1992-10-01
intelligence developed an authentic European conflict scenario based on WINTEX- CIMEX , a detailed European command post exercise. One of the primary...them. The only exercises in which we effectively train from start to finish are the large CPXs like WINTEX/ CIMEX . This exercise is a procedural...general war CPX, sponsored by the Joint Chiefs of Staff. WINTEX/ CIMEX exercises. tests, and evaluates command and control procedures. planning. and
An Exercise for Illustrating the Logic of Hypothesis Testing
ERIC Educational Resources Information Center
Lawton, Leigh
2009-01-01
Hypothesis testing is one of the more difficult concepts for students to master in a basic, undergraduate statistics course. Students often are puzzled as to why statisticians simply don't calculate the probability that a hypothesis is true. This article presents an exercise that forces students to lay out on their own a procedure for testing a…
Developing a Low-Cost Force Treadmill via Dynamic Modeling.
Hong, Chih-Yuan; Guo, Lan-Yuen; Song, Rong; Nagurka, Mark L; Sung, Jia-Li; Yen, Chen-Wen
2017-01-01
By incorporating force transducers into treadmills, force platform-instrumented treadmills (commonly called force treadmills) can collect large amounts of gait data and enable the ground reaction force (GRF) to be calculated. However, the high cost of force treadmills has limited their adoption. This paper proposes a low-cost force treadmill system with force sensors installed underneath a standard exercise treadmill. It identifies and compensates for the force transmission dynamics from the actual GRF applied on the treadmill track surface to the force transmitted to the force sensors underneath the treadmill body. This study also proposes a testing procedure to assess the GRF measurement accuracy of force treadmills. Using this procedure in estimating the GRF of "walk-on-the-spot motion," it was found that the total harmonic distortion of the tested force treadmill system was about 1.69%, demonstrating the effectiveness of the approach.
32 CFR 806b.2 - Basic guidelines.
Code of Federal Regulations, 2014 CFR
2014-07-01
... person exercises First Amendment rights. Exceptions are when: The Air Force has the permission of that..., an authorized law enforcement activity. First Amendment rights include, but are not limited to... decisions that deny individuals access to or amendment of their records through appellate procedures. ...
32 CFR 806b.2 - Basic guidelines.
Code of Federal Regulations, 2012 CFR
2012-07-01
... person exercises First Amendment rights. Exceptions are when: The Air Force has the permission of that..., an authorized law enforcement activity. First Amendment rights include, but are not limited to... decisions that deny individuals access to or amendment of their records through appellate procedures. ...
32 CFR 151.1 - Reissuance and purpose.
Code of Federal Regulations, 2010 CFR
2010-07-01
... MILITARY JUSTICE STATUS OF FORCES POLICIES AND INFORMATION § 151.1 Reissuance and purpose. This part is reissued to update established DoD policy and procedures on trial by foreign courts and treatment in.... personnel); and provides uniform reporting on the exercise of foreign criminal jurisdiction. ...
Macgregor, Lewis J; Hunter, Angus M
2018-01-01
Exercise-induced muscle damage (EIMD) is associated with impaired muscle function and reduced neuromuscular recruitment. However, motor unit firing behaviour throughout the recovery period is unclear. EIMD impairment of maximal voluntary force (MVC) will, in part, be caused by reduced high-threshold motor unit firing, which will subsequently increase to recover MVC. Fourteen healthy active males completed a bout of eccentric exercise on the knee extensors, with measurements of MVC, rate of torque development and surface electromyography performed pre-exercise and 2, 3, 7 and 14 days post-exercise, on both damaged and control limb. EIMD was associated with decreased MVC (235.2 ± 49.3 Nm vs. 161.3 ± 52.5 Nm; p <0.001) and rate of torque development (495.7 ± 136.9 Nm.s-1 vs. 163.4 ± 163.7 Nm.s-1; p <0.001) 48h post-exercise. Mean motor unit firing rate was reduced (16.4 ± 2.2 Hz vs. 12.6 ± 1.7 Hz; p <0.01) in high-threshold motor units only, 48h post-exercise, and common drive was elevated (0.36 ± 0.027 vs. 0.56 ± 0.032; p< 0.001) 48h post-exercise. The firing rate of high-threshold motor units was reduced in parallel with impaired muscle function, whilst early recruited motor units remained unaltered. Common drive of motor units increased in offset to the firing rate impairment. These alterations correlated with the recovery of force decrement, but not of pain elevation. This study provides fresh insight into the central mechanisms associated with EIMD recovery, relative to muscle function. These findings may in turn lead to development of novel management and preventative procedures.
Macgregor, Lewis J.
2018-01-01
Exercise-induced muscle damage (EIMD) is associated with impaired muscle function and reduced neuromuscular recruitment. However, motor unit firing behaviour throughout the recovery period is unclear. EIMD impairment of maximal voluntary force (MVC) will, in part, be caused by reduced high-threshold motor unit firing, which will subsequently increase to recover MVC. Fourteen healthy active males completed a bout of eccentric exercise on the knee extensors, with measurements of MVC, rate of torque development and surface electromyography performed pre-exercise and 2, 3, 7 and 14 days post-exercise, on both damaged and control limb. EIMD was associated with decreased MVC (235.2 ± 49.3 Nm vs. 161.3 ± 52.5 Nm; p <0.001) and rate of torque development (495.7 ± 136.9 Nm.s-1 vs. 163.4 ± 163.7 Nm.s-1; p <0.001) 48h post-exercise. Mean motor unit firing rate was reduced (16.4 ± 2.2 Hz vs. 12.6 ± 1.7 Hz; p <0.01) in high-threshold motor units only, 48h post-exercise, and common drive was elevated (0.36 ± 0.027 vs. 0.56 ± 0.032; p< 0.001) 48h post-exercise. The firing rate of high-threshold motor units was reduced in parallel with impaired muscle function, whilst early recruited motor units remained unaltered. Common drive of motor units increased in offset to the firing rate impairment. These alterations correlated with the recovery of force decrement, but not of pain elevation. This study provides fresh insight into the central mechanisms associated with EIMD recovery, relative to muscle function. These findings may in turn lead to development of novel management and preventative procedures. PMID:29630622
Cookbook Procedures in MBL Physics Exercises.
ERIC Educational Resources Information Center
Royuk, Brent; Brooks, David W.
2003-01-01
Presents results of a controlled experiment comparing the conceptual mechanics learning gains as measured by the Force Concept Inventory (FCI) between two laboratory groups. One group completed cookbook labs while the other completed Interactive-Engagement (IE) labs in RealTime Physics. Suggests that laboratory activities should engage students in…
Forced and voluntary exercise differentially affect brain and behavior.
Leasure, J L; Jones, M
2008-10-15
The potential of physical exercise to decrease body weight, alleviate depression, combat aging and enhance cognition has been well-supported by research studies. However, exercise regimens vary widely across experiments, raising the question of whether there is an optimal form, intensity and duration of exertion that would produce maximal benefits. In particular, a comparison of forced and voluntary exercise is needed, since the results of several prior studies suggest that they may differentially affect brain and behavior. In the present study, we employed a novel 8-week exercise paradigm that standardized the distance, pattern, equipment and housing condition of forced and voluntary exercisers. Exercising rats were then compared with sedentary controls on measures previously shown to be influenced by physical activity. Our results indicate that although the distance covered by both exercise groups was the same, voluntary exercisers ran at higher speed and for less total time than forced exercisers. When compared with sedentary controls, forced but not voluntary exercise was found to increase anxiety-like behaviors in the open field. Both forms of exercise increased the number of surviving bromodeoxyuridine (BrdU)+ cells in the dentate gyrus after 8 weeks of exercise, although forced exercisers had significantly more than voluntary exercisers. Phenotypic analysis of BrdU+ cells showed no difference between groups in the percentage of newborn cells that became neurons, however, because forced exercise maximally increased the number of BrdU+ cells, it ultimately produced more neurons than voluntary exercise. Our results indicate that forced and voluntary exercise are inherently different: voluntary wheel running is characterized by rapid pace and short duration, whereas forced exercise involves a slower, more consistent pace for longer periods of time. This basic difference between the two forms of exercise is likely responsible for their differential effects on brain and behavior.
Hoffman, Hunter G; Patterson, David R; Soltani, Maryam; Teeley, Aubriana; Miller, William; Sharar, Sam R
2009-02-01
Patients with severe blunt force trauma injuries (e.g., multiple fractures and/or internal injuries) often experience severe to excruciating pain during medical procedures. We explored the adjunctive use of immersive virtual reality (VR) to distract a patient with multiple blunt trauma injuries from his procedural pain during physical therapy. The patient was a 32-year-old male hospitalized after suffering upper and lower extremity injuries when he was hit by a semi truck as a pedestrian. While a nurse assisted the patient's passive range of motion (ROM) leg exercises over two days, the patient spent a total of 10 minutes of physical therapy with no distraction and 10 minutes in VR (within-subjects design, order randomized). Three 0 to 10 graphic-rating-scale pain scores for each of the two treatment conditions served as the primary dependent variables. The patient reported a reduction in pain when distracted with VR. "Pain unpleasantness" ratings during physical therapy dropped from "severe" (mean = 8.5) to "mild/moderate" (4.5). The patient's ROM was 1 degree less during VR on day 1, but the patient achieved 15 degrees greater ROM during VR on day 2. The present study provides preliminary evidence that immersive VR can be an effective adjunctive, nonpharmacologic pain-reduction technique for a patient with multiple blunt trauma injuries experiencing severe pain during physical therapy. The potential utility of VR analgesia for movement or exercise therapy for patients with blunt force trauma injuries should be explored in controlled studies.
A new preoxygenation procedure for extravehicular activity (EVA).
Webb, J T; Pilmanis, A A
1998-01-01
A 10.2 psi staged-decompression schedule or a 4-hour preoxygenation at 14.7 psi is required prior to extravehicular activity (EVA) to reduce decompression sickness (DCS) risk. Results of recent research at the Air Force Research Laboratory (AFRL) showed that a 1-hour resting preoxygenation followed by a 4-hour, 4.3 psi exposure resulted in 77% DCS risk (N=26), while the same profile beginning with 10 min of exercise at 75% of VO2peak during preoxygenation reduced the DCS risk to 42% (P<.03; N=26). A 4-hour preoxygenation without exercise followed by the 4.3 psi exposure resulted in 47% DCS risk (N=30). The 1-hour preoxygenation with exercise and the 4-hour preoxygenation without exercise results were not significantly different. Elimination of either 3 hours of preoxygenation or 12 hours of staged-decompression are compelling reasons to consider incorporation of exercise-enhanced preoxygenation.
Skurvydas, Albertas; Mamkus, Gediminas; Kamandulis, Sigitas; Dudoniene, Vilma; Valanciene, Dovile; Westerblad, Håkan
2016-12-01
Force production frequently remains depressed for several hours or even days after various types of strenuous physical exercise. We hypothesized that the pattern of force changes during the first hour after exercise can be used to reveal muscular mechanisms likely to underlie the decline in muscle performance during exercise as well as factors involved in the triggering the prolonged force depression after exercise. Nine groups of recreationally active male volunteers performed one of the following types of exercise: single prolonged or repeated short maximum voluntary contractions (MVCs); single or repeated all-out cycling bouts; repeated drop jumps. The isometric force of the right quadriceps muscle was measured during stimulation with brief 20 and 100 Hz trains of electrical pulses given before and at regular intervals for 60 min after exercise. All exercises resulted in a prolonged force depression, which was more marked at 20 Hz than at 100 Hz. Short-lasting (≤2 min) MVC and all-out cycling exercises showed an initial force recovery (peak after ~ 5 min) followed by a secondary force depression. The repeated drop jumps, which involve eccentric contractions, resulted in a stable force depression with the 20 Hz force being markedly more decreased after 100 than 10 jumps. In accordance with our hypothesis, the results propose at least three different mechanisms that influence force production after exercise: (1) a transiently recovering process followed by (2) a prolonged force depression after metabolically demanding exercise, and (3) a stable force depression after mechanically demanding contractions.
Forced Aerobic Exercise Preceding Task Practice Improves Motor Recovery Poststroke.
Linder, Susan M; Rosenfeldt, Anson B; Dey, Tanujit; Alberts, Jay L
To understand how two types of aerobic exercise affect upper-extremity motor recovery post-stroke. Our aims were to (1) evaluate the feasibility of having people who had a stroke complete an aerobic exercise intervention and (2) determine whether forced or voluntary exercise differentially facilitates upper-extremity recovery when paired with task practice. Seventeen participants with chronic stroke completed twenty-four 90-min sessions over 8 wk. Aerobic exercise was immediately followed by task practice. Participants were randomized to forced or voluntary aerobic exercise groups or to task practice only. Improvement on the Fugl-Meyer Assessment exceeded the minimal clinically important difference: 12.3, 4.8, and 4.4 for the forced exercise, voluntary exercise, and repetitive task practice-only groups, respectively. Only the forced exercise group exhibited a statistically significant improvement. People with chronic stroke can safely complete intensive aerobic exercise. Forced aerobic exercise may be optimal in facilitating motor recovery associated with task practice. Copyright © 2017 by the American Occupational Therapy Association, Inc.
10 CFR 1049.6 - Exercise of arrest authority-Use of non-deadly force.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 4 2012-01-01 2012-01-01 false Exercise of arrest authority-Use of non-deadly force. 1049... OF FORCE BY PROTECTIVE FORCE OFFICERS OF THE STRATEGIC PETROLEUM RESERVE § 1049.6 Exercise of arrest... for additional guidance on the use of non-deadly force in the exercise of arrest authority, as...
10 CFR 1049.6 - Exercise of arrest authority-Use of non-deadly force.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 4 2011-01-01 2011-01-01 false Exercise of arrest authority-Use of non-deadly force. 1049... OF FORCE BY PROTECTIVE FORCE OFFICERS OF THE STRATEGIC PETROLEUM RESERVE § 1049.6 Exercise of arrest... for additional guidance on the use of non-deadly force in the exercise of arrest authority, as...
10 CFR 1049.6 - Exercise of arrest authority-Use of non-deadly force.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 4 2013-01-01 2013-01-01 false Exercise of arrest authority-Use of non-deadly force. 1049... OF FORCE BY PROTECTIVE FORCE OFFICERS OF THE STRATEGIC PETROLEUM RESERVE § 1049.6 Exercise of arrest... for additional guidance on the use of non-deadly force in the exercise of arrest authority, as...
10 CFR 1049.6 - Exercise of arrest authority-Use of non-deadly force.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 4 2014-01-01 2014-01-01 false Exercise of arrest authority-Use of non-deadly force. 1049... OF FORCE BY PROTECTIVE FORCE OFFICERS OF THE STRATEGIC PETROLEUM RESERVE § 1049.6 Exercise of arrest... for additional guidance on the use of non-deadly force in the exercise of arrest authority, as...
Group 13, 1990 ASCAN Charles J. Precourt at Vance Air Force Base, Oklahoma
NASA Technical Reports Server (NTRS)
1990-01-01
Group 13, 1990 Astronaut Candidate (ASCAN) Charles J. Precourt, suspended in a parachute harness, has just completed a practice parachute jump from a parasail tower during a survival training course exercise at Vance Air Force Base (AFB) in Enid, Oklahoma. The course is designed to familiarize the trainees with procedures to follow in the event of an emergency ejection from a jet aircraft. Precourt, along with 22 other ASCANs, began a year's training and evaluation in July. This session was conducted from 07-29-90 through 07-31-90.
Development of a persistent chemical agent simulation system
NASA Technical Reports Server (NTRS)
1983-01-01
A Persistent Chemical Agent Simulation System was developed (PCASS) to simulate, for force-on-force training exercises, the field environment produced by the presence of persistent chemical agents. Such a simulant system must satisfy several requirements to be of value as a training aid. Specifically, it must provide for realistic training which will generate competency in at least the following areas: (1) detection of the persistent agent presence; (2) proper use of protective equipment and procedures; (3) determination of the extent of contamination; and (4) decontamination of equipment and personnel.
Kelly, Robert E; Mellins, Robert B; Shamberger, Robert C; Mitchell, Karen K; Lawson, M Louise; Oldham, Keith T; Azizkhan, Richard G; Hebra, Andre V; Nuss, Donald; Goretsky, Michael J; Sharp, Ronald J; Holcomb, George W; Shim, Walton K T; Megison, Stephen M; Moss, R Lawrence; Fecteau, Annie H; Colombani, Paul M; Cooper, Dan; Bagley, Traci; Quinn, Amy; Moskowitz, Alan B; Paulson, James F
2013-12-01
A multicenter study of pectus excavatum was described previously. This report presents our final results. Patients treated surgically at 11 centers were followed prospectively. Each underwent a preoperative evaluation with CT scan, pulmonary function tests, and body image survey. Data were collected about associated conditions, complications, and perioperative pain. One year after treatment, patients underwent repeat chest CT scan, pulmonary function tests, and body image survey. A subset of 50 underwent exercise pulmonary function testing. Of 327 patients, 284 underwent Nuss procedure and 43 underwent open procedure without mortality. Of 182 patients with complete follow-up (56%), 18% had late complications, similarly distributed, including substernal bar displacement in 7% and wound infection in 2%. Mean initial CT scan index of 4.4 improved to 3.0 post operation (severe >3.2, normal = 2.5). Computed tomography index improved at the deepest point (xiphoid) and also upper and middle sternum. Pulmonary function tests improved (forced vital capacity from 88% to 93%, forced expiratory volume in 1 second from 87% to 90%, and total lung capacity from 94% to 100% of predicted (p < 0.001 for each). VO2 max during peak exercise increased by 10.1% (p = 0.015) and O2 pulse by 19% (p = 0.007) in 20 subjects who completed both pre- and postoperative exercise tests. There is significant improvement in lung function at rest and in VO2 max and O2 pulse after surgical correction of pectus excavatum, with CT index >3.2. Operative correction significantly reduces CT index and markedly improves the shape of the entire chest, and can be performed safely in a variety of centers. Copyright © 2013 American College of Surgeons. Published by Elsevier Inc. All rights reserved.
10 CFR 1049.6 - Exercise of arrest authority-Use of non-deadly force.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 4 2010-01-01 2010-01-01 false Exercise of arrest authority-Use of non-deadly force. 1049... OF FORCE BY PROTECTIVE FORCE OFFICERS OF THE STRATEGIC PETROLEUM RESERVE § 1049.6 Exercise of arrest authority—Use of non-deadly force. (a) When a Protective Force Officer is authorized to make an arrest as...
Ciucci, Michelle R; Schaser, Allison J; Russell, John A
2013-09-01
Unilateral lesions to the medial forebrain bundle with 6-hydroxydopamine (6-OHDA) lead to force and timing deficits during a complex licking task. We hypothesized that training targeting tongue force generation during licking would improve timing and force measures and also lead to striatal dopamine sparing. Nine month-old male Fisher344/Brown Norway rats were used in this experiment. Sixteen rats were in the control condition and received tongue exercise (n=8) or no exercise (n=8). Fourteen rats were in the 6-OHDA lesion condition and underwent tongue exercise (n=7) and or no exercise (n=7). Following 4 weeks of training and post-training measures, all animals underwent bilateral stimulation of the hypoglossal nerves to measure muscle contractile properties and were then transcardially perfused and brain tissues collected for immunohistochemistry to examine striatal dopamine content. Results demonstrated that exercise animals performed better for maximal force, average force, and press rate than their no-exercise counterparts, and the 6-OHDA animals that underwent exercise performed as well as the Control No Exercise group. Interestingly, there were no group differences for tetanic muscle force, despite behavioral recovery of forces. Additionally, behavioral and neurochemical analyses indicate that there were no differences in striatal dopamine. Thus, targeted exercise can improve tongue force and timing deficits related to 6-OHDA lesions and this exercise likely has a central, versus peripheral (muscle strength) mechanism. However, this mechanism is not related to sparing of striatal dopamine content. Copyright © 2013 Elsevier B.V. All rights reserved.
Ishida, Hiroshi; Suehiro, Tadanobu; Watanabe, Susumu
2017-04-01
[Purpose] The purpose of this investigation was to compare the activities of the abdominal muscles and peak expiratory flow between forced vital capacity and fast expiration exercise. [Subjects and Methods] Fifteen healthy male participated in this study. Peak expiratory flow and electromyographic activities of the rectus abdominis, external oblique, and internal oblique/transversus abdominis muscles were measured during forced vital capacity and fast expiration exercise and then peak amplitude and its appearance time were obtained. [Results] Peak expiratory flow values were significantly higher during fast expiration exercise than during forced vital capacity. The internal oblique/transversus abdominis muscles showed significantly higher peak amplitude during fast expiration exercise than during forced vital capacity. However, there were no significant differences between forced vital capacity and fast expiration exercise in the rectus abdominis and external oblique muscles. There was no difference in the appearance time of the peak amplitude between forced vital capacity and fast expiration exercise in any muscle. [Conclusion] Fast expiration exercise might be beneficial for increasing expiratory speed and neuromuscular activation of the internal oblique/transversus abdominis muscles compared to forced vital capacity. These findings could be considered when recommending a variation of expiratory muscle strength training as part of pulmonary rehabilitation programs.
Dhahbi, Wissem; Chaouachi, Anis; Dhahbi, Anis Ben; Cochrane, Jodie; Chèze, Laurence; Burnett, Angus; Chamari, Karim
2017-02-01
To examine differences between ground-reaction-force (GRF)-based parameters collected from 5 types of plyometric push-ups. Between-trials reliability and the relationships between parameters were also assessed. Thirty-seven highly active commando soldiers performed 3 trials of 5 variations of the plyometric push-up in a counterbalanced order: standard countermovement push-up (SCPu), standard squat push-up (SSPu), kneeling countermovement push-up (KCPu), kneeling squat push-up (KSPu), and drop-fall push-up (DFPu). Vertical GRF was measured during these exercises using a portable Kistler force plate. The GRF applied by the hands in the starting position (initial force supported), peak GRF and rate of force development during takeoff, flight time, impact force, and rate of force development impact on landing were determined. During standard-position exercises (SCPu and SSPu) the initial force supported and impact force were higher (P < .001) than with kneeling exercises (KCPu, KSPu, and DFPu). The peak GRF and rate of force development during takeoff were higher (P < .001) in the countermovement push-up exercises ([CMP] SCPu, KCPu, and DFPu) than squat push-up exercises ([SP] SSPu and KSPu). Furthermore, the flight time was greater (P < .001) during kneeling exercises than during standard-position exercises. A significant relationship (P < .01) between impact force and the rate of force development impact was observed for CMP and SP exercises (r = .83 and r = .62, respectively). The initial force supported was also negatively related (P < .01) to the flight time for both CMP and SP (r = -.74 and r = -.80, respectively). It was revealed that the initial force supported and the peak GRF during takeoff had excellent reliability; however, other parameters had poor absolute reliability. It is possible to adjust the intensity of plyometric push-up exercises and train athletes' muscle power by correctly interpreting GRF-based parameters. However, caution is required as some parameters had marginal absolute reliability.
Therapeutic physical exercise in neural injury: friend or foe?
Park, Kanghui; Lee, Seunghoon; Hong, Yunkyung; Park, Sookyoung; Choi, Jeonghyun; Chang, Kyu-Tae; Kim, Joo-Heon; Hong, Yonggeun
2015-12-01
[Purpose] The intensity of therapeutic physical exercise is complex and sometimes controversial in patients with neural injuries. This review assessed whether therapeutic physical exercise is beneficial according to the intensity of the physical exercise. [Methods] The authors identified clinically or scientifically relevant articles from PubMed that met the inclusion criteria. [Results] Exercise training can improve body strength and lead to the physiological adaptation of skeletal muscles and the nervous system after neural injuries. Furthermore, neurophysiological and neuropathological studies show differences in the beneficial effects of forced therapeutic exercise in patients with severe or mild neural injuries. Forced exercise alters the distribution of muscle fiber types in patients with neural injuries. Based on several animal studies, forced exercise may promote functional recovery following cerebral ischemia via signaling molecules in ischemic brain regions. [Conclusions] This review describes several types of therapeutic forced exercise and the controversy regarding the therapeutic effects in experimental animals versus humans with neural injuries. This review also provides a therapeutic strategy for physical therapists that grades the intensity of forced exercise according to the level of neural injury.
2017-04-06
commander in bringing stability to the region. This research paper will also evaluate the current capability of the AFMS International Health...education, exercises, materiel, leader, personnel, and facilities (DOTMLPF) analysis. This research paper is organized to describe the 1) concept...foreign security partners, and selected international organizations by supporting: 1) combined policies, plans, and procedures, including
Alomari, Mahmoud A; Khabour, Omar F; Alzoubi, Karem H; Alzubi, Mohammad A
2013-06-15
Multiple evidence suggest the importance of exercise for cognitive and brain functions. Few studies however, compared the behavioral and neural adaptations to force versus voluntary exercise training. Therefore, spatial learning and memory formation and brain-derived neurotrophic factor (BDNF) were examined in Wister male rats after 6 weeks of either daily forced swimming, voluntary running exercises, or sedentary. Learning capabilities and short, 5-hour, and long term memories improved (p<0.05) similarly in the exercise groups, without changes (p>0.05) in the sedentary. Likewise, both exercises resulted in increased (p<0.05) hippocampal BDNF level. The results suggest that forced and voluntary exercises can similarly enhance cognitive- and brain-related tasks, seemingly vie the BDNF pathway. These data further confirm the health benefits of exercise and advocate both exercise modalities to enhance behavioral and neural functions. Copyright © 2013 Elsevier B.V. All rights reserved.
Bedno, Sheryl; Hauret, Keith; Loringer, Kelly; Kao, Tzu-Cheg; Mallon, Timothy; Jones, Bruce
2014-11-01
The aim of this study was to document risk factors for any injury and sports- and exercise-related injuries, including personal and occupational stress among active duty service members (SMs) in the Air Force, Army, Marine Corps, and Navy. A total of 10,692 SMs completed the April 2008 Status of Forces Survey of Active Duty Members. The survey asked about demographics, personal stress and occupational stress, injuries from any cause, and participation in sports- and exercise- related activities in the past year. The survey used a complex sampling procedure to create a representative sample of SMs. Logistic regression was used to examine the associations of injury outcomes with potential risk factors. 49% of SMs sought medical care for an injury in the past year and 25% sustained a sports- and exercise-related activities injury. Odds of injury were higher for the Army and Marine Corps than for the Air Force or Navy. This survey showed that higher personal and occupational stress was associated with higher risks of injury. SMs who experienced higher levels of personal or occupational stress reported higher risks of injuries. The effects of stress reduction programs on injury risks should be evaluated in military and other young physically active populations. Reprint & Copyright © 2014 Association of Military Surgeons of the U.S.
Jannig, Paulo R; Alves, Christiano R R; Voltarelli, Vanessa A; Bozi, Luiz H M; Vieira, Janaina S; Brum, Patricia C; Bechara, Luiz R G
2017-12-15
The current study tested the hypotheses that 1) an acute bout of aerobic exercise impairs isolated skeletal muscle contractile properties and 2) N-acetylcysteine (a thiol antioxidant; NAC) administration can restore the impaired muscle contractility after exercise. At rest or immediately after an acute bout of aerobic exercise, extensor digitorum longus (EDL) and soleus muscles from male Wistar rats were harvested for ex vivo skeletal muscle contraction experiments. Muscles from exercised animals were incubated in Krebs Ringer's buffer in absence or presence of 20mM of NAC. Force capacity and fatigue properties were evaluated. Exercised EDL and soleus displayed lower force production across various stimulation frequencies (p<0.001), indicating that skeletal muscle force production was impaired after an acute bout of exercise. However, NAC treatment restored the loss of force production in both EDL and soleus after fatiguing exercise (p<0.05). Additionally, NAC treatment increased relative force production at different time points during a fatigue-induced protocol, suggesting that NAC treatment mitigates fatigue induced by successive contractions. NAC treatment improves force capacity and fatigue properties in ex vivo skeletal muscle from rats submitted to an acute bout of aerobic exercise. Copyright © 2017 Elsevier Inc. All rights reserved.
10 CFR 1049.7 - Exercise of arrest authority-Use of deadly force.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 4 2012-01-01 2012-01-01 false Exercise of arrest authority-Use of deadly force. 1049.7 Section 1049.7 Energy DEPARTMENT OF ENERGY (GENERAL PROVISIONS) LIMITED ARREST AUTHORITY AND USE OF FORCE BY PROTECTIVE FORCE OFFICERS OF THE STRATEGIC PETROLEUM RESERVE § 1049.7 Exercise of arrest authority...
10 CFR 1049.7 - Exercise of arrest authority-Use of deadly force.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 4 2013-01-01 2013-01-01 false Exercise of arrest authority-Use of deadly force. 1049.7 Section 1049.7 Energy DEPARTMENT OF ENERGY (GENERAL PROVISIONS) LIMITED ARREST AUTHORITY AND USE OF FORCE BY PROTECTIVE FORCE OFFICERS OF THE STRATEGIC PETROLEUM RESERVE § 1049.7 Exercise of arrest authority...
10 CFR 1049.7 - Exercise of arrest authority-Use of deadly force.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 4 2014-01-01 2014-01-01 false Exercise of arrest authority-Use of deadly force. 1049.7 Section 1049.7 Energy DEPARTMENT OF ENERGY (GENERAL PROVISIONS) LIMITED ARREST AUTHORITY AND USE OF FORCE BY PROTECTIVE FORCE OFFICERS OF THE STRATEGIC PETROLEUM RESERVE § 1049.7 Exercise of arrest authority...
10 CFR 1049.7 - Exercise of arrest authority-Use of deadly force.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 4 2011-01-01 2011-01-01 false Exercise of arrest authority-Use of deadly force. 1049.7 Section 1049.7 Energy DEPARTMENT OF ENERGY (GENERAL PROVISIONS) LIMITED ARREST AUTHORITY AND USE OF FORCE BY PROTECTIVE FORCE OFFICERS OF THE STRATEGIC PETROLEUM RESERVE § 1049.7 Exercise of arrest authority...
10 CFR 1049.7 - Exercise of arrest authority-Use of deadly force.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 4 2010-01-01 2010-01-01 false Exercise of arrest authority-Use of deadly force. 1049.7 Section 1049.7 Energy DEPARTMENT OF ENERGY (GENERAL PROVISIONS) LIMITED ARREST AUTHORITY AND USE OF FORCE BY PROTECTIVE FORCE OFFICERS OF THE STRATEGIC PETROLEUM RESERVE § 1049.7 Exercise of arrest authority...
STS-35 MS Hoffman drains LES after water egress exercises in JSC's WETF
NASA Technical Reports Server (NTRS)
1990-01-01
STS-35 Mission Specialist (MS) Jeffrey A. Hoffman drains his launch and entry suit (LES) by propping himself upside down against a chair. Training personnel (left) and Pilot Guy S. Gardner watch as Hoffman's head stand forces water from his suit. Crewmembers were participating in launch emergency egress procedures in JSC's Weightless Environment Training Facility (WETF) Bldg 29. Various WETF mockups are visible in the background.
Proceedings of Users’ Stress Workshop (8th) Held San Antonio, Texas on September 24 - 27, 1991
1991-09-01
EMOR’can be interwoven with other clinical procedures (e.g., relaxation training, hypnosis , visualization exercises) and integrated into one’s...testimony in forensic cases for Air Force members who refused to be deployed. One staff psychologist was interviewed by a local television station regarding...application of behavioral medicine Interventions to Include biofeedback, relaxation techniques, performance enhancement techniques, hypnosis , altered states
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ji, Jian-feng; Ji, Sheng-jun; Sun, Rui
Highlights: •Forced exercise can ameliorate WBI induced cognitive impairment in our rat model. •Mature BDNF plays an important role in the effects of forced exercise. •Exercise may be a possible treatment of the radiation-induced cognitive impairment. -- Abstract: Cranial radiotherapy induces progressive and debilitating cognitive deficits, particularly in long-term cancer survivors, which may in part be caused by the reduction of hippocampal neurogenesis. Previous studies suggested that voluntary exercise can reduce the cognitive impairment caused by radiation therapy. However, there is no study on the effect of forced wheel exercise and little is known about the molecular mechanisms mediating themore » effect of exercise. In the present study, we investigated whether the forced running exercise after irradiation had the protective effects of the radiation-induced cognitive impairment. Sixty-four Male Sprague–Dawley rats received a single dose of 20 Gy or sham whole-brain irradiation (WBI), behavioral test was evaluated using open field test and Morris water maze at 2 months after irradiation. Half of the rats accepted a 3-week forced running exercise before the behavior detection. Immunofluorescence was used to evaluate the changes in hippocampal neurogenesis and Western blotting was used to assess changes in the levels of mature brain-derived neurotrophic factor (BDNF), phosphorylated tyrosine receptor kinase B (TrkB) receptor, protein kinase B (Akt), extracellular signal-regulated kinase (ERK), calcium-calmodulin dependent kinase (CaMKII), cAMP-calcium response element binding protein (CREB) in the BDNF–pCREB signaling. We found forced running exercise significantly prevented radiation-induced cognitive deficits, ameliorated the impairment of hippocampal neurogenesis and attenuated the down-regulation of these proteins. Moreover, exercise also increased behavioral performance, hippocampal neurogenesis and elevated BDNF–pCREB signaling in non-irradiation group. These results suggest that forced running exercise offers a potentially effective treatment for radiation-induced cognitive deficits.« less
Preparing for Large-Force Exercises with Distributed Simulation: A Panel Presentation
2010-07-01
Preparing for Large Force Exercises with Distributed Simulation: A Panel Presentation Peter Crane, Winston Bennett, Michael France Air Force...used distributed simulation training to complement live-fly exercises to prepare for LFEs. In this panel presentation , the speakers will describe... presentations on how detailed analysis of training needs is necessary to structure simulator scenarios and how future training exercises could be made more
Sasaki, Hiroyuki; Hattori, Yuta; Ikeda, Yuko; Kamagata, Mayo; Iwami, Shiho; Yasuda, Shinnosuke; Tahara, Yu; Shibata, Shigenobu
2016-01-01
Exercise during the inactive period can entrain locomotor activity and peripheral circadian clock rhythm in mice; however, mechanisms underlying this entrainment are yet to be elucidated. Here, we showed that the bioluminescence rhythm of peripheral clocks in PER2::LUC mice was strongly entrained by forced treadmill and forced wheel-running exercise rather than by voluntary wheel-running exercise at middle time during the inactivity period. Exercise-induced entrainment was accompanied by increased levels of serum corticosterone and norepinephrine in peripheral tissues, similar to the physical stress-induced response. Adrenalectomy with norepinephrine receptor blockers completely blocked the treadmill exercise-induced entrainment. The entrainment of the peripheral clock by exercise is independent of the suprachiasmatic nucleus clock, the main oscillator in mammals. The present results suggest that the response of forced exercise, but not voluntary exercise, may be similar to that of stress, and possesses the entrainment ability of peripheral clocks through the activation of the adrenal gland and the sympathetic nervous system. PMID:27271267
NASA Technical Reports Server (NTRS)
Boda, Wanda; Hargens, Alan R.; Aratow, Michael; Ballard, Richard E.; Hutchinson, Karen; Murthy, Gita; Campbell, James
1994-01-01
The purpose of this study is to compare footward forces, gait kinematics, and muscle activation patterns (EMG) generated during supine treadmill exercise against LBNP with the same parameters during supine bungee resistance exercise and upright treadmill exercise. We hypothesize that the three conditions will be similar. These results will help validate treadmill exercise during LBNP as a viable technique to simulate gravity during space flight. We are evaluating LBNP as a means to load the musculoskeletal and cardiovascular systems without gravity. Such loading should help prevent physiologic deconditioning during space flight. The best ground-based simulation of LBNP treadmill exercise in microgravity is supine LBNP treadmill exercise on Earth because the supine footward force vector is neither directed nor supplemented by Earth's gravity. Previous results from HR-95 ("Dynamics of footward force and leg intramuscular pressure during exercise against supine LBNP and upright standing in normal gravity") indicate that supine plantar-/dorsiflexion exercise in LBNP at 100 mm Hg produces similar ground reaction forces, musculoskeletal stress, and VO2 to those during upright exercise against Earth's gravity. However, elevations of leg volume and heart rate indicate that cardiovascular stress during 100 mm Hg LBNP exercise exceeds that during 1 g exercise. Therefore, the need arose to reduce the cardiovascular stress of LBNP, while maintaining LBNP-induced reaction forces. To this end, we determined that mild plantar-/dorsiflexion exercise during LBNP significantly improves tolerance to LBNP via musculovenous pumping and sympathoexcitation; more intense exercise such as walking and running may further improve LBNP tolerance. In addition, two methodological advances have permited us to simulate upright 1 g exercise better with supine LBNP exercise. First, a newly-designed waist seal allows decreased levels of LBNP (50-60 mm Hg) to produce a footward force equaling one body weight
The Development of the Hungarian Special Operations Forces Between 2003 and 2009
2011-03-01
also participated in the NATO SOF exercise “ Jackal Stone” in 2008 and 2009, along with the U.S. Task Force 1/10. These exercises provided the...exercise “ Jackal Stone” is another occasion where the 100 Ministry of Defense, Hungarian Defense Forces
Griesbach, Grace S; Tio, Delia L; Vincelli, Jennifer; McArthur, David L; Taylor, Anna N
2012-05-01
Voluntary exercise increases levels of brain-derived neurotrophic factor (BDNF) after traumatic brain injury (TBI) when it occurs during a delayed time window. In contrast, acute post-TBI exercise does not increase BDNF. It is well known that increases in glucocorticoids suppress levels of BDNF. Moreover, recent work from our laboratory showed that there is a heightened stress response after fluid percussion injury (FPI). In order to determine if a heightened stress response is also observed with acute exercise, at post-injury days 0-4 and 7-11, corticosterone (CORT) and adrenocorticotropic hormone (ACTH) release were measured in rats running voluntarily or exposed to two daily 20-min periods of forced running wheel exercise. Forced, but not voluntary exercise, continuously elevated CORT. ACTH levels were initially elevated with forced exercise, but decreased by post-injury day 7 in the control, but not the FPI animals. As previously reported, voluntary exercise did not increase BDNF in the FPI group as it did in the control animals. Forced exercise did not increase levels of BDNF in any group. It did, however, decrease hippocampal glucocorticoid receptors in the control group. The results suggest that exercise regimens with strong stress responses may not be beneficial during the early post-injury period.
Ward-Griffin, Catherine; Hobson, Sandra; Melles, Pauline; Kloseck, Marita; Vandervoort, Anthony; Crilly, Richard
2004-01-01
The purpose of this phenomenological study was to explore the everyday experience of community-dwelling elders, with particular attention to seniors' perceptions of safety, fear of falling, independence, and quality of life. We also aimed to identify contextual factors that influence the health of elders who had fallen and/or had a fear of falling. Data from in-depth interviews with a purposeful sample (n = 9) of elders were analysed using interpretative analysis procedures. Both individual and team analysis was undertaken until interpretations of the experiences of the participants were inductively developed and crystallized into a holistic interpretation of the participants' shared experience. The holistic experience was comprised of two opposing, dynamic life forces: exercising precaution and striving for independence. Within each life force, participants used five major strategies that simultaneously constrained and expanded their life space. Health-promoting practice and policy implications, as well as areas for further research, are discussed.
1998-06-05
Conditions, and Standards Prior to STXs 70 13. Knowledge of the Enemy Situation Prior to STXs 71 14. Frequency of MILES Free - Play Exercises 72...in addition to realistic sights, sounds, and smells. With regards to force-on-force, or free - play MILES exercises, uncertainty and initiative can...sounds, and (to some degree) smells of the battlefield; use MILES force-on-force, free - play exercises to incorporate cognitive mental Stressors and
Foot-ground reaction force during resistive exercise in parabolic flight
NASA Technical Reports Server (NTRS)
Lee, Stuart M C.; Cobb, Kendall; Loehr, James A.; Nguyen, Daniel; Schneider, Suzanne M.
2004-01-01
INTRODUCTION: An interim resistance exercise device (iRED) was designed to provide resistive exercise as a countermeasure to spaceflight-induced loss of muscle strength and endurance as well as decreased bone mineral density. The purpose of this project was to compare foot-ground reaction force during iRED exercise in normal gravity (1 G) vs. microgravity (0 G) achieved during parabolic flight. METHODS: There were four subjects who performed three exercises (squat, heel raise, and deadlift) using the iRED during 1 G and 0 G at a moderate intensity (60% of maximum strength during deadlift exercise). Foot-ground reaction force was measured in the three orthogonal axes (x, y, z) using a force plate, and the magnitude of the resultant force vector was calculated (r = square root(x2 + y2 + z2)). Linear displacement (LD) was measured using a linear transducer. Peak force (Fpeak) and an index of total work (TWi) were calculated using a customized computer program. Paired t-tests were used to test if significant differences (p < or = 0.05) were observed between 1 G and 0 G exercise. RESULTS: Fpeak and TWi measured in the resultant axis were significantly less in 0 G for each of the exercises tested. During 0 G, Fpeak was 42-46% and TWi was 33-37% of that measured during 1 G. LD and average time to complete each repetition were not different from 1 G to 0 G. CONCLUSIONS: Crewmembers who perform resistive exercises during spaceflight that include the movement of a large portion of their body mass will require much greater external resistive force during 0 G than 1 G exercise to provide a sufficient stimulus to maintain muscle and bone mass.
Pérez-Castilla, Alejandro; García-Ramos, Amador
2018-07-01
Pérez-Castilla, A and García-Ramos, A. Evaluation of the most reliable procedure of determining jump height during the loaded countermovement jump exercise: Take-off velocity vs. flight time. J Strength Cond Res 32(7): 2025-2030, 2018-This study aimed to compare the reliability of jump height between the 2 standard procedures of analyzing force-time data (take-off velocity [TOV] and flight time [FT]) during the loaded countermovement (CMJ) exercise performed with a free-weight barbell and in a Smith machine. The jump height of 17 men (age: 22.2 ± 2.2 years, body mass: 75.2 ± 7.1 kg, and height: 177.0 ± 6.0 cm) was tested in 4 sessions (twice for each CMJ type) against external loads of 17, 30, 45, 60, and 75 kg. Jump height reliability was comparable between the TOV (coefficient of variation [CV]: 6.42 ± 2.41%) and FT (CV: 6.53 ± 2.17%) during the free-weight CMJ, but it was higher for the FT when the CMJ was performed in a Smith machine (CV: 11.34 ± 3.73% for TOV and 5.95 ± 1.12% for FT). Bland-Altman plots revealed trivial differences (≤0.27 cm) and no heteroscedasticity of the errors (R ≤ 0.09) for the jump height obtained by the TOV and FT procedures, whereas the random error between both procedures was higher for the CMJ performed in the Smith machine (2.02 cm) compared with the free-weight barbell (1.26 cm). Based on these results, we recommend the FT procedure to determine jump height during the loaded CMJ performed in a Smith machine, whereas the TOV and FT procedures provide similar reliability during the free-weight CMJ.
Foot-Ground Reaction Force During Resistance Exercise in Parabolic Flight
NASA Technical Reports Server (NTRS)
Lee, Stuart M. C.; Cobb, Kendall; Loehr, James A.; Nguyen, Daniel; Schneider, Suzanne M.
2003-01-01
An interim Resistance Exercise Device (iRED) was designed to provide resistive exercise as a countermeasure to space flight-induced loss of muscle strength and endurance as well as decreased bone mineral density. The purpose of this project was to compare foot-ground reaction force during iRED exercise in normal gravity (l-g) versus micro gravity (O-g) achieved during parabolic flight. METHODS: Four subjects performed three exercises using the iRED (squat, heel raise, and deadlift) during I-g and O-g at a moderate intensity (60% of maximum strength during deadlift exercise). Foot-ground reaction force was measured in three axes (x,y,z) using a force plate, and the magnitude of the resultant force vector was calculated (r = X 2 + y2 + Z2 ). Range of motion (ROM) was measured using a linear encoder. Peak force (PkF) and total work (TW) were calculated using a customized computer program. Paired t-tests were used to test if significant differences (p.::::0.05) were observed between I-g and O-g exercise. RESULTS: PkF and TW measured in the resultant axis were significantly less in O-g for each of the exercises tested. During O-g, PkF was 42-46% and TW was 33- 37% of that measured during I-g. ROM and average time to complete each repetition were not different from I-g to O-g. CONCLUSIONS: When performing exercises in which body mass is a portion of the resistance during I-g, PkF and TW measured during resistive exercise were reduced approximately 60-70% during O-g. Thus, a resistive exercise device during O-g will be required to provided higher resistances to induce a similar training stimulus to that on Earth.
Arnold, Jennifer C; Salvatore, Michael F
2014-08-22
There is a major increase in the awareness of the positive impact of exercise on improving several disease states with neurobiological basis; these include improving cognitive function and physical performance. As a result, there is an increase in the number of animal studies employing exercise. It is argued that one intrinsic value of forced exercise is that the investigator has control over the factors that can influence the impact of exercise on behavioral outcomes, notably exercise frequency, duration, and intensity of the exercise regimen. However, compliance in forced exercise regimens may be an issue, particularly if potential confounds of employing foot-shock are to be avoided. It is also important to consider that since most cognitive and locomotor impairments strike in the aged individual, determining impact of exercise on these impairments should consider using aged rodents with a highest possible level of compliance to ensure minimal need for test subjects. Here, the pertinent steps and considerations necessary to achieve nearly 100% compliance to treadmill exercise in an aged rodent model will be presented and discussed. Notwithstanding the particular exercise regimen being employed by the investigator, our protocol should be of use to investigators that are particularly interested in the potential impact of forced exercise on aging-related impairments, including aging-related Parkinsonism and Parkinson's disease.
Rees, J D; Lichtwark, G A; Wolman, R L; Wilson, A M
2008-10-01
Degenerative disorders of tendons present an enormous clinical challenge. They are extremely common, prone to recur and existing medical and surgical treatments are generally unsatisfactory. Recently eccentric, but not concentric, exercises have been shown to be highly effective in managing tendinopathy of the Achilles (and other) tendons. The mechanism for the efficacy of these exercises is unknown although it has been speculated that forces generated during eccentric loading are of a greater magnitude. Our objective was to determine the mechanism for the beneficial effect of eccentric exercise in Achilles tendinopathy. Seven healthy volunteers performed eccentric and concentric loading exercises for the Achilles tendon. Tendon force and length changes were determined using a combination of motion analysis, force plate data and real-time ultrasound. There was no significant difference in peak tendon force or tendon length change when comparing eccentric with concentric exercises. However, high-frequency oscillations in tendon force occurred in all subjects during eccentric exercises but were rare in concentric exercises (P < 0.0001). These oscillations provide a mechanism to explain the therapeutic benefit of eccentric loading in Achilles tendinopathy and parallels recent evidence from bone remodelling, where the frequency of the loading cycles is of more significance than the absolute magnitude of the force.
Code of Federal Regulations, 2010 CFR
2010-01-01
... procedures in exercising fiduciary powers? 550.140 Section 550.140 Banks and Banking OFFICE OF THRIFT SUPERVISION, DEPARTMENT OF THE TREASURY FIDUCIARY POWERS OF SAVINGS ASSOCIATIONS Exercising Fiduciary Powers § 550.140 Must I adopt and follow written policies and procedures in exercising fiduciary powers? You...
The Effects of Creatine Supplementation on Exercise-Induced Muscle Damage.
ERIC Educational Resources Information Center
Rawson, Eric S.; Gunn, Bridget; Clarkson, Priscilla M.
2001-01-01
Investigated the effects of oral creatine (Cr) supplementation on markers of exercise-induced muscle damage following high-force eccentric exercise in men randomly administered Cr or placebo. Results indicated that 5 days of Cr supplementation did not reduce indirect makers of muscle damage or enhance recovery from high-force eccentric exercise.…
Grigg, Nicole L; Wearing, Scott C; O'Toole, John M; Smeathers, James E
2014-01-01
To investigate the frequency characteristics of the ground reaction force (GRF) recorded throughout the eccentric Achilles tendon rehabilitation programme described by Alfredson. Controlled laboratory study, longitudinal. Nine healthy adult males performed six sets (15 repetitions per set) of eccentric ankle exercise. Ground reaction force was recorded throughout the exercise protocol. For each exercise repetition the frequency power spectrum of the resultant ground reaction force was calculated and normalised to total power. The magnitude of peak relative power within the 8-12 Hz bandwidth and the frequency at which this peak occurred was determined. The magnitude of peak relative power within the 8-12 Hz bandwidth increased with each successive exercise set and following the 4th set (60 repetitions) of exercise the frequency at which peak relative power occurred shifted from 9 to 10 Hz. The increase in magnitude and frequency of ground reaction force vibrations with an increasing number of exercise repetitions is likely connected to changes in muscle activation with fatigue and tendon conditioning. This research illustrates the potential for the number of exercise repetitions performed to influence the tendons' mechanical environment, with implications for tendon remodelling and the clinical efficacy of eccentric rehabilitation programmes for Achilles tendinopathy. Copyright © 2013 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.
5 CFR 9701.512 - Conferring on procedures for the exercise of management rights.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 5 Administrative Personnel 3 2014-01-01 2014-01-01 false Conferring on procedures for the exercise... Conferring on procedures for the exercise of management rights. (a) As provided by § 9701.511(c), management... this section will delay the exercise of a management right under § 9701.511(a)(1) and (2). (d...
5 CFR 9701.512 - Conferring on procedures for the exercise of management rights.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 5 Administrative Personnel 3 2011-01-01 2011-01-01 false Conferring on procedures for the exercise... Conferring on procedures for the exercise of management rights. (a) As provided by § 9701.511(c), management... this section will delay the exercise of a management right under § 9701.511(a)(1) and (2). (d...
5 CFR 9701.512 - Conferring on procedures for the exercise of management rights.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 5 Administrative Personnel 3 2012-01-01 2012-01-01 false Conferring on procedures for the exercise... Conferring on procedures for the exercise of management rights. (a) As provided by § 9701.511(c), management... this section will delay the exercise of a management right under § 9701.511(a)(1) and (2). (d...
5 CFR 9701.512 - Conferring on procedures for the exercise of management rights.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 5 Administrative Personnel 3 2013-01-01 2013-01-01 false Conferring on procedures for the exercise... Conferring on procedures for the exercise of management rights. (a) As provided by § 9701.511(c), management... this section will delay the exercise of a management right under § 9701.511(a)(1) and (2). (d...
de Ruiter, C J; Elzinga, M J H; Verdijk, P W L; van Mechelen, W; de Haan, A
2005-08-01
We investigated the effects of low frequency fatigue (LFF) on post-exercise changes in rectified surface EMG (rsEMG) and single motor unit EMG (smuEMG) in vastus lateralis muscle (n = 9). On two experimental days the knee extensors were fatigued with a 60-s-isometric contraction (exercise) at 50% maximal force capacity (MFC). On the first day post-exercise (15 s, 3, 9, 15, 21 and 27 min) rsEMG and electrically-induced (surface stimulation) forces were investigated. SmuEMG was obtained on day two. During short ramp and hold (5 s) contractions at 50% MFC, motor unit discharges of the same units were followed over time. Post-exercise MFC and tetanic force (100 Hz stimulation) recovered to about 90% of the pre-exercise values, but recovery with 20 Hz stimulation was less complete: the 20-100 Hz force ratio (mean +/- SD) decreased from 0.65+/-0.06 (pre-exercise) to 0.56+/-0.04 at 27 min post-exercise (P<0.05), indicative of LFF. At 50% MFC, pre-exercise rsEMG (% pre-exercise maximum) and motor unit discharge rate were 51.1 +/- 12.7% and 14.1 +/- 3.7 (pulses per second; pps) respectively, 15 s post-exercise the respective values were 61.4 +/- 15.4% (P<0.05) and 13.2 +/- 5.6 pps (P>0.05). Thereafter, rsEMG (at 50% MFC) remained stable but motor unit discharge rate significantly increased to 17.7 +/- 3.9 pps 27 min post-exercise. The recruitment threshold decreased (P<0.05) from 27.7 +/- 6.6% MFC before exercise to 25.2 +/- 6.7% 27 min post-exercise. The increase in discharge rate was significantly greater than could be expected from the decrease in recruitment threshold. Thus, post-exercise LFF was compensated by increased motor unit discharge rates which could only partly be accounted for by the small decrease in motor unit recruitment threshold.
Miyatake, Kazumasa; Muneta, Takeshi; Ojima, Miyoko; Yamada, Jun; Matsukura, Yu; Abula, Kahaer; Sekiya, Ichiro; Tsuji, Kunikazu
2016-05-31
Although osteoarthritis (OA) is a multifactorial disease, little has been reported regarding the cooperative interaction among these factors on cartilage metabolism. Here we examined the synergistic effect of ovariectomy (OVX) and excessive mechanical stress (forced running) on articular cartilage homeostasis in a mouse model resembling a human postmenopausal condition. Mice were randomly divided into four groups, I: Sham, II: OVX, III: Sham and forced running (60 km in 6 weeks), and IV: OVX and forced running. Histological and immunohistochemical analyses were performed to evaluate the degeneration of articular cartilage and synovitis in the knee joint. Morphological changes of subchondral bone were analyzed by micro-CT. Micro-CT analyses showed significant loss of metaphyseal trabecular bone volume/tissue volume (BV/TV) after OVX as described previously. Forced running increased the trabecular BV/TV in all mice. In the epiphyseal region, no visible alteration in bone morphology or osteophyte formation was observed in any of the four groups. Histological analysis revealed that OVX or forced running respectively had subtle effects on cartilage degeneration. However, the combination of OVX and forced running synergistically enhanced synovitis and articular cartilage degeneration. Although morphological changes in chondrocytes were observed during OA initiation, no signs of bone marrow edema were observed in any of the four experimental groups. We report the coordinate and synergistic effects of extensive treadmill exercise and ovariectomy on articular cartilage degeneration. Since no surgical procedure was performed on the knee joint directly in this model, this model is useful in addressing the molecular pathogenesis of naturally occurring OA.
Neurochemical and behavioral indices of exercise reward are independent of exercise controllability
Herrera, Jonathan J; Fedynska, Sofiya; Ghasem, Parsa R; Wieman, Tyler; Clark, Peter J; Gray, Nathan; Loetz, Esteban; Campeau, Serge; Fleshner, Monika; Greenwood, Benjamin N
2016-01-01
Brain reward circuits are implicated in stress-related psychiatric disorders. Exercise reduces the incidence of stress-related disorders, but the contribution of exercise reward to stress resistance is unknown. Exercise-induced stress resistance is independent of exercise controllability; both voluntary and forced wheel running protect rats against anxiety- and depression-like behavioral consequences of stress. Voluntary exercise is a natural reward, but whether rats find forced wheel running rewarding is unknown. Moreover, the contribution of dopamine (DA) and striatal reward circuits to exercise reward is not well characterized. Adult, male rats were assigned to locked wheels, voluntary running (VR), or forced running (FR) groups. FR rats were forced to run in a pattern resembling rats' natural wheel running behavior. Both VR and FR increased the reward-related plasticity marker ΔFosB in the dorsal striatum (DS) and nucleus accumbens (NAc), and increased activity of DA neurons in the lateral ventral tegmental area (VTA), as revealed by immunohistochemistry for tyrosine hydroxylase (TH) and pCREB. Both VR and FR rats developed conditioned place preference (CPP) to the side of a CPP chamber paired with exercise. Re-exposure to the exercise-paired side of the CPP chamber elicited conditioned increases in cfos mRNA in direct pathway (dynorphin-positive) neurons in the DS and NAc in both VR and FR rats, and in TH-positive neurons in the lateral VTA of VR rats only. Results suggest that the rewarding effects of exercise are independent of exercise controllability and provide insight into the DA and striatal circuitries involved in exercise reward and exercise-induced stress resistance. PMID:26833814
Intramuscular pressure and electromyography as indexes of force during isokinetic exercise
NASA Technical Reports Server (NTRS)
Aratow, M.; Ballard, R. E.; Grenshaw, A. G.; Styf, J.; Watenpaugh, D. E.; Kahan, N. J.; Hargens, A. R.
1993-01-01
A direct method for measuring force production of specific muscles during dynamic exercise is presently unavailable. Previous studies indicate that both intramuscular pressure (IMP) and electromyography (EMG) correlate linearly with muscle contraction force during isometric exercise. The objective of this study was to compare IMP and EMG as linear assessors of muscle contraction force during dynamic exercise. IMP and surface EMG activity were recorded during concentric and eccentric isokinetic plantarflexion and dorsiflexion of the ankle joint from the tibialis anterior (TA) and soleus (SOL) muscles of nine male volunteers. Ankle torque was measured using a dynamometer, and IMP was measured via catheterization. IMP exhibited better linear correlation than EMG with ankle joint torque during concentric contractions of the SOL and the TA, as well as during eccentric contractions. IMP provides a better index of muscle contraction force than EMG during concentric and eccentric exercise through the entire range of torque. IMP reflects intrinsic mechanical properties of individual muscles, such as length-tension relationships, which EMG is unable to assess.
Kutzner, Ines; Dymke, Jörn; Damm, Philipp; Duda, Georg N.; Günzl, Reiner; Bergmann, Georg
2017-01-01
Aquatic exercises are widely used for rehabilitation or preventive therapies in order to enable mobilization and muscle strengthening while minimizing joint loading of the lower limb. The load reducing effect of water due to buoyancy is a main advantage compared to exercises on land. However, also drag forces have to be considered that act opposite to the relative motion of the body segments and require higher muscle activity. Due to these opposing effects on joint loading, the load-reducing effect during aquatic exercises remains unknown. The aim of this study was to quantify the joint loads during various aquatic exercises and to determine the load reducing effect of water. Instrumented knee and hip implants with telemetric data transfer were used to measure the resultant joint contact forces in 12 elderly subjects (6x hip, 6x knee) in vivo. Different dynamic, weight-bearing and non-weight-bearing activities were performed by the subjects on land and in chest-high water. Non-weight-bearing hip and knee flexion/extension was performed at different velocities and with additional Aquafins. Joint forces during aquatic exercises ranged between 32 and 396% body weight (BW). Highest forces occurred during dynamic activities, followed by weight-bearing and slow non-weight-bearing activities. Compared to the same activities on land, joint forces were reduced by 36–55% in water with absolute reductions being greater than 100%BW during weight-bearing and dynamic activities. During non-weight-bearing activities, high movement velocities and additional Aquafins increased the joint forces by up to 59% and resulted in joint forces of up to 301%BW. This study confirms the load reducing effect of water during weight-bearing and dynamic exercises. Nevertheless, high drag forces result in increased joint contact forces and indicate greater muscle activity. By the choice of activity, movement velocity and additional resistive devices joint forces can be modulated individually in the course of rehabilitation or preventive therapies. PMID:28319145
Kutzner, Ines; Richter, Anja; Gordt, Katharina; Dymke, Jörn; Damm, Philipp; Duda, Georg N; Günzl, Reiner; Bergmann, Georg
2017-01-01
Aquatic exercises are widely used for rehabilitation or preventive therapies in order to enable mobilization and muscle strengthening while minimizing joint loading of the lower limb. The load reducing effect of water due to buoyancy is a main advantage compared to exercises on land. However, also drag forces have to be considered that act opposite to the relative motion of the body segments and require higher muscle activity. Due to these opposing effects on joint loading, the load-reducing effect during aquatic exercises remains unknown. The aim of this study was to quantify the joint loads during various aquatic exercises and to determine the load reducing effect of water. Instrumented knee and hip implants with telemetric data transfer were used to measure the resultant joint contact forces in 12 elderly subjects (6x hip, 6x knee) in vivo. Different dynamic, weight-bearing and non-weight-bearing activities were performed by the subjects on land and in chest-high water. Non-weight-bearing hip and knee flexion/extension was performed at different velocities and with additional Aquafins. Joint forces during aquatic exercises ranged between 32 and 396% body weight (BW). Highest forces occurred during dynamic activities, followed by weight-bearing and slow non-weight-bearing activities. Compared to the same activities on land, joint forces were reduced by 36-55% in water with absolute reductions being greater than 100%BW during weight-bearing and dynamic activities. During non-weight-bearing activities, high movement velocities and additional Aquafins increased the joint forces by up to 59% and resulted in joint forces of up to 301%BW. This study confirms the load reducing effect of water during weight-bearing and dynamic exercises. Nevertheless, high drag forces result in increased joint contact forces and indicate greater muscle activity. By the choice of activity, movement velocity and additional resistive devices joint forces can be modulated individually in the course of rehabilitation or preventive therapies.
SABER: A Theater Level Wargame
1991-03-01
theater level conputerized wargame for the Air Force Wargaming Center, Maxwell AFB, Alabama to replace the Theater War Exercise (TWX), also known as... to replace the Theater War Exercise (TWX), also known as Agile. Given a recently developed land battle, this thesis’ effort links US Air Force...compu.eiized wargame for the Air Force Wargaming Center, Maxwell AFB, Alabama to replace the Theater War Exercise (TWX), also known as Agile. Saber is a
Romano, Michele; Carabalona, Roberta; Petrilli, Silvia; Sibilla, Paolo; Negrini, Stefano
2006-01-01
Objective To quantify and compare the forces exerted by scoliosis patients in fiberglass braces during exercises usually prescribed in departments where casts are made. The exercises are intended to increase corrective forces, activate muscles, stimulate ventilation and help the patient psychologically. Setting Outpatient care. Patients 17 consecutive adolescent patients wearing fiberglass brace for idiopathic scoliosis. Interventions Exercises (kyphotization, rotation, "escape from the pad") in different positions (sitting, supine, on all fours). Main outcome measure Pressure detected by the F-Socket System between the rib hump and the pad of the brace. Results In static and dynamic conditions, the position adopted did not alter the total pressure exerted by the brace, although the part of the sensor stimulated did vary. Kyphotization and rotation exercises produced a significant increase of pressure (+ 58.9% and +29.8%, respectively); however, the "escape from the pad" exercise, despite its name, did not produce any significant variation of pressure. Conclusion Exercises in the brace allow adjunctive forces to be applied on soft tissues and through them, presumably on the spine. Different exercises can be chosen to obtain different actions. Physical exercises and sporting activities are useful in mechanical terms, although other important actions should not be overlooked. PMID:16859544
Effects of exercise on biomechanical properties of the superficial digital flexor tendon in foals.
Cherdchutham, W; Meershoek, L S; van Weeren, P R; Barneveld, A
2001-12-01
To determine the effects of exercise on biomechanical properties of the superficial digital flexor tendon (SDFT) in foals. 43 Dutch Warmblood foals. From 1 week until 5 months of age, 14 foals were housed in stalls and not exercised, 14 foals were housed in stalls and exercised daily, and 15 foals were maintained at pasture. Eight foals in each group were euthanatized at 5 months, and remaining foals were housed together in a stall and paddock until euthanatized at 11 months. After euthanasia, SDFT were isolated and fit in a material testing system. Mean cross-sectional area (CSA) was measured and traction forces recorded. Normalized force at rupture (force(rup)), normalized force at 4% strain, strain at rupture, stress at 4% strain (stress(4%stain)), and stress at rupture were compared among and within groups. At 5 months, mean CSA and normalized force(rup) were significantly greater and stress(4%strain) significantly less in the pastured group, compared with the other groups. At 11 months, CSA and normalized force(rup) were not significantly different among groups, because force(rup) increased significantly from 5 to 11 months in the nonexercised group and decreased significantly in the pastured group. Exercise significantly affected the biomechanical properties of the SDFT in foals. Evenly distributed moderate- and low-intensity exercise at a young age may be more effective for development of strong, flexible tendons in horses than single episodes of high-intensity exercise superimposed on stall rest. This effect may impact later susceptibility to SDFT injury.
Kibblewhite, Julia R; Hegarty, Roisin S M; Stebbings, Simon; Treharne, Gareth J
2017-12-01
There is limited research on the role of enjoyment of exercise among people with arthritis. The aim of the present study was to determine distinct viewpoints on exercise held by people with arthritis, and how enjoyment features in these viewpoints. A Q-methodology study was conducted, which involved two interviews with people with rheumatoid arthritis, osteoarthritis or ankylosing spondylitis (aged 20-85 years). In the first interviews, 11 participants helped to create the Q-set, a set of statements reflecting a range of existing views on exercising. In the second interviews, 12 participants (nine of the 11 from the first interviews and three others) ranked the Q-set on a forced quasi-normal distribution of agreement. A Q-method factor analysis was carried out to determine groupings of participants with similar views on exercise. Four groupings were discovered, and defined in terms of rankings of statements and illustrative quotes from the ranking procedure. The first grouping had all changed their exercise habits after diagnosis with arthritis. The second grouping had a shared enjoyment for walking to stay healthy. The third grouping's viewpoints focused on knowledge about how much exercise they should carry out. The fourth grouping shared a sense of importance of being responsible for their health by exercising. These findings provide information about the role that enjoyment plays in motivating people with arthritis to exercise, although enjoyment of exercise was not expressed by all participants. People with arthritis who share these viewpoints on exercise enjoyment may require different forms of advice regarding feasible and enjoyable exercise. Copyright © 2016 John Wiley & Sons, Ltd.
ERIC Educational Resources Information Center
Ticcioni, Daniel A.
1981-01-01
A "Civil Litigation Exercise" (a litigation simulation) conducted during the second semester of a first year procedure course at the New England School of Law is described. The purpose of the exercise is to simulate the real world of adversary pleading and practice. The Civil Procedure Litigation exercises are appended. (MLW)
Ostadan, Fatemeh; Centeno, Carla; Daloze, Jean-Felix; Frenn, Mira; Lundbye-Jensen, Jesper; Roig, Marc
2016-12-01
A single bout of cardiovascular exercise performed immediately after practicing a motor task improves the long-term retention of the skill through an optimization of memory consolidation. However, the specific brain mechanisms underlying the effects of acute cardiovascular exercise on procedural memory are poorly understood. We sought to determine if a single bout of exercise modifies corticospinal excitability (CSE) during the early stages of memory consolidation. In addition, we investigated if changes in CSE are associated with exercise-induced off-line gains in procedural memory. Participants practiced a serial reaction time task followed by either a short bout of acute exercise or a similar rest period. To monitor changes in CSE we used transcranial magnetic stimulation applied to the primary motor cortex (M1) at baseline, 15, 35, 65 and 125min after exercise or rest. Participants in the exercise condition showed larger (∼24%) improvements in procedural memory through consolidation although differences between groups did not reach statistical significance. Exercise promoted an increase in CSE, which remained elevated 2h after exercise. More importantly, global increases in CSE following exercise correlated with the magnitude of off-line gains in skill level assessed in a retention test performed 8h after motor practice. A single bout of exercise modulates short-term neuroplasticity mechanisms subserving consolidation processes that predict off-line gains in procedural memory. Copyright © 2016 Elsevier Inc. All rights reserved.
10 CFR 1047.5 - Exercise of arrest authority-general guidelines.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 4 2011-01-01 2011-01-01 false Exercise of arrest authority-general guidelines. 1047.5 Section 1047.5 Energy DEPARTMENT OF ENERGY (GENERAL PROVISIONS) LIMITED ARREST AUTHORITY AND USE OF FORCE BY PROTECTIVE FORCE OFFICERS General Provisions § 1047.5 Exercise of arrest authority—general...
