysics Data System (ADS)
Jalba, C. K.; Barz, C.
2018-01-01
With increasing automation, robotics also requires ever more intelligent solutions in the handling of various tasks. In this context, many grippers must also be re-designed. For this, they must always be adapted for different requirements. The equipment of the gripper systems with sensors should help to make the gripping process more intelligent. In order to achieve such objectives, optical systems can also be used. This work analyzes how the gripping force can be adjusted by means of an optical recognition. The result of this work is the creation of a connection between optical recognition, tolerances, gripping force and real-time control. In this way, algorithms can be created, with the aid of which robot grippers as well as other gripping systems become more intelligent.
Coordinating with Humans by Adjustable-Autonomy for Multirobot Pursuit (CHAMP)
NASA Astrophysics Data System (ADS)
Dumond, Danielle; Ayers, Jeanine; Schurr, Nathan; Carlin, Alan; Burke, Dustin; Rousseau, Jeffrey
2012-06-01
One of the primary challenges facing the modern small-unit tactical team is the ability of the unit to safely and effectively search, explore, clear and hold urbanized terrain that includes buildings, streets, and subterranean dwellings. Buildings provide cover and concealment to an enemy and restrict the movement of forces while diminishing their ability to engage the adversary. The use of robots has significant potential to reduce the risk to tactical teams and dramatically force multiply the small unit's footprint. Despite advances in robotic mobility, sensing capabilities, and human-robot interaction, the use of robots in room clearing operations remains nascent. CHAMP is a software system in development that integrates with a team of robotic platforms to enable them to coordinate with a human operator performing a search and pursuit task. In this way, the human operator can either give control to the robots to search autonomously, or can retain control and direct the robots where needed. CHAMP's autonomy is built upon a combination of adversarial pursuit algorithms and dynamic function allocation strategies that maximize the team's resources. Multi-modal interaction with CHAMP is achieved using novel gesture-recognition based capabilities to reduce the need for heads-down tele-operation. The Champ Coordination Algorithm addresses dynamic and limited team sizes, generates a novel map of the area, and takes into account mission goals, user preferences and team roles. In this paper we show results from preliminary simulated experiments and find that the CHAMP system performs faster than traditional search and pursuit algorithms.
NASA Astrophysics Data System (ADS)
Basili, M.; De Angelis, M.; Fraraccio, G.
2013-06-01
This paper presents the results of shaking table tests on adjacent structures controlled by passive and semi-active MR dampers. The aim was to demonstrate experimentally the effectiveness of passive and semi-active strategies in reducing structural vibrations due to seismic excitation. The physical model at issue was represented by two adjacent steel structures, respectively of 4 and 2 levels, connected at the second level by a MR damper. When the device operated in semi-active mode, an ON-OFF control algorithm, derived by the Lyapunov stability theory, was implemented and experimentally validated. Since the experimentation concerned adjacent structures, two control objectives have been reached: global and selective protection. In case of global protection, the attention was focused on protecting both structures, whereas, in case of selective protection, the attention was focused on protecting only one structure. For each objective the effectiveness of passive control has been compared with the situation of no control and then the effectiveness of semi-active control has been compared with the passive one. The quantities directly compared have been: measured displacements, accelerations and force-displacement of the MR damper, moreover some global response quantities have been estimated from experimental measures, which are the base share force and the base bending moment, the input energy and the energy dissipated by the device. In order to evaluate the effectiveness of the control action in both passive and semi-active case, an energy index EDI, previously defined and already often applied numerically, has been utilized. The aspects investigated in the experimentation have been: the implementation and validation of the control algorithm for selective and global protection, the MR damper input voltage influence, the kind of seismic input and its intensity.
Jacomy, Mathieu; Venturini, Tommaso; Heymann, Sebastien; Bastian, Mathieu
2014-01-01
Gephi is a network visualization software used in various disciplines (social network analysis, biology, genomics...). One of its key features is the ability to display the spatialization process, aiming at transforming the network into a map, and ForceAtlas2 is its default layout algorithm. The latter is developed by the Gephi team as an all-around solution to Gephi users' typical networks (scale-free, 10 to 10,000 nodes). We present here for the first time its functioning and settings. ForceAtlas2 is a force-directed layout close to other algorithms used for network spatialization. We do not claim a theoretical advance but an attempt to integrate different techniques such as the Barnes Hut simulation, degree-dependent repulsive force, and local and global adaptive temperatures. It is designed for the Gephi user experience (it is a continuous algorithm), and we explain which constraints it implies. The algorithm benefits from much feedback and is developed in order to provide many possibilities through its settings. We lay out its complete functioning for the users who need a precise understanding of its behaviour, from the formulas to graphic illustration of the result. We propose a benchmark for our compromise between performance and quality. We also explain why we integrated its various features and discuss our design choices.
Jacomy, Mathieu; Venturini, Tommaso; Heymann, Sebastien; Bastian, Mathieu
2014-01-01
Gephi is a network visualization software used in various disciplines (social network analysis, biology, genomics…). One of its key features is the ability to display the spatialization process, aiming at transforming the network into a map, and ForceAtlas2 is its default layout algorithm. The latter is developed by the Gephi team as an all-around solution to Gephi users’ typical networks (scale-free, 10 to 10,000 nodes). We present here for the first time its functioning and settings. ForceAtlas2 is a force-directed layout close to other algorithms used for network spatialization. We do not claim a theoretical advance but an attempt to integrate different techniques such as the Barnes Hut simulation, degree-dependent repulsive force, and local and global adaptive temperatures. It is designed for the Gephi user experience (it is a continuous algorithm), and we explain which constraints it implies. The algorithm benefits from much feedback and is developed in order to provide many possibilities through its settings. We lay out its complete functioning for the users who need a precise understanding of its behaviour, from the formulas to graphic illustration of the result. We propose a benchmark for our compromise between performance and quality. We also explain why we integrated its various features and discuss our design choices. PMID:24914678
NASA Astrophysics Data System (ADS)
Liu, Wei; Chen, Shu-Ming; Zhang, Jian; Wu, Chun-Wang; Wu, Wei; Chen, Ping-Xing
2015-03-01
It is widely believed that Shor’s factoring algorithm provides a driving force to boost the quantum computing research. However, a serious obstacle to its binary implementation is the large number of quantum gates. Non-binary quantum computing is an efficient way to reduce the required number of elemental gates. Here, we propose optimization schemes for Shor’s algorithm implementation and take a ternary version for factorizing 21 as an example. The optimized factorization is achieved by a two-qutrit quantum circuit, which consists of only two single qutrit gates and one ternary controlled-NOT gate. This two-qutrit quantum circuit is then encoded into the nine lower vibrational states of an ion trapped in a weakly anharmonic potential. Optimal control theory (OCT) is employed to derive the manipulation electric field for transferring the encoded states. The ternary Shor’s algorithm can be implemented in one single step. Numerical simulation results show that the accuracy of the state transformations is about 0.9919. Project supported by the National Natural Science Foundation of China (Grant No. 61205108) and the High Performance Computing (HPC) Foundation of National University of Defense Technology, China.
Individual muscle control using an exoskeleton robot for muscle function testing.
Ueda, Jun; Ming, Ding; Krishnamoorthy, Vijaya; Shinohara, Minoru; Ogasawara, Tsukasa
2010-08-01
Healthy individuals modulate muscle activation patterns according to their intended movement and external environment. Persons with neurological disorders (e.g., stroke and spinal cord injury), however, have problems in movement control due primarily to their inability to modulate their muscle activation pattern in an appropriate manner. A functionality test at the level of individual muscles that investigates the activity of a muscle of interest on various motor tasks may enable muscle-level force grading. To date there is no extant work that focuses on the application of exoskeleton robots to induce specific muscle activation in a systematic manner. This paper proposes a new method, named "individual muscle-force control" using a wearable robot (an exoskeleton robot, or a power-assisting device) to obtain a wider variety of muscle activity data than standard motor tasks, e.g., pushing a handle by hand. A computational algorithm systematically computes control commands to a wearable robot so that a desired muscle activation pattern for target muscle forces is induced. It also computes an adequate amount and direction of a force that a subject needs to exert against a handle by his/her hand. This individual muscle control method enables users (e.g., therapists) to efficiently conduct neuromuscular function tests on target muscles by arbitrarily inducing muscle activation patterns. This paper presents a basic concept, mathematical formulation, and solution of the individual muscle-force control and its implementation to a muscle control system with an exoskeleton-type robot for upper extremity. Simulation and experimental results in healthy individuals justify the use of an exoskeleton robot for future muscle function testing in terms of the variety of muscle activity data.
Luo, Shi-Jian; Shu, Ge; Gong, Yan
2018-05-01
Individual finger force (FF) in a grip task is a vital concern in rehabilitation engineering and precise control of manipulators because disorders in any of the fingers will affect the stability or accuracy of the grip force (GF). To understand the functions of each finger in a dynamic grip exertion task, a GF following experiment with four individual fingers without thumb was designed. This study obtained four individual FFs from the distal phalanges with a cylindrical handle in dynamic GF following tasks. Ten healthy male subjects with similar hand sizes participated in the four-finger linear GF following tasks at different submaximal voluntary contraction (SMVC) levels. The total GF, individual FF, finger force contribution, and following error were subsequently calculated and analyzed. The statistics indicated the following: 1) the accuracy and stability of GF at low %MVC were significantly higher than those at high SMVC; 2) at low SMVC, the ability of the fingers to increase the GF was better than the ability to reduce it, but it was contrary at high SMVC; 3) when the target wave (TW) was changing, all four fingers strongly participated in the force exertion, but the participation of the little finger decreased significantly when TW remained stable; 4) the index finger and ring finger had a complementary relationship and played a vital role in the adjustment and control of GF. The middle finger and little finger had a minor influence on the force control and adjustment. In conclusion, each of the fingers had different functions in a GF following task. These findings can be used in the assessment of finger injury rehabilitation and for algorithms of precise control. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Hu, Xiaogang; Rymer, William Z.; Suresh, Nina L.
2014-04-01
Objective. The aim of this study is to assess the accuracy of a surface electromyogram (sEMG) motor unit (MU) decomposition algorithm during low levels of muscle contraction. Approach. A two-source method was used to verify the accuracy of the sEMG decomposition system, by utilizing simultaneous intramuscular and surface EMG recordings from the human first dorsal interosseous muscle recorded during isometric trapezoidal force contractions. Spike trains from each recording type were decomposed independently utilizing two different algorithms, EMGlab and dEMG decomposition algorithms. The degree of agreement of the decomposed spike timings was assessed for three different segments of the EMG signals, corresponding to specified regions in the force task. A regression analysis was performed to examine whether certain properties of the sEMG and force signal can predict the decomposition accuracy. Main results. The average accuracy of successful decomposition among the 119 MUs that were common to both intramuscular and surface records was approximately 95%, and the accuracy was comparable between the different segments of the sEMG signals (i.e., force ramp-up versus steady state force versus combined). The regression function between the accuracy and properties of sEMG and force signals revealed that the signal-to-noise ratio of the action potential and stability in the action potential records were significant predictors of the surface decomposition accuracy. Significance. The outcomes of our study confirm the accuracy of the sEMG decomposition algorithm during low muscle contraction levels and provide confidence in the overall validity of the surface dEMG decomposition algorithm.
Applied Distributed Model Predictive Control for Energy Efficient Buildings and Ramp Metering
NASA Astrophysics Data System (ADS)
Koehler, Sarah Muraoka
Industrial large-scale control problems present an interesting algorithmic design challenge. A number of controllers must cooperate in real-time on a network of embedded hardware with limited computing power in order to maximize system efficiency while respecting constraints and despite communication delays. Model predictive control (MPC) can automatically synthesize a centralized controller which optimizes an objective function subject to a system model, constraints, and predictions of disturbance. Unfortunately, the computations required by model predictive controllers for large-scale systems often limit its industrial implementation only to medium-scale slow processes. Distributed model predictive control (DMPC) enters the picture as a way to decentralize a large-scale model predictive control problem. The main idea of DMPC is to split the computations required by the MPC problem amongst distributed processors that can compute in parallel and communicate iteratively to find a solution. Some popularly proposed solutions are distributed optimization algorithms such as dual decomposition and the alternating direction method of multipliers (ADMM). However, these algorithms ignore two practical challenges: substantial communication delays present in control systems and also problem non-convexity. This thesis presents two novel and practically effective DMPC algorithms. The first DMPC algorithm is based on a primal-dual active-set method which achieves fast convergence, making it suitable for large-scale control applications which have a large communication delay across its communication network. In particular, this algorithm is suited for MPC problems with a quadratic cost, linear dynamics, forecasted demand, and box constraints. We measure the performance of this algorithm and show that it significantly outperforms both dual decomposition and ADMM in the presence of communication delay. The second DMPC algorithm is based on an inexact interior point method which is suited for nonlinear optimization problems. The parallel computation of the algorithm exploits iterative linear algebra methods for the main linear algebra computations in the algorithm. We show that the splitting of the algorithm is flexible and can thus be applied to various distributed platform configurations. The two proposed algorithms are applied to two main energy and transportation control problems. The first application is energy efficient building control. Buildings represent 40% of energy consumption in the United States. Thus, it is significant to improve the energy efficiency of buildings. The goal is to minimize energy consumption subject to the physics of the building (e.g. heat transfer laws), the constraints of the actuators as well as the desired operating constraints (thermal comfort of the occupants), and heat load on the system. In this thesis, we describe the control systems of forced air building systems in practice. We discuss the "Trim and Respond" algorithm which is a distributed control algorithm that is used in practice, and show that it performs similarly to a one-step explicit DMPC algorithm. Then, we apply the novel distributed primal-dual active-set method and provide extensive numerical results for the building MPC problem. The second main application is the control of ramp metering signals to optimize traffic flow through a freeway system. This application is particularly important since urban congestion has more than doubled in the past few decades. The ramp metering problem is to maximize freeway throughput subject to freeway dynamics (derived from mass conservation), actuation constraints, freeway capacity constraints, and predicted traffic demand. In this thesis, we develop a hybrid model predictive controller for ramp metering that is guaranteed to be persistently feasible and stable. This contrasts to previous work on MPC for ramp metering where such guarantees are absent. We apply a smoothing method to the hybrid model predictive controller and apply the inexact interior point method to this nonlinear non-convex ramp metering problem.
Near-Neighbor Algorithms for Processing Bearing Data
1989-05-10
neighbor algorithms need not be universally more cost -effective than brute force methods. While the data access time of near-neighbor techniques scales with...the number of objects N better than brute force, the cost of setting up the data structure could scale worse than (Continues) 20...for the near neighbors NN2 1 (i). Depending on the particular NN algorithm, the cost of accessing near neighbors for each ai E S1 scales as either N
Electrorheological Fluid Based Force Feedback Device
NASA Technical Reports Server (NTRS)
Pfeiffer, Charles; Bar-Cohen, Yoseph; Mavroidis, Constantinos; Dolgin, Benjamin
1999-01-01
Parallel to the efforts to develop fully autonomous robots, it is increasingly being realized that there are applications where it is essential to have a fully controlled robot and "feel" its operating conditions, i.e. telepresence. This trend is a result of the increasing efforts to address tasks where humans can perform significantly better but, due to associated hazards, distance, physical limitations and other causes, only robots can be employed to perform these tasks. Such robots need to be assisted by a human that remotely controls the operation. To address the goal of operating robots as human surrogates, the authors launched a study of mechanisms that provide mechanical feedback. For this purpose, electrorheological fluids (ERF) are being investigated for the potential application as miniature haptic devices. This family of electroactive fluids has the property of changing the viscosity during electrical stimulation. Consequently, ERF can be used to produce force feedback haptic devices for tele-operated control of medical and space robotic systems. Forces applied at the robot end-effector due to a compliant environment are reflected to the user using an ERF device where a change in the system viscosity will occur proportionally to the transmitted force. Analytical model and control algorithms are being developed taking into account the non-linearities of these type of devices. This paper will describe the concept and the developed mechanism of ERF based force feedback. The test process and the physical properties of this device will be described and the results of preliminary tests will be presented.
Adaptive Control Parameters for Dispersal of Multi-Agent Mobile Ad Hoc Network (MANET) Swarms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kurt Derr; Milos Manic
A mobile ad hoc network is a collection of independent nodes that communicate wirelessly with one another. This paper investigates nodes that are swarm robots with communications and sensing capabilities. Each robot in the swarm may operate in a distributed and decentralized manner to achieve some goal. This paper presents a novel approach to dynamically adapting control parameters to achieve mesh configuration stability. The presented approach to robot interaction is based on spring force laws (attraction and repulsion laws) to create near-optimal mesh like configurations. In prior work, we presented the extended virtual spring mesh (EVSM) algorithm for the dispersionmore » of robot swarms. This paper extends the EVSM framework by providing the first known study on the effects of adaptive versus static control parameters on robot swarm stability. The EVSM algorithm provides the following novelties: 1) improved performance with adaptive control parameters and 2) accelerated convergence with high formation effectiveness. Simulation results show that 120 robots reach convergence using adaptive control parameters more than twice as fast as with static control parameters in a multiple obstacle environment.« less
ORACLS: A system for linear-quadratic-Gaussian control law design
NASA Technical Reports Server (NTRS)
Armstrong, E. S.
1978-01-01
A modern control theory design package (ORACLS) for constructing controllers and optimal filters for systems modeled by linear time-invariant differential or difference equations is described. Numerical linear-algebra procedures are used to implement the linear-quadratic-Gaussian (LQG) methodology of modern control theory. Algorithms are included for computing eigensystems of real matrices, the relative stability of a matrix, factored forms for nonnegative definite matrices, the solutions and least squares approximations to the solutions of certain linear matrix algebraic equations, the controllability properties of a linear time-invariant system, and the steady state covariance matrix of an open-loop stable system forced by white noise. Subroutines are provided for solving both the continuous and discrete optimal linear regulator problems with noise free measurements and the sampled-data optimal linear regulator problem. For measurement noise, duality theory and the optimal regulator algorithms are used to solve the continuous and discrete Kalman-Bucy filter problems. Subroutines are also included which give control laws causing the output of a system to track the output of a prescribed model.
PyVCI: A flexible open-source code for calculating accurate molecular infrared spectra
NASA Astrophysics Data System (ADS)
Sibaev, Marat; Crittenden, Deborah L.
2016-06-01
The PyVCI program package is a general purpose open-source code for simulating accurate molecular spectra, based upon force field expansions of the potential energy surface in normal mode coordinates. It includes harmonic normal coordinate analysis and vibrational configuration interaction (VCI) algorithms, implemented primarily in Python for accessibility but with time-consuming routines written in C. Coriolis coupling terms may be optionally included in the vibrational Hamiltonian. Non-negligible VCI matrix elements are stored in sparse matrix format to alleviate the diagonalization problem. CPU and memory requirements may be further controlled by algorithmic choices and/or numerical screening procedures, and recommended values are established by benchmarking using a test set of 44 molecules for which accurate analytical potential energy surfaces are available. Force fields in normal mode coordinates are obtained from the PyPES library of high quality analytical potential energy surfaces (to 6th order) or by numerical differentiation of analytic second derivatives generated using the GAMESS quantum chemical program package (to 4th order).
Creep force modelling for rail traction vehicles based on the Fastsim algorithm
NASA Astrophysics Data System (ADS)
Spiryagin, Maksym; Polach, Oldrich; Cole, Colin
2013-11-01
The evaluation of creep forces is a complex task and their calculation is a time-consuming process for multibody simulation (MBS). A methodology of creep forces modelling at large traction creepages has been proposed by Polach [Creep forces in simulations of traction vehicles running on adhesion limit. Wear. 2005;258:992-1000; Influence of locomotive tractive effort on the forces between wheel and rail. Veh Syst Dyn. 2001(Suppl);35:7-22] adapting his previously published algorithm [Polach O. A fast wheel-rail forces calculation computer code. Veh Syst Dyn. 1999(Suppl);33:728-739]. The most common method for creep force modelling used by software packages for MBS of running dynamics is the Fastsim algorithm by Kalker [A fast algorithm for the simplified theory of rolling contact. Veh Syst Dyn. 1982;11:1-13]. However, the Fastsim code has some limitations which do not allow modelling the creep force - creep characteristic in agreement with measurements for locomotives and other high-power traction vehicles, mainly for large traction creep at low-adhesion conditions. This paper describes a newly developed methodology based on a variable contact flexibility increasing with the ratio of the slip area to the area of adhesion. This variable contact flexibility is introduced in a modification of Kalker's code Fastsim by replacing the constant Kalker's reduction factor, widely used in MBS, by a variable reduction factor together with a slip-velocity-dependent friction coefficient decreasing with increasing global creepage. The proposed methodology is presented in this work and compared with measurements for different locomotives. The modification allows use of the well recognised Fastsim code for simulation of creep forces at large creepages in agreement with measurements without modifying the proven modelling methodology at small creepages.
Comparison Study of Three Different Image Reconstruction Algorithms for MAT-MI
Xia, Rongmin; Li, Xu
2010-01-01
We report a theoretical study on magnetoacoustic tomography with magnetic induction (MAT-MI). According to the description of signal generation mechanism using Green’s function, the acoustic dipole model was proposed to describe acoustic source excited by the Lorentz force. Using Green’s function, three kinds of reconstruction algorithms based on different models of acoustic source (potential energy, vectored acoustic pressure, and divergence of Lorenz force) are deduced and compared, and corresponding numerical simulations were conducted to compare these three kinds of reconstruction algorithms. The computer simulation results indicate that the potential energy method and vectored pressure method can directly reconstruct the Lorentz force distribution and give a more accurate reconstruction of electrical conductivity. PMID:19846363
NASA Technical Reports Server (NTRS)
Barthelemy, J. F. M.
1983-01-01
A general algorithm is proposed which carries out the design process iteratively, starting at the top of the hierarchy and proceeding downward. Each subproblem is optimized separately for fixed controls from higher level subproblems. An optimum sensitivity analysis is then performed which determines the sensitivity of the subproblem design to changes in higher level subproblem controls. The resulting sensitivity derivatives are used to construct constraints which force the controlling subproblems into chosing their own designs so as to improve the lower levels subproblem designs while satisfying their own constraints. The applicability of the proposed algorithm is demonstrated by devising a four-level hierarchy to perform the simultaneous aerodynamic and structural design of a high-performance sailplane wing for maximum cross-country speed. Finally, the concepts discussed are applied to the two-level minimum weight structural design of the sailplane wing. The numerical experiments show that discontinuities in the sensitivity derivatives may delay convergence, but that the algorithm is robust enough to overcome these discontinuities and produce low-weight feasible designs, regardless of whether the optimization is started from the feasible space or the infeasible one.
Training Toddlers Seated on Mobile Robots to Steer Using Force-Feedback Joystick.
Agrawal, S K; Xi Chen; Ragonesi, C; Galloway, J C
2012-01-01
The broader goal of our research is to train infants with special needs to safely and purposefully drive a mobile robot to explore the environment. The hypothesis is that these impaired infants will benefit from mobility in their early years and attain childhood milestones, similar to their healthy peers. In this paper, we present an algorithm and training method using a force-feedback joystick with an "assist-as-needed" paradigm for driving training. In this "assist-as-needed" approach, if the child steers the joystick outside a force tunnel centered on the desired direction, the driver experiences a bias force on the hand. We show results with a group study on typically developing toddlers that such a haptic guidance algorithm is superior to training with a conventional joystick. We also provide a case study on two special needs children, under three years old, who learn to make sharp turns during driving, when trained over a five-day period with the force-feedback joystick using the algorithm.
Pattern Recognition Control Design
NASA Technical Reports Server (NTRS)
Gambone, Elisabeth A.
2018-01-01
Spacecraft control algorithms must know the expected vehicle response to any command to the available control effectors, such as reaction thrusters or torque devices. Spacecraft control system design approaches have traditionally relied on the estimated vehicle mass properties to determine the desired force and moment, as well as knowledge of the effector performance to efficiently control the spacecraft. A pattern recognition approach was used to investigate the relationship between the control effector commands and spacecraft responses. Instead of supplying the approximated vehicle properties and the thruster performance characteristics, a database of information relating the thruster ring commands and the desired vehicle response was used for closed-loop control. A Monte Carlo simulation data set of the spacecraft dynamic response to effector commands was analyzed to establish the influence a command has on the behavior of the spacecraft. A tool developed at NASA Johnson Space Center to analyze flight dynamics Monte Carlo data sets through pattern recognition methods was used to perform this analysis. Once a comprehensive data set relating spacecraft responses with commands was established, it was used in place of traditional control methods and gains set. This pattern recognition approach was compared with traditional control algorithms to determine the potential benefits and uses.
Integration of Irma tactical scene generator into directed-energy weapon system simulation
NASA Astrophysics Data System (ADS)
Owens, Monte A.; Cole, Madison B., III; Laine, Mark R.
2003-08-01
Integrated high-fidelity physics-based simulations that include engagement models, image generation, electro-optical hardware models and control system algorithms have previously been developed by Boeing-SVS for various tracking and pointing systems. These simulations, however, had always used images with featureless or random backgrounds and simple target geometries. With the requirement to engage tactical ground targets in the presence of cluttered backgrounds, a new type of scene generation tool was required to fully evaluate system performance in this challenging environment. To answer this need, Irma was integrated into the existing suite of Boeing-SVS simulation tools, allowing scene generation capabilities with unprecedented realism. Irma is a US Air Force research tool used for high-resolution rendering and prediction of target and background signatures. The MATLAB/Simulink-based simulation achieves closed-loop tracking by running track algorithms on the Irma-generated images, processing the track errors through optical control algorithms, and moving simulated electro-optical elements. The geometry of these elements determines the sensor orientation with respect to the Irma database containing the three-dimensional background and target models. This orientation is dynamically passed to Irma through a Simulink S-function to generate the next image. This integrated simulation provides a test-bed for development and evaluation of tracking and control algorithms against representative images including complex background environments and realistic targets calibrated using field measurements.
Treecode with a Special-Purpose Processor
NASA Astrophysics Data System (ADS)
Makino, Junichiro
1991-08-01
We describe an implementation of the modified Barnes-Hut tree algorithm for a gravitational N-body calculation on a GRAPE (GRAvity PipE) backend processor. GRAPE is a special-purpose computer for N-body calculations. It receives the positions and masses of particles from a host computer and then calculates the gravitational force at each coordinate specified by the host. To use this GRAPE processor with the hierarchical tree algorithm, the host computer must maintain a list of all nodes that exert force on a particle. If we create this list for each particle of the system at each timestep, the number of floating-point operations on the host and that on GRAPE would become comparable, and the increased speed obtained by using GRAPE would be small. In our modified algorithm, we create a list of nodes for many particles. Thus, the amount of the work required of the host is significantly reduced. This algorithm was originally developed by Barnes in order to vectorize the force calculation on a Cyber 205. With this algorithm, the computing time of the force calculation becomes comparable to that of the tree construction, if the GRAPE backend processor is sufficiently fast. The obtained speed-up factor is 30 to 50 for a RISC-based host computer and GRAPE-1A with a peak speed of 240 Mflops.
Fluid-dynamic design optimization of hydraulic proportional directional valves
NASA Astrophysics Data System (ADS)
Amirante, Riccardo; Catalano, Luciano Andrea; Poloni, Carlo; Tamburrano, Paolo
2014-10-01
This article proposes an effective methodology for the fluid-dynamic design optimization of the sliding spool of a hydraulic proportional directional valve: the goal is the minimization of the flow force at a prescribed flow rate, so as to reduce the required opening force while keeping the operation features unchanged. A full three-dimensional model of the flow field within the valve is employed to accurately predict the flow force acting on the spool. A theoretical analysis, based on both the axial momentum equation and flow simulations, is conducted to define the design parameters, which need to be properly selected in order to reduce the flow force without significantly affecting the flow rate. A genetic algorithm, coupled with a computational fluid dynamics flow solver, is employed to minimize the flow force acting on the valve spool at the maximum opening. A comparison with a typical single-objective optimization algorithm is performed to evaluate performance and effectiveness of the employed genetic algorithm. The optimized spool develops a maximum flow force which is smaller than that produced by the commercially available valve, mainly due to some major modifications occurring in the discharge section. Reducing the flow force and thus the electromagnetic force exerted by the solenoid actuators allows the operational range of direct (single-stage) driven valves to be enlarged.
Semi-active sliding mode control of vehicle suspension with magneto-rheological damper
NASA Astrophysics Data System (ADS)
Zhang, Hailong; Wang, Enrong; Zhang, Ning; Min, Fuhong; Subash, Rakheja; Su, Chunyi
2015-01-01
The vehicle semi-active suspension with magneto-rheological damper(MRD) has been a hot topic since this decade, in which the robust control synthesis considering load variation is a challenging task. In this paper, a new semi-active controller based upon the inverse model and sliding mode control (SMC) strategies is proposed for the quarter-vehicle suspension with the magneto-rheological (MR) damper, wherein an ideal skyhook suspension is employed as the control reference model and the vehicle sprung mass is considered as an uncertain parameter. According to the asymptotical stability of SMC, the dynamic errors between the plant and reference systems are used to derive the control damping force acquired by the MR quarter-vehicle suspension system. The proposed modified Bouc-wen hysteretic force-velocity ( F- v) model and its inverse model of MR damper, as well as the proposed continuous modulation (CM) filtering algorithm without phase shift are employed to convert the control damping force into the direct drive current of the MR damper. Moreover, the proposed semi-active sliding mode controller (SSMC)-based MR quarter-vehicle suspension is systematically evaluated through comparing the time and frequency domain responses of the sprung and unsprung mass displacement accelerations, suspension travel and the tire dynamic force with those of the passive quarter-vehicle suspension, under three kinds of varied amplitude harmonic, rounded pulse and real-road measured random excitations. The evaluation results illustrate that the proposed SSMC can greatly suppress the vehicle suspension vibration due to uncertainty of the load, and thus improve the ride comfort and handling safety. The study establishes a solid theoretical foundation as the universal control scheme for the adaptive semi-active control of the MR full-vehicle suspension decoupled into four MR quarter-vehicle sub-suspension systems.
High speed, precision motion strategies for lightweight structures
NASA Technical Reports Server (NTRS)
Book, Wayne J.
1989-01-01
Research on space telerobotics is summarized. Adaptive control experiments on the Robotic Arm, Large and Flexible (RALF) were preformed and are documented, along with a joint controller design for the Small Articulated Manipulator (SAM), which is mounted on the RALF. A control algorithm is described as a robust decentralized adaptive control based on a bounded uncertainty approach. Dynamic interactions between SAM and RALF are examined. Unstability of the manipulator is studied from the perspective that the inertial forces generated could actually be used to more rapidly damp out the flexible manipulator's vibration. Currently being studied is the modeling of the constrained dynamics of flexible arms.
Algorithms for the diagnosis and treatment of restless legs syndrome in primary care
2011-01-01
Background Restless legs syndrome (RLS) is a neurological disorder with a lifetime prevalence of 3-10%. in European studies. However, the diagnosis of RLS in primary care remains low and mistreatment is common. Methods The current article reports on the considerations of RLS diagnosis and management that were made during a European Restless Legs Syndrome Study Group (EURLSSG)-sponsored task force consisting of experts and primary care practioners. The task force sought to develop a better understanding of barriers to diagnosis in primary care practice and overcome these barriers with diagnostic and treatment algorithms. Results The barriers to diagnosis identified by the task force include the presentation of symptoms, the language used to describe them, the actual term "restless legs syndrome" and difficulties in the differential diagnosis of RLS. Conclusion The EURLSSG task force reached a consensus and agreed on the diagnostic and treatment algorithms published here. PMID:21352569
NASA Astrophysics Data System (ADS)
Motta, Mario; Zhang, Shiwei
2018-05-01
We propose an algorithm for accurate, systematic, and scalable computation of interatomic forces within the auxiliary-field quantum Monte Carlo (AFQMC) method. The algorithm relies on the Hellmann-Feynman theorem and incorporates Pulay corrections in the presence of atomic orbital basis sets. We benchmark the method for small molecules by comparing the computed forces with the derivatives of the AFQMC potential energy surface and by direct comparison with other quantum chemistry methods. We then perform geometry optimizations using the steepest descent algorithm in larger molecules. With realistic basis sets, we obtain equilibrium geometries in agreement, within statistical error bars, with experimental values. The increase in computational cost for computing forces in this approach is only a small prefactor over that of calculating the total energy. This paves the way for a general and efficient approach for geometry optimization and molecular dynamics within AFQMC.
The dynamics and control of large flexible space structures-V
NASA Technical Reports Server (NTRS)
Bainum, P. M.; Reddy, A. S. S. R.; Diarra, C. M.; Kumar, V. K.
1982-01-01
A general survey of the progress made in the areas of mathematical modelling of the system dynamics, structural analysis, development of control algorithms, and simulation of environmental disturbances is presented. The use of graph theory techniques is employed to examine the effects of inherent damping associated with LSST systems on the number and locations of the required control actuators. A mathematical model of the forces and moments induced on a flexible orbiting beam due to solar radiation pressure is developed and typical steady state open loop responses obtained for the case when rotations and vibrations are limited to occur within the orbit plane. A preliminary controls analysis based on a truncated (13 mode) finite element model of the 122m. Hoop/Column antenna indicates that a minimum of six appropriately placed actuators is required for controllability. An algorithm to evaluate the coefficients which describe coupling between the rigid rotational and flexible modes and also intramodal coupling was developed and numerical evaluation based on the finite element model of Hoop/Column system is currently in progress.
Thruster Limitation Consideration for Formation Flight Control
NASA Technical Reports Server (NTRS)
Xu, Yunjun; Fitz-Coy, Norman; Mason, Paul
2003-01-01
Physical constraints of any real system can have a drastic effect on its performance. Some of the more recognized constraints are actuator and sensor saturation and bandwidth, power consumption, sampling rate (sensor and control-loop) and computation limits. These constraints can degrade system s performance, such as settling time, overshoot, rising time, and stability margins. In order to address these issues, researchers have investigated the use of robust and nonlinear controllers that can incorporate uncertainty and constraints into a controller design. For instance, uncertainties can be addressed in the synthesis model used in such algorithms as H(sub infinity), or mu. There is a significant amount of literature addressing this type of problem. However, there is one constraint that has not often been considered; that is, actuator authority resolution. In this work, thruster resolution and controller schemes to compensate for this effect are investigated for position and attitude control of a Low Earth Orbit formation flight system In many academic problems, actuators are assumed to have infinite resolution. In real system applications, such as formation flight systems, the system actuators will not have infinite resolution. High-precision formation flying requires the relative position and the relative attitude to be controlled on the order of millimeters and arc-seconds, respectively. Therefore, the minimum force resolution is a significant concern in this application. Without the sufficient actuator resolution, the system may be unable to attain the required pointing and position precision control. Furthermore, fuel may be wasted due to high-frequency chattering phenomena when attempting to provide a fine control with inadequate actuators. To address this issue, a Sliding Mode Controller is developed along with the boundary Layer Control to provide the best control resolution constraints. A Genetic algorithm is used to optimize the controller parameters according to the states error and fuel consumption criterion. The tradeoffs and effects of the minimum force limitation on performance are studied and compared to the case without the limitation. Furthermore, two methods are proposed to reduce chattering and improve precision.
Real-time Collision Avoidance and Path Optimizer for Semi-autonomous UAVs.
NASA Astrophysics Data System (ADS)
Hawary, A. F.; Razak, N. A.
2018-05-01
Whilst UAV offers a potentially cheaper and more localized observation platform than current satellite or land-based approaches, it requires an advance path planner to reveal its true potential, particularly in real-time missions. Manual control by human will have limited line-of-sights and prone to errors due to careless and fatigue. A good alternative solution is to equip the UAV with semi-autonomous capabilities that able to navigate via a pre-planned route in real-time fashion. In this paper, we propose an easy-and-practical path optimizer based on the classical Travelling Salesman Problem and adopts a brute force search method to re-optimize the route in the event of collisions using range finder sensor. The former utilizes a Simple Genetic Algorithm and the latter uses Nearest Neighbour algorithm. Both algorithms are combined to optimize the route and avoid collision at once. Although many researchers proposed various path planning algorithms, we find that it is difficult to integrate on a basic UAV model and often lacks of real-time collision detection optimizer. Therefore, we explore a practical benefit from this approach using on-board Arduino and Ardupilot controllers by manually emulating the motion of an actual UAV model prior to test on the flying site. The result showed that the range finder sensor provides a real-time data to the algorithm to find a collision-free path and eventually optimized the route successfully.
Dzudie, Anastase; Kane, Abdoul; Kramoh, Euloge; Anzouan-Kacou, Jean-Baptiste; Damourou, Jean Marie; Allawaye, Lucien; Nzisabira, Jolis; Mousse, Latif; Balde, Dadier; Nouhom, Ouane; Nkoa, Jean Louis; Kaki, Kimbally; Djomou, Armel; Menanga, Alain; Nganou, Christ Nadege; Mipinda, Jean Bruno; Nebie, Lucie; Kuate, Liliane Mfeukeu; Kingue, Samuel; Ba, Serigne Abdou
The fourth Pan-African Society of Cardiology (PASCAR) hypertension taskforce meeting was held at the Yaoundé Hilton Hotel on 16 March 2016. Its main goals were to update and facilitate understanding of the PASCAR roadmap for the control of hypertension on the continent, to refine the PASCAR hypertension algorithm, and to discuss the next steps of the PASCAR hypertension policy, including how the PASCAR initiative can be customised at country level. The formation of the PASCAR coalition against hypertension, the writing group and the current status of the PASCAR hypertension policy document as well as the algorithm were presented to delegates representing 12 French-speaking countries. The urgency to finalise the continental policy was recognised and consensus was achieved by discussion on the main points and strategy. Relevant scientific issues were discussed and comments were received on all points, including how the algorithm could be simplified and made more accessible for implementation at primary healthcare centres.
Comparison of algorithms of testing for use in automated evaluation of sensation.
Dyck, P J; Karnes, J L; Gillen, D A; O'Brien, P C; Zimmerman, I R; Johnson, D M
1990-10-01
Estimates of vibratory detection threshold may be used to detect, characterize, and follow the course of sensory abnormality in neurologic disease. The approach is especially useful in epidemiologic and controlled clinical trials. We studied which algorithm of testing and finding threshold should be used in automatic systems by comparing among algorithms and stimulus conditions for the index finger of healthy subjects and for the great toe of patients with mild neuropathy. Appearance thresholds obtained by linear ramps increasing at a rate less than 4.15 microns/sec provided accurate and repeatable thresholds compared with thresholds obtained by forced-choice testing. These rates would be acceptable if only sensitive sites were studied, but they were too slow for use in automatic testing of insensitive parts. Appearance thresholds obtained by fast linear rates (4.15 or 16.6 microns/sec) overestimated threshold, especially for sensitive parts. Use of the mean of appearance and disappearance thresholds, with the stimulus increasing exponentially at rates of 0.5 or 1.0 just noticeable difference (JND) units per second, and interspersion of null stimuli, Békésy with null stimuli, provided accurate, repeatable, and fast estimates of threshold for sensitive parts. Despite the good performance of Békésy testing, we prefer forced choice for evaluation of the sensation of patients with neuropathy.
2012-05-16
large size and lack of efficiency of current technology after initial review. In the 1990’s the Air Force designed and produced a high- altitude ...Forden, G.E., "The airborne laser," Spectrum, IEEE , vol.34, no.9, pp.40-49, Sep 1997 10 altitude of 40,000 ft. the atmosphere was much clearer...distance remains the same. OT-5 provides a relative position of beam center on the detector. Two voltage outputs are given corresponding to x-axis location
DOE Office of Scientific and Technical Information (OSTI.GOV)
Michel, D.; Jimenez, C.; Miralles, D. G.
The WAter Cycle Multi-mission Observation Strategy – EvapoTranspiration (WACMOS-ET) project has compiled a forcing data set covering the period 2005–2007 that aims to maximize the exploitation of European Earth Observations data sets for evapotranspiration (ET) estimation. The data set was used to run four established ET algorithms: the Priestley–Taylor Jet Propulsion Laboratory model (PT-JPL), the Penman–Monteith algorithm from the MODerate resolution Imaging Spectroradiometer (MODIS) evaporation product (PM-MOD), the Surface Energy Balance System (SEBS) and the Global Land Evaporation Amsterdam Model (GLEAM). In addition, in situ meteorological data from 24 FLUXNET towers were used to force the models, with results from both forcing sets compared tomore » tower-based flux observations. Model performance was assessed on several timescales using both sub-daily and daily forcings. The PT-JPL model and GLEAM provide the best performance for both satellite- and tower-based forcing as well as for the considered temporal resolutions. Simulations using the PM-MOD were mostly underestimated, while the SEBS performance was characterized by a systematic overestimation. In general, all four algorithms produce the best results in wet and moderately wet climate regimes. In dry regimes, the correlation and the absolute agreement with the reference tower ET observations were consistently lower. While ET derived with in situ forcing data agrees best with the tower measurements ( R 2 = 0.67), the agreement of the satellite-based ET estimates is only marginally lower ( R 2 = 0.58). Results also show similar model performance at daily and sub-daily (3-hourly) resolutions. Overall, our validation experiments against in situ measurements indicate that there is no single best-performing algorithm across all biome and forcing types. In conclusion, an extension of the evaluation to a larger selection of 85 towers (model inputs resampled to a common grid to facilitate global estimates) confirmed the original findings.« less
Michel, D.; Jimenez, C.; Miralles, D. G.; ...
