Sample records for force field predictions

  1. Prediction of Mechanical Properties of Polymers With Various Force Fields

    NASA Technical Reports Server (NTRS)

    Odegard, Gregory M.; Clancy, Thomas C.; Gates, Thomas S.

    2005-01-01

    The effect of force field type on the predicted elastic properties of a polyimide is examined using a multiscale modeling technique. Molecular Dynamics simulations are used to predict the atomic structure and elastic properties of the polymer by subjecting a representative volume element of the material to bulk and shear finite deformations. The elastic properties of the polyimide are determined using three force fields: AMBER, OPLS-AA, and MM3. The predicted values of Young s modulus and shear modulus of the polyimide are compared with experimental values. The results indicate that the mechanical properties of the polyimide predicted with the OPLS-AA force field most closely matched those from experiment. The results also indicate that while the complexity of the force field does not have a significant effect on the accuracy of predicted properties, small differences in the force constants and the functional form of individual terms in the force fields determine the accuracy of the force field in predicting the elastic properties of the polyimide.

  2. Comparison of three empirical force fields for phonon calculations in CdSe quantum dots

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kelley, Anne Myers

    Three empirical interatomic force fields are parametrized using structural, elastic, and phonon dispersion data for bulk CdSe and their predictions are then compared for the structures and phonons of CdSe quantum dots having average diameters of ~2.8 and ~5.2 nm (~410 and ~2630 atoms, respectively). The three force fields include one that contains only two-body interactions (Lennard-Jones plus Coulomb), a Tersoff-type force field that contains both two-body and three-body interactions but no Coulombic terms, and a Stillinger-Weber type force field that contains Coulombic interactions plus two-body and three-body terms. While all three force fields predict nearly identical peak frequencies formore » the strongly Raman-active “longitudinal optical” phonon in the quantum dots, the predictions for the width of the Raman peak, the peak frequency and width of the infrared absorption peak, and the degree of disorder in the structure are very different. The three force fields also give very different predictions for the variation in phonon frequency with radial position (core versus surface). The Stillinger-Weber plus Coulomb type force field gives the best overall agreement with available experimental data.« less

  3. Reparameterization of RNA chi Torsion Parameters for the AMBER Force Field and Comparison to NMR Spectra for Cytidine and Uridine.

    PubMed

    Yildirim, Ilyas; Stern, Harry A; Kennedy, Scott D; Tubbs, Jason D; Turner, Douglas H

    2010-05-11

    A reparameterization of the torsional parameters for the glycosidic dihedral angle, chi, for the AMBER99 force field in RNA nucleosides is used to provide a modified force field, AMBER99chi. Molecular dynamics simulations of cytidine, uridine, adenosine, and guanosine in aqueous solution using the AMBER99 and AMBER99chi force fields are compared with NMR results. For each nucleoside and force field, 10 individual molecular dynamics simulations of 30 ns each were run. For cytidine with AMBER99chi force field, each molecular dynamics simulation time was extended to 120 ns for convergence purposes. Nuclear magnetic resonance (NMR) spectroscopy, including one-dimensional (1D) (1)H, steady-state 1D (1)H nuclear Overhauser effect (NOE), and transient 1D (1)H NOE, was used to determine the sugar puckering and preferred base orientation with respect to the ribose of cytidine and uridine. The AMBER99 force field overestimates the population of syn conformations of the base orientation and of C2'-endo sugar puckering of the pyrimidines, while the AMBER99chi force field's predictions are more consistent with NMR results. Moreover, the AMBER99 force field prefers high anti conformations with glycosidic dihedral angles around 310 degrees for the base orientation of purines. The AMBER99chi force field prefers anti conformations around 185 degrees , which is more consistent with the quantum mechanical calculations and known 3D structures of folded ribonucleic acids (RNAs). Evidently, the AMBER99chi force field predicts the structural characteristics of ribonucleosides better than the AMBER99 force field and should improve structural and thermodynamic predictions of RNA structures.

  4. A Comparison of Classical Force-Fields for Molecular Dynamics Simulations of Lubricants

    PubMed Central

    Ewen, James P.; Gattinoni, Chiara; Thakkar, Foram M.; Morgan, Neal; Spikes, Hugh A.; Dini, Daniele

    2016-01-01

    For the successful development and application of lubricants, a full understanding of their complex nanoscale behavior under a wide range of external conditions is required, but this is difficult to obtain experimentally. Nonequilibrium molecular dynamics (NEMD) simulations can be used to yield unique insights into the atomic-scale structure and friction of lubricants and additives; however, the accuracy of the results depend on the chosen force-field. In this study, we demonstrate that the use of an accurate, all-atom force-field is critical in order to; (i) accurately predict important properties of long-chain, linear molecules; and (ii) reproduce experimental friction behavior of multi-component tribological systems. In particular, we focus on n-hexadecane, an important model lubricant with a wide range of industrial applications. Moreover, simulating conditions common in tribological systems, i.e., high temperatures and pressures (HTHP), allows the limits of the selected force-fields to be tested. In the first section, a large number of united-atom and all-atom force-fields are benchmarked in terms of their density and viscosity prediction accuracy of n-hexadecane using equilibrium molecular dynamics (EMD) simulations at ambient and HTHP conditions. Whilst united-atom force-fields accurately reproduce experimental density, the viscosity is significantly under-predicted compared to all-atom force-fields and experiments. Moreover, some all-atom force-fields yield elevated melting points, leading to significant overestimation of both the density and viscosity. In the second section, the most accurate united-atom and all-atom force-field are compared in confined NEMD simulations which probe the structure and friction of stearic acid adsorbed on iron oxide and separated by a thin layer of n-hexadecane. The united-atom force-field provides an accurate representation of the structure of the confined stearic acid film; however, friction coefficients are consistently under-predicted and the friction-coverage and friction-velocity behavior deviates from that observed using all-atom force-fields and experimentally. This has important implications regarding force-field selection for NEMD simulations of systems containing long-chain, linear molecules; specifically, it is recommended that accurate all-atom potentials, such as L-OPLS-AA, are employed. PMID:28773773

  5. A Comparison of Classical Force-Fields for Molecular Dynamics Simulations of Lubricants.

    PubMed

    Ewen, James P; Gattinoni, Chiara; Thakkar, Foram M; Morgan, Neal; Spikes, Hugh A; Dini, Daniele

    2016-08-02

    For the successful development and application of lubricants, a full understanding of their complex nanoscale behavior under a wide range of external conditions is required, but this is difficult to obtain experimentally. Nonequilibrium molecular dynamics (NEMD) simulations can be used to yield unique insights into the atomic-scale structure and friction of lubricants and additives; however, the accuracy of the results depend on the chosen force-field. In this study, we demonstrate that the use of an accurate, all-atom force-field is critical in order to; (i) accurately predict important properties of long-chain, linear molecules; and (ii) reproduce experimental friction behavior of multi-component tribological systems. In particular, we focus on n -hexadecane, an important model lubricant with a wide range of industrial applications. Moreover, simulating conditions common in tribological systems, i.e., high temperatures and pressures (HTHP), allows the limits of the selected force-fields to be tested. In the first section, a large number of united-atom and all-atom force-fields are benchmarked in terms of their density and viscosity prediction accuracy of n -hexadecane using equilibrium molecular dynamics (EMD) simulations at ambient and HTHP conditions. Whilst united-atom force-fields accurately reproduce experimental density, the viscosity is significantly under-predicted compared to all-atom force-fields and experiments. Moreover, some all-atom force-fields yield elevated melting points, leading to significant overestimation of both the density and viscosity. In the second section, the most accurate united-atom and all-atom force-field are compared in confined NEMD simulations which probe the structure and friction of stearic acid adsorbed on iron oxide and separated by a thin layer of n -hexadecane. The united-atom force-field provides an accurate representation of the structure of the confined stearic acid film; however, friction coefficients are consistently under-predicted and the friction-coverage and friction-velocity behavior deviates from that observed using all-atom force-fields and experimentally. This has important implications regarding force-field selection for NEMD simulations of systems containing long-chain, linear molecules; specifically, it is recommended that accurate all-atom potentials, such as L-OPLS-AA, are employed.

  6. Prediction of destabilizing blade tip forces for shrouded and unshrouded turbines

    NASA Technical Reports Server (NTRS)

    Qiu, Y. J.; Martinezsanchez, M.

    1985-01-01

    The effect of a nonuniform flow field on the Alford force calculation is investigated. The ideas used here are based on those developed by Horlock and Greitzer. It is shown that the nonuniformity of the flow field does contribute to the Alford force calculation. An attempt is also made to include the effect of whirl speed. The values predicted by the model are compared with those obtained experimentally by Urlicks and Wohlrab. The possibility of using existing turbine tip loss correlations to predict beta is also exploited. The nonuniform flow field induced by the tip clearnance variation tends to increase the resultant destabilizing force over and above what would be predicted on the basis of the local variation of efficiency. On the one hand, the pressure force due to the nonuniform inlet and exit pressure also plays a part even for unshrouded blades, and this counteracts the flow field effects, so that the simple Alford prediction remains a reasonable approximation. Once the efficiency variation with clearance is known, the presented model gives a slightly overpredicted, but reasonably accurate destabilizing force. In the absence of efficiency vs. clearance data, an empirical tip loss coefficient can be used to give a reasonable prediction of destabilizing force. To a first approximation, the whirl does have a damping effect, but only of small magnitude, and thus it can be ignored for some purposes.

  7. Technologies for Developing Predictive Atomistic and Coarse-Grained Force Fields for Ionic Liquid Property Prediction

    DTIC Science & Technology

    2008-07-29

    minimization is performed. It is critical that all other force field parameters (for bonds, angles, charges, and Lennard-Jones interactions) be pre...and tailoring the parameterization accordingly may be critical . For Phase I, the above described procedure was performed manually to obtain dihedral... critical that a reliable approach is available to guide experimental efforts and design. In addition, the automation of force field development will

  8. Prediction of cyclohexane-water distribution coefficient for SAMPL5 drug-like compounds with the QMPFF3 and ARROW polarizable force fields.

    PubMed

    Kamath, Ganesh; Kurnikov, Igor; Fain, Boris; Leontyev, Igor; Illarionov, Alexey; Butin, Oleg; Olevanov, Michael; Pereyaslavets, Leonid

    2016-11-01

    We present the performance of blind predictions of water-cyclohexane distribution coefficients for 53 drug-like compounds in the SAMPL5 challenge by three methods currently in use within our group. Two of them utilize QMPFF3 and ARROW, polarizable force-fields of varying complexity, and the third uses the General Amber Force-Field (GAFF). The polarizable FF's are implemented in an in-house MD package, Arbalest. We find that when we had time to parametrize the functional groups with care (batch 0), the polarizable force-fields outperformed the non-polarizable one. Conversely, on the full set of 53 compounds, GAFF performed better than both QMPFF3 and ARROW. We also describe the torsion-restrain method we used to improve sampling of molecular conformational space and thus the overall accuracy of prediction. The SAMPL5 challenge highlighted several drawbacks of our force-fields, such as our significant systematic over-estimation of hydrophobic interactions, specifically for alkanes and aromatic rings.

  9. Reconciling Structural and Thermodynamic Predictions Using All-Atom and Coarse-Grain Force Fields: The Case of Charged Oligo-Arginine Translocation into DMPC Bilayers

    PubMed Central

    2015-01-01

    Using the translocation of short, charged cationic oligo-arginine peptides (mono-, di-, and triarginine) from bulk aqueous solution into model DMPC bilayers, we explore the question of the similarity of thermodynamic and structural predictions obtained from molecular dynamics simulations using all-atom and Martini coarse-grain force fields. Specifically, we estimate potentials of mean force associated with translocation using standard all-atom (CHARMM36 lipid) and polarizable and nonpolarizable Martini force fields, as well as a series of modified Martini-based parameter sets. We find that we are able to reproduce qualitative features of potentials of mean force of single amino acid side chain analogues into model bilayers. In particular, modifications of peptide–water and peptide–membrane interactions allow prediction of free energy minima at the bilayer–water interface as obtained with all-atom force fields. In the case of oligo-arginine peptides, the modified parameter sets predict interfacial free energy minima as well as free energy barriers in almost quantitative agreement with all-atom force field based simulations. Interfacial free energy minima predicted by a modified coarse-grained parameter set are −2.51, −4.28, and −5.42 for mono-, di-, and triarginine; corresponding values from all-atom simulations are −0.83, −3.33, and −3.29, respectively, all in units of kcal/mol. We found that a stronger interaction between oligo-arginine and the membrane components and a weaker interaction between oligo-arginine and water are crucial for producing such minima in PMFs using the polarizable CG model. The difference between bulk aqueous and bilayer center states predicted by the modified coarse-grain force field are 11.71, 14.14, and 16.53 kcal/mol, and those by the all-atom model are 6.94, 8.64, and 12.80 kcal/mol; those are of almost the same order of magnitude. Our simulations also demonstrate a remarkable similarity in the structural aspects of the ensemble of configurations generated using the all-atom and coarse-grain force fields. Both resolutions show that oligo-arginine peptides adopt preferential orientations as they translocate into the bilayer. The guiding theme centers on charged groups maintaining coordination with polar and charged bilayer components as well as local water. We also observe similar behaviors related with membrane deformations. PMID:25290376

  10. Reconciling structural and thermodynamic predictions using all-atom and coarse-grain force fields: the case of charged oligo-arginine translocation into DMPC bilayers.

    PubMed

    Hu, Yuan; Sinha, Sudipta Kumar; Patel, Sandeep

    2014-10-16

    Using the translocation of short, charged cationic oligo-arginine peptides (mono-, di-, and triarginine) from bulk aqueous solution into model DMPC bilayers, we explore the question of the similarity of thermodynamic and structural predictions obtained from molecular dynamics simulations using all-atom and Martini coarse-grain force fields. Specifically, we estimate potentials of mean force associated with translocation using standard all-atom (CHARMM36 lipid) and polarizable and nonpolarizable Martini force fields, as well as a series of modified Martini-based parameter sets. We find that we are able to reproduce qualitative features of potentials of mean force of single amino acid side chain analogues into model bilayers. In particular, modifications of peptide-water and peptide-membrane interactions allow prediction of free energy minima at the bilayer-water interface as obtained with all-atom force fields. In the case of oligo-arginine peptides, the modified parameter sets predict interfacial free energy minima as well as free energy barriers in almost quantitative agreement with all-atom force field based simulations. Interfacial free energy minima predicted by a modified coarse-grained parameter set are -2.51, -4.28, and -5.42 for mono-, di-, and triarginine; corresponding values from all-atom simulations are -0.83, -3.33, and -3.29, respectively, all in units of kcal/mol. We found that a stronger interaction between oligo-arginine and the membrane components and a weaker interaction between oligo-arginine and water are crucial for producing such minima in PMFs using the polarizable CG model. The difference between bulk aqueous and bilayer center states predicted by the modified coarse-grain force field are 11.71, 14.14, and 16.53 kcal/mol, and those by the all-atom model are 6.94, 8.64, and 12.80 kcal/mol; those are of almost the same order of magnitude. Our simulations also demonstrate a remarkable similarity in the structural aspects of the ensemble of configurations generated using the all-atom and coarse-grain force fields. Both resolutions show that oligo-arginine peptides adopt preferential orientations as they translocate into the bilayer. The guiding theme centers on charged groups maintaining coordination with polar and charged bilayer components as well as local water. We also observe similar behaviors related with membrane deformations.

  11. Tailor-made force fields for crystal-structure prediction.

    PubMed

    Neumann, Marcus A

    2008-08-14

    A general procedure is presented to derive a complete set of force-field parameters for flexible molecules in the crystalline state on a case-by-case basis. The force-field parameters are fitted to the electrostatic potential as well as to accurate energies and forces generated by means of a hybrid method that combines solid-state density functional theory (DFT) calculations with an empirical van der Waals correction. All DFT calculations are carried out with the VASP program. The mathematical structure of the force field, the generation of reference data, the choice of the figure of merit, the optimization algorithm, and the parameter-refinement strategy are discussed in detail. The approach is applied to cyclohexane-1,4-dione, a small flexible ring. The tailor-made force field obtained for cyclohexane-1,4-dione is used to search for low-energy crystal packings in all 230 space groups with one molecule per asymmetric unit, and the most stable crystal structures are reoptimized in a second step with the hybrid method. The experimental crystal structure is found as the most stable predicted crystal structure both with the tailor-made force field and the hybrid method. The same methodology has also been applied successfully to the four compounds of the fourth CCDC blind test on crystal-structure prediction. For the five aforementioned compounds, the root-mean-square deviations between lattice energies calculated with the tailor-made force fields and the hybrid method range from 0.024 to 0.053 kcal/mol per atom around an average value of 0.034 kcal/mol per atom.

  12. A force field for dynamic Cu-BTC metal-organic framework.

    PubMed

    Zhao, Lei; Yang, Qingyuan; Ma, Qintian; Zhong, Chongli; Mi, Jianguo; Liu, Dahuan

    2011-02-01

    A new force field that can describe the flexibility of Cu-BTC metal-organic framework (MOF) was developed in this work. Part of the parameters were obtained using density functional theory calculations, and the others were taken from other force fields. The new force field could reproduce well the experimental crystal structure, negative thermal expansion, vibrational properties as well as adsorption behavior in Cu-BTC. In addition, the bulk modulus of Cu-BTC was predicted using the new force field. We believe the new force field is useful in understanding the structure-property relationships for MOFs, and the approach can be extended to other MOFs.

  13. Polymer-induced forces at interfaces

    NASA Astrophysics Data System (ADS)

    Rangarajan, Murali

    This dissertation concerns studies of forces generated by confined and physisorbed flexible polymers using lattice mean-field theories, and those generated by confined and clamped semiflexible polymers modeled as slender elastic rods. Lattice mean-field theories have been used in understanding and predicting the behavior of polymeric interfacial systems. In order to efficiently tailor such systems for various applications of interest, one has to understand the forces generated in the interface due to the polymer molecules. The present work examines the abilities and limitations of lattice mean-field theories in predicting the structure of physisorbed polymer layers and the resultant forces. Within the lattice mean-field theory, a definition of normal force of compression as the negative derivative of the partition-function-based excess free energy with surface separation gives misleading results because the theory does not explicitly account for the normal stresses involved in the system. Correct expressions for normal and tangential forces are obtained from a continuum-mechanics-based formulation. Preliminary comparisons with lattice Monte Carlo simulations show that mean-field theories fail to predict significant attractive forces when the surfaces are undersaturated, as one would expect. The corrections to the excluded volume (non-reversal chains) and the mean-field (anisotropic field) approximations improve the predictions of layer structure, but not the forces. Bending of semiflexible polymer chains (elastic rods) is considered for two boundary conditions---where the chain is hinged on both ends and where the chain is clamped on one end and hinged on the other. For the former case, the compressive forces and chain shapes obtained are consistent with the inflexional elastica published by Love. For the latter, multiple and higher-order solutions are observed for the hinged-end position for a given force. Preliminary studies are conducted on actin-based motility of Listeria monocytogenes by treating actin filaments as elastic rods, using the actoclampin model. The results show qualitative agreement with calculations where the filaments are modeled as Hookean springs. The feasibility of the actoclampin model to address long length-scale rotation of Listeria during actin-based motility is addressed.

  14. The 'Arm Force Field' method to predict manual arm strength based on only hand location and force direction.

    PubMed

    La Delfa, Nicholas J; Potvin, Jim R

    2017-03-01

    This paper describes the development of a novel method (termed the 'Arm Force Field' or 'AFF') to predict manual arm strength (MAS) for a wide range of body orientations, hand locations and any force direction. This method used an artificial neural network (ANN) to predict the effects of hand location and force direction on MAS, and included a method to estimate the contribution of the arm's weight to the predicted strength. The AFF method predicted the MAS values very well (r 2  = 0.97, RMSD = 5.2 N, n = 456) and maintained good generalizability with external test data (r 2  = 0.842, RMSD = 13.1 N, n = 80). The AFF can be readily integrated within any DHM ergonomics software, and appears to be a more robust, reliable and valid method of estimating the strength capabilities of the arm, when compared to current approaches. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Predicting Multicomponent Adsorption Isotherms in Open-Metal Site Materials Using Force Field Calculations Based on Energy Decomposed Density Functional Theory.

    PubMed

    Heinen, Jurn; Burtch, Nicholas C; Walton, Krista S; Fonseca Guerra, Célia; Dubbeldam, David

    2016-12-12

    For the design of adsorptive-separation units, knowledge is required of the multicomponent adsorption behavior. Ideal adsorbed solution theory (IAST) breaks down for olefin adsorption in open-metal site (OMS) materials due to non-ideal donor-acceptor interactions. Using a density-function-theory-based energy decomposition scheme, we develop a physically justifiable classical force field that incorporates the missing orbital interactions using an appropriate functional form. Our first-principles derived force field shows greatly improved quantitative agreement with the inflection points, initial uptake, saturation capacity, and enthalpies of adsorption obtained from our in-house adsorption experiments. While IAST fails to make accurate predictions, our improved force field model is able to correctly predict the multicomponent behavior. Our approach is also transferable to other OMS structures, allowing the accurate study of their separation performances for olefins/paraffins and further mixtures involving complex donor-acceptor interactions. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Empirical temperature-dependent intermolecular potentials determined by data mining from crystal data

    NASA Astrophysics Data System (ADS)

    Hofmann, D. W. M.; Kuleshova, L. N.

    2018-05-01

    Modern force fields are accurate enough to describe thermal effects in molecular crystals. Here, we have extended our earlier approach to discrete force fields for various temperatures to a force field with a continuous function. For the parametrisation of the force field, we used data mining on experimental structures with the temperature as an additional descriptor. The obtained force field can be used to minimise energy at a finite temperature and for molecular dynamics with zero-K potentials. The applicability of the method has been demonstrated for the prediction of crystal density, temperature density gradients and transition temperature.

  17. Evaluation of reactive force fields for prediction of the thermo-mechanical properties of cellulose Iâ

    Treesearch

    Fernando L. Dri; Xiawa Wu; Robert J. Moon; Ashlie Martini; Pablo D. Zavattieri

    2015-01-01

    Molecular dynamics simulation is commonly used to study the properties of nanocellulose-based materials at the atomic scale. It is well known that the accuracy of these simulations strongly depends on the force field that describes energetic interactions. However, since there is no force field developed specifically for cellulose, researchers utilize models...

  18. The application of tailor-made force fields and molecular dynamics for NMR crystallography: a case study of free base cocaine

    PubMed Central

    Neumann, Marcus A.

    2017-01-01

    Motional averaging has been proven to be significant in predicting the chemical shifts in ab initio solid-state NMR calculations, and the applicability of motional averaging with molecular dynamics has been shown to depend on the accuracy of the molecular mechanical force field. The performance of a fully automatically generated tailor-made force field (TMFF) for the dynamic aspects of NMR crystallography is evaluated and compared with existing benchmarks, including static dispersion-corrected density functional theory calculations and the COMPASS force field. The crystal structure of free base cocaine is used as an example. The results reveal that, even though the TMFF outperforms the COMPASS force field for representing the energies and conformations of predicted structures, it does not give significant improvement in the accuracy of NMR calculations. Further studies should direct more attention to anisotropic chemical shifts and development of the method of solid-state NMR calculations. PMID:28250956

  19. Accurate van der Waals force field for gas adsorption in porous materials.

    PubMed

    Sun, Lei; Yang, Li; Zhang, Ya-Dong; Shi, Qi; Lu, Rui-Feng; Deng, Wei-Qiao

    2017-09-05

    An accurate van der Waals force field (VDW FF) was derived from highly precise quantum mechanical (QM) calculations. Small molecular clusters were used to explore van der Waals interactions between gas molecules and porous materials. The parameters of the accurate van der Waals force field were determined by QM calculations. To validate the force field, the prediction results from the VDW FF were compared with standard FFs, such as UFF, Dreiding, Pcff, and Compass. The results from the VDW FF were in excellent agreement with the experimental measurements. This force field can be applied to the prediction of the gas density (H 2 , CO 2 , C 2 H 4 , CH 4 , N 2 , O 2 ) and adsorption performance inside porous materials, such as covalent organic frameworks (COFs), zeolites and metal organic frameworks (MOFs), consisting of H, B, N, C, O, S, Si, Al, Zn, Mg, Ni, and Co. This work provides a solid basis for studying gas adsorption in porous materials. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  20. Molecular modeling studies of structural properties of polyvinyl alcohol: a comparative study using INTERFACE force field.

    PubMed

    Radosinski, Lukasz; Labus, Karolina

    2017-10-05

    Polyvinyl alcohol (PVA) is a material with a variety of applications in separation, biotechnology, and biomedicine. Using combined Monte Carlo and molecular dynamics techniques, we present an extensive comparative study of second- and third-generation force fields Universal, COMPASS, COMPASS II, PCFF, and the newly developed INTERFACE, as applied to this system. In particular, we show that an INTERFACE force field provides a possibility of composing a reliable atomistic model to reproduce density change of PVA matrix in a narrow temperature range (298-348 K) and calculate a thermal expansion coefficient with reasonable accuracy. Thus, the INTERFACE force field may be used to predict mechanical properties of the PVA system, being a scaffold for hydrogels, with much greater accuracy than latter approaches. Graphical abstract Molecular Dynamics and Monte Carlo studies indicate that it is possible to predict properties of the PVA in narrow temperature range by using the INTERFACE force field.

  1. The turbulent recirculating flow field in a coreless induction furnace. A comparison of theoretical predictions with measurements

    NASA Technical Reports Server (NTRS)

    El-Kaddah, N.; Szekely, J.

    1982-01-01

    A mathematical representation for the electromagnetic force field and the fluid flow field in a coreless induction furnace is presented. The fluid flow field was represented by writing the axisymmetric turbulent Navier-Stokes equation, containing the electromagnetic body force term. The electromagnetic body force field was calculated by using a technique of mutual inductances. The kappa-epsilon model was employed for evaluating the turbulent viscosity and the resultant differential equations were solved numerically. Theoretically predicted velocity fields are in reasonably good agreement with the experimental measurements reported by Hunt and Moore; furthermore, the agreement regarding the turbulent intensities are essentially quantitative. These results indicate that the kappa-epsilon model provides a good engineering representation of the turbulent recirculating flows occurring in induction furnaces. At this stage it is not clear whether the discrepancies between measurements and the predictions, which were not very great in any case, are attributable either to the model or to the measurement techniques employed.

  2. Development of many-body polarizable force fields for Li-battery components: 1. Ether, alkane, and carbonate-based solvents.

    PubMed

    Borodin, Oleg; Smith, Grant D

    2006-03-30

    Classical many-body polarizable force fields were developed for n-alkanes, perflouroalkanes, polyethers, ketones, and linear and cyclic carbonates on the basis of quantum chemistry dimer energies of model compounds and empirical thermodynamic liquid-state properties. The dependence of the electron correlation contribution to the dimer binding energy on basis-set size and level of theory was investigated as a function of molecular separation for a number of alkane, ether, and ketone dimers. Molecular dynamics (MD) simulations of the force fields accurately predicted structural, dynamic, and transport properties of liquids and unentangled polymer melts. On average, gas-phase dimer binding energies predicted with the force field were between those from MP2/aug-cc-pvDz and MP2/aug-cc-pvTz quantum chemistry calculations.

  3. Feedforward compensation for novel dynamics depends on force field orientation but is similar for the left and right arms.

    PubMed

    Reuter, Eva-Maria; Cunnington, Ross; Mattingley, Jason B; Riek, Stephan; Carroll, Timothy J

    2016-11-01

    There are well-documented differences in the way that people typically perform identical motor tasks with their dominant and the nondominant arms. According to Yadav and Sainburg's (Neuroscience 196: 153-167, 2011) hybrid-control model, this is because the two arms rely to different degrees on impedance control versus predictive control processes. Here, we assessed whether differences in limb control mechanisms influence the rate of feedforward compensation to a novel dynamic environment. Seventy-five healthy, right-handed participants, divided into four subsamples depending on the arm (left, right) and direction of the force field (ipsilateral, contralateral), reached to central targets in velocity-dependent curl force fields. We assessed the rate at which participants developed predictive compensation for the force field using intermittent error-clamp trials and assessed both kinematic errors and initial aiming angles in the field trials. Participants who were exposed to fields that pushed the limb toward ipsilateral space reduced kinematic errors more slowly, built up less predictive field compensation, and relied more on strategic reaiming than those exposed to contralateral fields. However, there were no significant differences in predictive field compensation or kinematic errors between limbs, suggesting that participants using either the left or the right arm could adapt equally well to novel dynamics. It therefore appears that the distinct preferences in control mechanisms typically observed for the dominant and nondominant arms reflect a default mode that is based on habitual functional requirements rather than an absolute limit in capacity to access the controller specialized for the opposite limb. Copyright © 2016 the American Physiological Society.

  4. Feedforward compensation for novel dynamics depends on force field orientation but is similar for the left and right arms

    PubMed Central

    Cunnington, Ross; Mattingley, Jason B.; Riek, Stephan; Carroll, Timothy J.

    2016-01-01

    There are well-documented differences in the way that people typically perform identical motor tasks with their dominant and the nondominant arms. According to Yadav and Sainburg's (Neuroscience 196: 153–167, 2011) hybrid-control model, this is because the two arms rely to different degrees on impedance control versus predictive control processes. Here, we assessed whether differences in limb control mechanisms influence the rate of feedforward compensation to a novel dynamic environment. Seventy-five healthy, right-handed participants, divided into four subsamples depending on the arm (left, right) and direction of the force field (ipsilateral, contralateral), reached to central targets in velocity-dependent curl force fields. We assessed the rate at which participants developed predictive compensation for the force field using intermittent error-clamp trials and assessed both kinematic errors and initial aiming angles in the field trials. Participants who were exposed to fields that pushed the limb toward ipsilateral space reduced kinematic errors more slowly, built up less predictive field compensation, and relied more on strategic reaiming than those exposed to contralateral fields. However, there were no significant differences in predictive field compensation or kinematic errors between limbs, suggesting that participants using either the left or the right arm could adapt equally well to novel dynamics. It therefore appears that the distinct preferences in control mechanisms typically observed for the dominant and nondominant arms reflect a default mode that is based on habitual functional requirements rather than an absolute limit in capacity to access the controller specialized for the opposite limb. PMID:27582293

  5. The calculation of transport phenomena in electromagnetically levitated metal droplets

    NASA Technical Reports Server (NTRS)

    El-Kaddah, N.; Szekely, J.

    1982-01-01

    A mathematical representation has been developed for the electromagnetic force field, fluid flow field, and solute concentration field of levitation-melted metal specimens. The governing equations consist of the conventional transport equations combined with the appropriate expressions for the electromagnetic force field. The predictions obtained by solving the governing equations numerically on a digital computer are in good agreement with lifting force and average temperature measurements reported in the literature.

  6. Toward Automated Benchmarking of Atomistic Force Fields: Neat Liquid Densities and Static Dielectric Constants from the ThermoML Data Archive.

    PubMed

    Beauchamp, Kyle A; Behr, Julie M; Rustenburg, Ariën S; Bayly, Christopher I; Kroenlein, Kenneth; Chodera, John D

    2015-10-08

    Atomistic molecular simulations are a powerful way to make quantitative predictions, but the accuracy of these predictions depends entirely on the quality of the force field employed. Although experimental measurements of fundamental physical properties offer a straightforward approach for evaluating force field quality, the bulk of this information has been tied up in formats that are not machine-readable. Compiling benchmark data sets of physical properties from non-machine-readable sources requires substantial human effort and is prone to the accumulation of human errors, hindering the development of reproducible benchmarks of force-field accuracy. Here, we examine the feasibility of benchmarking atomistic force fields against the NIST ThermoML data archive of physicochemical measurements, which aggregates thousands of experimental measurements in a portable, machine-readable, self-annotating IUPAC-standard format. As a proof of concept, we present a detailed benchmark of the generalized Amber small-molecule force field (GAFF) using the AM1-BCC charge model against experimental measurements (specifically, bulk liquid densities and static dielectric constants at ambient pressure) automatically extracted from the archive and discuss the extent of data available for use in larger scale (or continuously performed) benchmarks. The results of even this limited initial benchmark highlight a general problem with fixed-charge force fields in the representation low-dielectric environments, such as those seen in binding cavities or biological membranes.

  7. Variation in predicting pantograph-catenary interaction contact forces, numerical simulations and field measurements

    NASA Astrophysics Data System (ADS)

    Nåvik, Petter; Rønnquist, Anders; Stichel, Sebastian

    2017-09-01

    The contact force between the pantograph and the contact wire ensures energy transfer between the two. Too small of a force leads to arching and unstable energy transfer, while too large of a force leads to unnecessary wear on both parts. Thus, obtaining the correct contact force is important for both field measurements and estimates using numerical analysis. The field contact force time series is derived from measurements performed by a self-propelled diagnostic vehicle containing overhead line recording equipment. The measurements are not sampled at the actual contact surface of the interaction but by force transducers beneath the collector strips. Methods exist for obtaining more realistic measurements by adding inertia and aerodynamic effects to the measurements. The variation in predicting the pantograph-catenary interaction contact force is studied in this paper by evaluating the effect of the force sampling location and the effects of signal processing such as filtering. A numerical model validated by field measurements is used to study these effects. First, this paper shows that the numerical model can reproduce a train passage with high accuracy. Second, this study introduces three different options for contact force predictions from numerical simulations. Third, this paper demonstrates that the standard deviation and the maximum and minimum values of the contact force are sensitive to a low-pass filter. For a specific case, an 80 Hz cut-off frequency is compared to a 20 Hz cut-off frequency, as required by EN 50317:2012; the results show an 11% increase in standard deviation, a 36% increase in the maximum value and a 19% decrease in the minimum value.

  8. Einstein's osmotic equilibrium of colloidal suspensions in conservative force fields

    NASA Astrophysics Data System (ADS)

    Fu, Jinxin; Ou-Yang, H. Daniel

    2014-09-01

    Predicted by Einstein in his 1905 paper on Brownian motion, colloidal particles in suspension reach osmotic equilibrium under gravity. The idea was demonstrated by J.B. Perrin to win Nobel Prize in Physics in 1926. We show Einstein's equation for osmotic equilibrium can be applied to colloids in a conservative force field generated by optical gradient forces. We measure the osmotic equation of state of 100nm Polystyrene latex particles in the presence of KCl salt and PEG polymer. We also obtain the osmotic compressibility, which is important for determining colloidal stability and the internal chemical potential, which is useful for predicting the phase transition of colloidal systems. This generalization allows for the use of any conservative force fields for systems ranging from colloidal systems to macromolecular solutions.

  9. Methane Adsorption in Zr-Based MOFs: Comparison and Critical Evaluation of Force Fields

    PubMed Central

    2017-01-01

    The search for nanoporous materials that are highly performing for gas storage and separation is one of the contemporary challenges in material design. The computational tools to aid these experimental efforts are widely available, and adsorption isotherms are routinely computed for huge sets of (hypothetical) frameworks. Clearly the computational results depend on the interactions between the adsorbed species and the adsorbent, which are commonly described using force fields. In this paper, an extensive comparison and in-depth investigation of several force fields from literature is reported for the case of methane adsorption in the Zr-based Metal–Organic Frameworks UiO-66, UiO-67, DUT-52, NU-1000, and MOF-808. Significant quantitative differences in the computed uptake are observed when comparing different force fields, but most qualitative features are common which suggests some predictive power of the simulations when it comes to these properties. More insight into the host–guest interactions is obtained by benchmarking the force fields with an extensive number of ab initio computed single molecule interaction energies. This analysis at the molecular level reveals that especially ab initio derived force fields perform well in reproducing the ab initio interaction energies. Finally, the high sensitivity of uptake predictions on the underlying potential energy surface is explored. PMID:29170687

  10. Solubility of NaCl in water by molecular simulation revisited.

    PubMed

    Aragones, J L; Sanz, E; Vega, C

    2012-06-28

    In this paper, the solubility of NaCl in water is evaluated by using computer simulations for three different force fields. The condition of chemical equilibrium (i.e., equal chemical potential of the salt in the solid and in the solution) is obtained at room temperature and pressure to determine the solubility of the salt. We used the same methodology that was described in our previous work [E. Sanz and C. Vega, J. Chem. Phys. 126, 014507 (2007)] although several modifications were introduced to improve the accuracy of the calculations. It is found that the predictions of the solubility are quite sensitive to the details of the force field used. Certain force fields underestimate the experimental solubility of NaCl in water by a factor of four, whereas the predictions of other force fields are within 20% of the experimental value. Direct coexistence molecular dynamic simulations were also performed to determine the solubility of the salt. Reasonable agreement was found between the solubility obtained from free energy calculations and that obtained from direct coexistence simulations. This work shows that the evaluation of the solubility of salts in water can now be performed in computer simulations. The solubility depends on the ion-ion, ion-water, and water-water interactions. For this reason, the prediction of the solubility can be quite useful in future work to develop force fields for ions in water.

  11. Influence of Force Fields and Quantum Chemistry Approach on Spectral Densities of BChl a in Solution and in FMO Proteins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chandrasekaran, Suryanarayanan; Aghtar, Mortaza; Valleau, Stéphanie

    2015-08-06

    Studies on light-harvesting (LH) systems have attracted much attention after the finding of long-lived quantum coherences in the exciton dynamics of the Fenna–Matthews–Olson (FMO) complex. In this complex, excitation energy transfer occurs between the bacteriochlorophyll a (BChl a) pigments. Two quantum mechanics/molecular mechanics (QM/MM) studies, each with a different force-field and quantum chemistry approach, reported different excitation energy distributions for the FMO complex. To understand the reasons for these differences in the predicted excitation energies, we have carried out a comparative study between the simulations using the CHARMM and AMBER force field and the Zerner intermediate neglect of differential orbitalmore » (ZINDO)/S and time-dependent density functional theory (TDDFT) quantum chemistry methods. The calculations using the CHARMM force field together with ZINDO/S or TDDFT always show a wider spread in the energy distribution compared to those using the AMBER force field. High- or low-energy tails in these energy distributions result in larger values for the spectral density at low frequencies. A detailed study on individual BChl a molecules in solution shows that without the environment, the density of states is the same for both force field sets. Including the environmental point charges, however, the excitation energy distribution gets broader and, depending on the applied methods, also asymmetric. The excitation energy distribution predicted using TDDFT together with the AMBER force field shows a symmetric, Gaussian-like distribution.« less

  12. Accurate interatomic force fields via machine learning with covariant kernels

    NASA Astrophysics Data System (ADS)

    Glielmo, Aldo; Sollich, Peter; De Vita, Alessandro

    2017-06-01

    We present a novel scheme to accurately predict atomic forces as vector quantities, rather than sets of scalar components, by Gaussian process (GP) regression. This is based on matrix-valued kernel functions, on which we impose the requirements that the predicted force rotates with the target configuration and is independent of any rotations applied to the configuration database entries. We show that such covariant GP kernels can be obtained by integration over the elements of the rotation group SO (d ) for the relevant dimensionality d . Remarkably, in specific cases the integration can be carried out analytically and yields a conservative force field that can be recast into a pair interaction form. Finally, we show that restricting the integration to a summation over the elements of a finite point group relevant to the target system is sufficient to recover an accurate GP. The accuracy of our kernels in predicting quantum-mechanical forces in real materials is investigated by tests on pure and defective Ni, Fe, and Si crystalline systems.

  13. Predicting water-to-cyclohexane partitioning of the SAMPL5 molecules using dielectric balancing of force fields.

    PubMed

    Paranahewage, S Shanaka; Gierhart, Cassidy S; Fennell, Christopher J

    2016-11-01

    Alchemical transformation of solutes using classical fixed-charge force fields is a popular strategy for assessing the free energy of transfer in different environments. Accurate estimations of transfer between phases with significantly different polarities can be difficult because of the static nature of the force fields. Here, we report on an application of such calculations in the SAMPL5 experiment that also involves an effort in balancing solute and solvent interactions via their expected static dielectric constants. This strategy performs well with respect to predictive accuracy and correlation with unknown experimental values. We follow this by performing a series of retrospective investigations which highlight the potential importance of proper balancing in these systems, and we use a null hypothesis analysis to explore potential biases in the comparisons with experiment. The collective findings indicate that considerations of force field compatibility through dielectric behavior is a potential strategy for future improvements in transfer processes between disparate environments.

  14. Technologies for Developing Predictive Atomistic and Coarse-Grained Force Fields for Ionic Liquid Property Prediction

    DTIC Science & Technology

    2008-07-29

    studied are set to zero and a constrained MM minimization is performed. It is critical that all other force field parameters (for bonds, angles, charges...identifying the symmetry of the problem and tailoring the parameterization accordingly may be critical . For Phase I, the above described procedure was...tasks and the evaluation of their properties. The tremendous number of possible ionic liquids that are within reach makes it critical that a reliable

  15. Balancing the Interactions of Ions, Water, and DNA in the Drude Polarizable Force Field

    PubMed Central

    2015-01-01

    Recently we presented a first-generation all-atom Drude polarizable force field for DNA based on the classical Drude oscillator model, focusing on optimization of key dihedral angles followed by extensive validation of the force field parameters. Presently, we describe the procedure for balancing the electrostatic interactions between ions, water, and DNA as required for development of the Drude force field for DNA. The proper balance of these interactions is shown to impact DNA stability and subtler conformational properties, including the conformational equilibrium between the BI and BII states, and the A and B forms of DNA. The parametrization efforts were simultaneously guided by gas-phase quantum mechanics (QM) data on small model compounds and condensed-phase experimental data on the hydration and osmotic properties of biologically relevant ions and their solutions, as well as theoretical predictions for ionic distribution around DNA oligomer. In addition, fine-tuning of the internal base parameters was performed to obtain the final DNA model. Notably, the Drude model is shown to more accurately reproduce counterion condensation theory predictions of DNA charge neutralization by the condensed ions as compared to the CHARMM36 additive DNA force field, indicating an improved physical description of the forces dictating the ionic solvation of DNA due to the explicit treatment of electronic polarizability. In combination with the polarizable DNA force field, the availability of Drude polarizable parameters for proteins, lipids, and carbohydrates will allow for simulation studies of heterogeneous biological systems. PMID:24874104

  16. Force-Field Prediction of Materials Properties in Metal-Organic Frameworks

    PubMed Central

    2016-01-01

    In this work, MOF bulk properties are evaluated and compared using several force fields on several well-studied MOFs, including IRMOF-1 (MOF-5), IRMOF-10, HKUST-1, and UiO-66. It is found that, surprisingly, UFF and DREIDING provide good values for the bulk modulus and linear thermal expansion coefficients for these materials, excluding those that they are not parametrized for. Force fields developed specifically for MOFs including UFF4MOF, BTW-FF, and the DWES force field are also found to provide accurate values for these materials’ properties. While we find that each force field offers a moderately good picture of these properties, noticeable deviations can be observed when looking at properties sensitive to framework vibrational modes. This observation is more pronounced upon the introduction of framework charges. PMID:28008758

  17. Weber electrodynamics, part I. general theory, steady current effects

    NASA Astrophysics Data System (ADS)

    Wesley, J. P.

    1990-10-01

    The original Weber action at a distance theory, valid for slowly varying effects, is extended to time-retarded fields, valid for rapidly varying effects including radiation. A new law for the force on a charge moving in this field is derived (replacing the Lorentz force which violates Newton's third law). The limitations of the Maxwell theory are discussed. The Weber theory, in addition to predicting all of the usual electrodynamic results, predicts the following crucial results for slowly varying effects (where Maxwell theory fails): 1) the force on Ampere's bridge in agreement with the measurements of Moyssides and Pappas, 2) the tension required to rupture current carrying wires as observed by Graneau, 3) the force to drive the Graneau-Hering submarine, 4) the force to drive the mercury in Hering's pump, and 5) the force to drive the oscillations in a current carrying mercury wedge as observed by Phipps.

  18. Performance of protein-structure predictions with the physics-based UNRES force field in CASP11.

    PubMed

    Krupa, Paweł; Mozolewska, Magdalena A; Wiśniewska, Marta; Yin, Yanping; He, Yi; Sieradzan, Adam K; Ganzynkowicz, Robert; Lipska, Agnieszka G; Karczyńska, Agnieszka; Ślusarz, Magdalena; Ślusarz, Rafał; Giełdoń, Artur; Czaplewski, Cezary; Jagieła, Dawid; Zaborowski, Bartłomiej; Scheraga, Harold A; Liwo, Adam

    2016-11-01

    Participating as the Cornell-Gdansk group, we have used our physics-based coarse-grained UNited RESidue (UNRES) force field to predict protein structure in the 11th Community Wide Experiment on the Critical Assessment of Techniques for Protein Structure Prediction (CASP11). Our methodology involved extensive multiplexed replica exchange simulations of the target proteins with a recently improved UNRES force field to provide better reproductions of the local structures of polypeptide chains. All simulations were started from fully extended polypeptide chains, and no external information was included in the simulation process except for weak restraints on secondary structure to enable us to finish each prediction within the allowed 3-week time window. Because of simplified UNRES representation of polypeptide chains, use of enhanced sampling methods, code optimization and parallelization and sufficient computational resources, we were able to treat, for the first time, all 55 human prediction targets with sizes from 44 to 595 amino acid residues, the average size being 251 residues. Complete structures of six single-domain proteins were predicted accurately, with the highest accuracy being attained for the T0769, for which the CαRMSD was 3.8 Å for 97 residues of the experimental structure. Correct structures were also predicted for 13 domains of multi-domain proteins with accuracy comparable to that of the best template-based modeling methods. With further improvements of the UNRES force field that are now underway, our physics-based coarse-grained approach to protein-structure prediction will eventually reach global prediction capacity and, consequently, reliability in simulating protein structure and dynamics that are important in biochemical processes. Freely available on the web at http://www.unres.pl/ CONTACT: has5@cornell.edu. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  19. Evaluating the far-field sound of a turbulent jet with one-way Navier-Stokes equations

    NASA Astrophysics Data System (ADS)

    Pickering, Ethan; Rigas, Georgios; Towne, Aaron; Colonius, Tim

    2017-11-01

    The one-way Navier-Stokes (OWNS) method has shown promising ability to predict both near field coherent structures (i.e. wave packets) and far field acoustics of turbulent jets while remaining computationally efficient through implementation of a spatial marching scheme. Considering the speed and relative accuracy of OWNS, a predictive model for various jet configurations may be conceived and applied for noise control. However, there still remain discrepancies between OWNS and large eddy simulation (LES) databases which may be linked to the previous neglect of nonlinear forcing. Therefore, to better predict wave packets and far field acoustics, this study investigates the effect of nonlinear forcing terms derived from high-fidelity LES databases. The results of the nonlinear forcings are evaluated for several azimuthal modes and frequencies, as well as compared to LES derived acoustics using spectral proper orthogonal decomposition (SPOD). This research was supported by the Department of Defense (DoD) through the Office of Naval Research (Grant No. N00014-16-1-2445) and the National Defense Science & Engineering Graduate Fellowship (NDSEG) Program.

  20. An Accurate ab initio Quartic Force Field and Vibrational Frequencies for CH4 and Isotopomers

    NASA Technical Reports Server (NTRS)

    Lee, Timothy J.; Martin, Jan M. L.; Taylor, Peter R.

    1995-01-01

    A very accurate ab initio quartic force field for CH4 and its isotopomers is presented. The quartic force field was determined with the singles and doubles coupled-cluster procedure that includes a quasiperturbative estimate of the effects of connected triple excitations, CCSD(T), using the correlation consistent polarized valence triple zeta, cc-pVTZ, basis set. Improved quadratic force constants were evaluated with the correlation consistent polarized valence quadruple zeta, cc-pVQZ, basis set. Fundamental vibrational frequencies are determined using second-order perturbation theory anharmonic analyses. All fundamentals of CH4 and isotopomers for which accurate experimental values exist and for which there is not a large Fermi resonance, are predicted to within +/- 6 cm(exp -1). It is thus concluded that our predictions for the harmonic frequencies and the anharmonic constants are the most accurate estimates available. It is also shown that using cubic and quartic force constants determined with the correlation consistent polarized double zeta, cc-pVDZ, basis set in conjunction with the cc-pVQZ quadratic force constants and equilibrium geometry leads to accurate predictions for the fundamental vibrational frequencies of methane, suggesting that this approach may be a viable alternative for larger molecules. Using CCSD(T), core correlation is found to reduce the CH4 r(e), by 0.0015 A. Our best estimate for r, is 1.0862 +/- 0.0005 A.

  1. Accuracy Test of the OPLS-AA Force Field for Calculating Free Energies of Mixing and Comparison with PAC-MAC

    PubMed Central

    2017-01-01

    We have calculated the excess free energy of mixing of 1053 binary mixtures with the OPLS-AA force field using two different methods: thermodynamic integration (TI) of molecular dynamics simulations and the Pair Configuration to Molecular Activity Coefficient (PAC-MAC) method. PAC-MAC is a force field based quasi-chemical method for predicting miscibility properties of various binary mixtures. The TI calculations yield a root mean squared error (RMSE) compared to experimental data of 0.132 kBT (0.37 kJ/mol). PAC-MAC shows a RMSE of 0.151 kBT with a calculation speed being potentially 1.0 × 104 times greater than TI. OPLS-AA force field parameters are optimized using PAC-MAC based on vapor–liquid equilibrium data, instead of enthalpies of vaporization or densities. The RMSE of PAC-MAC is reduced to 0.099 kBT by optimizing 50 force field parameters. The resulting OPLS-PM force field has a comparable accuracy as the OPLS-AA force field in the calculation of mixing free energies using TI. PMID:28418655

  2. Force-field prediction of materials properties in metal-organic frameworks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boyd, Peter G.; Moosavi, Seyed Mohamad; Witman, Matthew

    In this work, MOF bulk properties are evaluated and compared using several force fields on several well-studied MOFs, including IRMOF-1 (MOF-5), IRMOF-10, HKUST-1, and UiO-66. It is found that, surprisingly, UFF and DREIDING provide good values for the bulk modulus and linear thermal expansion coefficients for these materials, excluding those that they are not parametrized for. Force fields developed specifically for MOFs including UFF4MOF, BTW-FF, and the DWES force field are also found to provide accurate values for these materials’ properties. While we find that each force field offers a moderately good picture of these properties, noticeable deviations can bemore » observed when looking at properties sensitive to framework vibrational modes. As a result, this observation is more pronounced upon the introduction of framework charges.« less

  3. Force-field prediction of materials properties in metal-organic frameworks

    DOE PAGES

    Boyd, Peter G.; Moosavi, Seyed Mohamad; Witman, Matthew; ...

    2016-12-23

    In this work, MOF bulk properties are evaluated and compared using several force fields on several well-studied MOFs, including IRMOF-1 (MOF-5), IRMOF-10, HKUST-1, and UiO-66. It is found that, surprisingly, UFF and DREIDING provide good values for the bulk modulus and linear thermal expansion coefficients for these materials, excluding those that they are not parametrized for. Force fields developed specifically for MOFs including UFF4MOF, BTW-FF, and the DWES force field are also found to provide accurate values for these materials’ properties. While we find that each force field offers a moderately good picture of these properties, noticeable deviations can bemore » observed when looking at properties sensitive to framework vibrational modes. As a result, this observation is more pronounced upon the introduction of framework charges.« less

  4. Motional timescale predictions by molecular dynamics simulations: case study using proline and hydroxyproline sidechain dynamics.

    PubMed

    Aliev, Abil E; Kulke, Martin; Khaneja, Harmeet S; Chudasama, Vijay; Sheppard, Tom D; Lanigan, Rachel M

    2014-02-01

    We propose a new approach for force field optimizations which aims at reproducing dynamics characteristics using biomolecular MD simulations, in addition to improved prediction of motionally averaged structural properties available from experiment. As the source of experimental data for dynamics fittings, we use (13) C NMR spin-lattice relaxation times T1 of backbone and sidechain carbons, which allow to determine correlation times of both overall molecular and intramolecular motions. For structural fittings, we use motionally averaged experimental values of NMR J couplings. The proline residue and its derivative 4-hydroxyproline with relatively simple cyclic structure and sidechain dynamics were chosen for the assessment of the new approach in this work. Initially, grid search and simplexed MD simulations identified large number of parameter sets which fit equally well experimental J couplings. Using the Arrhenius-type relationship between the force constant and the correlation time, the available MD data for a series of parameter sets were analyzed to predict the value of the force constant that best reproduces experimental timescale of the sidechain dynamics. Verification of the new force-field (termed as AMBER99SB-ILDNP) against NMR J couplings and correlation times showed consistent and significant improvements compared to the original force field in reproducing both structural and dynamics properties. The results suggest that matching experimental timescales of motions together with motionally averaged characteristics is the valid approach for force field parameter optimization. Such a comprehensive approach is not restricted to cyclic residues and can be extended to other amino acid residues, as well as to the backbone. Copyright © 2013 Wiley Periodicals, Inc.

  5. The effect of force feedback delay on stiffness perception and grip force modulation during tool-mediated interaction with elastic force fields

    PubMed Central

    Karniel, Amir; Nisky, Ilana

    2015-01-01

    During interaction with objects, we form an internal representation of their mechanical properties. This representation is used for perception and for guiding actions, such as in precision grip, where grip force is modulated with the predicted load forces. In this study, we explored the relationship between grip force adjustment and perception of stiffness during interaction with linear elastic force fields. In a forced-choice paradigm, participants probed pairs of virtual force fields while grasping a force sensor that was attached to a haptic device. For each pair, they were asked which field had higher level of stiffness. In half of the pairs, the force feedback of one of the fields was delayed. Participants underestimated the stiffness of the delayed field relatively to the nondelayed, but their grip force characteristics were similar in both conditions. We analyzed the magnitude of the grip force and the lag between the grip force and the load force in the exploratory probing movements within each trial. Right before answering which force field had higher level of stiffness, both magnitude and lag were similar between delayed and nondelayed force fields. These results suggest that an accurate internal representation of environment stiffness and time delay was used for adjusting the grip force. However, this representation did not help in eliminating the bias in stiffness perception. We argue that during performance of a perceptual task that is based on proprioceptive feedback, separate neural mechanisms are responsible for perception and action-related computations in the brain. PMID:25717155

  6. The effect of force feedback delay on stiffness perception and grip force modulation during tool-mediated interaction with elastic force fields.

    PubMed

    Leib, Raz; Karniel, Amir; Nisky, Ilana

    2015-05-01

    During interaction with objects, we form an internal representation of their mechanical properties. This representation is used for perception and for guiding actions, such as in precision grip, where grip force is modulated with the predicted load forces. In this study, we explored the relationship between grip force adjustment and perception of stiffness during interaction with linear elastic force fields. In a forced-choice paradigm, participants probed pairs of virtual force fields while grasping a force sensor that was attached to a haptic device. For each pair, they were asked which field had higher level of stiffness. In half of the pairs, the force feedback of one of the fields was delayed. Participants underestimated the stiffness of the delayed field relatively to the nondelayed, but their grip force characteristics were similar in both conditions. We analyzed the magnitude of the grip force and the lag between the grip force and the load force in the exploratory probing movements within each trial. Right before answering which force field had higher level of stiffness, both magnitude and lag were similar between delayed and nondelayed force fields. These results suggest that an accurate internal representation of environment stiffness and time delay was used for adjusting the grip force. However, this representation did not help in eliminating the bias in stiffness perception. We argue that during performance of a perceptual task that is based on proprioceptive feedback, separate neural mechanisms are responsible for perception and action-related computations in the brain. Copyright © 2015 the American Physiological Society.

  7. Structural and dynamic properties of liquid tin from a new modified embedded-atom method force field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vella, Joseph R.; Chen, Mohan; Stillinger, Frank H.

    We developed a new modified embedded-atom method (MEAM) force field for liquid tin. Starting from the Ravelo and Baskes force field [Phys. Rev. Lett. 79, 2482 (1997)], the parameters are adjusted using a simulated annealing optimization procedure in order to obtain better agreement with liquid-phase data. The predictive capabilities of the new model and the Ravelo and Baskes force field are evaluated using molecular dynamics by comparing to a wide range of first-principles and experimental data. The quantities studied include crystal properties (cohesive energy, bulk modulus, equilibrium density, and lattice constant of various crystal structures), melting temperature, liquid structure, liquidmore » density, self-diffusivity, viscosity, and vapor-liquid surface tension. We show that although the Ravelo and Baskes force field generally gives better agreement with the properties related to the solid phases of tin, the new MEAM force field gives better agreement with liquid tin properties.« less

  8. Structural and dynamic properties of liquid tin from a new modified embedded-atom method force field

    NASA Astrophysics Data System (ADS)

    Vella, Joseph R.; Chen, Mohan; Stillinger, Frank H.; Carter, Emily A.; Debenedetti, Pablo G.; Panagiotopoulos, Athanassios Z.

    2017-02-01

    A new modified embedded-atom method (MEAM) force field is developed for liquid tin. Starting from the Ravelo and Baskes force field [Phys. Rev. Lett. 79, 2482 (1997), 10.1103/PhysRevLett.79.2482], the parameters are adjusted using a simulated annealing optimization procedure in order to obtain better agreement with liquid-phase data. The predictive capabilities of the new model and the Ravelo and Baskes force field are evaluated using molecular dynamics by comparing to a wide range of first-principles and experimental data. The quantities studied include crystal properties (cohesive energy, bulk modulus, equilibrium density, and lattice constant of various crystal structures), melting temperature, liquid structure, liquid density, self-diffusivity, viscosity, and vapor-liquid surface tension. It is shown that although the Ravelo and Baskes force field generally gives better agreement with the properties related to the solid phases of tin, the new MEAM force field gives better agreement with liquid tin properties.

  9. Structural and dynamic properties of liquid tin from a new modified embedded-atom method force field

    DOE PAGES

    Vella, Joseph R.; Chen, Mohan; Stillinger, Frank H.; ...

    2017-02-01

    We developed a new modified embedded-atom method (MEAM) force field for liquid tin. Starting from the Ravelo and Baskes force field [Phys. Rev. Lett. 79, 2482 (1997)], the parameters are adjusted using a simulated annealing optimization procedure in order to obtain better agreement with liquid-phase data. The predictive capabilities of the new model and the Ravelo and Baskes force field are evaluated using molecular dynamics by comparing to a wide range of first-principles and experimental data. The quantities studied include crystal properties (cohesive energy, bulk modulus, equilibrium density, and lattice constant of various crystal structures), melting temperature, liquid structure, liquidmore » density, self-diffusivity, viscosity, and vapor-liquid surface tension. We show that although the Ravelo and Baskes force field generally gives better agreement with the properties related to the solid phases of tin, the new MEAM force field gives better agreement with liquid tin properties.« less

  10. Large-scale dynamo growth rates from numerical simulations and implications for mean-field theories

    NASA Astrophysics Data System (ADS)

    Park, Kiwan; Blackman, Eric G.; Subramanian, Kandaswamy

    2013-05-01

    Understanding large-scale magnetic field growth in turbulent plasmas in the magnetohydrodynamic limit is a goal of magnetic dynamo theory. In particular, assessing how well large-scale helical field growth and saturation in simulations match those predicted by existing theories is important for progress. Using numerical simulations of isotropically forced turbulence without large-scale shear with its implications, we focus on several additional aspects of this comparison: (1) Leading mean-field dynamo theories which break the field into large and small scales predict that large-scale helical field growth rates are determined by the difference between kinetic helicity and current helicity with no dependence on the nonhelical energy in small-scale magnetic fields. Our simulations show that the growth rate of the large-scale field from fully helical forcing is indeed unaffected by the presence or absence of small-scale magnetic fields amplified in a precursor nonhelical dynamo. However, because the precursor nonhelical dynamo in our simulations produced fields that were strongly subequipartition with respect to the kinetic energy, we cannot yet rule out the potential influence of stronger nonhelical small-scale fields. (2) We have identified two features in our simulations which cannot be explained by the most minimalist versions of two-scale mean-field theory: (i) fully helical small-scale forcing produces significant nonhelical large-scale magnetic energy and (ii) the saturation of the large-scale field growth is time delayed with respect to what minimalist theory predicts. We comment on desirable generalizations to the theory in this context and future desired work.

  11. Large-scale dynamo growth rates from numerical simulations and implications for mean-field theories.

    PubMed

    Park, Kiwan; Blackman, Eric G; Subramanian, Kandaswamy

    2013-05-01

    Understanding large-scale magnetic field growth in turbulent plasmas in the magnetohydrodynamic limit is a goal of magnetic dynamo theory. In particular, assessing how well large-scale helical field growth and saturation in simulations match those predicted by existing theories is important for progress. Using numerical simulations of isotropically forced turbulence without large-scale shear with its implications, we focus on several additional aspects of this comparison: (1) Leading mean-field dynamo theories which break the field into large and small scales predict that large-scale helical field growth rates are determined by the difference between kinetic helicity and current helicity with no dependence on the nonhelical energy in small-scale magnetic fields. Our simulations show that the growth rate of the large-scale field from fully helical forcing is indeed unaffected by the presence or absence of small-scale magnetic fields amplified in a precursor nonhelical dynamo. However, because the precursor nonhelical dynamo in our simulations produced fields that were strongly subequipartition with respect to the kinetic energy, we cannot yet rule out the potential influence of stronger nonhelical small-scale fields. (2) We have identified two features in our simulations which cannot be explained by the most minimalist versions of two-scale mean-field theory: (i) fully helical small-scale forcing produces significant nonhelical large-scale magnetic energy and (ii) the saturation of the large-scale field growth is time delayed with respect to what minimalist theory predicts. We comment on desirable generalizations to the theory in this context and future desired work.

  12. A Pilot Study of Individual Muscle Force Prediction during Elbow Flexion and Extension in the Neurorehabilitation Field

    PubMed Central

    Hou, Jiateng; Sun, Yingfei; Sun, Lixin; Pan, Bingyu; Huang, Zhipei; Wu, Jiankang; Zhang, Zhiqiang

    2016-01-01

    This paper proposes a neuromusculoskeletal (NMS) model to predict individual muscle force during elbow flexion and extension. Four male subjects were asked to do voluntary elbow flexion and extension. An inertial sensor and surface electromyography (sEMG) sensors were attached to subject's forearm. Joint angle calculated by fusion of acceleration and angular rate using an extended Kalman filter (EKF) and muscle activations obtained from the sEMG signals were taken as the inputs of the proposed NMS model to determine individual muscle force. The result shows that our NMS model can predict individual muscle force accurately, with the ability to reflect subject-specific joint dynamics and neural control solutions. Our method incorporates sEMG and motion data, making it possible to get a deeper understanding of neurological, physiological, and anatomical characteristics of human dynamic movement. We demonstrate the potential of the proposed NMS model for evaluating the function of upper limb movements in the field of neurorehabilitation. PMID:27916853

  13. Propulsion of gold nanoparticles with surface plasmon polaritons: evidence of enhanced optical force from near-field coupling between gold particle and gold film.

    PubMed

    Wang, Kai; Schonbrun, Ethan; Crozier, Kenneth B

    2009-07-01

    We experimentally demonstrate the enhanced propulsion of gold nanoparticles by surface plasmon polaritons (SPPs). Three dimensional finite difference time domain (FDTD) simulations indicate considerably enhanced optical forces due to the field enhancement provided by SPPs and the near-field coupling between the gold particles and the film. This coupling is an important part of the enhanced propulsion phenomenon. Finally, the measured optical force is compared with that predicted by FDTD simulations and proven to be reasonable.

  14. Molecular simulation of the thermophysical properties and phase behaviour of impure CO2 relevant to CCS.

    PubMed

    Cresswell, Alexander J; Wheatley, Richard J; Wilkinson, Richard D; Graham, Richard S

    2016-10-20

    Impurities from the CCS chain can greatly influence the physical properties of CO 2 . This has important design, safety and cost implications for the compression, transport and storage of CO 2 . There is an urgent need to understand and predict the properties of impure CO 2 to assist with CCS implementation. However, CCS presents demanding modelling requirements. A suitable model must both accurately and robustly predict CO 2 phase behaviour over a wide range of temperatures and pressures, and maintain that predictive power for CO 2 mixtures with numerous, mutually interacting chemical species. A promising technique to address this task is molecular simulation. It offers a molecular approach, with foundations in firmly established physical principles, along with the potential to predict the wide range of physical properties required for CCS. The quality of predictions from molecular simulation depends on accurate force-fields to describe the interactions between CO 2 and other molecules. Unfortunately, there is currently no universally applicable method to obtain force-fields suitable for molecular simulation. In this paper we present two methods of obtaining force-fields: the first being semi-empirical and the second using ab initio quantum-chemical calculations. In the first approach we optimise the impurity force-field against measurements of the phase and pressure-volume behaviour of CO 2 binary mixtures with N 2 , O 2 , Ar and H 2 . A gradient-free optimiser allows us to use the simulation itself as the underlying model. This leads to accurate and robust predictions under conditions relevant to CCS. In the second approach we use quantum-chemical calculations to produce ab initio evaluations of the interactions between CO 2 and relevant impurities, taking N 2 as an exemplar. We use a modest number of these calculations to train a machine-learning algorithm, known as a Gaussian process, to describe these data. The resulting model is then able to accurately predict a much broader set of ab initio force-field calculations at comparatively low numerical cost. Although our method is not yet ready to be implemented in a molecular simulation, we outline the necessary steps here. Such simulations have the potential to deliver first-principles simulation of the thermodynamic properties of impure CO 2 , without fitting to experimental data.

  15. Force fields for describing the solution-phase synthesis of shape-selective metal nanoparticles

    NASA Astrophysics Data System (ADS)

    Zhou, Ya; Al-Saidi, Wissam; Fichthorn, Kristen

    2013-03-01

    Polyvinylpyrrolidone (PVP) and polyethylene oxide (PEO) are structure-directing agents that exhibit different performance in the polyol synthesis of Ag nanostructures. The success of these structure-directing agents in selective nanostructure synthesis is often attributed to their selective binding to Ag(100) facets. We use first-principles, density-functional theory (DFT) calculations in a vacuum environment to show that PVP has a stronger preference to bind to Ag(100) than to Ag(111), whereas PEO exhibits much weaker selectivity. To understand the role of solvent in the surface-sensitive binding, we develop classical force fields to describe the interactions of the structure-directing (PVP and PEO) and solvent (ethylene glycol) molecules with various Ag substrates. We parameterize the force fields through force-and-energy matching to DFT results using simulated annealing. We validate the force fields by comparisons to DFT and experimental binding energies. Our force fields reproduce the surface-sensitive binding predicted by DFT calculations. Molecular dynamics simulations based on these force fields can be used to reveal the role of solvent, polymer chain length, and polymer concentration in the selective synthesis of Ag nanostructures.

  16. Experimental measurement of the dynamic pressure distribution in a squeeze film bearing damper executing circular centered orbits

    NASA Technical Reports Server (NTRS)

    Sanandres, L. A.; Vance, J. M.

    1987-01-01

    A review of previous experimental measurements of squeeze film damper (SFD) forces is given. Measurements by the authors of SFD pressure fields and force coefficients, for circular centered orbits with epsilon = 0.5, are described and compared with computer predictions. For Reynolds numbers over the range 2-6, the effect of fluid inertia on the pressure fields and forces is found to be significant.

  17. Guiding-center equations for electrons in ultraintense laser fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moore, J.E.; Fisch, N.J.

    1994-01-01

    The guiding-center equations are derived for electrons in arbitrarily intense laser fields also subject to external fields and ponderomotive forces. Exhibiting the relativistic mass increase of the oscillating electrons, a simple frame-invariant equation is shown to govern the behavior of the electrons for sufficiently weak background fields and ponderomotive forces. The parameter regime for which such a formulation is valid is made precise, and some predictions of the equation are checked by numerical simulation.

  18. The Alexandria library, a quantum-chemical database of molecular properties for force field development.

    PubMed

    Ghahremanpour, Mohammad M; van Maaren, Paul J; van der Spoel, David

    2018-04-10

    Data quality as well as library size are crucial issues for force field development. In order to predict molecular properties in a large chemical space, the foundation to build force fields on needs to encompass a large variety of chemical compounds. The tabulated molecular physicochemical properties also need to be accurate. Due to the limited transparency in data used for development of existing force fields it is hard to establish data quality and reusability is low. This paper presents the Alexandria library as an open and freely accessible database of optimized molecular geometries, frequencies, electrostatic moments up to the hexadecupole, electrostatic potential, polarizabilities, and thermochemistry, obtained from quantum chemistry calculations for 2704 compounds. Values are tabulated and where available compared to experimental data. This library can assist systematic development and training of empirical force fields for a broad range of molecules.

  19. The Alexandria library, a quantum-chemical database of molecular properties for force field development

    NASA Astrophysics Data System (ADS)

    Ghahremanpour, Mohammad M.; van Maaren, Paul J.; van der Spoel, David

    2018-04-01

    Data quality as well as library size are crucial issues for force field development. In order to predict molecular properties in a large chemical space, the foundation to build force fields on needs to encompass a large variety of chemical compounds. The tabulated molecular physicochemical properties also need to be accurate. Due to the limited transparency in data used for development of existing force fields it is hard to establish data quality and reusability is low. This paper presents the Alexandria library as an open and freely accessible database of optimized molecular geometries, frequencies, electrostatic moments up to the hexadecupole, electrostatic potential, polarizabilities, and thermochemistry, obtained from quantum chemistry calculations for 2704 compounds. Values are tabulated and where available compared to experimental data. This library can assist systematic development and training of empirical force fields for a broad range of molecules.

  20. Ab initio protein structure assembly using continuous structure fragments and optimized knowledge-based force field.

    PubMed

    Xu, Dong; Zhang, Yang

    2012-07-01

    Ab initio protein folding is one of the major unsolved problems in computational biology owing to the difficulties in force field design and conformational search. We developed a novel program, QUARK, for template-free protein structure prediction. Query sequences are first broken into fragments of 1-20 residues where multiple fragment structures are retrieved at each position from unrelated experimental structures. Full-length structure models are then assembled from fragments using replica-exchange Monte Carlo simulations, which are guided by a composite knowledge-based force field. A number of novel energy terms and Monte Carlo movements are introduced and the particular contributions to enhancing the efficiency of both force field and search engine are analyzed in detail. QUARK prediction procedure is depicted and tested on the structure modeling of 145 nonhomologous proteins. Although no global templates are used and all fragments from experimental structures with template modeling score >0.5 are excluded, QUARK can successfully construct 3D models of correct folds in one-third cases of short proteins up to 100 residues. In the ninth community-wide Critical Assessment of protein Structure Prediction experiment, QUARK server outperformed the second and third best servers by 18 and 47% based on the cumulative Z-score of global distance test-total scores in the FM category. Although ab initio protein folding remains a significant challenge, these data demonstrate new progress toward the solution of the most important problem in the field. Copyright © 2012 Wiley Periodicals, Inc.

  1. Thermodynamic and mechanical properties of epoxy resin DGEBF crosslinked with DETDA by molecular dynamics.

    PubMed

    Tack, Jeremy L; Ford, David M

    2008-06-01

    Fully atomistic molecular dynamics (MD) simulations were used to predict the properties of diglycidyl ether of bisphenol F (DGEBF) crosslinked with curing agent diethyltoluenediamine (DETDA). This polymer is a commercially important epoxy resin and a candidate for applications in nanocomposites. The calculated properties were density and bulk modulus (at near-ambient pressure and temperature) and glass transition temperature (at near-ambient pressure). The molecular topology, degree of curing, and MD force-field were investigated as variables. The models were created by densely packing pre-constructed oligomers of different composition and connectivity into a periodic simulation box. For high degrees of curing (greater than 90%), the density was found to be insensitive to the molecular topology and precise value of degree of curing. Of the two force-fields that were investigated, cff91 and COMPASS, the latter clearly gave more accurate values for the density as compared to experiment. In fact, the density predicted by COMPASS was within 6% of reported experimental values for the highly crosslinked polymer. The predictions of both force-fields for glass transition temperature were within the range of reported experimental values, with the predictions of cff91 being more consistent with a highly cured resin.