10 CFR 1047.5 - Exercise of arrest authority-general guidelines.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 4 2014-01-01 2014-01-01 false Exercise of arrest authority-general guidelines. 1047.5 Section 1047.5 Energy DEPARTMENT OF ENERGY (GENERAL PROVISIONS) LIMITED ARREST AUTHORITY AND USE OF FORCE BY PROTECTIVE FORCE OFFICERS General Provisions § 1047.5 Exercise of arrest authority—general...
10 CFR 1047.5 - Exercise of arrest authority-general guidelines.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 4 2013-01-01 2013-01-01 false Exercise of arrest authority-general guidelines. 1047.5 Section 1047.5 Energy DEPARTMENT OF ENERGY (GENERAL PROVISIONS) LIMITED ARREST AUTHORITY AND USE OF FORCE BY PROTECTIVE FORCE OFFICERS General Provisions § 1047.5 Exercise of arrest authority—general...
10 CFR 1047.5 - Exercise of arrest authority-general guidelines.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 4 2012-01-01 2012-01-01 false Exercise of arrest authority-general guidelines. 1047.5 Section 1047.5 Energy DEPARTMENT OF ENERGY (GENERAL PROVISIONS) LIMITED ARREST AUTHORITY AND USE OF FORCE BY PROTECTIVE FORCE OFFICERS General Provisions § 1047.5 Exercise of arrest authority—general...
10 CFR 1047.5 - Exercise of arrest authority-general guidelines.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 4 2010-01-01 2010-01-01 false Exercise of arrest authority-general guidelines. 1047.5 Section 1047.5 Energy DEPARTMENT OF ENERGY (GENERAL PROVISIONS) LIMITED ARREST AUTHORITY AND USE OF FORCE BY PROTECTIVE FORCE OFFICERS General Provisions § 1047.5 Exercise of arrest authority—general...
Radahmadi, Maryam; Alaei, Hojjatallah; Sharifi, Mohammad Reza; Hosseini, Nasrin
2015-10-01
Evidence suggests that there are positive effects of exercise on learning and memory. Moreover, some studies have demonstrated that forced exercise plays the role of a stressor. This study was aimed at investigating the effects of different timing of exercise and exercise withdrawal on memory, and serum and hippocampal corticosterone (CORT) levels. Wistar rats were randomly divided into five groups: control, sham, exercise-rest (exercise withdrawal), rest-exercise (exercised group), and exercise-exercise (continuous exercise). Rats were forced to run on a treadmill for 1 h/day at a speed 20-21-m/min. Memory function was evaluated by the passive avoidance test in different intervals (1, 7 and 21 days) after foot shock. Findings showed that after the exercise withdrawal, short-term and mid-term memories, had significant enhancement compared to the control group, while the long-term memory did not present this result. In addition, the serum and hippocampal CORT levels were at the basal levels after the rest period in the exercise-rest group. In the rest-exercise group, exercise improved mid- and long-term memories, whereas continuous exercise improved all types short-, mid- and long-term memories, particularly the mid-term memory. Twenty-one and forty-two days of exercise significantly decreased the serum and hippocampal CORT levels. It seems that exercise for at least 21 days with no rest could affect biochemical factors in the brain. Also, regular continuous exercise plays an important role in memory function. Hence, the duration and withdraw of exercise are important factors for the neurobiological aspects of the memory responses.
Greenwood, Benjamin N.; Spence, Katie G.; Crevling, Danielle M.; Clark, Peter J.; Craig, Wendy C.; Fleshner, Monika
2014-01-01
Exercise increases resistance against stress-related disorders such as anxiety and depression. Similarly, the perception of control is a powerful predictor of neurochemical and behavioral responses to stress, but whether the experience of choosing to exercise, and exerting control over that exercise, is a critical factor in producing exercise-induced stress resistance is unknown. The current studies investigated whether the protective effects of exercise against the anxiety- and depression-like consequences of stress are dependent on exercise controllability and a brain region implicated in the protective effects of controllable experiences, the medial prefrontal cortex. Adult male Fischer 344 rats remained sedentary, were forced to run on treadmills or motorised running wheels, or had voluntary access to wheels for 6 weeks. Three weeks after exercise onset, rats received sham surgery or excitotoxic lesions of the medial prefrontal cortex. Rats were exposed to home cage or uncontrollable tail shock treatment three weeks later. Shock-elicited fear conditioning and shuttle box escape testing occurred the next day. Both forced and voluntary wheel running, but not treadmill training, prevented the exaggerated fear conditioning and interference with escape learning produced by uncontrollable stress. Lesions of the medial prefrontal cortex failed to eliminate the protective effects of forced or voluntary wheel running. These data suggest that exercise controllability and the medial prefrontal cortex are not critical factors in conferring the protective effects of exercise against the affective consequences of stressor exposure, and imply that exercise perceived as forced may still benefit affect and mental health. PMID:23121339
Impact Forces of Plyometric Exercises Performed on Land and in Water
Donoghue, Orna A.; Shimojo, Hirofumi; Takagi, Hideki
2011-01-01
Background: Aquatic plyometric programs are becoming increasingly popular because they provide a less stressful alternative to land-based programs. Buoyancy reduces the impact forces experienced in water. Purpose: To quantify the landing kinetics during a range of typical lower limb plyometric exercises performed on land and in water. Study Design: Crossover design. Methods: Eighteen male participants performed ankle hops, tuck jumps, a countermovement jump, a single-leg vertical jump, and a drop jump from 30 cm in a biomechanics laboratory and in a swimming pool. Land and underwater force plates (Kistler) were used to obtain peak impact force, impulse, rate of force development, and time to reach peak force for the landing phase of each jump. Results: Significant reductions were observed in peak impact forces (33%-54%), impulse (19%-54%), and rate of force development (33%-62%) in water compared with land for the majority of exercises in this study (P < 0.05). Conclusions: The level of force reduction varies with landing technique, water depth, and participant height and body composition. Clinical Relevance: This information can be used to reintroduce athletes to the demands of plyometric exercises after injury. PMID:23016022
NASA Technical Reports Server (NTRS)
Murthy, G.; Watenpaugh, D. E.; Ballard, R. E.; Hargens, A. R.
1994-01-01
Exercise within a lower body negative pressure (LBNP) chamber in supine posture was compared with similar exercise against Earth's gravity (without LBNP) in upright posture in nine healthy male volunteers. We measured footward force with a force plate, pressure in soleus and tibialis anterior muscles of the leg with transducer-tipped catheters, calf volume by strain gauge plethysmography, heart rate, and systolic and diastolic blood pressures during two conditions: 1) exercise in supine posture within an LBNP chamber during 100-mmHg LBNP (exercise-LBNP) and 2) exercise in upright posture against Earth's gravity without LBNP (exercise-1 G). Subjects exercised their ankle joints (dorsi- and plantarflexions) for 5 min during exercise-LBNP and for 5 min during exercise-1 G. Mean footward force produced during exercise-LBNP (743 +/- 37 N) was similar to that produced during exercise-1 G (701 +/- 24 N). Peak contraction pressure in the antigravity soleus muscle during exercise-LBNP (115 +/- 10 mmHg) was also similar to that during exercise-1 G (103 +/- 13 mmHg). Calf volume increased significantly by 3.3 +/- 0.5% during exercise-LBNP compared with baseline values. Calf volume did not increase significantly during exercise-1 G. Heart rate was significantly higher during exercise-LBNP (99 +/- 5 beats/min) than during exercise-1 G (81 +/- 3 beats/min). These results indicate that exercise in supine posture within an LBNP chamber can produce similar musculoskeletal stress in the legs and greater systemic cardiovascular stress than exercise in the upright posture against Earth's gravity.
Minett, G M; Duffield, R; Billaut, F; Cannon, J; Portus, M R; Marino, F E
2014-08-01
This study examined the effects of post-exercise cooling on recovery of neuromuscular, physiological, and cerebral hemodynamic responses after intermittent-sprint exercise in the heat. Nine participants underwent three post-exercise recovery trials, including a control (CONT), mixed-method cooling (MIX), and cold-water immersion (10 °C; CWI). Voluntary force and activation were assessed simultaneously with cerebral oxygenation (near-infrared spectroscopy) pre- and post-exercise, post-intervention, and 1-h and 24-h post-exercise. Measures of heart rate, core temperature, skin temperature, muscle damage, and inflammation were also collected. Both cooling interventions reduced heart rate, core, and skin temperature post-intervention (P < 0.05). CWI hastened the recovery of voluntary force by 12.7 ± 11.7% (mean ± SD) and 16.3 ± 10.5% 1-h post-exercise compared to MIX and CONT, respectively (P < 0.01). Voluntary force remained elevated by 16.1 ± 20.5% 24-h post-exercise after CWI compared to CONT (P < 0.05). Central activation was increased post-intervention and 1-h post-exercise with CWI compared to CONT (P < 0.05), without differences between conditions 24-h post-exercise (P > 0.05). CWI reduced cerebral oxygenation compared to MIX and CONT post-intervention (P < 0.01). Furthermore, cooling interventions reduced cortisol 1-h post-exercise (P < 0.01), although only CWI blunted creatine kinase 24-h post-exercise compared to CONT (P < 0.05). Accordingly, improvements in neuromuscular recovery after post-exercise cooling appear to be disassociated with cerebral oxygenation, rather reflecting reductions in thermoregulatory demands to sustain force production. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Vacuum-Assisted, Constant-Force Exercise Device
NASA Technical Reports Server (NTRS)
Hansen, Christopher P.; Jensen, Scott
2006-01-01
The vacuum-assisted, constant-force exercise device (VAC-FED) has been proposed to fill a need for a safe, reliable exercise machine that would provide constant loads that could range from 20 to 250 lb (0.09 to 1.12 kN) with strokes that could range from 6 to 36 in. (0.15 to 0.91 m). The VAC-FED was originally intended to enable astronauts in microgravity to simulate the lifting of free weights, but it could just as well be used on Earth for simulated weight lifting and other constant-force exercises. Because the VAC-FED would utilize atmospheric/vacuum differential pressure instead of weights to generate force, it could weigh considerably less than either a set of free weights or a typical conventional exercise machine based on weights. Also, the use of atmospheric/ vacuum differential pressure to generate force would render the VAC-FED inherently safer, relative to free weights and to conventional exercise machines that utilize springs to generate forces. The overall function of the VAC-FED would be to generate a constant tensile force in an output cable, which would be attached to a bar, handle, or other exercise interface. The primary force generator in the VAC-FED would be a piston in a cylinder. The piston would separate a volume vented to atmosphere at one end of the cylinder from an evacuated volume at the other end of the cylinder (see figure). Hence, neglecting friction at the piston seals, the force generated would be nearly constant equal to the area of the piston multiplied by the atmospheric/vacuum differential pressure. In the vented volume in the cylinder, a direct-force cable would be looped around a pulley on the piston, doubling the stroke and halving the tension. One end of the direct-force cable would be anchored to a cylinder cap; the other end of the direct-force cable would be wrapped around a variable-ratio pulley that would couple tension to the output cable. As its name suggests, the variable-ratio pulley would contain a mechanism that could be used to vary the ratio between the tension in the direct-force cable and the tension in the output cable. This mechanism could contain gears, pulleys, and/or levers, for example.
Force and power characteristics of a resistive exercise device for use in space
NASA Astrophysics Data System (ADS)
Berg, Hans E.; Tesch, Per A.
We have developed a non-gravity dependent mechanical device, which provides resistance during coupled concentric and eccentric muscle actions, through the inertia of a spinning fly-wheel (Fly-Wheel Ergometry; FWE). Our research shows that lower-limb FWE exercise can produce forces and thus muscular stress comparable to what is typical of advanced resistance training using free weights. FWE also offers greater training stimuli during eccentric relative to concentric muscle actions, as evidenced by force and electromyographic (EMG) measurements. Muscle use of specific muscle groups, as assessed by the exercise-induced contrast shift of magnetic resonance images, is similar during lower-limb FWE and the barbell squat. Unlike free-weight exercise, FWE allows for maximal voluntary effort in each repetition of an exercise bout. Likewise, FWE exercise, not unassisted free-weight exercise, produces eccentric "overload". Collectively, the inherent features of this resistive exercise device and the results of the physiological evaluations we have performed, suggest that resistance exercise using FWE could be used as an effective exercise counter-measure in space. The flywheel principle can be employed to any exercise configuration and designed into a compact device allowing for exercises stressing those muscles and bone structures, which are thought to be most affected by long-duration spaceflight.
Physical Exercise and Individuals with Autism Spectrum Disorders: A Systematic Review
ERIC Educational Resources Information Center
Lang, Russell; Koegel, Lynn Kern; Ashbaugh, Kristen; Regester, April; Ence, Whitney; Smith, Whitney
2010-01-01
Studies involving physical exercise and individuals with autism spectrum disorders (ASD) were reviewed. Systematic search procedures identified 18 studies meeting predetermined inclusion criteria. These studies were evaluated in terms of: (a) participant characteristics, (b) type of exercise, (c) procedures used to increase exercise, (d) outcomes,…
14 CFR 1203b.104 - Exercise of arrest authority-general guidelines.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 5 2012-01-01 2012-01-01 false Exercise of arrest authority-general guidelines. 1203b.104 Section 1203b.104 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SECURITY PROGRAMS; ARREST AUTHORITY AND USE OF FORCE BY NASA SECURITY FORCE PERSONNEL § 1203b.104 Exercise...
14 CFR 1203b.104 - Exercise of arrest authority-general guidelines.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false Exercise of arrest authority-general guidelines. 1203b.104 Section 1203b.104 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SECURITY PROGRAMS; ARREST AUTHORITY AND USE OF FORCE BY NASA SECURITY FORCE PERSONNEL § 1203b.104 Exercise...
14 CFR 1203b.104 - Exercise of arrest authority-general guidelines.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 5 2013-01-01 2013-01-01 false Exercise of arrest authority-general guidelines. 1203b.104 Section 1203b.104 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SECURITY PROGRAMS; ARREST AUTHORITY AND USE OF FORCE BY NASA SECURITY FORCE PERSONNEL § 1203b.104 Exercise...
14 CFR 1203b.104 - Exercise of arrest authority-general guidelines.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 5 2011-01-01 2010-01-01 true Exercise of arrest authority-general guidelines. 1203b.104 Section 1203b.104 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SECURITY PROGRAMS; ARREST AUTHORITY AND USE OF FORCE BY NASA SECURITY FORCE PERSONNEL § 1203b.104 Exercise...
10 CFR 1049.5 - Exercise of arrest authority-General guidelines.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 4 2013-01-01 2013-01-01 false Exercise of arrest authority-General guidelines. 1049.5 Section 1049.5 Energy DEPARTMENT OF ENERGY (GENERAL PROVISIONS) LIMITED ARREST AUTHORITY AND USE OF FORCE BY PROTECTIVE FORCE OFFICERS OF THE STRATEGIC PETROLEUM RESERVE § 1049.5 Exercise of arrest authority...
10 CFR 1049.5 - Exercise of arrest authority-General guidelines.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 4 2011-01-01 2011-01-01 false Exercise of arrest authority-General guidelines. 1049.5 Section 1049.5 Energy DEPARTMENT OF ENERGY (GENERAL PROVISIONS) LIMITED ARREST AUTHORITY AND USE OF FORCE BY PROTECTIVE FORCE OFFICERS OF THE STRATEGIC PETROLEUM RESERVE § 1049.5 Exercise of arrest authority...
10 CFR 1049.5 - Exercise of arrest authority-General guidelines.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 4 2014-01-01 2014-01-01 false Exercise of arrest authority-General guidelines. 1049.5 Section 1049.5 Energy DEPARTMENT OF ENERGY (GENERAL PROVISIONS) LIMITED ARREST AUTHORITY AND USE OF FORCE BY PROTECTIVE FORCE OFFICERS OF THE STRATEGIC PETROLEUM RESERVE § 1049.5 Exercise of arrest authority...
10 CFR 1049.5 - Exercise of arrest authority-General guidelines.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 4 2012-01-01 2012-01-01 false Exercise of arrest authority-General guidelines. 1049.5 Section 1049.5 Energy DEPARTMENT OF ENERGY (GENERAL PROVISIONS) LIMITED ARREST AUTHORITY AND USE OF FORCE BY PROTECTIVE FORCE OFFICERS OF THE STRATEGIC PETROLEUM RESERVE § 1049.5 Exercise of arrest authority...
10 CFR 1049.5 - Exercise of arrest authority-General guidelines.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 4 2010-01-01 2010-01-01 false Exercise of arrest authority-General guidelines. 1049.5 Section 1049.5 Energy DEPARTMENT OF ENERGY (GENERAL PROVISIONS) LIMITED ARREST AUTHORITY AND USE OF FORCE BY PROTECTIVE FORCE OFFICERS OF THE STRATEGIC PETROLEUM RESERVE § 1049.5 Exercise of arrest authority...
50 CFR 404.9 - Armed Forces actions.
Code of Federal Regulations, 2011 CFR
2011-10-01
... Wildlife and Fisheries JOINT REGULATIONS (UNITED STATES FISH AND WILDLIFE SERVICE, DEPARTMENT OF THE... activities and exercises of the Armed Forces (including those carried out by the United States Coast Guard... environment and admitting of no other feasible solution. (c) All activities and exercises of the Armed Forces...
Motaghinejad, Majid; Motevalian, Manijeh; Larijani, Setare Farokhi; Khajehamedi, Zohreh
2015-01-01
Methylphenidate (MPH), a neural stimulant, can cause damages to brain; the chronic neurochemical and behavioral effects of MPH remain unclear. Exercise lowers stress and anxiety and can act as non-pharmacologic neuroprotective agent. In this study protective effects of exercise in MPH-induced anxiety, depression and cognition impairment were investigated. Seventy adult male rats were divided randomly into five groups. Group 1 served as negative control, received normal saline (0.2 ml/rat) for 21 days, group 2 and 3 (as positive controls) received MPH (10 and 20 mg/kg) for 21 days. Groups 4 and 5 concurrently were treated with MPH (10 and 20 mg/kg) and forced exercise for 21 days. On day 21, Elevated Plus Maze (EPM), Open Field Test (OFT), Forced Swim Test (FST) and Tail Suspension Test (TST) were used to investigate the level of anxiety and depression in animals. In addition between 17(th) and 21(th) days, Morris Water Maze (MWM) was applied to evaluate the effect of MPH on spatial learning and memory. MPH-treated animals indicated a reflective depression and anxiety in a dose-dependent manner in FST, EPM and TST which were significantly different from the control group and also can significantly attenuate the motor activity and anxiety in OFT. Forced exercise by treadmill can attenuate MPH-induced anxiety, depression and motor activity alteration in OFT. MPH also can disturb learning and memory in MWM and forced exercise can neutralize this effect of MPH. We conclude that forced exercise can be protective in brain against MPH-induced anxiety, depression and cognition alteration.
Foot forces induced through Tai Chi push-hand exercises.
Wong, Shiu Hong; Ji, Tianjian; Hong, Youlian; Fok, Siu Lun; Wang, Lin
2013-08-01
The low impact forces of Tai Chi push-hand exercises may be particularly suited for older people and for those with arthritis; however, the biomechanics of push-hand exercises have not previously been reported. This paper examines the ground reaction forces (GRFs) and plantar force distributions during Tai Chi push-hand exercises in a stationary stance with and without an opponent. Ten male Tai Chi practitioners participated in the study. The GRFs of each foot were measured in three perpendicular directions using two force plates (Kistler). The plantar force distribution of each foot was measured concurrently using an insole sensor system (Novel). The results showed that the average maximum vertical GRF of each foot was not more than 88% ± 6.1% of the body weight and the sum of the vertical forces (103% ± 1.4%) generated by the two feet approximately equals the body weight at any one time. The horizontal GRFs generated by the two feet were in the opposite directions and the measured mean peak values were not more than 12% ± 2.8% and 17% ± 4.3% of the body weight in the medio-lateral and antero-posterior directions respectively. Among the nine plantar areas, the toes sustained the greatest plantar force. This study indicates that push-hand exercises generate lower vertical forces than those induced by walking, bouncing, jumping and Tai Chi gait, and that the greatest plantar force is located in the toe area, which may have an important application in balance training particularly for older adults.
Pérez-Castilla, Alejandro; McMahon, John J; Comfort, Paul; García-Ramos, Amador
2017-07-31
The aims of this study were to compare the reliability and magnitude of jump height between the two standard procedures of analysing force platform data to estimate jump height (take-off velocity [TOV] and flight time [FT]) in the loaded squat jump (SJ) exercise performed with a free-weight barbell and in a Smith machine. Twenty-three collegiate men (age 23.1 ± 3.2 years, body mass 74.7 ± 7.3 kg, height 177.1 ± 7.0 cm) were tested twice for each SJ type (free-weight barbell and Smith machine) with 17, 30, 45, 60, and 75 kg loads. No substantial differences in reliability were observed between the TOV (Coefficient of variation [CV]: 9.88%; Intraclass correlation coefficient [ICC]: 0.82) and FT (CV: 8.68%; ICC: 0.88) procedures (CV ratio: 1.14), while the Smith SJ (CV: 7.74%; ICC: 0.87) revealed a higher reliability than the free-weight SJ (CV: 9.88%; ICC: 0.81) (CV ratio: 1.28). The TOV procedure provided higher magnitudes of jump height than the FT procedure for the loaded Smith machine SJ (systematic bias: 2.64 cm; P<0.05), while no significant differences between the TOV and FT procedures were observed in the free-weight SJ exercise (systematic bias: 0.26 cm; P>0.05). Heteroscedasticity of the errors was observed for the Smith machine SJ (r: 0.177) with increasing differences in favour of the TOV procedure for the trials with lower jump height (i.e. higher external loads). Based on these results the use of a Smith machine in conjunction with the FT more accurately determine jump height during the loaded SJ.
Paulus, David C; Reynolds, Michael C; Schilling, Brian K
2010-01-01
The ground reaction force during the concentric (raising) portion of the squat exercise was compared to that of isoinertial loading (free weights) for three pneumatically controlled resistance methods: constant resistance, cam force profile, and proportional force control based on velocity. Constant force control showed lower ground reaction forces than isoinertial loading throughout the range of motion (ROM). The cam force profile exhibited slightly greater ground reaction forces than isoinertial loading at 10 and 40% ROM with fifty-percent greater loading at 70% ROM. The proportional force control consistently elicited greater ground reaction force than isoinertial loading, which progressively ranged from twenty to forty percent increase over isoinertial loading except for being approximately equal at 85% ROM. Based on these preliminary results, the proportional control shows the most promise for providing loading that is comparable in magnitude to isoinertial loading. This technology could optimize resistance exercise for sport-specific training or as a countermeasure to atrophy during spaceflight.
Biomechanical Analysis of T2 Exercise
NASA Technical Reports Server (NTRS)
DeWitt, John K.; Ploutz-Snyder, Lori; Everett, Meghan; Newby, Nathaniel; Scott-Pandorf, Melissa; Guilliams, Mark E.
2010-01-01
Crewmembers regularly perform treadmill exercise on the ISS. With the implementation of T2 on ISS, there is now the capacity to obtain ground reaction force (GRF) data GRF data combined with video motion data allows biomechanical analyses to occur that generate joint torque estimates from exercise conditions. Knowledge of how speed and load influence joint torque will provide quantitative information on which exercise prescriptions can be based. The objective is to determine the joint kinematics, ground reaction forces, and joint kinetics associated with treadmill exercise on the ISS. This study will: 1) Determine if specific exercise speed and harness load combinations are superior to others in exercise benefit; and 2) Aid in the design of exercise prescriptions that will be most beneficial in maintaining crewmember health.
Implications of the new EEOC guidelines.
Dhanens, T P
1979-01-01
How can employers exercise their right to select employees without running afoul of the new guidelines? Are interviews best? Pencil and paper tests? "Nonrandom selection procedures are inevitable for most jobs," says Dr. Thomas Dhanens, a management psychologist. "Therefore, employers will always be open to charges of discrimination or favoritism from some quarter. Organizations that avoid their responsibility for examining and validating their selection procedures will be forced into a costly catch-up effort before long." The author shows employers how to collect data systematically, analyze job functions, evaluate applicants, record data, handle performance appraisals, maintain records, and identify priorities. Since a lack of data is no defense in an EEOC action, Dhanens suggests that these are the minimum steps wise employers should follow.
12 CFR 303.242 - Exercise of trust powers.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 12 Banks and Banking 5 2013-01-01 2013-01-01 false Exercise of trust powers. 303.242 Section 303... PROCEDURES Other Filings § 303.242 Exercise of trust powers. (a) Scope. This section contains the procedures to be followed by a state nonmember bank to seek the FDIC's prior consent to exercise trust powers...
12 CFR 303.242 - Exercise of trust powers.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 12 Banks and Banking 4 2011-01-01 2011-01-01 false Exercise of trust powers. 303.242 Section 303... PROCEDURES Other Filings § 303.242 Exercise of trust powers. (a) Scope. This section contains the procedures to be followed by a state nonmember bank to seek the FDIC's prior consent to exercise trust powers...
12 CFR 303.242 - Exercise of trust powers.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 12 Banks and Banking 5 2012-01-01 2012-01-01 false Exercise of trust powers. 303.242 Section 303... PROCEDURES Other Filings § 303.242 Exercise of trust powers. (a) Scope. This section contains the procedures to be followed by a state nonmember bank to seek the FDIC's prior consent to exercise trust powers...
12 CFR 303.242 - Exercise of trust powers.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 12 Banks and Banking 5 2014-01-01 2014-01-01 false Exercise of trust powers. 303.242 Section 303... PROCEDURES Other Filings § 303.242 Exercise of trust powers. (a) Scope. This section contains the procedures to be followed by a state nonmember bank to seek the FDIC's prior consent to exercise trust powers...
12 CFR 303.242 - Exercise of trust powers.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 12 Banks and Banking 4 2010-01-01 2010-01-01 false Exercise of trust powers. 303.242 Section 303... PROCEDURES Other Filings § 303.242 Exercise of trust powers. (a) Scope. This section contains the procedures to be followed by a state nonmember bank to seek the FDIC's prior consent to exercise trust powers...
Skeletal muscle strength and endurance are maintained during moderate dehydration.
Périard, J D; Tammam, A H; Thompson, M W
2012-08-01
This study investigated the effects of moderate dehydration (~2.5% body weight) on muscle strength and endurance using percutaneous electrical stimulation to quantify central and peripheral fatigue, and isolate the combined effects of exercise-heat stress and dehydration, vs. the effect of dehydration alone. Force production and voluntary activation were calculated in 10 males during 1 brief and 15 repeated maximal voluntary isometric contractions performed prior to (control) walking in the heat (35°C), immediately following exercise, and the next morning (dehydration). The protocol was also performed in a euhydrated state. During the brief contractions, force production and voluntary activation were maintained in all trials. In contrast, force production decreased throughout the repeated contractions, regardless of hydration status (P<0.001). The decline in force was greater immediately following exercise-heat stress dehydration compared with control and euhydration (P<0.001). When dehydration was isolated from acute post-exercise dehydration, force production was maintained similarly to control and euhydration. Despite the progressive decline in force production and the increased fatigability observed during the repeated contractions, voluntary activation remained elevated throughout each muscle function test. Therefore, moderate dehydration, isolated from acute exercise-heat stress, does not appear to influence strength during a single contraction or enhance fatigability. © Georg Thieme Verlag KG Stuttgart · New York.
Nozaki, S; Kawai, M; Shimoyama, R; Futamura, N; Matsumura, T; Adachi, K; Kikuchi, Y
2010-12-01
The purpose of this study is to evaluate whether the range of motion exercise of the temporo-mandibular joint (jaw ROM exercise) with a hot pack and massage of the masseter muscle improve biting disorder in Duchenne muscular dystrophy (DMD). The subjects were 18 DMD patients (21.3+/- 4.1 years old). The jaw ROM exercise consisted of therapist-assisted training (2 times a week) and self-training (before each meal every day). The therapist-assisted training consisted of the application of a hot pack on the cheek of the masseter muscle region (15 minutes), the massage of the masseter (10 minutes), and jaw ROM exercise (5 minutes). The self-training involved jaw ROM exercise by opening the mouth to the maximum degree, ten times. These trainings continued for six months. Outcomes were evaluated by measuring the greatest occlusal force and the distance at the maximum degree of mouth opening between an incisor of the top and that of the bottom. Six months later, the greatest occlusal force had increased significantly compared with that at the start of jaw ROM exercise (intermediate values: from 73.8N to 97.3N) (p = 0.005) as determined by the Friedman test and Scheffi's nonparametric test. The patients' satisfaction with meals increased. However, the maximum degree of mouth opening did not change after six months of jaw ROM exercise. Jaw ROM exercise in DMD is effective for increasing the greatest occlusal force.
2008-05-12
CAPE CANAVERAL, Fla. -- Participants in the Mode VIII exercise being conducted at Patrick Air Force Base, Fla., get instruction about the rescue equipment they will be working with. In support of, and with logistical support from, NASA, USSTRATCOM is hosting a major exercise involving Department of Defense, Department of Homeland Security, search and rescue (SAR) forces, including the 45th Space Wing at Patrick Air Force Base, which support space shuttle astronaut bailout contingency operations, known as Mode VIII. This exercise tests SAR capabilities to locate, recover and provide medical treatment for astronauts following a space shuttle launch phase open-ocean bailout. Participants include members of the U.S. Navy, U.S. Coast Guard, U.S. Air Force, and NASA's Kennedy Space Center and Johnson Space Center. This will be the 15th Mode VIII exercise conducted in the past 20 years. Photo credit: NASA/Kim Shiflett
Neuromuscular changes and the rapid adaptation following a bout of damaging eccentric exercise.
Goodall, S; Thomas, K; Barwood, M; Keane, K; Gonzalez, J T; St Clair Gibson, A; Howatson, G
2017-08-01
An initial bout of eccentric exercise is known to protect against muscle damage following a repeated bout of the same exercise; however, the neuromuscular adaptations owing to this phenomenon are unknown. To determine whether neuromuscular disturbances are modulated following a repeated bout of eccentric exercise. Following eccentric exercise performed with the elbow flexors, we measured maximal voluntary force, resting twitch force, muscle soreness, creatine kinase (CK) and voluntary activation (VA) using motor point and motor cortex stimulation at baseline, immediately post-exercise and at 1, 2, 3, 4 and 7 days post-exercise on two occasions, separated by 3 weeks. Significant muscle damage and fatigue were evident following the first exercise bout; maximal voluntary contraction (MVC) was reduced immediately by 35% and remained depressed at 7 days post-exercise. Soreness and CK release peaked at 3 and 4 days post-exercise respectively. Resting twitch force remained significantly reduced at 7 days (-48%), whilst VA measured with motor point and motor cortex stimulation was reduced until 2 and 3 days respectively. A repeated bout effect (RBE) was observed with attenuated soreness and CK release and a quicker recovery of MVC and resting twitch force. A similar decrement in VA was observed following both bouts; however, following the repeated bout there was a significantly smaller reduction in, and a faster recovery of, VA measured using motor cortical stimulation. Our data suggest that the RBE may be explained, partly, by a modification in motor corticospinal drive. © 2016 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd.
Achilles tendinopathy modulates force frequency characteristics of eccentric exercise.
Grigg, Nicole L; Wearing, Scott C; O'Toole, John M; Smeathers, James E
2013-03-01
Previous research has demonstrated that ground reaction force (GRF) recorded during eccentric ankle exercise is characterized by greater power in the 8- to 12-Hz bandwidth when compared with that recorded during concentric ankle exercise. Subsequently, it was suggested that vibrations in this bandwidth may underpin the beneficial effect of eccentric loading in tendon repair. However, this observation has been made only in individuals without Achilles tendinopathy. This research compared the force frequency characteristics of eccentric and concentric exercises in individuals with and without Achilles tendinopathy. Eleven male adults with unilateral midportion Achilles tendinopathy and nine control male adults without tendinopathy participated in the research. Kinematics and GRF were recorded while the participants performed a common eccentric rehabilitation exercise protocol and a concentric equivalent. Ankle joint kinematics and the frequency power spectrum of the resultant GRF were calculated. Eccentric exercise was characterized by a significantly greater proportion of spectral power between 4.5 and 11.5 Hz when compared with concentric exercise. There were no significant differences between limbs in the force frequency characteristics of concentric exercise. Eccentric exercise, in contrast, was defined by a shift in the power spectrum of the symptomatic limb, resulting in a second spectral peak at 9 Hz, rather than 10 Hz in the control limb. Compared with healthy tendon, Achilles tendinopathy was characterized by lower frequency vibrations during eccentric rehabilitation exercises. This finding may be associated with changes in neuromuscular activation and tendon stiffness that have been shown to occur with tendinopathy and provides a possible rationale for the previous observation of a different biochemical response to eccentric exercise in healthy and injured Achilles tendons.
Kinetic analysis of concurrent activation potentiation during back squats and jump squats.
Ebben, William P; Kaufmann, Clare E; Fauth, McKenzie L; Petushek, Erich J
2010-06-01
Concurrent activation potentiation enhances muscular force during open kinetic chain isometric and isokinetic exercises via remote voluntary contractions (RVCs). The purpose of this study was to evaluate the effect of RVCs on the performance of closed kinetic chain ground-based exercises. Subjects included 13 men (21.4+/-1.5 years) who performed the back squat and jump squat in 2 test conditions. The RVC condition included performing the test exercises while clenching the jaw on a mouth guard, forcefully gripping and pulling the barbell down into the trapezius, and performing a Valsalva maneuver. The normal condition (NO-RVC) included performing the test exercises without RVCs. Exercises were assessed with a force platform. Peak ground reaction force (GRF), rate of force development (RFD) during the first 100 milliseconds (RFD-100), RFD to peak GRF (RFD-P), and jump squat height (JH) were calculated from the force-time records. Data were analyzed using an analysis of variance. Results reveal that GRF and RFD-100 were higher in the RVC compared with the NO-RVC condition for both the back squat and jump squat (p
1983-05-01
Firing data cards. PROCEDURES I. Prior to live fire exercises all firers must be oriented on range procedures. 2. Preparatory marksmanship training...Ordnance detail. 2. Range safety officer. 7. Medical personnel. 3. Firing line safety NCOs. 8. Control tower operators. i 4. Scorer (I per firer ). 9. Pit...phones and wire (for PIT commo). PROCEDURES I. Prior to live fire exercises, all firers must be oriented on range procedures. 2. Scorers are responsible
2008-05-12
CAPE CANAVERAL, Fla. -- A representative of the 301st Rescue Squadron demonstrates rescue equipment that is used by participants in the Mode VIII exercise being conducted at Patrick Air Force Base, Fla. In the background is an HH-60G helicopter. In support of, and with logistical support from, NASA, USSTRATCOM is hosting a major exercise involving Department of Defense, Department of Homeland Security, search and rescue (SAR) forces, including the 45th Space Wing at Patrick Air Force Base, which support space shuttle astronaut bailout contingency operations, known as Mode VIII. This exercise tests SAR capabilities to locate, recover and provide medical treatment for astronauts following a space shuttle launch phase open-ocean bailout. Participants include members of the U.S. Navy, U.S. Coast Guard, U.S. Air Force, and NASA's Kennedy Space Center and Johnson Space Center. This will be the 15th Mode VIII exercise conducted in the past 20 years. Photo credit: NASA/Kim Shiflett
2008-05-12
CAPE CANAVERAL, Fla. -- Representatives of the 301st Rescue Squadron demonstrate the use of rescue equipment on the HH-60G helicopter that is used by participants in the Mode VIII exercise being conducted at Patrick Air Force Base, Fla. In support of, and with logistical support from, NASA, USSTRATCOM is hosting a major exercise involving Department of Defense, Department of Homeland Security, search and rescue (SAR) forces, including the 45th Space Wing at Patrick Air Force Base, which support space shuttle astronaut bailout contingency operations, known as Mode VIII. This exercise tests SAR capabilities to locate, recover and provide medical treatment for astronauts following a space shuttle launch phase open-ocean bailout. Participants include members of the U.S. Navy, U.S. Coast Guard, U.S. Air Force, and NASA's Kennedy Space Center and Johnson Space Center. This will be the 15th Mode VIII exercise conducted in the past 20 years. Photo credit: NASA/Kim Shiflett
2008-05-12
CAPE CANAVERAL, Fla. -- A representative of the 301st Rescue Squadron demonstrates rescue equipment on the HH-60G helicopter that is used by participants in the Mode VIII exercise being conducted at Patrick Air Force Base, Fla. In support of, and with logistical support from, NASA, USSTRATCOM is hosting a major exercise involving Department of Defense, Department of Homeland Security, search and rescue (SAR) forces, including the 45th Space Wing at Patrick Air Force Base, which support space shuttle astronaut bailout contingency operations, known as Mode VIII. This exercise tests SAR capabilities to locate, recover and provide medical treatment for astronauts following a space shuttle launch phase open-ocean bailout. Participants include members of the U.S. Navy, U.S. Coast Guard, U.S. Air Force, and NASA's Kennedy Space Center and Johnson Space Center. This will be the 15th Mode VIII exercise conducted in the past 20 years. Photo credit: NASA/Kim Shiflett
2008-05-12
CAPE CANAVERAL, Fla. -- Representatives of the 301st Rescue Squadron demonstrate the use of rescue equipment on the HH-60G helicopter that is used by participants in the Mode VIII exercise being conducted at Patrick Air Force Base, Fla. In support of, and with logistical support from, NASA, USSTRATCOM is hosting a major exercise involving Department of Defense, Department of Homeland Security, search and rescue (SAR) forces, including the 45th Space Wing at Patrick Air Force Base, which support space shuttle astronaut bailout contingency operations, known as Mode VIII. This exercise tests SAR capabilities to locate, recover and provide medical treatment for astronauts following a space shuttle launch phase open-ocean bailout. Participants include members of the U.S. Navy, U.S. Coast Guard, U.S. Air Force, and NASA's Kennedy Space Center and Johnson Space Center. This will be the 15th Mode VIII exercise conducted in the past 20 years. Photo credit: NASA/Kim Shiflett
2008-05-12
CAPE CANAVERAL, Fla. -- A representative of the 301st Rescue Squadron demonstrates rescue equipment that is used by participants in the Mode VIII exercise being conducted at Patrick Air Force Base, Fla. In the background is an HH-60G helicopter. In support of, and with logistical support from, NASA, USSTRATCOM is hosting a major exercise involving Department of Defense, Department of Homeland Security, search and rescue (SAR) forces, including the 45th Space Wing at Patrick Air Force Base, which support space shuttle astronaut bailout contingency operations, known as Mode VIII. This exercise tests SAR capabilities to locate, recover and provide medical treatment for astronauts following a space shuttle launch phase open-ocean bailout. Participants include members of the U.S. Navy, U.S. Coast Guard, U.S. Air Force, and NASA's Kennedy Space Center and Johnson Space Center. This will be the 15th Mode VIII exercise conducted in the past 20 years. Photo credit: NASA/Kim Shiflett
2008-05-12
CAPE CANAVERAL, Fla. -- Participants in the Mode VIII exercise being conducted at Patrick Air Force Base, Fla., are introduced to the equipment they will be working with. In the foreground is an HH-60 helicopter. In support of, and with logistical support from, NASA, USSTRATCOM is hosting a major exercise involving Department of Defense, Department of Homeland Security, search and rescue (SAR) forces, including the 45th Space Wing at Patrick Air Force Base, which support space shuttle astronaut bailout contingency operations, known as Mode VIII. This exercise tests SAR capabilities to locate, recover and provide medical treatment for astronauts following a space shuttle launch phase open-ocean bailout. Participants include members of the U.S. Navy, U.S. Coast Guard, U.S. Air Force, and NASA's Kennedy Space Center and Johnson Space Center. This will be the 15th Mode VIII exercise conducted in the past 20 years. Photo credit: NASA/Kim Shiflett
2008-05-12
CAPE CANAVERAL, Fla. -- A representative of the 301st Rescue Squadron familiarizes participants in the Mode VIII exercise with the HH-60G helicopter that will play a part. The Mode VIII is being conducted at Patrick Air Force Base, Fla. In support of, and with logistical support from, NASA, USSTRATCOM is hosting a major exercise involving Department of Defense, Department of Homeland Security, search and rescue (SAR) forces, including the 45th Space Wing at Patrick Air Force Base, which support space shuttle astronaut bailout contingency operations, known as Mode VIII. This exercise tests SAR capabilities to locate, recover and provide medical treatment for astronauts following a space shuttle launch phase open-ocean bailout. Participants include members of the U.S. Navy, U.S. Coast Guard, U.S. Air Force, and NASA's Kennedy Space Center and Johnson Space Center. This will be the 15th Mode VIII exercise conducted in the past 20 years. Photo credit: NASA/Kim Shiflett
2008-05-12
CAPE CANAVERAL, Fla. -- A representative of the 301st Rescue Squadron demonstrates rescue equipment that is used by participants in the Mode VIII exercise being conducted at Patrick Air Force Base, Fla. In support of, and with logistical support from, NASA, USSTRATCOM is hosting a major exercise involving Department of Defense, Department of Homeland Security, search and rescue (SAR) forces, including the 45th Space Wing at Patrick Air Force Base, which support space shuttle astronaut bailout contingency operations, known as Mode VIII. This exercise tests SAR capabilities to locate, recover and provide medical treatment for astronauts following a space shuttle launch phase open-ocean bailout. Participants include members of the U.S. Navy, U.S. Coast Guard, U.S. Air Force, and NASA's Kennedy Space Center and Johnson Space Center. This will be the 15th Mode VIII exercise conducted in the past 20 years. Photo credit: NASA/Kim Shiflett
Substructure program for analysis of helicopter vibrations
NASA Technical Reports Server (NTRS)
Sopher, R.
1981-01-01
A substructure vibration analysis which was developed as a design tool for predicting helicopter vibrations is described. The substructure assembly method and the composition of the transformation matrix are analyzed. The procedure for obtaining solutions to the equations of motion is illustrated for the steady-state forced response solution mode, and rotor hub load excitation and impedance are analyzed. Calculation of the mass, damping, and stiffness matrices, as well as the forcing function vectors of physical components resident in the base program code, are discussed in detail. Refinement of the model is achieved by exercising modules which interface with the external program to represent rotor induced variable inflow and fuselage induced variable inflow at the rotor. The calculation of various flow fields is discussed, and base program applications are detailed.
Mind racing: The influence of exercise on long-term memory consolidation.
McNerney, M Windy; Radvansky, Gabriel A
2015-01-01
Over time, regular exercise can lower the risk for age-related decline in cognition. However, the immediate effects of exercise on memory consolidation in younger adults have not been fully investigated. In two experiments, the effects of exercise were assessed on three different memory tasks. These included paired-associate learning, procedural learning and text memory. Results indicate that performance on procedural learning and situation model memory was increased with exercise, regardless of if participants exercised before or after encoding. No benefit of exercise was found for paired-associate learning. These findings suggest that intense exercise may benefit certain types of memory consolidation.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-06-14
.... Military and Host Nation Maritime Security Forces' Exercise Fidelity and Effectiveness, and To Improve... after contact. FOR FURTHER INFORMATION CONTACT: AFRICOM J9--Outreach Directorate, +49 711-729-3260 LtCol... Series Exercises in order to familiarize U.S. forces and Host Nation Maritime forces with public and...
Calculation of Resistive Loads for Elastic Resistive Exercises.
Picha, Kelsey; Uhl, Tim
2018-03-14
What is the correct resistive load to start resistive training with elastic resistance to gain strength? This question is typically answered by the clinician's best estimate and patient's level of discomfort without objective evidence. To determine the average level of resistance to initiate a strengthening routine with elastic resistance following isometric strength testing. Cohort. Clinical. 34 subjects (31 ± 13 y, 73 ± 17 kg, 170 ± 12 cm). The force produced was measured in Newtons (N) with an isometric dynamometer. The force distance was the distance from center of joint to location of force applied was measured in meters to calculate torque that was called "Test Torque" for the purposes of this report. This torque data was converted to "Exercise Load" in pounds based on the location where the resistance was applied, specifically the distance away from the center of rotation of the exercising limb. The average amount of exercise load as percentage of initial Test Torque for each individual for each exercise was recorded to determine what the average level of resistance that could be used for elastic resistance strengthening program. The percentage of initial test torque calculated for the exercise was recorded for each exercise and torque produced was normalized to body weight. The average percentage of maximal isometric force that was used to initiate exercises was 30 ± 7% of test torque. This provides clinicians with an objective target load to start elastic resistance training. Individual variations will occur but utilization of a load cell during elastic resistance provides objective documentation of exercise progression.
Maintenance of exercise-induced benefits in physical functioning and bone among elderly women.
Karinkanta, S; Heinonen, A; Sievänen, H; Uusi-Rasi, K; Fogelholm, M; Kannus, P
2009-04-01
This study showed that about a half of the exercise-induced gain in dynamic balance and bone strength was maintained one year after cessation of the supervised high-intensity training of home-dwelling elderly women. However, to maintain exercise-induced gains in lower limb muscle force and physical functioning, continued training seems necessary. Maintenance of exercise-induced benefits in physical functioning and bone structure was assessed one year after cessation of 12-month randomized controlled exercise intervention. Originally 149 healthy women 70-78 years of age participated in the 12-month exercise RCT and 120 (81%) of them completed the follow-up study. Self-rated physical functioning, dynamic balance, leg extensor force, and bone structure were assessed. During the intervention, exercise increased dynamic balance by 7% in the combination resistance and balance-jumping training group (COMB). At the follow-up, a 4% (95% CI: 1-8%) gain compared with the controls was still seen, while the exercise-induced isometric leg extension force and self-rated physical functioning benefits had disappeared. During the intervention, at least twice a week trained COMB subjects obtained a significant 2% benefit in tibial shaft bone strength index compared to the controls. A half of this benefit seemed to be maintained at the follow-up. Exercise-induced benefits in dynamic balance and rigidity in the tibial shaft may partly be maintained one year after cessation of a supervised 12-month multi-component training in initially healthy elderly women. However, to maintain the achieved gains in muscle force and physical functioning, continued training seems necessary.
Kinetic Analysis of Horizontal Plyometric Exercise Intensity.
Kossow, Andrew J; Ebben, William P
2018-05-01
Kossow, AJ, DeChiara, TG, Neahous, SM, and Ebben, WP. Kinetic analysis of horizontal plyometric exercise intensity. J Strength Cond Res 32(5): 1222-1229, 2018-Plyometric exercises are frequently performed as part of a strength and conditioning program. Most studies assessed the kinetics of plyometric exercises primarily performed in the vertical plane. The purpose of this study was to evaluate the multiplanar kinetic characteristics of a variety of plyometric exercises, which have a significant horizontal component. This study also sought to assess sex differences in the intensity progression of these exercises. Ten men and 10 women served as subjects. The subjects performed a variety of plyometric exercises including the double-leg hop, standing long jump, single-leg standing long jump, bounding, skipping, power skipping, cone hops, and 45.72-cm hurdle hops. Subjects also performed the countermovement jump for comparison. All plyometric exercises were evaluated using a force platform. Dependent variables included the landing rate of force development and landing ground reaction forces for each exercise in the vertical, frontal, and sagittal planes. A 2-way mixed analysis of variance with repeated-measures for plyometric exercise type demonstrated main effects for exercise type for all dependent variables (p ≤ 0.001). There was no significant interaction between plyometric exercise type and sex for any of the variable assessed. Bonferroni-adjusted pairwise comparisons identified a number of differences between the plyometric exercises for the dependent variables assessed (p ≤ 0.05). These findings should be used to guide practitioners in the progression of plyometric exercise intensity, and thus program design, for those who require significant horizontal power in their sport.
Effects of nutritional status on metabolic rate, exercise and recovery in a freshwater fish.
Gingerich, Andrew James; Philipp, David P; Suski, Cory D
2010-03-01
The influence of feeding on swimming performance and exercise recovery in fish is poorly understood. Examining swimming behavior and physiological status following periods of feeding and fasting is important because wild fish often face periods of starvation. In the current study, researchers force fed and fasted groups of largemouth bass (Micropterus salmoides) of similar sizes for a period of 16 days. Following this feeding and fasting period, fish were exercised for 60 s and monitored for swimming performance and physiological recovery. Resting metabolic rates were also determined. Fasted fish lost an average of 16 g (nearly 12%) of body mass, while force fed fish maintained body mass. Force fed fish swam 28% further and required nearly 14 s longer to tire during exercise. However, only some physiological conditions differed between feeding groups. Resting muscle glycogen concentrations was twofold greater in force fed fish, at rest and throughout recovery, although it decreased in both feeding treatments following exercise. Liver mass was nearly three times greater in force fed fish, and fasted fish had an average of 65% more cortisol throughout recovery. Similar recovery rates of most physiological responses were observed despite force fed fish having a metabolic rate 75% greater than fasted fish. Results are discussed as they relate to largemouth bass starvation in wild systems and how these physiological differences might be important in an evolutionary context.
Rousanoglou, E N; Boudolos, K D
2005-06-01
The magnitude of ground reaction forces (GRF) has been associated, although never verified, with the high incidence of lower extremities injuries in aerobic dance (AD) instructors. Moreover, during their working activities AD instructors have demonstrated HR levels, such as 70% HRmax, values, more in training rather in working status. This study was designed to investigate GRF and heart rate (HR) exhibited by AD instructors of both genders, during a simulated AD instruction, from the perspective of accepted occupational workloads. Fourteen females and 14 males instructors performed a 35 min AD exercise programme (warm up--low impact (LI) interval--in high impact (HI) interval--cool down). Four GRF measurements were taken during LI and HI time intervals, respectively. HR was recorded throughout the whole experimental procedure and was synchronised to GRF measurements. All GRF and HR values were significantly increased in HI exercise (p<0.05) with a non significant (p>0.05) time effect for GRF. In both LI and HI exercises, females demonstrated significantly higher vertical but lower lateral GRF (p<0.05) and significantly shorter cycles of movement (p<0.05) while in HI exercise they had significant longer flight times (p<0.05). For both genders, HR was kept at 70% and 80% of HR(max-calc) and RHR was 60% and 70%, during LI and HI intervals respectively, with females showing a trend, though non-significant, for higher HR values. The gender specificity of the significant vertical and lateral GRF pattern differences, may possibly be associated with the significant anthropometric differences of male and female AD instructors. HR(max-calc) and RHR exceeded the accepted occupational levels rising to training status levels. We suggest that AD instructors take up such instructing methods which allow them to minimize the magnitude or the rate of GRF, as well as HR levels, developed in the course of their working hour.
A Constant-Force Resistive Exercise Unit
NASA Technical Reports Server (NTRS)
Colosky, Paul; Ruttley, Tara
2010-01-01
A constant-force resistive exercise unit (CFREU) has been invented for use in both normal gravitational and microgravitational environments. In comparison with a typical conventional exercise machine, this CFREU weighs less and is less bulky: Whereas weight plates and associated bulky supporting structures are used to generate resistive forces in typical conventional exercise machines, they are not used in this CFREU. Instead, resistive forces are generated in this CFREU by relatively compact, lightweight mechanisms based on constant-torque springs wound on drums. Each such mechanism is contained in a module, denoted a resistive pack, that includes a shaft for making a torque connection to a cable drum. During a stroke of resistive exercise, the cable is withdrawn from the cable drum against the torque exerted by the resistance pack. The CFREU includes a housing, within which can be mounted one or more resistive pack(s). The CFREU also includes mechanisms for engaging any combination of (1) one or more resistive pack(s) and (2) one or more spring(s) within each resistive pack to obtain a desired level of resistance.
Conservative Management of Mechanical Neck Pain in a Helicopter Pilot.
Alagha, Babak
2015-10-01
Acute and chronic spinal symptoms such as neck pain may limit flying performance significantly and disqualify the pilot from flight duty. Mechanical neck pain is very common among pilots because of their exposure to vibration, +GZ forces, helmet weight, poor neck posture during air combat maneuvers, previous neck injuries, and poor treatment plans for such injuries. Successful treatment of such injuries requires appropriate therapeutic procedures as well as an aeromedical assessment. The aim of this case study was to demonstrate the benefits of conservative procedures such as spinal manipulation and mobilization therapy (SMMT) and exercise therapy (ET) in treating chronic mechanical neck pain in an Iranian commercial helicopter pilot. A 36-yr-old male patient presented to the clinic with moderate, intermittent nonradicular chronic neck pain and limited range of motion over a 2-yr period. The patient was treated with cervical and upper thoracic SMMT followed by home ET for 5 wk. After this period, the patient reported significant recovery and improvement in range of motion in his neck. Mechanical neck pain is very common among helicopter pilots. Although Air Force and Navy waiver guides recommend nonsteroidal anti-inflammatory medications as well as SMMT and ET, there are currently very few published studies that examine the benefits of manual and exercise therapy for treating mechanical neck pain in commercial and military pilots. Based on the results of this study, it seems that SMMT and ET may be a safe and effective in treatment of uncomplicated mechanical neck pain in helicopter pilots. Alagha B. Conservative management of mechanical neck pain in a helicopter pilot.
Japan’s Territorial Disputes: CNA Maritime Asia Project: Workshop Three
2013-06-01
strengthen, their exercise programs with the Japan Self -Defense Forces (JSDF). These exercises prepare both militaries to deter the use of force and, if...around the islands should be noted. After Lee’s visit, Korea mobilized its air defenses when it claimed a Japanese Self -Defense Force helicopter...lock incidents reported by Japan’s Maritime Self -Defense Force, the first against a destroyer-based helicopter and the second against the frigate
Changes in stature following plyometric drop-jump and pendulum exercises.
Fowler, N E; Lees, A; Reilly, T
1997-12-01
The aim of this study was to compare the changes in stature following the performance of plyometric exercises using drop-jumps and a pendulum swing. Eight male participants aged 21.7 +/- 1.8 years with experience of plyometric training gave their informed consent to act as participants. Participants undertook two exercise regimens and a 15-min standing test in a random order. The exercises entailed the performance of 50 drop-jumps from a height of 0.28 m or 50 pendulum rebounds. Participants were instructed to perform maximal jumps or rebounds using a 'bounce' style. Measurements of stature were performed after a 20-min period of standing (pre-exercise), 2-min after exercise (post-exercise) and after a 20-min standing recovery (recovery). Back pain and muscle soreness were assessed using an analogue-visual scale, at each of the above times and also 24 and 36 h after the test. Peak torque during isokinetic knee extension at 1.04 rads-1 was measured immediately before and after the exercise bouts, to assess the degree of muscular fatigue. Ground/wall reaction force data were recorded using a Kistler force platform mounted in the floor for drop-jumps and vertically on the rebound wall for pendulum exercises. Drop-jumps resulted in the greatest (p < 0.05) change in stature (-2.71 +/- 0.8 mm), compared to pendulum exercises (-1.77 +/- 0.7 mm) and standing (-0.39 +/- 0.2 mm). Both exercise regimens resulted in a significant (p < 0.01) decrease in stature when compared to the standing condition. Drop-jumps resulted in significantly greater peak impact forces (p < 0.05) than pendulum exercises (drop-jumps = 3.2 +/- 0.5 x body weight, pendulum = 2.6 +/- 0.5 x body weight). The two exercise conditions both invoked a small degree of muscle soreness but there were no significant differences between conditions. Both exercise regimens resulted in a non-significant decrease in peak torque indicating a similar degree of muscular fatigue. Based on the lower shrinkage resulted and lower peak forces, it can be concluded that pendulum exercises pose a lower injury potential to the lower back than drop-jumps performed from a height of 28 cm.
Effect of fluid ingestion on neuromuscular function during prolonged cycling exercise.
Vallier, J-M; Grego, F; Basset, F; Lepers, R; Bernard, T; Brisswalter, J
2005-04-01
To investigate the effects of fluid ingestion on neuromuscular function during prolonged cycling exercise. Eight well trained subjects exercised for 180 minutes in a moderate environment at a workload requiring approximately 60% maximal oxygen uptake. Two conditions, fluid (F) and no fluid (NF) ingestion, were investigated. During maximal voluntary isometric contraction (MVC), prolonged cycling exercise reduced (p<0.05) the maximal force generating capacity of quadriceps muscles (after three hours of cycling) and root mean square (RMS) values (after two hours of cycling) with no difference between the two conditions despite greater body weight loss (p<0.05) in NF. The mean power frequency (MPF) for vastus lateralis muscle was reduced (p<0.05) and the rate of force development (RFD) was increased (p<0.05) only during NF. During cycling exercise, integrated electromyographic activity and perceived exertion were increased in both conditions (p<0.05) with no significant effect of fluid ingestion. The results suggest that fluid ingestion did not prevent the previously reported decrease in maximal force with exercise duration, but seems to have a positive effect on some indicators of neuromuscular fatigue such as mean power frequency and rate of force development during maximal voluntary contraction. Further investigations are needed to assess the effect of change in hydration on neural mechanisms linked to the development of muscular fatigue during prolonged exercise.
Achilles Tendon Loading During Heel-Raising and -Lowering Exercises
Revak, Andrew; Diers, Keith; Kernozek, Thomas W.; Gheidi, Naghmeh; Olbrantz, Christina
2017-01-01
Context: Achilles tendinopathies are common injuries during sport participation, although men are more prone to Achilles tendon injuries than women. Heel-raising and -lowering exercises are typically suggested for Achilles tendon rehabilitation. Objective: To compare the estimated Achilles tendon loading variables and the ankle range of motion (ROM) using a musculoskeletal model during commonly performed heel-raising and -lowering exercises. Design: Controlled laboratory study. Setting: University biomechanics laboratory. Patients or Other Participants: Twenty-one healthy men (age = 21.59 ± 1.92 years, height = 178.22 ± 8.02 cm, mass = 75.81 ± 11.24 kg). Intervention(s): Each participant completed 4 exercises: seated heel raising and lowering, bilateral standing heel raising and lowering, bilateral heel raising and unilateral lowering, and unilateral heel raising and lowering. Main Outcome Measure(s): A repeated-measures multivariate analysis of variance (α = .05) was used to compare Achilles tendon stress, force, and strain and ankle ROM for each exercise. Kinematic data were recorded at 180 Hz with 15 motion-analysis cameras synchronized with kinetic data collected from a force platform sampled at 1800 Hz. These data were then entered in a musculoskeletal model to estimate force in the triceps surae. For each participant, we determined Achilles tendon stress by measuring cross-sectional images using ultrasound. Results: Peak Achilles tendon loading was lowest when performing the seated heel-raising and -lowering exercise and highest when performing the unilateral heel-raising and -lowering exercise. Loading was greater for the unilateral exercise or portions of the exercise that were performed unilaterally. Conclusions: Bilateral and seated exercises with less weight-bearing force resulted in less Achilles tendon loading. These exercises may serve as progressions during the rehabilitation process before full-body weight-bearing, unilateral exercises are allowed. Ankle ROM did not follow the same order as loading and may need additional monitoring or instruction during rehabilitation. PMID:28145739
Early exercise in critically ill patients enhances short-term functional recovery.
Burtin, Chris; Clerckx, Beatrix; Robbeets, Christophe; Ferdinande, Patrick; Langer, Daniel; Troosters, Thierry; Hermans, Greet; Decramer, Marc; Gosselink, Rik
2009-09-01
: To investigate whether a daily exercise session, using a bedside cycle ergometer, is a safe and effective intervention in preventing or attenuating the decrease in functional exercise capacity, functional status, and quadriceps force that is associated with prolonged intensive care unit stay. A prolonged stay in the intensive care unit is associated with muscle dysfunction, which may contribute to an impaired functional status up to 1 yr after hospital discharge. No evidence is available concerning the effectiveness of an early exercise training intervention to prevent these detrimental complications. : Randomized controlled trial. : Medical and surgical intensive care unit at University Hospital Gasthuisberg. : Ninety critically ill patients were included as soon as their cardiorespiratory condition allowed bedside cycling exercise (starting from day 5), given they still had an expected prolonged intensive care unit stay of at least 7 more days. : Both groups received respiratory physiotherapy and a daily standardized passive or active motion session of upper and lower limbs. In addition, the treatment group performed a passive or active exercise training session for 20 mins/day, using a bedside ergometer. : All outcome data are reflective for survivors. Quadriceps force and functional status were assessed at intensive care unit discharge and hospital discharge. Six-minute walking distance was measured at hospital discharge. No adverse events were identified during and immediately after the exercise training. At intensive care unit discharge, quadriceps force and functional status were not different between groups. At hospital discharge, 6-min walking distance, isometric quadriceps force, and the subjective feeling of functional well-being (as measured with "Physical Functioning" item of the Short Form 36 Health Survey questionnaire) were significantly higher in the treatment group (p < .05). : Early exercise training in critically ill intensive care unit survivors enhanced recovery of functional exercise capacity, self-perceived functional status, and muscle force at hospital discharge.
Schellenberg, Florian; Oberhofer, Katja; Taylor, William R.
2015-01-01
Background. Knowledge of the musculoskeletal loading conditions during strength training is essential for performance monitoring, injury prevention, rehabilitation, and training design. However, measuring muscle forces during exercise performance as a primary determinant of training efficacy and safety has remained challenging. Methods. In this paper we review existing computational techniques to determine muscle forces in the lower limbs during strength exercises in vivo and discuss their potential for uptake into sports training and rehabilitation. Results. Muscle forces during exercise performance have almost exclusively been analysed using so-called forward dynamics simulations, inverse dynamics techniques, or alternative methods. Musculoskeletal models based on forward dynamics analyses have led to considerable new insights into muscular coordination, strength, and power during dynamic ballistic movement activities, resulting in, for example, improved techniques for optimal performance of the squat jump, while quasi-static inverse dynamics optimisation and EMG-driven modelling have helped to provide an understanding of low-speed exercises. Conclusion. The present review introduces the different computational techniques and outlines their advantages and disadvantages for the informed usage by nonexperts. With sufficient validation and widespread application, muscle force calculations during strength exercises in vivo are expected to provide biomechanically based evidence for clinicians and therapists to evaluate and improve training guidelines. PMID:26417378
Schellenberg, Florian; Oberhofer, Katja; Taylor, William R; Lorenzetti, Silvio
2015-01-01
Knowledge of the musculoskeletal loading conditions during strength training is essential for performance monitoring, injury prevention, rehabilitation, and training design. However, measuring muscle forces during exercise performance as a primary determinant of training efficacy and safety has remained challenging. In this paper we review existing computational techniques to determine muscle forces in the lower limbs during strength exercises in vivo and discuss their potential for uptake into sports training and rehabilitation. Muscle forces during exercise performance have almost exclusively been analysed using so-called forward dynamics simulations, inverse dynamics techniques, or alternative methods. Musculoskeletal models based on forward dynamics analyses have led to considerable new insights into muscular coordination, strength, and power during dynamic ballistic movement activities, resulting in, for example, improved techniques for optimal performance of the squat jump, while quasi-static inverse dynamics optimisation and EMG-driven modelling have helped to provide an understanding of low-speed exercises. The present review introduces the different computational techniques and outlines their advantages and disadvantages for the informed usage by nonexperts. With sufficient validation and widespread application, muscle force calculations during strength exercises in vivo are expected to provide biomechanically based evidence for clinicians and therapists to evaluate and improve training guidelines.
30 CFR 254.42 - Exercises for your response personnel and equipment.
Code of Federal Regulations, 2010 CFR
2010-07-01
...) Objectives met; and (5) Lessons learned. (e) All records of spill-response exercises must be maintained for... procedures or strategies. The Regional Supervisor may evaluate the results of the exercises and advise the owner or operator of any needed changes in response equipment, procedures, or strategies. (i) Compliance...
Exercise BANYAN TREE II, 8-16 March 1960
1960-04-23
confirmed that a composite air strike force was available for deployment to this command. c. At this time, participation in Banyan Tree II by Latin...participate in future exercises conducted in this area. b. That desired composition of forces for future exercises be determined sufficiently early to...channel ( VHP ) radio relay system was established between the Canal Zone and Rio Hato. Ter- minals were installed on Flamenco Island, Canal Zone and
Rodriguez, I; Diaz, A; Vaamonde, D
2016-04-01
As physical exercise has been shown to negatively affect sperm morphology, this study was undertaken to assess the effect of a 3-min forced swimming protocol during 50 days, with and without administration of antioxidants [N-acetylcysteine (NAC) and trans-resveratrol], on sperm morphology in CD-1 mice. Forty-four 13-week-old CD-1 mice were randomly allocated to four different groups: mice not submitted to exercise, control group (CG), mice submitted to swimming without administration of antioxidants (EX), mice submitted to swimming that received trans-resveratrol supplementation [exercise group (EX)+Resv] and mice submitted to swimming exercise that received NAC supplementation (EX+NAC). The EX showed 30.5% of spermatozoa with normal morphology, showing significant differences with regard to the CG, which showed 58.5%. The groups receiving antioxidant supplements showed significantly higher percentages of spermatozoa with normal morphology in comparison with the EX group (EX+Resv: 64.1%, EX+NAC: 48.2%). The imposed model of forced swimming caused alterations in sperm morphology. The antioxidants employed seem to be suitable antioxidants for avoiding exercise-associated sperm morphology anomalies in prolonged forced swimming exercise. Trans-resveratrol has proven to be more efficient for this purpose. © 2015 Blackwell Verlag GmbH.
Biomechanical Modeling of Split-leg Squat and Heel Raise on the Hybrid Ultimate Lifting Kit (HULK)
NASA Technical Reports Server (NTRS)
Thompson, William K.; Gallo, Christopher A.; Lewandowski, Beth E.; Jagodnik, Kathleen M.; Humphreys, Brad; Funk, Justin; Funk, Nathan; Dewitt, John K.
2016-01-01
Long duration space travel will expose astronauts to extended periods of reduced gravity. Since gravity is not present to aid loading, astronauts will use resistive and aerobic exercise regimes for the duration of the space flight to minimize the loss of bone density, muscle mass and aerobic capacity that occurs during exposure to a reduced gravity environment. Unlike the International Space Station (ISS), the area available for an exercise device in the next generation of spacecraft is limited and therefore compact resistance exercise device prototypes are being developed. The Advanced Resistive Exercise Device (ARED) currently on the ISS is being used as a benchmark for the functional performance of these new devices. Biomechanical data collection and computational modeling aid the device design process by quantifying the joint torques and musculoskeletal forces that occur during exercises performed on the prototype devices. Computational models currently use OpenSim software, an open source code for musculoskeletal modeling, with biomechanical input data from subjects for estimation of muscle and joint loads. Subjects are instrumented with reflective markers for motion capture data collection while exercising on the Hybrid Ultimate Lifting Kit (HULK) prototype device. Ground reaction force data is collected with force plates under the feet and device loading is recorded through load cells internal to the HULK. This data is input into the OpenSim biomechanical model, which has been scaled to match the anthropometrics of the test subject, to calculate the loads on the body. Multiple exercises are performed and evaluated during a test session such as a full squat, single leg squat, heel raise and dead lift. Variables for these exercises include applied device load, narrow or wide foot stance, slow or fast cadence and the harness or long bar interface between the test subject and the device. Data from free weights are compared to the resistively loaded exercise device. The focus of this presentation is to summarize the results from the single-leg squat and heel raise exercises performed during three sessions occurring in 2015. Differences in loading configuration, cadence and stance produce differences in kinematics, joint toques and force and muscle forces.