2016-02-23
The WAter Cycle Multi-mission Observation Strategy – EvapoTranspiration (WACMOS-ET) project has compiled a forcing data set covering the period 2005–2007 that aims to maximize the exploitation of European Earth Observations data sets for evapotranspiration (ET) estimation. The data set was used to run four established ET algorithms: the Priestley–Taylor Jet Propulsion Laboratory model (PT-JPL), the Penman–Monteith algorithm from the MODerate resolution Imaging Spectroradiometer (MODIS) evaporation product (PM-MOD), the Surface Energy Balance System (SEBS) and the Global Land Evaporation Amsterdam Model (GLEAM). In addition, in situ meteorological data from 24 FLUXNET towers were used to force the models, with results from both forcing sets compared tomore » tower-based flux observations. Model performance was assessed on several timescales using both sub-daily and daily forcings. The PT-JPL model and GLEAM provide the best performance for both satellite- and tower-based forcing as well as for the considered temporal resolutions. Simulations using the PM-MOD were mostly underestimated, while the SEBS performance was characterized by a systematic overestimation. In general, all four algorithms produce the best results in wet and moderately wet climate regimes. In dry regimes, the correlation and the absolute agreement with the reference tower ET observations were consistently lower. While ET derived with in situ forcing data agrees best with the tower measurements ( R 2 = 0.67), the agreement of the satellite-based ET estimates is only marginally lower ( R 2 = 0.58). Results also show similar model performance at daily and sub-daily (3-hourly) resolutions. Overall, our validation experiments against in situ measurements indicate that there is no single best-performing algorithm across all biome and forcing types. In conclusion, an extension of the evaluation to a larger selection of 85 towers (model inputs resampled to a common grid to facilitate global estimates) confirmed the original findings.« less
SCI model structure determination program (OSR) user's guide. [optimal subset regression
NASA Technical Reports Server (NTRS)
1979-01-01
The computer program, OSR (Optimal Subset Regression) which estimates models for rotorcraft body and rotor force and moment coefficients is described. The technique used is based on the subset regression algorithm. Given time histories of aerodynamic coefficients, aerodynamic variables, and control inputs, the program computes correlation between various time histories. The model structure determination is based on these correlations. Inputs and outputs of the program are given.
Some Novel Design Principles for Collective Behaviors in Mobile Robots
DOE Office of Scientific and Technical Information (OSTI.GOV)
OSBOURN, GORDON C.
2002-09-01
We present a set of novel design principles to aid in the development of complex collective behaviors in fleets of mobile robots. The key elements are: the use of a graph algorithm that we have created, with certain proven properties, that guarantee scalable local communications for fleets of arbitrary size; the use of artificial forces to simplify the design of motion control; the use of certain proximity values in the graph algorithm to simplify the sharing of robust navigation and sensor information among the robots. We describe these design elements and present a computer simulation that illustrates the behaviors readilymore » achievable with these design tools.« less
Decentralized control algorithms of a group of vehicles in 2D space
NASA Astrophysics Data System (ADS)
Pshikhopov, V. K.; Medvedev, M. Y.; Fedorenko, R. V.; Gurenko, B. V.
2017-02-01
The problem of decentralized control of group of robots, described by kinematic and dynamic equations of motion in the plane, is considered. Group performs predetermined rectangular area passing at a fixed speed, keeping the line and a uniform distribution. The environment may contain a priori unknown moving or stationary obstacles. Decentralized control algorithms, based on the formation of repellers in the state space of robots, are proposed. These repellers form repulsive forces generated by dynamic subsystems that extend the state space of robots. These repulsive forces are dynamic functions of distances and velocities of robots in the area of operation of the group. The process of formation of repellers allows to take into account the dynamic properties of robots, such as the maximum speed and acceleration. The robots local control law formulas are derived based on positionally-trajectory control method, which allows to operate with non-linear models. Lyapunov function in the form of a quadratic function of the state variables is constructed to obtain a nonlinear closed-loop control system. Due to the fact that a closed system is decomposed into two independent subsystems Lyapunov function is also constructed as two independent functions. Numerical simulation of the motion of a group of five robots is presented. In this simulation obstacles are presented by the boundaries of working area and a movable object of a given radius, moving rectilinear and uniform. Obstacle speed is comparable to the speeds of the robots in a group. The advantage of the proposed method is ensuring the stability of the trajectories and consideration of the limitations on the speed and acceleration at the trajectory planning stage. Proposed approach can be used for more general robots' models, including robots in the three-dimensional environment.
Baldacchino, Tara; Jacobs, William R; Anderson, Sean R; Worden, Keith; Rowson, Jennifer
2018-01-01
This contribution presents a novel methodology for myolectric-based control using surface electromyographic (sEMG) signals recorded during finger movements. A multivariate Bayesian mixture of experts (MoE) model is introduced which provides a powerful method for modeling force regression at the fingertips, while also performing finger movement classification as a by-product of the modeling algorithm. Bayesian inference of the model allows uncertainties to be naturally incorporated into the model structure. This method is tested using data from the publicly released NinaPro database which consists of sEMG recordings for 6 degree-of-freedom force activations for 40 intact subjects. The results demonstrate that the MoE model achieves similar performance compared to the benchmark set by the authors of NinaPro for finger force regression. Additionally, inherent to the Bayesian framework is the inclusion of uncertainty in the model parameters, naturally providing confidence bounds on the force regression predictions. Furthermore, the integrated clustering step allows a detailed investigation into classification of the finger movements, without incurring any extra computational effort. Subsequently, a systematic approach to assessing the importance of the number of electrodes needed for accurate control is performed via sensitivity analysis techniques. A slight degradation in regression performance is observed for a reduced number of electrodes, while classification performance is unaffected.
The Homogeneity of Optimal Sensor Placement Across Multiple Winged Insect Species
NASA Astrophysics Data System (ADS)
Jenkins, Abigail L.
Taking inspiration from biology, control algorithms can be implemented to imitate the naturally occurring control systems present in nature. This research is primarily concerned with insect flight and optimal wing sensor placement. Many winged insects with halteres are equipped with mechanoreceptors termed campaniform sensilla. Although the exact information these receptors provide to the insect's nervous system is unknown, it is thought to have the capability of measuring inertial rotation forces. During flight, when the wing bends, the information measured by the campaniform sensilla is received by the central nervous system, and provides the insect necessary data to control flight. This research compares three insect species - the hawkmoth Manduca sexta, the honeybee Apis mellifera, and the fruit fly Drosophila melanogaster. Using an observability-based sensor placement algorithm, the optimal sensor placement for these three species is determined. Simulations resolve if this optimal sensor placement corresponds to the insect's campaniform sensilla, as well as if placement is homogeneous across species.
Takahashi, Yoshiaki; Seki, Hirokazu
2009-01-01
This paper proposes a novel regenerative braking control system of electric wheelchairs for senior citizen. "Electric powered wheelchair", which generates the driving force by electric motors according to the human operation, is expected to be widely used as a mobility support system for elderly people. This study focuses on the braking control to realize the safety and smooth stopping motion using the regenerative braking control technique based on fuzzy algorithm. The ride quality improvement and energy recycling can be expected by the proposed control system with stopping distance estimation and variable frequency control on the step-up/down chopper type of capacitor regenerative circuit. Some driving experiments confirm the effectiveness of the proposed control system.
Collaborative Localization and Location Verification in WSNs
Miao, Chunyu; Dai, Guoyong; Ying, Kezhen; Chen, Qingzhang
2015-01-01
Localization is one of the most important technologies in wireless sensor networks. A lightweight distributed node localization scheme is proposed by considering the limited computational capacity of WSNs. The proposed scheme introduces the virtual force model to determine the location by incremental refinement. Aiming at solving the drifting problem and malicious anchor problem, a location verification algorithm based on the virtual force mode is presented. In addition, an anchor promotion algorithm using the localization reliability model is proposed to re-locate the drifted nodes. Extended simulation experiments indicate that the localization algorithm has relatively high precision and the location verification algorithm has relatively high accuracy. The communication overhead of these algorithms is relative low, and the whole set of reliable localization methods is practical as well as comprehensive. PMID:25954948
Flies compensate for unilateral wing damage through modular adjustments of wing and body kinematics
Iwasaki, Nicole A.; Elzinga, Michael J.; Melis, Johan M.; Dickinson, Michael H.
2017-01-01
Using high-speed videography, we investigated how fruit flies compensate for unilateral wing damage, in which loss of area on one wing compromises both weight support and roll torque equilibrium. Our results show that flies control for unilateral damage by rolling their body towards the damaged wing and by adjusting the kinematics of both the intact and damaged wings. To compensate for the reduction in vertical lift force due to damage, flies elevate wingbeat frequency. Because this rise in frequency increases the flapping velocity of both wings, it has the undesired consequence of further increasing roll torque. To compensate for this effect, flies increase the stroke amplitude and advance the timing of pronation and supination of the damaged wing, while making the opposite adjustments on the intact wing. The resulting increase in force on the damaged wing and decrease in force on the intact wing function to maintain zero net roll torque. However, the bilaterally asymmetrical pattern of wing motion generates a finite lateral force, which flies balance by maintaining a constant body roll angle. Based on these results and additional experiments using a dynamically scaled robotic fly, we propose a simple bioinspired control algorithm for asymmetric wing damage. PMID:28163885
Flies compensate for unilateral wing damage through modular adjustments of wing and body kinematics.
Muijres, Florian T; Iwasaki, Nicole A; Elzinga, Michael J; Melis, Johan M; Dickinson, Michael H
2017-02-06
Using high-speed videography, we investigated how fruit flies compensate for unilateral wing damage, in which loss of area on one wing compromises both weight support and roll torque equilibrium. Our results show that flies control for unilateral damage by rolling their body towards the damaged wing and by adjusting the kinematics of both the intact and damaged wings. To compensate for the reduction in vertical lift force due to damage, flies elevate wingbeat frequency. Because this rise in frequency increases the flapping velocity of both wings, it has the undesired consequence of further increasing roll torque. To compensate for this effect, flies increase the stroke amplitude and advance the timing of pronation and supination of the damaged wing, while making the opposite adjustments on the intact wing. The resulting increase in force on the damaged wing and decrease in force on the intact wing function to maintain zero net roll torque. However, the bilaterally asymmetrical pattern of wing motion generates a finite lateral force, which flies balance by maintaining a constant body roll angle. Based on these results and additional experiments using a dynamically scaled robotic fly, we propose a simple bioinspired control algorithm for asymmetric wing damage.
Control strategies for robots in contact
NASA Astrophysics Data System (ADS)
Park, Jaeheung
In the field of robotics, there is a growing need to provide robots with the ability to interact with complex and unstructured environments. Operations in such environments pose significant challenges in terms of sensing, planning, and control. In particular, it is critical to design control algorithms that account for the dynamics of the robot and environment at multiple contacts. The work in this thesis focuses on the development of a control framework that addresses these issues. The approaches are based on the operational space control framework and estimation methods. By accounting for the dynamics of the robot and environment, modular and systematic methods are developed for robots interacting with the environment at multiple locations. The proposed force control approach demonstrates high performance in the presence of uncertainties. Building on this basic capability, new control algorithms have been developed for haptic teleoperation, multi-contact interaction with the environment, and whole body motion of non-fixed based robots. These control strategies have been experimentally validated through simulations and implementations on physical robots. The results demonstrate the effectiveness of the new control structure and its robustness to uncertainties. The contact control strategies presented in this thesis are expected to contribute to the needs in advanced controller design for humanoid and other complex robots interacting with their environments.
Self-Adaptive Stepsize Search Applied to Optimal Structural Design
NASA Astrophysics Data System (ADS)
Nolle, L.; Bland, J. A.
Structural engineering often involves the design of space frames that are required to resist predefined external forces without exhibiting plastic deformation. The weight of the structure and hence the weight of its constituent members has to be as low as possible for economical reasons without violating any of the load constraints. Design spaces are usually vast and the computational costs for analyzing a single design are usually high. Therefore, not every possible design can be evaluated for real-world problems. In this work, a standard structural design problem, the 25-bar problem, has been solved using self-adaptive stepsize search (SASS), a relatively new search heuristic. This algorithm has only one control parameter and therefore overcomes the drawback of modern search heuristics, i.e. the need to first find a set of optimum control parameter settings for the problem at hand. In this work, SASS outperforms simulated-annealing, genetic algorithms, tabu search and ant colony optimization.
SURGNET: An Integrated Surgical Data Transmission System for Telesurgery.
Natarajan, Sriram; Ganz, Aura
2009-01-01
Remote surgery information requires quick and reliable transmission between the surgeon and the patient site. However, the networks that interconnect the surgeon and patient sites are usually time varying and lossy which can cause packet loss and delay jitter. In this paper we propose SURGNET, a telesurgery system for which we developed the architecture, algorithms and implemented it on a testbed. The algorithms include adaptive packet prediction and buffer time adjustment techniques which reduce the negative effects caused by the lossy and time varying networks. To evaluate the proposed SURGNET system, at the therapist site, we implemented a therapist panel which controls the force feedback device movements and provides image analysis functionality. At the patient site we controlled a virtual reality applet built in Matlab. The varying network conditions were emulated using NISTNet emulator. Our results show that even for severe packet loss and variable delay jitter, the proposed integrated synchronization techniques significantly improve SURGNET performance.
NASA Astrophysics Data System (ADS)
Gu, Tingwei; Kong, Deren; Shang, Fei; Chen, Jing
2017-12-01
We present an optimization algorithm to obtain low-uncertainty dynamic pressure measurements from a force-transducer-based device. In this paper, the advantages and disadvantages of the methods that are commonly used to measure the propellant powder gas pressure, the applicable scope of dynamic pressure calibration devices, and the shortcomings of the traditional comparison calibration method based on the drop-weight device are firstly analysed in detail. Then, a dynamic calibration method for measuring pressure using a force sensor based on a drop-weight device is introduced. This method can effectively save time when many pressure sensors are calibrated simultaneously and extend the life of expensive reference sensors. However, the force sensor is installed between the drop-weight and the hammerhead by transition pieces through the connection mode of bolt fastening, which causes adverse effects such as additional pretightening and inertia forces. To solve these effects, the influence mechanisms of the pretightening force, the inertia force and other influence factors on the force measurement are theoretically analysed. Then a measurement correction method for the force measurement is proposed based on an artificial neural network optimized by a genetic algorithm. The training and testing data sets are obtained from calibration tests, and the selection criteria for the key parameters of the correction model is discussed. The evaluation results for the test data show that the correction model can effectively improve the force measurement accuracy of the force sensor. Compared with the traditional high-accuracy comparison calibration method, the percentage difference of the impact-force-based measurement is less than 0.6% and the relative uncertainty of the corrected force value is 1.95%, which can meet the requirements of engineering applications.
NASA Astrophysics Data System (ADS)
Chu, Zhongyi; Ma, Ye; Hou, Yueyang; Wang, Fengwen
2017-02-01
This paper presents a novel identification method for the intact inertial parameters of an unknown object in space captured by a manipulator in a space robotic system. With strong dynamic and kinematic coupling existing in the robotic system, the inertial parameter identification of the unknown object is essential for the ideal control strategy based on changes in the attitude and trajectory of the space robot via capturing operations. Conventional studies merely refer to the principle and theory of identification, and an error analysis process of identification is deficient for a practical scenario. To solve this issue, an analysis of the effect of errors on identification is illustrated first, and the accumulation of measurement or estimation errors causing poor identification precision is demonstrated. Meanwhile, a modified identification equation incorporating the contact force, as well as the force/torque of the end-effector, is proposed to weaken the accumulation of errors and improve the identification accuracy. Furthermore, considering a severe disturbance condition caused by various measured noises, the hybrid immune algorithm, Recursive Least Squares and Affine Projection Sign Algorithm (RLS-APSA), is employed to decode the modified identification equation to ensure a stable identification property. Finally, to verify the validity of the proposed identification method, the co-simulation of ADAMS-MATLAB is implemented by multi-degree of freedom models of a space robotic system, and the numerical results show a precise and stable identification performance, which is able to guarantee the execution of aerospace operations and prevent failed control strategies.
NASA Technical Reports Server (NTRS)
Petot, D.; Loiseau, H.
1982-01-01
Unsteady aerodynamic methods adopted for the study of aeroelasticity in helicopters are considered with focus on the development of a semiempirical model of unsteady aerodynamic forces acting on an oscillating profile at high incidence. The successive smoothing algorithm described leads to the model's coefficients in a very satisfactory manner.
On improving the algorithm efficiency in the particle-particle force calculations
NASA Astrophysics Data System (ADS)
Kozynchenko, Alexander I.; Kozynchenko, Sergey A.
2016-09-01
The problem of calculating inter-particle forces in the particle-particle (PP) simulation models takes an important place in scientific computing. Such simulation models are used in diverse scientific applications arising in astrophysics, plasma physics, particle accelerators, etc., where the long-range forces are considered. The inverse-square laws such as Coulomb's law of electrostatic forces and Newton's law of universal gravitation are the examples of laws pertaining to the long-range forces. The standard naïve PP method outlined, for example, by Hockney and Eastwood [1] is straightforward, processing all pairs of particles in a double nested loop. The PP algorithm provides the best accuracy of all possible methods, but its computational complexity is O (Np2), where Np is a total number of particles involved. Too low efficiency of the PP algorithm seems to be the challenging issue in some cases where the high accuracy is required. An example can be taken from the charged particle beam dynamics where, under computing the own space charge of the beam, so-called macro-particles are used (see e.g., Humphries Jr. [2], Kozynchenko and Svistunov [3]).
Samaan, Michael A; Weinhandl, Joshua T; Bawab, Sebastian Y; Ringleb, Stacie I
2016-12-01
Musculoskeletal modeling allows for the determination of various parameters during dynamic maneuvers by using in vivo kinematic and ground reaction force (GRF) data as inputs. Differences between experimental and model marker data and inconsistencies in the GRFs applied to these musculoskeletal models may not produce accurate simulations. Therefore, residual forces and moments are applied to these models in order to reduce these differences. Numerical optimization techniques can be used to determine optimal tracking weights of each degree of freedom of a musculoskeletal model in order to reduce differences between the experimental and model marker data as well as residual forces and moments. In this study, the particle swarm optimization (PSO) and simplex simulated annealing (SIMPSA) algorithms were used to determine optimal tracking weights for the simulation of a sidestep cut. The PSO and SIMPSA algorithms were able to produce model kinematics that were within 1.4° of experimental kinematics with residual forces and moments of less than 10 N and 18 Nm, respectively. The PSO algorithm was able to replicate the experimental kinematic data more closely and produce more dynamically consistent kinematic data for a sidestep cut compared to the SIMPSA algorithm. Future studies should use external optimization routines to determine dynamically consistent kinematic data and report the differences between experimental and model data for these musculoskeletal simulations.
NASA Astrophysics Data System (ADS)
Cao, Bochao
Slender structures representing civil, mechanical and aerospace systems such as long-span bridges, high-rise buildings, stay cables, power-line cables, high light mast poles, crane-booms and aircraft wings could experience vortex-induced and buffeting excitations below their design wind speeds and divergent self-excited oscillations (flutter) beyond a critical wind speed because these are flexible. Traditional linear aerodynamic theories that are routinely applied for their response prediction are not valid in the galloping, or near-flutter regime, where large-amplitude vibrations could occur and during non-stationary and transient wind excitations that occur, for example, during hurricanes, thunderstorms and gust fronts. The linear aerodynamic load formulation for lift, drag and moment are expressed in terms of aerodynamic functions in frequency domain that are valid for straight-line winds which are stationary or weakly-stationary. Application of the frequency domain formulation is restricted from use in the nonlinear and transient domain because these are valid for linear models and stationary wind. The time-domain aerodynamic force formulations are suitable for finite element modeling, feedback-dependent structural control mechanism, fatigue-life prediction, and above all modeling of transient structural behavior during non-stationary wind phenomena. This has motivated the developing of time-domain models of aerodynamic loads that are in parallel to the existing frequency-dependent models. Parameters defining these time-domain models can be now extracted from wind tunnel tests, for example, the Rational Function Coefficients defining the self-excited wind loads can be extracted using section model tests using the free vibration technique. However, the free vibration method has some limitations because it is difficult to apply at high wind speeds, in turbulent wind environment, or on unstable cross sections with negative aerodynamic damping. In the current research, new algorithms were developed based on forced vibration technique for direct extraction of the Rational Functions. The first of the two algorithms developed uses the two angular phase lag values between the measured vertical or torsional displacement and the measured aerodynamic lift and moment produced on the section model subject to forced vibration to identify the Rational Functions. This algorithm uses two separate one-degree-of-freedom tests (vertical or torsional) to identify all the four Rational Functions or corresponding Rational Function Coefficients for a two degrees-of-freedom (DOF) vertical-torsional vibration model. It was applied to a streamlined section model and the results compared well with those obtained from earlier free vibration experiment. The second algorithm that was developed is based on direct least squares method. It uses all the data points of displacements and aerodynamic lift and moment instead of phase lag values for more accurate estimates. This algorithm can be used for one-, two- and three-degree-of-freedom motions. A two-degree-of-freedom forced vibration system was developed and the algorithm was shown to work well for both streamlined and bluff section models. The uniqueness of the second algorithms lies in the fact that it requires testing the model at only two wind speeds for extraction of all four Rational Functions. The Rational Function Coefficients that were extracted for a streamlined section model using the two-DOF Least Squares algorithm were validated in a separate wind tunnel by testing a larger scaled model subject to straight-line, gusty and boundary-layer wind.
Dynamical simulation priors for human motion tracking.
Vondrak, Marek; Sigal, Leonid; Jenkins, Odest Chadwicke
2013-01-01
We propose a simulation-based dynamical motion prior for tracking human motion from video in presence of physical ground-person interactions. Most tracking approaches to date have focused on efficient inference algorithms and/or learning of prior kinematic motion models; however, few can explicitly account for the physical plausibility of recovered motion. Here, we aim to recover physically plausible motion of a single articulated human subject. Toward this end, we propose a full-body 3D physical simulation-based prior that explicitly incorporates a model of human dynamics into the Bayesian filtering framework. We consider the motion of the subject to be generated by a feedback “control loop” in which Newtonian physics approximates the rigid-body motion dynamics of the human and the environment through the application and integration of interaction forces, motor forces, and gravity. Interaction forces prevent physically impossible hypotheses, enable more appropriate reactions to the environment (e.g., ground contacts), and are produced from detected human-environment collisions. Motor forces actuate the body, ensure that proposed pose transitions are physically feasible, and are generated using a motion controller. For efficient inference in the resulting high-dimensional state space, we utilize an exemplar-based control strategy that reduces the effective search space of motor forces. As a result, we are able to recover physically plausible motion of human subjects from monocular and multiview video. We show, both quantitatively and qualitatively, that our approach performs favorably with respect to Bayesian filtering methods with standard motion priors.
Pizzolato, Claudio; Lloyd, David G.; Sartori, Massimo; Ceseracciu, Elena; Besier, Thor F.; Fregly, Benjamin J.; Reggiani, Monica
2015-01-01
Personalized neuromusculoskeletal (NMS) models can represent the neurological, physiological, and anatomical characteristics of an individual and can be used to estimate the forces generated inside the human body. Currently, publicly available software to calculate muscle forces are restricted to static and dynamic optimisation methods, or limited to isometric tasks only. We have created and made freely available for the research community the Calibrated EMG-Informed NMS Modelling Toolbox (CEINMS), an OpenSim plug-in that enables investigators to predict different neural control solutions for the same musculoskeletal geometry and measured movements. CEINMS comprises EMG-driven and EMG-informed algorithms that have been previously published and tested. It operates on dynamic skeletal models possessing any number of degrees of freedom and musculotendon units and can be calibrated to the individual to predict measured joint moments and EMG patterns. In this paper we describe the components of CEINMS and its integration with OpenSim. We then analyse how EMG-driven, EMG-assisted, and static optimisation neural control solutions affect the estimated joint moments, muscle forces, and muscle excitations, including muscle co-contraction. PMID:26522621
Flow analysis of new type propulsion system for UV’s
NASA Astrophysics Data System (ADS)
Eimanis, M.; Auzins, J.
2017-10-01
This paper presents an original design of an autonomous underwater vehicle where thrust force is created by the helicoidal shape of the hull rather than screw propellers. Propulsion force is created by counter-rotating bow and stern parts. The middle part of the vehicle has the function of a cargo compartment containing all control mechanisms and communications. It’s made of elastic material, containing a Cardan-joint mechanism, which allows changing the direction of vehicle, actuated by bending drives. A bending drive velocity control algorithm for the automatic control of vehicle movement direction is proposed. The dynamics of AUV are simulated using multibody simulation software MSC Adams. For the simulation of water resistance forces and torques the surrogate polynomial metamodels are created on the basis of computer experiments with CFD software. For flow interaction with model geometry the simplified vehicle model is submerged in fluid medium using special CFD software, with the same idea used in wind tunnel experiments. The simulation results are compared with measurements of the AUV prototype, created at Institute of Mechanics of Riga Technical University. Experiments with the prototype showed good agreement with simulation results and confirmed the effectiveness and the future potential of the proposed principle.
NASA Astrophysics Data System (ADS)
Weiskircher, Thomas; Müller, Steffen
2012-01-01
This article presents a motion controller for a road vehicle equipped with a steer-by-wire system and four independent electric rim-mounted drives. The motion controller separates the control law from the specific actuator setup by the usage of virtual global control variables acting on the vehicle centre of gravity. A control allocation algorithm distributes the virtual control variables to the available actuators. An approximation of the real actuator dynamics is used to analyse the performance of different motion controller types in the linear and nonlinear driving regions. In addition, a vehicle state observer consisting of a traction force observer and an unscented Kalman filter is discussed to analyse the control behaviour in the case of a real sensor setup.
A New Controller for a Smart Walker Based on Human-Robot Formation
Valadão, Carlos; Caldeira, Eliete; Bastos-Filho, Teodiano; Frizera-Neto, Anselmo; Carelli, Ricardo
2016-01-01
This paper presents the development of a smart walker that uses a formation controller in its displacements. Encoders, a laser range finder and ultrasound are the sensors used in the walker. The control actions are based on the user (human) location, who is the actual formation leader. There is neither a sensor attached to the user’s body nor force sensors attached to the arm supports of the walker, and thus, the control algorithm projects the measurements taken from the laser sensor into the user reference and, then, calculates the linear and angular walker’s velocity to keep the formation (distance and angle) in relation to the user. An algorithm was developed to detect the user’s legs, whose distances from the laser sensor provide the information necessary to the controller. The controller was theoretically analyzed regarding its stability, simulated and validated with real users, showing accurate performance in all experiments. In addition, safety rules are used to check both the user and the device conditions, in order to guarantee that the user will not have any risks when using the smart walker. The applicability of this device is for helping people with lower limb mobility impairments. PMID:27447634
An algorithm for automated layout of process description maps drawn in SBGN.
Genc, Begum; Dogrusoz, Ugur
2016-01-01
Evolving technology has increased the focus on genomics. The combination of today's advanced techniques with decades of molecular biology research has yielded huge amounts of pathway data. A standard, named the Systems Biology Graphical Notation (SBGN), was recently introduced to allow scientists to represent biological pathways in an unambiguous, easy-to-understand and efficient manner. Although there are a number of automated layout algorithms for various types of biological networks, currently none specialize on process description (PD) maps as defined by SBGN. We propose a new automated layout algorithm for PD maps drawn in SBGN. Our algorithm is based on a force-directed automated layout algorithm called Compound Spring Embedder (CoSE). On top of the existing force scheme, additional heuristics employing new types of forces and movement rules are defined to address SBGN-specific rules. Our algorithm is the only automatic layout algorithm that properly addresses all SBGN rules for drawing PD maps, including placement of substrates and products of process nodes on opposite sides, compact tiling of members of molecular complexes and extensively making use of nested structures (compound nodes) to properly draw cellular locations and molecular complex structures. As demonstrated experimentally, the algorithm results in significant improvements over use of a generic layout algorithm such as CoSE in addressing SBGN rules on top of commonly accepted graph drawing criteria. An implementation of our algorithm in Java is available within ChiLay library (https://github.com/iVis-at-Bilkent/chilay). ugur@cs.bilkent.edu.tr or dogrusoz@cbio.mskcc.org Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press.
An algorithm for automated layout of process description maps drawn in SBGN
Genc, Begum; Dogrusoz, Ugur
2016-01-01
Motivation: Evolving technology has increased the focus on genomics. The combination of today’s advanced techniques with decades of molecular biology research has yielded huge amounts of pathway data. A standard, named the Systems Biology Graphical Notation (SBGN), was recently introduced to allow scientists to represent biological pathways in an unambiguous, easy-to-understand and efficient manner. Although there are a number of automated layout algorithms for various types of biological networks, currently none specialize on process description (PD) maps as defined by SBGN. Results: We propose a new automated layout algorithm for PD maps drawn in SBGN. Our algorithm is based on a force-directed automated layout algorithm called Compound Spring Embedder (CoSE). On top of the existing force scheme, additional heuristics employing new types of forces and movement rules are defined to address SBGN-specific rules. Our algorithm is the only automatic layout algorithm that properly addresses all SBGN rules for drawing PD maps, including placement of substrates and products of process nodes on opposite sides, compact tiling of members of molecular complexes and extensively making use of nested structures (compound nodes) to properly draw cellular locations and molecular complex structures. As demonstrated experimentally, the algorithm results in significant improvements over use of a generic layout algorithm such as CoSE in addressing SBGN rules on top of commonly accepted graph drawing criteria. Availability and implementation: An implementation of our algorithm in Java is available within ChiLay library (https://github.com/iVis-at-Bilkent/chilay). Contact: ugur@cs.bilkent.edu.tr or dogrusoz@cbio.mskcc.org Supplementary information: Supplementary data are available at Bioinformatics online. PMID:26363029
On-line, adaptive state estimator for active noise control
NASA Technical Reports Server (NTRS)
Lim, Tae W.
1994-01-01
Dynamic characteristics of airframe structures are expected to vary as aircraft flight conditions change. Accurate knowledge of the changing dynamic characteristics is crucial to enhancing the performance of the active noise control system using feedback control. This research investigates the development of an adaptive, on-line state estimator using a neural network concept to conduct active noise control. In this research, an algorithm has been developed that can be used to estimate displacement and velocity responses at any locations on the structure from a limited number of acceleration measurements and input force information. The algorithm employs band-pass filters to extract from the measurement signal the frequency contents corresponding to a desired mode. The filtered signal is then used to train a neural network which consists of a linear neuron with three weights. The structure of the neural network is designed as simple as possible to increase the sampling frequency as much as possible. The weights obtained through neural network training are then used to construct the transfer function of a mode in z-domain and to identify modal properties of each mode. By using the identified transfer function and interpolating the mode shape obtained at sensor locations, the displacement and velocity responses are estimated with reasonable accuracy at any locations on the structure. The accuracy of the response estimates depends on the number of modes incorporated in the estimates and the number of sensors employed to conduct mode shape interpolation. Computer simulation demonstrates that the algorithm is capable of adapting to the varying dynamic characteristics of structural properties. Experimental implementation of the algorithm on a DSP (digital signal processing) board for a plate structure is underway. The algorithm is expected to reach the sampling frequency range of about 10 kHz to 20 kHz which needs to be maintained for a typical active noise control application.
Shape determination and control for large space structures
NASA Technical Reports Server (NTRS)
Weeks, C. J.
1981-01-01
An integral operator approach is used to derive solutions to static shape determination and control problems associated with large space structures. Problem assumptions include a linear self-adjoint system model, observations and control forces at discrete points, and performance criteria for the comparison of estimates or control forms. Results are illustrated by simulations in the one dimensional case with a flexible beam model, and in the multidimensional case with a finite model of a large space antenna. Modal expansions for terms in the solution algorithms are presented, using modes from the static or associated dynamic mode. These expansions provide approximated solutions in the event that a used form analytical solution to the system boundary value problem is not available.
New method to improve dynamic stiffness of electro-hydraulic servo systems
NASA Astrophysics Data System (ADS)
Bai, Yanhong; Quan, Long
2013-09-01
Most current researches working on improving stiffness focus on the application of control theories. But controller in closed-loop hydraulic control system takes effect only after the controlled position is deviated, so the control action is lagged. Thus dynamic performance against force disturbance and dynamic load stiffness can’t be improved evidently by advanced control algorithms. In this paper, the elementary principle of maintaining piston position unchanged under sudden external force load change by charging additional oil is analyzed. On this basis, the conception of raising dynamic stiffness of electro hydraulic position servo system by flow feedforward compensation is put forward. And a scheme using double servo valves to realize flow feedforward compensation is presented, in which another fast response servo valve is added to the regular electro hydraulic servo system and specially utilized to compensate the compressed oil volume caused by load impact in time. The two valves are arranged in parallel to control the cylinder jointly. Furthermore, the model of flow compensation is derived, by which the product of the amplitude and width of the valve’s pulse command signal can be calculated. And determination rules of the amplitude and width of pulse signal are concluded by analysis and simulations. Using the proposed scheme, simulations and experiments at different positions with different force changes are conducted. The simulation and experimental results show that the system dynamic performance against load force impact is largely improved with decreased maximal dynamic position deviation and shortened settling time. That is, system dynamic load stiffness is evidently raised. This paper proposes a new method which can effectively improve the dynamic stiffness of electro-hydraulic servo systems.
Pattern Recognition Control Design
NASA Technical Reports Server (NTRS)
Gambone, Elisabeth
2016-01-01
Spacecraft control algorithms must know the expected spacecraft response to any command to the available control effectors, such as reaction thrusters or torque devices. Spacecraft control system design approaches have traditionally relied on the estimated vehicle mass properties to determine the desired force and moment, as well as knowledge of the effector performance to efficiently control the spacecraft. A pattern recognition approach can be used to investigate the relationship between the control effector commands and the spacecraft responses. Instead of supplying the approximated vehicle properties and the effector performance characteristics, a database of information relating the effector commands and the desired vehicle response can be used for closed-loop control. A Monte Carlo simulation data set of the spacecraft dynamic response to effector commands can be analyzed to establish the influence a command has on the behavior of the spacecraft. A tool developed at NASA Johnson Space Center (Ref. 1) to analyze flight dynamics Monte Carlo data sets through pattern recognition methods can be used to perform this analysis. Once a comprehensive data set relating spacecraft responses with commands is established, it can be used in place of traditional control laws and gains set. This pattern recognition approach can be compared with traditional control algorithms to determine the potential benefits and uses.
New cellular automaton model for magnetohydrodynamics
NASA Technical Reports Server (NTRS)
Chen, Hudong; Matthaeus, William H.
1987-01-01
A new type of two-dimensional cellular automation method is introduced for computation of magnetohydrodynamic fluid systems. Particle population is described by a 36-component tensor referred to a hexagonal lattice. By appropriate choice of the coefficients that control the modified streaming algorithm and the definition of the macroscopic fields, it is possible to compute both Lorentz-force and magnetic-induction effects. The method is local in the microscopic space and therefore suited to massively parallel computations.
Controllability of switched singular mix-valued logical control networks with constraints
NASA Astrophysics Data System (ADS)
Deng, Lei; Gong, Mengmeng; Zhu, Peiyong
2018-03-01
The present paper investigates the controllability problem of switched singular mix-valued logical control networks (SSMLCNs) with constraints on states and controls. First, using the semi-tenser product (STP) of matrices, the SSMLCN is expressed in an algebraic form, based on which a necessary and sufficient condition is given for the uniqueness of solution of SSMLCNs. Second, a necessary and sufficient criteria is derived for the controllability of constrained SSMLCNs, by converting a constrained SSMLCN into a parallel constrained switched mix-valued logical control network. Third, an algorithm is presented to design a proper switching sequence and a control scheme which force a state to a reachable state. Finally, a numerical example is given to demonstrate the efficiency of the results obtained in this paper.
Autonomous Motion Learning for Intra-Vehicular Activity Space Robot
NASA Astrophysics Data System (ADS)
Watanabe, Yutaka; Yairi, Takehisa; Machida, Kazuo
Space robots will be needed in the future space missions. So far, many types of space robots have been developed, but in particular, Intra-Vehicular Activity (IVA) space robots that support human activities should be developed to reduce human-risks in space. In this paper, we study the motion learning method of an IVA space robot with the multi-link mechanism. The advantage point is that this space robot moves using reaction force of the multi-link mechanism and contact forces from the wall as space walking of an astronaut, not to use a propulsion. The control approach is determined based on a reinforcement learning with the actor-critic algorithm. We demonstrate to clear effectiveness of this approach using a 5-link space robot model by simulation. First, we simulate that a space robot learn the motion control including contact phase in two dimensional case. Next, we simulate that a space robot learn the motion control changing base attitude in three dimensional case.
NASA Astrophysics Data System (ADS)
Friz, Paul Daniel
This thesis details the work done on two unrelated projects, plasma actuators, an aerodynamic flow control device, and Plasmonic Force Propulsion (PFP) thrusters, a space propulsion system for small satellites. The first half of the thesis is a paper published in the International Journal of Flow Control on plasma actuators. In this paper the thrust and power consumption of plasma actuators with varying geometries was studied at varying pressure. It was found that actuators with longer buried electrodes produce the most thrust over all and that they substantially improved thrust at low pressure. In particular actuators with 75 mm buried electrodes produced 26% more thrust overall and 34% more thrust at low pressure than the standard 15 mm design. The second half details work done modeling small satellite attitude and reaction control systems in order to compare the use of Plasmonic Force Propulsion thrusters with other state of the art reaction control systems. The model uses bang bang control algorithms and assumes the worst case scenario solar radiation pressure is the only disturbing force. It was found that the estimated 50-500 nN of thrust produced by PFP thrusters would allow the spacecraft which use them extremely high pointing and positioning accuracies (<10-9 degrees and 3 pm). PFP thrusters still face many developmental challenges such as increasing specific impulse which require more research, however, they have great potential to be an enabling technology for future NASA missions such as the Laser Interferometer Space Antenna, and The Stellar Imager.
Janssen, Xander J A; Lipfert, Jan; Jager, Tessa; Daudey, Renier; Beekman, Jaap; Dekker, Nynke H
2012-07-11
The well-established single-molecule force-spectroscopy techniques have recently been complemented by methods that can measure torque and twist directly, notably magnetic torque tweezers and the optical torque wrench. A limitation of the current torque measurement schemes is the intrinsic coupling between the force and torque degrees of freedom. Here we present electromagnetic torque tweezers (eMTT) that combine permanent and electromagnets to enable independent control of the force and torsional trap stiffness for sensitive measurements of single molecule torque and twist. Using the eMTT, we demonstrate sensitive torque measurements on tethered DNA molecules from simple tracking of the beads' (x,y)-position, obviating the need for any angular tracking algorithms or markers. Employing the eMTT for high-resolution torque measurements, we experimentally confirm the theoretically predicted torque overshoot at the DNA buckling transition in high salt conditions. We envision that the flexibility and control afforded by the eMTT will enable a range of new torque and twist measurement schemes from single-molecules to living cells.
A walking prescription for statically-stable walkers based on walker/terrain interaction
NASA Technical Reports Server (NTRS)
Nagy, Peter V.; Whittaker, William L.; Desa, Subhas
1992-01-01
The walker/terrain interaction phenomena for the control of a statically stable walking machine are described. The algorithms, measures, and knowledge of walker/terrain interaction phenomena are then combined to form a prescription for how to walk on general terrain. This prescription consists of two parts: nominal control and reactive control. The function of nominal control is the evaluation and execution of planned motions, based on predicted foot force redistributions, to achieve reliable locomotion. The function of reactive control is the monitoring of walker/terrain interaction in real-time to detect anomalous conditions and then respond with the appropriate reflexive actions. Simulations and experiments have been used to test and verify various aspects of the walking prescription.
NASA Technical Reports Server (NTRS)
Hartley, Tom T. (Editor)
1987-01-01
Recent advances in control-system design and simulation are discussed in reviews and reports. Among the topics considered are fast algorithms for generating near-optimal binary decision programs, trajectory control of robot manipulators with compensation of load effects via a six-axis force sensor, matrix integrators for real-time simulation, a high-level control language for an autonomous land vehicle, and a practical engineering design method for stable model-reference adaptive systems. Also addressed are the identification and control of flexible-limb robots with unknown loads, adaptive control and robust adaptive control for manipulators with feedforward compensation, adaptive pole-placement controllers with predictive action, variable-structure strategies for motion control, and digital signal-processor-based variable-structure controls.
Chaos, Chaos Control and Synchronization of a Gyrostat System
NASA Astrophysics Data System (ADS)
GE, Z.-M.; LIN, T.-N.
2002-03-01
The dynamic behavior of a gyrostat system subjected to external disturbance is studied in this paper. By applying numerical results, phase diagrams, power spectrum, period-T maps, and Lyapunov exponents are presented to observe periodic and choatic motions. The effect of the parameters changed in the system can be found in the bifurcation and parametric diagrams. For global analysis, the basins of attraction of each attractor of the system are located by employing the modified interpolated cell mapping (MICM) method. Several methods, the delayed feedback control, the addition of constant torque, the addition of periodic force, the addition of periodic impulse torque, injection of dither signal control, adaptive control algorithm (ACA) control and bang-bang control are used to control chaos effectively. Finally, synchronization of chaos in the gyrostat system is studied.