  2. A force field for 3,3,3-fluoro-1-propenes, including HFO-1234yf.

    PubMed

    Raabe, Gabriele; Maginn, Edward J

    2010-08-12

    The European Union (EU) legislation 2006/40/EC bans from January 2011 the cooperative marketing of new car types that use refrigerants in their heating, ventilation, and air conditioning (HVAC) systems with global warming potentials (GWP) higher than 150. Thus, the phase-out of the presently used tetrafluoroethane refrigerant R134a necessitates the adoption of alternative refrigerants. Fluoropropenes such as 2,3,3,3-tetrafluoro-1-propene (HFO-1234yf) are currently regarded as promising low GWP refrigerants, but the lack of experimental data on their thermophysical properties hampers independent studies on their performance in HVAC systems or in other technical applications. In principle, molecular modeling can be used to predict the relevant properties of refrigerants, but adequate intermolecular potential functions ("force fields") are lacking for fluoropropenes. Thus, we developed a transferable force field for fluoropropenes composed of CF(3)-, -CF=, -CH=, CF(2)=, and CH(2)= groups and applied the force field to study 3,3,3 trifluoro-1-propene (HFO-1243zf), 2,3,3,3-tetrafluoro-1-propene (HFO-1234yf), and hexafluoro-1-propene (HFO-1216). We performed Gibbs ensemble simulations on these three fluoropropenes to compute the vapor pressure, saturated densities, and heats of vaporization. In addition, molecular dynamics simulations were conducted to provide predictions for the density, thermal expansivity, isobaric heat capacity, and transport properties of liquid HFO-1234yf in the temperature range from 263.15 to 310 K and pressures up to 2 MPa. Agreement between simulation results and experimental data and/or correlations (when available) was good, thereby validating the predictive ability of the force field.

  3. Motional timescale predictions by molecular dynamics simulations: Case study using proline and hydroxyproline sidechain dynamics

    PubMed Central

    Aliev, Abil E; Kulke, Martin; Khaneja, Harmeet S; Chudasama, Vijay; Sheppard, Tom D; Lanigan, Rachel M

    2014-01-01

    We propose a new approach for force field optimizations which aims at reproducing dynamics characteristics using biomolecular MD simulations, in addition to improved prediction of motionally averaged structural properties available from experiment. As the source of experimental data for dynamics fittings, we use 13C NMR spin-lattice relaxation times T1 of backbone and sidechain carbons, which allow to determine correlation times of both overall molecular and intramolecular motions. For structural fittings, we use motionally averaged experimental values of NMR J couplings. The proline residue and its derivative 4-hydroxyproline with relatively simple cyclic structure and sidechain dynamics were chosen for the assessment of the new approach in this work. Initially, grid search and simplexed MD simulations identified large number of parameter sets which fit equally well experimental J couplings. Using the Arrhenius-type relationship between the force constant and the correlation time, the available MD data for a series of parameter sets were analyzed to predict the value of the force constant that best reproduces experimental timescale of the sidechain dynamics. Verification of the new force-field (termed as AMBER99SB-ILDNP) against NMR J couplings and correlation times showed consistent and significant improvements compared to the original force field in reproducing both structural and dynamics properties. The results suggest that matching experimental timescales of motions together with motionally averaged characteristics is the valid approach for force field parameter optimization. Such a comprehensive approach is not restricted to cyclic residues and can be extended to other amino acid residues, as well as to the backbone. Proteins 2014; 82:195–215. © 2013 Wiley Periodicals, Inc. PMID:23818175

  4. Update of the ATTRACT force field for the prediction of protein-protein binding affinity.

    PubMed

    Chéron, Jean-Baptiste; Zacharias, Martin; Antonczak, Serge; Fiorucci, Sébastien

    2017-06-05

    Determining the protein-protein interactions is still a major challenge for molecular biology. Docking protocols has come of age in predicting the structure of macromolecular complexes. However, they still lack accuracy to estimate the binding affinities, the thermodynamic quantity that drives the formation of a complex. Here, an updated version of the protein-protein ATTRACT force field aiming at predicting experimental binding affinities is reported. It has been designed on a dataset of 218 protein-protein complexes. The correlation between the experimental and predicted affinities reaches 0.6, outperforming most of the available protocols. Focusing on a subset of rigid and flexible complexes, the performance raises to 0.76 and 0.69, respectively. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  5. Toward structure prediction of cyclic peptides.

    PubMed

    Yu, Hongtao; Lin, Yu-Shan

    2015-02-14

    Cyclic peptides are a promising class of molecules that can be used to target specific protein-protein interactions. A computational method to accurately predict their structures would substantially advance the development of cyclic peptides as modulators of protein-protein interactions. Here, we develop a computational method that integrates bias-exchange metadynamics simulations, a Boltzmann reweighting scheme, dihedral principal component analysis and a modified density peak-based cluster analysis to provide a converged structural description for cyclic peptides. Using this method, we evaluate the performance of a number of popular protein force fields on a model cyclic peptide. All the tested force fields seem to over-stabilize the α-helix and PPII/β regions in the Ramachandran plot, commonly populated by linear peptides and proteins. Our findings suggest that re-parameterization of a force field that well describes the full Ramachandran plot is necessary to accurately model cyclic peptides.

  6. Transferable Force Field for Metal–Organic Frameworks from First-Principles: BTW-FF

    PubMed Central

    2014-01-01

    We present an ab-initio derived force field to describe the structural and mechanical properties of metal–organic frameworks (or coordination polymers). The aim is a transferable interatomic potential that can be applied to MOFs regardless of metal or ligand identity. The initial parametrization set includes MOF-5, IRMOF-10, IRMOF-14, UiO-66, UiO-67, and HKUST-1. The force field describes the periodic crystal and considers effective atomic charges based on topological analysis of the Bloch states of the extended materials. Transferable potentials were developed for the four organic ligands comprising the test set and for the associated Cu, Zn, and Zr metal nodes. The predicted materials properties, including bulk moduli and vibrational frequencies, are in agreement with explicit density functional theory calculations. The modal heat capacity and lattice thermal expansion are also predicted. PMID:25574157

  7. Derivation of force field parameters for SnO2-H2O surface systems from plane-wave density functional theory calculations.

    PubMed

    Bandura, A V; Sofo, J O; Kubicki, J D

    2006-04-27

    Plane-wave density functional theory (DFT-PW) calculations were performed on bulk SnO2 (cassiterite) and the (100), (110), (001), and (101) surfaces with and without H2O present. A classical interatomic force field has been developed to describe bulk SnO2 and SnO2-H2O surface interactions. Periodic density functional theory calculations using the program VASP (Kresse et al., 1996) and molecular cluster calculations using Gaussian 03 (Frisch et al., 2003) were used to derive the parametrization of the force field. The program GULP (Gale, 1997) was used to optimize parameters to reproduce experimental and ab initio results. The experimental crystal structure and elastic constants of SnO2 are reproduced reasonably well with the force field. Furthermore, surface atom relaxations and structures of adsorbed H2O molecules agree well between the ab initio and force field predictions. H2O addition above that required to form a monolayer results in consistent structures between the DFT-PW and classical force field results as well.

  8. Physics of Gravitational Interaction: Geometry of Space or Quantum Field in Space

    NASA Astrophysics Data System (ADS)

    Baryshev, Yurij

    2006-03-01

    Thirring-Feynman's tensor field approach to gravitation opens new understanding on the physics of gravitational interaction and stimulates novel experiments on the nature of gravity. According to Field Gravity, the universal gravity force is caused by exchange of gravitons - the quanta of gravity field. Energy of this field is well-defined and excludes the singularity. All classical relativistic effects are the same as in General Relativity. The intrinsic scalar (spin 0) part of gravity field corresponds to ``antigravity'' and only together with the pure tensor (spin 2) part gives the usual Newtonian force. Laboratory and astrophysical experiments which may test the predictions of FG, will be performed in near future. In particular, observations at gravity observatories with bar and interferometric detectors, like Explorer, Nautilus, LIGO and VIRGO, will check the predicted scalar gravitational waves from supernova explosions. New types of cosmological models in Minkowski space are possible too.

  9. The harmonic force field of benzene. A local density functional study

    NASA Astrophysics Data System (ADS)

    Bérces, Attila; Ziegler, Tom

    1993-03-01

    The harmonic force field of benzene has been calculated by a method based on local density functional theory (LDF). The calculations were carried out employing a triple zeta basis set with triple polarization on hydrogen and double polarization on carbon. The LDF force field was compared to the empirical field due to Ozkabak, Goodman, and Thakur [A. G. Ozkabak, L. Goodman, and S. N. Thakur, J. Phys. Chem. 95, 9044 (1991)], which has served as a benchmark for theoretical calculations as well as the theoretical field based on scaled Hartree-Fock ab initio calculation due to Pulay, Fogarasi, and Boggs [P. Pulay, G. Fogarasi, and J. E. Boggs, J. Chem. Phys. 74, 3999 (1981)]. The calculated LDF force field is in excellent qualitative and very good quantitative agreement with the theoretical field proposed by Pulay, Fogarasi, and Boggs as well as the empirical field due to Ozkabak, Goodman, and Thakur. The LDF field is closest to the values of Pulay and co-workers in those cases where the force constants due to Pulay, Fogarasi, and Boggs and to Ozkabak, Goodman, and Thakur differ in sign or magnitude. The accuracy of the LDF force field was investigated by evaluating a number of eigenvalue and eigenfunction dependent quantities from the the LDF force constants. The quantities under investigation include vibrational frequencies of seven isotopomers, isotopic shifts, as well as absorption intensities. The calculations were performed at both theoretical optimized and approximate equilibrium reference geometries. The predicted frequencies are usually within 1%-2% compared to the empirical harmonic frequencies. The least accurate frequency deviates by 5% from the experimental value. The average deviations from the empirical harmonic frequencies of C6H6 and C6D6 are 16.7 cm-1 (1.5%) and 15.2 cm-1 (1.7%), respectively, not including CH stretching frequencies, in the case where a theoretical reference geometry was used. The accuracy of the out-of-plane force field is especially remarkable; the average deviations for the C6H6 and C6D6 frequencies, based on the LDF force field, are 9.4 cm-1 (1.2%) and 7.3 cm-1 (1.2%), respectively. The absorption intensities were not predicted as accurately as it was expected based on the size of the basis set applied. An analysis is provided to ensure that the force constants are not significantly affected by numerical errors due to the numerical integration scheme employed.

  10. Comparison of human gastrocnemius forces predicted by Hill-type muscle models and estimated from ultrasound images.

    PubMed

    Dick, Taylor J M; Biewener, Andrew A; Wakeling, James M

    2017-05-01

    Hill-type models are ubiquitous in the field of biomechanics, providing estimates of a muscle's force as a function of its activation state and its assumed force-length and force-velocity properties. However, despite their routine use, the accuracy with which Hill-type models predict the forces generated by muscles during submaximal, dynamic tasks remains largely unknown. This study compared human gastrocnemius forces predicted by Hill-type models with the forces estimated from ultrasound-based measures of tendon length changes and stiffness during cycling, over a range of loads and cadences. We tested both a traditional model, with one contractile element, and a differential model, with two contractile elements that accounted for independent contributions of slow and fast muscle fibres. Both models were driven by subject-specific, ultrasound-based measures of fascicle lengths, velocities and pennation angles and by activation patterns of slow and fast muscle fibres derived from surface electromyographic recordings. The models predicted, on average, 54% of the time-varying gastrocnemius forces estimated from the ultrasound-based methods. However, differences between predicted and estimated forces were smaller under low speed-high activation conditions, with models able to predict nearly 80% of the gastrocnemius force over a complete pedal cycle. Additionally, the predictions from the Hill-type muscle models tested here showed that a similar pattern of force production could be achieved for most conditions with and without accounting for the independent contributions of different muscle fibre types. © 2017. Published by The Company of Biologists Ltd.

  11. High shear rate flow in a linear stroke magnetorheological energy absorber

    NASA Astrophysics Data System (ADS)

    Hu, W.; Wereley, N. M.; Hiemenz, G. J.; Ngatu, G. T.

    2014-05-01

    To provide adaptive stroking load in the crew seats of ground vehicles to protect crew from blast or impact loads, a magnetorheological energy absorber (MREA) or shock absorber was developed. The MREA provides appropriate levels of controllable stroking load for different occupant weights and peak acceleration because the viscous stroking load generated by the MREA force increases with velocity squared, thereby reducing its controllable range at high piston velocity. Therefore, MREA behavior at high piston velocity is analyzed and validated experimentally in order to investigate the effects of velocity and magnetic field on MREA performance. The analysis used to predict the MREA force as a function of piston velocity squared and applied field is presented. A conical fairing is mounted to the piston head of the MREA in order reduce predicted inlet flow loss by 9% at nominal velocity of 8 m/s, which resulted in a viscous force reduction of nominally 4%. The MREA behavior is experimentally measured using a high speed servo-hydraulic testing system for speeds up to 8 m/s. The measured MREA force is used to validate the analysis, which captures the transient force quite accurately, although the peak force is under-predicted at the peak speed of 8 m/s.

  12. Comparison of human gastrocnemius forces predicted by Hill-type muscle models and estimated from ultrasound images

    PubMed Central

    Biewener, Andrew A.; Wakeling, James M.

    2017-01-01

    ABSTRACT Hill-type models are ubiquitous in the field of biomechanics, providing estimates of a muscle's force as a function of its activation state and its assumed force–length and force–velocity properties. However, despite their routine use, the accuracy with which Hill-type models predict the forces generated by muscles during submaximal, dynamic tasks remains largely unknown. This study compared human gastrocnemius forces predicted by Hill-type models with the forces estimated from ultrasound-based measures of tendon length changes and stiffness during cycling, over a range of loads and cadences. We tested both a traditional model, with one contractile element, and a differential model, with two contractile elements that accounted for independent contributions of slow and fast muscle fibres. Both models were driven by subject-specific, ultrasound-based measures of fascicle lengths, velocities and pennation angles and by activation patterns of slow and fast muscle fibres derived from surface electromyographic recordings. The models predicted, on average, 54% of the time-varying gastrocnemius forces estimated from the ultrasound-based methods. However, differences between predicted and estimated forces were smaller under low speed–high activation conditions, with models able to predict nearly 80% of the gastrocnemius force over a complete pedal cycle. Additionally, the predictions from the Hill-type muscle models tested here showed that a similar pattern of force production could be achieved for most conditions with and without accounting for the independent contributions of different muscle fibre types. PMID:28202584

  13. New force field for molecular simulation of guanidinium-based ionic liquids.

    PubMed

    Liu, Xiaomin; Zhang, Suojiang; Zhou, Guohui; Wu, Guangwen; Yuan, Xiaoliang; Yao, Xiaoqian

    2006-06-22

    An all-atom force field was proposed for a new class of room temperature ionic liquids (RTILs), N,N,N',N'-tetramethylguanidinium (TMG) RTILs. The model is based on the AMBER force field with modifications on several parameters. The refinements include (1) fitting the vibration frequencies for obtaining force coefficients of bonds and angles against the data obtained by ab initio calculations and/or by experiments and (2) fitting the torsion energy profiles of dihedral angles for obtaining torsion parameters against the data obtained by ab initio calculations. To validate the force field, molecular dynamics (MD) simulations at different temperatures were performed for five kinds of RTILs, where TMG acts as a cation and formate, lactate, perchlorate, trifluoroacetate, and trifluoromethylsulfonate act as anions. The predicted densities were in good agreement with the experimental data. Radial distribution functions (RDFs) and spatial distribution functions (SDFs) were investigated to depict the microscopic structures of the RTILs.

  14. Quantitative modeling and optimization of magnetic tweezers.

    PubMed

    Lipfert, Jan; Hao, Xiaomin; Dekker, Nynke H

    2009-06-17

    Magnetic tweezers are a powerful tool to manipulate single DNA or RNA molecules and to study nucleic acid-protein interactions in real time. Here, we have modeled the magnetic fields of permanent magnets in magnetic tweezers and computed the forces exerted on superparamagnetic beads from first principles. For simple, symmetric geometries the magnetic fields can be calculated semianalytically using the Biot-Savart law. For complicated geometries and in the presence of an iron yoke, we employ a finite-element three-dimensional PDE solver to numerically solve the magnetostatic problem. The theoretical predictions are in quantitative agreement with direct Hall-probe measurements of the magnetic field and with measurements of the force exerted on DNA-tethered beads. Using these predictive theories, we systematically explore the effects of magnet alignment, magnet spacing, magnet size, and of adding an iron yoke to the magnets on the forces that can be exerted on tethered particles. We find that the optimal configuration for maximal stretching forces is a vertically aligned pair of magnets, with a minimal gap between the magnets and minimal flow cell thickness. Following these principles, we present a configuration that allows one to apply > or = 40 pN stretching forces on approximately 1-microm tethered beads.

  15. Quantitative Modeling and Optimization of Magnetic Tweezers

    PubMed Central

    Lipfert, Jan; Hao, Xiaomin; Dekker, Nynke H.

    2009-01-01

    Abstract Magnetic tweezers are a powerful tool to manipulate single DNA or RNA molecules and to study nucleic acid-protein interactions in real time. Here, we have modeled the magnetic fields of permanent magnets in magnetic tweezers and computed the forces exerted on superparamagnetic beads from first principles. For simple, symmetric geometries the magnetic fields can be calculated semianalytically using the Biot-Savart law. For complicated geometries and in the presence of an iron yoke, we employ a finite-element three-dimensional PDE solver to numerically solve the magnetostatic problem. The theoretical predictions are in quantitative agreement with direct Hall-probe measurements of the magnetic field and with measurements of the force exerted on DNA-tethered beads. Using these predictive theories, we systematically explore the effects of magnet alignment, magnet spacing, magnet size, and of adding an iron yoke to the magnets on the forces that can be exerted on tethered particles. We find that the optimal configuration for maximal stretching forces is a vertically aligned pair of magnets, with a minimal gap between the magnets and minimal flow cell thickness. Following these principles, we present a configuration that allows one to apply ≥40 pN stretching forces on ≈1-μm tethered beads. PMID:19527664

  16. Predicting the melting temperature of ice-Ih with only electronic structure information as input.

    PubMed

    Pinnick, Eric R; Erramilli, Shyamsunder; Wang, Feng

    2012-07-07

    The melting temperature of ice-Ih was calculated with only electronic structure information as input by creating a problem-specific force field. The force field, Water model by AFM for Ice and Liquid (WAIL), was developed with the adaptive force matching (AFM) method by fitting to post-Hartree-Fock quality forces obtained in quantum mechanics∕molecular mechanics calculations. WAIL predicts the ice-Ih melting temperature to be 270 K. The model also predicts the densities of ice and water, the temperature of maximum density of water, the heat of vaporizations, and the radial distribution functions for both ice and water in good agreement with experimental measurements. The non-dissociative WAIL model is very similar to a flexible version of the popular TIP4P potential and has comparable computational cost. By customizing to problem-specific configurations with the AFM approach, the resulting model is remarkably more accurate than any variants of TIP4P for simulating ice-Ih and water in the temperature range from 253 K and 293 K under ambient pressure.

  17. Ab Initio Protein Structure Assembly Using Continuous Structure Fragments and Optimized Knowledge-based Force Field

    PubMed Central

    Xu, Dong; Zhang, Yang

    2012-01-01

    Ab initio protein folding is one of the major unsolved problems in computational biology due to the difficulties in force field design and conformational search. We developed a novel program, QUARK, for template-free protein structure prediction. Query sequences are first broken into fragments of 1–20 residues where multiple fragment structures are retrieved at each position from unrelated experimental structures. Full-length structure models are then assembled from fragments using replica-exchange Monte Carlo simulations, which are guided by a composite knowledge-based force field. A number of novel energy terms and Monte Carlo movements are introduced and the particular contributions to enhancing the efficiency of both force field and search engine are analyzed in detail. QUARK prediction procedure is depicted and tested on the structure modeling of 145 non-homologous proteins. Although no global templates are used and all fragments from experimental structures with template modeling score (TM-score) >0.5 are excluded, QUARK can successfully construct 3D models of correct folds in 1/3 cases of short proteins up to 100 residues. In the ninth community-wide Critical Assessment of protein Structure Prediction (CASP9) experiment, QUARK server outperformed the second and third best servers by 18% and 47% based on the cumulative Z-score of global distance test-total (GDT-TS) scores in the free modeling (FM) category. Although ab initio protein folding remains a significant challenge, these data demonstrate new progress towards the solution of the most important problem in the field. PMID:22411565

  18. Confinement of plasma along shaped open magnetic fields from the centrifugal force of supersonic plasma rotation.

    PubMed

    Teodorescu, C; Young, W C; Swan, G W S; Ellis, R F; Hassam, A B; Romero-Talamas, C A

    2010-08-20

    Interferometric density measurements in plasmas rotating in shaped, open magnetic fields demonstrate strong confinement of plasma parallel to the magnetic field, with density drops of more than a factor of 10. Taken together with spectroscopic measurements of supersonic E × B rotation of sonic Mach 2, these measurements are in agreement with ideal MHD theory which predicts large parallel pressure drops balanced by centrifugal forces in supersonically rotating plasmas.

  19. Neutron matter at next-to-next-to-next-to-leading order in chiral effective field theory.

    PubMed

    Tews, I; Krüger, T; Hebeler, K; Schwenk, A

    2013-01-18

    Neutron matter presents a unique system for chiral effective field theory because all many-body forces among neutrons are predicted to next-to-next-to-next-to-leading order (N(3)LO). We present the first complete N(3)LO calculation of the neutron matter energy. This includes the subleading three-nucleon forces for the first time and all leading four-nucleon forces. We find relatively large contributions from N(3)LO three-nucleon forces. Our results provide constraints for neutron-rich matter in astrophysics with controlled theoretical uncertainties.

  20. Host and adsorbate dynamics in silicates with flexible frameworks: Empirical force field simulation of water in silicalite

    NASA Astrophysics Data System (ADS)

    Bordat, Patrice; Cazade, Pierre-André; Baraille, Isabelle; Brown, Ross

    2010-03-01

    Molecular dynamics simulations are performed on the pure silica zeolite silicalite (MFI framework code), maintaining via a new force field both framework flexibility and realistic account of electrostatic interactions with adsorbed water. The force field is similar to the well-known "BKS" model [B. W. H. van Beest et al., Phys. Rev. Lett. 64, 1955 (1990)], but with reduced partial atomic charges and reoptimized covalent bond potential wells. The present force field reproduces the monoclinic to orthorhombic transition of silicalite. The force field correctly represents the hydrophobicity of pure silica silicalite, both the adsorption energy, and the molecular diffusion constants of water. Two types of adsorption, specific and weak unspecific, are predicted on the channel walls and at the channel intersection. We discuss molecular diffusion of water in silicalite, deducing a barrier to crossing between the straight and the zigzag channels. Analysis of the thermal motion shows that at room temperature, framework oxygen atoms incurring into the zeolite channels significantly influence the dynamics of adsorbed water.

  1. Possible Potentials Responsible for Stable Circular Relativistic Orbits

    ERIC Educational Resources Information Center

    Kumar, Prashant; Bhattacharya, Kaushik

    2011-01-01

    Bertrand's theorem in classical mechanics of the central force fields attracts us because of its predictive power. It categorically proves that there can only be two types of forces which can produce stable, circular orbits. In this paper an attempt has been made to generalize Bertrand's theorem to the central force problem of relativistic…

  2. Analytical model for force prediction when machining metal matrix composites

    NASA Astrophysics Data System (ADS)

    Sikder, Snahungshu

    Metal Matrix Composites (MMC) offer several thermo-mechanical advantages over standard materials and alloys which make them better candidates in different applications. Their light weight, high stiffness, and strength have attracted several industries such as automotive, aerospace, and defence for their wide range of products. However, the wide spread application of Meal Matrix Composites is still a challenge for industry. The hard and abrasive nature of the reinforcement particles is responsible for rapid tool wear and high machining costs. Fracture and debonding of the abrasive reinforcement particles are the considerable damage modes that directly influence the tool performance. It is very important to find highly effective way to machine MMCs. So, it is important to predict forces when machining Metal Matrix Composites because this will help to choose perfect tools for machining and ultimately save both money and time. This research presents an analytical force model for predicting the forces generated during machining of Metal Matrix Composites. In estimating the generated forces, several aspects of cutting mechanics were considered including: shearing force, ploughing force, and particle fracture force. Chip formation force was obtained by classical orthogonal metal cutting mechanics and the Johnson-Cook Equation. The ploughing force was formulated while the fracture force was calculated from the slip line field theory and the Griffith theory of failure. The predicted results were compared with previously measured data. The results showed very good agreement between the theoretically predicted and experimentally measured cutting forces.

  3. The Meaning of Data Magnets and Magnetic Fields, 1st Experimental Edition.

    ERIC Educational Resources Information Center

    Hall, Gene E.

    By using this instructional module the participants should be able to: (1) predict the behavior of two magnets prior to their being placed close to each other; (2) identify and describe the magnetic forces acting on a bar magnet that is free to rotate; (3) demonstrate a method for determining the lines of force in a magnetic field; (4) identify…

  4. Secondary Structure of Rat and Human Amylin across Force Fields

    PubMed Central

    Hoffmann, Kyle Quynn; McGovern, Michael; Chiu, Chi-cheng; de Pablo, Juan J.

    2015-01-01

    The aggregation of human amylin has been strongly implicated in the progression of Type II diabetes. This 37-residue peptide forms a variety of secondary structures, including random coils, α-helices, and β-hairpins. The balance between these structures depends on the chemical environment, making amylin an ideal candidate to examine inherent biases in force fields. Rat amylin differs from human amylin by only 6 residues; however, it does not form fibrils. Therefore it provides a useful complement to human amylin in studies of the key events along the aggregation pathway. In this work, the free energy of rat and human amylin was determined as a function of α-helix and β-hairpin content for the Gromos96 53a6, OPLS-AA/L, CHARMM22/CMAP, CHARMM22*, Amberff99sb*-ILDN, and Amberff03w force fields using advanced sampling techniques, specifically bias exchange metadynamics. This work represents a first systematic attempt to evaluate the conformations and the corresponding free energy of a large, clinically relevant disordered peptide in solution across force fields. The NMR chemical shifts of rIAPP were calculated for each of the force fields using their respective free energy maps, allowing us to quantitatively assess their predictions. We show that the predicted distribution of secondary structures is sensitive to the choice of force-field: Gromos53a6 is biased towards β-hairpins, while CHARMM22/CMAP predicts structures that are overly α-helical. OPLS-AA/L favors disordered structures. Amberff99sb*-ILDN, AmberFF03w and CHARMM22* provide the balance between secondary structures that is most consistent with available experimental data. In contrast to previous reports, our findings suggest that the equilibrium conformations of human and rat amylin are remarkably similar, but that subtle differences arise in transient alpha-helical and beta-strand containing structures that the human peptide can more readily adopt. We hypothesize that these transient states enable dynamic pathways that facilitate the formation of aggregates and, eventually, amyloid fibrils. PMID:26221949

  5. Secondary structure of rat and human amylin across force fields

    DOE PAGES

    Hoffmann, Kyle Quynn; McGovern, Michael; Chiu, Chi -cheng; ...

    2015-07-29

    The aggregation of human amylin has been strongly implicated in the progression of Type II diabetes. This 37-residue peptide forms a variety of secondary structures, including random coils, α-helices, and β-hairpins. The balance between these structures depends on the chemical environment, making amylin an ideal candidate to examine inherent biases in force fields. Rat amylin differs from human amylin by only 6 residues; however, it does not form fibrils. Therefore it provides a useful complement to human amylin in studies of the key events along the aggregation pathway. In this work, the free energy of rat and human amylin wasmore » determined as a function of α-helix and β-hairpin content for the Gromos96 53a6, OPLS-AA/L, CHARMM22/CMAP, CHARMM22*, Amberff99sb*-ILDN, and Amberff03w force fields using advanced sampling techniques, specifically bias exchange metadynamics. This work represents a first systematic attempt to evaluate the conformations and the corresponding free energy of a large, clinically relevant disordered peptide in solution across force fields. The NMR chemical shifts of rIAPP were calculated for each of the force fields using their respective free energy maps, allowing us to quantitatively assess their predictions. We show that the predicted distribution of secondary structures is sensitive to the choice of force-field: Gromos53a6 is biased towards β-hairpins, while CHARMM22/CMAP predicts structures that are overly α-helical. OPLS-AA/L favors disordered structures. Amberff99sb*-ILDN, AmberFF03w and CHARMM22* provide the balance between secondary structures that is most consistent with available experimental data. In contrast to previous reports, our findings suggest that the equilibrium conformations of human and rat amylin are remarkably similar, but that subtle differences arise in transient alpha-helical and beta-strand containing structures that the human peptide can more readily adopt. We hypothesize that these transient states enable dynamic pathways that facilitate the formation of aggregates and, eventually, amyloid fibrils.« less

  6. Catch trials in force field learning influence adaptation and consolidation of human motor memory

    PubMed Central

    Stockinger, Christian; Focke, Anne; Stein, Thorsten

    2014-01-01

    Force field studies are a common tool to investigate motor adaptation and consolidation. Thereby, subjects usually adapt their reaching movements to force field perturbations induced by a robotic device. In this context, so-called catch trials, in which the disturbing forces are randomly turned off, are commonly used to detect after-effects of motor adaptation. However, catch trials also produce sudden large motor errors that might influence the motor adaptation and the consolidation process. Yet, the detailed influence of catch trials is far from clear. Thus, the aim of this study was to investigate the influence of catch trials on motor adaptation and consolidation in force field experiments. Therefore, 105 subjects adapted their reaching movements to robot-generated force fields. The test groups adapted their reaching movements to a force field A followed by learning a second interfering force field B before retest of A (ABA). The control groups were not exposed to force field B (AA). To examine the influence of diverse catch trial ratios, subjects received catch trials during force field adaptation with a probability of either 0, 10, 20, 30, or 40%, depending on the group. First, the results on motor adaptation revealed significant differences between the diverse catch trial ratio groups. With increasing amount of catch trials, the subjects' motor performance decreased and subjects' ability to accurately predict the force field—and therefore internal model formation—was impaired. Second, our results revealed that adapting with catch trials can influence the following consolidation process as indicated by a partial reduction to interference. Here, the optimal catch trial ratio was 30%. However, detection of consolidation seems to be biased by the applied measure of performance. PMID:24795598

  7. Toward polarizable AMOEBA thermodynamics at fixed charge efficiency using a dual force field approach: application to organic crystals.

    PubMed

    Nessler, Ian J; Litman, Jacob M; Schnieders, Michael J

    2016-11-09

    First principles prediction of the structure, thermodynamics and solubility of organic molecular crystals, which play a central role in chemical, material, pharmaceutical and engineering sciences, challenges both potential energy functions and sampling methodologies. Here we calculate absolute crystal deposition thermodynamics using a novel dual force field approach whose goal is to maintain the accuracy of advanced multipole force fields (e.g. the polarizable AMOEBA model) while performing more than 95% of the sampling in an inexpensive fixed charge (FC) force field (e.g. OPLS-AA). Absolute crystal sublimation/deposition phase transition free energies were determined using an alchemical path that grows the crystalline state from a vapor reference state based on sampling with the OPLS-AA force field, followed by dual force field thermodynamic corrections to change between FC and AMOEBA resolutions at both end states (we denote the three step path as AMOEBA/FC). Importantly, whereas the phase transition requires on the order of 200 ns of sampling per compound, only 5 ns of sampling was needed for the dual force field thermodynamic corrections to reach a mean statistical uncertainty of 0.05 kcal mol -1 . For five organic compounds, the mean unsigned error between direct use of AMOEBA and the AMOEBA/FC dual force field path was only 0.2 kcal mol -1 and not statistically significant. Compared to experimental deposition thermodynamics, the mean unsigned error for AMOEBA/FC (1.4 kcal mol -1 ) was more than a factor of two smaller than uncorrected OPLS-AA (3.2 kcal mol -1 ). Overall, the dual force field thermodynamic corrections reduced condensed phase sampling in the expensive force field by a factor of 40, and may prove useful for protein stability or binding thermodynamics in the future.

  8. Toward Improved Force-Field Accuracy through Sensitivity Analysis of Host-Guest Binding Thermodynamics

    PubMed Central

    Yin, Jian; Fenley, Andrew T.; Henriksen, Niel M.; Gilson, Michael K.

    2015-01-01

    Improving the capability of atomistic computer models to predict the thermodynamics of noncovalent binding is critical for successful structure-based drug design, and the accuracy of such calculations remains limited by non-optimal force field parameters. Ideally, one would incorporate protein-ligand affinity data into force field parametrization, but this would be inefficient and costly. We now demonstrate that sensitivity analysis can be used to efficiently tune Lennard-Jones parameters of aqueous host-guest systems for increasingly accurate calculations of binding enthalpy. These results highlight the promise of a comprehensive use of calorimetric host-guest binding data, along with existing validation data sets, to improve force field parameters for the simulation of noncovalent binding, with the ultimate goal of making protein-ligand modeling more accurate and hence speeding drug discovery. PMID:26181208

  9. Quantum Chemical Topology: Knowledgeable atoms in peptides

    NASA Astrophysics Data System (ADS)

    Popelier, Paul L. A.

    2012-06-01

    The need to improve atomistic biomolecular force fields remains acute. Fortunately, the abundance of contemporary computing power enables an overhaul of the architecture of current force fields, which typically base their electrostatics on fixed atomic partial charges. We discuss the principles behind the electrostatics of a more realistic force field under construction, called QCTFF. At the heart of QCTFF lies the so-called topological atom, which is a malleable box, whose shape and electrostatics changes in response to a changing environment. This response is captured by a machine learning method called Kriging. Kriging directly predicts each multipole moment of a given atom (i.e. the output) from the coordinates of the nuclei surrounding this atom (i.e. the input). This procedure yields accurate interatomic electrostatic energies, which form the basis for future-proof progress in force field design.

  10. Vibrational spectra and ab initio analysis of tert-butyl, trimethylsilyl, and trimethylgermyl derivatives of 3,3-dimethylcyclopropene III. 3,3-Dimethyl-1-(trimethylsilyl)cyclopropene

    NASA Astrophysics Data System (ADS)

    De Maré, G. R.; Panchenko, Yu. N.; Abramenkov, A. V.; Baird, M. S.; Tverezovsky, V. V.; Nizovtsev, A. V.; Bolesov, I. G.

    2003-07-01

    The experimental Raman and IR vibrational spectra of 3,3-dimethyl-1-(trimethylsilyl)cyclopropene in the liquid phase were recorded. Total geometry optimisation was carried out at the HF/6-31G* level and the HF/6-31G*//HF/6-31G* force field was computed. This force field was corrected by scale factors determined previously (using Pulay's method) for correction of the HF/6-31G*//HF/6-31G* force fields of 3,3-dimethylbutene-1, 1-methyl-, 1,2-dimethyl-, and 3,3-dimethylcyclopropene. The theoretical vibrational frequencies calculated from the scaled quantum mechanical force field and the theoretical intensities obtained from the quantum mechanical calculation were used to construct predicted spectra and to perform the vibrational analysis of the experimental spectra.

  11. MATCH: An Atom- Typing Toolset for Molecular Mechanics Force Fields

    PubMed Central

    Yesselman, Joseph D.; Price, Daniel J.; Knight, Jennifer L.; Brooks, Charles L.

    2011-01-01

    We introduce a toolset of program libraries collectively titled MATCH (Multipurpose Atom-Typer for CHARMM) for the automated assignment of atom types and force field parameters for molecular mechanics simulation of organic molecules. The toolset includes utilities for the conversion from multiple chemical structure file formats into a molecular graph. A general chemical pattern-matching engine using this graph has been implemented whereby assignment of molecular mechanics atom types, charges and force field parameters is achieved by comparison against a customizable list of chemical fragments. While initially designed to complement the CHARMM simulation package and force fields by generating the necessary input topology and atom-type data files, MATCH can be expanded to any force field and program, and has core functionality that makes it extendable to other applications such as fragment-based property prediction. In the present work, we demonstrate the accurate construction of atomic parameters of molecules within each force field included in CHARMM36 through exhaustive cross validation studies illustrating that bond increment rules derived from one force field can be transferred to another. In addition, using leave-one-out substitution it is shown that it is also possible to substitute missing intra and intermolecular parameters with ones included in a force field to complete the parameterization of novel molecules. Finally, to demonstrate the robustness of MATCH and the coverage of chemical space offered by the recent CHARMM CGENFF force field (Vanommeslaeghe, et al., JCC., 2010, 31, 671–690), one million molecules from the PubChem database of small molecules are typed, parameterized and minimized. PMID:22042689

  12. Laboratory Evidence That Line-Tied Toroidal Magnetic Fields Can Suppress Loss-of-Equilibrium Flux Rope Eruptions in the Solar Corona

    NASA Astrophysics Data System (ADS)

    Myers, C. E.; Yamada, M.; Belova, E.; Ji, H.; Yoo, J.; Fox, W. R., II; Jara-Almonte, J.

    2014-12-01

    Loss-of-equilibrium mechanisms such as the ideal torus instability [Kliem & Török, Phys. Rev. Lett. 96, 255002 (2006)] are predicted to drive arched flux ropes in the solar corona to erupt. In recent line-tied flux rope experiments conducted in the Magnetic Reconnection Experiment (MRX), however, we find that quasi-statically driven flux ropes remain confined well beyond the predicted torus instability threshold. In order to understand this behavior, in situ measurements from a 300 channel 2D magnetic probe array are used to comprehensively analyze the force balance between the external (potential) and internal (plasma-generated) magnetic fields. We find that forces due to the line-tied toroidal magnetic field, which are not included in the basic torus instability theory, can play a major role in preventing eruptions. The dependence of these toroidal magnetic forces on various potential field and flux rope parameters will be discussed. This research is supported by DoE Contract Number DE-AC02-09CH11466 and by the NSF/DoE Center for Magnetic Self-Organization (CMSO).

  13. The Work, the Workplace, and the Work Force of Tomorrow.

    ERIC Educational Resources Information Center

    Allen, Claudia

    1995-01-01

    Ann McLaughlin, a former secretary of labor, discusses her views on the future of the workplace. She feels that to solve the impending problem of educational deficits among the work force, employers will begin their own educational programs, improving both employee loyalty and work force mobility. Includes predictions for future growth fields.…

  14. Mass-Related Dynamical Barriers in Triatomic Reactions

    NASA Astrophysics Data System (ADS)

    Yanao, T.; Koon, W. S.; Marsden, J. E.

    2006-06-01

    A methodology is given to determine the effect of different mass distributions for triatomic reactions using the geometry of shape space. Atomic masses are incorporated into the non-Euclidean shape space metric after the separation of rotations. Using the equations of motion in this non-Euclidean shape space, an averaged field of velocity-dependent fictitious forces is determined. This force field, as opposed to the force arising from the potential, dominates branching ratios of isomerization dynamics of a triatomic molecule. This methodology may be useful for qualitative prediction of branching ratios in general triatomic reactions.

  15. Building machine learning force fields for nanoclusters

    NASA Astrophysics Data System (ADS)

    Zeni, Claudio; Rossi, Kevin; Glielmo, Aldo; Fekete, Ádám; Gaston, Nicola; Baletto, Francesca; De Vita, Alessandro

    2018-06-01

    We assess Gaussian process (GP) regression as a technique to model interatomic forces in metal nanoclusters by analyzing the performance of 2-body, 3-body, and many-body kernel functions on a set of 19-atom Ni cluster structures. We find that 2-body GP kernels fail to provide faithful force estimates, despite succeeding in bulk Ni systems. However, both 3- and many-body kernels predict forces within an ˜0.1 eV/Å average error even for small training datasets and achieve high accuracy even on out-of-sample, high temperature structures. While training and testing on the same structure always provide satisfactory accuracy, cross-testing on dissimilar structures leads to higher prediction errors, posing an extrapolation problem. This can be cured using heterogeneous training on databases that contain more than one structure, which results in a good trade-off between versatility and overall accuracy. Starting from a 3-body kernel trained this way, we build an efficient non-parametric 3-body force field that allows accurate prediction of structural properties at finite temperatures, following a newly developed scheme [A. Glielmo et al., Phys. Rev. B 95, 214302 (2017)]. We use this to assess the thermal stability of Ni19 nanoclusters at a fractional cost of full ab initio calculations.

  16. VTOL in ground effect flows for closely spaced jets. [to predict pressure and upwash forces on aircraft structures

    NASA Technical Reports Server (NTRS)

    Migdal, D.; Hill, W. G., Jr.; Jenkins, R. C.

    1979-01-01

    Results of a series of in ground effect twin jet tests are presented along with flow models for closely spaced jets to help predict pressure and upwash forces on simulated aircraft surfaces. The isolated twin jet tests revealed unstable fountains over a range of spacings and jet heights, regions of below ambient pressure on the ground, and negative pressure differential in the upwash flow field. A separate computer code was developed for vertically oriented, incompressible jets. This model more accurately reflects fountain behavior without fully formed wall jets, and adequately predicts ground isobars, upwash dynamic pressure decay, and fountain lift force variation with height above ground.

  17. Development of a ReaxFF reactive force field for ammonium nitrate and application to shock compression and thermal decomposition.

    PubMed

    Shan, Tzu-Ray; van Duin, Adri C T; Thompson, Aidan P

    2014-02-27

    We have developed a new ReaxFF reactive force field parametrization for ammonium nitrate. Starting with an existing nitramine/TATB ReaxFF parametrization, we optimized it to reproduce electronic structure calculations for dissociation barriers, heats of formation, and crystal structure properties of ammonium nitrate phases. We have used it to predict the isothermal pressure-volume curve and the unreacted principal Hugoniot states. The predicted isothermal pressure-volume curve for phase IV solid ammonium nitrate agreed with electronic structure calculations and experimental data within 10% error for the considered range of compression. The predicted unreacted principal Hugoniot states were approximately 17% stiffer than experimental measurements. We then simulated thermal decomposition during heating to 2500 K. Thermal decomposition pathways agreed with experimental findings.

  18. Force-free electromagnetic pulses in a laboratory plasma

    NASA Technical Reports Server (NTRS)

    Stenzel, R. L.; Urrutia, J. M.

    1990-01-01

    A short, intense current pulse is drawn from an electrode immersed in a magnetized afterglow plasma. The induced magnetic field B(r,t) assumes the shape of a helical double vortex which propagates along B(0) through the uniform plasma as a whistler mode. The observations support a prediction of force-free (J x B + neE = 0) electromagnetic fields and solitary waves. Energy and helicity are approximately conserved.

  19. Mathematical and experimental modelling of the dynamic bubble processes occurring in a two-phase cyclonic separation device

    NASA Astrophysics Data System (ADS)

    Schrage, Dean Stewart

    1998-11-01

    This dissertation presents a combined mathematical and experimental analysis of the fluid dynamics of a gas- liquid, dispersed-phase cyclonic separation device. The global objective of this research is to develop a simulation model of separation process in order to predict the void fraction field within a cyclonic separation device. The separation process is approximated by analyzing the dynamic motion of many single-bubbles, moving under the influence of the far-field, interacting with physical boundaries and other bubbles. The dynamic motion of the bubble is described by treating the bubble as a point-mass and writing an inertial force balance, equating the force applied to the bubble-point-location to the inertial acceleration of the bubble mass (also applied to the point-location). The forces which are applied to the bubble are determined by an integration of the surface pressure over the bubble. The surface pressure is coupled to the intrinsic motion of the bubble, and is very difficult to obtain exactly. However, under moderate Reynolds number, the wake trailing a bubble is small and the near-field flow field can be approximated as an inviscid flow field. Unconventional potential flow techniques are employed to solve for the surface pressure; the hydrodyamic forces are described as a hydrodynamic mass tensor operating on the bubble acceleration vector. The inviscid flow model is augmented with adjunct forces which describe: drag forces, dynamic lift, far-field pressure forces. The dynamic equations of motion are solved both analytically and numerically for the bubble trajectory in specific flow field examples. A validation of these equations is performed by comparing to an experimentally-derived trajectory of a single- bubble, which is released into a cylindrical Couette flow field (inner cylinder rotating) at varying positions. Finally, a simulation of a cyclonic separation device is performed by extending the single-bubble dynamic model to a multi-bubble ensemble. A simplified model is developed to predict the effects of bubble-interaction. The simulation qualitatively depicts the separation physics encountered in an actual cyclonic separation device, supporting the original tenet that the separation process can be approximated by the collective motions of single- bubbles.

  20. Cutting Force Predication Based on Integration of Symmetric Fuzzy Number and Finite Element Method

    PubMed Central

    Wang, Zhanli; Hu, Yanjuan; Wang, Yao; Dong, Chao; Pang, Zaixiang

    2014-01-01

    In the process of turning, pointing at the uncertain phenomenon of cutting which is caused by the disturbance of random factors, for determining the uncertain scope of cutting force, the integrated symmetric fuzzy number and the finite element method (FEM) are used in the prediction of cutting force. The method used symmetric fuzzy number to establish fuzzy function between cutting force and three factors and obtained the uncertain interval of cutting force by linear programming. At the same time, the change curve of cutting force with time was directly simulated by using thermal-mechanical coupling FEM; also the nonuniform stress field and temperature distribution of workpiece, tool, and chip under the action of thermal-mechanical coupling were simulated. The experimental result shows that the method is effective for the uncertain prediction of cutting force. PMID:24790556

  1. Force, torque, linear momentum, and angular momentum in classical electr odynamics

    NASA Astrophysics Data System (ADS)

    Mansuripur, Masud

    2017-10-01

    The classical theory of electrodynamics is built upon Maxwell's equations and the concepts of electromagnetic (EM) field, force, energy, and momentum, which are intimately tied together by Poynting's theorem and by the Lorentz force law. Whereas Maxwell's equations relate the fields to their material sources, Poynting's theorem governs the flow of EM energy and its exchange between fields and material media, while the Lorentz law regulates the back-and-forth transfer of momentum between the media and the fields. An alternative force law, first proposed by Einstein and Laub, exists that is consistent with Maxwell's equations and complies with the conservation laws as well as with the requirements of special relativity. While the Lorentz law requires the introduction of hidden energy and hidden momentum in situations where an electric field acts on a magnetized medium, the Einstein-Laub (E-L) formulation of EM force and torque does not invoke hidden entities under such circumstances. Moreover, total force/torque exerted by EM fields on any given object turns out to be independent of whether the density of force/torque is evaluated using the law of Lorentz or that of Einstein and Laub. Hidden entities aside, the two formulations differ only in their predicted force and torque distributions inside matter. Such differences in distribution are occasionally measurable, and could serve as a guide in deciding which formulation, if either, corresponds to physical reality.

  2. Application of the maximum entropy principle to determine ensembles of intrinsically disordered proteins from residual dipolar couplings.

    PubMed

    Sanchez-Martinez, M; Crehuet, R

    2014-12-21

    We present a method based on the maximum entropy principle that can re-weight an ensemble of protein structures based on data from residual dipolar couplings (RDCs). The RDCs of intrinsically disordered proteins (IDPs) provide information on the secondary structure elements present in an ensemble; however even two sets of RDCs are not enough to fully determine the distribution of conformations, and the force field used to generate the structures has a pervasive influence on the refined ensemble. Two physics-based coarse-grained force fields, Profasi and Campari, are able to predict the secondary structure elements present in an IDP, but even after including the RDC data, the re-weighted ensembles differ between both force fields. Thus the spread of IDP ensembles highlights the need for better force fields. We distribute our algorithm in an open-source Python code.

  3. Controlling dispersion forces between small particles with artificially created random light fields

    PubMed Central

    Brügger, Georges; Froufe-Pérez, Luis S.; Scheffold, Frank; José Sáenz, Juan

    2015-01-01

    Appropriate combinations of laser beams can be used to trap and manipulate small particles with optical tweezers as well as to induce significant optical binding forces between particles. These interaction forces are usually strongly anisotropic depending on the interference landscape of the external fields. This is in contrast with the familiar isotropic, translationally invariant, van der Waals and, in general, Casimir–Lifshitz interactions between neutral bodies arising from random electromagnetic waves generated by equilibrium quantum and thermal fluctuations. Here we show, both theoretically and experimentally, that dispersion forces between small colloidal particles can also be induced and controlled using artificially created fluctuating light fields. Using optical tweezers as a gauge, we present experimental evidence for the predicted isotropic attractive interactions between dielectric microspheres induced by laser-generated, random light fields. These light-induced interactions open a path towards the control of translationally invariant interactions with tuneable strength and range in colloidal systems. PMID:26096622

  4. Parametrization of Stillinger-Weber potential based on valence force field model: application to single-layer MoS2 and black phosphorus

    NASA Astrophysics Data System (ADS)

    Jiang, Jin-Wu

    2015-08-01

    We propose parametrizing the Stillinger-Weber potential for covalent materials starting from the valence force-field model. All geometrical parameters in the Stillinger-Weber potential are determined analytically according to the equilibrium condition for each individual potential term, while the energy parameters are derived from the valence force-field model. This parametrization approach transfers the accuracy of the valence force field model to the Stillinger-Weber potential. Furthermore, the resulting Stilliinger-Weber potential supports stable molecular dynamics simulations, as each potential term is at an energy-minimum state separately at the equilibrium configuration. We employ this procedure to parametrize Stillinger-Weber potentials for single-layer MoS2 and black phosphorous. The obtained Stillinger-Weber potentials predict an accurate phonon spectrum and mechanical behaviors. We also provide input scripts of these Stillinger-Weber potentials used by publicly available simulation packages including GULP and LAMMPS.

  5. Parametrization of Stillinger-Weber potential based on valence force field model: application to single-layer MoS2 and black phosphorus.

    PubMed

    Jiang, Jin-Wu

    2015-08-07

    We propose parametrizing the Stillinger-Weber potential for covalent materials starting from the valence force-field model. All geometrical parameters in the Stillinger-Weber potential are determined analytically according to the equilibrium condition for each individual potential term, while the energy parameters are derived from the valence force-field model. This parametrization approach transfers the accuracy of the valence force field model to the Stillinger-Weber potential. Furthermore, the resulting Stilliinger-Weber potential supports stable molecular dynamics simulations, as each potential term is at an energy-minimum state separately at the equilibrium configuration. We employ this procedure to parametrize Stillinger-Weber potentials for single-layer MoS2 and black phosphorous. The obtained Stillinger-Weber potentials predict an accurate phonon spectrum and mechanical behaviors. We also provide input scripts of these Stillinger-Weber potentials used by publicly available simulation packages including GULP and LAMMPS.

  6. Vertical-probe-induced asymmetric dust oscillation in complex plasma.

    PubMed

    Harris, B J; Matthews, L S; Hyde, T W

    2013-05-01

    A complex plasma vertical oscillation experiment which modifies the bulk is presented. Spherical, micron-sized particles within a Coulomb crystal levitated in the sheath above the powered lower electrode in a GEC reference cell are perturbed using a probe attached to a Zyvex S100 Nanomanipulator. By oscillating the probe potential sinusoidally, particle motion is found to be asymmetric, exhibiting superharmonic response in one case. Using a simple electric field model for the plasma sheath, including a nonzero electric field at the sheath edge, dust particle charges are found by employing a balance of relevant forces and emission analysis. Adjusting the parameters of the electric field model allowed the change predicted in the levitation height to be compared with experiment. A discrete oscillator Green's function is applied using the derived force, which accurately predicts the particle's motion and allows the determination of the electric field at the sheath edge.

  7. Laboratory evidence that line-tied tension forces can suppress loss-of-equilibrium flux rope eruptions in the solar corona

    NASA Astrophysics Data System (ADS)

    Myers, C. E.; Yamada, M.; Belova, E.; Ji, H.; Yoo, J.; Fox, W.; Jara-Almonte, J.; Gao, L.

    2014-10-01

    Loss-of-equilibrium mechanisms such as the ideal torus instability [Kliem & Török, Phys. Rev. Lett. 96, 255002 (2006)] are predicted to drive arched flux ropes in the solar corona to erupt. In recent line-tied flux rope experiments conducted in the Magnetic Reconnection Experiment (MRX), however, we find that quasi-statically driven flux ropes remain confined well beyond the predicted torus instability threshold. In order to understand this behavior, in situ measurements from a 300 channel 2D magnetic probe array are used to comprehensively analyze the force balance between the external (vacuum) and internal (plasma-generated) magnetic fields. We find that the line-tied tension force--a force that is not included in the basic torus instability theory--plays a major role in preventing eruptions. The dependence of this tension force on various vacuum field and flux rope parameters will be discussed. This research is supported by DoE Contract Number DE-AC02-09CH11466 and by the NSF/DoE Center for Magnetic Self-Organization (CMSO).

  8. Dissolved organic carbon--contaminant interaction descriptors found by 3D force field calculations.

    PubMed

    Govers, H A J; Krop, H B; Parsons, J R; Tambach, T; Kubicki, J D

    2002-03-01

    Enthalpies of transfer at 300 K of various partitioning processes were calculated in order to study the suitability of 3D force fields for the calculation of partitioning constants. A 3D fulvic acid (FA) model of dissolved organic carbon (DOC) was built in a MM+ force field using AMI atomic charges and geometrical optimization (GO). 3,5-Dichlorobiphenyl (PCB14), 4,4'-dichlorobiphenyl (PCB15), 1,1,1-trichloro-2,2-bis-(4-chlorophenyl)-ethane (PPDDT) and 2-chloro-4-ethylamino-6-isopropylamino-s-triazine (Atrazine) were inserted into different sites and their interaction energies with FA were calculated. Energies of hydration were calculated and subtracted from FA-contaminant interactions of selected sites. The resulting values for the enthalpies of transfer from water to DOC were 2.8, -1.4, -6.4 and 0.0 kcal/mol for PCB 14, PCB15, PPDDT and Atrazine, respectively. The value of PPDDT compared favorably with the experimental value of -5.0 kcal/mol. Prior to this, the method was studied by the calculation of the enthalpies of vaporization and aqueous solution using various force fields. In the MM + force field GO predicted enthalpies of vaporization deviated by +0.7 (PCB14), +3.6 (PCB15) and -0.7 (PPDDT)kcal/mol from experimental data, whereas enthalpies of aqueous solution deviated by -3.6 (PCB14), +5.8 (PCB15) and +3.7 (PPDDT) kcal/mol. Only for PCB14 the wrong sign of this enthalpy value was predicted. Potential advantages and limitations of the approach were discussed.

  9. Sensitivity of Force Fields on Mechanical Properties of Metals Predicted by Atomistic Simulations

    NASA Astrophysics Data System (ADS)

    Rassoulinejad-Mousavi, Seyed Moein; Zhang, Yuwen

    Increasing number of micro/nanoscale studies for scientific and engineering applications, leads to huge deployment of atomistic simulations such as molecular dynamics and Monte-Carlo simulation. Many complains from users in the simulation community arises for obtaining wrong results notwithstanding of correct simulation procedure and conditions. Improper choice of force field, known as interatomic potential is the likely causes. For the sake of users' assurance, convenience and time saving, several interatomic potentials are evaluated by molecular dynamics. Elastic properties of multiple FCC and BCC pure metallic species are obtained by LAMMPS, using different interatomic potentials designed for pure species and their alloys at different temperatures. The potentials created based on the Embedded Atom Method (EAM), Modified EAM (MEAM) and ReaX force fields, adopted from available open databases. Independent elastic stiffness constants of cubic single crystals for different metals are obtained. The results are compared with the experimental ones available in the literature and deviations for each force field are provided at each temperature. Using current work, users of these force fields can easily judge on the one they are going to designate for their problem.

  10. Application of the aeroacoustic analogy to a shrouded, subsonic, radial fan

    NASA Astrophysics Data System (ADS)

    Buccieri, Bryan M.; Richards, Christopher M.

    2016-12-01

    A study was conducted to investigate the predictive capability of computational aeroacoustics with respect to a shrouded, subsonic, radial fan. A three dimensional unsteady fluid dynamics simulation was conducted to produce aerodynamic data used as the acoustic source for an aeroacoustics simulation. Two acoustic models were developed: one modeling the forces on the rotating fan blades as a set of rotating dipoles located at the center of mass of each fan blade and one modeling the forces on the stationary fan shroud as a field of distributed stationary dipoles. Predicted acoustic response was compared to experimental data measured at two operating speeds using three different outlet restrictions. The blade source model predicted overall far field sound power levels within 5 dB averaged over the six different operating conditions while the shroud model predicted overall far field sound power levels within 7 dB averaged over the same conditions. Doubling the density of the computational fluids mesh and using a scale adaptive simulation turbulence model increased broadband noise accuracy. However, computation time doubled and the accuracy of the overall sound power level prediction improved by only 1 dB.

  11. An Assessment of Molecular Dynamic Force Fields for Silica for Use in Simulating Laser Damage Mitigation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soules, T F; Gilmer, G H; Matthews, M J

    2010-10-21

    We compare force fields (FF's) that have been used in molecular dynamic (MD) simulations of silica in order to assess their applicability for use in simulating IR-laser damage mitigation. Although pairwise FF?s obtained by fitting quantum mechanical calculations such as the BKS and CHIK potentials have been shown to reproduce many of the properties of silica including the stability of silica polymorphs and the densification of the liquid, we show that melting temperatures and fictive temperatures are much too high. Softer empirical force fields give liquid and glass properties at experimental temperatures but may not predict all properties important tomore » laser mitigation experiments.« less

  12. Macroscopic kinematics of the Hall electric field under influence of carrier magnetic moments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sakai, Masamichi, E-mail: sakai@fms.saitama-u.ac.jp

    2016-06-15

    The relativistic effect on electromagnetic forces yields two types of forces which depend on the velocity of the relevant particles: (i) the usual Lorentz force exerted on a moving charged particle and (ii) the apparent Lorentz force exerted on a moving magnetic moment. In sharp contrast with type (i), the type (ii) force originates due to the transverse field induced by the Hall effect (HE). This study incorporates both forces into a Drude-type equation with a fully spin-polarized condition to investigate the effects of self-consistency of the source and the resultant fields on the HE. We also examine the self-consistencymore » of the carrier kinematics and electromagnetic dynamics by simultaneously considering the Drude type equation and Maxwell equations at low frequencies. Thus, our approach can predict both the dc and ac characteristics of the HE, demonstrating that the dc current condition solely yields the ordinary HE, while the ac current condition yields generation of both fundamental and second harmonic modes of the HE field. When the magnetostatic field is absent, the simultaneous presence of dc and ac longitudinal currents generates the ac HE that has both fundamental frequency and second harmonic.« less

  13. Force fields and scoring functions for carbohydrate simulation.

    PubMed

    Xiong, Xiuming; Chen, Zhaoqiang; Cossins, Benjamin P; Xu, Zhijian; Shao, Qiang; Ding, Kai; Zhu, Weiliang; Shi, Jiye

    2015-01-12

    Carbohydrate dynamics plays a vital role in many biological processes, but we are not currently able to probe this with experimental approaches. The highly flexible nature of carbohydrate structures differs in many aspects from other biomolecules, posing significant challenges for studies employing computational simulation. Over past decades, computational study of carbohydrates has been focused on the development of structure prediction methods, force field optimization, molecular dynamics simulation, and scoring functions for carbohydrate-protein interactions. Advances in carbohydrate force fields and scoring functions can be largely attributed to enhanced computational algorithms, application of quantum mechanics, and the increasing number of experimental structures determined by X-ray and NMR techniques. The conformational analysis of carbohydrates is challengeable and has gone into intensive study in elucidating the anomeric, the exo-anomeric, and the gauche effects. Here, we review the issues associated with carbohydrate force fields and scoring functions, which will have a broad application in the field of carbohydrate-based drug design. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Explicit polarization: a quantum mechanical framework for developing next generation force fields.

    PubMed

    Gao, Jiali; Truhlar, Donald G; Wang, Yingjie; Mazack, Michael J M; Löffler, Patrick; Provorse, Makenzie R; Rehak, Pavel

    2014-09-16

    Conspectus Molecular mechanical force fields have been successfully used to model condensed-phase and biological systems for a half century. By means of careful parametrization, such classical force fields can be used to provide useful interpretations of experimental findings and predictions of certain properties. Yet, there is a need to further improve computational accuracy for the quantitative prediction of biomolecular interactions and to model properties that depend on the wave functions and not just the energy terms. A new strategy called explicit polarization (X-Pol) has been developed to construct the potential energy surface and wave functions for macromolecular and liquid-phase simulations on the basis of quantum mechanics rather than only using quantum mechanical results to fit analytic force fields. In this spirit, this approach is called a quantum mechanical force field (QMFF). X-Pol is a general fragment method for electronic structure calculations based on the partition of a condensed-phase or macromolecular system into subsystems ("fragments") to achieve computational efficiency. Here, intrafragment energy and the mutual electronic polarization of interfragment interactions are treated explicitly using quantum mechanics. X-Pol can be used as a general, multilevel electronic structure model for macromolecular systems, and it can also serve as a new-generation force field. As a quantum chemical model, a variational many-body (VMB) expansion approach is used to systematically improve interfragment interactions, including exchange repulsion, charge delocalization, dispersion, and other correlation energies. As a quantum mechanical force field, these energy terms are approximated by empirical functions in the spirit of conventional molecular mechanics. This Account first reviews the formulation of X-Pol, in the full variationally correct version, in the faster embedded version, and with systematic many-body improvements. We discuss illustrative examples involving water clusters (which show the power of two-body corrections), ethylmethylimidazolium acetate ionic liquids (which reveal that the amount of charge transfer between anion and cation is much smaller than what has been assumed in some classical simulations), and a solvated protein in aqueous solution (which shows that the average charge distribution of carbonyl groups along the polypeptide chain depends strongly on their position in the sequence, whereas they are fixed in most classical force fields). The development of QMFFs also offers an opportunity to extend the accuracy of biochemical simulations to areas where classical force fields are often insufficient, especially in the areas of spectroscopy, reactivity, and enzyme catalysis.

  15. A nonadditive methanol force field: Bulk liquid and liquid-vapor interfacial properties via molecular dynamics simulations using a fluctuating charge model

    NASA Astrophysics Data System (ADS)

    Patel, Sandeep; Brooks, Charles L.

    2005-01-01

    We study the bulk and interfacial properties of methanol via molecular dynamics simulations using a CHARMM (Chemistry at HARvard Molecular Mechanics) fluctuating charge force field. We discuss the parametrization of the electrostatic model as part of the ongoing CHARMM development for polarizable protein force fields. The bulk liquid properties are in agreement with available experimental data and competitive with existing fixed-charge and polarizable force fields. The liquid density and vaporization enthalpy are determined to be 0.809 g/cm3 and 8.9 kcal/mol compared to the experimental values of 0.787 g/cm3 and 8.94 kcal/mol, respectively. The liquid structure as indicated by radial distribution functions is in keeping with the most recent neutron diffraction results; the force field shows a slightly more ordered liquid, necessarily arising from the enhanced condensed phase electrostatics (as evidenced by an induced liquid phase dipole moment of 0.7 D), although the average coordination with two neighboring molecules is consistent with the experimental diffraction study as well as with recent density functional molecular dynamics calculations. The predicted surface tension of 19.66±1.03 dyn/cm is slightly lower than the experimental value of 22.6 dyn/cm, but still competitive with classical force fields. The interface demonstrates the preferential molecular orientation of molecules as observed via nonlinear optical spectroscopic methods. Finally, via canonical molecular dynamics simulations, we assess the model's ability to reproduce the vapor-liquid equilibrium from 298 to 423 K, the simulation data then used to obtain estimates of the model's critical temperature and density. The model predicts a critical temperature of 470.1 K and critical density of 0.312 g/cm3 compared to the experimental values of 512.65 K and 0.279 g/cm3, respectively. The model underestimates the critical temperature by 8% and overestimates the critical density by 10%, and in this sense is roughly equivalent to the underlying fixed-charge CHARMM22 force field.

  16. Nanosecond pulsed electric field induced changes in cell surface charge density.

    PubMed

    Dutta, Diganta; Palmer, Xavier-Lewis; Asmar, Anthony; Stacey, Michael; Qian, Shizhi

    2017-09-01

    This study reports that the surface charge density changes in Jurkat cells with the application of single 60 nanosecond pulse electric fields, using atomic force microscopy. Using an atomic force microscope tip and Jurkat cells on silica in a 0.01M KCl ionic concentration, we were able to measure the interfacial forces, while also predicting surface charge densities of both Jurkat cell and silica surfaces. The most important finding is that the pulsing conditions varyingly reduced the cells' surface charge density. This offers a novel way in which to examine cellular effects of pulsed electric fields that may lead to the identification of unique mechanical responses. Compared to a single low field strength NsPEF (15kV/cm) application, exposure of Jurkat cells to a single high field strength NsPEF (60kV/cm) resulted in a further reduction in charge density and major morphological changes. The structural, physical, and chemical properties of biological cells immensely influence their electrostatic force; we were able to investigate this through the use of atomic force microscopy by measuring the surface forces between the AFM's tip and the Jurkat cells under different pulsing conditions as well as the interfacial forces in ionic concentrations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Separability of electrostatic and hydrodynamic forces in particle electrophoresis

    NASA Astrophysics Data System (ADS)

    Todd, Brian A.; Cohen, Joel A.

    2011-09-01

    By use of optical tweezers we explicitly measure the electrostatic and hydrodynamic forces that determine the electrophoretic mobility of a charged colloidal particle. We test the ansatz of O'Brien and White [J. Chem. Soc. Faraday IIJCFTBS0300-923810.1039/f29787401607 74, 1607 (1978)] that the electrostatically and hydrodynamically coupled electrophoresis problem is separable into two simpler problems: (1) a particle held fixed in an applied electric field with no flow field and (2) a particle held fixed in a flow field with no applied electric field. For a system in the Helmholtz-Smoluchowski and Debye-Hückel regimes, we find that the electrostatic and hydrodynamic forces measured independently accurately predict the electrophoretic mobility within our measurement precision of 7%; the O'Brien and White ansatz holds under the conditions of our experiment.

  18. New generation of docking programs: Supercomputer validation of force fields and quantum-chemical methods for docking.

    PubMed

    Sulimov, Alexey V; Kutov, Danil C; Katkova, Ekaterina V; Ilin, Ivan S; Sulimov, Vladimir B

    2017-11-01

    Discovery of new inhibitors of the protein associated with a given disease is the initial and most important stage of the whole process of the rational development of new pharmaceutical substances. New inhibitors block the active site of the target protein and the disease is cured. Computer-aided molecular modeling can considerably increase effectiveness of new inhibitors development. Reliable predictions of the target protein inhibition by a small molecule, ligand, is defined by the accuracy of docking programs. Such programs position a ligand in the target protein and estimate the protein-ligand binding energy. Positioning accuracy of modern docking programs is satisfactory. However, the accuracy of binding energy calculations is too low to predict good inhibitors. For effective application of docking programs to new inhibitors development the accuracy of binding energy calculations should be higher than 1kcal/mol. Reasons of limited accuracy of modern docking programs are discussed. One of the most important aspects limiting this accuracy is imperfection of protein-ligand energy calculations. Results of supercomputer validation of several force fields and quantum-chemical methods for docking are presented. The validation was performed by quasi-docking as follows. First, the low energy minima spectra of 16 protein-ligand complexes were found by exhaustive minima search in the MMFF94 force field. Second, energies of the lowest 8192 minima are recalculated with CHARMM force field and PM6-D3H4X and PM7 quantum-chemical methods for each complex. The analysis of minima energies reveals the docking positioning accuracies of the PM7 and PM6-D3H4X quantum-chemical methods and the CHARMM force field are close to one another and they are better than the positioning accuracy of the MMFF94 force field. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Force Field Development from Periodic Density Functional Theory Calculations for Gas Separation Applications Using Metal–Organic Frameworks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mercado, Rocio; Vlaisavljevich, Bess; Lin, Li -Chiang

    We present accurate force fields developed from density functional theory (DFT) calculations with periodic boundary conditions for use in molecular simulations involving M 2(dobdc) (M-MOF-74; dobdc 4– = 2,5-dioxidobenzenedicarboxylate; M = Mg, Mn, Fe, Co, Ni, Zn) and frameworks of similar topology. In these systems, conventional force fields fail to accurately model gas adsorption due to the strongly binding open-metal sites. The DFT-derived force fields predict the adsorption of CO 2, H 2O, and CH 4 inside these frameworks much more accurately than other common force fields. We show that these force fields can also be used for M 2(dobpdc)more » (dobpdc 4– = 4,4'-dioxidobiphenyl-3,3'-dicarboxylate), an extended version of MOF-74, and thus are a promising alternative to common force fields for studying materials similar to MOF-74 for carbon capture applications. Furthermore, it is anticipated that the approach can be applied to other metal–organic framework topologies to obtain force fields for different systems. We have used this force field to study the effect of contaminants such as H 2O and N 2 upon these materials’ performance for the separation of CO 2 from the emissions of natural gas reservoirs and coal-fired power plants. Specifically, mixture adsorption isotherms calculated with these DFT-derived force fields showed a significant reduction in the uptake of many gas components in the presence of even trace amounts of H 2O vapor. The extent to which the various gases are affected by the concentration of H 2O in the reservoir is quantitatively different for the different frameworks and is related to their heats of adsorption. Additionally, significant increases in CO 2 selectivities over CH 4 and N 2 are observed as the temperature of the systems is lowered.« less

  20. Force Field Development from Periodic Density Functional Theory Calculations for Gas Separation Applications Using Metal–Organic Frameworks

    DOE PAGES

    Mercado, Rocio; Vlaisavljevich, Bess; Lin, Li -Chiang; ...

    2016-05-25

    We present accurate force fields developed from density functional theory (DFT) calculations with periodic boundary conditions for use in molecular simulations involving M 2(dobdc) (M-MOF-74; dobdc 4– = 2,5-dioxidobenzenedicarboxylate; M = Mg, Mn, Fe, Co, Ni, Zn) and frameworks of similar topology. In these systems, conventional force fields fail to accurately model gas adsorption due to the strongly binding open-metal sites. The DFT-derived force fields predict the adsorption of CO 2, H 2O, and CH 4 inside these frameworks much more accurately than other common force fields. We show that these force fields can also be used for M 2(dobpdc)more » (dobpdc 4– = 4,4'-dioxidobiphenyl-3,3'-dicarboxylate), an extended version of MOF-74, and thus are a promising alternative to common force fields for studying materials similar to MOF-74 for carbon capture applications. Furthermore, it is anticipated that the approach can be applied to other metal–organic framework topologies to obtain force fields for different systems. We have used this force field to study the effect of contaminants such as H 2O and N 2 upon these materials’ performance for the separation of CO 2 from the emissions of natural gas reservoirs and coal-fired power plants. Specifically, mixture adsorption isotherms calculated with these DFT-derived force fields showed a significant reduction in the uptake of many gas components in the presence of even trace amounts of H 2O vapor. The extent to which the various gases are affected by the concentration of H 2O in the reservoir is quantitatively different for the different frameworks and is related to their heats of adsorption. Additionally, significant increases in CO 2 selectivities over CH 4 and N 2 are observed as the temperature of the systems is lowered.« less

  1. Navier-Stokes predictions of pitch damping for axisymmetric shell using steady coning motion

    NASA Technical Reports Server (NTRS)

    Weinacht, Paul; Sturek, Walter B.; Schiff, Lewis B.

    1991-01-01

    Previous theoretical investigations have proposed that the side force and moment acting on a body of revolution in steady coning motion could be related to the pitch-damping force and moment. In the current research effort, this approach is applied to produce predictions of the pitch damping for axisymmetric shell. The flow fields about these projectiles undergoing steady coning motion are successfully computed using a parabolized Navier-Stokes computational approach which makes use of a rotating coordinate frame. The governing equations are modified to include the centrifugal and Coriolis force terms due to the rotating coordinate frame. From the computed flow field, the side moments due to coning motion, spinning motion, and combined spinning and coning motion are used to determine the pitch-damping coefficients. Computations are performed for two generic shell configurations, a secant-ogive-cylinder and a secant-ogive-cylinder-boattail.

  2. Nonlinear modeling of forced magnetic reconnection in slab geometry with NIMROD

    NASA Astrophysics Data System (ADS)

    Beidler, M. T.; Callen, J. D.; Hegna, C. C.; Sovinec, C. R.

    2017-05-01

    The nonlinear, extended-magnetohydrodynamic (MHD) code NIMROD is benchmarked with the theory of time-dependent forced magnetic reconnection induced by small resonant fields in slab geometry in the context of visco-resistive MHD modeling. Linear computations agree with time-asymptotic, linear theory of flow screening of externally applied fields. The inclusion of flow in nonlinear computations can result in mode penetration due to the balance between electromagnetic and viscous forces in the time-asymptotic state, which produces bifurcations from a high-slip state to a low-slip state as the external field is slowly increased. We reproduce mode penetration and unlocking transitions by employing time-dependent externally applied magnetic fields. Mode penetration and unlocking exhibit hysteresis and occur at different magnitudes of applied field. We also establish how nonlinearly determined flow screening of the resonant field is affected by the square of the magnitude of the externally applied field. These results emphasize that the inclusion of nonlinear physics is essential for accurate prediction of the reconnected field in a flowing plasma.