Larsson, Anette; Palstam, Annie; Löfgren, Monika; Ernberg, Malin; Bjersing, Jan; Bileviciute-Ljungar, Indre; Gerdle, Björn; Kosek, Eva; Mannerkorpi, Kaisa
2017-11-21
Resistance exercise results in health benefits in fibromyalgia. The aim of this study was to determine the factors that mediate change in muscle strength in women with fibromyalgia as a result of resistance exercise. Sixty-seven women with fibromyalgia (age range 25-64 years) were included. Tests of muscle strength and questionnaires related to pain, fear avoidance and physical activity were carried out. Multivariable stepwise regression was used to analyse explanatory factors for change and predictors for final values of knee-extension force, elbow-flexion force and hand-grip force. Change in knee-extension force was explained by fear avoidance beliefs about physical activity at baseline, together with change in pain intensity, knee-extension force at baseline, age and body mass index (BMI) (R2=0.40, p = 0.013). Change in elbow-flexion force was explained by pain intensity at baseline, together with baseline fear avoidance beliefs about physical activity, BMI and elbow-flexion force at baseline (R2 = 0.32, p = 0.043). Change in hand-grip force was explained by hand-grip force at baseline, change in pain intensity and baseline fear avoidance (R2 = 0.37, p = 0.009). Final muscle strength was predicted by the same variables as change, except pain. Pain and fear avoidance are important factors to consider in rehabilitation using resistance exercise for women with fibromyalgia.
Intramuscular pressure: A better tool than EMG to optimize exercise for long-duration space flight
NASA Technical Reports Server (NTRS)
Hargens, A. R.; Ballard, R. E.; Aratow, M.; Crenshaw, A.; Styf, J.; Kahan, N.; Watenpaugh, D. E.
1992-01-01
A serious problem experienced by astronauts during long-duration space flight is muscle atrophy. In order to develop countermeasures for this problem, a simple method for monitoring in vivo function of specific muscles is needed. Previous studies document that both intramuscular pressure (IMP) and electromyography (EMG) provide quantitative indices of muscle contraction force during isometric exercise. However, at present there are no data available concerning the usefulness of IMP versus EMG during dynamic exercise. Methods: IMP (Myopress catheter) and surface EMG activity were measured continuously and simultaneously in the tibalis anterior (TA) and soleus (SOL) muscles of 9 normal male volunteers (28-54 years). These parameters were recorded during both concentric and eccentric exercises which consisted of plantarflexon and dorsiflexon of the ankle joint. A Lido Active Isokinetic Dynamometer concurrently recorded ankle joint torque and position. Results: Intramuscular pressure correlated linearly with contraction force for both SOL (r exp 2 = 0.037) and TA (R exp 2 = 0.716 and r exp 2 = 0.802, respectively). During eccentric exercises, SOL and TA IMP also correlated linearly with contraction force (r(exp 2) = 0.883 and r(exp 2) = 0.904 respectively), but SOL and TA EMG correlated poorly with force (r(exp 2) = 0.489 and r(exp 2) = 0.702 respectively). Conclusion: IMP measurement provides a better index of muscle contraction force than EMG during concentric and eccentric exercise. IMP reflects intrinsic mechanical properties of individual muscles, such as length tension relationships. Although invasive, IMP provides a more powerful tool and EMG for developing exercise hardware and protocols for astronauts exposed to long-duration space flight.
NASA Technical Reports Server (NTRS)
Boda, Wanda; Hargens, Alan R.; Aratow, Michael; Ballard, Richard E.; Hutchinson, Karen; Murthy, Gita; Campbell, James
1994-01-01
The purpose of this study is to compare footward forces, gait kinematics, and muscle activation patterns (EMG) generated during supine treadmill exercise against LBNP with the same parameters during supine bungee resistance exercise and upright treadmill exercise. We hypothesize that the three conditions will be similar. These results will help validate treadmill exercise during LBNP as a viable technique to simulate gravity during space flight. We are evaluating LBNP as a means to load the musculoskeletal and cardiovascular systems without gravity. Such loading should help prevent physiologic deconditioning during space flight. The best ground-based simulation of LBNP treadmill exercise in microgravity is supine LBNP treadmill exercise on Earth because the supine footward force vector is neither directed nor supplemented by Earth's gravity.
Heywood, Sophie; McClelland, Jodie; Geigle, Paula; Rahmann, Ann; Clark, Ross
2016-07-01
Exercises replicating functional activities are commonly used in aquatic rehabilitation although it is not clear how the movement characteristics differ between the two environments. A systematic review was completed in order to compare the biomechanics of gait, closed kinetic chain and plyometric exercise when performed in water and on land. Databases including MEDLINE, CINAHL, SPORTDiscus, Embase and the Cochrane library were searched. Studies were included where a functional lower limb activity was performed in water and on land with the same instructions. Standardized mean differences (SMD) and 95% confidence intervals were calculated for spatiotemporal, kinematic, force and muscle activation outcomes. 28 studies included walking or running (19 studies), stationary running (three), closed kinetic chain exercise (two), plyometric exercise (three) and timed-up and go (one). Very large effect sizes showed self-selected speed of walking (SMD >4.66) and vertical ground reaction forces (VGRF) (SMD >1.91) in water were less than on land, however, lower limb range of movement and muscle activity were similar. VGRF in plyometric exercise was lower in water when landing but more similar between the two environments in propulsion. Maximal speed of movement for walking and stationary running was lower in water compared to on land (SMD>3.05), however was similar in propulsion in plyometric exercise. Drag forces may contribute to lower self-selected speed of walking. Monitoring speed of movement in water assists in determining the potential advantages or limitations of aquatic exercise and the task specificity to land-based function. Copyright © 2016 Elsevier B.V. All rights reserved.
McGill, Stuart M; Cannon, Jordan; Andersen, Jordan T
2014-10-01
This study examined pulling exercises performed on stable surfaces and unstable suspension straps. Specific questions included: which exercises challenged particular muscles, what was the magnitude of resulting spine load, and did technique coaching influence results. Fourteen males performed pulling tasks while muscle activity, external force, and 3D body segment motion were recorded. These data were processed and input to a sophisticated and anatomically detailed 3D model that used muscle activity and body segment kinematics to estimate muscle force, in this way the model was sensitive to each individual's choice of motor control for each task. Muscle forces and linked segment joint loads were used to calculate spine loads. There were gradations of muscle activity and spine load characteristics to every task. It appears that suspension straps alter muscle activity less in pulling exercises, compared to studies reporting on pushing exercises. The chin-up and pull-up exercises created the highest spine load as they required the highest muscle activation, despite the body "hanging" under tractioning gravitational load. Coaching shoulder centration through retraction increased spine loading but undoubtedly adds proximal stiffness. An exercise atlas of spine compression was constructed to help with the decision making process of exercise choice for an individual. Copyright © 2014 Elsevier Ltd. All rights reserved.
Task Force On Contractor Logistics in Support of Contingency Operations
2014-06-01
existing industrial base providing support services to deployed military forces should be integrated into all contingency war games and exercises...implementation of OCS in active operations has been a constant game of catch up for more than a decade. Poor contract administration, inconsistent...military forces should be integrated into all contingency war games and exercises. Equally important is including representatives from the agencies
Ground Reaction Forces During Locomotion in Simulated Microgravity
NASA Technical Reports Server (NTRS)
Davis, B. L.; Cavanagh, Peter R.; Sommer, H. J., III; Wu, G.
1996-01-01
Significant losses in bone density and mineral, primarily in the lower extremities have been reported following exposure to weightlessness. Recent investigations suggest that mechanical influences such as bone deformation and strain rate may be critically important in stimulating new bone formation. It was hypothesized that velocity, cadence and harness design would significantly affect lower limb impact forces during treadmill exercise in simulated zero gravity (0G). A ground-based hypogravity simulator was used to investigate which factors affect limb loading during tethered treadmill exercise. A fractional factorial design was used and 12 subjects were studied. The results showed that running on active and passive treadmills in the simulator with a tethering force close to the maximum comfortable level produced similar magnitudes for the peak ground reaction force. It was also found that these maximum forces were significantly lower than those obtained during overground trials, even when the speeds of locomotion in the simulator were 66 % greater than those in 1 G. Cadence had no effect on any of the response variables. The maximum rate of force application (DFDT-Max) was similar for overground running and exercise in simulated 0G, provided that the "weightless subjects ran on a motorized treadmill. These findings have implications for the use of treadmill exercise as a countermeasure for hypokinetic osteoporosis. As the relationship between mechanical factors and osteogenesis becomes better understood, results from human experiments in 0G simulators will help to design in-flight exercise programs that are more closely targeted to generate appropriate mechanical stimuli.
Myoelectric activation and kinetics of different plyometric push-up exercises.
García-Massó, Xavier; Colado, Juan C; González, Luis M; Salvá, Pau; Alves, Joao; Tella, Víctor; Triplett, N Travis
2011-07-01
The kinetic and myoelectric differences between 3 types of plyometric push-ups were investigated. Twenty-seven healthy, physically active men served as subjects and completed both familiarization and testing sessions. During these sessions, subjects performed 2 series of 3 plyometric push-up variations in a counterbalanced order according to the following techniques: Countermovement push-ups (CPUs) were push-ups performed with the maximum speed of movement; jump push-ups (JPUs) were similar to clapping push-ups; and fall push-ups (FPUs) required kneeling subjects to drop and then attempt to return to their initial position. Vertical ground reaction forces were determined by using a force plate. Myoelectric activity was recorded by means of electromyography. Impact force and impact rate of force development were significantly (p < 0.05) higher for FPUs than for JPUs. The maximum rate of force development was higher for CPUs (p < 0.05) than for JPUs, and the maximum force was higher for the CPUs than for the FPUs (p < 0.05). There were differences among exercises for the mean muscle activation of the pectoralis major (PM; p < 0.001), triceps brachii (p < 0.001), external oblique (p < 0.005) and anterior deltoid (p < 0.001), and in the maximum muscle activation of the PM (p < 0.001). Plyometric push-ups with countermovement achieved a higher maximum force and rate of force and did not cause impact forces. Thus, this type of push-up exercise may be regarded as the best for improving explosive force. The FPU exercise achieved higher levels of muscular activation in the agonist and synergist muscle groups, and greater impact forces and impact force development rates.
Protocol and the post-human performativity of security techniques.
O'Grady, Nathaniel
2016-07-01
This article explores the deployment of exercises by the United Kingdom Fire and Rescue Service. Exercises stage, simulate and act out potential future emergencies and in so doing help the Fire and Rescue Service prepare for future emergencies. Specifically, exercises operate to assess and develop protocol; sets of guidelines which plan out the actions undertaken by the Fire and Rescue Service in responding to a fire. In the article I outline and assess the forms of knowledge and technologies, what I call the 'aesthetic forces', by which the exercise makes present and imagines future emergencies. By critically engaging with Karen Barad's notion of post-human performativity, I argue that exercises provide a site where such forces can entangle with one another; creating a bricolage through which future emergencies are evoked sensually and representatively, ultimately making it possible to experience emergencies in the present. This understanding of exercises allows also for critical appraisal of protocol both as phenomena that are produced through the enmeshing of different aesthetic forces and as devices which premise the operation of the security apparatus on contingency.
Farrokhi, Shawn; Jayabalan, Prakash; Gustafson, Jonathan A; Klatt, Brian A; Sowa, Gwendolyn A; Piva, Sara R
2017-07-01
To evaluate whether knee contact force and knee pain are different between continuous and interval walking exercise in patients with knee osteoarthritis (OA). Twenty seven patients with unilateral symptomatic knee OA completed two separate walking exercise sessions on a treadmill at 1.3m/s on two different days: 1) a continuous 45min walking exercise session, and 2) three 15min bouts of walking exercise separated by 1h rest periods for a total of 45min of exercise in an interval format. Estimated knee contact forces using the OpenSim software and knee pain were evaluated at baseline (1st minute of walking) and after every 15min between the continuous and interval walking conditions. A significant increase from baseline was observed in peak knee contact force during the weight-acceptance phase of gait after 30 and 45min of walking, irrespective of the walking exercise condition. Additionally, whereas continuous walking resulted in an increase in knee pain, interval walking did not lead to increased knee pain. Walking exercise durations of 30min or greater may lead to undesirable knee joint loading in patients with knee OA, while performing the same volume of exercise in multiple bouts as opposed to one continuous bout may be beneficial for limiting knee pain. Copyright © 2017. Published by Elsevier B.V.
2008-05-12
CAPE CANAVERAL, Fla. -- A representative of the 301st Rescue Squadron and a volunteer (in the stretcher) from the NASA Vehicle Integration Test Team office get ready to demonstrate rescue equipment on the HH-60G helicopter that is used by participants in the Mode VIII exercise being conducted at Patrick Air Force Base, Fla. In support of, and with logistical support from, NASA, USSTRATCOM is hosting a major exercise involving Department of Defense, Department of Homeland Security, search and rescue (SAR) forces, including the 45th Space Wing at Patrick Air Force Base, which support space shuttle astronaut bailout contingency operations, known as Mode VIII. This exercise tests SAR capabilities to locate, recover and provide medical treatment for astronauts following a space shuttle launch phase open-ocean bailout. Participants include members of the U.S. Navy, U.S. Coast Guard, U.S. Air Force, and NASA's Kennedy Space Center and Johnson Space Center. This will be the 15th Mode VIII exercise conducted in the past 20 years. Photo credit: NASA/Kim Shiflett
2008-05-12
CAPE CANAVERAL, Fla. -- A representative of the 301st Rescue Squadron and a volunteer from the NASA Vehicle Integration Test Team office get ready to demonstrate rescue equipment that is used by participants in the Mode VIII exercise being conducted at Patrick Air Force Base. In the background is an HH-60G helicopter. In support of, and with logistical support from, NASA, USSTRATCOM is hosting a major exercise involving Department of Defense, Department of Homeland Security, search and rescue (SAR) forces, including the 45th Space Wing at Patrick Air Force Base, which support space shuttle astronaut bailout contingency operations, known as Mode VIII. This exercise tests SAR capabilities to locate, recover and provide medical treatment for astronauts following a space shuttle launch phase open-ocean bailout. Participants include members of the U.S. Navy, U.S. Coast Guard, U.S. Air Force, and NASA's Kennedy Space Center and Johnson Space Center. This will be the 15th Mode VIII exercise conducted in the past 20 years. Photo credit: NASA/Kim Shiflett
The Impact of Incentives on Exercise Behavior: A Systematic Review of Randomized Controlled Trials
Strohacker, Kelley; Galarraga, Omar; Williams, David M.
2015-01-01
Background The effectiveness of reinforcing exercise behavior with material incentives is unclear. Purpose Conduct a systematic review of existing research on material incentives for exercise, organized by incentive strategy. Methods Ten studies conducted between January 1965 and June 2013 assessed the impact of incentivizing exercise compared to a non-incentivized control. Results There was significant heterogeneity between studies regarding reinforcement procedures and outcomes. Incentives tended to improve behavior during the intervention while findings were mixed regarding sustained behavior after incentives were removed. Conclusions The most effective incentive procedure is unclear given the limitations of existing research. The effectiveness of various incentive procedures in promoting initial behavior change and habit formation, as well as the use of sustainable incentive procedures should be explored in future research. PMID:24307474
Kinetic quantification of plyometric exercise intensity.
Ebben, William P; Fauth, McKenzie L; Garceau, Luke R; Petushek, Erich J
2011-12-01
Ebben, WP, Fauth, ML, Garceau, LR, and Petushek, EJ. Kinetic quantification of plyometric exercise intensity. J Strength Cond Res 25(12): 3288-3298, 2011-Quantification of plyometric exercise intensity is necessary to understand the characteristics of these exercises and the proper progression of this mode of exercise. The purpose of this study was to assess the kinetic characteristics of a variety of plyometric exercises. This study also sought to assess gender differences in these variables. Twenty-six men and 23 women with previous experience in performing plyometric training served as subjects. The subjects performed a variety of plyometric exercises including line hops, 15.24-cm cone hops, squat jumps, tuck jumps, countermovement jumps (CMJs), loaded CMJs equal to 30% of 1 repetition maximum squat, depth jumps normalized to the subject's jump height (JH), and single leg jumps. All plyometric exercises were assessed with a force platform. Outcome variables associated with the takeoff, airborne, and landing phase of each plyometric exercise were evaluated. These variables included the peak vertical ground reaction force (GRF) during takeoff, the time to takeoff, flight time, JH, peak power, landing rate of force development, and peak vertical GRF during landing. A 2-way mixed analysis of variance with repeated measures for plyometric exercise type demonstrated main effects for exercise type and all outcome variables (p ≤ 0.05) and for the interaction between gender and peak vertical GRF during takeoff (p ≤ 0.05). Bonferroni-adjusted pairwise comparisons identified a number of differences between the plyometric exercises for the outcome variables assessed (p ≤ 0.05). These findings can be used to guide the progression of plyometric training by incorporating exercises of increasing intensity over the course of a program.
2008-05-14
CAPE CANAVERAL, Fla. -- An Air Force HC-130 rescue tanker flies over the target area off Florida's central east coast during a rescue training exercise, known as Mode VIII. In support of, and with logistical support from, NASA, USSTRATCOM is hosting a major exercise involving Department of Defense, Department of Homeland Security, search and rescue (SAR) forces, including the 45th Space Wing at Patrick Air Force Base, which support space shuttle astronaut bailout contingency operations, known as Mode VIII. This exercise tests SAR capabilities to locate, recover and provide medical treatment for astronauts following a space shuttle launch phase open-ocean bailout. Participants include members of the U.S. Navy, U.S. Coast Guard, U.S. Air Force, and NASA's Kennedy Space Center and Johnson Space Center. Photo credit: NASA/Dimitri Gerondidakis
2008-05-14
CAPE CANAVERAL, Fla. -- An Air Force HC-130 rescue tanker flies over the target area off Florida's central east coast during a rescue training exercise, known as Mode VIII. In support of, and with logistical support from, NASA, USSTRATCOM is hosting a major exercise involving Department of Defense, Department of Homeland Security, search and rescue (SAR) forces, including the 45th Space Wing at Patrick Air Force Base, which support space shuttle astronaut bailout contingency operations, known as Mode VIII. This exercise tests SAR capabilities to locate, recover and provide medical treatment for astronauts following a space shuttle launch phase open-ocean bailout. Participants include members of the U.S. Navy, U.S. Coast Guard, U.S. Air Force, and NASA's Kennedy Space Center and Johnson Space Center. Photo credit: NASA/Dimitri Gerondidakis
Collins Center Update. Volume 14, Issue 2, January-March 2012
2012-03-01
forces in Afghanistan, the Romanian Armed Forces General Staff requested a traveling contact team (TCT) from the Commander, U.S. European Command...THIS ISSUE • Strategic Decision Making Exercise (SDME) 2012 • The Romanian Armed Forces and Joint Staff Planning • The Senior Leader Seminar (SLS...military decision-making exercise is designed as a capstone event which provides students the opportunity to role-play as strategic leaders and staffs
Resting handgrip force and impaired cardiac function at rest and during exercise in COPD patients.
Cortopassi, Felipe; Divo, Miguel; Pinto-Plata, Victor; Celli, Bartolome
2011-05-01
Cardiac function measured as the oxygen pulse (O(2) pulse) is impaired during exercise (CPET) in patients with COPD. We investigated the relationship between handgrip force and O(2) pulse in COPD and controls. We measured anthropometrics, lung function, respiratory muscle force, handgrip (HG) force and fat free mass (FFM) at rest in 18 men with COPD (FEV(1)%=45±20) and 15 controls. We then performed a symptom limited cardiopulmonary exercise test (CPET) with similar load and used heart rate, and oxygen pulse (VO(2)/HR) to express cardiac function at rest and during exercise. We corrected the O(2) pulse by FFM. Patients and controls were similar in BMI and FFM. COPD patients had lower handgrip (37.8±7 vs. 55±2) kg. O(2) pulse and HG were associated (r=0.665). At rest, COPD patients had faster heart rate (76±11 vs. 61±5) and lower oxygen pulse. COPD patients had lower oxygen pulse mL/beat at exercise isotime (10.6±3.7 vs. 14.3±2.7), even adjusted by muscle mass. Handgrip is associated with impaired heart function at rest and during exercise in COPD patients even adjusting for muscle mass differences. Lower handgrip may be a marker of impaired cardiac function in COPD patients. Copyright © 2010 Elsevier Ltd. All rights reserved.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 12 Banks and Banking 5 2011-01-01 2011-01-01 false Must I adopt and follow written policies and procedures in exercising fiduciary powers? 550.140 Section 550.140 Banks and Banking OFFICE OF THRIFT SUPERVISION, DEPARTMENT OF THE TREASURY FIDUCIARY POWERS OF SAVINGS ASSOCIATIONS Exercising Fiduciary Powers...
Fultz, Lisa E; Peloso, John G; Giguère, Steeve; Adams, Aric R
2013-04-15
To compare the outcome of horses with nephrosplenic entrapment of the large colon (NSELC) that were treated nonsurgically by IV administration of phenylephrine and exercise with that of horses treated by IV administration of phenylephrine and a rolling procedure under general anesthesia. Retrospective case series. 88 horses with NSELC. Horses examined between 2004 and 2010 because of acute abdominal pain that had NSELC on the basis of findings on abdominal palpation per rectum, abdominal ultrasonography, or both were included. Medical records were reviewed to obtain information on treatment (IV administration of phenylephrine and exercise vs IV administration of phenylephrine and a rolling procedure) and outcome. Overall, 85% (75/88) of horses with NSELC responded to exercise or rolling under general anesthesia. The success rate of rolling under general anesthesia (42/50 [84%]) was significantly higher than the success rate of exercise after IV administration of phenylephrine (24/38 [63.2%]). Resolution of NSELC was achieved by rolling under general anesthesia in 8 of 14 horses that initially failed to resolve with exercise. A rolling procedure performed under general anesthesia had a higher success rate than exercise after IV phenylephrine administration for resolution of NSELC in horses, suggesting that rolling could be considered as the initial medical treatment. The rolling procedure may be labor intensive and should only be attempted in a surgical facility in the event that exploratory laparotomy is required.
Impact kinetics associated with four common bilateral plyometric exercises.
Stewart, Ethan; Kernozek, Thomas; Peng, Hsien-Te; Wallace, Brian
2018-04-20
This study quantified the peak vertical ground reaction force (VGRF), impulse, and average and instantaneous loading rates developed during bilateral plyometric exercises. Fourteen collegiate male athletes performed four different bilateral plyometric exercises within a single testing session. Depth jumps from thirty, sixty and ninety centimeter heights (DJ30, DJ60, and DJ90, respectively), and a two consecutive jump exercise (2CJ), were randomly performed. The subjects landed on and propelled themselves off two force platforms embedded into the floor. The stance phase of each plyometric movement was analyzed for vertical force characteristics. The dependent variables were normalized to body weight. One-way repeated-measures ANOVA revealed significant differences between exercises (p ≤ 0.05). For VGRF, only the DJ60 and 2CJ exercises were not different from each other. The impulses between DJ60 and DJ90, and DJ30 and 2CJ, were not different. All exercises were different from each other in regards to average and instantaneous loading rate except for DJ30 vs. DJ60, and DJ90 vs. 2CJ. The DJ90 condition reported the highest peak VGRF by approaching five times body weight. The 2CJ condition had similar impulse and loading rates as the DJ90 condition. A proper progression and detailed program planning should be utilized when implementing plyometric exercises due to their different impact kinetics and how they might influence the body upon ground contact.
Hawari, F I; Obeidat, N A; Ghonimat, I M; Ayub, H S; Dawahreh, S S
2017-01-01
Evidence regarding the health effects of habitual waterpipe smoking is limited, particularly in young smokers. Respiratory health and cardiopulmonary exercise tests were compared in young male habitual waterpipe smokers (WPS) versus non-smokers. 69 WPS (≥3 times/week for three years) and 69 non-smokers were studied. Respiratory health was assessed through the American Thoracic Society and the Division of Lung Diseases (ATS-DLD-78) adult questionnaire. Pulmonary function and cardiopulmonary exercise tests were performed. Self-reported respiratory symptoms, forced expiratory volume in first second (FEV 1 ), forced vital capacity (FVC), FEV 1 /FVC ratio, forced expiratory flow between 25 and 75% of FVC (FEF 25-75% ), peak expiratory flow (PEF), exercise time, peak end-tidal CO 2 tension (PetCO 2 ), subject-reported leg fatigue and dyspnea; peak O 2 uptake (VO 2 max), and end-expiratory lung volume (EELV) change from baseline (at peak exercise) were measured. WPS were more likely than non-smokers to report respiratory symptoms. WPS also demonstrated: shorter exercise time; lower peak VO 2 ; higher perceived dyspnea at mid-exercise; lower values of the following: FEV 1 , FVC, PEF, and EELV change. Habitual waterpipe tobacco smoking in young seemingly healthy individuals is associated with a greater burden of respiratory symptoms and impaired exercise capacity. Copyright © 2016 Elsevier Ltd. All rights reserved.
Nozaki, S.; Kawai, M.; Shimoyama, R.; Futamura, N.; Matsumura, T.; Adachi, K.; Kikuchi, Y.
2010-01-01
The purpose of this study is to evaluate whether the range of motion exercise of the temporo-mandibular joint (jaw ROM exercise) with a hot pack and massage of the masseter muscle improve biting disorder in Duchenne muscular dystrophy (DMD). The subjects were 18 DMD patients (21.3 ± 4.1 years old). The jaw ROM exercise consisted of therapist-assisted training (2 times a week) and self-training (before each meal every day). The therapist-assisted training consisted of the application of a hot pack on the cheek of the masseter muscle region (15 minutes), the massage of the masseter (10 minutes), and jaw ROM exercise (5 minutes). The self-training involved jaw ROM exercise by opening the mouth to the maximum degree, ten times. These trainings continued for six months. Outcomes were evaluated by measuring the greatest occlusal force and the distance at the maximum degree of mouth opening between an incisor of the top and that of the bottom. Six months later, the greatest occlusal force had increased significantly compared with that at the start of jaw ROM exercise (intermediate values: from 73.8N to 97.3N) (p = 0.005) as determined by the Friedman test and Scheffé's nonparametric test. The patients' satisfaction with meals increased. However, the maximum degree of mouth opening did not change after six months of jaw ROM exercise. Jaw ROM exercise in DMD is effective for increasing the greatest occlusal force. PMID:21574523
The Biomechanics of Exercise Countermeasures
NASA Technical Reports Server (NTRS)
Cavanagh, Peter R.; Arnold, Steven; Derr, Janice; Sharkey, Neil; Wu, Ge
1999-01-01
The Penn State Zero-gravity Simulator (PSZS) is a device developed by the Center for Locomotion Studies (CELOS) to enable ground studies of exercise countermeasures for the bone loss that has been shown to occur during long-term exposure to zero gravity (0G). The PSZS simulates 0G exercise by providing a suspension system that holds an individual in a horizontal (supine) position above the floor in order to enable exercise on a wall-mounted treadmill. Due to this orientation, exercise performed in the PSZS is free of the force of -ravity in the direction that would normally contribute to ground reaction forces. In order for movements to be more similar to those in 0G, a constant force suspension of each segment (equal to the segment weight) is provided regardless of limb position. During the preliminary development of the PSZS, CELOS researchers also designed an optional gravity-replacement simulation feature for the PSZS. This feature was a prototype tethering system that consisted of a spring tension system to pull an exercising individual toward the treadmill. The immediate application of the tethering system was to be the provision of gravity-replacement loading so that exercise in 0G- and 1G-loading conditions could be compared, and the PSZS could then be used to evaluate exercise countermeasures for bone loss during space flight. This tethering system would also be a model for the further refinement of gravity-replacement systems provided for astronaut usage while performing prescribed exercise countermeasures for bone loss during long-term space flights.
Bonnechère, Bruno; Jansen, Bart; Omelina, Lubos; Sholukha, Victor; Van Sint Jan, Serge
2016-09-01
Balance and posture can be affected in various conditions or become decreased with aging. A diminution of balance control induces an increase of fall's risk. The Nintendo Wii Balance Board™ (WBB) is used in rehabilitation to perform balance exercises (using commercial video games). The WBB has also been validated to assess balance and posture in static conditions. However, there is currently no study investigating the use of WBB to assess balance during the realization of balance exercises using this device. The aim of this study was to validate the use of WBB, coupled with specially developed serious games, to assess dynamic balance during rehabilitation exercises. Thirty five subjects participated in this study. Subjects were asked to play two specially developed serious games. Center of pressure (CP) displacements were simultaneously recorded with a WBB and a gold standard force plate (FP). Nine parameters were derived from CP displacement. Bland and Altman plots, paired-sample t tests, intraclass correlation coefficient's, and Pearson's coefficient correlations were computed. Excellent correlation between both devices was found for each parameter for the two games (R = 0.95 and 0.96). Unlike previous work on the WBB, these excellent results were obtained without using any calibration procedure. Despite this, results were highly correlated between the WBB and the FP. The WBB could be used in clinics to assess balance during rehabilitation exercises and, thus, allows a more regular patient follow-up.
Portable Load Measurement Device for Use During ARED Exercise on ISS
NASA Technical Reports Server (NTRS)
Hanson, A.; Peters, B.; Caldwell, E.; Sinka, J.; Kreutzburg, G.; Ploutz-Snyder, L.
2014-01-01
The Advanced Resistive Exercise Device (ARED) (Fig.1) is unique countermeasure hardware available to crewmembers aboard the International Space Station (ISS) used for resistance exercise training to protect against bone and muscle loss during long duration space missions. ARED instrumentation system was designed to measure and record exercise load data, but: - Reliably accurate data has not been available due to a defective force platform. - No ARED data has been recorded since mid-2011 due to failures in the instrumentation power system. ARED load data supports on-going HRP funded research, and is available to extramural researchers through LSDA-Repository. Astronaut Strength, Conditioning, and Rehabilitation specialists (ASCRs) use ARED data to track training progress and advance exercise prescriptions. ARED load data is necessary to fulfill medical requirements. HRP directed task intends to reduce to program risk (HRP IRMA Risk 1735), and evaluate the XSENS ForceShoeTM as a means of obtaining ARED load data during exercise sessions. The XSENS ForceShoes"TM" will fly as a hardware demonstration to ISS in May 2014 (39S). Additional portable load monitoring devices (PLMDs) are under evaluation in the ExPC Lab. PLMDs are favored over platform redesign as they support future exploration needs.
Larsson, Anette; Palstam, Annie; Löfgren, Monika; Ernberg, Malin; Bjersing, Jan; Bileviciute-Ljungar, Indre; Gerdle, Björn; Kosek, Eva; Mannerkorpi, Kaisa
2015-06-18
Fibromyalgia (FM) is characterized by persistent widespread pain, increased pain sensitivity and tenderness. Muscle strength in women with FM is reduced compared to healthy women. The aim of this study was to examine the effects of a progressive resistance exercise program on muscle strength, health status, and current pain intensity in women with FM. A total of 130 women with FM (age 22-64 years, symptom duration 0-35 years) were included in this assessor-blinded randomized controlled multi-center trial examining the effects of progressive resistance group exercise compared with an active control group. A person-centred model of exercise was used to support the participants' self-confidence for management of exercise because of known risks of activity-induced pain in FM. The intervention was performed twice a week for 15 weeks and was supervised by experienced physiotherapists. Primary outcome measure was isometric knee-extension force (Steve Strong®), secondary outcome measures were health status (FIQ total score), current pain intensity (VAS), 6MWT, isometric elbow-flexion force, hand-grip force, health related quality of life, pain disability, pain acceptance, fear avoidance beliefs, and patient global impression of change (PGIC). Outcomes were assessed at baseline and immediately after the intervention. Long-term follow up comprised the self-reported questionnaires only and was conducted after 13-18 months. Between-group and within-group differences were calculated using non-parametric statistics. Significant improvements were found for isometric knee-extension force (p = 0.010), health status (p = 0.038), current pain intensity (p = 0.033), 6MWT (p = 0.003), isometric elbow flexion force (p = 0.02), pain disability (p = 0.005), and pain acceptance (p = 0.043) in the resistance exercise group (n = 56) when compared to the control group (n = 49). PGIC differed significantly (p = 0.001) in favor of the resistance exercise group at post-treatment examinations. No significant differences between the resistance exercise group and the active control group were found regarding change in self-reported questionnaires from baseline to 13-18 months. Person-centered progressive resistance exercise was found to be a feasible mode of exercise for women with FM, improving muscle strength, health status, and current pain intensity when assessed immediately after the intervention. ClinicalTrials.gov identification number: NCT01226784, Oct 21, 2010.
Kamiya, Atsunori; Michikami, Daisaku; Shiozawa, Tomoki; Iwase, Satoshi; Hayano, Junichiro; Kawada, Toru; Sunagawa, Kenji; Mano, Tadaaki
2004-05-01
Although spaceflight and bed rest are known to cause muscular atrophy in the antigravity muscles of the legs, the changes in sympathetic and cardiovascular responses to exercises using the atrophied muscles remain unknown. We hypothesized that bed rest would augment sympathetic responses to isometric exercise using antigravity leg muscles in humans. Ten healthy male volunteers were subjected to 14-day 6 degrees head-down bed rest. Before and after bed rest, they performed isometric exercises using leg (plantar flexion) and forearm (handgrip) muscles, followed by 2-min postexercise muscle ischemia (PEMI) that continues to stimulate the muscle metaboreflex. These exercises were sustained to fatigue. We measured muscle sympathetic nerve activity (MSNA) in the contralateral resting leg by microneurography. In both pre- and post-bed-rest exercise tests, exercise intensities were set at 30 and 70% of the maximum voluntary force measured before bed rest. Bed rest attenuated the increase in MSNA in response to fatiguing plantar flexion by approximately 70% at both exercise intensities (both P < 0.05 vs. before bed rest) and reduced the maximal voluntary force of plantar flexion by 15%. In contrast, bed rest did not alter the increase in MSNA response to fatiguing handgrip and had no effects on the maximal voluntary force of handgrip. Although PEMI sustained MSNA activation before bed rest in all trials, bed rest entirely eliminated the PEMI-induced increase in MSNA in leg exercises but partially attenuated it in forearm exercises. These results do not support our hypothesis but indicate that bed rest causes a reduction in isometric exercise-induced sympathetic activation in (probably atrophied) antigravity leg muscles.
Effect of Tongue Exercise on Protrusive Force and Muscle Fiber Area in Aging Rats
ERIC Educational Resources Information Center
Connor, Nadine P.; Russell, John A.; Wang, Hao; Jackson, Michelle A.; Mann, Laura; Kluender, Keith
2009-01-01
Purpose: Age-related changes in tongue function may contribute to dysphagia in elderly people. The authors' purpose was to investigate whether aged rats that have undergone tongue exercise would manifest increased protrusive tongue forces and increased genioglossus (GG) muscle fiber cross-sectional areas. Method: Forty-eight young adult,…
Contraction-Only Exercise Machine
NASA Technical Reports Server (NTRS)
Doerr, Donald F.; Maples, Arthur B.; Campbell, Craig M.
1992-01-01
Standard knee-extension machine modified so subject experiences force only when lifting leg against stack of weights. Exerts little force on leg while being lowered. Hydraulic cylinder and reservoir mounted on frame of exercise machine. Fluid flows freely from cylinder to reservoir during contraction (lifting) but in constricted fashion from reservoir to cylinder during extension (lowering).
Foot Forces during Treadmill Exercise on the International Space Station
NASA Technical Reports Server (NTRS)
Cavanagh, Peter R.; Rice, Andrea J.; Maender, Christian C.; Gopalakrishnan, Raghavan; Genc, Kerim O.; Kuklis, Matthew
2006-01-01
Exercise has been the primary countermeasure to combat musculoskeletal changes during the approximately 6 month missions to the International Space Station (ISS). However, these countermeasures have not been successful in preventing loss of bone mineral density in the spine and hip of astronauts. We examined lower extremity loading during typical bouts of on-orbit exercise performed by 4 ISS crew members on the ISS treadmill (TVIS) and during locomotor activities on earth (1g). In-shoe forces were monitored at 128Hz using force-measuring insoles placed inside the shoes of the exercising crewmember, stored temporarily on Flash cards, and down-linked via satellite for analysis. Custom software extracted peak forces from up to 30 minutes of locomotor activity. All on-orbit loading conditions for walking and running resulted in peak forces and impact loading rates that were significantly less than those measured in 1g. Typical single leg loads on-orbit in walking and running were 0.860 plus or minus 0.04 body weights (BW) and 1.339 plus or minus 0.07 BW compared to 1.2 plus or minus 0.036 BW and 2.36 plus or minus 0.07 BW in 1g BW respectively. These results indicate that typical exercise on the ISS treadmill does not generate 1g-like loading conditions. This may be partly responsible for the loss of bone mineral density that has been observed in these and other crew members. Since on-orbit treadmill exercise requires a restraining load to return the crew member to the treadmill surface, more studies are required to enable comfortable full body weight loading to be applied.
Kinematic and EMG Comparison of Gait in Normal and Microgravity
NASA Technical Reports Server (NTRS)
DeWitt, John K.; Edwards, W. Brent; Perusek, Gail P.; Lewandowski, Beth E.; Samorezov, Sergey
2009-01-01
Astronauts regularly perform treadmill locomotion as a part of their exercise prescription while onboard the International Space Station. Although locomotive exercise has been shown to be beneficial for bone, muscle, and cardiovascular health, astronauts return to Earth after long duration missions with net losses in all three areas [1]. These losses might be partially explained by fundamental differences in locomotive performance between normal gravity (NG) and microgravity (MG) environments. During locomotive exercise in MG, the subject must wear a waist and shoulder harness that is attached to elastomer bungees. The bungees are attached to the treadmill, and provide forces that are intended to replace gravity. However, unlike gravity, which provides a constant force upon all body parts, the bungees provide a spring force only to the harness. Therefore, subjects are subjected to two fundamental differences in MG: 1) forces returning the subject to the treadmill are not constant, and 2) forces are only applied to the axial skeleton at the waist and shoulders. The effectiveness of the exercise may also be affected by the magnitude of the gravity replacement load. Historically, astronauts have difficulty performing treadmill exercise with loads that approach body weight (BW) due to comfort and inherent stiffness in the bungee system. Although locomotion can be executed in MG, the unique requirements could result in performance differences as compared to NG. These differences may help to explain why long term training effects of treadmill exercise may differ from those found in NG. The purpose of this investigation was to compare locomotion in NG and MG to determine if kinematic or muscular activation pattern differences occur between gravitational environments.
Borji, Rihab; Sahli, Sonia; Zarrouk, Nidhal; Zghal, Firas; Rebai, Haithem
2013-12-01
This study examined neuromuscular fatigue after high-intensity intermittent exercise in 10 men with mild intellectual disability (ID) in comparison with 10 controls. Both groups performed three maximal voluntary contractions (MVC) of knee extension with 5 min in-between. The highest level achieved was selected as reference MVC. The fatiguing exercise consists of five sets with a maximal number of flexion-extension cycles at 80% of the one maximal repetition (1RM) for the right leg at 90° with 90 s rest interval between sets. The MVC was tested again after the last set. Peak force and electromyography (EMG) signals were measured during the MVC tests. Root Mean Square (RMS) and Median Frequency (MF) were calculated. Neuromuscular efficiency (NME) was calculated as the ratio of peak force to the RMS. Before exercise, individuals with ID had a lower MVC (p<0.05) and a lower RMS (p<0.05). No significant difference between groups in MF and NME. After exercise, MVC decreases significantly in both groups (p<0.001). Individuals with ID have greater force decline (p<0.001 vs. p<0.01). RMS decreased significantly (p<0.001) whereas the NME increased significantly (p<0.05) in individuals with ID, but both remained unchanged in controls. The MF decreased significantly in both groups (p<0.001). In conclusion, individuals with ID presented a lower peak force than individuals without ID. After a high-intensity intermittent exercise, individuals with ID demonstrated a greater force decline caused by neural activation failure. When rehabilitation and sport train ID individuals, they should consider this nervous system weakness. Copyright © 2013 Elsevier Ltd. All rights reserved.
Motaghinejad, Majid; Fatima, Sulail; Karimian, Morteza; Ganji, Saeid
2016-01-01
Nicotine is one of the psychostimulant agents displaying parasympathomimetic activity; the chronic neurochemical and behavioral effects of nicotine remain unclear. Exercise lowers stress and anxiety and can act as a non-pharmacologic neuroprotective agent. In this study, the protective effects of exercise in nicotine withdrawal syndrome-induced anxiety, depression, and cognition impairment were investigated. Seventy adult male rats were divided randomly into five groups. Group 1 served as negative control and received normal saline (0.2 mL/rat, i.p.) for 30 days, whereas group 2 (as positive control) received nicotine (6 mg/kg/day, s.c.) for the first 15 days. Groups 4, 5, and 6 were treated with nicotine (6 mg/kg/day, s.c.) for the first 15 days and then were treated with forced exercise, bupropion (20 mg/kg/day, i.p.), or a combination of the two for the following 15 days. Between day 25 and day 30, Morris water maze was used to evaluate spatial learning and memory. From days 31 to 35, the elevated plus maze (EPM), open field test (OFT), forced swim test (FST), and tail suspension test (TST) were used to investigate the level of anxiety and depression in the subjects. Nicotine-dependent animals indicated a reflective depression and anxiety in a dose-dependent manner in FST, EPM, and TST, which were significantly different from the control group and also can significantly attenuate the motor activity and anxiety in OFT. Forced exercise, bupropion, or their combination can attenuate nicotine cessation-induced anxiety, depression, and motor activity in the mentioned behavioral assay. We conclude that forced exercise can protect the brain against nicotine withdrawal-induced anxiety, depression, and cognitive alteration.
Understanding postoperative fatigue.
Rose, E A; King, T C
1978-07-01
Performance characteristics of the central nervous, cardiovascular, respiratory and muscular systems in man postoperatively have received little investigative attention, despite the well known syndrome of postoperative fatigue. The impairmen in perception and psychomotor skills that has been shown to result from caloric restriction, bedrest, sedation and sleep deprivation suggests that a similar deficit may occur after surgical procedures. After a simple elective surgical procedure, maximal oxygen uptake decreases and the adaptability of heart rate to submaximal workloads is impaired. Similar deleterious effects on cardiorespiratory performance have been documented with starvation and bedrest; an understanding of cardiorespiratory performance postoperatively awaits further investigation. Maximal muscular force of contraction is also impaired by caloric restriction and bedrest, suggesting that similar effects may be seen in the postoperative state, although this has not been studied. A better understanding of the syndrome of postoperative fatigue could be achieved by a descriptive analysis of physiologic performance postoperatively. Such descriptive data could form the basis for objective evaluation of therapeutic measures intended to improve performance, such as nutritional supplementation and pharmacologic intervention. The observation that exercise with the patient in the supine position may decrease the impairment in maximal aerobic power otherwise expected in immobilized patients suggests that controlled exercise therapy may be of value in reducing physiologic impairment postoperatively.
Design of a resistive exercise device for use on the Space Shuttle
NASA Technical Reports Server (NTRS)
Carlson, Dennis L.; Durrani, Mohammed; Redilla, Christi L.
1992-01-01
The National Aeronautics and Space Administration in conjunction with the Universities Space Research Association sponsored the design of a Resistive Exercise Device (RED) for use on the Space Shuttle. The device must enable the astronauts to perform a number of exercises to prevent skeletal muscle atrophy and neuromuscular deconditioning in microgravity environments. The RED must fit the requirements for limited volume and weight and must provide a means of restraint during exercise. The design team divided the functions of the device into three major groups: methods of supplying force, methods of adjusting force, and methods of transmitting the force to the user. After analyzing the three main functions of the RED and developing alternatives for each, the design team used a comparative decision process to choose the most feasible components for the overall design. The design team selected the constant force spring alternative for further embodiment. The device consists of an array of different sized constant force springs which can be pinned in different combinations to produce the required output forces. The force is transmitted by means of a shaft and gear system. The final report is divided into four sections. An introduction section discusses the sponsor background, problem background and requirements of the device. The second section covers the alternative designs for each of the main functions. The design solution and pertinent calculations comprises the third section. The final section contains design conclusions and recommendations including topics of future work.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gingerich, Andrew J.; Philipp, D. P.; Suski, C. D.
The influence of feeding on swimming performance and exercise recovery in fish is poorly understood. Examining swimming behavior and physiological status following periods of feeding and fasting is important because wild fish often face periods of starvation. In the current study, researchers force fed and fasted groups of largemouth bass (Micropterus salmoides) of similar sizes for a period of 16 days. Following this feeding and fasting period, fish were exercised for 60 s and monitored for swimming performance and physiological recovery. Resting metabolic rates were also determined. Fasted fish lost an average of 16 g (nearly 12%) of body mass,more » while force fed fish maintained body mass. Force fed fish swam 28% further and required nearly 14 s longer to tire during exercise. However, only some physiological conditions differed between feeding groups. Resting muscle glycogen concentrations was twofold greater in force fed fish, at rest and throughout recovery, although it decreased in both feeding treatments following exercise. Liver mass was nearly three times greater in force fed fish, and fasted fish had an average of 65% more cortisol throughout recovery. Similar recovery rates of most physiological responses were observed despite force fed fish having a metabolic rate 75% greater than fasted fish. Results are discussed as they relate to largemouth bass starvation in wild systems and how these physiological differences might be important in an evolutionary context.« less
Dawe, Philip; Kirkpatrick, Andrew; Talbot, Max; Beckett, Andrew; Garraway, Naisan; Wong, Heather; Hameed, Syed Morad
2018-05-01
Damage-control and emergency surgical procedures in trauma have the potential to save lives. They may occasionally not be performed due to clinician inexperience or lack of comfort and knowledge. Canadian Armed Forces (CAF) non-surgeon Medical Officers (MOs) participated in a live tissue training exercise. They received tele-mentoring assistance using a secure video-conferencing application on a smartphone/tablet platform. Feasibility of tele-mentored surgery was studied by measuring their effectiveness at completing a set series of tasks in this pilot study. Additionally, their comfort and willingness to perform studied procedures was gauged using pre- and post-study surveys. With no pre-procedural teaching, participants were able to complete surgical airway, chest tube insertion and resuscitative thoracotomy with 100% effectiveness with no noted complications. Comfort level and willingness to perform these procedures were improved with tele-mentoring. Participants felt that tele-mentored surgery would benefit their performance of resuscitative thoracotomy most. The use of tele-mentored surgery to assist non-surgeon clinicians in the performance of damage-control and emergency surgical procedures is feasible. More study is required to validate its effectiveness. Copyright © 2018 Elsevier Inc. All rights reserved.
Artistico, Daniele; Pinto, Angela Marinilli; Douek, Jill; Black, Justin; Pezzuti, Lina
2012-01-01
The objective of the study was to develop a novel procedure to increase self-efficacy for exercise. Gains in one’s ability to resolve day-to-day obstacles for entering an exercise routine were expected to cause an increase in self-efficacy for exercise. Fifty-five sedentary participants (did not exercise regularly for at least 4 months prior to the study) who expressed an intention to exercise in the near future were selected for the study. Participants were randomly assigned to one of three conditions: (1) an Experimental Group in which they received a problem-solving training session to learn new strategies for solving day-to-day obstacles that interfere with exercise, (2) a Control Group with Problem-Solving Training which received a problem-solving training session focused on a typical day-to-day problem unrelated to exercise, or (3) a Control Group which did not receive any problem-solving training. Assessment of obstacles to exercise and perceived self-efficacy for exercise were conducted at baseline; perceived self-efficacy for exercise was reassessed post-intervention (1 week later). No differences in perceived challenges posed by obstacles to exercise or self-efficacy for exercise were observed across groups at baseline. The Experimental Group reported greater improvement in self-efficacy for exercise compared to the Control Group with Training and the Control Group. Results of this study suggest that a novel procedure that focuses on removing obstacles to intended planned fitness activities is effective in increasing self-efficacy to engage in exercise among sedentary adults. Implications of these findings for use in applied settings and treatment studies are discussed. PMID:23372560
Artistico, Daniele; Pinto, Angela Marinilli; Douek, Jill; Black, Justin; Pezzuti, Lina
2013-01-01
The objective of the study was to develop a novel procedure to increase self-efficacy for exercise. Gains in one's ability to resolve day-to-day obstacles for entering an exercise routine were expected to cause an increase in self-efficacy for exercise. Fifty-five sedentary participants (did not exercise regularly for at least 4 months prior to the study) who expressed an intention to exercise in the near future were selected for the study. Participants were randomly assigned to one of three conditions: (1) an Experimental Group in which they received a problem-solving training session to learn new strategies for solving day-to-day obstacles that interfere with exercise, (2) a Control Group with Problem-Solving Training which received a problem-solving training session focused on a typical day-to-day problem unrelated to exercise, or (3) a Control Group which did not receive any problem-solving training. Assessment of obstacles to exercise and perceived self-efficacy for exercise were conducted at baseline; perceived self-efficacy for exercise was reassessed post-intervention (1 week later). No differences in perceived challenges posed by obstacles to exercise or self-efficacy for exercise were observed across groups at baseline. The Experimental Group reported greater improvement in self-efficacy for exercise compared to the Control Group with Training and the Control Group. Results of this study suggest that a novel procedure that focuses on removing obstacles to intended planned fitness activities is effective in increasing self-efficacy to engage in exercise among sedentary adults. Implications of these findings for use in applied settings and treatment studies are discussed.
Adams, Jenny; Schmid, Jack; Parker, Robert D; Coast, J Richard; Cheng, Dunlei; Killian, Aaron D; McCray, Stephanie; Strauss, Danielle; McLeroy Dejong, Sandra; Berbarie, Rafic
2014-03-15
Sternal precautions are intended to prevent complications after median sternotomy, but little data exist to support the consensus recommendations. To better characterize the forces on the sternum that can occur during everyday events, we conducted a prospective nonrandomized study of 41 healthy volunteers that evaluated the force exerted during bench press resistance exercise and while sneezing. A balloon-tipped esophageal catheter, inserted through the subject's nose and advanced into the thoracic cavity, was used to measure the intrathoracic pressure differential during the study activities. After the 1 repetition maximum (1-RM) was assessed, the subject performed the bench press at the following intensities, first with controlled breathing and then with the Valsalva maneuver: 40% of 1-RM (low), 70% of 1-RM (moderate), and 1-RM (high). Next, various nasal irritants were used to induce a sneeze. The forces on the sternum were calculated according to a cylindrical model, and a 2-tailed paired t test was used to compare the mean force exerted during a sneeze with the mean force exerted during each of the 6 bench press exercises. No statistically significant difference was found between the mean force from a sneeze (41.0 kg) and the mean total force exerted during moderate-intensity bench press exercise with breathing (41.4 kg). In conclusion, current guidelines and recommendations limit patient activity after a median sternotomy. Because these patients can repeatedly withstand a sneeze, our study indicates that they can withstand the forces from more strenuous activities than are currently allowed. Copyright © 2014 Elsevier Inc. All rights reserved.
The effects of muscle weakness on degenerative spondylolisthesis: A finite element study.
Zhu, Rui; Niu, Wen-Xin; Zeng, Zhi-Li; Tong, Jian-Hua; Zhen, Zhi-Wei; Zhou, Shuang; Yu, Yan; Cheng, Li-Ming
2017-01-01
Whether muscle weakness is a cause, or result, of degenerative spondylolisthesis is not currently well understood. Little biomechanical evidence is available to offer an explanation for the mechanism behind exercise therapy. Therefore, the aim of this study is to investigate the effects of back muscle weakness on degenerative spondylolisthesis and to tease out the biomechanical mechanism of exercise therapy. A nonlinear 3-D finite element model of L3-L5 was constructed. Forces representing global back muscles and global abdominal muscles, follower loads and an upper body weight were applied. The force of the global back muscles was reduced to 75%, 50% and 25% to simulate different degrees of back muscle weakness. An additional boundary condition which represented the loads from other muscles after exercise therapy was set up to keep the spine in a neutral standing position. Shear forces, intradiscal pressure, facet joint forces and von Mises equivalent stresses in the annuli were calculated. The intervertebral rotations of L3-L4 and L4-L5 were within the range of in vitro experimental data. The calculated intradiscal pressure of L4-L5 for standing was 0.57MPa, which is similar to previous in vivo data. With the back muscles were reduced to 75%, 50% and 25% force, the shear force moved increasingly in a ventral direction. Due to the additional stabilizing force and moment provided by boundary conditions, the shear force varied less than 15%. Reducing the force of global back muscles might lead to, or aggravate, degenerative spondylolisthesis with forward slipping from biomechanical point of view. Exercise therapy may improve the spinal biomechanical environment. However, the intrinsic correlation between back muscle weakness and degenerative spondylolisthesis needs more clinical in vivo study and biomechanical analysis. Copyright © 2016 Elsevier Ltd. All rights reserved.
Yan, Feiwei; Hao, Haitao
2016-12-01
Polysaccharides are the major active ingredients responsible for the bioactivities of Laminaria japonica. However, the effects of L. japonica polysaccharides (LJP) on exercise endurance and oxidative stress have never been investigated. Therefore, this study was conducted to investigate the effects of LJP on exercise endurance and oxidative stress in a forced swimming mouse model. The animals were divided into four groups, namely the control (C), LJP-75, LJP-150, and LJP-300 groups, which received physiological saline and 75, 150, and 300 mg kg(-1) LJP, respectively, by gavage once a day for 28 days. This was followed by a forced swimming test and measurements of various biochemical parameters. LJP increased swimming time to exhaustion, the liver and muscle glycogen content, and levels of superoxide dismutase, glutathione peroxidase, and catalase in the serum, liver, and muscle, which were accompanied by corresponding decreases in the malondialdehyde (MDA) content of the same tissues. Furthermore, decreases in blood lactic acid and serum myeloperoxidase (MPO) levels were observed. LJP enhanced exercise endurance and protected mice against exhaustive exercise-induced oxidative stress.
Exercise Equipment: Neutral Buoyancy
NASA Technical Reports Server (NTRS)
Shackelford, Linda; Valle, Paul
2016-01-01
Load Bearing Equipment for Neutral Buoyancy (LBE-NB) is an exercise frame that holds two exercising subjects in position as they apply counter forces to each other for lower extremity and spine loading resistance exercises. Resistance exercise prevents bone loss on ISS, but the ISS equipment is too massive for use in exploration craft. Integrating the human into the load directing, load generating, and motion control functions of the exercise equipment generates safe exercise loads with less equipment mass and volume.
Conditioned taste avoidance induced by forced and voluntary wheel running in rats.
Forristall, J R; Hookey, B L; Grant, V L
2007-03-01
Voluntary exercise by rats running in a freely rotating wheel (free wheel) produces conditioned taste avoidance (CTA) of a flavored solution consumed before running [e.g., Lett, B.T., Grant, V.L., 1996. Wheel running induces conditioned taste aversion in rats trained while hungry and thirsty. Physiol. Behav. 59, 699-702]. Forced exercise, swimming or running, also produces CTA in rats [e.g., Masaki, T., Nakajima, S., 2006. Taste aversion induced by forced swimming, voluntary running, forced running, and lithium chloride injection treatments. Physiol. Behav. 88, 411-416]. Energy expenditure may be the critical factor in producing such CTA. If so, forced running in a motorized running wheel should produce CTA equivalent to that produced by a similar amount of voluntary running. In two experiments, we compared forced running in a motorized wheel with voluntary running in a free wheel. Mean distance run over 30 min was equated as closely as possible in the two apparatuses. Both types of exercise produced CTA relative to sedentary, locked-wheel controls. However, voluntary running produced greater CTA than forced running. We consider differences between running in the free and motorized wheels that may account for the differences in strength of CTA.
Automatic evaluations and exercise setting preference in frequent exercisers.
Antoniewicz, Franziska; Brand, Ralf
2014-12-01
The goals of this study were to test whether exercise-related stimuli can elicit automatic evaluative responses and whether automatic evaluations reflect exercise setting preference in highly active exercisers. An adapted version of the Affect Misattribution Procedure was employed. Seventy-two highly active exercisers (26 years ± 9.03; 43% female) were subliminally primed (7 ms) with pictures depicting typical fitness center scenarios or gray rectangles (control primes). After each prime, participants consciously evaluated the "pleasantness" of a Chinese symbol. Controlled evaluations were measured with a questionnaire and were more positive in participants who regularly visited fitness centers than in those who reported avoiding this exercise setting. Only center exercisers gave automatic positive evaluations of the fitness center setting (partial eta squared = .08). It is proposed that a subliminal Affect Misattribution Procedure paradigm can elicit automatic evaluations to exercising and that, in highly active exercisers, these evaluations play a role in decisions about the exercise setting rather than the amounts of physical exercise. Findings are interpreted in terms of a dual systems theory of social information processing and behavior.
Kumar, Amaravadi Sampath; Alaparthi, Gopala Krishna; Augustine, Alfred Joseph; Pazhyaottayil, Zulfeequer Chundaanveetil; Ramakrishna, Anand; Krishnakumar, Shyam Krishnan
2016-01-01
Surgical procedures in abdominal area lead to changes in pulmonary function, respiratory mechanics and impaired physical capacity leading to postoperative pulmonary complications, which can affect up to 80% of upper abdominal surgery. To evaluate the effects of flow and volume incentive spirometry on pulmonary function and exercise tolerance in patients undergoing open abdominal surgery. A randomized clinical trial was conducted in a hospital of Mangalore city in Southern India. Thirty-seven males and thirteen females who were undergoing abdominal surgeries were included and allocated into flow and volume incentive spirometry groups by block randomization. All subjects underwent evaluations of pulmonary function with measurement of Forced Vital Capacity (FVC), Forced Expiratory Volume in the first second (FEV1), Peak Expiratory Flow (PEF). Preoperative and postoperative measurements were taken up to day 5 for both groups. Exercise tolerance measured by Six- Minute Walk Test during preoperative period and measured again at the time of discharge for both groups. Pulmonary function was analysed by post-hoc analysis and carried out using Bonferroni's 't'-test. Exercise tolerance was analysed by Paired 'T'-test. Pulmonary function (FVC, FEV1, and PEFR) was found to be significantly decreased in 1(st), 2(nd) and 3(rd) postoperative day when compared with preoperative day. On 4(th) and 5(th) postoperative day the pulmonary function (FVC, FEV1, and PEFR) was found to be better preserved in both flow and volume incentive spirometry groups. The Six-Minute Walk Test showed a statistically significant improvement in pulmonary function on the day of discharge than in the preoperative period. In terms of distance covered, the volume- incentive spirometry group showed a greater statistically significant improvement from the preoperative period to the time of discharge than was exhibited by the flow incentive spirometry group. Flow and volume incentive spirometry can be safely recommended to patients undergoing open abdominal surgery as there have been no adverse events recorded. Also, these led to a demonstrable improvement in pulmonary function and exercise tolerance.
Kumar, Amaravadi Sampath; Augustine, Alfred Joseph; Pazhyaottayil, Zulfeequer Chundaanveetil; Ramakrishna, Anand; Krishnakumar, Shyam Krishnan
2016-01-01
Introduction Surgical procedures in abdominal area lead to changes in pulmonary function, respiratory mechanics and impaired physical capacity leading to postoperative pulmonary complications, which can affect up to 80% of upper abdominal surgery. Aim To evaluate the effects of flow and volume incentive spirometry on pulmonary function and exercise tolerance in patients undergoing open abdominal surgery. Materials and Methods A randomized clinical trial was conducted in a hospital of Mangalore city in Southern India. Thirty-seven males and thirteen females who were undergoing abdominal surgeries were included and allocated into flow and volume incentive spirometry groups by block randomization. All subjects underwent evaluations of pulmonary function with measurement of Forced Vital Capacity (FVC), Forced Expiratory Volume in the first second (FEV1), Peak Expiratory Flow (PEF). Preoperative and postoperative measurements were taken up to day 5 for both groups. Exercise tolerance measured by Six- Minute Walk Test during preoperative period and measured again at the time of discharge for both groups. Pulmonary function was analysed by post-hoc analysis and carried out using Bonferroni’s ‘t’-test. Exercise tolerance was analysed by Paired ‘T’-test. Results Pulmonary function (FVC, FEV1, and PEFR) was found to be significantly decreased in 1st, 2nd and 3rd postoperative day when compared with preoperative day. On 4th and 5th postoperative day the pulmonary function (FVC, FEV1, and PEFR) was found to be better preserved in both flow and volume incentive spirometry groups. The Six-Minute Walk Test showed a statistically significant improvement in pulmonary function on the day of discharge than in the preoperative period. In terms of distance covered, the volume- incentive spirometry group showed a greater statistically significant improvement from the preoperative period to the time of discharge than was exhibited by the flow incentive spirometry group. Conclusion Flow and volume incentive spirometry can be safely recommended to patients undergoing open abdominal surgery as there have been no adverse events recorded. Also, these led to a demonstrable improvement in pulmonary function and exercise tolerance. PMID:26894090
Use of a paper-cut as an adjunct to teaching the Whipple procedure by video.
Mann, B D; Heath, C M; Gracely, E; Seidman, A; Nieman, L Z; Sachdeva, A K
1998-10-01
Medical students often experience difficulty comprehending anatomic relationships of complex operations to which they are exposed during surgical clerkship. Pancreaticoduodenectomy, the Whipple procedure, is one such operation. Although video recordings are available to facilitate the learning of the Whipple procedure, commercially available tapes are not self-explanatory to the uninitiated. Since we have previously demonstrated that third-year medical students could learn the operative steps of inguinal herniorraphy by a paper-cutting exercise, we set out to determine whether an exercise of similar design could enhance a student's comprehension of the Whipple procedure. Using Adobe Illustrator 5.5 for MacIntosh, an exercise was developed on a 8.5 x 11-inch paper that could be distributed to students for self-administration. The exercise was performed using a #15 scalpel or an iris scissors. Thirty-seven students were randomized into two groups. Each student received a pretest of questions focusing on the Whipple procedure. Group I was shown an 18-minute commercially available teaching video on the Whipple procedure. Group II was given the Whipple origami exercise, which required 20 minutes to complete. A first posttest was administered to each group. Next, the groups switched exercises, and a second posttest was administered. There was no significant difference between the groups' pretest scores (two-tailed t test, P = 0.290). Group I improved its score from an average of 64.21 (SD 14.27) to 67.89 (SD 13.16) after watching the video, and further to 77.89 (SD 14.37) after completing the paper-cut exercise. Group II improved from 60.00 (SD 9.43) to 78.95 (SD 11.00) after performing the paper-cut, but derived no additional measurable benefit from watching the video, average score 74.74 (SD 18.37). After the first exercise, students who performed the paper-cut showed a significantly greater improvement in test scores compared with students who saw the video (P = 0.0035 by Mann-Whitney U). After both groups had completed the exercises, the mean changes from baseline were no longer significantly different (P = 0.58 by Mann-Whitney U). As a single educational intervention, the paper-cut exercise was a more effective teaching device than the video in the given time frame. The origami model may be generalized to a variety of surgical procedures and appears to be a valuable adjunct to traditional teaching.
14 CFR § 1203b.104 - Exercise of arrest authority-general guidelines.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 5 2014-01-01 2014-01-01 false Exercise of arrest authority-general guidelines. § 1203b.104 Section § 1203b.104 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SECURITY PROGRAMS; ARREST AUTHORITY AND USE OF FORCE BY NASA SECURITY FORCE PERSONNEL § 1203b.104...
ERIC Educational Resources Information Center
Gokalp, Sumeyra; Horton, William; Jónsdóttir-Lewis, Elfa B.; Foster, Michelle; Török, Marianna
2018-01-01
To facilitate learning advanced instrumental techniques, essential tools for visualizing biomaterials, a simple and versatile laboratory exercise demonstrating the use of Atomic Force Microscopy (AFM) in biomedical applications was developed. In this experiment, the morphology of heat-denatured and amyloid-type aggregates formed from a low-cost…
2008-05-14
CAPE CANAVERAL, Fla. -- A support boat from a rescue training exercise, known as Mode VIII, returns to the ship off Florida's central east coast. In support of, and with logistical support from, NASA, USSTRATCOM is hosting a major exercise involving Department of Defense, Department of Homeland Security, search and rescue (SAR) forces, including the 45th Space Wing at Patrick Air Force Base, which support space shuttle astronaut bailout contingency operations, known as Mode VIII. This exercise tests SAR capabilities to locate, recover and provide medical treatment for astronauts following a space shuttle launch phase open-ocean bailout. Participants include members of the U.S. Navy, U.S. Coast Guard, U.S. Air Force, and NASA's Kennedy Space Center and Johnson Space Center. Photo credit: NASA/Dimitri Gerondidakis
2008-05-14
CAPE CANAVERAL, Fla. -- An HH-60G helicopter flies overhead of a rescue boat during a training exercise, known as Mode VIII, off Florida's central east coast. In support of, and with logistical support from, NASA, USSTRATCOM is hosting a major exercise involving Department of Defense, Department of Homeland Security, search and rescue (SAR) forces, including the 45th Space Wing at Patrick Air Force Base, which support space shuttle astronaut bailout contingency operations, known as Mode VIII. This exercise tests SAR capabilities to locate, recover and provide medical treatment for astronauts following a space shuttle launch phase open-ocean bailout. Participants include members of the U.S. Navy, U.S. Coast Guard, U.S. Air Force, and NASA's Kennedy Space Center and Johnson Space Center. Photo credit: NASA/Dimitri Gerondidakis
2008-05-14
CAPE CANAVERAL, Fla. -- Participants in a rescue training exercise, known as Mode VIII, wait for a support boat off Florida's central east coast. In support of, and with logistical support from, NASA, USSTRATCOM is hosting a major exercise involving Department of Defense, Department of Homeland Security, search and rescue (SAR) forces, including the 45th Space Wing at Patrick Air Force Base, which support space shuttle astronaut bailout contingency operations, known as Mode VIII. This exercise tests SAR capabilities to locate, recover and provide medical treatment for astronauts following a space shuttle launch phase open-ocean bailout. Participants include members of the U.S. Navy, U.S. Coast Guard, U.S. Air Force, and NASA's Kennedy Space Center and Johnson Space Center. Photo credit: NASA/Dimitri Gerondidakis
2008-05-14
CAPE CANAVERAL, Fla. -- Support boats connect off Florida's central east coast during a rescue training exercise, known as Mode VIII. In support of, and with logistical support from, NASA, USSTRATCOM is hosting a major exercise involving Department of Defense, Department of Homeland Security, search and rescue (SAR) forces, including the 45th Space Wing at Patrick Air Force Base, which support space shuttle astronaut bailout contingency operations, known as Mode VIII. This exercise tests SAR capabilities to locate, recover and provide medical treatment for astronauts following a space shuttle launch phase open-ocean bailout. Participants include members of the U.S. Navy, U.S. Coast Guard, U.S. Air Force, and NASA's Kennedy Space Center and Johnson Space Center. Photo credit: NASA/Dimitri Gerondidakis
Rahbek, Stine Klejs; Farup, Jean; de Paoli, Frank; Vissing, Kristian
2015-04-01
Unaccustomed high-intensity eccentric exercise (ECC) can provoke muscle damage including several days of muscle force loss. Post-exercise dietary supplementation may provide a strategy to accelerate rate of force regain by affecting mechanisms related to muscle protein turnover. The aim of the current study was to investigate if protein signaling mechanisms involved in muscle protein turnover would be differentially affected by supplementation with either whey protein hydrolysate and carbohydrate (WPH+CHO) versus isocaloric carbohydrate (CHO) after muscle-damaging ECC. Twenty-four young healthy participants received either WPH+CHO (n = 12) or CHO supplements (n = 12) during post-exercise recovery from 150 maximal unilateral eccentric contractions. Prior to, at 3 h and at 24, 48, 96 and/or 168 h post-exercise, muscle strength, muscle soreness, and Akt-mTOR and FOXO signaling proteins, were measured in an ECC exercising leg and in the contralateral non-exercise control leg (CON). After ECC, muscle force decreased by 23-27 % at 24 h post-exercise, which was followed by gradual, although not full recovery at 168 h post-exercise, with no differences between supplement groups. Phosphorylation of mTOR, p70S6K and rpS6 increased and phosphorylation of FOXO1 and FOXO3 decreased in the ECC leg, with no differences between supplement groups. Phosphorylation changes were also observed for rpS6, FOXO1 and FOXO3a in the CON leg, suggesting occurrence of remote tissue effects. In conclusion, divergent dietary supplementation types did not produce differences in signaling for muscle turnover during recovery from muscle-damaging exercise.