Hidden Markov model analysis of force/torque information in telemanipulation
NASA Technical Reports Server (NTRS)
Hannaford, Blake; Lee, Paul
1991-01-01
A model for the prediction and analysis of sensor information recorded during robotic performance of telemanipulation tasks is presented. The model uses the hidden Markov model to describe the task structure, the operator's or intelligent controller's goal structure, and the sensor signals. A methodology for constructing the model parameters based on engineering knowledge of the task is described. It is concluded that the model and its optimal state estimation algorithm, the Viterbi algorithm, are very succesful at the task of segmenting the data record into phases corresponding to subgoals of the task. The model provides a rich modeling structure within a statistical framework, which enables it to represent complex systems and be robust to real-world sensory signals.
NASA Astrophysics Data System (ADS)
Russano, G.; Cavalleri, A.; Cesarini, A.; Dolesi, R.; Ferroni, V.; Gibert, F.; Giusteri, R.; Hueller, M.; Liu, L.; Pivato, P.; Tu, H. B.; Vetrugno, D.; Vitale, S.; Weber, W. J.
2018-02-01
LISA Pathfinder is a differential accelerometer with the main goal being to demonstrate the near perfect free-fall of reference test masses, as is needed for an orbiting gravitational wave observatory, with a target sensitivity of 30 fm s‑2 Hz-1/2 at 1 mHz. Any lasting background differential acceleration between the two test masses must be actively compensated, and noise associated with the applied actuation force can be a dominant source of noise. To remove this actuation, and the associated force noise, a ‘free-fall’ actuation control scheme has been designed; actuation is limited to brief impulses, with both test masses in free-fall in the time between the impulses, allowing measurement of the remaining acceleration noise sources. In this work, we present an on-ground torsion pendulum testing campaign of this technique and associated data analysis algorithms at a level nearing the sub-femto-g/\\sqrtHz performance required for LISA Pathfinder.
Materassi, Donatello; Baschieri, Paolo; Tiribilli, Bruno; Zuccheri, Giampaolo; Samorì, Bruno
2009-08-01
We describe the realization of an atomic force microscope architecture designed to perform customizable experiments in a flexible and automatic way. Novel technological contributions are given by the software implementation platform (RTAI-LINUX), which is free and open source, and from a functional point of view, by the implementation of hard real-time control algorithms. Some other technical solutions such as a new way to estimate the optical lever constant are described as well. The adoption of this architecture provides many degrees of freedom in the device behavior and, furthermore, allows one to obtain a flexible experimental instrument at a relatively low cost. In particular, we show how such a system has been employed to obtain measures in sophisticated single-molecule force spectroscopy experiments [Fernandez and Li, Science 303, 1674 (2004)]. Experimental results on proteins already studied using the same methodologies are provided in order to show the reliability of the measure system.
Sensor Data Quality and Angular Rate Down-Selection Algorithms on SLS EM-1
NASA Technical Reports Server (NTRS)
Park, Thomas; Oliver, Emerson; Smith, Austin
2018-01-01
The NASA Space Launch System Block 1 launch vehicle is equipped with an Inertial Navigation System (INS) and multiple Rate Gyro Assemblies (RGA) that are used in the Guidance, Navigation, and Control (GN&C) algorithms. The INS provides the inertial position, velocity, and attitude of the vehicle along with both angular rate and specific force measurements. Additionally, multiple sets of co-located rate gyros supply angular rate data. The collection of angular rate data, taken along the launch vehicle, is used to separate out vehicle motion from flexible body dynamics. Since the system architecture uses redundant sensors, the capability was developed to evaluate the health (or validity) of the independent measurements. A suite of Sensor Data Quality (SDQ) algorithms is responsible for assessing the angular rate data from the redundant sensors. When failures are detected, SDQ will take the appropriate action and disqualify or remove faulted sensors from forward processing. Additionally, the SDQ algorithms contain logic for down-selecting the angular rate data used by the GN&C software from the set of healthy measurements. This paper provides an overview of the algorithms used for both fault-detection and measurement down selection.
Atmospheric turbulence and sensor system effects on biometric algorithm performance
NASA Astrophysics Data System (ADS)
Espinola, Richard L.; Leonard, Kevin R.; Byrd, Kenneth A.; Potvin, Guy
2015-05-01
Biometric technologies composed of electro-optical/infrared (EO/IR) sensor systems and advanced matching algorithms are being used in various force protection/security and tactical surveillance applications. To date, most of these sensor systems have been widely used in controlled conditions with varying success (e.g., short range, uniform illumination, cooperative subjects). However the limiting conditions of such systems have yet to be fully studied for long range applications and degraded imaging environments. Biometric technologies used for long range applications will invariably suffer from the effects of atmospheric turbulence degradation. Atmospheric turbulence causes blur, distortion and intensity fluctuations that can severely degrade image quality of electro-optic and thermal imaging systems and, for the case of biometrics technology, translate to poor matching algorithm performance. In this paper, we evaluate the effects of atmospheric turbulence and sensor resolution on biometric matching algorithm performance. We use a subset of the Facial Recognition Technology (FERET) database and a commercial algorithm to analyze facial recognition performance on turbulence degraded facial images. The goal of this work is to understand the feasibility of long-range facial recognition in degraded imaging conditions, and the utility of camera parameter trade studies to enable the design of the next generation biometrics sensor systems.
A control-volume method for analysis of unsteady thrust augmenting ejector flows
NASA Technical Reports Server (NTRS)
Drummond, Colin K.
1988-01-01
A method for predicting transient thrust augmenting ejector characteristics is presented. The analysis blends classic self-similar turbulent jet descriptions with a control volume mixing region discretization to solicit transient effects in a new way. Division of the ejector into an inlet, diffuser, and mixing region corresponds with the assumption of viscous-dominated phenomenon in the latter. Inlet and diffuser analyses are simplified by a quasi-steady analysis, justified by the assumptions that pressure is the forcing function in those regions. Details of the theoretical foundation, the solution algorithm, and sample calculations are given.
Magnetorheological fluid based automotive steer-by-wire systems
NASA Astrophysics Data System (ADS)
Ahmadkhanlou, Farzad; Washington, Gregory N.; Bechtel, Stephen E.; Wang, Yingru
2006-03-01
The idea of this paper is to design a Magnetorheological (MR) fluid based damper for steer-by-wire systems to provide sensory feedback to the driver. The advantages of using MR fluids in haptic devices stem from the increase in transparency gained from the lightweight semiactive system and controller implementation. The performance of MR fluid based steer-by wire system depends on MR fluid model and specifications, MR damper geometry, and the control algorithm. All of these factors are addressed in this study. The experimental results show the improvements in steer-by-wire by adding force feedback to the system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Joseph Z., E-mail: x@anl.gov; Vasserman, Isaac; Strelnikov, Nikita
2016-07-27
A 2.8-meter long horizontal field prototype undulator with a dynamic force compensation mechanism has been developed and tested at the Advanced Photon Source (APS) at Argonne National Laboratory (Argonne). The magnetic tuning of the undulator integrals has been automated and accomplished by applying magnetic shims. A detailed description of the algorithms and performance is reported.
Look and Feel: Haptic Interaction for Biomedicine
1995-10-01
algorithm that is evaluated within the topology of the model. During each time step, forces are summed for each mobile atom based on external forces...volumetric properties; (b) conserving computation power by rendering media local to the interaction point; and (c) evaluating the simulation within...alteration of the model topology. Simulation of the DSM state is accomplished by a multi-step algorithm that is evaluated within the topology of the
A novel single thruster control strategy for spacecraft attitude stabilization
NASA Astrophysics Data System (ADS)
Godard; Kumar, Krishna Dev; Zou, An-Min
2013-05-01
Feasibility of achieving three axis attitude stabilization using a single thruster is explored in this paper. Torques are generated using a thruster orientation mechanism with which the thrust vector can be tilted on a two axis gimbal. A robust nonlinear control scheme is developed based on the nonlinear kinematic and dynamic equations of motion of a rigid body spacecraft in the presence of gravity gradient torque and external disturbances. The spacecraft, controlled using the proposed concept, constitutes an underactuated system (a system with fewer independent control inputs than degrees of freedom) with nonlinear dynamics. Moreover, using thruster gimbal angles as control inputs make the system non-affine (control terms appear nonlinearly in the state equation). This necessitates the control algorithms to be developed based on nonlinear control theory since linear control methods are not directly applicable. The stability conditions for the spacecraft attitude motion for robustness against uncertainties and disturbances are derived to establish the regions of asymptotic 3-axis attitude stabilization. Several numerical simulations are presented to demonstrate the efficacy of the proposed controller and validate the theoretical results. The control algorithm is shown to compensate for time-varying external disturbances including solar radiation pressure, aerodynamic forces, and magnetic disturbances; and uncertainties in the spacecraft inertia parameters. The numerical results also establish the robustness of the proposed control scheme to negate disturbances caused by orbit eccentricity.
Defect-free atomic array formation using the Hungarian matching algorithm
NASA Astrophysics Data System (ADS)
Lee, Woojun; Kim, Hyosub; Ahn, Jaewook
2017-05-01
Deterministic loading of single atoms onto arbitrary two-dimensional lattice points has recently been demonstrated, where by dynamically controlling the optical-dipole potential, atoms from a probabilistically loaded lattice were relocated to target lattice points to form a zero-entropy atomic lattice. In this atom rearrangement, how to pair atoms with the target sites is a combinatorial optimization problem: brute-force methods search all possible combinations so the process is slow, while heuristic methods are time efficient but optimal solutions are not guaranteed. Here, we use the Hungarian matching algorithm as a fast and rigorous alternative to this problem of defect-free atomic lattice formation. Our approach utilizes an optimization cost function that restricts collision-free guiding paths so that atom loss due to collision is minimized during rearrangement. Experiments were performed with cold rubidium atoms that were trapped and guided with holographically controlled optical-dipole traps. The result of atom relocation from a partially filled 7 ×7 lattice to a 3 ×3 target lattice strongly agrees with the theoretical analysis: using the Hungarian algorithm minimizes the collisional and trespassing paths and results in improved performance, with over 50% higher success probability than the heuristic shortest-move method.
High-speed atomic force microscopy and peak force tapping control
NASA Astrophysics Data System (ADS)
Hu, Shuiqing; Mininni, Lars; Hu, Yan; Erina, Natalia; Kindt, Johannes; Su, Chanmin
2012-03-01
ITRS Roadmap requires defect size measurement below 10 nanometers and challenging classifications for both blank and patterned wafers and masks. Atomic force microscope (AFM) is capable of providing metrology measurement in 3D at sub-nanometer accuracy but has long suffered from drawbacks in throughput and limitation of slow topography imaging without chemical information. This presentation focus on two disruptive technology developments, namely high speed AFM and quantitative nanomechanical mapping, which enables high throughput measurement with capability of identifying components through concurrent physical property imaging. The high speed AFM technology has allowed the imaging speed increase by 10-100 times without loss of the data quality. Such improvement enables the speed of defect review on a wafer to increase from a few defects per hour to nearly 100 defects an hour, approaching the requirements of ITRS Roadmap. Another technology development, Peak Force Tapping, substantially simplified the close loop system response, leading to self-optimization of most challenging samples groups to generate expert quality data. More importantly, AFM also simultaneously provides a series of mechanical property maps with a nanometer spatial resolution during defect review. These nanomechanical maps (including elastic modulus, hardness, and surface adhesion) provide complementary information for elemental analysis, differentiate defect materials by their physical properties, and assist defect classification beyond topographic measurements. This paper will explain the key enabling technologies, namely high speed tip-scanning AFM using innovative flexure design and control algorithm. Another critical element is AFM control using Peak Force Tapping, in which the instantaneous tip-sample interaction force is measured and used to derive a full suite of physical properties at each imaging pixel. We will provide examples of defect review data on different wafers and media disks. The similar AFM-based defect review capacity was also applied to EUV masks.
A Large Motion Suspension System for Simulation of Orbital Deployment
NASA Technical Reports Server (NTRS)
Straube, T. M.; Peterson, L. D.
1994-01-01
This paper describes the design and implementation of a vertical degree of freedom suspension system which provides a constant force off-load condition to counter gravity over large displacements. By accommodating motions up to one meter for structures weighing up to 100 pounds, the system is useful for experiments which simulate the on-orbit deployment of spacecraft components. A unique aspect of this system is the combination of a large stroke passive off-load device augmented by electromotive torque actuated force feedback. The active force feedback has the effect of reducing breakaway friction by an order of magnitude over the passive system alone. The paper describes the development of the suspension hardware and the feedback control algorithm. Experiments were performed to verify the suspensions system's ability to provide a gravity off-load as well as its effect on the modal characteristics of a test article.
1990-05-16
Redondo Beach. CA. Civilian subcontractors are ITEK (cameras). Lexington. MA; Contraves Georz (telescopes), Pittsburgh. PA; and Kentron (operations and...Improvements include a higher maximum takeoff weight , improved air-to-air gun sight algorithms, digital flight controls, and improved pilot interface...ambient propagation loss , significant penetration of sea water, and good performance in a nuclear environment. C. (U) JUSTIFICATION FOR PROJECTS LESS
Determining the interparticle force laws in amorphous solids from a visual image.
Gendelman, Oleg; Pollack, Yoav G; Procaccia, Itamar
2016-06-01
We consider the problem of how to determine the force laws in an amorphous system of interacting particles. Given the positions of the centers of mass of the constituent particles we propose an algorithm to determine the interparticle force laws. Having n different types of constituents we determine the coefficients in the Laurent polynomials for the n(n+1)/2 possibly different force laws. A visual providing the particle positions in addition to a measurement of the pressure is all that is required. The algorithm proposed includes a part that can correct for experimental errors in the positions of the particles. Such a correction of unavoidable measurement errors is expected to benefit many experiments in the field.
Baur, Kilian; Wolf, Peter; Riener, Robert; Duarte, Jaime E
2017-07-01
Multiplayer environments are thought to increase the training intensity in robot-aided rehabilitation therapy after stroke. We developed a haptic-based environment to investigate the dynamics of two-player training performing time-constrained reaching movements using the ARMin rehabilitation robot. We implemented a challenge level adaptation algorithm that controlled a virtual damping coefficient to reach a desired success rate. We tested the algorithm's effectiveness in regulating the success rate during game play in a simulation with computer-controlled players, in a feasibility study with six unimpaired players, and in a single session with one stroke patient. The algorithm demonstrated its capacity to adjust the damping coefficient to reach three levels of success rate (low [50%], moderate [70%], and high [90%]) during singleplayer and multiplayer training. For the patient - tested in single-player mode at the moderate success rate only - the algorithm showed also promising behavior. Results of the feasibility study showed that to increase the player's willingness to play at a more challenging task condition, the effect of the challenge level adaptation - regardless of being played in single player or multiplayer mode - might be more important than the provision of multiplayer setting alone. Furthermore, the multiplayer setting tends to be a motivating and encouraging therapy component. Based on these results we will optimize and expand the multiplayer training platform and further investigate multiplayer settings in stroke therapy.
Approximate Dynamic Programming Algorithms for United States Air Force Officer Sustainment
2015-03-26
level of correction needed. While paying bonuses has an easily calculable cost, RIFs have more subtle costs. Mone (1994) discovered that in a steady...a regression is performed utilizing instrumental variables to minimize Bellman error. This algorithm uses a set of basis functions to approximate the...transitioned to an all-volunteer force. Charnes et al. (1972) utilize a goal programming model for General Schedule civilian manpower management in the
"FORCE" learning in recurrent neural networks as data assimilation
NASA Astrophysics Data System (ADS)
Duane, Gregory S.
2017-12-01
It is shown that the "FORCE" algorithm for learning in arbitrarily connected networks of simple neuronal units can be cast as a Kalman Filter, with a particular state-dependent form for the background error covariances. The resulting interpretation has implications for initialization of the learning algorithm, leads to an extension to include interactions between the weight updates for different neurons, and can represent relationships within groups of multiple target output signals.
Integration of a Self-Coherence Algorithm into DISAT for Forced Oscillation Detection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Follum, James D.; Tuffner, Francis K.; Amidan, Brett G.
2015-03-03
With the increasing number of phasor measurement units on the power system, behaviors typically not observable on the power system are becoming more apparent. Oscillatory behavior on the power system, notably forced oscillations, are one such behavior. However, the large amounts of data coming from the PMUs makes manually detecting and locating these oscillations difficult. To automate portions of the process, an oscillation detection routine was coded into the Data Integrity and Situational Awareness Tool (DISAT) framework. Integration into the DISAT framework allows forced oscillations to be detected and information about the event provided to operational engineers. The oscillation detectionmore » algorithm integrates with the data handling and atypical data detecting capabilities of DISAT, building off of a standard library of functions. This report details that integration with information on the algorithm, some implementation issues, and some sample results from the western United States’ power grid.« less
An Efficient Solution Method for Multibody Systems with Loops Using Multiple Processors
NASA Technical Reports Server (NTRS)
Ghosh, Tushar K.; Nguyen, Luong A.; Quiocho, Leslie J.
2015-01-01
This paper describes a multibody dynamics algorithm formulated for parallel implementation on multiprocessor computing platforms using the divide-and-conquer approach. The system of interest is a general topology of rigid and elastic articulated bodies with or without loops. The algorithm divides the multibody system into a number of smaller sets of bodies in chain or tree structures, called "branches" at convenient joints called "connection points", and uses an Order-N (O (N)) approach to formulate the dynamics of each branch in terms of the unknown spatial connection forces. The equations of motion for the branches, leaving the connection forces as unknowns, are implemented in separate processors in parallel for computational efficiency, and the equations for all the unknown connection forces are synthesized and solved in one or several processors. The performances of two implementations of this divide-and-conquer algorithm in multiple processors are compared with an existing method implemented on a single processor.
A spatial operator algebra for manipulator modeling and control
NASA Technical Reports Server (NTRS)
Rodriguez, G.; Jain, A.; Kreutz-Delgado, K.
1991-01-01
A recently developed spatial operator algebra for manipulator modeling, control, and trajectory design is discussed. The elements of this algebra are linear operators whose domain and range spaces consist of forces, moments, velocities, and accelerations. The effect of these operators is equivalent to a spatial recursion along the span of a manipulator. Inversion of operators can be efficiently obtained via techniques of recursive filtering and smoothing. The operator algebra provides a high-level framework for describing the dynamic and kinematic behavior of a manipulator and for control and trajectory design algorithms. The interpretation of expressions within the algebraic framework leads to enhanced conceptual and physical understanding of manipulator dynamics and kinematics.
Haptic device for a ventricular shunt insertion simulator.
Panchaphongsaphak, Bundit; Stutzer, Diego; Schwyter, Etienne; Bernays, René-Ludwig; Riener, Robert
2006-01-01
In this paper we propose a new one-degree-of-freedom haptic device that can be used to simulate ventricular shunt insertion procedures. The device is used together with the BRAINTRAIN training simulator developed for neuroscience education, neurological data visualization and surgical planning. The design of the haptic device is based on a push-pull cable concept. The rendered forces produced by a linear motor connected at one end of the cable are transferred to the user via a sliding mechanism at the end-effector located at the other end of the cable. The end-effector provides the range of movement up to 12 cm. The force is controlled by an open-loop impedance algorithm and can become up to 15 N.
Pizzolato, Claudio; Lloyd, David G; Sartori, Massimo; Ceseracciu, Elena; Besier, Thor F; Fregly, Benjamin J; Reggiani, Monica
2015-11-05
Personalized neuromusculoskeletal (NMS) models can represent the neurological, physiological, and anatomical characteristics of an individual and can be used to estimate the forces generated inside the human body. Currently, publicly available software to calculate muscle forces are restricted to static and dynamic optimisation methods, or limited to isometric tasks only. We have created and made freely available for the research community the Calibrated EMG-Informed NMS Modelling Toolbox (CEINMS), an OpenSim plug-in that enables investigators to predict different neural control solutions for the same musculoskeletal geometry and measured movements. CEINMS comprises EMG-driven and EMG-informed algorithms that have been previously published and tested. It operates on dynamic skeletal models possessing any number of degrees of freedom and musculotendon units and can be calibrated to the individual to predict measured joint moments and EMG patterns. In this paper we describe the components of CEINMS and its integration with OpenSim. We then analyse how EMG-driven, EMG-assisted, and static optimisation neural control solutions affect the estimated joint moments, muscle forces, and muscle excitations, including muscle co-contraction. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
Kornuta, Jeffrey A.; Dixon, J. Brandon
2015-01-01
In addition to external forces, collecting lymphatic vessels intrinsically contract to transport lymph from the extremities to the venous circulation. As a result, the lymphatic endothelium is routinely exposed to a wide range of dynamic mechanical forces, primarily fluid shear stress and circumferential stress, which have both been shown to affect lymphatic pumping activity. Although various ex-vivo perfusion systems exist to study this innate pumping activity in response to mechanical stimuli, none are capable of independently controlling the two primary mechanical forces affecting lymphatic contractility: transaxial pressure gradient, ΔP, which governs fluid shear stress; and average transmural pressure, Pavg, which governs circumferential stress. Hence, the authors describe a novel ex-vivo lymphatic perfusion system (ELPS) capable of independently controlling these two outputs using a linear, explicit model predictive control (MPC) algorithm. The ELPS is capable of reproducing arbitrary waveforms within the frequency range observed in the lymphatics in vivo, including a time-varying ΔP with a constant Pavg, time-varying ΔP and Pavg, and a constant ΔP with a time-varying Pavg. In addition, due to its implementation of syringes to actuate the working fluid, a post-hoc method of estimating both the flow rate through the vessel and fluid wall shear stress over multiple, long (5 sec) time windows is also described. PMID:24809724
Modeling and control of magnetorheological fluid dampers using neural networks
NASA Astrophysics Data System (ADS)
Wang, D. H.; Liao, W. H.
2005-02-01
Due to the inherent nonlinear nature of magnetorheological (MR) fluid dampers, one of the challenging aspects for utilizing these devices to achieve high system performance is the development of accurate models and control algorithms that can take advantage of their unique characteristics. In this paper, the direct identification and inverse dynamic modeling for MR fluid dampers using feedforward and recurrent neural networks are studied. The trained direct identification neural network model can be used to predict the damping force of the MR fluid damper on line, on the basis of the dynamic responses across the MR fluid damper and the command voltage, and the inverse dynamic neural network model can be used to generate the command voltage according to the desired damping force through supervised learning. The architectures and the learning methods of the dynamic neural network models and inverse neural network models for MR fluid dampers are presented, and some simulation results are discussed. Finally, the trained neural network models are applied to predict and control the damping force of the MR fluid damper. Moreover, validation methods for the neural network models developed are proposed and used to evaluate their performance. Validation results with different data sets indicate that the proposed direct identification dynamic model using the recurrent neural network can be used to predict the damping force accurately and the inverse identification dynamic model using the recurrent neural network can act as a damper controller to generate the command voltage when the MR fluid damper is used in a semi-active mode.
Singh, Jai
2013-01-01
The objective of this study was a thorough reconsideration, within the framework of Newtonian mechanics and work-energy relationships, of the empirically interpreted relationships employed within the CRASH3 damage analysis algorithm in regards to linearity between barrier equivalent velocity (BEV) or peak collision force magnitude and residual damage depth. The CRASH3 damage analysis algorithm was considered, first in terms of the cases of collisions that produced no residual damage, in order to properly explain the damage onset speed and crush resistance terms. Under the modeling constraints of the collision partners representing a closed system and the a priori assumption of linearity between BEV or peak collision force magnitude and residual damage depth, the equations for the sole realistic model were derived. Evaluation of the work-energy relationships for collisions at or below the elastic limit revealed that the BEV or peak collision force magnitude relationships are bifurcated based upon the residual damage depth. Rather than being additive terms from the linear curve fits employed in the CRASH3 damage analysis algorithm, the Campbell b 0 and CRASH3 AL terms represent the maximum values that can be ascribed to the BEV or peak collision force magnitude, respectively, for collisions that produce zero residual damage. Collisions resulting in the production of non-zero residual damage depth already account for the surpassing of the elastic limit during closure and therefore the secondary addition of the elastic limit terms represents a double accounting of the same. This evaluation shows that the current energy absorbed formulation utilized in the CRASH3 damage analysis algorithm extraneously includes terms associated with the A and G stiffness coefficients. This sole realistic model, however, is limited, secondary to reducing the coefficient of restitution to a constant value for all cases in which the residual damage depth is nonzero. Linearity between BEV or peak collision force magnitude and residual damage depth may be applicable for particular ranges of residual damage depth for any given region of any given vehicle. Within the modeling construct employed by the CRASH3 damage algorithm, the case of uniform and ubiquitous linearity cannot be supported. Considerations regarding the inclusion of internal work recovered and restitution for modeling the separation phase change in velocity magnitude should account for not only the effects present during the evaluation of a vehicle-to-vehicle collision of interest but also to the approach taken for modeling the force-deflection response for each collision partner.
Manipulation based on sensor-directed control: An integrated end effector and touch sensing system
NASA Technical Reports Server (NTRS)
Hill, J. W.; Sword, A. J.
1973-01-01
A hand/touch sensing system is described that, when mounted on a position-controlled manipulator, greatly expands the kinds of automated manipulation tasks that can be undertaken. Because of the variety of coordinate conversions, control equations, and completion criteria, control is necessarily dependent upon a small digital computer. The sensing system is designed both to be rugged and to sense the necessary touch and force information required to execute a wide range of manipulation tasks. The system consists of a six-axis wrist sensor, external touch sensors, and a pair of matrix jaw sensors. Details of the construction of the particular sensors, the integration of the end effector into the sensor system, and the control algorithms for using the sensor outputs to perform manipulation tasks automatically are discussed.
Arbitrary Symmetric Running Gait Generation for an Underactuated Biped Model.
Dadashzadeh, Behnam; Esmaeili, Mohammad; Macnab, Chris
2017-01-01
This paper investigates generating symmetric trajectories for an underactuated biped during the stance phase of running. We use a point mass biped (PMB) model for gait analysis that consists of a prismatic force actuator on a massless leg. The significance of this model is its ability to generate more general and versatile running gaits than the spring-loaded inverted pendulum (SLIP) model, making it more suitable as a template for real robots. The algorithm plans the necessary leg actuator force to cause the robot center of mass to undergo arbitrary trajectories in stance with any arbitrary attack angle and velocity angle. The necessary actuator forces follow from the inverse kinematics and dynamics. Then these calculated forces become the control input to the dynamic model. We compare various center-of-mass trajectories, including a circular arc and polynomials of the degrees 2, 4 and 6. The cost of transport and maximum leg force are calculated for various attack angles and velocity angles. The results show that choosing the velocity angle as small as possible is beneficial, but the angle of attack has an optimum value. We also find a new result: there exist biped running gaits with double-hump ground reaction force profiles which result in less maximum leg force than single-hump profiles.
Arbitrary Symmetric Running Gait Generation for an Underactuated Biped Model
Esmaeili, Mohammad; Macnab, Chris
2017-01-01
This paper investigates generating symmetric trajectories for an underactuated biped during the stance phase of running. We use a point mass biped (PMB) model for gait analysis that consists of a prismatic force actuator on a massless leg. The significance of this model is its ability to generate more general and versatile running gaits than the spring-loaded inverted pendulum (SLIP) model, making it more suitable as a template for real robots. The algorithm plans the necessary leg actuator force to cause the robot center of mass to undergo arbitrary trajectories in stance with any arbitrary attack angle and velocity angle. The necessary actuator forces follow from the inverse kinematics and dynamics. Then these calculated forces become the control input to the dynamic model. We compare various center-of-mass trajectories, including a circular arc and polynomials of the degrees 2, 4 and 6. The cost of transport and maximum leg force are calculated for various attack angles and velocity angles. The results show that choosing the velocity angle as small as possible is beneficial, but the angle of attack has an optimum value. We also find a new result: there exist biped running gaits with double-hump ground reaction force profiles which result in less maximum leg force than single-hump profiles. PMID:28118401
NASA Technical Reports Server (NTRS)
Lowrie, J. W.; Fermelia, A. J.; Haley, D. C.; Gremban, K. D.; Vanbaalen, J.; Walsh, R. W.
1982-01-01
The derivation of the equations is presented, the rate control algorithm described, and simulation methodologies summarized. A set of dynamics equations that can be used recursively to calculate forces and torques acting at the joints of an n link manipulator given the manipulator joint rates are derived. The equations are valid for any n link manipulator system with any kind of joints connected in any sequence. The equations of motion for the class of manipulators consisting of n rigid links interconnected by rotary joints are derived. A technique is outlined for reducing the system of equations to eliminate contraint torques. The linearized dynamics equations for an n link manipulator system are derived. The general n link linearized equations are then applied to a two link configuration. The coordinated rate control algorithm used to compute individual joint rates when given end effector rates is described. A short discussion of simulation methodologies is presented.
A Vertically Lagrangian Finite-Volume Dynamical Core for Global Models
NASA Technical Reports Server (NTRS)
Lin, Shian-Jiann
2003-01-01
A finite-volume dynamical core with a terrain-following Lagrangian control-volume discretization is described. The vertically Lagrangian discretization reduces the dimensionality of the physical problem from three to two with the resulting dynamical system closely resembling that of the shallow water dynamical system. The 2D horizontal-to-Lagrangian-surface transport and dynamical processes are then discretized using the genuinely conservative flux-form semi-Lagrangian algorithm. Time marching is split- explicit, with large-time-step for scalar transport, and small fractional time step for the Lagrangian dynamics, which permits the accurate propagation of fast waves. A mass, momentum, and total energy conserving algorithm is developed for mapping the state variables periodically from the floating Lagrangian control-volume to an Eulerian terrain-following coordinate for dealing with physical parameterizations and to prevent severe distortion of the Lagrangian surfaces. Deterministic baroclinic wave growth tests and long-term integrations using the Held-Suarez forcing are presented. Impact of the monotonicity constraint is discussed.
NASA Technical Reports Server (NTRS)
Swenson, Harry N.; Zelenka, Richard E.; Hardy, Gordon H.; Dearing, Munro G.
1992-01-01
A computer aiding concept for low-altitude helicopter flight was developed and evaluated in a real-time piloted simulation. The concept included an optimal control trajectory-generation algorithm based upon dynamic programming and a helmet-mounted display (HMD) presentation of a pathway-in-the-sky, a phantom aircraft, and flight-path vector/predictor guidance symbology. The trajectory-generation algorithm uses knowledge of the global mission requirements, a digital terrain map, aircraft performance capabilities, and advanced navigation information to determine a trajectory between mission way points that seeks valleys to minimize threat exposure. The pilot evaluation was conducted at NASA ARC moving base Vertical Motion Simulator (VMS) by pilots representing NASA, the U.S. Army, the Air Force, and the helicopter industry. The pilots manually tracked the trajectory generated by the algorithm utilizing the HMD symbology. The pilots were able to satisfactorily perform the tracking tasks while maintaining a high degree of awareness of the outside world.
Computer aiding for low-altitude helicopter flight
NASA Technical Reports Server (NTRS)
Swenson, Harry N.
1991-01-01
A computer-aiding concept for low-altitude helicopter flight was developed and evaluated in a real-time piloted simulation. The concept included an optimal control trajectory-generated algorithm based on dynamic programming, and a head-up display (HUD) presentation of a pathway-in-the-sky, a phantom aircraft, and flight-path vector/predictor symbol. The trajectory-generation algorithm uses knowledge of the global mission requirements, a digital terrain map, aircraft performance capabilities, and advanced navigation information to determine a trajectory between mission waypoints that minimizes threat exposure by seeking valleys. The pilot evaluation was conducted at NASA Ames Research Center's Sim Lab facility in both the fixed-base Interchangeable Cab (ICAB) simulator and the moving-base Vertical Motion Simulator (VMS) by pilots representing NASA, the U.S. Army, and the U.S. Air Force. The pilots manually tracked the trajectory generated by the algorithm utilizing the HUD symbology. They were able to satisfactorily perform the tracking tasks while maintaining a high degree of awareness of the outside world.
Development of robots and application to industrial processes
NASA Technical Reports Server (NTRS)
Palm, W. J.; Liscano, R.
1984-01-01
An algorithm is presented for using a robot system with a single camera to position in three-dimensional space a slender object for insertion into a hole; for example, an electrical pin-type termination into a connector hole. The algorithm relies on a control-configured end effector to achieve the required horizontal translations and rotational motion, and it does not require camera calibration. A force sensor in each fingertip is integrated with the vision system to allow the robot to teach itself new reference points when different connectors and pins are used. Variability in the grasped orientation and position of the pin can be accomodated with the sensor system. Performance tests show that the system is feasible. More work is needed to determine more precisely the effects of lighting levels and lighting direction.
Algorithms for the Reduction of Wind-Tunnel Data Derived from Strain Gauge Force Balances.
1984-05-01
summed. Where hinge moments are measured on a model, it is customary to express them by coefficients of the form C11 h (4.23) q Si dH where hi is the...measured hinge moment and Sit and dH are a characteristic area and length associated with the control surface. 4.6 Transformation to Body Axes...Pty. Ltd. Mr D. Pilkington Mr R. D. Bullen Commonwealth Aircraft Corporation, Libra Hawker de Havilland Aust. Pty. Ltd., Bankstown. L.ibrar
A new solution-adaptive grid generation method for transonic airfoil flow calculations
NASA Technical Reports Server (NTRS)
Nakamura, S.; Holst, T. L.
1981-01-01
The clustering algorithm is controlled by a second-order, ordinary differential equation which uses the airfoil surface density gradient as a forcing function. The solution to this differential equation produces a surface grid distribution which is automatically clustered in regions with large gradients. The interior grid points are established from this surface distribution by using an interpolation scheme which is fast and retains the desirable properties of the original grid generated from the standard elliptic equation approach.
Adaptive enhanced sampling by force-biasing using neural networks
NASA Astrophysics Data System (ADS)
Guo, Ashley Z.; Sevgen, Emre; Sidky, Hythem; Whitmer, Jonathan K.; Hubbell, Jeffrey A.; de Pablo, Juan J.
2018-04-01
A machine learning assisted method is presented for molecular simulation of systems with rugged free energy landscapes. The method is general and can be combined with other advanced sampling techniques. In the particular implementation proposed here, it is illustrated in the context of an adaptive biasing force approach where, rather than relying on discrete force estimates, one can resort to a self-regularizing artificial neural network to generate continuous, estimated generalized forces. By doing so, the proposed approach addresses several shortcomings common to adaptive biasing force and other algorithms. Specifically, the neural network enables (1) smooth estimates of generalized forces in sparsely sampled regions, (2) force estimates in previously unexplored regions, and (3) continuous force estimates with which to bias the simulation, as opposed to biases generated at specific points of a discrete grid. The usefulness of the method is illustrated with three different examples, chosen to highlight the wide range of applicability of the underlying concepts. In all three cases, the new method is found to enhance considerably the underlying traditional adaptive biasing force approach. The method is also found to provide improvements over previous implementations of neural network assisted algorithms.
NASA Astrophysics Data System (ADS)
He, Ye; Chen, Xiaoan; Liu, Zhi; Qin, Yi
2018-06-01
The motorized spindle is the core component of CNC machine tools, and the vibration of it reduces the machining precision and service life of the machine tools. Owing to the fast response, large output force, and displacement of the piezoelectric stack, it is often used as the actuator in the active vibration control of the spindle. A piezoelectric self-sensing actuator (SSA) can reduce the cost of the active vibration control system and simplify the structure by eliminating the use of a sensor, because a SSA can have both actuating and sensing functions at the same time. The signal separation method of a SSA based on a bridge circuit is widely applied because of its simple principle and easy implementation. However, it is difficult to maintain dynamic balance of the circuit. Prior research has used adaptive algorithm to balance of the bridge circuit on the flexible beam dynamically, but those algorithms need no correlation between sensing and control voltage, which limit the applications of SSA in the vibration control of the rotor-bearing system. Here, the electromechanical coupling model of the piezoelectric stack is established, followed by establishment of the dynamic model of the spindle system. Next, a new adaptive signal separation method based on the bridge circuit is proposed, which can separate relative small sensing voltage from related mixed voltage adaptively. The experimental results show that when the self-sensing signal obtained from the proposed method is used as a displacement signal, the vibration of the motorized spindle can be suppressed effectively through a linear quadratic Gaussian (LQG) algorithm.
Zhen, Xin; Zhou, Ling-hong; Lu, Wen-ting; Zhang, Shu-xu; Zhou, Lu
2010-12-01
To validate the efficiency and accuracy of an improved Demons deformable registration algorithm and evaluate its application in contour recontouring in 4D-CT. To increase the additional Demons force and reallocate the bilateral forces to accelerate convergent speed, we propose a novel energy function as the similarity measure, and utilize a BFGS method for optimization to avoid specifying the numbers of iteration. Mathematical transformed deformable CT images and home-made deformable phantom were used to validate the accuracy of the improved algorithm, and its effectiveness for contour recontouring was tested. The improved algorithm showed a relatively high registration accuracy and speed when compared with the classic Demons algorithm and optical flow based method. Visual inspection of the positions and shapes of the deformed contours agreed well with the physician-drawn contours. Deformable registration is a key technique in 4D-CT, and this improved Demons algorithm for contour recontouring can significantly reduce the workload of the physicians. The registration accuracy of this method proves to be sufficient for clinical needs.
Nonholonomic Closed-loop Velocity Control of a Soft-tethered Magnetic Capsule Endoscope.
Taddese, Addisu Z; Slawinski, Piotr R; Obstein, Keith L; Valdastri, Pietro
2016-10-01
In this paper, we demonstrate velocity-level closed-loop control of a tethered magnetic capsule endoscope that is actuated via serial manipulator with a permanent magnet at its end-effector. Closed-loop control (2 degrees-of-freedom in position, and 2 in orientation) is made possible with the use of a real-time magnetic localization algorithm that utilizes the actuating magnetic field and thus does not require additional hardware. Velocity control is implemented to create smooth motion that is clinically necessary for colorectal cancer diagnostics. Our control algorithm generates a spline that passes through a set of input points that roughly defines the shape of the desired trajectory. The velocity controller acts in the tangential direction to the path, while a secondary position controller enforces a nonholonomic constraint on capsule motion. A soft nonholonomic constraint is naturally imposed by the lumen while we enforce a strict constraint for both more accurate estimation of tether disturbance and hypothesized intuitiveness for a clinician's teleoperation. An integrating disturbance force estimation control term is introduced to predict the disturbance of the tether. This paper presents the theoretical formulations and experimental validation of our methodology. Results show the system's ability to achieve a repeatable velocity step response with low steady-state error as well as ability of the tethered capsule to maneuver around a bend.
Real time microcontroller implementation of an adaptive myoelectric filter.
Bagwell, P J; Chappell, P H
1995-03-01
This paper describes a real time digital adaptive filter for processing myoelectric signals. The filter time constant is automatically selected by the adaptation algorithm, giving a significant improvement over linear filters for estimating the muscle force and controlling a prosthetic device. Interference from mains sources often produces problems for myoelectric processing, and so 50 Hz and all harmonic frequencies are reduced by an averaging filter and differential process. This makes practical electrode placement and contact less critical and time consuming. An economic real time implementation is essential for a prosthetic controller, and this is achieved using an Intel 80C196KC microcontroller.
Further investigation on "A multiplicative regularization for force reconstruction"
NASA Astrophysics Data System (ADS)
Aucejo, M.; De Smet, O.
2018-05-01
We have recently proposed a multiplicative regularization to reconstruct mechanical forces acting on a structure from vibration measurements. This method does not require any selection procedure for choosing the regularization parameter, since the amount of regularization is automatically adjusted throughout an iterative resolution process. The proposed iterative algorithm has been developed with performance and efficiency in mind, but it is actually a simplified version of a full iterative procedure not described in the original paper. The present paper aims at introducing the full resolution algorithm and comparing it with its simplified version in terms of computational efficiency and solution accuracy. In particular, it is shown that both algorithms lead to very similar identified solutions.
Kotiadis, D; Hermens, H J; Veltink, P H
2010-05-01
An Inertial Gait Phase Detection system was developed to replace heel switches and footswitches currently being used for the triggering of drop foot stimulators. A series of four algorithms utilising accelerometers and gyroscopes individually and in combination were tested and initial results are shown. Sensors were positioned on the outside of the upper shank. Tests were performed on data gathered from a subject, sufferer of stroke, implanted with a drop foot stimulator and triggered with the current trigger, the heel switch. Data tested includes a variety of activities representing everyday life. Flat surface walking, rough terrain and carpet walking show 100% detection and the ability of the algorithms to ignore non-gait events such as weight shifts. Timing analysis is performed against the current triggering method, the heel switch. After evaluating the heel switch timing against a reference system, namely the Vicon 370 marker and force plates system. Initial results show a close correlation between the current trigger detection and the inertial sensor based triggering algorithms. Algorithms were tested for stairs up and stairs down. Best results are observed for algorithms using gyroscope data. Algorithms were designed using threshold techniques for lowest possible computational load and with least possible sensor components to minimize power requirements and to allow for potential future implantation of sensor system.