  3. High Reynolds number turbulence model of rotating shear flows

    NASA Astrophysics Data System (ADS)

    Masuda, S.; Ariga, I.; Koyama, H. S.

    1983-09-01

    A Reynolds stress closure model for rotating turbulent shear flows is developed. Special attention is paid to keeping the model constants independent of rotation. First, general forms of the model of a Reynolds stress equation and a dissipation rate equation are derived, the only restrictions of which are high Reynolds number and incompressibility. The model equations are then applied to two-dimensional equilibrium boundary layers and the effects of Coriolis acceleration on turbulence structures are discussed. Comparisons with the experimental data and with previous results in other external force fields show that there exists a very close analogy between centrifugal, buoyancy and Coriolis force fields. Finally, the model is applied to predict the two-dimensional boundary layers on rotating plane walls. Comparisons with existing data confirmed its capability of predicting mean and turbulent quantities without employing any empirical relations in rotating fields.

  4. Higher-order force moments of active particles

    NASA Astrophysics Data System (ADS)

    Nasouri, Babak; Elfring, Gwynn J.

    2018-04-01

    Active particles moving through fluids generate disturbance flows due to their activity. For simplicity, the induced flow field is often modeled by the leading terms in a far-field approximation of the Stokes equations, whose coefficients are the force, torque, and stresslet (zeroth- and first-order force moments) of the active particle. This level of approximation is quite useful, but may also fail to predict more complex behaviors that are observed experimentally. In this study, to provide a better approximation, we evaluate the contribution of the second-order force moments to the flow field and, by reciprocal theorem, present explicit formulas for the stresslet dipole, rotlet dipole, and potential dipole for an arbitrarily shaped active particle. As examples of this method, we derive modified Faxén laws for active spherical particles and resolve higher-order moments for active rod-like particles.

  5. A universal strategy for the creation of machine learning-based atomistic force fields

    NASA Astrophysics Data System (ADS)

    Huan, Tran Doan; Batra, Rohit; Chapman, James; Krishnan, Sridevi; Chen, Lihua; Ramprasad, Rampi

    2017-09-01

    Emerging machine learning (ML)-based approaches provide powerful and novel tools to study a variety of physical and chemical problems. In this contribution, we outline a universal strategy to create ML-based atomistic force fields, which can be used to perform high-fidelity molecular dynamics simulations. This scheme involves (1) preparing a big reference dataset of atomic environments and forces with sufficiently low noise, e.g., using density functional theory or higher-level methods, (2) utilizing a generalizable class of structural fingerprints for representing atomic environments, (3) optimally selecting diverse and non-redundant training datasets from the reference data, and (4) proposing various learning approaches to predict atomic forces directly (and rapidly) from atomic configurations. From the atomistic forces, accurate potential energies can then be obtained by appropriate integration along a reaction coordinate or along a molecular dynamics trajectory. Based on this strategy, we have created model ML force fields for six elemental bulk solids, including Al, Cu, Ti, W, Si, and C, and show that all of them can reach chemical accuracy. The proposed procedure is general and universal, in that it can potentially be used to generate ML force fields for any material using the same unified workflow with little human intervention. Moreover, the force fields can be systematically improved by adding new training data progressively to represent atomic environments not encountered previously.

  6. Predictions of the physicochemical properties of amino acid side chain analogs using molecular simulation.

    PubMed

    Ahmed, Alauddin; Sandler, Stanley I

    2016-03-07

    A candidate drug compound is released for clinical trails (in vivo activity) only if its physicochemical properties meet desirable bioavailability and partitioning criteria. Amino acid side chain analogs play vital role in the functionalities of protein and peptides and as such are important in drug discovery. We demonstrate here that the predictions of solvation free energies in water, in 1-octanol, and self-solvation free energies computed using force field-based expanded ensemble molecular dynamics simulation provide good accuracy compared to existing empirical and semi-empirical methods. These solvation free energies are then, as shown here, used for the prediction of a wide range of physicochemical properties important in the assessment of bioavailability and partitioning of compounds. In particular, we consider here the vapor pressure, the solubility in both water and 1-octanol, and the air-water, air-octanol, and octanol-water partition coefficients of amino acid side chain analogs computed from the solvation free energies. The calculated solvation free energies using different force fields are compared against each other and with available experimental data. The protocol here can also be used for a newly designed drug and other molecules where force field parameters and charges are obtained from density functional theory.

  7. Effect of Varying the 1-4 Intramolecular Scaling Factor in Atomistic Simulations of Long-Chain N-alkanes with the OPLS-AA Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    de Almeida, Valmor F; Ye, Xianggui; Cui, Shengting

    2013-01-01

    A comprehensive molecular dynamics simulation study of n-alkanes using the Optimized Potential for Liquid Simulation-All Atoms (OPLS-AA) force field at ambient condition has been performed. Our results indicate that while simulations with the OPLS-AA force field accurately predict the liquid state mass density for n-alkanes with carbon number equal or less than 10, for n-alkanes with carbon number equal or exceeding 12, the OPLS-AA force field with the standard scaling factor for the 1-4 intramolecular Van der Waals and electrostatic interaction gives rise to a quasi-crystalline structure. We found that accurate predictions of the liquid state properties are obtained bymore » successively reducing the aforementioned scaling factor for each increase of the carbon number beyond n-dodecane. To better un-derstand the effects of reducing the scaling factor, we analyzed the variation of the torsion potential pro-file with the scaling factor, and the corresponding impact on the gauche-trans conformer distribution, heat of vaporization, melting point, and self-diffusion coefficient for n-dodecane. This relatively simple procedure thus allows for more accurate predictions of the thermo-physical properties of longer n-alkanes.« less

  8. Calculations of the free energy of interaction of the c-Fos-c-Jun coiled coil: effects of the solvation model and the inclusion of polarization effects.

    PubMed

    Zuo, Zhili; Gandhi, Neha S; Mancera, Ricardo L

    2010-12-27

    The leucine zipper region of activator protein-1 (AP-1) comprises the c-Jun and c-Fos proteins and constitutes a well-known coiled coil protein-protein interaction motif. We have used molecular dynamics (MD) simulations in conjunction with the molecular mechanics/Poisson-Boltzmann generalized-Born surface area [MM/PB(GB)SA] methods to predict the free energy of interaction of these proteins. In particular, the influence of the choice of solvation model, protein force field, and water potential on the stability and dynamic properties of the c-Fos-c-Jun complex were investigated. Use of the AMBER polarizable force field ff02 in combination with the polarizable POL3 water potential was found to result in increased stability of the c-Fos-c-Jun complex. MM/PB(GB)SA calculations revealed that MD simulations using the POL3 water potential give the lowest predicted free energies of interaction compared to other nonpolarizable water potentials. In addition, the calculated absolute free energy of binding was predicted to be closest to the experimental value using the MM/GBSA method with independent MD simulation trajectories using the POL3 water potential and the polarizable ff02 force field, while all other binding affinities were overestimated.

  9. Application of advanced sampling and analysis methods to predict the structure of adsorbed protein on a material surface

    PubMed Central

    Abramyan, Tigran M.; Hyde-Volpe, David L.; Stuart, Steven J.; Latour, Robert A.

    2017-01-01

    The use of standard molecular dynamics simulation methods to predict the interactions of a protein with a material surface have the inherent limitations of lacking the ability to determine the most likely conformations and orientations of the adsorbed protein on the surface and to determine the level of convergence attained by the simulation. In addition, standard mixing rules are typically applied to combine the nonbonded force field parameters of the solution and solid phases the system to represent interfacial behavior without validation. As a means to circumvent these problems, the authors demonstrate the application of an efficient advanced sampling method (TIGER2A) for the simulation of the adsorption of hen egg-white lysozyme on a crystalline (110) high-density polyethylene surface plane. Simulations are conducted to generate a Boltzmann-weighted ensemble of sampled states using force field parameters that were validated to represent interfacial behavior for this system. The resulting ensembles of sampled states were then analyzed using an in-house-developed cluster analysis method to predict the most probable orientations and conformations of the protein on the surface based on the amount of sampling performed, from which free energy differences between the adsorbed states were able to be calculated. In addition, by conducting two independent sets of TIGER2A simulations combined with cluster analyses, the authors demonstrate a method to estimate the degree of convergence achieved for a given amount of sampling. The results from these simulations demonstrate that these methods enable the most probable orientations and conformations of an adsorbed protein to be predicted and that the use of our validated interfacial force field parameter set provides closer agreement to available experimental results compared to using standard CHARMM force field parameterization to represent molecular behavior at the interface. PMID:28514864

  10. A test of AMBER force fields in predicting the secondary structure of α-helical and β-hairpin peptides

    NASA Astrophysics Data System (ADS)

    Gao, Ya; Zhang, Chaomin; Wang, Xianwei; Zhu, Tong

    2017-07-01

    We tested the ability of some current AMBER force fields, namely, AMBER03, AMBER99SB, AMBER99SB-ildn, AMBER99SB-nmr, AMBER12SB, AMBER14SB, and AMBER14ipq, with implicit solvent model in reproducing the folding behavior of two peptides by REMD simulations. AMBER99SB-nmr force field provides the most reliable performance. After a novel polarized hydrogen bond charge model is considered, the α-helix successfully folded to its native state, while the further folding of the β-hairpin is not observed. This study strongly suggests that polarization effect and correct torsional term are important to investigate dynamic and conformational properties of peptides with different secondary structures.

  11. 3D-QSAR based on quantum-chemical molecular fields: toward an improved description of halogen interactions.

    PubMed

    Güssregen, Stefan; Matter, Hans; Hessler, Gerhard; Müller, Marco; Schmidt, Friedemann; Clark, Timothy

    2012-09-24

    Current 3D-QSAR methods such as CoMFA or CoMSIA make use of classical force-field approaches for calculating molecular fields. Thus, they can not adequately account for noncovalent interactions involving halogen atoms like halogen bonds or halogen-π interactions. These deficiencies in the underlying force fields result from the lack of treatment of the anisotropy of the electron density distribution of those atoms, known as the "σ-hole", although recent developments have begun to take specific interactions such as halogen bonding into account. We have now replaced classical force field derived molecular fields by local properties such as the local ionization energy, local electron affinity, or local polarizability, calculated using quantum-mechanical (QM) techniques that do not suffer from the above limitation for 3D-QSAR. We first investigate the characteristics of QM-based local property fields to show that they are suitable for statistical analyses after suitable pretreatment. We then analyze these property fields with partial least-squares (PLS) regression to predict biological affinities of two data sets comprising factor Xa and GABA-A/benzodiazepine receptor ligands. While the resulting models perform equally well or even slightly better in terms of consistency and predictivity than the classical CoMFA fields, the most important aspect of these augmented field-types is that the chemical interpretation of resulting QM-based property field models reveals unique SAR trends driven by electrostatic and polarizability effects, which cannot be extracted directly from CoMFA electrostatic maps. Within the factor Xa set, the interaction of chlorine and bromine atoms with a tyrosine side chain in the protease S1 pocket are correctly predicted. Within the GABA-A/benzodiazepine ligand data set, PLS models of high predictivity resulted for our QM-based property fields, providing novel insights into key features of the SAR for two receptor subtypes and cross-receptor selectivity of the ligands. The detailed interpretation of regression models derived using improved QM-derived property fields thus provides a significant advantage by revealing chemically meaningful correlations with biological activity and helps in understanding novel structure-activity relationship features. This will allow such knowledge to be used to design novel molecules on the basis of interactions additional to steric and hydrogen-bonding features.

  12. Potential theory of radiation

    NASA Technical Reports Server (NTRS)

    Chiu, Huei-Huang

    1989-01-01

    A theoretical method is being developed by which the structure of a radiation field can be predicted by a radiation potential theory, similar to a classical potential theory. The introduction of a scalar potential is justified on the grounds that the spectral intensity vector is irrotational. The vector is also solenoidal in the limits of a radiation field in complete radiative equilibrium or in a vacuum. This method provides an exact, elliptic type equation that will upgrade the accuracy and the efficiency of the current CFD programs required for the prediction of radiation and flow fields. A number of interesting results emerge from the present study. First, a steady state radiation field exhibits an optically modulated inverse square law distribution character. Secondly, the unsteady radiation field is structured with two conjugate scalar potentials. Each is governed by a Klein-Gordon equation with a frictional force and a restoring force. This steady potential field structure and the propagation of radiation potentials are consistent with the well known results of classical electromagnetic theory. The extension of the radiation potential theory for spray combustion and hypersonic flow is also recommended.

  13. Gravitational matter-antimatter asymmetry and four-dimensional Yang-Mills gauge symmetry

    NASA Technical Reports Server (NTRS)

    Hsu, J. P.

    1981-01-01

    A formulation of gravity based on the maximum four-dimensional Yang-Mills gauge symmetry is studied. The theory predicts that the gravitational force inside matter (fermions) is different from that inside antimatter. This difference could lead to the cosmic separation of matter and antimatter in the evolution of the universe. Moreover, a new gravitational long-range spin-force between two fermions is predicted, in addition to the usual Newtonian force. The geometrical foundation of such a gravitational theory is the Riemann-Cartan geometry, in which there is a torsion. The results of the theory for weak fields are consistent with previous experiments.

  14. Spinomotive force induced by a transverse displacement current in a thin metal or doped-semiconductor sheet: Classical and quantum views.

    NASA Astrophysics Data System (ADS)

    Hu, Chia-Ren

    2004-03-01

    We present classical macroscopic, microscopic, and quantum mechanical arguments to show that in a metallic or electron/hole-doped semiconducting sheet thinner than the screening length, a displacement current applied normal to it can induce a spinomotive force along it. The magnitude is weak but clearly detectable. The classical arguments are purely electromagnetic. The quantum argument, based on the Dirac equation, shows that the predicted effect originates from the spin-orbit interaction, but not of the usual kind. That is, it relies on an external electric field, whereas the usual S-O interaction involves the electric field generated by the ions. Because the Dirac equation incorporatesThomas precession, which is due to relativistic kinematics, the quantum prediction is a factor of two smaller than the classical prediction. Replacing the displacement current by a charge current, and one obtains a new source for the spin-Hall effect. Classical macroscopic argument also predicts its existence, but the other two views are controversial.

  15. How to deal with multiple binding poses in alchemical relative protein-ligand binding free energy calculations.

    PubMed

    Kaus, Joseph W; Harder, Edward; Lin, Teng; Abel, Robert; McCammon, J Andrew; Wang, Lingle

    2015-06-09

    Recent advances in improved force fields and sampling methods have made it possible for the accurate calculation of protein–ligand binding free energies. Alchemical free energy perturbation (FEP) using an explicit solvent model is one of the most rigorous methods to calculate relative binding free energies. However, for cases where there are high energy barriers separating the relevant conformations that are important for ligand binding, the calculated free energy may depend on the initial conformation used in the simulation due to the lack of complete sampling of all the important regions in phase space. This is particularly true for ligands with multiple possible binding modes separated by high energy barriers, making it difficult to sample all relevant binding modes even with modern enhanced sampling methods. In this paper, we apply a previously developed method that provides a corrected binding free energy for ligands with multiple binding modes by combining the free energy results from multiple alchemical FEP calculations starting from all enumerated poses, and the results are compared with Glide docking and MM-GBSA calculations. From these calculations, the dominant ligand binding mode can also be predicted. We apply this method to a series of ligands that bind to c-Jun N-terminal kinase-1 (JNK1) and obtain improved free energy results. The dominant ligand binding modes predicted by this method agree with the available crystallography, while both Glide docking and MM-GBSA calculations incorrectly predict the binding modes for some ligands. The method also helps separate the force field error from the ligand sampling error, such that deviations in the predicted binding free energy from the experimental values likely indicate possible inaccuracies in the force field. An error in the force field for a subset of the ligands studied was identified using this method, and improved free energy results were obtained by correcting the partial charges assigned to the ligands. This improved the root-mean-square error (RMSE) for the predicted binding free energy from 1.9 kcal/mol with the original partial charges to 1.3 kcal/mol with the corrected partial charges.

  16. How To Deal with Multiple Binding Poses in Alchemical Relative Protein–Ligand Binding Free Energy Calculations

    PubMed Central

    2016-01-01

    Recent advances in improved force fields and sampling methods have made it possible for the accurate calculation of protein–ligand binding free energies. Alchemical free energy perturbation (FEP) using an explicit solvent model is one of the most rigorous methods to calculate relative binding free energies. However, for cases where there are high energy barriers separating the relevant conformations that are important for ligand binding, the calculated free energy may depend on the initial conformation used in the simulation due to the lack of complete sampling of all the important regions in phase space. This is particularly true for ligands with multiple possible binding modes separated by high energy barriers, making it difficult to sample all relevant binding modes even with modern enhanced sampling methods. In this paper, we apply a previously developed method that provides a corrected binding free energy for ligands with multiple binding modes by combining the free energy results from multiple alchemical FEP calculations starting from all enumerated poses, and the results are compared with Glide docking and MM-GBSA calculations. From these calculations, the dominant ligand binding mode can also be predicted. We apply this method to a series of ligands that bind to c-Jun N-terminal kinase-1 (JNK1) and obtain improved free energy results. The dominant ligand binding modes predicted by this method agree with the available crystallography, while both Glide docking and MM-GBSA calculations incorrectly predict the binding modes for some ligands. The method also helps separate the force field error from the ligand sampling error, such that deviations in the predicted binding free energy from the experimental values likely indicate possible inaccuracies in the force field. An error in the force field for a subset of the ligands studied was identified using this method, and improved free energy results were obtained by correcting the partial charges assigned to the ligands. This improved the root-mean-square error (RMSE) for the predicted binding free energy from 1.9 kcal/mol with the original partial charges to 1.3 kcal/mol with the corrected partial charges. PMID:26085821

  17. Predicting hydration Gibbs energies of alkyl-aromatics using molecular simulation: a comparison of current force fields and the development of a new parameter set for accurate solvation data.

    PubMed

    Garrido, Nuno M; Jorge, Miguel; Queimada, António J; Gomes, José R B; Economou, Ioannis G; Macedo, Eugénia A

    2011-10-14

    The Gibbs energy of hydration is an important quantity to understand the molecular behavior in aqueous systems at constant temperature and pressure. In this work we review the performance of some popular force fields, namely TraPPE, OPLS-AA and Gromos, in reproducing the experimental Gibbs energies of hydration of several alkyl-aromatic compounds--benzene, mono-, di- and tri-substituted alkylbenzenes--using molecular simulation techniques. In the second part of the paper, we report a new model that is able to improve such hydration energy predictions, based on Lennard Jones parameters from the recent TraPPE-EH force field and atomic partial charges obtained from natural population analysis of density functional theory calculations. We apply a scaling factor determined by fitting the experimental hydration energy of only two solutes, and then present a simple rule to generate atomic partial charges for different substituted alkyl-aromatics. This rule has the added advantages of eliminating the unnecessary assumption of fixed charge on every substituted carbon atom and providing a simple guideline for extrapolating the charge assignment to any multi-substituted alkyl-aromatic molecule. The point charges derived here yield excellent predictions of experimental Gibbs energies of hydration, with an overall absolute average deviation of less than 0.6 kJ mol(-1). This new parameter set can also give good predictive performance for other thermodynamic properties and liquid structural information.

  18. High accuracy satellite drag model (HASDM)

    NASA Astrophysics Data System (ADS)

    Storz, M.; Bowman, B.; Branson, J.

    The dominant error source in the force models used to predict low perigee satellite trajectories is atmospheric drag. Errors in operational thermospheric density models cause significant errors in predicted satellite positions, since these models do not account for dynamic changes in atmospheric drag for orbit predictions. The Air Force Space Battlelab's High Accuracy Satellite Drag Model (HASDM) estimates and predicts (out three days) a dynamically varying high-resolution density field. HASDM includes the Dynamic Calibration Atmosphere (DCA) algorithm that solves for the phases and amplitudes of the diurnal, semidiurnal and terdiurnal variations of thermospheric density near real-time from the observed drag effects on a set of Low Earth Orbit (LEO) calibration satellites. The density correction is expressed as a function of latitude, local solar time and altitude. In HASDM, a time series prediction filter relates the extreme ultraviolet (EUV) energy index E10.7 and the geomagnetic storm index a p to the DCA density correction parameters. The E10.7 index is generated by the SOLAR2000 model, the first full spectrum model of solar irradiance. The estimated and predicted density fields will be used operationally to significantly improve the accuracy of predicted trajectories for all low perigee satellites.

  19. High accuracy satellite drag model (HASDM)

    NASA Astrophysics Data System (ADS)

    Storz, Mark F.; Bowman, Bruce R.; Branson, Major James I.; Casali, Stephen J.; Tobiska, W. Kent

    The dominant error source in force models used to predict low-perigee satellite trajectories is atmospheric drag. Errors in operational thermospheric density models cause significant errors in predicted satellite positions, since these models do not account for dynamic changes in atmospheric drag for orbit predictions. The Air Force Space Battlelab's High Accuracy Satellite Drag Model (HASDM) estimates and predicts (out three days) a dynamically varying global density field. HASDM includes the Dynamic Calibration Atmosphere (DCA) algorithm that solves for the phases and amplitudes of the diurnal and semidiurnal variations of thermospheric density near real-time from the observed drag effects on a set of Low Earth Orbit (LEO) calibration satellites. The density correction is expressed as a function of latitude, local solar time and altitude. In HASDM, a time series prediction filter relates the extreme ultraviolet (EUV) energy index E10.7 and the geomagnetic storm index ap, to the DCA density correction parameters. The E10.7 index is generated by the SOLAR2000 model, the first full spectrum model of solar irradiance. The estimated and predicted density fields will be used operationally to significantly improve the accuracy of predicted trajectories for all low-perigee satellites.

  20. Temperature regulation of bud-burst phenology within and among years in a young Douglas-fir (Pseudotsuga menziesii) plantation in western Washington, USA.

    PubMed

    Bailey, John D; Harrington, Constance A

    2006-04-01

    Past research has established that terminal buds of Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) seedlings from many seed sources have a chilling requirement of about 1200 h at 0-5 degrees C; once chilled, temperatures > 5 degrees C force bud burst via accumulation of heat units. We tested this sequential bud-burst model in the field to determine whether terminal buds of trees in cooler microsites, which receive less heat forcing, develop more slowly than those in warmer microsites. For three years we monitored terminal bud development in young saplings as well as soil and air temperatures on large, replicated plots in a harvest unit; plots differed in microclimate based on amount of harvest residue and shade from neighboring stands. In two of three years, trees on cooler microsites broke bud 2 to 4 days earlier than those on warmer microsites, despite receiving less heat forcing from March to May each year. A simple sequential model did not predict cooler sites having earlier bud burst nor did it correctly predict the order of bud burst across the three years. We modified the basic heat-forcing model to initialize, or reset to zero, the accumulation of heat units whenever significant freezing temperature events (> or = 3 degree-hours day(-1) < 0 degrees C) occurred; this modified model correctly predicted the sequence of bud burst across years. Soil temperature alone or in combination with air temperature did not improve our predictions of bud burst. Past models of bud burst have relied heavily on data from controlled experiments with simple temperature patterns; analysis of more variable temperature patterns from our 3-year field trial, however, indicated that simple models of bud burst are inaccurate. More complex models that incorporate chilling hours, heat forcing, photoperiod and the occurrence of freeze events in the spring may be needed to predict effects of future silvicultural treatments as well to interpret the implications of climate-change scenarios. Developing and testing new models will require data from both field and controlled-environment experiments.

  1. Efficient nonparametric n -body force fields from machine learning

    NASA Astrophysics Data System (ADS)

    Glielmo, Aldo; Zeni, Claudio; De Vita, Alessandro

    2018-05-01

    We provide a definition and explicit expressions for n -body Gaussian process (GP) kernels, which can learn any interatomic interaction occurring in a physical system, up to n -body contributions, for any value of n . The series is complete, as it can be shown that the "universal approximator" squared exponential kernel can be written as a sum of n -body kernels. These recipes enable the choice of optimally efficient force models for each target system, as confirmed by extensive testing on various materials. We furthermore describe how the n -body kernels can be "mapped" on equivalent representations that provide database-size-independent predictions and are thus crucially more efficient. We explicitly carry out this mapping procedure for the first nontrivial (three-body) kernel of the series, and we show that this reproduces the GP-predicted forces with meV /Å accuracy while being orders of magnitude faster. These results pave the way to using novel force models (here named "M-FFs") that are computationally as fast as their corresponding standard parametrized n -body force fields, while retaining the nonparametric character, the ease of training and validation, and the accuracy of the best recently proposed machine-learning potentials.

  2. Benchmarking fully analytic DFT force fields for vibrational spectroscopy: A study on halogenated compounds

    NASA Astrophysics Data System (ADS)

    Pietropolli Charmet, Andrea; Cornaton, Yann

    2018-05-01

    This work presents an investigation of the theoretical predictions yielded by anharmonic force fields having the cubic and quartic force constants are computed analytically by means of density functional theory (DFT) using the recursive scheme developed by M. Ringholm et al. (J. Comput. Chem. 35 (2014) 622). Different functionals (namely B3LYP, PBE, PBE0 and PW86x) and basis sets were used for calculating the anharmonic vibrational spectra of two halomethanes. The benchmark analysis carried out demonstrates the reliability and overall good performances offered by hybrid approaches, where the harmonic data obtained at the coupled cluster with single and double excitations level of theory augmented by a perturbational estimate of the effects of connected triple excitations, CCSD(T), are combined with the fully analytic higher order force constants yielded by DFT functionals. These methods lead to reliable and computationally affordable calculations of anharmonic vibrational spectra with an accuracy comparable to that yielded by hybrid force fields having the anharmonic force fields computed at second order Møller-Plesset perturbation theory (MP2) level of theory using numerical differentiation but without the corresponding potential issues related to computational costs and numerical errors.

  3. Calculation of electromagnetic force in electromagnetic forming process of metal sheet

    NASA Astrophysics Data System (ADS)

    Xu, Da; Liu, Xuesong; Fang, Kun; Fang, Hongyuan

    2010-06-01

    Electromagnetic forming (EMF) is a forming process that relies on the inductive electromagnetic force to deform metallic workpiece at high speed. Calculation of the electromagnetic force is essential to understand the EMF process. However, accurate calculation requires complex numerical solution, in which the coupling between the electromagnetic process and the deformation of workpiece needs be considered. In this paper, an appropriate formula has been developed to calculate the electromagnetic force in metal work-piece in the sheet EMF process. The effects of the geometric size of coil, the material properties, and the parameters of discharge circuit on electromagnetic force are taken into consideration. Through the formula, the electromagnetic force at different time and in different positions of the workpiece can be predicted. The calculated electromagnetic force and magnetic field are in good agreement with the numerical and experimental results. The accurate prediction of the electromagnetic force provides an insight into the physical process of the EMF and a powerful tool to design optimum EMF systems.

  4. New Angles on Standard Force Fields: Toward a General Approach for Treating Atomic-Level Anisotropy

    DOE PAGES

    Van Vleet, Mary J.; Misquitta, Alston J.; Schmidt, J. R.

    2017-12-21

    Nearly all standard force fields employ the “sum-of-spheres” approximation, which models intermolecular interactions purely in terms of interatomic distances. Nonetheless, atoms in molecules can have significantly nonspherical shapes, leading to interatomic interaction energies with strong orientation dependencies. Neglecting this “atomic-level anisotropy” can lead to significant errors in predicting interaction energies. Herein, we propose a simple, transferable, and computationally efficient model (MASTIFF) whereby atomic-level orientation dependence can be incorporated into ab initio intermolecular force fields. MASTIFF includes anisotropic exchange-repulsion, charge penetration, and dispersion effects, in conjunction with a standard treatment of anisotropic long-range (multipolar) electrostatics. To validate our approach, we benchmarkmore » MASTIFF against various sum-of-spheres models over a large library of intermolecular interactions between small organic molecules. MASTIFF achieves quantitative accuracy, with respect to both high-level electronic structure theory and experiment, thus showing promise as a basis for “next-generation” force field development.« less

  5. New Angles on Standard Force Fields: Toward a General Approach for Treating Atomic-Level Anisotropy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Vleet, Mary J.; Misquitta, Alston J.; Schmidt, J. R.

    Nearly all standard force fields employ the “sum-of-spheres” approximation, which models intermolecular interactions purely in terms of interatomic distances. Nonetheless, atoms in molecules can have significantly nonspherical shapes, leading to interatomic interaction energies with strong orientation dependencies. Neglecting this “atomic-level anisotropy” can lead to significant errors in predicting interaction energies. Herein, we propose a simple, transferable, and computationally efficient model (MASTIFF) whereby atomic-level orientation dependence can be incorporated into ab initio intermolecular force fields. MASTIFF includes anisotropic exchange-repulsion, charge penetration, and dispersion effects, in conjunction with a standard treatment of anisotropic long-range (multipolar) electrostatics. To validate our approach, we benchmarkmore » MASTIFF against various sum-of-spheres models over a large library of intermolecular interactions between small organic molecules. MASTIFF achieves quantitative accuracy, with respect to both high-level electronic structure theory and experiment, thus showing promise as a basis for “next-generation” force field development.« less

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sorin Zaharia; C.Z. Cheng

    In this paper, we study whether the magnetic field of the T96 empirical model can be in force balance with an isotropic plasma pressure distribution. Using the field of T96, we obtain values for the pressure P by solving a Poisson-type equation {del}{sup 2}P = {del} {center_dot} (J x B) in the equatorial plane, and 1-D profiles on the Sun-Earth axis by integrating {del}P = J x B. We work in a flux coordinate system in which the magnetic field is expressed in terms of Euler potentials. Our results lead to the conclusion that the T96 model field cannot bemore » in equilibrium with an isotropic pressure. We also analyze in detail the computation of Birkeland currents using the Vasyliunas relation and the T96 field, which yields unphysical results, again indicating the lack of force balance in the empirical model. The underlying reason for the force imbalance is likely the fact that the derivatives of the least-square fitted model B are not accurate predictions of the actual magnetospheric field derivatives. Finally, we discuss a possible solution to the problem of lack of force balance in empirical field models.« less

  7. Students' Development of Representational Competence Through the Sense of Touch

    NASA Astrophysics Data System (ADS)

    Magana, Alejandra J.; Balachandran, Sadhana

    2017-06-01

    Electromagnetism is an umbrella encapsulating several different concepts like electric current, electric fields and forces, and magnetic fields and forces, among other topics. However, a number of studies in the past have highlighted the poor conceptual understanding of electromagnetism concepts by students even after instruction. This study aims to identify novel forms of "hands-on" instruction that can result in representational competence and conceptual gain. Specifically, this study aimed to identify if the use of visuohaptic simulations can have an effect on student representations of electromagnetic-related concepts. The guiding questions is How do visuohaptic simulations influence undergraduate students' representations of electric forces? Participants included nine undergraduate students from science, technology, or engineering backgrounds who participated in a think-aloud procedure while interacting with a visuohaptic simulation. The think-aloud procedure was divided in three stages, a prediction stage, a minimally visual haptic stage, and a visually enhanced haptic stage. The results of this study suggest that students' accurately characterized and represented the forces felt around a particle, line, and ring charges either in the prediction stage, a minimally visual haptic stage or the visually enhanced haptic stage. Also, some students accurately depicted the three-dimensional nature of the field for each configuration in the two stages that included a tactile mode, where the point charge was the most challenging one.

  8. Electromagnetic Forces in a Hybrid Magnetic-Bearing Switched-Reluctance Motor

    NASA Technical Reports Server (NTRS)

    Morrison, Carlos R.; Siebert, Mark W.; Ho, Eric J.

    2008-01-01

    Analysis and experimental measurement of the electromagnetic force loads on the hybrid rotor in a novel hybrid magnetic-bearing switched-reluctance motor (MBSRM) have been performed. A MBSRM has the combined characteristics of a switched-reluctance motor and a magnetic bearing. The MBSRM discussed in this report has an eight-pole stator and a six-pole hybrid rotor, which is composed of circular and scalloped lamination segments. The hybrid rotor is levitated using only one set of four stator poles, while a second set of four stator poles imparts torque to the scalloped portion of the rotor, which is driven in a traditional switched reluctance manner by a processor. Static torque and radial force analysis were done for rotor poles that were oriented to achieve maximum and minimum radial force loads on the rotor. The objective is to assess whether simple one-dimensional magnetic circuit analysis is sufficient for preliminary evaluation of this machine, which may exhibit strong three-dimensional electromagnetic field behavior. Two magnetic circuit geometries, approximating the complex topology of the magnetic fields in and around the hybrid rotor, were employed in formulating the electromagnetic radial force equations. Reasonable agreement between the experimental and the theoretical radial force loads predictions was obtained with typical magnetic bearing derating factors applied to the predictions.

  9. Response of Ocean Circulation to Different Wind Forcing in Puerto Rico and US Virgin Islands

    NASA Astrophysics Data System (ADS)

    Solano, Miguel; Garcia, Edgardo; Leonardi, Stafano; Canals, Miguel; Capella, Jorge

    2013-11-01

    The response of the ocean circulation to various wind forcing products has been studied using the Regional Ocean Modeling System. The computational domain includes the main islands of Puerto Rico, Saint John and Saint Thomas, located on the continental shelf dividing the Caribbean Sea and the Atlantic Ocean. Data for wind forcing is provided by an anemometer located in a moored buoy, the Coupled Ocean-Atmosphere Mesoscale Prediction System (COAMPS) model and the National Digital Forecast Database (NDFD). Hindcast simulations have been validated using hydrographic data at different locations in the area of study. Three cases are compared to quantify the impact of high resolution wind forcing on the ocean circulation and the vertical structure of salinity, temperature and velocity. In the first case a constant wind velocity field is used to force the model as measured by an anemometer on top of a buoy. In the second case, a forcing field provided by the Navy's COAMPS model is used and in the third case, winds are taken from NDFD in collaboration with the National Centers for Environmental Prediction. Validated results of ocean currents against data from Acoustic Doppler Current Profilers at different locations show better agreement using high resolution wind data as expected. Thanks to CariCOOS and NOAA.

  10. A Highly Resolved Large-Eddy Simulation of a Wind Turbine using an Actuator Line Model with Optimal Body Force Projection

    DOE PAGES

    Martinez-Tossas, Luis A.; Churchfield, Matthew J.; Meneveau, Charles

    2016-10-03

    When representing the blade aerodynamics with rotating actuator lines, the computed forces have to be projected back to the CFD flow field as a volumetric body force. That has been done in the past with a geometrically simple uniform three-dimensional Gaussian at each point along the blade. Here, we argue that the body force can be shaped in a way that better predicts the blade local flow field, the blade load distribution, and the formation of the tip/root vortices. In previous work, we have determined the optimal scales of circular and elliptical Gaussian kernels that best reproduce the local flowmore » field in two-dimensions. Lastly, in this work we extend the analysis and applications by considering the full three-dimensional blade to test our hypothesis in a highly resolved Large Eddy Simulation.« less

  11. A Highly Resolved Large-Eddy Simulation of a Wind Turbine using an Actuator Line Model with Optimal Body Force Projection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martinez-Tossas, Luis A.; Churchfield, Matthew J.; Meneveau, Charles

    When representing the blade aerodynamics with rotating actuator lines, the computed forces have to be projected back to the CFD flow field as a volumetric body force. That has been done in the past with a geometrically simple uniform three-dimensional Gaussian at each point along the blade. Here, we argue that the body force can be shaped in a way that better predicts the blade local flow field, the blade load distribution, and the formation of the tip/root vortices. In previous work, we have determined the optimal scales of circular and elliptical Gaussian kernels that best reproduce the local flowmore » field in two-dimensions. Lastly, in this work we extend the analysis and applications by considering the full three-dimensional blade to test our hypothesis in a highly resolved Large Eddy Simulation.« less

  12. Electrostrictive Mechanism of Nanostructure Formation at Solid Surfaces Irradiated by Femtosecond Laser Pulses.

    PubMed

    Pavlyniuk, Oleg R; Datsyuk, Vitaly V

    2016-12-01

    The significance of the mechanical pressure of light in creation of laser-induced periodic surface structures (LIPSSs) is investigated. Distributions of the electrically induced normal pressure and tangential stress at the illuminated solid surface, as well as the field of volume electrostrictive forces, are calculated taking into account surface plasmon polariton (SPP) excitation. Based on these calculations, we predict surface destruction and structure formation due to inelastic deformations during single femtosecond pulses. The calculated fields of the electromagnetic forces are found to agree well with the experimental ripple structures. We thus conclude that the electrostrictive forces can explain the origin of the periodic ripple structures.

  13. Machine Learning Force Field Parameters from Ab Initio Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Ying; Li, Hui; Pickard, Frank C.

    Machine learning (ML) techniques with the genetic algorithm (GA) have been applied to determine a polarizable force field parameters using only ab initio data from quantum mechanics (QM) calculations of molecular clusters at the MP2/6-31G(d,p), DFMP2(fc)/jul-cc-pVDZ, and DFMP2(fc)/jul-cc-pVTZ levels to predict experimental condensed phase properties (i.e., density and heat of vaporization). The performance of this ML/GA approach is demonstrated on 4943 dimer electrostatic potentials and 1250 cluster interaction energies for methanol. Excellent agreement between the training data set from QM calculations and the optimized force field model was achieved. The results were further improved by introducing an offset factor duringmore » the machine learning process to compensate for the discrepancy between the QM calculated energy and the energy reproduced by optimized force field, while maintaining the local “shape” of the QM energy surface. Throughout the machine learning process, experimental observables were not involved in the objective function, but were only used for model validation. The best model, optimized from the QM data at the DFMP2(fc)/jul-cc-pVTZ level, appears to perform even better than the original AMOEBA force field (amoeba09.prm), which was optimized empirically to match liquid properties. The present effort shows the possibility of using machine learning techniques to develop descriptive polarizable force field using only QM data. The ML/GA strategy to optimize force fields parameters described here could easily be extended to other molecular systems.« less

  14. A Simple Force-Motion Relation for Migrating Cells Revealed by Multipole Analysis of Traction Stress

    PubMed Central

    Tanimoto, Hirokazu; Sano, Masaki

    2014-01-01

    For biophysical understanding of cell motility, the relationship between mechanical force and cell migration must be uncovered, but it remains elusive. Since cells migrate at small scale in dissipative circumstances, the inertia force is negligible and all forces should cancel out. This implies that one must quantify the spatial pattern of the force instead of just the summation to elucidate the force-motion relation. Here, we introduced multipole analysis to quantify the traction stress dynamics of migrating cells. We measured the traction stress of Dictyostelium discoideum cells and investigated the lowest two moments, the force dipole and quadrupole moments, which reflect rotational and front-rear asymmetries of the stress field. We derived a simple force-motion relation in which cells migrate along the force dipole axis with a direction determined by the force quadrupole. Furthermore, as a complementary approach, we also investigated fine structures in the stress field that show front-rear asymmetric kinetics consistent with the multipole analysis. The tight force-motion relation enables us to predict cell migration only from the traction stress patterns. PMID:24411233

  15. The Impact of Model and Rainfall Forcing Errors on Characterizing Soil Moisture Uncertainty in Land Surface Modeling

    NASA Technical Reports Server (NTRS)

    Maggioni, V.; Anagnostou, E. N.; Reichle, R. H.

    2013-01-01

    The contribution of rainfall forcing errors relative to model (structural and parameter) uncertainty in the prediction of soil moisture is investigated by integrating the NASA Catchment Land Surface Model (CLSM), forced with hydro-meteorological data, in the Oklahoma region. Rainfall-forcing uncertainty is introduced using a stochastic error model that generates ensemble rainfall fields from satellite rainfall products. The ensemble satellite rain fields are propagated through CLSM to produce soil moisture ensembles. Errors in CLSM are modeled with two different approaches: either by perturbing model parameters (representing model parameter uncertainty) or by adding randomly generated noise (representing model structure and parameter uncertainty) to the model prognostic variables. Our findings highlight that the method currently used in the NASA GEOS-5 Land Data Assimilation System to perturb CLSM variables poorly describes the uncertainty in the predicted soil moisture, even when combined with rainfall model perturbations. On the other hand, by adding model parameter perturbations to rainfall forcing perturbations, a better characterization of uncertainty in soil moisture simulations is observed. Specifically, an analysis of the rank histograms shows that the most consistent ensemble of soil moisture is obtained by combining rainfall and model parameter perturbations. When rainfall forcing and model prognostic perturbations are added, the rank histogram shows a U-shape at the domain average scale, which corresponds to a lack of variability in the forecast ensemble. The more accurate estimation of the soil moisture prediction uncertainty obtained by combining rainfall and parameter perturbations is encouraging for the application of this approach in ensemble data assimilation systems.

  16. Structure formation by a fifth force: N-body versus linear simulations

    NASA Astrophysics Data System (ADS)

    Li, Baojiu; Zhao, Hongsheng

    2009-08-01

    We lay out the frameworks to numerically study the structure formation in both linear and nonlinear regimes in general dark-matter-coupled scalar field models, and give an explicit example where the scalar field serves as a dynamical dark energy. Adopting parameters of the scalar field which yield a realistic cosmic microwave background (CMB) spectrum, we generate the initial conditions for our N-body simulations, which follow the spatial distributions of the dark matter and the scalar field by solving their equations of motion using the multilevel adaptive grid technique. We show that the spatial configuration of the scalar field tracks well the voids and clusters of dark matter. Indeed, the propagation of scalar degree of freedom effectively acts as a fifth force on dark matter particles, whose range and magnitude are determined by the two model parameters (μ,γ), local dark matter density as well as the background value for the scalar field. The model behaves like the ΛCDM paradigm on scales relevant to the CMB spectrum, which are well beyond the probe of the local fifth force and thus not significantly affected by the matter-scalar coupling. On scales comparable or shorter than the range of the local fifth force, the fifth force is perfectly parallel to gravity and their strengths have a fixed ratio 2γ2 determined by the matter-scalar coupling, provided that the chameleon effect is weak; if on the other hand there is a strong chameleon effect (i.e., the scalar field almost resides at its effective potential minimum everywhere in the space), the fifth force indeed has suppressed effects in high density regions and shows no obvious correlation with gravity, which means that the dark-matter-scalar-field coupling is not simply equivalent to a rescaling of the gravitational constant or the mass of the dark matter particles. We show these spatial distributions and (lack of) correlations at typical redshifts (z=0,1,5.5) in our multigrid million-particle simulations. The viable parameters for the scalar field can be inferred on intermediate or small scales at late times from, e.g., weak lensing and phase space properties, while the predicted Hubble expansion and linearly simulated CMB spectrum are virtually indistinguishable from the standard ΛCDM predictions.

  17. Micro Finite Element models of the vertebral body: Validation of local displacement predictions.

    PubMed

    Costa, Maria Cristiana; Tozzi, Gianluca; Cristofolini, Luca; Danesi, Valentina; Viceconti, Marco; Dall'Ara, Enrico

    2017-01-01

    The estimation of local and structural mechanical properties of bones with micro Finite Element (microFE) models based on Micro Computed Tomography images depends on the quality bone geometry is captured, reconstructed and modelled. The aim of this study was to validate microFE models predictions of local displacements for vertebral bodies and to evaluate the effect of the elastic tissue modulus on model's predictions of axial forces. Four porcine thoracic vertebrae were axially compressed in situ, in a step-wise fashion and scanned at approximately 39μm resolution in preloaded and loaded conditions. A global digital volume correlation (DVC) approach was used to compute the full-field displacements. Homogeneous, isotropic and linear elastic microFE models were generated with boundary conditions assigned from the interpolated displacement field measured from the DVC. Measured and predicted local displacements were compared for the cortical and trabecular compartments in the middle of the specimens. Models were run with two different tissue moduli defined from microindentation data (12.0GPa) and a back-calculation procedure (4.6GPa). The predicted sum of axial reaction forces was compared to the experimental values for each specimen. MicroFE models predicted more than 87% of the variation in the displacement measurements (R2 = 0.87-0.99). However, model predictions of axial forces were largely overestimated (80-369%) for a tissue modulus of 12.0GPa, whereas differences in the range 10-80% were found for a back-calculated tissue modulus. The specimen with the lowest density showed a large number of elements strained beyond yield and the highest predictive errors. This study shows that the simplest microFE models can accurately predict quantitatively the local displacements and qualitatively the strain distribution within the vertebral body, independently from the considered bone types.

  18. Assessing the accuracy of improved force-matched water models derived from Ab initio molecular dynamics simulations.

    PubMed

    Köster, Andreas; Spura, Thomas; Rutkai, Gábor; Kessler, Jan; Wiebeler, Hendrik; Vrabec, Jadran; Kühne, Thomas D

    2016-07-15

    The accuracy of water models derived from ab initio molecular dynamics simulations by means on an improved force-matching scheme is assessed for various thermodynamic, transport, and structural properties. It is found that although the resulting force-matched water models are typically less accurate than fully empirical force fields in predicting thermodynamic properties, they are nevertheless much more accurate than generally appreciated in reproducing the structure of liquid water and in fact superseding most of the commonly used empirical water models. This development demonstrates the feasibility to routinely parametrize computationally efficient yet predictive potential energy functions based on accurate ab initio molecular dynamics simulations for a large variety of different systems. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  19. Breakpoint-forced and bound long waves in the nearshore: A model comparison

    USGS Publications Warehouse

    List, Jeffrey H.; ,

    1993-01-01

    A finite-difference model is used to compare long wave amplitudes arising from two-group forced generation mechanisms in the nearshore: long waves generated at a time-varying breakpoint and the shallow-water extension of the bound long wave. Plane beach results demonstrate that the strong frequency selection in the outgoing wave predicted by the breakpoint-forcing mechanism may not be observable in field data due to this wave's relatively small size and its predicted phase relation with the bound wave. Over a bar/trough nearshore, it is shown that a strong frequency selection in shoreline amplitudes is not a unique result of the time-varying breakpoint model, but a general result of the interaction between topography and any broad-banded forcing of nearshore long waves.

  20. The dynamics of copper intercalated molybdenum ditelluride

    NASA Astrophysics Data System (ADS)

    Onofrio, Nicolas; Guzman, David; Strachan, Alejandro

    2016-11-01

    Layered transition metal dichalcogenides are emerging as key materials in nanoelectronics and energy applications. Predictive models to understand their growth, thermomechanical properties, and interaction with metals are needed in order to accelerate their incorporation into commercial products. Interatomic potentials enable large-scale atomistic simulations connecting first principle methods and devices. We present a ReaxFF reactive force field to describe molybdenum ditelluride and its interactions with copper. We optimized the force field parameters to describe the energetics, atomic charges, and mechanical properties of (i) layered MoTe2, Mo, and Cu in various phases, (ii) the intercalation of Cu atoms and small clusters within the van der Waals gap of MoTe2, and (iii) bond dissociation curves. The training set consists of an extensive set of first principles calculations computed using density functional theory (DFT). We validate the force field via the prediction of the adhesion of a single layer MoTe2 on a Cu(111) surface and find good agreement with DFT results not used in the training set. We characterized the mobility of the Cu ions intercalated into MoTe2 under the presence of an external electric field via finite temperature molecular dynamics simulations. The results show a significant increase in drift velocity for electric fields of approximately 0.4 V/Å and that mobility increases with Cu ion concentration.

  1. Electronic coarse graining enhances the predictive power of molecular simulation allowing challenges in water physics to be addressed

    NASA Astrophysics Data System (ADS)

    Cipcigan, Flaviu S.; Sokhan, Vlad P.; Crain, Jason; Martyna, Glenn J.

    2016-12-01

    One key factor that limits the predictive power of molecular dynamics simulations is the accuracy and transferability of the input force field. Force fields are challenged by heterogeneous environments, where electronic responses give rise to biologically important forces such as many-body polarisation and dispersion. The importance of polarisation in the condensed phase was recognised early on, as described by Cochran in 1959 [Philosophical Magazine 4 (1959) 1082-1086] [32]. Currently in molecular simulation, dispersion forces are treated at the two-body level and in the dipole limit, although the importance of three-body terms in the condensed phase was demonstrated by Barker in the 1980s [Phys. Rev. Lett. 57 (1986) 230-233] [72]. One approach for treating both polarisation and dispersion on an equal basis is to coarse grain the electrons surrounding a molecular moiety to a single quantum harmonic oscillator (cf. Hirschfelder, Curtiss and Bird 1954 [The Molecular Theory of Gases and Liquids (1954)] [37]). The approach, when solved in strong coupling beyond the dipole limit, gives a description of long-range forces that includes two- and many-body terms to all orders. In the last decade, the tools necessary to implement the strong coupling limit have been developed, culminating in a transferable model of water with excellent predictive power across the phase diagram. Transferability arises since the environment automatically identifies the important long range interactions, rather than the modeller through a limited set of expressions. Here, we discuss the role of electronic coarse-graining in predictive multiscale materials modelling and describe the first implementation of the method in a general purpose molecular dynamics software: QDO_MD.

  2. A controllable tactile device for human-like tissue realization using smart magneto-rheological fluids: fabrication and modeling

    NASA Astrophysics Data System (ADS)

    Cha, Seung-Woo; Kang, Seok-Rae; Hwang, Yong-Hoon; Oh, Jong-Seok; Choi, Seung-Bok

    2018-06-01

    This paper proposes a new tactile device to realize the force of human-like organs using the viscoelastic property by combing a smart magneto-rheological (MR) fluid with a sponge (MR sponge in short). The effectiveness of the sensor is validated through the comparison of the force obtained through measurement and the proposed prediction model. As the first step, a conventional standard linear solid model is adopted to independently investigate the force characteristics of MR fluid and sponge. Force is measured using a 3-axis robot with a force sensor to obtain certain properties of MR fluid and sponge. In addition, to show that the proposed MR sponge can realize the force of human-like tissues, experiments are performed using three specimens, i.e., porcine heart, lung, and liver. Subsequently, a quasi-static model for predicting the field-dependent force of the MR sponge is formulated using empirical values. It is demonstrated through comparison that the proposed force model can accurately predict the force of the specimens without significant error. In addition, a psychophysical test is carried out by ordinary subjects to validate the effectiveness of the proposed tactile device. Results show that the MR sponge tactile device can easily produce various levels of the force of human-like tissues, such as the liver and lung of the porcine, by controlling input current.

  3. Understanding the effect of side groups in ionic liquids on carbon-capture properties: a combined experimental and theoretical effort

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, Fangyong; Lartey, Michael; Damodaran, Krishnan

    2013-01-01

    Ionic liquids are an emerging class of materials with applications in a variety of fields. Steady progress has been made in the creation of ionic liquids tailored to specific applications. However, the understanding of the underlying structure–property relationships has been slower to develop. As a step in the effort to alleviate this deficiency, the influence of side groups on ionic liquid properties has been studied through an integrated approach utilizing synthesis, experimental determination of properties, and simulation techniques. To achieve this goal, a classical force field in the framework of OPLS/Amber force fields has been developed to predict ionic liquidmore » properties accurately. Cu(I)-catalyzed click chemistry was employed to synthesize triazolium-based ionic liquids with diverse side groups. Values of densities were predicted within 3% of experimental values, whereas self-diffusion coefficients were underestimated by about an order of magnitude though the trends were in excellent agreement, the activation energy calculated in simulation correlates well with experimental values. The predicted Henry coefficient for CO{sub 2} solubility reproduced the experimentally observed trends. This study highlights the importance of integrating experimental and computational approaches in property prediction and materials development, which is not only useful in the development of ionic liquids for CO{sub 2} capture but has application in many technological fields.« less

  4. Understanding the effect of side groups in ionic liquids on carbon-capture properties: a combined experimental and theoretical effort

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, Fangyong; Lartey, Michael; Damodaran, Krishnan

    Ionic liquids are an emerging class of materials with applications in a variety of fields. Steady progress has been made in the creation of ionic liquids tailored to specific applications. However, the understanding of the underlying structure–property relationships has been slower to develop. As a step in the effort to alleviate this deficiency, the influence of side groups on ionic liquid properties has been studied through an integrated approach utilizing synthesis, experimental determination of properties, and simulation techniques. To achieve this goal, a classical force field in the framework of OPLS/Amber force fields has been developed to predict ionic liquidmore » properties accurately. Cu(I)-catalyzed click chemistry was employed to synthesize triazolium-based ionic liquids with diverse side groups. Values of densities were predicted within 3% of experimental values, whereas self-diffusion coefficients were underestimated by about an order of magnitude though the trends were in excellent agreement, the activation energy calculated in simulation correlates well with experimental values. The predicted Henry coefficient for CO{sub 2} solubility reproduced the experimentally observed trends. This study highlights the importance of integrating experimental and computational approaches in property prediction and materials development, which is not only useful in the development of ionic liquids for CO{sub 2} capture but has application in many technological fields.« less

  5. Predicting Flutter and Forced Response in Turbomachinery

    NASA Technical Reports Server (NTRS)

    VanZante, Dale E.; Adamczyk, John J.; Srivastava, Rakesh; Bakhle, Milind A.; Shabbir, Aamir; Chen, Jen-Ping; Janus, J. Mark; To, Wai-Ming; Barter, John

    2005-01-01

    TURBO-AE is a computer code that enables detailed, high-fidelity modeling of aeroelastic and unsteady aerodynamic characteristics for prediction of flutter, forced response, and blade-row interaction effects in turbomachinery. Flow regimes that can be modeled include subsonic, transonic, and supersonic, with attached and/or separated flow fields. The three-dimensional Reynolds-averaged Navier-Stokes equations are solved numerically to obtain extremely accurate descriptions of unsteady flow fields in multistage turbomachinery configurations. Blade vibration is simulated by use of a dynamic-grid-deformation technique to calculate the energy exchange for determining the aerodynamic damping of vibrations of blades. The aerodynamic damping can be used to assess the stability of a blade row. TURBO-AE also calculates the unsteady blade loading attributable to such external sources of excitation as incoming gusts and blade-row interactions. These blade loadings, along with aerodynamic damping, are used to calculate the forced responses of blades to predict their fatigue lives. Phase-lagged boundary conditions based on the direct-store method are used to calculate nonzero interblade phase-angle oscillations; this practice eliminates the need to model multiple blade passages, and, hence, enables large savings in computational resources.

  6. Chiral EFT based nuclear forces: achievements and challenges

    NASA Astrophysics Data System (ADS)

    Machleidt, R.; Sammarruca, F.

    2016-08-01

    During the past two decades, chiral effective field theory has become a popular tool to derive nuclear forces from first principles. Two-nucleon interactions have been worked out up to sixth order of chiral perturbation theory and three-nucleon forces up to fifth order. Applications of some of these forces have been conducted in nuclear few- and many-body systems—with a certain degree of success. But in spite of these achievements, we are still faced with great challenges. Among them is the issue of a proper uncertainty quantification of predictions obtained when applying these forces in ab initio calculations of nuclear structure and reactions. A related problem is the order by order convergence of the chiral expansion. We start this review with a pedagogical introduction and then present the current status of the field of chiral nuclear forces. This is followed by a discussion of representative examples for the application of chiral two- and three-body forces in the nuclear many-body system including convergence issues.

  7. Upper limits to submillimetre-range forces from extra space-time dimensions.

    PubMed

    Long, Joshua C; Chan, Hilton W; Churnside, Allison B; Gulbis, Eric A; Varney, Michael C M; Price, John C

    2003-02-27

    String theory is the most promising approach to the long-sought unified description of the four forces of nature and the elementary particles, but direct evidence supporting it is lacking. The theory requires six extra spatial dimensions beyond the three that we observe; it is usually supposed that these extra dimensions are curled up into small spaces. This 'compactification' induces 'moduli' fields, which describe the size and shape of the compact dimensions at each point in space-time. These moduli fields generate forces with strengths comparable to gravity, which according to some recent predictions might be detected on length scales of about 100 microm. Here we report a search for gravitational-strength forces using planar oscillators separated by a gap of 108 micro m. No new forces are observed, ruling out a substantial portion of the previously allowed parameter space for the strange and gluon moduli forces, and setting a new upper limit on the range of the string dilaton and radion forces.

  8. Prediction of EPR Spectra of Lyotropic Liquid Crystals using a Combination of Molecular Dynamics Simulations and the Model-Free Approach.

    PubMed

    Prior, Christopher; Oganesyan, Vasily S

    2017-09-21

    We report the first application of fully atomistic molecular dynamics (MD) simulations to the prediction of the motional electron paramagnetic resonance (EPR) spectra of lyotropic liquid crystals in different aggregation states doped with a paramagnetic spin probe. The purpose of this study is twofold. First, given that EPR spectra are highly sensitive to the motions and order of the spin probes doped within lyotropic aggregates, simulation of EPR line shapes from the results of MD modelling provides an ultimate test bed for the force fields currently employed to model such systems. Second, the EPR line shapes are simulated using the motional parameters extracted from MD trajectories using the Model-Free (MF) approach. Thus a combined MD-EPR methodology allowed us to test directly the validity of the application of the MF approach to systems with multi-component molecular motions. All-atom MD simulations using the General AMBER Force Field (GAFF) have been performed on sodium dodecyl sulfate (SDS) and dodecyltrimethylammonium chloride (DTAC) liquid crystals. The resulting MD trajectories were used to predict and interpret the EPR spectra of pre-micellar, micellar, rod and lamellar aggregates. The predicted EPR spectra demonstrate good agreement with most of experimental line shapes thus confirming the validity of both the force fields employed and the MF approach for the studied systems. At the same time simulation results confirm that GAFF tends to overestimate the packing and the order of the carbonyl chains of the surfactant molecules. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Characteristic of Secondary Flow Caused by Local Density Change in Standing Acoustic Fields

    NASA Astrophysics Data System (ADS)

    Tonsho, Kazuyuki; Hirosawa, Takuya; Kusakawa, Hiroshi; Kuwahara, Takuo; Tanabe, Mitsuaki

    Secondary flow is a flow which is caused by the interference between standing acoustic fields and local density change. The behavior of the secondary flow depends on the location of the given local density change in the standing acoustic fields. When the density change is given at the middle of a velocity node and the neighboring velocity anti-node (middle point) or when it is given at the velocity anti-node in standing acoustic fields, the secondary flow shows particular behavior. Characteristic of the secondary flow at the two positions was predicted by numerical simulations. It was examined from these simulations whether the driving mechanism of the flow can be explained by the kind of acoustic radiation force that has been proposed so far. The predicted secondary flow was verified by experiments. For both the simulations and experiments, the standing acoustic fields generated in a cylinder are employed. In the experiments, the acoustic fields are generated by two loud speakers that are vibrated in same phase in a chamber. The employed resonance frequency is about 1000 Hz. The chamber is filled with air of room temperature and atmospheric pressure. In the numerical simulations and experiments, the local density change is given by heating or cooling. Because the secondary flow is influenced by buoyancy, the numerical simulations were done without taking gravity force into account and a part of the experiments were done by the microgravity condition using a drop tower. As a result of the simulations, at the middle point, the heated air was blown toward the node and the cooled air was blown toward the anti-node. It is clarified that the secondary flow is driven by the expected kind of acoustic radiation force. At the anti-node, both the heated and cooled air expands perpendicular to the traveling direction of the sound wave. The driving mechanism of the secondary flow can not be explained by the acoustic radiation force, and a detailed analysis is done. Through the comparison between experimental and numerical results, it was verified that the secondary flow is qualitatively predictable by the numerical simulations.

  10. A Combined Experimental/Computational Study of Flow in Turbine Blade Cooling Passage

    NASA Technical Reports Server (NTRS)

    Tse, D. G. N.; Kreskovsky, J. P.; Shamroth, S. J.; Mcgrath, D. B.

    1994-01-01

    Laser velocimetry was utilized to map the velocity field in a serpentine turbine blade cooling passage at Reynolds and Rotation numbers of up to 25.000 and 0.48. These results were used to assess the combined influence of passage curvature and Coriolis force on the secondary velocity field generated. A Navier-Stokes code (NASTAR) was validated against incompressible test data and then used to simulate the effect of buoyancy. The measurements show a net convection from the low pressure surface to high pressure surface. The interaction of the secondary flows induced by the turns and rotation produces swirl at the turns, which persisted beyond 2 hydraulic diameters downstream of the turns. The incompressible flow field predictions agree well with the measured velocities. With radially outward flow, the buoyancy force causes a further increase in velocity on the high pressure surface and a reduction on the low pressure surface. The results were analyzed in relation to the heat transfer measurements of Wagner et al. (1991). Predicted heat transfer is enhanced on the high pressure surfaces and in turns. The incompressible flow simulation underpredicts heat transfer in these locations. Improvements observed in compressible flow simulation indicate that the buoyancy force may be important.

  11. Determination of the protonation state of the Asp dyad: conventional molecular dynamics versus thermodynamic integration.

    PubMed

    Huang, Jinfeng; Zhu, Yali; Sun, Bin; Yao, Yuan; Liu, Junjun

    2016-03-01

    The protonation state of the Asp dyad is important as it can reveal enzymatic mechanisms, and the information this provides can be used in the development of drugs for proteins such as memapsin 2 (BACE-1), HIV-1 protease, and rennin. Conventional molecular dynamics (MD) simulations have been successfully used to determine the preferred protonation state of the Asp dyad. In the present work, we demonstrate that the results obtained from conventional MD simulations can be greatly influenced by the particular force field applied or the values used for control parameters. In principle, free-energy changes between possible protonation states can be used to determine the protonation state. We show that protonation state prediction by the thermodynamic integration (TI) method is insensitive to force field version or to the cutoff for calculating nonbonded interactions (a control parameter). In the present study, the protonation state of the Asp dyad predicted by TI calculations was the same regardless of the force field and cutoff value applied. Contrary to the intuition that conventional MD is more efficient, our results clearly show that the TI method is actually more efficient and more reliable for determining the protonation state of the Asp dyad.

  12. Lateral-drag propulsion forces induced by anisotropy.

    PubMed

    Nefedov, Igor S; Rubi, J Miguel

    2017-07-21

    We predict the existence of lateral drag forces near the flat surface of an absorbing slab made of an anisotropic material. The forces originate from the fluctuations of the electromagnetic field, when the anisotropy axis of the material forms a certain angle with the surface. In this situation, the spatial spectra of the fluctuating electromagnetic fields becomes asymmetric, different for positive and negative transverse wave vectors components. Differently from the case of van der Waals interactions in which the forward-backward symmetry is broken due to the particle movement, in our case the lateral motion results merely from the anisotropy of the slab. This new effect, of particular significance in hyperbolic materials, could be used for the manipulation of nanoparticles.

  13. Transient electrophoretic motion of a charged particle through a converging-diverging microchannel: effect of direct current-dielectrophoretic force.

    PubMed

    Ai, Ye; Joo, Sang W; Jiang, Yingtao; Xuan, Xiangchun; Qian, Shizhi

    2009-07-01

    Transient electrophoretic motion of a charged particle through a converging-diverging microchannel is studied by solving the coupled system of the Navier-Stokes equations for fluid flow and the Laplace equation for electrical field with an arbitrary Lagrangian-Eulerian finite-element method. A spatially non-uniform electric field is induced in the converging-diverging section, which gives rise to a direct current dielectrophoretic (DEP) force in addition to the electrostatic force acting on the charged particle. As a sequence, the symmetry of the particle velocity and trajectory with respect to the throat is broken. We demonstrate that the predicted particle trajectory shifts due to DEP show quantitative agreements with the existing experimental data. Although converging-diverging microchannels can be used for super fast electrophoresis due to the enhancement of the local electric field, it is shown that large particles may be blocked due to the induced DEP force, which thus must be taken into account in the study of electrophoresis in microfluidic devices where non-uniform electric fields are present.

  14. Evaluating Parametrization Protocols for Hydration Free Energy Calculations with the AMOEBA Polarizable Force Field.

    PubMed

    Bradshaw, Richard T; Essex, Jonathan W

    2016-08-09

    Hydration free energy (HFE) calculations are often used to assess the performance of biomolecular force fields and the quality of assigned parameters. The AMOEBA polarizable force field moves beyond traditional pairwise additive models of electrostatics and may be expected to improve upon predictions of thermodynamic quantities such as HFEs over and above fixed-point-charge models. The recent SAMPL4 challenge evaluated the AMOEBA polarizable force field in this regard but showed substantially worse results than those using the fixed-point-charge GAFF model. Starting with a set of automatically generated AMOEBA parameters for the SAMPL4 data set, we evaluate the cumulative effects of a series of incremental improvements in parametrization protocol, including both solute and solvent model changes. Ultimately, the optimized AMOEBA parameters give a set of results that are not statistically significantly different from those of GAFF in terms of signed and unsigned error metrics. This allows us to propose a number of guidelines for new molecule parameter derivation with AMOEBA, which we expect to have benefits for a range of biomolecular simulation applications such as protein-ligand binding studies.

  15. Free-energy landscape of the villin headpiece in an all-atom force field.

    PubMed

    Herges, Thomas; Wenzel, Wolfgang

    2005-04-01

    We investigate the landscape of the internal free-energy of the 36 amino acid villin headpiece with a modified basin hopping method in the all-atom force field PFF01, which was previously used to predictively fold several helical proteins with atomic resolution. We identify near native conformations of the protein as the global optimum of the force field. More than half of the twenty best simulations started from random initial conditions converge to the folding funnel of the native conformation, but several competing low-energy metastable conformations were observed. From 76,000 independently generated conformations we derived a decoy tree which illustrates the topological structure of the entire low-energy part of the free-energy landscape and characterizes the ensemble of metastable conformations. These emerge as similar in secondary content, but differ in tertiary arrangement.

  16. Predicting tensorial electrophoretic effects in asymmetric colloids

    NASA Astrophysics Data System (ADS)

    Mowitz, Aaron J.; Witten, T. A.

    2017-12-01

    We formulate a numerical method for predicting the tensorial linear response of a rigid, asymmetrically charged body to an applied electric field. This prediction requires calculating the response of the fluid to the Stokes drag forces on the moving body and on the countercharges near its surface. To determine the fluid's motion, we represent both the body and the countercharges using many point sources of drag known as Stokeslets. Finding the correct flow field amounts to finding the set of drag forces on the Stokeslets that is consistent with the relative velocities experienced by each Stokeslet. The method rigorously satisfies the condition that the object moves with no transfer of momentum to the fluid. We demonstrate that a sphere represented by 1999 well-separated Stokeslets on its surface produces flow and drag force like a solid sphere to 1% accuracy. We show that a uniformly charged sphere with 3998 body and countercharge Stokeslets obeys the Smoluchowski prediction [F. Morrison, J. Colloid Interface Sci. 34, 210 (1970), 10.1016/0021-9797(70)90171-2] for electrophoretic mobility when the countercharges lie close to the sphere. Spheres with dipolar and quadrupolar charge distributions rotate and translate as predicted analytically to 4% accuracy or better. We describe how the method can treat general asymmetric shapes and charge distributions. This method offers promise as a way to characterize and manipulate asymmetrically charged colloid-scale objects from biology (e.g., viruses) and technology (e.g., self-assembled clusters).

  17. Combining 3D Hydraulic Tomography with Tracer Tests for Improved Transport Characterization.

    PubMed

    Sanchez-León, E; Leven, C; Haslauer, C P; Cirpka, O A

    2016-07-01

    Hydraulic tomography (HT) is a method for resolving the spatial distribution of hydraulic parameters to some extent, but many details important for solute transport usually remain unresolved. We present a methodology to improve solute transport predictions by combining data from HT with the breakthrough curve (BTC) of a single forced-gradient tracer test. We estimated the three dimensional (3D) hydraulic-conductivity field in an alluvial aquifer by inverting tomographic pumping tests performed at the Hydrogeological Research Site Lauswiesen close to Tübingen, Germany, using a regularized pilot-point method. We compared the estimated parameter field to available profiles of hydraulic-conductivity variations from direct-push injection logging (DPIL), and validated the hydraulic-conductivity field with hydraulic-head measurements of tests not used in the inversion. After validation, spatially uniform parameters for dual-domain transport were estimated by fitting tracer data collected during a forced-gradient tracer test. The dual-domain assumption was used to parameterize effects of the unresolved heterogeneity of the aquifer and deemed necessary to fit the shape of the BTC using reasonable parameter values. The estimated hydraulic-conductivity field and transport parameters were subsequently used to successfully predict a second independent tracer test. Our work provides an efficient and practical approach to predict solute transport in heterogeneous aquifers without performing elaborate field tracer tests with a tomographic layout. © 2015, National Ground Water Association.

  18. Electromagnetic Radial Forces in a Hybrid Eight-Stator-Pole, Six-Rotor-Pole Bearingless Switched-Reluctance Motor

    NASA Technical Reports Server (NTRS)

    Morrison, Carlos R.; Siebert, Mark W.; Ho, Eric J.

    2007-01-01

    Analysis and experimental measurement of the electromagnet force loads on the hybrid rotor in a novel bearingless switched-reluctance motor (BSRM) have been performed. A BSRM has the combined characteristics of a switched-reluctance motor and a magnetic bearing. The BSRM has an eight-pole stator and a six-pole hybrid rotor, which is composed of circular and scalloped lamination segments. The hybrid rotor is levitated using only one set of stator poles. A second set of stator poles imparts torque to the scalloped portion of the rotor, which is driven in a traditional switched reluctance manner by a processor. Analysis was done for nonrotating rotor poles that were oriented to achieve maximum and minimum radial force loads on the rotor. The objective is to assess whether simple one-dimensional magnetic circuit analysis is sufficient for preliminary evaluation of this machine, which may exhibit strong three-dimensional electromagnetic field behavior. Two magnetic circuit geometries, approximating the complex topology of the magnetic fields in and around the hybrid rotor, were employed in formulating the electromagnetic radial force equations. Reasonable agreement between the experimental results and the theoretical predictions was obtained with typical magnetic bearing derating factors applied to the predictions.

  19. Improved tests of extra-dimensional physics and thermal quantum field theory from new Casimir force measurements

    NASA Astrophysics Data System (ADS)

    Decca, R. S.; Fischbach, E.; Klimchitskaya, G. L.; Krause, D. E.; López, D.; Mostepanenko, V. M.

    2003-12-01

    We report new constraints on extra-dimensional models and other physics beyond the standard model based on measurements of the Casimir force between two dissimilar metals for separations in the range 0.2 1.2 μm. The Casimir force between a Au-coated sphere and a Cu-coated plate of a microelectromechanical torsional oscillator was measured statically with an absolute error of 0.3 pN. In addition, the Casimir pressure between two parallel plates was determined dynamically with an absolute error of ≈0.6 mPa. Within the limits of experimental and theoretical errors, the results are in agreement with a theory that takes into account the finite conductivity and roughness of the two metals. The level of agreement between experiment and theory was then used to set limits on the predictions of extra-dimensional physics and thermal quantum field theory. It is shown that two theoretical approaches to the thermal Casimir force which predict effects linear in temperature are ruled out by these experiments. Finally, constraints on Yukawa corrections to Newton’s law of gravity are strengthened by more than an order of magnitude in the range 56 330 nm.

  20. A simple force-motion relation for migrating cells revealed by multipole analysis of traction stress.

    PubMed

    Tanimoto, Hirokazu; Sano, Masaki

    2014-01-07

    For biophysical understanding of cell motility, the relationship between mechanical force and cell migration must be uncovered, but it remains elusive. Since cells migrate at small scale in dissipative circumstances, the inertia force is negligible and all forces should cancel out. This implies that one must quantify the spatial pattern of the force instead of just the summation to elucidate the force-motion relation. Here, we introduced multipole analysis to quantify the traction stress dynamics of migrating cells. We measured the traction stress of Dictyostelium discoideum cells and investigated the lowest two moments, the force dipole and quadrupole moments, which reflect rotational and front-rear asymmetries of the stress field. We derived a simple force-motion relation in which cells migrate along the force dipole axis with a direction determined by the force quadrupole. Furthermore, as a complementary approach, we also investigated fine structures in the stress field that show front-rear asymmetric kinetics consistent with the multipole analysis. The tight force-motion relation enables us to predict cell migration only from the traction stress patterns. Copyright © 2014 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  1. Dispersal of Sediment in the Western Adriatic during Energetic Wintertime Forcing

    NASA Astrophysics Data System (ADS)

    Harris, C. K.; Sherwood, C. R.; Mullenbach, B. L.; Pullen, J. D.