Deli, Chariklia K; Fatouros, Ioannis G; Paschalis, Vassilis; Georgakouli, Kalliopi; Zalavras, Athanasios; Avloniti, Alexandra; Koutedakis, Yiannis; Jamurtas, Athanasios Z
2017-08-01
Research regarding exercise-induced muscle-damage mainly focuses on adults. The present study examined exercise-induced muscle-damage responses in adults compared with children. Eleven healthy boys (10-12 y) and 15 healthy men (18-45 y) performed 5 sets of 15 maximal eccentric contractions of the knee extensors. Range of motion (ROM), delayed onset muscle soreness (DOMS) during squat and walking, and peak isometric, concentric and eccentric torque were assessed before, post, 24, 48, 72, and 96 hr postexercise. Creatine kinase (CK) activity was assessed before and 72 hr postexercise. Eccentric exercise resulted in DOMS during squat that persisted for up to 96h in men, and 48 hr in boys (p < .05), and DOMS during walking that persisted for up to 72 hr in men, and 48 hr in boys (p < .01). The ROM was lower in both age groups 48 hr postexercise (p < .001). Isometric (p < .001), concentric (p < .01) and eccentric (p < .01) force decreased post, and up to 48 hr postexercise in men. Except for a reduction in isometric force immediately after exercise, no other changes occurred in boys' isokinetic force. CK activity increased in men at 72 hr postexercise compared with pre exercise levels (p = .05). Our data provide further confirmation that children are less susceptible to exercise-induced muscle damage compared with adults.
Pérez, R; Recabarren, S E; Mora, G; Jara, C; Quijada, G; Hetz, E
1992-04-01
In order to establish the relationship between draught force and cardiorespiratory responses to exercise heart rate (HR), respiratory rate (RR), arterial and venous blood gases, pH, hemoglobin concentration and temperature were measured in five draught horses during rest, immediately after exercise and 30 min post-exercise under field conditions. A wagon equipped with an odometer and a hydraulic dynamometer was used for measuring distance and draught force. The wagon was loaded with 946 kg for the low load, 1,979 kg for the medium load and 2,994 kg for the high load, and drawn for a distance of 1,500 m. Draught force and load weight were linearly related. The response of the draught horse to low and medium load exercise was characterized by a moderate increase in HR, RR and temperature with no significant changes in arterial blood gases and pH. An increase in HR, RR and temperature was observed, whereas no changes in arterial PO2 and increases in venous PO2 were noticed after high load exercise. Slight increase in venous lactic acid concentration as a result of high load exercise was observed, suggesting that some anaerobic work was performed. However this was insufficient to produce changes in blood pH. The increase in metabolic requirements during the three levels of draught exercise was associated with increases in arterial hemoglobin concentration and oxygen content of blood.
Inan, O T; Etemadi, M; Paloma, A; Giovangrandi, L; Kovacs, G T A
2009-03-01
Cardiac ejection of blood into the aorta generates a reaction force on the body that can be measured externally via the ballistocardiogram (BCG). In this study, a commercial bathroom scale was modified to measure the BCGs of nine healthy subjects recovering from treadmill exercise. During the recovery, Doppler echocardiogram signals were obtained simultaneously from the left ventricular outflow tract of the heart. The percentage changes in root-mean-square (RMS) power of the BCG were strongly correlated with the percentage changes in cardiac output measured by Doppler echocardiography (R(2) = 0.85, n = 275 data points). The correlation coefficients for individually analyzed data ranged from 0.79 to 0.96. Using Bland-Altman methods for assessing agreement, the mean bias was found to be -0.5% (+/-24%) in estimating the percentage changes in cardiac output. In contrast to other non-invasive methods for trending cardiac output, the unobtrusive procedure presented here uses inexpensive equipment and could be performed without the aid of a medical professional.
The defence technique in Tai Chi Push Hands: a case study.
Chen, Hui-Chuan; Cheng, Kuang-You B; Liu, Yu-Jen; Chiu, Hung-Ta; Cheng, Kuang-Yu
2010-12-01
Developed from traditional Chinese martial arts, Tai Chi exercise includes different forms and interactive Push Hands but biomechanical analyses have focused on the former only. To analyse the techniques of Push Hands, an experienced master was asked to defend pushing by four opponents. Movements were videotaped and digitized using a motion analysis system. Surface electrodes were used to record the electromyographic activity of ten muscle groups. Two force plates were used to measure the ground reaction force on each foot. Inexperienced individuals performed the same procedure to serve as the control group. The results indicate that the master adopted a postural adjustment to maintain balance. A clear shift of body weight from the front to the rear foot and mediolateral displacement of the centre of gravity was observed. Low electromyographic activity was observed in the upper body muscle groups, while high electromyographic activity was observed in the right rectus femoris and very high activity in the left rectus femoris during the defence. All inexperienced participants lost their balance in resisting pushing. It is concluded that the Tai Chi defensive technique includes a subtle postural adjustment that slightly changes the pushing force direction, and allows the rear leg to resist the incoming force.
The protective effects of acute cardiovascular exercise on the interference of procedural memory.
Jo, J S; Chen, J; Riechman, S; Roig, M; Wright, D L
2018-04-10
Numerous studies have reported a positive impact of acute exercise for procedural skill memory. Previous work has revealed this effect, but these findings are confounded by a potential contribution of a night of sleep to the reported exercise-mediated reduction in interference. Thus, it remains unclear if exposure to a brief bout of exercise can provide protection to a newly acquired motor memory. The primary objective of the present study was to examine if a single bout of moderate-intensity cardiovascular exercise after practice of a novel motor sequence reduces the susceptibility to retroactive interference. To address this shortcoming, 17 individuals in a control condition practiced a novel motor sequence that was followed by test after a 6-h wake-filled interval. A separate group of 17 individuals experienced practice with an interfering motor sequence 45 min after practice with the original sequence and were then administered test trials 6 h later. One additional group of 12 participants was exposed to an acute bout of exercise immediately after practice with the original motor sequence but prior to practice with the interfering motor sequence and the subsequent test. In comparison with the control condition, increased response times were revealed during the 6-h test for the individuals that were exposed to interference. The introduction of an acute bout of exercise between the practice of the two motor sequences produced a reduction in interference from practice with the second task at the time of test, however, this effect was not statistically significant. These data reinforce the hypothesis that while there may be a contribution from exercise to post-practice consolidation of procedural skills which is independent of sleep, sleep may interact with exercise to strengthen the effects of the latter on procedural memory.
Effect of prepartum exercise, pasture turnout, or total confinement on hoof health.
Black, R A; van Amstel, S R; Krawczel, P D
2017-10-01
Lameness is a major welfare concern in the dairy industry, and access to physical activity during the dry period may improve hoof health. The objective of this study was to determine the effects of forced exercise, pasture turnout, or total confinement of dry cows on horn growth and wear and sole thickness. Twenty-nine primiparous and 31 multiparous, pregnant, nonlactating Holstein (n = 58) and Jersey-Holstein crossbred (n = 2) dairy cows were assigned to either total confinement (n = 20), exercise (n = 20), or pasture (n = 20) treatments at dry-off using rolling enrollment from January to November 2015. Cows were managed with a 60-d dry period (58.5 ± 5.4 d) divided into far-off (dry-off to 2 wk before parturition) and close-up periods (2 wk before projected parturition). Cows were housed in a naturally ventilated, 4-row freestall barn at the University of Tennessee's Little River Animal and Environmental Unit (Walland, TN) with concrete flooring and deep-bedded sand freestalls. Cows assigned to confinement remained in the housing pen. Exercise cows were walked for a targeted 1.5 h at 3.25 km/h, 5 times/wk until calving. Pasture cows were turned out for a targeted 1.5 h, 5 times/wk until calving. Hoof growth and wear and sole thickness of the rear hooves were measured on d 2 and 44, relative to dry-off. Data were analyzed using the MIXED procedure of SAS (SAS Institute Inc., Cary, NC). Cranial and caudal horn wear was greater for exercise cows than confinement and pasture cows. Exercise cows experienced more equal rates of horn growth and wear cranially. Confined cows tended to increase sole thickness from d 2 to 44, relative to dry-off. Frequent, short duration exercise on concrete did not impair the hoof health of late-gestation dry cows. Further, exercise may improve overall hoof health, potentially improving cow welfare. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Squat Ground Reaction Force on a Horizontal Squat Device, Free Weights, and Smith Machine
NASA Technical Reports Server (NTRS)
Scott-Pandorf, Melissa M.; Newby, Nathaniel J.; Caldwell, Erin; DeWitt, John K.; Peters, Brian T.
2010-01-01
Bed rest is an analog to spaceflight and advancement of exercise countermeasures is dependent on the development of exercise equipment that closely mimic actual upright exercise. The Horizontal Squat Device (HSD) was developed to allow a supine exerciser to perform squats that mimic upright squat exercise. PURPOSE: To compare vertical ground reaction force (GRFv) on the HSD with Free Weight (FW) or Smith Machine (SM) during squat exercise. METHODS: Subjects (3F, 3M) performed sets of squat exercise with increasing loads up to 1-repetition (rep) maximum. GRF data were collected and compared with previous GRF data for squat exercise performed with FW & SM. Loads on the HSD were adjusted to magnitudes comparable with FW & SM by subtracting the subject s body weight (BW). Peak GRFv for 45-, 55-, 64-, & 73-kg loads above BW were calculated. Percent (%) difference between HSD and the two upright conditions were computed. Effect size was calculated for the 45-kg load. RESULTS: Most subjects were unable to lift >45 kg on the HSD; however, 1 subject completed all loads. Anecdotal evidence suggested that most subjects shoulders or back failed before their legs. The mean % difference are shown. In the 45-kg condition, effect sizes were 0.37 & 0.83 (p>0.05) for HSD vs. FW and HSD vs. SM, respectively, indicating no differences between exercise modes. CONCLUSION: When BW was added to the target load, results indicated that vertical forces were similar to those in FW and SM exercise. The exercise prescription for the HSD should include a total external resistance equivalent to goal load plus subject BW. The HSD may be used as an analog to upright exercise in bed rest studies, but because most subjects were unable to lift >45 kg, it may be necessary to prescribe higher reps and lower loads to better target the leg musculature
An Integrated Musculoskeletal Countermeasure Battery for Long-Duration Lunar Missions
NASA Technical Reports Server (NTRS)
Lang, T. F.; Streeper, T. S.; Cavanagh, P. R.; Saeed, I. H.; Carpenter, R. D.; Frassetto, L. A.; Lee, S. M. C.; Grodsinsky, C. M.; Funk, J.; Hanson, A. M.;
2011-01-01
During extended periods of skeletal unloading, losses in strength and density of the proximal femur will occur. In long-duration spaceflight, resistive exercise is used to replace the normal loads exerted on the spine and hip. At the present time, there is no conclusive evidence that hip bone loss has been prevented in this scenario. Our group has recently developed and clinically evaluated a multifunctional exercise system, the Combined Countermeasure Device (CCD). The CCD comprises a low-footprint Stuart Platform for lower-body resistance exercise and balance training, and a cardiovascular exercise bicycle. A consideration for resistance exercise was targeting of the hip abductor and adductor muscles, which attach directly at the hip and which should subject it to the largest loads. In our training study, we found that CCD exercise increased hip adductor and abductor strength, and modeling results suggest that this exercise exerts forces on the hip of approx. 4-6 body weights at 1g, compared to forces of approx.2.5 body weight y squatting exercise. In our current study, we hypothesize that abductor and adductor exercise will increase the density and strength of the proximal femur.
Effect of load, cadence, and fatigue on tibio-femoral joint force during a half squat.
Hattin, H C; Pierrynowski, M R; Ball, K A
1989-10-01
Ten male university student volunteers were selected to investigate the 3D articular force at the tibio-femoral joint during a half squat exercise, as affected by cadence, different barbell loads, and fatigue. Each subject was required to perform a half squat exercise with a barbell weight centered across the shoulders at two different cadences (1 and 2 s intervals) and three different loads (15, 22 and 30% of the one repetition maximum). Fifty repetitions at each experimental condition were recorded with an active optoelectronic kinematic data capture system (WATSMART) and a force plate (Kistler). Processing the data involved a photogrammetric technique to obtain subject tailored anthropometric data. The findings of this study were: 1) the maximal antero-posterior shear and compressive force consistently occurred at the lowest position of the weight, and the forces were very symmetrically disposed on either side of this halfway point; 2) the medio-lateral shear forces were small over the squat cycle with few peaks and troughs; 3) cadence increased the antero-posterior shear (50%) and the compressive forces (28%); 4) as a subject fatigues, load had a significant effect on the antero-posterior shear force; 5) fatigue increased all articular force components but it did not manifest itself until about halfway through the 50 repetitions of the exercise; 6) the antero-posterior shear force was most affected by fatigue; 7) cadence had a significant effect on fatigue for the medio-lateral shear and compressive forces.
Acute Exercise and Motor Memory Consolidation: The Role of Exercise Timing
Christiansen, Lasse; Roig, Marc
2016-01-01
High intensity aerobic exercise amplifies offline gains in procedural memory acquired during motor practice. This effect seems to be evident when exercise is placed immediately after acquisition, during the first stages of memory consolidation, but the importance of temporal proximity of the exercise bout used to stimulate improvements in procedural memory is unknown. The effects of three different temporal placements of high intensity exercise were investigated following visuomotor skill acquisition on the retention of motor memory in 48 young (24.0 ± 2.5 yrs), healthy male subjects randomly assigned to one of four groups either performing a high intensity (90% Maximal Power Output) exercise bout at 20 min (EX90), 1 h (EX90+1), 2 h (EX90+2) after acquisition or rested (CON). Retention tests were performed at 1 d (R1) and 7 d (R7). At R1 changes in performance scores after acquisition were greater for EX90 than CON (p < 0.001) and EX90+2 (p = 0.001). At R7 changes in performance scores for EX90, EX90+1, and EX90+2 were higher than CON (p < 0.001, p = 0.008, and p = 0.008, resp.). Changes for EX90 at R7 were greater than EX90+2 (p = 0.049). Exercise-induced improvements in procedural memory diminish as the temporal proximity of exercise from acquisition is increased. Timing of exercise following motor practice is important for motor memory consolidation. PMID:27446616
STS-26 crew during emergency egress exercise at LC 39 launch pad B
1988-05-04
S88-40898 (4 May 1988) --- Astronauts, members of the orbiter close-out crew and fire and rescue personnel participate in a simulated emergency egress exercise near the slide wire termination point bunker at Launch Pad 39B. The simulated exercise was performed to familiarize personnel with evacuation routes as well as emergency equipment and procedures. Reasons for conducting the emergency exercises include the need to validate recent post-Challenger upgrades to the launch pad's emergency escape system and the new procedures developed in preparation for STS-26. (NOTE: The astronaut pictured and many of the others who participated in the exercises are not members of STS-26 prime crew).
33 CFR 165.1184 - Safety Zone; Coast Guard Use of Force Training Exercises, San Pablo Bay, CA.
Code of Federal Regulations, 2014 CFR
2014-07-01
..., CA. (a) Location. This safety zone will apply to the navigable waters in the San Pablo Bay, and will... Force Training Exercises, San Pablo Bay, CA. 165.1184 Section 165.1184 Navigation and Navigable Waters... Coast Guard will notify the public via a Broadcast Notice to Mariners prior to the activation of this...
33 CFR 165.1184 - Safety Zone; Coast Guard Use of Force Training Exercises, San Pablo Bay, CA.
Code of Federal Regulations, 2011 CFR
2011-07-01
..., CA. (a) Location. This safety zone will apply to the navigable waters in the San Pablo Bay, and will... Force Training Exercises, San Pablo Bay, CA. 165.1184 Section 165.1184 Navigation and Navigable Waters... Coast Guard will notify the public via a Broadcast Notice to Mariners prior to the activation of this...
33 CFR 165.1184 - Safety Zone; Coast Guard Use of Force Training Exercises, San Pablo Bay, CA.
Code of Federal Regulations, 2012 CFR
2012-07-01
..., CA. (a) Location. This safety zone will apply to the navigable waters in the San Pablo Bay, and will... Force Training Exercises, San Pablo Bay, CA. 165.1184 Section 165.1184 Navigation and Navigable Waters... Coast Guard will notify the public via a Broadcast Notice to Mariners prior to the activation of this...
33 CFR 165.1184 - Safety Zone; Coast Guard Use of Force Training Exercises, San Pablo Bay, CA.
Code of Federal Regulations, 2013 CFR
2013-07-01
..., CA. (a) Location. This safety zone will apply to the navigable waters in the San Pablo Bay, and will... Force Training Exercises, San Pablo Bay, CA. 165.1184 Section 165.1184 Navigation and Navigable Waters... Coast Guard will notify the public via a Broadcast Notice to Mariners prior to the activation of this...
1990-03-13
and other damage to property "violence-free" called for "interference" actions against NATO’s headquarters exercise, Wintex- Cimex , in February 1987...military units; o disruptions of the Wintex/ Cimex exercises; o actions directed against exhibitions of the German Federal Armed Forces; o blockades and
1993-09-01
Garcia . 4. Duriig base exercises, we pretend to train like we fight. However, because we know that its an exercise, we tend tu just do cnougih to gLt...Tom Wartime Contingency Contracting Handbook Update, Air Force Logistics Management Center, (June 1992b). Rolando , John A. "Is There Going to be a
Effect of hydrotherapy on the signs and symptoms of delayed onset muscle soreness.
Vaile, Joanna; Halson, Shona; Gill, Nicholas; Dawson, Brian
2008-03-01
This study independently examined the effects of three hydrotherapy interventions on the physiological and functional symptoms of delayed onset muscle soreness (DOMS). Strength trained males (n = 38) completed two experimental trials separated by 8 months in a randomised crossover design; one trial involved passive recovery (PAS, control), the other a specific hydrotherapy protocol for 72 h post-exercise; either: (1) cold water immersion (CWI: n = 12), (2) hot water immersion (HWI: n = 11) or (3) contrast water therapy (CWT: n = 15). For each trial, subjects performed a DOMS-inducing leg press protocol followed by PAS or one of the hydrotherapy interventions for 14 min. Weighted squat jump, isometric squat, perceived pain, thigh girths and blood variables were measured prior to, immediately after, and at 24, 48 and 72 h post-exercise. Squat jump performance and isometric force recovery were significantly enhanced (P < 0.05) at 24, 48 and 72 h post-exercise following CWT and at 48 and 72 h post-exercise following CWI when compared to PAS. Isometric force recovery was also greater (P < 0.05) at 24, 48, and 72 h post-exercise following HWI when compared to PAS. Perceived pain improved (P < 0.01) following CWT at 24, 48 and 72 h post-exercise. Overall, CWI and CWT were found to be effective in reducing the physiological and functional deficits associated with DOMS, including improved recovery of isometric force and dynamic power and a reduction in localised oedema. While HWI was effective in the recovery of isometric force, it was ineffective for recovery of all other markers compared to PAS.
Validity and reliability of a controlled pneumatic resistance exercise device.
Paulus, David C; Reynolds, Michael C; Schilling, Brian K
2008-01-01
During the concentric portion of the free-weight squat exercise, accelerating the mass from rest results in a fluctuation in ground reaction force. It is characterized by an initial period of force greater than the load while accelerating from rest followed by a period of force lower than the external load during negative acceleration. During the deceleration phase, less force is exerted and muscles are loaded sub-optimally. Thus, using a reduced inertia form of resistance such as pneumatics has the capability to minimize these inertial effects as well as control the force in real time to maximize the force exerted over the exercise cycle. To improve the system response of a preliminary design, a squat device was designed with a reduced mass barbell and two smaller pneumatic cylinders. The resistance was controlled by regulating cylinder pressure such that it is capable of adjusting force within a repetition to maximize force exerted during the lift. The resistance force production of the machine was statically validated with the input voltage and output force R2 =0.9997 for at four increments of the range of motion, and the intraclass correlation coefficient (ICC) between trials at the different heights equaled 0.999. The slew rate at three forces was 749.3 N/s +/- 252.3. Dynamic human subject testing showed the desired input force correlated with average and peak ground reaction force with R2 = 0.9981 and R2 = 0.9315, respectively. The ICC between desired force and average and peak ground reaction force was 0.963. Thus, the system is able to deliver constant levels of static and dynamic force with validity and reliability. Future work will be required to develop the control strategy required for real-time control, and performance testing is required to determine its efficacy.
Bungee force level, stiffness, and variation during treadmill locomotion in simulated microgravity.
De Witt, John K; Schaffner, Grant; Ploutz-Snyder, Lori L
2014-04-01
Crewmembers performing treadmill exercise on the International Space Station must wear a harness with an external gravity replacement force that is created by elastomer bungees. The quantification of the total external force, displacement, stiffness, and force variation is important for understanding the forces applied to the crewmember during typical exercise. Data were collected during static trials in the laboratory from a single subject and four subjects were tested while walking at 1.34 m x s(-1) and running at 2.24 m x s(-1) and 3.13 m x s(-1) on a treadmill during simulated microgravity in parabolic flight. The external force was provided by bungees and carabiner clips in configurations commonly used by crewmembers. Total external force, displacement, and force variation in the bungee system were measured, from which stiffness was computed. Mean external force ranged from 431 to 804 N (54-131% bodyweight) across subjects and conditions. Mean displacement was 4 to 8 cm depending upon gait speed. Mean stiffness was affected by bungee configuration and ranged from 1.73 to 29.20 N x cm(-1). Force variation for single bungee configurations was 2.61-4.48% of total external force and between 4.30-57.5% total external force for two-bungee configurations. The external force supplied to crewmembers by elastomer bungees provided a range of loading levels with variations that occur throughout the gait cycle. The quantification of bungee-loading characteristics is important to better define the system currently used by crewmembers during exercise.
A nationwide survey of nonspeech oral motor exercise use: implications for evidence-based practice.
Lof, Gregory L; Watson, Maggie M
2008-07-01
A nationwide survey was conducted to determine if speech-language pathologists (SLPs) use nonspeech oral motor exercises (NSOMEs) to address children's speech sound problems. For those SLPs who used NSOMEs, the survey also identified (a) the types of NSOMEs used by the SLPs, (b) the SLPs' underlying beliefs about why they use NSOMEs, (c) clinicians' training for these exercises, (d) the application of NSOMEs across various clinical populations, and (e) specific tasks/procedures/tools that are used for intervention. A total of 2,000 surveys were mailed to a randomly selected subgroup of SLPs, obtained from the American Speech-Language-Hearing Association (ASHA) membership roster, who self-identified that they worked in various settings with children who have speech sound problems. The questions required answers that used both a forced choice and Likert-type scales. The response rate was 27.5% (537 out of 2,000). Of these respondents, 85% reported using NSOMEs to deal with children's speech sound production problems. Those SLPs reported that the research literature supports the use of NSOMEs, and that they learned to use these techniques from continuing education events. They also stated that NSOMEs can help improve the speech of children from disparate etiologies, and "warming up" and strengthening the articulators are important components of speech sound therapy. There are theoretical and research data that challenge both the use of NSOMEs and the efficacy of such exercises in resolving speech sound problems. SLPs need to follow the concepts of evidence-based practice in order to determine if these exercises are actually effective in bringing about changes in speech productions.
2008-05-14
CAPE CANAVERAL, Fla. -- In a U.S. Coast Guard rescue boat off Florida's central east coast, participants in a rescue training exercise, known as Mode VIII, put on astronauts' launch-and-entry suits. In support of, and with logistical support from, NASA, USSTRATCOM is hosting a major exercise involving Department of Defense, Department of Homeland Security, search and rescue (SAR) forces, including the 45th Space Wing at Patrick Air Force Base, which support space shuttle astronaut bailout contingency operations, known as Mode VIII. This exercise tests SAR capabilities to locate, recover and provide medical treatment for astronauts following a space shuttle launch phase open-ocean bailout. Participants include members of the U.S. Navy, U.S. Coast Guard, U.S. Air Force, and NASA's Kennedy Space Center and Johnson Space Center. Photo credit: NASA/Dimitri Gerondidakis
2008-05-14
CAPE CANAVERAL, Fla. -- Off Florida's central east coast, support boats from a training exercise, known as Mode VIII, return to the U.S. Coast Guard cutter Kingfisher, from Port Canaveral, Fla. In support of, and with logistical support from, NASA, USSTRATCOM is hosting a major exercise involving Department of Defense, Department of Homeland Security, search and rescue (SAR) forces, including the 45th Space Wing at Patrick Air Force Base, which support space shuttle astronaut bailout contingency operations, known as Mode VIII. This exercise tests SAR capabilities to locate, recover and provide medical treatment for astronauts following a space shuttle launch phase open-ocean bailout. Participants include members of the U.S. Navy, U.S. Coast Guard, U.S. Air Force, and NASA's Kennedy Space Center and Johnson Space Center. Photo credit: NASA/Dimitri Gerondidakis
2008-05-14
CAPE CANAVERAL, Fla. -- Participants in a rescue training exercise, known as Mode VIII, are successfully launched from a U.S. Coast Guard rescue boat off Florida's central east coast. In support of, and with logistical support from, NASA, USSTRATCOM is hosting a major exercise involving Department of Defense, Department of Homeland Security, search and rescue (SAR) forces, including the 45th Space Wing at Patrick Air Force Base, which support space shuttle astronaut bailout contingency operations, known as Mode VIII. This exercise tests SAR capabilities to locate, recover and provide medical treatment for astronauts following a space shuttle launch phase open-ocean bailout. Participants include members of the U.S. Navy, U.S. Coast Guard, U.S. Air Force, and NASA's Kennedy Space Center and Johnson Space Center. Photo credit: NASA/Dimitri Gerondidakis
2008-05-14
CAPE CANAVERAL, Fla. -- In a rescue training exercise, known as Mode VIII, off Florida's central east coast, an HH-60G helicopter lifts the stretcher bearing a participant. In support of, and with logistical support from, NASA, USSTRATCOM is hosting a major exercise involving Department of Defense, Department of Homeland Security, search and rescue (SAR) forces, including the 45th Space Wing at Patrick Air Force Base, which support space shuttle astronaut bailout contingency operations, known as Mode VIII. This exercise tests SAR capabilities to locate, recover and provide medical treatment for astronauts following a space shuttle launch phase open-ocean bailout. Participants include members of the U.S. Navy, U.S. Coast Guard, U.S. Air Force, and NASA's Kennedy Space Center and Johnson Space Center. Photo credit: NASA/Dimitri Gerondidakis
2008-05-14
CAPE CANAVERAL, Fla. -- Participants in a rescue training exercise, known as Mode VIII, are successfully launched from a U.S. Coast Guard rescue boat off Florida's central east coast. In support of, and with logistical support from, NASA, USSTRATCOM is hosting a major exercise involving Department of Defense, Department of Homeland Security, search and rescue (SAR) forces, including the 45th Space Wing at Patrick Air Force Base, which support space shuttle astronaut bailout contingency operations, known as Mode VIII. This exercise tests SAR capabilities to locate, recover and provide medical treatment for astronauts following a space shuttle launch phase open-ocean bailout. Participants include members of the U.S. Navy, U.S. Coast Guard, U.S. Air Force, and NASA's Kennedy Space Center and Johnson Space Center. Photo credit: NASA/Dimitri Gerondidakis
2008-05-14
CAPE CANAVERAL, Fla. -- Participants in a rescue training exercise, known as Mode VIII, are successfully launched from a U.S. Coast Guard rescue boat off Florida's central east coast. In support of, and with logistical support from, NASA, USSTRATCOM is hosting a major exercise involving Department of Defense, Department of Homeland Security, search and rescue (SAR) forces, including the 45th Space Wing at Patrick Air Force Base, which support space shuttle astronaut bailout contingency operations, known as Mode VIII. This exercise tests SAR capabilities to locate, recover and provide medical treatment for astronauts following a space shuttle launch phase open-ocean bailout. Participants include members of the U.S. Navy, U.S. Coast Guard, U.S. Air Force, and NASA's Kennedy Space Center and Johnson Space Center. Photo credit: NASA/Dimitri Gerondidakis
2008-05-14
CAPE CANAVERAL, Fla. -- A U.S. Coast Guard HU-25 Falcon jet flies over a rescue boat during a training exercise, known as Mode VIII, off Florida's central east coast. In support of, and with logistical support from, NASA, USSTRATCOM is hosting a major exercise involving Department of Defense, Department of Homeland Security, search and rescue (SAR) forces, including the 45th Space Wing at Patrick Air Force Base, which support space shuttle astronaut bailout contingency operations, known as Mode VIII. This exercise tests SAR capabilities to locate, recover and provide medical treatment for astronauts following a space shuttle launch phase open-ocean bailout. Participants include members of the U.S. Navy, U.S. Coast Guard, U.S. Air Force, and NASA's Kennedy Space Center and Johnson Space Center. Photo credit: NASA/Dimitri Gerondidakis
2008-05-14
CAPE CANAVERAL, Fla. -- A U.S. Coast Guard HU-25 Falcon jet flies overhead during a rescue training exercise, known as Mode VIII, off Florida's central east coast. In support of, and with logistical support from, NASA, USSTRATCOM is hosting a major exercise involving Department of Defense, Department of Homeland Security, search and rescue (SAR) forces, including the 45th Space Wing at Patrick Air Force Base, which support space shuttle astronaut bailout contingency operations, known as Mode VIII. This exercise tests SAR capabilities to locate, recover and provide medical treatment for astronauts following a space shuttle launch phase open-ocean bailout. Participants include members of the U.S. Navy, U.S. Coast Guard, U.S. Air Force, and NASA's Kennedy Space Center and Johnson Space Center. Photo credit: NASA/Dimitri Gerondidakis
2008-05-14
CAPE CANAVERAL, Fla. -- Participants take part in a rescue training exercise, known as Mode VIII, off Florida's central east coast while a U.S. Coast Guard HU-25 Falcon jet flies overhead. In support of, and with logistical support from, NASA, USSTRATCOM is hosting a major exercise involving Department of Defense, Department of Homeland Security, search and rescue (SAR) forces, including the 45th Space Wing at Patrick Air Force Base, which support space shuttle astronaut bailout contingency operations, known as Mode VIII. This exercise tests SAR capabilities to locate, recover and provide medical treatment for astronauts following a space shuttle launch phase open-ocean bailout. Participants include members of the U.S. Navy, U.S. Coast Guard, U.S. Air Force, and NASA's Kennedy Space Center and Johnson Space Center. Photo credit: NASA/Dimitri Gerondidakis
2008-05-14
CAPE CANAVERAL, Fla. -- In a rescue training exercise, known as Mode VIII, off Florida's central east coast, a participant is lifted out of the water with a harness from an HH-60G helicopter. In support of, and with logistical support from, NASA, USSTRATCOM is hosting a major exercise involving Department of Defense, Department of Homeland Security, search and rescue (SAR) forces, including the 45th Space Wing at Patrick Air Force Base, which support space shuttle astronaut bailout contingency operations, known as Mode VIII. This exercise tests SAR capabilities to locate, recover and provide medical treatment for astronauts following a space shuttle launch phase open-ocean bailout. Participants include members of the U.S. Navy, U.S. Coast Guard, U.S. Air Force, and NASA's Kennedy Space Center and Johnson Space Center. Photo credit: NASA/Dimitri Gerondidakis
2008-05-14
CAPE CANAVERAL, Fla. -- Off Florida's central east coast, members of the rescue team in a training exercise, known as Mode VIII, stay alert aboard the U.S. Coast Guard cutter Kingfisher, from Port Canaveral, Fla. In support of, and with logistical support from, NASA, USSTRATCOM is hosting a major exercise involving Department of Defense, Department of Homeland Security, search and rescue (SAR) forces, including the 45th Space Wing at Patrick Air Force Base, which support space shuttle astronaut bailout contingency operations, known as Mode VIII. This exercise tests SAR capabilities to locate, recover and provide medical treatment for astronauts following a space shuttle launch phase open-ocean bailout. Participants include members of the U.S. Navy, U.S. Coast Guard, U.S. Air Force, and NASA's Kennedy Space Center and Johnson Space Center. Photo credit: NASA/Dimitri Gerondidakis
2008-05-14
CAPE CANAVERAL, Fla. -- In a rescue training exercise, known as Mode VIII, off Florida's central east coast, an HH-60G helicopter lifts the stretcher bearing a participant. In support of, and with logistical support from, NASA, USSTRATCOM is hosting a major exercise involving Department of Defense, Department of Homeland Security, search and rescue (SAR) forces, including the 45th Space Wing at Patrick Air Force Base, which support space shuttle astronaut bailout contingency operations, known as Mode VIII. This exercise tests SAR capabilities to locate, recover and provide medical treatment for astronauts following a space shuttle launch phase open-ocean bailout. Participants include members of the U.S. Navy, U.S. Coast Guard, U.S. Air Force, and NASA's Kennedy Space Center and Johnson Space Center. Photo credit: NASA/Dimitri Gerondidakis
Ways of increasing muscular activity by means of isometric muscular exertion
NASA Technical Reports Server (NTRS)
Kovalik, A. V.
1980-01-01
The effect of isometric muscular exertion on the human body was investigated by having subjects perform basic movements in a sitting position in the conventional manner with additional muscle tension at 50% maximum force and at maximum force. The pulse, arterial pressure, skin temperature, respiratory rate, minute respiratory volume and electrical activity of the muscles involved were all measured. Performance of the exercises with maximum muscular exertion for 20 sec and without movement resulted in the greatest shifts in these indices; in the conventional manner substantial changes did not occur; and with isometric muscular exertion with 50% maximum force with and without movement, optimal functional shifts resulted. The latter is recommended for use in industrial exercises for the prevention of hypodynamia. Ten exercises are suggested.
2008-05-14
CAPE CANAVERAL, Fla. -- In a training exercise, known as Mode VIII, off Florida's central east coast, an HH-60G helicopter rescues a participant from the Atlantic Ocean. In support of, and with logistical support from, NASA, USSTRATCOM is hosting a major exercise involving Department of Defense, Department of Homeland Security, search and rescue (SAR) forces, including the 45th Space Wing at Patrick Air Force Base, which support space shuttle astronaut bailout contingency operations, known as Mode VIII. This exercise tests SAR capabilities to locate, recover and provide medical treatment for astronauts following a space shuttle launch phase open-ocean bailout. Participants include members of the U.S. Navy, U.S. Coast Guard, U.S. Air Force, and NASA's Kennedy Space Center and Johnson Space Center. Photo credit: NASA/Dimitri Gerondidakis
2008-05-14
CAPE CANAVERAL, Fla. -- In a training exercise, known as Mode VIII, off Florida's central east coast, an HH-60G helicopter executes a rescue maneuver of a participant. In support of, and with logistical support from, NASA, USSTRATCOM is hosting a major exercise involving Department of Defense, Department of Homeland Security, search and rescue (SAR) forces, including the 45th Space Wing at Patrick Air Force Base, which support space shuttle astronaut bailout contingency operations, known as Mode VIII. This exercise tests SAR capabilities to locate, recover and provide medical treatment for astronauts following a space shuttle launch phase open-ocean bailout. Participants include members of the U.S. Navy, U.S. Coast Guard, U.S. Air Force, and NASA's Kennedy Space Center and Johnson Space Center. Photo credit: NASA/Dimitri Gerondidakis
2008-05-14
CAPE CANAVERAL, Fla. -- In a U.S. Coast Guard rescue boat off Florida's central east coast, participants in a rescue training exercise, known as Mode VIII, are ready to be launched into the Atlantic Ocean. In support of, and with logistical support from, NASA, USSTRATCOM is hosting a major exercise involving Department of Defense, Department of Homeland Security, search and rescue (SAR) forces, including the 45th Space Wing at Patrick Air Force Base, which support space shuttle astronaut bailout contingency operations, known as Mode VIII. This exercise tests SAR capabilities to locate, recover and provide medical treatment for astronauts following a space shuttle launch phase open-ocean bailout. Participants include members of the U.S. Navy, U.S. Coast Guard, U.S. Air Force, and NASA's Kennedy Space Center and Johnson Space Center. Photo credit: NASA/Dimitri Gerondidakis
2008-05-14
CAPE CANAVERAL, Fla. -- In a U.S. Coast Guard rescue boat off Florida's central east coast, participants in a rescue training exercise, known as Mode VIII, put on astronauts' launch-and-entry suits. In support of, and with logistical support from, NASA, USSTRATCOM is hosting a major exercise involving Department of Defense, Department of Homeland Security, search and rescue (SAR) forces, including the 45th Space Wing at Patrick Air Force Base, which support space shuttle astronaut bailout contingency operations, known as Mode VIII. This exercise tests SAR capabilities to locate, recover and provide medical treatment for astronauts following a space shuttle launch phase open-ocean bailout. Participants include members of the U.S. Navy, U.S. Coast Guard, U.S. Air Force, and NASA's Kennedy Space Center and Johnson Space Center. Photo credit: NASA/Dimitri Gerondidakis
2008-05-14
CAPE CANAVERAL, Fla. -- In a rescue training exercise, known as Mode VIII, off Florida's central east coast, a participant is lifted out of the water with a harness from an HH-60G helicopter. In support of, and with logistical support from, NASA, USSTRATCOM is hosting a major exercise involving Department of Defense, Department of Homeland Security, search and rescue (SAR) forces, including the 45th Space Wing at Patrick Air Force Base, which support space shuttle astronaut bailout contingency operations, known as Mode VIII. This exercise tests SAR capabilities to locate, recover and provide medical treatment for astronauts following a space shuttle launch phase open-ocean bailout. Participants include members of the U.S. Navy, U.S. Coast Guard, U.S. Air Force, and NASA's Kennedy Space Center and Johnson Space Center. Photo credit: NASA/Dimitri Gerondidakis
Stress biomarker responses to different protocols of forced exercise in chronically stressed rats.
Radahmadi, Maryam; Alaei, Hojjatallah; Sharifi, Mohammad Reza; Hosseini, Nasrin
2017-01-01
Stress is one of the most significant causes of major health problems on a global scale. The beneficial effects of exercise on combating stress, however, are well-established. The present study investigated the stress biomarker responses, such as serum corticosterone, interlukin-1β, and glucose levels, to different (preventive, therapeutic, protective, and continuous) protocols of forced exercise under stress. Male rats were randomly allocated to the following five groups: stressed, preventive, therapeutic, protective, and continuous (and/or pre-stress, post-stress, stress-accompanied, and both pre-stress and stress-accompanied exercise respectively) exercise groups. Stress was applied 6 h/day for 21 days and the treadmill running was employed at a speed of 20-21 m/min for 21 and 42 days. The findings showed that the therapeutic, protective, and continuous exercises led to reduced corticosterone and glucose levels. Whereas, the preventive exercise did not reverse the stress responses, and that the therapeutic exercise led to a significant decline in serum interlukin-1β. It is concluded that protective, therapeutic, and, particularly, continuous exercises lead to significant reductions in serum corticosterone and the associated stress-induced hyperglycemia. Moreover, it appears that the timing and duration of exercise are the two factors contributing to changes in stress biomarker responses. Copyright © 2016 Elsevier Ltd. All rights reserved.
Neuromuscular Fatigue during Prolonged Exercise in Hypoxia.
Jubeau, Marc; Rupp, Thomas; Temesi, John; Perrey, Stéphane; Wuyam, Bernard; Millet, Guillaume Y; Verges, Samuel
2017-03-01
Prolonged cycling exercise performance in normoxia is limited because of both peripheral and central neuromuscular impairments. It has been reported that cerebral perturbations are greater during short-duration exercise in hypoxia compared with normoxia. The purpose of this study was to test the hypothesis that central deficits are accentuated in hypoxia compared with normoxia during prolonged (three bouts of 80 min separated by 25 min) whole-body exercise at the same relative intensity. Ten subjects performed two sessions consisting of three 80-min cycling bouts at 45% of their relative maximal aerobic power in normoxia and hypoxia (FiO2 = 0.12). Before exercise and after each bout, maximal voluntary force, voluntary activation assessed with nerve stimulation and transcranial magnetic stimulation, corticospinal excitability (motor evoked potential), intracortical inhibition (cortical silent period), and electrical (M-wave) and contractile (twitch and doublet peak forces) properties of the knee extensors were measured. Prefrontal and motor cortical oxygenation was also recorded during each cycling bout in both conditions. A significant but similar force reduction (≈-22%) was observed at the end of exercise in normoxia and hypoxia. The modifications of voluntary activation assessed with transcranial magnetic stimulation and nerve stimulation, motor evoked potential, cortical silent period, and M-wave were also similar in both conditions. However, cerebral oxygenation was reduced in hypoxia compared with normoxia. These findings show that when performed at the same relative low intensity, prolonged exercise does not induce greater supraspinal fatigue in hypoxia compared with normoxia. Despite lower absolute exercise intensities in hypoxia, reduced brain O2 availability might contribute to similar amounts of central fatigue compared with normoxia.
Ridgel, Angela L.; Abdar, Hassan Mohammadi; Alberts, Jay L.; Discenzo, Fred M.; Loparo, Kenneth A.
2014-01-01
Variability in severity and progression of Parkinson’s disease symptoms makes it challenging to design therapy interventions that provide maximal benefit. Previous studies showed that forced cycling, at greater pedaling rates, results in greater improvements in motor function than voluntary cycling. The precise mechanism for differences in function following exercise is unknown. We examined the complexity of biomechanical and physiological features of forced and voluntary cycling and correlated these features to improvements in motor function as measured by the Unified Parkinson’s Disease Rating Scale (UPDRS). Heart rate, cadence, and power were analyzed using entropy signal processing techniques. Pattern variability in heart rate and power were greater in the voluntary group when compared to forced group. In contrast, variability in cadence was higher during forced cycling. UPDRS Motor III scores predicted from the pattern variability data were highly correlated to measured scores in the forced group. This study shows how time series analysis methods of biomechanical and physiological parameters of exercise can be used to predict improvements in motor function. This knowledge will be important in the development of optimal exercise-based rehabilitation programs for Parkinson’s disease. PMID:23144045
da Rosa, João Gabriel Santos; Barcellos, Heloísa Helena de Alcântara; Idalencio, Renan; Marqueze, Alessandra; Fagundes, Michele; Rossini, Mainara; Variani, Cristiane; Balbinoti, Francine; Tietböhl, Tássia Michele Huff; Rosemberg, Denis Broock; Barcellos, Leonardo José Gil
2017-02-01
In this study, we show that an adaptation of the spinning test can be used as a model to study the exercise-exhaustion-recovery paradigm in fish. This forced swimming test promotes a wide range of changes in the hypothalamus-pituitary-interrenal axis functioning, intermediary metabolism, as well in fish behavior at both exercise and recovery periods. Our results pointed that this adapted spinning test can be considered a valuable tool for evaluating drugs and contaminant effects on exercised fish. This can be a suitable protocol both to environmental-to evaluate contaminants that act in fish energy mobilization and recovery after stressors-and translational perspectives-effects of drugs on exercised or stressed humans.
Effects of the forearm support band on wrist extensor muscle fatigue.
Knebel, P T; Avery, D W; Gebhardt, T L; Koppenhaver, S L; Allison, S C; Bryan, J M; Kelly, A
1999-11-01
A crossover experimental design with repeated measures. To determine whether the forearm support band alters wrist extensor muscle fatigue. Fatigue of the wrist extensor muscles is thought to be a contributing factor in the development of lateral epicondylitis. The forearm support band is purported to reduce or prevent symptoms of lateral epicondylitis but the mechanism of action is unknown. Fifty unimpaired subjects (36 men, 14 women; mean age = 29 +/- 6 years) were tested with and without a forearm support band before and after a fatiguing bout of exercise. Peak wrist extension isometric force, peak isometric grip force, and median power spectral frequency for wrist extensor electromyographic activity were measured before and after exercise and with and without the forearm support band. A 2 x 2 repeated measures multivariate analysis of variance was used to analyze the data, followed by univariate analysis of variance and Tukey's multiple comparison tests. Peak wrist extension isometric force, peak grip isometric force, and median power spectral frequency were all reduced after exercise. However, there was a significant reduction in peak grip isometric force and peak wrist extension isometric force values for the with-forearm support band condition (grip force 28%, wrist extension force 26%) compared to the without-forearm support band condition (grip force 18%, wrist extension force 15%). Wearing the forearm support band increased the rate of fatigue in unimpaired individuals. Our findings do not support the premise that wearing the forearm support band reduces muscle fatigue in the wrist extensors.
Dibble, Leland E; Foreman, K Bo; Addison, Odessa; Marcus, Robin L; LaStayo, Paul C
2015-04-01
Hypokinesia and bradykinesia as movement deficits of Parkinson disease are thought to be mediated by both basal ganglia dysfunction and a loss of muscle mass and strength commensurate with aging and decreased levels of physical activity. For these reasons, we sought to utilize resistance training as a means to increase muscle force and minimize hypokinesia and bradykinesia in persons with Parkinson disease and examine the effects of exercise and medication on Body Structure and Function (muscle force production and muscle cross-sectional area), Activity (mobility), and Participation (Health Status) outcomes. Forty-two participants were enrolled in a 12-week randomized clinical trial that compared 2 active exercise interventions: a standard care control group (Active Control) and an experimental group that underwent Resistance Exercise via Negative Eccentric Work (RENEW). Participants in both groups improved in muscle force production and mobility as a result of exercise and medication (P < 0.02). There were no significant interaction or between-group differences and no significant changes in muscle cross-sectional area or health status were observed. Effect sizes for exercise and medication combined exceeded the effect sizes of either intervention in isolation. Taken together, these results point to the complementary effects of exercise and medication on the Body Structure and Function and Activity outcomes but little effect on Participation outcomes.Video Abstract available for more insights from the authors (see Supplemental Digital Content 1, http://links.lww.com/JNPT/A92).
NASA Astrophysics Data System (ADS)
Shiba, Naoto; Yoshimitsu, Kazuhiro; Matsugaki, Tohru; Narita, Arata; Maeda, Takashi; Inada, Tomohisa; Tagawa, Yoshihiko; Numada, Kiyoshi; Nishi, Tetsuya
We developed ‘Hybrid exercise’ method that was designed to maintain the musculoskeletal system by using electrically stimulated antagonist muscles to resist volitional contraction of agonist muscles. This approach also produces a minimum of inertial reaction forces and has the advantage that it may minimize the need for external stabilization that is currently necessary during exercise in a weightlessness environment. The purpose of this study was to develop the intelligent suits with virtual reality (VR) system that had function of preventing disuse atrophy of musculoskeletal system using hybrid exercise system. Installing of the hybrid exercise system to the subject became easy by the intelligent suits. VR system realized the sense of sight by computer graphics animation synchronized with subjects' motion, and sense of force induced by electrical stimulation. By using VR system, the management of the exercise accomplishment degree was enabled easily because the device could record the exercise history. Intelligent suits with VR hybrid exercise system might become one of the useful countermeasures for the disuse musculoskeletal system in the space.
Cross-activation and Detraining Effects of Tongue Exercise in Aged Rats
Schaser, Allison J.; Ciucci, Michelle R.; Connor, Nadine P.
2015-01-01
Voice and swallowing deficits can occur with aging. Tongue exercise paired with a swallow may be used to treat swallowing disorders, but may also benefit vocal function due to cross-system activation effects. It is unknown how exercise-based neuroplasticity contributes to behavior and maintenance following treatment. Eighty rats were used to examine behavioral parameters and changes in neurotrophins after tongue exercise paired with a swallow. Tongue forces and ultrasonic vocalizations were recorded before and after training/detraining in young and old rats. Tissue was analyzed for neurotrophin content. Results showed tongue exercise paired with a swallow was associated with increased tongue forces at all ages. Gains diminished after detraining in old rats. Age-related changes in vocalizations, neurotrophin 4 (NT4), and brain derived neurotrophic factor (BDNF) were found. Minimal cross-system activation effects were observed. Neuroplastic benefits were demonstrated with exercise in old rats through behavioral improvements and up-regulation of BDNF in the hypoglossal nucleus. Tongue exercise paired with a swallow should be developed, studied, and optimized in human clinical research to treat swallowing and voice disorders in elderly people. PMID:26477376
Retrospective Analysis of Inflight Exercise Loading and Physiological Outcomes
NASA Technical Reports Server (NTRS)
Ploutz-Snyder, L. L.; Buxton, R. E.; De Witt, J. K.; Guilliams, M. E.; Hanson, A. M.; Peters, B. T.; Pandorf, M. M. Scott; Sibonga, J. D.
2014-01-01
Astronauts perform exercise throughout their missions to counter the health declines that occur as a result of long-term exposure to weightlessness. Although all astronauts perform exercise during their missions, the specific prescriptions, and thus the mechanical loading, differs among individuals. For example, inflight ground reaction force data indicate that subject-specific differences exist in foot forces created when exercising on the second-generation treadmill (T2) [1]. The current exercise devices allow astronauts to complete prescriptions at higher intensities, resulting in greater benefits with increased efficiency. Although physiological outcomes have improved, the specific factors related to the increased benefits are unknown. In-flight exercise hardware collect data that allows for exploratory analyses to determine if specific performance factors relate to physiological outcomes. These analyses are vital for understanding which components of exercise are most critical for optimal human health and performance. The relationship between exercise performance variables and physiological changes during flight has yet to be fully investigated. Identifying the critical performance variables that relate to improved physiological outcomes is vital for creating current and future exercise prescriptions to optimize astronaut health. The specific aims of this project are: 1) To quantify the exercise-related mechanical loading experienced by crewmembers on T2 and ARED during their mission on ISS; 2) To explore relationships between exercise loading variables, bone, and muscle health changes during the mission; 3) To determine if specific mechanical loading variables are more critical than others in protecting physiology; 4) To develop methodology for operational use in monitoring accumulated training loads during crew exercise programs. This retrospective analysis, which is currently in progress, is being conducted using data from astronauts that have flown long-duration missions onboard the ISS and have had access to exercise on the T2 and the Advanced Resistive Exercise Device (ARED). The specific exercise prescriptions vary for each astronaut. General exercise summary metrics will be developed to quantify exercise intensities, volumes, and durations for each subject. Where available, ground reaction force data will be used to quantify mechanical loading experienced by each astronaut. These inflight exercise metrics will be investigated relative to changes in pre- to post-flight bone and muscle health to identify which specific variables are related with improved or degraded physiological outcomes. The information generated from this analysis will fill gaps related to typical bone loading characterization, exercise performance capability, exercise volume and efficiency, and importance of exercise hardware. In addition, methods for quantification of exercise loading for use in monitoring the exercise programs during future space missions will be explored with the intent to inform exercise scientists and trainers as to the critical aspects of inflight exercise prescriptions.
Predictive Accuracy of Exercise Stress Testing the Healthy Adult.
ERIC Educational Resources Information Center
Lamont, Linda S.
1981-01-01
Exercise stress testing provides information on the aerobic capacity, heart rate, and blood pressure responses to graded exercises of a healthy adult. The reliability of exercise tests as a diagnostic procedure is discussed in relation to sensitivity and specificity and predictive accuracy. (JN)
Effects of environmental enrichment on the amyotrophic lateral sclerosis mouse model.
Sorrells, A D; Corcoran-Gomez, K; Eckert, K A; Fahey, A G; Hoots, B L; Charleston, L B; Charleston, J S; Roberts, C R; Markowitz, H
2009-04-01
The manner in which an animal's environment is furnished may have significant implications for animal welfare as well as research outcomes. We evaluated four different housing conditions to determine the effects of what has been considered standard rodent enrichment and the exercise opportunities those environments allow on disease progression in the amyotrophic lateral sclerosis mouse model. Forty-eight copper/zinc superoxide dismutase mice (strain: B6SJL-TgN [SOD1-G931]1Gur) (SOD1) and 48 control (C) (strain: B6SJL-TgN[SOD1]2Gur) male mice were randomly assigned to four different conditions where 12 SOD1 and 12 C animals were allotted to each condition (n = 96). Conditions tested the effects of standard housing, a forced exercise regime, access to a mouse house and opportunity for ad libitum exercise on a running wheel. In addition to the daily all-occurrence behavioural sampling, mice were weighed and tested twice per week on gait and Rotor-Rod performance until the mice reached the age of 150 days (C) or met the criteria for our humane endpoint (SOD1). The SOD1 mice exposed to the forced exercise regime and wheel access did better in average lifespan and Rotor-Rod performance, than SOD1 mice exposed to the standard cage and mouse house conditions. In SOD1 mice, stride length remained longest throughout the progression of the disease in mice exposed to the forced exercise regime compared with other SOD1 conditions. Within the control group, mice in the standard cage and forced exercise regime conditions performed significantly less than the mice with the mouse house and wheels on the Rotor-Rod. Alpha motor neuron counts were highest in mice with wheels and in mice exposed to forced exercise regime in both mouse strains. All SOD1 mice had significantly lower alpha neuron counts than controls (P < 0.05). These data show that different enrichment strategies affect behaviour and disease progression in a transgenic mouse model, and may have implications for the effects of these strategies on experimental outcomes.
Exercise quantity-dependent muscle hypertrophy in adult zebrafish (Danio rerio).
Hasumura, Takahiro; Meguro, Shinichi
2016-07-01
Exercise is very important for maintaining and increasing skeletal muscle mass, and is particularly important to prevent and care for sarcopenia and muscle disuse atrophy. However, the dose-response relationship between exercise quantity, duration/day, and overall duration and muscle mass is poorly understood. Therefore, we investigated the effect of exercise duration on skeletal muscle to reveal the relationship between exercise quantity and muscle hypertrophy in zebrafish forced to exercise. Adult male zebrafish were exercised 6 h/day for 4 weeks, 6 h/day for 2 weeks, or 3 h/day for 2 weeks. Flow velocity was adjusted to maximum velocity during continual swimming (initial 43 cm/s). High-speed consecutive photographs revealed that zebrafish mainly drove the caudal part. Additionally, X-ray micro computed tomography measurements indicated muscle hypertrophy of the mid-caudal half compared with the mid-cranial half part. The cross-sectional analysis of the mid-caudal half muscle revealed that skeletal muscle (red, white, or total) mass increased with increasing exercise quantity, whereas that of white muscle and total muscle increased only under the maximum exercise load condition of 6 h/day for 4 weeks. Additionally, the muscle fiver size distributions of exercised fish were larger than those from non-exercised fish. We revealed that exercise quantity, duration/day, and overall duration were correlated with skeletal muscle hypertrophy. The forced exercise model enabled us to investigate the relationship between exercise quantity and skeletal muscle mass. These results open up the possibility for further investigations on the effects of exercise on skeletal muscle in adult zebrafish.
Baltusnikas, Juozas; Kilikevicius, Audrius; Venckunas, Tomas; Fokin, Andrej; Bünger, Lutz; Lionikas, Arimantas; Ratkevicius, Aivaras
2015-08-01
Myostatin dysfunction promotes muscle hypertrophy, which can complicate assessment of muscle properties. We examined force generating capacity and creatine kinase (CK) efflux from skeletal muscles of young mice before they reach adult body and muscle size. Isolated soleus (SOL) and extensor digitorum longus (EDL) muscles of Berlin high (BEH) mice with dysfunctional myostatin, i.e., homozygous for inactivating myostatin mutation, and with a wild-type myostatin (BEH+/+) were studied. The muscles of BEH mice showed faster (P < 0.01) twitch and tetanus contraction times compared with BEH+/+ mice, but only EDL displayed lower (P < 0.05) specific force. SOL and EDL of age-matched but not younger BEH mice showed greater exercise-induced CK efflux compared with BEH+/+ mice. In summary, myostatin dysfunction leads to impairment in muscle force generating capacity in EDL and increases susceptibility of SOL and EDL to protein loss after exercise.
Anthropometry as a predictor of high speed performance.
Caruso, J F; Ramey, E; Hastings, L P; Monda, J K; Coday, M A; McLagan, J; Drummond, J
2009-07-01
To assess anthropometry as a predictor of high-speed performance, subjects performed four seated knee- and hip-extension workouts with their left leg on an inertial exercise trainer (Impulse Technologies, Newnan GA). Workouts, done exclusively in either the tonic or phasic contractile mode, entailed two one-minute sets separated by a 90-second rest period and yielded three performance variables: peak force, average force and work. Subjects provided the following anthropometric data: height, weight, body mass index, as well as total, upper and lower left leg lengths. Via multiple regression, anthropometry attempted to predict the variance per performance variable. Anthropometry explained a modest (R2=0.27-0.43) yet significant degree of variance from inertial exercise trainer workouts. Anthropometry was a better predictor of peak force variance from phasic workouts, while it accounted for a significant degree of average force and work variance solely from tonic workouts. Future research should identify variables that account for the unexplained variance from high-speed exercise performance.
Biscarini, Andrea; Benvenuti, Paolo; Botti, Fabio M; Brunetti, Antonella; Brunetti, Orazio; Pettorossi, Vito E
2014-09-01
A number of research studies provide evidence that hamstring cocontraction during open kinetic chain knee extension exercises enhances tibiofemoral (TF) stability and reduces the strain on the anterior cruciate ligament. To determine the possible increase in hamstring muscle coactivation caused by a voluntary cocontraction effort during open kinetic chain leg-extension exercises, and to assess whether an intentional hamstring cocontraction can completely suppress the anterior TF shear force during these exercises. Descriptive laboratory study. Knee kinematics as well as electromyographic activity in the semitendinosus (ST), semimembranosus (SM), biceps femoris (BF), and quadriceps femoris muscles were measured in 20 healthy men during isotonic leg extension exercises with resistance (R) ranging from 10% to 80% of the 1-repetition maximum (1RM). The same exercises were also performed while the participants attempted to enhance hamstring coactivation through a voluntary cocontraction effort. The data served as input parameters for a model to calculate the shear and compressive TF forces in leg extension exercises for any set of coactivation patterns of the different hamstring muscles. For R≤ 40% 1RM, the peak coactivation levels obtained with intentional cocontraction (l) were significantly higher (P < 10(-3)) than those obtained without intentional cocontraction (l 0). For each hamstring muscle, maximum level l was reached at R = 30% 1RM, corresponding to 9.2%, 10.5%, and 24.5% maximum voluntary isometric contraction (MVIC) for the BF, ST, and SM, respectively, whereas the ratio l/l 0 reached its maximum at R = 20% 1RM and was approximately 2, 3, and 4 for the BF, SM, and ST, respectively. The voluntary enhanced coactivation level l obtained for R≤ 30% 1RM completely suppressed the anterior TF shear force developed by the quadriceps during the exercise. In leg extension exercises with resistance R≤ 40% 1RM, coactivation of the BF, SM, and ST can be significantly enhanced (up to 2, 3, and 4 times, respectively) by a voluntary hamstring cocontraction effort. The enhanced coactivation levels obtained for R≤ 30% 1RM can completely suppress the anterior TF shear force developed by the quadriceps during the exercise. This laboratory study suggests that leg extension exercise with intentional hamstring cocontraction may have the potential to be a safe and effective quadriceps-strengthening intervention in the early stages of rehabilitation programs for anterior cruciate ligament injury or reconstruction recovery. Further studies, including clinical trials, are needed to investigate the relevance of this therapeutic exercise in clinical practice. © 2014 The Author(s).
Soil Testing as a Classroom Exercise to Determine Soil-forming Processes and Soil Classification.
ERIC Educational Resources Information Center
Bencloski, Joseph W.
1980-01-01
Describes a learning activity involving correctly matching soils with environments. The activity is intended for use in college level physical geography courses. Information is presented on instructional objectives, outline of preparatory lectures, soil test exercise worksheets, procedures, laboratory setting, testing procedures, collecting and…
Developing Mathematical Fluency: Comparing Exercises and Rich Tasks
ERIC Educational Resources Information Center
Foster, Colin
2018-01-01
Achieving fluency in important mathematical procedures is fundamental to students' mathematical development. The usual way to develop procedural fluency is to practise repetitive exercises, but is this the only effective way? This paper reports three quasi-experimental studies carried out in a total of 11 secondary schools involving altogether 528…
Effects of Different Lifting Cadences on Ground Reaction Forces during the Squat Exercise
NASA Technical Reports Server (NTRS)
Bentley, Jason R.; Amonette, William E.; Hagan, R. Donald
2008-01-01
The purpose of this investigation was to determine the effect of different cadences on the ground reaction force (GRF(sub R)) during the squat exercise. It is known that squats performed with greater acceleration will produce greater inertial forces; however, it is not well understood how different squat cadences affect GRF(sub R). It was hypothesized that faster squat cadences will result in greater peak GRF(sub R). METHODS: Six male subjects (30.8+/-4.4 y, 179.5+/-8.9 cm, 88.8+/-13.3 kg) with previous squat experience performed three sets of three squats using three different cadences (FC = 1 sec descent/1 sec ascent; MC = 3 sec descent/1 sec ascent; SC = 4 sec descent/2 sec ascent) with barbell mass equal to body mass. Ground reaction force was used to calculate inertial force trajectories of the body plus barbell (FI(sub system)). Forces were normalized to body mass. RESULTS: Peak GRF(sub R) and peak FI(sub system) were significantly higher in FC squats compared to MC (p=0.0002) and SC (p=0.0002). Range of GRF(sub R) and FI(sub system) were also significantly higher in FC compared to MC (p<0.05), and MC were significantly higher than SC (p<0.05). DISCUSSION: Faster squat cadences result in significantly greater peak GRF(sub R) due to the inertia of the system. GRF(sub R) was more dependent upon decent cadence than on ascent cadence. PRACTICAL APPLICATION: This study demonstrates that faster squat cadences produce greater ground reaction forces. Therefore, the use of faster squat cadences might enhance strength and power adaptations to long-term resistance exercise training. Key Words: velocity, weight training, resistive exercise
33 CFR 155.1125 - Additional response plan requirements.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Prince William Sound— (A) Valdez; (B) Tatitlek; (C) Cordova; (D) Whittier; (E) Chenega; and (F) Fish... include exercise procedures that must— (i) Provide two exercises of the oil spill removal organization... effectively; (ii) Provide for both announced and unannounced exercises; and (iii) Provide for exercises that...
Hind, K; Burrows, M
2007-01-01
Osteoporosis is a serious skeletal disease and as there is currently no cure, there is a large emphasis on its prevention, including the optimisation of peak bone mass. There is increasing evidence that regular weight-bearing exercise is an effective strategy for enhancing bone status during growth. This systematic review evaluates randomised and non-randomised controlled trials to date, on the effects of exercise on bone mineral accrual in children and adolescents. An online search of Medline and the Cochrane database enabled the identification of studies. Those that met the inclusion criteria were included in the review and graded according to risk for bias. Twenty-two trials were reviewed. Nine were conducted in prepubertal children (Tanner I), 8 in early pubertal (Tanner II-III) and 5 in pubertal (Tanner IV-V). Sample sizes ranged from n=10 to 65 per group. Exercise interventions included games, dance, resistance training and jumping exercises, ranging in duration from 3 to 48 months. Approximately half of the trials (n=10) included ground reaction force (GRF) data (2 to 9 times body weight). All trials in early pubertal children, 6 in pre pubertal and 2 in pubertal children, reported positive effects of exercise on bone (P<0.05). Mean increases in bone parameters over 6 months were 0.9-4.9% in prepubertal, 1.1-5.5% in early pubertal and 0.3-1.9% in pubertal exercisers compared to controls (P<0.05). Although weight-bearing exercise appears to enhance bone mineral accrual in children, particularly during early puberty; it remains unclear as to what constitutes the optimal exercise programme. Many studies to date have a high risk for bias and only a few have a low risk. Major limitations concerned selection procedures, compliance rates and control of variables. More well designed and controlled investigations are needed. Furthermore, the specific exercise intervention that will provide the optimal stimulus for peak bone mineral accretion is unclear. Future quantitative, dose-response studies using larger sample sizes and interventions that vary in GRF and frequency may characterise the most and least effective exercise programmes for bone mineral accrual in this population. In addition, the measurement of bone quality parameters and volumetric BMD would provide a greater insight into the mechanisms implicated in the adaptation of bone to exercise.
Anand, R.
2016-01-01
Objective. To evaluate the effects of diaphragmatic breathing exercises and flow and volume-oriented incentive spirometry on pulmonary function and diaphragm excursion in patients undergoing laparoscopic abdominal surgery. Methodology. We selected 260 patients posted for laparoscopic abdominal surgery and they were block randomization as follows: 65 patients performed diaphragmatic breathing exercises, 65 patients performed flow incentive spirometry, 65 patients performed volume incentive spirometry, and 65 patients participated as a control group. All of them underwent evaluation of pulmonary function with measurement of Forced Vital Capacity (FVC), Forced Expiratory Volume in the first second (FEV1), Peak Expiratory Flow Rate (PEFR), and diaphragm excursion measurement by ultrasonography before the operation and on the first and second postoperative days. With the level of significance set at p < 0.05. Results. Pulmonary function and diaphragm excursion showed a significant decrease on the first postoperative day in all four groups (p < 0.001) but was evident more in the control group than in the experimental groups. On the second postoperative day pulmonary function (Forced Vital Capacity) and diaphragm excursion were found to be better preserved in volume incentive spirometry and diaphragmatic breathing exercise group than in the flow incentive spirometry group and the control group. Pulmonary function (Forced Vital Capacity) and diaphragm excursion showed statistically significant differences between volume incentive spirometry and diaphragmatic breathing exercise group (p < 0.05) as compared to that flow incentive spirometry group and the control group. Conclusion. Volume incentive spirometry and diaphragmatic breathing exercise can be recommended as an intervention for all patients pre- and postoperatively, over flow-oriented incentive spirometry for the generation and sustenance of pulmonary function and diaphragm excursion in the management of laparoscopic abdominal surgery. PMID:27525116
Alaparthi, Gopala Krishna; Augustine, Alfred Joseph; Anand, R; Mahale, Ajith
2016-01-01
Objective. To evaluate the effects of diaphragmatic breathing exercises and flow and volume-oriented incentive spirometry on pulmonary function and diaphragm excursion in patients undergoing laparoscopic abdominal surgery. Methodology. We selected 260 patients posted for laparoscopic abdominal surgery and they were block randomization as follows: 65 patients performed diaphragmatic breathing exercises, 65 patients performed flow incentive spirometry, 65 patients performed volume incentive spirometry, and 65 patients participated as a control group. All of them underwent evaluation of pulmonary function with measurement of Forced Vital Capacity (FVC), Forced Expiratory Volume in the first second (FEV1), Peak Expiratory Flow Rate (PEFR), and diaphragm excursion measurement by ultrasonography before the operation and on the first and second postoperative days. With the level of significance set at p < 0.05. Results. Pulmonary function and diaphragm excursion showed a significant decrease on the first postoperative day in all four groups (p < 0.001) but was evident more in the control group than in the experimental groups. On the second postoperative day pulmonary function (Forced Vital Capacity) and diaphragm excursion were found to be better preserved in volume incentive spirometry and diaphragmatic breathing exercise group than in the flow incentive spirometry group and the control group. Pulmonary function (Forced Vital Capacity) and diaphragm excursion showed statistically significant differences between volume incentive spirometry and diaphragmatic breathing exercise group (p < 0.05) as compared to that flow incentive spirometry group and the control group. Conclusion. Volume incentive spirometry and diaphragmatic breathing exercise can be recommended as an intervention for all patients pre- and postoperatively, over flow-oriented incentive spirometry for the generation and sustenance of pulmonary function and diaphragm excursion in the management of laparoscopic abdominal surgery.