Expanded envelope concepts for aircraft control-element failure detection and identification
NASA Technical Reports Server (NTRS)
Weiss, Jerold L.; Hsu, John Y.
1988-01-01
The purpose of this effort was to develop and demonstrate concepts for expanding the envelope of failure detection and isolation (FDI) algorithms for aircraft-path failures. An algorithm which uses analytic-redundancy in the form of aerodynamic force and moment balance equations was used. Because aircraft-path FDI uses analytical models, there is a tradeoff between accuracy and the ability to detect and isolate failures. For single flight condition operation, design and analysis methods are developed to deal with this robustness problem. When the departure from the single flight condition is significant, algorithm adaptation is necessary. Adaptation requirements for the residual generation portion of the FDI algorithm are interpreted as the need for accurate, large-motion aero-models, over a broad range of velocity and altitude conditions. For the decision-making part of the algorithm, adaptation may require modifications to filtering operations, thresholds, and projection vectors that define the various hypothesis tests performed in the decision mechanism. Methods of obtaining and evaluating adequate residual generation and decision-making designs have been developed. The application of the residual generation ideas to a high-performance fighter is demonstrated by developing adaptive residuals for the AFTI-F-16 and simulating their behavior under a variety of maneuvers using the results of a NASA F-16 simulation.
Adaptive Swarm Balancing Algorithms for rare-event prediction in imbalanced healthcare data
Wong, Raymond K.; Mohammed, Sabah; Fiaidhi, Jinan; Sung, Yunsick
2017-01-01
Clinical data analysis and forecasting have made substantial contributions to disease control, prevention and detection. However, such data usually suffer from highly imbalanced samples in class distributions. In this paper, we aim to formulate effective methods to rebalance binary imbalanced dataset, where the positive samples take up only the minority. We investigate two different meta-heuristic algorithms, particle swarm optimization and bat algorithm, and apply them to empower the effects of synthetic minority over-sampling technique (SMOTE) for pre-processing the datasets. One approach is to process the full dataset as a whole. The other is to split up the dataset and adaptively process it one segment at a time. The experimental results reported in this paper reveal that the performance improvements obtained by the former methods are not scalable to larger data scales. The latter methods, which we call Adaptive Swarm Balancing Algorithms, lead to significant efficiency and effectiveness improvements on large datasets while the first method is invalid. We also find it more consistent with the practice of the typical large imbalanced medical datasets. We further use the meta-heuristic algorithms to optimize two key parameters of SMOTE. The proposed methods lead to more credible performances of the classifier, and shortening the run time compared to brute-force method. PMID:28753613
The Bayesian Decoding of Force Stimuli from Slowly Adapting Type I Fibers in Humans.
Kasi, Patrick; Wright, James; Khamis, Heba; Birznieks, Ingvars; van Schaik, André
2016-01-01
It is well known that signals encoded by mechanoreceptors facilitate precise object manipulation in humans. It is therefore of interest to study signals encoded by the mechanoreceptors because this will contribute further towards the understanding of fundamental sensory mechanisms that are responsible for coordinating force components during object manipulation. From a practical point of view, this may suggest strategies for designing sensory-controlled biomedical devices and robotic manipulators. We use a two-stage nonlinear decoding paradigm to reconstruct the force stimulus given signals from slowly adapting type one (SA-I) tactile afferents. First, we describe a nonhomogeneous Poisson encoding model which is a function of the force stimulus and the force's rate of change. In the decoding phase, we use a recursive nonlinear Bayesian filter to reconstruct the force profile, given the SA-I spike patterns and parameters described by the encoding model. Under the current encoding model, the mode ratio of force to its derivative is: 1.26 to 1.02. This indicates that the force derivative contributes significantly to the rate of change to the SA-I afferent spike modulation. Furthermore, using recursive Bayesian decoding algorithms is advantageous because it can incorporate past and current information in order to make predictions--consistent with neural systems--with little computational resources. This makes it suitable for interfacing with prostheses.
Sliding mode controller for a photovoltaic pumping system
NASA Astrophysics Data System (ADS)
ElOugli, A.; Miqoi, S.; Boutouba, M.; Tidhaf, B.
2017-03-01
In this paper, a sliding mode control scheme (SMC) for maximum power point tracking controller for a photovoltaic pumping system, is proposed. The main goal is to maximize the flow rate for a water pump, by forcing the photovoltaic system to operate in its MPP, to obtain the maximum power that a PV system can deliver.And this, through the intermediary of a sliding mode controller to track and control the MPP by overcoming the power oscillation around the operating point, which appears in most implemented MPPT techniques. The sliding mode control approach is recognized as one of the efficient and powerful tools for nonlinear systems under uncertainty conditions.The proposed controller with photovoltaic pumping system is designed and simulated using MATLAB/SIMULINK environment. In addition, to evaluate its performances, a classical MPPT algorithm using perturb and observe (P&O) has been used for the same system to compare to our controller. Simulation results are shown.
NASA Technical Reports Server (NTRS)
Hennessey, Michael P.; Huang, Paul C.; Bunnell, Charles T.
1989-01-01
An efficient approach to cartesian motion and force control of a 7 degree of freedom (DOF) manipulator is presented. It is based on extending the active stiffness controller to the 7 DOF case in general and use of an efficient version of the gradient projection technique for solving the inverse kinematics problem. Cooperative control is achieved through appropriate configuration of individual manipulator controllers. In addition, other aspects of trajectory generation using standard techniques are integrated into the controller. The method is then applied to a specific manipulator of interest (Robotics Research T-710). Simulation of the kinematics, dynamics, and control are provided in the context of several scenarios: one pertaining to a noncontact pick and place operation; one relating to contour following where contact is made between the manipulator and environment; and one pertaining to cooperative control.
A structure adapted multipole method for electrostatic interactions in protein dynamics
NASA Astrophysics Data System (ADS)
Niedermeier, Christoph; Tavan, Paul
1994-07-01
We present an algorithm for rapid approximate evaluation of electrostatic interactions in molecular dynamics simulations of proteins. Traditional algorithms require computational work of the order O(N2) for a system of N particles. Truncation methods which try to avoid that effort entail untolerably large errors in forces, energies and other observables. Hierarchical multipole expansion algorithms, which can account for the electrostatics to numerical accuracy, scale with O(N log N) or even with O(N) if they become augmented by a sophisticated scheme for summing up forces. To further reduce the computational effort we propose an algorithm that also uses a hierarchical multipole scheme but considers only the first two multipole moments (i.e., charges and dipoles). Our strategy is based on the consideration that numerical accuracy may not be necessary to reproduce protein dynamics with sufficient correctness. As opposed to previous methods, our scheme for hierarchical decomposition is adjusted to structural and dynamical features of the particular protein considered rather than chosen rigidly as a cubic grid. As compared to truncation methods we manage to reduce errors in the computation of electrostatic forces by a factor of 10 with only marginal additional effort.
An active structural acoustic control approach for the reduction of the structure-borne road noise
NASA Astrophysics Data System (ADS)
Douville, Hugo; Berry, Alain; Masson, Patrice
2002-11-01
The reduction of the structure-borne road noise generated inside the cabin of an automobile is investigated using an Active Structural Acoustic Control (ASAC) approach. First, a laboratory test bench consisting of a wheel/suspension/lower suspension A-arm assembly has been developed in order to identify the vibroacoustic transfer paths (up to 250 Hz) for realistic road noise excitation of the wheel. Frequency Response Function (FRF) measurements between the excitation/control actuators and each suspension/chassis linkage are used to characterize the different transfer paths that transmit energy through the chassis of the car. Second, a FE/BE model (Finite/Boundary Elements) was developed to simulate the acoustic field of an automobile cab interior. This model is used to predict the acoustic field inside the cabin as a response to the measured forces applied on the suspension/chassis linkages. Finally, an experimental implementation of ASAC is presented. The control approach relies on the use of inertial actuators to modify the vibration behavior of the suspension and the automotive chassis such that its noise radiation efficiency is decreased. The implemented algorithm consists of a MIMO (Multiple-Input-Multiple-Output) feedforward configuration with a filtered-X LMS algorithm using an advanced reference signal (width FIR filters) using the Simulink/Dspace environment for control prototyping.
Thermal weapon sights with integrated fire control computers: algorithms and experiences
NASA Astrophysics Data System (ADS)
Rothe, Hendrik; Graswald, Markus; Breiter, Rainer
2008-04-01
The HuntIR long range thermal weapon sight of AIM is deployed in various out of area missions since 2004 as a part of the German Future Infantryman system (IdZ). In 2007 AIM fielded RangIR as upgrade with integrated laser Range finder (LRF), digital magnetic compass (DMC) and fire control unit (FCU). RangIR fills the capability gaps of day/night fire control for grenade machine guns (GMG) and the enhanced system of the IdZ. Due to proven expertise and proprietary methods in fire control, fast access to military trials for optimisation loops and similar hardware platforms, AIM and the University of the Federal Armed Forces Hamburg (HSU) decided to team for the development of suitable fire control algorithms. The pronounced ballistic trajectory of the 40mm GMG requires most accurate FCU-solutions specifically for air burst ammunition (ABM) and is most sensitive to faint effects like levelling or firing up/downhill. This weapon was therefore selected to validate the quality of the FCU hard- and software under relevant military conditions. For exterior ballistics the modified point mass model according to STANAG 4355 is used. The differential equations of motions are solved numerically, the two point boundary value problem is solved iteratively. Computing time varies according to the precision needed and is typical in the range from 0.1 - 0.5 seconds. RangIR provided outstanding hit accuracy including ABM fuze timing in various trials of the German Army and allied partners in 2007 and is now ready for series production. This paper deals mainly with the fundamentals of the fire control algorithms and shows how to implement them in combination with any DSP-equipped thermal weapon sights (TWS) in a variety of light supporting weapon systems.
Surface EMG and intra-socket force measurement to control a prosthetic device
NASA Astrophysics Data System (ADS)
Sanford, Joe; Patterson, Rita; Popa, Dan
2015-06-01
Surface electromyography (SEMG) has been shown to be a robust and reliable interaction method allowing for basic control of powered prosthetic devices. Research has shown a marked decrease in EMG-classification efficiency throughout activities of daily life due to socket shift and movement and fatigue as well as changes in degree of fit of the socket throughout the subject's lifetime. Users with the most severe levels of amputation require the most complex devices with the greatest number of degrees of freedom. Controlling complex dexterous devices with limited available inputs requires the addition of sensing and interaction modalities. However, the larger the amputation severity, the fewer viable SEMG sites are available as control inputs. Previous work reported the use of intra-socket pressure, as measured during wrist flexion and extension, and has shown that it is possible to control a powered prosthetic device with pressure sensors. In this paper, we present data correlations of SEMG data with intra-socket pressure data. Surface EMG sensors and force sensors were housed within a simulated prosthetic cuff fit to a healthy-limbed subject. EMG and intra-socket force data was collected from inside the cuff as a subject performed pre-defined grip motions with their dominant hand. Data fusion algorithms were explored and allowed a subject to use both intra-socket pressure and SEMG data as control inputs for a powered prosthetic device. This additional input modality allows for an improvement in input classification as well as information regarding socket fit through out activities of daily life.
Topography compensation for haptization of a mesh object and its stiffness distribution.
Yim, Sunghoon; Jeon, Seokhee; Choi, Seungmoon
2015-01-01
This work was motivated by the need for perceptualizing nano-scale scientific data, e.g., those acquired by a scanning probe microscope, where collocated topography and stiffness distribution of a surface can be measured. Previous research showed that when the topography of a surface with spatially varying stiffness is rendered using the conventional penalty-based haptic rendering method, the topography perceived by the user could be significantly distorted from its original model. In the worst case, a higher region with a smaller stiffness value can be perceived to be lower than a lower region with a larger stiffness value. This problem was explained by the theory of force constancy: the user tends to maintain an invariant contact force when s/he strokes the surface to perceive its topography. In this paper, we present a haptization algorithm that can render the shape of a mesh surface and its stiffness distribution with high perceptual accuracy. Our algorithm adaptively changes the surface topography on the basis of the force constancy theory to deliver adequate shape information to the user while preserving the stiffness perception. We also evaluated the performance of the proposed haptization algorithm in comparison to the constraint-based algorithm by examining relevant proximal stimuli and carrying out a user experiment. Results demonstrated that our algorithm could improve the perceptual accuracy of shape and reduce the exploration time, thereby leading to more accurate and efficient haptization.
Issues, concerns, and initial implementation results for space based telerobotic control
NASA Technical Reports Server (NTRS)
Lawrence, D. A.; Chapel, J. D.; Depkovich, T. M.
1987-01-01
Telerobotic control for space based assembly and servicing tasks presents many problems in system design. Traditional force reflection teleoperation schemes are not well suited to this application, and the approaches to compliance control via computer algorithms have yet to see significant testing and comparison. These observations are discussed in detail, as well as the concerns they raise for imminent design and testing of space robotic systems. As an example of the detailed technical work yet to be done before such systems can be specified, a particular approach to providing manipulator compliance is examined experimentally and through modeling and analysis. This yields some initial insight into the limitations and design trade-offs for this class of manipulator control schemes. Implications of this investigation for space based telerobots are discussed in detail.
The Mendeleev-Meyer force project.
Santos, Sergio; Lai, Chia-Yun; Amadei, Carlo A; Gadelrab, Karim R; Tang, Tzu-Chieh; Verdaguer, Albert; Barcons, Victor; Font, Josep; Colchero, Jaime; Chiesa, Matteo
2016-10-14
Here we present the Mendeleev-Meyer Force Project which aims at tabulating all materials and substances in a fashion similar to the periodic table. The goal is to group and tabulate substances using nanoscale force footprints rather than atomic number or electronic configuration as in the periodic table. The process is divided into: (1) acquiring nanoscale force data from materials, (2) parameterizing the raw data into standardized input features to generate a library, (3) feeding the standardized library into an algorithm to generate, enhance or exploit a model to identify a material or property. We propose producing databases mimicking the Materials Genome Initiative, the Medical Literature Analysis and Retrieval System Online (MEDLARS) or the PRoteomics IDEntifications database (PRIDE) and making these searchable online via search engines mimicking Pubmed or the PRIDE web interface. A prototype exploiting deep learning algorithms, i.e. multilayer neural networks, is presented.
Ellison, C. L.; Burby, J. W.; Qin, H.
2015-11-01
One popular technique for the numerical time advance of charged particles interacting with electric and magnetic fields according to the Lorentz force law [1], [2], [3] and [4] is the Boris algorithm. Its popularity stems from simple implementation, rapid iteration, and excellent long-term numerical fidelity [1] and [5]. Excellent long-term behavior strongly suggests the numerical dynamics exhibit conservation laws analogous to those governing the continuous Lorentz force system [6]. Moreover, without conserved quantities to constrain the numerical dynamics, algorithms typically dissipate or accumulate important observables such as energy and momentum over long periods of simulated time [6]. Identification of themore » conservative properties of an algorithm is important for establishing rigorous expectations on the long-term behavior; energy-preserving, symplectic, and volume-preserving methods each have particular implications for the qualitative numerical behavior [6], [7], [8], [9], [10] and [11].« less
Equations for determining aircraft motions for accident data
NASA Technical Reports Server (NTRS)
Bach, R. E., Jr.; Wingrove, R. C.
1980-01-01
Procedures for determining a comprehensive accident scenario from a limited data set are reported. The analysis techniques accept and process data from either an Air Traffic Control radar tracking system or a foil flight data recorder. Local meteorological information at the time of the accident and aircraft performance data are also utilized. Equations for the desired aircraft motions and forces are given in terms of elements of the measurement set and certain of their time derivatives. The principal assumption made is that aircraft side force and side-slip angle are negligible. An estimation procedure is outlined for use with each data source. For the foil case, a discussion of exploiting measurement redundancy is given. Since either formulation requires estimates of measurement time derivatives, an algorithm for least squares smoothing is provided.
Bennett, Charles R; Kelly, Brian P
2013-08-09
Standard in-vitro spine testing methods have focused on application of isolated and/or constant load components while the in-vivo spine is subject to multiple components that can be resolved into resultant dynamic load vectors. To advance towards more in-vivo like simulations the objective of the current study was to develop a methodology to apply robotically-controlled, non-zero, real-time dynamic resultant forces during flexion-extension on human lumbar motion segment units (MSU) with initial application towards simulation of an ideal follower load (FL) force vector. A proportional-integral-derivative (PID) controller with custom algorithms coordinated the motion of a Cartesian serial manipulator comprised of six axes each capable of position- or load-control. Six lumbar MSUs (L4-L5) were tested with continuously increasing sagittal plane bending to 8 Nm while force components were dynamically programmed to deliver a resultant 400 N FL that remained normal to the moving midline of the intervertebral disc. Mean absolute load-control tracking errors between commanded and experimental loads were computed. Global spinal ranges of motion and sagittal plane inter-body translations were compared to previously published values for non-robotic applications. Mean TEs for zero-commanded force and moment axes were 0.7 ± 0.4N and 0.03 ± 0.02 Nm, respectively. For non-zero force axes mean TEs were 0.8 ± 0.8 N, 1.3 ± 1.6 Nm, and 1.3 ± 1.6N for Fx, Fz, and the resolved ideal follower load vector FL(R), respectively. Mean extension and flexion ranges of motion were 2.6° ± 1.2° and 5.0° ± 1.7°, respectively. Relative vertebral body translations and rotations were very comparable to data collected with non-robotic systems in the literature. The robotically coordinated Cartesian load controlled testing system demonstrated robust real-time load-control that permitted application of a real-time dynamic non-zero load vector during flexion-extension. For single MSU investigations the methodology has potential to overcome conventional follower load limitations, most notably via application outside the sagittal plane. This methodology holds promise for future work aimed at reducing the gap between current in-vitro testing and in-vivo circumstances. Copyright © 2013 Elsevier Ltd. All rights reserved.
PHoToNs–A parallel heterogeneous and threads oriented code for cosmological N-body simulation
NASA Astrophysics Data System (ADS)
Wang, Qiao; Cao, Zong-Yan; Gao, Liang; Chi, Xue-Bin; Meng, Chen; Wang, Jie; Wang, Long
2018-06-01
We introduce a new code for cosmological simulations, PHoToNs, which incorporates features for performing massive cosmological simulations on heterogeneous high performance computer (HPC) systems and threads oriented programming. PHoToNs adopts a hybrid scheme to compute gravitational force, with the conventional Particle-Mesh (PM) algorithm to compute the long-range force, the Tree algorithm to compute the short range force and the direct summation Particle-Particle (PP) algorithm to compute gravity from very close particles. A self-similar space filling a Peano-Hilbert curve is used to decompose the computing domain. Threads programming is advantageously used to more flexibly manage the domain communication, PM calculation and synchronization, as well as Dual Tree Traversal on the CPU+MIC platform. PHoToNs scales well and efficiency of the PP kernel achieves 68.6% of peak performance on MIC and 74.4% on CPU platforms. We also test the accuracy of the code against the much used Gadget-2 in the community and found excellent agreement.
NASA Technical Reports Server (NTRS)
Rodriguez, Guillermo (Editor)
1990-01-01
Various papers on intelligent control and adaptive systems are presented. Individual topics addressed include: control architecture for a Mars walking vehicle, representation for error detection and recovery in robot task plans, real-time operating system for robots, execution monitoring of a mobile robot system, statistical mechanics models for motion and force planning, global kinematics for manipulator planning and control, exploration of unknown mechanical assemblies through manipulation, low-level representations for robot vision, harmonic functions for robot path construction, simulation of dual behavior of an autonomous system. Also discussed are: control framework for hand-arm coordination, neural network approach to multivehicle navigation, electronic neural networks for global optimization, neural network for L1 norm linear regression, planning for assembly with robot hands, neural networks in dynamical systems, control design with iterative learning, improved fuzzy process control of spacecraft autonomous rendezvous using a genetic algorithm.
NASA Astrophysics Data System (ADS)
Saintillan, David; Darve, Eric; Shaqfeh, Eric S. G.
2005-03-01
Large-scale simulations of non-Brownian rigid fibers sedimenting under gravity at zero Reynolds number have been performed using a fast algorithm. The mathematical formulation follows the previous simulations by Butler and Shaqfeh ["Dynamic simulations of the inhomogeneous sedimentation of rigid fibres," J. Fluid Mech. 468, 205 (2002)]. The motion of the fibers is described using slender-body theory, and the line distribution of point forces along their lengths is approximated by a Legendre polynomial in which only the total force, torque, and particle stresslet are retained. Periodic boundary conditions are used to simulate an infinite suspension, and both far-field hydrodynamic interactions and short-range lubrication forces are considered in all simulations. The calculation of the hydrodynamic interactions, which is typically the bottleneck for large systems with periodic boundary conditions, is accelerated using a smooth particle-mesh Ewald (SPME) algorithm previously used in molecular dynamics simulations. In SPME the slowly decaying Green's function is split into two fast-converging sums: the first involves the distribution of point forces and accounts for the singular short-range part of the interactions, while the second is expressed in terms of the Fourier transform of the force distribution and accounts for the smooth and long-range part. Because of its smoothness, the second sum can be computed efficiently on an underlying grid using the fast Fourier transform algorithm, resulting in a significant speed-up of the calculations. Systems of up to 512 fibers were simulated on a single-processor workstation, providing a different insight into the formation, structure, and dynamics of the inhomogeneities that occur in sedimenting fiber suspensions.
Modelling and control of an upper extremity exoskeleton for rehabilitation
NASA Astrophysics Data System (ADS)
Taha, Zahari; Majeed, Anwar P. P. Abdul; Tze, Mohd Yashim Wong Paul; Abdo Hashem, Mohammed; Mohd Khairuddin, Ismail; Azraai Mohd Razman, Mohd
2016-02-01
This paper presents the modelling and control of a two degree of freedom upper extremity exoskeleton for rehabilitation. The Lagrangian formulation was employed to obtain the dynamic modelling of both the anthropometric based human upper limb as well as the exoskeleton that comprises of the upper arm and the forearm. A proportional-derivative (PD) architecture is employed to investigate its efficacy performing a joint task trajectory tracking in performing flexion/extension on the elbow joint as well as the forward adduction/abduction on the shoulder joint. An active force control (AFC) algorithm is also incorporated into the aforementioned controller to examine its effectiveness in compensating disturbances. It was found from the study that the AFC-PD performed well against the disturbances introduced into the system without compromising its tracking performances as compared to the conventional PD control architecture.
A Bearingless Switched-Reluctance Motor for High Specific Power Applications
NASA Technical Reports Server (NTRS)
Choi, Benjamin B.; Siebert, Mark
2006-01-01
A 12-8 switched-reluctance motor (SRM) is studied in bearingless (or self-levitated) operation with coil currents limited to the linear region to avoid magnetic saturation. The required motoring and levitating currents are summed and go into a single motor coil per pole to obtain the highest power output of the motor by having more space for motor coil winding. Two controllers are investigated for the bearingless SRM operation. First, a model-based controller using the radial force, which is adjusted by a factor derived from finite element analysis, is presented. Then a simple and practical observation-based controller using a PD (proportional-derivative) control algorithm is presented. Both controllers were experimentally demonstrated to 6500 rpm. This paper reports the initial efforts toward eventual self levitation of a SRM operating into strong magnetic core saturation at liquid nitrogen temperature.
An investigation of quasi-inertial attitude control for a solar power satellite
NASA Technical Reports Server (NTRS)
Juang, J.-N.; Wang, S. J.
1982-01-01
An efficient means, a quasi-inertial attitude mode, is developed for maintaining the normal solar orientation of a space satellite for power collection in a synchronous orbit. Formulae are presented which establish the basic parametric properties for ideal quasi-inertial attitude and phasing. An active control system is necessary to compensate for the energy loss since energy dissipation in widely oscillating flexible bodies produces an instability of the quasi-inertial attitude in the sense that the spacecraft will tumble at the orbit rate. A fixed terminal time and state optimal control problem is formulated and an algorithm for determining the optimal control as a means for the periodical attitude and phase compensation is developed. The vehicle orientation affected by internal disturbance (structural flexibility) and external disturbances (e.g., drag forces) is maintained by a specialized controller design.
Reliability-based optimization of an active vibration controller using evolutionary algorithms
NASA Astrophysics Data System (ADS)
Saraygord Afshari, Sajad; Pourtakdoust, Seid H.
2017-04-01
Many modern industrialized systems such as aircrafts, rotating turbines, satellite booms, etc. cannot perform their desired tasks accurately if their uninhibited structural vibrations are not controlled properly. Structural health monitoring and online reliability calculations are emerging new means to handle system imposed uncertainties. As stochastic forcing are unavoidable, in most engineering systems, it is often needed to take them into the account for the control design process. In this research, smart material technology is utilized for structural health monitoring and control in order to keep the system in a reliable performance range. In this regard, a reliability-based cost function is assigned for both controller gain optimization as well as sensor placement. The proposed scheme is implemented and verified for a wing section. Comparison of results for the frequency responses is considered to show potential applicability of the presented technique.
Technologies for network-centric C4ISR
NASA Astrophysics Data System (ADS)
Dunkelberger, Kirk A.
2003-07-01
Three technologies form the heart of any network-centric command, control, communication, intelligence, surveillance, and reconnaissance (C4ISR) system: distributed processing, reconfigurable networking, and distributed resource management. Distributed processing, enabled by automated federation, mobile code, intelligent process allocation, dynamic multiprocessing groups, check pointing, and other capabilities creates a virtual peer-to-peer computing network across the force. Reconfigurable networking, consisting of content-based information exchange, dynamic ad-hoc routing, information operations (perception management) and other component technologies forms the interconnect fabric for fault tolerant inter processor and node communication. Distributed resource management, which provides the means for distributed cooperative sensor management, foe sensor utilization, opportunistic collection, symbiotic inductive/deductive reasoning and other applications provides the canonical algorithms for network-centric enterprises and warfare. This paper introduces these three core technologies and briefly discusses a sampling of their component technologies and their individual contributions to network-centric enterprises and warfare. Based on the implied requirements, two new algorithms are defined and characterized which provide critical building blocks for network centricity: distributed asynchronous auctioning and predictive dynamic source routing. The first provides a reliable, efficient, effective approach for near-optimal assignment problems; the algorithm has been demonstrated to be a viable implementation for ad-hoc command and control, object/sensor pairing, and weapon/target assignment. The second is founded on traditional dynamic source routing (from mobile ad-hoc networking), but leverages the results of ad-hoc command and control (from the contributed auctioning algorithm) into significant increases in connection reliability through forward prediction. Emphasis is placed on the advantages gained from the closed-loop interaction of the multiple technologies in the network-centric application environment.
Axial calibration methods of piezoelectric load sharing dynamometer
NASA Astrophysics Data System (ADS)
Zhang, Jun; Chang, Qingbing; Ren, Zongjin; Shao, Jun; Wang, Xinlei; Tian, Yu
2018-06-01
The relationship between input and output of load sharing dynamometer is seriously non-linear in different loading points of a plane, so it's significant for accutately measuring force to precisely calibrate the non-linear relationship. In this paper, firstly, based on piezoelectric load sharing dynamometer, calibration experiments of different loading points are performed in a plane. And then load sharing testing system is respectively calibrated based on BP algorithm and ELM (Extreme Learning Machine) algorithm. Finally, the results show that the calibration result of ELM is better than BP for calibrating the non-linear relationship between input and output of loading sharing dynamometer in the different loading points of a plane, which verifies that ELM algorithm is feasible in solving force non-linear measurement problem.
Bayesian calibration of coarse-grained forces: Efficiently addressing transferability
NASA Astrophysics Data System (ADS)
Patrone, Paul N.; Rosch, Thomas W.; Phelan, Frederick R.
2016-04-01
Generating and calibrating forces that are transferable across a range of state-points remains a challenging task in coarse-grained (CG) molecular dynamics. In this work, we present a coarse-graining workflow, inspired by ideas from uncertainty quantification and numerical analysis, to address this problem. The key idea behind our approach is to introduce a Bayesian correction algorithm that uses functional derivatives of CG simulations to rapidly and inexpensively recalibrate initial estimates f0 of forces anchored by standard methods such as force-matching. Taking density-temperature relationships as a running example, we demonstrate that this algorithm, in concert with various interpolation schemes, can be used to efficiently compute physically reasonable force curves on a fine grid of state-points. Importantly, we show that our workflow is robust to several choices available to the modeler, including the interpolation schemes and tools used to construct f0. In a related vein, we also demonstrate that our approach can speed up coarse-graining by reducing the number of atomistic simulations needed as inputs to standard methods for generating CG forces.
NASA Astrophysics Data System (ADS)
Yin, Feilong; Hayashi, Ryuzo; Raksincharoensak, Pongsathorn; Nagai, Masao
This research proposes a haptic velocity guidance assistance system for realizing eco-driving as well as enhancing traffic capacity by cooperating with ITS (Intelligent Transportation Systems). The proposed guidance system generates the desired accelerator pedal (abbreviated as pedal) stroke with respect to the desired velocity obtained from ITS considering vehicle dynamics, and provides the desired pedal stroke to the driver via a haptic pedal whose reaction force is controllable and guides the driver in order to trace the desired velocity in real time. The main purpose of this paper is to discuss the feasibility of the haptic velocity guidance. A haptic velocity guidance system for research is developed on the Driving Simulator of TUAT (DS), by attaching a low-inertia, low-friction motor to the pedal, which does not change the original characteristics of the original pedal when it is not operated, implementing an algorithm regarding the desired pedal stroke calculation and the reaction force controller. The haptic guidance maneuver is designed based on human pedal stepping experiments. A simple velocity profile with acceleration, deceleration and cruising is synthesized according to naturalistic driving for testing the proposed system. The experiment result of 9 drivers shows that the haptic guidance provides high accuracy and quick response in velocity tracking. These results prove that the haptic guidance is a promising velocity guidance method from the viewpoint of HMI (Human Machine Interface).
NASA Technical Reports Server (NTRS)
Straube, Timothy Milton
1993-01-01
The design and implementation of a vertical degree of freedom suspension system is described which provides a constant force off-load condition to counter gravity over large displacements. By accommodating motions up to one meter for structures weighing up to 100 pounds, the system is useful for experiments which simulate orbital construction events such as docking, multiple component assembly, or structural deployment. A unique aspect of this device is the combination of a large stroke passive off-load device augmented by electromotive torque actuated force feedback. The active force feedback has the effect of reducing break-away friction by a factor of twenty over the passive system alone. The thesis describes the development of the suspension hardware and the control algorithm. Experiments were performed to verify the suspensions system's effectiveness in providing a gravity off-load and simulating the motion of a structure in orbit. Additionally, a three dimensional system concept is presented as an extension of the one dimensional suspension system which was implemented.
The Bayesian Decoding of Force Stimuli from Slowly Adapting Type I Fibers in Humans
Wright, James; Khamis, Heba; Birznieks, Ingvars; van Schaik, André
2016-01-01
It is well known that signals encoded by mechanoreceptors facilitate precise object manipulation in humans. It is therefore of interest to study signals encoded by the mechanoreceptors because this will contribute further towards the understanding of fundamental sensory mechanisms that are responsible for coordinating force components during object manipulation. From a practical point of view, this may suggest strategies for designing sensory-controlled biomedical devices and robotic manipulators. We use a two-stage nonlinear decoding paradigm to reconstruct the force stimulus given signals from slowly adapting type one (SA-I) tactile afferents. First, we describe a nonhomogeneous Poisson encoding model which is a function of the force stimulus and the force’s rate of change. In the decoding phase, we use a recursive nonlinear Bayesian filter to reconstruct the force profile, given the SA-I spike patterns and parameters described by the encoding model. Under the current encoding model, the mode ratio of force to its derivative is: 1.26 to 1.02. This indicates that the force derivative contributes significantly to the rate of change to the SA-I afferent spike modulation. Furthermore, using recursive Bayesian decoding algorithms is advantageous because it can incorporate past and current information in order to make predictions—consistent with neural systems—with little computational resources. This makes it suitable for interfacing with prostheses. PMID:27077750
Orgeron, Gabriela M; Te Riele, Anneline; Tichnell, Crystal; Wang, Weijia; Murray, Brittney; Bhonsale, Aditya; Judge, Daniel P; Kamel, Ihab R; Zimmerman, Stephan L; Tandri, Harikrishna; Calkins, Hugh; James, Cynthia A
2018-02-01
Ventricular arrhythmias are a feared complication of arrhythmogenic right ventricular dysplasia/cardiomyopathy. In 2015, an International Task Force Consensus Statement proposed a risk stratification algorithm for implantable cardioverter-defibrillator placement in arrhythmogenic right ventricular dysplasia/cardiomyopathy. To evaluate performance of the algorithm, 365 arrhythmogenic right ventricular dysplasia/cardiomyopathy patients were classified as having a Class I, IIa, IIb, or III indication per the algorithm at baseline. Survival free from sustained ventricular arrhythmia (VT/VF) in follow-up was the primary outcome. Incidence of ventricular fibrillation/flutter cycle length <240 ms was also assessed. Two hundred twenty-four (61%) patients had a Class I implantable cardioverter-defibrillator indication; 80 (22%), Class IIa; 54 (15%), Class IIb; and 7 (2%), Class III. During a median 4.2 (interquartile range, 1.7-8.4)-year follow-up, 190 (52%) patients had VT/VF and 60 (16%) had ventricular fibrillation/flutter. Although the algorithm appropriately differentiated risk of VT/VF, incidence of VT/VF was underestimated (observed versus expected: 29.6 [95% confidence interval, 25.2-34.0] versus >10%/year Class I; 15.5 [confidence interval 11.1-21.6] versus 1% to 10%/year Class IIa). In addition, the algorithm did not differentiate survival free from ventricular fibrillation/flutter between Class I and IIa patients ( P =0.97) or for VT/VF in Class I and IIa primary prevention patients ( P =0.22). Adding Holter results (<1000 premature ventricular contractions/24 hours) to International Task Force Consensus classification differentiated risks. While the algorithm differentiates arrhythmic risk well overall, it did not distinguish ventricular fibrillation/flutter risks of patients with Class I and IIa implantable cardioverter-defibrillator indications. Limited differentiation was seen for primary prevention cases. As these are vital uncertainties in clinical decision-making, refinements to the algorithm are suggested prior to implementation. © 2018 American Heart Association, Inc.
Model-Based Self-Tuning Multiscale Method for Combustion Control
NASA Technical Reports Server (NTRS)
Le, Dzu, K.; DeLaat, John C.; Chang, Clarence T.; Vrnak, Daniel R.
2006-01-01
A multi-scale representation of the combustor dynamics was used to create a self-tuning, scalable controller to suppress multiple instability modes in a liquid-fueled aero engine-derived combustor operating at engine-like conditions. Its self-tuning features designed to handle the uncertainties in the combustor dynamics and time-delays are essential for control performance and robustness. The controller was implemented to modulate a high-frequency fuel valve with feedback from dynamic pressure sensors. This scalable algorithm suppressed pressure oscillations of different instability modes by as much as 90 percent without the peak-splitting effect. The self-tuning logic guided the adjustment of controller parameters and converged quickly toward phase-lock for optimal suppression of the instabilities. The forced-response characteristics of the control model compare well with those of the test rig on both the frequency-domain and the time-domain.
A hybrid joint based controller for an upper extremity exoskeleton
NASA Astrophysics Data System (ADS)
Mohd Khairuddin, Ismail; Taha, Zahari; Majeed, Anwar P. P. Abdul; Hakeem Deboucha, Abdel; Azraai Mohd Razman, Mohd; Aziz Jaafar, Abdul; Mohamed, Zulkifli
2016-02-01
This paper presents the modelling and control of a two degree of freedom upper extremity exoskeleton. The Euler-Lagrange formulation was used in deriving the dynamic modelling of both the human upper limb as well as the exoskeleton that consists of the upper arm and the forearm. The human model is based on anthropometrical measurements of the upper limb. The proportional-derivative (PD) computed torque control (CTC) architecture is employed in this study to investigate its efficacy performing joint-space control objectives specifically in rehabilitating the elbow and shoulder joints along the sagittal plane. An active force control (AFC) algorithm is also incorporated into the PD-CTC to investigate the effectiveness of this hybrid system in compensating disturbances. It was found that the AFC- PD-CTC performs well against the disturbances introduced into the system whilst achieving acceptable trajectory tracking as compared to the conventional PD-CTC control architecture.
Semi-active friction damper for buildings subject to seismic excitation
NASA Astrophysics Data System (ADS)
Mantilla, Juan S.; Solarte, Alexander; Gomez, Daniel; Marulanda, Johannio; Thomson, Peter
2016-04-01
Structural control systems are considered an effective alternative for reducing vibrations in civil structures and are classified according to their energy supply requirement: passive, semi-active, active and hybrid. Commonly used structural control systems in buildings are passive friction dampers, which add energy dissipation through damping mechanisms induced by sliding friction between their surfaces. Semi-Active Variable Friction Dampers (SAVFD) allow the optimum efficiency range of friction dampers to be enhanced by controlling the clamping force in real time. This paper describes the development and performance evaluation of a low-cost SAVFD for the reduction of vibrations of structures subject to earthquakes. The SAVFD and a benchmark structural control test structure were experimentally characterized and analytical models were developed and updated based on the dynamic characterization. Decentralized control algorithms were implemented and tested on a shaking table. Relative displacements and accelerations of the structure controlled with the SAVFD were 80% less than those of the uncontrolled structure
NASA Astrophysics Data System (ADS)
Teramae, Tatsuya; Kushida, Daisuke; Takemori, Fumiaki; Kitamura, Akira
A present massage chair realizes the massage motion and force designed by a professional masseur. However, appropriate massage force to the user can not be provided by the massage chair in such a method. On the other hand, the professional masseur can realize an appropriate massage force to more than one patient, because, the masseur considers the physical condition of the patient. Our research proposed the intelligent massage system of applying masseur's procedure for the massage chair using estimated skin elasticity and DB to relate skin elasticity and massage force. However, proposed system has a problem that DB does not adjust to unknown user, because user's feeling by massage can not be estimated. Then, this paper proposed the estimation method of comfortable/uncomfortable feeling based on EEG using the neural network and k-means algorithm. The realizability of the proposed method is verified by the experimental works.
Hopf, Barbara; Dutz, Franz J; Bosselmann, Thomas; Willsch, Michael; Koch, Alexander W; Roths, Johannes
2018-04-30
A new iterative matrix algorithm has been applied to improve the precision of temperature and force decoupling in multi-parameter FBG sensing. For the first time, this evaluation technique allows the integration of nonlinearities in the sensor's temperature characteristic and the temperature dependence of the sensor's force sensitivity. Applied to a sensor cable consisting of two FBGs in fibers with 80 µm and 125 µm cladding diameter installed in a 7 m-long coiled PEEK capillary, this technique significantly reduced the uncertainties in friction-compensated temperature measurements. In the presence of high friction-induced forces of up to 1.6 N the uncertainties in temperature evaluation were reduced from several degrees Celsius if using a standard linear matrix approach to less than 0.5°C if using the iterative matrix approach in an extended temperature range between -35°C and 125°C.
Fusion of spectral models for dynamic modeling of sEMG and skeletal muscle force.
Potluri, Chandrasekhar; Anugolu, Madhavi; Chiu, Steve; Urfer, Alex; Schoen, Marco P; Naidu, D Subbaram
2012-01-01
In this paper, we present a method of combining spectral models using a Kullback Information Criterion (KIC) data fusion algorithm. Surface Electromyographic (sEMG) signals and their corresponding skeletal muscle force signals are acquired from three sensors and pre-processed using a Half-Gaussian filter and a Chebyshev Type- II filter, respectively. Spectral models - Spectral Analysis (SPA), Empirical Transfer Function Estimate (ETFE), Spectral Analysis with Frequency Dependent Resolution (SPFRD) - are extracted from sEMG signals as input and skeletal muscle force as output signal. These signals are then employed in a System Identification (SI) routine to establish the dynamic models relating the input and output. After the individual models are extracted, the models are fused by a probability based KIC fusion algorithm. The results show that the SPFRD spectral models perform better than SPA and ETFE models in modeling the frequency content of the sEMG/skeletal muscle force data.
NASA Astrophysics Data System (ADS)
Mikheyev, V. V.; Saveliev, S. V.
2018-01-01
Description of deflected mode for different types of materials under action of external force plays special role for wide variety of applications - from construction mechanics to circuits engineering. This article con-siders the problem of plastic deformation of the layer of elastoviscolastic soil under surface periodic force. The problem was solved with use of the modified lumped parameters approach which takes into account close to real distribution of normal stress in the depth of the layer along with changes in local mechanical properties of the material taking place during plastic deformation. Special numeric algorithm was worked out for computer modeling of the process. As an example of application suggested algorithm was realized for the deformation of the layer of elasoviscoplastic material by the source of external lateral force with the parameters of real technological process of soil compaction.