    2003-12-01

    EuroSTRATAFORM aims to relate sediment delivery and reworking to seabed morphology and stratigraphy through observations and modeling of water column transport. The Po River dominates buoyancy and sediment input into the Adriatic Sea, but small Apeninne rivers (the Chienti, Pescara, etc.) may produce locally important signals. Sedimentation is influenced by fluvial supply, resuspension by waves and currents, and transport by oceanographic currents forced by winds and buoyancy. Transport is likely highest during times of energetic forcing; including Bora events with northeasterly winds and Sirocco events with southeasterly winds. It is difficult, from field measurements alone, to characterize dispersal and convergence patterns over the relevant spatial scales. We applied a three-dimensional hydrodynamic model that includes fluvial delivery, transport, resuspension, and deposition of sediment to quantify sediment dispersal with a 2-km resolution over the entire Adriatic. Circulation calculations were driven by spatially- and temporally-varying wind fields for the Fall / Winter of 2002 / 2003 and realistic Po and Apennine river discharges. Waves were hindcast with the SWAN model. Dispersion of both resuspended and river-derived sediment was estimated for periods that contained intense Bora and Sirocco winds. Predicted sediment dispersal rates and patterns are sensitive to forcing winds, buoyancy flux, and wave patterns. Higher sediment flux was predicted during Bora conditions than during Sirocco conditions. Sirocco winds weaken the Western Adriatic Coastal Current (WACC), and because they tend to concentrate over the Eastern Adriatic, they often fail to create especially energetic waves in the Western Adriatic. Bora wind conditions, on the other hand, intensify the WACC and can build high wave energies over the northwestern Adriatic. Most of the sediment transport occurs during Bora, with a net southward flux. These predictions will be compared to field observations made as part of the EuroSTRATAFORM experiment.

  2. A viable method to predict acoustic streaming in presence of cavitation.

    PubMed

    Louisnard, O

    2017-03-01

    The steady liquid flow observed under ultrasonic emitters generating acoustic cavitation can be successfully predicted by a standard turbulent flow calculation. The flow is driven by the classical averaged volumetric force density calculated from the acoustic field, but the inertial term in Navier-Stokes equations must be kept, and a turbulent solution must be sought. The acoustic field must be computed with a realistic model, properly accounting for dissipation by the cavitation bubbles [Louisnard, Ultrason. Sonochem., 19, (2012) 56-65]. Comparison with 20kHz experiments, involving the combination of acoustic streaming and a perpendicular forced flow in a duct, shows reasonably good agreement. Moreover, the persistence of the cavitation effects on the wall facing the emitter, in spite of the deflection of the streaming jet, is correctly reproduced by the model. It is also shown that predictions based either on linear acoustics with the correct turbulent solution, or with Louisnard's model with Eckart-Nyborg's theory yields unrealistic results. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Numerical studies on the force characteristic of superconducting linear synchronous motor with HTS bulk magnet

    NASA Astrophysics Data System (ADS)

    Tang, Junjie; Li, Jing; Li, Xiang; Han, Le

    2018-03-01

    High temperature superconductor (HTS) bulks have significant potential use in linear motor application act as quasi-permanent magnet to replace traditional magnets. Force characteristic between HTS bulk magnet and traveling magnetic field was investigated with numerical simulation and experimental measurement in this paper. Influences of bulk height and number on the force characteristic were studied by the finite element model considering the nonlinear E-J relationship. Study was also made on addition of a back iron plate to the bulk magnet. Besides, force characteristic of bulk was compared with the permanent magnet results. The small initial decrease of the thrust could be explained by inside superconducting current redistribution. It was found that efficiency of linear motor did not increase by adding more bulk magnets. The bulk magnet will be remagnetized instead of erasing trapped field with the increase of the traveling magnetic field strength. The conclusions are helpful in prediction and design the linear motor with HTS bulk magnet.

  4. Fluorosilicone and silicone o-ring aging study.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bernstein, Robert; Gillen, Kenneth T.

    2007-10-01

    Fluorosilicone o-ring aging studies were performed. These studies examined the compressive force loss of fluorosilicone o-rings at accelerated (elevated) temperatures and were then used to make predictions about force loss at room temperature. The results were non-Arrhenius with evidence for a lowering in Arrhenius activation energies as the aging temperature was reduced. The compression set of these fluorosilicone o-rings was found to have a reasonably linear correlation with the force loss. The aging predictions based on using the observed curvature of the Arrhenius aging plots were validated by field aged o-rings that yielded degradation values reasonably close to the predictions.more » Compression set studies of silicone o-rings from a previous study resulted in good correlation to the force loss predictions for the fluorosilicone o-rings from this study. This resulted in a preliminary conclusion that an approximately linear correlation exists between compression set and force decay values for typical fluorosilicone and silicone materials, and that the two materials age at similar rates at low temperatures. Interestingly, because of the observed curvature of the Arrhenius plots available from longer-term, lower temperature accelerated exposures, both materials had faster force decay curves (and correspondingly faster buildup of compression set) at room temperature than anticipated from typical high-temperature exposures. A brief study on heavily filled conducting silicone o-rings resulted in data that deviated from the linear relationship, implying that a degree of caution must be exercised about any general statement relating force decay and compression set.« less

  5. Organic ion association in aqueous phase and ab initio-based force fields: The case of carboxylate/ammonium salts

    NASA Astrophysics Data System (ADS)

    Houriez, Céline; Vallet, Valérie; Réal, Florent; Meot-Ner Mautner, Michael; Masella, Michel

    2017-10-01

    We performed molecular dynamics simulations of carboxylate/methylated ammonium ion pairs solvated in bulk water and of carboxylate/methylated ammonium salt solutions at ambient conditions using an ab initio-based polarizable force field whose parameters are assigned to reproduce only high end quantum computations, at the Møller-Plesset second-order perturbation theory/complete basis set limit level, regarding single ions and ion pairs as isolated and micro-hydrated in gas phase. Our results agree with the available experimental results regarding carboxylate/ammonium salt solutions. For instance, our force field approach predicts the percentage of acetate associated with ammonium ions in CH3 COO-/CH3 NH3+ solutions at the 0.2-0.8M concentration scale to range from 14% to 35%, in line with the estimates computed from the experimental ion association constant in liquid water. Moreover our simulations predict the number of water molecules released from the ion first hydration shell to the bulk upon ion association to be about 2.0 ± 0.6 molecules for acetate/protonated amine ion pairs, 3.1 ± 1.5 molecules for the HCOO-/NH4+ pair and 3.3 ± 1.2 molecules for the CH3COO-/(CH3)4N+ pair. For protonated amine-based ion pairs, these values are in line with experiment for alkali/halide pairs solvated in bulk water. All these results demonstrate the promising feature of ab initio-based force fields, i.e., their capacity in accurately modeling chemical systems that cannot be readily investigated using available experimental techniques.

  6. Peptoid conformational free energy landscapes from implicit-solvent molecular simulations in AMBER.

    PubMed

    Voelz, Vincent A; Dill, Ken A; Chorny, Ilya

    2011-01-01

    To test the accuracy of existing AMBER force field models in predicting peptoid conformation and dynamics, we simulated a set of model peptoid molecules recently examined by Butterfoss et al. (JACS 2009, 131, 16798-16807) using QM methods as well as three peptoid sequences with experimentally determined structures. We found that AMBER force fields, when used with a Generalized Born/Surface Area (GBSA) implicit solvation model, could accurately reproduce the peptoid torsional landscape as well as the major conformers of known peptoid structures. Enhanced sampling by replica exchange molecular dynamics (REMD) using temperatures from 300 to 800 K was used to sample over cis-trans isomerization barriers. Compared to (Nrch)5 and cyclo-octasarcosyl, the free energy of N-(2-nitro-3-hydroxyl phenyl)glycine-N-(phenyl)glycine has the most "foldable" free energy landscape, due to deep trans-amide minima dictated by N-aryl sidechains. For peptoids with (S)-N (1-phenylethyl) (Nspe) side chains, we observe a discrepancy in backbone dihedral propensities between molecular simulations and QM calculations, which may be due to force field effects or the inability to capture n --> n* interactions. For these residues, an empirical phi-angle biasing potential can "rescue" the backbone propensities seen in QM. This approach can serve as a general strategy for addressing force fields without resorting to a complete reparameterization. Overall, this study demonstrates the utility of implicit-solvent REMD simulations for efficient sampling to predict peptoid conformational landscapes, providing a potential tool for first-principles design of sequences with specific folding properties.

  7. Charge Equilibration Force Fields for Lipid Environments: Applications to Fully Hydrated DPPC Bilayers and DMPC-Embedded Gramicidin A

    PubMed Central

    Davis, Joseph E.; Patel, Sandeep

    2009-01-01

    Polarizable force fields for lipid and solvent environments are used for molecular dynamics simulations of a fully hydrated dipalmitoylphosphatidylcholine (DPPC) bilayer and gramicidin A (gA) dimer embedded in a dimyristoylphosphatidylcholine (DMPC) bilayer. The lipid bilayer is modelled using the CHARMM charge equilibration (CHEQ) polarizable force field for lipids and the TIP4P-FQ force field to represent solvent. For the DPPC bilayer system, results are compared to the same system simulated using the nonpolarizable CHARMM27r (C27r) force field and TIP3P water. Calculated atomic and electron density profiles, headgroup orientations as measured by the phosphorus-nitrogen vector orientation, and deuterium order parameters are found to be consistent with previous simulations and with experiment. The CHEQ model exhibits greater water penetration into the bilayer interior, as demonstrated by the potential of mean force calculated from the water density profile. This is a result of the variation of the water molecular dipole from 2.55 D in the bulk to 1.88 D in the interior. We discuss this finding in the context of previous studies (both simulation and experiment) that have investigated the extent of penetration of water into DPPC bilayers. We also discuss the effects of including explicit polarization on the water dipole moment variation as a function of distance from the bilayer. We show distributions of atomic charges over the course of the simulation, since the CHEQ model allows the charges to fluctuate. We have calculated the interfacial dipole potential, which the CHEQ model predicts to be 0.95 V compared to 0.86 V as predicted by the C27r model. We also discuss dielectric permittivity profiles and the differences arising between the two models. We obtain bulk values of 72.77 for the CHEQ model (TIP4P-FQ water) and 91.22 for C27r (TIP3P), and values approaching unity in the membrane interior. Finally, we present results of simulations of gA embedded in a DMPC bilayer using the CHEQ model and discuss structural properties. PMID:19526999

  8. Measurement and calculation of forces in a magnetic journal bearing actuator

    NASA Technical Reports Server (NTRS)

    Knight, Josiah; Mccaul, Edward; Xia, Zule

    1991-01-01

    Numerical calculations and experimental measurements of forces from an actuator of the type used in active magnetic journal bearings are presented. The calculations are based on solution of the scalar magnetic potential field in and near the gap regions. The predicted forces from single magnet with steady current are compared with experimental measurements in the same geometry. The measured forces are smaller than calculated ones in the principal direction but are larger than calculated in the normal direction. This combination of results indicate that material and spatial effects other than saturation play roles in determining the force available from an actuator.

  9. Modelling of squall with the generalised kinetic equation

    NASA Astrophysics Data System (ADS)

    Annenkov, Sergei; Shrira, Victor

    2014-05-01

    We study the long-term evolution of random wind waves using the new generalised kinetic equation (GKE). The GKE derivation [1] does not assume the quasi-stationarity of a random wave field. In contrast with the Hasselmann kinetic equation, the GKE can describe fast spectral changes occurring when a wave field is driven out of a quasi-equilibrium state by a fast increase or decrease of wind, or by other factors. In these cases, a random wave field evolves on the dynamic timescale typical of coherent wave processes, rather than on the kinetic timescale predicted by the conventional statistical theory. Besides that, the generalised theory allows to trace the evolution of higher statistical moments of the field, notably the kurtosis, which is important for assessing the risk of freak waves and other applications. A new efficient and highly parallelised algorithm for the numerical simulation of the generalised kinetic equation is presented and discussed. Unlike in the case of the Hasselmann equation, the algorithm takes into account all (resonant and non-resonant) nonlinear wave interactions, but only approximately resonant interactions contribute to the spectral evolution. However, counter-intuitively, all interactions contribute to the kurtosis. Without forcing or dissipation, the algorithm is shown to conserve the relevant integrals. We show that under steady wind forcing the wave field evolution predicted by the GKE is close to the predictions of the conventional statistical theory, which is applicable in this case. In particular, we demonstrate the known long-term asymptotics for the evolution of the spectrum. When the wind forcing is not steady (in the simplest case, an instant increase or decrease of wind occurs), the generalised theory is the only way to study the spectral evolution, apart from the direct numerical simulation. The focus of the work is a detailed analysis of the fast evolution after an instant change of forcing, and of the subsequent transition to the new quasi-stationary state of a wave field. It is shown that both increase and decrease of wind lead to a significant transient increase of the dynamic kurtosis, although these changes remain small compared to the changes of the other component of the kurtosis, which is due to bound harmonics. A special consideration is given to the case of the squall, i.e. an instant and large (by a factor of 2-4) increase of wind, which lasts for O(102) characteristic wave periods. We show that fast adjustment processes lead to the formation of a transient spectrum, which has a considerably narrower peak than the spectra developed under a steady forcing. These transient spectra differ qualitatively from those predicted by the Hasselmann kinetic equation under the squall with the same parameters. 1. S.Annenkov, V.Shrira (2006) Role of non-resonant interactions in evolution of nonlinear random water wave fields, J. Fluid Mech. 561, 181-207.

  10. Equilibrium electrodeformation of a spheroidal vesicle in an ac electric field

    NASA Astrophysics Data System (ADS)

    Nganguia, H.; Young, Y.-N.

    2013-11-01

    In this work, we develop a theoretical model to explain the equilibrium spheroidal deformation of a giant unilamellar vesicle (GUV) under an alternating (ac) electric field. Suspended in a leaky dielectric fluid, the vesicle membrane is modeled as a thin capacitive spheroidal shell. The equilibrium vesicle shape results from the balance between mechanical forces from the viscous fluid, the restoring elastic membrane forces, and the externally imposed electric forces. Our spheroidal model predicts a deformation-dependent transmembrane potential, and is able to capture large deformation of a vesicle under an electric field. A detailed comparison against both experiments and small-deformation (quasispherical) theory showed that the spheroidal model gives better agreement with experiments in terms of the dependence on fluid conductivity ratio, permittivity ratio, vesicle size, electric field strength, and frequency. The spheroidal model also allows for an asymptotic analysis on the crossover frequency where the equilibrium vesicle shape crosses over between prolate and oblate shapes. Comparisons show that the spheroidal model gives better agreement with experimental observations.

  11. Modeling the subfilter scalar variance for large eddy simulation in forced isotropic turbulence

    NASA Astrophysics Data System (ADS)

    Cheminet, Adam; Blanquart, Guillaume

    2011-11-01

    Static and dynamic model for the subfilter scalar variance in homogeneous isotropic turbulence are investigated using direct numerical simulations (DNS) of a lineary forced passive scalar field. First, we introduce a new scalar forcing technique conditioned only on the scalar field which allows the fluctuating scalar field to reach a statistically stationary state. Statistical properties, including 2nd and 3rd statistical moments, spectra, and probability density functions of the scalar field have been analyzed. Using this technique, we performed constant density and variable density DNS of scalar mixing in isotropic turbulence. The results are used in an a-priori study of scalar variance models. Emphasis is placed on further studying the dynamic model introduced by G. Balarac, H. Pitsch and V. Raman [Phys. Fluids 20, (2008)]. Scalar variance models based on Bedford and Yeo's expansion are accurate for small filter width but errors arise in the inertial subrange. Results suggest that a constant coefficient computed from an assumed Kolmogorov spectrum is often sufficient to predict the subfilter scalar variance.

  12. Transient Reactivation of a Deep-Seated Landslide by Undrained Loading Captured With Repeat Airborne and Terrestrial Lidar

    NASA Astrophysics Data System (ADS)

    Booth, Adam M.; McCarley, Justin; Hinkle, Jason; Shaw, Susan; Ampuero, Jean-Paul; Lamb, Michael P.

    2018-05-01

    Landslides reactivate due to external environmental forcing or internal mass redistribution, but the process is rarely documented quantitatively. We capture the three-dimensional, 1-m resolution surface deformation field of a transiently reactivated landslide with image correlation of repeat airborne lidar. Undrained loading by two debris flows in the landslide's head, rather than external forcing, triggered reactivation. After that loading, the lower 2 km of the landslide advanced by up to 14 m in 2 years before completely stopping. The displacement field over those 2 years implies that the slip surface gained 1 kPa of shear strength, which was likely accomplished by a negative dilatancy-pore pressure feedback as material deformed around basal roughness elements. Thus, landslide motion can be decoupled from external environmental forcing in cases, motivating the need to better understand internal perturbations to the stress field to predict hazards and sediment fluxes as landscapes evolve.

  13. Molecular Dynamics Simulations of Intrinsically Disordered Proteins: Force Field Evaluation and Comparison with Experiment.

    PubMed

    Henriques, João; Cragnell, Carolina; Skepö, Marie

    2015-07-14

    An increasing number of studies using molecular dynamics (MD) simulations of unfolded and intrinsically disordered proteins (IDPs) suggest that current force fields sample conformations that are overly collapsed. Here, we study the applicability of several state-of-the-art MD force fields, of the AMBER and GROMOS variety, for the simulation of Histatin 5, a short (24 residues) cationic salivary IDP with antimicrobial and antifungal properties. The quality of the simulations is assessed in three complementary analyses: (i) protein shape and size comparison with recent experimental small-angle X-ray scattering data; (ii) secondary structure prediction; (iii) energy landscape exploration and conformational class analysis. Our results show that, indeed, standard force fields sample conformations that are too compact, being systematically unable to reproduce experimental evidence such as the scattering function, the shape of the protein as compared with the Kratky plot, and intrapeptide distances obtained through the pair distance distribution function, p(r). The consistency of this deviation suggests that the problem is not mainly due to protein-protein or water-water interactions, whose parametrization varies the most between force fields and water models. In fact, as originally proposed in [ Best et al. J. Chem. Theory Comput. 2014, 10, 5113 - 5124.], balanced protein-water interactions may be the key to solving this problem. Our simulations using this approach produce results in very good agreement with experiment.

  14. The importance of accurate muscle modelling for biomechanical analyses: a case study with a lizard skull

    PubMed Central

    Gröning, Flora; Jones, Marc E. H.; Curtis, Neil; Herrel, Anthony; O'Higgins, Paul; Evans, Susan E.; Fagan, Michael J.

    2013-01-01

    Computer-based simulation techniques such as multi-body dynamics analysis are becoming increasingly popular in the field of skull mechanics. Multi-body models can be used for studying the relationships between skull architecture, muscle morphology and feeding performance. However, to be confident in the modelling results, models need to be validated against experimental data, and the effects of uncertainties or inaccuracies in the chosen model attributes need to be assessed with sensitivity analyses. Here, we compare the bite forces predicted by a multi-body model of a lizard (Tupinambis merianae) with in vivo measurements, using anatomical data collected from the same specimen. This subject-specific model predicts bite forces that are very close to the in vivo measurements and also shows a consistent increase in bite force as the bite position is moved posteriorly on the jaw. However, the model is very sensitive to changes in muscle attributes such as fibre length, intrinsic muscle strength and force orientation, with bite force predictions varying considerably when these three variables are altered. We conclude that accurate muscle measurements are crucial to building realistic multi-body models and that subject-specific data should be used whenever possible. PMID:23614944

  15. Turbofan forced mixer-nozzle internal flowfield. Volume 1: A benchmark experimental study

    NASA Technical Reports Server (NTRS)

    Paterson, R. W.

    1982-01-01

    An experimental investigation of the flow field within a model turbofan forced mixer nozzle is described. Velocity and thermodynamic state variable data for use in assessing the accuracy and assisting the further development of computational procedures for predicting the flow field within mixer nozzles are provided. Velocity and temperature data suggested that the nozzle mixing process was dominated by circulations (secondary flows) of a length scale on the order the lobe dimensions which were associated with strong radial velocities observed near the lobe exit plane. The 'benchmark' model mixer experiment conducted for code assessment purposes is discussed.

  16. Expected orbit determination performance for the TOPEX/Poseidon mission

    NASA Technical Reports Server (NTRS)

    Nerem, R. S.; Putney, Barbara H.; Marshall, J. A.; Lerch, Francis J.; Pavlis, Erricos C.; Klosko, Steven M.; Luthcke, Scott B.; Patel, Girish B.; Williamson, Ronald G.; Zelensky, Nikita P.

    1993-01-01

    Each of the components required for the computation of precise orbits for the TOPEX/Poseidon (T/P) spacecraft - gravity field modeling, nonconservative force modeling, and satellite tracking technologies - is examined. The research conducted in the Space Geodesy Branch at Goddard Space Flight Center in preparation for meeting the 13-cm radial orbit accuracy requirement for the T/P mission is outlined. New developments in modeling the earth's gravitational field and modeling the complex nonconservative forces acting on T/P are highlighted. The T/P error budget is reviewed, and a prelaunch assessment of the predicted orbit determination accuracies is summarized.

  17. Propulsion and Levitation with a Large Electrodynamic Wheel

    NASA Astrophysics Data System (ADS)

    Gaul, Nathan; Lane, Hannah

    We constructed an electrodynamic wheel using a motorized bicycle wheel with a radius of 12 inches and 36 one-inch cube magnets attached to the rim of the wheel. The radial magnetic field on the outside of the wheel was maximized by arranging the magnets into a series of Halbach arrays which amplify the field on one side of the array and reduce it on the other side. Rotating the wheel produces a rapidly oscillating magnetic field. When a conductive metal ``track'' is placed in this area of strong magnetic flux, eddy currents are produced in the track. These eddy currents create magnetic fields that interact with the magnetic fields from the electrodynamic wheel. The interaction of the magnetic fields produces lift and drag forces on the track which were measured with force gauges. Measurements were taken at a variety of wheel speeds, and the results were compared to the theoretical prediction that there should be a linear relationship between the lift and drag forces with increasing wheel speed. Partial levitation was achieved with the current electrodynamic wheel. In the future, the wheel will be upgraded to include 72 magnets rather than 36 magnets. This will double the frequency at which the magnetic field oscillates, increasing the magnetic flux. Electrodynamic wheels have applications to the transportation industry, since multiple electrodynamic wheels could be used on a vehicle to produce a lift and propulsion force over a conductive track.

  18. An investigation into electromagnetic force models: differences in global and local effects demonstrated by selected problems

    NASA Astrophysics Data System (ADS)

    Reich, Felix A.; Rickert, Wilhelm; Müller, Wolfgang H.

    2018-03-01

    This study investigates the implications of various electromagnetic force models in macroscopic situations. There is an ongoing academic discussion which model is "correct," i.e., generally applicable. Often, gedankenexperiments with light waves or photons are used in order to motivate certain models. In this work, three problems with bodies at the macroscopic scale are used for computing theoretical model-dependent predictions. Two aspects are considered, total forces between bodies and local deformations. By comparing with experimental data, insight is gained regarding the applicability of the models. First, the total force between two cylindrical magnets is computed. Then a spherical magnetostriction problem is considered to show different deformation predictions. As a third example focusing on local deformations, a droplet of silicone oil in castor oil is considered, placed in a homogeneous electric field. By using experimental data, some conclusions are drawn and further work is motivated.

  19. Current target acquisition methodology in force on force simulations

    NASA Astrophysics Data System (ADS)

    Hixson, Jonathan G.; Miller, Brian; Mazz, John P.

    2017-05-01

    The U.S. Army RDECOM CERDEC NVESD MSD's target acquisition models have been used for many years by the military community in force on force simulations for training, testing, and analysis. There have been significant improvements to these models over the past few years. The significant improvements are the transition of ACQUIRE TTP-TAS (ACQUIRE Targeting Task Performance Target Angular Size) methodology for all imaging sensors and the development of new discrimination criteria for urban environments and humans. This paper is intended to provide an overview of the current target acquisition modeling approach and provide data for the new discrimination tasks. This paper will discuss advances and changes to the models and methodologies used to: (1) design and compare sensors' performance, (2) predict expected target acquisition performance in the field, (3) predict target acquisition performance for combat simulations, and (4) how to conduct model data validation for combat simulations.

  20. Verification of the Rigidity of the Coulomb Field in Motion

    NASA Astrophysics Data System (ADS)

    Blinov, S. V.; Bulyzhenkov, I. É.

    2018-06-01

    Laplace, analyzing the stability of the Solar System, was the first to calculate that the velocity of the motion of force fields can significantly exceed the velocity of light waves. In electrodynamics, the Coulomb field should rigidly accompany its source for instantaneous force action in distant regions. Such rigid motion was recently inferred from experiments at the Frascati Beam Test Facility with short beams of relativistic electrons. The comments of the authors on their observations are at odds with the comments of theoreticians on retarded potentials, which motivates a detailed study of the positions of both sides. Predictions of measurements, based on the Lienard-Wiechert potentials, are used to propose an unambiguous scheme for testing the rigidity of the Coulomb field. Realization of the proposed experimental scheme could independently refute or support the assertions of the Italian physicists regarding the rigid motion of Coulomb fields and likewise the nondual field approach to macroscopic reality.

  1. Laboratory study of low-β forces in arched, line-tied magnetic flux ropes

    NASA Astrophysics Data System (ADS)

    Myers, C. E.; Yamada, M.; Ji, H.; Yoo, J.; Jara-Almonte, J.; Fox, W.

    2016-11-01

    The loss-of-equilibrium is a solar eruption mechanism whereby a sudden breakdown of the magnetohydrodynamic force balance in the Sun's corona ejects a massive burst of particles and energy into the heliosphere. Predicting a loss-of-equilibrium, which has more recently been formulated as the torus instability, relies on a detailed understanding of the various forces that hold the pre-eruption magnetic flux rope in equilibrium. Traditionally, idealized analytical force expressions are used to derive simplified eruption criteria that can be compared to solar observations and modeling. What is missing, however, is a validation that these idealized analytical force expressions can be applied to the line-tied, low-aspect-ratio conditions of the corona. In this paper, we address this shortcoming by using a laboratory experiment to study the forces that act on long-lived, arched, line-tied magnetic flux ropes. Three key force terms are evaluated over a wide range of experimental conditions: (1) the upward hoop force; (2) the downward strapping force; and (3) the downward toroidal field tension force. First, the laboratory force measurements show that, on average, the three aforementioned force terms cancel to produce a balanced line-tied equilibrium. This finding validates the laboratory force measurement techniques developed here, which were recently used to identify a dynamic toroidal field tension force that can prevent flux rope eruptions [Myers et al., Nature 528, 526 (2015)]. The verification of magnetic force balance also confirms the low-β assumption that the plasma thermal pressure is negligible in these experiments. Next, the measured force terms are directly compared to corresponding analytical expressions. While the measured and analytical forces are found to be well correlated, the low-aspect-ratio, line-tied conditions in the experiment are found to both reduce the measured hoop force and increase the measured tension force with respect to analytical expectations. These two co-directed effects combine to generate laboratory flux rope equilibria at lower altitudes than are predicted analytically. Such considerations are expected to modify the loss-of-equilibrium eruption criteria for analogous flux ropes in the solar corona.

  2. Laboratory study of low- β forces in arched, line-tied magnetic flux ropes

    DOE PAGES

    Myers, C. E.; Yamada, M.; Ji, H.; ...

    2016-11-04

    Here, the loss-of-equilibrium is a solar eruption mechanism whereby a sudden breakdown of the magnetohydrodynamic force balance in the Sun's corona ejects a massive burst of particles and energy into the heliosphere. Predicting a loss-of-equilibrium, which has more recently been formulated as the torus instability, relies on a detailed understanding of the various forces that hold the pre-eruption magnetic flux rope in equilibrium. Traditionally, idealized analytical force expressions are used to derive simplified eruption criteria that can be compared to solar observations and modeling. What is missing, however, is a validation that these idealized analytical force expressions can be appliedmore » to the line-tied, low-aspect-ratio conditions of the corona. In this paper, we address this shortcoming by using a laboratory experiment to study the forces that act on long-lived, arched, line-tied magnetic flux ropes. Three key force terms are evaluated over a wide range of experimental conditions: (1) the upward hoop force; (2) the downward strapping force; and (3) the downward toroidal field tension force. First, the laboratory force measurements show that, on average, the three aforementioned force terms cancel to produce a balanced line-tied equilibrium. This finding validates the laboratory force measurement techniques developed here, which were recently used to identify a dynamic toroidal field tension force that can prevent flux rope eruption. The verification of magnetic force balance also confirms the low-beta assumption that the plasma thermal pressure is negligible in these experiments. Next, the measured force terms are directly compared to corresponding analytical expressions. While the measured and analytical forces are found to be well correlated, the low-aspect-ratio, line-tied conditions in the experiment are found to both reduce the measured hoop force and increase the measured tension force with respect to analytical expectations. These two co-directed effects combine to generate laboratory flux rope equilibria at lower altitudes than are predicted analytically. Such considerations are expected to modify the loss-of-equilibrium eruption criteria for analogous flux ropes in the solar corona.« less

  3. Laboratory study of low- β forces in arched, line-tied magnetic flux ropes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Myers, C. E.; Yamada, M.; Ji, H.

    Here, the loss-of-equilibrium is a solar eruption mechanism whereby a sudden breakdown of the magnetohydrodynamic force balance in the Sun's corona ejects a massive burst of particles and energy into the heliosphere. Predicting a loss-of-equilibrium, which has more recently been formulated as the torus instability, relies on a detailed understanding of the various forces that hold the pre-eruption magnetic flux rope in equilibrium. Traditionally, idealized analytical force expressions are used to derive simplified eruption criteria that can be compared to solar observations and modeling. What is missing, however, is a validation that these idealized analytical force expressions can be appliedmore » to the line-tied, low-aspect-ratio conditions of the corona. In this paper, we address this shortcoming by using a laboratory experiment to study the forces that act on long-lived, arched, line-tied magnetic flux ropes. Three key force terms are evaluated over a wide range of experimental conditions: (1) the upward hoop force; (2) the downward strapping force; and (3) the downward toroidal field tension force. First, the laboratory force measurements show that, on average, the three aforementioned force terms cancel to produce a balanced line-tied equilibrium. This finding validates the laboratory force measurement techniques developed here, which were recently used to identify a dynamic toroidal field tension force that can prevent flux rope eruption. The verification of magnetic force balance also confirms the low-beta assumption that the plasma thermal pressure is negligible in these experiments. Next, the measured force terms are directly compared to corresponding analytical expressions. While the measured and analytical forces are found to be well correlated, the low-aspect-ratio, line-tied conditions in the experiment are found to both reduce the measured hoop force and increase the measured tension force with respect to analytical expectations. These two co-directed effects combine to generate laboratory flux rope equilibria at lower altitudes than are predicted analytically. Such considerations are expected to modify the loss-of-equilibrium eruption criteria for analogous flux ropes in the solar corona.« less

  4. Quantum mechanical calculation of electric fields and vibrational Stark shifts at active site of human aldose reductase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Xianwei; State Key Laboratory of Precision Spectroscopy, Institute of Theoretical and Computational Science, East China Normal University, Shanghai 200062; Zhang, John Z. H.

    2015-11-14

    Recent advance in biophysics has made it possible to directly measure site-specific electric field at internal sites of proteins using molecular probes with C = O or C≡N groups in the context of vibrational Stark effect. These measurements directly probe changes of electric field at specific protein sites due to, e.g., mutation and are very useful in protein design. Computational simulation of the Stark effect based on force fields such as AMBER and OPLS, while providing good insight, shows large errors in comparison to experimental measurement due to inherent difficulties associated with point charge based representation of force fields. Inmore » this study, quantum mechanical calculation of protein’s internal electrostatic properties and vibrational Stark shifts was carried out by using electrostatically embedded generalized molecular fractionation with conjugate caps method. Quantum calculated change of mutation-induced electric field and vibrational Stark shift is reported at the internal probing site of enzyme human aldose reductase. The quantum result is in much better agreement with experimental data than those predicted by force fields, underscoring the deficiency of traditional point charge models describing intra-protein electrostatic properties.« less

  5. NCEP/NLDAS Drought Monitoring and Prediction

    NASA Astrophysics Data System (ADS)

    Xia, Y.; Ek, M.; Wood, E.; Luo, L.; Sheffield, J.; Lettenmaier, D.; Livneh, B.; Cosgrove, B.; Mocko, D.; Meng, J.; Wei, H.; Restrepo, P.; Schaake, J.; Mo, K.

    2009-05-01

    The NCEP Environmental Modeling Center (EMC) collaborated with its CPPA (Climate Prediction Program of the Americas) partners to develop a North American Land Data Assimilation System (NLDAS, http://www.emc.ncep.noaa.gov/mmb/nldas) to monitor and predict the drought over the Continental United States (CONUS). The realtime NLDAS drought monitor, executed daily at NCEP/EMC, including daily, weekly and monthly anomaly and percentile of six fields (soil moisture, snow water equivalent, total runoff, streamflow, evaporation, precipitation) outputted from four land surface models (Noah, Mosaic, SAC, and VIC) on a common 1/8th degree grid using common hourly land surface forcing. The non-precipitation surface forcing is derived from NCEP's retrospective and realtime North American Regional Reanalysis System (NARR). The precipitation forcing is anchored to a daily gauge-only precipitation analysis over CONUS that applies a Parameter-elevation Regressions on Independent Slopes Model (PRISM) correction. This daily precipitation analysis is then temporally disaggregated to hourly precipitation amounts using radar and satellite precipitation. The NARR- based surface downward solar radiation is bias-corrected using seven years (1997-2004) of GOES satellite- derived solar radiation retrievals. The uncoupled ensemble seasonal drought prediction utilizes the following three independent approaches for generating downscaled ensemble seasonal forecasts of surface forcing: (1) Ensemble Streamflow Prediction, (2) CPC Official Seasonal Climate Outlook, and (3) NCEP CFS ensemble dynamical model prediction. For each of these three approaches, twenty ensemble members of forcing realizations are generated using a Bayesian merging algorithm developed by Princeton University. The three forcing methods are then used to drive the VIC model in seasonal prediction mode over thirteen large river basins that together span the CONUS domain. One to nine month ensemble seasonal prediction products such as air temperature, precipitation, soil moisture, snowpack, total runoff, evaporation and streamflow are derived for each forcing approach. The anomalies and percentiles of the predicted products for each approach may be used for CONUS drought prediction. This system is executed at the beginning of each month and distributes its products by the 10th of each month. The prediction products are evaluated using corresponding monitoring products for the VIC model and are compared with the prediction products from other research groups (e.g., University of Washington at Seattle, NASA Goddard) in the CONUS.

  6. Rosetta at comet 67P/Churyumov-Gerasimenko: Spacecraft orbit modeling

    NASA Astrophysics Data System (ADS)

    Hahn, Matthias; Paetzold, Martin; Tellmann, Silvia; Haeusler, Bernd; Andert, Thomas

    The Rosetta spacecraft has been successfully launched on 2nd March 2004 to its target comet 67P/Churyumov-Gerasimenko. The science objectives of the Rosetta Radio Science Investiga-tions (RSI) experiment addresses fundamental aspects of cometary science such as the deter-minations of the nucleus mass and bulk density, its size and shape, its gravity field and internal structure, and its perturbed interplanetary orbit. The radio carrier links at X-band (8.4 GHz) and S-band (2.3 GHz) between the Rosetta spacecraft and the Earth will be used for these investigations. The motion of the spacecraft will be perturbed near the comet nucleus. The Doppler frequency shifts of the transmitted radio signals can be used to reconstruct the flown orbit. In order to extract small changes of the Doppler frequency, a prediction of the orbit is needed which includes best known estimates for all forces acting on the spacecraft. These forces are the nucleus gravity field, third body perturbations, the solar radiation pressure, the solar wind pressure, the cometary outgassing, etc. It is then possible to determine iteratively low degree and order harmonic coefficients of the nucleus gravity field or the gas pressure force and the gas production rate from outgassing from the differences between the predicted and the observed frequency shifts.

  7. Thermal infrared near-field spectroscopy.

    PubMed

    Jones, Andrew C; Raschke, Markus B

    2012-03-14

    Despite the seminal contributions of Kirchhoff and Planck describing far-field thermal emission, fundamentally distinct spectral characteristics of the electromagnetic thermal near-field have been predicted. However, due to their evanescent nature their direct experimental characterization has remained elusive. Combining scattering scanning near-field optical microscopy with Fourier-transform spectroscopy using a heated atomic force microscope tip as both a local thermal source and scattering probe, we spectroscopically characterize the thermal near-field in the mid-infrared. We observe the spectrally distinct and orders of magnitude enhanced resonant spectral near-field energy density associated with vibrational, phonon, and phonon-polariton modes. We describe this behavior and the associated distinct on- and off-resonance nanoscale field localization with model calculations of the near-field electromagnetic local density of states. Our results provide a basis for intrinsic and extrinsic resonant manipulation of optical forces, control of nanoscale radiative heat transfer with optical antennas, and use of this new technique of thermal infrared near-field spectroscopy for broadband chemical nanospectroscopy. © 2012 American Chemical Society

  8. Propfan test assessment testbed aircraft stability and control/performance 1/9-scale wind tunnel tests

    NASA Technical Reports Server (NTRS)

    Little, B. H., Jr.; Tomlin, K. H.; Aljabri, A. S.; Mason, C. A.

    1988-01-01

    One-ninth scale wind tunnel model tests of the Propfan Test Assessment (PTA) aircraft were performed in three different NASA facilities. Wing and propfan nacelle static pressures, model forces and moments, and flow field at the propfan plane were measured in these tests. Tests started in June 1985 and were completed in January 1987. These data were needed to assure PTA safety of flight, predict PTA performance, and validate analytical codes that will be used to predict flow fields in which the propfan will operate.

  9. Micro Finite Element models of the vertebral body: Validation of local displacement predictions

    PubMed Central

    Costa, Maria Cristiana; Tozzi, Gianluca; Cristofolini, Luca; Danesi, Valentina; Viceconti, Marco

    2017-01-01

    The estimation of local and structural mechanical properties of bones with micro Finite Element (microFE) models based on Micro Computed Tomography images depends on the quality bone geometry is captured, reconstructed and modelled. The aim of this study was to validate microFE models predictions of local displacements for vertebral bodies and to evaluate the effect of the elastic tissue modulus on model’s predictions of axial forces. Four porcine thoracic vertebrae were axially compressed in situ, in a step-wise fashion and scanned at approximately 39μm resolution in preloaded and loaded conditions. A global digital volume correlation (DVC) approach was used to compute the full-field displacements. Homogeneous, isotropic and linear elastic microFE models were generated with boundary conditions assigned from the interpolated displacement field measured from the DVC. Measured and predicted local displacements were compared for the cortical and trabecular compartments in the middle of the specimens. Models were run with two different tissue moduli defined from microindentation data (12.0GPa) and a back-calculation procedure (4.6GPa). The predicted sum of axial reaction forces was compared to the experimental values for each specimen. MicroFE models predicted more than 87% of the variation in the displacement measurements (R2 = 0.87–0.99). However, model predictions of axial forces were largely overestimated (80–369%) for a tissue modulus of 12.0GPa, whereas differences in the range 10–80% were found for a back-calculated tissue modulus. The specimen with the lowest density showed a large number of elements strained beyond yield and the highest predictive errors. This study shows that the simplest microFE models can accurately predict quantitatively the local displacements and qualitatively the strain distribution within the vertebral body, independently from the considered bone types. PMID:28700618

  10. Limb Dominance Results from Asymmetries in Predictive and Impedance Control Mechanisms

    PubMed Central

    Yadav, Vivek; Sainburg, Robert L.

    2014-01-01

    Handedness is a pronounced feature of human motor behavior, yet the underlying neural mechanisms remain unclear. We hypothesize that motor lateralization results from asymmetries in predictive control of task dynamics and in control of limb impedance. To test this hypothesis, we present an experiment with two different force field environments, a field with a predictable magnitude that varies with the square of velocity, and a field with a less predictable magnitude that varies linearly with velocity. These fields were designed to be compatible with controllers that are specialized in predicting limb and task dynamics, and modulating position and velocity dependent impedance, respectively. Because the velocity square field does not change the form of the equations of motion for the reaching arm, we reasoned that a forward dynamic-type controller should perform well in this field, while control of linear damping and stiffness terms should be less effective. In contrast, the unpredictable linear field should be most compatible with impedance control, but incompatible with predictive dynamics control. We measured steady state final position accuracy and 3 trajectory features during exposure to these fields: Mean squared jerk, Straightness, and Movement time. Our results confirmed that each arm made straighter, smoother, and quicker movements in its compatible field. Both arms showed similar final position accuracies, which were achieved using more extensive corrective sub-movements when either arm performed in its incompatible field. Finally, each arm showed limited adaptation to its incompatible field. Analysis of the dependence of trajectory errors on field magnitude suggested that dominant arm adaptation occurred by prediction of the mean field, thus exploiting predictive mechanisms for adaptation to the unpredictable field. Overall, our results support the hypothesis that motor lateralization reflects asymmetries in specific motor control mechanisms associated with predictive control of limb and task dynamics, and modulation of limb impedance. PMID:24695543

  11. Comprehensive Forced Response Analysis of J2X Turbine Bladed-Discs with 360 Degree Variation in CFD Loading

    NASA Technical Reports Server (NTRS)

    Elrod, David; Christensen, Eric; Brown, Andrew

    2011-01-01

    The temporal frequency content of the dynamic pressure predicted by a 360 degree computational fluid dynamics (CFD) analysis of a turbine flow field provides indicators of forcing function excitation frequencies (e.g., multiples of blade pass frequency) for turbine components. For the Pratt and Whitney Rocketdyne J-2X engine turbopumps, Campbell diagrams generated using these forcing function frequencies and the results of NASTRAN modal analyses show a number of components with modes in the engine operating range. As a consequence, forced response and static analyses are required for the prediction of combined stress, high cycle fatigue safety factors (HCFSF). Cyclically symmetric structural models have been used to analyze turbine vane and blade rows, not only in modal analyses, but also in forced response and static analyses. Due to the tortuous flow pattern in the turbine, dynamic pressure loading is not cyclically symmetric. Furthermore, CFD analyses predict dynamic pressure waves caused by adjacent and non-adjacent blade/vane rows upstream and downstream of the row analyzed. A MATLAB script has been written to calculate displacements due to the complex cyclically asymmetric dynamic pressure components predicted by CFD analysis, for all grids in a blade/vane row, at a chosen turbopump running speed. The MATLAB displacements are then read into NASTRAN, and dynamic stresses are calculated, including an adjustment for possible mistuning. In a cyclically symmetric NASTRAN static analysis, static stresses due to centrifugal, thermal, and pressure loading at the mode running speed are calculated. MATLAB is used to generate the HCFSF at each grid in the blade/vane row. When compared to an approach assuming cyclic symmetry in the dynamic flow field, the current approach provides better assurance that the worst case safety factor has been identified. An extended example for a J-2X turbopump component is provided.

  12. Developing model asphalt systems using molecular simulation : final model.

    DOT National Transportation Integrated Search

    2009-09-01

    Computer based molecular simulations have been used towards developing simple mixture compositions whose : physical properties resemble those of real asphalts. First, Monte Carlo simulations with the OPLS all-atom force : field were used to predict t...

  13. Development of a Polarizable Force Field for Molecular Dynamics Simulations of Poly (Ethylene Oxide) in Aqueous Solution.

    PubMed

    Starovoytov, Oleg N; Borodin, Oleg; Bedrov, Dmitry; Smith, Grant D

    2011-06-14

    We have developed a quantum chemistry-based polarizable potential for poly(ethylene oxide) (PEO) in aqueous solution based on the APPLE&P polarizable ether and the SWM4-DP polarizable water models. Ether-water interactions were parametrized to reproduce the binding energy of water with 1,2-dimethoxyethane (DME) determined from high-level quantum chemistry calculations. Simulations of DME-water and PEO-water solutions at room temperature using the new polarizable potentials yielded thermodynamic properties in good agreement with experimental results. The predicted miscibility of PEO and water as a function of the temperature was found to be strongly correlated with the predicted free energy of solvation of DME. The developed nonbonded force field parameters were found to be transferrable to poly(propylene oxide) (PPO), as confirmed by capturing, at least qualitatively, the miscibility of PPO in water as a function of the molecular weight.

  14. Machine learning predictions of molecular properties: Accurate many-body potentials and nonlocality in chemical space

    DOE PAGES

    Hansen, Katja; Biegler, Franziska; Ramakrishnan, Raghunathan; ...

    2015-06-04

    Simultaneously accurate and efficient prediction of molecular properties throughout chemical compound space is a critical ingredient toward rational compound design in chemical and pharmaceutical industries. Aiming toward this goal, we develop and apply a systematic hierarchy of efficient empirical methods to estimate atomization and total energies of molecules. These methods range from a simple sum over atoms, to addition of bond energies, to pairwise interatomic force fields, reaching to the more sophisticated machine learning approaches that are capable of describing collective interactions between many atoms or bonds. In the case of equilibrium molecular geometries, even simple pairwise force fields demonstratemore » prediction accuracy comparable to benchmark energies calculated using density functional theory with hybrid exchange-correlation functionals; however, accounting for the collective many-body interactions proves to be essential for approaching the “holy grail” of chemical accuracy of 1 kcal/mol for both equilibrium and out-of-equilibrium geometries. This remarkable accuracy is achieved by a vectorized representation of molecules (so-called Bag of Bonds model) that exhibits strong nonlocality in chemical space. The same representation allows us to predict accurate electronic properties of molecules, such as their polarizability and molecular frontier orbital energies.« less

  15. The accuracy of ab initio calculations without ab initio calculations for charged systems: Kriging predictions of atomistic properties for ions in aqueous solutions

    NASA Astrophysics Data System (ADS)

    Di Pasquale, Nicodemo; Davie, Stuart J.; Popelier, Paul L. A.

    2018-06-01

    Using the machine learning method kriging, we predict the energies of atoms in ion-water clusters, consisting of either Cl- or Na+ surrounded by a number of water molecules (i.e., without Na+Cl- interaction). These atomic energies are calculated following the topological energy partitioning method called Interacting Quantum Atoms (IQAs). Kriging predicts atomic properties (in this case IQA energies) by a model that has been trained over a small set of geometries with known property values. The results presented here are part of the development of an advanced type of force field, called FFLUX, which offers quantum mechanical information to molecular dynamics simulations without the limiting computational cost of ab initio calculations. The results reported for the prediction of the IQA components of the energy in the test set exhibit an accuracy of a few kJ/mol, corresponding to an average error of less than 5%, even when a large cluster of water molecules surrounding an ion is considered. Ions represent an important chemical system and this work shows that they can be correctly taken into account in the framework of the FFLUX force field.

  16. AMOEBA 2.0: A physics-first approach to biomolecular simulations

    NASA Astrophysics Data System (ADS)

    Rackers, Joshua; Ponder, Jay

    The goal of the AMOEBA force field project is to use classical physics to understand and predict the nature of interactions between biological molecules. While making significant advances over the past decade, the ultimate goal of predicting binding energies with ``chemical accuracy'' remains elusive. The primary source of this inaccuracy comes from the physics of how molecules interact at short range. For example, despite AMOEBA's advanced treatment of electrostatics, the force field dramatically overpredicts the electrostatic energy of DNA stacking interactions. AMOEBA 2.0 works to correct these errors by including simple, first principles physics-based terms to account for the quantum mechanical nature of these short-range molecular interactions. We have added a charge penetration term that considerably improves the description of electrostatic interactions at short range. We are reformulating the polarization term of AMOEBA in terms of basic physics assertions. And we are reevaluating the van der Waals term to match ab initio energy decompositions. These additions and changes promise to make AMOEBA more predictive. By including more physical detail of the important short-range interactions of biological molecules, we hope to move closer to the ultimate goal of true predictive power.

  17. Machine Learning Predictions of Molecular Properties: Accurate Many-Body Potentials and Nonlocality in Chemical Space

    PubMed Central

    2015-01-01

    Simultaneously accurate and efficient prediction of molecular properties throughout chemical compound space is a critical ingredient toward rational compound design in chemical and pharmaceutical industries. Aiming toward this goal, we develop and apply a systematic hierarchy of efficient empirical methods to estimate atomization and total energies of molecules. These methods range from a simple sum over atoms, to addition of bond energies, to pairwise interatomic force fields, reaching to the more sophisticated machine learning approaches that are capable of describing collective interactions between many atoms or bonds. In the case of equilibrium molecular geometries, even simple pairwise force fields demonstrate prediction accuracy comparable to benchmark energies calculated using density functional theory with hybrid exchange-correlation functionals; however, accounting for the collective many-body interactions proves to be essential for approaching the “holy grail” of chemical accuracy of 1 kcal/mol for both equilibrium and out-of-equilibrium geometries. This remarkable accuracy is achieved by a vectorized representation of molecules (so-called Bag of Bonds model) that exhibits strong nonlocality in chemical space. In addition, the same representation allows us to predict accurate electronic properties of molecules, such as their polarizability and molecular frontier orbital energies. PMID:26113956

  18. A magnetic gradient induced force in NMR restricted diffusion experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghadirian, Bahman; Stait-Gardner, Tim; Castillo, Reynaldo

    2014-03-28

    We predict that the phase cancellation of a precessing magnetisation field carried by a diffusing species in a bounded geometry under certain nuclear magnetic resonance pulsed magnetic field gradient sequences results in a small force over typically micrometre length scales. Our calculations reveal that the total magnetisation energy in a pore under the influence of a pulsed gradient will be distance-dependent thus resulting in a force acting on the boundary. It is shown that this effect of the magnetisation of diffusing particles will appear as either an attractive or repulsive force depending on the geometry of the pore and magneticmore » properties of the material. A detailed analysis is performed for the case of a pulsed gradient spin-echo experiment on parallel planes. It is shown that the force decays exponentially in terms of the spin-spin relaxation. The proof is based on classical electrodynamics. An application of this effect to soft matter is suggested.« less

  19. Computing sextic centrifugal distortion constants by DFT: A benchmark analysis on halogenated compounds

    NASA Astrophysics Data System (ADS)

    Pietropolli Charmet, Andrea; Stoppa, Paolo; Tasinato, Nicola; Giorgianni, Santi

    2017-05-01

    This work presents a benchmark study on the calculation of the sextic centrifugal distortion constants employing cubic force fields computed by means of density functional theory (DFT). For a set of semi-rigid halogenated organic compounds several functionals (B2PLYP, B3LYP, B3PW91, M06, M06-2X, O3LYP, X3LYP, ωB97XD, CAM-B3LYP, LC-ωPBE, PBE0, B97-1 and B97-D) were used for computing the sextic centrifugal distortion constants. The effects related to the size of basis sets and the performances of hybrid approaches, where the harmonic data obtained at higher level of electronic correlation are coupled with cubic force constants yielded by DFT functionals, are presented and discussed. The predicted values were compared to both the available data published in the literature and those obtained by calculations carried out at increasing level of electronic correlation: Hartree-Fock Self Consistent Field (HF-SCF), second order Møller-Plesset perturbation theory (MP2), and coupled-cluster single and double (CCSD) level of theory. Different hybrid approaches, having the cubic force field computed at DFT level of theory coupled to harmonic data computed at increasing level of electronic correlation (up to CCSD level of theory augmented by a perturbational estimate of the effects of connected triple excitations, CCSD(T)) were considered. The obtained results demonstrate that they can represent reliable and computationally affordable methods to predict sextic centrifugal terms with an accuracy almost comparable to that yielded by the more expensive anharmonic force fields fully computed at MP2 and CCSD levels of theory. In view of their reduced computational cost, these hybrid approaches pave the route to the study of more complex systems.

  20. Evaluating Force-Field London Dispersion Coefficients Using the Exchange-Hole Dipole Moment Model.

    PubMed

    Mohebifar, Mohamad; Johnson, Erin R; Rowley, Christopher N

    2017-12-12

    London dispersion interactions play an integral role in materials science and biophysics. Force fields for atomistic molecular simulations typically represent dispersion interactions by the 12-6 Lennard-Jones potential using empirically determined parameters. These parameters are generally underdetermined, and there is no straightforward way to test if they are physically realistic. Alternatively, the exchange-hole dipole moment (XDM) model from density-functional theory predicts atomic and molecular London dispersion coefficients from first principles, providing an innovative strategy to validate the dispersion terms of molecular-mechanical force fields. In this work, the XDM model was used to obtain the London dispersion coefficients of 88 organic molecules relevant to biochemistry and pharmaceutical chemistry and the values compared with those derived from the Lennard-Jones parameters of the CGenFF, GAFF, OPLS, and Drude polarizable force fields. The molecular dispersion coefficients for the CGenFF, GAFF, and OPLS models are systematically higher than the XDM-calculated values by a factor of roughly 1.5, likely due to neglect of higher order dispersion terms and premature truncation of the dispersion-energy summation. The XDM dispersion coefficients span a large range for some molecular-mechanical atom types, suggesting an unrecognized source of error in force-field models, which assume that atoms of the same type have the same dispersion interactions. Agreement with the XDM dispersion coefficients is even poorer for the Drude polarizable force field. Popular water models were also examined, and TIP3P was found to have dispersion coefficients similar to the experimental and XDM references, although other models employ anomalously high values. Finally, XDM-derived dispersion coefficients were used to parametrize molecular-mechanical force fields for five liquids-benzene, toluene, cyclohexane, n-pentane, and n-hexane-which resulted in improved accuracy in the computed enthalpies of vaporization despite only having to evaluate a much smaller section of the parameter space.

  1. Vertical vibration and shape oscillation of acoustically levitated water drops

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geng, D. L.; Xie, W. J.; Yan, N.

    2014-09-08

    We present the vertical harmonic vibration of levitated water drops within ultrasound field. The restoring force to maintain such a vibration mode is provided by the resultant force of acoustic radiation force and drop gravity. Experiments reveal that the vibration frequency increases with the aspect ratio for drops with the same volume, which agrees with the theoretical prediction for those cases of nearly equiaxed drops. During the vertical vibration, the floating drops undergo the second order shape oscillation. The shape oscillation frequency is determined to be twice the vibration frequency.

  2. Advanced prediction technique for the low speed aerodynamics of V/STOL aircraft. Volume 2: User's manual

    NASA Technical Reports Server (NTRS)

    Beatty, T. D.; Worthey, M. K.

    1984-01-01

    A computerized prediction method known as the Vought V/STOL Aircraft Propulsive Effects computer program (VAPE) for propulsive induced forces and moments in transition and Short TakeOff and Landing (STOL) flight is improved and evaluated. The VAPE program is capable of evaluating: (1) effects of relative wind about an aircraft, (2) effects of propulsive lift jet entrainment, vorticity and flow blockage, (3) effects of engine inlet flow on the aircraft flow field, (4) engine inlet forces and moments including inlet separation, (5) ground effects in the STOL region of flight, and (6) viscous effects on lifting surfaces.

  3. Molecular Dynamics in Physiological Solutions: Force Fields, Alkali Metal Ions, and Ionic Strength.

    PubMed

    Zhang, Chao; Raugei, Simone; Eisenberg, Bob; Carloni, Paolo

    2010-07-13

    The monovalent ions Na(+) and K(+) and Cl(-) are present in any living organism. The fundamental thermodynamic properties of solutions containing such ions is given as the excess (electro-)chemical potential differences of single ions at finite ionic strength. This quantity is key for many biological processes, including ion permeation in membrane ion channels and DNA-protein interaction. It is given by a chemical contribution, related to the ion activity, and an electric contribution, related to the Galvani potential of the water/air interface. Here we investigate molecular dynamics based predictions of these quantities by using a variety of ion/water force fields commonly used in biological simulation, namely the AMBER (the newly developed), CHARMM, OPLS, Dang95 with TIP3P, and SPC/E water. Comparison with experiment is made with the corresponding values for salts, for which data are available. The calculations based on the newly developed AMBER force field with TIP3P water agrees well with experiment for both KCl and NaCl electrolytes in water solutions, as previously reported. The simulations based on the CHARMM-TIP3P and Dang95-SPC/E force fields agree well for the KCl and NaCl solutions, respectively. The other models are not as accurate. Single cations excess (electro-)chemical potential differences turn out to be similar for all the force fields considered here. In the case of KCl, the calculated electric contribution is consistent with higher level calculations. Instead, such agreement is not found with NaCl. Finally, we found that the calculated activities for single Cl(-) ions turn out to depend clearly on the type of counterion used, with all the force fields investigated. The implications of these findings for biomolecular systems are discussed.

  4. Small strain multiphase-field model accounting for configurational forces and mechanical jump conditions

    NASA Astrophysics Data System (ADS)

    Schneider, Daniel; Schoof, Ephraim; Tschukin, Oleg; Reiter, Andreas; Herrmann, Christoph; Schwab, Felix; Selzer, Michael; Nestler, Britta

    2018-03-01

    Computational models based on the phase-field method have become an essential tool in material science and physics in order to investigate materials with complex microstructures. The models typically operate on a mesoscopic length scale resolving structural changes of the material and provide valuable information about the evolution of microstructures and mechanical property relations. For many interesting and important phenomena, such as martensitic phase transformation, mechanical driving forces play an important role in the evolution of microstructures. In order to investigate such physical processes, an accurate calculation of the stresses and the strain energy in the transition region is indispensable. We recall a multiphase-field elasticity model based on the force balance and the Hadamard jump condition at the interface. We show the quantitative characteristics of the model by comparing the stresses, strains and configurational forces with theoretical predictions in two-phase cases and with results from sharp interface calculations in a multiphase case. As an application, we choose the martensitic phase transformation process in multigrain systems and demonstrate the influence of the local homogenization scheme within the transition regions on the resulting microstructures.

  5. DFT calculations for anharmonic force field and spectroscopic constants of YC2 and its 13C isotopologues

    NASA Astrophysics Data System (ADS)

    Zhao, Yanliang; Wang, Meishan; Yang, Chuanlu; Ma, Xiaoguang; Li, Jing

    2018-02-01

    The construction of the complete third and the semi-diagonal quartic force fields including the anharmonicity of the ground state (X˜2A1) for yttrium dicarbide (YC2) is carried out employing the vibrational second-order perturbation theory (VPT2) in combination with the density functional theory (DFT). The equilibrium geometries optimization, anharmonic force field and vibrational spectroscopic constants of YC2 are calculated by B3LYP, B3PW91 and B3P86 methods. Aug-cc-pVnZ (n = D, T, Q) and cc-pVnZ-PP (n = D, T, Q) basis sets are chosen for C and Y atoms, respectively. The calculated geometry parameters of YC2 agree well with the corresponding experimental and previous theoretical results. The bonding characters of Ysbnd C2 or Csbnd C are discussed. Based on the optimized equilibrium geometries, the spectroscopic constants and anharmonic force field of YC2 are calculated. Comparing with the spectroscopic constants of YC2 derived from the experiment, the calculated results show that the B3PW91 and B3P86 methods are superior to B3LYP for YC2. The Coriolis coupling constants, cubic and quartic force constants of YC2 are reasonably predicted. Besides, the spectroscopic constants and anharmonic force field of Y13C2 (X˜2A1) and Y13CC (X˜2A‧) are calculated for the first time, which are expected to guide the high resolution experimental work for YC2 and its 13C isotopologues.

  6. Structure of Exhausts in Magnetic Reconnection with an X-line of Finite Extent

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shepherd, L. S.; Cassak, P. A.; Drake, J. F.

    2017-10-20

    We present quantitative predictions of the structure of reconnection exhausts in three-dimensional magnetic reconnection with an X-line of finite extent in the out-of-plane direction. Sasunov et al. showed that they have a tilted ribbon-like shape bounded by rotational discontinuities and tangential discontinuities. We show analytically and numerically that this prediction is largely correct. When there is an out-of-plane (guide) magnetic field, the presence of the upstream field that does not reconnect acts as a boundary condition in the normal direction, which forces the normal magnetic field to be zero outside the exhaust. This condition constrains the normal magnetic field insidemore » the exhaust to be small. Thus, rather than the ribbon tilting in the inflow direction, the exhaust remains collimated in the normal direction and is forced to expand nearly completely in the out-of-plane direction. This exhaust structure is in stark contrast to the two-dimensional picture of reconnection, where reconnected flux expands in the normal direction. We present analytical predictions for the structure of the exhausts in terms of upstream conditions. The predictions are confirmed using three-dimensional resistive-magnetohydrodynamic simulations with a finite-length X-line achieved using a localized (anomalous) resistivity. Implications to reconnection in the solar wind are discussed. In particular, the results can be used to estimate a lower bound for the extent of the X-line in the out-of-plane direction solely using single-spacecraft data taken downstream in the exhausts.« less

  7. A Study on the Effects of J2 Perturbations on a Drag-Free Control System for Spacecraft in Low Earth Orbit

    NASA Technical Reports Server (NTRS)

    Vess, Melissa Fleck; Starin, Scott R.

    2003-01-01

    Low Earth Orbit (LEO) missions provide a unique means of gathering information about many of Earth s aspects such as climate, atmosphere, and gravitational field. Among the greatest challenges of LEO missions are designing, predicting, and maintaining the spacecraft orbit. The predominant perturbative forces acting on a spacecraft in LEO are J2 and higher order gravitational components, the effects of which are fairly easy to predict, and atmospheric drag, which causes the greatest uncertainty in predicting spacecraft ephemeris. The continuously varying atmospheric drag requires increased spacecraft tracking in order to accurately predict spacecraft location. In addition, periodic propulsive maneuvers typically must be planned and performed to counteract the effects of drag on the spacecraft orbit. If the effects of drag could be continuously and autonomously counteracted, the uncertainty in ephemeris due to atmospheric drag would essentially be eliminated from the spacecraft dynamics. One method of autonomous drag compensation that has been implemented on some missions is drag-free control. Drag-free control of a spacecraft was initially proposed in the 1960's and is discussed extensively by Lange. His drag-free control architecture consists of a free-floating proof mass enclosed within a spacecraft, isolating it from external disturbance forces such as atmospheric drag and solar radiation pressure. Under ideal conditions, internal disturbance forces can be ignored or mitigated, and the orbit of the proof mass depends only on gravitational forces. A sensor associated with the proof mass senses the movement of the spacecraft relative to the proof mass. Using the sensor measurements, the spacecraft is forced to follow the orbit of the proof mass by using low thrust propulsion, thus counteracting any non-gravitational disturbance forces. If the non-gravitational disturbance forces are successfully removed, the spacecraft s orbit will be affected only by well-known gravitational forces and will thus be easier to predict.

  8. Investigating the Magnetospheres of Rapidly Rotating B-type Stars

    NASA Astrophysics Data System (ADS)

    Fletcher, C. L.; Petit, V.; Nazé, Y.; Wade, G. A.; Townsend, R. H.; Owocki, S. P.; Cohen, D. H.; David-Uraz, A.; Shultz, M.

    2017-11-01

    Recent spectropolarimetric surveys of bright, hot stars have found that ~10% of OB-type stars contain strong (mostly dipolar) surface magnetic fields (~kG). The prominent paradigm describing the interaction between the stellar winds and the surface magnetic field is the magnetically confined wind shock (MCWS) model. In this model, the stellar wind plasma is forced to move along the closed field loops of the magnetic field, colliding at the magnetic equator, and creating a shock. As the shocked material cools radiatively it will emit X-rays. Therefore, X-ray spectroscopy is a key tool in detecting and characterizing the hot wind material confined by the magnetic fields of these stars. Some B-type stars are found to have very short rotational periods. The effects of the rapid rotation on the X-ray production within the magnetosphere have yet to be explored in detail. The added centrifugal force due to rapid rotation is predicted to cause faster wind outflows along the field lines, leading to higher shock temperatures and harder X-rays. However, this is not observed in all rapidly rotating magnetic B-type stars. In order to address this from a theoretical point of view, we use the X-ray Analytical Dynamical Magnetosphere (XADM) model, originally developed for slow rotators, with an implementation of new rapid rotational physics. Using X-ray spectroscopy from ESA's XMM-Newton space telescope, we observed 5 rapidly rotating B-types stars to add to the previous list of observations. Comparing the observed X-ray luminosity and hardness ratio to that predicted by the XADM allows us to determine the role the added centrifugal force plays in the magnetospheric X-ray emission of these stars.

  9. Coarse-grained modeling of crystal growth and polymorphism of a model pharmaceutical molecule.

    PubMed

    Mandal, Taraknath; Marson, Ryan L; Larson, Ronald G

    2016-10-04

    We describe a systematic coarse-graining method to study crystallization and predict possible polymorphs of small organic molecules. In this method, a coarse-grained (CG) force field is obtained by inverse-Boltzmann iteration from the radial distribution function of atomistic simulations of the known crystal. With the force field obtained by this method, we show that CG simulations of the drug phenytoin predict growth of a crystalline slab from a melt of phenytoin, allowing determination of the fastest-growing surface, as well as giving the correct lattice parameters and crystal morphology. By applying meta-dynamics to the coarse-grained model, a new crystalline form of phenytoin (monoclinic, space group P2 1 ) was predicted which is different from the experimentally known crystal structure (orthorhombic, space group Pna2 1 ). Atomistic simulations and quantum calculations then showed the polymorph to be meta-stable at ambient temperature and pressure, and thermodynamically more stable than the conventional orthorhombic crystal at high pressure. The results suggest an efficient route to study crystal growth of small organic molecules that could also be useful for identification of possible polymorphs as well.

  10. Simulation Protocol for Prediction of a Solid-Electrolyte Interphase on the Silicon-based Anodes of a Lithium-Ion Battery: ReaxFF Reactive Force Field.

    PubMed

    Yun, Kang-Seop; Pai, Sung Jin; Yeo, Byung Chul; Lee, Kwang-Ryeol; Kim, Sun-Jae; Han, Sang Soo

    2017-07-06

    We propose the ReaxFF reactive force field as a simulation protocol for predicting the evolution of solid-electrolyte interphase (SEI) components such as gases (C 2 H 4 , CO, CO 2 , CH 4 , and C 2 H 6 ), and inorganic (Li 2 CO 3 , Li 2 O, and LiF) and organic (ROLi and ROCO 2 Li: R = -CH 3 or -C 2 H 5 ) products that are generated by the chemical reactions between the anodes and liquid electrolytes. ReaxFF was developed from ab initio results, and a molecular dynamics simulation with ReaxFF realized the prediction of SEI formation under real experimental conditions and with a reasonable computational cost. We report the effects on SEI formation of different kinds of Si anodes (pristine Si and SiO x ), of the different types and compositions of various carbonate electrolytes, and of the additives. From the results, we expect that ReaxFF will be very useful for the development of novel electrolytes or additives and for further advances in Li-ion battery technology.

  11. Ab Initio Molecular Dynamics and Lattice Dynamics-Based Force Field for Modeling Hexagonal Boron Nitride in Mechanical and Interfacial Applications.

    PubMed

    Govind Rajan, Ananth; Strano, Michael S; Blankschtein, Daniel

    2018-04-05

    Hexagonal boron nitride (hBN) is an up-and-coming two-dimensional material, with applications in electronic devices, tribology, and separation membranes. Herein, we utilize density-functional-theory-based ab initio molecular dynamics (MD) simulations and lattice dynamics calculations to develop a classical force field (FF) for modeling hBN. The FF predicts the crystal structure, elastic constants, and phonon dispersion relation of hBN with good accuracy and exhibits remarkable agreement with the interlayer binding energy predicted by random phase approximation calculations. We demonstrate the importance of including Coulombic interactions but excluding 1-4 intrasheet interactions to obtain the correct phonon dispersion relation. We find that improper dihedrals do not modify the bulk mechanical properties and the extent of thermal vibrations in hBN, although they impact its flexural rigidity. Combining the FF with the accurate TIP4P/Ice water model yields excellent agreement with interaction energies predicted by quantum Monte Carlo calculations. Our FF should enable an accurate description of hBN interfaces in classical MD simulations.

  12. Seasonal differences of model predictability and the impact of SST in the Pacific

    NASA Astrophysics Data System (ADS)

    Lang, X. M.; Wang, H. J.

    2005-01-01

    Both seasonal potential predictability and the impact of SST in the Pacific on the forecast skill over China are investigated by using a 9-level global atmospheric general circulation model developed at the Institute of Atmospheric Physics under the Chinese Academy of Sciences (IAP9L-ACCM). For each year during 1970 to 1999, the ensemble consists of seven integrations started from consecutive observational daily atmospheric fields and forced by observational monthly SST. For boreal winter, spring and summer, the variance ratios of the SST-forced variability to the total variability and the differences in the spatial correlation coefficients of seasonal mean fields in special years versus normal years are computed respectively. It follows that there are slightly inter-seasonal differences in the model potential predictability in the Tropics. At northern middle and high latitudes, prediction skill is generally low in spring and relatively high either in summer for surface air temperature and middle and upper tropospheric geopotential height or in winter for wind and precipitation. In general, prediction skill rises notably in western China, especially in northwestern China, when SST anomalies (SSTA) in the Ni (n) over tildeo-3 region are significant. Moreover, particular attention should be paid to the SSTA in the North Pacific (NP) if one aims to predict summer climate over the eastern part of China, i.e., northeastern China, North China and southeastern China.

  13. Predicting the hydraulic forces on submerged macrophytes from current velocity, biomass and morphology.

    PubMed

    Schutten, J; Davy, A J

    2000-06-01

    Aquatic macrophytes are important in stabilising moderately eutrophic, shallow freshwater lakes in the clear-water state. The failure of macrophyte recovery in lakes with very soft, highly organic sediments that have been restored to clear water by biomanipulation (e.g. in the Norfolk Broads, UK) has suggested that the physical stability of the sediment may limit plant establishment. Hydraulic forces from water currents may be sufficient to break or remove plants. Our aim was to develop a simple model that could predict these forces from plant biomass, current velocity and plant form. We used an experimental flume to measure the hydraulic forces acting on shoots of 18 species of aquatic macrophyte of varying size and morphology. The hydraulic drag on the shoots was regressed on a theoretically derived predictor (shoot biomass × current velocity 1.5 ). Such linear regressions proved to be highly significant for most species. The slopes of these lines represent species-specific, hydraulic roughness factors that are analogous to classical drag coefficients. Shoot architecture parameters describing leaf and shoot shape had significant effects on the hydraulic roughness factor. Leaf width and shoot stiffness individually did not have a significant influence, but in combination with shoot shape they were significant. This hydraulic model was validated for a subset of species using measurements from an independent set of shoots. When measured and predicted hydraulic forces were compared, the fit was generally very good, except for two species with morphological variations. This simple model, together with the plant-specific factors, provides a basis for predicting the hydraulic forces acting on the root systems of macrophytes under field conditions. This information should allow prediction of the physical stability of individual plants, as an aid to shallow-lake management.

  14. Acoustic attraction, repulsion and radiation force cancellation on a pair of rigid particles with arbitrary cross-sections in 2D: Circular cylinders example

    NASA Astrophysics Data System (ADS)

    Mitri, F. G.

    2017-11-01

    The acoustic radiation forces arising on a pair of sound impenetrable cylindrical particles of arbitrary cross-sections are derived. Plane progressive, standing or quasi-standing waves with an arbitrary incidence angle are considered. Multiple scattering effects are described using the multipole expansion formalism and the addition theorem of cylindrical wave functions. An effective incident acoustic field on a particular object is determined, and used with the scattered field to derive closed-form analytical expressions for the radiation force vector components. The mathematical expressions for the radiation force components are exact, and have been formulated in partial-wave series expansions in cylindrical coordinates involving the angle of incidence, the reflection coefficient forming the progressive or the (quasi)standing wave field, the addition theorem, and the expansion coefficients. Numerical examples illustrate the analysis for two rigid circular cross-sections immersed in a non-viscous fluid. Computations for the dimensionless radiation force functions are performed with emphasis on varying the angle of incidence, the interparticle distance, the sizes of the particles as well as the characteristics of the incident field. Depending on the interparticle distance and angle of incidence, one of the particles yields neutrality; it experiences no force and becomes unresponsive (i.e., ;invisible;) to the linear momentum transfer of the effective incident field due to multiple scattering cancellation effects. Moreover, attractive or repulsive forces between the two particles may arise depending on the interparticle distance, the angle of incidence and size parameters of the particles. This study provides a complete analytical method and computations for the axial and transverse radiation force components in multiple acoustic scattering encompassing the cases of plane progressive, standing or quasi-standing waves of arbitrary incidence by a pair of scatterers. Potential applications concern the prediction of the forces used in acoustically-engineered metamaterials with reconfigurable periodicities, cloaking devices, and liquid crystals to name a few examples.