Benefits of resistance exercise in lean women with fibromyalgia: involvement of IGF-1 and leptin.
Bjersing, Jan L; Larsson, Anette; Palstam, Annie; Ernberg, Malin; Bileviciute-Ljungar, Indre; Löfgren, Monika; Gerdle, Björn; Kosek, Eva; Mannerkorpi, Kaisa
2017-03-14
Chronic pain and fatigue improves by exercise in fibromyalgia (FM) but underlying mechanisms are not known. Obesity is increased among FM patients and associates with higher levels of pain. Symptom improvement after aerobic exercise is affected by body mass index (BMI) in FM. Metabolic factors such as insulin-like growth factor 1 (IGF-1) and leptin may be involved. In this study, the aim was to evaluate the role of metabolic factors in lean, overweight and obese women during resistance exercise, in relation to symptom severity and muscle strength in women with FM. Forty-three women participated in supervised progressive resistance exercise, twice weekly for 15-weeks. Serum free and total IGF-1, IGF-binding protein 3 (IGFBP3), adiponectin, leptin and resistin were determined at baseline and after 15-weeks. Level of current pain was rated on a visual analogue scale (0-100 mm). Level of fatigue was rated by multidimensional fatigue inventory (MFI-20) subscale general fatigue (MFIGF). Knee extension force, elbow flexion force and handgrip force were assessed by dynamometers. Free IGF-1 (p = 0.047), IGFBP3 (p = 0.025) and leptin (p = 0.008) were significantly decreased in lean women (n = 18), but not in the overweight (n = 17) and the obese (n = 8). Lean women with FM benefited from resistance exercise with improvements in current pain (p= 0.039, n = 18), general fatigue (MFIGF, p = 0.022, n = 18) and improved elbow-flexion force (p = 0.017, n = 18). In overweight and obese women with FM there was no significant improvement in pain or fatigue but an improvement in elbow flexion (p = 0.049; p = 0.012) after 15 weeks of resistance exercise. The clearest clinical response to resistance exercise was found in lean patients with FM. In these individuals, individualized resistance exercise was followed by changes in IGF-1 and leptin, reduced pain, fatigue and improved muscular strength. In overweight and obese women FM markers of metabolic signaling and clinical symptoms were unchanged, but strength was improved in the upper limb. Resistance exercise combined with dietary interventions might benefit patients with FM and overweight. The trial was registered 21 of October 2010 with ClinicalTrials.gov identification number: NCT01226784 .
Biomechanical Modeling Analysis of Loads Configuration for Squat Exercise
NASA Technical Reports Server (NTRS)
Gallo, Christopher A.; Thompson, William K.; Lewandowski, Beth E.; Jagodnik, Kathleen; De Witt, John K.
2017-01-01
INTRODUCTION: Long duration space travel will expose astronauts to extended periods of reduced gravity. Since gravity is not present to assist loading, astronauts will use resistive and aerobic exercise regimes for the duration of the space flight to minimize loss of bone density, muscle mass and aerobic capacity that occurs during exposure to a reduced gravity environment. Unlike the International Space Station (ISS), the area available for an exercise device in the next generation of spacecraft for travel to the Moon or to Mars is limited and therefore compact resistance exercise device prototypes are being developed. The Advanced Resistive Exercise Device (ARED) currently on the ISS is being used as a benchmark for the functional performance of these new devices. Biomechanical data collection and computational modeling aid the device design process by quantifying the joint torques and the musculoskeletal forces that occur during exercises performed on the prototype devices. METHODS The computational models currently under development utilize the OpenSim [1] software platform, consisting of open source code for musculoskeletal modeling, using biomechanical input data from test subjects for estimation of muscle and joint loads. The OpenSim Full Body Model [2] is used for all analyses. The model incorporates simplified wrap surfaces, a new knee model and updated lower body muscle parameters derived from cadaver measurements and magnetic resonance imaging of young adults. The upper body uses torque actuators at the lumbar and extremity joints. The test subjects who volunteer for this study are instrumented with reflective markers for motion capture data collection while performing squat exercising on the Hybrid Ultimate Lifting Kit (HULK) prototype device (ZIN Technologies, Middleburg Heights, OH). Ground reaction force data is collected with force plates under the feet, and device loading is recorded through load cells internal to the HULK. Test variables include the applied device load and the dual cable long bar or single cable T-bar interface between the test subject and the device. Data is also obtained using free weights with the identical loading for a comparison to the resistively loaded exercise device trials. The data drives the OpenSim biomechanical model, which has been scaled to match the anthropometrics of the test subject, to calculate the body loads. RESULTS Lower body kinematics, joint moments, joint forces and muscle forces are obtained from the OpenSim biomechanical analysis of the squat exercises under different loading conditions. Preliminary results from the model for the loading conditions will be presented as will hypotheses developed for follow on work.
2008-05-14
CAPE CANAVERAL, Fla. -- In a U.S. Coast Guard boat off Florida's central east coast, astronaut Richard Mastracchio adjusts his launch-and-entry suit to participate in a rescue training exercise, known as Mode VIII. Behind him is astronaut Paulo Nespoli. In support of, and with logistical support from, NASA, USSTRATCOM is hosting a major exercise involving Department of Defense, Department of Homeland Security, search and rescue (SAR) forces, including the 45th Space Wing at Patrick Air Force Base, which support space shuttle astronaut bailout contingency operations, known as Mode VIII. This exercise tests SAR capabilities to locate, recover and provide medical treatment for astronauts following a space shuttle launch phase open-ocean bailout. Participants include members of the U.S. Navy, U.S. Coast Guard, U.S. Air Force, and NASA's Kennedy Space Center and Johnson Space Center. Photo credit: NASA/Dimitri Gerondidakis
2008-05-14
CAPE CANAVERAL, Fla. -- Off Florida's central east coast, a member of the rescue team in a training exercise, known as Mode VIII, keeps watch for the returning support crew from the U.S. Coast Guard cutter Kingfisher, from Port Canaveral, Fla. In support of, and with logistical support from, NASA, USSTRATCOM is hosting a major exercise involving Department of Defense, Department of Homeland Security, search and rescue (SAR) forces, including the 45th Space Wing at Patrick Air Force Base, which support space shuttle astronaut bailout contingency operations, known as Mode VIII. This exercise tests SAR capabilities to locate, recover and provide medical treatment for astronauts following a space shuttle launch phase open-ocean bailout. Participants include members of the U.S. Navy, U.S. Coast Guard, U.S. Air Force, and NASA's Kennedy Space Center and Johnson Space Center. Photo credit: NASA/Dimitri Gerondidakis
2008-05-14
CAPE CANAVERAL, Fla. -- Off Florida's central east coast, a support boat from a rescue training exercise, known as Mode VIII, returns to the Freedom Star, one of NASA's solid rocket booster retrieval ships from NASA's Kennedy Space Center. In support of, and with logistical support from, NASA, USSTRATCOM is hosting a major exercise involving Department of Defense, Department of Homeland Security, search and rescue (SAR) forces, including the 45th Space Wing at Patrick Air Force Base, which support space shuttle astronaut bailout contingency operations, known as Mode VIII. This exercise tests SAR capabilities to locate, recover and provide medical treatment for astronauts following a space shuttle launch phase open-ocean bailout. Participants include members of the U.S. Navy, U.S. Coast Guard, U.S. Air Force, and NASA's Kennedy Space Center and Johnson Space Center. Photo credit: NASA/Dimitri Gerondidakis
Anticipatory responses of catecholamines on muscle force production.
French, Duncan N; Kraemer, William J; Volek, Jeff S; Spiering, Barry A; Judelson, Daniel A; Hoffman, Jay R; Maresh, Carl M
2007-01-01
Few data exist on the temporal relationship between catecholamines and muscle force production in vivo. The purpose of this study was to examine the influence of preexercise arousal on sympathoadrenal neurohormones on muscular force expression during resistance exercise. Ten resistance-trained men completed two experimental conditions separated by 7 days: 1) acute heavy resistance exercise protocol (AHREP; 6 x 10 repetitions parallel squats, 80% 1 repetition maximum) and 2) control (Cont; rest). Peak force (F(peak)) was recorded during a maximal isometric squat preceding each set and mean force (F(mean)) was measured during each set. Serial venous blood samples were collected before the AHREP and immediately preceding each set. Blood collection times were matched during Cont. Preexercise epinephrine (Epi), norepinephrine (NE), and dopamine (DA) increased (P
Effects of transcatheter closure of Fontan fenestration on exercise tolerance. kidecho@yahoo.com.
Momenah, Tarek S; Eltayb, Haifa; Oakley, Reida El; Qethamy, Howeida Al; Faraidi, Yahya Al
2008-05-01
Baffle fenestration is associated with a significantly better outcome in standard and high-risk patients undergoing completion of Fontan. We report the effects of subsequent transcatheter closure of fenestration on exercise capacity and oxygen saturation. Sixteen patients with a mean age of 10.3 years underwent Amplatzer septal occluder (ASO) device transcatheter closure of Fontan fenestration. All had a fenestrated Fontan operation 6 month to 8 years prior to the procedure. A stress test was performed before and after device closure of fenestration in 14 patients (2 patients did not tolerate stress test before the procedure). The fenestrations in all patients were successfully occluded with the use of the Amplatzer device occluder. No complications occurred during or after the procedure. O2 saturation increased from a mean 85.1 +/- 7.89% to 94.5 +/- 3.63% (p < 0.01) at rest and from 66.2 +/- 12.86% to 87.2 +/- 8.64% (p < 0.01) following exercise. Exercise duration has also increased from 8.22 +/- 2.74 min to 10.29 +/- 1.91 min (p < 0.05). Transcatheter closure of Fontan fenestration increases the duration of exercise capacity and increases O2 saturation at rest and after exercise.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-21
... is necessary to protect the public from the hazards associated with airborne and waterborne... the hazards associated with the airborne and waterborne activities during the exercise. Discussion of... the Tampa Convention Center in Tampa, Florida. The exercise will consist of multiple airborne and...
Telephone Equipment Installation and Repair Specialist (AFSC 36254).
ERIC Educational Resources Information Center
Air Univ., Gunter AFS, Ala. Extension Course Inst.
This document contains the four volumes of an Air Force correspondence course in telephone equipment installation and repair. Each volume consists of student learning objectives, information, exercises, and answers to exercises; a volume review exercise is included for each volume. The first volume includes information about career field duties…
Effects of quadriceps strength after static and dynamic whole-body vibration exercise.
Bush, Jill A; Blog, Gabriel L; Kang, Jie; Faigenbaum, Avery D; Ratamess, Nicholas A
2015-05-01
Numerous studies have shown performance benefits including whole-body vibration (WBV) as a training modality or an acute exercise protocol when used as a component of the resistance training program. Some studies have indicated that performing dynamic exercises as compared with static position exercises while exposed to WBV might be beneficial; however, evidence is lacking. Thus, the purpose of this study was to determine if an acute bout of dynamic versus static squats performed during WBV results in increase in quadriceps force production by means of dynamic isokinetic knee extension and flexion exercise. Nonresistance-trained healthy young men and women (N = 21) of 18-25 years participated in 4 protocols with 2-week rest in-between. Protocol 1 consisted of 5 sets of 10 dynamic squats without vibration; Protocol 2: 5 sets of 30-second static squats without vibration; Protocol 3: 5 sets of 10 dynamic squats with 30-Hz WBV for a total of 2.5 minutes; and Protocol 4: 5 sets of 30-second static squats with 30-Hz WBV for a total of 2.5 minutes. Prestrength tests (1 set of 4 repetitions at 100° · s(-1) for the knee extension exercise) was performed within 5 minutes of starting each protocol, and poststrength testing was performed within 1 minute of completing each protocol. Strength outcomes were analyzed by repeated measures analysis of variance with a significance level set at p ≤ 0.05. A significant decrease in strength was observed after dynamic and static squats without WBV (p = 0.002); an increase in strength after dynamic squats with WBV (p = 0.003); and a decrease in strength after static squats with WBV (p = 0.003). The inclusion of WBV to dynamic resistance exercise can be an added modality to increase strength. Whole-body vibration can have varied effects in altering muscle strength in untrained individuals according to the type of resistance training performed. As a dynamic squat with WBV seems to immediately potentiate neuromuscular functioning, the combination of dynamic exercises and WBV could be used as a potential warm-up procedure before resistance exercise.
Conceptual and Laboratory Exercise to Apply Newton's Second Law to a System of Many Forces
ERIC Educational Resources Information Center
Mungan, Carl E.
2012-01-01
A pair of objects on an inclined plane are connected together by a string. The upper object is then connected to a fixed post via a spring. The situation is first analysed as a classroom exercise in using free-body diagrams to solve Newton's second law for a system of objects upon which many different kinds of force are acting (string tension,…
Small Countries’ Special Operations Forces Contribution to the NATO Response Force
2014-06-13
tasks: Military Assistance, Direct Actions and Special Reconnaissance. The Jackal Stone exercise serves as a bedrock designed to build special...operations capabilities and improve interoperability among European partner nations. In Jackal Stone 2012, Army Major General Michael S. Repass, Commander...coalition or NATO operation, and the significance of teaming up with another 48 capable partner.96 Exercise Jackal Stone is an annual event and it is
The acute effects of bodyweight suspension exercise on muscle activation and muscular fatigue.
Cayot, Trent E; Lauver, Jakob D; Scheuermann, Barry W
2017-07-01
This investigation examined effects of two exercise modes (barbell, BB; bodyweight suspension, BWS) on muscle activation, resistance load, and fatigue. During session one, nine resistance-trained males completed an elbow flexion one-repetition maximum (1RM). During sessions two and three, subjects completed standing biceps curls to fatigue at 70% 1RM utilizing a randomized exercise mode. Surface electromyography (sEMG) recorded muscle activation of the biceps brachii, triceps brachii, anterior deltoid, posterior deltoid, rectus abdominis, and erector spinae. BWS resistance load was measured using a force transducer. Standing maximal voluntary isometric contractions of the elbow flexors recorded at 90° were used to determine the isometric force decrement and rate of fatigue (ROF) during exercise. sEMG and resistance load data were divided into 25% contraction duration bins throughout the concentric phase. BWS resulted in a 67.7 ± 7.4% decline in resistance load throughout the concentric phase (p ≤ 0.05). As a result, BB elicited higher mean resistance loads (31.4 ± 4.0 kg) and biceps brachii sEMG (84.7 ± 27.8% maximal voluntary isometric contractions, MVIC) compared with BWS (20.4 ± 3.4 kg, 63.4 ± 21.6% MVIC). No difference in rectus abdominis or erector spinae sEMG was detected between exercise modes. Isometric force decrement was greater during BWS (-21.7 ± 7.0 kg) compared with BB (-14.9 ± 4.7 kg); however, BB (-3.0 ± 0.8 kg/set) resulted in a steeper decline in ROF compared with BWS (-1.7 ± 0.6 kg/set). The variable resistance loading and greater isometric force decrement observed suggest that select BWS exercises may resemble variable resistance exercise more than previously considered.
A Methodological Approach to Quantifying Plyometric Intensity.
Jarvis, Mark M; Graham-Smith, Phil; Comfort, Paul
2016-09-01
Jarvis, MM, Graham-Smith, P, and Comfort, P. A Methodological approach to quantifying plyometric intensity. J Strength Cond Res 30(9): 2522-2532, 2016-In contrast to other methods of training, the quantification of plyometric exercise intensity is poorly defined. The purpose of this study was to evaluate the suitability of a range of neuromuscular and mechanical variables to describe the intensity of plyometric exercises. Seven male recreationally active subjects performed a series of 7 plyometric exercises. Neuromuscular activity was measured using surface electromyography (SEMG) at vastus lateralis (VL) and biceps femoris (BF). Surface electromyography data were divided into concentric (CON) and eccentric (ECC) phases of movement. Mechanical output was measured by ground reaction forces and processed to provide peak impact ground reaction force (PF), peak eccentric power (PEP), and impulse (IMP). Statistical analysis was conducted to assess the reliability intraclass correlation coefficient and sensitivity smallest detectable difference of all variables. Mean values of SEMG demonstrate high reliability (r ≥ 0.82), excluding ECC VL during a 40-cm drop jump (r = 0.74). PF, PEP, and IMP demonstrated high reliability (r ≥ 0.85). Statistical power for force variables was excellent (power = 1.0), and good for SEMG (power ≥0.86) excluding CON BF (power = 0.57). There was no significant difference (p > 0.05) in CON SEMG between exercises. Eccentric phase SEMG only distinguished between exercises involving a landing and those that did not (percentage of maximal voluntary isometric contraction [%MVIC] = no landing -65 ± 5, landing -140 ± 8). Peak eccentric power, PF, and IMP all distinguished between exercises. In conclusion, CON neuromuscular activity does not appear to vary when intent is maximal, whereas ECC activity is dependent on the presence of a landing. Force characteristics provide a reliable and sensitive measure enabling precise description of intensity in plyometric exercises. The present findings provide coaches and scientists with an insightful and precise method of measuring intensity in plyometrics, which will allow for greater control of programming variables.
Computational Models of Exercise on the Advanced Resistance Exercise Device (ARED)
NASA Technical Reports Server (NTRS)
Newby, Nate; Caldwell, Erin; Scott-Pandorf, Melissa; Peters,Brian; Fincke, Renita; DeWitt, John; Poutz-Snyder, Lori
2011-01-01
Muscle and bone loss remain a concern for crew returning from space flight. The advanced resistance exercise device (ARED) is used for on-orbit resistance exercise to help mitigate these losses. However, characterization of how the ARED loads the body in microgravity has yet to be determined. Computational models allow us to analyze ARED exercise in both 1G and 0G environments. To this end, biomechanical models of the squat, single-leg squat, and deadlift exercise on the ARED have been developed to further investigate bone and muscle forces resulting from the exercises.
NASA Technical Reports Server (NTRS)
DeWitt, John; Schaffner, Grant; Laughlin, Mitzi; Loehr, James; Hagan, R. Donald
2004-01-01
Long-term exposure to microgravity induces detrimefits to the musculcskdetal system (Schneider et al., 1995; LeBlanc et al., 2000). Treadmill exercise is used onboard the International Space Station as an exercise countermeasure to musculoskeletal deconditioning due to spaceflight. During locomotive exercise in weightlessness (0G), crewmembers wear a harness attached to an external loading mechanism (EL). The EL pulls the crewmember toward the treadmill, and provides resistive load during the impact and propulsive phases of gait. The resulting forces may be important in stimulating bone maintenance (Turner, 1998). The EL can be applied via a bungee and carabineer clip configuration attached to the harness and can be manipulated to create varying amounts of load levels during exercise. Ground-based research performed using a vertically mounted treadmill found that peak ground reaction forces (GRF) during running at an EL of less than one body weight (BW) are less than those that occur during running in normal gravity (1G) (Davis et al., 1996). However, it is not known how the GRF are affected by the EL in a true OG environment. Locomotion while suspended may result in biomechanics that differ from free running. The purpose of this investigation was to determine how EL affects peak impact force, peak propulsive force, loading rate, and impulse of the GRF during running in 0G. It was hypothesized that increasing EL would result in increases in each GRF parameter.
The Effect of Intra-Dialytic Exercise on Inflammation and Blood Endotoxin Levels.
Wong, Jonathan; Davis, Philip; Patidar, Ashish; Zhang, Yonglong; Vilar, Enric; Finkelman, Malcolm; Farrington, Ken
2017-01-01
In healthy individuals, an acute inflammatory response occurs after intense exercise due to gut ischaemia and intestinal bacterial endotoxin translocation into the bloodstream. This process maybe exacerbated in patients who exercise during dialysis due to large volume shifts experienced by many during haemodialysis (HD). The acute effect of intra-dialytic exercise on blood endotoxins and inflammation is not known. The effect of intra-dialytic exercise on blood endotoxin and inflammation was investigated in 10 patients and compared with resting haemodialysis. Blood was measured for endotoxin and inflammatory biomarkers before and after dialysis. With the exception of one sample, all samples tested negative for endotoxin. Intra-dialytic exercise attenuated the rise of interleukin-6, tumour necrosis factor-α and high-sensitivity C-reactive protein after the HD procedure. Intra-dialytic exercise was not associated with an observable rise in blood endotoxin, although it may ameliorate the inflammatory effects of the HD procedure. Larger studies are needed to confirm this finding. © 2017 S. Karger AG, Basel.
NASA Technical Reports Server (NTRS)
Smith, Damon C. (Inventor)
2005-01-01
An exercise device 10 is particularly well suited for use in low gravity environments, and includes a frame 12 with plurality of resistance elements 30,82 supported in parallel on the frame. A load transfer member 20 is moveable relative to the frame for transferring the applied force to the free end of each captured resistance element. Load selection template 14 is removably secured both to the load transfer member, and a plurality of capture mechanisms engage the free end of corresponding resistance elements. The force applying mechanism 53 may be a handle, harness or other user interface for applying a force to move the load transfer member.
Exercise-Induced Skeletal Muscle Damage.
ERIC Educational Resources Information Center
Evans, William J.
1987-01-01
Eccentric exercise, in which the muscles exert force by lengthening, is associated with delayed onset muscle soreness. How soreness occurs, how recovery proceeds, and what precautions athletes should take are described. (Author/MT)
NASA Technical Reports Server (NTRS)
Figueroa, Fernando
1999-01-01
It is hypothesized that bone loss experienced by astronauts in zero gravity conditions may be curtailed by appropriate exercise. According to Wolf's law, bone regenerates when muscles produce stresses by pulling on the bone during daily activity and/or exercise on Earth. To use this theory to prevent or decrease bone loss, one needs to quantify musculoskeletal loads and relate them to bone density changes. In the context of the space program, it is desirable to determine musculoskeletal loads during exercise so that one may make similar measurements on Earth and in space. In this manner, load measurements on Earth may be used as reference to generate similar loads during exercise in space. A research project to investigate the effects of high-resistive exercise to decrease bone density loss underzero-gravity conditions is being carried out in Life Sciences Research Laboratories at NASA JSC. The project consists of a bed-rest study whereby subjects remain in horizontal position for seventeen weeks. During the study, a subset of those subjects executes a regime of resistive exercises in the horizontal exercise machine (HEM). The HEM was designed so that subjects remain horizontal while exercising to minimize gravity loading even during exercise. Bone density of each subject is measured throughout the duration of their participation. The objective of the study is to determine if the resistive exercises are effective in diminishing or eliminating bone loss. My participation in this project relates to instrumentation, measurement, and processing of signals from displacement sensors (optical encoders) and load-cells. Measurement of displacements will be used to determine the motion of the body during exercise, and load measurements will be used (along with displacement data) to determine forces and torques exerted on each section of the body during exercise. Further, I have assisted in specifying new sensors to be added to the HEM and to a new prototype resistive exercise machine called the Interim Resistive Exercise Device (IRED). New load cells and encoders should be mounted in these devices to obtain more complete kineto-dynamic information. This report includes a description of the instrumentation that was built to perform measurements in the HEM and the IRED, along with the software that was developed to collect the measurements. It also includes examples of measurements taken in the HEM. Finally, a plan is laid out that describes how these measurements may be used to determine forces exerted by muscles for each exercise.
Effects of Exercise Rehab on Male Asthmatic Patients: Aerobic Verses Rebound Training
Zolaktaf, Vahid; Ghasemi, Gholam A; Sadeghi, Morteza
2013-01-01
Background: There are some auspicious records on applying aerobic exercise for asthmatic patients. Recently, it is suggested that rebound exercise might even increase the gains. This study was designed to compare the effects of rebound therapy to aerobic training in male asthmatic patients. Methods: Sample included 37 male asthmatic patients (20-40 years) from the same respiratory clinic. After signing the informed consent, subjects volunteered to take part in control, rebound, or aerobic groups. There was no change in the routine medical treatment of patients. Supervised exercise programs continued for 8 weeks, consisting of two sessions of 45 to 60 minutes per week. Criteria measures were assessed pre- and post exercise program. Peak exercise capacity (VO2peak) was estimated by modified Bruce protocol, Forced vital capacity (FVC), Forced expiratory volume in 1 second (FEV1), and FEV1% were measured by spirometer. Data were analyzed by repeated measure analysis of variance (ANOVA). Results: Significant interactions were observed for all 4 criteria measures (P < 0.01), meaning that both the exercise programs were effective in improving FVC, FEV1, FEV1%, and VO2peak. Rebound exercise produced more improvement in FEV1, FEV1%, and VO2peak. Conclusions: Regular exercise strengthens the respiratory muscles and improves the cellular respiration. At the same time, it improves the muscular, respiratory, and cardio-vascular systems. Effects of rebound exercise seem to be promising. Findings suggest that rebound exercise is a useful complementary means for asthmatic male patients. PMID:23717762
Cheng, Arthur J; Willis, Sarah J; Zinner, Christoph; Chaillou, Thomas; Ivarsson, Niklas; Ørtenblad, Niels; Lanner, Johanna T; Holmberg, Hans-Christer; Westerblad, Håkan
2017-12-15
We investigated whether intramuscular temperature affects the acute recovery of exercise performance following fatigue-induced by endurance exercise. Mean power output was better preserved during an all-out arm-cycling exercise following a 2 h recovery period in which the upper arms were warmed to an intramuscular temperature of ̴ 38°C than when they were cooled to as low as 15°C, which suggested that recovery of exercise performance in humans is dependent on muscle temperature. Mechanisms underlying the temperature-dependent effect on recovery were studied in intact single mouse muscle fibres where we found that recovery of submaximal force and restoration of fatigue resistance was worsened by cooling (16-26°C) and improved by heating (36°C). Isolated whole mouse muscle experiments confirmed that cooling impaired muscle glycogen resynthesis. We conclude that skeletal muscle recovery from fatigue-induced by endurance exercise is impaired by cooling and improved by heating, due to changes in glycogen resynthesis rate. Manipulation of muscle temperature is believed to improve post-exercise recovery, with cooling being especially popular among athletes. However, it is unclear whether such temperature manipulations actually have positive effects. Accordingly, we studied the effect of muscle temperature on the acute recovery of force and fatigue resistance after endurance exercise. One hour of moderate-intensity arm cycling exercise in humans was followed by 2 h recovery in which the upper arms were either heated to 38°C, not treated (33°C), or cooled to ∼15°C. Fatigue resistance after the recovery period was assessed by performing 3 × 5 min sessions of all-out arm cycling at physiological temperature for all conditions (i.e. not heated or cooled). Power output during the all-out exercise was better maintained when muscles were heated during recovery, whereas cooling had the opposite effect. Mechanisms underlying the temperature-dependent effect on recovery were tested in mouse intact single muscle fibres, which were exposed to ∼12 min of glycogen-depleting fatiguing stimulation (350 ms tetani given at 10 s interval until force decreased to 30% of the starting force). Fibres were subsequently exposed to the same fatiguing stimulation protocol after 1-2 h of recovery at 16-36°C. Recovery of submaximal force (30 Hz), the tetanic myoplasmic free [Ca 2+ ] (measured with the fluorescent indicator indo-1), and fatigue resistance were all impaired by cooling (16-26°C) and improved by heating (36°C). In addition, glycogen resynthesis was faster at 36°C than 26°C in whole flexor digitorum brevis muscles. We conclude that recovery from exhaustive endurance exercise is accelerated by raising and slowed by lowering muscle temperature. © 2017 The Authors. The Journal of Physiology © 2017 The Physiological Society.
An instrumented object for hand exercise and assessment using a pneumatic pressure sensor
NASA Astrophysics Data System (ADS)
Mohan, A.; Tharion, G.; Kumar, R. K.; Devasahayam, S. R.
2018-05-01
Measurement of grip force is important for both exercise training and assessment of the hand during physical rehabilitation. The standard method uses a grip dynamometer which measures the force between the fingers and opposing thumb. The primary limitation of the grip dynamometer is the restriction of measurement to cylindrical grasps. Any deformation of the hand due to muscular or skeletal disease makes the grip dynamometer difficult or impossible to use. An alternative to the grip dynamometer is a sealed pneumatic object that can be gripped by the hand. Measurement of the internal pressure in the object can be related to the grip force. In this paper, we analyze such a pneumatic pressure sensing object for hand grip assessment and also describe an easy fabrication of the grip sensor. The instrumented object presented in this paper is designed to assess both the maximal voluntary grip forces and continuous grip force to monitor control of hand function during exercise under instruction from a therapist. Potential uses of such a pneumatic pressure sensing object for hand grip are in physical rehabilitation of patients following paralysing illnesses like stroke and spinal cord injury.
48 CFR 50.102-3 - Limitations on exercise of authority.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 48 Federal Acquisition Regulations System 1 2010-10-01 2010-10-01 false Limitations on exercise of... 50.102-3 Limitations on exercise of authority. (a) Pub. L. 85-804 is not authority for— (1) Using a... made, it was impracticable to use normal contracting procedures. (e) The exercise of authority by...
ERIC Educational Resources Information Center
Rivizzigno, Victoria L.
This exercise teaches undergraduate geography students to use the Lorenz Curve and the Index of Dissimilarity to assess the spatial distributions of the White, Black, and American Indian populations of the United States in 1980. Specific procedures for implementing the exercise are provided; solutions to the exercise are also included. Students…
Behavioral Control of Exercise in Sedentary Adults: Studies 1 Through 6.
ERIC Educational Resources Information Center
Martin, John E.
1984-01-01
Attempted to identify in a series of six studies, behavioral and cognitive procedures that would enhance adherence to a three-day-per-week exercise program in apparently healthy sedentary adults (N=143). Results suggested the importance of social support, feedback, and praise during exercise; flexibility in exercise goal setting; and…
Protocol and the post-human performativity of security techniques
O’Grady, Nathaniel
2015-01-01
This article explores the deployment of exercises by the United Kingdom Fire and Rescue Service. Exercises stage, simulate and act out potential future emergencies and in so doing help the Fire and Rescue Service prepare for future emergencies. Specifically, exercises operate to assess and develop protocol; sets of guidelines which plan out the actions undertaken by the Fire and Rescue Service in responding to a fire. In the article I outline and assess the forms of knowledge and technologies, what I call the ‘aesthetic forces’, by which the exercise makes present and imagines future emergencies. By critically engaging with Karen Barad’s notion of post-human performativity, I argue that exercises provide a site where such forces can entangle with one another; creating a bricolage through which future emergencies are evoked sensually and representatively, ultimately making it possible to experience emergencies in the present. This understanding of exercises allows also for critical appraisal of protocol both as phenomena that are produced through the enmeshing of different aesthetic forces and as devices which premise the operation of the security apparatus on contingency. PMID:29708110
ERIC Educational Resources Information Center
Noe, Alfred; And Others
1989-01-01
Four French language classroom activities are suggested, including an exercise sensitizing students to the structure of poetry, a group of games centering on the Eiffel Tower, a series of activities exploring attitudes toward the Eiffel Tower, and a vocabulary and cultural awareness development exercise using the terminology of painting. (MSE)
1984-09-01
everything from strategic force allocations to leadership role-playing; but there are only a few exercises in existence for management gaming. In the... reported that Shade and Paine (1975) found declines in political cynicism were produced more effectively through simulation than through conventional...effectiveness of business games through external validation was unsuccessful. In their study, career success was used as the dependent variable and was
Air Force Fitness Program. Case Studies on the Impact on Aircraft Maintenance
2009-04-01
reduced or avoided pain after childbirth if one is muscularly fit. Also, in menopausal women, exercise reduces the effects of osteoporosis. Post ...workforce, show that exercise and increased productivity are directly linked. The first case, covered in the New Zealand Dominion Post , directly...menopausal depression has shown to greatly reduce with participation in a regular exercise program.20 While benefits of regular exercise and healthy
Contextual view including south (rear) of building 925, exercise in ...
Contextual view including south (rear) of building 925, exercise in foreground, and modern buildings in background. Facing northwest. - Travis Air Force Base, Building No. 925, W Street, Fairfield, Solano County, CA
Gravity-independent constant force resistive exercise unit
NASA Technical Reports Server (NTRS)
Colosky, Jr., Paul E. (Inventor); Ruttley, Tara M. (Inventor)
2004-01-01
This invention describes a novel gravity-independent exercise unit designed for use in microgravity, or on the ground, as a means by which to counter muscle atrophy and bone degradation due to disuse or underuse. Modular resistive packs comprising constant torque springs provide constant force opposing the withdrawal of an exercise cable from the device. In addition to uses within the space program, the compact resistive packs of the CFREU allow the unit to be small enough for easy use as a home gym for personal use, or as a supplement for rehabilitation programs. Resistive packs may be changed conveniently out of the CFREU according to the desired exercise regimen. Thus, the resistive packs replace the need for expensive, heavy, and bulky traditional weight plates. The CFREU may be employed by hospitals, rehabilitation and physical therapy clinics, and other related professional businesses.
Broxterman, Ryan M; Layec, Gwenael; Hureau, Thomas J; Amann, Markus; Richardson, Russell S
2017-05-01
Although all-out exercise protocols are commonly used, the physiological mechanisms underlying all-out exercise performance are still unclear, and an in-depth assessment of skeletal muscle bioenergetics is lacking. Therefore, phosphorus magnetic resonance spectroscopy ( 31 P-MRS) was utilized to assess skeletal muscle bioenergetics during a 5-min all-out intermittent isometric knee-extensor protocol in eight healthy men. Metabolic perturbation, adenosine triphosphate (ATP) synthesis rates, ATP cost of contraction, and mitochondrial capacity were determined from intramuscular concentrations of phosphocreatine (PCr), inorganic phosphate (P i ), diprotonated phosphate ([Formula: see text]), and pH. Peripheral fatigue was determined by exercise-induced alterations in potentiated quadriceps twitch force (Q tw ) evoked by supramaximal electrical femoral nerve stimulation. The oxidative ATP synthesis rate (ATP OX ) attained and then maintained peak values throughout the protocol, despite an ~63% decrease in quadriceps maximal force production. ThusATP OX normalized to force production (ATP OX gain) significantly increased throughout the exercise (1st min: 0.02 ± 0.01, 5th min: 0.04 ± 0.01 mM·min -1 ·N -1 ), as did the ATP cost of contraction (1st min: 0.048 ± 0.019, 5th min: 0.052 ± 0.015 mM·min -1 ·N -1 ). Additionally, the pre- to postexercise change in Q tw (-52 ± 26%) was significantly correlated with the exercise-induced change in intramuscular pH ( r = 0.75) and [Formula: see text] concentration ( r = 0.77). In conclusion, the all-out exercise protocol utilized in the present study elicited a "slow component-like" increase in intramuscular ATP OX gain as well as a progressive increase in the phosphate cost of contraction. Furthermore, the development of peripheral fatigue was closely related to the perturbation of specific fatigue-inducing intramuscular factors (i.e., pH and [Formula: see text] concentration). NEW & NOTEWORTHY The physiological mechanisms and skeletal muscle bioenergetics underlying all-out exercise performance are unclear. This study revealed an increase in oxidative ATP synthesis rate gain and the ATP cost of contraction during all-out exercise. Furthermore, peripheral fatigue was related to the perturbation in pH and deprotonated phosphate ion. These findings support the concept that the oxygen uptake slow component arises from within active skeletal muscle and that skeletal muscle force generating capacity is linked to the intramuscular metabolic milieu.
Schellenberg, Florian; Taylor, William R; Lorenzetti, Silvio
2017-01-01
To ensure an efficient and targeted adaptation with low injury risk during strength exercises, knowledge of the participant specific internal loading conditions is essential. The goal of this study was to calculate the lower limb muscles forces during the strength exercises deadlifts, goodmornings and splits squats by means of musculoskeletal simulation. 11 participants were assessed performing 10 different variations of split squats by varying the step length as well as the maximal frontal tibia angle, and 13 participants were measured performing deadlift and goodmorning exercises. Using individualised musculoskeletal models, forces of the Quadriceps ( four parts), Hamstrings (four parts) and m. gluteus maximus (three parts) were computed. Deadlifts resulted highest loading for the Quadriceps, especially for the vasti (18-34 N/kg), but not for the rectus femoris (8-10 N/kg), which exhibited its greatest loading during split squats (13-27 N/kg) in the rear limb. Hamstrings were loaded isometrically during goodmornings but dynamically during deadlifts. For the m. gluteus maximus , the highest loading was observed during split squats in the front limb (up to 25 N/kg), while deadlifts produced increasingly, large loading over large ranges of motion in hip and knee. Acting muscle forces vary between exercises, execution form and joint angle. For all examined muscles, deadlifts produced considerable loading over large ranges of motion, while split squats seem to be highly dependent upon exercise variation. This study provides key information to design strength-training programs with respect to loading conditions and ranges of motion of lower extremity muscles.
Squat exercise biomechanics during short-radius centrifugation.
Duda, Kevin R; Jarchow, Thomas; Young, Laurence R
2012-02-01
Centrifuge-induced artificial gravity (AG) with exercise is a promising comprehensive countermeasure against the physiological de-conditioning that results from exposure to weightlessness. However, body movements onboard a rotating centrifuge are affected by both the gravity gradient and Coriolis accelerations. The effect of centrifugation on squat exercise biomechanics was investigated, and differences between AG and upright squat biomechanics were quantified. There were 28 subjects (16 male) who participated in two separate experiments. Knee position, foot reaction forces, and motion sickness were recorded during the squats in a 1-G field while standing upright and while supine on a horizontally rotating 2 m radius centrifuge at 0, 23, or 30 rpm. No participants terminated the experiment due to motion sickness symptoms. Total mediolateral knee deflection increased by 1.0 to 2.0 cm during centrifugation, and did not result in any injuries. There was no evidence of an increased mediolateral knee travel "after-effect" during postrotation supine squats. Peak foot reaction forces increased with rotation rate up to approximately 200% bodyweight (iRED on ISS provides approximately 210% bodyweight resistance). The ratio of left-to-right foot force throughout the squat cycle on the centrifuge was nonconstant and approximately sinusoidal. Total foot reaction force versus knee flexion-extension angles differed between upright and AG squats due to centripetal acceleration on the centrifuge. A brief exercise protocol during centrifugation can be safely completed without significant after-effects in mediolateral knee position or motion sickness. Several recommendations are made for the design of future centrifuge-based exercise protocols for in-space applications.
Core stability training: applications to sports conditioning programs.
Willardson, Jeffrey M
2007-08-01
In recent years, fitness practitioners have increasingly recommended core stability exercises in sports conditioning programs. Greater core stability may benefit sports performance by providing a foundation for greater force production in the upper and lower extremities. Traditional resistance exercises have been modified to emphasize core stability. Such modifications have included performing exercises on unstable rather than stable surfaces, performing exercises while standing rather than seated, performing exercises with free weights rather than machines, and performing exercises unilaterally rather than bilaterally. Despite the popularity of core stability training, relatively little scientific research has been conducted to demonstrate the benefits for healthy athletes. Therefore, the purpose of this review was to critically examine core stability training and other issues related to this topic to determine useful applications for sports conditioning programs. Based on the current literature, prescription of core stability exercises should vary based on the phase of training and the health status of the athlete. During preseason and in-season mesocycles, free weight exercises performed while standing on a stable surface are recommended for increases in core strength and power. Free weight exercises performed in this manner are specific to the core stability requirements of sports-related skills due to moderate levels of instability and high levels of force production. Conversely, during postseason and off-season mesocycles, Swiss ball exercises involving isometric muscle actions, small loads, and long tension times are recommended for increases in core endurance. Furthermore, balance board and stability disc exercises, performed in conjunction with plyometric exercises, are recommended to improve proprioceptive and reactive capabilities, which may reduce the likelihood of lower extremity injuries.
Squat Biomechanical Modeling Results from Exercising on the Hybrid Ultimate Lifting Kit
NASA Technical Reports Server (NTRS)
Gallo, Christopher A.; Thompson, William K.; Lewandowski, Beth E.; Jagodnik, Kathleen M.
2016-01-01
Long duration space travel will expose astronauts to extended periods of reduced gravity. Since gravity is not present to aid loading, astronauts will use resistive and aerobic exercise regimes for the duration of the space flight to minimize loss of bone density, muscle mass and aerobic capacity that occurs during exposure to a reduced gravity environment. Unlike the International Space Station (ISS), the area available for an exercise device in the next generation of spacecraft is limited and therefore compact resistance exercise device prototypes are being developed. The Advanced Resistive Exercise Device (ARED) currently on the ISS is being used as a benchmark for the functional performance of these new devices. Biomechanical data collection and computational modeling aid the device design process by quantifying the joint torques and the musculoskeletal forces that occur during exercises performed on the prototype devices. The computational models currently under development utilize the OpenSim software, an open source code for musculoskeletal modeling, with biomechanical input data from test subjects for estimation of muscle and joint loads. The subjects are instrumented with reflective markers for motion capture data collection while exercising on the Hybrid Ultimate Lifting Kit (HULK) prototype device. Ground reaction force data is collected with force plates under the feet and device loading is recorded through load cells internal to the HULK. Test variables include applied device load, narrow or wide foot stance, slow or fast cadence and the harness or long bar interface between the test subject and the device. Data is also obtained using free weights for a comparison to the resistively loaded exercise device. This data is input into the OpenSim biomechanical model, which has been scaled to match the anthropometrics of the test subject, to calculate the body loads. The focus of this presentation is to summarize the results from the full squat exercises across the different test variables.
Dartnall, Tamara J; Rogasch, Nigel C; Nordstrom, Michael A; Semmler, John G
2009-07-01
The purpose of this study was to determine the effect of eccentric muscle damage on recruitment threshold force and repetitive discharge properties of low-threshold motor units. Ten subjects performed four tasks involving isometric contraction of elbow flexors while electromyographic (EMG) data were recorded from human biceps brachii and brachialis muscles. Tasks were 1) maximum voluntary contraction (MVC); 2) constant-force contraction at various submaximal targets; 3) motor unit recruitment threshold task; and 4) minimum motor unit discharge rate task. These tasks were performed on three separate days before, immediately after, and 24 h after eccentric exercise of elbow flexor muscles. MVC force declined (42%) immediately after exercise and remained depressed (29%) 24 h later, indicative of muscle damage. Mean motor unit recruitment threshold for biceps brachii was 8.4+/-4.2% MVC, (n=34) before eccentric exercise, and was reduced by 41% (5.0+/-3.0% MVC, n=34) immediately after and by 39% (5.2+/-2.5% MVC, n=34) 24 h after exercise. No significant changes in motor unit recruitment threshold were observed in the brachialis muscle. However, for the minimum tonic discharge rate task, motor units in both muscles discharged 11% faster (10.8+/-2.0 vs. 9.7+/-1.7 Hz) immediately after (n=29) exercise compared with that before (n=32). The minimum discharge rate variability was greater in brachialis muscle immediately after exercise (13.8+/-3.1%) compared with that before (11.9+/-3.1%) and 24 h after exercise (11.7+/-2.4%). No significant changes in minimum discharge rate variability were observed in the biceps brachii motor units after exercise. These results indicate that muscle damage from eccentric exercise alters motor unit recruitment thresholds for >or=24 h, but the effect is not the same in the different elbow flexor muscles.
Parallel Robot for Lower Limb Rehabilitation Exercises.
Rastegarpanah, Alireza; Saadat, Mozafar; Borboni, Alberto
2016-01-01
The aim of this study is to investigate the capability of a 6-DoF parallel robot to perform various rehabilitation exercises. The foot trajectories of twenty healthy participants have been measured by a Vicon system during the performing of four different exercises. Based on the kinematics and dynamics of a parallel robot, a MATLAB program was developed in order to calculate the length of the actuators, the actuators' forces, workspace, and singularity locus of the robot during the performing of the exercises. The calculated length of the actuators and the actuators' forces were used by motion analysis in SolidWorks in order to simulate different foot trajectories by the CAD model of the robot. A physical parallel robot prototype was built in order to simulate and execute the foot trajectories of the participants. Kinect camera was used to track the motion of the leg's model placed on the robot. The results demonstrate the robot's capability to perform a full range of various rehabilitation exercises.
Parallel Robot for Lower Limb Rehabilitation Exercises
Saadat, Mozafar; Borboni, Alberto
2016-01-01
The aim of this study is to investigate the capability of a 6-DoF parallel robot to perform various rehabilitation exercises. The foot trajectories of twenty healthy participants have been measured by a Vicon system during the performing of four different exercises. Based on the kinematics and dynamics of a parallel robot, a MATLAB program was developed in order to calculate the length of the actuators, the actuators' forces, workspace, and singularity locus of the robot during the performing of the exercises. The calculated length of the actuators and the actuators' forces were used by motion analysis in SolidWorks in order to simulate different foot trajectories by the CAD model of the robot. A physical parallel robot prototype was built in order to simulate and execute the foot trajectories of the participants. Kinect camera was used to track the motion of the leg's model placed on the robot. The results demonstrate the robot's capability to perform a full range of various rehabilitation exercises. PMID:27799727
Water-based exercise training for chronic obstructive pulmonary disease.
McNamara, Renae J; McKeough, Zoe J; McKenzie, David K; Alison, Jennifer A
2013-12-18
Land-based exercise training improves exercise capacity and quality of life in people with chronic obstructive pulmonary disease (COPD). Water-based exercise training is an alternative mode of physical exercise training that may appeal to the older population attending pulmonary rehabilitation programmes, those who are unable to complete land-based exercise programmes and people with COPD with comorbid physical and medical conditions. To assess the effects of water-based exercise training in people with COPD. A search of the Cochrane Airways Group Specialised Register of trials, which is derived from systematic searches of bibliographic databases, including the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, EMBASE, CINAHL, AMED and PsycINFO, was conducted (from inception to August 2013). Handsearching was done to identify further qualifying studies from reference lists of relevant studies. Review authors included randomised or quasi-randomised controlled trials in which water-based exercise training of at least four weeks' duration was compared with no exercise training or any other form of exercise training in people with COPD. Swimming was excluded. We used standard methodological procedures expected by The Cochrane Collaboration. Five studies were included with a total of 176 participants (71 people participated in water-based exercise training and 54 in land-based exercise training; 51 completed no exercise training). All studies compared supervised water-based exercise training versus land-based exercise training and/or no exercise training in people with COPD (with average forced expiratory volume in one second (FEV1) %predicted ranging from 39% to 62%). Sample sizes ranged from 11 to 53 participants. The exercise training programmes lasted from four to 12 weeks, and the mean age of participants ranged from 57 to 73 years. A moderate risk of bias was due to lack of reporting of randomisation, allocation and blinding procedures in some studies, as well as small sample sizes.Compared with no exercise, water-based exercise training improved the six-minute walk distance (mean difference (MD) 62 metres; 95% confidence interval (CI) 44 to 80 metres; three studies; 99 participants; moderate quality evidence), the incremental shuttle walk distance (MD 50 metres; 95% CI 20 to 80 metres; one study; 30 participants; high quality evidence) and the endurance shuttle walk distance (MD 371 metres; 95% CI 121 to 621 metres; one study; 30 participants; high quality evidence). Quality of life was also improved after water-based exercise training compared with no exercise (standardised mean difference (SMD) -0.97, 95% CI -0.37 to -1.57; two studies; 49 participants; low quality evidence). Compared with land-based exercise training, water-based exercise training did not significantly change the six-minute walk distance (MD 11 metres; 95% CI -11 to 33 metres; three studies; 62 participants; moderate quality evidence) or the incremental shuttle walk distance (MD 9 metres; 95% CI -15 to 34 metres; two studies; 59 participants; low quality evidence). However, the endurance shuttle walk distance improved following water-based exercise training compared with land-based exercise training (MD 313 metres; 95% CI 232 to 394 metres; two studies; 59 participants; moderate quality evidence). No significant differences were found between water-based exercise training and land-based exercise training for quality of life, as measured by the St George's Respiratory Questionnaire or by three of four domains of the Chronic Respiratory Disease Questionnaire (CRDQ); however, the fatigue domain of the CRDQ showed a statistically significant difference in favour of water-based exercise (MD -3.00; 95% CI -5.26 to -0.74; one study; 30 participants). Only one study reported long-term outcomes after water-based exercise training for quality of life and body composition, and no significant change was observed between baseline results and six-month follow-up results. One minor adverse event was reported for water-based exercise training (based on reporting from two studies; 20 participants). Impact of disease severity could not be examined because data were insufficient. There is limited quality evidence that water-based exercise training is safe and improves exercise capacity and quality of life in people with COPD immediately after training. There is limited quality evidence that water-based exercise training offers advantages over land-based exercise training in improving endurance exercise capacity, but we remain uncertain as to whether it leads to better quality of life. Little evidence exists examining the long-term effect of water-based exercise training.
7 CFR 1900.6 - Chair, Loan Resolution Task Force.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 12 2010-01-01 2010-01-01 false Chair, Loan Resolution Task Force. 1900.6 Section... AGRICULTURE PROGRAM REGULATIONS GENERAL Delegations of Authority § 1900.6 Chair, Loan Resolution Task Force. The Chair, Loan Resolution Task Force is delegated the following authorities, to be exercised until...
37 CFR 401.6 - Exercise of march-in rights.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 37 Patents, Trademarks, and Copyrights 1 2013-07-01 2013-07-01 false Exercise of march-in rights... GOVERNMENT GRANTS, CONTRACTS, AND COOPERATIVE AGREEMENTS § 401.6 Exercise of march-in rights. (a) The following procedures shall govern the exercise of the march-in rights of the agencies set forth in 35 U.S.C...
37 CFR 401.6 - Exercise of march-in rights.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 37 Patents, Trademarks, and Copyrights 1 2012-07-01 2012-07-01 false Exercise of march-in rights... GOVERNMENT GRANTS, CONTRACTS, AND COOPERATIVE AGREEMENTS § 401.6 Exercise of march-in rights. (a) The following procedures shall govern the exercise of the march-in rights of the agencies set forth in 35 U.S.C...
37 CFR 401.6 - Exercise of march-in rights.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 37 Patents, Trademarks, and Copyrights 1 2014-07-01 2014-07-01 false Exercise of march-in rights... GOVERNMENT GRANTS, CONTRACTS, AND COOPERATIVE AGREEMENTS § 401.6 Exercise of march-in rights. (a) The following procedures shall govern the exercise of the march-in rights of the agencies set forth in 35 U.S.C...
37 CFR 401.6 - Exercise of march-in rights.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 37 Patents, Trademarks, and Copyrights 1 2011-07-01 2011-07-01 false Exercise of march-in rights... GOVERNMENT GRANTS, CONTRACTS, AND COOPERATIVE AGREEMENTS § 401.6 Exercise of march-in rights. (a) The following procedures shall govern the exercise of the march-in rights of the agencies set forth in 35 U.S.C...
Friedman, Michael A.; Bailey, Alyssa M.; Rondon, Matthew J.; McNerny, Erin M.; Sahar, Nadder D.; Kohn, David H.
2016-01-01
Exercise has long-lasting benefits to bone health that may help prevent fractures by increasing bone mass, bone strength, and tissue quality. Long-term exercise of 6–12 weeks in rodents increases bone mass and bone strength. However, in growing mice, a short-term exercise program of 3 weeks can limit increases in bone mass and structural strength, compared to non-exercised controls. Short-term exercise can, however, increase tissue strength, suggesting that exercise may create competition for minerals that favors initially improving tissue-level properties over structural-level properties. It was therefore hypothesized that adding calcium and phosphorus supplements to the diet may prevent decreases in bone mass and structural strength during a short-term exercise program, while leading to greater bone mass and structural strength than exercise alone after a long-term exercise program. A short-term exercise experiment was done for 3 weeks, and a long-term exercise experiment was done for 8 weeks. For each experiment, male 16-week old C57BL/6 mice were assigned to 4 weight-matched groups–exercise and non-exercise groups fed a control or mineral-supplemented diet. Exercise consisted of treadmill running at 12 m/min, 30 min/day for 7 days/week. After 3 weeks, exercised mice fed the supplemented diet had significantly increased tibial tissue mineral content (TMC) and cross-sectional area over exercised mice fed the control diet. After 8 weeks, tibial TMC, cross-sectional area, yield force, and ultimate force were greater from the combined treatments than from either exercise or supplemented diet alone. Serum markers of bone formation (PINP) and resorption (CTX) were both decreased by exercise on day 2. In exercised mice, day 2 PINP was significantly positively correlated with day 2 serum Ca, a correlation that was weaker and negative in non-exercised mice. Increasing dietary mineral consumption during an exercise program increases bone mass after 3 weeks and increases structural strength after 8 weeks, making bones best able to resist fracture. PMID:27008546
Ma, Delin; Shuler, Jeffrey M.; Kumar, Aishwarya; Stanford, Quincy R.; Tungtur, Sudheer; Nishimune, Hiroshi; Stanford, John A.
2016-01-01
Background The use of exercise in Amyotrophic Lateral Sclerosis (ALS) is controversial. Although moderate exercise appears to be beneficial for limb muscles in ALS, the effects of exercise on bulbar muscles such as the tongue have not been studied. Objective The aim of this study was to determine the effects of tongue force training on bulbar motor function in the SOD1-G93A rat model of ALS. Methods We compared the effects of tongue force training on bulbar motor function and neuromuscular junction (NMJ) innervation in female SOD1-G93A rats and age-matched female wild-type controls. Half of each group underwent afternoon tongue force training sessions, while all rats were tested under minimal force conditions in the mornings. Results Tongue force did not differ between the SOD1-G93A rats and healthy controls during the morning testing sessions, nor was it affected by training. Surprisingly, decreases in tongue motility, the number of licks per session, and body weight were greater in the tongue force-trained SOD1-G93A rats. Forelimb grip force, survival, and denervation of the genioglossus muscle did not differ between the trained and untrained SOD1-G93A rats. Genioglossus innervation was correlated with changes in tongue force but not tongue motility in SOD1-G93A rats at end stage. Conclusions The results indicate a potential deleterious effect of tongue force training on tongue motility in female SOD1-G93A rats. The lack of relationship between genioglossus innervation and tongue motility suggest that factors other than lower motor neuron integrity likely accounted for this effect. PMID:27573800
Smart Rehabilitation Devices: Part I – Force Tracking Control
Dong, Shufang; Lu, Ke-Qian; Sun, J. Q.; Rudolph, Katherine
2008-01-01
Resistance exercise has been widely reported to have positive rehabilitation effects for patients with neuromuscular and orthopaedic conditions. This article presents prototypes of smart variable resistance exercise devices using magneto-rheological fluid dampers. An intelligent supervisory control for regulating the resistive force or torque of the device is developed, and is validated both numerically and experimentally. The device provides both isometric and isokinetic strength training for the human joints including knee, elbow, hip, and ankle. PMID:18504509
ERIC Educational Resources Information Center
Can, Ibrahim
2017-01-01
The purpose of this study was to compare power, velocity and force parameters during loaded squat jump (SJ) exercise in the handball and arm wrestling players. In accordance with this purpose, ten arm wrestling athletes from the Turkish National Team (age: 20,7 ± 3,05 years; height: 175,2 ± 5,55 cm; weight: 71,7 ± 8,17 kg) who had ranks in…
Optimizing Muscle Parameters in Musculoskeletal Modeling Using Monte Carlo Simulations
NASA Technical Reports Server (NTRS)
Hanson, Andrea; Reed, Erik; Cavanagh, Peter
2011-01-01
Astronauts assigned to long-duration missions experience bone and muscle atrophy in the lower limbs. The use of musculoskeletal simulation software has become a useful tool for modeling joint and muscle forces during human activity in reduced gravity as access to direct experimentation is limited. Knowledge of muscle and joint loads can better inform the design of exercise protocols and exercise countermeasure equipment. In this study, the LifeModeler(TM) (San Clemente, CA) biomechanics simulation software was used to model a squat exercise. The initial model using default parameters yielded physiologically reasonable hip-joint forces. However, no activation was predicted in some large muscles such as rectus femoris, which have been shown to be active in 1-g performance of the activity. Parametric testing was conducted using Monte Carlo methods and combinatorial reduction to find a muscle parameter set that more closely matched physiologically observed activation patterns during the squat exercise. Peak hip joint force using the default parameters was 2.96 times body weight (BW) and increased to 3.21 BW in an optimized, feature-selected test case. The rectus femoris was predicted to peak at 60.1% activation following muscle recruitment optimization, compared to 19.2% activation with default parameters. These results indicate the critical role that muscle parameters play in joint force estimation and the need for exploration of the solution space to achieve physiologically realistic muscle activation.
Effects of a Short Physical Exercise Intervention on Patients with Multiple Sclerosis (MS).
Kerling, Arno; Keweloh, Karin; Tegtbur, Uwe; Kück, Momme; Grams, Lena; Horstmann, Hauke; Windhagen, Anja
2015-07-10
The aim of this prospective randomized controlled trial was to investigate if a short-term endurance or combined endurance/resistance exercise program was sufficient to improve aerobic capacity and maximum force in adult patients (18-65 years) with multiple sclerosis (MS). All patients performed a three-month exercise program consisting of two training sessions per week, lasting 40 min each, with moderate intensity. All patients had a maximum value of 6 (low to moderate disability) on the Expanded Disability Status Scale (EDSS). One group (combined workout group (CWG); 15 females, 4 males) completed a combined endurance/resistance workout (20 min on a bicycle ergometer, followed by 20 min of resistance training), while the other group (endurance workout group (EWG); 13 females, 5 males) completed a 40 min endurance training program. Aerobic capacity was assessed as peak oxygen uptake, ventilatory anaerobic threshold, and workload expressed as Watts. Maximum force of knee and shoulder extensors and flexors was measured using isokinetic testing. Quality of life was assessed with the SF-36 questionnaire, and fatigue was measured using the Modified Fatigue Impact Scale. Both training groups increased in aerobic capacity and maximum force. EWG, as well as CWG, showed improvement in several subscales of the SF-36 questionnaire and decrease of their fatigue. A short exercise intervention increased both aerobic capacity and maximum force independent of whether endurance or combined endurance/resistance workouts were performed.
Multiaxis, Lightweight, Computer-Controlled Exercise System
NASA Technical Reports Server (NTRS)
Haynes, Leonard; Bachrach, Benjamin; Harvey, William
2006-01-01
The multipurpose, multiaxial, isokinetic dynamometer (MMID) is a computer-controlled system of exercise machinery that can serve as a means for quantitatively assessing a subject s muscle coordination, range of motion, strength, and overall physical condition with respect to a wide variety of forces, motions, and exercise regimens. The MMID is easily reconfigurable and compactly stowable and, in comparison with prior computer-controlled exercise systems, it weighs less, costs less, and offers more capabilities. Whereas a typical prior isokinetic exercise machine is limited to operation in only one plane, the MMID can operate along any path. In addition, the MMID is not limited to the isokinetic (constant-speed) mode of operation. The MMID provides for control and/or measurement of position, force, and/or speed of exertion in as many as six degrees of freedom simultaneously; hence, it can accommodate more complex, more nearly natural combinations of motions and, in so doing, offers greater capabilities for physical conditioning and evaluation. The MMID (see figure) includes as many as eight active modules, each of which can be anchored to a floor, wall, ceiling, or other fixed object. A cable is payed out from a reel in each module to a bar or other suitable object that is gripped and manipulated by the subject. The reel is driven by a DC brushless motor or other suitable electric motor via a gear reduction unit. The motor can be made to function as either a driver or an electromagnetic brake, depending on the required nature of the interaction with the subject. The module includes a force and a displacement sensor for real-time monitoring of the tension in and displacement of the cable, respectively. In response to commands from a control computer, the motor can be operated to generate a required tension in the cable, to displace the cable a required distance, or to reel the cable in or out at a required speed. The computer can be programmed, either locally or via a remote terminal, to support exercises in one or more of the usual exercise modes (isometric, isokinetic, or isotonic) along complex, multiaxis trajectories. The motions of, and forces applied by, the subject can be monitored in real time and recorded for subsequent evaluation. Through suitable programming, the exercise can be adjusted in real time according to the physical condition of the subject. The remote- programming capability makes it possible to connect multiple exercise machines into a network for supervised exercise by multiple subjects or even for competition by geographically dispersed subjects.
Influence of menstrual cycle phase on pulmonary function in asthmatic athletes.
Stanford, Kristin I; Mickleborough, Timothy D; Ray, Shahla; Lindley, Martin R; Koceja, David M; Stager, Joel M
2006-04-01
The main aim of this study was to investigate whether there is a relationship between menstrual cycle phase and exercise-induced bronchoconstriction (EIB) in female athletes with mild atopic asthma. Seven eumenorrheic subjects with regular 28-day menstrual cycles were exercised to volitional exhaustion on day 5 [mid-follicular (FOL)] and day 21 [mid-luteal (LUT)] of their menstrual cycle. Pulmonary function tests were conducted pre- and post-exercise. The maximal percentage decline in post-exercise forced expiratory volume in 1 s (FEV(1)) and forced expiratory flow from 25 to 75% of forced vital capacity (FEF(25-75%)) was significantly greater (P<0.05) on day 21 (mid-LUT phase) (-17.35+/-2.32 and -26.28+/-6.04%, respectively), when salivary progesterone concentration was highest, compared to day 5 (mid-FOL phase) (-12.81+/-3.35 and -17.23+/-8.20%, respectively), when salivary progesterone concentration was lowest. The deterioration in the severity of EIB during the mid-LUT phase was accompanied by worsening asthma symptoms and increased bronchodilator use. There was a negative correlation between the percent change in pre- to post-exercise FEV(1) and salivary progesterone concentration. However, no such correlation was found between salivary estradiol and the percentage change in pre- to post-exercise FEV(1). This study has shown for the first time that menstrual cycle phase is an important determinant of the severity of EIB in female athletes with mild atopic asthma. Female asthmatic athletes may need to adjust their training and competition schedules to their menstrual cycle and to consider the potential negative effects of the LUT phase of the menstrual cycle on exercise performance.
Metabolic Rate and Ground Reaction Force During Motorized and Non-Motorized Treadmill Exercise
NASA Technical Reports Server (NTRS)
Everett, Meghan E.; Loehr, James A.; DeWitt, John K.; Laughlin, Mitzi; Lee, Stuart M. C.
2010-01-01
PURPOSE: To measure vertical ground reaction force (vGRF) and oxygen consumption (VO2) at several velocities during exercise using a ground-based version of the ISS treadmill in the M and NM modes. METHODS: Subjects (n = 20) walked or ran at 0.89, 1.34, 1.79, 2.24, 2.68, and 3.12 m/s while VO2 and vGRF data were collected. VO2 was measured using open-circuit spirometry (TrueOne 2400, Parvo-Medics). Data were averaged over the last 2 min of each 5-min stage. vGRF was measured in separate 15-s bouts at 125 Hz using custom-fitted pressure-sensing insoles (F-Scan Sport Sensors, Tekscan, Inc). A repeated-measures ANOVA was used to test for differences in VO2 and vGRF between M and NM and across speeds. Significance was set at P < 0.05. RESULTS: Most subjects were unable to exercise for 5 min at treadmill speeds above 1.79 m/s in the NM mode; however, vGRF data were obtained for all subjects at each speed in both modes. VO2 was approx.40% higher during NM than M exercise across treadmill speeds. vGRF increased with treadmill speed but was not different between modes. CONCLUSION: Higher VO2 with no change in vGRF suggests that the additional metabolic cost associated with NM treadmill exercise is accounted for in the horizontal forces required to move the treadmill belt. Although this may limit the exercise duration at faster speeds, high-intensity NM exercise activates the hamstrings and plantarflexors, which are not specifically targeted or well protected by other in-flight countermeasures.
A manual therapy and exercise approach to meralgia paresthetica in pregnancy: a case report
Skaggs, Clayton D.; Winchester, Brett A.; Vianin, Michael; Prather, Heidi
2006-01-01
Abstract Objective To present a case of a pregnant patient with meralgia paresthetica who improved using manual therapy and exercise procedures. Clinical Features A 22-year-old patient in the sixteenth week of pregnancy had low back pain, bilateral anterolateral thigh paresthesia and groin pain for a duration of 1 month. She had no motor deficits in either lower extremity and her reflexes were intact. As a standard clinic procedure, a battery of functional tests were performed including: active straight leg raise, long dorsal ligament test, and the pelvic pain provocation procedure. Based on her clinical history and physical responses to the aforementioned functional tests, the diagnosis of meralgia paresthetica was deduced. Intervention and Outcome Treatment was provided at 6 visits over a 6-week period where the patient underwent evaluation, manual intervention, and exercise prescription. Active Release Technique (ART) was performed to the restricted right sacroiliac (SIJ) complex and quadratus lumborum muscles. ART and post-isometric relaxation were applied to the illiopsoas muscles. The home exercise program consisted of pelvic/low back mobility, stabilization and relaxation exercises. After 6 treatments, the patient reported complete resolution of low back pain and left lower extremity symptoms and a 90% improvement in the right thigh symptoms. At her one-year follow-up, the patient reported no further complications and the absence of pain. Conclusions Manual therapy and exercises may serve as an effective treatment protocol for pregnant patients experiencing low back pain complicated by paresthesia. Because these conservative procedures offer a low-risk intervention, additional clinical studies are warranted to further study this treatment. PMID:19674679
Evaluation of the XSENS Force Shoe on ISS
NASA Technical Reports Server (NTRS)
Hanson, A. M.; Peters, B. T.; Newby, N.; Ploutz-Snyder, L
2014-01-01
The Advanced Resistive Exercise Device (ARED) offers crewmembers a wide range of resistance exercises but does not provide any type of load monitoring; any load data received are based on crew self-report of dialed in load. This lack of real-time ARED load monitoring severely limits research analysis. To address this issue, portable load monitoring technologies are being evaluated to act as a surrogate to ARED's failed instrumentation. The XSENS ForceShoe"TM" is a commercial portable load monitoring tool, and performed well in ground tests. The ForceShoe "TM" was recently deployed on the International Space Station (ISS), and is being evaluated as a tool to monitor ARED loads.