Walder, Robert; Van Patten, William J; Adhikari, Ayush; Perkins, Thomas T
2018-01-23
Single-molecule force spectroscopy (SMFS) is a powerful technique to characterize the energy landscape of individual proteins, the mechanical properties of nucleic acids, and the strength of receptor-ligand interactions. Atomic force microscopy (AFM)-based SMFS benefits from ongoing progress in improving the precision and stability of cantilevers and the AFM itself. Underappreciated is that the accuracy of such AFM studies remains hindered by inadvertently stretching molecules at an angle while measuring only the vertical component of the force and extension, degrading both measurements. This inaccuracy is particularly problematic in AFM studies using double-stranded DNA and RNA due to their large persistence length (p ≈ 50 nm), often limiting such studies to other SMFS platforms (e.g., custom-built optical and magnetic tweezers). Here, we developed an automated algorithm that aligns the AFM tip above the DNA's attachment point to a coverslip. Importantly, this algorithm was performed at low force (10-20 pN) and relatively fast (15-25 s), preserving the connection between the tip and the target molecule. Our data revealed large uncorrected lateral offsets for 100 and 650 nm DNA molecules [24 ± 18 nm (mean ± standard deviation) and 180 ± 110 nm, respectively]. Correcting this offset yielded a 3-fold improvement in accuracy and precision when characterizing DNA's overstretching transition. We also demonstrated high throughput by acquiring 88 geometrically corrected force-extension curves of a single individual 100 nm DNA molecule in ∼40 min and versatility by aligning polyprotein- and PEG-based protein-ligand assays. Importantly, our software-based algorithm was implemented on a commercial AFM, so it can be broadly adopted. More generally, this work illustrates how to enhance AFM-based SMFS by developing more sophisticated data-acquisition protocols.
Three-dimensional control of crystal growth using magnetic fields
NASA Astrophysics Data System (ADS)
Dulikravich, George S.; Ahuja, Vineet; Lee, Seungsoo
1993-07-01
Two coupled systems of partial differential equations governing three-dimensional laminar viscous flow undergoing solidification or melting under the influence of arbitrarily oriented externally applied magnetic fields have been formulated. The model accounts for arbitrary temperature dependence of physical properties including latent heat release, effects of Joule heating, magnetic field forces, and mushy region existence. On the basis of this model a numerical algorithm has been developed and implemented using central differencing on a curvilinear boundary-conforming grid and Runge-Kutta explicit time-stepping. The numerical results clearly demonstrate possibilities for active and practically instantaneous control of melt/solid interface shape, the solidification/melting front propagation speed, and the amount and location of solid accrued.
Attitude motion of a non-attitude-controlled cylindrical satellite
NASA Technical Reports Server (NTRS)
Wilkinson, C. K.
1988-01-01
In 1985, two non-attitude-controlled satellites were each placed in a low earth orbit by the Scout Launch Vehicle. The satellites were cylindrical in shape and contained reservoirs of hydrazine fuel. Three-axis magnetometer measurements, telemetered in real time, were used to derive the attitude motion of each satellite. Algorithms are generated to deduce possible orientations (and magnitudes) of each vehicle's angular momentum for each telemetry contact. To resolve ambiguities at each contact, a force model was derived to simulate the significant long-term effects of magnetic, gravity gradient, and aerodynamic torques on the angular momentum of the vehicles. The histories of the orientation and magnitude of the angular momentum are illustrated.
An alternative to FASTSIM for tangential solution of the wheel-rail contact
NASA Astrophysics Data System (ADS)
Sichani, Matin Sh.; Enblom, Roger; Berg, Mats
2016-06-01
In most rail vehicle dynamics simulation packages, tangential solution of the wheel-rail contact is gained by means of Kalker's FASTSIM algorithm. While 5-25% error is expected for creep force estimation, the errors of shear stress distribution, needed for wheel-rail damage analysis, may rise above 30% due to the parabolic traction bound. Therefore, a novel algorithm named FaStrip is proposed as an alternative to FASTSIM. It is based on the strip theory which extends the two-dimensional rolling contact solution to three-dimensional contacts. To form FaStrip, the original strip theory is amended to obtain accurate estimations for any contact ellipse size and it is combined by a numerical algorithm to handle spin. The comparison between the two algorithms shows that using FaStrip improves the accuracy of the estimated shear stress distribution and the creep force estimation in all studied cases. In combined lateral creepage and spin cases, for instance, the error in force estimation reduces from 18% to less than 2%. The estimation of the slip velocities in the slip zone, needed for wear analysis, is also studied. Since FaStrip is as fast as FASTSIM, it can be an alternative for tangential solution of the wheel-rail contact in simulation packages.
NASA Astrophysics Data System (ADS)
Shimojo, Fuyuki; Kalia, Rajiv K.; Nakano, Aiichiro; Vashishta, Priya
2008-02-01
A linear-scaling algorithm based on a divide-and-conquer (DC) scheme has been designed to perform large-scale molecular-dynamics (MD) simulations, in which interatomic forces are computed quantum mechanically in the framework of the density functional theory (DFT). Electronic wave functions are represented on a real-space grid, which is augmented with a coarse multigrid to accelerate the convergence of iterative solutions and with adaptive fine grids around atoms to accurately calculate ionic pseudopotentials. Spatial decomposition is employed to implement the hierarchical-grid DC-DFT algorithm on massively parallel computers. The largest benchmark tests include 11.8×106 -atom ( 1.04×1012 electronic degrees of freedom) calculation on 131 072 IBM BlueGene/L processors. The DC-DFT algorithm has well-defined parameters to control the data locality, with which the solutions converge rapidly. Also, the total energy is well conserved during the MD simulation. We perform first-principles MD simulations based on the DC-DFT algorithm, in which large system sizes bring in excellent agreement with x-ray scattering measurements for the pair-distribution function of liquid Rb and allow the description of low-frequency vibrational modes of graphene. The band gap of a CdSe nanorod calculated by the DC-DFT algorithm agrees well with the available conventional DFT results. With the DC-DFT algorithm, the band gap is calculated for larger system sizes until the result reaches the asymptotic value.
Predicting muscle forces during the propulsion phase of single leg triple hop test.
Alvim, Felipe Costa; Lucareli, Paulo Roberto Garcia; Menegaldo, Luciano Luporini
2018-01-01
Functional biomechanical tests allow the assessment of musculoskeletal system impairments in a simple way. Muscle force synergies associated with movement can provide additional information for diagnosis. However, such forces cannot be directly measured noninvasively. This study aims to estimate muscle activations and forces exerted during the preparation phase of the single leg triple hop test. Two different approaches were tested: static optimization (SO) and computed muscle control (CMC). As an indirect validation, model-estimated muscle activations were compared with surface electromyography (EMG) of selected hip and thigh muscles. Ten physically healthy active women performed a series of jumps, and ground reaction forces, kinematics and EMG data were recorded. An existing OpenSim model with 92 musculotendon actuators was used to estimate muscle forces. Reflective markers data were processed using the OpenSim Inverse Kinematics tool. Residual Reduction Algorithm (RRA) was applied recursively before running the SO and CMC. For both, the same adjusted kinematics were used as inputs. Both approaches presented similar residuals amplitudes. SO showed a closer agreement between the estimated activations and the EMGs of some muscles. Due to inherent EMG methodological limitations, the superiority of SO in relation to CMC can be only hypothesized. It should be confirmed by conducting further studies comparing joint contact forces. The workflow presented in this study can be used to estimate muscle forces during the preparation phase of the single leg triple hop test and allows investigating muscle activation and coordination. Copyright © 2017 Elsevier B.V. All rights reserved.
A Real-Time Lift Detection Strategy for a Hip Exoskeleton
Chen, Baojun; Grazi, Lorenzo; Lanotte, Francesco; Vitiello, Nicola; Crea, Simona
2018-01-01
Repetitive lifting of heavy loads increases the risk of back pain and even lumbar vertebral injuries to workers. Active exoskeletons can help workers lift loads by providing power assistance, and therefore reduce the moment and force applied on L5/S1 joint of human body when performing lifting tasks. However, most existing active exoskeletons for lifting assistance are unable to automatically detect user's lift movement, which limits the wide application of active exoskeletons in factories. In this paper, we propose a simple but effective lift detection strategy for exoskeleton control. This strategy uses only exoskeleton integrated sensors, without any extra sensors to capture human motion intentions. This makes the lift detection system more practical for applications in manufacturing environments. Seven healthy subjects participated in this research. Three different sessions were carried out, two for training and one for testing the algorithm. In the two training sessions, subjects were asked to wear a hip exoskeleton, controlled in transparent mode, and perform repetitive lifting and a locomotion circuit; lifting was executed with different techniques. The collected data were used to train the lift detection model. In the testing session, the exoskeleton was controlled in order to deliver torque to assist the lifting action, based on the lift detection made by the trained algorithm. The across-subject average accuracy of lift detection during online test was 97.97 ± 1.39% with subject-dependent model. Offline, the algorithm was trained with data acquired from all subjects to verify its performance for subject-independent detection, and an accuracy of 97.48 ± 1.53% was achieved. In addition, timeliness of the algorithm was quantitatively evaluated and the time delay was <160 ms across different lifting speeds. Surface electromyography was also measured to assess the efficacy of the exoskeleton in assisting subjects in performing load lifting tasks. These results validate the promise of applying the proposed lift detection strategy for exoskeleton control aiming at lift assistance. PMID:29706881
A Real-Time Lift Detection Strategy for a Hip Exoskeleton.
Chen, Baojun; Grazi, Lorenzo; Lanotte, Francesco; Vitiello, Nicola; Crea, Simona
2018-01-01
Repetitive lifting of heavy loads increases the risk of back pain and even lumbar vertebral injuries to workers. Active exoskeletons can help workers lift loads by providing power assistance, and therefore reduce the moment and force applied on L5/S1 joint of human body when performing lifting tasks. However, most existing active exoskeletons for lifting assistance are unable to automatically detect user's lift movement, which limits the wide application of active exoskeletons in factories. In this paper, we propose a simple but effective lift detection strategy for exoskeleton control. This strategy uses only exoskeleton integrated sensors, without any extra sensors to capture human motion intentions. This makes the lift detection system more practical for applications in manufacturing environments. Seven healthy subjects participated in this research. Three different sessions were carried out, two for training and one for testing the algorithm. In the two training sessions, subjects were asked to wear a hip exoskeleton, controlled in transparent mode, and perform repetitive lifting and a locomotion circuit; lifting was executed with different techniques. The collected data were used to train the lift detection model. In the testing session, the exoskeleton was controlled in order to deliver torque to assist the lifting action, based on the lift detection made by the trained algorithm. The across-subject average accuracy of lift detection during online test was 97.97 ± 1.39% with subject-dependent model. Offline, the algorithm was trained with data acquired from all subjects to verify its performance for subject-independent detection, and an accuracy of 97.48 ± 1.53% was achieved. In addition, timeliness of the algorithm was quantitatively evaluated and the time delay was <160 ms across different lifting speeds. Surface electromyography was also measured to assess the efficacy of the exoskeleton in assisting subjects in performing load lifting tasks. These results validate the promise of applying the proposed lift detection strategy for exoskeleton control aiming at lift assistance.
Access control violation prevention by low-cost infrared detection
NASA Astrophysics Data System (ADS)
Rimmer, Andrew N.
2004-09-01
A low cost 16x16 un-cooled pyroelectric detector array, allied with advanced tracking and detection algorithms, has enabled the development of a universal detector with a wide range of applications in people monitoring and homeland security. Violation of access control systems, whether controlled by proximity card, biometrics, swipe card or similar, may occur by 'tailgating' or 'piggybacking' where an 'approved' entrant with a valid entry card is accompanied by a closely spaced 'non-approved' entrant. The violation may be under duress, where the accompanying person is attempting to enter a secure facility by force or threat. Alternatively, the violation may be benign where staff members collude either through habit or lassitude, either with each other or with third parties, without considering the security consequences. Examples of the latter could include schools, hospitals or maternity homes. The 16x16 pyroelectric array is integrated into a detector or imaging system which incorporates data processing, target extraction and decision making algorithms. The algorithms apply interpolation to the array output, allowing a higher level of resolution than might otherwise be expected from such a low resolution array. The pyroelectric detection principle means that the detection will work in variable light conditions and even in complete darkness, if required. The algorithms can monitor the shape, form, temperature and number of persons in the scene and utilise this information to determine whether a violation has occurred or not. As people are seen as 'hot blobs' and are not individually recognisable, civil liberties are not infringed in the detection process. The output from the detector is a simple alarm signal which may act as input to the access control system as an alert or to trigger CCTV image display and storage. The applications for a tailgate detector can be demonstrated across many medium security applications where there are no physical means to prevent this type of security breach.
SU-F-J-10: Sliding Mode Control of a SMA Actuated Active Flexible Needle for Medical Procedures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Podder, T
Purpose: In medical interventional procedures such as brachytherapy, ablative therapies and biopsy precise steering and accurate placement of needles are very important for anatomical obstacle avoidance and accurate targeting. This study presents the efficacy of a sliding mode controller for Shape Memory Alloy (SMA) actuated flexible needle for medical procedures. Methods: Second order system dynamics of the SMA actuated active flexible needle was used for deriving the sliding mode control equations. Both proportional-integral-derivative (PID) and adaptive PID sliding mode control (APIDSMC) algorithms were developed and implemented. The flexible needle was attached at the end of a 6 DOF robotic system.more » Through LabView programming environment, the control commands were generated using the PID and APIDSMC algorithms. Experiments with artificial tissue mimicking phantom were performed to evaluate the performance of the controller. The actual needle tip position was obtained using an electromagnetic (EM) tracking sensor (Aurora, NDI, waterloo, Canada) at a sampling period of 1ms. During experiment, external disturbances were created applying force and thermal shock to investigate the robustness of the controllers. Results: The root mean square error (RMSE) values for APIDSMC and PID controllers were 0.75 mm and 0.92 mm, respectively, for sinusoidal reference input. In the presence of external disturbances, the APIDSMC controller showed much smoother and less overshooting response compared to that of the PID controller. Conclusion: Performance of the APIDSMC was superior to the PID controller. The APIDSMC was proved to be more effective controller in compensating the SMA uncertainties and external disturbances with clinically acceptable thresholds.« less
Radar Studies of Aviation Hazards
1994-05-31
RELEASE; DISTRIBUTION UNLIMITED. PHILLIPS LABORATORY . Directorate of Geophysics AIR FORCE MATERIEL COMMAND HANSCOM AIR FORCE BASE, MA 01731-3010...techniques that will be candidates for inclusion in the NEXRAD algorithm inventory. Phenomena of particular interest to the Air Force are being...vast majurity of thunderstorms in central Colorado. Wilson and Mueller (1993) attempted 30-minute nowcasts of thunderstorms, based primarily on Doppler
Control algorithms and applications of the wavefront sensorless adaptive optics
NASA Astrophysics Data System (ADS)
Ma, Liang; Wang, Bin; Zhou, Yuanshen; Yang, Huizhen
2017-10-01
Compared with the conventional adaptive optics (AO) system, the wavefront sensorless (WFSless) AO system need not to measure the wavefront and reconstruct it. It is simpler than the conventional AO in system architecture and can be applied to the complex conditions. Based on the analysis of principle and system model of the WFSless AO system, wavefront correction methods of the WFSless AO system were divided into two categories: model-free-based and model-based control algorithms. The WFSless AO system based on model-free-based control algorithms commonly considers the performance metric as a function of the control parameters and then uses certain control algorithm to improve the performance metric. The model-based control algorithms include modal control algorithms, nonlinear control algorithms and control algorithms based on geometrical optics. Based on the brief description of above typical control algorithms, hybrid methods combining the model-free-based control algorithm with the model-based control algorithm were generalized. Additionally, characteristics of various control algorithms were compared and analyzed. We also discussed the extensive applications of WFSless AO system in free space optical communication (FSO), retinal imaging in the human eye, confocal microscope, coherent beam combination (CBC) techniques and extended objects.
Dynamics Control Approaches to Improve Vibratory Environment of the Helicopter Aircrew
NASA Astrophysics Data System (ADS)
Wickramasinghe, Viresh Kanchana
Although helicopter has become a versatile mode of aerial transportation, high vibration levels leads to poor ride quality for its passengers and aircrew. Undesired vibration transmitted through the helicopter seats have been known to cause fatigue and discomfort to the aircrew in the short-term as well as neck strain and back pain injuries due to long-term exposure. This research study investigated the use of novel active as well as passive methodologies integrated in helicopter seats to mitigate the aircrew exposure to high vibration levels. Due to significantly less certification effort required to modify the helicopter seat structure, application of novel technologies to the seat is more practical compared to flight critical components such as the main rotor to reduce aircrew vibration. In particular, this research effort developed a novel adaptive seat mount approach based on active vibration control technology. This novel design that incorporated two stacked piezoelectric actuators as active struts increases the bending stiffness to avoid the low frequency resonance while generating forces to counteract higher harmonic vibration peaks. A real-time controller implemented using a feed-forward algorithm based on adaptive notches counteracted the forced vibration peaks while a robust feedback control algorithm suppressed the resonance modes. The effectiveness of the adaptive seat mount system was demonstrated through extensive closed-loop control tests on a full-scale helicopter seat using representative helicopter floor vibration profiles. Test results concluded that the proposed adaptive seat mount approach based on active control technology is a viable solution for the helicopter seat vibration control application. In addition, a unique flight test using a Bell-412 helicopter demonstrated that the aircrew is exposed to high levels of vibration during flight and that the whole body vibration spectrum varied substantially depending on operating conditions as well as the aircrew configurations. This investigation also demonstrated the suitability of integrating novel energy absorbing cushion materials to the seat as a low cost solution to improve aircrew vibration suppression. Therefore, it was recommended to pursue certification of novel seat cushion materials as a near-term solution to mitigate undesirable occupational health hazards in helicopter aircrew due to vibration exposure.
A Comparison of Two Skip Entry Guidance Algorithms
NASA Technical Reports Server (NTRS)
Rea, Jeremy R.; Putnam, Zachary R.
2007-01-01
The Orion capsule vehicle will have a Lift-to-Drag ratio (L/D) of 0.3-0.35. For an Apollo-like direct entry into the Earth's atmosphere from a lunar return trajectory, this L/D will give the vehicle a maximum range of about 2500 nm and a maximum crossrange of 216 nm. In order to y longer ranges, the vehicle lift must be used to loft the trajectory such that the aerodynamic forces are decreased. A Skip-Trajectory results if the vehicle leaves the sensible atmosphere and a second entry occurs downrange of the atmospheric exit point. The Orion capsule is required to have landing site access (either on land or in water) inside the Continental United States (CONUS) for lunar returns anytime during the lunar month. This requirement means the vehicle must be capable of flying ranges of at least 5500 nm. For the L/D of the vehicle, this is only possible with the use of a guided Skip-Trajectory. A skip entry guidance algorithm is necessary to achieve this requirement. Two skip entry guidance algorithms have been developed: the Numerical Skip Entry Guidance (NSEG) algorithm was developed at NASA/JSC and PredGuid was developed at Draper Laboratory. A comparison of these two algorithms will be presented in this paper. Each algorithm has been implemented in a high-fidelity, 6 degree-of-freedom simulation called the Advanced NASA Technology Architecture for Exploration Studies (ANTARES). NASA and Draper engineers have completed several monte carlo analyses in order to compare the performance of each algorithm in various stress states. Each algorithm has been tested for entry-to-target ranges to include direct entries and skip entries of varying length. Dispersions have been included on the initial entry interface state, vehicle mass properties, vehicle aerodynamics, atmosphere, and Reaction Control System (RCS). Performance criteria include miss distance to the target, RCS fuel usage, maximum g-loads and heat rates for the first and second entry, total heat load, and control system saturation. The comparison of the performance criteria has led to a down select and guidance merger that will take the best ideas from each algorithm to create one skip entry guidance algorithm for the Orion vehicle.
NASA Astrophysics Data System (ADS)
Jackson, Christopher Robert
"Lucky-region" fusion (LRF) is a synthetic imaging technique that has proven successful in enhancing the quality of images distorted by atmospheric turbulence. The LRF algorithm selects sharp regions of an image obtained from a series of short exposure frames, and fuses the sharp regions into a final, improved image. In previous research, the LRF algorithm had been implemented on a PC using the C programming language. However, the PC did not have sufficient sequential processing power to handle real-time extraction, processing and reduction required when the LRF algorithm was applied to real-time video from fast, high-resolution image sensors. This thesis describes two hardware implementations of the LRF algorithm to achieve real-time image processing. The first was created with a VIRTEX-7 field programmable gate array (FPGA). The other developed using the graphics processing unit (GPU) of a NVIDIA GeForce GTX 690 video card. The novelty in the FPGA approach is the creation of a "black box" LRF video processing system with a general camera link input, a user controller interface, and a camera link video output. We also describe a custom hardware simulation environment we have built to test the FPGA LRF implementation. The advantage of the GPU approach is significantly improved development time, integration of image stabilization into the system, and comparable atmospheric turbulence mitigation.
An overview on real-time control schemes for wheeled mobile robot
NASA Astrophysics Data System (ADS)
Radzak, M. S. A.; Ali, M. A. H.; Sha’amri, S.; Azwan, A. R.
2018-04-01
The purpose of this paper is to review real-time control motion algorithms for wheeled mobile robot (WMR) when navigating in environment such as road. Its need a good controller to avoid collision with any disturbance and maintain a track error at zero level. The controllers are used with other aiding sensors to measure the WMR’s velocities, posture, and interference to estimate the required torque to be applied on the wheels of mobile robot. Four main categories for wheeled mobile robot control systems have been found in literature which are namely: Kinematic based controller, Dynamic based controllers, artificial intelligence based control system, and Active Force control. A MATLAB/Simulink software is the main software to simulate and implement the control system. The real-time toolbox in MATLAB/SIMULINK are used to receive/send data from sensors/to actuator with presence of disturbances, however others software such C, C++ and visual basic are rare to be used.
NASA Astrophysics Data System (ADS)
Ozbulut, O. E.; Silwal, B.
2014-04-01
This study investigates the optimum design parameters of a superelastic friction base isolator (S-FBI) system through a multi-objective genetic algorithm and performance-based evaluation approach. The S-FBI system consists of a flat steel- PTFE sliding bearing and a superelastic NiTi shape memory alloy (SMA) device. Sliding bearing limits the transfer of shear across the isolation interface and provides damping from sliding friction. SMA device provides restoring force capability to the isolation system together with additional damping characteristics. A three-story building is modeled with S-FBI isolation system. Multiple-objective numerical optimization that simultaneously minimizes isolation-level displacements and superstructure response is carried out with a genetic algorithm (GA) in order to optimize S-FBI system. Nonlinear time history analyses of the building with S-FBI system are performed. A set of 20 near-field ground motion records are used in numerical simulations. Results show that S-FBI system successfully control response of the buildings against near-fault earthquakes without sacrificing in isolation efficacy and producing large isolation-level deformations.
Rapid cable tension estimation using dynamic and mechanical properties
NASA Astrophysics Data System (ADS)
Martínez-Castro, Rosana E.; Jang, Shinae; Christenson, Richard E.
2016-04-01
Main tension elements are critical to the overall stability of cable-supported bridges. A dependable and rapid determination of cable tension is desired to assess the state of a cable-supported bridge and evaluate its operability. A portable smart sensor setup is presented to reduce post-processing time and deployment complexity while reliably determining cable tension using dynamic characteristics extracted from spectral analysis. A self-recording accelerometer is coupled with a single-board microcomputer that communicates wirelessly with a remote host computer. The portable smart sensing device is designed such that additional algorithms, sensors and controlling devices for various monitoring applications can be installed and operated for additional structural assessment. The tension-estimating algorithms are based on taut string theory and expand to consider bending stiffness. The successful combination of cable properties allows the use of a cable's dynamic behavior to determine tension force. The tension-estimating algorithms are experimentally validated on a through-arch steel bridge subject to ambient vibration induced by passing traffic. The tension estimation is determined in well agreement with previously determined tension values for the structure.
Wu, Andy T J; Turk, Tamer; Colak, Canan; Elekdağ-Turk, Selma; Jones, Allan S; Petocz, Peter; Darendeliler, M Ali
2011-05-01
The aim of this prospective randomized clinical trial was to quantitatively measure and compare the locations, dimensions, and volume of root resorption craters in human premolars after the application of controlled light and heavy rotational orthodontic forces over a 28-day (4-week) period. Fifteen patients requiring bilateral extraction of maxillary first premolars as part of their orthodontic treatment were recruited for this study. Each patient received a heavy (225 g) rotational force on 1 premolar and a light (25 g) rotational force on the contralateral premolar. Orthodontic rotational forces were applied over 28 days with buccal and palatal cantilever springs; 0.016-inch beta-titanium molybdenum alloys were used to apply the light force and 0.018-inch stainless steel was used for the heavy force. After the 28-day experimental period, the upper first premolars were extracted under stringent protocols to prevent root surface damage. The samples were then scanned using a microcomputed tomography (micro-CT) scan x-ray system (SkyScan 1072, Skyscan, Aartselaar, Belgium), and analyzed using convex hull algorithm (CHULL2D; University of Sydney, Sydney, Australia) software to obtain direct volumetric measurements. The mean volume of resorption craters was 0.42 in the light force group and 0.51 in the heavy force group (P = 0.013). When separated at the root level, the difference in volume of root resorption craters between the 2 groups was significantly different only at the midlevel (P = 0.001). Root resorption craters were consistently detected at the boundaries between the buccal and distal surfaces and the mesial and lingual surfaces. The result supports our hypothesis that positive areas develop significantly more root resorption craters at all 3 levels, as compared with minimal areas (paired t test <0.001). Heavy rotational forces caused more root resorption than light rotational forces and compression areas (buccal-distal and lingual-mesial surfaces in this study) showed significantly higher root resorption than other areas at all levels of the root. Copyright © 2011 American Association of Orthodontists. Published by Mosby, Inc. All rights reserved.
Transcultural Diabetes Nutrition Algorithm: A Malaysian Application
Hamdy, Osama; Chin Chia, Yook; Lin Lim, Shueh; Kumari Natkunam, Santha; Yeong Tan, Ming; Sulaiman, Ridzoni; Nisak, Barakatun; Chee, Winnie Siew Swee; Marchetti, Albert; Hegazi, Refaat A.; Mechanick, Jeffrey I.
2013-01-01
Glycemic control among patients with prediabetes and type 2 diabetes mellitus (T2D) in Malaysia is suboptimal, especially after the continuous worsening over the past decade. Improved glycemic control may be achieved through a comprehensive management strategy that includes medical nutrition therapy (MNT). Evidence-based recommendations for diabetes-specific therapeutic diets are available internationally. However, Asian patients with T2D, including Malaysians, have unique disease characteristics and risk factors, as well as cultural and lifestyle dissimilarities, which may render international guidelines and recommendations less applicable and/or difficult to implement. With these thoughts in mind, a transcultural Diabetes Nutrition Algorithm (tDNA) was developed by an international task force of diabetes and nutrition experts through the restructuring of international guidelines for the nutritional management of prediabetes and T2D to account for cultural differences in lifestyle, diet, and genetic factors. The initial evidence-based global tDNA template was designed for simplicity, flexibility, and cultural modification. This paper reports the Malaysian adaptation of the tDNA, which takes into account the epidemiologic, physiologic, cultural, and lifestyle factors unique to Malaysia, as well as the local guidelines recommendations. PMID:24385984
Transcultural diabetes nutrition algorithm: a malaysian application.
Hussein, Zanariah; Hamdy, Osama; Chin Chia, Yook; Lin Lim, Shueh; Kumari Natkunam, Santha; Hussain, Husni; Yeong Tan, Ming; Sulaiman, Ridzoni; Nisak, Barakatun; Chee, Winnie Siew Swee; Marchetti, Albert; Hegazi, Refaat A; Mechanick, Jeffrey I
2013-01-01
Glycemic control among patients with prediabetes and type 2 diabetes mellitus (T2D) in Malaysia is suboptimal, especially after the continuous worsening over the past decade. Improved glycemic control may be achieved through a comprehensive management strategy that includes medical nutrition therapy (MNT). Evidence-based recommendations for diabetes-specific therapeutic diets are available internationally. However, Asian patients with T2D, including Malaysians, have unique disease characteristics and risk factors, as well as cultural and lifestyle dissimilarities, which may render international guidelines and recommendations less applicable and/or difficult to implement. With these thoughts in mind, a transcultural Diabetes Nutrition Algorithm (tDNA) was developed by an international task force of diabetes and nutrition experts through the restructuring of international guidelines for the nutritional management of prediabetes and T2D to account for cultural differences in lifestyle, diet, and genetic factors. The initial evidence-based global tDNA template was designed for simplicity, flexibility, and cultural modification. This paper reports the Malaysian adaptation of the tDNA, which takes into account the epidemiologic, physiologic, cultural, and lifestyle factors unique to Malaysia, as well as the local guidelines recommendations.
NASA Technical Reports Server (NTRS)
2006-01-01
The topics covered include: 1) Replaceable Sensor System for Bioreactor Monitoring; 2) Unitary Shaft-Angle and Shaft-Speed Sensor Assemblies; 3) Arrays of Nano Tunnel Junctions as Infrared Image Sensors; 4) Catalytic-Metal/PdO(sub x)/SiC Schottky-Diode Gas Sensors; 5) Compact, Precise Inertial Rotation Sensors for Spacecraft; 6) Universal Controller for Spacecraft Mechanisms; 7) The Flostation - an Immersive Cyberspace System; 8) Algorithm for Aligning an Array of Receiving Radio Antennas; 9) Single-Chip T/R Module for 1.2 GHz; 10) Quantum Entanglement Molecular Absorption Spectrum Simulator; 11) FuzzObserver; 12) Internet Distribution of Spacecraft Telemetry Data; 13) Semi-Automated Identification of Rocks in Images; 14) Pattern-Recognition Algorithm for Locking Laser Frequency; 15) Designing Cure Cycles for Matrix/Fiber Composite Parts; 16) Controlling Herds of Cooperative Robots; 17) Modification of a Limbed Robot to Favor Climbing; 18) Vacuum-Assisted, Constant-Force Exercise Device; 19) Production of Tuber-Inducing Factor; 20) Quantum-Dot Laser for Wavelengths of 1.8 to 2.3 micron; 21) Tunable Filter Made From Three Coupled WGM Resonators; and 22) Dynamic Pupil Masking for Phasing Telescope Mirror Segments.
Ring-push metric learning for person reidentification
NASA Astrophysics Data System (ADS)
He, Botao; Yu, Shaohua
2017-05-01
Person reidentification (re-id) has been widely studied because of its extensive use in video surveillance and forensics applications. It aims to search a specific person among a nonoverlapping camera network, which is highly challenging due to large variations in the cluttered background, human pose, and camera viewpoint. We present a metric learning algorithm for learning a Mahalanobis distance for re-id. Generally speaking, there exist two forces in the conventional metric learning process, one pulling force that pulls points of the same class closer and the other pushing force that pushes points of different classes as far apart as possible. We argue that, when only a limited number of training data are given, forcing interclass distances to be as large as possible may drive the metric to overfit the uninformative part of the images, such as noises and backgrounds. To alleviate overfitting, we propose the ring-push metric learning algorithm. Different from other metric learning methods that only punish too small interclass distances, in the proposed method, both too small and too large inter-class distances are punished. By introducing the generalized logistic function as the loss, we formulate the ring-push metric learning as a convex optimization problem and utilize the projected gradient descent method to solve it. The experimental results on four public datasets demonstrate the effectiveness of the proposed algorithm.
Simulations of Dynamical Friction Including Spatially-Varying Magnetic Fields
NASA Astrophysics Data System (ADS)
Bell, G. I.; Bruhwiler, D. L.; Litvinenko, V. N.; Busby, R.; Abell, D. T.; Messmer, P.; Veitzer, S.; Cary, J. R.
2006-03-01
A proposed luminosity upgrade to the Relativistic Heavy Ion Collider (RHIC) includes a novel electron cooling section, which would use ˜55 MeV electrons to cool fully-ionized 100 GeV/nucleon gold ions. We consider the dynamical friction force exerted on individual ions due to a relevant electron distribution. The electrons may be focussed by a strong solenoid field, with sensitive dependence on errors, or by a wiggler field. In the rest frame of the relativistic co-propagating electron and ion beams, where the friction force can be simulated for nonrelativistic motion and electrostatic fields, the Lorentz transform of these spatially-varying magnetic fields includes strong, rapidly-varying electric fields. Previous friction force simulations for unmagnetized electrons or error-free solenoids used a 4th-order Hermite algorithm, which is not well-suited for the inclusion of strong, rapidly-varying external fields. We present here a new algorithm for friction force simulations, using an exact two-body collision model to accurately resolve close interactions between electron/ion pairs. This field-free binary-collision model is combined with a modified Boris push, using an operator-splitting approach, to include the effects of external fields. The algorithm has been implemented in the VORPAL code and successfully benchmarked.
Follow-the-Leader Control for the PIPS Prototype Hardware
NASA Technical Reports Server (NTRS)
Williams, Robert L. II; Lippitt, Thimas
1996-01-01
This report describes the payload inspection and processing system (PIPS), an automated system programmed off-line for inspection of space shuttle payloads after integration and prior to launch. PIPS features a hyper-redundant 18-degree of freedom (DOF) serpentine truss manipulator capable of snake like motions to avoid obstacles. During the summer of 1995, the author worked on the same project, developing a follow-the-leader (FTL) algorithm in graphical simulation which ensures whole arm collision avoidance by forcing ensuing links to follow the same tip trajectory. The summer 1996 work was to control the prototype PIPS hardware in follow-the-leader mode. The project was successful in providing FTL control in hardware. The STS-82 payload mockup was used in the laboratory to demonstrate serpentine motions to avoid obstacles in a realistic environment.
Bofill, Josep Maria; Ribas-Ariño, Jordi; García, Sergio Pablo; Quapp, Wolfgang
2017-10-21
The reaction path of a mechanically induced chemical transformation changes under stress. It is well established that the force-induced structural changes of minima and saddle points, i.e., the movement of the stationary points on the original or stress-free potential energy surface, can be described by a Newton Trajectory (NT). Given a reactive molecular system, a well-fitted pulling direction, and a sufficiently large value of the force, the minimum configuration of the reactant and the saddle point configuration of a transition state collapse at a point on the corresponding NT trajectory. This point is called barrier breakdown point or bond breaking point (BBP). The Hessian matrix at the BBP has a zero eigenvector which coincides with the gradient. It indicates which force (both in magnitude and direction) should be applied to the system to induce the reaction in a barrierless process. Within the manifold of BBPs, there exist optimal BBPs which indicate what is the optimal pulling direction and what is the minimal magnitude of the force to be applied for a given mechanochemical transformation. Since these special points are very important in the context of mechanochemistry and catalysis, it is crucial to develop efficient algorithms for their location. Here, we propose a Gauss-Newton algorithm that is based on the minimization of a positively defined function (the so-called σ-function). The behavior and efficiency of the new algorithm are shown for 2D test functions and for a real chemical example.
Experiments on active isolation using distributed PVDF error sensors
NASA Technical Reports Server (NTRS)
Lefebvre, S.; Guigou, C.; Fuller, C. R.
1992-01-01
A control system based on a two-channel narrow-band LMS algorithm is used to isolate periodic vibration at low frequencies on a structure composed of a rigid top plate mounted on a flexible receiving plate. The control performance of distributed PVDF error sensors and accelerometer point sensors is compared. For both sensors, high levels of global reduction, up to 32 dB, have been obtained. It is found that, by driving the PVDF strip output voltage to zero, the controller may force the structure to vibrate so that the integration of the strain under the length of the PVDF strip is zero. This ability of the PVDF sensors to act as spatial filters is especially relevant in active control of sound radiation. It is concluded that the PVDF sensors are flexible, nonfragile, and inexpensive and can be used as strain sensors for active control applications of vibration isolation and sound radiation.
Evaluation of piezoceramic actuators for control of aircraft interior noise
NASA Technical Reports Server (NTRS)
Silcox, Richard J.; Lefebvre, Sylvie; Metcalf, Vern L.; Beyer, Todd B.; Fuller, Chris R.
1992-01-01
Results of an experiment to evaluate piezoceramic actuators as the control actuator for active control of interior noise in a large-scale fuselage model are presented. Control was demonstrated for tonal excitation using a time domain least mean squares algorithm. A maximum of four actuator channels and six error signals were used. The actuators were employed for control of noise at frequencies where interior cavity modes were the dominant response and for driven acoustic responses where a structure resonance was dominant. Global reductions of 9 to 12 dB were obtained for the cases examined. The most effective configuration of skin-mounted actuators was found to be a pure in-plane forcing function as opposed to a bending excitation. The frame-mounted actuators were found to be equally effective as the skin-mounted actuators. However, both configurations resulted in local regions of unacceptably high vibration response in the structure.
Planar maneuvering control of underwater snake robots using virtual holonomic constraints.
Kohl, Anna M; Kelasidi, Eleni; Mohammadi, Alireza; Maggiore, Manfredi; Pettersen, Kristin Y
2016-11-24
This paper investigates the problem of planar maneuvering control for bio-inspired underwater snake robots that are exposed to unknown ocean currents. The control objective is to make a neutrally buoyant snake robot which is subject to hydrodynamic forces and ocean currents converge to a desired planar path and traverse the path with a desired velocity. The proposed feedback control strategy enforces virtual constraints which encode biologically inspired gaits on the snake robot configuration. The virtual constraints, parametrized by states of dynamic compensators, are used to regulate the orientation and forward speed of the snake robot. A two-state ocean current observer based on relative velocity sensors is proposed. It enables the robot to follow the path in the presence of unknown constant ocean currents. The efficacy of the proposed control algorithm for several biologically inspired gaits is verified both in simulations for different path geometries and in experiments.
Compensator design for improved counterbalancing in high speed atomic force microscopy.
Bozchalooi, I S; Youcef-Toumi, K; Burns, D J; Fantner, G E
2011-11-01
High speed atomic force microscopy can provide the possibility of many new scientific observations and applications ranging from nano-manufacturing to the study of biological processes. However, the limited imaging speed has been an imperative drawback of the atomic force microscopes. One of the main reasons behind this limitation is the excitation of the AFM dynamics at high scan speeds, severely undermining the reliability of the acquired images. In this research, we propose a piezo based, feedforward controlled, counter actuation mechanism to compensate for the excited out-of-plane scanner dynamics. For this purpose, the AFM controller output is properly filtered via a linear compensator and then applied to a counter actuating piezo. An effective algorithm for estimating the compensator parameters is developed. The information required for compensator design is extracted from the cantilever deflection signal, hence eliminating the need for any additional sensors. The proposed approach is implemented and experimentally evaluated on the dynamic response of a custom made AFM. It is further assessed by comparing the imaging performance of the AFM with and without the application of the proposed technique and in comparison with the conventional counterbalancing methodology. The experimental results substantiate the effectiveness of the method in significantly improving the imaging performance of AFM at high scan speeds. © 2011 American Institute of Physics
Compensator design for improved counterbalancing in high speed atomic force microscopy
Bozchalooi, I. S.; Youcef-Toumi, K.; Burns, D. J.; Fantner, G. E.
2011-01-01
High speed atomic force microscopy can provide the possibility of many new scientific observations and applications ranging from nano-manufacturing to the study of biological processes. However, the limited imaging speed has been an imperative drawback of the atomic force microscopes. One of the main reasons behind this limitation is the excitation of the AFM dynamics at high scan speeds, severely undermining the reliability of the acquired images. In this research, we propose a piezo based, feedforward controlled, counter actuation mechanism to compensate for the excited out-of-plane scanner dynamics. For this purpose, the AFM controller output is properly filtered via a linear compensator and then applied to a counter actuating piezo. An effective algorithm for estimating the compensator parameters is developed. The information required for compensator design is extracted from the cantilever deflection signal, hence eliminating the need for any additional sensors. The proposed approach is implemented and experimentally evaluated on the dynamic response of a custom made AFM. It is further assessed by comparing the imaging performance of the AFM with and without the application of the proposed technique and in comparison with the conventional counterbalancing methodology. The experimental results substantiate the effectiveness of the method in significantly improving the imaging performance of AFM at high scan speeds. PMID:22128989
Compensator design for improved counterbalancing in high speed atomic force microscopy
NASA Astrophysics Data System (ADS)
Bozchalooi, I. S.; Youcef-Toumi, K.; Burns, D. J.; Fantner, G. E.
2011-11-01
High speed atomic force microscopy can provide the possibility of many new scientific observations and applications ranging from nano-manufacturing to the study of biological processes. However, the limited imaging speed has been an imperative drawback of the atomic force microscopes. One of the main reasons behind this limitation is the excitation of the AFM dynamics at high scan speeds, severely undermining the reliability of the acquired images. In this research, we propose a piezo based, feedforward controlled, counter actuation mechanism to compensate for the excited out-of-plane scanner dynamics. For this purpose, the AFM controller output is properly filtered via a linear compensator and then applied to a counter actuating piezo. An effective algorithm for estimating the compensator parameters is developed. The information required for compensator design is extracted from the cantilever deflection signal, hence eliminating the need for any additional sensors. The proposed approach is implemented and experimentally evaluated on the dynamic response of a custom made AFM. It is further assessed by comparing the imaging performance of the AFM with and without the application of the proposed technique and in comparison with the conventional counterbalancing methodology. The experimental results substantiate the effectiveness of the method in significantly improving the imaging performance of AFM at high scan speeds.