  15. Coarse-Graining Polymer Field Theory for Fast and Accurate Simulations of Directed Self-Assembly

    NASA Astrophysics Data System (ADS)

    Liu, Jimmy; Delaney, Kris; Fredrickson, Glenn

    To design effective manufacturing processes using polymer directed self-assembly (DSA), the semiconductor industry benefits greatly from having a complete picture of stable and defective polymer configurations. Field-theoretic simulations are an effective way to study these configurations and predict defect populations. Self-consistent field theory (SCFT) is a particularly successful theory for studies of DSA. Although other models exist that are faster to simulate, these models are phenomenological or derived through asymptotic approximations, often leading to a loss of accuracy relative to SCFT. In this study, we employ our recently-developed method to produce an accurate coarse-grained field theory for diblock copolymers. The method uses a force- and stress-matching strategy to map output from SCFT simulations into parameters for an optimized phase field model. This optimized phase field model is just as fast as existing phenomenological phase field models, but makes more accurate predictions of polymer self-assembly, both in bulk and in confined systems. We study the performance of this model under various conditions, including its predictions of domain spacing, morphology and defect formation energies. Samsung Electronics.

  16. Effect of Pore Topology and Accessibility on Gas Adsorption Capacity in Zeolitic-Imidazolate Frameworks: Bringing Molecular Simulation Close to Experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Babarao, Ravichandar; Dai, Sheng; Jiang, Deen

    2011-01-01

    When all cages are assumed to be accessible, popular force fields such as universal force field (UFF) and DREIDING dramatically overpredicted gas adsorption capacity in two widely studied zeolitic-imidazolate frameworks (ZIFs), ZIF-68 and -69. Instead of adjusting the force-field parameters to match the experiments, herein we show that when the pore topology and accessibility are correctly taken into account, simulations with the standard force fields agree very well with the experiments. Careful inspection shows that ZIF-68 and -69 have two one-dimensional channels, which are not interaccessible to gases. The small channel consists of alternating small (HPR) and medium (GME) cages,more » while the large channel comprises the large (KNO) cages. Our analysis indicates that the small channel is not accessible to gases such as CO{sub 2}. So when the cages in the small channel are intentionally blocked in our simulation, the predicted adsorption capacities of CO{sub 2}, CH{sub 4} and N{sub 2} at room temperature from standard force-field parameters for the framework show excellent agreement with the experimental results. In the case of H{sub 2}, all cages are accessible, so simulation results without cage-blocking show excellent agreement with experiment. Due to the promising potential of ZIFs in gas storage and separation, our work here shows that pore topology and accessibility should be carefully examined to understand how gases adsorb in ZIFs.« less

  17. NIS, IR and Raman spectra with quantum mechanical calculations for analyzing the force field of hypericin model compounds

    NASA Astrophysics Data System (ADS)

    Ulicny, Jozef; Leulliot, Nicolas; Grajcar, Lydie; Baron, Marie-Hélène; Jobic, Hervé; Ghomi, Mahmoud

    1999-06-01

    Geometry optimization as well as harmonic force field calculations at HF and DFT levels of theory have been performed in order to elucidate the ground state properties of anthrone and emodin, two polycyclic conjugated molecules considered as hypericin model compounds. NIS, IR and FT-Raman spectra of these compounds have been recorded to validate the calculated results (geometry and vibrational modes). Calculated NIS spectra using the lowest energy conformers are in agreement with experiment. In addition, the intramolecular H-bonds in emodin predicted by the calculations can be evidenced using IR spectra as a function of temperature.

  18. NIS, IR and Raman spectra with quantum mechanical calculations for analyzing the force field of hypericin model compounds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ulicny, Jozef; Department of Biophysics, Safarik University, Jesenna 5, 04154 Kosice; Leulliot, Nicolas

    1999-06-15

    Geometry optimization as well as harmonic force field calculations at HF and DFT levels of theory have been performed in order to elucidate the ground state properties of anthrone and emodin, two polycyclic conjugated molecules considered as hypericin model compounds. NIS, IR and FT-Raman spectra of these compounds have been recorded to validate the calculated results (geometry and vibrational modes). Calculated NIS spectra using the lowest energy conformers are in agreement with experiment. In addition, the intramolecular H-bonds in emodin predicted by the calculations can be evidenced using IR spectra as a function of temperature.

  19. Conservative and dissipative force field for simulation of coarse-grained alkane molecules: A bottom-up approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trément, Sébastien; Rousseau, Bernard, E-mail: bernard.rousseau@u-psud.fr; Schnell, Benoît

    2014-04-07

    We apply operational procedures available in the literature to the construction of coarse-grained conservative and friction forces for use in dissipative particle dynamics (DPD) simulations. The full procedure rely on a bottom-up approach: large molecular dynamics trajectories of n-pentane and n-decane modeled with an anisotropic united atom model serve as input for the force field generation. As a consequence, the coarse-grained model is expected to reproduce at least semi-quantitatively structural and dynamical properties of the underlying atomistic model. Two different coarse-graining levels are studied, corresponding to five and ten carbon atoms per DPD bead. The influence of the coarse-graining levelmore » on the generated force fields contributions, namely, the conservative and the friction part, is discussed. It is shown that the coarse-grained model of n-pentane correctly reproduces self-diffusion and viscosity coefficients of real n-pentane, while the fully coarse-grained model for n-decane at ambient temperature over-predicts diffusion by a factor of 2. However, when the n-pentane coarse-grained model is used as a building block for larger molecule (e.g., n-decane as a two blobs model), a much better agreement with experimental data is obtained, suggesting that the force field constructed is transferable to large macro-molecular systems.« less

  20. Computational chemistry in 25 years

    NASA Astrophysics Data System (ADS)

    Abagyan, Ruben

    2012-01-01

    Here we are making some predictions based on three methods: a straightforward extrapolations of the existing trends; a self-fulfilling prophecy; and picking some current grievances and predicting that they will be addressed or solved. We predict the growth of multicore computing and dramatic growth of data, as well as the improvements in force fields and sampling methods. We also predict that effects of therapeutic and environmental molecules on human body, as well as complex natural chemical signalling will be understood in terms of three dimensional models of their binding to specific pockets.

  1. Magnetic Control of Convection in Electrically Nonconducting Fluids

    NASA Technical Reports Server (NTRS)

    Huang, Jie; Gray, Donald D.; Edwards, Boyd F.

    1999-01-01

    Inhomogeneous magnetic fields exert a body force on electrically nonconducting, magnetically permeable fluids. This force can be used to compensate for gravity and to control convection. The effects of uniform and nonuniform magnetic fields on a laterally unbounded fluid layer heated from below or above are studied using a linear stability analysis of the Navier-Stokes equations supplemented by Maxwell's equations and the appropriate magnetic body force. For a uniform oblique field, the analysis shows that longitudinal rolls with axes parallel to the horizontal component of the field are the rolls most unstable to convection. The corresponding critical Rayleigh number and critical wavelength for the onset of such rolls are less than the well-known Rayleigh-Benard values in the absence of magnetic fields. Vertical fields maximize these deviations, which vanish for horizontal fields. Horizontal fields increase the critical Rayleigh number and the critical wavelength for all rolls except longitudinal rolls. For a nonuniform field, our analysis shows that the magnetic effect on convection is represented by a dimensionless vector parameter which measures the relative strength of the induced magnetic buoyancy force due to the applied field gradient. The vertical component of this parameter competes with the gravitational buoyancy effect, and a critical relationship between this component and the Rayleigh number is identified for the onset of convection. Therefore, Rayleigh-Benard convection in such fluids can be enhanced or suppressed by the field. It also shows that magnetothermal convection is possible in both paramagnetic and diamagnetic fluids. Our theoretical predictions for paramagnetic fluids agree with experiments. Magnetically driven convection in diamagnetic fluids should be observable even in pure water using current technology.

  2. Chaos as an intermittently forced linear system.

    PubMed

    Brunton, Steven L; Brunton, Bingni W; Proctor, Joshua L; Kaiser, Eurika; Kutz, J Nathan

    2017-05-30

    Understanding the interplay of order and disorder in chaos is a central challenge in modern quantitative science. Approximate linear representations of nonlinear dynamics have long been sought, driving considerable interest in Koopman theory. We present a universal, data-driven decomposition of chaos as an intermittently forced linear system. This work combines delay embedding and Koopman theory to decompose chaotic dynamics into a linear model in the leading delay coordinates with forcing by low-energy delay coordinates; this is called the Hankel alternative view of Koopman (HAVOK) analysis. This analysis is applied to the Lorenz system and real-world examples including Earth's magnetic field reversal and measles outbreaks. In each case, forcing statistics are non-Gaussian, with long tails corresponding to rare intermittent forcing that precedes switching and bursting phenomena. The forcing activity demarcates coherent phase space regions where the dynamics are approximately linear from those that are strongly nonlinear.The huge amount of data generated in fields like neuroscience or finance calls for effective strategies that mine data to reveal underlying dynamics. Here Brunton et al.develop a data-driven technique to analyze chaotic systems and predict their dynamics in terms of a forced linear model.

  3. Predictability of Zonal Means During Boreal Summer

    NASA Technical Reports Server (NTRS)

    Schubert, Siegfried; Suarez, Max J.; Pegion, Philip J.; Kistler, Michael A.; Kumar, Arun; Einaudi, Franco (Technical Monitor)

    2001-01-01

    This study examines the predictability of seasonal means during boreal summer. The results are based on ensembles of June-July-August (JJA) simulations (started in mid May) carried out with the NASA Seasonal-to-Interannual Prediction Project (NSIPP-1) atmospheric general circulation model (AGCM) forced with observed sea surface temperatures (SSTS) and sea ice for the years 1980-1999. We find that the predictability of the JJA extra-tropical height field is primarily in the zonal mean component of the response to the SST anomalies. This contrasts with the cold season (January-February-March) when the predictability of seasonal means in the boreal extratropics is primarily in the wave component of the El Nino/Southern Oscillation (ENSO) response. Two patterns dominate the interannual variability of the ensemble mean JJA zonal mean height field. One has maximum variance in the tropical/subtropical upper troposphere, while the other has substantial variance in middle latitudes of both hemispheres. Both are symmetric with respect to the equator. A regression analysis suggests that the tropical/subtropical pattern is associated with SST anomalies in the far eastern tropical Pacific and the Indian Ocean, while the middle latitude pattern is forced by SST anomalies in the tropical Pacific just east of the dateline. The two leading zonal height patterns are reproduced in model runs forced with the two leading JJA SST patterns of variability. A comparison with observations shows a signature of the middle latitude pattern that is consistent with the occurrence of dry and wet summers over the United States. We hypothesize that both patterns, while imposing only weak constraints on extratropical warm season continental-scale climates, may play a role in the predilection for drought or pluvial conditions.

  4. Monte Carlo simulations of mixtures involving ketones and aldehydes by a direct bubble pressure calculation.

    PubMed

    Ferrando, Nicolas; Lachet, Véronique; Boutin, Anne

    2010-07-08

    Ketone and aldehyde molecules are involved in a large variety of industrial applications. Because they are mainly present mixed with other compounds, the prediction of phase equilibrium of mixtures involving these classes of molecules is of first interest particularly to design and optimize separation processes. The main goal of this work is to propose a transferable force field for ketones and aldehydes that allows accurate molecular simulations of not only pure compounds but also complex mixtures. The proposed force field is based on the anisotropic united-atoms AUA4 potential developed for hydrocarbons, and it introduces only one new atom, the carbonyl oxygen. The Lennard-Jones parameters of this oxygen atom have been adjusted on saturated thermodynamic properties of both acetone and acetaldehyde. To simulate mixtures, Monte Carlo simulations are carried out in a specific pseudoensemble which allows a direct calculation of the bubble pressure. For polar mixtures involved in this study, we show that this approach is an interesting alternative to classical calculations in the isothermal-isobaric Gibbs ensemble. The pressure-composition diagrams of polar + polar and polar + nonpolar binary mixtures are well reproduced. Mutual solubilities as well as azeotrope location, if present, are accurately predicted without any empirical binary interaction parameters or readjustment. Such result highlights the transferability of the proposed force field, which is an essential feature toward the simulation of complex oxygenated mixtures of industrial interest.

  5. Near-field Light Scattering Techniques for Measuring Nanoparticle-Surface Interaction Energies and Forces.

    PubMed

    Schein, Perry; Ashcroft, Colby K; O'Dell, Dakota; Adam, Ian S; DiPaolo, Brian; Sabharwal, Manit; Shi, Ce; Hart, Robert; Earhart, Christopher; Erickson, David

    2015-08-15

    Nanoparticles are quickly becoming commonplace in many commercial and industrial products, ranging from cosmetics to pharmaceuticals to medical diagnostics. Predicting the stability of the engineered nanoparticles within these products a priori remains an important and difficult challenge. Here we describe our techniques for measuring the mechanical interactions between nanoparticles and surfaces using near-field light scattering. Particle-surface interfacial forces are measured by optically "pushing" a particle against a reference surface and observing its motion using scattered near-field light. Unlike atomic force microscopy, this technique is not limited by thermal noise, but instead takes advantage of it. The integrated waveguide and microfluidic architecture allow for high-throughput measurements of about 1000 particles per hour. We characterize the reproducibility of and experimental uncertainty in the measurements made using the NanoTweezer surface instrument. We report surface interaction studies on gold nanoparticles with 50 nm diameters, smaller than previously reported in the literature using similar techniques.

  6. Nano-funnels as electro-osmotic ``tweezers and pistons''

    NASA Astrophysics Data System (ADS)

    Wang, Yanqian; Panyukov, Sergey; Zhou, Jinsheng; Menard, Laurent D.; Ramsey, J. Michael; Rubinstien, Michael

    2014-03-01

    An electric field is used to force a DNA molecule into a nano-channel by compensating the free energy penalty that results from the reduced conformational entropy of the confined macromolecule. Narrow nano-channels require high critical electric fields to achieve DNA translocation, leading to short dwell times of DNA in these channels. We demonstrate that nano-funnels integrated with nano-channels reduce the free energy barrier and lower the critical electric field required for DNA translocation. A focused electric field within the funnel increases the electric force on the DNA, compresses the molecule, and increases the osmotic pressure at the nano-channel entrance. This ``electro-osmotic piston'' forces the molecule into the nano-channel at lower electric fields than those observed without the funnel. Appropirately designed nano-funnels can also function as tweezers that allow manipulation of the position of the DNA molecule. The predictions of our theory describing double-stranded DNA behavior in nano-funnel - nano-channel devices are consistent with experimental results. Thanks for the financial support from NSF (DMR-1309892, DMR-1121107, DMR-1122483), NIH (1-P50-HL107168, 1-P01-HL108808-01A1, R01HG02647), NHGRI and CF Foundation.

  7. Mathematical Model for Collision-Coalescence Among Inclusions in the Bloom Continuous Caster with M-EMS

    NASA Astrophysics Data System (ADS)

    Lei, Hong; Jiang, Jimin; Yang, Bin; Zhao, Yan; Zhang, Hongwei; Wang, Weixian; Dong, Guiwen

    2018-04-01

    Mathematical simulation is an effective tool to analyze the fluid flow and the inclusion behavior in the bloom continuous caster with mold electromagnetic stirring (M-EMS). The mathematical model is applied to the modeling of magnetic field, flow field, and inclusion field. Due to the introduction of Archimedes force, the collision mechanism and inclusion's slipping velocity should be modified in the inclusion mass and population conservation model. Numerically predicted magnetic field, flow field, and the inclusion spatial distribution conform to the experimental results in the existing literature. Lorentz force plays an important role in the fluid flow, and Archimedes force plays an important role in the inclusion distribution in the continuous caster. Due to Brownian collision, Stokes collision, Archimedes collision, and turbulent collision, the coalescence among inclusions occurs in the bloom continuous caster with M-EMS. Among the four types of collisions, turbulent collision occurs most frequently, followed by Archimedes collision and Stokes collision. The frequency of Brownian collision is several orders of magnitudes smaller and is therefore negligible. The inclusion volume concentration, number density, and characteristic radius exhibit a U-shape in the continuous caster without M-EMS. However, with M-EMS, they exhibit an inverted U-shape.

  8. Accurate force field for molybdenum by machine learning large materials data

    NASA Astrophysics Data System (ADS)

    Chen, Chi; Deng, Zhi; Tran, Richard; Tang, Hanmei; Chu, Iek-Heng; Ong, Shyue Ping

    2017-09-01

    In this work, we present a highly accurate spectral neighbor analysis potential (SNAP) model for molybdenum (Mo) developed through the rigorous application of machine learning techniques on large materials data sets. Despite Mo's importance as a structural metal, existing force fields for Mo based on the embedded atom and modified embedded atom methods do not provide satisfactory accuracy on many properties. We will show that by fitting to the energies, forces, and stress tensors of a large density functional theory (DFT)-computed dataset on a diverse set of Mo structures, a Mo SNAP model can be developed that achieves close to DFT accuracy in the prediction of a broad range of properties, including elastic constants, melting point, phonon spectra, surface energies, grain boundary energies, etc. We will outline a systematic model development process, which includes a rigorous approach to structural selection based on principal component analysis, as well as a differential evolution algorithm for optimizing the hyperparameters in the model fitting so that both the model error and the property prediction error can be simultaneously lowered. We expect that this newly developed Mo SNAP model will find broad applications in large and long-time scale simulations.

  9. Parametric Transformation Analysis

    NASA Technical Reports Server (NTRS)

    Gary, G. Allan

    2003-01-01

    Because twisted coronal features are important proxies for predicting solar eruptive events, and, yet not clearly understood, we present new results to resolve the complex, non-potential magnetic field configurations of active regions. This research uses free-form deformation mathematics to generate the associated coronal magnetic field. We use a parametric representation of the magnetic field lines such that the field lines can be manipulated to match the structure of EUV and SXR coronal loops. The objective is to derive sigmoidal magnetic field solutions which allows the beta greater than 1 regions to be included, aligned and non-aligned electric currents to be calculated, and the Lorentz force to be determined. The advantage of our technique is that the solution is independent of the unknown upper and side boundary conditions, allows non-vanishing magnetic forces, and provides a global magnetic field solution, which contains high- and low-beta regimes and is consistent with all the coronal images of the region. We show that the mathematical description is unique and physical.

  10. State-of-the-art of high-speed propeller noise prediction - A multidisciplinary approach and comparison with measured data

    NASA Technical Reports Server (NTRS)

    Dunn, Mark H.; Farassat, F.

    1990-01-01

    The results of NASA's Propeller Test Assessment program involving extensive flight tests of a large-scale advanced propeller are presented. This has provided the opportunity to evaluate the current capability of advanced propeller noise prediction utilizing principally the exterior acoustic measurements for the prediction of exterior noise. The principal object of this study was to evaluate the state-of-the-art of noise prediction for advanced propellers utilizing the best available codes of the disciplines involved. The effects of blade deformation on the aerodynamics and noise of advanced propellers were also studied. It is concluded that blade deformation can appreciably influence propeller noise and aerodynamics, and that, in general, centrifugal and blade forces must both be included in the calculation of blade forces. It is noted that the present capability for free-field noise prediction of the first three harmonics for advanced propellers is fairly good. Detailed data and diagrams of the test results are presented.

  11. A dynamic magnetic tension force as the cause of failed solar eruptions

    DOE Data Explorer

    Myers, Clayton E. [Princeton Univ., NJ (United States). Dept. of Astrophysical Sciences; Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); ] (ORCID:0000000345398406); Yamada, Maasaki [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)] (ORCID:0000000349961649); Ji, Hantao [Princeton Univ., NJ (United States). Dept. of Astrophysical Sciences; Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Laboratory for Space Environment and Physical Sciences, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China] (ORCID:0000000196009963); Yoo, Jongsoo [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)] (ORCID:0000000338811995); Fox, William [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)] (ORCID:000000016289858X); Jara-Almonte, Jonathan [Princeton Univ., NJ (United States). Dept. of Astrophysical Sciences; Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); ] (ORCID:0000000307606198); Savcheva, Antonia [Harvard†“ Smithsonian Center for Astrophysics, Cambridge, Massachusetts 02138, USA] (ORCID:000000025598046X); DeLuca, Edward E. [Harvard†“ Smithsonian Center for Astrophysics, Cambridge, Massachusetts 02138, USA] (ORCID:0000000174162895)

    2015-12-11

    Coronal mass ejections are solar eruptions driven by a sudden release of magnetic energy stored in the Sun’s corona. In many cases, this magnetic energy is stored in long-lived, arched structures called magnetic flux ropes. When a flux rope destabilizes, it can either erupt and produce a coronal mass ejection or fail and collapse back towards the Sun. The prevailing belief is that the outcome of a given event is determined by a magnetohydrodynamic force imbalance called the torus instability. This belief is challenged, however, by observations indicating that torus-unstable flux ropes sometimes fail to erupt. This contradiction has not yet been resolved because of a lack of coronal magnetic field measurements and the limitations of idealized numerical modelling. Here we report the results of a laboratory experiment that reveal a previously unknown eruption criterion below which torus-unstable flux ropes fail to erupt. We find that such ‘failed torus’ events occur when the guide magnetic field (that is, the ambient field that runs toroidally along the flux rope) is strong enough to prevent the flux rope from kinking. Under these conditions, the guide field interacts with electric currents in the flux rope to produce a dynamic toroidal field tension force that halts the eruption. This magnetic tension force is missing from existing eruption models, which is why such models cannot explain or predict failed torus events.

  12. Numerical calculation and analysis of radial force on the single-action vane pump

    NASA Astrophysics Data System (ADS)

    Y He, Y.; Y Kong, F.

    2013-12-01

    Unbalanced radial force is a serious adversity that restricts the working pressure and reduces service life of the single-action vane pump. For revealing and predicting the distribution of radial force on the rotor, a numerical simulation about its transient flow field was performed by using dynamic mesh method with RNG κ ε-turbulent model. The details of transient flow characteristic and pressure fluctuation were obtained, and the radial force and periodic variation can be calculated based on the details. The results show: the radial force has a close relationship with the pressure pulsation; the radial force can be reduced drastically by optimizing the angle of port plate and installing the V-shaped cavity; if the odd number vanes are chosen, it will help reduce the radial force of rotor and optimize the pressure fluctuation effectively.

  13. Predicting the Magnetic Field of Earth-Impacting CMEs

    NASA Technical Reports Server (NTRS)

    Kay, C.; Gopalswamy, N.; Reinard, A.; Opher, M.

    2017-01-01

    Predicting the impact of coronal mass ejections (CMEs) and the southward component of their magnetic field is one of the key goals of space weather forecasting. We present a new model, the ForeCAT In situ Data Observer (FIDO), for predicting the in situ magnetic field of CMEs. We first simulate a CME using ForeCAT, a model for CME deflection and rotation resulting from the background solar magnetic forces. Using the CME position and orientation from ForeCAT, we then determine the passage of the CME over a simulated spacecraft. We model the CME's magnetic field using a force-free flux rope and we determine the in situ magnetic profile at the synthetic spacecraft. We show that FIDO can reproduce the general behavior of four observed CMEs. FIDO results are very sensitive to the CME's position and orientation, and we show that the uncertainty in a CME's position and orientation from coronagraph images corresponds to a wide range of in situ magnitudes and even polarities. This small range of positions and orientations also includes CMEs that entirely miss the satellite. We show that two derived parameters (the normalized angular distance between the CME nose and satellite position and the angular difference between the CME tilt and the position angle of the satellite with respect to the CME nose) can be used to reliably determine whether an impact or miss occurs. We find that the same criteria separate the impacts and misses for cases representing all four observed CMEs.

  14. Magnetic Fluctuation-Driven Intrinsic Flow in a Toroidal Plasma

    NASA Astrophysics Data System (ADS)

    Brower, D. L.; Ding, W. X.; Lin, L.; Almagri, A. F.; den Hartog, D. J.; Sarff, J. S.

    2012-10-01

    Magnetic fluctuations have been long observed in various magnetic confinement configurations. These perturbations may arise naturally from plasma instabilities such as tearing modes and energetic particle driven modes, but they can also be externally imposed by error fields or external magnetic coils. It is commonly observed that large MHD modes lead to plasma locking (no rotation) due to torque produced by eddy currents on the wall, and it is predicted that stochastic field induces flow damping where the radial electric field is reduced. Flow generation is of great importance to fusion plasma research, especially low-torque devices like ITER, as it can act to improve performance. Here we describe new measurements in the MST reversed field pinch (RFP) showing that the coherent interaction of magnetic and particle density fluctuations can produce a turbulent fluctuation-induced kinetic force, which acts to drive intrinsic plasma rotation. Key observations include; (1) the average kinetic force resulting from density fluctuations, ˜ 0.5 N/m^3, is comparable to the intrinsic flow acceleration, and (2) between sawtooth crashes, the spatial distribution of the kinetic force is directed to create a sheared parallel flow profile that is consistent with the measured flow profile in direction and amplitude, suggesting the kinetic force is responsible for intrinsic plasma rotation.

  15. The short range anion-H interaction is the driving force for crystal formation of ions in water.

    PubMed

    Alejandre, José; Chapela, Gustavo A; Bresme, Fernando; Hansen, Jean-Pierre

    2009-05-07

    The crystal formation of NaCl in water is studied by extensive molecular dynamics simulations. Ionic solutions at room temperature and various concentrations are studied using the SPC/E and TIP4P/2005 water models and seven force fields of NaCl. Most force fields of pure NaCl fail to reproduce the experimental density of the crystal, and in solution some favor dissociation at saturated conditions, while others favor crystal formation at low concentration. A new force field of NaCl is proposed, which reproduces the experimental phase diagram in the solid, liquid, and vapor regions. This force field overestimates the solubility of NaCl in water at saturation conditions when used with standard Lorentz-Berthelot combining rules for the ion-water pair potentials. It is shown that precipitation of ions is driven by the short range interaction between Cl-H pairs, a term which is generally missing in the simulation of ionic solutions. The effects of intramolecular flexibility of water on the solubility of NaCl ions are analyzed and is found to be small compared to rigid models. A flexible water model, extending the rigid SPC/E, is proposed, which incorporates Lennard-Jones interactions centered on the hydrogen atoms. This force field gives liquid-vapor coexisting densities and surface tensions in better agreement with experimental data than the rigid SPC/E model. The Cl-H, Na-O, and Cl-O pair distribution functions of the rigid and flexible models agree well with experiment. The predicted concentration dependence of the electric conductivity is in fair agreement with available experimental data.

  16. Long-Range Self-Assembly via the Mutual Lorentz Force of Plasmon Radiation.

    PubMed

    Ji, Haojie; Trevino, Jacob; Tu, Raymond; Knapp, Ellen; McQuade, James; Yurkiv, Vitaliy; Mashayek, Farzad; Vuong, Luat T

    2018-04-11

    Long-range interactions often proceed as a sequence of hopping through intermediate, statistically favored events. Here, we demonstrate predictable mechanical dynamics of particles that arise from the Lorentz force between plasmons. Even if the radiation is weak, the nonconservative Lorentz force produces stable locations perpendicular to the plasmon oscillation; over time, distinct patterns emerge. Experimentally, linearly polarized light illumination leads to the formation of 80 nm diameter Au nanoparticle chains, perpendicularly aligned, with lengths that are orders of magnitude greater than their plasmon near-field interaction. There is a critical intensity threshold and optimal concentration for observing self-assembly.

  17. Electrorotation and levitation of cells and colloidal particles

    PubMed Central

    Foster, Kenneth R.; Sauer, Friedrich A.; Schwan, Herman P.

    1992-01-01

    We review dielectrophoretic forces on cells and colloidal particles, emphasizing their use for manipulating and characterizing the electrical properties of suspended particles. Compared with dielectric spectroscopy, these methods offer a measure of independence from electrode artifacts and mixture theory. On the assumption that the particles can be modeled as uniform dielectric objects with effective dielectric properties, a simple theory can be developed for the frequency variation in the field-induced forces. For particles exhibiting counterion polarization, dielectrophoretic forces differ considerably from predictions of this theory at low frequencies, apparently because of double layer phenomena. PMID:19431839

  18. Nature of inclined growth in thin-layer electrodeposition under uniform magnetic fields.

    PubMed

    Soba, Alejandro; González, Graciela; Calivar, Lucas; Marshall, Guillermo

    2012-11-01

    Electrochemical deposition (ECD) in thin cells in a vertical position relative to gravity, subject to an external uniform magnetic field, yields a growth pattern formation with dense branched morphology with branches tilted in the direction of the magnetic force. We study the nature of the inclined growth through experiments and theory. Experiments in ECD, in the absence of magnetic forces, reveal that a branch grows by allowing fluid to penetrate its tip and to be ejected from the sides through a pair of symmetric vortices attached to the tip. The upper vortices zone defines an arch separating an inner zone ion depleted and an outer zone in a funnel-like form with a concentrated solution through which metal ions are carried into the tip. When a magnetic field is turned on, vortex symmetry is broken, one vortex becoming weaker than the other, inducing an inclination of the funnel. Consequently, particles entering the funnel give rise to branch growth tilted in the same direction. Theory predicts, in the absence of a magnetic force, funnel symmetry induced through symmetric vortices driven by electric and gravitational forces; when the magnetic force is on, it is composed with the pair of clockwise and counterclockwise vortices, reducing or amplifying one or the other. In turn, funnel tilting modifies particle trajectories, thus, growth orientation.

  19. Erosion in radial inflow turbines. Volume 2: Balance of centrifugal and radial drag forces on erosive particles

    NASA Technical Reports Server (NTRS)

    Clevenger, W. B., Jr.; Tabakoff, W.

    1974-01-01

    The particle motion in two-dimensional free and forced inward flowing vortices is considered. A particle in such a flow field experiences a balance between the aerodynamic drag forces that tend to drive erosive particles toward the axis, and centrifugal forces that prevent these particles from traveling toward the axis. Results predict that certain sizes of particles will achieve a stable orbit about the turbine axis in the inward flowing free vortex. In this condition, the radial drag force is equal to the centrifugal force. The sizes of particles that will achieve a stable orbit is shown to be related to the gas flow velocity diagram at a particular radius. A second analysis yields a description of particle sizes that will experience a centrifugal force that is greater than the radial component of the aerodynamic drag force for a more general type of particle motion.

  20. Interfacial Force Field Characterization in a Constrained Vapor Bubble Thermosyphon

    NASA Technical Reports Server (NTRS)

    DasGupta, Sunando; Plawsky, Joel L.; Wayner, Peter C., Jr.

    1995-01-01

    Isothermal profiles of the extended meniscus in a quartz cuvette were measured in the earth's gravitational field using an image-analyzing interferometer that is based on computer-enhanced video microscopy of the naturally occurring interference fringes. These profiles are a function of the stress field. Experimentally, the augmented Young-Laplace equation is an excellent model for the force field at the solid-liquid-vapor interfaces for heptane and pentane menisci on quartz and tetradecane on SFL6. The effects of refractive indices of the solid and liquid on the measurement techniques were demonstrated. Experimentally obtained values of the disjoining pressure and dispersion constants were compared to those predicted from the Dzyaloshinskii - Lifshitz - Pilaevskii theory for an ideal surface and reasonable agreements were obtained. A parameter introduced gives a quantitative measurement of the closeness of the system to equilibrium. The nonequilibrium behavior of this parameter is also presented

  1. Improved estimation of ligand macromolecule binding affinities by linear response approach using a combination of multi-mode MD simulation and QM/MM methods

    NASA Astrophysics Data System (ADS)

    Khandelwal, Akash; Balaz, Stefan

    2007-01-01

    Structure-based predictions of binding affinities of ligands binding to proteins by coordination bonds with transition metals, covalent bonds, and bonds involving charge re-distributions are hindered by the absence of proper force fields. This shortcoming affects all methods which use force-field-based molecular simulation data on complex formation for affinity predictions. One of the most frequently used methods in this category is the Linear Response (LR) approach of Åquist, correlating binding affinities with van der Waals and electrostatic energies, as extended by Jorgensen's inclusion of solvent-accessible surface areas. All these terms represent the differences, upon binding, in the ensemble averages of pertinent quantities, obtained from molecular dynamics (MD) or Monte Carlo simulations of the complex and of single components. Here we report a modification of the LR approach by: (1) the replacement of the two energy terms through the single-point QM/MM energy of the time-averaged complex structure from an MD simulation; and (2) a rigorous consideration of multiple modes (mm) of binding. The first extension alleviates the force-field related problems, while the second extension deals with the ligands exhibiting large-scale motions in the course of an MD simulation. The second modification results in the correlation equation that is nonlinear in optimized coefficients, but does not lead to an increase in the number of optimized coefficients. The application of the resulting mm QM/MM LR approach to the inhibition of zinc-dependent gelatinase B (matrix metalloproteinase 9) by 28 hydroxamate ligands indicates a significant improvement of descriptive and predictive abilities.

  2. Accuracy of State-of-the-Art Actuator-Line Modeling for Wind Turbine Wakes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jha, Pankaj; Churchfield, Matthew; Moriarty, Patrick

    The current actuator line method (ALM) within an OpenFOAM computational fluid dynamics (CFD) solver was used to perform simulations of the NREL Phase VI rotor under rotating and parked conditions, two fixed-wing designs both with an elliptic spanwise loading, and the NREL 5-MW turbine. The objective of this work is to assess and improve the accuracy of the state-of-the-art ALM in predicting rotor blade loads, particularly by focusing on the method used to project the actuator forces onto the flow field as body forces. Results obtained for sectional normal and tangential force coefficients were compared to available experimental data andmore » to the in-house performance code XTurb-PSU. It was observed that the ALM results agree well with measured data and results obtained from XTurb-PSU except in the root and tip regions if a three-dimensional Gaussian of width, ε, constant along the blade span is used to project the actuator force onto the flow field. A new method is proposed where the Gaussian width, ε, varies along the blade span following an elliptic distribution. A general criterion is derived that applies to any planform shape. It is found that the new criterion for ε leads to improved prediction of blade tip loads for a variety of blade planforms and rotor conditions considered.« less

  3. Prediction of Protein Structure by Template-Based Modeling Combined with the UNRES Force Field.

    PubMed

    Krupa, Paweł; Mozolewska, Magdalena A; Joo, Keehyoung; Lee, Jooyoung; Czaplewski, Cezary; Liwo, Adam

    2015-06-22

    A new approach to the prediction of protein structures that uses distance and backbone virtual-bond dihedral angle restraints derived from template-based models and simulations with the united residue (UNRES) force field is proposed. The approach combines the accuracy and reliability of template-based methods for the segments of the target sequence with high similarity to those having known structures with the ability of UNRES to pack the domains correctly. Multiplexed replica-exchange molecular dynamics with restraints derived from template-based models of a given target, in which each restraint is weighted according to the accuracy of the prediction of the corresponding section of the molecule, is used to search the conformational space, and the weighted histogram analysis method and cluster analysis are applied to determine the families of the most probable conformations, from which candidate predictions are selected. To test the capability of the method to recover template-based models from restraints, five single-domain proteins with structures that have been well-predicted by template-based methods were used; it was found that the resulting structures were of the same quality as the best of the original models. To assess whether the new approach can improve template-based predictions with incorrectly predicted domain packing, four such targets were selected from the CASP10 targets; for three of them the new approach resulted in significantly better predictions compared with the original template-based models. The new approach can be used to predict the structures of proteins for which good templates can be found for sections of the sequence or an overall good template can be found for the entire sequence but the prediction quality is remarkably weaker in putative domain-linker regions.

  4. Hydraulic pressures generated in magnetic ionic liquids by paramagnetic fluid/air interfaces inside of uniform tangential magnetic fields.

    PubMed

    Scovazzo, Paul; Portugal, Carla A M; Rosatella, Andreia A; Afonso, Carlos A M; Crespo, João G

    2014-08-15

    Magnetic Ionic Liquid (MILs), novel magnetic molecules that form "pure magnetic liquids," will follow the Ferrohydrodynamic Bernoulli Relationship. Based on recent literature, the modeling of this fluid system is an open issue and potentially controversial. We imposed uniform magnetic fields parallel to MIL/air interfaces where the capillary forces were negligible, the Quincke Problem. The size and location of the bulk fluid as well as the size and location of the fluid/air interface inside of the magnetic field were varied. MIL properties varied included the density, magnetic susceptibility, chemical structure, and magnetic element. Uniform tangential magnetic fields pulled the MILs up counter to gravity. The forces per area were not a function of the volume, the surface area inside of the magnetic field, or the volume displacement. However, the presence of fluid/air interfaces was necessary for the phenomena. The Ferrohydrodynamic Bernoulli Relationship predicted the phenomena with the forces being directly related to the fluid's volumetric magnetic susceptibility and the square of the magnetic field strength. [emim][FeCl4] generated the greatest hydraulic head (64-mm or 910 Pa at 1.627 Tesla). This work could aid in experimental design, when free surfaces are involved, and in the development of MIL applications. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Simulating the electrohydrodynamics of a viscous droplet

    NASA Astrophysics Data System (ADS)

    Theillard, Maxime; Saintillan, David

    2016-11-01

    We present a novel numerical approach for the simulation of viscous drop placed in an electric field in two and three spatial dimensions. Our method is constructed as a stable projection method on Quad/Octree grids. Using a modified pressure correction we were able to alleviate the standard time step restriction incurred by capillary forces. In weak electric fields, our results match remarkably well with the predictions from the Taylor-Melcher leaky dielectric model. In strong electric fields the so-called Quincke rotation is correctly reproduced.

  6. Magnetic field amplification by the r-mode instability

    NASA Astrophysics Data System (ADS)

    Chugunov, A. I.; Friedman, J. L.; Lindblom, L.; Rezzolla, L.

    2017-12-01

    We discuss the magnetic field enhancement by unstable r-modes (driven by the gravitational radiation reaction force) in rotating stars. In the absence of a magnetic field, gravitational radiation exponentially increases the r-mode amplitude α, and accelerates differential rotation (secular motion of fluid elements). For a magnetized star, differential rotation enhances the magnetic field energy. Rezzolla et al (2000-2001) argued that if the magnetic energy grows faster than the gravitational radiation reaction force pumps energy into the r-modes, then the r-mode instability is suppressed. Chugunov (2015) demonstrated that without gravitational radiation, differential rotation can be treated as a degree of freedom decoupled from the r-modes and controlled by the back reaction of the magnetic field. In particular, the magnetic field windup does not damp r-modes. Here we discuss the effect of the back reaction of the magnetic field on differential rotation of unstable r-modes, and show that it limits the generated magnetic field and the magnetic energy growth rate preventing suppression of the r-mode instability by magnetic windup at low saturation amplitudes, α ≪ 1, predicted by current models.

  7. How well do force fields capture the strength of salt bridges in proteins?

    PubMed Central

    Ahmed, Mustapha Carab; Papaleo, Elena

    2018-01-01

    Salt bridges form between pairs of ionisable residues in close proximity and are important interactions in proteins. While salt bridges are known to be important both for protein stability, recognition and regulation, we still do not have fully accurate predictive models to assess the energetic contributions of salt bridges. Molecular dynamics simulation is one technique that may be used study the complex relationship between structure, solvation and energetics of salt bridges, but the accuracy of such simulations depends on the force field used. We have used NMR data on the B1 domain of protein G (GB1) to benchmark molecular dynamics simulations. Using enhanced sampling simulations, we calculated the free energy of forming a salt bridge for three possible lysine-carboxylate ionic interactions in GB1. The NMR experiments showed that these interactions are either not formed, or only very weakly formed, in solution. In contrast, we show that the stability of the salt bridges is overestimated, to different extents, in simulations of GB1 using seven out of eight commonly used combinations of fixed charge force fields and water models. We also find that the Amber ff15ipq force field gives rise to weaker salt bridges in good agreement with the NMR experiments. We conclude that many force fields appear to overstabilize these ionic interactions, and that further work may be needed to refine our ability to model quantitatively the stability of salt bridges through simulations. We also suggest that comparisons between NMR experiments and simulations will play a crucial role in furthering our understanding of this important interaction.

  8. Deformation of a helical filament by flow and electric or magnetic fields

    NASA Astrophysics Data System (ADS)

    Kim, Munju; Powers, Thomas R.

    2005-02-01

    Motivated by recent advances in the real-time imaging of fluorescent flagellar filaments in living bacteria [Turner, Ryu, and Berg, J. Bacteriol. 82, 2793 (2000)], we compute the deformation of a helical elastic filament due to flow and external magnetic or high-frequency electric fields. Two cases of deformation due to hydrodynamic drag are considered: the compression of a filament rotated by a stationary motor and the extension of a stationary filament due to flow along the helical axis. We use Kirchhoff rod theory for the filament, and work to linear order in the deflection. Hydrodynamic forces are described first by resistive-force theory, and then for comparison by the more accurate slender-body theory. For helices with a short pitch, the deflection in axial flow predicted by slender-body theory is significantly smaller than that computed with resistive-force theory. Therefore, our estimate of the bending stiffness of a flagellar filament is smaller than that of previous workers. In our calculation of the deformation of a polarizable helix in an external field, we show that the problem is equivalent to the classical case of a helix deformed by forces applied only at the ends.

  9. PARTICIPATION OF ADULTS IN EDUCATION, A FORCE-FIELD ANALYSIS.

    ERIC Educational Resources Information Center

    MILLER, HARRY L.

    VARIOUS SOCIOLOGICAL AND PSYCHOLOGICAL THEORIES RELATING TO MOTIVATION ARE POTENTIALLY USEFUL TOOLS FOR PREDICTING AND INFLUENCING ADULT EDUCATION PARTICIPATION. MASLOW'S NEED HIERARCHY IS BASED ON FUNDAMENTAL NEEDS (SURVIVAL, SAFETY, AND BELONGING), WHICH ARE NORMALLY FOLLOWED BY EGO NEEDS (RECOGNITION OR STATUS, ACHIEVEMENT, AND…

  10. Predicting the Performance of Chain Saw Machines Based on Shore Scleroscope Hardness

    NASA Astrophysics Data System (ADS)

    Tumac, Deniz

    2014-03-01

    Shore hardness has been used to estimate several physical and mechanical properties of rocks over the last few decades. However, the number of researches correlating Shore hardness with rock cutting performance is quite limited. Also, rather limited researches have been carried out on predicting the performance of chain saw machines. This study differs from the previous investigations in the way that Shore hardness values (SH1, SH2, and deformation coefficient) are used to determine the field performance of chain saw machines. The measured Shore hardness values are correlated with the physical and mechanical properties of natural stone samples, cutting parameters (normal force, cutting force, and specific energy) obtained from linear cutting tests in unrelieved cutting mode, and areal net cutting rate of chain saw machines. Two empirical models developed previously are improved for the prediction of the areal net cutting rate of chain saw machines. The first model is based on a revised chain saw penetration index, which uses SH1, machine weight, and useful arm cutting depth as predictors. The second model is based on the power consumed for only cutting the stone, arm thickness, and specific energy as a function of the deformation coefficient. While cutting force has a strong relationship with Shore hardness values, the normal force has a weak or moderate correlation. Uniaxial compressive strength, Cerchar abrasivity index, and density can also be predicted by Shore hardness values.

  11. The Predictability of Near-Coastal Currents Using a Baroclinic Unstructured Grid Model

    DTIC Science & Technology

    2011-12-28

    clinic simulations. ADCIRC solves the time-dependent scalar transport equation for salinity and temperature. Through the equation of state...described by McDougall ct al. (2003), ADCIRC uses the temperature, salinity , and pressure in determining the density field. In order to avoid spurious...model. 2.3 Initialization and boundary forcing Temperature, salinity , elevation, and velocity fields from a regional ocean model are needed both to

  12. Field-scale Prediction of Enhanced DNAPL Dissolution Using Partitioning Tracers and Flow Pattern Effects

    NASA Astrophysics Data System (ADS)

    Wang, F.; Annable, M. D.; Jawitz, J. W.

    2012-12-01

    The equilibrium streamtube model (EST) has demonstrated the ability to accurately predict dense nonaqueous phase liquid (DNAPL) dissolution in laboratory experiments and numerical simulations. Here the model is applied to predict DNAPL dissolution at a PCE-contaminated dry cleaner site, located in Jacksonville, Florida. The EST is an analytical solution with field-measurable input parameters. Here, measured data from a field-scale partitioning tracer test were used to parameterize the EST model and the predicted PCE dissolution was compared to measured data from an in-situ alcohol (ethanol) flood. In addition, a simulated partitioning tracer test from a calibrated spatially explicit multiphase flow model (UTCHEM) was also used to parameterize the EST analytical solution. The ethanol prediction based on both the field partitioning tracer test and the UTCHEM tracer test simulation closely matched the field data. The PCE EST prediction showed a peak shift to an earlier arrival time that was concluded to be caused by well screen interval differences between the field tracer test and alcohol flood. This observation was based on a modeling assessment of potential factors that may influence predictions by using UTCHEM simulations. The imposed injection and pumping flow pattern at this site for both the partitioning tracer test and alcohol flood was more complex than the natural gradient flow pattern (NGFP). Both the EST model and UTCHEM were also used to predict PCE dissolution under natural gradient conditions, with much simpler flow patterns than the forced-gradient double five spot of the alcohol flood. The NGFP predictions based on parameters determined from tracer tests conducted with complex flow patterns underestimated PCE concentrations and total mass removal. This suggests that the flow patterns influence aqueous dissolution and that the aqueous dissolution under the NGFP is more efficient than dissolution under complex flow patterns.

  13. The utility of satellite precipitation products for hydrologic prediction in topographically complex regions: The Chehalis River Basin, WA as a case study

    NASA Astrophysics Data System (ADS)

    Cao, Q.; Mehran, A.; Lettenmaier, D. P.; Mass, C.; Johnson, N.

    2015-12-01

    Accurate measurements of precipitation are of great importance in hydrologic predictions especially for floods, which are a pervasive natural hazard. One of the primary objectives of Global Precipitation Measurement (GPM) mission is to provide a basis for hydrologic predictions using satellite sensors. A major advance in GPM relative to the Tropical Rainfall Measuring Mission (TRMM) is that it observes atmospheric river (AR) events, most of which have landfall too far north to be tracked by TRMM. These events are responsible for most major floods along the U.S. West Coast. We address the question of whether, for hydrologic modeling purposes, it is better to use precipitation products derived directly from GPM and/or other precipitation fields from weather models that have assimilated satellite data. Our overall strategy is to compare different methods for prediction of flood and/or high flow events by different forcings on the hydrologic model. We examine four different configurations of the Distroibute Hydrology Soil Vegetation Model (DHSVM) over the Chehalis River Basin that use a) precipitation forcings based on gridded station data; b) precipitation forcings based on NWS WSR-88D data, c) forcings based from short-term precipitation forecasts using the Weather Research and Forecasting (WRF) mesoscale atmospheric model, and d) satellite-based precipitation estimates (TMPA and IMERG). We find that in general, biases in the radar and satellite products result in much larger errors than with either gridded station data or WRF forcings, but if these biases are removed, comparable performance in flood predictions can be achieved by Satellite-based precipitation estimates (TMPA and IMERG).

  14. Electronic coarse graining enhances the predictive power of molecular simulation allowing challenges in water physics to be addressed

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cipcigan, Flaviu S., E-mail: flaviu.cipcigan@ed.ac.uk; National Physical Laboratory, Hampton Road, Teddington, Middlesex TW11 0LW; Sokhan, Vlad P.

    One key factor that limits the predictive power of molecular dynamics simulations is the accuracy and transferability of the input force field. Force fields are challenged by heterogeneous environments, where electronic responses give rise to biologically important forces such as many-body polarisation and dispersion. The importance of polarisation in the condensed phase was recognised early on, as described by Cochran in 1959 [Philosophical Magazine 4 (1959) 1082–1086] [32]. Currently in molecular simulation, dispersion forces are treated at the two-body level and in the dipole limit, although the importance of three-body terms in the condensed phase was demonstrated by Barker inmore » the 1980s [Phys. Rev. Lett. 57 (1986) 230–233] [72]. One approach for treating both polarisation and dispersion on an equal basis is to coarse grain the electrons surrounding a molecular moiety to a single quantum harmonic oscillator (cf. Hirschfelder, Curtiss and Bird 1954 [The Molecular Theory of Gases and Liquids (1954)] [37]). The approach, when solved in strong coupling beyond the dipole limit, gives a description of long-range forces that includes two- and many-body terms to all orders. In the last decade, the tools necessary to implement the strong coupling limit have been developed, culminating in a transferable model of water with excellent predictive power across the phase diagram. Transferability arises since the environment automatically identifies the important long range interactions, rather than the modeler through a limited set of expressions. Here, we discuss the role of electronic coarse-graining in predictive multiscale materials modelling and describe the first implementation of the method in a general purpose molecular dynamics software: QDO-MD. - Highlights: • Electronic coarse graining unites many-body dispersion and polarisation beyond the dipole limit. • It consists of replacing the electrons of a molecule using a quantum harmonic oscillator, called a Quantum Drude Oscillator. • We present the first general implementation of Quantum Drude Oscillators in the molecular dynamics package QDO-MD. • We highlight the successful construction of a new, transferable molecular model of water: QDO-water. - Graphical abstract:.« less

  15. Turbofan forced mixer lobe flow modeling. 1: Experimental and analytical assessment

    NASA Technical Reports Server (NTRS)

    Barber, T.; Paterson, R. W.; Skebe, S. A.

    1988-01-01

    A joint analytical and experimental investigation of three-dimensional flowfield development within the lobe region of turbofan forced mixer nozzles is described. The objective was to develop a method for predicting the lobe exit flowfield. In the analytical approach, a linearized inviscid aerodynamical theory was used for representing the axial and secondary flows within the three-dimensional convoluted mixer lobes and three-dimensional boundary layer analysis was applied thereafter to account for viscous effects. The experimental phase of the program employed three planar mixer lobe models having different waveform shapes and lobe heights for which detailed measurements were made of the three-dimensional velocity field and total pressure field at the lobe exit plane. Velocity data was obtained using Laser Doppler Velocimetry (LDV) and total pressure probing and hot wire anemometry were employed to define exit plane total pressure and boundary layer development. Comparison of data and analysis was performed to assess analytical model prediction accuracy. As a result of this study a planar mixed geometry analysis was developed. A principal conclusion is that the global mixer lobe flowfield is inviscid and can be predicted from an inviscid analysis and Kutta condition.

  16. Boulder-based wave hindcasting underestimates storm size

    NASA Astrophysics Data System (ADS)

    Kennedy, David; Woods, Joesphine; Rosser, Nick; Hansom, James; Naylor, Larissa

    2017-04-01

    Large boulder-size clasts represent an important archive of erosion and wave activity on the coast. From tropical coral reefs to eroding cliffs in the high-latitudes, boulders have been used to hindcast the frequency and magnitude of cyclones and tsunami. Such reconstructions are based on the balance between the hydrodynamic forces acting on individual clasts and the counteracting resistive forces of friction and gravity. Here we test the three principle hindcasting relationships on nearly 1000 intertidal boulders in North Yorkshire, U.K using a combination of field and airborne terrestrial LiDAR data. We quantify the predicted versus actual rates of movement and the degree to which local geomorphology can retard or accelerate transport. Actual clast movement is significantly less than predicted values, regardless of boulder volume, shape or location. In situ cementation of clasts to the substrate by marine organisms and clustering of clasts increases friction thereby preventing transport. The implication is that boulders do not always provide a reliable estimation of wave height on the coast and reliance solely on hindcasting relationships leads to an under prediction of the frequency and magnitude of past storm wave activity. The crucial need for process field studies to refine boulder transport models is thus demonstrated.

  17. Physics-based protein-structure prediction using a hierarchical protocol based on the UNRES force field: assessment in two blind tests.

    PubMed

    Ołdziej, S; Czaplewski, C; Liwo, A; Chinchio, M; Nanias, M; Vila, J A; Khalili, M; Arnautova, Y A; Jagielska, A; Makowski, M; Schafroth, H D; Kaźmierkiewicz, R; Ripoll, D R; Pillardy, J; Saunders, J A; Kang, Y K; Gibson, K D; Scheraga, H A

    2005-05-24

    Recent improvements in the protein-structure prediction method developed in our laboratory, based on the thermodynamic hypothesis, are described. The conformational space is searched extensively at the united-residue level by using our physics-based UNRES energy function and the conformational space annealing method of global optimization. The lowest-energy coarse-grained structures are then converted to an all-atom representation and energy-minimized with the ECEPP/3 force field. The procedure was assessed in two recent blind tests of protein-structure prediction. During the first blind test, we predicted large fragments of alpha and alpha+beta proteins [60-70 residues with C(alpha) rms deviation (rmsd) <6 A]. However, for alpha+beta proteins, significant topological errors occurred despite low rmsd values. In the second exercise, we predicted whole structures of five proteins (two alpha and three alpha+beta, with sizes of 53-235 residues) with remarkably good accuracy. In particular, for the genomic target TM0487 (a 102-residue alpha+beta protein from Thermotoga maritima), we predicted the complete, topologically correct structure with 7.3-A C(alpha) rmsd. So far this protein is the largest alpha+beta protein predicted based solely on the amino acid sequence and a physics-based potential-energy function and search procedure. For target T0198, a phosphate transport system regulator PhoU from T. maritima (a 235-residue mainly alpha-helical protein), we predicted the topology of the whole six-helix bundle correctly within 8 A rmsd, except the 32 C-terminal residues, most of which form a beta-hairpin. These and other examples described in this work demonstrate significant progress in physics-based protein-structure prediction.

  18. Test-Anchored Vibration Response Predictions for an Acoustically Energized Curved Orthogrid Panel with Mounted Components

    NASA Technical Reports Server (NTRS)

    Frady, Gregory P.; Duvall, Lowery D.; Fulcher, Clay W. G.; Laverde, Bruce T.; Hunt, Ronald A.

    2011-01-01

    A rich body of vibroacoustic test data was recently generated at Marshall Space Flight Center for a curved orthogrid panel typical of launch vehicle skin structures. Several test article configurations were produced by adding component equipment of differing weights to the flight-like vehicle panel. The test data were used to anchor computational predictions of a variety of spatially distributed responses including acceleration, strain and component interface force. Transfer functions relating the responses to the input pressure field were generated from finite element based modal solutions and test-derived damping estimates. A diffuse acoustic field model was employed to describe the assumed correlation of phased input sound pressures across the energized panel. This application demonstrates the ability to quickly and accurately predict a variety of responses to acoustically energized skin panels with mounted components. Favorable comparisons between the measured and predicted responses were established. The validated models were used to examine vibration response sensitivities to relevant modeling parameters such as pressure patch density, mesh density, weight of the mounted component and model form. Convergence metrics include spectral densities and cumulative root-mean squared (RMS) functions for acceleration, velocity, displacement, strain and interface force. Minimum frequencies for response convergence were established as well as recommendations for modeling techniques, particularly in the early stages of a component design when accurate structural vibration requirements are needed relatively quickly. The results were compared with long-established guidelines for modeling accuracy of component-loaded panels. A theoretical basis for the Response/Pressure Transfer Function (RPTF) approach provides insight into trends observed in the response predictions and confirmed in the test data. The software modules developed for the RPTF method can be easily adapted for quick replacement of the diffuse acoustic field with other pressure field models; for example a turbulent boundary layer (TBL) model suitable for vehicle ascent. Wind tunnel tests have been proposed to anchor the predictions and provide new insight into modeling approaches for this type of environment. Finally, component vibration environments for design were developed from the measured and predicted responses and compared with those derived from traditional techniques such as Barrett scaling methods for unloaded and component-loaded panels.

  19. Test-Anchored Vibration Response Predictions for an Acoustically Energized Curved Orthogrid Panel with Mounted Components

    NASA Technical Reports Server (NTRS)

    Frady, Gregory P.; Duvall, Lowery D.; Fulcher, Clay W. G.; Laverde, Bruce T.; Hunt, Ronald A.

    2011-01-01

    rich body of vibroacoustic test data was recently generated at Marshall Space Flight Center for component-loaded curved orthogrid panels typical of launch vehicle skin structures. The test data were used to anchor computational predictions of a variety of spatially distributed responses including acceleration, strain and component interface force. Transfer functions relating the responses to the input pressure field were generated from finite element based modal solutions and test-derived damping estimates. A diffuse acoustic field model was applied to correlate the measured input sound pressures across the energized panel. This application quantifies the ability to quickly and accurately predict a variety of responses to acoustically energized skin panels with mounted components. Favorable comparisons between the measured and predicted responses were established. The validated models were used to examine vibration response sensitivities to relevant modeling parameters such as pressure patch density, mesh density, weight of the mounted component and model form. Convergence metrics include spectral densities and cumulative root-mean squared (RMS) functions for acceleration, velocity, displacement, strain and interface force. Minimum frequencies for response convergence were established as well as recommendations for modeling techniques, particularly in the early stages of a component design when accurate structural vibration requirements are needed relatively quickly. The results were compared with long-established guidelines for modeling accuracy of component-loaded panels. A theoretical basis for the Response/Pressure Transfer Function (RPTF) approach provides insight into trends observed in the response predictions and confirmed in the test data. The software developed for the RPTF method allows easy replacement of the diffuse acoustic field with other pressure fields such as a turbulent boundary layer (TBL) model suitable for vehicle ascent. Structural responses using a TBL model were demonstrated, and wind tunnel tests have been proposed to anchor the predictions and provide new insight into modeling approaches for this environment. Finally, design load factors were developed from the measured and predicted responses and compared with those derived from traditional techniques such as historical Mass Acceleration Curves and Barrett scaling methods for acreage and component-loaded panels.

  20. On Verifying Currents and Other Features in the Hawaiian Islands Region Using Fully Coupled Ocean/Atmosphere Mesoscale Prediction System Compared to Global Ocean Model and Ocean Observations

    NASA Astrophysics Data System (ADS)

    Jessen, P. G.; Chen, S.

    2014-12-01

    This poster introduces and evaluates features concerning the Hawaii, USA region using the U.S. Navy's fully Coupled Ocean/Atmosphere Mesoscale Prediction System (COAMPS-OS™) coupled to the Navy Coastal Ocean Model (NCOM). It also outlines some challenges in verifying ocean currents in the open ocean. The system is evaluated using in situ ocean data and initial forcing fields from the operational global Hybrid Coordinate Ocean Model (HYCOM). Verification shows difficulties in modelling downstream currents off the Hawaiian islands (Hawaii's wake). Comparing HYCOM to NCOM current fields show some displacement of small features such as eddies. Generally, there is fair agreement from HYCOM to NCOM in salinity and temperature fields. There is good agreement in SSH fields.

  1. Internal force corrections with machine learning for quantum mechanics/molecular mechanics simulations.

    PubMed

    Wu, Jingheng; Shen, Lin; Yang, Weitao

    2017-10-28

    Ab initio quantum mechanics/molecular mechanics (QM/MM) molecular dynamics simulation is a useful tool to calculate thermodynamic properties such as potential of mean force for chemical reactions but intensely time consuming. In this paper, we developed a new method using the internal force correction for low-level semiempirical QM/MM molecular dynamics samplings with a predefined reaction coordinate. As a correction term, the internal force was predicted with a machine learning scheme, which provides a sophisticated force field, and added to the atomic forces on the reaction coordinate related atoms at each integration step. We applied this method to two reactions in aqueous solution and reproduced potentials of mean force at the ab initio QM/MM level. The saving in computational cost is about 2 orders of magnitude. The present work reveals great potentials for machine learning in QM/MM simulations to study complex chemical processes.

  2. The feasibility of an efficient drug design method with high-performance computers.

    PubMed

    Yamashita, Takefumi; Ueda, Akihiko; Mitsui, Takashi; Tomonaga, Atsushi; Matsumoto, Shunji; Kodama, Tatsuhiko; Fujitani, Hideaki

    2015-01-01

    In this study, we propose a supercomputer-assisted drug design approach involving all-atom molecular dynamics (MD)-based binding free energy prediction after the traditional design/selection step. Because this prediction is more accurate than the empirical binding affinity scoring of the traditional approach, the compounds selected by the MD-based prediction should be better drug candidates. In this study, we discuss the applicability of the new approach using two examples. Although the MD-based binding free energy prediction has a huge computational cost, it is feasible with the latest 10 petaflop-scale computer. The supercomputer-assisted drug design approach also involves two important feedback procedures: The first feedback is generated from the MD-based binding free energy prediction step to the drug design step. While the experimental feedback usually provides binding affinities of tens of compounds at one time, the supercomputer allows us to simultaneously obtain the binding free energies of hundreds of compounds. Because the number of calculated binding free energies is sufficiently large, the compounds can be classified into different categories whose properties will aid in the design of the next generation of drug candidates. The second feedback, which occurs from the experiments to the MD simulations, is important to validate the simulation parameters. To demonstrate this, we compare the binding free energies calculated with various force fields to the experimental ones. The results indicate that the prediction will not be very successful, if we use an inaccurate force field. By improving/validating such simulation parameters, the next prediction can be made more accurate.

  3. Benchmarking NLDAS-2 Soil Moisture and Evapotranspiration to Separate Uncertainty Contributions

    NASA Technical Reports Server (NTRS)

    Nearing, Grey S.; Mocko, David M.; Peters-Lidard, Christa D.; Kumar, Sujay V.; Xia, Youlong

    2016-01-01

    Model benchmarking allows us to separate uncertainty in model predictions caused 1 by model inputs from uncertainty due to model structural error. We extend this method with a large-sample approach (using data from multiple field sites) to measure prediction uncertainty caused by errors in (i) forcing data, (ii) model parameters, and (iii) model structure, and use it to compare the efficiency of soil moisture state and evapotranspiration flux predictions made by the four land surface models in the North American Land Data Assimilation System Phase 2 (NLDAS-2). Parameters dominated uncertainty in soil moisture estimates and forcing data dominated uncertainty in evapotranspiration estimates; however, the models themselves used only a fraction of the information available to them. This means that there is significant potential to improve all three components of the NLDAS-2 system. In particular, continued work toward refining the parameter maps and look-up tables, the forcing data measurement and processing, and also the land surface models themselves, has potential to result in improved estimates of surface mass and energy balances.

  4. Benchmarking NLDAS-2 Soil Moisture and Evapotranspiration to Separate Uncertainty Contributions

    PubMed Central

    Nearing, Grey S.; Mocko, David M.; Peters-Lidard, Christa D.; Kumar, Sujay V.; Xia, Youlong

    2018-01-01

    Model benchmarking allows us to separate uncertainty in model predictions caused by model inputs from uncertainty due to model structural error. We extend this method with a “large-sample” approach (using data from multiple field sites) to measure prediction uncertainty caused by errors in (i) forcing data, (ii) model parameters, and (iii) model structure, and use it to compare the efficiency of soil moisture state and evapotranspiration flux predictions made by the four land surface models in the North American Land Data Assimilation System Phase 2 (NLDAS-2). Parameters dominated uncertainty in soil moisture estimates and forcing data dominated uncertainty in evapotranspiration estimates; however, the models themselves used only a fraction of the information available to them. This means that there is significant potential to improve all three components of the NLDAS-2 system. In particular, continued work toward refining the parameter maps and look-up tables, the forcing data measurement and processing, and also the land surface models themselves, has potential to result in improved estimates of surface mass and energy balances. PMID:29697706

  5. Benchmarking NLDAS-2 Soil Moisture and Evapotranspiration to Separate Uncertainty Contributions.

    PubMed

    Nearing, Grey S; Mocko, David M; Peters-Lidard, Christa D; Kumar, Sujay V; Xia, Youlong

    2016-03-01

    Model benchmarking allows us to separate uncertainty in model predictions caused by model inputs from uncertainty due to model structural error. We extend this method with a "large-sample" approach (using data from multiple field sites) to measure prediction uncertainty caused by errors in (i) forcing data, (ii) model parameters, and (iii) model structure, and use it to compare the efficiency of soil moisture state and evapotranspiration flux predictions made by the four land surface models in the North American Land Data Assimilation System Phase 2 (NLDAS-2). Parameters dominated uncertainty in soil moisture estimates and forcing data dominated uncertainty in evapotranspiration estimates; however, the models themselves used only a fraction of the information available to them. This means that there is significant potential to improve all three components of the NLDAS-2 system. In particular, continued work toward refining the parameter maps and look-up tables, the forcing data measurement and processing, and also the land surface models themselves, has potential to result in improved estimates of surface mass and energy balances.

  6. Penetration electric fields: A Volland Stern approach

    NASA Astrophysics Data System (ADS)

    Burke, William J.

    2007-07-01

    This paper reformulates the Volland Stern model, separating contributions from corotation and convection to predict electric field penetration of the inner magnetosphere using data from the Advanced Composition Explorer (ACE) satellite. In the absence of shielding, the model electric field is EVS=ΦPC/2LYRE, where ΦPC is the polar cap potential and 2LYRE is the width of the magnetosphere along the dawn dusk meridian. ΦPC is estimated from the interplanetary electric field (IEF) and the dynamic pressure of the solar wind (PSW); values of LY were approximated using PSW and simple force-balance considerations. ACE measurements on 16 17 April 2002 were then used to calculate EVS for comparison with the eastward electric field component (EJφ) detected by the incoherent scatter radar at Jicamarca, Peru. While the interplanetary magnetic field (IMF) was southward, the model predicted observed ratios of EVS/IEF. During intervals of northward IMF, EJφ turned westward suggesting that a northward IMF BZ system of field-aligned currents affected the electrodynamics of the dayside ionosphere on rapid time scales.

  7. Mass effects and internal space geometry in triatomic reaction dynamics

    NASA Astrophysics Data System (ADS)

    Yanao, Tomohiro; Koon, Wang S.; Marsden, Jerrold E.

    2006-05-01

    The effect of the distribution of mass in triatomic reaction dynamics is analyzed using the geometry of the associated internal space. Atomic masses are appropriately incorporated into internal coordinates as well as the associated non-Euclidean internal space metric tensor after a separation of the rotational degrees of freedom. Because of the non-Euclidean nature of the metric in the internal space, terms such as connection coefficients arise in the internal equations of motion, which act as velocity-dependent forces in a coordinate chart. By statistically averaging these terms, an effective force field is deduced, which accounts for the statistical tendency of geodesics in the internal space. This force field is shown to play a crucial role in determining mass-related branching ratios of isomerization and dissociation dynamics of a triatomic molecule. The methodology presented can be useful for qualitatively predicting branching ratios in general triatomic reactions, and may be applied to the study of isotope effects.

  8. Rigorous force field optimization principles based on statistical distance minimization

    DOE PAGES

    Vlcek, Lukas; Chialvo, Ariel A.

    2015-10-12

    We use the concept of statistical distance to define a measure of distinguishability between a pair of statistical mechanical systems, i.e., a model and its target, and show that its minimization leads to general convergence of the model’s static measurable properties to those of the target. Here we exploit this feature to define a rigorous basis for the development of accurate and robust effective molecular force fields that are inherently compatible with coarse-grained experimental data. The new model optimization principles and their efficient implementation are illustrated through selected examples, whose outcome demonstrates the higher robustness and predictive accuracy of themore » approach compared to other currently used methods, such as force matching and relative entropy minimization. We also discuss relations between the newly developed principles and established thermodynamic concepts, which include the Gibbs-Bogoliubov inequality and the thermodynamic length.« less

  9. Field-scale prediction of enhanced DNAPL dissolution based on partitioning tracers.

    PubMed

    Wang, Fang; Annable, Michael D; Jawitz, James W

    2013-09-01

    The equilibrium streamtube model (EST) has demonstrated the ability to accurately predict dense nonaqueous phase liquid (DNAPL) dissolution in laboratory experiments and numerical simulations. Here the model is applied to predict DNAPL dissolution at a tetrachloroethylene (PCE)-contaminated dry cleaner site, located in Jacksonville, Florida. The EST model is an analytical solution with field-measurable input parameters. Measured data from a field-scale partitioning tracer test were used to parameterize the EST model and the predicted PCE dissolution was compared to measured data from an in-situ ethanol flood. In addition, a simulated partitioning tracer test from a calibrated, three-dimensional, spatially explicit multiphase flow model (UTCHEM) was also used to parameterize the EST analytical solution. The EST ethanol prediction based on both the field partitioning tracer test and the simulation closely matched the total recovery well field ethanol data with Nash-Sutcliffe efficiency E=0.96 and 0.90, respectively. The EST PCE predictions showed a peak shift to earlier arrival times for models based on either field-measured or simulated partitioning tracer tests, resulting in poorer matches to the field PCE data in both cases. The peak shifts were concluded to be caused by well screen interval differences between the field tracer test and ethanol flood. Both the EST model and UTCHEM were also used to predict PCE aqueous dissolution under natural gradient conditions, which has a much less complex flow pattern than the forced-gradient double five spot used for the ethanol flood. The natural gradient EST predictions based on parameters determined from tracer tests conducted with a complex flow pattern underestimated the UTCHEM-simulated natural gradient total mass removal by 12% after 170 pore volumes of water flushing indicating that some mass was not detected by the tracers likely due to stagnation zones in the flow field. These findings highlight the important influence of well configuration and the associated flow patterns on dissolution. © 2013.

  10. Field-scale prediction of enhanced DNAPL dissolution based on partitioning tracers

    NASA Astrophysics Data System (ADS)

    Wang, Fang; Annable, Michael D.; Jawitz, James W.

    2013-09-01

    The equilibrium streamtube model (EST) has demonstrated the ability to accurately predict dense nonaqueous phase liquid (DNAPL) dissolution in laboratory experiments and numerical simulations. Here the model is applied to predict DNAPL dissolution at a tetrachloroethylene (PCE)-contaminated dry cleaner site, located in Jacksonville, Florida. The EST model is an analytical solution with field-measurable input parameters. Measured data from a field-scale partitioning tracer test were used to parameterize the EST model and the predicted PCE dissolution was compared to measured data from an in-situ ethanol flood. In addition, a simulated partitioning tracer test from a calibrated, three-dimensional, spatially explicit multiphase flow model (UTCHEM) was also used to parameterize the EST analytical solution. The EST ethanol prediction based on both the field partitioning tracer test and the simulation closely matched the total recovery well field ethanol data with Nash-Sutcliffe efficiency E = 0.96 and 0.90, respectively. The EST PCE predictions showed a peak shift to earlier arrival times for models based on either field-measured or simulated partitioning tracer tests, resulting in poorer matches to the field PCE data in both cases. The peak shifts were concluded to be caused by well screen interval differences between the field tracer test and ethanol flood. Both the EST model and UTCHEM were also used to predict PCE aqueous dissolution under natural gradient conditions, which has a much less complex flow pattern than the forced-gradient double five spot used for the ethanol flood. The natural gradient EST predictions based on parameters determined from tracer tests conducted with a complex flow pattern underestimated the UTCHEM-simulated natural gradient total mass removal by 12% after 170 pore volumes of water flushing indicating that some mass was not detected by the tracers likely due to stagnation zones in the flow field. These findings highlight the important influence of well configuration and the associated flow patterns on dissolution.

  11. Magnetostrophic balance as the optimal state for turbulent magnetoconvection

    PubMed Central

    King, Eric M.; Aurnou, Jonathan M.

    2015-01-01

    The magnetic fields of Earth and other planets are generated by turbulent convection in the vast oceans of liquid metal within them. Although direct observation is not possible, this liquid metal circulation is thought to be dominated by the controlling influences of planetary rotation and magnetic fields through the Coriolis and Lorentz forces. Theory famously predicts that planetary dynamo systems naturally settle into the so-called magnetostrophic state, where the Coriolis and Lorentz forces partially cancel, and convection is optimally efficient. Although this magnetostrophic theory correctly predicts the strength of Earth’s magnetic field, no laboratory experiments have reached the magnetostrophic regime in turbulent liquid metal convection. Furthermore, computational dynamo simulations have as yet failed to produce a magnetostrophic dynamo, which has led some to question the existence of the magnetostrophic state. Here, we present results from the first, to our knowledge, turbulent, magnetostrophic convection experiments using the liquid metal gallium. We find that turbulent convection in the magnetostrophic regime is, in fact, maximally efficient. The experimental results clarify these previously disparate results, suggesting that the dynamically optimal magnetostrophic state is the natural expression of turbulent planetary dynamo systems. PMID:25583512

  12. Molecular dynamics simulations of highly crowded amino acid solutions: comparisons of eight different force field combinations with experiment and with each other

    PubMed Central

    Andrews, Casey T.