Shih, Pei-Cheng; Yang, Yea-Ru; Wang, Ray-Yau
2013-01-01
Memory impairment is commonly noted in stroke survivors, and can lead to delay of functional recovery. Exercise has been proved to improve memory in adult healthy subjects. Such beneficial effects are often suggested to relate to hippocampal synaptic plasticity, which is important for memory processing. Previous evidence showed that in normal rats, low intensity exercise can improve synaptic plasticity better than high intensity exercise. However, the effects of exercise intensities on hippocampal synaptic plasticity and spatial memory after brain ischemia remain unclear. In this study, we investigated such effects in brain ischemic rats. The middle cerebral artery occlusion (MCAO) procedure was used to induce brain ischemia. After the MCAO procedure, rats were randomly assigned to sedentary (Sed), low-intensity exercise (Low-Ex), or high-intensity exercise (High-Ex) group. Treadmill training began from the second day post MCAO procedure, 30 min/day for 14 consecutive days for the exercise groups. The Low-Ex group was trained at the speed of 8 m/min, while the High-Ex group at the speed of 20 m/min. The spatial memory, hippocampal brain-derived neurotrophic factor (BDNF), synapsin-I, postsynaptic density protein 95 (PSD-95), and dendritic structures were examined to document the effects. Serum corticosterone level was also quantified as stress marker. Our results showed the Low-Ex group, but not the High-Ex group, demonstrated better spatial memory performance than the Sed group. Dendritic complexity and the levels of BDNF and PSD-95 increased significantly only in the Low-Ex group as compared with the Sed group in bilateral hippocampus. Notably, increased level of corticosterone was found in the High-Ex group, implicating higher stress response. In conclusion, after brain ischemia, low intensity exercise may result in better synaptic plasticity and spatial memory performance than high intensity exercise; therefore, the intensity is suggested to be considered during exercise training.
Rüter, Anders; Vikstrom, Tore
2009-01-01
Good staff procedure skills in a management group during incidents and disasters are believed to be a prerequisite for good management of the situation. However, this has not been demonstrated scientifically. Templates for evaluation results from performance indicators during simulation exercises have previously been tested. The aim of this study was to demonstrate the possibility that these indicators can be used as a tool for studying the relationship between good management skills and good staff procedure skills. Good and structured work (staff procedure skills) in a hospital management group during simulation exercises in disaster medicine is related to good and timely decisions (good management skills). Results from 29 consecutive simulation exercises in which staff procedure skills and management skills were evaluated using quantitative measurements were included. The statistical analysis method used was simple linear regression with staff procedure skills as the response variable and management skills as the predictor variable. An overall significant relationship was identified between staff procedure skills and management skills (p(2)0.05). This study suggests that there is a relationship between staff procedure skills and management skills in the educational setting used. Future studies are needed to demonstrate if this also can be observed during actual incidents.
Importance of upper-limb inertia in calculating concentric bench press force.
Rambaud, Olivier; Rahmani, Abderrahmane; Moyen, Bernard; Bourdin, Muriel
2008-03-01
The purpose of this study was to investigate the influence of upper-limb inertia on the force-velocity relationship and maximal power during concentric bench press exercise. Reference peak force values (Fpeakp) measured with a force plate positioned below the bench were compared to those measured simultaneously with a kinematic device fixed on the barbell by taking (Fpeakt) or not taking (Fpeakb) upper-limb inertia into account. Thirteen men (27.8 +/- 4.1 years, 184.6 +/- 5.5 cm, 99.5 +/- 18.6 kg) performed all-out concentric bench press exercise against 8 loads ranging between 7 and 74 kg. The results showed that for each load, Fpeakb was significantly less than Fpeakp (P < 0.0001), whereas no significant difference was found between Fpeakp and Fpeakt. The values of maximal force (F0), maximal velocity (V0), optimal velocity (Vopt), and maximal power (Pmax), extrapolated from the force- and power-velocity relationships determined with the kinematic device, were significantly underestimated when upper-limb inertia was ignored. The results underline the importance of taking account of the total inertia of the moving system to ensure precise evaluation of upper-limb muscular characteristics in all-out concentric bench press exercise with a kinematic device. A major application of this study would be to develop precise upper-limb muscular characteristic evaluation in laboratory and field conditions by using a simple and cheap kinematic device.
Effect of different warm-up procedures on the performance of resistance training exercises.
Ribeiro, Alex S; Romanzini, Marcelo; Schoenfeld, Brad J; Souza, Mariana F; Avelar, Ademar; Cyrino, Edilson S
2014-08-01
Warm-up has been shown to mediate numerous acute physiological alterations that have been purported to confer beneficial effects on performance. This study investigated the acute effects of different warm-up procedures on resistance training performance. Employing a randomized, counterbalanced crossover design, 15 men performed 3 exercises (4 sets of bench press, squat, and arm curl at 80% of 1RM) to failure in 4 conditions (control, specific, aerobic, and combined). Outcome measures included the sum of repetitions and a fatigue index measuring the decline between sets. There was no significant difference for the sum of repetitions or for fatigue index among conditions for the 3 exercises. Performance in the resistance training exercises was not influenced by warm-up.
Electromyography Biofeedback Exergames to Enhance Grip Strength and Motivation.
Garcia-Hernandez, Nadia; Garza-Martinez, Karen; Parra-Vega, Vicente
2018-02-01
Hand strength weakness affects the performance of most activities of daily living. This study aims to design, develop, and test an electromyography (EMG) biofeedback training system based on serious games to promote motivation and synchronization and proper work intensity in grip exercises for improving hand strength. An EMG surface sensor, soft balls with different stiffness and three exergames, conforms the system to drive videogame clues in response to EMG-inferred grip strength, while overseeing motivation. An experiment was designed to study the effect of performing handgrip (HG) exercises with the proposed system versus traditional exercises. Participants, organized into two groups, followed a training program for each hand. One group followed a HG exergame training (ET) with the dominant hand and traditional HG training with the nondominant hand and inverse sequence by the second group. Initial and final grip forces were measured using a digital dynamometer. Questionnaires evaluated motivation and user experience, and exercise performance was evaluated in terms of work and rest time percentage and maximal voluntary contraction percentage over contraction periods. Data were analyzed for statistically significant differences and increase of means. Participants showed significantly better exercise performance and higher grip forces, with sustained intrinsic motivation and user experience, with the ET. Improvement in force level arises evidently from the synchronized work-rest time pattern and appropriated intensity of the muscle activity. This leads to support that EMG biofeedback exergames improve motor neurons firing and resting.
Ground Reaction Forces During Reduced Gravity Running in Parabolic Flight.
Cavanagh, Peter; Rice, Andrea; Glauberman, Molly; Sudduth, Amanda; Cherones, Arien; Davis, Shane; Lewis, Michael; Hanson, Andrea; Wilt, Grier
2017-08-01
Treadmills have been employed as both a form of exercise and a countermeasure to prevent changes in the musculoskeletal system on almost all NASA missions and many Russian missions since the early Space Shuttle flights. It is possible that treadmills may also be part of exercise programs on future Mars missions and that they may be a component of exercise facilities in lunar or Martian habitats. In order to determine if the ambient gravity on these destinations will provide osteogenic effects while performing exercise on a treadmill, ground reactions forces (GRFs) were measured on eight subjects (six women and two men) running at 6 mph during parabolic flight in Martian and lunar gravity conditions. On average, stride length increased as gravity decreased. The first and second peaks of the GRFs decreased by 0.156 and 0.196 bodyweights, respectively, per 1/10 g change in ambient gravity. Based on comparisons with previously measured GRF during loaded treadmill running on the International Space Station, we conclude that unloaded treadmill running under lunar and Martian conditions during exploration missions is not likely to be an osteo-protective exercise.Cavanagh P, Rice A, Glauberman M, Sudduth A, Cherones A, Davis S, Lewis M, Hanson A, Wilt G. Ground reaction forces during reduced gravity running in parabolic flight. Aerosp Med Hum Perform. 2017; 88(8):730-736.
Biomechanical Analysis of Treadmill Locomotion on the International Space Station
NASA Technical Reports Server (NTRS)
De Witt, J. K.; Fincke, R. S.; Guilliams, M. E.; Ploutz-Snyder, L. L.
2011-01-01
Treadmill locomotion exercise is an important aspect of ISS exercise countermeasures. It is widely believed that an optimized treadmill exercise protocol could offer benefits to cardiovascular and bone health. If training heart rate is high enough, treadmill exercise is expected to lead to improvements in aerobic fitness. If impact or bone loading forces are high enough, treadmill exercise may be expected to contribute to improved bone outcomes. Ground-based research suggests that joint loads increase with increased running speed. However, it is unknown if increases in locomotion speed results in similar increases in joint loads in microgravity. Although data exist regarding the biomechanics of running and walking in microgravity, a majority were collected during parabolic flight or during investigations utilizing a microgravity analog. The Second Generation Treadmill (T2) has been in use on the International Space Station (ISS) and records the ground reaction forces (GRF) produced by crewmembers during exercise. Biomechanical analyses will aid in understanding potential differences in typical gait motion and allow for modeling of the human body to determine joint and muscle forces during exercise. By understanding these mechanisms, more appropriate exercise prescriptions can be developed that address deficiencies. The objective of this evaluation is to collect biomechanical data from crewmembers during treadmill exercise prior to and during flight. The goal is to determine if locomotive biomechanics differ between normal and microgravity environments and to determine how combinations of subject load and speed influence joint loading during in-flight treadmill exercise. Further, the data will be used to characterize any differences in specific bone and muscle loading during locomotion in these two gravitational conditions. This project maps to the HRP Integrated Research Plan risks including Risk of Bone Fracture (Gap B15), Risk of Early Onset Osteoporosis Due to Spaceflight (Gap B15), Risk of Impaired Performance Due to Reduced Muscle Mass, Strength, and Endurance (Gaps M3, M4, M6, Ml, M8, M9) and Risk of reduced Physical Performance Capabilities Due to Reduce Aerobic Capacity (Gaps M7, M8, M9).
Development of Magnetorheological Resistive Exercise Device for Rowing Machine
Žiliukas, Pranas
2016-01-01
Training equipment used by professional sportsmen has a great impact on their sport performance. Most universal exercisers may help only to improve the general physical condition due to the specific kinematics and peculiar resistance generated by their loading units. Training of effective techniques and learning of psychomotor skills are possible only when exercisers conform to the movements and resistance typical for particular sports kinematically and dynamically. Methodology of developing a magnetorheological resistive exercise device for generating the desired law of passive resistance force and its application in a lever-type rowing machine are described in the paper. The structural parameters of a controllable hydraulic cylinder type device were found by means of the computational fluid dynamics simulation performed by ANSYS CFX software. Parameters describing the magnetorheological fluid as non-Newtonian were determined by combining numerical and experimental research of the resistance force generated by the original magnetorheological damper. A structural scheme of the device control system was developed and the variation of the strength of magnetic field that affects the magnetorheological fluid circulating in the device was determined, ensuring a variation of the resistance force on the oar handle adequate for the resistance that occurs during a real boat rowing stroke. PMID:27293479
Development of Magnetorheological Resistive Exercise Device for Rowing Machine.
Grigas, Vytautas; Šulginas, Anatolijus; Žiliukas, Pranas
2015-01-01
Training equipment used by professional sportsmen has a great impact on their sport performance. Most universal exercisers may help only to improve the general physical condition due to the specific kinematics and peculiar resistance generated by their loading units. Training of effective techniques and learning of psychomotor skills are possible only when exercisers conform to the movements and resistance typical for particular sports kinematically and dynamically. Methodology of developing a magnetorheological resistive exercise device for generating the desired law of passive resistance force and its application in a lever-type rowing machine are described in the paper. The structural parameters of a controllable hydraulic cylinder type device were found by means of the computational fluid dynamics simulation performed by ANSYS CFX software. Parameters describing the magnetorheological fluid as non-Newtonian were determined by combining numerical and experimental research of the resistance force generated by the original magnetorheological damper. A structural scheme of the device control system was developed and the variation of the strength of magnetic field that affects the magnetorheological fluid circulating in the device was determined, ensuring a variation of the resistance force on the oar handle adequate for the resistance that occurs during a real boat rowing stroke.
Dysanapsis and the resistive work of breathing during exercise in healthy men and women.
Dominelli, Paolo B; Molgat-Seon, Yannick; Bingham, Derek; Swartz, Philippa M; Road, Jeremy D; Foster, Glen E; Sheel, A William
2015-11-15
We asked if the higher work of breathing (Wb) during exercise in women compared with men is explained by biological sex. We created a statistical model that accounts for both the viscoelastic and the resistive components of the total Wb and independently compares the effects of biological sex. We applied the model to esophageal pressure-derived Wb values obtained during an incremental cycle test to exhaustion. Subjects were healthy men (n = 17) and women (n = 18) with a range of maximal aerobic capacities (V̇o2 max range: men = 40-68 and women = 39-60 ml·kg(-1)·min(-1)). We also calculated the dysanapsis ratio using measures of lung recoil and forced expiratory flow as index of airway caliber. By applying the model we found that the differences in the total Wb during exercise in women are due to a higher resistive Wb rather than viscoelastic Wb. We also found that the higher resistive Wb is independently explained by biological sex. To account for the known effect of lung volumes on the dysanapsis ratio we compared the sexes with an analysis of covariance procedures and found that when vital capacity was accounted for the adjusted mean dysanapsis ratio is statistically lower in women (0.17 vs. 0.25 arbitrary units; P < 0.05). Our collective findings suggest that innate sex-based differences may exist in human airways, which result in significant male-female differences in the Wb during exercise in healthy subjects. Copyright © 2015 the American Physiological Society.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 25 Indians 2 2011-04-01 2011-04-01 false How will the Secretary exercise discretion to acquire and... EDUCATION ASSISTANCE ACT Property Donation Procedures General § 900.86 How will the Secretary exercise... Indian tribe or tribal organization? The Secretary will exercise discretion in a way that gives maximum...
Code of Federal Regulations, 2010 CFR
2010-04-01
... 25 Indians 2 2010-04-01 2010-04-01 false How will the Secretary exercise discretion to acquire and... EDUCATION ASSISTANCE ACT Property Donation Procedures General § 900.86 How will the Secretary exercise... Indian tribe or tribal organization? The Secretary will exercise discretion in a way that gives maximum...
Bronchoscopic Lung Volume Reduction with Endobronchial Valves in Low-FEV1 Patients.
Darwiche, Kaid; Karpf-Wissel, Rüdiger; Eisenmann, Stephan; Aigner, Clemens; Welter, Stefan; Zarogoulidis, Paul; Hohenforst-Schmidt, Wolfgang; Freitag, Lutz; Oezkan, Filiz
2016-01-01
Bronchoscopic lung volume reduction (BLVR) with valves has been shown to improve lung function, exercise capacity, and quality of life in patients with emphysema, but only few patients with forced expiratory volume in 1 s (FEV1) ≤20% predicted have been included in former studies. Although the procedure can be performed safely, pneumothorax is a frequent complication, which can be critical for these very severely diseased patients. The aim of the study was to assess the safety of BLVR in patients with a very advanced stage of emphysema, as indicated by FEV1 ≤20% predicted. Patients in whom BLVR was performed between January 2013 and August 2015 were included in this analysis if their baseline predicted FEV1 was ≤20%. BLVR, performed only if collateral ventilation was absent, achieved complete occlusion of the target lobe. All patients were closely monitored and were not discharged before the fourth day after BLVR. Twenty patients with FEV1 ≤20% predicted were included in the analysis. Lung volume reduction was achieved in 65% of the cases. Pneumothorax occurred in 4 cases (20%). No patient died. Lung function and exercise tolerance improved after 1 and 3 months, respectively. BLVR with valves can be safely performed in patients with FEV1 ≤20% predicted when close postprocedural monitoring is provided. Improvement in lung function and exercise capacity can be achieved. © 2016 S. Karger AG, Basel.
50 CFR 404.9 - Armed Forces actions.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 50 Wildlife and Fisheries 7 2010-10-01 2010-10-01 false Armed Forces actions. 404.9 Section 404.9... MARINE NATIONAL MONUMENT § 404.9 Armed Forces actions. (a) The prohibitions in this part do not apply to activities and exercises of the Armed Forces (including those carried out by the United States Coast Guard...
Adding Value to Force Diagrams: Representing Relative Force Magnitudes
ERIC Educational Resources Information Center
Wendel, Paul
2011-01-01
Nearly all physics instructors recognize the instructional value of force diagrams, and this journal has published several collections of exercises to improve student skill in this area. Yet some instructors worry that too few students perceive the conceptual and problem-solving utility of force diagrams, and over recent years a rich variety of…
No effect of artificial gravity on lung function with exercise training during head-down bed rest
NASA Astrophysics Data System (ADS)
Su, Longxiang; Guo, Yinghua; Wang, Yajuan; Wang, Delong; Liu, Changting
2016-04-01
The aim of this study is to explore the effectiveness of microgravity simulated by head-down bed rest (HDBR) and artificial gravity (AG) with exercise on lung function. Twenty-four volunteers were randomly divided into control and exercise countermeasure (CM) groups for 96 h of 6° HDBR. Comparisons of pulse rate, pulse oxygen saturation (SpO2) and lung function were made between these two groups at 0, 24, 48, 72, 96 h. Compared with the sitting position, inspiratory capacity and respiratory reserve volume were significantly higher than before HDBR (0° position) (P < 0.05). Vital capacity, expiratory reserve volume, forced vital capacity, forced expiratory volume in 1 s, forced inspiratory vital capacity, forced inspiratory volume in 1 s, forced expiratory flow at 25, 50, and 75%, maximal mid-expiratory flow and peak expiratory flow were all significantly lower than those before HDBR (P < 0.05). Neither control nor CM groups showed significant differences in pulse rate, SpO2, pulmonary volume and pulmonary ventilation function over the HDBR observation time. Postural changes can lead to variation in lung volume and ventilation function, but a HDBR model induced no changes in pulmonary function and therefore should not be used to study AG countermeasures.
Loading Configurations and Ground Reaction Forces During Treadmill Running in Weightlessness
NASA Technical Reports Server (NTRS)
DeWitt, John; Schaffner, Grant; Blazine, Kristi; Bentley, Jason; Laughlin, Mitzi; Loehr, James; Hagan, Donald
2003-01-01
Studies have shown losses in bone mineral density of 1-2% per month in critical weight bearing areas such as the proximal femur during long-term space flight (Grigoriev, 1998). The astronauts currently onboard the International Space Station (ISS) use a treadmill as an exercise countermeasure to bone loss that occurs as a result of prolonged exposure to weightlessness. A crewmember exercising on the treadmill is attached by a harness and loading device. Ground reaction forces are obtained through the loading device that pulls the crewn1ember towards the treadmill surface during locomotion. McCrory et al. (2002) found that the magnitude of the peak ground reaction force (pGRF) during horizontal suspension running, or simulated weightlessness, was directly related to the load applied to the subject. It is thought that strain magnitude and strain rate affects osteogenesis, and is a function of the magnitude and rate of change of the ground reaction force. While it is not known if a minimum stimulus exists for osteogenesis, it has been hypothesized that in order to replicate the bone formation occurring in normal gravity (1 G), the exercise in weightlessness should mimic the forces that occur on earth. Specifically, the pGRF obtained in weightlessness should be comparable to that achieved in 1 G.
Kinematics and Kinetics of Squats, Drop Jumps and Imitation Jumps of Ski Jumpers.
Pauli, Carole A; Keller, Melanie; Ammann, Fabian; Hübner, Klaus; Lindorfer, Julia; Taylor, William R; Lorenzetti, Silvio
2016-03-01
Squats, drop jumps, and imitation jumps are commonly used training exercises in ski jumping to enhance maximum force, explosive force, and sport-specific skills. The purpose of this study was to evaluate the kinetics and kinematics of training exercises in ski jumping and to find objective parameters in training exercises that most correlate with the competition performance of ski jumpers. To this end, barbell squats, drop jumps, and imitation jumps were measured in a laboratory environment for 10 elite ski jumpers. Force and motion data were captured, and the influence of maximum vertical force, force difference, vertical take-off velocity, knee moments, knee joint power, and a knee valgus/varus index was evaluated and correlated with their season jump performance. The results indicate that, especially for the imitation jumps, a good correlation exists between the vertical take-off velocity and the personal jump performance on the hill (R = 0.718). Importantly, however, the more the athletes tended toward a valgus knee alignment during the measured movements, the worse their performance (R = 0.729 imitation jumps; R = 0.685 squats). Although an evaluation of the athletes' lower limb alignment during competitive jumping on the hill is still required, these preliminary data suggest that performance training should additionally concentrate on improving knee alignment to increase ski jumping performance.
Moayeri, A; Mokhtari, T; Hedayatpour, A; Abbaszadeh, H-A; Mohammadpour, S; Ramezanikhah, H; Shokri, S
2018-04-01
Oxygen consumption increases many times during exercise, which can increase reactive oxygen species. It negatively affects fertility in male athletes. Melatonin is exerting a regulatory role at different levels of the hypothalamic-pituitary-gonadal axis. However, there is no evidence that the protective effects of melatonin persist after long duration exercise on the spermatogenesis. Therefore, this study was conducted to examine the impacts of melatonin on the testis following the administration of swimming exercise. Rats were separated into five different groups, including Control, sham M: received the solvent of melatonin, M: received melatonin, S: the exercise protocol, MS: received melatonin and the exercise protocol. After 8 weeks, animals were scarified and antioxidant enzymes levels of testes, spermatogenic cells apoptosis and sperm quality were measured. Swimming decreased all parameters of spermatozoa. Nevertheless, melatonin could significantly improve the progressive motility of spermatozoa in MS rats. Swimming caused an increased apoptosis of S group and decreased all antioxidant enzymes. Melatonin could drastically reduce apoptosis and increased these enzymes. Therefore, melatonin seems to induce the production of antioxidant enzymes of testicular tissues and diminish the extent of apoptotic changes caused by forced exercise on the testis, which can, in turn, ameliorate the sperm parameters. © 2017 Blackwell Verlag GmbH.
Compact, Controlled Resistance Exercise Device
NASA Technical Reports Server (NTRS)
Paulus, David C.; DeWitt, John K.; Reich, Alton J.; Shaw, James E.; Deaconu, Stelu S.
2011-01-01
Spaceflight leads to muscle and bone atrophy. Isoinertial (free-weight) exercises provide a sufficient stimulus to elicit increases in both muscle strength and bone mineral density in Earth-based studies. While exercise equipment is in use on the International Space Station for crewmember health maintenance, current devices are too large to place in a transport vehicle or small spacecraft. Therefore, a portable computer controlled resistance exercise device is being developed that is able to simulate the inertial loading experienced when lifting a mass on Earth. This portable device weighs less than 50 lb and can simulate the resistance of lifting and lowering up to 600 lb of free-weights. The objective is to allow crewmembers to perform resistance exercise with loads capable of maintaining muscle and bone health. The device is reconfigurable and allows for the performance of typical Earth-based free-weight exercises. Forces exerted, volume of work, range of motion, time-under-tension, and speed/ acceleration of movement are recorded and can be remotely monitored to track progress and modify individual protocols based on exercise session data. A performance evaluation will be completed and data will be presented that include ground-reaction force comparisons between the device and free-weight dead-lifts over a spectrum of resistance levels. Movement biomechanics will also be presented.
The Air Force Executive’s Guide on Stress: The Causes, Consequences, and Coping Strategies.
1986-04-01
poultry, nuts, milk, yogurt , beef, pork, cheese, and eggs. Protein provides energy reserves and is used to grow and repair body tissue. (6:411 4513...EXERCISE WHY EXERCISE? Exercise is probably the most important means of becoming physically fit and buffering the effects of stress. Exercise which... buffer against stress. As a result, a person will experience less stress-induced illness, tension, anxiety, and depression. (6:190) 18 **-,:.-. N ~ "S
Repeated high-intensity exercise modulates Ca(2+) sensitivity of human skeletal muscle fibers.
Gejl, K D; Hvid, L G; Willis, S J; Andersson, E; Holmberg, H-C; Jensen, R; Frandsen, U; Hansen, J; Plomgaard, P; Ørtenblad, N
2016-05-01
The effects of short-term high-intensity exercise on single fiber contractile function in humans are unknown. Therefore, the purposes of this study were: (a) to access the acute effects of repeated high-intensity exercise on human single muscle fiber contractile function; and (b) to examine whether contractile function was affected by alterations in the redox balance. Eleven elite cross-country skiers performed four maximal bouts of 1300 m treadmill skiing with 45 min recovery. Contractile function of chemically skinned single fibers from triceps brachii was examined before the first and following the fourth sprint with respect to Ca(2+) sensitivity and maximal Ca(2+) -activated force. To investigate the oxidative effects of exercise on single fiber contractile function, a subset of fibers was incubated with dithiothreitol (DTT) before analysis. Ca(2+) sensitivity was enhanced by exercise in both MHC I (17%, P < 0.05) and MHC II (15%, P < 0.05) fibers. This potentiation was not present after incubation of fibers with DTT. Specific force of both MHC I and MHC II fibers was unaffected by exercise. In conclusion, repeated high-intensity exercise increased Ca(2+) sensitivity in both MHC I and MHC II fibers. This effect was not observed in a reducing environment indicative of an exercise-induced oxidation of the human contractile apparatus. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Russian Snap Military Exercise in March of 2015; What Implications did this Exercise Have
2017-06-09
Russia can mobilize rapidly the nation for war, shift substantial forces in its interior to meet any threat, and that Russia is willing to use military...Further, it demonstrates to any observer that Russia can mobilize rapidly the nation for war, shift substantial forces in its interior to meet any...the steps of qualitative research method in a class on Advanced Research Methods, September 12, 2016. 65 Robert K. Yin, Case Study Research: Design
Müller, Jan; Ewert, Peter; Hager, Alfred
2018-01-01
Many patients with congenital heart disease (CHD) require surgery to ensure survival into adulthood. But history of previous thoracotomies is associated with respiratory muscle weakness, impairments in chest wall compliance, and moderately to severely impaired lung function. This study evaluated the impact of thoracotomies on functional outcome in patients with CHD. In total 1372 adolescents and adults with CHD (32.4±11.5 years, 624 female), who underwent spirometry and cardiopulmonary exercise testing in our institution from January 2010 to August 2015, were analyzed. After adjusting for confounding variables, with every thoracotomy the prevalence for a restrictive ventilatory pattern increased by 1.8-fold (CI: 1.606-2.050; p<0.001). The number of thoracotomies had no direct influence on an impaired exercise capacity in a multivariate model, but with every percentage point increase in forced vital capacity probability of impaired exercise capacity diminished (OR: 0.944, CI: 0.933-0.955, p<0.001). There was a moderate correlation of forced vital capacity and peak oxygen uptake (r=0.464, p<0.001). After a follow-up of 2.1±1.6 years 21 patients had died. Survival was only related to age (p<0.001) and peak oxygen uptake (p<0.001) after considering together with thoracotomies, oxygen saturation at rest and forced vital capacity in a multivariate model. Independent of CHD complexity and other risk factors, multiple thoracotomies lead to restrictive lung pattern. It could be suggested that those limitations in forced vital capacity contribute to impairments in exercise capacity, which turned out to be the strongest predictor for survival. Copyright © 2017 Japanese College of Cardiology. Published by Elsevier Ltd. All rights reserved.
Dynamic inter-limb resistance exercise device for long-duration space flight
NASA Technical Reports Server (NTRS)
Schwandt, Douglas F.; Watenpaugh, Donald E.; Parazynski, Scott E.; Hargens, Alan R.
1991-01-01
Essential for fitness on Earth, resistive exercise is even more important for astronauts, who must maintain muscle and bone strength in the absence of gravity. To meet this need, designers and scientists at NASA Ames Research Center, Life Science Division, have worked to develop more effective exercise devices for long-duration exposure to microgravity. One of these concepts is the Inter-Limb Resistance Device which allows the subject to exercise one limb directly against another, strengthening muscle groups in the arms, legs, and back. It features a modular harness with an inelastic cable and instrumented pulley. Forces similar to other high resistance exercise equipment are generated. Sensors in the pulley measure force and velocity for performance feedback display and data acquisition. This free-floating apparatus avoids vibration of sensitive experiments on board spacecraft. Compact with low mass, this hardware is also well suited for a 'safe haven' from radiation on board Space Station Freedom, and may prove useful in confined environments on Earth, such as Antarctic stations, submarines, and other underwater habitats. Potential spin-offs of this technology include products for personal strengthening and cardiovascular conditioning, rehabilitation of hospital patients, fitness exercise for the disabled, and retraining after sports injuries.
Exercise starts and ends in the brain.
Kayser, Bengt
2003-10-01
Classically the limit to endurance of exercise is explained in terms of metabolic capacity. Cardio-respiratory capacity and muscle fatigue are thought to set the limit and the majority of studies on factors limiting endurance exercise discuss issues such as maximal oxygen uptake (VO2max), aerobic enzyme capacity, cardiac output, glycogen stores, etc. However, this paradigm does not explain the limitation to endurance exercise with large muscle groups at altitude, when at exhaustion exercise is ended without limb locomotor muscle fatigue and with sub-maximal cardiac output. A simple fact provides a basis for an explanation. Voluntary exercise starts and ends in the brain. It starts with spatial and temporal recruitment of motor units and ends with their de-recruitment. A conscious decision precedes a voluntary effort. The end of effort is again volitional and a forced conscious decision to stop precedes it, but it is unknown what forces the off-switch of recruitment at exhaustion although sensation of exertion certainly plays a role. An alternative model explaining the limitation of exercise endurance thus proposes that the central nervous system integrates input from various sources all related to the exercise and limits the intensity and duration of recruitment of limb skeletal muscle to prevent jeopardizing the integrity of the organism. This model acknowledges the cardio-respiratory and muscle metabolic capacities as prime actors on the performance scene, while crediting the central nervous system for its pivotal role as the ultimate site where exercise starts and ends.
Marcomichelakis, J; Donaldson, R; Green, J; Joseph, S; Kelly, H B; Taggart, P; Somerville, W
1980-01-01
The value of exercise testing in detecting myocardial ischaemia resulting from coronary atheroma remains controversial. In order to increase the reliability of exercise testing, all its components (asymptomatic, haemodynamic, and electrocardiographic) have been scrutinised. In this study, concerned only with the electrocardiographic response to exercise, the incorporation of beta-blockade into the standard exercise procedure has improved specificity and predictive value without affecting sensitivity. Fifty patients with anginal pain and 50 asymptomatic subjects with an abnormal electrocardiogram were investigated by exercise testing before and after beta-blockade (oxprenolol). All subjects had coronary arteriograms and left ventriculograms, and the results of exercise testing were related to the presence or absence of obstructive coronary artery disease. Possible causes of false positive exercise tests were eliminated by echocardiography. Though beta-blockade was unreliable in distinguishing ischaemic from non-ischaemic resting electrocardiograms, it eliminated all the false positive electrocardiographic responses to exercise in both groups and did not abolish any of the true positive electrocardiographic responses. Thus, specificity and predictive value were improved without reduction in sensitivity. This technique may not necessarily be applicable to other groups of patients or to a random population, but the results of this study suggest it will be a useful additional routine procedure in the investigation of coronary heart disease. PMID:7437172
7 CFR 1753.29 - Force account procedures.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 11 2010-01-01 2010-01-01 false Force account procedures. 1753.29 Section 1753.29... Force account procedures. (a) The borrower must obtain RUS approval of the force account method of... item not provided for in the approved loan. (d) Force Account construction to be financed with loan...
Tait, Alan R; Voepel-Lewis, Terri; Chetcuti, Stanley J; Brennan-Martinez, Colleen; Levine, Robert
2014-05-01
Standard print and verbal information provided to patients undergoing treatments are often difficult to understand and may impair their ability to be truly informed. This study examined the effect of an interactive multimedia informational program with in-line exercises and corrected feedback on patients' real-time understanding of their cardiac catheterization procedure. 151 adult patients scheduled for diagnostic cardiac catheterization were randomized to receive information about their procedure using either the standard institutional verbal and written information (SI) or an interactive iPad-based informational program (IPI). Subject understanding was evaluated using semi-structured interviews at baseline, immediately following catheterization, and 2 weeks after the procedure. In addition, for those randomized to the IPI, the ability to respond correctly to several in-line exercises was recorded. Subjects' perceptions of, and preferences for the information delivery were also elicited. Subjects randomized to the IPI program had significantly better understanding following the intervention compared with those randomized to the SI group (8.3±2.4 vs 7.4±2.5, respectively, 0-12 scale where 12=complete understanding, P<0.05). First-time correct responses to the in-line exercises ranged from 24.3% to 100%. Subjects reported that the in-line exercises were very helpful (9.1±1.7, 0-10 scale, where 10=extremely helpful) and the iPad program very easy to use (9.0±1.6, 0-10 scale, where 10=extremely easy) suggesting good clinical utility. Results demonstrated the ability of an interactive multimedia program to enhance patients' understanding of their medical procedure. Importantly, the incorporation of in-line exercises permitted identification of knowledge deficits, provided corrected feedback, and confirmed the patients' understanding of treatment information in real-time when consent was sought. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Vitiello, Nicola; Cirillo, Raffaele; Granato, Luigi; Coppola, Vincenzo; di Palma, Francesco
2007-05-01
Exercise stress test and dobutamine stress echocardiography are usually performed early after an uncomplicated acute myocardial infarction in the prognostic stratification of patients to define the optimal diagnostic and therapeutic procedure. The aim of this study was to evaluate if the association of an imaging test could increase exercise test capability to identify patients with residual ischemia and patients at high risk of events in the follow-up. Four hundred and forty-two consecutive patients underwent exercise stress testing and dobutamine stress echocardiography before discharge and subsequently coronary angiography within 30 days. In case of submaximal negative result at the exercise test, this was repeated 20 days after discharge. The follow-up lasted 26.8 +/- 9 months. The endpoints were death, reinfarction, and unstable angina requiring hospitalization or revascularization intervention. Both tests and their association showed a higher sensitivity in males; in females dobutamine stress echocardiography had a higher specificity. In females, the addition of dobutamine stress echocardiography increased either the negative or the positive prognostic values of exercise stress test by 31% and 5.6%, respectively. In males, the negative prognostic value increased by 15.5%, whereas the positive prognostic value decreased by 12%. A low exercise capability (<6 METs) showed an event predictive value independent of test results and any other variables. The event-free survival curves correlated with exercise capability differed shortly after the first months both in males and females. These results suggest different stratification procedures with regard to gender: in males, the exercise stress test might be sufficient at discharge, to be repeated 20 days later, if submaximal negative. In females, it seems to be useful to associate an imaging test at discharge. In any case, the exercise stress test remains the main step in the stratification procedure also for its capability to identify patients who are at high risk of events in the follow-up.
The effect of a braking device in reducing the ground impact forces inherent in plyometric training.
Humphries, B J; Newton, R U; Wilson, G J
1995-02-01
As a consequence of performing plyometric type exercises, such as depth jumps, impact forces placed on the musculoskeletal system during landing can lead to a potential for injury. A reduction of impact forces upon landing could therefore contribute to reduce the risk of injury. Twenty subjects performed a series of loaded jumps for maximal height, with and without a brake mechanism designed to reduce impact force during landing. The braked jumps were performed on the Plyometric Power System (PPS) with its braking mechanism set at 75% of body weight during the downward phase. The non-braked condition involved jumps with no braking. Vertical ground reaction force data, sampled for 5.5 s at 550 Hz from a Kistler forceplate, were collected for each jump condition. The following parameters were then calculated: peak vertical force, time to peak force, passive impact impulse and maximum concentric force. The brake served to significantly (p < 0.01) reduce peak impact force by 155% and passive impact impulse by 200%. No significant differences were found for peak concentric force production. The braking mechanism of the PPS significantly reduced ground impact forces without impeding concentric force production. The reduction in eccentric loading, using the braking mechanism, may reduce the incidence of injury associated with landings from high intensity plyometric exercises.
33 CFR 154.1125 - Additional response plan requirements.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Sound: (A) Valdez; (B) Tatitlek; (C) Cordova; (D) Whittier; (E) Chenega; and (F) Fish hatcheries located...) Address the responsibilities required in § 154.1035(b)(3)(iii). (2) Exercises. Identification of exercise procedures that must— (i) Provide for two exercises of the oil spill removal organization each year that test...
Testimony: Writing Cooperatively.
ERIC Educational Resources Information Center
Sasser, Linda; Cromwell, Carole
A lesson plan and supportive materials for an exercise in reading comprehension and cooperative writing are presented. The exercise is based on a story entitled "Testimony," in which a writer expresses feelings about a boxing match. The lesson plan outlines procedures for presentation of the exercise to the class, for the cooperative teams to…
45 CFR 650.13 - Exercise of march-in rights.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 45 Public Welfare 3 2014-10-01 2014-10-01 false Exercise of march-in rights. 650.13 Section 650.13 Public Welfare Regulations Relating to Public Welfare (Continued) NATIONAL SCIENCE FOUNDATION PATENTS § 650.13 Exercise of march-in rights. (a) The procedures established by this section supplement those...
45 CFR 650.13 - Exercise of march-in rights.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 45 Public Welfare 3 2013-10-01 2013-10-01 false Exercise of march-in rights. 650.13 Section 650.13 Public Welfare Regulations Relating to Public Welfare (Continued) NATIONAL SCIENCE FOUNDATION PATENTS § 650.13 Exercise of march-in rights. (a) The procedures established by this section supplement those...
45 CFR 650.13 - Exercise of march-in rights.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 45 Public Welfare 3 2012-10-01 2012-10-01 false Exercise of march-in rights. 650.13 Section 650.13 Public Welfare Regulations Relating to Public Welfare (Continued) NATIONAL SCIENCE FOUNDATION PATENTS § 650.13 Exercise of march-in rights. (a) The procedures established by this section supplement those...
Layec, Gwenael; Hureau, Thomas J.; Amann, Markus; Richardson, Russell S.
2017-01-01
Although all-out exercise protocols are commonly used, the physiological mechanisms underlying all-out exercise performance are still unclear, and an in-depth assessment of skeletal muscle bioenergetics is lacking. Therefore, phosphorus magnetic resonance spectroscopy (31P-MRS) was utilized to assess skeletal muscle bioenergetics during a 5-min all-out intermittent isometric knee-extensor protocol in eight healthy men. Metabolic perturbation, adenosine triphosphate (ATP) synthesis rates, ATP cost of contraction, and mitochondrial capacity were determined from intramuscular concentrations of phosphocreatine (PCr), inorganic phosphate (Pi), diprotonated phosphate (H2PO4−), and pH. Peripheral fatigue was determined by exercise-induced alterations in potentiated quadriceps twitch force (Qtw) evoked by supramaximal electrical femoral nerve stimulation. The oxidative ATP synthesis rate (ATPOX) attained and then maintained peak values throughout the protocol, despite an ~63% decrease in quadriceps maximal force production. ThusATPOX normalized to force production (ATPOX gain) significantly increased throughout the exercise (1st min: 0.02 ± 0.01, 5th min: 0.04 ± 0.01 mM·min−1·N−1), as did the ATP cost of contraction (1st min: 0.048 ± 0.019, 5th min: 0.052 ± 0.015 mM·min−1·N−1). Additionally, the pre- to postexercise change in Qtw (−52 ± 26%) was significantly correlated with the exercise-induced change in intramuscular pH (r = 0.75) and H2PO4− concentration (r = 0.77). In conclusion, the all-out exercise protocol utilized in the present study elicited a “slow component-like” increase in intramuscular ATPOX gain as well as a progressive increase in the phosphate cost of contraction. Furthermore, the development of peripheral fatigue was closely related to the perturbation of specific fatigue-inducing intramuscular factors (i.e., pH and H2PO4− concentration). NEW & NOTEWORTHY The physiological mechanisms and skeletal muscle bioenergetics underlying all-out exercise performance are unclear. This study revealed an increase in oxidative ATP synthesis rate gain and the ATP cost of contraction during all-out exercise. Furthermore, peripheral fatigue was related to the perturbation in pH and deprotonated phosphate ion. These findings support the concept that the oxygen uptake slow component arises from within active skeletal muscle and that skeletal muscle force generating capacity is linked to the intramuscular metabolic milieu. PMID:28209743
Biomechanics of front and back squat exercises
NASA Astrophysics Data System (ADS)
Braidot, A. A.; Brusa, M. H.; Lestussi, F. E.; Parera, G. P.
2007-11-01
Squat constitutes one of the most popular exercises to strengthen the muscles of the lower limbs. It is considered one of the most widely spread exercises for muscle sport training and is part of the competition movements comprised within olympic weight-lifting. In physical rehabilitation, squats are used for muscular recovery after different injuries of the lower limbs, especially the knee. In previous anterior cruciate ligament injuries, the mini-squats are generally used, in a knee flexion motion range from 0° to 50° because in this range the shear forces, the tibiofemoral and patellofemoral compression forces decrease related to greater flexion angles. The aim of this work is to make a comparative bidimensional study of the kinematic and dynamic variables of the excecution of the parallel squat exercise with the front and back bar. It is observed in the knee a better development of energy with the front bar, allowing a better muscular exercise with the same load. The mean power absorbed by the hip with the back bar is considerably greater, associated to the speed of the gesture.
Analog Exercise Hardware to Implement a High Intensity Exercise Program During Bed Rest
NASA Technical Reports Server (NTRS)
Loerch, Linda; Newby, Nate; Ploutz-Snyder, Lori
2012-01-01
Background: In order to evaluate novel countermeasure protocols in a space flight analog prior to validation on the International Space Station (ISS), NASA's Human Research Program (HRP) is sponsoring a multi-investigator bedrest campaign that utilizes a combination of commercial and custom-made exercise training hardware to conduct daily resistive and aerobic exercise protocols. This paper will describe these pieces of hardware and how they are used to support current bedrest studies at NASA's Flight Analog Research Unit in Galveston, TX. Discussion: To implement candidate exercise countermeasure studies during extended bed rest studies the following analog hardware are being utilized: Stand alone Zero-Gravity Locomotion Simulator (sZLS) -- a custom built device by NASA, the sZLS allows bedrest subjects to remain supine as they run on a vertically-oriented treadmill (0-15 miles/hour). The treadmill includes a pneumatic subject loading device to provide variable body loading (0-100%) and a harness to keep the subject in contact with the motorized treadmill to provide a ground reaction force at their feet that is quantified by a Kistler Force Plate. Supine Cycle Ergometer -- a commercially available supine cycle ergometer (Lode, Groningen, Netherlands) is used for all cycle ergometer sessions. The ergometer has adjustable shoulder supports and handgrips to help stabilize the subject during exercise. Horizontal Squat Device (HSD) -- a custom built device by Quantum Fitness Corp (Stafford, TX), the HSD allows for squat exercises to be performed while lying in a supine position. The HSD can provide 0 to 600 pounds of force in selectable 5 lb increments, and allows hip translation in both the vertical and horizontal planes. Prone Leg Curl -- a commercially available prone leg curl machine (Cybex International Inc., Medway, MA) is used to complete leg curl exercises. Horizontal Leg Press -- a commercially available horizontal leg press (Quantum Fitness Corporation) is used for leg press and heel raise exercises. Minor modifications were made to the device including adding 200 lbs to the weight stack, raising the frame by 12 inches, making the footplate adjustable, and providing removable handles. Conclusion: A combination of novel and commercial exercise hardware are used to mimic the exercise hardware capabilities aboard the ISS, allowing scientific investigation of new countermeasure protocols in a space flight analog prior to flight validation
A virtual model of the bench press exercise.
Rahmani, Abderrahmane; Rambaud, Olivier; Bourdin, Muriel; Mariot, Jean-Pierre
2009-08-07
The objective of this study was to design and validate a three degrees of freedom model in the sagittal plane for the bench press exercise. The mechanical model was based on rigid segments connected by revolute and prismatic pairs, which enabled a kinematic approach and global force estimation. The method requires only three simple measurements: (i) horizontal position of the hand (x(0)); (ii) vertical displacement of the barbell (Z) and (iii) elbow angle (theta). Eight adult male throwers performed maximal concentric bench press exercises against different masses. The kinematic results showed that the vertical displacement of each segment and the global centre of mass followed the vertical displacement of the lifted mass. Consequently, the vertical velocity and acceleration of the combined centre of mass and the lifted mass were identical. Finally, for each lifted mass, there were no practical differences between forces calculated from the bench press model and those simultaneously measured with a force platform. The error was lower than 2.5%. The validity of the mechanical method was also highlighted by a standard error of the estimate (SEE) ranging from 2.0 to 6.6N in absolute terms, a coefficient of variation (CV) < or =0.8%, and a correlation between the two scores > or =0.99 for all the lifts (p<0.001). The method described here, which is based on three simple parameters, allows accurate evaluation of the force developed by the upper limb muscles during bench press exercises in both field and laboratory conditions.
Validity of the Myotest® in measuring force and power production in the squat and bench press.
Comstock, Brett A; Solomon-Hill, Glenn; Flanagan, Shawn D; Earp, Jacob E; Luk, Hui-Ying; Dobbins, Kathryn A; Dunn-Lewis, Courtenay; Fragala, Maren S; Ho, Jen-Yu; Hatfield, Disa L; Vingren, Jakob L; Denegar, Craig R; Volek, Jeff S; Kupchak, Brian R; Maresh, Carl M; Kraemer, William J
2011-08-01
The purpose of this study was to verify the concurrent validity of a bar-mounted Myotest® instrument in measuring the force and power production in the squat and bench press exercises when compared to the gold standard of a computerized linear transducer and force platform system. Fifty-four men (bench press: 39-171 kg; squat: 75-221 kg) and 43 women (bench press: 18-80 kg; squat: 30-115 kg) (age range 18-30 years) performed a 1 repetition maximum (1RM) strength test in bench press and squat exercises. Power testing consisted of the jump squat and the bench throw at 30% of each subject's 1RM. During each measurement, both the Myotest® instrument and the Celesco linear transducer of the directly interfaced BMS system (Ballistic Measurement System [BMS] Innervations Inc, Fitness Technology force plate, Skye, South Australia, Australia) were mounted to the weight bar. A strong, positive correlation (r) between the Myotest and BMS systems and a high correlation of determination (R2) was demonstrated for bench throw force (r = 0.95, p < 0.05) (R2 = 0.92); bench throw power (r = 0.96, p < 0.05) (R2 = 0.93); squat jump force (r = 0.98, p < 0.05) (R2 = 0.97); and squat jump power (r = 0.91, p < 0.05) (R2 = 0.82). In conclusion, when fixed on the bar in the vertical axis, the Myotest is a valid field instrument for measuring force and power in commonly used exercise movements.
Aircraft Mishap Exercise at SLF
2018-02-14
NASA Kennedy Space Center's Flight Operations team reviews procedures before beginning a rehearsal of a helicopter crash-landing to test new and updated emergency procedures. Called the Aircraft Mishap Preparedness and Contingency Plan, the operation was designed to validate several updated techniques the center's first responders would follow, should they ever need to rescue a crew in case of a real accident. The mishap exercise took place at the center's Shuttle Landing Facility.
Silk amino acids improve physical stamina and male reproductive function of mice.
Shin, Sunhee; Yeon, Seongho; Park, Dongsun; Oh, Jiyoung; Kang, Hyomin; Kim, Sunghyun; Joo, Seong Soo; Lim, Woo-Taek; Lee, Jeong-Yong; Choi, Kyung-Chul; Kim, Ki Yon; Kim, Seung Up; Kim, Jong-Choon; Kim, Yun-Bae
2010-01-01
The effects of a silk amino acid (SAA) preparation on the physical stamina and male reproductive function of mice were investigated. Eight-week-old male ICR mice (29-31 g) were orally administered SAA (50, 160 or 500 mg/kg) for 44 d during 30-min daily swimming exercise. The mice were subjected to a weight-loaded (5% of body weight) forced swimming on the 14th, 28th and 42nd day to determine maximum swimming time, and after a 2-d recovery period (treated with SAA without swimming exercise), parameters related to fatigue and reproductive function were analyzed from blood, muscles and reproductive organs. Repeated swimming exercise increased the maximum swimming time to some extent, in spite of a marked reduction in body weight gain, and SAA further enhanced the stamina in a dose-dependent manner. Forced swimming exercises increased blood parameters of tissue injury, but depleted blood glucose and tissue glycogen, which were substantially prevented by SAA treatment. In addition, SAA significantly reduced the muscular thiobarbituric acid-reactive substances and blood corticosterone content increased by forced swimming. Swimming exercise decreased the blood testosterone level, which was recovered by SAA, leading to enhanced sperm counts. These combined results indicate that SAA not only enhances physical stamina by minimizing damage to tissues, including muscles, as well as preventing energy depletion caused by swimming stress, but also improves male reproductive function by increasing testosterone and sperm counts.
Exercise Prescriptions to Prevent Musculoskeletal Disorders in Dentists
Kumar, Dodda Kiran; Mohan, Sreevalli; Begum, Mohammadi; Prasad, Bhanu; Prasad, Eswar Ravi Vara
2014-01-01
Since the number of dental patients is increasing day by day dentists are forced to spend longer times in dental chairs. This is increasing the prevalence of musculoskeletal disorders in dentists. This article reviews the mechanisms causing musculoskeletal disorders among dentists and also covers the exercises that can be done to prevent them. Exercises that increase the fitness of a dentist are divided into aerobic exercises – concentrating on total body fitness, stretching exercises – that concentrate on the muscles that tend to tighten in prolonged dental postures and strengthening exercises – that concentrate on the muscles that are opposite to the tight muscles. These exercises are made simple and of minimal intensity so that a dentist can practice them independently. PMID:25177661
1RM prediction: a novel methodology based on the force-velocity and load-velocity relationships.
Picerno, Pietro; Iannetta, Danilo; Comotto, Stefania; Donati, Marco; Pecoraro, Fabrizio; Zok, Mounir; Tollis, Giorgio; Figura, Marco; Varalda, Carlo; Di Muzio, Davide; Patrizio, Federica; Piacentini, Maria Francesca
2016-10-01
This study aimed to evaluate the accuracy of a novel approach for predicting the one-repetition maximum (1RM). The prediction is based on the force-velocity and load-velocity relationships determined from measured force and velocity data collected during resistance-training exercises with incremental submaximal loads. 1RM was determined as the load corresponding to the intersection of these two curves, where the gravitational force exceeds the force that the subject can exert. The proposed force-velocity-based method (FVM) was tested on 37 participants (23.9 ± 3.1 year; BMI 23.44 ± 2.45) with no specific resistance-training experience, and the predicted 1RM was compared to that achieved using a direct method (DM) in chest-press (CP) and leg-press (LP) exercises. The mean 1RM in CP was 99.5 kg (±27.0) for DM and 100.8 kg (±27.2) for FVM (SEE = 1.2 kg), whereas the mean 1RM in LP was 249.3 kg (±60.2) for DM and 251.1 kg (±60.3) for FVM (SEE = 2.1 kg). A high correlation was found between the two methods for both CP and LP exercises (0.999, p < 0.001). Good agreement between the two methods emerged from the Bland and Altman plot analysis. These findings suggest the use of the proposed methodology as a valid alternative to other indirect approaches for 1RM prediction. The mathematical construct is simply based on the definition of the 1RM, and it is fed with subject's muscle strength capacities measured during a specific exercise. Its reliability is, thus, expected to be not affected by those factors that typically jeopardize regression-based approaches.
Estimation of Errors in Force Platform Data
ERIC Educational Resources Information Center
Psycharakis, Stelios G.; Miller, Stuart
2006-01-01
Force platforms (FPs) are regularly used in the biomechanical analysis of sport and exercise techniques, often in combination with image-based motion analysis. Force time data, particularly when combined with joint positions and segmental inertia parameters, can be used to evaluate the effectiveness of a wide range of movement patterns in sport…
Making the Rate: Enzyme Dynamics
ERIC Educational Resources Information Center
Ragsdale, Frances R.
2004-01-01
An enzyme exercise to address the problem of students inability to visualize chemical reaction at the molecular level is described. This exercise is designed as a dry lab exercise but can be modified into a classroom activity then can be augmented by a wet lab procedure, thereby providing students with a practical exposure to enzyme function.
Exercices de grammaire et travail de groupe (Grammar Exercises and Group Work)
ERIC Educational Resources Information Center
Eluerd, Roland
1977-01-01
A discussion of pedagogical models and modes of communication as these apply to the adaptation of grammar exercises to group work. The model used is the small homogeneous group. Various types of exercises are suggested and the relevance of this procedure to communication is discussed. (Text is in French.) (AMH)
NASA Technical Reports Server (NTRS)
Peterman, M.; McCrory, J. L.; Sharkey, N. A.; Piazza, S.; Cavanagh, P. R.
1999-01-01
Effective countermeasures to prevent loss of bone mineral during long duration space flight remain elusive. Despite an exercise program on MIR flights, the data from LeBlanc et al. (1996) indicated that there was still a mean rate of loss of bone mineral density in the proximal femur of 1.58% per month (n=18, flight duration 4 - 14.4 months). The specific mechanisms regulating bone mass are not known, but most investigators agree that bone maintenance is largely dependent upon mechanical demand and the resultant local bone strains. A plausible hypothesis is that bone loss during space flight, such as that reported by LeBlanc et al. (1996), may result from failure to effectively load the skeleton in order to generate localized bone strains of sufficient magnitude to prevent disuse osteoporosis. A variety of methods have been proposed to simulate locomotor exercise in reduced gravity. In such simulations, and in an actual microgravity environment, a gravity replacement load (GRL) must always be added to return the exercising subject to the support surface and the resulting skeletal load is critically dependent upon the magnitude of the GRL. To our knowledge, GRLs during orbital flight have only been measured once (on STS 81) and it is likely that most or all prior treadmill exercise in space has used GRLs that were less than one body weight. McCrory (1997) has shown that subjects walking and running in simulated zero-G can tolerate GRLs of 1 if an appropriate harness is used. Several investigators have attempted to measure in vivo strains and forces in the bones of humans, but have faced ethical and technical limitations. The anteromedial aspect of the tibial midshaft has been a common site for the placement of strain gauges; one reason to measure strains in the anterior tibia is that this region is surgically accessible. Aamodt et al. (1997) were able to measure strains on the lateral surface of the proximal femur only because their experimental subjects were already scheduled for hip surgery. Lu et al. (1997) used an instrumented massive proximal femoral prosthesis along with electromyographic measurements to demonstrate that femoral forces depend on muscular activity. These analyses of in vivo bone mechanics are valuable. The invasive nature of the procedures involved, however, limits both the number of subjects and the number of strain gauge locations. Further, the results of these studies may be confounded by the inclusion of subjects with pathological conditions. Gross et al. (1992) measured strain at three locations on the equine third metacarpal and used those data to construct a computer model of the internal strain environment of the bone. An analogous placement of multiple gauges in living humans would be difficult and potentially hazardous because of the depth of soft tissue overlying the tibia and femur.
Pneumatic strength assessment device: design and isometric measurement.
Paulus, David C; Reiser, Raoul F; Troxell, Wade O
2004-01-01
In order to load a muscle optimally during resistance exercise, it should be heavily taxed throughout the entire range of motion for that exercise. However, traditional constant resistance squats only tax the lower-extremity muscles to their limits at the "sticking region" or a critical joint configuration of the exercise cycle. Therefore, a linear motion (Smith) exercise machine was modified with pneumatics and appropriate computer control so that it could be capable of adjusting force to control velocity within a repetition of the squat exercise or other exercise performed with the device. Prior to application of this device in a dynamic squat setting, the maximum voluntary isometric force (MVIF) produced over a spectrum of knee angles is needed. This would reveal the sticking region and overall variation in strength capacity. Five incremental knee angles (90, 110, 130, 150, and 170 degrees, where 180 degrees defined full extension) were examined. After obtaining university-approved informed consent, 12 men and 12 women participated in the study. The knee angle was set, and the pneumatic cylinder was pressurized such that the subject could move the barbell slightly but no more than two-centimeters. The peak pressure exerted over a five-second maximum effort interval was recorded at each knee angle in random order and then repeated. The average of both efforts was then utilized for further analysis. The sticking region occurred consistently at a 90 degrees knee angle, however, the maximum force produced varied between 110 degrees and 170 degrees with the greatest frequency at 150 degrees for both men and women. The percent difference between the maximum and minimum MVIF was 46% for men and 57% for women.
Spielmanns, Marc; Boeselt, Tobias; Gloeckl, Rainer; Klutsch, Anja; Fischer, Henrike; Polanski, Henryk; Nell, Christoph; Storre, Jan H; Windisch, Wolfram; Koczulla, Andreas R
2017-03-01
The objective of this study was to investigate the benefits of a low-volume out-patient whole-body vibration training (WBVT) program on exercise capacity in comparison with a calisthenics training program in subjects with COPD. In this single-center randomized controlled trial, 29 subjects with mild to severe COPD were randomized to WBVT or to calisthenics training, including relaxation and breathing retraining in combination with calisthenics exercises. Both groups equally exercised for a duration of 3 months with 2 sessions of 30 min/week. Outcome parameters were 6-min walk distance (6MWD, primary outcome), 5-repetition sit-to-stand test, leg press peak force, Berg balance scale, St George Respiratory Questionnaire, and COPD assessment test. Twenty-seven subjects completed the study (WBVT, n = 14; calisthenics training program, n = 13). Baseline characteristics between groups were comparable. Subjects in the WBVT group significantly improved median (interquartile range) 6MWD (+105 [45.5-133.5] m, P = .001), sit-to-stand test (-2.3 [-3.1 to -1.3] s, P = .001), peak force (28.7 [16.7-33.3] kg, P = .001), and Berg balance scale (1.5 [0.0-4.0] points, P = .055). Changes in 6MWD, sit-to-stand test, and leg press peak force were also found to be significantly different between groups in favor of the WBVT group. Only the between-group difference of the COPD assessment test score was in favor of the calisthenics training group ( P = .02). A low-volume WBVT program resulted in significantly and clinically relevant larger improvements in exercise capacity compared with calisthenics exercises in subjects with mild to severe COPD. (ClinicalTrials.gov registration DRKS9706.). Copyright © 2017 by Daedalus Enterprises.
Load Bearing Equipment for Bone and Muscle Project
NASA Technical Reports Server (NTRS)
Terrier, Douglas; Clayton, Ronald G.; Shackelford, Linda
2015-01-01
Axial skeletal loads coupled with muscle torque forces around joints maintain bone. Astronauts working in pairs to exercise can provide high eccentric loads for each other that are most effective. A prototype of load bearing equipment that will allow astronauts to perform exercises using each other for counter force generation in a controlled fashion and provide eccentric overload is proposed. A frame and attachments that can be rapidly assembled for use and easily stored will demonstrate feasibility of a design that can be adapted for ISS testing and Orion use.
Manual actuator. [for spacecraft exercising machines
NASA Technical Reports Server (NTRS)
Gause, R. L.; Glenn, C. G. (Inventor)
1974-01-01
An actuator for an exercising machine employable by a crewman aboard a manned spacecraft is presented. The actuator is characterized by a force delivery arm projected from a rotary imput shaft of an exercising machine and having a force input handle extended orthogonally from its distal end. The handle includes a hand-grip configured to be received within the palm of the crewman's hand and a grid pivotally supported for angular displacement between a first position, wherein the grid is disposed in an overlying juxtaposition with the hand-grip, and a second position, angularly displaced from the first position, for affording access to the hand-grip, and a latching mechanism fixed to the sole of a shoe worn by the crewman for latching the shoe to the grid when the grid is in the first position.
1987-01-01
exercise practices (Veninga 1962). Positive Co’ Mdchasms Coping mechanisms of a positive sort that favor eustressful outcomes are direct actions to deal...resistance through proper diet, exercise , sleep, and relaxation. Cognitive restructuring is another direct strategy used to consciously change the...developing social support, implementing relaxation techniques, meditating, along with proper diet. sleep, and exercise are all positive ways to cope with
McGill, Stuart; Andersen, Jordan; Cannon, Jordan
2015-01-01
This study examined anterior chain whole body linkage exercises, namely the body saw, hanging leg raise and walkout from a push-up. Investigation of these exercises focused on which particular muscles were challenged and the magnitude of the resulting spine load. Fourteen males performed the exercises while muscle activity, external force and 3D body segment motion were recorded. A sophisticated and anatomically detailed 3D model used muscle activity and body segment kinematics to estimate muscle force, and thus sensitivity to each individual's choice of motor control for each task. Gradations of muscle activity and spine load characteristics were observed across tasks. On average, the hanging straight leg raise created approximately 3000 N of spine compression while the body saw created less than 2500 N. The hanging straight leg raise created the highest challenge to the abdominal wall (>130% MVC in rectus abdominis, 88% MVC in external oblique). The body saw resulted in almost 140% MVC activation of the serratus anterior. All other exercises produced substantial abdominal challenge, although the body saw did so in the most spine conserving way. These findings, along with consideration of an individual's injury history, training goals and current fitness level, should assist in exercise choice and programme design.
NASA Technical Reports Server (NTRS)
St Pierre, B. A.; Kasper, C. E.; Lindsey, A. M.
1992-01-01
Fatigue is a common adverse effect of cancer and its therapy. However, the specific mechanisms underlying cancer fatigue are unclear. One physiologic mechanism may involve changes in skeletal muscle protein stores or metabolite concentration. A reduction in skeletal muscle protein stores may result from endogenous tumor necrosis factor (TNF) or from TNF administered as antineoplastic therapy. This muscle wasting would require patients to exert an unusually high amount of effort to generate adequate contractile force during exercise performance or during extended periods of sitting or standing. This additional effort could result in the onset of fatigue. Additionally, cancer fatigue may develop or become exacerbated during exercise as a consequence of changes in the concentration of skeletal muscle metabolites. These biochemical alterations may interfere with force that is produced by the muscle contractile proteins. These physiologic changes may play a role in the decision to include exercise in the rehabilitation plans of patients with cancer. They also may affect ideas about fatigue.
NASA Technical Reports Server (NTRS)
Hargens, A. R.; Ballard, R. E.; Boda, W. L.; Ertl, A. C.; Schneider, S. M.; Hutchinson, K. J.; Lee, S. M.; Murthy, G.; Putcha, L.; Watenpaugh, D. E.
1999-01-01
Calculations suggest that exercise in space to date has lacked sufficient loads to maintain musculoskeletal mass. Lower body negative pressure (LBNP) produces a force at the feet equal to the product of the LBNP and body cross-sectional area at the waist. Supine exercise within 50-60 mm Hg LBNP improves tolerance to LBNP and produces forces similar to those occurring during upright posture on Earth. Thus, exercise within LBNP may help prevent deconditioning of astronauts by stressing tissues of the lower body in a manner similar to gravity and also, may provide a safe and effective alternative to centrifugation in terms of cost, mass, volume, and power usage. We hypothesize that supine treadmill exercise during LBNP at one body weight (50-60 mm Hg LBNP) will provide cardiovascular and musculoskeletal loads similar to those experienced while upright in lg. Also, daily supine treadmill running in a LBNP chamber will maintain aerobic fitness, orthostatic tolerance, and musculoskeletal structure and function during bed rest (simulated microgravity).
Pre- and postoperative principles of rehabilitation in arthroscopic treatment of painfull shoulder.
Jaruga, Maciej; Manikowski, Władysław; Romanowski, Leszek; Lubiatowski, Przemysław; Spławski, Robert; Jaruga, Maria
2003-08-30
Pain of the shoulder is becoming a serious clinical problem. A proper diagnosis, surgical, physiotherapycal, pharmacological and psychological treatment allow to achieve the best result. This shoulder's problem is very common in young, working people, who expect a quick and effective treatment. One of the procedures in the treatment of the painful shoulder is arthroscopy combined with physiotherapy. The very important part of the exercise program is the preparation of the injured extremity for surgical procedure. The time of the immobilization and the beginning of the exercises is being given by the surgeon. Generally it is important to start the exercises as soon as possible and to make it painless if it possible. One of the most effective methods is PNF (Proprioceptive Neuromuscular Fascilitation). It allows for the early beginning of the exercises by using proper patterns and techniques.
O'Dell, S J; Gross, N B; Fricks, A N; Casiano, B D; Nguyen, T B; Marshall, J F
2007-02-09
Forced use of the forelimb contralateral to a unilateral injection of the dopaminergic neurotoxin 6-hydroxydopamine can promote recovery of motor function in that limb and can significantly decrease damage to dopamine terminals. The present study was conducted to determine (1) whether a form of voluntary exercise, wheel running, would improve motor performance in rats with such lesions, and (2) whether any beneficial effects of wheel running are attributable to ameliorating the dopaminergic damage. In experiment 1, rats were allowed to run in exercise wheels or kept in home cages for 2 1/2 weeks, then given stereotaxic infusions of 6-hydroxydopamine into the left striatum. The rats were replaced into their original environments (wheels or home cages) for four additional weeks, and asymmetries in forelimb use were quantified at 3, 10, 17, and 24 days postoperatively. After killing, dopaminergic damage was assessed by both quantifying 3 beta-(4-iodophenyl)tropan-2 beta-carboxylic acid methyl ester ([(125)I]RTI-55) binding to striatal dopamine transporters and counting tyrosine hydroxylase-positive cells in the substantia nigra. Exercised 6-hydroxydopamine-infused rats showed improved motor outcomes relative to sedentary lesioned controls, effects that were most apparent at postoperative days 17 and 24. Despite this behavioral improvement, 6-hydroxydopamine-induced loss of striatal dopamine transporters and tyrosine hydroxylase-positive nigral cells in exercised and sedentary groups did not differ. Since prior studies suggested that forced limb use improves motor performance by sparing nigrostriatal dopaminergic neurons from 6-hydroxydopamine damage, experiment 2 used a combined regimen of forced plus voluntary wheel running. Again, we found that the motor performance of exercised rats improved more rapidly than that of sedentary controls, but that there were no differences between these groups in the damage produced by 6-hydroxydopamine. It appears that voluntary exercise can facilitate recovery from partial nigrostriatal injury, but it does so without evident sparing of dopamine nerve terminals.
Vision-Based Pose Estimation for Robot-Mediated Hand Telerehabilitation
Airò Farulla, Giuseppe; Pianu, Daniele; Cempini, Marco; Cortese, Mario; Russo, Ludovico O.; Indaco, Marco; Nerino, Roberto; Chimienti, Antonio; Oddo, Calogero M.; Vitiello, Nicola
2016-01-01
Vision-based Pose Estimation (VPE) represents a non-invasive solution to allow a smooth and natural interaction between a human user and a robotic system, without requiring complex calibration procedures. Moreover, VPE interfaces are gaining momentum as they are highly intuitive, such that they can be used from untrained personnel (e.g., a generic caregiver) even in delicate tasks as rehabilitation exercises. In this paper, we present a novel master–slave setup for hand telerehabilitation with an intuitive and simple interface for remote control of a wearable hand exoskeleton, named HX. While performing rehabilitative exercises, the master unit evaluates the 3D position of a human operator’s hand joints in real-time using only a RGB-D camera, and commands remotely the slave exoskeleton. Within the slave unit, the exoskeleton replicates hand movements and an external grip sensor records interaction forces, that are fed back to the operator-therapist, allowing a direct real-time assessment of the rehabilitative task. Experimental data collected with an operator and six volunteers are provided to show the feasibility of the proposed system and its performances. The results demonstrate that, leveraging on our system, the operator was able to directly control volunteers’ hands movements. PMID:26861333
Vision-Based Pose Estimation for Robot-Mediated Hand Telerehabilitation.
Airò Farulla, Giuseppe; Pianu, Daniele; Cempini, Marco; Cortese, Mario; Russo, Ludovico O; Indaco, Marco; Nerino, Roberto; Chimienti, Antonio; Oddo, Calogero M; Vitiello, Nicola
2016-02-05
Vision-based Pose Estimation (VPE) represents a non-invasive solution to allow a smooth and natural interaction between a human user and a robotic system, without requiring complex calibration procedures. Moreover, VPE interfaces are gaining momentum as they are highly intuitive, such that they can be used from untrained personnel (e.g., a generic caregiver) even in delicate tasks as rehabilitation exercises. In this paper, we present a novel master-slave setup for hand telerehabilitation with an intuitive and simple interface for remote control of a wearable hand exoskeleton, named HX. While performing rehabilitative exercises, the master unit evaluates the 3D position of a human operator's hand joints in real-time using only a RGB-D camera, and commands remotely the slave exoskeleton. Within the slave unit, the exoskeleton replicates hand movements and an external grip sensor records interaction forces, that are fed back to the operator-therapist, allowing a direct real-time assessment of the rehabilitative task. Experimental data collected with an operator and six volunteers are provided to show the feasibility of the proposed system and its performances. The results demonstrate that, leveraging on our system, the operator was able to directly control volunteers' hands movements.