Multi-limbed locomotion systems for space construction and maintenance
NASA Technical Reports Server (NTRS)
Waldron, K. J.; Klein, C. A.
1987-01-01
A well developed technology of coordination of multi-limbed locomotory systems is now available. Results from a NASA sponsored study of several years ago are presented. This was a simulation study of a three-limbed locomotion/manipulation system. Each limb had six degrees of freedom and could be used either as a locomotory grasping hand-holds, or as a manipulator. The focus of the study was kinematic coordination algorithms. The presentation will also include very recent results from the Adaptive Suspension Vehicle Project. The Adaptive Suspension Vehicle (ASV) is a legged locomotion system designed for terrestrial use which is capable of operating in completely unstructured terrain in either a teleoperated or operator-on-board mode. Future development may include autonomous operation. The ASV features a very advanced coordination and control system which could readily be adapted to operation in space. An inertial package with a vertical gyro, and rate gyros and accelerometers on three orthogonal axes provides body position information at high bandwidth. This is compared to the operator's commands, injected via a joystick to provide a commanded force system on the vehicle's body. This system is, in turn, decomposed by a coordination algorithm into force commands to those legs which are in contact with the ground.
Preventing Falls in Older Persons.
Moncada, Lainie Van Voast; Mire, L Glen
2017-08-15
The American Geriatrics Society and British Geriatrics Society recommend that all adults older than 65 years be screened annually for a history of falls or balance impairment. The U.S. Preventive Services Task Force and American Academy of Family Physicians recommend exercise or physical therapy and vitamin D supplementation to prevent falls in community-dwelling older adults who are at increased risk of falls. Although the U.S. Preventive Services Task Force and American Academy of Family Physicians do not recommend routine multifactorial intervention to prevent falls in all community-dwelling older adults, they state that it may be appropriate in individual cases. The Centers for Disease Control and Prevention developed an algorithm to aid in the implementation of the American Geriatrics Society/British Geriatrics Society guideline. The algorithm suggests assessment and multifactorial intervention for those who have had two or more falls or one fall-related injury. Multifactorial interventions should include exercise, particularly balance, strength, and gait training; vitamin D supplementation with or without calcium; management of medications, especially psychoactive medications; home environment modification; and management of postural hypotension, vision problems, foot problems, and footwear. These interventions effectively decrease falls in the community, hospital, and nursing home settings. Fall prevention is reimbursed as part of the Medicare Annual Wellness Visit.
Gust alleviation of highly flexible UAVs with artificial hair sensors
NASA Astrophysics Data System (ADS)
Su, Weihua; Reich, Gregory W.
2015-04-01
Artificial hair sensors (AHS) have been recently developed in Air Force Research Laboratory (AFRL) using carbon nanotube (CNT). The deformation of CNT in air flow causes voltage and current changes in the circuit, which can be used to quantify the dynamic pressure and aerodynamic load along the wing surface. AFRL has done a lot of essential work in design, manufacturing, and measurement of AHSs. The work in this paper is to bridge the current AFRL's work on AHSs and their feasible applications in flight dynamics and control (e.g., the gust alleviation) of highly flexible aircraft. A highly flexible vehicle is modeled using a strain-based geometrically nonlinear beam formulation, coupled with finite-state inflow aerodynamics. A feedback control algorithm for the rejection of gust perturbations will be developed. A simplified Linear Quadratic Regulator (LQR) controller will be implemented based on the state-space representation of the linearized system. All AHS measurements will be used as the control input, i.e., wing sectional aerodynamic loads will be defined as the control output for designing the feedback gain. Once the controller is designed, closed-loop aeroelastic simulations will be performed to evaluate the performance of different controllers with the force feedback and be compared to traditional controller designs with the state feedback. From the study, the feasibility of AHSs in flight control will be assessed. The whole study will facilitate in building a fly-by-feel simulation environment for autonomous vehicles.
An integrated approach to piezoactuator positioning in high-speed atomic force microscope imaging
NASA Astrophysics Data System (ADS)
Yan, Yan; Wu, Ying; Zou, Qingze; Su, Chanmin
2008-07-01
In this paper, an integrated approach to achieve high-speed atomic force microscope (AFM) imaging of large-size samples is proposed, which combines the enhanced inversion-based iterative control technique to drive the piezotube actuator control for lateral x-y axis positioning with the use of a dual-stage piezoactuator for vertical z-axis positioning. High-speed, large-size AFM imaging is challenging because in high-speed lateral scanning of the AFM imaging at large size, large positioning error of the AFM probe relative to the sample can be generated due to the adverse effects—the nonlinear hysteresis and the vibrational dynamics of the piezotube actuator. In addition, vertical precision positioning of the AFM probe is even more challenging (than the lateral scanning) because the desired trajectory (i.e., the sample topography profile) is unknown in general, and the probe positioning is also effected by and sensitive to the probe-sample interaction. The main contribution of this article is the development of an integrated approach that combines advanced control algorithm with an advanced hardware platform. The proposed approach is demonstrated in experiments by imaging a large-size (50μm ) calibration sample at high-speed (50Hz scan rate).
Ride performance of a high speed rail vehicle using controlled semi active suspension system
NASA Astrophysics Data System (ADS)
Sharma, Sunil Kumar; Kumar, Anil
2017-05-01
The rail-wheel interaction in a rail vehicle running at high speed results in large amplitude vibration of carbody that deteriorates the ride comfort of travellers. The role of suspension system is crucial to provide an acceptable level of ride performance. In this context, an existing rail vehicle is modelled in vertical, pitch and roll motions of carbody and bogies. Additionally, nonlinear stiffness and damping parameters of passive suspension system are defined based on experimental data. In the secondary vertical suspension system, a magneto-rheological (MR) damper is included to improve the ride quality and comfort. The parameters of MR damper depend on the current, amplitude and frequency of excitations. At different running speeds, three semi-active suspension strategies with MR damper are analysed for periodic track irregularity and the resulting performance indices are juxtaposed with the nonlinear passive suspension system. The disturbance rejection and force tracking damper controller algorithms are applied to control the desired force of MR damper. This study reveals that the vertical vibrations of a vehicle can be reduced significantly by using the proposed semi-active suspension strategies. Moreover, it naturally results in improved ride quality and passenger’s comfort in comparison to the existing passive system.
A programmable and portable NMES device for drop foot correction and blood flow assist applications.
Breen, Paul P; Corley, Gavin J; O'Keeffe, Derek T; Conway, Richard; Olaighin, Gearóid
2009-04-01
The Duo-STIM, a new, programmable and portable neuromuscular stimulation system for drop foot correction and blood flow assist applications is presented. The system consists of a programmer unit and a portable, programmable stimulator unit. The portable stimulator features fully programmable, sensor-controlled, constant-voltage, dual-channel stimulation and accommodates a range of customized stimulation profiles. Trapezoidal and free-form adaptive stimulation intensity envelope algorithms are provided for drop foot correction applications, while time dependent and activity dependent algorithms are provided for blood flow assist applications. A variety of sensor types can be used with the portable unit, including force sensitive resistor-based foot switches and MEMS-based accelerometer and gyroscope devices. The paper provides a detailed description of the hardware and block-level system design for both units. The programming and operating procedures for the system are also presented. Finally, functional bench test results for the system are presented.
A programmable and portable NMES device for drop foot correction and blood flow assist applications.
Breen, Paul P; Corley, Gavin J; O'Keeffe, Derek T; Conway, Richard; OLaighin, Gearoid
2007-01-01
The Duo-STIM, a new, programmable and portable neuromuscular stimulation system for drop foot correction and blood flow assist applications is presented. The system consists of a programmer unit and a portable, programmable stimulator unit. The portable stimulator features fully programmable, sensor-controlled, constant-voltage, dual-channel stimulation and accommodates a range of customized stimulation profiles. Trapezoidal and free-form adaptive stimulation intensity envelope algorithms are provided for drop foot correction applications, while time dependent and activity dependent algorithms are provided for blood flow assist applications. A variety of sensor types can be used with the portable unit, including force sensitive resistor based foot switches and NMES based accelerometer and gyroscope devices. The paper provides a detailed description of the hardware and block-level system design for both units. The programming and operating procedures for the system are also presented. Finally, functional bench test results for the system are presented.
Thruster-Specific Force Estimation and Trending of Cassini Hydrazine Thrusters at Saturn
NASA Technical Reports Server (NTRS)
Stupik, Joan; Burk, Thomas A.
2016-01-01
The Cassini spacecraft has been in orbit around Saturn since 2004 and has since been approved for both a first and second extended mission. As hardware reaches and exceeds its documented life expectancy, it becomes vital to closely monitor hardware performance. The performance of the 1-N hydrazine attitude control thrusters is especially important to study, because the spacecraft is currently operating on the back-up thruster branch. Early identification of hardware degradation allows more time to develop mitigation strategies. There is no direct measure of an individual thruster's thrust magnitude, but these values can be estimated by post-processing spacecraft telemetry. This paper develops an algorithm to calculate the individual thrust magnitudes using Euler's equation. The algorithm correctly shows the known degradation in the first thruster branch, validating the approach. Results for the current thruster branch show nominal performance as of August, 2015.
SU-E-J-88: Deformable Registration Using Multi-Resolution Demons Algorithm for 4DCT.
Li, Dengwang; Yin, Yong
2012-06-01
In order to register 4DCT efficiently, we propose an improved deformable registration algorithm based on improved multi-resolution demons strategy to improve the efficiency of the algorithm. 4DCT images of lung cancer patients are collected from a General Electric Discovery ST CT scanner from our cancer hospital. All of the images are sorted into groups and reconstructed according to their phases, and eachrespiratory cycle is divided into 10 phases with the time interval of 10%. Firstly, in our improved demons algorithm we use gradients of both reference and floating images as deformation forces and also redistribute the forces according to the proportion of the two forces. Furthermore, we introduce intermediate variable to cost function for decreasing the noise in registration process. At the same time, Gaussian multi-resolution strategy and BFGS method for optimization are used to improve speed and accuracy of the registration. To validate the performance of the algorithm, we register the previous 10 phase-images. We compared the difference of floating and reference images before and after registered where two landmarks are decided by experienced clinician. We registered 10 phase-images of 4D-CT which is lung cancer patient from cancer hospital and choose images in exhalationas the reference images, and all other images were registered into the reference images. This method has a good accuracy demonstrated by a higher similarity measure for registration of 4D-CT and it can register a large deformation precisely. Finally, we obtain the tumor target achieved by the deformation fields using proposed method, which is more accurately than the internal margin (IM) expanded by the Gross Tumor Volume (GTV). Furthermore, we achieve tumor and normal tissue tracking and dose accumulation using 4DCT data. An efficient deformable registration algorithm was proposed by using multi-resolution demons algorithm for 4DCT. © 2012 American Association of Physicists in Medicine.
NASA Astrophysics Data System (ADS)
Foronda, Augusto; Ohta, Chikara; Tamaki, Hisashi
Dirty paper coding (DPC) is a strategy to achieve the region capacity of multiple input multiple output (MIMO) downlink channels and a DPC scheduler is throughput optimal if users are selected according to their queue states and current rates. However, DPC is difficult to implement in practical systems. One solution, zero-forcing beamforming (ZFBF) strategy has been proposed to achieve the same asymptotic sum rate capacity as that of DPC with an exhaustive search over the entire user set. Some suboptimal user group selection schedulers with reduced complexity based on ZFBF strategy (ZFBF-SUS) and proportional fair (PF) scheduling algorithm (PF-ZFBF) have also been proposed to enhance the throughput and fairness among the users, respectively. However, they are not throughput optimal, fairness and throughput decrease if each user queue length is different due to different users channel quality. Therefore, we propose two different scheduling algorithms: a throughput optimal scheduling algorithm (ZFBF-TO) and a reduced complexity scheduling algorithm (ZFBF-RC). Both are based on ZFBF strategy and, at every time slot, the scheduling algorithms have to select some users based on user channel quality, user queue length and orthogonality among users. Moreover, the proposed algorithms have to produce the rate allocation and power allocation for the selected users based on a modified water filling method. We analyze the schedulers complexity and numerical results show that ZFBF-RC provides throughput and fairness improvements compared to the ZFBF-SUS and PF-ZFBF scheduling algorithms.
A Neural Circuit for Angular Velocity Computation
Snider, Samuel B.; Yuste, Rafael; Packer, Adam M.
2010-01-01
In one of the most remarkable feats of motor control in the animal world, some Diptera, such as the housefly, can accurately execute corrective flight maneuvers in tens of milliseconds. These reflexive movements are achieved by the halteres, gyroscopic force sensors, in conjunction with rapidly tunable wing steering muscles. Specifically, the mechanosensory campaniform sensilla located at the base of the halteres transduce and transform rotation-induced gyroscopic forces into information about the angular velocity of the fly's body. But how exactly does the fly's neural architecture generate the angular velocity from the lateral strain forces on the left and right halteres? To explore potential algorithms, we built a neuromechanical model of the rotation detection circuit. We propose a neurobiologically plausible method by which the fly could accurately separate and measure the three-dimensional components of an imposed angular velocity. Our model assumes a single sign-inverting synapse and formally resembles some models of directional selectivity by the retina. Using multidimensional error analysis, we demonstrate the robustness of our model under a variety of input conditions. Our analysis reveals the maximum information available to the fly given its physical architecture and the mathematics governing the rotation-induced forces at the haltere's end knob. PMID:21228902
A neural circuit for angular velocity computation.
Snider, Samuel B; Yuste, Rafael; Packer, Adam M
2010-01-01
In one of the most remarkable feats of motor control in the animal world, some Diptera, such as the housefly, can accurately execute corrective flight maneuvers in tens of milliseconds. These reflexive movements are achieved by the halteres, gyroscopic force sensors, in conjunction with rapidly tunable wing steering muscles. Specifically, the mechanosensory campaniform sensilla located at the base of the halteres transduce and transform rotation-induced gyroscopic forces into information about the angular velocity of the fly's body. But how exactly does the fly's neural architecture generate the angular velocity from the lateral strain forces on the left and right halteres? To explore potential algorithms, we built a neuromechanical model of the rotation detection circuit. We propose a neurobiologically plausible method by which the fly could accurately separate and measure the three-dimensional components of an imposed angular velocity. Our model assumes a single sign-inverting synapse and formally resembles some models of directional selectivity by the retina. Using multidimensional error analysis, we demonstrate the robustness of our model under a variety of input conditions. Our analysis reveals the maximum information available to the fly given its physical architecture and the mathematics governing the rotation-induced forces at the haltere's end knob.
Deffeyes, Joan E; Harbourne, Regina T; DeJong, Stacey L; Kyvelidou, Anastasia; Stuberg, Wayne A; Stergiou, Nicholas
2009-01-01
Background By quantifying the information entropy of postural sway data, the complexity of the postural movement of different populations can be assessed, giving insight into pathologic motor control functioning. Methods In this study, developmental delay of motor control function in infants was assessed by analysis of sitting postural sway data acquired from force plate center of pressure measurements. Two types of entropy measures were used: symbolic entropy, including a new asymmetric symbolic entropy measure, and approximate entropy, a more widely used entropy measure. For each method of analysis, parameters were adjusted to optimize the separation of the results from the infants with delayed development from infants with typical development. Results The method that gave the widest separation between the populations was the asymmetric symbolic entropy method, which we developed by modification of the symbolic entropy algorithm. The approximate entropy algorithm also performed well, using parameters optimized for the infant sitting data. The infants with delayed development were found to have less complex patterns of postural sway in the medial-lateral direction, and were found to have different left-right symmetry in their postural sway, as compared to typically developing infants. Conclusion The results of this study indicate that optimization of the entropy algorithm for infant sitting postural sway data can greatly improve the ability to separate the infants with developmental delay from typically developing infants. PMID:19671183
Fire Fighting Task Force (FIRE)
1989-04-01
and fdenify by block number) ~’This study is part of ~a contining effort to develop soldier data and performance algorithms (pergorithus) needed to...similar to combat, results will be useful in developing algorithms and data for use in US Army Concepts Analysis Agency (CAA) combat models. THE...dimensions. The US Army Concepts Analysis Agency (CAA) is committed to adding the soldier variables and algorithms that are necessary to fully represent
NASA Astrophysics Data System (ADS)
Sun, S. S.; Yildirim, T.; Wu, Jichu; Yang, J.; Du, H.; Zhang, S. W.; Li, W. H.
2017-09-01
In this work, a hybrid nonlinear magnetorheological elastomer (MRE) vibration absorber has been designed, theoretically investigated and experimentally verified. The proposed nonlinear MRE absorber has the dual advantages of a nonlinear force-displacement relationship and variable stiffness technology; the purpose for coupling these two technologies is to achieve a large broadband vibration absorber with controllable capability. To achieve a nonlinear stiffness in the device, two pairs of magnets move at a rotary angle against each other, and the theoretical nonlinear force-displacement relationship has been theoretically calculated. For the experimental investigation, the effects of base excitation, variable currents applied to the device (i.e. variable stiffness of the MRE) and semi-active control have been conducted to determine the enhanced broadband performance of the designed device. It was observed the device was able to change resonance frequency with the applied current; moreover, the hybrid nonlinear MRE absorber displayed a softening-type nonlinear response with clear discontinuous bifurcations observed. Furthermore, the performance of the device under a semi-active control algorithm displayed the optimal performance in attenuating the vibration from a primary system to the absorber over a large frequency bandwidth from 4 to 12 Hz. By coupling nonlinear stiffness attributes with variable stiffness MRE technology, the performance of a vibration absorber is substantially improved.
A novel approach to enhance the accuracy of vibration control of Frames
NASA Astrophysics Data System (ADS)
Toloue, Iraj; Shahir Liew, Mohd; Harahap, I. S. H.; Lee, H. E.
2018-03-01
All structures built within known seismically active regions are typically designed to endure earthquake forces. Despite advances in earthquake resistant structures, it can be inferred from hindsight that no structure is entirely immune to damage from earthquakes. Active vibration control systems, unlike the traditional methods which enlarge beams and columns, are highly effective countermeasures to reduce the effects of earthquake loading on a structure. It requires fast computation of nonlinear structural analysis in near time and has historically demanded advanced programming hosted on powerful computers. This research aims to develop a new approach for active vibration control of frames, which is applicable over both elastic and plastic material behavior. In this study, the Force Analogy Method (FAM), which is based on Hook's Law is further extended using the Timoshenko element which considers shear deformations to increase the reliability and accuracy of the controller. The proposed algorithm is applied to a 2D portal frame equipped with linear actuator, which is designed based on full state Linear Quadratic Regulator (LQR). For comparison purposes, the portal frame is analysed by both the Euler Bernoulli and Timoshenko element respectively. The results clearly demonstrate the superiority of the Timoshenko element over Euler Bernoulli for application in nonlinear analysis.
Three parameters optimizing closed-loop control in sequential segmental neuromuscular stimulation.
Zonnevijlle, E D; Somia, N N; Perez Abadia, G; Stremel, R W; Maldonado, C J; Werker, P M; Kon, M; Barker, J H
1999-05-01
In conventional dynamic myoplasties, the force generation is poorly controlled. This causes unnecessary fatigue of the transposed/transplanted electrically stimulated muscles and causes damage to the involved tissues. We introduced sequential segmental neuromuscular stimulation (SSNS) to reduce muscle fatigue by allowing part of the muscle to rest periodically while the other parts work. Despite this improvement, we hypothesize that fatigue could be further reduced in some applications of dynamic myoplasty if the muscles were made to contract according to need. The first necessary step is to gain appropriate control over the contractile activity of the dynamic myoplasty. Therefore, closed-loop control was tested on a sequentially stimulated neosphincter to strive for the best possible control over the amount of generated pressure. A selection of parameters was validated for optimizing control. We concluded that the frequency of corrections, the threshold for corrections, and the transition time are meaningful parameters in the controlling algorithm of the closed-loop control in a sequentially stimulated myoplasty.
An approach to improve the spatial resolution of a force mapping sensing system
NASA Astrophysics Data System (ADS)
Negri, Lucas Hermann; Manfron Schiefer, Elberth; Sade Paterno, Aleksander; Muller, Marcia; Luís Fabris, José
2016-02-01
This paper proposes a smart sensor system capable of detecting sparse forces applied to different positions of a metal plate. The sensing is performed with strain transducers based on fiber Bragg gratings (FBG) distributed under the plate. Forces actuating in nine squared regions of the plate, resulting from up to three different loads applied simultaneously to the plate, were monitored with seven transducers. The system determines the magnitude of the force/pressure applied on each specific area, even in the absence of a dedicated transducer for that area. The set of strain transducers with coupled responses and a compressive sensing algorithm are employed to solve the underdetermined inverse problem which emerges from mapping the force. In this configuration, experimental results have shown that the system is capable of recovering the value of the load distributed on the plate with a signal-to-noise ratio better than 12 dB, when the plate is submitted to three simultaneous test loads. The proposed method is a practical illustration of compressive sensing algorithms for the reduction of the number of FBG-based transducers used in a quasi-distributed configuration.
The Adaptive Biasing Force Method: Everything You Always Wanted To Know but Were Afraid To Ask
2014-01-01
In the host of numerical schemes devised to calculate free energy differences by way of geometric transformations, the adaptive biasing force algorithm has emerged as a promising route to map complex free-energy landscapes. It relies upon the simple concept that as a simulation progresses, a continuously updated biasing force is added to the equations of motion, such that in the long-time limit it yields a Hamiltonian devoid of an average force acting along the transition coordinate of interest. This means that sampling proceeds uniformly on a flat free-energy surface, thus providing reliable free-energy estimates. Much of the appeal of the algorithm to the practitioner is in its physically intuitive underlying ideas and the absence of any requirements for prior knowledge about free-energy landscapes. Since its inception in 2001, the adaptive biasing force scheme has been the subject of considerable attention, from in-depth mathematical analysis of convergence properties to novel developments and extensions. The method has also been successfully applied to many challenging problems in chemistry and biology. In this contribution, the method is presented in a comprehensive, self-contained fashion, discussing with a critical eye its properties, applicability, and inherent limitations, as well as introducing novel extensions. Through free-energy calculations of prototypical molecular systems, many methodological aspects are examined, from stratification strategies to overcoming the so-called hidden barriers in orthogonal space, relevant not only to the adaptive biasing force algorithm but also to other importance-sampling schemes. On the basis of the discussions in this paper, a number of good practices for improving the efficiency and reliability of the computed free-energy differences are proposed. PMID:25247823
Discrete Data Transfer Technique for Fluid-Structure Interaction
NASA Technical Reports Server (NTRS)
Samareh, Jamshid A.
2007-01-01
This paper presents a general three-dimensional algorithm for data transfer between dissimilar meshes. The algorithm is suitable for applications of fluid-structure interaction and other high-fidelity multidisciplinary analysis and optimization. Because the algorithm is independent of the mesh topology, we can treat structured and unstructured meshes in the same manner. The algorithm is fast and accurate for transfer of scalar or vector fields between dissimilar surface meshes. The algorithm is also applicable for the integration of a scalar field (e.g., coefficients of pressure) on one mesh and injection of the resulting vectors (e.g., force vectors) onto another mesh. The author has implemented the algorithm in a C++ computer code. This paper contains a complete formulation of the algorithm with a few selected results.
Evaluation of atomic pressure in the multiple time-step integration algorithm.
Andoh, Yoshimichi; Yoshii, Noriyuki; Yamada, Atsushi; Okazaki, Susumu
2017-04-15
In molecular dynamics (MD) calculations, reduction in calculation time per MD loop is essential. A multiple time-step (MTS) integration algorithm, the RESPA (Tuckerman and Berne, J. Chem. Phys. 1992, 97, 1990-2001), enables reductions in calculation time by decreasing the frequency of time-consuming long-range interaction calculations. However, the RESPA MTS algorithm involves uncertainties in evaluating the atomic interaction-based pressure (i.e., atomic pressure) of systems with and without holonomic constraints. It is not clear which intermediate forces and constraint forces in the MTS integration procedure should be used to calculate the atomic pressure. In this article, we propose a series of equations to evaluate the atomic pressure in the RESPA MTS integration procedure on the basis of its equivalence to the Velocity-Verlet integration procedure with a single time step (STS). The equations guarantee time-reversibility even for the system with holonomic constrants. Furthermore, we generalize the equations to both (i) arbitrary number of inner time steps and (ii) arbitrary number of force components (RESPA levels). The atomic pressure calculated by our equations with the MTS integration shows excellent agreement with the reference value with the STS, whereas pressures calculated using the conventional ad hoc equations deviated from it. Our equations can be extended straightforwardly to the MTS integration algorithm for the isothermal NVT and isothermal-isobaric NPT ensembles. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
NASA Technical Reports Server (NTRS)
Guglielmo, David; Omar, Sanny R.; Bevilacqua, Riccardo
2017-01-01
The increasing number of CubeSats being launched has raised concerns about orbital debris since most of these satellites have no means of active orbit control. Some technologies exist to increase the surface area of a CubeSat and expedite de-orbit due to aerodynamic drag in low Earth orbit, but most of these devices cannot be retracted and hence cannot be used for orbital maneuvering. This paper discusses the De-Orbit Drag Device (D3) module that is capable of de-orbiting a 12U, 15kg CubeSat from a 700 km circular orbit in under 25 years and can be deployed and retracted to modulate the aerodynamic drag force experienced by the satellite. This facilitates orbital maneuvering using aerodynamic drag and the active targeting of a de-orbit location. In addition, the geometry of this drag device provides 3-axis attitude stabilization of the host CubeSat using aerodynamic and gravity gradient torques which is useful for many missions and provides a predictable aerodynamic profile for use in orbital maneuvering algorithms.
EVALUATION OF THE AGDISP AERIAL SPRAY ALGORITHMS IN THE AGDRIFT MODEL
A systematic evaluation of the AgDISP algorithms, which simulate off-site drift and deposition of aerially applied pesticides, contained in the AgDRIFT model was performed by comparing model simulations to field-trial data collected by the Spray Drift Task Force. Field-trial data...
Simple Common Plane contact detection algorithm for FE/FD methods
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vorobiev, O
2006-07-19
Common-plane (CP) algorithm is widely used in Discrete Element Method (DEM) to model contact forces between interacting particles or blocks. A new simple contact detection algorithm is proposed to model contacts in FE/FD methods which is similar to the CP algorithm. The CP is defined as a plane separating interacting faces of FE/FD mesh instead of blocks or particles in the original CP method. The method does not require iterations. It is very robust and easy to implement both in 2D and 3D case.
Design and initial validation of a wireless control system based on WSN
NASA Astrophysics Data System (ADS)
Yu, Yan; Li, Luyu; Li, Peng; Wang, Xu; Liu, Hang; Ou, Jinping
2013-04-01
At present, cantilever structure used widely in civil structures will generate continuous vibration by external force due to their low damping characteristic, which leads to a serious impact on the working performance and service time. Therefore, it is very important to control the vibration of these structures. The active vibration control is the primary means of controlling the vibration with high precision and strong adaptive ability. Nowadays, there are many researches using piezoelectric materials in the structural vibration control. Piezoelectric materials are cheap, reliable and they can provide braking and sensing method harmless to the structure, therefore they have broad usage. They are used for structural vibration control in a lot of civil engineering research currently. In traditional sensor applications, information exchanges with the monitoring center or a computer system through wires. If wireless sensor networks(WSN) technology is used, cabling links is not needed, thus the cost of the whole system is greatly reduced. Based on the above advantages, a wireless control system is designed and validated through preliminary tests. The system consists of a cantilever, PVDF as sensor, signal conditioning circuit(SCM), A/D acquisition board, control arithmetic unit, D/A output board, power amplifier, piezoelectric bimorph as actuator. DSP chip is used as the control arithmetic unit and PD control algorithm is embedded in it. PVDF collects the parameters of vibration, sends them to the SCM after A/D conversion. SCM passes the data to the DSP through wireless technology, and DSP calculates and outputs the control values according to the control algorithm. The output signal is amplified by the power amplifier to drive the piezoelectric bimorph for vibration control. The structural vibration duration reduces to 1/4 of the uncontrolled case, which verifies the feasibility of the system.
Supervisory autonomous local-remote control system design: Near-term and far-term applications
NASA Technical Reports Server (NTRS)
Zimmerman, Wayne; Backes, Paul
1993-01-01
The JPL Supervisory Telerobotics Laboratory (STELER) has developed a unique local-remote robot control architecture which enables management of intermittent bus latencies and communication delays such as those expected for ground-remote operation of Space Station robotic systems via the TDRSS communication platform. At the local site, the operator updates the work site world model using stereo video feedback and a model overlay/fitting algorithm which outputs the location and orientation of the object in free space. That information is relayed to the robot User Macro Interface (UMI) to enable programming of the robot control macros. The operator can then employ either manual teleoperation, shared control, or supervised autonomous control to manipulate the object under any degree of time-delay. The remote site performs the closed loop force/torque control, task monitoring, and reflex action. This paper describes the STELER local-remote robot control system, and further describes the near-term planned Space Station applications, along with potential far-term applications such as telescience, autonomous docking, and Lunar/Mars rovers.
Digital adaptive control of a VTOL aircraft
NASA Technical Reports Server (NTRS)
Reid, G. F.
1976-01-01
A technique has been developed for calculating feedback and feedforward gain matrices that stabilize a VTOL aircraft while enabling it to track input commands of forward and vertical velocity. Leverrier's algorithm is used in a procedure for determining a set of state variable, feedback gains that force the closed loop poles and zeroes of one pilot input transfer function to be at preselected positions in the s plane. This set of feedback gains is then used to calculate the feedback and feedforward gains for the velocity command controller. The method is computationally attractive since the gains are determined by solving systems of linear, simultaneous equations. Responses obtained using a digital simulation of the longitudinal dynamics of the CH-47 helicopter are presented.
Martelli, Saulo; Calvetti, Daniela; Somersalo, Erkki; Viceconti, Marco; Taddei, Fulvia
2013-08-09
Comparing the available electromyography (EMG) and the related uncertainties with the space of muscle forces potentially driving the same motion can provide insights into understanding human motion in healthy and pathological neuromotor conditions. However, it is not clear how effective the available computational tools are in completely sample the possible muscle forces. In this study, we compared the effectiveness of Metabolica and the Null-Space algorithm at generating a comprehensive spectrum of possible muscle forces for a representative motion frame. The hip force peak during a selected walking trial was identified using a lower-limb musculoskeletal model. The joint moments, the muscle lever arms, and the muscle force constraints extracted from the model constituted the indeterminate equilibrium equation at the joints. Two spectra, each containing 200,000 muscle force samples, were calculated using Metabolica and the Null-Space algorithm. The full hip force range was calculated using optimization and compared with the hip force ranges derived from the Metabolica and the Null-Space spectra. The Metabolica spectrum spanned a much larger force range than the NS spectrum, reaching 811N difference for the gluteus maximus intermediate bundle. The Metabolica hip force range exhibited a 0.3-0.4 BW error on the upper and lower boundaries of the full hip force range (3.4-11.3 BW), whereas the full range was imposed in the NS spectrum. The results suggest that Metabolica is well suited for exhaustively sample the spectrum of possible muscle recruitment strategy. Future studies will investigate the muscle force range in healthy and pathological neuromotor conditions. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Wang, Y. M.; Xu, W. C.; Wu, S. Q.; Chai, C. W.; Liu, X.; Wang, S. H.
2018-03-01
The torsional oscillation is the dominant vibration form for the impression cylinder of printing machine (printing cylinder for short), directly restricting the printing speed up and reducing the quality of the prints. In order to reduce torsional vibration, the active control method for the printing cylinder is obtained. Taking the excitation force and moment from the cylinder gap and gripper teeth open & closing cam mechanism as variable parameters, authors establish the dynamic mathematical model of torsional vibration for the printing cylinder. The torsional active control method is based on Particle Swarm Optimization(PSO) algorithm to optimize input parameters for the serve motor. Furthermore, the input torque of the printing cylinder is optimized, and then compared with the numerical simulation results. The conclusions are that torsional vibration active control based on PSO is an availability method to the torsional vibration of printing cylinder.
The Parallel Implementation of Algorithms for Finding the Reflection Symmetry of the Binary Images
NASA Astrophysics Data System (ADS)
Fedotova, S.; Seredin, O.; Kushnir, O.
2017-05-01
In this paper, we investigate the exact method of searching an axis of binary image symmetry, based on brute-force search among all potential symmetry axes. As a measure of symmetry, we use the set-theoretic Jaccard similarity applied to two subsets of pixels of the image which is divided by some axis. Brute-force search algorithm definitely finds the axis of approximate symmetry which could be considered as ground-truth, but it requires quite a lot of time to process each image. As a first step of our contribution we develop the parallel version of the brute-force algorithm. It allows us to process large image databases and obtain the desired axis of approximate symmetry for each shape in database. Experimental studies implemented on "Butterflies" and "Flavia" datasets have shown that the proposed algorithm takes several minutes per image to find a symmetry axis. However, in case of real-world applications we need computational efficiency which allows solving the task of symmetry axis search in real or quasi-real time. So, for the task of fast shape symmetry calculation on the common multicore PC we elaborated another parallel program, which based on the procedure suggested before in (Fedotova, 2016). That method takes as an initial axis the axis obtained by superfast comparison of two skeleton primitive sub-chains. This process takes about 0.5 sec on the common PC, it is considerably faster than any of the optimized brute-force methods including ones implemented in supercomputer. In our experiments for 70 percent of cases the found axis coincides with the ground-truth one absolutely, and for the rest of cases it is very close to the ground-truth.
Sensor Data Quality and Angular Rate Down-Selection Algorithms on SLS EM-1
NASA Technical Reports Server (NTRS)
Park, Thomas; Smith, Austin; Oliver, T. Emerson
2018-01-01
The NASA Space Launch System Block 1 launch vehicle is equipped with an Inertial Navigation System (INS) and multiple Rate Gyro Assemblies (RGA) that are used in the Guidance, Navigation, and Control (GN&C) algorithms. The INS provides the inertial position, velocity, and attitude of the vehicle along with both angular rate and specific force measurements. Additionally, multiple sets of co-located rate gyros supply angular rate data. The collection of angular rate data, taken along the launch vehicle, is used to separate out vehicle motion from flexible body dynamics. Since the system architecture uses redundant sensors, the capability was developed to evaluate the health (or validity) of the independent measurements. A suite of Sensor Data Quality (SDQ) algorithms is responsible for assessing the angular rate data from the redundant sensors. When failures are detected, SDQ will take the appropriate action and disqualify or remove faulted sensors from forward processing. Additionally, the SDQ algorithms contain logic for down-selecting the angular rate data used by the GNC software from the set of healthy measurements. This paper explores the trades and analyses that were performed in selecting a set of robust fault-detection algorithms included in the GN&C flight software. These trades included both an assessment of hardware-provided health and status data as well as an evaluation of different algorithms based on time-to-detection, type of failures detected, and probability of detecting false positives. We then provide an overview of the algorithms used for both fault-detection and measurement down selection. We next discuss the role of trajectory design, flexible-body models, and vehicle response to off-nominal conditions in setting the detection thresholds. Lastly, we present lessons learned from software integration and hardware-in-the-loop testing.
Optimization of shape control of a cantilever beam using dielectric elastomer actuators
NASA Astrophysics Data System (ADS)
Liu, Chong; Mao, Boyong; Huang, Gangting; Wu, Qichen; Xie, Shilin; Xu, Minglong
2018-05-01
Dielectric elastomer (DE) is a kind of smart soft material that has many advantages such as large deformation, fast response, lightweight and easy synthesis. These features make dielectric elastomer a suitable material for actuators. This article focuses on the shape control of a cantilever beam by using dielectric elastomer actuators. The shape control equation in finite element formulation of the cantilever beam partially covered with dielectric elastomer actuators is derived based on the constitutive equation of dielectric elastomer material by using Hamilton principle. The actuating forces produced by dielectric elastomer actuators depend on the number of layers, the position and the actuation voltage of dielectric elastomer actuators. First, effects of these factors on the shape control accuracy when one pair or multiple pairs of actuators are employed are simulated, respectively. The simulation results demonstrate that increasing the number of actuators or the number of layers can improve the control effect and reduce the actuation voltages effectively. Second, to achieve the optimal shape control effect, the position of the actuators and the drive voltages are all determined using a genetic algorithm. The robustness of the genetic algorithm is analyzed. Moreover, the implications of using one pair and multiple pairs of actuators to drive the cantilever beam to the expected shape are investigated. The results demonstrate that a small number of actuators with optimal placement and optimal voltage values can achieve the shape control of the beam effectively. Finally, a preliminary experimental verification of the control effect is carried out, which shows the correctness of the theoretical method.
A study of helicopter gust response alleviation by automatic control
NASA Technical Reports Server (NTRS)
Saito, S.
1983-01-01
Two control schemes designed to alleviate gust-induced vibration are analytically investigated for a helicopter with four articulated blades. One is an individual blade pitch control scheme. The other is an adaptive blade pitch control algorithm based on linear optimal control theory. In both controllers, control inputs to alleviate gust response are superimposed on the conventional control inputs required to maintain the trim condition. A sinusoidal vertical gust model and a step gust model are used. The individual blade pitch control, in this research, is composed of sensors and a pitch control actuator for each blade. Each sensor can detect flapwise (or lead-lag or torsionwise) deflection of the respective blade. The acturator controls the blade pitch angle for gust alleviation. Theoretical calculations to predict the performance of this feedback system have been conducted by means of the harmonic method. The adaptive blade pitch control system is composed of a set of measurements (oscillatory hub forces and moments), an identification system using a Kalman filter, and a control system based on the minimization of the quadratic performance function.
An Object-Oriented Collection of Minimum Degree Algorithms: Design, Implementation, and Experiences
NASA Technical Reports Server (NTRS)
Kumfert, Gary; Pothen, Alex
1999-01-01
The multiple minimum degree (MMD) algorithm and its variants have enjoyed 20+ years of research and progress in generating fill-reducing orderings for sparse, symmetric positive definite matrices. Although conceptually simple, efficient implementations of these algorithms are deceptively complex and highly specialized. In this case study, we present an object-oriented library that implements several recent minimum degree-like algorithms. We discuss how object-oriented design forces us to decompose these algorithms in a different manner than earlier codes and demonstrate how this impacts the flexibility and efficiency of our C++ implementation. We compare the performance of our code against other implementations in C or Fortran.
Multi-Rate Digital Control Systems with Simulation Applications. Volume II. Computer Algorithms
1980-09-01
OREWORD The research described in this report was performed by Systems Technology, Inc., Hawthorne, California, under Air Force Contract F33615-79-C-3601...zero to plus infinity . - K ST(t) = 6(t) + 5(t - T) + 6(t - 2T) + .... J 6(t - kT) (4) k=O The Laplace transform of 6 T(t) is given in closed form as...The definition of the z-transform stems from the infinite summation cT(t) = • c( kfc ) 6(t - kT) k = 0, 1, 2, ... (16) k=0 where cT(t), the sampled
Multivariable optimization of liquid rocket engines using particle swarm algorithms
NASA Astrophysics Data System (ADS)
Jones, Daniel Ray
Liquid rocket engines are highly reliable, controllable, and efficient compared to other conventional forms of rocket propulsion. As such, they have seen wide use in the space industry and have become the standard propulsion system for launch vehicles, orbit insertion, and orbital maneuvering. Though these systems are well understood, historical optimization techniques are often inadequate due to the highly non-linear nature of the engine performance problem. In this thesis, a Particle Swarm Optimization (PSO) variant was applied to maximize the specific impulse of a finite-area combustion chamber (FAC) equilibrium flow rocket performance model by controlling the engine's oxidizer-to-fuel ratio and de Laval nozzle expansion and contraction ratios. In addition to the PSO-controlled parameters, engine performance was calculated based on propellant chemistry, combustion chamber pressure, and ambient pressure, which are provided as inputs to the program. The performance code was validated by comparison with NASA's Chemical Equilibrium with Applications (CEA) and the commercially available Rocket Propulsion Analysis (RPA) tool. Similarly, the PSO algorithm was validated by comparison with brute-force optimization, which calculates all possible solutions and subsequently determines which is the optimum. Particle Swarm Optimization was shown to be an effective optimizer capable of quick and reliable convergence for complex functions of multiple non-linear variables.
Reflexive obstacle avoidance for kinematically-redundant manipulators
NASA Technical Reports Server (NTRS)
Karlen, James P.; Thompson, Jack M., Jr.; Farrell, James D.; Vold, Havard I.
1989-01-01
Dexterous telerobots incorporating 17 or more degrees of freedom operating under coordinated, sensor-driven computer control will play important roles in future space operations. They will also be used on Earth in assignments like fire fighting, construction and battlefield support. A real time, reflexive obstacle avoidance system, seen as a functional requirement for such massively redundant manipulators, was developed using arm-mounted proximity sensors to control manipulator pose. The project involved a review and analysis of alternative proximity sensor technologies for space applications, the development of a general-purpose algorithm for synthesizing sensor inputs, and the implementation of a prototypical system for demonstration and testing. A 7 degree of freedom Robotics Research K-2107HR manipulator was outfitted with ultrasonic proximity sensors as a testbed, and Robotics Research's standard redundant motion control algorithm was modified such that an object detected by sensor arrays located at the elbow effectively applies a force to the manipulator elbow, normal to the axis. The arm is repelled by objects detected by the sensors, causing the robot to steer around objects in the workspace automatically while continuing to move its tool along the commanded path without interruption. The mathematical approach formulated for synthesizing sensor inputs can be employed for redundant robots of any kinematic configuration.