    2013-01-01

    Although it is now commonly accepted that the highly crowded conditions encountered inside biological cells have the potential to significantly alter the thermodynamic properties of biomolecules, it is not known to what extent the thermodynamics of fundamental types of interactions such as salt bridges and hydrophobic interactions are strengthened or weakened by high biomolecular concentrations. As one way of addressing this question we have performed a series of all-atom explicit solvent molecular dynamics (MD) simulations to investigate the effect of increasing solute concentration on the behavior of four types of zwitterionic amino acids in aqueous solution. We have simulated systems containing glycine, valine, phenylalanine or asparagine at concentrations of 50, 100, 200 and 300 mg/ml. Each molecular system has been simulated for 1 μs in order to obtain statistically converged estimates of thermodynamic parameters, and each has been conducted with 8 different force fields and water models; the combined simulation time is 128 μs. The density, viscosity, and dielectric increments of the four amino acids calculated from the simulations have been compared to corresponding experimental measurements. While all of the force fields perform well at reproducing the density increments, discrepancies for the viscosity and dielectric increments raise questions both about the accuracy of the simulation force fields and, in certain cases, the experimental data. We also observe large differences between the various force fields' descriptions of the interaction thermodynamics of salt bridges and, surprisingly, these differences also lead to qualitatively different predictions of their dependences on solute concentration. For the aliphatic interactions of valine sidechains, fewer differences are observed between the force fields, but significant differences are again observed for aromatic interactions of phenylalanine sidechains. Taken together, the results highlight the potential power of using explicit-solvent simulation methods to understand behavior in concentrated systems but also hint at potential difficulties in using these methods to obtain consistent views of behavior in intracellular environments. PMID:24409104

  13. Evaluation of Interfacial Forces and Bubble-Induced Turbulence Using Direct Numerical Simulation

    NASA Astrophysics Data System (ADS)

    Feng, Jinyong

    High fidelity prediction of multiphase flows is important in a wide range of engineering applications. While some multiphase flow scenarios can be successfully modeled, many questions remain unanswered regarding the interaction between the bubbles and the turbulence, and present significant challenges in the development of closure laws for the multiphase computational fluid dynamics (M-CFD) models. To address these challenges, we propose to evaluate the interfacial forces and bubble-induced turbulence in both laminar and turbulent flow field with direct numerical simulation (DNS) approach. Advanced finite-element based flow solver (PHASTA) with level-set interface tracking method is utilized for these studies. The proportional-integral-derivative (PID) controller is adopted to ensure the statistically steady state bubble position and perform the detailed study of the turbulent field around the bubble. Selected numerical capabilities and post-processing codes are developed to achieve the research goals. The interface tracking approach is verified and validated by comparing the interfacial forces with the experiment-based data and correlations. The sign change of transverse lift force is observed as the bubble becomes more deformable. A new correlation is proposed to predict the behavior of the drag coefficient over the wide range of conditions. The wall effect on the interfacial forces are also investigated. In homogeneous turbulent flow, the effect of bubble deformability, turbulent intensity and relative velocity on the bubble-induced turbulence are analyzed. The presented method and novel results will complement the experimental database, provide insight to the bubbleinduced turbulence mechanism and help the development of M-CFD closure models.

  14. Microsecond-Scale MD Simulations of HIV-1 DIS Kissing-Loop Complexes Predict Bulged-In Conformation of the Bulged Bases and Reveal Interesting Differences between Available Variants of the AMBER RNA Force Fields.

    PubMed

    Havrila, Marek; Zgarbová, Marie; Jurečka, Petr; Banáš, Pavel; Krepl, Miroslav; Otyepka, Michal; Šponer, Jiří

    2015-12-10

    We report an extensive set of explicit solvent molecular dynamics (MD) simulations (∼25 μs of accumulated simulation time) of the RNA kissing-loop complex of the HIV-1 virus initiation dimerization site. Despite many structural investigations by X-ray, NMR, and MD techniques, the position of the bulged purines of the kissing complex has not been unambiguously resolved. The X-ray structures consistently show bulged-out positions of the unpaired bases, while several NMR studies show bulged-in conformations. The NMR studies are, however, mutually inconsistent regarding the exact orientations of the bases. The earlier simulation studies predicted the bulged-out conformation; however, this finding could have been biased by the short simulation time scales. Our microsecond-long simulations reveal that all unpaired bases of the kissing-loop complex stay preferably in the interior of the kissing-loop complex. The MD results are discussed in the context of the available experimental data and we suggest that both conformations are biochemically relevant. We also show that MD provides a quite satisfactory description of this RNA system, contrasting recent reports of unsatisfactory performance of the RNA force fields for smaller systems such as tetranucleotides and tetraloops. We explain this by the fact that the kissing complex is primarily stabilized by an extensive network of Watson-Crick interactions which are rather well described by the force fields. We tested several different sets of water/ion parameters but they all lead to consistent results. However, we demonstrate that a recently suggested modification of van der Waals interactions of the Cornell et al. force field deteriorates the description of the kissing complex by the loss of key stacking interactions stabilizing the interhelical junction and excessive hydrogen-bonding interactions.

  15. Swimming in a granular frictional fluid

    NASA Astrophysics Data System (ADS)

    Goldman, Daniel

    2012-02-01

    X-ray imaging reveals that the sandfish lizard swims within granular media (sand) using axial body undulations to propel itself without the use of limbs. To model the locomotion of the sandfish, we previously developed an empirical resistive force theory (RFT), a numerical sandfish model coupled to an experimentally validated Discrete Element Method (DEM) model of the granular medium, and a physical robot model. The models reveal that only grains close to the swimmer are fluidized, and that the thrust and drag forces are dominated by frictional interactions among grains and the intruder. In this talk I will use these models to discuss principles of swimming within these granular ``frictional fluids". The empirical drag force laws are measured as the steady-state forces on a small cylinder oriented at different angles relative to the displacement direction. Unlike in Newtonian fluids, resistive forces are independent of speed. Drag forces resemble those in viscous fluids while the ratio of thrust to drag forces is always larger in the granular media than in viscous fluids. Using the force laws as inputs, the RFT overestimates swimming speed by approximately 20%. The simulation reveals that this is related to the non-instantaneous increase in force during reversals of body segments. Despite the inaccuracy of the steady-state assumption, we use the force laws and a recently developed geometric mechanics theory to predict optimal gaits for a model system that has been well-studied in Newtonian fluids, the three-link swimmer. The combination of the geometric theory and the force laws allows us to generate a kinematic relationship between the swimmer's shape and position velocities and to construct connection vector field and constraint curvature function visualizations of the system dynamics. From these we predict optimal gaits for forward, lateral and rotational motion. Experiment and simulation are in accord with the theoretical prediction, and demonstrate that swimming in sand can be viewed as movement in a localized frictional fluid.

  16. Perspectives on the simulation of protein–surface interactions using empirical force field methods

    PubMed Central

    Latour, Robert A.

    2014-01-01

    Protein–surface interactions are of fundamental importance for a broad range of applications in the fields of biomaterials and biotechnology. Present experimental methods are limited in their ability to provide a comprehensive depiction of these interactions at the atomistic level. In contrast, empirical force field based simulation methods inherently provide the ability to predict and visualize protein–surface interactions with full atomistic detail. These methods, however, must be carefully developed, validated, and properly applied before confidence can be placed in results from the simulations. In this perspectives paper, I provide an overview of the critical aspects that I consider being of greatest importance for the development of these methods, with a focus on the research that my combined experimental and molecular simulation groups have conducted over the past decade to address these issues. These critical issues include the tuning of interfacial force field parameters to accurately represent the thermodynamics of interfacial behavior, adequate sampling of these types of complex molecular systems to generate results that can be comparable with experimental data, and the generation of experimental data that can be used for simulation results evaluation and validation. PMID:25028242

  17. A dynamic magnetic tension force as the cause of failed solar eruptions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Myers, Clayton E.; Yamada, Masaaki; Ji, Hantao

    Coronal mass ejections are solar eruptions driven by a sudden release of magnetic energy stored in the Sun's corona. In many cases, this magnetic energy is stored in long-lived, arched structures called magnetic flux ropes. When a flux rope destabilizes, it can either erupt and produce a coronal mass ejection or fail and collapse back towards the Sun. The prevailing belief is that the outcome of a given event is determined by a magnetohydrodynamic force imbalance called the torus instability. This belief is challenged, however, by observations indicating that torus-unstable flux ropes sometimes fail to erupt. This contradiction has notmore » yet been resolved because of a lack of coronal magnetic field measurements and the limitations of idealized numerical modelling. In this paper, we report the results of a laboratory experiment that reveal a previously unknown eruption criterion below which torus-unstable flux ropes fail to erupt. We find that such 'failed torus' events occur when the guide magnetic field (that is, the ambient field that runs toroidally along the flux rope) is strong enough to prevent the flux rope from kinking. Under these conditions, the guide field interacts with electric currents in the flux rope to produce a dynamic toroidal field tension force that halts the eruption. Lastly, this magnetic tension force is missing from existing eruption models, which is why such models cannot explain or predict failed torus events.« less

  18. A dynamic magnetic tension force as the cause of failed solar eruptions

    DOE PAGES

    Myers, Clayton E.; Yamada, Masaaki; Ji, Hantao; ...

    2015-12-23

    Coronal mass ejections are solar eruptions driven by a sudden release of magnetic energy stored in the Sun's corona. In many cases, this magnetic energy is stored in long-lived, arched structures called magnetic flux ropes. When a flux rope destabilizes, it can either erupt and produce a coronal mass ejection or fail and collapse back towards the Sun. The prevailing belief is that the outcome of a given event is determined by a magnetohydrodynamic force imbalance called the torus instability. This belief is challenged, however, by observations indicating that torus-unstable flux ropes sometimes fail to erupt. This contradiction has notmore » yet been resolved because of a lack of coronal magnetic field measurements and the limitations of idealized numerical modelling. In this paper, we report the results of a laboratory experiment that reveal a previously unknown eruption criterion below which torus-unstable flux ropes fail to erupt. We find that such 'failed torus' events occur when the guide magnetic field (that is, the ambient field that runs toroidally along the flux rope) is strong enough to prevent the flux rope from kinking. Under these conditions, the guide field interacts with electric currents in the flux rope to produce a dynamic toroidal field tension force that halts the eruption. Lastly, this magnetic tension force is missing from existing eruption models, which is why such models cannot explain or predict failed torus events.« less

  19. Weber's gravitational force as static weak field approximation

    NASA Astrophysics Data System (ADS)

    Tiandho, Yuant

    2016-02-01

    Weber's gravitational force (WGF) is one of gravitational model that can accommodate a non-static system because it depends not only on the distance but also on the velocity and the acceleration. Unlike Newton's law of gravitation, WGF can predict the anomalous of Mercury and gravitational bending of light near massive object very well. Then, some researchers use WGF as an alternative model of gravitation and propose a new mechanics theory namely the relational mechanics theory. However, currently we have known that the theory of general relativity which proposed by Einstein can explain gravity with very accurate. Through the static weak field approximation for the non-relativistic object, we also have known that the theory of general relativity will reduce to Newton's law of gravity. In this work, we expand the static weak field approximation that compatible with relativistic object and we obtain a force equation which correspond to WGF. Therefore, WGF is more precise than Newton's gravitational law. The static-weak gravitational field that we used is a solution of the Einstein's equation in the vacuum that satisfy the linear field approximation. The expression of WGF with ξ = 1 and satisfy the requirement of energy conservation are obtained after resolving the geodesic equation. By this result, we can conclude that WGF can be derived from the general relativity.

  20. Predicting the Magnetic Field of Earth-impacting CMEs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kay, C.; Gopalswamy, N.; Reinard, A.

    Predicting the impact of coronal mass ejections (CMEs) and the southward component of their magnetic field is one of the key goals of space weather forecasting. We present a new model, the ForeCAT In situ Data Observer (FIDO), for predicting the in situ magnetic field of CMEs. We first simulate a CME using ForeCAT, a model for CME deflection and rotation resulting from the background solar magnetic forces. Using the CME position and orientation from ForeCAT, we then determine the passage of the CME over a simulated spacecraft. We model the CME’s magnetic field using a force-free flux rope andmore » we determine the in situ magnetic profile at the synthetic spacecraft. We show that FIDO can reproduce the general behavior of four observed CMEs. FIDO results are very sensitive to the CME’s position and orientation, and we show that the uncertainty in a CME’s position and orientation from coronagraph images corresponds to a wide range of in situ magnitudes and even polarities. This small range of positions and orientations also includes CMEs that entirely miss the satellite. We show that two derived parameters (the normalized angular distance between the CME nose and satellite position and the angular difference between the CME tilt and the position angle of the satellite with respect to the CME nose) can be used to reliably determine whether an impact or miss occurs. We find that the same criteria separate the impacts and misses for cases representing all four observed CMEs.« less

  1. Effluent monitoring of the December 10, 1974, Titan 3-E launch at Air Force Eastern Test Range, Florida

    NASA Technical Reports Server (NTRS)

    Wornom, D. E.; Woods, D. C.

    1978-01-01

    Surface and airborne field measurements of the cloud behavior and effluent dispersion from a solid rocket motor launch vehicle are presented. The measurements were obtained as part of a continuing launch vehicle effluent monitoring program to obtain experimental field measurements in order to evaluate a model used to predict launch vehicle environmental impact. Results show that the model tends to overpredict effluent levels.

  2. Dynamics of elastic interactions in soft and biological matter.

    PubMed

    Yuval, Janni; Safran, Samuel A

    2013-04-01

    Cells probe their mechanical environment and can change the organization of their cytoskeletons when the elastic and viscous properties of their environment are modified. We use a model in which the forces exerted by small, contractile acto-myosin filaments (e.g., nascent stress fibers in stem cells) on the extracellular matrix are modeled as local force dipoles. In some cases, the strain field caused by these force dipoles propagates quickly enough so that only static elastic interactions need be considered. On the other hand, in the case of significant energy dissipation, strain propagation is slower and may be eliminated completely by the relaxation of the cellular cytoskeleton (e.g., by cross-link dissociation). Here, we consider several dissipative mechanisms that affect the propagation of the strain field in adhered cells and consider these effects on the interaction between force dipoles and their resulting mutual orientations. This is a first step in understanding the development of orientational (nematic) or layering (smectic) order in the cytoskeleton. We use the theory to estimate the propagation time of the strain fields over a cellular distance for different mechanisms and find that in some cases it can be of the order of seconds, thus competing with the cytoskeletal relaxation time. Furthermore, for a simple system of two force dipoles, we predict that in some cases the orientation of force dipoles might change significantly with time, e.g., for short times the dipoles exhibit parallel alignment while for later times they align perpendicularly.

  3. Methods and Research for Multi-Component Cutting Force Sensing Devices and Approaches in Machining

    PubMed Central

    Liang, Qiaokang; Zhang, Dan; Wu, Wanneng; Zou, Kunlin

    2016-01-01

    Multi-component cutting force sensing systems in manufacturing processes applied to cutting tools are gradually becoming the most significant monitoring indicator. Their signals have been extensively applied to evaluate the machinability of workpiece materials, predict cutter breakage, estimate cutting tool wear, control machine tool chatter, determine stable machining parameters, and improve surface finish. Robust and effective sensing systems with capability of monitoring the cutting force in machine operations in real time are crucial for realizing the full potential of cutting capabilities of computer numerically controlled (CNC) tools. The main objective of this paper is to present a brief review of the existing achievements in the field of multi-component cutting force sensing systems in modern manufacturing. PMID:27854322

  4. Methods and Research for Multi-Component Cutting Force Sensing Devices and Approaches in Machining.

    PubMed

    Liang, Qiaokang; Zhang, Dan; Wu, Wanneng; Zou, Kunlin

    2016-11-16

    Multi-component cutting force sensing systems in manufacturing processes applied to cutting tools are gradually becoming the most significant monitoring indicator. Their signals have been extensively applied to evaluate the machinability of workpiece materials, predict cutter breakage, estimate cutting tool wear, control machine tool chatter, determine stable machining parameters, and improve surface finish. Robust and effective sensing systems with capability of monitoring the cutting force in machine operations in real time are crucial for realizing the full potential of cutting capabilities of computer numerically controlled (CNC) tools. The main objective of this paper is to present a brief review of the existing achievements in the field of multi-component cutting force sensing systems in modern manufacturing.

  5. First Use of Synoptic Vector Magnetograms for Global Nonlinear, Force-Free Coronal Magnetic Field Models

    NASA Technical Reports Server (NTRS)

    Tadesse, T.; Wiegelmann, T.; Gosain, S.; MacNeice, P.; Pevtsov, A. A.

    2014-01-01

    Context. The magnetic field permeating the solar atmosphere is generally thought to provide the energy for much of the activity seen in the solar corona, such as flares, coronal mass ejections (CMEs), etc. To overcome the unavailability of coronal magnetic field measurements, photospheric magnetic field vector data can be used to reconstruct the coronal field. Currently, there are several modelling techniques being used to calculate three-dimensional field lines into the solar atmosphere. Aims. For the first time, synoptic maps of a photospheric-vector magnetic field synthesized from the vector spectromagnetograph (VSM) on Synoptic Optical Long-term Investigations of the Sun (SOLIS) are used to model the coronal magnetic field and estimate free magnetic energy in the global scale. The free energy (i.e., the energy in excess of the potential field energy) is one of the main indicators used in space weather forecasts to predict the eruptivity of active regions. Methods. We solve the nonlinear force-free field equations using an optimization principle in spherical geometry. The resulting threedimensional magnetic fields are used to estimate the magnetic free energy content E(sub free) = E(sub nlfff) - E(sub pot), which is the difference of the magnetic energies between the nonpotential field and the potential field in the global solar corona. For comparison, we overlay the extrapolated magnetic field lines with the extreme ultraviolet (EUV) observations by the atmospheric imaging assembly (AIA) on board the Solar Dynamics Observatory (SDO). Results. For a single Carrington rotation 2121, we find that the global nonlinear force-free field (NLFFF) magnetic energy density is 10.3% higher than the potential one. Most of this free energy is located in active regions.

  6. Validation of Vehicle Panel/Equipment Response from Diffuse Acoustic Field Excitation Using Spatially Correlated Transfer Function Approach

    NASA Technical Reports Server (NTRS)

    Smith, Andrew; LaVerde, Bruce; Fulcher, Clay; Hunt, Ron

    2012-01-01

    An approach for predicting the vibration, strain, and force responses of a flight-like vehicle panel assembly to acoustic pressures is presented. Important validation for the approach is provided by comparison to ground test measurements in a reverberant chamber. The test article and the corresponding analytical model were assembled in several configurations to demonstrate the suitability of the approach for response predictions when the vehicle panel is integrated with equipment. Critical choices in the analysis necessary for convergence of the predicted and measured responses are illustrated through sensitivity studies. The methodology includes representation of spatial correlation of the pressure field over the panel surface. Therefore, it is possible to demonstrate the effects of hydrodynamic coincidence in the response. The sensitivity to pressure patch density clearly illustrates the onset of coincidence effects on the panel response predictions.

  7. Active electromagnetic invisibility cloaking and radiation force cancellation

    NASA Astrophysics Data System (ADS)

    Mitri, F. G.

    2018-03-01

    This investigation shows that an active emitting electromagnetic (EM) Dirichlet source (i.e., with axial polarization of the electric field) in a homogeneous non-dissipative/non-absorptive medium placed near a perfectly conducting boundary can render total invisibility (i.e. zero extinction cross-section or efficiency) in addition to a radiation force cancellation on its surface. Based upon the Poynting theorem, the mathematical expression for the extinction, radiation and amplification cross-sections (or efficiencies) are derived using the partial-wave series expansion method in cylindrical coordinates. Moreover, the analysis is extended to compute the self-induced EM radiation force on the active source, resulting from the waves reflected by the boundary. The numerical results predict the generation of a zero extinction efficiency, achieving total invisibility, in addition to a radiation force cancellation which depend on the source size, the distance from the boundary and the associated EM mode order of the active source. Furthermore, an attractive EM pushing force on the active source directed toward the boundary or a repulsive pulling one pointing away from it can arise accordingly. The numerical predictions and computational results find potential applications in the design and development of EM cloaking devices, invisibility and stealth technologies.

  8. Friction laws at the nanoscale.

    PubMed

    Mo, Yifei; Turner, Kevin T; Szlufarska, Izabela

    2009-02-26

    Macroscopic laws of friction do not generally apply to nanoscale contacts. Although continuum mechanics models have been predicted to break down at the nanoscale, they continue to be applied for lack of a better theory. An understanding of how friction force depends on applied load and contact area at these scales is essential for the design of miniaturized devices with optimal mechanical performance. Here we use large-scale molecular dynamics simulations with realistic force fields to establish friction laws in dry nanoscale contacts. We show that friction force depends linearly on the number of atoms that chemically interact across the contact. By defining the contact area as being proportional to this number of interacting atoms, we show that the macroscopically observed linear relationship between friction force and contact area can be extended to the nanoscale. Our model predicts that as the adhesion between the contacting surfaces is reduced, a transition takes place from nonlinear to linear dependence of friction force on load. This transition is consistent with the results of several nanoscale friction experiments. We demonstrate that the breakdown of continuum mechanics can be understood as a result of the rough (multi-asperity) nature of the contact, and show that roughness theories of friction can be applied at the nanoscale.

  9. Kansas Department of Transportation column expert : ultimate shear capacity of circular columns using the simplified modified compression field theory.

    DOT National Transportation Integrated Search

    2015-09-01

    The importance of the analysis of circular columns to accurately predict their ultimate confined : capacity under shear-flexure-axial force interaction domain is recognized in light of the extreme load event : imposed by the current American Associat...

  10. Optimization of Protein Backbone Dihedral Angles by Means of Hamiltonian Reweighting

    PubMed Central

    2016-01-01

    Molecular dynamics simulations depend critically on the accuracy of the underlying force fields in properly representing biomolecules. Hence, it is crucial to validate the force-field parameter sets in this respect. In the context of the GROMOS force field, this is usually achieved by comparing simulation data to experimental observables for small molecules. In this study, we develop new amino acid backbone dihedral angle potential energy parameters based on the widely used 54A7 parameter set by matching to experimental J values and secondary structure propensity scales. In order to find the most appropriate backbone parameters, close to 100 000 different combinations of parameters have been screened. However, since the sheer number of combinations considered prohibits actual molecular dynamics simulations for each of them, we instead predicted the values for every combination using Hamiltonian reweighting. While the original 54A7 parameter set fails to reproduce the experimental data, we are able to provide parameters that match significantly better. However, to ensure applicability in the context of larger peptides and full proteins, further studies have to be undertaken. PMID:27559757

  11. Development of reactive force fields using ab initio molecular dynamics simulation minimally biased to experimental data

    NASA Astrophysics Data System (ADS)

    Chen, Chen; Arntsen, Christopher; Voth, Gregory A.

    2017-10-01

    Incorporation of quantum mechanical electronic structure data is necessary to properly capture the physics of many chemical processes. Proton hopping in water, which involves rearrangement of chemical and hydrogen bonds, is one such example of an inherently quantum mechanical process. Standard ab initio molecular dynamics (AIMD) methods, however, do not yet accurately predict the structure of water and are therefore less than optimal for developing force fields. We have instead utilized a recently developed method which minimally biases AIMD simulations to match limited experimental data to develop novel multiscale reactive molecular dynamics (MS-RMD) force fields by using relative entropy minimization. In this paper, we present two new MS-RMD models using such a parameterization: one which employs water with harmonic internal vibrations and another which uses anharmonic water. We show that the newly developed MS-RMD models very closely reproduce the solvation structure of the hydrated excess proton in the target AIMD data. We also find that the use of anharmonic water increases proton hopping, thereby increasing the proton diffusion constant.

  12. Interactions between Nanoparticles and Polymer Brushes: Molecular Dynamics Simulations and Self-consistent Field Theory Calculations

    NASA Astrophysics Data System (ADS)

    Cheng, Shengfeng; Wen, Chengyuan; Egorov, Sergei

    2015-03-01

    Molecular dynamics simulations and self-consistent field theory calculations are employed to study the interactions between a nanoparticle and a polymer brush at various densities of chains grafted to a plane. Simulations with both implicit and explicit solvent are performed. In either case the nanoparticle is loaded to the brush at a constant velocity. Then a series of simulations are performed to compute the force exerted on the nanoparticle that is fixed at various distances from the grafting plane. The potential of mean force is calculated and compared to the prediction based on a self-consistent field theory. Our simulations show that the explicit solvent leads to effects that are not captured in simulations with implicit solvent, indicating the importance of including explicit solvent in molecular simulations of such systems. Our results also demonstrate an interesting correlation between the force on the nanoparticle and the density profile of the brush. We gratefully acknowledge the support of NVIDIA Corporation with the donation of the Tesla K40 GPU used for this research.

  13. Investigation of base pairs containing oxidized guanine using ab initio method and ABEEMσπ polarizable force field.

    PubMed

    Liu, Cui; Wang, Yang; Zhao, Dongxia; Gong, Lidong; Yang, Zhongzhi

    2014-02-01

    The integrity of the genetic information is constantly threatened by oxidizing agents. Oxidized guanines have all been linked to different types of cancers. Theoretical approaches supplement the assorted experimental techniques, and bring new sight and opportunities to investigate the underlying microscopic mechanics. Unfortunately, there is no specific force field to DNA system including oxidized guanines. Taking high level ab initio calculations as benchmark, we developed the ABEEMσπ fluctuating charge force field, which uses multiple fluctuating charges per atom. And it was applied to study the energies, structures and mutations of base pairs containing oxidized guanines. The geometries were obtained in reference to other studies or using B3LYP/6-31+G* level optimization, which is more rational and timesaving among 24 quantum mechanical methods selected and tested by this work. The energies were determined at MP2/aug-cc-pVDZ level with BSSE corrections. Results show that the constructed potential function can accurately simulate the change of H-bond and the buckled angle formed by two base planes induced by oxidized guanine, and it provides reliable information of hydrogen bonding, stacking interaction and the mutation processes. The performance of ABEEMσπ polarizable force field in predicting the bond lengths, bond angles, dipole moments etc. is generally better than those of the common force fields. And the accuracy of ABEEMσπ PFF is close to that of the MP2 method. This shows that ABEEMσπ model is a reliable choice for further research of dynamics behavior of DNA fragment including oxidized guanine. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. Quantitative study of FORC diagrams in thermally corrected Stoner- Wohlfarth nanoparticles systems

    NASA Astrophysics Data System (ADS)

    De Biasi, E.; Curiale, J.; Zysler, R. D.

    2016-12-01

    The use of FORC diagrams is becoming increasingly popular among researchers devoted to magnetism and magnetic materials. However, a thorough interpretation of this kind of diagrams, in order to achieve quantitative information, requires an appropriate model of the studied system. For that reason most of the FORC studies are used for a qualitative analysis. In magnetic systems thermal fluctuations "blur" the signatures of the anisotropy, volume and particle interactions distributions, therefore thermal effects in nanoparticles systems conspire against a proper interpretation and analysis of these diagrams. Motivated by this fact, we have quantitatively studied the degree of accuracy of the information extracted from FORC diagrams for the special case of single-domain thermal corrected Stoner- Wohlfarth (easy axes along the external field orientation) nanoparticles systems. In this work, the starting point is an analytical model that describes the behavior of a magnetic nanoparticles system as a function of field, anisotropy, temperature and measurement time. In order to study the quantitative degree of accuracy of our model, we built FORC diagrams for different archetypical cases of magnetic nanoparticles. Our results show that from the quantitative information obtained from the diagrams, under the hypotheses of the proposed model, is possible to recover the features of the original system with accuracy above 95%. This accuracy is improved at low temperatures and also it is possible to access to the anisotropy distribution directly from the FORC coercive field profile. Indeed, our simulations predict that the volume distribution plays a secondary role being the mean value and its deviation the only important parameters. Therefore it is possible to obtain an accurate result for the inversion and interaction fields despite the features of the volume distribution.

  15. Puckering free energy of pyranoses: A NMR and metadynamics-umbrella sampling investigation

    NASA Astrophysics Data System (ADS)

    Autieri, E.; Sega, M.; Pederiva, F.; Guella, G.

    2010-09-01

    We present the results of a combined metadynamics-umbrella sampling investigation of the puckered conformers of pyranoses described using the GROMOS 45a4 force field. The free energy landscape of Cremer-Pople puckering coordinates has been calculated for the whole series of α and β aldohexoses, showing that the current force field parameters fail in reproducing proper puckering free energy differences between chair conformers. We suggest a modification to the GROMOS 45a4 parameter set which improves considerably the agreement of simulation results with theoretical and experimental estimates of puckering free energies. We also report on the experimental measurement of altrose conformer populations by means of NMR spectroscopy, which show good agreement with the predictions of current theoretical models.

  16. Electrophoresis of small particles and fluid globules in weak electrolytes

    NASA Technical Reports Server (NTRS)

    Baygents, J. C.; Saville, D. A.

    1991-01-01

    An examination is conducted of the influence of partial ionization on the electrophoresis of small particles and fluid globules, with a view to the nature of conditions under which dissociation-association (D-A) alters electrokinetics. It is found that, since D-A processes are important in cases where double-layer polarization and relaxation would otherwise prevail, the predicted effect on electrophoretic mobility is greatest for the drops and bubbles whose surfaces are fluid and convection within the interface is significant. While the computation scheme used applies only to situations where forcing-field magnitude is small, the results obtained indicate that D-A processes involving ionogenic solutes may be significant in apolar liquids where electrokinetic phenomena are driven by strong forcing fields.

  17. Determination of structure and properties of molecular crystals from first principles.

    PubMed

    Szalewicz, Krzysztof

    2014-11-18

    CONSPECTUS: Until recently, it had been impossible to predict structures of molecular crystals just from the knowledge of the chemical formula for the constituent molecule(s). A solution of this problem has been achieved using intermolecular force fields computed from first principles. These fields were developed by calculating interaction energies of molecular dimers and trimers using an ab initio method called symmetry-adapted perturbation theory (SAPT) based on density-functional theory (DFT) description of monomers [SAPT(DFT)]. For clusters containing up to a dozen or so atoms, interaction energies computed using SAPT(DFT) are comparable in accuracy to the results of the best wave function-based methods, whereas the former approach can be applied to systems an order of magnitude larger than the latter. In fact, for monomers with a couple dozen atoms, SAPT(DFT) is about equally time-consuming as the supermolecular DFT approach. To develop a force field, SAPT(DFT) calculations are performed for a large number of dimer and possibly also trimer configurations (grid points in intermolecular coordinates), and the interaction energies are then fitted by analytic functions. The resulting force fields can be used to determine crystal structures and properties by applying them in molecular packing, lattice energy minimization, and molecular dynamics calculations. In this way, some of the first successful determinations of crystal structures were achieved from first principles, with crystal densities and lattice parameters agreeing with experimental values to within about 1%. Crystal properties obtained using similar procedures but empirical force fields fitted to crystal data have typical errors of several percent due to low sensitivity of empirical fits to interactions beyond those of the nearest neighbors. The first-principles approach has additional advantages over the empirical approach for notional crystals and cocrystals since empirical force fields can only be extrapolated to such cases. As an alternative to applying SAPT(DFT) in crystal structure calculations, one can use supermolecular DFT interaction energies combined with scaled dispersion energies computed from simple atom-atom functions, that is, use the so-called DFT+D approach. Whereas the standard DFT methods fail for intermolecular interactions, DFT+D performs reasonably well since the dispersion correction is used not only to provide the missing dispersion contribution but also to fix other deficiencies of DFT. The latter cancellation of errors is unphysical and can be avoided by applying the so-called dispersionless density functional, dlDF. In this case, the dispersion energies are added without any scaling. The dlDF+D method is also one of the best performing DFT+D methods. The SAPT(DFT)-based approach has been applied so far only to crystals with rigid monomers. It can be extended to partly flexible monomers, that is, to monomers with only a few internal coordinates allowed to vary. However, the costs will increase relative to rigid monomer cases since the number of grid points increases exponentially with the number of dimensions. One way around this problem is to construct force fields with approximate couplings between inter- and intramonomer degrees of freedom. Another way is to calculate interaction energies (and possibly forces) "on the fly", i.e., in each step of lattice energy minimization procedure. Such an approach would be prohibitively expensive if it replaced analytic force fields at all stages of the crystal predictions procedure, but it can be used to optimize a few dozen candidate structures determined by other methods.

  18. Higher-order dielectrophoretic effects: levitation at a field null.

    PubMed

    Washizu, M; Jones, T B; Kaler, K V

    1993-08-20

    Experiments with certain new micro-electrode structures used to achieve passive dielectrophoretic levitation of small particles and biological cells reveal a pronounced size-dependent effect not anticipated by the conventional dipole-based model. The conventional theory fails to predict this size effect because it neglects higher-order moments such as the quadrupole, hexapole, and octupole. These higher-order moments are in fact responsible for the levitation force achieved by azimuthally periodic electrode structures because, in such geometries, the electric field is zero along the axis so that the induced dipole moment must be zero. For example, the planar quadrupole levitates particles passively along the central axis through the interaction of its field with the induced quadrupolar moment of the particle. The size effect reported with this structure is readily explained in terms of this quadrupolar component of the ponderomotive force exerted on the particle.

  19. Close encounters with DNA

    PubMed Central

    Maffeo, C.; Yoo, J.; Comer, J.; Wells, D. B.; Luan, B.; Aksimentiev, A.

    2014-01-01

    Over the past ten years, the all-atom molecular dynamics method has grown in the scale of both systems and processes amenable to it and in its ability to make quantitative predictions about the behavior of experimental systems. The field of computational DNA research is no exception, witnessing a dramatic increase in the size of systems simulated with atomic resolution, the duration of individual simulations and the realism of the simulation outcomes. In this topical review, we describe the hallmark physical properties of DNA from the perspective of all-atom simulations. We demonstrate the amazing ability of such simulations to reveal the microscopic physical origins of experimentally observed phenomena and we review the frustrating limitations associated with imperfections of present atomic force fields and inadequate sampling. The review is focused on the following four physical properties of DNA: effective electric charge, response to an external mechanical force, interaction with other DNA molecules and behavior in an external electric field. PMID:25238560

  20. Possibility of measuring the Abraham force using whispering gallery modes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brevik, I.; Ellingsen, S. A.

    2010-06-15

    Critical experimental tests of the time-dependent Abraham force in phenomenological electrodynamics are scarce. In this paper, we analyze the possibility of making use of intensity-modulated whispering gallery modes in a microresonator for this purpose. Systems of this kind appear attractive, as the strong concentration of electromagnetic fields near the rim of the resonator serves to enhance the Abraham torque exerted by the field. We analyze mainly spherical resonators, although as an introductory step we consider also the cylinder geometry. The orders of magnitude of the Abraham torques are estimated by inserting reasonable and common values for the various input parameters.more » As expected, the predicted torques turn out to be very small, although probably not beyond reach experimentally. Our main idea is essentially a generalization of the method used by G. B. Walker et al.[Can. J. Phys. 53, 2577 (1975)] for low-frequency fields, to the optical case.« less

  1. Close encounters with DNA.

    PubMed

    Maffeo, C; Yoo, J; Comer, J; Wells, D B; Luan, B; Aksimentiev, A

    2014-10-15

    Over the past ten years, the all-atom molecular dynamics method has grown in the scale of both systems and processes amenable to it and in its ability to make quantitative predictions about the behavior of experimental systems. The field of computational DNA research is no exception, witnessing a dramatic increase in the size of systems simulated with atomic resolution, the duration of individual simulations and the realism of the simulation outcomes. In this topical review, we describe the hallmark physical properties of DNA from the perspective of all-atom simulations. We demonstrate the amazing ability of such simulations to reveal the microscopic physical origins of experimentally observed phenomena. We also discuss the frustrating limitations associated with imperfections of present atomic force fields and inadequate sampling. The review is focused on the following four physical properties of DNA: effective electric charge, response to an external mechanical force, interaction with other DNA molecules and behavior in an external electric field.

  2. The thermal near-field: Coherence, spectroscopy, heat-transfer, and optical forces

    NASA Astrophysics Data System (ADS)

    Jones, Andrew C.; O'Callahan, Brian T.; Yang, Honghua U.; Raschke, Markus B.

    2013-12-01

    One of the most universal physical processes shared by all matter at finite temperature is the emission of thermal radiation. The experimental characterization and theoretical description of far-field black-body radiation was a cornerstone in the development of modern physics with the groundbreaking contributions from Gustav Kirchhoff and Max Planck. With its origin in thermally driven fluctuations of the charge carriers, thermal radiation reflects the resonant and non-resonant dielectric properties of media, which is the basis for far-field thermal emission spectroscopy. However, associated with the underlying fluctuating optical source polarization are fundamentally distinct spectral, spatial, resonant, and coherence properties of the evanescent thermal near-field. These properties have been recently predicted theoretically and characterized experimentally for systems with thermally excited molecular, surface plasmon polariton (SPP), and surface phonon polariton (SPhP) resonances. We review, starting with the early historical developments, the emergence of theoretical models, and the description of the thermal near-field based on the fluctuation-dissipation theory and in terms of the electromagnetic local density of states (EM-LDOS). We discuss the optical and spectroscopic characterization of distance dependence, magnitude, spectral distribution, and coherence of evanescent thermal fields. Scattering scanning near-field microscopy proved instrumental as an enabling technique for the investigations of several of these fundamental thermal near-field properties. We then discuss the role of thermal fields in nano-scale heat transfer and optical forces, and the correlation to the van der Waals, Casimir, and Casimir-Polder forces. We conclude with an outlook on the possibility of intrinsic and extrinsic resonant manipulation of optical forces, control of nano-scale radiative heat transfer with optical antennas and metamaterials, and the use of thermal infrared near-field spectroscopy (TINS) for broadband chemical nano-spectroscopic imaging, where the thermally driven vibrational optical dipoles provide their own intrinsic light source.

  3. Modification and optimization of the united-residue (UNRES) potential-energy function for canonical simulations. I. Temperature dependence of the effective energy function and tests of the optimization method with single training proteins

    PubMed Central

    Liwo, Adam; Khalili, Mey; Czaplewski, Cezary; Kalinowski, Sebastian; Ołdziej, Stanisław; Wachucik, Katarzyna; Scheraga, Harold A.

    2011-01-01

    We report the modification and parameterization of the united-residue (UNRES) force field for energy-based protein-structure prediction and protein-folding simulations. We tested the approach on three training proteins separately: 1E0L (β), 1GAB (α), and 1E0G (α + β). Heretofore, the UNRES force field had been designed and parameterized to locate native-like structures of proteins as global minima of their effective potential-energy surfaces, which largely neglected the conformational entropy because decoys composed of only lowest-energy conformations were used to optimize the force field. Recently, we developed a mesoscopic dynamics procedure for UNRES, and applied it with success to simulate protein folding pathways. How ever, the force field turned out to be largely biased towards α-helical structures in canonical simulations because the conformational entropy had been neglected in the parameterization. We applied the hierarchical optimization method developed in our earlier work to optimize the force field, in which the conformational space of a training protein is divided into levels each corresponding to a certain degree of native-likeness. The levels are ordered according to increasing native-likeness; level 0 corresponds to structures with no native-like elements and the highest level corresponds to the fully native-like structures. The aim of optimization is to achieve the order of the free energies of levels, decreasing as their native-likeness increases. The procedure is iterative, and decoys of the training protein(s) generated with the energy-function parameters of the preceding iteration are used to optimize the force field in a current iteration. We applied the multiplexing replica exchange molecular dynamics (MREMD) method, recently implemented in UNRES, to generate decoys; with this modification, conformational entropy is taken into account. Moreover, we optimized the free-energy gaps between levels at temperatures corresponding to a predominance of folded or unfolded structures, as well as to structures at the putative folding-transition temperature, changing the sign of the gaps at the transition temperature. This enabled us to obtain force fields characterized by a single peak in the heat capacity at the transition temperature. Furthermore, we introduced temperature dependence to the UNRES force field; this is consistent with the fact that it is a free-energy and not a potential-energy function. PMID:17201450

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dang, Liem X.; Vo, Quynh N.; Nilsson, Mikael

    We report one of the first simulations using a classical rate theory approach to predict the mechanism of the exchange process between water and aqueous uranyl ions. Using our water and ion-water polarizable force fields and molecular dynamics techniques, we computed the potentials of mean force for the uranyl ion-water pair as the function of pressures at ambient temperature. Subsequently, these simulated potentials of mean force were used to calculate rate constants using the transition rate theory; the time dependent transmission coefficients were also examined using the reactive flux method and Grote-Hynes treatments of the dynamic response of the solvent.more » The computed activation volumes using transition rate theory and the corrected rate constants are positive, thus the mechanism of this particular water-exchange is a dissociative process. We discuss our rate theory results and compare them with previously studies in which non-polarizable force fields were used. This work was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences. The calculations were carried out using computer resources provided by the Office of Basic Energy Sciences.« less

  5. A three-dimensional turbulent separated flow and related mesurements

    NASA Technical Reports Server (NTRS)

    Pierce, F. J.

    1985-01-01

    The applicability of and the limits on the applicability of 11 near wall similarity laws characterizing three-dimensional turbulent boundary layer flows were determined. A direct force sensing local wall shear stress meter was used in both pressure-driven and shear-driven three-dimensional turbulent boundary layers, together with extensive mean velocity field and wall pressure field data. This resulted in a relatively large number of graphical comparisons of the predictive ability of 10 of these 11 similarity models relative to measured data over a wide range of flow conditions. Documentation of a complex, separated three-dimensional turbulent flow as a standard test case for evaluating the predictive ability of numerical codes solving such flows is presented.

  6. Lattice model for amyloid peptides: OPEP force field parametrization and applications to the nucleus size of Alzheimer’s peptides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tran, Thanh Thuy; Nguyen, Phuong H., E-mail: phuong.nguyen@ibpc.fr; Derreumaux, Philippe, E-mail: philippe.derreumaux@ibpc.fr

    Coarse-grained protein lattice models approximate atomistic details and keep the essential interactions. They are, therefore, suitable for capturing generic features of protein folding and amyloid formation at low computational cost. As our aim is to study the critical nucleus sizes of two experimentally well-characterized peptide fragments Aβ{sub 16−22} and Aβ{sub 37−42} of the full length Aβ{sub 1−42} Alzheimer’s peptide, it is important that simulations with the lattice model reproduce all-atom simulations. In this study, we present a comprehensive force field parameterization based on the OPEP (Optimized Potential for Efficient protein structure Prediction) force field for an on-lattice protein model, whichmore » incorporates explicitly the formation of hydrogen bonds and directions of side-chains. Our bottom-up approach starts with the determination of the best lattice force parameters for the Aβ{sub 16−22} dimer by fitting its equilibrium parallel and anti-parallel β-sheet populations to all-atom simulation results. Surprisingly, the calibrated force field is transferable to the trimer of Aβ{sub 16−22} and the dimer and trimer of Aβ{sub 37−42}. Encouraged by this finding, we characterized the free energy landscapes of the two decamers. The dominant structure of the Aβ{sub 16−22} decamer matches the microcrystal structure. Pushing the simulations for aggregates between 4-mer and 12-mer suggests a nucleus size for fibril formation of 10 chains. In contrast, the Aβ{sub 37−42} decamer is largely disordered with mixed by parallel and antiparallel chains, suggesting that the nucleus size is >10 peptides. Our refined force field coupled to this on-lattice model should provide useful insights into the critical nucleation number associated with neurodegenerative diseases.« less

  7. Mesh refinement in a two-dimensional large eddy simulation of a forced shear layer

    NASA Technical Reports Server (NTRS)

    Claus, R. W.; Huang, P. G.; Macinnes, J. M.

    1989-01-01

    A series of large eddy simulations are made of a forced shear layer and compared with experimental data. Several mesh densities were examined to separate the effect of numerical inaccuracy from modeling deficiencies. The turbulence model that was used to represent small scale, 3-D motions correctly predicted some gross features of the flow field, but appears to be structurally incorrect. The main effect of mesh refinement was to act as a filter on the scale of vortices that developed from the inflow boundary conditions.

  8. Thermohydrodynamic analysis of cryogenic liquid turbulent flow fluid film bearings

    NASA Technical Reports Server (NTRS)

    Andres, Luis San

    1993-01-01

    A thermohydrodynamic analysis is presented and a computer code developed for prediction of the static and dynamic force response of hydrostatic journal bearings (HJB's), annular seals or damper bearing seals, and fixed arc pad bearings for cryogenic liquid applications. The study includes the most important flow characteristics found in cryogenic fluid film bearings such as flow turbulence, fluid inertia, liquid compressibility and thermal effects. The analysis and computational model devised allow the determination of the flow field in cryogenic fluid film bearings along with the dynamic force coefficients for rotor-bearing stability analysis.

  9. High Temperature, Permanent Magnet Biased, Fault Tolerant, Homopolar Magnetic Bearing Development

    NASA Technical Reports Server (NTRS)

    Palazzolo, Alan; Tucker, Randall; Kenny, Andrew; Kang, Kyung-Dae; Ghandi, Varun; Liu, Jinfang; Choi, Heeju; Provenza, Andrew

    2008-01-01

    This paper summarizes the development of a magnetic bearing designed to operate at 1,000 F. A novel feature of this high temperature magnetic bearing is its homopolar construction which incorporates state of the art high temperature, 1,000 F, permanent magnets. A second feature is its fault tolerance capability which provides the desired control forces with over one-half of the coils failed. The construction and design methodology of the bearing is outlined and test results are shown. The agreement between a 3D finite element, magnetic field based prediction for force is shown to be in good agreement with predictions at room and high temperature. A 5 axis test rig will be complete soon to provide a means to test the magnetic bearings at high temperature and speed.

  10. Effect of boundary conditions on magnetocapacitance effect in a ring-type magnetoelectric structure

    NASA Astrophysics Data System (ADS)

    Zhang, Juanjuan

    2017-12-01

    By considering the nonlinear magneto-elastic coupling relationships of magnetostrictive materials, an analytical model is proposed. The resonance frequencies can be accurately predicted by this theoretical model, and they are in good agreement with experimental data. Subsequently, the magnetocapacitance effect in a ring-type magnetoelectric (ME) structure with different boundary conditions is investigated, and it is found that various mechanical boundaries, the frequency, the magnetic field, the geometric size, and the interface bonding significantly affect the capacitance of the ME structure. Further, additional resonance frequencies can be predicted by considering appropriate imperfect interface bonding. Finally, the influence of an external force on the capacitance is studied. The result shows that an external force on the boundary changes the capacitance, but has only a weak influence on the resonance frequency.

  11. Enhancement of force patterns classification based on Gaussian distributions.

    PubMed

    Ertelt, Thomas; Solomonovs, Ilja; Gronwald, Thomas

    2018-01-23

    Description of the patterns of ground reaction force is a standard method in areas such as medicine, biomechanics and robotics. The fundamental parameter is the time course of the force, which is classified visually in particular in the field of clinical diagnostics. Here, the knowledge and experience of the diagnostician is relevant for its assessment. For an objective and valid discrimination of the ground reaction force pattern, a generic method, especially in the medical field, is absolutely necessary to describe the qualities of the time-course. The aim of the presented method was to combine the approaches of two existing procedures from the fields of machine learning and the Gauss approximation in order to take advantages of both methods for the classification of ground reaction force patterns. The current limitations of both methods could be eliminated by an overarching method. Twenty-nine male athletes from different sports were examined. Each participant was given the task of performing a one-legged stopping maneuver on a force plate from the maximum possible starting speed. The individual time course of the ground reaction force of each subject was registered and approximated on the basis of eight Gaussian distributions. The descriptive coefficients were then classified using Bayesian regulated neural networks. The different sports served as the distinguishing feature. Although the athletes were all given the same task, all sports referred to a different quality in the time course of ground reaction force. Meanwhile within each sport, the athletes were homogeneous. With an overall prediction (R = 0.938) all subjects/sports were classified correctly with 94.29% accuracy. The combination of the two methods: the mathematical description of the time course of ground reaction forces on the basis of Gaussian distributions and their classification by means of Bayesian regulated neural networks, seems an adequate and promising method to discriminate the ground reaction forces without any loss of information. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Is the Conformational Ensemble of Alzheimer’s Aβ10-40 Peptide Force Field Dependent?

    PubMed Central

    Siwy, Christopher M.

    2017-01-01

    By applying REMD simulations we have performed comparative analysis of the conformational ensembles of amino-truncated Aβ10-40 peptide produced with five force fields, which combine four protein parameterizations (CHARMM36, CHARMM22*, CHARMM22/cmap, and OPLS-AA) and two water models (standard and modified TIP3P). Aβ10-40 conformations were analyzed by computing secondary structure, backbone fluctuations, tertiary interactions, and radius of gyration. We have also calculated Aβ10-40 3JHNHα-coupling and RDC constants and compared them with their experimental counterparts obtained for the full-length Aβ1-40 peptide. Our study led us to several conclusions. First, all force fields predict that Aβ adopts unfolded structure dominated by turn and random coil conformations. Second, specific TIP3P water model does not dramatically affect secondary or tertiary Aβ10-40 structure, albeit standard TIP3P model favors slightly more compact states. Third, although the secondary structures observed in CHARMM36 and CHARMM22/cmap simulations are qualitatively similar, their tertiary interactions show little consistency. Fourth, two force fields, OPLS-AA and CHARMM22* have unique features setting them apart from CHARMM36 or CHARMM22/cmap. OPLS-AA reveals moderate β-structure propensity coupled with extensive, but weak long-range tertiary interactions leading to Aβ collapsed conformations. CHARMM22* exhibits moderate helix propensity and generates multiple exceptionally stable long- and short-range interactions. Our investigation suggests that among all force fields CHARMM22* differs the most from CHARMM36. Fifth, the analysis of 3JHNHα-coupling and RDC constants based on CHARMM36 force field with standard TIP3P model led us to an unexpected finding that in silico Aβ10-40 and experimental Aβ1-40 constants are generally in better agreement than these quantities computed and measured for identical peptides, such as Aβ1-40 or Aβ1-42. This observation suggests that the differences in the conformational ensembles of Aβ10-40 and Aβ1-40 are small and the former can be used as proxy of the full-length peptide. Based on this argument, we concluded that CHARMM36 force field with standard TIP3P model produces the most accurate representation of Aβ10-40 conformational ensemble. PMID:28085875

  13. Plans for Aeroelastic Prediction Workshop

    NASA Technical Reports Server (NTRS)

    Heeg, Jennifer; Ballmann, Josef; Bhatia, Kumar; Blades, Eric; Boucke, Alexander; Chwalowski, Pawel; Dietz, Guido; Dowell, Earl; Florance, Jennifer P.; Hansen, Thorsten; hide

    2011-01-01

    This paper summarizes the plans for the first Aeroelastic Prediction Workshop. The workshop is designed to assess the state of the art of computational methods for predicting unsteady flow fields and aeroelastic response. The goals are to provide an impartial forum to evaluate the effectiveness of existing computer codes and modeling techniques, and to identify computational and experimental areas needing additional research and development. Three subject configurations have been chosen from existing wind tunnel data sets where there is pertinent experimental data available for comparison. For each case chosen, the wind tunnel testing was conducted using forced oscillation of the model at specified frequencies

  14. A predictive analytic model for the solar modulation of cosmic rays

    DOE PAGES

    Cholis, Ilias; Hooper, Dan; Linden, Tim

    2016-02-23

    An important factor limiting our ability to understand the production and propagation of cosmic rays pertains to the effects of heliospheric forces, commonly known as solar modulation. The solar wind is capable of generating time- and charge-dependent effects on the spectrum and intensity of low-energy (≲10 GeV) cosmic rays reaching Earth. Previous analytic treatments of solar modulation have utilized the force-field approximation, in which a simple potential is adopted whose amplitude is selected to best fit the cosmic-ray data taken over a given period of time. Making use of recently available cosmic-ray data from the Voyager 1 spacecraft, along withmore » measurements of the heliospheric magnetic field and solar wind, we construct a time-, charge- and rigidity-dependent model of solar modulation that can be directly compared to data from a variety of cosmic-ray experiments. Here, we provide a simple analytic formula that can be easily utilized in a variety of applications, allowing us to better predict the effects of solar modulation and reduce the number of free parameters involved in cosmic-ray propagation models.« less

  15. Study of Hydrokinetic Turbine Arrays with Large Eddy Simulation

    NASA Astrophysics Data System (ADS)

    Sale, Danny; Aliseda, Alberto

    2014-11-01

    Marine renewable energy is advancing towards commercialization, including electrical power generation from ocean, river, and tidal currents. The focus of this work is to develop numerical simulations capable of predicting the power generation potential of hydrokinetic turbine arrays-this includes analysis of unsteady and averaged flow fields, turbulence statistics, and unsteady loadings on turbine rotors and support structures due to interaction with rotor wakes and ambient turbulence. The governing equations of large-eddy-simulation (LES) are solved using a finite-volume method, and the presence of turbine blades are approximated by the actuator-line method in which hydrodynamic forces are projected to the flow field as a body force. The actuator-line approach captures helical wake formation including vortex shedding from individual blades, and the effects of drag and vorticity generation from the rough seabed surface are accounted for by wall-models. This LES framework was used to replicate a previous flume experiment consisting of three hydrokinetic turbines tested under various operating conditions and array layouts. Predictions of the power generation, velocity deficit and turbulence statistics in the wakes are compared between the LES and experimental datasets.

  16. Design-based modeling of magnetically actuated soft diaphragm materials

    NASA Astrophysics Data System (ADS)

    Jayaneththi, V. R.; Aw, K. C.; McDaid, A. J.

    2018-04-01

    Magnetic polymer composites (MPC) have shown promise for emerging biomedical applications such as lab-on-a-chip and implantable drug delivery. These soft material actuators are capable of fast response, large deformation and wireless actuation. Existing MPC modeling approaches are computationally expensive and unsuitable for rapid design prototyping and real-time control applications. This paper proposes a macro-scale 1-DOF model capable of predicting force and displacement of an MPC diaphragm actuator. Model validation confirmed both blocked force and displacement can be accurately predicted in a variety of working conditions i.e. different magnetic field strengths, static/dynamic fields, and gap distances. The contribution of this work includes a comprehensive experimental investigation of a macro-scale diaphragm actuator; the derivation and validation of a new phenomenological model to describe MPC actuation; and insights into the proposed model’s design-based functionality i.e. scalability and generalizability in terms of magnetic filler concentration and diaphragm diameter. Due to the lumped element modeling approach, the proposed model can also be adapted to alternative actuator configurations, and thus presents a useful tool for design, control and simulation of novel MPC applications.

  17. Free-surface flow around an appended hull

    NASA Astrophysics Data System (ADS)

    Lungu, A.; Pacuraru, F.

    2010-08-01

    The prediction of the total drag experienced by an advancing ship is a complicated problem which requires a thorough understanding of the hydrodynamic forces acting on the hull, the physical processes from which these forces arise as well as their mutual interaction. A general numerical method to predict the hydrodynamic performance of a twin-propeller combatant ship is presented in the paper, which describes the solution of a RANS solver coupled with a body force method as an attempt in investigating the flow features around the ship hull equipped with rotating propellers and rudders. A special focus is made on the propeller non-symmetrical inflow field, aimed at obtaining the necessary data for the propulsive performances evaluation as well as for the propeller final design. The reported work allows not only the performance evaluation for the overall performances of a hull, but also leads to the development, implementation and validation of new concepts in modeling the turbulent vortical flows, with direct connection to the ship propulsion problem.

  18. A Comparison Between The NORCAT Rover Test Results and the ISRU Excavation System Model Predictions Results

    NASA Technical Reports Server (NTRS)

    Gallo, Christopher A.; Agui, Juan H.; Creager, Colin M.; Oravec, Heather A.

    2012-01-01

    An Excavation System Model has been written to simulate the collection and transportation of regolith on the moon. The calculations in this model include an estimation of the forces on the digging tool as a result of excavation into the regolith. Verification testing has been performed and the forces recorded from this testing were compared to the calculated theoretical data. The Northern Centre for Advanced Technology Inc. rovers were tested at the NASA Glenn Research Center Simulated Lunar Operations facility. This testing was in support of the In-Situ Resource Utilization program Innovative Partnership Program. Testing occurred in soils developed at the Glenn Research Center which are a mixture of different types of sands and whose soil properties have been well characterized. This testing is part of an ongoing correlation of actual field test data to the blade forces calculated by the Excavation System Model. The results from this series of tests compared reasonably with the predicted values from the code.

  19. Muscle Synergies May Improve Optimization Prediction of Knee Contact Forces During Walking

    PubMed Central

    Walter, Jonathan P.; Kinney, Allison L.; Banks, Scott A.; D'Lima, Darryl D.; Besier, Thor F.; Lloyd, David G.; Fregly, Benjamin J.

    2014-01-01

    The ability to predict patient-specific joint contact and muscle forces accurately could improve the treatment of walking-related disorders. Muscle synergy analysis, which decomposes a large number of muscle electromyographic (EMG) signals into a small number of synergy control signals, could reduce the dimensionality and thus redundancy of the muscle and contact force prediction process. This study investigated whether use of subject-specific synergy controls can improve optimization prediction of knee contact forces during walking. To generate the predictions, we performed mixed dynamic muscle force optimizations (i.e., inverse skeletal dynamics with forward muscle activation and contraction dynamics) using data collected from a subject implanted with a force-measuring knee replacement. Twelve optimization problems (three cases with four subcases each) that minimized the sum of squares of muscle excitations were formulated to investigate how synergy controls affect knee contact force predictions. The three cases were: (1) Calibrate+Match where muscle model parameter values were calibrated and experimental knee contact forces were simultaneously matched, (2) Precalibrate+Predict where experimental knee contact forces were predicted using precalibrated muscle model parameters values from the first case, and (3) Calibrate+Predict where muscle model parameter values were calibrated and experimental knee contact forces were simultaneously predicted, all while matching inverse dynamic loads at the hip, knee, and ankle. The four subcases used either 44 independent controls or five synergy controls with and without EMG shape tracking. For the Calibrate+Match case, all four subcases closely reproduced the measured medial and lateral knee contact forces (R2 ≥ 0.94, root-mean-square (RMS) error < 66 N), indicating sufficient model fidelity for contact force prediction. For the Precalibrate+Predict and Calibrate+Predict cases, synergy controls yielded better contact force predictions (0.61 < R2 < 0.90, 83 N < RMS error < 161 N) than did independent controls (-0.15 < R2 < 0.79, 124 N < RMS error < 343 N) for corresponding subcases. For independent controls, contact force predictions improved when precalibrated model parameter values or EMG shape tracking was used. For synergy controls, contact force predictions were relatively insensitive to how model parameter values were calibrated, while EMG shape tracking made lateral (but not medial) contact force predictions worse. For the subject and optimization cost function analyzed in this study, use of subject-specific synergy controls improved the accuracy of knee contact force predictions, especially for lateral contact force when EMG shape tracking was omitted, and reduced prediction sensitivity to uncertainties in muscle model parameter values. PMID:24402438

  20. Muscle synergies may improve optimization prediction of knee contact forces during walking.

    PubMed

    Walter, Jonathan P; Kinney, Allison L; Banks, Scott A; D'Lima, Darryl D; Besier, Thor F; Lloyd, David G; Fregly, Benjamin J

    2014-02-01

    The ability to predict patient-specific joint contact and muscle forces accurately could improve the treatment of walking-related disorders. Muscle synergy analysis, which decomposes a large number of muscle electromyographic (EMG) signals into a small number of synergy control signals, could reduce the dimensionality and thus redundancy of the muscle and contact force prediction process. This study investigated whether use of subject-specific synergy controls can improve optimization prediction of knee contact forces during walking. To generate the predictions, we performed mixed dynamic muscle force optimizations (i.e., inverse skeletal dynamics with forward muscle activation and contraction dynamics) using data collected from a subject implanted with a force-measuring knee replacement. Twelve optimization problems (three cases with four subcases each) that minimized the sum of squares of muscle excitations were formulated to investigate how synergy controls affect knee contact force predictions. The three cases were: (1) Calibrate+Match where muscle model parameter values were calibrated and experimental knee contact forces were simultaneously matched, (2) Precalibrate+Predict where experimental knee contact forces were predicted using precalibrated muscle model parameters values from the first case, and (3) Calibrate+Predict where muscle model parameter values were calibrated and experimental knee contact forces were simultaneously predicted, all while matching inverse dynamic loads at the hip, knee, and ankle. The four subcases used either 44 independent controls or five synergy controls with and without EMG shape tracking. For the Calibrate+Match case, all four subcases closely reproduced the measured medial and lateral knee contact forces (R2 ≥ 0.94, root-mean-square (RMS) error < 66 N), indicating sufficient model fidelity for contact force prediction. For the Precalibrate+Predict and Calibrate+Predict cases, synergy controls yielded better contact force predictions (0.61 < R2 < 0.90, 83 N < RMS error < 161 N) than did independent controls (-0.15 < R2 < 0.79, 124 N < RMS error < 343 N) for corresponding subcases. For independent controls, contact force predictions improved when precalibrated model parameter values or EMG shape tracking was used. For synergy controls, contact force predictions were relatively insensitive to how model parameter values were calibrated, while EMG shape tracking made lateral (but not medial) contact force predictions worse. For the subject and optimization cost function analyzed in this study, use of subject-specific synergy controls improved the accuracy of knee contact force predictions, especially for lateral contact force when EMG shape tracking was omitted, and reduced prediction sensitivity to uncertainties in muscle model parameter values.

  1. Direct calculation of 1-octanol-water partition coefficients from adaptive biasing force molecular dynamics simulations.

    PubMed

    Bhatnagar, Navendu; Kamath, Ganesh; Chelst, Issac; Potoff, Jeffrey J

    2012-07-07

    The 1-octanol-water partition coefficient log K(ow) of a solute is a key parameter used in the prediction of a wide variety of complex phenomena such as drug availability and bioaccumulation potential of trace contaminants. In this work, adaptive biasing force molecular dynamics simulations are used to determine absolute free energies of hydration, solvation, and 1-octanol-water partition coefficients for n-alkanes from methane to octane. Two approaches are evaluated; the direct transfer of the solute from 1-octanol to water phase, and separate transfers of the solute from the water or 1-octanol phase to vacuum, with both methods yielding statistically indistinguishable results. Calculations performed with the TIP4P and SPC∕E water models and the TraPPE united-atom force field for n-alkanes show that the choice of water model has a negligible effect on predicted free energies of transfer and partition coefficients for n-alkanes. A comparison of calculations using wet and dry octanol phases shows that the predictions for log K(ow) using wet octanol are 0.2-0.4 log units lower than for dry octanol, although this is within the statistical uncertainty of the calculation.

  2. From strings to coils: Rotational dynamics of DNA-linked colloidal chains

    NASA Astrophysics Data System (ADS)

    Kuei, Steve; Garza, Burke; Biswal, Sibani Lisa

    2017-10-01

    We investigate the dynamical behavior of deformable filaments experimentally using a tunable model system consisting of linked paramagnetic colloidal particles, where the persistence length lp, the contour length lc, and the strength and frequency of the external driving force are controlled. We find that upon forcing by an external magnetic field, a variety of structural and conformational regimes exist. Depending on the competition of forces and torques on the chain, we see classic rigid rotator behavior, as well as dynamically rich wagging, coiling, and folding behavior. Through a combination of experiments, computational models, and theoretical calculations, we are able to observe, classify, and predict these dynamics as a function of the dimensionless Mason and magnetoelastic numbers.

  3. Application of Molecular Dynamics Simulations in Molecular Property Prediction I: Density and Heat of Vaporization

    PubMed Central

    Wang, Junmei; Tingjun, Hou

    2011-01-01

    Molecular mechanical force field (FF) methods are useful in studying condensed phase properties. They are complementary to experiment and can often go beyond experiment in atomic details. Even a FF is specific for studying structures, dynamics and functions of biomolecules, it is still important for the FF to accurately reproduce the experimental liquid properties of small molecules that represent the chemical moieties of biomolecules. Otherwise, the force field may not describe the structures and energies of macromolecules in aqueous solutions properly. In this work, we have carried out a systematic study to evaluate the General AMBER Force Field (GAFF) in studying densities and heats of vaporization for a large set of organic molecules that covers the most common chemical functional groups. The latest techniques, such as the particle mesh Ewald (PME) for calculating electrostatic energies, and Langevin dynamics for scaling temperatures, have been applied in the molecular dynamics (MD) simulations. For density, the average percent error (APE) of 71 organic compounds is 4.43% when compared to the experimental values. More encouragingly, the APE drops to 3.43% after the exclusion of two outliers and four other compounds for which the experimental densities have been measured with pressures higher than 1.0 atm. For heat of vaporization, several protocols have been investigated and the best one, P4/ntt0, achieves an average unsigned error (AUE) and a root-mean-square error (RMSE) of 0.93 and 1.20 kcal/mol, respectively. How to reduce the prediction errors through proper van der Waals (vdW) parameterization has been discussed. An encouraging finding in vdW parameterization is that both densities and heats of vaporization approach their “ideal” values in a synchronous fashion when vdW parameters are tuned. The following hydration free energy calculation using thermodynamic integration further justifies the vdW refinement. We conclude that simple vdW parameterization can significantly reduce the prediction errors. We believe that GAFF can greatly improve its performance in predicting liquid properties of organic molecules after a systematic vdW parameterization, which will be reported in a separate paper. PMID:21857814

  4. Ab Initio and Improved Empirical Potentials for the Calculation of the Anharmonic Vibrational States and Intramolecular Mode Coupling of N-Methylacetamide

    NASA Technical Reports Server (NTRS)

    Gregurick, Susan K.; Chaban, Galina M.; Gerber, R. Benny; Kwak, Dochou (Technical Monitor)

    2001-01-01

    The second-order Moller-Plesset ab initio electronic structure method is used to compute points for the anharmonic mode-coupled potential energy surface of N-methylacetamide (NMA) in the trans(sub ct) configuration, including all degrees of freedom. The vibrational states and the spectroscopy are directly computed from this potential surface using the Correlation Corrected Vibrational Self-Consistent Field (CC-VSCF) method. The results are compared with CC-VSCF calculations using both the standard and improved empirical Amber-like force fields and available low temperature experimental matrix data. Analysis of our calculated spectroscopic results show that: (1) The excellent agreement between the ab initio CC-VSCF calculated frequencies and the experimental data suggest that the computed anharmonic potentials for N-methylacetamide are of a very high quality; (2) For most transitions, the vibrational frequencies obtained from the ab initio CC-VSCF method are superior to those obtained using the empirical CC-VSCF methods, when compared with experimental data. However, the improved empirical force field yields better agreement with the experimental frequencies as compared with a standard AMBER-type force field; (3) The empirical force field in particular overestimates anharmonic couplings for the amide-2 mode, the methyl asymmetric bending modes, the out-of-plane methyl bending modes, and the methyl distortions; (4) Disagreement between the ab initio and empirical anharmonic couplings is greater than the disagreement between the frequencies, and thus the anharmonic part of the empirical potential seems to be less accurate than the harmonic contribution;and (5) Both the empirical and ab initio CC-VSCF calculations predict a negligible anharmonic coupling between the amide-1 and other internal modes. The implication of this is that the intramolecular energy flow between the amide-1 and the other internal modes may be smaller than anticipated. These results may have important implications for the anharmonic force fields of peptides, for which N-methylacetamide is a model.

  5. Novel Applications of Magnetic Fields for Fluid Flow Control and for Simulating Variable Gravity Conditions

    NASA Technical Reports Server (NTRS)

    Ramachandran, N.

    2005-01-01

    Static and dynamic magnetic fields have been used to control convection in many materials processing applications. In most of the applications, convection control (damping or enhancement) is achieved through the Lorentz force that can be tailored to counteract/assist dominant system flows. This technique has been successfully applied to liquids that are electrically conducting, such as high temperature melts of semiconductors, metals and alloys, etc. In liquids with low electrical conductivity such as ionic solutions of salts in water, the Lorentz force is weak and hence not very effective and alternate ways of flow control are necessary. If the salt in solution is paramagnetic then the variation of magnetic susceptibility with temperature and/or concentration can be used for flow control. For thermal buoyancy driven flows this can be accomplished in a temperature range below the Curie point of the salt. The magnetic force is proportional to the magnetic susceptibility and the product of the magnetic field and its gradient. By suitably positioning the experiment cell in the magnet, system flows can be assisted or countered, as desired. A similar approach can be extended to diamagnetic substances and fluids but the required magnetic force is considerably larger than that required for paramagnetic substances. The presentation will provide an overview of work to date on a NASA fluid physics sponsored project that aims to test the hypothesis of convective flow control using strong magnetic fields in protein crystal growth. The objective is to understand the nature of the various forces that come into play, delineate causative factors for fluid flow and to quantify them through experiments, analysis, and numerical modeling. The seminar will report specifically on the experimental results using paramagnetic salts and solutions in magnetic fields and compare them to analytical predictions. Applications of the concept to protein crystallization studies will be discussed. The use of strong magnetic fields for terrestrially simulating variable gravity environments and applications supporting the NASA Exploration Initiative will also be briefly discussed.

  6. Experimental observation of spatially localized dynamo magnetic fields.

    PubMed

    Gallet, B; Aumaître, S; Boisson, J; Daviaud, F; Dubrulle, B; Bonnefoy, N; Bourgoin, M; Odier, Ph; Pinton, J-F; Plihon, N; Verhille, G; Fauve, S; Pétrélis, F

    2012-04-06

    We report the first experimental observation of a spatially localized dynamo magnetic field, a common feature of astrophysical dynamos and convective dynamo simulations. When the two propellers of the von Kármán sodium experiment are driven at frequencies that differ by 15%, the mean magnetic field's energy measured close to the slower disk is nearly 10 times larger than the one close to the faster one. This strong localization of the magnetic field when a symmetry of the forcing is broken is in good agreement with a prediction based on the interaction between a dipolar and a quadrupolar magnetic mode. © 2012 American Physical Society

  7. Effect of double-layer polarization on the forces that act on a nanosized cylindrical particle in an ac electrical field.

    PubMed

    Zhao, Hui; Bau, Haim H

    2008-06-17

    The polarization of, the forces acting on, and the electroosmotic flow field around a cylindrical particle of radius a* and uniform zeta potential zeta* submerged in an electrolyte solution and subjected to alternating electric fields are computed by solving the Poisson-Nernst-Planck (PNP) equations (the standard model). The dipole coefficient and the electrostatic and hydrodynamic forces are calculated as functions of the electric field's frequency, the solute concentration, and the particle's surface charge. The calculations are not restricted to small Debye screening lengths (lambdaD*). At relatively low frequencies, the polarization coefficient is nearly frequency-independent. As the frequency increases above D*/a*(2), where D* is the effective diffusion coefficient, the polarization coefficient initially increases, attains a maximum, and then decreases to an asymptotic value (when the frequency exceeds (1+Du)D*/lambdaD(*2), where Du is the Dukhin number). At low frequencies, when (lambdaD*/a*)(2)e(|zeta*F*/(2R*T*)|) < 1, the PNP calculations are in excellent agreement with the predictions of the Dukhin-Shilov (DS) low-frequency theory. At high frequencies, when lambda D*/a* < 1, the PNP calculations are in excellent agreement with the Maxwell-Wagner-O'Konski (MWO) theory.

  8. Galileo magnetometer measurements: a stronger case for a subsurface ocean at Europa.

    PubMed

    Kivelson, M G; Khurana, K K; Russell, C T; Volwerk, M; Walker, R J; Zimmer, C

    2000-08-25

    On 3 January 2000, the Galileo spacecraft passed close to Europa when it was located far south of Jupiter's magnetic equator in a region where the radial component of the magnetospheric magnetic field points inward toward Jupiter. This pass with a previously unexamined orientation of the external forcing field distinguished between an induced and a permanent magnetic dipole moment model of Europa's internal field. The Galileo magnetometer measured changes in the magnetic field predicted if a current-carrying outer shell, such as a planet-scale liquid ocean, is present beneath the icy surface. The evidence that Europa's field varies temporally strengthens the argument that a liquid ocean exists beneath the present-day surface.