An Evidence-Based Approach To Exercise Prescriptions on ISS
NASA Technical Reports Server (NTRS)
Ploutz-Snyder, Lori
2009-01-01
This presentation describes current exercise countermeasures and exercise equipment for astronauts onboard the ISS. Additionally, a strategy for evaluating evidence supporting spaceflight exercise is described and a new exercise prescription is proposed. The current exercise regimen is not fully effective as the ISS exercise hardware does not allow for sufficient exercise intensity, the exercise prescription is adequate and crew members are noncompliant with the prescription. New ISS hardware is proposed, Advanced Resistance Exercise Device (ARED), which allows additional exercises, is instrumented for data acquisition and offers improved loading. The new T2 hardware offers a better harness and subject loading system, is instrumented to allow ground reaction force data, and offers improved speed. A strategy for developing a spaceflight exercise prescription is described and involves identifying exercise training programs that have been shown to maximize adaptive benefits of people exercising in both 0 and 1 g environments. Exercise intensity emerged as an important factor in maintaining physiologic adaptations in the spaceflight environment and interval training is suggested. New ISS exercise hardware should allow for exercise at intensities high enough to elicit adaptive responses. Additionally, new exercise prescriptions should incorporate higher intensity exercises and seek to optimize intensity, duration and frequency for greater efficiency.
Hessel, Anthony L.; Lindstedt, Stan L.; Nishikawa, Kiisa C.
2017-01-01
When active muscles are stretched, our understanding of muscle function is stretched as well. Our understanding of the molecular mechanisms of concentric contraction has advanced considerably since the advent of the sliding filament theory, whereas mechanisms for increased force production during eccentric contraction are only now becoming clearer. Eccentric contractions play an important role in everyday human movements, including mobility, stability, and muscle strength. Shortly after the sliding filament theory of muscle contraction was introduced, there was a reluctant recognition that muscle behaved as if it contained an “elastic” filament. Jean Hanson and Hugh Huxley referred to this structure as the “S-filament,” though their concept gained little traction. This additional filament, the giant titin protein, was identified several decades later, and its roles in muscle contraction are still being discovered. Recent research has demonstrated that, like activation of thin filaments by calcium, titin is also activated in muscle sarcomeres by mechanisms only now being elucidated. The mdm mutation in mice appears to prevent activation of titin, and is a promising model system for investigating mechanisms of titin activation. Titin stiffness appears to increase with muscle force production, providing a mechanism that explains two fundamental properties of eccentric contractions: their high force and low energetic cost. The high force and low energy cost of eccentric contractions makes them particularly well suited for athletic training and rehabilitation. Eccentric exercise is commonly prescribed for treatment of a variety of conditions including sarcopenia, osteoporosis, and tendinosis. Use of eccentric exercise in rehabilitation and athletic training has exploded to include treatment for the elderly, as well as muscle and bone density maintenance for astronauts during long-term space travel. For exercise intolerance and many types of sports injuries, experimental evidence suggests that interventions involving eccentric exercise are demonstrably superior to conventional concentric interventions. Future work promises to advance our understanding of the molecular mechanisms that confer high force and low energy cost to eccentric contraction, as well as signaling mechanisms responsible for the beneficial effects of eccentric exercise in athletic training and rehabilitation. PMID:28232805
Using Maximal Isometric Force to Determine the Optimal Load for Measuring Dynamic Muscle Power
NASA Technical Reports Server (NTRS)
Spiering, Barry A.; Lee, Stuart M. C.; Mulavara, Ajitkumar P.; Bentley, Jason R.; Nash, Roxanne E.; Sinka, Joseph; Bloomberg, Jacob J.
2009-01-01
Maximal power output occurs when subjects perform ballistic exercises using loads of 30-50% of one-repetition maximum (1-RM). However, performing 1-RM testing prior to power measurement requires considerable time, especially when testing involves multiple exercises. Maximal isometric force (MIF), which requires substantially less time to measure than 1-RM, might be an acceptable alternative for determining the optimal load for power testing. PURPOSE: To determine the optimal load based on MIF for maximizing dynamic power output during leg press and bench press exercises. METHODS: Twenty healthy volunteers (12 men and 8 women; mean +/- SD age: 31+/-6 y; body mass: 72 +/- 15 kg) performed isometric leg press and bench press movements, during which MIF was measured using force plates. Subsequently, subjects performed ballistic leg press and bench press exercises using loads corresponding to 20%, 30%, 40%, 50%, and 60% of MIF presented in randomized order. Maximal instantaneous power was calculated during the ballistic exercise tests using force plates and position transducers. Repeated-measures ANOVA and Fisher LSD post hoc tests were used to determine the load(s) that elicited maximal power output. RESULTS: For the leg press power test, six subjects were unable to be tested at 20% and 30% MIF because these loads were less than the lightest possible load (i.e., the weight of the unloaded leg press sled assembly [31.4 kg]). For the bench press power test, five subjects were unable to be tested at 20% MIF because these loads were less than the weight of the unloaded aluminum bar (i.e., 11.4 kg). Therefore, these loads were excluded from analysis. A trend (p = 0.07) for a main effect of load existed for the leg press exercise, indicating that the 40% MIF load tended to elicit greater power output than the 60% MIF load (effect size = 0.38). A significant (p . 0.05) main effect of load existed for the bench press exercise; post hoc analysis indicated that the effect of load on power output was: 30% > 40% > 50% = 60%. CONCLUSION: Loads of 40% and 30% of MIF elicit maximal power output during dynamic leg presses and bench presses, respectively. These findings are similar to those obtained when loading is based on 1-RM.
Single-leg hop testing following fatiguing exercise: reliability and biomechanical analysis.
Augustsson, J; Thomeé, R; Lindén, C; Folkesson, M; Tranberg, R; Karlsson, J
2006-04-01
A fatiguing exercise protocol was combined with single-leg hop testing to improve the possibilities of evaluating the effects of training or rehabilitation interventions. In the first test-retest experiment, 11 healthy male subjects performed two trials of single-leg hops under three different test conditions: non-fatigued and following fatiguing exercise, which consisted of unilateral weight machine knee extensions at 80% and 50%, respectively, of 1 repetition maximum (1 RM) strength. Intraclass correlation coefficients ranged from 0.75 to 0.98 for different hop test conditions, indicating that all tests were reliable. For the second experiment, eight healthy male subjects performed the fatiguing exercise protocol to investigate how fatigue influences lower-extremity joint kinematics and kinetics during single-leg hops. Hip, knee and ankle joint angles, moments and powers, as well as ground-reaction forces were recorded with a six-camera, motion-capture system and a force platform. Recovery of hop performance following the fatiguing exercise was also measured. During the take-off for the single-leg hops, hip and knee flexion angles, generated powers for the knee and ankle joints, and ground-reaction forces decreased for the fatigued hop conditions compared with the non-fatigued condition (P<0.05). Compared with landing during the non-fatigued condition, hip moments and ground-reaction forces were lower for the fatigued hop conditions (P<0.05). The negative joint power was two to three times greater for the knee than for the hip and five to 10 times greater for the knee than for the ankle during landing for all test conditions (P<0.05). Most measured variables had recovered three minutes post-exercise. It is concluded that the fatiguing exercise protocol combined with single-leg hop testing was a reliable method for investigating functional performance under fatigued test conditions. Further, subjects utilized an adapted hop strategy, which employed less hip and knee flexion and generated powers for the knee and ankle joints during take-off, and less hip joint moments during landing under fatigued conditions. The large negative power values observed at the knee joint during the landing phase of the single-leg hop, during which the quadriceps muscle activates eccentrically, indicate that not only hop distance but also the ability to perform successful landings should be investigated when assessing dynamic knee function.
Cureton's Basic Principles of Physical Fitness Work (Rules for Conducting Exercise).
ERIC Educational Resources Information Center
President's Council on Physical Fitness and Sports, Washington, DC.
This document is an annotated list of 20 rules for conducting exercise. Among the rules described are the warm-up rule, the rule for regulation of exercise dosage, recuperation rule, posture rule, glandular fitness rule, maximum respiration rule, and maximum circulation rule. The time of workout and procedures for taking cool baths are…
Descarreaux, Martin; Blouin, Jean-Sébastien; Normand, Martin C; Hudon, Daniel
2001-01-01
Background: Ankylosing spondylitis (AS) produces gradual ossification in articular components of the sacro-iliac joints, spine, thoracic and scapular region. This pathology features a diminution of range of motion, muscle force and extensibility as well as functional capacities. Actual treatment of ankylosing spondylitis includes exercise program aimed at pain control, restoration of normal muscle force and extensibility and improvement in functional capacities. These programs are designed to adapt to the special characteristics of ankylosing spondylitis population. Case study: We present the case of a 30 years old man suffering from AS who participated in a 10 week exercise program based on his personal characteristics. We evaluated changes in trunk and hip muscle force and extensibility, pain level (visual pain scale) and disability level (Modified Oswerstry questionnaire). Conclusion: He showed improvement of some physical characteristics that were deficient in the initial evaluation. Improvement were noted in trunk range of motion, some muscular group forces and extensibility of certain muscles too.
Lima, Fabiano F; Camillo, Carlos A; Gobbo, Luis A; Trevisan, Iara B; Nascimento, Wesley B B M; Silva, Bruna S A; Lima, Manoel C S; Ramos, Dionei; Ramos, Ercy M C
2018-03-01
The objectives of the study were to compare the effects of resistance training using either a low cost and portable elastic tubing or conventional weight machines on muscle force, functional exercise capacity, and health-related quality of life (HRQOL) in middle-aged to older healthy adults. In this clinical trial twenty-nine middle-aged to older healthy adults were randomly assigned to one of the three groups a priori defined: resistance training with elastic tubing (ETG; n = 10), conventional resistance training (weight machines) (CTG; n = 9) and control group (CG, n = 10). Both ETG and CTG followed a 12-week resistance training (3x/week - upper and lower limbs). Muscle force, functional exercise capacity and HRQOL were evaluated at baseline, 6 and 12 weeks. CG underwent the three evaluations with no formal intervention or activity counseling provided. ETG and CTG increased similarly and significantly muscle force (Δ16-44% in ETG and Δ25-46% in CTG, p < 0.05 for both), functional exercise capacity (ETG Δ4 ± 4% and CTG Δ6±8%; p < 0.05 for both). Improvement on "pain" domain of HRQOL could only be observed in the CTG (Δ21 ± 26% p = 0.037). CG showed no statistical improvement in any of the variables investigated. Resistance training using elastic tubing (a low cost and portable tool) and conventional resistance training using weight machines promoted similar positive effects on peripheral muscle force and functional exercise capacity in middle-aged to older healthy adults.
Gender Bias in Leader Selection.
ERIC Educational Resources Information Center
Teaching of Psychology, 1995
1995-01-01
Describes a classroom exercise showing students how stereotypes can result in sex-biased leader selection. Finds that task-oriented competitive instructions produce a disproportionate number of selected male leaders. Includes procedures for replicating and evaluating the exercise. (CFR)
Are Squats and Lunges Safe in the Rehabilitation of Patients with Patellofemoral Pain?
Wood, David; Metcalfe, Andrew; Dodge, Jen; Templeton-Ward, Oliver
2016-01-01
Objectives: Patello-femoral pain is a common presenting complaint in orthopaedic clinics, and initial management often involves exercise and quadriceps strengthening regimes. Squats and lunges have become a common part of physiotherapy regimes as well as many exercise programs. It has been our observation that some patients experience a deterioration in pain after starting squats and lunges, and there is no agreement about the safe use of these exercises. The aim of this paper is to review the clinical and biomechanical literature to assess the safety of squats and lunges of patients with patella-femoral or anterior knee pain. Methods: Systematic Review. A literature review was performed of the Pubmed and PEDro databases using a pre-defined search strategy. Titles were screened by both an orthopaedic surgeon and a physiotherapist, abstracts were reviewed and the final papers were selected for inclusion. Randomised trials or comparative cohort studies of exercise regimes were included from the clinical literature as well as systematic reviews or meta-analyses published in the last 5 years. Patello-femoral forces calculated either from in-vivo data or cadaveric simulations were included from the biomechanical literature. Results: The searches revealed 3237 titles, which were reduced to 27 papers for the literature review. The biomechanical literature clearly demonstrated increasing patello-femoral forces during squats with increasing flexion, peaking at 90° of flexion and then falling in deep flexion. Less data was available on lunges but findings were comparable to studies of squats. Forces in the PFJ experienced during squats and lunges are significantly greater than with open-chain exercises beyond 60° of knee flexion. There were 13 clinical studies and 8 systematic reviews identified, which demonstrated that exercise is an effective treatment for PF pain with no significant difference between closed or open chain exercises (one study only). However only one study included squats beyond 60° or lunges in their protocols, with the majority excluding these exercises or limiting the degree of knee flexion, and no study has examined the use of squats and lunges specifically. Conclusion: Whilst squats and lunges are commonly prescribed, they have been used relatively little in clinical trials and have not been investigated independently. The biomechanical literature demonstrates that forces are relatively low when knee flexion is limited, but that flexion up to 90° places the PFJ under significant load. Given the vulnerable patient population in which they are used, the use of squats and lunges up to 90° should be discouraged in orthopaedic rehabilitation.
Biscarini, Andrea; Botti, Fabio Massimo; Pettorossi, Vito Enrico
2013-09-01
A biomechanical model was developed to simulate the selective effect of the co-contraction force provided by each hamstring muscle on the shear and compressive tibiofemoral joint reaction forces, during open kinetic-chain knee-extension exercises. This model accounts for instantaneous values of knee flexion angle [Formula: see text], angular velocity and acceleration, and for changes in magnitude, orientation, and application point of external resistance. The tibiofemoral shear force (TFSF) largely determines the tensile force on anterior cruciate ligament (ACL) and posterior cruciate ligament (PCL). Biceps femoris is the most effective hamstring muscle in decreasing the ACL-loading TFSF developed by quadriceps contractions for [Formula: see text]. In this range, the semimembranosus generates the dominant tibiofemoral compressive force, which enhances joint stability, opposes anterior/posterior tibial translations, and protects cruciate ligaments. The semitendinosus force provides the greatest decreasing gradient of ACL-loading TFSF for [Formula: see text], and the greatest increasing gradient of tibiofemoral compressive force for [Formula: see text]. However, semitendinosus efficacy is strongly limited by its small physiological section. Hamstring muscles behave as a unique muscle in enhancing the PCL-loading TFSF produced by quadriceps contractions for [Formula: see text]. The levels of hamstrings co-activation that suppress the ACL-loading TFSF considerably shift when the knee angular acceleration is changed while maintaining the same level of knee extensor torque by a concurrent adjustment in the magnitude of external resistance. The knowledge of the specific role and the optimal activation level of each hamstring muscle in ACL protection and tibiofemoral stability are fundamental for planning safe and effective rehabilitative knee-extension exercises.
Meyerspeer, M.; Krššák, M.; Kemp, G.J.; Roden, M.; Moser, E.
2016-01-01
1 Objective To develop a measurement method for interleaved acquisition of 1H and 31P STEAM localised spectra of exercising human calf muscle. 2 Materials and Methods A nonmagnetic exercise rig with a pneumatic piston and sensors for force and pedal angle was constructed to enable plantar flexion measured in the 3 Tesla MR scanner, which holds the dual tuned (1H,31P) surface coil used for signal transmission and reception. 3 Results 31P spectra acquired in interleaved mode benefit from higher SNR (factor of 1.34± 0.06 for PCr) compared to standard acquisition due to the Nuclear Overhauser effect (NOE) and substantial PCr/Pi changes during exercise can be observed in 31P spectra. 1H spectral quality is equal to that in single mode experiments and allows Cr2 changes to be monitored. 4 Conclusion The feasibility of dynamic interleaved localised 1H and 31P spectroscopy during plantar flexion exercise has been demonstrated using a custom-built pneumatic system for muscle activation. This opens the possibility of studying the dynamics of metabolism with multi nuclear MRS in a single run. PMID:16320091
Taati, Majid; Moghaddasi, Mehrnoush; Esmaeili, Masoumeh; Pourkhodadad, Soheila; Nayebzadeh, Hassan
2014-10-31
While it is well known that exercise can improve cognitive performance, the underlying mechanisms are not fully understood. There is now evidence that histamine can modulate learning and memory in different types of behavioral tasks. The present study was designed to examine the possible role of central histamine H1 and H2 receptors in forced treadmill running-induced enhancement of learning and memory in rats. For this purpose the animals received intracerebroventricularly chlorpheniramine (H1 receptor blocker) and cimetidine (H2 receptor blocker) before each day of fifteen consecutive days of exercise. Then their learning and memory were tested on the water maze task using a four-trial-per-day for 4 consecutive days. A probe trial was performed after the last training day. Our data showed that cimetidine reversed the exercise-induced improvement in learning and memory in rats; however, this was not the case regarding chlorpheniramine. Our findings indicate that central histamine H2 receptors play an important role in mediating the beneficial effects of forced exercise on learning and memory. Copyright © 2014 Elsevier B.V. All rights reserved.
Veni, T; Boyas, S; Beaune, B; Bourgeois, H; Rahmani, A; Landry, S; Bochereau, A; Durand, S; Morel, B
2018-06-24
As a subjective symptom, cancer-related fatigue is assessed via patient-reported outcomes. Due to the inherent bias of such evaluation, screening and treatment for cancer-related fatigue remains suboptimal. The purpose is to evaluate whether objective cancer patients' hand muscle mechanical parameters (maximal force, critical force, force variability) extracted from a fatiguing handgrip exercise may be correlated to the different dimensions (physical, emotional, and cognitive) of cancer-related fatigue. Fourteen women with advanced breast cancer, still under or having previously received chemotherapy within the preceding 3 months, and 11 healthy women participated to the present study. Cancer-related fatigue was first assessed through the EORTC QLQ-30 and its fatigue module. Fatigability was then measured during 60 maximal repeated handgrip contractions. The maximum force, critical force (asymptote of the force-time evolution), and force variability (root mean square of the successive differences) were extracted. Multiple regression models were performed to investigate the influence of the force parameters on cancer-related fatigue's dimensions. The multiple linear regression analysis evidenced that physical fatigue was best explained by maximum force and critical force (r = 0.81; p = 0.029). The emotional fatigue was best explained by maximum force, critical force, and force variability (r = 0.83; p = 0.008). The cognitive fatigue was best explained by critical force and force variability (r = 0.62; p = 0.035). The handgrip maximal force, critical force, and force variability may offer objective measures of the different dimensions of cancer-related fatigue and could provide a complementary approach to the patient reported outcomes.
Interagency Task Forces: The Right Tools for the Job
2011-01-01
shortcomings. This analysis discusses four organizational reform models and recommends the interagency task force ( IATF ) as the preferred structure...model.64 Still others recommend creating and deploying ad hoc IATFs for crisis operations. These interagency task forces would be task- organized to...forces assigned for planning, exercises, and mission execution.65 A 2005 article in Policy Review recommended developing IATFs as needed for specific
Westhoff-Bleck, Mechthild; Schieffer, Bernhard; Tegtbur, Uwe; Meyer, Gerd Peter; Hoy, Ludwig; Schaefer, Arnd; Tallone, Ezequiel Marcello; Tutarel, Oktay; Mertins, Ramona; Wilmink, Lena Mara; Anker, Stefan D; Bauersachs, Johann; Roentgen, Philipp
2013-12-05
Exercise training safely and efficiently improves symptoms in patients with heart failure due to left ventricular dysfunction. However, studies in congenital heart disease with systemic right ventricle are scarce and results are controversial. In a randomised controlled study we investigated the effect of aerobic exercise training on exercise capacity and systemic right ventricular function in adults with d-transposition of the great arteries after atrial redirection surgery (28.2 ± 3.0 years after Mustard procedure). 48 patients (31 male, age 29.3 ± 3.4 years) were randomly allocated to 24 weeks of structured exercise training or usual care. Primary endpoint was the change in maximum oxygen uptake (peak VO2). Secondary endpoints were systemic right ventricular diameters determined by cardiac magnetic resonance imaging (CMR). Data were analysed per intention to treat analysis. At baseline peak VO2 was 25.5 ± 4.7 ml/kg/min in control and 24.0 ± 5 ml/kg/min in the training group (p=0.3). Training significantly improved exercise capacity (treatment effect for peak VO2 3.8 ml/kg/min, 95% CI: 1.8 to 5.7; p=0.001), work load (p=0.002), maximum exercise time (p=0.002), and NYHA class (p=0.046). Systemic ventricular function and volumes determined by CMR remained unchanged. None of the patients developed signs of cardiac decompensation or arrhythmias while on exercise training. Aerobic exercise training did not detrimentally affect systemic right ventricular function, but significantly improved exercise capacity and heart failure symptoms. Aerobic exercise training can be recommended for patients following atrial redirection surgery to improve exercise capacity and to lessen or prevent heart failure symptoms. ( ClinicalTrials.gov #NCT00837603). © 2013.
Loading, electromyograph, and motion during exercise
NASA Technical Reports Server (NTRS)
Todd, Beth A.
1993-01-01
A bicycle ergometer system has been developed to determine forces acting in specific muscles and muscle groups for both cycling and isometric exercise. The bicycle has been instrumented with encoders, accelerometers, and load cells. A harnessing system has been developed to keep subjects in place during isometric exercise. EMG data will also be collected with electrodes attached to various muscles on the subject's leg. Data has been collected for static loading and will be collected for cycling in both an earth-based laboratory and on the KC-135. Once the data is analyzed, the forces will be entered into finite element models of bones of the lower extremities. A finite element model of the tibia-fibula has been generated from the experimental subject's MRI data. The linear elastic isoparametric brick elements representing the bones are connected by linear elastic isoparametric shell elements placed at the locations of ligaments. Models will be generated for the calcaneus and the femur. Material properties for the various tissues will be taken from the literature. The experimentally determined muscle forces will be applied to the models to determine the stress distribution which is created in the bones.
Physical training in children with osteogenesis imperfecta.
Van Brussel, Marco; Takken, Tim; Uiterwaal, Cuno S P M; Pruijs, Hans J; Van der Net, Janjaap; Helders, Paul J M; Engelbert, Raoul H H
2008-01-01
To study the effects of a physical training program on exercise capacity, muscle force, and subjective fatigue levels in patients with mild to moderate forms of osteogenesis imperfecta (OI). Thirty-four children with OI type I or IV were randomly assigned to either a 12-week graded exercise program or care as usual for 3 months. Exercise capacity and muscle force were studied; subjective fatigue, perceived competence, and health-related quality of life were secondary outcomes. All outcomes were measured at baseline (T = 0), after intervention (T = 1), and after 6 and 9 months (T = 2 and T = 3, respectively). After intervention (T = 1), peak oxygen consumption (VO2peak), relative VO2peak (VO2peak/kg), maximal working capacity (Wmax), and muscle force were significantly improved (17%, 18%, 10%, and 12%, respectively) compared with control values. Subjective fatigue decreased borderline statistically significantly. Follow-up at T = 2 showed a significant decrease of the improvements measured at T = 1 of VO2peak, but VO2peak/kg, Wmax, and subjective fatigue showed no significant difference. At T = 3, we found a further decrease of the gained improvements. A supervised training program can improve aerobic capacity and muscle force and reduces levels of subjective fatigue in children with OI type I and IV in a safe and effective manner.
Development of Minimum Physical Fitness Standards for the Canadian Armed Forces. Phase 2
1987-03-31
consistently has been shown to be physically demanding; maximal h-eart rate response and near-maximal blood lactate post- exercise values are elicited, confirming...were near-maximal (i.e. their heart rates and post- exercise blood lactate responses ), in close agreement with the literature reported for load-carrying...factors which determine the cardiovascular responses to sustained and rhythmic exercise . Canadian Medical Association Journal, 96, 706-715. Lind, A
NASA Technical Reports Server (NTRS)
Peterman, M.; McCrory, J. L.; Sharkey, N. A.; Piazza, S.; Cavanagh, P. R.
1999-01-01
The human zero-gravity locomotion simulator and the cadaver simulator offer a powerful combination for the study of the implications of exercise for maintaining bone quality during space flight. Such studies, when compared with controlled in-flight exercise programs, could help in the identification of a strain threshold for the prevention of bone loss during space flight.
Biochemical Changes in Tissues during Infectious Illness: Bioenergetics of Infection and Exercise.
1982-05-01
Exercise and Diet on Physical Well-Being ....... ............ ... 28 15.1 Forced Exercise and Stage of the Disease Cycle: Effect on Mortality...glycogen in the infected animals, and the effects on plasma lipids suggest that training did not alter the anti- ketogenic effect of the S. typhimurium...the infection on diet intake confounded the disease effect per se and resulted in large losses of liver nitrogen during overt illness. This
1997-05-01
lose weight. The methods of weight loss reported were exercising , skipping meals, using diet pills, and self- induced vomiting. In each case, females...Restrictive Diet Popular Diet Self- induced Vomifing Laxatives Diuretics Diet Pills Exercise Other Note- N = frequency of resf were allowed to...Rate 69 Demographic Data 69 Exercise 70 Weight Loss Beliefs and Practices 71 Additional Data Collected 76 Implications for Military Health Care
The interactive effect of cooling and hypoxia on forearm fatigue development.
Lloyd, Alex; Hodder, Simon; Havenith, George
2015-09-01
To examine the effect of separate and combined exposure to hypoxia [normoxia (FIO2 = 0.21) vs. moderate altitude (FIO2 = 0.13)] and temperature [thermoneutral (22 °C) vs. cold (5 °C)] on muscle fatigue development in the forearm, after repeated low-resistance contractions. Eight males were exposed for 70 min to four separate conditions in a balanced order. Conditions were normoxic-thermoneutral (N), hypoxic-thermoneutral, normoxic-cold and hypoxic-cold. After 15-min seated rest, participants carried out intermittent dynamic forearm exercise at 15 % maximal isometric voluntary contraction (MVC) for eight consecutive, 5-min work bouts. Each bout was separated by 110 s rest during which MVC force was collected. When exposed to hypoxia and cold independently, the exercise protocol decreased MVC force of the finger flexors by 8.1 and 13.9 %, respectively, compared to thermoneutral normoxia. When hypoxia and cold were combined, the decrease in MVC force was 21.4 % more than thermoneutral normoxia, reflecting an additive effect and no interaction. EMG relative to force produced during MVC, increased by 2 and 1.2 μV per kg (36 and 23 % of N) for cold and hypoxia, respectively. When the stressors were combined the effect was additive, increasing to 3.1 μV per kg (56 % of N). When compared to exercise in thermoneutral normoxic conditions, both cold and hypoxia significantly reduce brief MVC force output. This effect appears to be of mechanical origin, not a failure in muscle fibre recruitment per se. Additionally, the reduction in force is greater when the stressors are combined, showing an additive effect.
Titrimetric Determination of Carbon Dioxide in a Heterogeneous Sample ("Pop Rocks")
NASA Astrophysics Data System (ADS)
Davis, Craig M.; Mauck, Matthew C.
2003-05-01
A traditional exercise in quantitative analysis is the titration of mixtures of sodium hydroxide, sodium carbonate, and sodium bicarbonate. Often, consumer products are studied. A procedure to analyze the total volume of carbon dioxide bubbles in the candy "Pop Rocks" is presented. The popularity of the sample and the simplicity of the procedure make this exercise suitable for a wide variety of students: from non-science majors to chemistry majors in a quantitative analysis course.
Oxidative Stress and COPD: The Impact of Oral Antioxidants on Skeletal Muscle Fatigue
Rossman, Matthew J.; Groot, H. Jonathan; Van Reese; Zhao, Jia; Amann, Markus; Richardson, Russell S.
2014-01-01
PURPOSE Oxidative stress may contribute to exercise intolerance in patients with chronic obstructive pulmonary disease (COPD). This study sought to determine the effect of an acute oral antioxidant cocktail (AOC: vitamins C, E, and alpha-lipoic acid) on skeletal muscle function during dynamic quadriceps exercise in COPD. METHODS Ten patients with COPD performed knee extensor exercise to exhaustion and isotime trials following either the AOC or placebo (PL). Pre- to post-exercise changes in quadriceps maximal voluntary contractions (MVCs) and potentiated twitch forces (Qtw,pot) quantified quadriceps fatigue. RESULTS Under PL conditions, the plasma electron paramagnetic resonance (EPR) spectroscopy signal was inversely correlated with the forced expiratory volume in one second to forced vital capacity ratio (FEV1/FVC), an index of lung dysfunction (r=−0.61, p=0.02), and MVC force (r=−0.56, p=0.04). AOC consumption increased plasma ascorbate levels (10.1±2.2 to 24.1±3.8 ug/ml, p<0.05) and attenuated the area under the curve of the EPR spectroscopy free radical signal (11.6±3.7 to 4.8±2.2 AU, p<0.05), but did not alter endurance time or quadriceps fatigue. The ability of the AOC to decrease the EPR spectroscopy signal, however, was prominent in those with high basal free radicals (n=5, PL: 19.7±5.8 to AOC: 5.8±4.5 AU, p<0.05) with minimal effects in those with low levels (n=5, PL: 1.6±0.5 to AOC: 3.4±1.1 AU). DISCUSSION These data document a relationship between directly measured free radicals and lung dysfunction, and the ability of the AOC to decrease oxidative stress in COPD. Acute amelioration of free radicals, however, does not appear to impact dynamic quadriceps exercise performance. PMID:23299763
The effects of creatine pyruvate and creatine citrate on performance during high intensity exercise
Jäger, Ralf; Metzger, Jan; Lautmann, Karin; Shushakov, Vladimir; Purpura, Martin; Geiss, Kurt-Reiner; Maassen, Norbert
2008-01-01
Background A double-blind, placebo-controlled, randomized study was performed to evaluate the effect of oral creatine pyruvate (Cr-Pyr) and creatine citrate (Cr-Cit) supplementation on exercise performance in healthy young athletes. Methods Performance during intermittent handgrip exercise of maximal intensity was evaluated before (pretest) and after (posttest) 28 days of Cr-Pyr (5 g/d, n = 16), Cr-Cit (5 g/d, n = 16) or placebo (pla, 5 g/d, n = 17) intake. Subjects performed ten 15-sec exercise intervals, each followed by 45 sec rest periods. Results Cr-Pyr (p < 0.001) and Cr-Cit (p < 0.01) significantly increased mean power over all intervals. Cr-Cit increased force during the first and second interval (p < 0.01) compared to placebo. The effect of Cr-Cit on force decreased over time and the improvement was not significant at the sixth and ninth interval, whereas Cr-Pyr significantly increased force during all intervals (p < 0.001). Cr-Pyr (p < 0.001) and Cr-Cit (p < 0.01) resulted in an increase in contraction velocity, whereas only Cr-Pyr intake significantly (p < 0.01) increased relaxation velocity. Oxygen consumption measured during rest periods significantly increased with Cr-Pyr (p < 0.05), whereas Cr-Cit and placebo intake did not result in significant improvements. Conclusion It is concluded that four weeks of Cr-Pyr and Cr-Cit intake significantly improves performance during intermittent handgrip exercise of maximal intensity and that Cr-Pyr might benefit endurance, due to enhanced activity of the aerobic metabolism. PMID:18269769
Oxidative stress response in trained men following repeated squats or sprints.
Bloomer, Richard J; Falvo, Michael J; Fry, Andrew C; Schilling, Brian K; Smith, Webb A; Moore, Christopher A
2006-08-01
The purpose of this investigation was to measure the oxidative stress response to similarly matched work bouts of squat and sprint exercise. Twelve anaerobically trained men performed six 10-s sprints and, on a separate occasion, repeated barbell squats to approximately equal the amount of work performed during the sprints. Blood lactate, heart rate, and perceived exertion was measured before and following each exercise bout. Muscle soreness, muscle force, and creatine kinase activity was determined preexercise and through 48 h of recovery. Desmin cytoskeletal protein was determined via muscle biopsy of the vastus lateralis before and at 24 h following each exercise. Plasma protein carbonyls (PC) and malondialdehyde (MDA) were measured as biomarkers of oxidative stress. Heart rate and perceived exertion was not different between exercise sessions (P > 0.05), although lactate was higher following sprinting compared with squatting (P = 0.002). Muscle soreness was greater for squatting than sprinting (P = 0.003) and reached a peak immediately postexercise for both sessions (P = 0.0003). Muscle force was unaffected by either exercise session (P > 0.05), and creatine kinase activity was elevated to a similar extent following both sessions. Desmin-negative fibers were virtually nonexistent after either exercise bout, indicating no loss of this cytoskeletal protein. Neither PC nor MDA was affected by the exercise (P > 0.05). These results suggest that in anaerobically trained men, the oxidative stress and muscle injury response to similarly matched anaerobic exercise bouts is minimal, and not different between exercise modes. Furthermore, when compared with previous literature on untrained subjects, the response is significantly attenuated, possibly because of adaptations occurring as a result of chronic, strenuous anaerobic training.
Place, Nicolas; Ivarsson, Niklas; Venckunas, Tomas; Neyroud, Daria; Brazaitis, Marius; Cheng, Arthur J.; Ochala, Julien; Kamandulis, Sigitas; Girard, Sebastien; Volungevičius, Gintautas; Paužas, Henrikas; Mekideche, Abdelhafid; Kayser, Bengt; Martinez-Redondo, Vicente; Bruton, Joseph; Truffert, Andre; Lanner, Johanna T.; Skurvydas, Albertas; Westerblad, Håkan
2015-01-01
High-intensity interval training (HIIT) is a time-efficient way of improving physical performance in healthy subjects and in patients with common chronic diseases, but less so in elite endurance athletes. The mechanisms underlying the effectiveness of HIIT are uncertain. Here, recreationally active human subjects performed highly demanding HIIT consisting of 30-s bouts of all-out cycling with 4-min rest in between bouts (≤3 min total exercise time). Skeletal muscle biopsies taken 24 h after the HIIT exercise showed an extensive fragmentation of the sarcoplasmic reticulum (SR) Ca2+ release channel, the ryanodine receptor type 1 (RyR1). The HIIT exercise also caused a prolonged force depression and triggered major changes in the expression of genes related to endurance exercise. Subsequent experiments on elite endurance athletes performing the same HIIT exercise showed no RyR1 fragmentation or prolonged changes in the expression of endurance-related genes. Finally, mechanistic experiments performed on isolated mouse muscles exposed to HIIT-mimicking stimulation showed reactive oxygen/nitrogen species (ROS)-dependent RyR1 fragmentation, calpain activation, increased SR Ca2+ leak at rest, and depressed force production due to impaired SR Ca2+ release upon stimulation. In conclusion, HIIT exercise induces a ROS-dependent RyR1 fragmentation in muscles of recreationally active subjects, and the resulting changes in muscle fiber Ca2+-handling trigger muscular adaptations. However, the same HIIT exercise does not cause RyR1 fragmentation in muscles of elite endurance athletes, which may explain why HIIT is less effective in this group. PMID:26575622
Place, Nicolas; Ivarsson, Niklas; Venckunas, Tomas; Neyroud, Daria; Brazaitis, Marius; Cheng, Arthur J; Ochala, Julien; Kamandulis, Sigitas; Girard, Sebastien; Volungevičius, Gintautas; Paužas, Henrikas; Mekideche, Abdelhafid; Kayser, Bengt; Martinez-Redondo, Vicente; Ruas, Jorge L; Bruton, Joseph; Truffert, Andre; Lanner, Johanna T; Skurvydas, Albertas; Westerblad, Håkan
2015-12-15
High-intensity interval training (HIIT) is a time-efficient way of improving physical performance in healthy subjects and in patients with common chronic diseases, but less so in elite endurance athletes. The mechanisms underlying the effectiveness of HIIT are uncertain. Here, recreationally active human subjects performed highly demanding HIIT consisting of 30-s bouts of all-out cycling with 4-min rest in between bouts (≤3 min total exercise time). Skeletal muscle biopsies taken 24 h after the HIIT exercise showed an extensive fragmentation of the sarcoplasmic reticulum (SR) Ca(2+) release channel, the ryanodine receptor type 1 (RyR1). The HIIT exercise also caused a prolonged force depression and triggered major changes in the expression of genes related to endurance exercise. Subsequent experiments on elite endurance athletes performing the same HIIT exercise showed no RyR1 fragmentation or prolonged changes in the expression of endurance-related genes. Finally, mechanistic experiments performed on isolated mouse muscles exposed to HIIT-mimicking stimulation showed reactive oxygen/nitrogen species (ROS)-dependent RyR1 fragmentation, calpain activation, increased SR Ca(2+) leak at rest, and depressed force production due to impaired SR Ca(2+) release upon stimulation. In conclusion, HIIT exercise induces a ROS-dependent RyR1 fragmentation in muscles of recreationally active subjects, and the resulting changes in muscle fiber Ca(2+)-handling trigger muscular adaptations. However, the same HIIT exercise does not cause RyR1 fragmentation in muscles of elite endurance athletes, which may explain why HIIT is less effective in this group.
ERIC Educational Resources Information Center
Lyman, Benjamin M.; Farmer, Orrin J.; Ramsey, Ryan D.; Lindsey, Samuel T.; Stout, Stephanie; Robison, Adam; Moore, Holly J.; Sanders, Wesley C.
2012-01-01
A cost-effective, hands-on laboratory exercise is described for demonstrating nanoscale fabrication at non-research-based educational institutions. The laboratory exercise also contains a component involving qualitative and quantitative surface characterization of student-fabricated nanoscale structures at institutions with on-site access to an…
24 CFR 582.330 - Nondiscrimination and equal opportunity requirements.
Code of Federal Regulations, 2013 CFR
2013-04-01
... diseases). However, other eligible disabled homeless persons must be considered for housing designed for....C. 1301 et seq.) applies to tribes when they exercise their powers of self-government, and to IHAs when established by the exercise of such powers. When an IHA is established under State law, the...
Applying Descriptive Statistics to Teaching the Regional Classification of Climate.
ERIC Educational Resources Information Center
Lindquist, Peter S.; Hammel, Daniel J.
1998-01-01
Describes an exercise for college and high school students that relates descriptive statistics to the regional climatic classification. The exercise introduces students to simple calculations of central tendency and dispersion, the construction and interpretation of scatterplots, and the definition of climatic regions. Forces students to engage…
Effects of Inactivity and Exercise on Bone.
ERIC Educational Resources Information Center
Smith, Everett L.; Gilligan, Catherine
1987-01-01
Research has shown that bone tissue responds to the forces of gravity and muscle contraction. The benefits of weight-bearing exercise in preventing or reversing bone mass loss related to osteoporosis is reviewed. The effects of weightlessness and immobilization, and the possible effects of athletic amenorrhea, on bone mineral density are…
A Teaching Exercise for the Identification of Bacteria Using An Interactive Computer Program.
ERIC Educational Resources Information Center
Bryant, Trevor N.; Smith, John E.
1979-01-01
Describes an interactive Fortran computer program which provides an exercise in the identification of bacteria. Provides a way of enhancing a student's approach to systematic bacteriology and numerical identification procedures. (Author/MA)
Laboratory Exercise to Evaluate Hay Preservatives.
ERIC Educational Resources Information Center
McGraw, R. L.; And Others
1990-01-01
Presented is a laboratory exercise designed to demonstrate the effects of moisture on hay preservation products in a manner that does not require large amounts of equipment or instructor time. Materials, procedures, and probable results are discussed. (CW)
Creative Visualization Activities.
ERIC Educational Resources Information Center
Fugitt, Eva D.
1986-01-01
Presents a series of classroom exercises and activities that stimulate children's creativity through the use of visualization. Discusses procedures for guided imagery and offers some examples of "trips" to imaginary places. Proposes visualization as a warm-up exercise before art lessons. (DR)
Vision readiness of the reserve forces of the U.S. Army.
Weaver, J L; McAlister, W H
2001-01-01
In 1996 and 1997, the Army conducted an exercise to assess the ability to rapidly mobilize the reserve forces. In accordance with Army requirements, each soldier was evaluated to determine if he or she met vision and optical readiness standards. Of the 1,947 individuals processed through the optometry section, 40% met vision requirements without correction and 32% met vision requirements with their current spectacles. The remaining 28% required examination. A major impediment to processing reserve units for deployment is the lack of vision and optical readiness. In the mobilization for the Persian Gulf War, significant delays were incurred because of the time required to perform eye examinations and fabricate eyewear. However, as a result of this exercise, current prescriptions will be available in the event of mobilization. To ensure readiness, all units should perform such exercises periodically.
Zimmermann, Wes O; Helmhout, P H; Beutler, A
2017-04-01
Overuse injuries of the leg are a common problem for young soldiers. This article reviews the literature concerning the prevention and treatment of exercise related leg pain in military settings and presents the latest developments in proposed mechanisms and treatments. Current practice and treatment protocols from the Dutch Armed Forces are reviewed, with an emphasis on the most prevalent conditions of medial tibial stress syndrome and chronic exertional compartment syndrome. The conclusion is that exercise related leg pain in the military is an occupational problem that deserves further study. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.
Bicycle ergometer instrumentation to determine muscle and bone forces during exercise
NASA Technical Reports Server (NTRS)
Figueroa, Fernando
1995-01-01
It is hypothesized that bone loss experienced by astronauts in zero gravity conditions may be curtailed by appropriate exercise. According to Wolf's law, bone regenerates when muscles produce stresses by pulling on the bone during daily activity and/or exercise on Earth. to use this theory to prevent or decrease bone loss, one needs to quantify musculoskeletal loads and relate them to bone density changes. In the context of the space program, it is desirable to determine musculoskeletal loads during exercise (using the bicycle ergometer in this case) so that one may make similar measurements on Earth and in space. In this manner, load measurements on Earth may be used as reference to generate similar loads during exercise in space. The work reported in this document entails a musculoskeletal load measurement system that, when complete, will provide forces at muscle insertion points and other contact points, on bone. This data will be used by Dr. Beth A. Todd, who is also a SSF working with Dr. Shackelford, as input to a finite element model of bone sections to determine stress distributions. A bicycle ergometer has been instrumented to measure parameters needed to determine musculoskeletal forces during exercise. A primary feature of the system is its compactness. It uses small/light sensors without line-of-sight requirements. The system developed includes sensors, signal processing, a data acquisition system, and software to collect the data. The sensors used include optical encoders to measure position and orientation of the pedal (foot), accelerometers to determine kinematic parameters of the shank and thigh, load cells to measure pedal forces on the sagittal plane, and EMG probes to measure muscle activity. The signals are processed using anti-aliasing filters and amplifiers. The sensors' output is digitized using 30 channels of a board mounted inside a 486 class PC. A program sets the data acquisition parameters and collects data during a time period specified by the user. The data is put directly into a file on the hard disk in binary form. The 30 channels are sampled at 200 KHz, and each 30 channel scan is done at a rate of 1000 Hz. The instrumented ergometer has been flown in the KC-135 zero-gravity (zero-g) flight to collect information needed to determine musculoskeletal forces under these conditions. Similar information has been collected in 1-g conditions for comparision with the results from the zero-g case. At this time, the sets of data from both experiments are being processed. An existing methodology will be used to determine the kinematic parameters of the shank and thigh using accelerometer and encoder data. This methodology was developed during the fellow's previous NASA/ASEE fellowship and thanks to a Director's Grant. In the future, a methodology to determine the musculoskeletal forces using Newton's Law of Motion and optimization techniques will be developed to determine forces exerted by particular muscles.
44 CFR 300.3 - Financial assistance.
Code of Federal Regulations, 2013 CFR
2013-10-01
... and exercise procedures for State efforts in disaster response, including provision of individual and public assistance; (6) Standard operating procedures for individual State agencies to execute disaster... reduce vulnerability to natural hazards. (11) Plans or procedures for dealing with disasters not...
44 CFR 300.3 - Financial assistance.
Code of Federal Regulations, 2014 CFR
2014-10-01
... and exercise procedures for State efforts in disaster response, including provision of individual and public assistance; (6) Standard operating procedures for individual State agencies to execute disaster... reduce vulnerability to natural hazards. (11) Plans or procedures for dealing with disasters not...
44 CFR 300.3 - Financial assistance.
Code of Federal Regulations, 2011 CFR
2011-10-01
... and exercise procedures for State efforts in disaster response, including provision of individual and public assistance; (6) Standard operating procedures for individual State agencies to execute disaster... reduce vulnerability to natural hazards. (11) Plans or procedures for dealing with disasters not...
44 CFR 300.3 - Financial assistance.
Code of Federal Regulations, 2012 CFR
2012-10-01
... and exercise procedures for State efforts in disaster response, including provision of individual and public assistance; (6) Standard operating procedures for individual State agencies to execute disaster... reduce vulnerability to natural hazards. (11) Plans or procedures for dealing with disasters not...
Metabolic, respiratory, and cardiological measurements during exercise and rest
NASA Technical Reports Server (NTRS)
1971-01-01
Low concentration effects of CO2 on metabolic respiration and circulation were measured during work and at rest. The relationship between heart rate and metabolic rate is examined, as well as calibration procedures, and rate measurement during submaximal and standard exercise tests. Alterations in acid base and electrolytes were found during exhaustive exercise, including changes in ECG and metabolic alkalosis effects.
2012-06-01
assets; or Cobra Gold, a six-week exercise conducted jointly with the Royal Thai Armed Forces (U.S. Army, Pacific, 2012). Because these operations do...point of use. An example of this type of mobilization is Cobra Gold, a six-week exercise conducted jointly with the Royal Thai Armed Forces...in the same theatre , and to discontinue the loss of maintenance man-hours in packing and unpacking the entire support package upon each deployment
The sports performance application of vibration exercise for warm-up, flexibility and sprint speed.
Cochrane, Darryl
2013-01-01
Since the turn of the 21st century, there has been a resurgence of vibration technology to enhance sport science especially for power and force development. However, vibration exercise has been trialled in other areas that are central to athlete performance such as warm-up, flexibility and sprint speed. Therefore, the aim of this review was to attempt to gain a better understanding of how acute and short-term vibration exercise may impact on warm-up, flexibility and sprint speed. The importance of warming up for sporting performance has been well documented and vibration exercise has the capability to be included or used as a standalone warm-up modality to increase intramuscular temperature at a faster rate compared to other conventional warm-up modalities. However, vibration exercise does not provide any additional neurogenic benefits compared to conventional dynamic and passive warm-up interventions. Vibration exercise appears to be a safe modality that does not produce any adverse affects causing injury or harm and could be used during interval and substitution breaks, as it would incur a low metabolic cost and be time-efficient compared to conventional warm-up modalities. Acute or short-term vibration exercise can enhance flexibility and range of motion without having a detrimental effect on muscle power, however it is less clear which mechanisms may be responsible for this enhancement. It appears that vibration exercise is not capable of improving sprint speed performance; this could be due to the complex and dynamic nature of sprinting where the purported increase in muscle power from vibration exercise is probably lost on repeated actions of high force generation. Vibration exercise is a safe modality that produces no adverse side effects for injury or harm. It has the time-efficient capability of providing coaches, trainers, and exercise specialists with an alternative modality that can be implemented for warm-up and flexibility either in isolation or in conjunction with other conventional training methods.
Brief submaximal isometric exercise improves cold pressor pain tolerance.
Foxen-Craft, Emily; Dahlquist, Lynnda M
2017-10-01
Exercise-induced hypoalgesia (EIH), or the inhibition of pain following physical exercise, has been demonstrated in adults, but its mechanisms have remained unclear due to variations in methodology. This study aimed to address methodological imitations of past studies and contribute to the literature demonstrating the generalizability of EIH to brief submaximal isometric exercise and cold pressor pain. Young adults (n = 134) completed a baseline cold pressor trial, maximal voluntary contraction (hand grip strength) assessment, 10-min rest, and either a 2-min submaximal isometric handgrip exercise or a sham exercise in which no force was exerted, followed by a cold pressor posttest. Results indicated that cold pressor pain tolerance significantly increased during the exercise condition, but not during the sham exercise condition. Exercise did not affect pain intensity and marginally affected pain unpleasantness ratings. These findings suggest that submaximal isometric exercise can improve cold pressor pain tolerance but may have an inconsistent analgesic effect on ratings of cold pressor pain.
NASA Technical Reports Server (NTRS)
Everett, M. E.; Lee, S. M. C.; Stroud, L.; Scott, P.; Hagan, R. D.; Soller, B. R.
2009-01-01
In exercising muscles force production and muscular endurance are impaired by a decrease in intramuscular pH. The effects of aerobic training (AT) on preventing acidosis and prolonging exercise time in muscles not specifically targeted by the training are unknown. Purpose: To compare interstitial pH, measured non-invasively with near infrared spectroscopy (NIRS), in the flexor digitorum profundus (FDP) during rhythmic handgrip exercise in sedentary subjects and those who participate in AT activities that target the lower body. Methods: Maximal isometric force (MIF) was measured on three separate days in AT (n=5) and sedentary (n=8) subjects using a handgrip dynamometer (HGD). Isometric muscular endurance (IME) was measured during five trials, each separated by at least 48 hrs. For each IME trial subjects rhythmically squeezed (4 sec at 40% of MVC) and relaxed (2 sec) to fatigue or failure to reach the target force in three consecutive contractions or four non-consecutive contractions. Interstitial pH was derived from spectra collected using a NIRS sensor adhered to the skin over the FDP. The first four IME trials served to familiarize subjects with the protocol; the fifth trial was used for analysis. NIRS-derived pH was averaged in 30 sec increments. Between group differences in MIF and exercise time were tested using paired t-tests. A repeated measures ANOVA was used to analyze effects of AT and exercise time on pH. Results: MIF was not different between groups (mean SD; aerobic=415.6 95.4 N vs. sedentary =505.1 107.4 N). Time to fatigue was greater in the AT than in the sedentary group (mean SD: 611 173 sec vs. 377 162 sec, p<0.05). pH was not different between groups at any time point. Average pH decreased (p<0.05) in both groups from rest (pH=7.4) through 90 sec of exercise (pH=6.9), but did not decrease further throughout the remainder of exercise. Conclusion: Although between group differences in pH were not detected, differences during the onset of exercise may exist with a more frequent sampling. AT individuals appear to better tolerate decreased interstitial pH and are able to continue submaximal muscular work, possibly due to psychological familiarization to muscular fatigue and/or systemic physiological benefits.
Whole-body vibration does not influence knee joint neuromuscular function or proprioception.
Hannah, R; Minshull, C; Folland, J P
2013-02-01
This study examined the acute effects of whole-body vibration (WBV) on knee joint position sense and indices of neuromuscular function, specifically strength, electromechanical delay and the rate of force development. Electromyography and electrically evoked contractions were used to investigate neural and contractile responses to WBV. Fourteen healthy males completed two treatment conditions on separate occasions: (1) 5 × 1 min of unilateral isometric squat exercise on a synchronous vibrating platform [30 Hz, 4 mm peak-to-peak amplitude] (WBV) and (2) a control condition (CON) of the same exercise without WBV. Knee joint position sense (joint angle replication task) and quadriceps neuromuscular function were assessed pre-, immediately-post and 1 h post-exercise. During maximum voluntary knee extensions, the peak force (PF(V)), electromechanical delay (EMD(V)), rate of force development (RFD(V)) and EMG of the quadriceps were measured. Twitch contractions of the knee extensors were electrically evoked to assess EMD(E) and RFD(E). The results showed no influence of WBV on knee joint position, EMD(V), PF(V) and RFD(V) during the initial 50, 100 or 150 ms of contraction. Similarly, electrically evoked neuromuscular function and neural activation remained unchanged following the vibration exercise. A single session of unilateral WBV did not influence any indices of thigh muscle neuromuscular performance or knee joint proprioception. © 2011 John Wiley & Sons A/S.
Patellar tendon load in different types of eccentric squats.
Frohm, A; Halvorsen, K; Thorstensson, A
2007-07-01
Differences in mechanical loading of the patellar tendon have been suggested as a reason for varying effects in rehabilitation of patellar tendinopathy using different eccentric squat exercises and devices. The aim was to characterize the magnitude and pattern of mechanical load at the knee and on the patellar tendon during four types of eccentric squat. Subjects performed squats with a submaximal free weight and with maximal effort in a device for eccentric overloading (Bromsman), on a decline board and horizontal surface. Kinematics was recorded with a motion-capture system, reaction forces with force plates, and electromyography from three leg muscles with surface electrodes. Inverse dynamics was used to calculate knee joint kinetics. Eccentric work, mean and peak patellar tendon force, and angle at peak force were greater (25-30%) for squats on decline board compared to horizontal surface with free weight, but not in Bromsman. Higher knee load forces (60-80%), but not work, were observed with Bromsman than free weight. Angular excursions at the knee and ankle were larger with decline board, particularly with free weight, and smaller in Bromsman than with free weight. Mean electromyography was greater on a decline board for gastrocnemius (13%) and vastus medialis (6%) with free weight, but in Bromsman only for gastrocnemius (7%). The results demonstrated clear differences in the biomechanical loading on the knee during different squat exercises. Quantification of such differences provides information that could be used to explain differences in rehabilitation effects as well as in designing more optimal rehabilitation exercises for patellar tendinopathy.
32 CFR 154.7 - Criteria for application of security standards.
Code of Federal Regulations, 2012 CFR
2012-07-01
... interests of the United States, or with any person who advocates the use of force or violence to overthrow... unconstitutional means. (c) Advocacy or use of force or violence to overthrow the Government of the United States... force or violence to prevent others from exercising their rights under the Constitution or laws of the U...
32 CFR 154.7 - Criteria for application of security standards.
Code of Federal Regulations, 2010 CFR
2010-07-01
... interests of the United States, or with any person who advocates the use of force or violence to overthrow... unconstitutional means. (c) Advocacy or use of force or violence to overthrow the Government of the United States... force or violence to prevent others from exercising their rights under the Constitution or laws of the U...
32 CFR 154.7 - Criteria for application of security standards.
Code of Federal Regulations, 2013 CFR
2013-07-01
... interests of the United States, or with any person who advocates the use of force or violence to overthrow... unconstitutional means. (c) Advocacy or use of force or violence to overthrow the Government of the United States... force or violence to prevent others from exercising their rights under the Constitution or laws of the U...
32 CFR 154.7 - Criteria for application of security standards.
Code of Federal Regulations, 2011 CFR
2011-07-01
... interests of the United States, or with any person who advocates the use of force or violence to overthrow... unconstitutional means. (c) Advocacy or use of force or violence to overthrow the Government of the United States... force or violence to prevent others from exercising their rights under the Constitution or laws of the U...
32 CFR 154.7 - Criteria for application of security standards.
Code of Federal Regulations, 2014 CFR
2014-07-01
... interests of the United States, or with any person who advocates the use of force or violence to overthrow... unconstitutional means. (c) Advocacy or use of force or violence to overthrow the Government of the United States... force or violence to prevent others from exercising their rights under the Constitution or laws of the U...
An Exercise Using Lichens as Indicators of Air Quality
ERIC Educational Resources Information Center
Gottfried, Jeffry
1978-01-01
High school students learned to monitor air quality using lichens in a National Science Foundation sponsored program. In this article, monitoring procedures are discussed briefly along with means to adapt the exercise to your own area. (MA)
Joint Force Quarterly. Number 22, Summer 1999
1999-08-01
combine to present a pes- simistic view of human nature as prone to irra- tional hatred and violence , extrapolating present ethnic and religious...serve as an Internet-based, cooper- ative, interactive, multiplayer opposing force simulator for exercises, experimen- tation, and rehearsals in
Tanaka, Midori; Sugawara, Motoaki; Niki, Kiyomi; Ogasawara, Yasuo
2018-06-15
Estimation of the contractility of the left ventricle during exercise is an important part of the rehabilitation protocol. It is known that cardiac contractility increases with an increase in heart rate. This phenomenon is called the force-frequency relation (FFR). Using wave intensity, we aimed to evaluate FFR noninvasively during graded exercise. We enrolled 83 healthy subjects. Using ultrasonic diagnostic equipment, we measured wave intensity (WD), which was defined in terms of blood velocity and arterial diameter, in the carotid artery and heart rate (HR) before and during bicycle ergometer exercise. FFRs were constructed by plotting the maximum value of WD (WD 1 ) against HR. We analyzed the variation among FFR responses of individual subjects. WD 1 increased linearly with an increase in HR during exercise. The average slope of the FFR was 1.0 ± 0.5 m/s 3 bpm. The slope of FFR decreased with an increase in body mass index (BMI). The slopes of FFRs were steeper in men than women, although there were no differences in BMI between men and women. The FFR was obtained noninvasively by carotid arterial wave intensity (WD 1 ) and graded exercise. The slope of the FFR decreased with an increase in BMI, and was steeper in men than women.
Moramarco, Marc; Fadzan, Maja; Moramarco, Kathryn; Heller, Amy; Righter, Sonia
2016-01-01
To investigate the short-term outcomes of treatment utilizing an outpatient scoliosis- specific back school program in thirty-six patients with adolescent idiopathic scoliosis (AIS). Improved signs and symptoms of AIS have been reported in response to curve-patternspecific exercise therapy programs. Additional outcome studies are needed. Thirty-six patients with adolescent idiopathic scoliosis (AIS), 33 females and 3 males, completed a twenty-hour multimodal exercise program (Schroth Best Practice® - SBP) for five to seven days at Scoliosis 3DC(SM). Average age was 13.89 years and average Cobb angles were 36.92° thoracic and 33.92° lumbar. The sample was comprised of patients under treatment from August 2011 to February 2015 who never had scoliosis-related surgery and who were not undergoing brace treatment. SBP program components included physio-logic® exercises, mobilizations, activities of daily living (ADLs), 3-D Made Easy®, and Schroth exercises. Forced vital capacity (FVC), forced expiratory volume in one second (FEV1), chest expansion (CE), and angle of trunk rotation (ATR) were clinical parameters used to evaluate results of this outpatient scoliosis-specific exercise program. Highly significant improvements were noted in FVC, FEV1, CE and Scoliometer(TM) readings. A short-term outpatient SBP program was found to have a positive influence on FVC, FEV1, ATR, and CE. We will present long-term results in a subsequent study.
NASA Technical Reports Server (NTRS)
Gallagher, R. R.
1974-01-01
Exercise subroutine modifications are implemented in an exercise-respiratory system model yielding improvement of system response to exercise forcings. A more physiologically desirable respiratory ventilation rate in addition to an improved regulation of arterial gas tensions and cerebral blood flow is observed. A respiratory frequency expression is proposed which would be appropriate as an interfacing element of the respiratory-pulsatile cardiovascular system. Presentation of a circulatory-respiratory system integration scheme along with its computer program listing is given. The integrated system responds to exercise stimulation for both nonstressed and stressed physiological states. Other integration possibilities are discussed with respect to the respiratory, pulsatile cardiovascular, thermoregulatory, and the long-term circulatory systems.
NASA Technical Reports Server (NTRS)
Jagodnik, K. M.; Thompson, W. K.; Gallo, C. A.; DeWitt, J. K.; Funk, J. H.; Funk, N. W.; Perusek, G. P.; Sheehan, C. C.; Lewandowski, B. E.
2016-01-01
During long-duration spaceflight missions, astronauts exposure to microgravity without adequate countermeasures can result in losses of muscular strength and endurance, as well as loss of bone mass. As a countermeasure to this challenge, astronauts engage in resistive exercise during spaceflight to maintain their musculoskeletal function. The Hybrid Ultimate Lifting Kit (HULK) has been designed as a prototype exercise device for an exploration-class vehicle; the HULK features a much smaller footprint than previous devices such as the Advanced Resistive Exercise Device (ARED) on the International Space Station (ISS), which makes the HULK suitable for extended spaceflight missions in vehicles with limited volume. As current ISS exercise countermeasure equipment represents an improvement over previous generations of such devices, the ARED is being employed as a benchmark of functional performance. This project involves the development of a biomechanical model of the deadlift exercise, and is novel in that it is the first exercise analyzed in this context to include the upper limbs in the loading path, in contrast to the squat, single-leg squat, and heel raise exercises also being modeled by our team. OpenSim software is employed to develop these biomechanical models of humans performing resistive exercises to assess and improve the new exercise device designs. Analyses include determining differences in joint and muscle forces when using different loading strategies with the device, comparing and contrasting with the ARED benchmark, and determining whether the loading is sufficient to maintain musculoskeletal health. During data collection, the number of repetitions, load, cadence, stance, and grip width are controlled in order to facilitate comparisons between loading configurations. To date, data have been collected for two human subjects performing the deadlift exercise on the HULK device using two different loading conditions. Recorded data include motion capture, electromyography (EMG), ground reaction forces, device load cell data, photos and videos, and anthropometric data. Work is ongoing to perform biomechanical analyses including inverse kinematics and inverse dynamics to compare different versions of the deadlift model in order to determine which provides an appropriate level of detail to study this exercise. This work is supported by the National Space Biomedical Research Institute through NCC 9-58.
Ooue, Anna; Sato, Kohei; Hirasawa, Ai; Sadamoto, Tomoko
2012-11-07
The superficial vein of the resting limb constricts sympathetically during exercise. Central command is the one of the neural mechanisms that controls the cardiovascular response to exercise. However, it is not clear whether central command contributes to venous vessel response during exercise. Tendon vibration during static elbow flexion causes primary muscle spindle afferents, such that a lower central command is required to achieve a given force without altering muscle force. The purpose of this study was therefore to investigate whether a reduction in central command during static exercise with tendon vibration influences the superficial venous vessel response in the resting limb. Eleven subjects performed static elbow flexion at 35% of maximal voluntary contraction with (EX + VIB) and without (EX) vibration of the biceps brachii tendon. The heart rate, mean arterial pressure, and rating of perceived exertion (RPE) in overall and exercising muscle were measured. The cross-sectional area (CSAvein) and blood velocity of the basilic vein in the resting upper arm were assessed by ultrasound, and blood flow (BFvein) was calculated using both variables. Muscle tension during exercise was similar between EX and EX + VIB. However, RPEs at EX + VIB were lower than those at EX (P <0.05). Increases in heart rate and mean arterial pressure during exercise at EX + VIB were also lower than those at EX (P <0.05). CSAvein in the resting limb at EX decreased during exercise from baseline (P <0.05), but CSAvein at EX + VIB did not change during exercise. CSAvein during exercise at EX was smaller than that at EX + VIB (P <0.05). However, BFvein did not change during the protocol under either condition. The decreases in circulatory response and RPEs during EX + VIB, despite identical muscle tension, showed that activation of central command was less during EX + VIB than during EX. Abolishment of the decrease in CSAvein during exercise at EX + VIB may thus have been caused by a lower level of central command at EX + VIB rather than EX. Diminished central command induced by tendon vibration may attenuate the superficial venous vessel response of the resting limb during sustained static arm exercise.
Stationary Apparatus Would Apply Forces of Walking to Feet
NASA Technical Reports Server (NTRS)
Hauss, Jessica; Wood, John; Budinoff, Jason; Correia, Michael; Albrecht, Rudolf
2006-01-01
A proposed apparatus would apply controlled cyclic forces to both feet for the purpose of preventing the loss of bone density in a human subject whose bones are not subjected daily to the mechanical loads of normal activity in normal Earth gravitation. The apparatus was conceived for use by astronauts on long missions in outer space; it could also be used by bedridden patients on Earth, including patients too weak to generate the necessary forces by their own efforts. The apparatus (see figure) would be a modified version of a bicycle-like exercise machine, called the cycle ergometer with vibration isolation system (CEVIS), now aboard the International Space Station. Attached to each CEVIS pedal would be a computer-controlled stress/ vibration exciter connected to the heel portion of a special-purpose pedal. The user would wear custom shoes that would amount to standard bicycle shoes equipped with cleats for secure attachment of the balls of the feet to the special- purpose pedals. If possible, prior to use of the apparatus, the human subject would wear a portable network of recording accelerometers, while walking, jogging, and running. The information thus gathered would be fed to the computer, wherein it would be used to make the exciters apply forces and vibrations closely approximating the forces and vibrations experienced by that individual during normal exercise. It is anticipated that like the forces applied to bones during natural exercise, these artificial forces would stimulate the production of osteoblasts (bone-forming cells), as needed to prevent or retard loss of bone mass. In addition to helping to prevent deterioration of bones, the apparatus could be used in treating a person already suffering from osteoporosis. For this purpose, the magnitude of the applied forces could be reduced, if necessary, to a level at which weak hip and leg bones would still be stimulated to produce osteoblasts without exposing them to the full stresses of walking and thereby risking fracture.
A Hands-On Simulation of Natural Selection in an Imaginary Organism, Platysoma apoda.
ERIC Educational Resources Information Center
Fifield, Steve; Fall, Bruce
1992-01-01
Describes a simulation exercise involving an imaginary organism in which students study the effect of predation on allele frequencies, examine the assumptions of the Hardy-Weinberg law, and consider whether the need to survive is a guiding force in evolution. Includes instruction for conducting the exercise. (MDH)
1980-09-01
with the inoculation of S. typhimurium at 24 hrs post infection. Fasting ketosis was dramatically altered by the inoculation. Both plasma...as were both fasting and exercise associated ketosis . During fasting plasma Phydroxybutyrate increased 20-fold in the controls but only 13-fold in
12 CFR 269.6 - Unfair labor practices.
Code of Federal Regulations, 2010 CFR
2010-01-01
... exercise of the rights guaranteed in § 269.2(a); (2) dominate or interfere with the formation or... the exercise of the rights guaranteed in § 269.2(a); (2) cause or attempt to cause a Bank to... threat of reprisal or force, or promise of benefit. (d) The Federal Reserve System Labor Relations Panel...
5 CFR 532.417 - Within-grade increases.
Code of Federal Regulations, 2010 CFR
2010-01-01
... absence to perform such service and returns to pay status through the exercise of a restoration right... Armed Forces, in the Regular or Reserve Corps of the Public Health Service after June 30, 1960, or as a... employee's return to a civilian position through the exercise of a reemployment right granted by law...
Prevention of Potential Falls of Elderly Healthy Women: Gait Asymmetry
ERIC Educational Resources Information Center
Seo, Jung-suk; Kim, Sukwon
2014-01-01
The study attempted to see if exercise training would alleviate gait asymmetry between nondominant and dominant legs, thus, eliminate the likelihood of slips. The present study provided 18 older adults exercise training for eight weeks and evaluated kinematics and ground reaction forces (GRFs) in both legs. Participants were randomly assigned to…
The Evolution and Validity of Health-Related Fitness
ERIC Educational Resources Information Center
Jackson, Andrew
2006-01-01
This paper traces the evolution fitness testing from an athletic emphasis to one with a public health focus and examines the forces that brought about the change in an environment that was not totally receptive. An atmosphere for change was created during this era with the development of exercise physiology, exercise epidemiology, and measurement.…
Lee, Dong-Kyu; Kim, Se-Hun
2018-05-01
[Purpose] This study aims to identify the effect of respiratory exercise on trunk control, pulmonary function, and trunk muscle activity in chronic stroke patients. [Subjects and Methods] The study included 24 chronic stroke patients who were randomly assigned, 12 each, to the experimental and control groups, and received neurodevelopmental treatment. Moreover, the experimental group underwent respiratory exercise. In each patient, the trunk control was measured using the Trunk Impairment Scale (TIS); muscle activity of the trunk, through the surface electromyogram; and pulmonary function, using the pneumatometer. [Results] The intragroup comparison showed significant differences in TIS, Forced vital capacity (FVC), Forced expiratory volume at one second (FEV1), Rectus Abdominis (RA), Internal Oblique (IO) and External Oblique (EO) in the experimental group. The intergroup comparison showed that the differences in TIS, FVC, FEV1, RA, IO and EO within the experimental group appeared significant relative to the control group. [Conclusion] Based on these results, this study proved that respiratory exercise was effective in improving trunk control, pulmonary function, and trunk muscle activity in patients with chronic stroke.