Self-propulsion of a body with rigid surface and variable coefficient of lift in a perfect fluid
NASA Astrophysics Data System (ADS)
Ramodanov, Sergey M.; Tenenev, Valentin A.; Treschev, Dmitry V.
2012-11-01
We study the system of a 2D rigid body moving in an unbounded volume of incompressible, vortex-free perfect fluid which is at rest at infinity. The body is equipped with a gyrostat and a so-called Flettner rotor. Due to the latter the body is subject to a lifting force (Magnus effect). The rotational velocities of the gyrostat and the rotor are assumed to be known functions of time (control inputs). The equations of motion are presented in the form of the Kirchhoff equations. The integrals of motion are given in the case of piecewise continuous control. Using these integrals we obtain a (reduced) system of first-order differential equations on the configuration space. Then an optimal control problem for several types of the inputs is solved using genetic algorithms.
The GOCE end-to-end system simulator
NASA Astrophysics Data System (ADS)
Catastini, G.; Cesare, S.; de Sanctis, S.; Detoma, E.; Dumontel, M.; Floberghagen, R.; Parisch, M.; Sechi, G.; Anselmi, A.
2003-04-01
The idea of an end-to-end simulator was conceived in the early stages of the GOCE programme, as an essential tool for assessing the satellite system performance, that cannot be fully tested on the ground. The simulator in its present form is under development at Alenia Spazio for ESA since the beginning of Phase B and is being used for checking the consistency of the spacecraft and of the payload specifications with the overall system requirements, supporting trade-off, sensitivity and worst-case analyses, and preparing and testing the on-ground and in-flight calibration concepts. The software simulates the GOCE flight along an orbit resulting from the application of Earth's gravity field, non-conservative environmental disturbances (atmospheric drag, coupling with Earth's magnetic field, etc.) and control forces/torques. The drag free control forces as well as the attitude control torques are generated by the current design of the dedicated algorithms. Realistic sensor models (star tracker, GPS receiver and gravity gradiometer) feed the control algorithms and the commanded forces are applied through realistic thruster models. The output of this stage of the simulator is a time series of Level-0 data, namely the gradiometer raw measurements and spacecraft ancillary data. The next stage of the simulator transforms Level-0 data into Level-1b (gravity gradient tensor) data, by implementing the following steps: - transformation of raw measurements of each pair of accelerometers into common and differential accelerations - calibration of the common and differential accelerations - application of the post-facto algorithm to rectify the phase of the accelerations and to estimate the GOCE angular velocity and attitude - computation of the Level-1b gravity gradient tensor from calibrated accelerations and estimated angular velocity in different reference frames (orbital, inertial, earth-fixed); computation of the spectral density of the error of the tensor diagonal components (measured gravity gradient minus input gravity gradient) in order to verify the requirement on the error of gravity gradient of 4 mE/sqrt(Hz) within the gradiometer measurement bandwidth (5 to 100 mHz); computation of the spectral density of the tensor trace in order to verify the requirement of 4 sqrt(3) mE/sqrt(Hz) within the measurement bandwidth - processing of GPS observations for orbit reconstruction within the required 10m accuracy and for gradiometer measurement geolocation. The current version of the end-to-end simulator, essentially focusing on the gradiometer payload, is undergoing detailed testing based on a time span of 10 days of simulated flight. This testing phase, ending in January 2003, will verify the current implementation and conclude the assessment of numerical stability and precision. Following that, the exercise will be repeated on a longer-duration simulated flight and the lesson learnt so far will be exploited to further improve the simulator's fidelity. The paper will describe the simulator's current status and will illustrate its capabilities for supporting the assessment of the quality of the scientific products resulting from the current spacecraft and payload design.
Exoskeleton master controller with force-reflecting telepresence
NASA Technical Reports Server (NTRS)
Burke, James B.; Bartholet, Stephen J.; Nelson, David K.
1992-01-01
A thorough understanding of the requirements for successful master-slave robotic systems is becoming increasingly desirable. Such systems can aid in the accomplishment of tasks that are hazardous or inaccessible to humans. Although a history of use has proven master-slave systems to be viable, system requirements and the impact of specifications on the human factors side of system performance are not well known. In support of the next phase of teleoperation research being conducted at the Armstrong Research Laboratory, a force-reflecting, seven degree of freedom exoskeleton for master-slave teleoperation has been concepted, and is presently being developed. The exoskeleton has a unique kinematic structure that complements the structure of the human arm. It provides a natural means for teleoperating a dexterous, possibly redundant manipulator. It allows ease of use without operator fatigue and faithfully follows human arm and wrist motions. Reflected forces and moments are remotely transmitted to the operator hand grip using a cable transmission scheme. This paper presents the exoskeleton concept and development results to date. Conceptual design, hardware, algorithms, computer architecture, and software are covered.
Active vertical tail buffeting suppression based on macro fiber composites
NASA Astrophysics Data System (ADS)
Zou, Chengzhe; Li, Bin; Liang, Li; Wang, Wei
2016-04-01
Aerodynamic buffet is unsteady airflow exerting forces onto a surface, which can lead to premature fatigue damage of aircraft vertical tail structures, especially for aircrafts with twin vertical tails at high angles of attack. In this work, Macro Fiber Composite (MFC), which can provide strain actuation, was used as the actuator for the buffet-induced vibration control, and the positioning of the MFC patches was led by the strain energy distribution on the vertical tail. Positive Position Feedback (PPF) control algorithm has been widely used for its robustness and simplicity in practice, and consequently it was developed to suppress the buffet responses of first bending and torsional mode of vertical tail. However, its performance is usually attenuated by the phase contributions from non-collocated sensor/actuator configuration and plants. The phase lag between the input and output signals of the control system was identified experimentally, and the phase compensation was considered in the PPF control algorithm. The simulation results of the amplitude frequency of the closed-loop system showed that the buffet response was alleviated notably around the concerned bandwidth. Then the wind tunnel experiment was conducted to verify the effectiveness of MFC actuators and compensated PPF, and the Root Mean Square (RMS) of the acceleration response was reduced 43.4%, 28.4% and 39.5%, respectively, under three different buffeting conditions.
Multicore and GPU algorithms for Nussinov RNA folding
2014-01-01
Background One segment of a RNA sequence might be paired with another segment of the same RNA sequence due to the force of hydrogen bonds. This two-dimensional structure is called the RNA sequence's secondary structure. Several algorithms have been proposed to predict an RNA sequence's secondary structure. These algorithms are referred to as RNA folding algorithms. Results We develop cache efficient, multicore, and GPU algorithms for RNA folding using Nussinov's algorithm. Conclusions Our cache efficient algorithm provides a speedup between 1.6 and 3.0 relative to a naive straightforward single core code. The multicore version of the cache efficient single core algorithm provides a speedup, relative to the naive single core algorithm, between 7.5 and 14.0 on a 6 core hyperthreaded CPU. Our GPU algorithm for the NVIDIA C2050 is up to 1582 times as fast as the naive single core algorithm and between 5.1 and 11.2 times as fast as the fastest previously known GPU algorithm for Nussinov RNA folding. PMID:25082539
Performance analysis of a dual-tree algorithm for computing spatial distance histograms
Chen, Shaoping; Tu, Yi-Cheng; Xia, Yuni
2011-01-01
Many scientific and engineering fields produce large volume of spatiotemporal data. The storage, retrieval, and analysis of such data impose great challenges to database systems design. Analysis of scientific spatiotemporal data often involves computing functions of all point-to-point interactions. One such analytics, the Spatial Distance Histogram (SDH), is of vital importance to scientific discovery. Recently, algorithms for efficient SDH processing in large-scale scientific databases have been proposed. These algorithms adopt a recursive tree-traversing strategy to process point-to-point distances in the visited tree nodes in batches, thus require less time when compared to the brute-force approach where all pairwise distances have to be computed. Despite the promising experimental results, the complexity of such algorithms has not been thoroughly studied. In this paper, we present an analysis of such algorithms based on a geometric modeling approach. The main technique is to transform the analysis of point counts into a problem of quantifying the area of regions where pairwise distances can be processed in batches by the algorithm. From the analysis, we conclude that the number of pairwise distances that are left to be processed decreases exponentially with more levels of the tree visited. This leads to the proof of a time complexity lower than the quadratic time needed for a brute-force algorithm and builds the foundation for a constant-time approximate algorithm. Our model is also general in that it works for a wide range of point spatial distributions, histogram types, and space-partitioning options in building the tree. PMID:21804753
GRID: a high-resolution protein structure refinement algorithm.
Chitsaz, Mohsen; Mayo, Stephen L
2013-03-05
The energy-based refinement of protein structures generated by fold prediction algorithms to atomic-level accuracy remains a major challenge in structural biology. Energy-based refinement is mainly dependent on two components: (1) sufficiently accurate force fields, and (2) efficient conformational space search algorithms. Focusing on the latter, we developed a high-resolution refinement algorithm called GRID. It takes a three-dimensional protein structure as input and, using an all-atom force field, attempts to improve the energy of the structure by systematically perturbing backbone dihedrals and side-chain rotamer conformations. We compare GRID to Backrub, a stochastic algorithm that has been shown to predict a significant fraction of the conformational changes that occur with point mutations. We applied GRID and Backrub to 10 high-resolution (≤ 2.8 Å) crystal structures from the Protein Data Bank and measured the energy improvements obtained and the computation times required to achieve them. GRID resulted in energy improvements that were significantly better than those attained by Backrub while expending about the same amount of computational resources. GRID resulted in relaxed structures that had slightly higher backbone RMSDs compared to Backrub relative to the starting crystal structures. The average RMSD was 0.25 ± 0.02 Å for GRID versus 0.14 ± 0.04 Å for Backrub. These relatively minor deviations indicate that both algorithms generate structures that retain their original topologies, as expected given the nature of the algorithms. Copyright © 2012 Wiley Periodicals, Inc.
Decomposition of superimposed ground reaction forces into left and right force profiles
NASA Technical Reports Server (NTRS)
Davis, B. L.; Cavanagh, P. R.
1993-01-01
The process of collecting ground reaction force data by mounting a forceplate beneath a treadmill belt has the advantage that numerous walking trials can be analyzed without the problem of subjects 'targeting' their footsteps. However, a potential problem is that the measured forces represent a summation of bilateral force profiles during the double support phase of walking. To address this issue, an algorithm is described for decomposing superimposed ground reaction force data into individual left and right profiles. It is based on an examination of the side-to-side oscillations of the measured center of pressure (CoP). Whenever the measured CoP exceeds a certain threshold, it is assumed that the person is being supported by a single limb, and the measured GRF data reflect the forces under that limb. Conversely, when the measured CoP indicates that both feet are on the treadmill, it is assumed that the location of the individual CoP under each foot is given by wL2 and wR2. These quantities reflect the greatest excursion of the measured CoP towards the left and right sides of the forceplate, respectively. With this assumption, individual GRF profiles can be calculated by means of solving two simultaneous equations--one describing the equilibrium of forces in the vertical direction, and one describing the equilibrium of moments about an antero-posterior axis of the forceplate. The algorithm describing this procedure is simple enough to be implemented on a spreadsheet and yields estimates for average force, impulse, peak force and stance time that are typically within 3% of the true values.
NASA Astrophysics Data System (ADS)
Zhang, X.; Huang, X. L.; Lu, H. Q.
2017-02-01
In this study, a quasi-finite-time control method for designing stabilising control laws is developed for high-order strict-feedback nonlinear systems with mismatched disturbances. By using mapping filtered forwarding technique, a virtual control is designed to force the off-the-manifold coordinate to converge to zero in quasi-finite time at each step of the design; at the same time, the manifold is rendered insensitive to time-varying, bounded and unknown disturbances. In terms of standard forwarding methodology, the algorithm proposed here not only does not require the Lyapunov function for controller design, but also avoids to calculate the derivative of sign function. As far as the dynamic performance of closed-loop systems is concerned, we essentially obtain the finite-time performances, which is typically reflected in the following aspects: fast and accurate responses, high tracking precision, and robust disturbance rejection. Spring, mass, and damper system and flexible joints robot are tested to demonstrate the proposed controller performance.
Automatic Clustering Using FSDE-Forced Strategy Differential Evolution
NASA Astrophysics Data System (ADS)
Yasid, A.
2018-01-01
Clustering analysis is important in datamining for unsupervised data, cause no adequate prior knowledge. One of the important tasks is defining the number of clusters without user involvement that is known as automatic clustering. This study intends on acquiring cluster number automatically utilizing forced strategy differential evolution (AC-FSDE). Two mutation parameters, namely: constant parameter and variable parameter are employed to boost differential evolution performance. Four well-known benchmark datasets were used to evaluate the algorithm. Moreover, the result is compared with other state of the art automatic clustering methods. The experiment results evidence that AC-FSDE is better or competitive with other existing automatic clustering algorithm.
Zhou, Jianyong; Luo, Zu; Li, Chunquan; Deng, Mi
2018-01-01
When the meshless method is used to establish the mathematical-mechanical model of human soft tissues, it is necessary to define the space occupied by human tissues as the problem domain and the boundary of the domain as the surface of those tissues. Nodes should be distributed in both the problem domain and on the boundaries. Under external force, the displacement of the node is computed by the meshless method to represent the deformation of biological soft tissues. However, computation by the meshless method consumes too much time, which will affect the simulation of real-time deformation of human tissues in virtual surgery. In this article, the Marquardt's Algorithm is proposed to fit the nodal displacement at the problem domain's boundary and obtain the relationship between surface deformation and force. When different external forces are applied, the deformation of soft tissues can be quickly obtained based on this relationship. The analysis and discussion show that the improved model equations with Marquardt's Algorithm not only can simulate the deformation in real-time but also preserve the authenticity of the deformation model's physical properties. Copyright © 2017 Elsevier B.V. All rights reserved.
Danaci, Hasan Fehmi; Cetin-Atalay, Rengul; Atalay, Volkan
2018-03-26
Visualizing large-scale data produced by the high throughput experiments as a biological graph leads to better understanding and analysis. This study describes a customized force-directed layout algorithm, EClerize, for biological graphs that represent pathways in which the nodes are associated with Enzyme Commission (EC) attributes. The nodes with the same EC class numbers are treated as members of the same cluster. Positions of nodes are then determined based on both the biological similarity and the connection structure. EClerize minimizes the intra-cluster distance, that is the distance between the nodes of the same EC cluster and maximizes the inter-cluster distance, that is the distance between two distinct EC clusters. EClerize is tested on a number of biological pathways and the improvement brought in is presented with respect to the original algorithm. EClerize is available as a plug-in to cytoscape ( http://apps.cytoscape.org/apps/eclerize ).
An effective non-rigid registration approach for ultrasound image based on "demons" algorithm.
Liu, Yan; Cheng, H D; Huang, Jianhua; Zhang, Yingtao; Tang, Xianglong; Tian, Jiawei
2013-06-01
Medical image registration is an important component of computer-aided diagnosis system in diagnostics, therapy planning, and guidance of surgery. Because of its low signal/noise ratio (SNR), ultrasound (US) image registration is a difficult task. In this paper, a fully automatic non-rigid image registration algorithm based on demons algorithm is proposed for registration of ultrasound images. In the proposed method, an "inertia force" derived from the local motion trend of pixels in a Moore neighborhood system is produced and integrated into optical flow equation to estimate the demons force, which is helpful to handle the speckle noise and preserve the geometric continuity of US images. In the experiment, a series of US images and several similarity measure metrics are utilized for evaluating the performance. The experimental results demonstrate that the proposed method can register ultrasound images efficiently, robust to noise, quickly and automatically.
A Survey of Distributed Optimization and Control Algorithms for Electric Power Systems
Molzahn, Daniel K.; Dorfler, Florian K.; Sandberg, Henrik; ...
2017-07-25
Historically, centrally computed algorithms have been the primary means of power system optimization and control. With increasing penetrations of distributed energy resources requiring optimization and control of power systems with many controllable devices, distributed algorithms have been the subject of significant research interest. Here, this paper surveys the literature of distributed algorithms with applications to optimization and control of power systems. In particular, this paper reviews distributed algorithms for offline solution of optimal power flow (OPF) problems as well as online algorithms for real-time solution of OPF, optimal frequency control, optimal voltage control, and optimal wide-area control problems.
A Survey of Distributed Optimization and Control Algorithms for Electric Power Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Molzahn, Daniel K.; Dorfler, Florian K.; Sandberg, Henrik
Historically, centrally computed algorithms have been the primary means of power system optimization and control. With increasing penetrations of distributed energy resources requiring optimization and control of power systems with many controllable devices, distributed algorithms have been the subject of significant research interest. Here, this paper surveys the literature of distributed algorithms with applications to optimization and control of power systems. In particular, this paper reviews distributed algorithms for offline solution of optimal power flow (OPF) problems as well as online algorithms for real-time solution of OPF, optimal frequency control, optimal voltage control, and optimal wide-area control problems.
On-line Robot Adaptation to Environmental Change
2005-08-01
by the Department of the Interior under contract no. NBCH1040007, the US Army under contract no. DABT639910013, the US Air Force Research Laboratory...Probable Series Predictor algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . 97 5.2 Accuracy of PSC in various test classification tasks...105 6.1 Probable Series Predictor algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . 123 6.2 Accuracy of PSC in
Fixing convergence of Gaussian belief propagation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, Jason K; Bickson, Danny; Dolev, Danny
Gaussian belief propagation (GaBP) is an iterative message-passing algorithm for inference in Gaussian graphical models. It is known that when GaBP converges it converges to the correct MAP estimate of the Gaussian random vector and simple sufficient conditions for its convergence have been established. In this paper we develop a double-loop algorithm for forcing convergence of GaBP. Our method computes the correct MAP estimate even in cases where standard GaBP would not have converged. We further extend this construction to compute least-squares solutions of over-constrained linear systems. We believe that our construction has numerous applications, since the GaBP algorithm ismore » linked to solution of linear systems of equations, which is a fundamental problem in computer science and engineering. As a case study, we discuss the linear detection problem. We show that using our new construction, we are able to force convergence of Montanari's linear detection algorithm, in cases where it would originally fail. As a consequence, we are able to increase significantly the number of users that can transmit concurrently.« less
NASA Astrophysics Data System (ADS)
Xiang, Suyun; Wang, Wei; Xiang, Bingren; Deng, Haishan; Xie, Shaofei
2007-05-01
The periodic modulation-based stochastic resonance algorithm (PSRA) was used to amplify and detect the weak liquid chromatography-mass spectrometry (LC-MS) signal of granisetron in plasma. In the algorithm, the stochastic resonance (SR) was achieved by introducing an external periodic force to the nonlinear system. The optimization of parameters was carried out in two steps to give attention to both the signal-to-noise ratio (S/N) and the peak shape of output signal. By applying PSRA with the optimized parameters, the signal-to-noise ratio of LC-MS peak was enhanced significantly and distorted peak shape that often appeared in the traditional stochastic resonance algorithm was corrected by the added periodic force. Using the signals enhanced by PSRA, this method extended the limit of detection (LOD) and limit of quantification (LOQ) of granisetron in plasma from 0.05 and 0.2 ng/mL, respectively, to 0.01 and 0.02 ng/mL, and exhibited good linearity, accuracy and precision, which ensure accurate determination of the target analyte.
Algorithms for Zonal Methods and Development of Three Dimensional Mesh Generation Procedures.
1984-02-01
a r-re complete set of equations is used, but their effect is imposed by means of a right hand side forcing function, not by means of a zonal boundary...modifications of flow-simulation algorithms The explicit finite-difference code of Magnus and are discussed. Computational tests in two dimensions...used to simplify the task of grid generation without an adverse achieve computational efficiency. More recently, effect on flow-field algorithms and
Simultaneous Estimation of Electromechanical Modes and Forced Oscillations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Follum, Jim; Pierre, John W.; Martin, Russell
Over the past several years, great strides have been made in the effort to monitor the small-signal stability of power systems. These efforts focus on estimating electromechanical modes, which are a property of the system that dictate how generators in different parts of the system exchange energy. Though the algorithms designed for this task are powerful and important for reliable operation of the power system, they are susceptible to severe bias when forced oscillations are present in the system. Forced oscillations are fundamentally different from electromechanical oscillations in that they are the result of a rogue input to the system,more » rather than a property of the system itself. To address the presence of forced oscillations, the frequently used AutoRegressive Moving Average (ARMA) model is adapted to include sinusoidal inputs, resulting in the AutoRegressive Moving Average plus Sinusoid (ARMA+S) model. From this model, a new Two-Stage Least Squares algorithm is derived to incorporate the forced oscillations, thereby enabling the simultaneous estimation of the electromechanical modes and the amplitude and phase of the forced oscillations. The method is validated using simulated power system data as well as data obtained from the western North American power system (wNAPS) and Eastern Interconnection (EI).« less
A micropatterning and image processing approach to simplify measurement of cellular traction forces
Polio, Samuel R.; Rothenberg, Katheryn E.; Stamenović, Dimitrije; Smith, Michael L.
2012-01-01
Quantification of the traction forces that cells apply to their surroundings has been critical to the advancement of our understanding of cancer, development and basic cell biology. This field was made possible through the development of engineered cell culture systems that permit optical measurement of cell-mediated displacements and computational algorithms that allow conversion of these displacements into stresses and forces. Here, we present a novel advancement of traction force microscopy on polyacrylamide (PAA) gels that addresses limitations of existing technologies. Through an indirect patterning technique, we generated PAA gels with fluorescent 1 μm dot markers in a regularized array. This improves existing traction measurements since (i) multiple fields of view can be measured in one experiment without the need for cell removal; (ii) traction vectors are modeled as discrete point forces, and not as a continuous field, using an extremely simple computational algorithm that we have made available online; and (iii) the pattern transfer technique is amenable to any of the published techniques for producing patterns on glass. In the future, this technique will be used for measuring traction forces on complex patterns with multiple, spatially distinct ligands in systems for applying strain to the substrate, and in sandwich cultures that generate quasi-three-dimensional environments for cells. PMID:21884832
Biswas, Soma; Leitao, Samuel; Theillaud, Quentin; Erickson, Blake W; Fantner, Georg E
2018-06-20
Atomic force microscope (AFM) based single molecule force spectroscopy (SMFS) is a valuable tool in biophysics to investigate the ligand-receptor interactions, cell adhesion and cell mechanics. However, the force spectroscopy data analysis needs to be done carefully to extract the required quantitative parameters correctly. Especially the large number of molecules, commonly involved in complex networks formation; leads to very complicated force spectroscopy curves. One therefore, generally characterizes the total dissipated energy over a whole pulling cycle, as it is difficult to decompose the complex force curves into individual single molecule events. However, calculating the energy dissipation directly from the transformed force spectroscopy curves can lead to a significant over-estimation of the dissipated energy during a pulling experiment. The over-estimation of dissipated energy arises from the finite stiffness of the cantilever used for AFM based SMFS. Although this error can be significant, it is generally not compensated for. This can lead to significant misinterpretation of the energy dissipation (up to the order of 30%). In this paper, we show how in complex SMFS the excess dissipated energy caused by the stiffness of the cantilever can be identified and corrected using a high throughput algorithm. This algorithm is then applied to experimental results from molecular networks and cell-adhesion measurements to quantify the improvement in the estimation of the total energy dissipation.
A Robustly Stabilizing Model Predictive Control Algorithm
NASA Technical Reports Server (NTRS)
Ackmece, A. Behcet; Carson, John M., III
2007-01-01
A model predictive control (MPC) algorithm that differs from prior MPC algorithms has been developed for controlling an uncertain nonlinear system. This algorithm guarantees the resolvability of an associated finite-horizon optimal-control problem in a receding-horizon implementation.
Human-simulated intelligent control of train braking response of bridge with MRB
NASA Astrophysics Data System (ADS)
Li, Rui; Zhou, Hongli; Wu, Yueyuan; Wang, Xiaojie
2016-04-01
The urgent train braking could bring structural response menace to the bridge under passive control. Based on the analysis of breaking dynamics of a train-bridge vibration system, a magnetorheological elastomeric bearing (MRB) whose mechanical parameters are adjustable is designed, tested and modeled. A finite element method (FEM) is carried out to model and optimize a full scale vibration isolation system for railway bridge based on MRB. According to the model above, we also consider the effect of different braking stop positions on the vibration isolation system and classify the bridge longitudinal vibration characteristics into several cases. Because the train-bridge vibration isolation system has multiple vibration states and strongly coupling with nonlinear characteristics, a human-simulated intelligent control (HSIC) algorithm for isolating the bridge vibration under the impact of train braking is proposed, in which the peak shear force of pier top, the displacement of beam and the acceleration of beam are chosen as control goals. The simulation of longitudinal vibration control system under the condition of train braking is achieved by MATLAB. The results indicate that different braking stop positions significantly affect the vibration isolation system and the structural response is the most drastic when the train stops at the third cross-span. With the proposed HSIC smart isolation system, the displacement of bridge beam and peak shear force of pier top is reduced by 53.8% and 34.4%, respectively. Moreover, the acceleration of bridge beam is effectively controlled within limited range.
Parallel computation with the force
NASA Technical Reports Server (NTRS)
Jordan, H. F.
1985-01-01
A methodology, called the force, supports the construction of programs to be executed in parallel by a force of processes. The number of processes in the force is unspecified, but potentially very large. The force idea is embodied in a set of macros which produce multiproceossor FORTRAN code and has been studied on two shared memory multiprocessors of fairly different character. The method has simplified the writing of highly parallel programs within a limited class of parallel algorithms and is being extended to cover a broader class. The individual parallel constructs which comprise the force methodology are discussed. Of central concern are their semantics, implementation on different architectures and performance implications.
NASA Astrophysics Data System (ADS)
Inclan, Eric; Lassester, Jack; Geohegan, David; Yoon, Mina
Optimization algorithms (OA) coupled with numerical methods enable researchers to identify and study (meta) stable nanoclusters without the control restrictions of empirical methods. An algorithm's performance is governed by two factors: (1) its compatibility with an objective function, (2) the dimension of a design space, which increases with cluster size. Although researchers often tune an algorithm's user-defined parameters (UDP), tuning is not guaranteed to improve performance. In this research, Particle Swarm (PSO) and Differential Evolution (DE), are compared by tuning their UDP in a multi-objective optimization environment (MOE). Combined with a Kolmogorov Smirnov test for statistical significance, the MOE enables the study of the Pareto Front (PF), made of the UDP settings that trade-off between best performance in energy minimization (``effectiveness'') based on force-field potential energy, and best convergence rate (``efficiency''). By studying the PF, this research finds that UDP values frequently suggested in the literature do not provide best effectiveness for these methods. Additionally, monotonic convergence is found to significantly improve efficiency without sacrificing effectiveness for very small systems, suggesting better compatibility. Work is supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division.
Self-referential forces are sufficient to explain different dendritic morphologies
Memelli, Heraldo; Torben-Nielsen, Benjamin; Kozloski, James
2013-01-01
Dendritic morphology constrains brain activity, as it determines first which neuronal circuits are possible and second which dendritic computations can be performed over a neuron's inputs. It is known that a range of chemical cues can influence the final shape of dendrites during development. Here, we investigate the extent to which self-referential influences, cues generated by the neuron itself, might influence morphology. To this end, we developed a phenomenological model and algorithm to generate virtual morphologies, which are then compared to experimentally reconstructed morphologies. In the model, branching probability follows a Galton–Watson process, while the geometry is determined by “homotypic forces” exerting influence on the direction of random growth in a constrained space. We model three such homotypic forces, namely an inertial force based on membrane stiffness, a soma-oriented tropism, and a force of self-avoidance, as directional biases in the growth algorithm. With computer simulations we explored how each bias shapes neuronal morphologies. We show that based on these principles, we can generate realistic morphologies of several distinct neuronal types. We discuss the extent to which homotypic forces might influence real dendritic morphologies, and speculate about the influence of other environmental cues on neuronal shape and circuitry. PMID:23386828
Simple Common Plane contact algorithm for explicit FE/FD methods
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vorobiev, O
2006-12-18
Common-plane (CP) algorithm is widely used in Discrete Element Method (DEM) to model contact forces between interacting particles or blocks. A new simple contact algorithm is proposed to model contacts in FE/FD methods which is similar to the CP algorithm. The CP is defined as a plane separating interacting faces of FE/FD mesh instead of blocks or particles used in the original CP method. The new method does not require iterations even for very stiff contacts. It is very robust and easy to implement both in 2D and 3D parallel codes.
Computation of the acoustic radiation force using the finite-difference time-domain method.
Cai, Feiyan; Meng, Long; Jiang, Chunxiang; Pan, Yu; Zheng, Hairong
2010-10-01
The computational details related to calculating the acoustic radiation force on an object using a 2-D grid finite-difference time-domain method (FDTD) are presented. The method is based on propagating the stress and velocity fields through the grid and determining the energy flow with and without the object. The axial and radial acoustic radiation forces predicted by FDTD method are in excellent agreement with the results obtained by analytical evaluation of the scattering method. In particular, the results indicate that it is possible to trap the steel cylinder in the radial direction by optimizing the width of Gaussian source and the operation frequency. As the sizes of the relating objects are smaller than or comparable to wavelength, the algorithm presented here can be easily extended to 3-D and include torque computation algorithms, thus providing a highly flexible and universally usable computation engine.
Staggered solution procedures for multibody dynamics simulation
NASA Technical Reports Server (NTRS)
Park, K. C.; Chiou, J. C.; Downer, J. D.
1990-01-01
The numerical solution procedure for multibody dynamics (MBD) systems is termed a staggered MBD solution procedure that solves the generalized coordinates in a separate module from that for the constraint force. This requires a reformulation of the constraint conditions so that the constraint forces can also be integrated in time. A major advantage of such a partitioned solution procedure is that additional analysis capabilities such as active controller and design optimization modules can be easily interfaced without embedding them into a monolithic program. After introducing the basic equations of motion for MBD system in the second section, Section 3 briefly reviews some constraint handling techniques and introduces the staggered stabilized technique for the solution of the constraint forces as independent variables. The numerical direct time integration of the equations of motion is described in Section 4. As accurate damping treatment is important for the dynamics of space structures, we have employed the central difference method and the mid-point form of the trapezoidal rule since they engender no numerical damping. This is in contrast to the current practice in dynamic simulations of ground vehicles by employing a set of backward difference formulas. First, the equations of motion are partitioned according to the translational and the rotational coordinates. This sets the stage for an efficient treatment of the rotational motions via the singularity-free Euler parameters. The resulting partitioned equations of motion are then integrated via a two-stage explicit stabilized algorithm for updating both the translational coordinates and angular velocities. Once the angular velocities are obtained, the angular orientations are updated via the mid-point implicit formula employing the Euler parameters. When the two algorithms, namely, the two-stage explicit algorithm for the generalized coordinates and the implicit staggered procedure for the constraint Lagrange multipliers, are brought together in a staggered manner, they constitute a staggered explicit-implicit procedure which is summarized in Section 5. Section 6 presents some example problems and discussions concerning several salient features of the staggered MBD solution procedure are offered in Section 7.
Flatness-based model inverse for feed-forward braking control
NASA Astrophysics Data System (ADS)
de Vries, Edwin; Fehn, Achim; Rixen, Daniel
2010-12-01
For modern cars an increasing number of driver assistance systems have been developed. Some of these systems interfere/assist with the braking of a car. Here, a brake actuation algorithm for each individual wheel that can respond to both driver inputs and artificial vehicle deceleration set points is developed. The algorithm consists of a feed-forward control that ensures, within the modelled system plant, the optimal behaviour of the vehicle. For the quarter-car model with LuGre-tyre behavioural model, an inverse model can be derived using v x as the 'flat output', that is, the input for the inverse model. A number of time derivatives of the flat output are required to calculate the model input, brake torque. Polynomial trajectory planning provides the needed time derivatives of the deceleration request. The transition time of the planning can be adjusted to meet actuator constraints. It is shown that the output of the trajectory planning would ripple and introduce a time delay when a gradual continuous increase of deceleration is requested by the driver. Derivative filters are then considered: the Bessel filter provides the best symmetry in its step response. A filter of same order and with negative real-poles is also used, exhibiting no overshoot nor ringing. For these reasons, the 'real-poles' filter would be preferred over the Bessel filter. The half-car model can be used to predict the change in normal load on the front and rear axle due to the pitching of the vehicle. The anticipated dynamic variation of the wheel load can be included in the inverse model, even though it is based on a quarter-car. Brake force distribution proportional to normal load is established. It provides more natural and simpler equations than a fixed force ratio strategy.
Hu, Xiaogang; Suresh, Aneesha K; Rymer, William Z; Suresh, Nina L
2016-08-01
Hemispheric stroke survivors often show impairments in voluntary muscle activation. One potential source of these impairments could come from altered control of muscle, via disrupted motor unit (MU) firing patterns. In this study, we sought to determine whether MU firing patterns are modified on the affected side of stroke survivors, as compared with the analogous contralateral muscle. Using a novel surface electromyogram (EMG) sensor array, coupled with advanced template recognition software (dEMG) we recorded surface EMG signals over the first dorsal interosseous (FDI) muscle on both paretic and contralateral sides. Recordings were made as stroke survivors produced isometric index finger abductions over a large force range (20%-60% of maximum). Utilizing the dEMG algorithm, MU firing rates, recruitment thresholds, and action potential amplitudes were estimated for concurrently active MUs in each trial. Our results reveal significant changes in the firing rate patterns in paretic FDI muscle, in that the discharge rates, characterized in relation to recruitment force threshold and to MU size, were less clearly correlated with recruitment force than in contralateral FDI muscles. Firing rates in the affected muscle also did not modulate systematically with the level of voluntary muscle contraction, as would be expected in intact muscles. These disturbances in firing properties also correlated closely with the impairment of muscle force generation. Our results provide strong evidence of disruptions in MU firing behavior in paretic muscles after a hemispheric stroke, suggesting that modified control of the spinal motoneuron pool could be a contributing factor to muscular weakness in stroke survivors.
NASA Astrophysics Data System (ADS)
Hu, Xiaogang; Suresh, Aneesha K.; Rymer, William Z.; Suresh, Nina L.
2016-08-01
Objective. Hemispheric stroke survivors often show impairments in voluntary muscle activation. One potential source of these impairments could come from altered control of muscle, via disrupted motor unit (MU) firing patterns. In this study, we sought to determine whether MU firing patterns are modified on the affected side of stroke survivors, as compared with the analogous contralateral muscle. Approach. Using a novel surface electromyogram (EMG) sensor array, coupled with advanced template recognition software (dEMG) we recorded surface EMG signals over the first dorsal interosseous (FDI) muscle on both paretic and contralateral sides. Recordings were made as stroke survivors produced isometric index finger abductions over a large force range (20%-60% of maximum). Utilizing the dEMG algorithm, MU firing rates, recruitment thresholds, and action potential amplitudes were estimated for concurrently active MUs in each trial. Main results. Our results reveal significant changes in the firing rate patterns in paretic FDI muscle, in that the discharge rates, characterized in relation to recruitment force threshold and to MU size, were less clearly correlated with recruitment force than in contralateral FDI muscles. Firing rates in the affected muscle also did not modulate systematically with the level of voluntary muscle contraction, as would be expected in intact muscles. These disturbances in firing properties also correlated closely with the impairment of muscle force generation. Significance. Our results provide strong evidence of disruptions in MU firing behavior in paretic muscles after a hemispheric stroke, suggesting that modified control of the spinal motoneuron pool could be a contributing factor to muscular weakness in stroke survivors.
NASA Technical Reports Server (NTRS)
Charles, Steve; Williams, Roy
1989-01-01
Data describing the microsurgeon's hand dynamics was recorded and analyzed in order to provide an accurate model for the telemicrosurgery application of the Bimanual Telemicro-operation Test Bed. The model, in turn, will guide the development of algorithms for the control of robotic systems in bimanual telemicro-operation tasks. Measurements were made at the hand-tool interface and include position, acceleration and force between the tool-finger interface. Position information was captured using an orthogonal pulsed magnetic field positioning system resulting in measurements in all six degrees-of-freedom (DOF). Acceleration data at the hands was obtained using accelerometers positioned in a triaxial arrangement on the back of the hand allowing measurements in all three cartesian-coordinate axes. Force data was obtained by using miniature load cells positioned between the tool and the finger and included those forces experienced perpendicular to the tool shaft and those transferred from the tool-tissue site. Position data will provide a minimum/maximum reference frame for the robotic system's work space or envelope. Acceleration data will define the response times needed by the robotic system in order to emulate and subsequently outperform the human operator's tool movements. The force measurements will aid in designing a force-reflective, force-scaling system as well as defining the range of forces the robotic system will encounter. All analog data was acquired by a 16-channel analog-to-digital conversion system residing in a IBM PC/AT-compatible computer at the Center's laboratory. The same system was also used to analyze and present the data.
Entropy-Based Search Algorithm for Experimental Design
NASA Astrophysics Data System (ADS)
Malakar, N. K.; Knuth, K. H.
2011-03-01
The scientific method relies on the iterated processes of inference and inquiry. The inference phase consists of selecting the most probable models based on the available data; whereas the inquiry phase consists of using what is known about the models to select the most relevant experiment. Optimizing inquiry involves searching the parameterized space of experiments to select the experiment that promises, on average, to be maximally informative. In the case where it is important to learn about each of the model parameters, the relevance of an experiment is quantified by Shannon entropy of the distribution of experimental outcomes predicted by a probable set of models. If the set of potential experiments is described by many parameters, we must search this high-dimensional entropy space. Brute force search methods will be slow and computationally expensive. We present an entropy-based search algorithm, called nested entropy sampling, to select the most informative experiment for efficient experimental design. This algorithm is inspired by Skilling's nested sampling algorithm used in inference and borrows the concept of a rising threshold while a set of experiment samples are maintained. We demonstrate that this algorithm not only selects highly relevant experiments, but also is more efficient than brute force search. Such entropic search techniques promise to greatly benefit autonomous experimental design.
Closed-loop control of a core free rolled EAP actuator
NASA Astrophysics Data System (ADS)
Sarban, Rahimullah; Oubaek, Jakob; Jones, Richard W.
2009-03-01
Tubular dielectric electro-active polymer actuators, also referred as tubular InLastors, have many possible applications. One of the most obvious is as a positioning push-type device. This work examines the feedback closed-loop control of a core-free tubular InLastor fabricated from sheets of PolyPowerTM, an EAP material developed by Danfoss PolyPower A/S, which uses a silicone elastomer in conjunction with smart compliant electrode technology. This is part of an ongoing study to develop a precision positioning feedback control system for this device. Initially proportional and integral (PI) control is considered to provide position control of the tubular InLastor. Control of the tubular Inlastors require more than conventional control, used for linear actuators, because the InLastors display highly nonlinear static voltage-strain and voltage-force characteristics as well as dynamic hysteresis and time-dependent strain behavior. In an attempt to overcome the nonlinear static voltage-strain characteristics of the Inlastors and for improving the dynamic performance of the controlled device, a gain scheduling algorithm is then integrated into the PI controlled system.
Low power consumption mini rotary actuator with SMA wires
NASA Astrophysics Data System (ADS)
Manfredi, Luigi; Huan, Yu; Cuschieri, Alfred
2017-11-01
Shape memory alloys (SMAs) are smart materials widely used as actuators for their high power to weight ratio despite their well-known low energy efficiency and limited mechanical bandwidth. For robotic applications, SMAs exhibit limitations due to high power consumption and limited stroke, varying from 4% to 7% of the total length. Hysteresis, during the contraction and extension cycle, requires a complex control algorithm. On the positive side, the small size and low weight are eminently suited for the design of mini actuators for robotic platforms. This paper describes the design and construction of a light weight and low power consuming mini rotary actuator with on-board contact-less position and force sensors. The design is specifically intended to reduce (i) energy consumption, (ii) dimensions of the sensory system, and (iii) provide a simple control without any need for SMA characterisation. The torque produced is controlled by on-board force sensors. Experiments were performed to investigate the energy consumption and performance (step and sinusoidal angle profiles with a frequency varying from 0.5 to 10 Hz and maximal amplitude of {15}\\circ ). We describe a transient capacitor effect related to the SMA wires during the sinusoidal profile when the active SMA wire is powered and the antagonist one switched-off, resulting in a transient current time varying from 300 to 400 ms.
NASA Astrophysics Data System (ADS)
Coats, T. J.; Silcox, R. J.; Lester, H. C.
Market pressure for more fuel efficient air travel has led to increased use of turboprop and higher bypass turbofan engines. The low frequency components of propeller, jet and boundary layer noise are difficult to attenuate with conventional passive techniques. Weight and geometric restrictions for sound absorbing meterials limit the amount and type of treatment that may be applied. An active noise control (ANC) method is providing to be an attractive alternative. The approach taken in this paper uses a numerical finite/boundary element method (FEM/BEM) that may be easilty adapted to arbitrary geometries. A double walled cylinder is modeled using commercially available software. The outer shell is modeled as an aluminum cylinder, similar to that of aircraft skins. The inner shell is modeled as a composite material representative of a lightweight, stiff trim panel. Two different inner shell materials are used. The first is representative of current trim structure, the second a much stiffer composite. The primary source is generated by an exterior acoustic monopole. Control fields are generated using normal force inputs to the inner cylindrical shell. A linear least mean square (LMS) algorithm is used to determine amplitudes of control forces that minimize the interior acoustic field. Coupling of acoustic and structural modes and noise reductions are discussed for each of the inner shell materials.