  9. Galileo Magnetometer Measurements: A Stronger Case for a Subsurface Ocean at Europa

    NASA Astrophysics Data System (ADS)

    Kivelson, Margaret G.; Khurana, Krishan K.; Russell, Christopher T.; Volwerk, Martin; Walker, Raymond J.; Zimmer, Christophe

    2000-08-01

    On 3 January 2000, the Galileo spacecraft passed close to Europa when it was located far south of Jupiter's magnetic equator in a region where the radial component of the magnetospheric magnetic field points inward toward Jupiter. This pass with a previously unexamined orientation of the external forcing field distinguished between an induced and a permanent magnetic dipole moment model of Europa's internal field. The Galileo magnetometer measured changes in the magnetic field predicted if a current-carrying outer shell, such as a planet-scale liquid ocean, is present beneath the icy surface. The evidence that Europa's field varies temporally strengthens the argument that a liquid ocean exists beneath the present-day surface.

  10. Atomistic polarizable force field for molecular dynamics simulations of azide anion containing ionic liquids and crystals.

    NASA Astrophysics Data System (ADS)

    Starovoytov, Oleg; Hooper, Justin; Borodin, Oleg; Smith, Grant

    2010-03-01

    Atomistic polarizable force field has been developed for a number of azide anion containing ionic liquids and crystals. Hybrid Molecular Dynamics/Monte Carlo (MD/MC) simulations were performed on methylguanazinium azide and 1-(2-butynyl)-3-methyl-imidazolium azide crystals, while 1-butyl-2,3-dimethylimidazolium azide and 1-amino-3-methyl-1,2,3-triazolium azide ionic liquids were investigated using MD simulations. Crystal cell parameters and crystal structures of 1-(2-butynyl)-3-methyl-imidazolium azide were found in good agreement with X-ray experimental data. Density and ion transport of 1-butyl-2,3-dimethylimidazolium azide predicted from MD simulations were in good agreement with experiments. Details of the ionic liquid structure and relaxation mechanism will be discussed.

  11. A ferrofluid based energy harvester: Computational modeling, analysis, and experimental validation

    NASA Astrophysics Data System (ADS)

    Liu, Qi; Alazemi, Saad F.; Daqaq, Mohammed F.; Li, Gang

    2018-03-01

    A computational model is described and implemented in this work to analyze the performance of a ferrofluid based electromagnetic energy harvester. The energy harvester converts ambient vibratory energy into an electromotive force through a sloshing motion of a ferrofluid. The computational model solves the coupled Maxwell's equations and Navier-Stokes equations for the dynamic behavior of the magnetic field and fluid motion. The model is validated against experimental results for eight different configurations of the system. The validated model is then employed to study the underlying mechanisms that determine the electromotive force of the energy harvester. Furthermore, computational analysis is performed to test the effect of several modeling aspects, such as three-dimensional effect, surface tension, and type of the ferrofluid-magnetic field coupling on the accuracy of the model prediction.

  12. Generating a stationary infinite range tractor force via a multimode optical fibre

    NASA Astrophysics Data System (ADS)

    Ebongue, C. A.; Holzmann, D.; Ostermann, S.; Ritsch, H.

    2017-06-01

    Optical fibres confine and guide light almost unattenuated and thus convey light forces to polarizable nano-particles over very long distances. Radiation pressure forces arise from scattering of guided photons into free space while gradient forces are based on coherent scattering between different fibre modes or propagation directions. Interestingly, even scattering between co-propagating modes induces longitudinal forces as the transverse confinement of the light modes creates mode dependent longitudinal wave-vectors and photon momenta. We generalize a proven scattering matrix based approach to calculate single as well as inter-particle forces to include several forward and backward propagating modes. We show that an injection of the higher order mode only in a two mode fibre will induce a stationary tractor force against the injection direction, when the mode coupling to the lower order mode dominates against backscattering and free space losses. Generically this arises for non-absorbing particles at the centre of a waveguide. The model also gives improved predictions for inter-particle forces in evanescent nanofibre fields as experimentally observed recently. Surprisingly strong tractor forces can also act on whole optically bound arrays.

  13. Salt dependence of compression normal forces of quenched polyelectrolyte brushes

    NASA Astrophysics Data System (ADS)

    Hernandez-Zapata, Ernesto; Tamashiro, Mario N.; Pincus, Philip A.

    2001-03-01

    We obtained mean-field expressions for the compression normal forces between two identical opposing quenched polyelectrolyte brushes in the presence of monovalent salt. The brush elasticity is modeled using the entropy of ideal Gaussian chains, while the entropy of the microions and the electrostatic contribution to the grand potential is obtained by solving the non-linear Poisson-Boltzmann equation for the system in contact with a salt reservoir. For the polyelectrolyte brush we considered both a uniformly charged slab as well as an inhomogeneous charge profile obtained using a self-consistent field theory. Using the Derjaguin approximation, we related the planar-geometry results to the realistic two-crossed cylinders experimental set up. Theoretical predictions are compared to experimental measurements(Marc Balastre's abstract, APS March 2001 Meeting.) of the salt dependence of the compression normal forces between two quenched polyelectrolyte brushes formed by the adsorption of diblock copolymers poly(tert-butyl styrene)-sodium poly(styrene sulfonate) [PtBs/NaPSS] onto an octadecyltriethoxysilane (OTE) hydrophobically modified mica, as well as onto bare mica.

  14. Quantum Monte Carlo calculations of neutron matter with chiral three-body forces

    DOE PAGES

    Tews, I.; Gandolfi, Stefano; Gezerlis, A.; ...

    2016-02-02

    Chiral effective field theory (EFT) enables a systematic description of low-energy hadronic interactions with controlled theoretical uncertainties. For strongly interacting systems, quantum Monte Carlo (QMC) methods provide some of the most accurate solutions, but they require as input local potentials. We have recently constructed local chiral nucleon-nucleon (NN) interactions up to next-to-next-to-leading order (N 2LO). Chiral EFT naturally predicts consistent many-body forces. In this paper, we consider the leading chiral three-nucleon (3N) interactions in local form. These are included in auxiliary field diffusion Monte Carlo (AFDMC) simulations. We present results for the equation of state of neutron matter and formore » the energies and radii of neutron drops. Specifically, we study the regulator dependence at the Hartree-Fock level and in AFDMC and find that present local regulators lead to less repulsion from 3N forces compared to the usual nonlocal regulators.« less

  15. Reciprocity-based experimental determination of dynamic forces and moments: A feasibility study

    NASA Technical Reports Server (NTRS)

    Ver, Istvan L.; Howe, Michael S.

    1994-01-01

    BBN Systems and Technologies has been tasked by the Georgia Tech Research Center to carry Task Assignment No. 7 for the NASA Langley Research Center to explore the feasibility of 'In-Situ Experimental Evaluation of the Source Strength of Complex Vibration Sources Utilizing Reciprocity.' The task was carried out under NASA Contract No. NAS1-19061. In flight it is not feasible to connect the vibration sources to their mounting points on the fuselage through force gauges to measure dynamic forces and moments directly. However, it is possible to measure the interior sound field or vibration response caused by these structureborne sound sources at many locations and invoke principle of reciprocity to predict the dynamic forces and moments. The work carried out in the framework of Task 7 was directed to explore the feasibility of reciprocity-based measurements of vibration forces and moments.

  16. Trapping force and optical lifting under focused evanescent wave illumination.

    PubMed

    Ganic, Djenan; Gan, Xiaosong; Gu, Min

    2004-11-01

    A physical model is presented to understand and calculate trapping force exerted on a dielectric micro-particle under focused evanescent wave illumination. This model is based on our recent vectorial diffraction model by a high numerical aperture objective operating under the total internal condition. As a result, trapping force in a focused evanescent spot generated by both plane wave (TEM00) and doughnut beam (TEM*01) illumination is calculated, showing an agreement with the measured results. It is also revealed by this model that unlike optical trapping in the far-field region, optical axial trapping force in an evanescent focal spot increases linearly with the size of a trapped particle. This prediction shows that it is possible to overcome the force of gravity to lift a polystyrene particle of up to 800 nm in radius with a laser beam of power 10 microW.

  17. Analysis of Two-Phase Flow in Damper Seals for Cryogenic Turbopumps

    NASA Technical Reports Server (NTRS)

    Arauz, Grigory L.; SanAndres, Luis

    1996-01-01

    Cryogenic damper seals operating close to the liquid-vapor region (near the critical point or slightly su-cooled) are likely to present two-phase flow conditions. Under single phase flow conditions the mechanical energy conveyed to the fluid increases its temperature and causes a phase change when the fluid temperature reaches the saturation value. A bulk-flow analysis for the prediction of the dynamic force response of damper seals operating under two-phase conditions is presented as: all-liquid, liquid-vapor, and all-vapor, i.e. a 'continuous vaporization' model. The two phase region is considered as a homogeneous saturated mixture in thermodynamic equilibrium. Th flow in each region is described by continuity, momentum and energy transport equations. The interdependency of fluid temperatures and pressure in the two-phase region (saturated mixture) does not allow the use of an energy equation in terms of fluid temperature. Instead, the energy transport is expressed in terms of fluid enthalpy. Temperature in the single phase regions, or mixture composition in the two phase region are determined based on the fluid enthalpy. The flow is also regarded as adiabatic since the large axial velocities typical of the seal application determine small levels of heat conduction to the walls as compared to the heat carried by fluid advection. Static and dynamic force characteristics for the seal are obtained from a perturbation analysis of the governing equations. The solution expressed in terms of zeroth and first order fields provide the static (leakage, torque, velocity, pressure, temperature, and mixture composition fields) and dynamic (rotordynamic force coefficients) seal parameters. Theoretical predictions show good agreement with experimental leakage pressure profiles, available from a Nitrogen at cryogenic temperatures. Force coefficient predictions for two phase flow conditions show significant fluid compressibility effects, particularly for mixtures with low mass content of vapor. Under these conditions, an increase on direct stiffness and reduction of whirl frequency ratio are shown to occur. Prediction of such important effects will motivate experimental studies as well as a more judicious selection of the operating conditions for seals used in cryogenic turbomachinery.

  18. Receptivity of a precessing vortex core to open-loop forcing in a swirling jet and its predictability by linear stability adjoint theory

    NASA Astrophysics Data System (ADS)

    Müller, Jens; Lückoff, Finn; Oberleithner, Kilian

    2017-11-01

    The precessing vortex core (PVC) is a dominant coherent structure which occurs in swirling jets such as in swirl-stabilised gas turbine combustors. It stems from a global hydrodynamic instability caused by an internal feedback mechanism within the jet core. In this work, open-loop forcing is applied to a generic non-reacting swirling jet to investigate its receptivity to external actuation regarding lock-in behaviour of the PVC for different streamwise positions and Reynolds numbers. The forcing is periodically exerted by zero net mass flux synthetic jets which are introduced radially through slits inside the duct walls upstream of the swirling jet's exit plane. Time-resolved pressure measurements are conducted to identify the PVC frequency and stereo PIV combined with proper orthogonal decomposition in the duct and free field is used to extract the mean flow and the PVC mode. The data is used in a global linear stability framework to gain the adjoint of the PVC which reveals the regions of highest receptivity to periodic forcing based on mean flow input only. This theoretical receptivity model is compared with the experimentally obtained receptivity results and the validity and applicability of the adjoint model for the prediction of optimal forcing positions is discussed.

  19. Prediction of forces and moments for hypersonic flight vehicle control effectors

    NASA Technical Reports Server (NTRS)

    Maughmer, Mark D.; Long, Lyle N.; Guilmette, Neal; Pagano, Peter

    1993-01-01

    This research project includes three distinct phases. For completeness, all three phases of the work are briefly described in this report. The goal was to develop methods of predicting flight control forces and moments for hypersonic vehicles which could be used in a preliminary design environment. The first phase included a preliminary assessment of subsonic/supersonic panel methods and hypersonic local flow inclination methods for such predictions. While these findings clearly indicated the usefulness of such methods for conceptual design activities, deficiencies exist in some areas. Thus, a second phase of research was conducted in which a better understanding was sought for the reasons behind the successes and failures of the methods considered, particularly for the cases at hypersonic Mach numbers. This second phase involved using computational fluid dynamics methods to examine the flow fields in detail. Through these detailed predictions, the deficiencies in the simple surface inclination methods were determined. In the third phase of this work, an improvement to the surface inclination methods was developed. This used a novel method for including viscous effects by modifying the geometry to include the viscous/shock layer.

  20. Gravity and Nonconservative Force Model Tuning for the GEOSAT Follow-On Spacecraft

    NASA Technical Reports Server (NTRS)

    Lemoine, Frank G.; Zelensky, Nikita P.; Rowlands, David D.; Luthcke, Scott B.; Chinn, Douglas S.; Marr, Gregory C.; Smith, David E. (Technical Monitor)

    2000-01-01

    The US Navy's GEOSAT Follow-On spacecraft was launched on February 10, 1998 and the primary objective of the mission was to map the oceans using a radar altimeter. Three radar altimeter calibration campaigns have been conducted in 1999 and 2000. The spacecraft is tracked by satellite laser ranging (SLR) and Doppler beacons and a limited amount of data have been obtained from the Global Positioning Receiver (GPS) on board the satellite. Even with EGM96, the predicted radial orbit error due to gravity field mismodelling (to 70x70) remains high at 2.61 cm (compared to 0.88 cm for TOPEX). We report on the preliminary gravity model tuning for GFO using SLR, and altimeter crossover data. Preliminary solutions using SLR and GFO/GFO crossover data from CalVal campaigns I and II in June-August 1999, and January-February 2000 have reduced the predicted radial orbit error to 1.9 cm and further reduction will be possible when additional data are added to the solutions. The gravity model tuning has improved principally the low order m-daily terms and has reduced significantly the geographically correlated error present in this satellite orbit. In addition to gravity field mismodelling, the largest contributor to the orbit error is the non-conservative force mismodelling. We report on further nonconservative force model tuning results using available data from over one cycle in beta prime.

  1. Predicting the excess solubility of acetanilide, acetaminophen, phenacetin, benzocaine, and caffeine in binary water/ethanol mixtures via molecular simulation.

    PubMed

    Paluch, Andrew S; Parameswaran, Sreeja; Liu, Shuai; Kolavennu, Anasuya; Mobley, David L

    2015-01-28

    We present a general framework to predict the excess solubility of small molecular solids (such as pharmaceutical solids) in binary solvents via molecular simulation free energy calculations at infinite dilution with conventional molecular models. The present study used molecular dynamics with the General AMBER Force Field to predict the excess solubility of acetanilide, acetaminophen, phenacetin, benzocaine, and caffeine in binary water/ethanol solvents. The simulations are able to predict the existence of solubility enhancement and the results are in good agreement with available experimental data. The accuracy of the predictions in addition to the generality of the method suggests that molecular simulations may be a valuable design tool for solvent selection in drug development processes.

  2. Predicting the excess solubility of acetanilide, acetaminophen, phenacetin, benzocaine, and caffeine in binary water/ethanol mixtures via molecular simulation

    NASA Astrophysics Data System (ADS)

    Paluch, Andrew S.; Parameswaran, Sreeja; Liu, Shuai; Kolavennu, Anasuya; Mobley, David L.

    2015-01-01

    We present a general framework to predict the excess solubility of small molecular solids (such as pharmaceutical solids) in binary solvents via molecular simulation free energy calculations at infinite dilution with conventional molecular models. The present study used molecular dynamics with the General AMBER Force Field to predict the excess solubility of acetanilide, acetaminophen, phenacetin, benzocaine, and caffeine in binary water/ethanol solvents. The simulations are able to predict the existence of solubility enhancement and the results are in good agreement with available experimental data. The accuracy of the predictions in addition to the generality of the method suggests that molecular simulations may be a valuable design tool for solvent selection in drug development processes.

  3. Experimental verification of the role of electron pressure in fast magnetic reconnection with a guide field

    DOE PAGES

    Fox, W.; Sciortino, F.; v. Stechow, A.; ...

    2017-03-21

    We report detailed laboratory observations of the structure of a reconnection current sheet in a two-fluid plasma regime with a guide magnetic field. We observe and quantitatively analyze the quadrupolar electron pressure variation in the ion-diffusion region, as originally predicted by extended magnetohydrodynamics simulations. The projection of the electron pressure gradient parallel to the magnetic field contributes significantly to balancing the parallel electric field, and the resulting cross-field electron jets in the reconnection layer are diamagnetic in origin. Furthermore, these results demonstrate how parallel and perpendicular force balance are coupled in guide field reconnection and confirm basic theoretical models ofmore » the importance of electron pressure gradients for obtaining fast magnetic reconnection.« less

  4. Characterizing the Conformational Landscape of Flavivirus Fusion Peptides via Simulation and Experiment

    PubMed Central

    Marzinek, Jan K.; Lakshminarayanan, Rajamani; Goh, Eunice; Huber, Roland G.; Panzade, Sadhana; Verma, Chandra; Bond, Peter J.

    2016-01-01

    Conformational changes in the envelope proteins of flaviviruses help to expose the highly conserved fusion peptide (FP), a region which is critical to membrane fusion and host cell infection, and which represents a significant target for antiviral drugs and antibodies. In principle, extended timescale atomic-resolution simulations may be used to characterize the dynamics of such peptides. However, the resultant accuracy is critically dependent upon both the underlying force field and sufficient conformational sampling. In the present study, we report a comprehensive comparison of three simulation methods and four force fields comprising a total of more than 40 μs of sampling. Additionally, we describe the conformational landscape of the FP fold across all flavivirus family members. All investigated methods sampled conformations close to available X-ray structures, but exhibited differently populated ensembles. The best force field / sampling combination was sufficiently accurate to predict that the solvated peptide fold is less ordered than in the crystallographic state, which was subsequently confirmed via circular dichroism and spectrofluorometric measurements. Finally, the conformational landscape of a mutant incapable of membrane fusion was significantly shallower than wild-type variants, suggesting that dynamics should be considered when therapeutically targeting FP epitopes. PMID:26785994

  5. SOLAR MODULATION OF THE LOCAL INTERSTELLAR SPECTRUM WITH VOYAGER 1 , AMS-02, PAMELA , AND BESS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Corti, C.; Bindi, V.; Consolandi, C.

    In recent years, the increasing precision of direct cosmic rays measurements opened the door to high-sensitivity indirect searches of dark matter and to more accurate predictions for radiation doses received by astronauts and electronics in space. The key ingredients in the study of these phenomena are the knowledge of the local interstellar spectrum (LIS) of galactic cosmic rays and the understanding of how the solar modulation affects the LIS inside the heliosphere. Voyager 1 , AMS-02, PAMELA , and BESS measurements of proton and helium fluxes provide valuable information, allowing us to shed light on the shape of the LISmore » and the details of the solar modulation during solar cycles 22-24. A new parametrization of the LIS is presented, based on the latest data from Voyager 1 and AMS-02. Using the framework of the force-field approximation, the solar modulation parameter is extracted from the time-dependent fluxes measured by PAMELA and BESS . A modified version of the force-field approximation with a rigidity-dependent modulation parameter is introduced, yielding better fits than the force-field approximation. The results are compared with the modulation parameter inferred by neutron monitors.« less

  6. Periodic acoustic radiation from a low aspect ratio propeller

    NASA Astrophysics Data System (ADS)

    Muench, John David

    An experimental program was conducted with the objective of providing high fidelity measurements of propeller inflow, unsteady blade surface pressures, and discrete acoustic radiation over a wide range of speeds. Anechoic wind tunnel experiments were preformed using the SISUP propeller. The upstream stator blades generate large wake deficits that result in periodic unsteady blade forces that acoustically radiate at blade passing frequency and higher harmonics. The experimental portion of this research successfully measured the inflow velocity, blade span unsteady pressures and directive characteristics of the blade-rate radiated noise associated with this complex propeller geometry while the propeller was operating on design. The spatial harmonic decomposition of the inflow revealed significant coefficients at 8, 16 and 24. The magnitude of the unsteady blade forces scale as U4 and linearly shift in frequency with speed. The magnitude of the discrete frequency acoustic levels associated with blade rate scale as U6 and also shift linearly with speed. At blade-rate, the far-field acoustic directivity has a dipole-like directivity oriented perpendicular to the inflow. At the first harmonic of blade-rate, the far-field directivity is not as well defined. The experimental inflow and blade surface pressure results were used to generate an acoustic prediction at blade rate based on a blade strip theory model developed by Blake (1986). The predicted acoustic levels were compared to the experimental results. The model adequately predicts the measured sound field at blade rate at 120 ft/sec. Radiated noise at blade-rate for 120 ft/s can be described by a dipole, whose orientation is perpendicular to the flow and is generated by the interaction of the rotating propeller with the 8th harmonic of the inflow. At blade-rate for 60 ft/s, the model under predicts measured levels. At the first harmonic of blade-rate, for 120 ft/s, the sound field is described as a combination of dipole sources, one generated by the 16 th harmonic, perpendicular to the inflow, and the other generated by the 12th harmonic of the inflow parallel to the inflow. At the first harmonic of blade-rate for 60 ft/s, the model under predicts measured levels.

  7. Market forces influence helping behaviour in cooperatively breeding paper wasps

    PubMed Central

    Grinsted, Lena; Field, Jeremy

    2017-01-01

    Biological market theory is potentially useful for understanding helping behaviour in animal societies. It predicts that competition for trading partners will affect the value of commodities exchanged. It has gained empirical support in cooperative breeders, where subordinates help dominant breeders in exchange for group membership, but so far without considering one crucial aspect: outside options. We find support for a biological market in paper wasps, Polistes dominula. We first show that females have a choice of cooperative partners. Second, by manipulating entire subpopulations in the field, we increase the supply of outside options for subordinates, freeing up suitable nesting spots and providing additional nesting partners. We predicted that by intensifying competition for help, our manipulation would force dominants to accept a lower price for group membership. As expected, subordinates reduce their foraging effort following our treatments. We conclude that to accurately predict the amount of help provided, social units cannot be viewed in isolation: the surrounding market must also be considered. PMID:28117836

  8. The connection characteristics of flux pinned docking interface

    NASA Astrophysics Data System (ADS)

    Zhang, Mingliang; Han, Yanjun; Guo, Xing; Zhao, Cunbao; Deng, Feiyue

    2017-03-01

    This paper presents the mechanism and potential advantages of flux pinned docking interface mainly composed of a high temperature superconductor and an electromagnet. In order to readily assess the connection characteristics of flux pinned docking interface, the force between a high temperature superconductor and an electromagnet needs to be investigated. Based on the magnetic dipole method and the Ampere law method, the force between two current coils can be compared, which shows that the Ampere law method has the higher calculated accuracy. Based on the improved frozen image model and the Ampere law method, the force between high temperature superconductor bulk and permanent magnet can be calculated, which is validated experimentally. Moreover, the force between high temperature superconductor and electromagnet applied to flux pinned docking interface is able to be predicted and analyzed. The connection stiffness between high temperature superconductor and permanent magnet can be calculated based on the improved frozen image model and Hooke's law. The relationship between the connection stiffness and field cooling height is analyzed. Furthermore, the connection stiffness of the flux pinned docking interface is predicted and optimized, and its effective working range is defined and analyzed in case of some different parameters.

  9. Faculty Reward Systems and Academic Capitalism: Business Faculty Income inside and outside the Institution

    ERIC Educational Resources Information Center

    Lin, Shan

    2010-01-01

    Market forces have driven American higher education from a public good regime to an academic capitalist regime. To examine how this regime shift influences the quality of business education in the US, we use field of specialty, institutional characteristics, demographics, and personal achievements to predict faculty income from inside and outside…

  10. Current Status of Protein Force Fields for Molecular Dynamics

    PubMed Central

    Lopes, Pedro E.M.; Guvench, Olgun

    2015-01-01

    Summary The current status of classical force fields for proteins is reviewed. These include additive force fields as well as the latest developments in the Drude and AMOEBA polarizable force fields. Parametrization strategies developed specifically for the Drude force field are described and compared with the additive CHARMM36 force field. Results from molecular simulations of proteins and small peptides are summarized to illustrate the performance of the Drude and AMOEBA force fields. PMID:25330958

  11. Grip Force Adjustments Reflect Prediction of Dynamic Consequences in Varying Gravitoinertial Fields

    PubMed Central

    White, Olivier; Thonnard, Jean-Louis; Lefèvre, Philippe; Hermsdörfer, Joachim

    2018-01-01

    Humans have a remarkable ability to adjust the way they manipulate tools through a genuine regulation of grip force according to the task. However, rapid changes in the dynamical context may challenge this skill, as shown in many experimental approaches. Most experiments adopt perturbation paradigms that affect only one sensory modality. We hypothesize that very fast adaptation can occur if coherent information from multiple sensory modalities is provided to the central nervous system. Here, we test whether participants can switch between different and never experienced dynamical environments induced by centrifugation of the body. Seven participants lifted an object four times in a row successively in 1, 1.5, 2, 2.5, 2, 1.5, and 1 g. We continuously measured grip force, load force and the gravitoinertial acceleration that was aligned with body axis (perceived gravity). Participants adopted stereotyped grasping movements immediately upon entry in a new environment and needed only one trial to adapt grip forces to a stable performance in each new gravity environment. This result was underlined by good correlations between grip and load forces in the first trial. Participants predictively applied larger grip forces when they expected increasing gravity steps. They also decreased grip force when they expected decreasing gravity steps, but not as much as they could, indicating imperfect anticipation in that condition. The participants' performance could rather be explained by a combination of successful scaling of grip force according to gravity changes and a separate safety factor. The data suggest that in highly unfamiliar dynamic environments, grip force regulation is characterized by a combination of a successful anticipation of the experienced environmental condition, a safety factor reflecting strategic response to uncertainties about the environment and rapid feedback mechanisms to optimize performance under constant conditions. PMID:29527176

  12. Cardiac data mining (CDM); organization and predictive analytics on biomedical (cardiac) data

    NASA Astrophysics Data System (ADS)

    Bilal, M. Musa; Hussain, Masood; Basharat, Iqra; Fatima, Mamuna

    2013-10-01

    Data mining and data analytics has been of immense importance to many different fields as we witness the evolution of data sciences over recent years. Biostatistics and Medical Informatics has proved to be the foundation of many modern biological theories and analysis techniques. These are the fields which applies data mining practices along with statistical models to discover hidden trends from data that comprises of biological experiments or procedures on different entities. The objective of this research study is to develop a system for the efficient extraction, transformation and loading of such data from cardiologic procedure reports given by Armed Forces Institute of Cardiology. It also aims to devise a model for the predictive analysis and classification of this data to some important classes as required by cardiologists all around the world. This includes predicting patient impressions and other important features.

  13. Modelling and simulation of particle-particle interaction in a magnetophoretic bio-separation chip

    NASA Astrophysics Data System (ADS)

    Alam, Manjurul; Golozar, Matin; Darabi, Jeff

    2018-04-01

    A Lagrangian particle trajectory model is developed to predict the interaction between cell-bead particle complexes and to track their trajectories in a magnetophoretic bio-separation chip. Magnetic flux gradients are simulated in the OpenFOAM CFD software and imported into MATLAB to obtain the trapping lengths and trajectories of the particles. A connector vector is introduced to calculate the interaction force between cell-bead complexes as they flow through a microfluidic device. The interaction force calculations are performed for cases where the connector vector is parallel, perpendicular, and at an angle of 45° with the applied magnetic field. The trajectories of the particles are simulated by solving a system of eight ordinary differential equations using a fourth order Runge-Kutta method. The model is then used to study the effects of geometric positions and angles of the connector vector between the particles as well as the cell size, number of beads per cell, and flow rate on the interaction force and trajectories of the particles. The results show that the interaction forces may be attractive or repulsive, depending on the orientation of the connector vector distance between the particle complexes and the applied magnetic field. When the interaction force is attractive, the particles are observed to merge and trap sooner than a single particle, whereas a repulsive interaction force has little or no effect on the trapping length.

  14. Scaled Hartree-Fock force field calculations for organothallium compounds: Normal-mode analysis for TlCH sub 3 Tl(CH sub 3 ) sub 2 sup + , Tl(CH sub 3 ) sub 3 , Tl(CH sub 3 ) sub 2 Br, and Tl(CH sub 3 ) sub 4 sup minus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schwerdtfeger, P.; Bowmaker, G.A.; Boyd, P.D.W.

    1990-02-01

    In a recent paper we presented Hartree-Fock (HF) calculations for aliphatic organothallium compounds. The diagonal HF force constants obtained from a Fletcher-Powell geometry optimization are now used for a normal-mode analysis of TlCH{sub 3}, Tl(CH{sub 3}){sub 2}{sup +}, Tl(CH{sub 3}){sub 3}, Tl(CH{sub 3}){sub 2}Br, and Tl(CH{sub 3}){sub 4}{sup {minus}}. In order to calculate frequencies comparable to experimental values, the HF force field has been scaled by using scaling factors obtained from experimental infrared and Raman measurements on Tl(CH{sub 3}){sub 2}{sup +} and TlBr. The vibrational spectra of Tl(CH{sub 3}){sub 2}{sup +} were remeasured (infrared and Raman) in order to obtainmore » an accurate force field. Predictions are made for the vibrational spectrum of the as yet undetected TlCH{sub 3} molecule. Experimental infrared and Raman results for Tl(CH{sub 3}){sub 3} compare reasonably well with our calculated frequencies. Relativistic and correlation effects are analyzed for the vibrational frequencies of Tl(CH{sub 3}){sub 2}{sup +}.« less

  15. Low-energy vibrations of the group 10 metal monocarbonyl MCO (M = Ni, Pd, and Pt): rotational spectroscopy and force field analysis.

    PubMed

    Okabayashi, Toshiaki; Yamamoto, Takuya; Okabayashi, Emi Y; Tanimoto, Mitsutoshi

    2011-03-17

    The rotational spectra of NiCO and PdCO in the ground and ν(2) excited vibrational states were observed by employing a source-modulated microwave spectrometer. The NiCO and PdCO molecules were generated in a free space cell by the sputtering reaction of nickel and palladium sheets, respectively, lining the inner surface of a stainless steel cathode with a dc glow plasma of CO and Ar. The molecular constants of NiCO and PdCO were determined by least-squares analysis. By force field analysis for the molecular constants of not only NiCO and PdCO but also of PtCO as previously reported, the harmonic force constants were determined for these three group 10 metal monocarbonyls. The vibrational wavenumbers derived for the lower M-C stretching vibrations were in good agreement with those obtained from the IR spectra in noble gas matrices and those predicted by several quantum chemical calculations published in the past. The bending vibrational wavenumbers derived by the force field analysis were also consistent with most quantum chemical calculations previously reported, but showed systematic discrepancies from the matrix IR values by about 40 cm(-1), even after reassignment (ν(2) band → 2ν(2) band) of the matrix IR spectra of PdCO and PtCO.

  16. Three-dimensional analysis of tubular permanent magnet machines

    NASA Astrophysics Data System (ADS)

    Chai, J.; Wang, J.; Howe, D.

    2006-04-01

    This paper presents results from a three-dimensional finite element analysis of a tubular permanent magnet machine, and quantifies the influence of the laminated modules from which the stator core is assembled on the flux linkage and thrust force capability as well as on the self- and mutual inductances. The three-dimensional finite element (FE) model accounts for the nonlinear, anisotropic magnetization characteristic of the laminated stator structure, and for the voids which exist between the laminated modules. Predicted results are compared with those deduced from an axisymmetric FE model. It is shown that the emf and thrust force deduced from the three-dimensional model are significantly lower than those which are predicted from an axisymmetric field analysis, primarily as a consequence of the teeth and yoke being more highly saturated due to the presence of the voids in the laminated stator core.

  17. X-rays from Magnetic B-type Stars

    NASA Astrophysics Data System (ADS)

    Fletcher, Corinne; Petit, Véronique; Caballero-Nieves, Saida Maria; Nazé, Yaël; Owocki, Stan; Wade, Gregg; Cohen, David; Townsend, Richard; David-Uraz, Alexandre; Shultz, Matt

    2018-01-01

    Recent surveys have found that ~10% of OB-type stars host strong (~1kG), mostly dipolar magnetic fields. The prominent idea describing the interaction between the stellar winds and the magnetic field is the magnetically confined wind shock model. In this model, the ionized wind material is forced to move along the closed magnetic field loops and collides at the magnetic equator creating a shock. As the shocked material cools radiatively it will emit X-rays. Therefore, X-ray spectroscopy is a key tool in detecting and characterizing the wind material confined by the magnetic fields of these stars. Some of these magnetic B-type stars are found to have very short rotational periods. The effects of the rapid rotation on the X-ray production within the magnetosphere have yet to be explored in detail. The added centrifugal force is predicted to cause faster wind outflows along the field lines, which could lead to higher shock temperatures and harder X-rays. However, this is not observed in all rapidly rotating magnetic B-type stars. In order to address this question from a theoretical point of view, we use the X-ray Analytical Dynamical Magnetosphere model, developed for slow rotators and implement the physics of rapid rotation. Using X-ray spectroscopy from ESA’s XMM-Newton space telescope, we observed 5 rapidly rotating B-types stars to add to the previous list of observations. Comparing the observed X-ray luminosity and hardness ratio to that predicted by the XADM allows us to determine the role an added centrifugal acceleration plays in the magnetospheres of these stars.

  18. A novel numerical model to predict the morphological behavior of magnetic liquid marbles using coarse grained molecular dynamics concepts

    NASA Astrophysics Data System (ADS)

    Polwaththe-Gallage, Hasitha-Nayanajith; Sauret, Emilie; Nguyen, Nam-Trung; Saha, Suvash C.; Gu, YuanTong

    2018-01-01

    Liquid marbles are liquid droplets coated with superhydrophobic powders whose morphology is governed by the gravitational and surface tension forces. Small liquid marbles take spherical shapes, while larger liquid marbles exhibit puddle shapes due to the dominance of gravitational forces. Liquid marbles coated with hydrophobic magnetic powders respond to an external magnetic field. This unique feature of magnetic liquid marbles is very attractive for digital microfluidics and drug delivery systems. Several experimental studies have reported the behavior of the liquid marbles. However, the complete behavior of liquid marbles under various environmental conditions is yet to be understood. Modeling techniques can be used to predict the properties and the behavior of the liquid marbles effectively and efficiently. A robust liquid marble model will inspire new experiments and provide new insights. This paper presents a novel numerical modeling technique to predict the morphology of magnetic liquid marbles based on coarse grained molecular dynamics concepts. The proposed model is employed to predict the changes in height of a magnetic liquid marble against its width and compared with the experimental data. The model predictions agree well with the experimental findings. Subsequently, the relationship between the morphology of a liquid marble with the properties of the liquid is investigated. Furthermore, the developed model is capable of simulating the reversible process of opening and closing of the magnetic liquid marble under the action of a magnetic force. The scaling analysis shows that the model predictions are consistent with the scaling laws. Finally, the proposed model is used to assess the compressibility of the liquid marbles. The proposed modeling approach has the potential to be a powerful tool to predict the behavior of magnetic liquid marbles serving as bioreactors.

  19. A Relevance Vector Machine-Based Approach with Application to Oil Sand Pump Prognostics

    PubMed Central

    Hu, Jinfei; Tse, Peter W.

    2013-01-01

    Oil sand pumps are widely used in the mining industry for the delivery of mixtures of abrasive solids and liquids. Because they operate under highly adverse conditions, these pumps usually experience significant wear. Consequently, equipment owners are quite often forced to invest substantially in system maintenance to avoid unscheduled downtime. In this study, an approach combining relevance vector machines (RVMs) with a sum of two exponential functions was developed to predict the remaining useful life (RUL) of field pump impellers. To handle field vibration data, a novel feature extracting process was proposed to arrive at a feature varying with the development of damage in the pump impellers. A case study involving two field datasets demonstrated the effectiveness of the developed method. Compared with standalone exponential fitting, the proposed RVM-based model was much better able to predict the remaining useful life of pump impellers. PMID:24051527

  20. A relevance vector machine-based approach with application to oil sand pump prognostics.

    PubMed

    Hu, Jinfei; Tse, Peter W

    2013-09-18

    Oil sand pumps are widely used in the mining industry for the delivery of mixtures of abrasive solids and liquids. Because they operate under highly adverse conditions, these pumps usually experience significant wear. Consequently, equipment owners are quite often forced to invest substantially in system maintenance to avoid unscheduled downtime. In this study, an approach combining relevance vector machines (RVMs) with a sum of two exponential functions was developed to predict the remaining useful life (RUL) of field pump impellers. To handle field vibration data, a novel feature extracting process was proposed to arrive at a feature varying with the development of damage in the pump impellers. A case study involving two field datasets demonstrated the effectiveness of the developed method. Compared with standalone exponential fitting, the proposed RVM-based model was much better able to predict the remaining useful life of pump impellers.

  1. Field theory and diffusion creep predictions in polycrystalline aggregates

    NASA Astrophysics Data System (ADS)

    Villani, A.; Busso, E. P.; Forest, S.

    2015-07-01

    In polycrystals, stress-driven vacancy diffusion at high homologous temperatures leads to inelastic deformation. In this work, a novel continuum mechanics framework is proposed to describe the strain fields resulting from such a diffusion-driven process in a polycrystalline aggregate where grains and grain boundaries are explicitly considered. The choice of an anisotropic eigenstrain in the grain boundary region provides the driving force for the diffusive creep processes. The corresponding inelastic strain rate is shown to be related to the gradient of the vacancy flux. Dislocation driven deformation is then introduced as an additional mechanism, through standard crystal plasticity constitutive equations. The fully coupled diffusion-mechanical model is implemented into the finite element method and then used to describe the biaxial creep behaviour of FCC polycrystalline aggregates. The corresponding results revealed for the first time that such a coupled diffusion-stress approach, involving the gradient of the vacancy flux, can accurately predict the well-known macroscopic strain rate dependency on stress and grain size in the diffusion creep regime. They also predict strongly heterogeneous viscoplastic strain fields, especially close to grain boundaries triple junctions. Finally, a smooth transition from Herring and Coble to dislocation creep behaviour is predicted and compared to experimental results for copper.

  2. tDCS-induced alterations in GABA concentration within primary motor cortex predict motor learning and motor memory: a 7 T magnetic resonance spectroscopy study.

    PubMed

    Kim, Soyoung; Stephenson, Mary C; Morris, Peter G; Jackson, Stephen R

    2014-10-01

    Transcranial direct current stimulation (tDCS) is a non-invasive brain stimulation technique that alters cortical excitability in a polarity specific manner and has been shown to influence learning and memory. tDCS may have both on-line and after-effects on learning and memory, and the latter are thought to be based upon tDCS-induced alterations in neurochemistry and synaptic function. We used ultra-high-field (7 T) magnetic resonance spectroscopy (MRS), together with a robotic force adaptation and de-adaptation task, to investigate whether tDCS-induced alterations in GABA and Glutamate within motor cortex predict motor learning and memory. Note that adaptation to a robot-induced force field has long been considered to be a form of model-based learning that is closely associated with the computation and 'supervised' learning of internal 'forward' models within the cerebellum. Importantly, previous studies have shown that on-line tDCS to the cerebellum, but not to motor cortex, enhances model-based motor learning. Here we demonstrate that anodal tDCS delivered to the hand area of the left primary motor cortex induces a significant reduction in GABA concentration. This effect was specific to GABA, localised to the left motor cortex, and was polarity specific insofar as it was not observed following either cathodal or sham stimulation. Importantly, we show that the magnitude of tDCS-induced alterations in GABA concentration within motor cortex predicts individual differences in both motor learning and motor memory on the robotic force adaptation and de-adaptation task. Copyright © 2014. Published by Elsevier Inc.

  3. Electric-field-induced dielectrophoresis and heterogeneous aggregation in dilute suspensions of positively polarizable particles

    NASA Astrophysics Data System (ADS)

    Acrivos, Andreas; Qiu, Zhiyong; Markarian, Nikolai; Khusid, Boris

    2002-11-01

    We specified the conditions under which a dilute suspension of positively polarizable particles would undergo a heterogeneous aggregation in high-gradient strong AC fields and then examined experimentally and theoretically its kinetics [1]. Experiments were conducted on flowing dilute suspensions of heavy aluminum oxide spheres subjected to a high-gradient AC field (several kV/mm) such that the dielectrophoretic force acting on the particles was arranged in the plane perpendicular to the streamlines of the main flow. To reduce the gravitational settling of the particles, the electric chamber was kept slowly rotating around a horizontal axis. Following the application of a field, the particles were found to move towards both the high-voltage and grounded electrodes and to form arrays of "bristles" along their edges. The process was modeled by computing the motion of a single particle under the action of dielectrophoretic, viscous, and gravitational forces for negligibly small particle Reynolds numbers. The particle polarization required for the calculation of the dielectrophoretic force was measured in low-strength fields (several V/mm). The theoretical predictions for the kinetics of the particle accumulation on the electrodes were found to be in a reasonable agreement with experiment, although the interparticle interactions governed the formation of arrays of bristles. These bristles were formed in a two-step mechanism, which arose from the interplay of the dielectrophoretic force that confined the particles near the electrode edge and the dipolar interactions of nearby particles. The results of our studies provide the basic characteristics needed for the design and optimization of electro-hydrodynamic apparatuses. The work was supported by a NASA grant. The suspension characterization was conducted at the NJIT W.M. Keck Laboratory. 1. Z. Qiu, N. Markarian, B. Khusid, A. Acrivos, J. Apple. Phys., 92(5), 2002.

  4. Biomolecularmodeling and simulation: a field coming of age

    PubMed Central

    Schlick, Tamar; Collepardo-Guevara, Rosana; Halvorsen, Leif Arthur; Jung, Segun; Xiao, Xia

    2013-01-01

    We assess the progress in biomolecular modeling and simulation, focusing on structure prediction and dynamics, by presenting the field’s history, metrics for its rise in popularity, early expressed expectations, and current significant applications. The increases in computational power combined with improvements in algorithms and force fields have led to considerable success, especially in protein folding, specificity of ligand/biomolecule interactions, and interpretation of complex experimental phenomena (e.g. NMR relaxation, protein-folding kinetics and multiple conformational states) through the generation of structural hypotheses and pathway mechanisms. Although far from a general automated tool, structure prediction is notable for proteins and RNA that preceded the experiment, especially by knowledge-based approaches. Thus, despite early unrealistic expectations and the realization that computer technology alone will not quickly bridge the gap between experimental and theoretical time frames, ongoing improvements to enhance the accuracy and scope of modeling and simulation are propelling the field onto a productive trajectory to become full partner with experiment and a field on its own right. PMID:21226976

  5. Atmospheric stability and complex terrain: comparing measurements and CFD

    NASA Astrophysics Data System (ADS)

    Koblitz, T.; Bechmann, A.; Berg, J.; Sogachev, A.; Sørensen, N.; Réthoré, P.-E.

    2014-12-01

    For wind resource assessment, the wind industry is increasingly relying on Computational Fluid Dynamics models that focus on modeling the airflow in a neutrally stratified surface layer. So far, physical processes that are specific to the atmospheric boundary layer, for example the Coriolis force, buoyancy forces and heat transport, are mostly ignored in state-of-the-art flow solvers. In order to decrease the uncertainty of wind resource assessment, the effect of thermal stratification on the atmospheric boundary layer should be included in such models. The present work focuses on non-neutral atmospheric flow over complex terrain including physical processes like stability and Coriolis force. We examine the influence of these effects on the whole atmospheric boundary layer using the DTU Wind Energy flow solver EllipSys3D. To validate the flow solver, measurements from Benakanahalli hill, a field experiment that took place in India in early 2010, are used. The experiment was specifically designed to address the combined effects of stability and Coriolis force over complex terrain, and provides a dataset to validate flow solvers. Including those effects into EllipSys3D significantly improves the predicted flow field when compared against the measurements.

  6. Analysis of mixed-mode crack propagation using the boundary integral method

    NASA Technical Reports Server (NTRS)

    Mendelson, A.; Ghosn, L. J.

    1986-01-01

    Crack propagation in a rotating inner raceway of a high speed roller bearing is analyzed using the boundary integral equation method. The method consists of an edge crack in a plate under tension, upon which varying Hertzian stress fields are superimposed. A computer program for the boundary integral equation method was written using quadratic elements to determine the stress and displacement fields for discrete roller positions. Mode I and Mode II stress intensity factors and crack extension forces G sub 00 (energy release rate due to tensile opening mode) and G sub r0 (energy release rate due to shear displacement mode) were computed. These calculations permit determination of that crack growth angle for which the change in the crack extension forces is maximum. The crack driving force was found to be the alternating mixed-mode loading that occurs with each passage of the most heavily loaded roller. The crack is predicted to propagate in a step-like fashion alternating between radial and inclined segments, and this pattern was observed experimentally. The maximum changes DeltaG sub 00 and DeltaG sub r0 of the crack extension forces are found to be good measures of the crack propagation rate and direction.

  7. Free flux flow in two single crystals of V3Si with differing pinning strengths

    NASA Astrophysics Data System (ADS)

    Gafarov, O.; Gapud, A. A.; Moraes, S.; Thompson, J. R.; Christen, D. K.; Reyes, A. P.

    2011-10-01

    Results of measurements on two very clean, single-crystal samples of the A15 superconductor V3Si are presented. Magnetization and transport data have confirmed the ``clean'' quality of both samples, as manifested by: (i) high residual electrical resistivity ratio, (ii) very low critical current densities Jc, and (iii) a ``peak'' effect in the field dependence of critical current. The (H,T) phase line for this peak effect is shifted down for the slightly ``dirtier'' sample, which consequently also has higher critical current density Jc(H). Large Lorentz forces are applied on mixed-state vortices via large currents, in order to induce the highly ordered free flux flow (FFF) phase, using experimental methods developed previously. The traditional model by Bardeen and Stephen (BS) predicts a simple field dependence of flux flow resistivity ρf(H) ˜ H/Hc2, presuming a field-independent flux core size. A model by Kogan and Zelezhina (KZ) takes into account the effects of magnetic field on core size, and predict a clear deviation from the linear BS dependence. In this study, ρf(H) is confirmed to be consistent with predictions of KZ.

  8. Nonlinear Bubble Interactions in Acoustic Pressure Fields

    NASA Technical Reports Server (NTRS)

    Barbat, Tiberiu; Ashgriz, Nasser; Liu, Ching-Shi

    1996-01-01

    The systems consisting of a two-phase mixture, as clouds of bubbles or drops, have shown many common features in their responses to different external force fields. One of particular interest is the effect of an unsteady pressure field applied to these systems, case in which the coupling of the vibrations induced in two neighboring components (two drops or two bubbles) may result in an interaction force between them. This behavior was explained by Bjerknes by postulating that every body that is moving in an accelerating fluid is subjected to a 'kinetic buoyancy' equal with the product of the acceleration of the fluid multiplied by the mass of the fluid displaced by the body. The external sound wave applied to a system of drops/bubbles triggers secondary sound waves from each component of the system. These secondary pressure fields integrated over the surface of the neighboring drop/bubble may result in a force additional to the effect of the primary sound wave on each component of the system. In certain conditions, the magnitude of these secondary forces may result in significant changes in the dynamics of each component, thus in the behavior of the entire system. In a system containing bubbles, the sound wave radiated by one bubble at the location of a neighboring one is dominated by the volume oscillation mode and its effects can be important for a large range of frequencies. The interaction forces in a system consisting of drops are much smaller than those consisting of bubbles. Therefore, as a first step towards the understanding of the drop-drop interaction subject to external pressure fluctuations, it is more convenient to study the bubble interactions. This paper presents experimental results and theoretical predictions concerning the interaction and the motion of two levitated air bubbles in water in the presence of an acoustic field at high frequencies (22-23 KHz).

  9. Evaluation of candidate geomagnetic field models for IGRF-11

    NASA Astrophysics Data System (ADS)

    Finlay, C. C.; Maus, S.; Beggan, C. D.; Hamoudi, M.; Lowes, F. J.; Olsen, N.; Thébault, E.

    2010-10-01

    The eleventh generation of the International Geomagnetic Reference Field (IGRF) was agreed in December 2009 by a task force appointed by the International Association of Geomagnetism and Aeronomy (IAGA) Division V Working Group V-MOD. New spherical harmonic main field models for epochs 2005.0 (DGRF-2005) and 2010.0 (IGRF-2010), and predictive linear secular variation for the interval 2010.0-2015.0 (SV-2010-2015) were derived from weighted averages of candidate models submitted by teams led by DTU Space, Denmark (team A); NOAA/NGDC, U.S.A. (team B); BGS, U.K. (team C); IZMIRAN, Russia (team D); EOST, France (team E); IPGP, France (team F); GFZ, Germany (team G) and NASA-GSFC, U.S.A. (team H). Here, we report the evaluations of candidate models carried out by the IGRF-11 task force during October/November 2009 and describe the weightings used to derive the new IGRF-11 model. The evaluations include calculations of root mean square vector field differences between the candidates, comparisons of the power spectra, and degree correlations between the candidates and a mean model. Coefficient by coefficient analysis including determination of weighting factors used in a robust estimation of mean coefficients is also reported. Maps of differences in the vertical field intensity at Earth's surface between the candidates and weighted mean models are presented. Candidates with anomalous aspects are identified and efforts made to pinpoint both troublesome coefficients and geographical regions where large variations between candidates originate. A retrospective analysis of IGRF-10 main field candidates for epoch 2005.0 and predictive secular variation candidates for 2005.0-2010.0 using the new IGRF-11 models as a reference is also reported. The high quality and consistency of main field models derived using vector satellite data is demonstrated; based on internal consistency DGRF-2005 has a formal root mean square vector field error over Earth's surface of 1.0 nT. Difficulties nevertheless remain in accurately forecasting field evolution only five years into the future.

  10. Computational Materials Research

    NASA Technical Reports Server (NTRS)

    Hinkley, Jeffrey A. (Editor); Gates, Thomas S. (Editor)

    1996-01-01

    Computational Materials aims to model and predict thermodynamic, mechanical, and transport properties of polymer matrix composites. This workshop, the second coordinated by NASA Langley, reports progress in measurements and modeling at a number of length scales: atomic, molecular, nano, and continuum. Assembled here are presentations on quantum calculations for force field development, molecular mechanics of interfaces, molecular weight effects on mechanical properties, molecular dynamics applied to poling of polymers for electrets, Monte Carlo simulation of aromatic thermoplastics, thermal pressure coefficients of liquids, ultrasonic elastic constants, group additivity predictions, bulk constitutive models, and viscoplasticity characterization.

  11. An accurate ab initio quartic force field for ammonia

    NASA Technical Reports Server (NTRS)

    Martin, J. M. L.; Lee, Timothy J.; Taylor, Peter R.

    1992-01-01

    The quartic force field of ammonia is computed using basis sets of spdf/spd and spdfg/spdf quality and an augmented coupled cluster method. After correcting for Fermi resonance, the computed fundamentals and nu 4 overtones agree on average to better than 3/cm with the experimental ones except for nu 2. The discrepancy for nu 2 is principally due to higher-order anharmonicity effects. The computed omega 1, omega 3, and omega 4 confirm the recent experimental determination by Lehmann and Coy (1988) but are associated with smaller error bars. The discrepancy between the computed and experimental omega 2 is far outside the expected error range, which is also attributed to higher-order anharmonicity effects not accounted for in the experimental determination. Spectroscopic constants are predicted for a number of symmetric and asymmetric top isotopomers of NH3.

  12. Understanding the sensitivity of nucleation free energies: The role of supersaturation and temperature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keasler, Samuel J., E-mail: samuel.keasler@vcsu.edu; Department of Science, Valley City State University, 101 College Street SW, Valley City, North Dakota 58072; Siepmann, J. Ilja

    2015-10-28

    Simulations are used to investigate the vapor-to-liquid nucleation of water for several different force fields at various sets of physical conditions. The nucleation free energy barrier is found to be extremely sensitive to the force field at the same absolute conditions. However, when the results are compared at the same supersaturation and reduced temperature or the same metastability parameter and reduced temperature, then the differences in the nucleation free energies of the different models are dramatically reduced. This finding suggests that comparisons of experimental data and computational predictions are most meaningful at the same relative conditions and emphasizes the importancemore » of knowing the phase diagram of a given computational model, but such information is usually not available for models where the interaction energy is determined directly from electronic structure calculations.« less

  13. Assessing Strain Mapping by Electron Backscatter Diffraction and Confocal Raman Microscopy Using Wedge-indented Si

    PubMed Central

    Friedman, Lawrence H.; Vaudin, Mark D.; Stranick, Stephan J.; Stan, Gheorghe; Gerbig, Yvonne B.; Osborn, William; Cook, Robert F.

    2016-01-01

    The accuracy of electron backscatter diffraction (EBSD) and confocal Raman microscopy (CRM) for small-scale strain mapping are assessed using the multi-axial strain field surrounding a wedge indentation in Si as a test vehicle. The strain field is modeled using finite element analysis (FEA) that is adapted to the near-indentation surface profile measured by atomic force microscopy (AFM). The assessment consists of (1) direct experimental comparisons of strain and deformation and (2) comparisons in which the modeled strain field is used as an intermediate step. Direct experimental methods (1) consist of comparisons of surface elevation and gradient measured by AFM and EBSD and of Raman shifts measured and predicted by CRM and EBSD, respectively. Comparisons that utilize the combined FEA-AFM model (2) consist of predictions of distortion, strain, and rotation for comparison with EBSD measurements and predictions of Raman shift for comparison with CRM measurements. For both EBSD and CRM, convolution of measurements in depth-varying strain fields is considered. The interconnected comparisons suggest that EBSD was able to provide an accurate assessment of the wedge indentation deformation field to within the precision of the measurements, approximately 2 × 10−4 in strain. CRM was similarly precise, but was limited in accuracy to several times this value. PMID:26939030

  14. Label-Free Alignment of Nonmagnetic Particles in a Small Uniform Magnetic Field.

    PubMed

    Wang, Zhaomeng; Wang, Ying; Wu, Rui Ge; Wang, Z P; Ramanujan, R V

    2018-01-01

    Label-free manipulation of biological entities can minimize damage, increase viability and improve efficiency of subsequent analysis. Understanding the mechanism of interaction between magnetic and nonmagnetic particles in an inverse ferrofluid can provide a mechanism of label-free manipulation of such entities in a uniform magnetic field. The magnetic force, induced by relative magnetic susceptibility difference between nonmagnetic particles and surrounding magnetic particles as well as particle-particle interaction were studied. Label-free alignment of nonmagnetic particles can be achieved by higher magnetic field strength (Ba), smaller particle spacing (R), larger particle size (rp1), and higher relative magnetic permeability difference between particle and the surrounding fluid (Rμr). Rμr can be used to predict the direction of the magnetic force between both magnetic and nonmagnetic particles. A sandwich structure, containing alternate layers of magnetic and nonmagnetic particle chains, was studied. This work can be used for manipulation of nonmagnetic particles in lab-on-a-chip applications.

  15. Transport properties of carbon dioxide and methane from molecular dynamics simulations.

    PubMed

    Aimoli, C G; Maginn, E J; Abreu, C R A

    2014-10-07

    Transport properties of carbon dioxide and methane are predicted for temperatures between (273.15 and 573.15) K and pressures up to 800 MPa by molecular dynamics simulations. Viscosities and thermal conductivities were obtained through the Green-Kubo formalism, whereas the Einstein relation was used to provide self-diffusion coefficient estimates. The differences in property predictions due to the force field nature and parametrization were investigated by the comparison of seven different CO2 models (two single-site models, three rigid three-site models, and two fully flexible three-site models) and three different CH4 models (two single-site models and one fully flexible five-site model). The simulation results show good agreement with experimental data, except for thermal conductivities at low densities. The molecular structure and force field parameters play an important role in the accuracy of the simulations, which is within the experimental deviations reported for viscosities and self-diffusion coefficients considering the most accurate CO2 and CH4 models studied. On the other hand, the molecular flexibility does not seem to improve accuracy, since the explicit account of vibrational and bending degrees of freedom in the CO2 flexible models leads to slightly less accurate results. Nonetheless, the use of a correctional term to account for vibrational modes in rigid models generally improves estimations of thermal conductivity values. At extreme densities, the caging effect observed with single-site representations of the molecules restrains mobility and leads to an unphysical overestimation of viscosities and, conversely, to the underestimation of self-diffusion coefficients. This result may help to better understand the limits of applicability of such force fields concerning structural and transport properties of dense systems.

  16. Evaluation of copper, aluminum, and nickel interatomic potentials on predicting the elastic properties

    NASA Astrophysics Data System (ADS)

    Rassoulinejad-Mousavi, Seyed Moein; Mao, Yijin; Zhang, Yuwen

    2016-06-01

    Choice of appropriate force field is one of the main concerns of any atomistic simulation that needs to be seriously considered in order to yield reliable results. Since investigations on the mechanical behavior of materials at micro/nanoscale have been becoming much more widespread, it is necessary to determine an adequate potential which accurately models the interaction of the atoms for desired applications. In this framework, reliability of multiple embedded atom method based interatomic potentials for predicting the elastic properties was investigated. Assessments were carried out for different copper, aluminum, and nickel interatomic potentials at room temperature which is considered as the most applicable case. Examined force fields for the three species were taken from online repositories of National Institute of Standards and Technology, as well as the Sandia National Laboratories, the LAMMPS database. Using molecular dynamic simulations, the three independent elastic constants, C11, C12, and C44, were found for Cu, Al, and Ni cubic single crystals. Voigt-Reuss-Hill approximation was then implemented to convert elastic constants of the single crystals into isotropic polycrystalline elastic moduli including bulk modulus, shear modulus, and Young's modulus as well as Poisson's ratio. Simulation results from massive molecular dynamic were compared with available experimental data in the literature to justify the robustness of each potential for each species. Eventually, accurate interatomic potentials have been recommended for finding each of the elastic properties of the pure species. Exactitude of the elastic properties was found to be sensitive to the choice of the force fields. Those potentials that were fitted for a specific compound may not necessarily work accurately for all the existing pure species. Tabulated results in this paper might be used as a benchmark to increase assurance of using the interatomic potential that was designated for a problem.

  17. Physics of field-responsive fluids

    NASA Astrophysics Data System (ADS)

    Wan, Tsz Kai Jones

    Electrorheological (ER) fluid is a new class of material, which possesses a variety of potential applications, such as shock absorbers and clutches. It is formed by microparticles that are dispersed in a host fluid. The particles will form chains rapidly when we apply an electric field to the ER fluid. However, due to the inadequacy of knowledge, the proposed applications have not been commercialized yet. The prediction of the strength of the ER effect is the main concern in the theoretical investigation of ER fluids. The ER effect is originated from the induced interaction between the polarized particles in an ER fluid. Existing theories assume that the particles are at rest. In a realistic situation, the fluid flow exerts force and torque on the particles, setting the particles in both translational and rotational motions under these actions. Recent experiments showed that the induced forces between the rotating particles are markedly different from the values predicted by existing theories. To overcome the discrepancy between theory and experiment, we formulate a model to take the particle motion into account, and derive the dependence of forces on the angular velocity of the rotating particles. We develop first-principles methods to investigate the dynamic ER effects in which the suspended particles can have translational or rotational motions. A model based on the relaxation of polarization charge on the particle surfaces is proposed and solved for various experimental conditions. The method can be extended to study the ER effects of coated particles, crystalline particles, and to the magnetorheological effects of paramagnetic particles. Moreover, the nonlinear ER effects under a strong applied field will be studied by the same approach. The results may help in the preparation of materials for the design of ER fluids.

  18. Ensemble MD simulations restrained via crystallographic data: Accurate structure leads to accurate dynamics

    PubMed Central

    Xue, Yi; Skrynnikov, Nikolai R

    2014-01-01

    Currently, the best existing molecular dynamics (MD) force fields cannot accurately reproduce the global free-energy minimum which realizes the experimental protein structure. As a result, long MD trajectories tend to drift away from the starting coordinates (e.g., crystallographic structures). To address this problem, we have devised a new simulation strategy aimed at protein crystals. An MD simulation of protein crystal is essentially an ensemble simulation involving multiple protein molecules in a crystal unit cell (or a block of unit cells). To ensure that average protein coordinates remain correct during the simulation, we introduced crystallography-based restraints into the MD protocol. Because these restraints are aimed at the ensemble-average structure, they have only minimal impact on conformational dynamics of the individual protein molecules. So long as the average structure remains reasonable, the proteins move in a native-like fashion as dictated by the original force field. To validate this approach, we have used the data from solid-state NMR spectroscopy, which is the orthogonal experimental technique uniquely sensitive to protein local dynamics. The new method has been tested on the well-established model protein, ubiquitin. The ensemble-restrained MD simulations produced lower crystallographic R factors than conventional simulations; they also led to more accurate predictions for crystallographic temperature factors, solid-state chemical shifts, and backbone order parameters. The predictions for 15N R1 relaxation rates are at least as accurate as those obtained from conventional simulations. Taken together, these results suggest that the presented trajectories may be among the most realistic protein MD simulations ever reported. In this context, the ensemble restraints based on high-resolution crystallographic data can be viewed as protein-specific empirical corrections to the standard force fields. PMID:24452989

  19. Development of a Polarizable Force Field For Proteins via Ab Initio Quantum Chemistry: First Generation Model and Gas Phase Tests

    PubMed Central

    KAMINSKI, GEORGE A.; STERN, HARRY A.; BERNE, B. J.; FRIESNER, RICHARD A.; CAO, YIXIANG X.; MURPHY, ROBERT B.; ZHOU, RUHONG; HALGREN, THOMAS A.

    2014-01-01

    We present results of developing a methodology suitable for producing molecular mechanics force fields with explicit treatment of electrostatic polarization for proteins and other molecular system of biological interest. The technique allows simulation of realistic-size systems. Employing high-level ab initio data as a target for fitting allows us to avoid the problem of the lack of detailed experimental data. Using the fast and reliable quantum mechanical methods supplies robust fitting data for the resulting parameter sets. As a result, gas-phase many-body effects for dipeptides are captured within the average RMSD of 0.22 kcal/mol from their ab initio values, and conformational energies for the di- and tetrapeptides are reproduced within the average RMSD of 0.43 kcal/mol from their quantum mechanical counterparts. The latter is achieved in part because of application of a novel torsional fitting technique recently developed in our group, which has already been used to greatly improve accuracy of the peptide conformational equilibrium prediction with the OPLS-AA force field.1 Finally, we have employed the newly developed first-generation model in computing gas-phase conformations of real proteins, as well as in molecular dynamics studies of the systems. The results show that, although the overall accuracy is no better than what can be achieved with a fixed-charges model, the methodology produces robust results, permits reasonably low computational cost, and avoids other computational problems typical for polarizable force fields. It can be considered as a solid basis for building a more accurate and complete second-generation model. PMID:12395421

  20. Computational study of the free energy landscape of the miniprotein CLN025 in explicit and implicit solvent.

    PubMed

    Rodriguez, Alex; Mokoema, Pol; Corcho, Francesc; Bisetty, Khrisna; Perez, Juan J

    2011-02-17

    The prediction capabilities of atomistic simulations of peptides are hampered by different difficulties, including the reliability of force fields, the treatment of the solvent or the adequate sampling of the conformational space. In this work, we have studied the conformational profile of the 10 residue miniprotein CLN025 known to exhibit a β-hairpin in its native state to understand the limitations of implicit methods to describe solvent effects and how these may be compensated by using different force fields. For this purpose, we carried out a thorough sampling of the conformational space of CLN025 in explicit solvent using the replica exchange molecular dynamics method as a sampling technique and compared the results with simulations of the system modeled using the analytical linearized Poisson-Boltzmann (ALPB) method with three different AMBER force fields: parm94, parm96, and parm99SB. The results show the peptide to exhibit a funnel-like free energy landscape with two minima in explicit solvent. In contrast, the higher minimum nearly disappears from the energy surface when the system is studied with an implicit representation of the solvent. Moreover, the different force fields used in combination with the ALPB method do not describe the system in the same manner. The results of this work suggest that the balance between intra- and intermolecular interactions is the cause of the differences between implicit and explicit solvent simulations in this system, stressing the role of the environment to define properly the conformational profile of a peptide in solution.

  1. Improved classical united-atom force field for imidazolium-based ionic liquids: tetrafluoroborate, hexafluorophosphate, methylsulfate, trifluoromethylsulfonate, acetate, trifluoroacetate, and bis(trifluoromethylsulfonyl)amide.

    PubMed

    Zhong, Xiujuan; Liu, Zhiping; Cao, Dapeng

    2011-08-25

    A cost-effective, classical united-atom (UA) force field for ionic liquids (ILs) was proposed, which can be used in simulations of ILs composed by 1-alkyl-3-methyl-imidazolium cations ([C(n)mim](+)) and seven kinds of anions, including tetrafluoroborate ([BF(4)](-)), hexafluorophosphate ([PF(6)](-)), methylsulfate ([CH(3)SO(4)](-)), trifluoromethylsulfonate ([CF(3)SO(3)](-)), acetate ([CH(3)CO(2)](-)), trifluoroacetate ([CF(3)CO(2)](-)), and bis(trifluoromethylsulfonyl)amide ([NTf(2)](-)). The same strategy in our previous work (J. Phys. Chem. B 2010, 114, 4572) was used to parametrize the force field, in which the effective atom partial charges are fitted by the electrostatic potential surface (ESP) of ion pair dimers to account for the overall effects of polarization in ILs. The total charges (absolute values) on the cation/anion are in the range of 0.64-0.75, which are rescaled to 0.8 for all kinds of ions by a compromise between transferability and accuracy. Extensive molecular dynamics (MD) simulations were performed over a wide range of temperatures to validate the force field, especially on the enthalpies of vaporization (ΔH(vap)) and transport properties, including the self-diffusion coefficient and shear viscosity. The liquid densities were predicted very well for all of the ILs studied in this work with typical deviations of less than 1%. The simulated ΔH(vap) at 298 and 500 K are also in good agreement with the measured values by different experimental methods, with a slight overestimation of about 5 kJ/mol. The influence of ΔC(p) (the difference between the molar heat capacity at constant pressure of the gas and that of liquid) on the calculation of ΔH(vap) is also discussed. The transport coefficients were estimated by the equilibrium MD method using 20-60 ns trajectories to improve the sampling. The proposed force field gives a good description of the self-diffusion coefficients and shear viscosities, which is comparable to the recently developed polarizable force field. Although slightly lower dynamics is found in simulations by our force field, the order of magnitude of the self-diffusion coefficient and viscosity are reproduced for all the ILs very well over a wide temperature range. The largest underestimation of the self-diffusion coefficient is about one-third of the experimental values, while the largest overestimation of the viscosity is about two times the experimental values. © 2011 American Chemical Society

  2. Summary of recent NASA propeller research

    NASA Technical Reports Server (NTRS)

    Mikkelson, D. C.; Mitchell, G. A.; Bober, L. J.

    1984-01-01

    Advanced high-speed propellers offer large performance improvements for aircraft that cruise in the Mach 0.7 to 0.8 speed regime. At these speeds, studies indicate that there is a 15 to near 40 percent block fuel savings and associated operating cost benefits for advanced turboprops compared to equivalent technology turbofan powered aircraft. Recent wind tunnel results for five eight to ten blade advanced models are compared with analytical predictions. Test results show that blade sweep was important in achieving net efficiencies near 80 percent at Mach 0.8 and reducing nearfield cruise noise by about 6 dB. Lifting line and lifting surface aerodynamic analysis codes are under development and some results are compared with propeller force and probe data. Also, analytical predictions are compared with some initial laser velocimeter measurements of the flow field velocities of an eightbladed 45 swept propeller. Experimental aeroelastic results indicate that cascade effects and blade sweep strongly affect propeller aeroelastic characteristics. Comparisons of propeller near-field noise data with linear acoustic theory indicate that the theory adequately predicts near-field noise for subsonic tip speeds but overpredicts the noise for supersonic tip speeds.

  3. Free flux flow in two single crystals of V3Si with slightly different pinning strengths

    NASA Astrophysics Data System (ADS)

    Gafarov, O.; Gapud, A. A.; Moraes, S.; Thompson, J. R.; Christen, D. K.; Reyes, A. P.

    2010-10-01

    Results of recent measurements on two very clean, single-crystal samples of the A15 superconductor V3Si are presented. Magnetization and transport data already confirmed the ``clean'' quality of both samples, as manifested by: (i) high residual resistivity ratio, (ii) very low critical current densities, and (iii) a ``peak'' effect in the field dependence of critical current. The (H,T) phase line for this peak effect is shifted in the slightly ``dirtier'' sample, which consequently also has higher critical current density Jc(H). High-current Lorentz forces are applied on mixed-state vortices in order to induce the highly ordered free flux flow (FFF) phase, using the same methods as in previous work. A traditional model by Bardeen and Stephen (BS) predicts a simple field dependence of flux flow resistivity ρf(H), presuming a field-independent flux core size. A model by Kogan and Zelezhina (KZ) takes core size into account, and predict a clear deviation from BS. In this study, ρf(H) is confirmed to be consistent with predictions of KZ, as will be discussed.

  4. Levitation forces of a bulk YBCO superconductor in gradient varying magnetic fields

    NASA Astrophysics Data System (ADS)

    Jiang, J.; Gong, Y. M.; Wang, G.; Zhou, D. J.; Zhao, L. F.; Zhang, Y.; Zhao, Y.

    2015-09-01

    The levitation forces of a bulk YBCO superconductor in gradient varying high and low magnetic fields generated from a superconducting magnet were investigated. The magnetic field intensity of the superconducting magnet was measured when the exciting current was 90 A. The magnetic field gradient and magnetic force field were both calculated. The YBCO bulk was cooled by liquid nitrogen in field-cooling (FC) and zero-field-cooling (ZFC) condition. The results showed that the levitation forces increased with increasing the magnetic field intensity. Moreover, the levitation forces were more dependent on magnetic field gradient and magnetic force field than magnetic field intensity.

  5. Validation of finite element computations for the quantitative prediction of underwater noise from impact pile driving.

    PubMed

    Zampolli, Mario; Nijhof, Marten J J; de Jong, Christ A F; Ainslie, Michael A; Jansen, Erwin H W; Quesson, Benoit A J

    2013-01-01

    The acoustic radiation from a pile being driven into the sediment by a sequence of hammer strikes is studied with a linear, axisymmetric, structural acoustic frequency domain finite element model. Each hammer strike results in an impulsive sound that is emitted from the pile and then propagated in the shallow water waveguide. Measurements from accelerometers mounted on the head of a test pile and from hydrophones deployed in the water are used to validate the model results. Transfer functions between the force input at the top of the anvil and field quantities, such as acceleration components in the structure or pressure in the fluid, are computed with the model. These transfer functions are validated using accelerometer or hydrophone measurements to infer the structural forcing. A modeled hammer forcing pulse is used in the successive step to produce quantitative predictions of sound exposure at the hydrophones. The comparison between the model and the measurements shows that, although several simplifying assumptions were made, useful predictions of noise levels based on linear structural acoustic models are possible. In the final part of the paper, the model is used to characterize the pile as an acoustic radiator by analyzing the flow of acoustic energy.

  6. Predicting the excess solubility of acetanilide, acetaminophen, phenacetin, benzocaine, and caffeine in binary water/ethanol mixtures via molecular simulation

    PubMed Central

    Paluch, Andrew S.; Parameswaran, Sreeja; Liu, Shuai; Kolavennu, Anasuya; Mobley, David L.

    2015-01-01

    We present a general framework to predict the excess solubility of small molecular solids (such as pharmaceutical solids) in binary solvents via molecular simulation free energy calculations at infinite dilution with conventional molecular models. The present study used molecular dynamics with the General AMBER Force Field to predict the excess solubility of acetanilide, acetaminophen, phenacetin, benzocaine, and caffeine in binary water/ethanol solvents. The simulations are able to predict the existence of solubility enhancement and the results are in good agreement with available experimental data. The accuracy of the predictions in addition to the generality of the method suggests that molecular simulations may be a valuable design tool for solvent selection in drug development processes. PMID:25637996

  7. Global model comparison of heterogeneous ice nucleation parameterizations in mixed phase clouds

    NASA Astrophysics Data System (ADS)

    Yun, Yuxing; Penner, Joyce E.