The measurement of energy consumption by exercise bikes
NASA Astrophysics Data System (ADS)
Jwo, Ching-Song; Chien, Chao-Chun; Jeng, Lung-Yue
2006-11-01
This paper is intended as an investigation is that to measure the amount of energy consumption can be consumed by riding bikes and also could recycle the consuming energy during exercising. Exercisers ride the bicycle inputting the driving force through a compressor of refrigeration system, which can circulate the refrigerant in the system and calculate the calorific capacity from the spread of the condenser. In addition, we can make up chiller water in the evaporator. Experiments were performed to prove the hypotheses. Therefore, this experiment has designed the sports goods which reach the purpose of doing exercise, measuring accurately the consuming calorific capacity and having the function of making chiller water. After exercising, you can drink the water producing during exercise and apply on the system of air conditioner, which attains two objectives.
20 CFR 702.418 - Procedure for requesting medical care; employee's duty to notify employer.
Code of Federal Regulations, 2010 CFR
2010-04-01
... exercise of reasonable diligence should be aware, of the relationship between an injury or disease and his... the employee becomes aware, or in the exercise of reasonable diligence or by reason of medical advice...
Hybrid Position/Force Control of an Active Handheld Micromanipulator for Membrane Peeling
Wells, Trent S.; Yang, Sungwook; MacLachlan, Robert A.; Lobes, Louis A.; Martel, Joseph N.; Riviere, Cameron N.
2015-01-01
Background Peeling procedures in retinal surgery require micron-scale manipulation and control of sub-tactile forces. Methods Hybrid position/force control of an actuated handheld microsurgical instrument is presented as a means for simultaneously improving positioning accuracy and reducing forces to prevent avoidable trauma to tissue. The system response was evaluated, and membrane-peeling trials were performed by four test subjects in both artificial and animal models. Results Maximum force was reduced by 56% in both models as compared to position control. No statistically significant effect on procedure duration was observed. Conclusions A hybrid position/force control system has been implemented that successfully attenuates forces and minimizes unwanted excursions during microsurgical procedures such as membrane peeling. Results also suggest that improvements in safety using this technique may be attained without increasing the duration of the procedure. PMID:25962836
32 CFR 855.22 - Air Force procedures.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 32 National Defense 6 2013-07-01 2013-07-01 false Air Force procedures. 855.22 Section 855.22 National Defense Department of Defense (Continued) DEPARTMENT OF THE AIR FORCE AIRCRAFT CIVIL AIRCRAFT USE OF UNITED STATES AIR FORCE AIRFIELDS Agreements for Civil Aircraft Use of Air Force Airfields § 855...
32 CFR 855.22 - Air Force procedures.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 32 National Defense 6 2010-07-01 2010-07-01 false Air Force procedures. 855.22 Section 855.22 National Defense Department of Defense (Continued) DEPARTMENT OF THE AIR FORCE AIRCRAFT CIVIL AIRCRAFT USE OF UNITED STATES AIR FORCE AIRFIELDS Agreements for Civil Aircraft Use of Air Force Airfields § 855...
32 CFR 855.22 - Air Force procedures.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 32 National Defense 6 2011-07-01 2011-07-01 false Air Force procedures. 855.22 Section 855.22 National Defense Department of Defense (Continued) DEPARTMENT OF THE AIR FORCE AIRCRAFT CIVIL AIRCRAFT USE OF UNITED STATES AIR FORCE AIRFIELDS Agreements for Civil Aircraft Use of Air Force Airfields § 855...
VA/Q distribution during heavy exercise and recovery in humans: implications for pulmonary edema
NASA Technical Reports Server (NTRS)
Schaffartzik, W.; Poole, D. C.; Derion, T.; Tsukimoto, K.; Hogan, M. C.; Arcos, J. P.; Bebout, D. E.; Wagner, P. D.
1992-01-01
Ventilation-perfusion (VA/Q) inequality has been shown to increase with exercise. Potential mechanisms for this increase include nonuniform pulmonary vasoconstriction, ventilatory time constant inequality, reduced large airway gas mixing, and development of interstitial pulmonary edema. We hypothesized that persistence of VA/Q mismatch after ventilation and cardiac output subside during recovery would be consistent with edema; however, rapid resolution would suggest mechanisms related to changes in ventilation and blood flow per se. Thirteen healthy males performed near-maximal cycle ergometry at an inspiratory PO2 of 91 Torr (because hypoxia accentuates VA/Q mismatch on exercise). Cardiorespiratory variables and inert gas elimination patterns were measured at rest, during exercise, and between 2 and 30 min of recovery. Two profiles of VA/Q distribution behavior emerged during heavy exercise: in group 1 an increase in VA/Q mismatch (log SDQ of 0.35 +/- 0.02 at rest and 0.44 +/- 0.02 at exercise; P less than 0.05, n = 7) and in group 2 no change in VA/Q mismatch (n = 6). There were no differences in anthropometric data, work rate, O2 uptake, or ventilation during heavy exercise between groups. Group 1 demonstrated significantly greater VA/Q inequality, lower vital capacity, and higher forced expiratory flow at 25-75% of forced vital capacity for the first 20 min during recovery than group 2. Cardiac index was higher in group 1 both during heavy exercise and 4 and 6 min postexercise. However, both ventilation and cardiac output returned toward baseline values more rapidly than did VA/Q relationships. Arterial pH was lower in group 1 during exercise and recovery. We conclude that greater VA/Q inequality in group 1 and its persistence during recovery are consistent with the hypothesis that edema occurs and contributes to the increase in VA/Q inequality during exercise. This is supported by observation of greater blood flows and acidosis and, presumably therefore, higher pulmonary vascular pressures in such subjects.
Fouré, Alexandre; Nosaka, Kazunori; Gastaldi, Marguerite; Mattei, Jean-Pierre; Boudinet, Hélène; Guye, Maxime; Vilmen, Christophe; Le Fur, Yann; Bendahan, David; Gondin, Julien
2016-02-01
Branched-chain amino acids promote muscle-protein synthesis, reduce protein oxidation and have positive effects on mitochondrial biogenesis and reactive oxygen species scavenging. The purpose of the study was to determine the potential benefits of branched-chain amino acids supplementation on changes in force capacities, plasma amino acids concentration and muscle metabolic alterations after exercise-induced muscle damage. (31)P magnetic resonance spectroscopy and biochemical analyses were used to follow the changes after such damage. Twenty six young healthy men were randomly assigned to supplemented branched-chain amino acids or placebo group. Knee extensors maximal voluntary isometric force was assessed before and on four days following exercise-induced muscle damage. Concentrations in phosphocreatine [PCr], inorganic phosphate [Pi] and pH were measured during a standardized rest-exercise-recovery protocol before, two (D2) and four (D4) days after exercise-induced muscle damage. No significant difference between groups was found for changes in maximal voluntary isometric force (-24% at D2 and -21% at D4). Plasma alanine concentration significantly increased immediately after exercise-induced muscle damage (+25%) in both groups while concentrations in glycine, histidine, phenylalanine and tyrosine decreased. No difference between groups was found in the increased resting [Pi] (+42% at D2 and +34% at D4), decreased resting pH (-0.04 at D2 and -0.03 at D4) and the slower PCr recovery rate (-18% at D2 and -24% at D4). The damaged muscle was not able to get benefits out of the increased plasma branched-chain amino acids availability to attenuate changes in indirect markers of muscle damage and muscle metabolic alterations following exercise-induced muscle damage. Copyright © 2015 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.
Novembre, E; Frongia, G; Lombardi, E; Veneruso, G; Vierucci, A
1994-08-01
Recent evidence suggests that inhaled nedocromil and furosemide are effective in preventing asthma by ultrasonically nebulized distilled water, allergen, and exercise. There are, however, no studies that compare the effects of these two drugs. The aim of this study was to investigate the effect of inhaled furosemide (30 mg), nedocromil (4 mg), the combination of these two drugs, and placebo aerosol in preventing exercise-induced asthma. Twenty-four children with exercise-induced asthma, aged 6 to 16 years, performed a treadmill test before and 20 minutes after a single dose of drug(s) in a double-blind trial. Lung function measurements were taken before drug administration, before the exercise test (20 minutes after drug administration), and then 2, 4, 6, 8, 10, 15, 20, and 30 minutes after the exercise test. Both active drugs performed significantly better than placebo. In fact, the exercise challenge resulted in a mean maximum fall in forced expiratory volume in 1 second of 28.46% +/- 13.84% after administration of placebo, but of only 15.42% +/- 8.35% after administration of nedocromil (p < 0.001) and of 11.37% +/- 9.14% after administration of furosemide (p < 0.001). When the two drugs were given together, there was a statistically significant additive effect because the mean maximum fall in forced expiratory volume in 1 second was 5.75% +/- 3.57% (nedocromil vs nedocromil + fluorsemide: p < 0.001; furosemide vs nedocromil + furosemide: p < 0.01). This study suggests that nedocromil and furosemide provide a comparable effect in preventing exercise-induced asthma in children. The combined administration of the two drugs significantly increases the protective effects, suggesting a potential therapeutic use.
NASA Technical Reports Server (NTRS)
Hackney, Kyle J.; Scott, Jessica M.; Buxton, Roxanne; Redd-Goetchius, Elizabeth; Crowell, J. Brent; Everett, Meghan E.; Wickwire, Jason; Ryder, Jeffrey W.; Bloomberg, Jacob J.; Ploutz-Snyder, Lori L.
2011-01-01
Unloading of the musculoskeletal system during space flight results in deconditioning that may impair mission-related task performance in astronauts. Exercise countermeasures have been frequently tested during bed rest (BR) and limb suspension; however, high-intensity, short-duration exercise prescriptions have not been fully explored. PURPOSE: To determine if a high intensity resistance, interval, and aerobic exercise program could protect against muscle atrophy and dysfunction when performed during short duration BR. METHODS: Nine subjects (1 female, 8 male) performed a combination of supine exercises during 2 weeks of horizontal BR. Resistance exercise (3 d / wk) consisted of squat, leg press, hamstring curl, and heel raise exercises (3 sets, 12 repetitions). Aerobic (6 d / wk) sessions alternated continuous (75% VO2 peak) and interval exercise (30 s, 2 min, and 4 min) and were completed on a supine cycle ergometer and vertical treadmill, respectively. Muscle volumes of the upper leg were calculated pre, mid, and post-BR using magnetic resonance imaging. Maximal isometric force (MIF), rate of force development (RFD), and peak power of the lower body extensors were measured twice before BR (averaged to represent pre) and once post BR. ANOVA with repeated measures and a priori planned contrasts were used to test for differences. RESULTS: There were no changes to quadriceps, hamstring, and adductor muscle volumes at mid and post BR time points compared to pre BR (Table 1). Peak power increased significantly from 1614 +/- 372 W to 1739 +/- 359 W post BR (+7.7%, p = 0.035). Neither MIF (pre: 1676 +/- 320 N vs. post: 1711 +/- 250 N, +2.1%, p = 0.333) nor RFD (pre: 7534 +/- 1265 N/ms vs. post: 6951 +/- 1241 N/ms, -7.7%, p = 0.136) were significantly impaired post BR.
Klansky, Andrew; Irvin, Charlie; Morrison-Taylor, Adriane; Ahlstrand, Sarah; Labrie, Danielle; Haverkamp, Hans Christian
2016-07-01
In asthmatic adults, airway caliber fluctuates during variable intensity exercise such that bronchodilation (BD) occurs with increased workrate whereas bronchoconstriction (BC) occurs with decreased workrate. We hypothesized that increased lung mechanical stretch would prevent BC during such variable workrate exercise. Ten asthmatic and ten nonasthmatic subjects completed two exercise trials on a cycle ergometer. Both trials included a 28-min exercise bout consisting of alternating four min periods at workloads equal to 40 % (Low) and 70% (High) peak power output. During one trial, subjects breathed spontaneously throughout exercise (SVT), such that tidal volume (VT) and end-inspiratory lung volume (EILV) were increased by 0.5 and 0.6 liters during the high compared with the low workload in nonasthmatic and asthmatic subjects, respectively. During the second trial (MVT), VT and EILV were maintained constant when transitioning from the high to the low workload. Forced exhalations from total lung capacity were performed during each exercise workload. In asthmatic subjects, forced expiratory volume 1.0 s (FEV1.0) increased and decreased with the increases and decreases in workrate during both SVT (Low, 3.3 ± 0.3 liters; High, 3.6 ± 0.2 liters; P < 0.05) and MVT (Low, 3.3 ± 0.3 liters; High, 3.5 ± 0.2 liters; P < 0.05). Thus increased lung stretch during MVT did not prevent decreases in airway caliber when workload was reduced. We conclude that neural factors controlling airway smooth muscle (ASM) contractile activity during whole body exercise are more robust determinants of airway caliber than the ability of lung stretch to alter ASM actin-myosin binding and contraction. Copyright © 2016 the American Physiological Society.
ERIC Educational Resources Information Center
Thompson, Bruce
Web-based statistical instruction, like all statistical instruction, ought to focus on teaching the essence of the research endeavor: the exercise of reflective judgment. Using the framework of the recent report of the American Psychological Association (APA) Task Force on Statistical Inference (Wilkinson and the APA Task Force on Statistical…
78 FR 75334 - Meeting of the National Commission on the Structure of the Air Force
Federal Register 2010, 2011, 2012, 2013, 2014
2013-12-11
... for fiscal year 2015. A second team will build a future U.S. Air Force with 55% Active Component and... mission sets and Core Functions of the U.S. Air Force. The second day of the meeting involves a crisis planning exercise for a hypothetical war scenario that occurs in 2018. The scenario employed will be...
Integrating Partner Nations into Coalition Operations
2006-01-01
of United Nations (UN) Security Council Resolu- tion 1529, Chile , Canada, France, and the United States established a multinational force...of restabi- lization. Chile continues to deploy forces as a member of the UN Stabilization Force Haiti (MINUSTAH), led by Brazil and comprised...supporting a tailored exercise and theater security cooperation program that has encouraged partners such as Chile , Brazil, and El Salvador to develop
ERIC Educational Resources Information Center
Kraft, Matthew A.
2013-01-01
Research has shown that "last hired, first fired" policies maximize the number of teachers subject to reductions in force by eliminating those teachers that are lowest on the pay scale first. Until now, advocates of effectiveness-based reduction-in-force (RIF) policies could only point to simulated policy exercises as evidence of the…
Deconditioning-induced exercise responses as influenced by heat acclimation
NASA Technical Reports Server (NTRS)
Shvartz, E.; Bhattacharya, A.; Sperinde, S. J.; Brock, P. J.; Sciaraffa, D.; Haines, R. F.; Greenleaf, J. E.
1979-01-01
A study to determine the effect of heat acclimation and physical training in temperate conditions on changes in exercise tolerance following water-immersion deconditioning is presented. Five young men were tested on a bicycle ergometer before and after heat acclimation and after water immersion. The subjects and the experimental procedure, heat acclimation and exercise training, water immersion, and exercise tolerance are discussed. Heat acclimation resulted in the usual decreases in exercise heart rate and rectal temperature and an increase in sweat rate. Water immersion resulted in substantial diuresis despite water consumed. The results show that heat acclimation provides an effective method of preventing the adverse effects of water-immersion deconditioning on exercise tolerance.
Florio, C S
2018-06-01
A computational model was used to compare the local bone strengthening effectiveness of various isometric exercises that may reduce the likelihood of distal tibial stress fractures. The developed model predicts local endosteal and periosteal cortical accretion and resorption based on relative local and global measures of the tibial stress state and its surface variation. Using a multisegment 3-dimensional leg model, tibia shape adaptations due to 33 combinations of hip, knee, and ankle joint angles and the direction of a single or sequential series of generated isometric resultant forces were predicted. The maximum stress at a common fracture-prone region in each optimized geometry was compared under likely stress fracture-inducing midstance jogging conditions. No direct correlations were found between stress reductions over an initially uniform circular hollow cylindrical geometry under these critical design conditions and the exercise-based sets of active muscles, joint angles, or individual muscle force and local stress magnitudes. Additionally, typically favorable increases in cross-sectional geometric measures did not guarantee stress decreases at these locations. Instead, tibial stress distributions under the exercise conditions best predicted strengthening ability. Exercises producing larger anterior distal stresses created optimized tibia shapes that better resisted the high midstance jogging bending stresses. Bent leg configurations generating anteriorly directed or inferiorly directed resultant forces created favorable adaptations. None of the studied loads produced by a straight leg was significantly advantageous. These predictions and the insight gained can provide preliminary guidance in the screening and development of targeted bone strengthening techniques for those susceptible to distal tibial stress fractures. Copyright © 2018 John Wiley & Sons, Ltd.
Kurti, Stephanie P; Emerson, Sam R; Smith, Joshua R; Rosenkranz, Sara K; Alexander, Samantha A; Lovoy, Garrett M; Harms, Craig A
2018-05-01
Development of late-onset respiratory diseases is associated with elevated 8-isoprostane, a marker of oxidative stress, in the airways. However, sex differences exist in development of these diseases. Using an exhaustive exercise bout as a physiological stressor may elucidate whether there is a sex difference with aging in pre- to postexercise airway 8-isoprostane generation. The purpose of this study was to determine whether older women exhibit a greater airway 8-isoprostane response to exhaustive exercise compared with older men and younger controls. Thirty-six individuals completed the study (12 postmenopausal older women (OW) and 12 age-matched older men (OM), 65 ± 4 years of age; and 12 younger controls (YC), 21 ± 2 years of age). Baseline measurements included exhaled breath condensate (EBC) for assessment of airway 8-isoprostane and standard pulmonary function tests (PFTs) to assess forced expiratory volume in 1-s (FEV 1 ), forced vital capacity (FVC), FEV 1 /FVC, and forced expiratory flow at 25%-75% of FVC. Subjects then performed a peak oxygen uptake test to exhaustion on a cycle ergometer. Immediately postexercise, PFTs and EBC were performed. The generation of airway 8-isoprostane from pre- to postexercise was greater in OW compared with OM and YC (p < 0.01), increasing ∼74% ± 77% in OW, while decreasing in OM (∼12% ± 50%) and YC (∼20.9% ± 30%). The OW exhibited a greater airway 8-isoprostane response to exhaustive exercise compared with OM and YC, which may suggest that sex differences in oxidative stress generation following exhaustive exercise may provide a mechanistic rationale for sex differences in late-onset respiratory diseases.
Nejati, Parisa; Ghahremaninia, Armita; Naderi, Farrokh; Gharibzadeh, Safoora; Mazaherinezhad, Ali
2017-05-01
Subacromial impingement syndrome (SAIS) is the most common disorder of the shoulder. The evidence for the effectiveness of treatment options is inconclusive and limited. Therefore, there is a need for more evidence in this regard, particularly for long-term outcomes. Platelet-rich plasma (PRP) would be an effective method in treating subacromial impingement. Randomized controlled trial; Level of evidence, 1. This was a single-blinded randomized clinical trial with 1-, 3-, and 6-month follow-up. Sixty-two patients were randomly placed into 2 groups, receiving either PRP or exercise therapy. The outcome parameters were pain, shoulder range of motion (ROM), muscle force, functionality, and magnetic resonance imaging findings. Both treatment options significantly reduced pain and increased shoulder ROM compared with baseline measurements. Both treatments also significantly improved functionality. However, the treatment choices were not significantly effective in improving muscle force. Trend analysis revealed that in the first and third months, exercise therapy was superior to PRP in pain, shoulder flexion and abduction, and functionality. However, in the sixth month, only shoulder abduction and total Western Ontario Rotator Cuff score were significantly different between the 2 groups. Both PRP injection and exercise therapy were effective in reducing pain and disability in patients with SAIS, with exercise therapy proving more effective.
Effects of whole-body cryotherapy (-110 °C) on proprioception and indices of muscle damage.
Costello, J T; Algar, L A; Donnelly, A E
2012-04-01
The purpose of this study was to investigate the effects of whole-body cryotherapy (WBC) on proprioceptive function, muscle force recovery following eccentric muscle contractions and tympanic temperature (T(TY) ). Thirty-six subjects were randomly assigned to a group receiving two 3-min treatments of -110 ± 3 °C or 15 ± 3 °C. Knee joint position sense (JPS), maximal voluntary isometric contraction (MVIC) of the knee extensors, force proprioception and T(TY) were recorded before, immediately after the exposure and again 15 min later. A convenience sample of 18 subjects also underwent an eccentric exercise protocol on their contralateral left leg 24 h before exposure. MVIC (left knee), peak power output (PPO) during a repeated sprint on a cycle ergometer and muscles soreness were measured pre-, 24, 48 and 72h post-treatment. WBC reduced T(TY) , by 0.3 °C, when compared with the control group (P<0.001). However, JPS, MVIC or force proprioception was not affected. Similarly, WBC did not effect MVIC, PPO or muscle soreness following eccentric exercise. WBC, administered 24 h after eccentric exercise, is ineffective in alleviating muscle soreness or enhancing muscle force recovery. The results of this study also indicate no increased risk of proprioceptive-related injury following WBC. © 2011 John Wiley & Sons A/S.
Effects of Angle Variations in Suspension Push-up Exercise.
Gulmez, Irfan
2017-04-01
Gulmez, I. Effects of angle variations in suspension push-up exercise. J Strength Cond Res 31(4): 1017-1023, 2017-This study aimed to determine and compare the amount of loads on the TRX Suspension Trainer (TRX) straps and ground reaction forces at 4 different angles during TRX push-ups. Twenty-eight male (mean age, 24.1 ± 2.9 years; height, 179.4 ± 8.0 m; weight, 78.8 ± 9.8 kg) physical education and sports university students participated in this study. The subjects were tested at TRX angles (0, 15, 30, 45°) during the TRX push-ups. Force data were recorded by a force platform and load cells integrated into the TRX straps. The results show that as the TRX angle was reduced, the load applied to the TRX straps increased and simultaneously the load measured by the force platform decreased. This was true for both the elbow joint changing from flexion to extension and vice versa. When the TRX angle was set at 0° and subjects' elbows were at extension during TRX push-up, 50.4% of the subjects' body weight, and when the elbows were at flexion, 75.3% of the body weight was registered by the sensors on the TRX straps. The results of this study can be used in the calculation of the training load and volume (resistance training programming) during TRX push-up exercises at varying angles.
Percolation Tests for Septic Systems: A Laboratory Exercise.
ERIC Educational Resources Information Center
Tinker, John R., Jr.
1978-01-01
Describes how the procedures by which a certificate soil tester evaluates a parcel of land for its suitability as a site for a private sewage system or septic tank can be used by college students as a laboratory exercise in environmental geology. (HM)
NASA Astrophysics Data System (ADS)
Murthy, G.; Watenpaugh, D. E.; Ballard, R. E.; Hargens, A. R.
Exposure to lower body negative pressure (LBNP) with oral salt and water ingestion has been tested by astronauts as a countermeasure to prevent postflight orthostatic intolerance. Exercise is another countermeasure that astronauts commonly use during spaceflight to maintain musculoskeletal strength. We hypothesize that a novel combination of exercise and simultaneous exposure to lower body negative pressure during spaceflight will produce Earth-like musculoskeletal loads as well as cardiovascular stimuli to maintain adaptation to Earth's gravity. Results from recent studies indicate that leg exercise within a LBNP chamber against the suction force of 100 mmHg LBNP in horizontal-supine posture produces an equivalent, if not greater exercise stress compared to similar leg exercise in upright posture (without LBNP) against Earth's gravity. 12 Therefore, the concept of LBNP combined with exercise may prove to be a low cost and low mass technique to stress the cardiovascular and the musculoskeletal systems simultaneously.
Gibson, Christine; Nielsen, Cory; Alex, Ramona; Cooper, Kimbal; Farney, Michael; Gaufin, Douglas; Cui, Jason Z; van Breemen, Cornelis; Broderick, Tom L; Vallejo-Elias, Johana; Esfandiarei, Mitra
2017-07-01
Regular low-impact physical activity is generally allowed in patients with Marfan syndrome, a connective tissue disorder caused by heterozygous mutations in the fibrillin-1 gene. However, being above average in height encourages young adults with this syndrome to engage in high-intensity contact sports, which unfortunately increases the risk for aortic aneurysm and rupture, the leading cause of death in Marfan syndrome. In this study, we investigated the effects of voluntary (cage-wheel) or forced (treadmill) aerobic exercise at different intensities on aortic function and structure in a mouse model of Marfan syndrome. Four-week-old Marfan and wild-type mice were subjected to voluntary and forced exercise regimens or sedentary lifestyle for 5 mo. Thoracic aortic tissue was isolated and subjected to structural and functional studies. Our data showed that exercise improved aortic wall structure and function in Marfan mice and that the beneficial effect was biphasic, with an optimum at low intensity exercise (55-65% V̇o 2max ) and tapering off at a higher intensity of exercise (85% V̇o 2max ). The mechanism underlying the reduced elastin fragmentation in Marfan mice involved reduction of the expression of matrix metalloproteinases 2 and 9 within the aortic wall. These findings present the first evidence of potential beneficial effects of mild exercise on the structural integrity of the aortic wall in Marfan syndrome associated aneurysm. Our finding that moderate, but not strenuous, exercise protects aortic structure and function in a mouse model of Marfan syndrome could have important implications for the medical care of young Marfan patients. NEW & NOTEWORTHY The present study provides conclusive scientific evidence that daily exercise can improve aortic health in a mouse model of Marfan syndrome associated aortic aneurysm, and it establishes the threshold for the exercise intensity beyond which exercise may not be as protective. These findings establish a platform for a new focus on promoting regular exercise in Marfan patients at an optimum intensity and create a paradigm shift in clinical care of Marfan patients suffering from aortic aneurysm complications. Copyright © 2017 the American Physiological Society.
Effect of exercise test on pulmonary function of obese adolescents.
Faria, Alethéa Guimarães; Ribeiro, Maria Angela G O; Marson, Fernando Augusto Lima; Schivinski, Camila Isabel S; Severino, Silvana Dalge; Ribeiro, José Dirceu; Barros Filho, Antônio A
2014-01-01
to investigate the pulmonary response to exercise of non-morbidly obese adolescents, considering the gender. a prospective cross-sectional study was conducted with 92 adolescents (47 obese and 45 eutrophic), divided in four groups according to obesity and gender. Anthropometric parameters, pulmonary function (spirometry and oxygen saturation [SatO2]), heart rate (HR), blood pressure (BP), respiratory rate (RR), and respiratory muscle strength were measured. Pulmonary function parameters were measured before, during, and after the exercise test. BP and HR were higher in obese individuals during the exercise test (p = 0.0001). SatO2 values decreased during exercise in obese adolescents (p = 0.0001). Obese males had higher levels of maximum inspiratory and expiratory pressures (p = 0.0002) when compared to obese and eutrophic females. Obese males showed lower values of maximum voluntary ventilation, forced vital capacity, and forced expiratory volume in the first second when compared to eutrophic males, before and after exercise (p = 0.0005). Obese females had greater inspiratory capacity compared to eutrophic females (p = 0.0001). Expiratory reserve volume was lower in obese subjects when compared to controls (p ≤ 0,05). obese adolescents presented changes in pulmonary function at rest and these changes remained present during exercise. The spirometric and cardiorespiratory values were different in the four study groups. The present data demonstrated that, in spite of differences in lung growth, the model of fat distribution alters pulmonary function differently in obese female and male adolescents. Copyright © 2013 Sociedade Brasileira de Pediatria. Published by Elsevier Editora Ltda. All rights reserved.
Ino, Shuichi; Sato, Mitsuru; Hosono, Minako; Nakajima, Sawako; Yamashita, Kazuhiko; Izumi, Takashi
2010-01-01
In an aging society, social demands for home-based rehabilitation and assistive technologies by healthcare and welfare services are globally increasing. The progress of quality-of-life technologies and rehabilitation science is a very important and urgent issue for elderly and disabled individuals as well as for their caregivers. Thus, there is a substantial need to develop simple bedside apparatuses for both continuous exercise of joints and for power assistance for standing to prevent and manage disuse syndromes (e.g., pressure ulcers, joint contractures and muscular atrophy). Unfortunately, there are currently no commercially-available actuators compatible with the human requirements of flexibility, quietness, lightness and a high power-to-weight ratio. To fulfill the above demands, we have developed a novel actuation device using a metal hydride (MH) alloy and a laminate film, called the flexible MH actuator, as a human-friendly force generator for healthcare and welfare services. In this paper, we show the basic structure and characteristics of the flexible MH actuator used to create a passive exercise system for preventing disuse syndromes. To evaluate the efficiency of passive exercise for bedsore prevention, subcutaneous blood flow during passive exercise at common pressure-ulcer sites is measured by a laser blood flow meter. The force and range-of-motion angle required for a passive exercise apparatus is also examined with the help of a professional physical therapist. Based on these findings, a prototype of a passive exercise apparatus is fabricated using the flexible MH actuator technology, and its operation characteristics are preliminarily verified using a thermoelectric control system.
Savoia, Elena; Biddinger, Paul D; Fox, Priscilla; Levin, Donna E; Stone, Lisa; Stoto, Michael A
2009-06-01
Legal preparedness is a critical component of comprehensive public health preparedness for public health emergencies. The scope of this study was to assess the usefulness of combining didactic sessions with a tabletop exercise as educational tools in legal preparedness, to assess the impact of the exercise on the participants' level of confidence about the legal preparedness of a public health system, and to identify legal issue areas in need of further improvement. The exercise scenario and the pre- and postexercise evaluation were designed to assess knowledge gained and level of confidence in declaration of emergencies, isolation and quarantine, restrictions (including curfew) on the movement of people, closure of public places, and mass prophylaxis, and to identify legal preparedness areas most in need of further improvement at the system level. Fisher exact test and paired t test were performed to compare pre- and postexercise results. Our analysis shows that a combination of didactic teaching and experiential learning through a tabletop exercise regarding legal preparedness for infectious disease emergencies can be effective in both imparting perceived knowledge to participants and gathering information about sufficiency of authorities and existence of gaps. The exercise provided a valuable forum to judge the adequacy of legal authorities, policies, and procedures for dealing with pandemic influenza at the state and local levels in Massachusetts. In general, participants were more confident about the availability and sufficiency of legal authorities than they were about policies and procedures for implementing them. Participants were also more likely to report the need for improvement in authorities, policies, and procedures in the private sector and at the local level than at the state level.
Effects of pre-cooling procedures on intermittent-sprint exercise performance in warm conditions.
Duffield, Rob; Marino, Frank E
2007-08-01
The aim of this study was to determine whether pre-cooling procedures improve both maximal sprint and sub-maximal work during intermittent-sprint exercise. Nine male rugby players performed a familiarisation session and three testing sessions of a 2 x 30-min intermittent sprint protocol, which consisted of a 15-m sprint every min separated by free-paced hard-running, jogging and walking in 32 degrees C and 30% humidity. The three sessions included a control condition, Ice-vest condition and Ice-bath/Ice-vest condition, with respective cooling interventions imposed for 15-min pre-exercise and 10-min at half-time. Performance measures of sprint time and % decline and distance covered during sub-maximal exercise were recorded, while physiological measures of core temperature (T (core)), mean skin temperature (T (skin)), heart rate, heat storage, nude mass, rate of perceived exertion, rate of thermal comfort and capillary blood measures of lactate [La(-)], pH, Sodium (Na(+)) and Potassium (K(+)) were recorded. Results for exercise performance indicated no significant differences between conditions for the time or % decline in 15-m sprint efforts or the distance covered during sub-maximal work bouts; however, large effect size data indicated a greater distance covered during hard running following Ice-bath cooling. Further, lowered T (core), T (skin), heart rate, sweat loss and thermal comfort following Ice-bath cooling than Ice-vest or Control conditions were present, with no differences present in capillary blood measures of [La(-)], pH, K(+) or Na(+). As such, the ergogenic benefits of effective pre-cooling procedures in warm conditions for team-sports may be predominantly evident during sub-maximal bouts of exercise.
Lin, Hsueh-Chun; Chiang, Shu-Yin; Lee, Kai; Kan, Yao-Chiang
2015-01-19
This paper proposes a model for recognizing motions performed during rehabilitation exercises for frozen shoulder conditions. The model consists of wearable wireless sensor network (WSN) inertial sensor nodes, which were developed for this study, and enables the ubiquitous measurement of bodily motions. The model employs the back propagation neural network (BPNN) algorithm to compute motion data that are formed in the WSN packets; herein, six types of rehabilitation exercises were recognized. The packets sent by each node are converted into six components of acceleration and angular velocity according to three axes. Motor features such as basic acceleration, angular velocity, and derivative tilt angle were input into the training procedure of the BPNN algorithm. In measurements of thirteen volunteers, the accelerations and included angles of nodes were adopted from possible features to demonstrate the procedure. Five exercises involving simple swinging and stretching movements were recognized with an accuracy of 85%-95%; however, the accuracy with which exercises entailing spiral rotations were recognized approximately 60%. Thus, a characteristic space and enveloped spectrum improving derivative features were suggested to enable identifying customized parameters. Finally, a real-time monitoring interface was developed for practical implementation. The proposed model can be applied in ubiquitous healthcare self-management to recognize rehabilitation exercises.
42 CFR 405.1202 - Expedited determination procedures.
Code of Federal Regulations, 2010 CFR
2010-10-01
... Reconsiderations of Provider Service Terminations, and Procedures for Inpatient Hospital Discharges § 405.1202... exercise the right to an expedited determination must submit a request for a determination to the QIO in...
Differences in muscle sympathetic nerve response to isometric exercise in different muscle groups.
Saito, M
1995-01-01
The aim of this study was to examine the effects of muscle fibre composition on muscle sympathetic nerve activity (MSNA) in response to isometric exercise. The MSNA, recorded from the tibial nerve by a microneurographic technique during contraction and following arterial occlusion, was compared in three different muscle groups: the forearm (handgrip), anterior tibialis (foot dorsal contraction), and soleus muscles (foot plantar contraction) contracted separately at intensities of 20%, 33% and 50% of the maximal voluntary force. The increases in MSNA relative to control levels during contraction and occlusion were significant at all contracting forces for handgrip and at 33% and 50% of maximal for dorsal contraction, but there were no significant changes, except during exercise at 50%, for plantar contraction. The size of the MSNA response correlated with the contraction force in all muscle groups. Pooling data for all contraction forces, there were different MSNA responses among muscle groups in contraction forces (P = 0.0001, two-way analysis of variance), and occlusion periods (P = 0.0001). The MSNA increases were in the following order of magnitude: handgrip, dorsal, and plantar contractions. The order of the fibre type composition in these three muscles is from equal numbers of types I and II fibres in the forearm to increasing number of type I fibres in the leg muscles. The different MSNA responses to the contraction of different muscle groups observed may have been due in part to muscle metaboreflex intensity influenced by their metabolic capacity which is related to by their metabolic capacity which is related to the fibre type.
Wirth, Klaus; Hartmann, Hagen; Sander, Andre; Mickel, Christoph
2016-01-01
Abstract The aim of this study was to evaluate the effectiveness of free-weight and machine-based exercises to increase different strength and speed-strength variables. One hundred twenty male participants (age: 23.8 ± 2.5 years; body height: 181.0 ± 6.8 cm; body mass: 80.2 ± 8.9 kg) joined the study. The 2 experimental groups completed an 8 week periodized strength training program that included 2 training sessions per week. The exercises that were used in the strength training programs were the parallel barbell squat and the leg press. Before and after the training period, the 1-repetition-maximum in the barbell squat and the leg press, the squat jump, the countermovement jump and unilateral isometric force (maximal isometric force and the rate of force development) were evaluated. To compare each group pre vs. post-intervention, analysis of variance with repeated measures and Scheffé post-hoc tests were used. The leg press group increased their 1-repetition-maximum significantly (p < 0.001), while in the squat group such variables as 1-repetition-maximum, the squat jump and the countermovement jump increased significantly (p < 0.001). The maximal isometric force showed no statistically significant result for the repeated measures factor, while the rate of force development of the squat group even showed a statistically significant decrease. Differences between the 2 experimental groups were detected for the squat jump and the countermovement jump. In comparison with the leg press, the squat might be a better strength training exercise for the development of jump performance. PMID:28149424
Wirth, Klaus; Keiner, Michael; Hartmann, Hagen; Sander, Andre; Mickel, Christoph
2016-12-01
The aim of this study was to evaluate the effectiveness of free-weight and machine-based exercises to increase different strength and speed-strength variables. One hundred twenty male participants (age: 23.8 ± 2.5 years; body height: 181.0 ± 6.8 cm; body mass: 80.2 ± 8.9 kg) joined the study. The 2 experimental groups completed an 8 week periodized strength training program that included 2 training sessions per week. The exercises that were used in the strength training programs were the parallel barbell squat and the leg press. Before and after the training period, the 1-repetition-maximum in the barbell squat and the leg press, the squat jump, the countermovement jump and unilateral isometric force (maximal isometric force and the rate of force development) were evaluated. To compare each group pre vs. post-intervention, analysis of variance with repeated measures and Scheffé post-hoc tests were used. The leg press group increased their 1-repetition-maximum significantly (p < 0.001), while in the squat group such variables as 1-repetition-maximum, the squat jump and the countermovement jump increased significantly (p < 0.001). The maximal isometric force showed no statistically significant result for the repeated measures factor, while the rate of force development of the squat group even showed a statistically significant decrease. Differences between the 2 experimental groups were detected for the squat jump and the countermovement jump. In comparison with the leg press, the squat might be a better strength training exercise for the development of jump performance.
Jumping in simulated and true microgravity: response to maximal efforts with three landing types
NASA Technical Reports Server (NTRS)
D'Andrea, Susan E.; Perusek, Gail P.; Rajulu, Sudhakar; Perry, Julie; Davis, Brian L.
2005-01-01
BACKGROUND: Exercise is a promising countermeasure to the physiological deconditioning experienced in microgravity, but has not proven effective in eliminating the ongoing loss of bone mineral, most likely due to the lack of high-impact forces and loading rates during in-flight activity. We wanted to determine lower-extremity response to high-impact jumping exercises in true and simulated microgravity and establish if 1-G force magnitudes can be achieved in a weightless environment. METHODS: Jumping experiments were performed in a ground-based zero-gravity simulator (ZGS) in 1 G, and during parabolic flight with a gravity-replacement system. There were 12 subjects who participated in the study, with 4 subjects common to both conditions. Force, loading rates, jump height, and kinematics were analyzed during jumps with three distinct landings: two-footed toe-heel, one-footed toe-heel, and flat-footed. Gravity replacement loads of 45%, 60%, 75%, and 100% bodyweight were used in the ZGS; because of time constraints, these loads were limited to 60% and 75% bodyweight in parabolic flight. RESULTS: Average peak ground-reaction forces during landing ranged between 1902+/-607 and 2631+/-663 N in the ZGS and between 1683+/-807 and 2683+/-1174 N in the KC-135. No significant differences were found between the simulated and true microgravity conditions, but neither condition achieved the magnitudes found in 1 G. CONCLUSION: Data support the hypothesis that jumping exercises can impart high-impact forces during weightlessness and that the custom-designed ZGS will replicate what is experienced in true microgravity.
Kinematics and Kinetics of Squats, Drop Jumps and Imitation Jumps of Ski Jumpers
Pauli, Carole A.; Keller, Melanie; Ammann, Fabian; Hübner, Klaus; Lindorfer, Julia; Taylor, William R.
2016-01-01
Abstract Pauli, CA, Keller, M, Ammann, F, Hübner, K, Lindorfer, J, Taylor, WR, and Lorenzetti, S. Kinematics and kinetics of squats, drop jumps and imitation jumps of ski jumpers. J Strength Cond Res 30(3): 643–652, 2016—Squats, drop jumps, and imitation jumps are commonly used training exercises in ski jumping to enhance maximum force, explosive force, and sport-specific skills. The purpose of this study was to evaluate the kinetics and kinematics of training exercises in ski jumping and to find objective parameters in training exercises that most correlate with the competition performance of ski jumpers. To this end, barbell squats, drop jumps, and imitation jumps were measured in a laboratory environment for 10 elite ski jumpers. Force and motion data were captured, and the influence of maximum vertical force, force difference, vertical take-off velocity, knee moments, knee joint power, and a knee valgus/varus index was evaluated and correlated with their season jump performance. The results indicate that, especially for the imitation jumps, a good correlation exists between the vertical take-off velocity and the personal jump performance on the hill (R = 0.718). Importantly, however, the more the athletes tended toward a valgus knee alignment during the measured movements, the worse their performance (R = 0.729 imitation jumps; R = 0.685 squats). Although an evaluation of the athletes' lower limb alignment during competitive jumping on the hill is still required, these preliminary data suggest that performance training should additionally concentrate on improving knee alignment to increase ski jumping performance. PMID:26418370
Carlsen, K H; Anderson, S D; Bjermer, L; Bonini, S; Brusasco, V; Canonica, W; Cummiskey, J; Delgado, L; Del Giacco, S R; Drobnic, F; Haahtela, T; Larsson, K; Palange, P; Popov, T; van Cauwenberge, P
2008-05-01
The aims of part II is to review the current recommended treatment of exercise-induced asthma (EIA), respiratory and allergic disorders in sports, to review the evidence on possible improvement of performance in sports by asthma drugs and to make recommendations for their treatment. The literature cited with respect to the treatment of exercise induced asthma in athletes (and in asthma patients) is mainly based upon the systematic review given by Larsson et al. (Larsson K, Carlsen KH, Bonini S. Anti-asthmatic drugs: treatment of athletes and exercise-induced bronchoconstriction. In: Carlsen KH, Delgado L, Del Giacco S, editors. Diagnosis, prevention and treatment of exercise-related asthma, respiratory and allergic disorders in sports. Sheffield, UK: European Respiratory Journals Ltd, 2005:73-88) during the work of the Task Force. To assess the evidence of the literature regarding use of beta(2)-agonists related to athletic performance, the Task Force searched Medline for relevant papers up to November 2006 using the present search words: asthma, bronchial responsiveness, exercise-induced bronchoconstriction, athletes, sports, performance and beta(2)-agonists. Evidence level and grades of recommendation were assessed according to Sign criteria. Treatment recommendations for EIA and bronchial hyper-responsiveness in athletes are set forth with special reference to controller and reliever medications. Evidence for lack of improvement of exercise performance by inhaled beta(2)-agonists in healthy athletes serves as a basis for permitting their use. There is a lack of evidence of treatment effects of asthma drugs on EIA and bronchial hyper-responsiveness in athletes whereas extensive documentation exists in treatment of EIA in patients with asthma. The documentation on lack of improvement on performance by common asthma drugs as inhaled beta(2)-agonists with relationship to sports in healthy individuals is of high evidence, level (1+). Exercise induced asthma should be treated in athletes along same principles as in ordinary asthma patients with relevance to controller and reliever treatment after careful diagnosis. There is very high level of evidence for the lack of improvement in athletic performance by inhaled beta2-agonists.
Chronic exercise is considered one of the most effective means of countering symptoms of the metabolic syndrome (MS) such as obesity and hyperglycemia. Rodent models of forced or voluntary exercise are often used to study the mechanisms of MS and type 2 diabetes. However, there ...
Locomotor exercise in weightlessness
NASA Technical Reports Server (NTRS)
Thornton, W.; Whitmore, H.
1991-01-01
The requirements for exercise in space by means of locomotion are established and addressed with prototype treadmills for use during long-duration spaceflight. The adaptation of the human body to microgravity is described in terms of 1-G locomotor biomechanics, the effects of reduced activity, and effective activity-replacement techniques. The treadmill is introduced as a complement to other techniques of force replacement with reference given to the angle required for exercise. A motor-driven unit is proposed that can operate at a variety of controlled speeds and equivalent grades. The treadmills permit locomotor exercise as required for long-duration space travel to sustain locomotor and cardiorespiratory capacity at a level consistent with postflight needs.
Pitcher, Mark H; Tarum, Farid; Rauf, Imran Z; Low, Lucie A; Bushnell, Catherine
2017-06-01
Aerobic exercise improves outcomes in a variety of chronic health conditions, yet the support for exercise-induced effects on chronic pain in humans is mixed. Although many rodent studies have examined the effects of exercise on persistent hypersensitivity, the most used forced exercise paradigms that are known to be highly stressful. Because stress can also produce analgesic effects, we studied how voluntary exercise, known to reduce stress in healthy subjects, alters hypersensitivity, stress, and swelling in a rat model of persistent hind paw inflammation. Our data indicate that voluntary exercise rapidly and effectively reduces hypersensitivity as well as stress-related outcomes without altering swelling. Moreover, the level of exercise is unrelated to the analgesic and stress-reducing effects, suggesting that even modest amounts of exercise may impart significant benefit in persistent inflammatory pain states. Modest levels of voluntary exercise reduce pain- and stress-related outcomes in a rat model of persistent inflammatory pain, independently of the amount of exercise. As such, consistent, self-regulated activity levels may be more relevant to health improvement in persistent pain states than standardized exercise goals. Published by Elsevier Inc.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-01
...This final rule clarifies the priorities and allocation authorities exercised by the Secretary of Transportation (Secretary) under title I of the Defense Production Act of 1950 (Defense Production Act), and establishes the administrative procedures by which the Secretary will exercise this authority. In addition, in this final rule the Department is seeking comments on certain revised definitions found in section 33.20. This rule complies with the requirement in the Defense Production Act Reauthorization of 2009 (Pub. L. 111-67) to issue final rules establishing standards and procedures by which the priorities and allocations authority is used to promote the national defense, under both emergency and nonemergency conditions, and is part of a multi-agency effort that forms the Federal Priorities and Allocations System.
Cho, Jung-Wan; Jung, Sun-Young; Lee, Sang-Won; Lee, Sam-Jun; Seo, Tae-Beom; Kim, Young-Pyo; Kim, Dae-Young
2017-12-01
Social isolation is known to induce emotional and behavioral changes in animals and humans. The effect of treadmill exercise on depression was investigated using social isolated rat pups. The rat pups in the social isolation groups were housed individually. The rat pups in the exercise groups were forced to run on treadmill for 30 min once a day from postnatal day 21 to postnatal day 34. In order to evaluate depression state of rat pups, forced swimming test was performed. Newly generated cells in the hippocampal dentate gyrus were determined by 5-bromo-2'-deoxyuridine (BrdU) immunohistochemistry. We examined the expression of 5-hydroxytryptamine (5-HT) and tryptophan hydroxylase (TPH) in the dorsal raphe using immunofluorescence. The expression of brain-derived neurotrophic factor (BDNF) and tyrosine kinase B (TrkB) was detected by Western blot analysis. The present results demonstrated that social isolation increased resting time and decreased mobility time. Expression of 5-HT and TPH in the dorsal raphe and expression of BDNF and TrkB in the hippocampus were decreased by social isolation. The number of BrdU-positive cells in the hippocampal dentate gyrus was suppressed by social isolation. Treadmill exercise decreased resting time and increased mobility in the social isolated rat pups. Expression of 5-HT, TPH, BDNF, and TrkB was increased by treadmill exercise. The present results suggested that treadmill exercise may ameliorates social isolation-induced depression through increasing neuronal generation.
Work, exercise, and space flight. 3: Exercise devices and protocols
NASA Technical Reports Server (NTRS)
Thornton, William
1989-01-01
Preservation of locomotor capacity by earth equivalent, exercise in space is the crucial component of inflight exercise. At this time the treadmill appears to be the only way possible to do this. Work is underway on appropriate hardware but this and a proposed protocol to reduce exercise time must be tested. Such exercise will preserve muscle, bone Ca(++) and cardiovascular-respiratory capacity. In addition, reasonable upper body exercise can be supplied by a new force generator/measurement system-optional exercise might include a rowing machine and bicycle ergometer. A subject centered monitoring-evaluation program will allow real time adjustments as required. Absolute protection for any astronaut will not be possible and those with hypertrophied capacities such as marathoners or weight lifters will suffer significant loss. However, the program described should return the crew to earth with adequate capacity of typical activity on earth including immediate ambulation and minimal recovery time and without permanent change. An understanding of the practical mechanics and biomechanics involved is essential to a solution of the problem.
Impact of oxidative stress on exercising skeletal muscle.
Steinbacher, Peter; Eckl, Peter
2015-04-10
It is well established that muscle contractions during exercise lead to elevated levels of reactive oxygen species (ROS) in skeletal muscle. These highly reactive molecules have many deleterious effects, such as a reduction of force generation and increased muscle atrophy. Since the discovery of exercise-induced oxidative stress several decades ago, evidence has accumulated that ROS produced during exercise also have positive effects by influencing cellular processes that lead to increased expression of antioxidants. These molecules are particularly elevated in regularly exercising muscle to prevent the negative effects of ROS by neutralizing the free radicals. In addition, ROS also seem to be involved in the exercise-induced adaptation of the muscle phenotype. This review provides an overview of the evidences to date on the effects of ROS in exercising muscle. These aspects include the sources of ROS, their positive and negative cellular effects, the role of antioxidants, and the present evidence on ROS-dependent adaptations of muscle cells in response to physical exercise.
NORAD, USNORTHCOM and the Mexican Air Force to participate in AMALGAM EAGLE
. Northern Command (USNORTHCOM), will participate, with the Mexican Air Force, in AMALGAM EAGLE 15, a the Mexican Air Force to participate in AMALGAM EAGLE 15 N-NC Public Affairs PRINT | E-MAIL PETERSON tactical exercise, to be conducted Jun.30 - Jul.2, 2015, in which Mexico and the United States will respond
Rodgers, Wendy M; Hall, Craig R; Wilson, Philip M; Berry, Tanya R
2009-02-01
The purpose of this research was to examine whether exercisers and nonexercisers are rated similarly on a variety of characteristics by a sample of randomly selected regular exercisers, nonexercisers who intend to exercise, and nonexercisers with no intention to exercise. Previous research by Martin Ginis et al. (2003) has demonstrated an exerciser stereotype that advantages exercisers. It is unknown, however, the extent to which an exerciser stereotype is shared by nonexercisers, particularly nonintenders. Following an item-generation procedure, a sample of 470 (n=218 men; n=252 women) people selected using random digit dialing responded to a questionnaire assessing the extent to which they agreed that exercisers and nonexercisers possessed 24 characteristics, such as "happy," "fit," "fat," and "lazy." The results strongly support a positive exerciser bias, with exercisers rated more favorably on 22 of the 24 items. The degree of bias was equivalent in all groups of respondents. Examination of the demographic characteristics revealed no differences among the three groups on age, work status, or child-care responsibilities, suggesting that there is a pervasive positive exerciser bias.
Predicting net joint moments during a weightlifting exercise with a neural network model.
Kipp, Kristof; Giordanelli, Matthew; Geiser, Christopher
2018-06-06
The purpose of this study was to develop and train a Neural Network (NN) that uses barbell mass and motions to predict hip, knee, and ankle Net Joint Moments (NJM) during a weightlifting exercise. Seven weightlifters performed two cleans at 85% of their competition maximum while ground reaction forces and 3-D motion data were recorded. An inverse dynamics procedure was used to calculate hip, knee, and ankle NJM. Vertical and horizontal barbell motion data were extracted and, along with barbell mass, used as inputs to a NN. The NN was then trained to model the association between the mass and kinematics of the barbell and the calculated NJM for six weightlifters, the data from the remaining weightlifter was then used to test the performance of the NN - this was repeated 7 times with a k-fold cross-validation procedure to assess the NN accuracy. Joint-specific predictions of NJM produced coefficients of determination (r 2 ) that ranged from 0.79 to 0.95, and the percent difference between NN-predicted and inverse dynamics calculated peak NJM ranged between 5% and 16%. The NN was thus able to predict the spatiotemporal patterns and discrete peaks of the three NJM with reasonable accuracy, which suggests that it is feasible to predict lower extremity NJM from the mass and kinematics of the barbell. Future work is needed to determine whether combining a NN model with low cost technology (e.g., digital video and free digitising software) can also be used to predict NJM of weightlifters during field-testing situations, such as practice and competition, with comparable accuracy. Copyright © 2018 Elsevier Ltd. All rights reserved.
Cardiorespiratory deconditioning with static and dynamic leg exercise during bed rest.
Stremel, R W; Convertino, V A; Bernauer, E M; Greenleaf, J E
1976-12-01
Bed rest deconditioning was assessed in seven healthy men (19-22 yr) following three 14-day periods of controlled activity during recumbency by measuring submaximal and maximal oxygen uptake (VO2), ventilation (VE), heart rate, and plasma volume. Exercise regimens were performed in the supine position and included a) two 30-min periods daily of intermittent static exercise at 21% of maximal leg extension force, and b) two 30-min periods of dynamic bicycle ergometer exercise daily at 68% of VO2max. No prescribed exercise was performed during the third bed rest period. Compared with their respective pre-bed rest control values, VO2max decreased (P less than 0.05) under all exercise conditions; -12.3% with no exercise, -9.2% with dynamic exercise, but only -4.8% with static exercise. Maximal heart rate was increased by 3.3% to 4.9% (P less than 0.05) under the three exercise conditions, while plasma volume decreased (P less than 0.05) -15.1% with no exercise and -10.1% with static, but only -7.8% (NS) with dynamic exercise. Since neither the static nor dynamic exercise training regimes minimized the changes in all the variables studied, some combination of these two types of exercise may be necessary for maximum protection from the effects of the bed deconditioning.
Khoo, Selina; Morris, Tony
2016-01-01
Background Mobile technology to promote exercise is effective; however, most evidence is from studies of younger groups in high-income countries. Investigating if short message service (SMS) texting can affect exercise participation in older adults from an upper-middle-income country is important considering the proliferation of mobile phones in developing regions and the increased interest of older adults in using mobile phones. Objective The main objective was to examine the short- and long-term effects of SMS text messaging on exercise frequency in older adults. Secondary objectives were to investigate how SMS text messages impact study participants’ exercise frequency and the effects of the intervention on secondary outcomes. Methods The Malaysian Physical Activity for Health Study (myPAtHS) was a 24-week, 2-arm, parallel randomized controlled trial conducted in urban Malaysia. Participants were recruited via health talks in resident associations and religious facilities. Older Malaysians (aged 55-70 years) who used mobile phones and did not exercise regularly were eligible to participate in the study. Participants randomly allocated to the SMS texting arm received an exercise booklet and 5 weekly SMS text messages over 12 weeks. The content of the SMS text messages was derived from effective behavior change techniques. The non-SMS texting arm participants received only the exercise booklet. Home visits were conducted to collect outcome data: (1) exercise frequency at 12 and 24 weeks, (2) secondary outcome data (exercise self-efficacy, physical activity–related energy expenditure, sitting time, body mass index, grip and leg strength) at baseline and at 12 and 24 weeks. Intention-to-treat procedures were applied for data analysis. Semistructured interviews focusing primarily on the SMS text messages and their impact on exercise frequency were conducted at weeks 12 and 24. Results In total, 43 participants were randomized into the SMS texting arm (n=22) and the non-SMS texting arm (n=21). Study-unrelated injuries forced 4 participants to discontinue after a few weeks (they were not included in any analyses). Overall retention was 86% (37/43). After 12 weeks, SMS texting arm participants exercised significantly more than non-SMS texting arm participants (mean difference 1.21 times, bias-corrected and accelerated bootstrap [BCa] 95% CI 0.18-2.24). Interview analysis revealed that the SMS text messages positively influenced SMS texting arm participants who experienced exercise barriers. They described the SMS text messages as being encouraging, a push, and a reminder. After 24 weeks, there was no significant difference between the research arms (mean difference 0.74, BCa 95% CI –0.30 to 1.76). There were no significant effects for secondary outcomes. Conclusions This study provides evidence that SMS text messaging is effective in promoting exercise in older adults from an upper-middle-income country. Although the effects were not maintained when SMS text messaging ceased, the results are promising and warrant more research on behavioral mobile health interventions in other regions. Trial Registration Clinicaltrials.gov NCT02123342; http://clinicaltrials.gov/ct2/show/NCT02123342 (Archived by WebCite at http://www.webcitation.org/6eGSsu2EI). PMID:26742999
Müller, Andre Matthias; Khoo, Selina; Morris, Tony
2016-01-07
Mobile technology to promote exercise is effective; however, most evidence is from studies of younger groups in high-income countries. Investigating if short message service (SMS) texting can affect exercise participation in older adults from an upper-middle-income country is important considering the proliferation of mobile phones in developing regions and the increased interest of older adults in using mobile phones. The main objective was to examine the short- and long-term effects of SMS text messaging on exercise frequency in older adults. Secondary objectives were to investigate how SMS text messages impact study participants' exercise frequency and the effects of the intervention on secondary outcomes. The Malaysian Physical Activity for Health Study (myPAtHS) was a 24-week, 2-arm, parallel randomized controlled trial conducted in urban Malaysia. Participants were recruited via health talks in resident associations and religious facilities. Older Malaysians (aged 55-70 years) who used mobile phones and did not exercise regularly were eligible to participate in the study. Participants randomly allocated to the SMS texting arm received an exercise booklet and 5 weekly SMS text messages over 12 weeks. The content of the SMS text messages was derived from effective behavior change techniques. The non-SMS texting arm participants received only the exercise booklet. Home visits were conducted to collect outcome data: (1) exercise frequency at 12 and 24 weeks, (2) secondary outcome data (exercise self-efficacy, physical activity-related energy expenditure, sitting time, body mass index, grip and leg strength) at baseline and at 12 and 24 weeks. Intention-to-treat procedures were applied for data analysis. Semistructured interviews focusing primarily on the SMS text messages and their impact on exercise frequency were conducted at weeks 12 and 24. In total, 43 participants were randomized into the SMS texting arm (n=22) and the non-SMS texting arm (n=21). Study-unrelated injuries forced 4 participants to discontinue after a few weeks (they were not included in any analyses). Overall retention was 86% (37/43). After 12 weeks, SMS texting arm participants exercised significantly more than non-SMS texting arm participants (mean difference 1.21 times, bias-corrected and accelerated bootstrap [BCa] 95% CI 0.18-2.24). Interview analysis revealed that the SMS text messages positively influenced SMS texting arm participants who experienced exercise barriers. They described the SMS text messages as being encouraging, a push, and a reminder. After 24 weeks, there was no significant difference between the research arms (mean difference 0.74, BCa 95% CI -0.30 to 1.76). There were no significant effects for secondary outcomes. This study provides evidence that SMS text messaging is effective in promoting exercise in older adults from an upper-middle-income country. Although the effects were not maintained when SMS text messaging ceased, the results are promising and warrant more research on behavioral mobile health interventions in other regions. Clinicaltrials.gov NCT02123342; http://clinicaltrials.gov/ct2/show/NCT02123342 (Archived by WebCite at http://www.webcitation.org/6eGSsu2EI).
Intermittent-sprint performance and muscle glycogen after 30 h of sleep deprivation.
Skein, Melissa; Duffield, Rob; Edge, Johann; Short, Michael J; Mündel, Toby
2011-07-01
The aim of this study was to determine the effects of 30 h of sleep deprivation on consecutive-day intermittent-sprint performance and muscle glycogen content. Ten male, team-sport athletes performed a single-day "baseline" session and two consecutive-day experimental trials separated either by a normal night's sleep (CONT1 and CONT2) or no sleep (SDEP1 and SDEP2). Each session included a 30-min graded exercise run and 50-min intermittent-sprint exercise protocol, including a 15-m maximal sprint every minute and self-paced exercise bouts of varying intensities. Muscle biopsies were extracted before and after exercise during the baseline session and before exercise on day 2 during experimental trials. Voluntary force and activation of the right quadriceps, nude mass, HR, core temperature, capillary blood lactate and glucose, RPE, and a modified POMS were recorded before, after, and during the exercise protocols. Mean sprint times were slower on SDEP2 (2.78±0.17 s) compared with SDEP1 (2.70±0.16 s) and CONT2 (2.74±0.15 s, P<0.05). Distance covered during self-paced exercise was reduced during SDEP2 during the initial 10 min compared with SDEP1 and during the final 10 min compared with CONT2 (P<0.05). Muscle glycogen concentration was lower before exercise on SDEP2 (209±60 mmol·kg dry weight) compared with CONT2 (274±54 mmol·kg dry weight, P=0.05). Voluntary force and activation were reduced on day 2 of both conditions; however, both were lower in SDEP2 compared with CONT2 (P<0.05). Sleep loss did not affect RPE but negatively affected POMS ratings (P<0.05). Sleep loss and associated reductions in muscle glycogen and perceptual stress reduced sprint performance and slowed pacing strategies during intermittent-sprint exercise for male team-sport athletes.
Parazzi, Paloma Lopes Francisco; Marson, Fernando Augusto de Lima; Ribeiro, Maria Angela Gonçalves de Oliveira; de Almeida, Celize Cruz Bresciani; Martins, Luiz Cláudio; Paschoal, Ilma Aparecida; Toro, Adyleia Aparecida Dalbo Contrera; Schivinski, Camila Isabel Santos; Ribeiro, Jose Dirceu
2015-05-19
Exercise has been studied as a prognostic marker for patients with cystic fibrosis (CF), as well as a tool for improving their quality of life and analyzing lung disease. In this context, the aim of the present study was to evaluate and compare variables of lung functioning. Our data included: (i) volumetric capnography (VCAP) parameters: expiratory minute volume (VE), volume of exhaled carbon dioxide (VCO2), VE/VCO2, ratio of dead space to tidal volume (VD/VT), and end-tidal carbon dioxide (PetCO2); (ii) spirometry parameters: forced vital capacity (FVC), percent forced expiratory volume in the first second of the FVC (FEV1%), and FEV1/FVC%; and (iii) cardiorespiratory parameters: heart rate (HR), respiratory rate, oxygen saturation (SpO2), and Borg scale rating at rest and during exercise. The subjects comprised children, adolescents, and young adults aged 6-25 years with CF (CF group [CFG]) and without CF (control group [CG]). This was a clinical, prospective, controlled study involving 128 male and female patients (64 with CF) of a university hospital. All patients underwent treadmill exercise tests and provided informed consent after study approval by the institutional ethics committee. Linear regression, Kruskal-Wallis test, and Mann-Whitney test were performed to compare the CFG and CG. The α value was set at 0.05. Patients in the CFG showed significantly different VCAP values and spirometry variables throughout the exercise test. Before, during, and after exercise, several variables were different between the two groups; statistically significant differences were seen in the spirometry parameters, SpO2, HR, VCO2, VE/VCO2, PetCO2, and Borg scale rating. VCAP variables changed at each time point analyzed during the exercise test in both groups. VCAP can be used to analyze ventilatory parameters during exercise. All cardiorespiratory, spirometry, and VCAP variables differed between patients in the CFG and CG before, during, and after exercise.
Murray, Mike; Lange, Britt; Nørnberg, Bo Riebeling; Søgaard, Karen; Sjøgaard, Gisela
2015-08-19
Flight-related neck/shoulder pain is frequent among military helicopter pilots and crew members. With a lifetime prevalence of 81% for pilots and 84% for crew members, the prevalence of neck pain is considered high compared to the general population. The aim of this study was to investigate whether a specifically tailored exercise intervention would reduce the prevalence and incidence rate of neck/shoulder pain among helicopter pilots and crew members. This study used a prospective, parallel group, single blinded, randomized controlled design. Participants were military helicopter pilots and crew members recruited from the Royal Danish Air Force. Inclusion criteria were: 1) employed within the Royal Danish Air Force as a helicopter pilot or onboard crew member (technician, systems-operator, tactical helicopter observer and/or navigator), 2) maintaining operational flight status at enrollment, and 3) operational flying within the previous 6 months. Primary outcome was change in neck and shoulder pain assessed by 1) a modified version of the "Standardized Nordic questionnaire for the analysis of musculoskeletal symptoms" and by 2) pressure pain threshold measurements. Secondary outcomes included: postural balance, strength, stability, and rate of force development for neck and shoulder muscles. Measurements at baseline and follow-up were conducted at four air force bases in Denmark. Sixty-nine participants were individually randomized to either a training group (TG) or a reference group (RG). Participants in the TG performed 20-weeks of physical exercise training divided into sessions of 3 × 20 min per week. Training was completed within working hours and consisted of specific exercise training for the neck and shoulder muscles based on the principles of "Intelligent Physical Exercise Training". The RG received no training. In spite of the high prevalence of flight related neck/shoulder pain among military helicopter pilots and crew members there are currently no evidence based guidelines for the prevention or clinical handling of neck pain among these occupational groups. Results from this study may therefore be beneficial for future establishment of such guidelines. Ethical committee of Southern Denmark (S-20120121) 29 August, 2012. Clinical Trail Registration (NCT01926262) 16 August, 2013.
A Laboratory Exercise to Assess Transpiration.
ERIC Educational Resources Information Center
Schrock, Gould F.
1982-01-01
Procedures are outlined for a laboratory exercise in which students use a gravimetric method to determine the rate of transpiration in sunflower seedlings. Discusses the data in terms of the effectiveness of stomatal openings, mechanisms for water movement in plants, and the role of transpiration in the environment. (DC)
Practical Exercises for the Study of Community Ecology at Advanced Level.
ERIC Educational Resources Information Center
Putman, R. J.
1984-01-01
Describes a series of short-term modular experiments which focus on community structure (standing crop biomass) and function (system energy flow). One exercise examines decomposers while another shows energy use by individuals. Equipment needed, procedures used, and results obtained are included. (Author/DH)
Preparation of Lead Compounds: An Exercise in Applied Chemistry.
ERIC Educational Resources Information Center
Laing, Michael; And Others
1987-01-01
Describes an exercise developed at the University of Natal (South Africa) in which students visit a plant which manufactures a variety of lead compounds. Outlines the procedures for the laboratory preparation of lead compounds that students prepare with samples they collected at the plant. (TW)
An Inexpensive Electrodeposition Device and Its Use in a Quantitative Analysis Laboratory Exercise
ERIC Educational Resources Information Center
Parker, Richard H.
2011-01-01
An experimental procedure, using an apparatus that is easy to construct, was developed to incorporate a quantitative electrogravimetric determination of the solution nickel content into an undergraduate or advanced high school quantitative analysis laboratory. This procedure produces results comparable to the procedure used for the gravimetric…
Examining cerebral angiogenesis in response to physical exercise.
Berggren, Kiersten L; Kay, Jacob J M; Swain, Rodney A
2014-01-01
Capillary growth and expansion (angiogenesis) is a prerequisite for many forms of neural and behavioral plasticity. It is commonly observed in both brain and muscle of aerobically exercising animals. As such, several histological methods have been used to quantify capillary density, including perfusion with India ink, various Nissl stains, and immunohistochemistry. In this chapter, we will describe these histological procedures and describe the stereological analysis used to quantify vessel growth in response to aerobic exercise.