NASA Technical Reports Server (NTRS)
Coats, T. J.; Silcox, R. J.; Lester, H. C.
1993-01-01
Market pressure for more fuel efficient air travel has led to increased use of turboprop and higher bypass turbofan engines. The low frequency components of propeller, jet and boundary layer noise are difficult to attenuate with conventional passive techniques. Weight and geometric restrictions for sound absorbing meterials limit the amount and type of treatment that may be applied. An active noise control (ANC) method is providing to be an attractive alternative. The approach taken in this paper uses a numerical finite/boundary element method (FEM/BEM) that may be easilty adapted to arbitrary geometries. A double walled cylinder is modeled using commercially available software. The outer shell is modeled as an aluminum cylinder, similar to that of aircraft skins. The inner shell is modeled as a composite material representative of a lightweight, stiff trim panel. Two different inner shell materials are used. The first is representative of current trim structure, the second a much stiffer composite. The primary source is generated by an exterior acoustic monopole. Control fields are generated using normal force inputs to the inner cylindrical shell. A linear least mean square (LMS) algorithm is used to determine amplitudes of control forces that minimize the interior acoustic field. Coupling of acoustic and structural modes and noise reductions are discussed for each of the inner shell materials.
Real-time control of walking using recordings from dorsal root ganglia.
Holinski, B J; Everaert, D G; Mushahwar, V K; Stein, R B
2013-10-01
The goal of this study was to decode sensory information from the dorsal root ganglia (DRG) in real time, and to use this information to adapt the control of unilateral stepping with a state-based control algorithm consisting of both feed-forward and feedback components. In five anesthetized cats, hind limb stepping on a walkway or treadmill was produced by patterned electrical stimulation of the spinal cord through implanted microwire arrays, while neuronal activity was recorded from the DRG. Different parameters, including distance and tilt of the vector between hip and limb endpoint, integrated gyroscope and ground reaction force were modelled from recorded neural firing rates. These models were then used for closed-loop feedback. Overall, firing-rate-based predictions of kinematic sensors (limb endpoint, integrated gyroscope) were the most accurate with variance accounted for >60% on average. Force prediction had the lowest prediction accuracy (48 ± 13%) but produced the greatest percentage of successful rule activations (96.3%) for stepping under closed-loop feedback control. The prediction of all sensor modalities degraded over time, with the exception of tilt. Sensory feedback from moving limbs would be a desirable component of any neuroprosthetic device designed to restore walking in people after a spinal cord injury. This study provides a proof-of-principle that real-time feedback from the DRG is possible and could form part of a fully implantable neuroprosthetic device with further development.
The Order-Restricted Association Model: Two Estimation Algorithms and Issues in Testing
ERIC Educational Resources Information Center
Galindo-Garre, Francisca; Vermunt, Jeroen K.
2004-01-01
This paper presents a row-column (RC) association model in which the estimated row and column scores are forced to be in agreement with a priori specified ordering. Two efficient algorithms for finding the order-restricted maximum likelihood (ML) estimates are proposed and their reliability under different degrees of association is investigated by…
Genetics-based control of a mimo boiler-turbine plant
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dimeo, R.M.; Lee, K.Y.
1994-12-31
A genetic algorithm is used to develop an optimal controller for a non-linear, multi-input/multi-output boiler-turbine plant. The algorithm is used to train a control system for the plant over a wide operating range in an effort to obtain better performance. The results of the genetic algorithm`s controller designed from the linearized plant model at a nominal operating point. Because the genetic algorithm is well-suited to solving traditionally difficult optimization problems it is found that the algorithm is capable of developing the controller based on input/output information only. This controller achieves a performance comparable to the standard linear quadratic regulator.
Algorithm for employing physical forces in metabolic bone diseases.
Massari, Leo
2011-04-01
Metabolic bone diseases, especially osteoporosis, demand a multidisciplinary approach. The physical forces find a rationale in the treatment of local alterations in bone-cartilage metabolism. In integrated treatment of vertebral fractures caused by fragility, stimulation with electrical fields has been observed to be effective in reducing pain and improving patients' quality of life.
An Algorithm for Computing Matrix Square Roots with Application to Riccati Equation Implementation,
1977-01-01
pansion is compared to Euclid’s method. The apriori by Aerospace Medical Research Laboratory, Aero— upper and lower bounds are also calculated. The third ... space Medical Division , Air Force Systems Command , part of this paper extends the scalar square root al— Wright—Patterson Air Force Base, Ohio 45433
Pneumatic artificial muscle actuators for compliant robotic manipulators
NASA Astrophysics Data System (ADS)
Robinson, Ryan Michael
Robotic systems are increasingly being utilized in applications that require interaction with humans. In order to enable safe physical human-robot interaction, light weight and compliant manipulation are desirable. These requirements are problematic for many conventional actuation systems, which are often heavy, and typically use high stiffness to achieve high performance, leading to large impact forces upon collision. However, pneumatic artificial muscles (PAMs) are actuators that can satisfy these safety requirements while offering power-to-weight ratios comparable to those of conventional actuators. PAMs are extremely lightweight actuators that produce force in response to pressurization. These muscles demonstrate natural compliance, but have a nonlinear force-contraction profile that complicates modeling and control. This body of research presents solutions to the challenges associated with the implementation of PAMs as actuators in robotic manipulators, particularly with regard to modeling, design, and control. An existing PAM force balance model was modified to incorporate elliptic end geometry and a hyper-elastic constitutive relationship, dramatically improving predictions of PAM behavior at high contraction. Utilizing this improved model, two proof-of-concept PAM-driven manipulators were designed and constructed; design features included parallel placement of actuators and a tendon-link joint design. Genetic algorithm search heuristics were employed to determine an optimal joint geometry; allowing a manipulator to achieve a desired torque profile while minimizing the required PAM pressure. Performance of the manipulators was evaluated in both simulation and experiment employing various linear and nonlinear control strategies. These included output feedback techniques, such as proportional-integral-derivative (PID) and fuzzy logic, a model-based control for computed torque, and more advanced controllers, such as sliding mode, adaptive sliding mode, and adaptive neural network control. Results demonstrated the benefits of an accurate model in model-based control, and the advantages of adaptive neural network control when a model is unavailable or variations in payload are expected. Lastly, a variable recruitment strategy was applied to a group of parallel muscles actuating a common joint. Increased manipulator efficiency was observed when fewer PAMs were activated, justifying the use of variable recruitment strategies. Overall, this research demonstrates the benefits of pneumatic artificial muscles as actuators in robotics applications. It demonstrates that PAM-based manipulators can be well-modeled and can achieve high tracking accuracy over a wide range of payloads and inputs while maintaining natural compliance.
Khozani, Zohreh Sheikh; Bonakdari, Hossein; Zaji, Amir Hossein
2016-01-01
Two new soft computing models, namely genetic programming (GP) and genetic artificial algorithm (GAA) neural network (a combination of modified genetic algorithm and artificial neural network methods) were developed in order to predict the percentage of shear force in a rectangular channel with non-homogeneous roughness. The ability of these methods to estimate the percentage of shear force was investigated. Moreover, the independent parameters' effectiveness in predicting the percentage of shear force was determined using sensitivity analysis. According to the results, the GP model demonstrated superior performance to the GAA model. A comparison was also made between the GP program determined as the best model and five equations obtained in prior research. The GP model with the lowest error values (root mean square error ((RMSE) of 0.0515) had the best function compared with the other equations presented for rough and smooth channels as well as smooth ducts. The equation proposed for rectangular channels with rough boundaries (RMSE of 0.0642) outperformed the prior equations for smooth boundaries.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Hsiang-Hsu; Taam, Ronald E.; Yen, David C. C., E-mail: yen@math.fju.edu.tw
Investigating the evolution of disk galaxies and the dynamics of proto-stellar disks can involve the use of both a hydrodynamical and a Poisson solver. These systems are usually approximated as infinitesimally thin disks using two-dimensional Cartesian or polar coordinates. In Cartesian coordinates, the calculations of the hydrodynamics and self-gravitational forces are relatively straightforward for attaining second-order accuracy. However, in polar coordinates, a second-order calculation of self-gravitational forces is required for matching the second-order accuracy of hydrodynamical schemes. We present a direct algorithm for calculating self-gravitational forces with second-order accuracy without artificial boundary conditions. The Poisson integral in polar coordinates ismore » expressed in a convolution form and the corresponding numerical complexity is nearly linear using a fast Fourier transform. Examples with analytic solutions are used to verify that the truncated error of this algorithm is of second order. The kernel integral around the singularity is applied to modify the particle method. The use of a softening length is avoided and the accuracy of the particle method is significantly improved.« less
Olympic Village thermal energy storage experiment. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fernandes, R.A.; Saylor, C.M.
Four thermal energy storage (TES) systems were operated in identical dormitory-style buildings of the Raybrook Correctional Facility, formerly the housing for the athletes at the 1980 Winter Olympic Games in Lake Placid, New York. The objectives of the project were to assess the ability of these TES systems to be controlled so as to modify load profiles favorably, and to assess the ability to maintain comfortable indoor conditions under those control strategies. Accordingly, the test was designed to evaluate the effect on load profiles of appropriate control algorithms for the TES systems, collect comprehensive TES operating data, and identify neededmore » research and development to improve the effectiveness of the TES systems. The four similar dormitory buildings were used to compare electric slab heating on grade, ceramic brick storage heating, pressurized-hot-water heating, and heat pumps with hot-water storage. In a fifth similar building, a conventional (non-TES) forced air electric resistance heat system was used. The four buildings with TES systems also had electric resistance heating for backup. A remote computer-based monitoring and control system was used to implement the control algorithms and to collect data from the site. For a 25% TES saturation of electric heat customers on the NMPC system, production costs were reduced by up to $2,235,000 for the New York Power Pool. The winter peak load was reduced by up to 223 MW. The control schedules developed were successful in reducing on-peak energy consumption while maintaining indoor conditions as close to the comfort level as possible considering the test environment.« less
NASA Astrophysics Data System (ADS)
Muldoon, F. H.
2018-04-01
Hydrothermal waves in flows driven by thermocapillary and buoyancy effects are suppressed by applying a predictive control method. Hydrothermal waves arise in the manufacturing of crystals, including the "open boat" crystal growth process, and lead to undesirable impurities in crystals. The open boat process is modeled using the two-dimensional unsteady incompressible Navier-Stokes equations under the Boussinesq approximation and the linear approximation of the surface thermocapillary force. The flow is controlled by a spatially and temporally varying heat flux density through the free surface. The heat flux density is determined by a conjugate gradient optimization algorithm. The gradient of the objective function with respect to the heat flux density is found by solving adjoint equations derived from the Navier-Stokes ones in the Boussinesq approximation. Special attention is given to heat flux density distributions over small free-surface areas and to the maximum admissible heat flux density.
He, Xiao-Ou; D'Urzo, Anthony; Jugovic, Pieter; Jhirad, Reuven; Sehgal, Prateek; Lilly, Evan
2015-03-12
Spirometry is recommended for the diagnosis of asthma and chronic obstructive pulmonary disease (COPD) in international guidelines and may be useful for distinguishing asthma from COPD. Numerous spirometry interpretation algorithms (SIAs) are described in the literature, but no studies highlight how different SIAs may influence the interpretation of the same spirometric data. We examined how two different SIAs may influence decision making among primary-care physicians. Data for this initiative were gathered from 113 primary-care physicians attending accredited workshops in Canada between 2011 and 2013. Physicians were asked to interpret nine spirograms presented twice in random sequence using two different SIAs and touch pad technology for anonymous data recording. We observed differences in the interpretation of spirograms using two different SIAs. When the pre-bronchodilator FEV1/FVC (forced expiratory volume in one second/forced vital capacity) ratio was >0.70, algorithm 1 led to a 'normal' interpretation (78% of physicians), whereas algorithm 2 prompted a bronchodilator challenge revealing changes in FEV1 that were consistent with asthma, an interpretation selected by 94% of physicians. When the FEV1/FVC ratio was <0.70 after bronchodilator challenge but FEV1 increased >12% and 200 ml, 76% suspected asthma and 10% suspected COPD using algorithm 1, whereas 74% suspected asthma versus COPD using algorithm 2 across five separate cases. The absence of a post-bronchodilator FEV1/FVC decision node in algorithm 1 did not permit consideration of possible COPD. This study suggests that differences in SIAs may influence decision making and lead clinicians to interpret the same spirometry data differently.
NASA Astrophysics Data System (ADS)
Zhang, Xianxia; Wang, Jian; Qin, Tinggao
2003-09-01
Intelligent control algorithms are introduced into the control system of temperature and humidity. A multi-mode control algorithm of PI-Single Neuron is proposed for single loop control of temperature and humidity. In order to remove the coupling between temperature and humidity, a new decoupling method is presented, which is called fuzzy decoupling. The decoupling is achieved by using a fuzzy controller that dynamically modifies the static decoupling coefficient. Taking the control algorithm of PI-Single Neuron as the single loop control of temperature and humidity, the paper provides the simulated output response curves with no decoupling control, static decoupling control and fuzzy decoupling control. Those control algorithms are easily implemented in singlechip-based hardware systems.
Supercomputer simulations of structure formation in the Universe
NASA Astrophysics Data System (ADS)
Ishiyama, Tomoaki
2017-06-01
We describe the implementation and performance results of our massively parallel MPI†/OpenMP‡ hybrid TreePM code for large-scale cosmological N-body simulations. For domain decomposition, a recursive multi-section algorithm is used and the size of domains are automatically set so that the total calculation time is the same for all processes. We developed a highly-tuned gravity kernel for short-range forces, and a novel communication algorithm for long-range forces. For two trillion particles benchmark simulation, the average performance on the fullsystem of K computer (82,944 nodes, the total number of core is 663,552) is 5.8 Pflops, which corresponds to 55% of the peak speed.
Bragança, F M; Bosch, S; Voskamp, J P; Marin-Perianu, M; Van der Zwaag, B J; Vernooij, J C M; van Weeren, P R; Back, W
2017-07-01
Inertial measurement unit (IMU) sensor-based techniques are becoming more popular in horses as a tool for objective locomotor assessment. To describe, evaluate and validate a method of stride detection and quantification at walk and trot using distal limb mounted IMU sensors. Prospective validation study comparing IMU sensors and motion capture with force plate data. A total of seven Warmblood horses equipped with metacarpal/metatarsal IMU sensors and reflective markers for motion capture were hand walked and trotted over a force plate. Using four custom built algorithms hoof-on/hoof-off timing over the force plate were calculated for each trial from the IMU data. Accuracy of the computed parameters was calculated as the mean difference in milliseconds between the IMU or motion capture generated data and the data from the force plate, precision as the s.d. of these differences and percentage of error with accuracy of the calculated parameter as a percentage of the force plate stance duration. Accuracy, precision and percentage of error of the best performing IMU algorithm for stance duration at walk were 28.5, 31.6 ms and 3.7% for the forelimbs and -5.5, 20.1 ms and -0.8% for the hindlimbs, respectively. At trot the best performing algorithm achieved accuracy, precision and percentage of error of -27.6/8.8 ms/-8.4% for the forelimbs and 6.3/33.5 ms/9.1% for the hindlimbs. The described algorithms have not been assessed on different surfaces. Inertial measurement unit technology can be used to determine temporal kinematic stride variables at walk and trot justifying its use in gait and performance analysis. However, precision of the method may not be sufficient to detect all possible lameness-related changes. These data seem promising enough to warrant further research to evaluate whether this approach will be useful for appraising the majority of clinically relevant gait changes encountered in practice. © 2016 The Authors. Equine Veterinary Journal published by John Wiley & Sons Ltd on behalf of EVJ Ltd.
Bouchard, M
2001-01-01
In recent years, a few articles describing the use of neural networks for nonlinear active control of sound and vibration were published. Using a control structure with two multilayer feedforward neural networks (one as a nonlinear controller and one as a nonlinear plant model), steepest descent algorithms based on two distinct gradient approaches were introduced for the training of the controller network. The two gradient approaches were sometimes called the filtered-x approach and the adjoint approach. Some recursive-least-squares algorithms were also introduced, using the adjoint approach. In this paper, an heuristic procedure is introduced for the development of recursive-least-squares algorithms based on the filtered-x and the adjoint gradient approaches. This leads to the development of new recursive-least-squares algorithms for the training of the controller neural network in the two networks structure. These new algorithms produce a better convergence performance than previously published algorithms. Differences in the performance of algorithms using the filtered-x and the adjoint gradient approaches are discussed in the paper. The computational load of the algorithms discussed in the paper is evaluated for multichannel systems of nonlinear active control. Simulation results are presented to compare the convergence performance of the algorithms, showing the convergence gain provided by the new algorithms.
Development of model reference adaptive control theory for electric power plant control applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mabius, L.E.
1982-09-15
The scope of this effort includes the theoretical development of a multi-input, multi-output (MIMO) Model Reference Control (MRC) algorithm, (i.e., model following control law), Model Reference Adaptive Control (MRAC) algorithm and the formulation of a nonlinear model of a typical electric power plant. Previous single-input, single-output MRAC algorithm designs have been generalized to MIMO MRAC designs using the MIMO MRC algorithm. This MRC algorithm, which has been developed using Command Generator Tracker methodologies, represents the steady state behavior (in the adaptive sense) of the MRAC algorithm. The MRC algorithm is a fundamental component in the MRAC design and stability analysis.more » An enhanced MRC algorithm, which has been developed for systems with more controls than regulated outputs, alleviates the MRC stability constraint of stable plant transmission zeroes. The nonlinear power plant model is based on the Cromby model with the addition of a governor valve management algorithm, turbine dynamics and turbine interactions with extraction flows. An application of the MRC algorithm to a linearization of this model demonstrates its applicability to power plant systems. In particular, the generated power changes at 7% per minute while throttle pressure and temperature, reheat temperature and drum level are held constant with a reasonable level of control. The enhanced algorithm reduces significantly control fluctuations without modifying the output response.« less
Eigensystem realization algorithm modal identification experiences with mini-mast
NASA Technical Reports Server (NTRS)
Pappa, Richard S.; Schenk, Axel; Noll, Christopher
1992-01-01
This paper summarizes work performed under a collaborative research effort between the National Aeronautics and Space Administration (NASA) and the German Aerospace Research Establishment (DLR, Deutsche Forschungsanstalt fur Luft- und Raumfahrt). The objective is to develop and demonstrate system identification technology for future large space structures. Recent experiences using the Eigensystem Realization Algorithm (ERA), for modal identification of Mini-Mast, are reported. Mini-Mast is a 20 m long deployable space truss used for structural dynamics and active vibration-control research at the Langley Research Center. A comprehensive analysis of 306 frequency response functions (3 excitation forces and 102 displacement responses) was performed. Emphasis is placed on two topics of current research: (1) gaining an improved understanding of ERA performance characteristics (theory vs. practice); and (2) developing reliable techniques to improve identification results for complex experimental data. Because of nonlinearities and numerous local modes, modal identification of Mini-Mast proved to be surprisingly difficult. Methods were available, ERA, for obtaining detailed, high-confidence results.
NASA Astrophysics Data System (ADS)
Ramji, Sarah Ann
Improved understanding of turbulence-flame interactions in premixed combustion can be achieved using fully 3D time-resolved multi-kHz multi-scalar experimental measurements. These interactions may be represented by the evolution of various Lagrangian quantities described by theoretical Lagrangian Fluid Elements (LFEs). The data used in this work came from two experimental campaigns that used simultaneous T-PIV and OH/CH2O PLIF, at Sandia National Labs and the Air Force Research Lab at Wright-Patterson. In this thesis, an algorithm to accurately track LFEs through this 4D experimental space has been developed and verified by cross-correlation with the T-PIV seed particle fields. A novel method to measure the local instantaneous displacement speed in 3D has been developed, using this algorithm to track control masses of fluid that interact with the flame front. Statistics of the displacement speed have been presented, and the effects of local turbulence and flame topological properties on the displacement speed have been studied.
Fast divide-and-conquer algorithm for evaluating polarization in classical force fields
NASA Astrophysics Data System (ADS)
Nocito, Dominique; Beran, Gregory J. O.
2017-03-01
Evaluation of the self-consistent polarization energy forms a major computational bottleneck in polarizable force fields. In large systems, the linear polarization equations are typically solved iteratively with techniques based on Jacobi iterations (JI) or preconditioned conjugate gradients (PCG). Two new variants of JI are proposed here that exploit domain decomposition to accelerate the convergence of the induced dipoles. The first, divide-and-conquer JI (DC-JI), is a block Jacobi algorithm which solves the polarization equations within non-overlapping sub-clusters of atoms directly via Cholesky decomposition, and iterates to capture interactions between sub-clusters. The second, fuzzy DC-JI, achieves further acceleration by employing overlapping blocks. Fuzzy DC-JI is analogous to an additive Schwarz method, but with distance-based weighting when averaging the fuzzy dipoles from different blocks. Key to the success of these algorithms is the use of K-means clustering to identify natural atomic sub-clusters automatically for both algorithms and to determine the appropriate weights in fuzzy DC-JI. The algorithm employs knowledge of the 3-D spatial interactions to group important elements in the 2-D polarization matrix. When coupled with direct inversion in the iterative subspace (DIIS) extrapolation, fuzzy DC-JI/DIIS in particular converges in a comparable number of iterations as PCG, but with lower computational cost per iteration. In the end, the new algorithms demonstrated here accelerate the evaluation of the polarization energy by 2-3 fold compared to existing implementations of PCG or JI/DIIS.
NASA Technical Reports Server (NTRS)
Perangelo, H. J.; Milordi, F. W.
1976-01-01
Analysis techniques used in the automated telemetry station (ATS) for on line data reduction are encompassed in a broad range of software programs. Concepts that form the basis for the algorithms used are mathematically described. The control the user has in interfacing with various on line programs is discussed. The various programs are applied to an analysis of flight data which includes unimodal and bimodal response signals excited via a swept frequency shaker and/or random aerodynamic forces. A nonlinear response error modeling analysis approach is described. Preliminary results in the analysis of a hard spring nonlinear resonant system are also included.
Parallel processors and nonlinear structural dynamics algorithms and software
NASA Technical Reports Server (NTRS)
Belytschko, Ted; Gilbertsen, Noreen D.; Neal, Mark O.; Plaskacz, Edward J.
1989-01-01
The adaptation of a finite element program with explicit time integration to a massively parallel SIMD (single instruction multiple data) computer, the CONNECTION Machine is described. The adaptation required the development of a new algorithm, called the exchange algorithm, in which all nodal variables are allocated to the element with an exchange of nodal forces at each time step. The architectural and C* programming language features of the CONNECTION Machine are also summarized. Various alternate data structures and associated algorithms for nonlinear finite element analysis are discussed and compared. Results are presented which demonstrate that the CONNECTION Machine is capable of outperforming the CRAY XMP/14.
A meshless EFG-based algorithm for 3D deformable modeling of soft tissue in real-time.
Abdi, Elahe; Farahmand, Farzam; Durali, Mohammad
2012-01-01
The meshless element-free Galerkin method was generalized and an algorithm was developed for 3D dynamic modeling of deformable bodies in real time. The efficacy of the algorithm was investigated in a 3D linear viscoelastic model of human spleen subjected to a time-varying compressive force exerted by a surgical grasper. The model remained stable in spite of the considerably large deformations occurred. There was a good agreement between the results and those of an equivalent finite element model. The computational cost, however, was much lower, enabling the proposed algorithm to be effectively used in real-time applications.
NASA Astrophysics Data System (ADS)
Piotrowski, J.
2010-07-01
This paper presents two extensions of Kalker's algorithm Fastsim of the simplified theory of rolling contact. The first extension is for solving tangential contact problems with the coefficient of friction depending on slip velocity. Two friction laws have been considered: with and without recuperation of the static friction. According to the tribological hypothesis for metallic bodies shear failure, the friction law without recuperation of static friction is more suitable for wheel and rail than the other one. Sample results present local quantities inside the contact area (division to slip and adhesion, traction) as well as global ones (creep forces as functions of creepages and rolling velocity). For the coefficient of friction diminishing with slip, the creep forces decay after reaching the maximum and they depend on the rolling velocity. The second extension is for solving tangential contact problems with friction anisotropy characterised by a convex set of the permissible tangential tractions. The effect of the anisotropy has been shown on examples of rolling without spin and in the presence of pure spin for the elliptical set. The friction anisotropy influences tangential tractions and creep forces. Sample results present local and global quantities. Both extensions have been described with the same language of formulation and they may be merged into one, joint algorithm.
Multiscale Macromolecular Simulation: Role of Evolving Ensembles
Singharoy, A.; Joshi, H.; Ortoleva, P.J.
2013-01-01
Multiscale analysis provides an algorithm for the efficient simulation of macromolecular assemblies. This algorithm involves the coevolution of a quasiequilibrium probability density of atomic configurations and the Langevin dynamics of spatial coarse-grained variables denoted order parameters (OPs) characterizing nanoscale system features. In practice, implementation of the probability density involves the generation of constant OP ensembles of atomic configurations. Such ensembles are used to construct thermal forces and diffusion factors that mediate the stochastic OP dynamics. Generation of all-atom ensembles at every Langevin timestep is computationally expensive. Here, multiscale computation for macromolecular systems is made more efficient by a method that self-consistently folds in ensembles of all-atom configurations constructed in an earlier step, history, of the Langevin evolution. This procedure accounts for the temporal evolution of these ensembles, accurately providing thermal forces and diffusions. It is shown that efficiency and accuracy of the OP-based simulations is increased via the integration of this historical information. Accuracy improves with the square root of the number of historical timesteps included in the calculation. As a result, CPU usage can be decreased by a factor of 3-8 without loss of accuracy. The algorithm is implemented into our existing force-field based multiscale simulation platform and demonstrated via the structural dynamics of viral capsomers. PMID:22978601
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williams, P. T.
1993-09-01
As the field of computational fluid dynamics (CFD) continues to mature, algorithms are required to exploit the most recent advances in approximation theory, numerical mathematics, computing architectures, and hardware. Meeting this requirement is particularly challenging in incompressible fluid mechanics, where primitive-variable CFD formulations that are robust, while also accurate and efficient in three dimensions, remain an elusive goal. This dissertation asserts that one key to accomplishing this goal is recognition of the dual role assumed by the pressure, i.e., a mechanism for instantaneously enforcing conservation of mass and a force in the mechanical balance law for conservation of momentum. Provingmore » this assertion has motivated the development of a new, primitive-variable, incompressible, CFD algorithm called the Continuity Constraint Method (CCM). The theoretical basis for the CCM consists of a finite-element spatial semi-discretization of a Galerkin weak statement, equal-order interpolation for all state-variables, a 0-implicit time-integration scheme, and a quasi-Newton iterative procedure extended by a Taylor Weak Statement (TWS) formulation for dispersion error control. Original contributions to algorithmic theory include: (a) formulation of the unsteady evolution of the divergence error, (b) investigation of the role of non-smoothness in the discretized continuity-constraint function, (c) development of a uniformly H 1 Galerkin weak statement for the Reynolds-averaged Navier-Stokes pressure Poisson equation, (d) derivation of physically and numerically well-posed boundary conditions, and (e) investigation of sparse data structures and iterative methods for solving the matrix algebra statements generated by the algorithm.« less
NASA Astrophysics Data System (ADS)
Cheng, Kai; Niu, Zhi-Chao; Wang, Robin C.; Rakowski, Richard; Bateman, Richard
2017-09-01
Smart machining has tremendous potential and is becoming one of new generation high value precision manufacturing technologies in line with the advance of Industry 4.0 concepts. This paper presents some innovative design concepts and, in particular, the development of four types of smart cutting tools, including a force-based smart cutting tool, a temperature-based internally-cooled cutting tool, a fast tool servo (FTS) and smart collets for ultraprecision and micro manufacturing purposes. Implementation and application perspectives of these smart cutting tools are explored and discussed particularly for smart machining against a number of industrial application requirements. They are contamination-free machining, machining of tool-wear-prone Si-based infra-red devices and medical applications, high speed micro milling and micro drilling, etc. Furthermore, implementation techniques are presented focusing on: (a) plug-and-produce design principle and the associated smart control algorithms, (b) piezoelectric film and surface acoustic wave transducers to measure cutting forces in process, (c) critical cutting temperature control in real-time machining, (d) in-process calibration through machining trials, (e) FE-based design and analysis of smart cutting tools, and (f) application exemplars on adaptive smart machining.
NASA Astrophysics Data System (ADS)
Basri, M.; Mawengkang, H.; Zamzami, E. M.
2018-03-01
Limitations of storage sources is one option to switch to cloud storage. Confidentiality and security of data stored on the cloud is very important. To keep up the confidentiality and security of such data can be done one of them by using cryptography techniques. Data Encryption Standard (DES) is one of the block cipher algorithms used as standard symmetric encryption algorithm. This DES will produce 8 blocks of ciphers combined into one ciphertext, but the ciphertext are weak against brute force attacks. Therefore, the last 8 block cipher will be converted into 8 random images using Least Significant Bit (LSB) algorithm which later draws the result of cipher of DES algorithm to be merged into one.
Seismic isolation device having charging function by a transducer
NASA Astrophysics Data System (ADS)
Yamaguchi, Takashi; Miura, Nanako; Takahashi, Masaki
2016-04-01
In late years, many base isolated structures are planned as the seismic design, because they suppress vibration response significantly against large earthquake. To achieve greater safety, semi-active or active vibration control system is installed in the structures as earthquake countermeasures. Semi-active and active vibration control systems are more effective than passive vibration control system to large earthquake in terms of vibration reduction. However semi-active and active vibration control system cannot operate as required when external power supply is cut off. To solve the problem of energy consumption, we propose a self-powered active seismic isolation floor which achieve active control system using regenerated vibration energy. This device doesn't require external energy to produce control force. The purpose of this study is to propose the seismic isolation device having charging function and to optimize the control system and passive elements such as spring coefficients and damping coefficients using genetic algorithm. As a result, optimized model shows better performance in terms of vibration reduction and electric power regeneration than the previous model. At the end of this paper, the experimental specimen of the proposed isolation device is shown.
Optimization of multi-color laser waveform for high-order harmonic generation
NASA Astrophysics Data System (ADS)
Jin, Cheng; Lin, C. D.
2016-09-01
With the development of laser technologies, multi-color light-field synthesis with complete amplitude and phase control would make it possible to generate arbitrary optical waveforms. A practical optimization algorithm is needed to generate such a waveform in order to control strong-field processes. We review some recent theoretical works of the optimization of amplitudes and phases of multi-color lasers to modify the single-atom high-order harmonic generation based on genetic algorithm. By choosing different fitness criteria, we demonstrate that: (i) harmonic yields can be enhanced by 10 to 100 times, (ii) harmonic cutoff energy can be substantially extended, (iii) specific harmonic orders can be selectively enhanced, and (iv) single attosecond pulses can be efficiently generated. The possibility of optimizing macroscopic conditions for the improved phase matching and low divergence of high harmonics is also discussed. The waveform control and optimization are expected to be new drivers for the next wave of breakthrough in the strong-field physics in the coming years. Project supported by the Fundamental Research Funds for the Central Universities of China (Grant No. 30916011207), Chemical Sciences, Geosciences and Biosciences Division, Office of Basic Energy Sciences, Office of Science, U. S. Department of Energy (Grant No. DE-FG02-86ER13491), and Air Force Office of Scientific Research, USA (Grant No. FA9550-14-1-0255).
Research on intelligent algorithm of electro - hydraulic servo control system
NASA Astrophysics Data System (ADS)
Wang, Yannian; Zhao, Yuhui; Liu, Chengtao
2017-09-01
In order to adapt the nonlinear characteristics of the electro-hydraulic servo control system and the influence of complex interference in the industrial field, using a fuzzy PID switching learning algorithm is proposed and a fuzzy PID switching learning controller is designed and applied in the electro-hydraulic servo controller. The designed controller not only combines the advantages of the fuzzy control and PID control, but also introduces the learning algorithm into the switching function, which makes the learning of the three parameters in the switching function can avoid the instability of the system during the switching between the fuzzy control and PID control algorithms. It also makes the switch between these two control algorithm more smoother than that of the conventional fuzzy PID.
Boiler-turbine control system design using a genetic algorithm
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dimeo, R.; Lee, K.Y.
1995-12-01
This paper discusses the application of a genetic algorithm to control system design for a boiler-turbine plant. In particular the authors study the ability of the genetic algorithm to develop a proportional-integral (PI) controller and a state feedback controller for a non-linear multi-input/multi-output (MIMO) plant model. The plant model is presented along with a discussion of the inherent difficulties in such controller development. A sketch of the genetic algorithm (GA) is presented and its strategy as a method of control system design is discussed. Results are presented for two different control systems that have been designed with the genetic algorithm.
Automated parameterization of intermolecular pair potentials using global optimization techniques
NASA Astrophysics Data System (ADS)
Krämer, Andreas; Hülsmann, Marco; Köddermann, Thorsten; Reith, Dirk
2014-12-01
In this work, different global optimization techniques are assessed for the automated development of molecular force fields, as used in molecular dynamics and Monte Carlo simulations. The quest of finding suitable force field parameters is treated as a mathematical minimization problem. Intricate problem characteristics such as extremely costly and even abortive simulations, noisy simulation results, and especially multiple local minima naturally lead to the use of sophisticated global optimization algorithms. Five diverse algorithms (pure random search, recursive random search, CMA-ES, differential evolution, and taboo search) are compared to our own tailor-made solution named CoSMoS. CoSMoS is an automated workflow. It models the parameters' influence on the simulation observables to detect a globally optimal set of parameters. It is shown how and why this approach is superior to other algorithms. Applied to suitable test functions and simulations for phosgene, CoSMoS effectively reduces the number of required simulations and real time for the optimization task.
NASA Astrophysics Data System (ADS)
Kozynchenko, Alexander I.; Kozynchenko, Sergey A.
2017-03-01
In the paper, a problem of improving efficiency of the particle-particle- particle-mesh (P3M) algorithm in computing the inter-particle electrostatic forces is considered. The particle-mesh (PM) part of the algorithm is modified in such a way that the space field equation is solved by the direct method of summation of potentials over the ensemble of particles lying not too close to a reference particle. For this purpose, a specific matrix "pattern" is introduced to describe the spatial field distribution of a single point charge, so the "pattern" contains pre-calculated potential values. This approach allows to reduce a set of arithmetic operations performed at the innermost of nested loops down to an addition and assignment operators and, therefore, to decrease the running time substantially. The simulation model developed in C++ substantiates this view, showing the descent accuracy acceptable in particle beam calculations together with the improved speed performance.
Voidage correction algorithm for unresolved Euler-Lagrange simulations
NASA Astrophysics Data System (ADS)
Askarishahi, Maryam; Salehi, Mohammad-Sadegh; Radl, Stefan
2018-04-01
The effect of grid coarsening on the predicted total drag force and heat exchange rate in dense gas-particle flows is investigated using Euler-Lagrange (EL) approach. We demonstrate that grid coarsening may reduce the predicted total drag force and exchange rate. Surprisingly, exchange coefficients predicted by the EL approach deviate more significantly from the exact value compared to results of Euler-Euler (EE)-based calculations. The voidage gradient is identified as the root cause of this peculiar behavior. Consequently, we propose a correction algorithm based on a sigmoidal function to predict the voidage experienced by individual particles. Our correction algorithm can significantly improve the prediction of exchange coefficients in EL models, which is tested for simulations involving Euler grid cell sizes between 2d_p and 12d_p . It is most relevant in simulations of dense polydisperse particle suspensions featuring steep voidage profiles. For these suspensions, classical approaches may result in an error of the total exchange rate of up to 30%.
Fu, Xingang; Li, Shuhui; Fairbank, Michael; Wunsch, Donald C; Alonso, Eduardo
2015-09-01
This paper investigates how to train a recurrent neural network (RNN) using the Levenberg-Marquardt (LM) algorithm as well as how to implement optimal control of a grid-connected converter (GCC) using an RNN. To successfully and efficiently train an RNN using the LM algorithm, a new forward accumulation through time (FATT) algorithm is proposed to calculate the Jacobian matrix required by the LM algorithm. This paper explores how to incorporate FATT into the LM algorithm. The results show that the combination of the LM and FATT algorithms trains RNNs better than the conventional backpropagation through time algorithm. This paper presents an analytical study on the optimal control of GCCs, including theoretically ideal optimal and suboptimal controllers. To overcome the inapplicability of the optimal GCC controller under practical conditions, a new RNN controller with an improved input structure is proposed to approximate the ideal optimal controller. The performance of an ideal optimal controller and a well-trained RNN controller was compared in close to real-life power converter switching environments, demonstrating that the proposed RNN controller can achieve close to ideal optimal control performance even under low sampling rate conditions. The excellent performance of the proposed RNN controller under challenging and distorted system conditions further indicates the feasibility of using an RNN to approximate optimal control in practical applications.
GPUbased, Microsecond Latency, HectoChannel MIMO Feedback Control of Magnetically Confined Plasmas
NASA Astrophysics Data System (ADS)
Rath, Nikolaus
Feedback control has become a crucial tool in the research on magnetic confinement of plasmas for achieving controlled nuclear fusion. This thesis presents a novel plasma feedback control system that, for the first time, employs a Graphics Processing Unit (GPU) for microsecond-latency, real-time control computations. This novel application area for GPU computing is opened up by a new system architecture that is optimized for low-latency computations on less than kilobyte sized data samples as they occur in typical plasma control algorithms. In contrast to traditional GPU computing approaches that target complex, high-throughput computations with massive amounts of data, the architecture presented in this thesis uses the GPU as the primary processing unit rather than as an auxiliary of the CPU, and data is transferred from A-D/D-A converters directly into GPU memory using peer-to-peer PCI Express transfers. The described design has been implemented in a new, GPU-based control system for the High-Beta Tokamak - Extended Pulse (HBT-EP) device. The system is built from commodity hardware and uses an NVIDIA GeForce GPU and D-TACQ A-D/D-A converters providing a total of 96 input and 64 output channels. The system is able to run with sampling periods down to 4 μs and latencies down to 8 μs. The GPU provides a total processing power of 1.5 x 1012 floating point operations per second. To illustrate the performance and versatility of both the general architecture and concrete implementation, a new control algorithm has been developed. The algorithm is designed for the control of multiple rotating magnetic perturbations in situations where the plasma equilibrium is not known exactly and features an adaptive system model: instead of requiring the rotation frequencies and growth rates embedded in the system model to be set a priori, the adaptive algorithm derives these parameters from the evolution of the perturbation amplitudes themselves. This results in non-linear control computations with high computational demands, but is handled easily by the GPU based system. Both digital processing latency and an arbitrary multi-pole response of amplifiers and control coils is fully taken into account for the generation of control signals. To separate sensor signals into perturbed and equilibrium components without knowledge of the equilibrium fields, a new separation method based on biorthogonal decomposition is introduced and used to derive a filter that performs the separation in real-time. The control algorithm has been implemented and tested on the new, GPU-based feedback control system of the HBT-EP tokamak. In this instance, the algorithm was set up to control four rotating n = 1 perturbations at different poloidal angles. The perturbations were treated as coupled in frequency but independent in amplitude and phase, so that the system effectively controls a helical n = 1 perturbation with unknown poloidal spectrum. Depending on the plasma's edge safety factor and rotation frequency, the control system is shown to be able to suppress the amplitude of the dominant 8 kHz mode by up to 60% or amplify the saturated amplitude by a factor of up to two. Intermediate feedback phases combine suppression and amplification with a speed up or slow down of the mode rotation frequency. Increasing feedback gain results in the excitation of an additional, slowly rotating 1.4 kHz mode without further effects on the 8 kHz mode. The feedback performance is found to exceed previous results obtained with an FPGA- and Kalman-filter based control system without requiring any tuning of system model parameters. Experimental results are compared with simulations based on a combination of the Boozer surface current model and the Fitzpatrick-Aydemir model. Within the subset of phenomena that can be represented by the model as well as determined experimentally, qualitative agreement is found.
Breen, P P; O'Keeffe, D T; Conway, R; Lyons, G M
2006-03-01
We describe the design of an intelligent drop foot stimulator unit for use in conjunction with a commercial neuromuscular electrical nerve stimulation (NMES) unit, the NT2000. The developed micro-controller unit interfaces to a personal computer (PC) and a graphical user interface (GUI) allows the clinician to graphically specify the shape of the stimulation intensity envelope required for a subject undergoing drop foot correction. The developed unit is based on the ADuC812S micro-controller evaluation board from Analog Devices and uses two force sensitive resistor (FSR) based foot-switches to control application of stimulus. The unit has the ability to display to the clinician how the stimulus intensity envelope is being delivered during walking using a data capture capability. The developed system has a built-in algorithm to dynamically adjust the delivery of stimulus to reflect changes both within the gait cycle and from cycle to cycle. Thus, adaptive control of stimulus intensity is achieved.