    2012-04-01

    A new aerosol-dependent mixed phase cloud parameterization for deposition/condensation/immersion (DCI) ice nucleation and one for contact freezing are compared to the original formulations in a coupled general circulation model and aerosol transport model. The present-day cloud liquid and ice water fields and cloud radiative forcing are analyzed and compared to observations. The new DCI freezing parameterization changes the spatial distribution of the cloud water field. Significant changes are found in the cloud ice water fraction and in the middle cloud fractions. The new DCI freezing parameterization predicts less ice water path (IWP) than the original formulation, especially in the Southern Hemisphere. The smaller IWP leads to a less efficient Bergeron-Findeisen process resulting in a larger liquid water path, shortwave cloud forcing, and longwave cloud forcing. It is found that contact freezing parameterizations have a greater impact on the cloud water field and radiative forcing than the two DCI freezing parameterizations that we compared. The net solar flux at top of atmosphere and net longwave flux at the top of the atmosphere change by up to 8.73 and 3.52 W m-2, respectively, due to the use of different DCI and contact freezing parameterizations in mixed phase clouds. The total climate forcing from anthropogenic black carbon/organic matter in mixed phase clouds is estimated to be 0.16-0.93 W m-2using the aerosol-dependent parameterizations. A sensitivity test with contact ice nuclei concentration in the original parameterization fit to that recommended by Young (1974) gives results that are closer to the new contact freezing parameterization.

  8. Alongshore wind forcing of coastal sea level as a function of frequency

    USGS Publications Warehouse

    Ryan, H.F.; Noble, M.A.

    2006-01-01

    The amplitude of the frequency response function between coastal alongshore wind stress and adjusted sea level anomalies along the west coast of the United States increases linearly as a function of the logarithm (log10) of the period for time scales up to at least 60, and possibly 100, days. The amplitude of the frequency response function increases even more rapidly at longer periods out to at least 5 yr. At the shortest periods, the amplitude of the frequency response function is small because sea level is forced only by the local component of the wind field. The regional wind field, which controls the wind-forced response in sea level for periods between 20 and 100 days, not only has much broader spatial scales than the local wind, but also propagates along the coast in the same direction as continental shelf waves. Hence, it has a stronger coupling to and an increased frequency response for sea level. At periods of a year or more, observed coastal sea level fluctuations are not only forced by the regional winds, but also by joint correlations among the larger-scale climatic patterns associated with El Nin??o. Therefore, the amplitude of the frequency response function is large, despite the fact that the energy in the coastal wind field is relatively small. These data show that the coastal sea level response to wind stress forcing along the west coast of the United States changes in a consistent and predictable pattern over a very broad range of frequencies with time scales from a few days to several years.

  9. A new hysteresis model based on force-displacement characteristics of magnetorheological fluid actuators subjected to squeeze mode operation

    NASA Astrophysics Data System (ADS)

    Chen, Peng; Bai, Xian-Xu; Qian, Li-Jun; Choi, Seung-Bok

    2017-06-01

    This paper presents a new hysteresis model based on the force-displacement characteristics of magnetorheological (MR) fluid actuators (or devices) subjected to squeeze mode operation. The idea of the proposed model is originated from experimental observation of the field-dependent hysteretic behavior of MR fluids, which shows that from a view of rate-independence of hysteresis, a gap width-dependent hysteresis is occurred in the force-displacement relationship instead of the typical relationship of the force-velocity. To effectively and accurately portray the hysteresis behavior, the gap width-dependent hysteresis elements, the nonlinear viscous effect and the inertial effect are considered for the formulation of the hysteresis model. Then, a model-based feedforward force tracking control scheme is established through an observer which can estimate the virtual displacement. The effectiveness of the proposed hysteresis model is validated through the identification and prediction of the damping force of MR fluids in the squeeze mode. In addition, it is shown that superior force tracking performance of the feedforward control associated with the proposed hysteresis mode is evaluated by adopting several tracking trajectories.

  10. Human health and the water environment: using the DPSEEA framework to identify the driving forces of disease.

    PubMed

    Gentry-Shields, Jennifer; Bartram, Jamie

    2014-01-15

    There is a growing awareness of global forces that threaten human health via the water environment. A better understanding of the dynamic between human health and the water environment would enable prediction of the significant driving forces and effective strategies for coping with or preventing them. This report details the use of the Driving Force-Pressure-State-Exposure-Effect-Action (DPSEEA) framework to explore the linkage between water-related diseases and their significant driving forces. The DPSEEA frameworks indicate that a select group of driving forces, including population growth, agriculture, infrastructure (dams and irrigation), and climate change, is at the root cause of key global disease burdens. Construction of the DPSEEA frameworks also allows for the evaluation of public health interventions. Sanitation was found to be a widely applicable and effective intervention, targeting the driver/pressure linkage of most of the water-related diseases examined. Ultimately, the DPSEEA frameworks offer a platform for constituents in both the health and environmental fields to collaborate and commit to a common goal targeting the same driving forces. © 2013.

  11. Spontaneous lateral atomic recoil force close to a photonic topological material

    NASA Astrophysics Data System (ADS)

    Hassani Gangaraj, S. Ali; Hanson, George W.; Antezza, Mauro; Silveirinha, Mário G.

    2018-05-01

    We investigate the quantum recoil force acting on an excited atom close to the surface of a nonreciprocal photonic topological insulator (PTI). The main atomic emission channel is the unidirectional surface plasmon propagating at the PTI-vacuum interface, and we show that it enables a spontaneous lateral recoil force that scales at short distances as 1 /d4 , where d is the atom-PTI separation. Remarkably, the sign of the recoil force is polarization and orientation independent, and it occurs in a translation-invariant homogeneous system in thermal equilibrium. Surprisingly, the recoil force persists for very small values of the gyration pseudovector, which, for a biased plasma, corresponds to very low cyclotron frequencies. The ultrastrong recoil force is rooted in the quasihyperbolic dispersion of the surface plasmons. We consider both an initially excited atom and a continuous pump scenario, the latter giving rise to a steady lateral force whose direction can be changed at will by simply varying the orientation of the biasing magnetic field. Our predictions may be tested in experiments with cold Rydberg atoms and superconducting qubits.

  12. Scaling from single molecule to macroscopic adhesion at polymer/metal interfaces.

    PubMed

    Utzig, Thomas; Raman, Sangeetha; Valtiner, Markus

    2015-03-10

    Understanding the evolution of macroscopic adhesion based on fundamental molecular interactions is crucial to designing strong and smart polymer/metal interfaces that play an important role in many industrial and biomedical applications. Here we show how macroscopic adhesion can be predicted on the basis of single molecular interactions. In particular, we carry out dynamic single molecule-force spectroscopy (SM-AFM) in the framework of Bell-Evans' theory to gain information about the energy barrier between the bound and unbound states of an amine/gold junction. Furthermore, we use Jarzynski's equality to obtain the equilibrium ground-state energy difference of the amine/gold bond from these nonequilibrium force measurements. In addition, we perform surface forces apparatus (SFA) experiments to measure macroscopic adhesion forces at contacts where approximately 10(7) amine/gold bonds are formed simultaneously. The SFA approach provides an amine/gold interaction energy (normalized by the number of interacting molecules) of (36 ± 1)k(B)T, which is in excellent agreement with the interaction free energy of (35 ± 3)k(B)T calculated using Jarzynski's equality and single-molecule AFM experiments. Our results validate Jarzynski's equality for the field of polymer/metal interactions by measuring both sides of the equation. Furthermore, the comparison of SFA and AFM shows how macroscopic interaction energies can be predicted on the basis of single molecular interactions, providing a new strategy to potentially predict adhesive properties of novel glues or coatings as well as bio- and wet adhesion.

  13. Prediction of Knee Joint Contact Forces From External Measures Using Principal Component Prediction and Reconstruction.

    PubMed

    Saliba, Christopher M; Clouthier, Allison L; Brandon, Scott C E; Rainbow, Michael J; Deluzio, Kevin J

    2018-05-29

    Abnormal loading of the knee joint contributes to the pathogenesis of knee osteoarthritis. Gait retraining is a non-invasive intervention that aims to reduce knee loads by providing audible, visual, or haptic feedback of gait parameters. The computational expense of joint contact force prediction has limited real-time feedback to surrogate measures of the contact force, such as the knee adduction moment. We developed a method to predict knee joint contact forces using motion analysis and a statistical regression model that can be implemented in near real-time. Gait waveform variables were deconstructed using principal component analysis and a linear regression was used to predict the principal component scores of the contact force waveforms. Knee joint contact force waveforms were reconstructed using the predicted scores. We tested our method using a heterogenous population of asymptomatic controls and subjects with knee osteoarthritis. The reconstructed contact force waveforms had mean (SD) RMS differences of 0.17 (0.05) bodyweight compared to the contact forces predicted by a musculoskeletal model. Our method successfully predicted subject-specific shape features of contact force waveforms and is a potentially powerful tool in biofeedback and clinical gait analysis.

  14. A triangular prism solid and shell interactive mapping element for electromagnetic sheet metal forming process

    NASA Astrophysics Data System (ADS)

    Cui, Xiangyang; Li, She; Feng, Hui; Li, Guangyao

    2017-05-01

    In this paper, a novel triangular prism solid and shell interactive mapping element is proposed to solve the coupled magnetic-mechanical formulation in electromagnetic sheet metal forming process. A linear six-node "Triprism" element is firstly proposed for transient eddy current analysis in electromagnetic field. In present "Triprism" element, shape functions are given explicitly, and a cell-wise gradient smoothing operation is used to obtain the gradient matrices without evaluating derivatives of shape functions. In mechanical field analysis, a shear locking free triangular shell element is employed in internal force computation, and a data mapping method is developed to transfer the Lorentz force on solid into the external forces suffered by shell structure for dynamic elasto-plasticity deformation analysis. Based on the deformed triangular shell structure, a "Triprism" element generation rule is established for updated electromagnetic analysis, which means inter-transformation of meshes between the coupled fields can be performed automatically. In addition, the dynamic moving mesh is adopted for air mesh updating based on the deformation of sheet metal. A benchmark problem is carried out for confirming the accuracy of the proposed "Triprism" element in predicting flux density in electromagnetic field. Solutions of several EMF problems obtained by present work are compared with experiment results and those of traditional method, which are showing excellent performances of present interactive mapping element.

  15. Thermodynamics of Small Alkali Metal Halide Cluster Ions: Comparison of Classical Molecular Simulations with Experiment and Quantum Chemistry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vlcek, Lukas; Uhlik, Filip; Moucka, Filip

    We evaluate the ability of selected classical molecular models to describe the thermodynamic and structural aspects of gas-phase hydration of alkali halide ions and the formation of small water clusters. To understand the effect of many-body interactions (polarization) and charge penetration effects on the accuracy of a force field, we perform Monte Carlo simulations with three rigid water models using different functional forms to account for these effects: (i) point charge non-polarizable SPC/E, (ii) Drude point charge polarizable SWM4- DP, and (iii) Drude Gaussian charge polarizable BK3. Model predictions are compared with experimental Gibbs free energies and enthalpies of ionmore » hydration, and with microscopic structural properties obtained from quantum DFT calculations. We find that all three models provide comparable predictions for pure water clusters and cation hydration, but differ significantly in their description of anion hydration. None of the investigated classical force fields can consistently and quantitatively reproduce the experimental gas phase hydration thermodynamics. The outcome of this study highlights the relation between the functional form that describes the effective intermolecular interactions and the accuracy of the resulting ion hydration properties.« less

  16. Comprehensive Forced Response Analysis of J2X Turbine Bladed-Discs with 36- Degree Variation in CFD Loading

    NASA Technical Reports Server (NTRS)

    Elrod, David; Christensen, Eric; Brown, Andrew

    2011-01-01

    At NASA/MSFC, Structural Dynamics personnel continue to perform advanced analysis for the turbomachinery in the J2X Rocket Engine, which is under consideration for the new Space Launch System. One of the most challenging analyses in the program is predicting turbine blade structural capability. Resonance was predicted by modal analysis, so comprehensive forced response analyses using high fidelity cyclic symmetric finite element models were initiated as required. Analysis methodologies up to this point have assumed the flow field could be fully described by a sector, so the loading on every blade would be identical as it travelled through it. However, in the J2X the CFD flow field varied over the 360 deg of a revolution because of the flow speeds and tortuous axial path. MSFC therefore developed a complex procedure using Nastran Dmap's and Matlab scripts to apply this circumferentially varying loading onto the cyclically symmetric structural models to produce accurate dynamic stresses for every blade on the disk. This procedure is coupled with static, spin, and thermal loading to produce high cycle fatigue safety factors resulting in much more accurate analytical assessments of the blades.

  17. Predictions of wing and pylon forces caused by propeller installation

    NASA Technical Reports Server (NTRS)

    Martinez, Rudolph

    1987-01-01

    Replacement of current turbojets by high-efficiency unducted propfans could have the unfortunate side effect of increasing cabin noise, essentially because unsteady-aerodynamic mechanisms are likely to be introduced whereby some of the energy saved may be lost again, to the production of propeller noise and to wing/pylon vibrations coupling to the cabin as a sounding board. The present study estimates theoretically associated harmonic aerodynamic forces for two candidate configurations: a pusher propeller which chops through the mean wake of the pylon supporting it, and in the process generates a blade-rate force driving the structure, and a tractor wing-mounted propeller, whose trailing rotating wake induces an unsteady downwash field generating unsteady wing airloads. Reported predictions of such propfan aerodynamic sources of structure-borne sound, or vibration, could be the basis for devising means for their mechanical isolation, and thus for the effective interruption of the structural noise path into the cabin. Both mechanisms are analyzed taking advantage of the high subsonic Mach number and high reduced frequency of the interaction between the impinging flow and the affected aerodynamic element.

  18. Applicability of effective fragment potential version 2 - Molecular dynamics (EFP2-MD) simulations for predicting excess properties of mixed solvents

    NASA Astrophysics Data System (ADS)

    Kuroki, Nahoko; Mori, Hirotoshi

    2018-02-01

    Effective fragment potential version 2 - molecular dynamics (EFP2-MD) simulations, where the EFP2 is a polarizable force field based on ab initio electronic structure calculations were applied to water-methanol binary mixture. Comparing EFP2s defined with (aug-)cc-pVXZ (X = D,T) basis sets, it was found that large sets are necessary to generate sufficiently accurate EFP2 for predicting mixture properties. It was shown that EFP2-MD could predict the excess molar volume. Since the computational cost of EFP2-MD are far less than ab initio MD, the results presented herein demonstrate that EFP2-MD is promising for predicting physicochemical properties of novel mixed solvents.

  19. Control of the electromagnetic drag using fluctuating light fields

    NASA Astrophysics Data System (ADS)

    Pastor, Víctor J. López; Marqués, Manuel I.

    2018-05-01

    An expression for the electromagnetic drag force experienced by an electric dipole in a light field consisting of a monochromatic plane wave with polarization and phase randomly fluctuating is obtained. The expression explicitly considers the transformations of the field and frequency due to the Doppler shift and the change of the polarizability response of the electric dipole. The conditions to be fulfilled by the polarizability of the dipole in order to obtain a positive, a null, and a negative drag coefficient are analytically determined and checked against numerical simulations for the dynamics of a silver nanoparticle. The theoretically predicted diffusive, superdiffusive, and exponentially accelerated dynamical regimes are numerically confirmed.

  20. Functional connectivity between somatosensory and motor brain areas predicts individual differences in motor learning by observing.

    PubMed

    McGregor, Heather R; Gribble, Paul L

    2017-08-01

    Action observation can facilitate the acquisition of novel motor skills; however, there is considerable individual variability in the extent to which observation promotes motor learning. Here we tested the hypothesis that individual differences in brain function or structure can predict subsequent observation-related gains in motor learning. Subjects underwent an anatomical MRI scan and resting-state fMRI scans to assess preobservation gray matter volume and preobservation resting-state functional connectivity (FC), respectively. On the following day, subjects observed a video of a tutor adapting her reaches to a novel force field. After observation, subjects performed reaches in a force field as a behavioral assessment of gains in motor learning resulting from observation. We found that individual differences in resting-state FC, but not gray matter volume, predicted postobservation gains in motor learning. Preobservation resting-state FC between left primary somatosensory cortex and bilateral dorsal premotor cortex, primary motor cortex, and primary somatosensory cortex and left superior parietal lobule was positively correlated with behavioral measures of postobservation motor learning. Sensory-motor resting-state FC can thus predict the extent to which observation will promote subsequent motor learning. NEW & NOTEWORTHY We show that individual differences in preobservation brain function can predict subsequent observation-related gains in motor learning. Preobservation resting-state functional connectivity within a sensory-motor network may be used as a biomarker for the extent to which observation promotes motor learning. This kind of information may be useful if observation is to be used as a way to boost neuroplasticity and sensory-motor recovery for patients undergoing rehabilitation for diseases that impair movement such as stroke. Copyright © 2017 the American Physiological Society.

  1. A novel toolpath force prediction algorithm using CAM volumetric data for optimizing robotic arthroplasty.

    PubMed

    Kianmajd, Babak; Carter, David; Soshi, Masakazu

    2016-10-01

    Robotic total hip arthroplasty is a procedure in which milling operations are performed on the femur to remove material for the insertion of a prosthetic implant. The robot performs the milling operation by following a sequential list of tool motions, also known as a toolpath, generated by a computer-aided manufacturing (CAM) software. The purpose of this paper is to explain a new toolpath force prediction algorithm that predicts cutting forces, which results in improving the quality and safety of surgical systems. With a custom macro developed in the CAM system's native application programming interface, cutting contact patch volume was extracted from CAM simulations. A time domain cutting force model was then developed through the use of a cutting force prediction algorithm. The second portion validated the algorithm by machining a hip canal in simulated bone using a CNC machine. Average cutting forces were measured during machining using a dynamometer and compared to the values predicted from CAM simulation data using the proposed method. The results showed the predicted forces matched the measured forces in both magnitude and overall pattern shape. However, due to inconsistent motion control, the time duration of the forces was slightly distorted. Nevertheless, the algorithm effectively predicted the forces throughout an entire hip canal procedure. This method provides a fast and easy technique for predicting cutting forces during orthopedic milling by utilizing data within a CAM software.

  2. A combined theoretical and in vitro modeling approach for predicting the magnetic capture and retention of magnetic nanoparticles in vivo

    PubMed Central

    David, Allan E.; Cole, Adam J.; Chertok, Beata; Park, Yoon Shin; Yang, Victor C.

    2011-01-01

    Magnetic nanoparticles (MNP) continue to draw considerable attention as potential diagnostic and therapeutic tools in the fight against cancer. Although many interacting forces present themselves during magnetic targeting of MNP to tumors, most theoretical considerations of this process ignore all except for the magnetic and drag forces. Our validation of a simple in vitro model against in vivo data, and subsequent reproduction of the in vitro results with a theoretical model indicated that these two forces do indeed dominate the magnetic capture of MNP. However, because nanoparticles can be subject to aggregation, and large MNP experience an increased magnetic force, the effects of surface forces on MNP stability cannot be ignored. We accounted for the aggregating surface forces simply by measuring the size of MNP retained from flow by magnetic fields, and utilized this size in the mathematical model. This presumably accounted for all particle-particle interactions, including those between magnetic dipoles. Thus, our “corrected” mathematical model provided a reasonable estimate of not only fractional MNP retention, but also predicted the regions of accumulation in a simulated capillary. Furthermore, the model was also utilized to calculate the effects of MNP size and spatial location, relative to the magnet, on targeting of MNPs to tumors. This combination of an in vitro model with a theoretical model could potentially assist with parametric evaluations of magnetic targeting, and enable rapid enhancement and optimization of magnetic targeting methodologies. PMID:21295085

  3. Evaluating surface transport predictions of alternative ocean-atmosphere models using surface drifters in the Belizean Barrier Reef

    NASA Astrophysics Data System (ADS)

    Lindo-Atichati, D.; Curcic, M.; Paris, C. B.; Buston, P. M.

    2016-02-01

    Determining the appropriate resolution of circulation models often lacks statistical evaluation. Thus, the gains from implementing high-resolution versus less-costly low-resolution models are not always clear. Here we construct a hierarchy of ocean-atmosphere models operating at multiple-scales within a 1×1° domain of the Belizean Barrier Reef (BBR). We compare the dispersion and velocity of 55 surface drifters released in the field in summer 2013 to the dispersion and velocity of simulated drifters under alternative model configurations. Increasing the resolution of the ocean model (from 1/12° to 1/100°, from 1 day to 1 h), the resolution of the atmosphere model forcing (from 1/2° to 1/100°, from 6 h to 1 h), and incorporating tidal forcing incrementally reduces discrepancy between simulated and observed velocities and dispersion. We also investigate the effect of semi-diurnal tides on the local circulation. The model with highest resolution and with tidal forcing resolves higher number of looping trajectories and sub-mesoscale coherent structures. This may be a key factor in reducing discrepancy between simulated and observed velocities and dispersion. Simulations conducted with the highest resolution ocean-atmosphere model and tidal forcing highlight an intensification of the velocity fields throughout the summer and reveal several processes: mesoscale anticyclonic circulation around Glovers Reef, and recurrent sub-mesoscale cyclonic eddies formed in the vicinity of Columbus Island. This study provides a general framework to estimate the best surface transport prediction from different ocean-atmosphere models using metrics derived from high frequency drifters' data. Also, this study provides an evaluated high-resolution ocean-atmosphere model that resolves tides for the Belizean Barrier Reef.

  4. Effect of head pitch and roll orientations on magnetically induced vertigo.

    PubMed

    Mian, Omar S; Li, Yan; Antunes, Andre; Glover, Paul M; Day, Brian L

    2016-02-15

    Lying supine in a strong magnetic field, such as in magnetic resonance imaging scanners, can induce a perception of whole-body rotation. The leading hypothesis to explain this invokes a Lorentz force mechanism acting on vestibular endolymph that acts to stimulate semicircular canals. The hypothesis predicts that the perception of whole-body rotation will depend on head orientation in the field. Results showed that the direction and magnitude of apparent whole-body rotation while stationary in a 7 T magnetic field is influenced by head orientation. The data are compatible with the Lorentz force hypothesis of magnetic vestibular stimulation and furthermore demonstrate the operation of a spatial transformation process from head-referenced vestibular signals to Earth-referenced body motion. High strength static magnetic fields are known to induce vertigo, believed to be via stimulation of the vestibular system. The leading hypothesis (Lorentz forces) predicts that the induced vertigo should depend on the orientation of the magnetic field relative to the head. In this study we examined the effect of static head pitch (-80 to +40 deg; 12 participants) and roll (-40 to +40 deg; 11 participants) on qualitative and quantitative aspects of vertigo experienced in the dark by healthy humans when exposed to the static uniform magnetic field inside a 7 T MRI scanner. Three participants were additionally examined at 180 deg pitch and roll orientations. The effect of roll orientation on horizontal and vertical nystagmus was also measured and was found to affect only the vertical component. Vertigo was most discomforting when head pitch was around 60 deg extension and was mildest when it was around 20 deg flexion. Quantitative analysis of vertigo focused on the induced perception of horizontal-plane rotation reported online with the aid of hand-held switches. Head orientation had effects on both the magnitude and the direction of this perceived rotation. The data suggest sinusoidal relationships between head orientation and perception with spatial periods of 180 deg for pitch and 360 deg for roll, which we explain is consistent with the Lorentz force hypothesis. The effects of head pitch on vertigo and previously reported nystagmus are consistent with both effects being driven by a common vestibular signal. To explain all the observed effects, this common signal requires contributions from multiple semicircular canals. © 2015 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.

  5. Atmospheric forcing of the upper ocean transport in the Gulf of Mexico: From seasonal to diurnal scales

    NASA Astrophysics Data System (ADS)

    Judt, Falko; Chen, Shuyi S.; Curcic, Milan

    2016-06-01

    The 2010 Deepwater Horizon oil spill in the Gulf of Mexico (GoM) was an environmental disaster, which highlighted the urgent need to predict the transport and dispersion of hydrocarbon. Although the variability of the atmospheric forcing plays a major role in the upper ocean circulation and transport of the pollutants, the air-sea interaction on various time scales is not well understood. This study provides a comprehensive overview of the atmospheric forcing and upper ocean response in the GoM from seasonal to diurnal time scales, using climatologies derived from long-term observations, in situ observations from two field campaigns, and a coupled model. The atmospheric forcing in the GoM is characterized by striking seasonality. In the summer, the time-average large-scale forcing is weak, despite occasional extreme winds associated with hurricanes. In the winter, the atmospheric forcing is much stronger, and dominated by synoptic variability on time scales of 3-7 days associated with winter storms and cold air outbreaks. The diurnal cycle is more pronounced during the summer, when sea breeze circulations affect the coastal regions and nighttime wind maxima occur over the offshore waters. Realtime predictions from a high-resolution atmosphere-wave-ocean coupled model were evaluated for both summer and winter conditions during the Grand LAgrangian Deployment (GLAD) in July-August 2012 and the Surfzone Coastal Oil Pathways Experiment (SCOPE) in November-December 2013. The model generally captured the variability of atmospheric forcing on all scales, but suffered from some systematic errors.

  6. ON ESTIMATING FORCE-FREENESS BASED ON OBSERVED MAGNETOGRAMS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, X. M.; Zhang, M.; Su, J. T., E-mail: xmzhang@nao.cas.cn

    It is a common practice in the solar physics community to test whether or not measured photospheric or chromospheric vector magnetograms are force-free, using the Maxwell stress as a measure. Some previous studies have suggested that magnetic fields of active regions in the solar chromosphere are close to being force-free whereas there is no consistency among previous studies on whether magnetic fields of active regions in the solar photosphere are force-free or not. Here we use three kinds of representative magnetic fields (analytical force-free solutions, modeled solar-like force-free fields, and observed non-force-free fields) to discuss how measurement issues such asmore » limited field of view (FOV), instrument sensitivity, and measurement error could affect the estimation of force-freeness based on observed magnetograms. Unlike previous studies that focus on discussing the effect of limited FOV or instrument sensitivity, our calculation shows that just measurement error alone can significantly influence the results of estimates of force-freeness, due to the fact that measurement errors in horizontal magnetic fields are usually ten times larger than those in vertical fields. This property of measurement errors, interacting with the particular form of a formula for estimating force-freeness, would result in wrong judgments of the force-freeness: a truly force-free field may be mistakenly estimated as being non-force-free and a truly non-force-free field may be estimated as being force-free. Our analysis calls for caution when interpreting estimates of force-freeness based on measured magnetograms, and also suggests that the true photospheric magnetic field may be further away from being force-free than it currently appears to be.« less

  7. An unscaled quantum mechanical harmonic force field for p-benzoquinone

    NASA Astrophysics Data System (ADS)

    Nonella, Marco; Tavan, Paul

    1995-10-01

    Structure and harmonic vibrational frequencies of p-benzoquinone have been calculated using quantum chemical ab initio and density functional methods. Our calculations show that a satisfactory description of fundamentals and normal mode compositions is achieved upon consideration of correlation effects by means of Møller-Plesset perturbation expansion (MP2) or by density functional theory (DFT). Furthermore, for correct prediction of CO bondlength and force constant, basis sets augmented by polarization functions are required. Applying such basis sets, MP2 and DFT calculations both give results which are generally in reasonable agreement with experimental data. The quantitatively better agreement, however, is achieved with the computationally less demanding DFT method. This method particularly allows very precise prediction of the experimentally important absorptions in the frequency region between 1500 and 1800 cm -1 and of the isotopic shifts of these vibrations due to 13C or 18O substitution.

  8. Nonperturbative renormalization group study of the stochastic Navier-Stokes equation.

    PubMed

    Mejía-Monasterio, Carlos; Muratore-Ginanneschi, Paolo

    2012-07-01

    We study the renormalization group flow of the average action of the stochastic Navier-Stokes equation with power-law forcing. Using Galilean invariance, we introduce a nonperturbative approximation adapted to the zero-frequency sector of the theory in the parametric range of the Hölder exponent 4-2ε of the forcing where real-space local interactions are relevant. In any spatial dimension d, we observe the convergence of the resulting renormalization group flow to a unique fixed point which yields a kinetic energy spectrum scaling in agreement with canonical dimension analysis. Kolmogorov's -5/3 law is, thus, recovered for ε = 2 as also predicted by perturbative renormalization. At variance with the perturbative prediction, the -5/3 law emerges in the presence of a saturation in the ε dependence of the scaling dimension of the eddy diffusivity at ε = 3/2 when, according to perturbative renormalization, the velocity field becomes infrared relevant.

  9. An Improved Computational Technique for Calculating Electromagnetic Forces and Power Absorptions Generated in Spherical and Deformed Body in Levitation Melting Devices

    NASA Technical Reports Server (NTRS)

    Zong, Jin-Ho; Szekely, Julian; Schwartz, Elliot

    1992-01-01

    An improved computational technique for calculating the electromagnetic force field, the power absorption and the deformation of an electromagnetically levitated metal sample is described. The technique is based on the volume integral method, but represents a substantial refinement; the coordinate transformation employed allows the efficient treatment of a broad class of rotationally symmetrical bodies. Computed results are presented to represent the behavior of levitation melted metal samples in a multi-coil, multi-frequency levitation unit to be used in microgravity experiments. The theoretical predictions are compared with both analytical solutions and with the results or previous computational efforts for the spherical samples and the agreement has been very good. The treatment of problems involving deformed surfaces and actually predicting the deformed shape of the specimens breaks new ground and should be the major usefulness of the proposed method.

  10. Electroencephalographic identifiers of motor adaptation learning

    NASA Astrophysics Data System (ADS)

    Özdenizci, Ozan; Yalçın, Mustafa; Erdoğan, Ahmetcan; Patoğlu, Volkan; Grosse-Wentrup, Moritz; Çetin, Müjdat

    2017-08-01

    Objective. Recent brain-computer interface (BCI) assisted stroke rehabilitation protocols tend to focus on sensorimotor activity of the brain. Relying on evidence claiming that a variety of brain rhythms beyond sensorimotor areas are related to the extent of motor deficits, we propose to identify neural correlates of motor learning beyond sensorimotor areas spatially and spectrally for further use in novel BCI-assisted neurorehabilitation settings. Approach. Electroencephalographic (EEG) data were recorded from healthy subjects participating in a physical force-field adaptation task involving reaching movements through a robotic handle. EEG activity recorded during rest prior to the experiment and during pre-trial movement preparation was used as features to predict motor adaptation learning performance across subjects. Main results. Subjects learned to perform straight movements under the force-field at different adaptation rates. Both resting-state and pre-trial EEG features were predictive of individual adaptation rates with relevance of a broad network of beta activity. Beyond sensorimotor regions, a parieto-occipital cortical component observed across subjects was involved strongly in predictions and a fronto-parietal cortical component showed significant decrease in pre-trial beta-powers for users with higher adaptation rates and increase in pre-trial beta-powers for users with lower adaptation rates. Significance. Including sensorimotor areas, a large-scale network of beta activity is presented as predictive of motor learning. Strength of resting-state parieto-occipital beta activity or pre-trial fronto-parietal beta activity can be considered in BCI-assisted stroke rehabilitation protocols with neurofeedback training or volitional control of neural activity for brain-robot interfaces to induce plasticity.

  11. Application of a medium-range global hydrologic probabilistic forecast scheme to the Ohio River Basin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Voisin, Nathalie; Pappenberger, Florian; Lettenmaier, D. P.

    2011-08-15

    A 10-day globally applicable flood prediction scheme was evaluated using the Ohio River basin as a test site for the period 2003-2007. The Variable Infiltration Capacity (VIC) hydrology model was initialized with the European Centre for Medium Range Weather Forecasts (ECMWF) analysis temperatures and wind, and Tropical Rainfall Monitoring Mission Multi Satellite Precipitation Analysis (TMPA) precipitation up to the day of forecast. In forecast mode, the VIC model was then forced with a calibrated and statistically downscaled ECMWF ensemble prediction system (EPS) 10-day ensemble forecast. A parallel set up was used where ECMWF EPS forecasts were interpolated to the spatialmore » scale of the hydrology model. Each set of forecasts was extended by 5 days using monthly mean climatological variables and zero precipitation in order to account for the effect of initial conditions. The 15-day spatially distributed ensemble runoff forecasts were then routed to four locations in the basin, each with different drainage areas. Surrogates for observed daily runoff and flow were provided by the reference run, specifically VIC simulation forced with ECMWF analysis fields and TMPA precipitation fields. The flood prediction scheme using the calibrated and downscaled ECMWF EPS forecasts was shown to be more accurate and reliable than interpolated forecasts for both daily distributed runoff forecasts and daily flow forecasts. Initial and antecedent conditions dominated the flow forecasts for lead times shorter than the time of concentration depending on the flow forecast amounts and the drainage area sizes. The flood prediction scheme had useful skill for the 10 following days at all sites.« less

  12. Transformation of body force localized near the surface of a half-space into equivalent surface stresses.

    PubMed

    Rouge, Clémence; Lhémery, Alain; Ségur, Damien

    2013-10-01

    An electromagnetic acoustic transducer (EMAT) or a laser used to generate elastic waves in a component is often described as a source of body force confined in a layer close to the surface. On the other hand, models for elastic wave radiation more efficiently handle sources described as distributions of surface stresses. Equivalent surface stresses can be obtained by integrating the body force with respect to depth. They are assumed to generate the same field as the one that would be generated by the body force. Such an integration scheme can be applied to Lorentz force for conventional EMAT configuration. When applied to magnetostrictive force generated by an EMAT in a ferromagnetic material, the same scheme fails, predicting a null stress. Transforming body force into equivalent surface stresses therefore, requires taking into account higher order terms of the force moments, the zeroth order being the simple force integration over the depth. In this paper, such a transformation is derived up to the second order, assuming that body forces are localized at depths shorter than the ultrasonic wavelength. Two formulations are obtained, each having some advantages depending on the application sought. They apply regardless of the nature of the force considered.

  13. Limitations of differential electrophoresis for measuring colloidal forces: a Brownian dynamics study.

    PubMed

    Holtzer, Gretchen L; Velegol, Darrell

    2005-10-25

    Differential electrophoresis experiments are often used to measure subpiconewton forces between two spheres of a heterodoublet. The experiments have been interpreted by solving the electrokinetic equations to obtain a simple Stokes law-type equation. However, for nanocolloids, the effects of Brownian motion alter the interpretation: (1) Brownian translation changes the rate of axial separation. (2) Brownian rotation reduces the alignment of the doublet with the applied electric field. (3) Particles can reaggregate by Brownian motion after they break, forming either heterodoublets or homodoublets, and because homodoublets cannot be broken by differential electrophoresis, this effectively terminates the experiment. We tackle points 1 and 2 using Brownian dynamics simulations (BDS) with electrophoresis as an external force, accounting for convective translation and rotation as well as Brownian translation and rotation. Our simulations identify the lower particle size limit of differential electrophoresis to be about 1 microm for desired statistical accuracy. Furthermore, our simulations predict that particles around 10 nm in size and at ambient conditions will break primarily by Brownian motion, with a negligible effect due to the electric field.

  14. Charge-Induced Force Noise on Free-Falling Test Masses: Results from LISA Pathfinder

    NASA Astrophysics Data System (ADS)

    Armano, M.; Audley, H.; Auger, G.; Baird, J. T.; Binetruy, P.; Born, M.; Bortoluzzi, D.; Brandt, N.; Bursi, A.; Caleno, M.; Cavalleri, A.; Cesarini, A.; Cruise, M.; Danzmann, K.; de Deus Silva, M.; Diepholz, I.; Dolesi, R.; Dunbar, N.; Ferraioli, L.; Ferroni, V.; Fitzsimons, E. D.; Flatscher, R.; Freschi, M.; Gallegos, J.; García Marirrodriga, C.; Gerndt, R.; Gesa, L.; Gibert, F.; Giardini, D.; Giusteri, R.; Grimani, C.; Grzymisch, J.; Harrison, I.; Heinzel, G.; Hewitson, M.; Hollington, D.; Hueller, M.; Huesler, J.; Inchauspé, H.; Jennrich, O.; Jetzer, P.; Johlander, B.; Karnesis, N.; Kaune, B.; Killow, C. J.; Korsakova, N.; Lloro, I.; Liu, L.; López-Zaragoza, J. P.; Maarschalkerweerd, R.; Madden, S.; Mance, D.; Martín, V.; Martin-Polo, L.; Martino, J.; Martin-Porqueras, F.; Mateos, I.; McNamara, P. W.; Mendes, J.; Mendes, L.; Moroni, A.; Nofrarias, M.; Paczkowski, S.; Perreur-Lloyd, M.; Petiteau, A.; Pivato, P.; Plagnol, E.; Prat, P.; Ragnit, U.; Ramos-Castro, J.; Reiche, J.; Romera Perez, J. A.; Robertson, D. I.; Rozemeijer, H.; Rivas, F.; Russano, G.; Sarra, P.; Schleicher, A.; Slutsky, J.; Sopuerta, C.; Sumner, T. J.; Texier, D.; Thorpe, J. I.; Trenkel, C.; Vetrugno, D.; Vitale, S.; Wanner, G.; Ward, H.; Wass, P. J.; Wealthy, D.; Weber, W. J.; Wittchen, A.; Zanoni, C.; Ziegler, T.; Zweifel, P.; LISA Pathfinder Collaboration

    2017-04-01

    We report on electrostatic measurements made on board the European Space Agency mission LISA Pathfinder. Detailed measurements of the charge-induced electrostatic forces exerted on free-falling test masses (TMs) inside the capacitive gravitational reference sensor are the first made in a relevant environment for a space-based gravitational wave detector. Employing a combination of charge control and electric-field compensation, we show that the level of charge-induced acceleration noise on a single TM can be maintained at a level close to 1.0 fm s-2 Hz-1 /2 across the 0.1-100 mHz frequency band that is crucial to an observatory such as the Laser Interferometer Space Antenna (LISA). Using dedicated measurements that detect these effects in the differential acceleration between the two test masses, we resolve the stochastic nature of the TM charge buildup due to interplanetary cosmic rays and the TM charge-to-force coupling through stray electric fields in the sensor. All our measurements are in good agreement with predictions based on a relatively simple electrostatic model of the LISA Pathfinder instrument.

  15. Stochastic generation of MAC waves and implications for convection in Earth's core

    NASA Astrophysics Data System (ADS)

    Buffett, Bruce; Knezek, Nicholas

    2018-03-01

    Convection in Earth's core can sustain magnetic-Archemedes-Coriolis (MAC) waves through a variety of mechanisms. Buoyancy and Lorentz forces are viable sources for wave motion, together with the effects of magnetic induction. We develop a quantitative description for zonal MAC waves and assess the source mechanisms using a numerical dynamo model. The largest sources at conditions accessible to the dynamo model are due to buoyancy forces and magnetic induction. However, when these sources are extrapolated to conditions expected in Earth's core, the Lorentz force emerges as the dominant generation mechanism. This source is expected to produce wave velocities of roughly 2 km yr-1 when the internal magnetic field is characterized by a dimensionless Elsasser number of roughly Λ ≈ 10 and the root-mean-square convective velocity defines a magnetic Reynolds number of Rm ≈ 103. Our preferred model has a radially varying stratification and a constant (radial) background magnetic field. It predicts a broad power spectrum for the wave velocity with most power distributed across periods from 30 to 100 yr.

  16. Charge-Induced Force Noise on Free-Falling Test Masses: Results from LISA Pathfinder.

    PubMed

    Armano, M; Audley, H; Auger, G; Baird, J T; Binetruy, P; Born, M; Bortoluzzi, D; Brandt, N; Bursi, A; Caleno, M; Cavalleri, A; Cesarini, A; Cruise, M; Danzmann, K; de Deus Silva, M; Diepholz, I; Dolesi, R; Dunbar, N; Ferraioli, L; Ferroni, V; Fitzsimons, E D; Flatscher, R; Freschi, M; Gallegos, J; García Marirrodriga, C; Gerndt, R; Gesa, L; Gibert, F; Giardini, D; Giusteri, R; Grimani, C; Grzymisch, J; Harrison, I; Heinzel, G; Hewitson, M; Hollington, D; Hueller, M; Huesler, J; Inchauspé, H; Jennrich, O; Jetzer, P; Johlander, B; Karnesis, N; Kaune, B; Killow, C J; Korsakova, N; Lloro, I; Liu, L; López-Zaragoza, J P; Maarschalkerweerd, R; Madden, S; Mance, D; Martín, V; Martin-Polo, L; Martino, J; Martin-Porqueras, F; Mateos, I; McNamara, P W; Mendes, J; Mendes, L; Moroni, A; Nofrarias, M; Paczkowski, S; Perreur-Lloyd, M; Petiteau, A; Pivato, P; Plagnol, E; Prat, P; Ragnit, U; Ramos-Castro, J; Reiche, J; Romera Perez, J A; Robertson, D I; Rozemeijer, H; Rivas, F; Russano, G; Sarra, P; Schleicher, A; Slutsky, J; Sopuerta, C; Sumner, T J; Texier, D; Thorpe, J I; Trenkel, C; Vetrugno, D; Vitale, S; Wanner, G; Ward, H; Wass, P J; Wealthy, D; Weber, W J; Wittchen, A; Zanoni, C; Ziegler, T; Zweifel, P

    2017-04-28

    We report on electrostatic measurements made on board the European Space Agency mission LISA Pathfinder. Detailed measurements of the charge-induced electrostatic forces exerted on free-falling test masses (TMs) inside the capacitive gravitational reference sensor are the first made in a relevant environment for a space-based gravitational wave detector. Employing a combination of charge control and electric-field compensation, we show that the level of charge-induced acceleration noise on a single TM can be maintained at a level close to 1.0  fm s^{-2} Hz^{-1/2} across the 0.1-100 mHz frequency band that is crucial to an observatory such as the Laser Interferometer Space Antenna (LISA). Using dedicated measurements that detect these effects in the differential acceleration between the two test masses, we resolve the stochastic nature of the TM charge buildup due to interplanetary cosmic rays and the TM charge-to-force coupling through stray electric fields in the sensor. All our measurements are in good agreement with predictions based on a relatively simple electrostatic model of the LISA Pathfinder instrument.

  17. Simulations Meet Experiment to Reveal New Insights into DNA Intrinsic Mechanics

    PubMed Central

    Ben Imeddourene, Akli; Elbahnsi, Ahmad; Guéroult, Marc; Oguey, Christophe; Foloppe, Nicolas; Hartmann, Brigitte

    2015-01-01

    The accurate prediction of the structure and dynamics of DNA remains a major challenge in computational biology due to the dearth of precise experimental information on DNA free in solution and limitations in the DNA force-fields underpinning the simulations. A new generation of force-fields has been developed to better represent the sequence-dependent B-DNA intrinsic mechanics, in particular with respect to the BI ↔ BII backbone equilibrium, which is essential to understand the B-DNA properties. Here, the performance of MD simulations with the newly updated force-fields Parmbsc0εζOLI and CHARMM36 was tested against a large ensemble of recent NMR data collected on four DNA dodecamers involved in nucleosome positioning. We find impressive progress towards a coherent, realistic representation of B-DNA in solution, despite residual shortcomings. This improved representation allows new and deeper interpretation of the experimental observables, including regarding the behavior of facing phosphate groups in complementary dinucleotides, and their modulation by the sequence. It also provides the opportunity to extensively revisit and refine the coupling between backbone states and inter base pair parameters, which emerges as a common theme across all the complementary dinucleotides. In sum, the global agreement between simulations and experiment reveals new aspects of intrinsic DNA mechanics, a key component of DNA-protein recognition. PMID:26657165

  18. Development of a united-atom force field for 1-ethyl-3-methylimidazolium tetracyanoborate ionic liquid

    NASA Astrophysics Data System (ADS)

    Koller, Thomas; Ramos, Javier; Garrido, Nuno M.; Fröba, Andreas P.; Economou, Ioannis G.

    2012-06-01

    Three united-atom (UA) force fields are presented for the ionic liquid 1-ethyl-3-methylimidazolium tetracyanoborate, abbreviated as [EMIM]+[B(CN)4]-. The atomistic charges were calculated based on the restrained electrostatic potential (RESP) of the isolated ions (abbreviated as force field 1, FF-1) and the ensemble averaged RESP (EA-RESP) method from the most stable ion pair configurations obtained by MP2/6-31G*+ calculations (abbreviated as FF-2 and FF-3). Non-electrostatic parameters for both ions were taken from the literature and Lennard-Jones parameters for the [B(CN)4]- anion were fitted in two different ways to reproduce the experimental liquid density. Molecular dynamics (MD) simulations were performed over a wide temperature range to identify the effect of the electrostatic and non-electrostatic potential on the liquid density and on transport properties such as self-diffusion coefficient and viscosity. Predicted liquid densities for the three parameter sets deviate less than 0.5% from experimental data. The molecular mobility with FF-2 and FF-3 using reduced charge sets is appreciably faster than that obtained with FF-1. FF-3 presents a refined non-electrostatic potential that leads to a notable improvement in both transport properties when compared to experimental data.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    MacDermaid, Christopher M., E-mail: chris.macdermaid@temple.edu; Klein, Michael L.; Fiorin, Giacomo, E-mail: giacomo.fiorin@temple.edu

    The architecture of a biological membrane hinges upon the fundamental fact that its properties are determined by more than the sum of its individual components. Studies on model membranes have shown the need to characterize in molecular detail how properties such as thickness, fluidity, and macroscopic bending rigidity are regulated by the interactions between individual molecules in a non-trivial fashion. Simulation-based approaches are invaluable to this purpose but are typically limited to short sampling times and model systems that are often smaller than the required properties. To alleviate both limitations, the use of coarse-grained (CG) models is nowadays an establishedmore » computational strategy. We here present a new CG force field for cholesterol, which was developed by using measured properties of small molecules, and can be used in combination with our previously developed force field for phospholipids. The new model performs with precision comparable to atomistic force fields in predicting the properties of cholesterol-rich phospholipid bilayers, including area per lipid, bilayer thickness, tail order parameter, increase in bending rigidity, and propensity to form liquid-ordered domains in ternary mixtures. We suggest the use of this model to quantify the impact of cholesterol on macroscopic properties and on microscopic phenomena involving localization and trafficking of lipids and proteins on cellular membranes.« less

  20. Electrostatic frequency maps for amide-I mode of β-peptide: Comparison of molecular mechanics force field and DFT calculations

    NASA Astrophysics Data System (ADS)

    Cai, Kaicong; Zheng, Xuan; Du, Fenfen

    2017-08-01

    The spectroscopy of amide-I vibrations has been widely utilized for the understanding of dynamical structure of polypeptides. For the modeling of amide-I spectra, two frequency maps were built for β-peptide analogue (N-ethylpropionamide, NEPA) in a number of solvents within different schemes (molecular mechanics force field based, GM map; DFT calculation based, GD map), respectively. The electrostatic potentials on the amide unit that originated from solvents and peptide backbone were correlated to the amide-I frequency shift from gas phase to solution phase during map parameterization. GM map is easier to construct with negligible computational cost since the frequency calculations for the samples are purely based on force field, while GD map utilizes sophisticated DFT calculations on the representative solute-solvent clusters and brings insight into the electronic structures of solvated NEPA and its chemical environments. The results show that the maps' predicted amide-I frequencies present solvation environmental sensitivities and exhibit their specific characters with respect to the map protocols, and the obtained vibrational parameters are in satisfactory agreement with experimental amide-I spectra of NEPA in solution phase. Although different theoretical schemes based maps have their advantages and disadvantages, the present maps show their potentials in interpreting the amide-I spectra for β-peptides, respectively.

  1. Calculation of Host-Guest Binding Affinities Using a Quantum-Mechanical Energy Model.

    PubMed

    Muddana, Hari S; Gilson, Michael K

    2012-06-12

    The prediction of protein-ligand binding affinities is of central interest in computer-aided drug discovery, but it is still difficult to achieve a high degree of accuracy. Recent studies suggesting that available force fields may be a key source of error motivate the present study, which reports the first mining minima (M2) binding affinity calculations based on a quantum mechanical energy model, rather than an empirical force field. We apply a semi-empirical quantum-mechanical energy function, PM6-DH+, coupled with the COSMO solvation model, to 29 host-guest systems with a wide range of measured binding affinities. After correction for a systematic error, which appears to derive from the treatment of polar solvation, the computed absolute binding affinities agree well with experimental measurements, with a mean error 1.6 kcal/mol and a correlation coefficient of 0.91. These calculations also delineate the contributions of various energy components, including solute energy, configurational entropy, and solvation free energy, to the binding free energies of these host-guest complexes. Comparison with our previous calculations, which used empirical force fields, point to significant differences in both the energetic and entropic components of the binding free energy. The present study demonstrates successful combination of a quantum mechanical Hamiltonian with the M2 affinity method.

  2. CHARMM additive and polarizable force fields for biophysics and computer-aided drug design

    PubMed Central

    Vanommeslaeghe, K.

    2014-01-01

    Background Molecular Mechanics (MM) is the method of choice for computational studies of biomolecular systems owing to its modest computational cost, which makes it possible to routinely perform molecular dynamics (MD) simulations on chemical systems of biophysical and biomedical relevance. Scope of Review As one of the main factors limiting the accuracy of MD results is the empirical force field used, the present paper offers a review of recent developments in the CHARMM additive force field, one of the most popular bimolecular force fields. Additionally, we present a detailed discussion of the CHARMM Drude polarizable force field, anticipating a growth in the importance and utilization of polarizable force fields in the near future. Throughout the discussion emphasis is placed on the force fields’ parametrization philosophy and methodology. Major Conclusions Recent improvements in the CHARMM additive force field are mostly related to newly found weaknesses in the previous generation of additive force fields. Beyond the additive approximation is the newly available CHARMM Drude polarizable force field, which allows for MD simulations of up to 1 microsecond on proteins, DNA, lipids and carbohydrates. General Significance Addressing the limitations ensures the reliability of the new CHARMM36 additive force field for the types of calculations that are presently coming into routine computational reach while the availability of the Drude polarizable force fields offers a model that is an inherently more accurate model of the underlying physical forces driving macromolecular structures and dynamics. PMID:25149274

  3. Short Range Tests of Gravity

    NASA Astrophysics Data System (ADS)

    Cardenas, Crystal; Harter, Andrew; Hoyle, C. D.; Leopardi, Holly; Smith, David

    2014-03-01

    Gravity was the first force to be described mathematically, yet it is the only fundamental force not well understood. The Standard Model of quantum mechanics describes interactions between the fundamental strong, weak and electromagnetic forces while Einstein's theory of General Relativity (GR) describes the fundamental force of gravity. There is yet to be a theory that unifies inconsistencies between GR and quantum mechanics. Scenarios of String Theory predicting more than three spatial dimensions also predict physical effects of gravity at sub-millimeter levels that would alter the gravitational inverse-square law. The Weak Equivalence Principle (WEP), a central feature of GR, states that all objects are accelerated at the same rate in a gravitational field independent of their composition. A violation of the WEP at any length would be evidence that current models of gravity are incorrect. At the Humboldt State University Gravitational Research Laboratory, an experiment is being developed to observe gravitational interactions below the 50-micron distance scale. The experiment measures the twist of a parallel-plate torsion pendulum as an attractor mass is oscillated within 50 microns of the pendulum, providing time varying gravitational torque on the pendulum. The size and distance dependence of the torque amplitude provide means to determine deviations from accepted models of gravity on untested distance scales. undergraduate.

  4. Corticospinal signals recorded with MEAs can predict the volitional forearm forces in rats.

    PubMed

    Guo, Yi; Mesut, Sahin; Foulds, Richard A; Adamovich, Sergei V

    2013-01-01

    We set out to investigate if volitional components in the descending tracts of the spinal cord white matter can be accessed with multi-electrode array (MEA) recording technique. Rats were trained to press a lever connected to a haptic device with force feedback to receive sugar pellets. A flexible-substrate multi-electrode array was chronically implanted into the dorsal column of the cervical spinal cord. Field potentials and multi-unit activities were recorded from the descending axons of the corticospinal tract while the rat performed a lever pressing task. Forelimb forces, recorded with the sensor attached to the lever, were reconstructed using the hand position data and the neural signals through multiple trials over three weeks. The regression coefficients found from the trial set were cross-validated on the other trials recorded on same day. Approximately 30 trials of at least 2 seconds were required for accurate model estimation. The maximum correlation coefficient between the actual and predicted force was 0.7 in the test set. Positional information and its interaction with neural signals improved the correlation coefficient by 0.1 to 0.15. These results suggest that the volitional information contained in the corticospinal tract can be extracted with multi-channel neural recordings made with parenchymal electrodes.

  5. Load estimation from photoelastic fringe patterns under combined normal and shear forces

    NASA Astrophysics Data System (ADS)

    Dubey, V. N.; Grewal, G. S.

    2009-08-01

    Recently there has been some spurt of interests to use photoelastic materials for sensing applications. This has been successfully applied for designing a number of signal-based sensors, however, there have been limited efforts to design image-based sensors on photoelasticity which can have wider applications in term of actual loading and visualisation. The main difficulty in achieving this is the infinite loading conditions that may generate same image on the material surface. This, however, can be useful for known loading situations as this can provide dynamic and actual conditions of loading in real time. This is particularly useful for separating components of forces in and out of the loading plane. One such application is the separation of normal and shear forces acting on the plantar surface of foot of diabetic patients for predicting ulceration. In our earlier work we have used neural networks to extract normal force information from the fringe patterns using image intensity. This paper considers geometric and various other statistical parameters in addition to the image intensity to extract normal as well as shear force information from the fringe pattern in a controlled experimental environment. The results of neural network output with the above parameters and their combinations are compared and discussed. The aim is to generalise the technique for a range of loading conditions that can be exploited for whole-field load visualisation and sensing applications in biomedical field.

  6. Mathematical embryology: the fluid mechanics of nodal cilia

    NASA Astrophysics Data System (ADS)

    Smith, D. J.; Smith, A. A.; Blake, J. R.

    2011-07-01

    Left-right symmetry breaking is critical to vertebrate embryonic development; in many species this process begins with cilia-driven flow in a structure termed the `node'. Primary `whirling' cilia, tilted towards the posterior, transport morphogen-containing vesicles towards the left, initiating left-right asymmetric development. We review recent theoretical models based on the point-force stokeslet and point-torque rotlet singularities, explaining how rotation and surface-tilt produce directional flow. Analysis of image singularity systems enforcing the no-slip condition shows how tilted rotation produces a far-field `stresslet' directional flow, and how time-dependent point-force and time-independent point-torque models are in this respect equivalent. Associated slender body theory analysis is reviewed; this approach enables efficient and accurate simulation of three-dimensional time-dependent flow, time-dependence being essential in predicting features of the flow such as chaotic advection, which have subsequently been determined experimentally. A new model for the nodal flow utilising the regularized stokeslet method is developed, to model the effect of the overlying Reichert's membrane. Velocity fields and particle paths within the enclosed domain are computed and compared with the flow profiles predicted by previous `membrane-less' models. Computations confirm that the presence of the membrane produces flow-reversal in the upper region, but no continuous region of reverse flow close to the epithelium. The stresslet far-field is no longer evident in the membrane model, due to the depth of the cavity being of similar magnitude to the cilium length. Simulations predict that vesicles released within one cilium length of the epithelium are generally transported to the left via a `loopy drift' motion, sometimes involving highly unpredictable detours around leftward cilia [truncated

  7. Toward a better understanding on the role of prediction error on memory processes: From bench to clinic.

    PubMed

    Krawczyk, María C; Fernández, Rodrigo S; Pedreira, María E; Boccia, Mariano M

    2017-07-01

    Experimental psychology defines Prediction Error (PE) as a mismatch between expected and current events. It represents a unifier concept within the memory field, as it is the driving force of memory acquisition and updating. Prediction error induces updating of consolidated memories in strength or content by memory reconsolidation. This process has two different neurobiological phases, which involves the destabilization (labilization) of a consolidated memory followed by its restabilization. The aim of this work is to emphasize the functional role of PE on the neurobiology of learning and memory, integrating and discussing different research areas: behavioral, neurobiological, computational and clinical psychiatry. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. CHARMM additive and polarizable force fields for biophysics and computer-aided drug design.

    PubMed

    Vanommeslaeghe, K; MacKerell, A D

    2015-05-01

    Molecular Mechanics (MM) is the method of choice for computational studies of biomolecular systems owing to its modest computational cost, which makes it possible to routinely perform molecular dynamics (MD) simulations on chemical systems of biophysical and biomedical relevance. As one of the main factors limiting the accuracy of MD results is the empirical force field used, the present paper offers a review of recent developments in the CHARMM additive force field, one of the most popular biomolecular force fields. Additionally, we present a detailed discussion of the CHARMM Drude polarizable force field, anticipating a growth in the importance and utilization of polarizable force fields in the near future. Throughout the discussion emphasis is placed on the force fields' parametrization philosophy and methodology. Recent improvements in the CHARMM additive force field are mostly related to newly found weaknesses in the previous generation of additive force fields. Beyond the additive approximation is the newly available CHARMM Drude polarizable force field, which allows for MD simulations of up to 1μs on proteins, DNA, lipids and carbohydrates. Addressing the limitations ensures the reliability of the new CHARMM36 additive force field for the types of calculations that are presently coming into routine computational reach while the availability of the Drude polarizable force fields offers an inherently more accurate model of the underlying physical forces driving macromolecular structures and dynamics. This article is part of a Special Issue entitled "Recent developments of molecular dynamics". Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Peculiarities of field penetration in the presence of cross-flux interaction

    NASA Astrophysics Data System (ADS)

    Berseth, V.; Buzdin, A. I.; Indenbom, M. V.; Benoit, W.

    1996-02-01

    The attractive core interaction between two orthogonal vortex lattices in alayered superconductor is calculated. When one of these lattices is moving, this interaction gives rise to a drag force acting on the other one. Considering a moving in-plane flux lattice, the effect of the drag force on the perpendicular flux is modelled through a modification of the bulk critical current for this field component. The new critical current depends on the direction of motion of both parallel and perpendicular vortices. The results are derived within the critical-state model for the infinite slab and for the thin strip. For this latter geometry, computations are made with the help of a new numerical method simulating flux penetration in the critical state. The new predicted qualitative phenomena (like the formation of a vortex-free region between two zones of opposite flux in the flat geometry) can be directly verified by the magneto-optic technique.

  10. Multilayer theory for delamination analysis of a composite curved bar subjected to end forces and end moments

    NASA Technical Reports Server (NTRS)

    Ko, William L.; Jackson, Raymond H.

    1989-01-01

    A composite test specimen in the shape of a semicircular curved bar subjected to bending offers an excellent stress field for studying the open-mode delamination behavior of laminated composite materials. This is because the open-mode delamination nucleates at the midspan of the curved bar. The classical anisotropic elasticity theory was used to construct a 'multilayer' theory for the calculations of the stress and deformation fields induced in the multilayered composite semicircular curved bar subjected to end forces and end moments. The radial location and intensity of the open-mode delamination stress were calculated and were compared with the results obtained from the anisotropic continuum theory and from the finite element method. The multilayer theory gave more accurate predictions of the location and the intensity of the open-mode delamination stress than those calculated from the anisotropic continuum theory.

  11. Controlling electron transfer processes on insulating surfaces with the non-contact atomic force microscope.

    PubMed

    Trevethan, Thomas; Shluger, Alexander

    2009-07-01

    We present the results of theoretical modelling that predicts how a process of transfer of single electrons between two defects on an insulating surface can be induced using a scanning force microscope tip. A model but realistic system is employed which consists of a neutral oxygen vacancy and a noble metal (Pt or Pd) adatom on the MgO(001) surface. We show that the ionization potential of the vacancy and the electron affinity of the metal adatom can be significantly modified by the electric field produced by an ionic tip apex at close approach to the surface. The relative energies of the two states are also a function of the separation of the two defects. Therefore the transfer of an electron from the vacancy to the metal adatom can be induced either by the field effect of the tip or by manipulating the position of the metal adatom on the surface.

  12. Multilayer theory for delamination analysis of a composite curved bar subjected to end forces and end moments

    NASA Technical Reports Server (NTRS)

    Ko, William L.; Jackson, Raymond H.

    1989-01-01

    A composite test specimen in the shape of a semicircular curved bar subjected to bending offers an excellent stress field for studying the open-mode delamination behavior of laminated composite materials. This is because the open-mode delamination nucleates at the midspan of the curved bar. The classical anisotropic elasticity theory was used to construct a multilayer theory for the calculations of the stress and deformation fields induced in the multilayered composite semicircular curved bar subjected to end forces and end moments. The radial location and intensity of the open-mode delamination stress were calculated and were compared with the results obtained from the anisotropic continuum theory and from the finite element method. The multilayer theory gave more accurate predictions of the location and the intensity of the open-mode delamination stress than those calculated from the anisotropic continuum theory.

  13. Sonic boom prediction for the Langley Mach 2 low-boom configuration

    NASA Technical Reports Server (NTRS)

    Madson, Michael D.

    1992-01-01

    Sonic boom pressure signatures and aerodynamic force data for the Langley Mach 2 low sonic boom configuration were computed using the TranAir full-potential code. A solution-adaptive Cartesian grid scheme is utilized to compute off-body flow field data. Computations were performed with and without nacelles at several angles of attack. Force and moment data were computed to measure nacelle effects on the aerodynamic characteristics and sonic boom footprints of the model. Pressure signatures were computed both on and off ground-track. Near-field pressure signature computations on ground-track were in good agreement with experimental data. Computed off ground-track signatures showed that maximum pressure peaks were located off ground-track and were significantly higher than the signatures on ground-track. Bow shocks from the nacelle inlets increased lift and drag, and also increased the magnitude of the maximum pressure both on and off ground-track.

  14. Transferable Pseudo-Classical Electrons for Aufbau of Atomic Ions

    PubMed Central

    Ekesan, Solen; Kale, Seyit; Herzfeld, Judith

    2014-01-01

    Generalizing the LEWIS reactive force field from electron pairs to single electrons, we present LEWIS• in which explicit valence electrons interact with each other and with nuclear cores via pairwise interactions. The valence electrons are independently mobile particles, following classical equations of motion according to potentials modified from Coulombic as required to capture quantum characteristics. As proof of principle, the aufbau of atomic ions is described for diverse main group elements from the first three rows of the periodic table, using a single potential for interactions between electrons of like spin and another for electrons of unlike spin. The electrons of each spin are found to distribute themselves in a fashion akin to the major lobes of the hybrid atomic orbitals, suggesting a pointillist description of the electron density. The broader validity of the LEWIS• force field is illustrated by predicting the vibrational frequencies of diatomic and triatomic hydrogen species. PMID:24752384

  15. Transferable pseudoclassical electrons for aufbau of atomic ions.

    PubMed

    Ekesan, Solen; Kale, Seyit; Herzfeld, Judith

    2014-06-05

    Generalizing the LEWIS reactive force field from electron pairs to single electrons, we present LEWIS• in which explicit valence electrons interact with each other and with nuclear cores via pairwise interactions. The valence electrons are independently mobile particles, following classical equations of motion according to potentials modified from Coulombic as required to capture quantum characteristics. As proof of principle, the aufbau of atomic ions is described for diverse main group elements from the first three rows of the periodic table, using a single potential for interactions between electrons of like spin and another for electrons of unlike spin. The electrons of each spin are found to distribute themselves in a fashion akin to the major lobes of the hybrid atomic orbitals, suggesting a pointillist description of the electron density. The broader validity of the LEWIS• force field is illustrated by predicting the vibrational frequencies of diatomic and triatomic hydrogen species. Copyright © 2014 Wiley Periodicals, Inc.

  16. Towards predictive molecular dynamics simulations of DNA: electrostatics and solution/crystal environments

    NASA Astrophysics Data System (ADS)

    Babin, Volodymr; Baucom, Jason; Darden, Thomas; Sagui, Celeste

    2006-03-01

    We have investigated to what extend molecular dynamics (MD) simulatons can reproduce DNA sequence-specific features, given different electrostatic descriptions and different cell environments. For this purpose, we have carried out multiple unrestrained MD simulations of the duplex d(CCAACGTTGG)2. With respect to the electrostatic descriptions, two different force fields were studied: a traditional description based on atomic point charges and a polarizable force field. With respect to the cell environment, the difference between crystal and solution environments is emphasized, as well as the structural importance of divalent ions. By imposing the correct experimental unit cell environment, an initial configuration with two ideal B-DNA duplexes in the unit cell is shown to converge to the crystallographic structure. To the best of our knowledge, this provides the first example of a multiple nanosecond MD trajectory that shows and ideal structure converging to an experimental one, with a significant decay of the RMSD.

  17. Analyte preconcentration in nanofluidic channels with nonuniform zeta potential

    NASA Astrophysics Data System (ADS)

    Eden, A.; McCallum, C.; Storey, B. D.; Pennathur, S.; Meinhart, C. D.

    2017-12-01

    It is well known that charged analytes in the presence of nonuniform electric fields concentrate at locations where the relevant driving forces balance, and a wide range of ionic stacking and focusing methods are commonly employed to leverage these physical mechanisms in order to improve signal levels in biosensing applications. In particular, nanofluidic channels with spatially varying conductivity distributions have been shown to provide increased preconcentration of charged analytes due to the existence of a finite electric double layer (EDL), in which electrostatic attraction and repulsion from charged surfaces produce nonuniform transverse ion distributions. In this work, we use numerical simulations to show that one can achieve greater levels of sample accumulation by using field-effect control via wall-embedded electrodes to tailor the surface potential heterogeneity in a nanochannel with overlapped EDLs. In addition to previously demonstrated stacking and focusing mechanisms, we find that the coupling between two-dimensional ion distributions and the axial electric field under overlapped EDL conditions can generate an ion concentration polarization interface in the middle of the channel. Under an applied electric field, this interface can be used to concentrate sample ions between two stationary regions of different surface potential and charge density. Our numerical model uses the Poisson-Nernst-Planck system of equations coupled with the Stokes equation to demonstrate the phenomenon, and we discuss in detail the driving forces behind the predicted sample enhancement. The numerical velocity and salt concentration profiles exhibit good agreement with analytical results from a simplified one-dimensional area-averaged model for several limiting cases, and we show predicted amplification ratios of up to 105.

  18. Translocation Thermodynamics of Linear and Cyclic Nonaarginine into Model DPPC Bilayer via Coarse-Grained Molecular Dynamics Simulation: Implications of Pore Formation and Nonadditivity

    PubMed Central

    2015-01-01

    Structural mechanisms and underlying thermodynamic determinants of efficient internalization of charged cationic peptides (cell-penetrating peptides, CPPs) such as TAT, polyarginine, and their variants, into cells, cellular constructs, and model membrane/lipid bilayers (large and giant unilamellar or multilamelar vesicles) continue to garner significant attention. Two widely held views on the translocation mechanism center on endocytotic and nonendocytotic (diffusive) processes. Espousing the view of a purely diffusive internalization process (supported by recent experimental evidence, [Säälik, P.; et al. J. Controlled Release2011, 153, 117–125]), we consider the underlying free energetics of the translocation of a nonaarginine peptide (Arg9) into a model DPPC bilayer. In the case of the Arg9 cationic peptide, recent experiments indicate a higher internalization efficiency of the cyclic structure (cyclic Arg9) relative to the linear conformer. Furthermore, recent all-atom resolution molecular dynamics simulations of cyclic Arg9 [Huang, K.; et al. Biophys. J., 2013, 104, 412–420] suggested a critical stabilizing role of water- and lipid-constituted pores that form within the bilayer as the charged Arg9 translocates deep into the bilayer center. Herein, we use umbrella sampling molecular dynamics simulations with coarse-grained Martini lipids, polarizable coarse-grained water, and peptide to explore the dependence of translocation free energetics on peptide structure and conformation via calculation of potentials of mean force along preselected reaction paths allowing and preventing membrane deformations that lead to pore formation. Within the context of the coarse-grained force fields we employ, we observe significant barriers for Arg9 translocation from bulk aqueous solution to bilayer center. Moreover, we do not find free-energy minima in the headgroup–water interfacial region, as observed in simulations using all-atom force fields. The pore-forming paths systematically predict lower free-energy barriers (ca. 90 kJ/mol lower) than the non pore-forming paths, again consistent with all-atom force field simulations. The current force field suggests no preference for the more compact or covalently cyclic structures upon entering the bilayer. Decomposition of the PMF into the system’s components indicates that the dominant stabilizing contribution along the pore-forming path originates from the membrane as both layers of it deformed due to the formation of pore. Furthermore, our analysis revealed that although there is significant entropic stabilization arising from the enhanced configurational entropy exposing more states as the peptide moves through the bilayer, the enthalpic loss (as predicted by the interactions of this coarse-grained model) far outweighs any former stabilization, thus leading to significant barrier to translocation. Finally, we observe reduction in the translocation free-energy barrier for a second Arg9 entering the bilayer in the presence of an initial peptide restrained at the center, again, in qualitative agreement with all-atom force fields. PMID:24506488

  19. Orbital Maneuvering Vehicle (OMV) plume and plume effects study

    NASA Technical Reports Server (NTRS)

    Smith, Sheldon D.

    1991-01-01

    The objective was to characterize the Orbital Maneuvering Vehicle (OMV) propulsion and attitude control system engine exhaust plumes and predict the resultant plume impingement pressure, heat loads, forces, and moments. Detailed description is provided of the OMV gaseous nitrogen (GN2) thruster exhaust plume flow field characteristics calculated with the RAMP2 snd SFPGEN computer codes. Brief descriptions are included of the two models, GN2 thruster characteristics and RAMP2 input data files. The RAMP2 flow field could be recalculated by other organizations using the information presented. The GN2 flow field can be readily used by other organizations who are interested in GN2 plume induced environments which require local flow field properties which can be supplied using the SFPGEN GN2 model.

  20. Casimir effect in presence of spontaneous Lorentz symmetry breaking

    NASA Astrophysics Data System (ADS)

    Escobar, C. A.

    2018-01-01

    The Casimir effect is one of the most remarkable consequences of the nonzero vacuum energy predicted by quantum field theory. In this contribution we study the Lorentz-violation effects of the minimal standard-model extension on the Casimir force between two parallel conducting plates in the vacuum. Using a perturbative method, we compute the relevant Green’s function which satisfies given boundary conditions. The standard point-splitting technique allow us to express the vacuum expectation value of the stress-energy tensor in terms of this Green’s function. Finally, we study the Casimir energy and the Casimir force paying particular attention to the quantum effects as approaching the plates.

  1. Theory of acoustic radiation pressure for actual fluids

    NASA Astrophysics Data System (ADS)

    Doinikov, Alexander A.

    1996-12-01

    A body irradiated by a sound field is known to experience a steady force that is called the acoustic radiation pressure. This force plays an important role in many physical phenomena, such as cavitation, sonoluminescence, acoustic levitation, etc. The existing theory of acoustic radiation pressure neglects dissipative effects. The present paper develops a theory that takes these effects into account, both dissipative mechanisms, viscous and thermal, being considered. It is shown that, when they are no longer negligible, the dissipative effects drastically change the radiation pressure. As a result, its magnitude and sign become different from those predicted by the ``classical'' theory neglecting losses.

  2. Stochastic Forcing for Ocean Uncertainty Prediction

    DTIC Science & Technology

    2013-09-30

    using the desired dynamics and the fitting of that velocity field to the bathymetry, coasts and discretization for the desired simulation. New algorithms...numerical bias is removed. Pdfs of the forecast errors are shown to capture and evolve non- Gaussian statistics. Comparing the Kullback - Leibler ...advances in collaborative sea exercises of opportunity vi) Strengthen existing and initiate new collaborations with NRL, using and leveraging the MIT

  3. A search for specificity in DNA-drug interactions.

    PubMed

    Cruciani, G; Goodford, P J

    1994-06-01

    The GRID force field and a principal component analysis have been used in order to predict the interactions of small chemical groups with all 64 different triplet sequences of B-DNA. Factors that favor binding to guanine-cytosine base pairs have been identified, and a dictionary of ligand groups and their locations is presented as a guide to the design of specific DNA ligands.

  4. Accurate calculation of mutational effects on the thermodynamics of inhibitor binding to p38α MAP kinase: a combined computational and experimental study.

    PubMed

    Zhu, Shun; Travis, Sue M; Elcock, Adrian H

    2013-07-09

    A major current challenge for drug design efforts focused on protein kinases is the development of drug resistance caused by spontaneous mutations in the kinase catalytic domain. The ubiquity of this problem means that it would be advantageous to develop fast, effective computational methods that could be used to determine the effects of potential resistance-causing mutations before they arise in a clinical setting. With this long-term goal in mind, we have conducted a combined experimental and computational study of the thermodynamic effects of active-site mutations on a well-characterized and high-affinity interaction between a protein kinase and a small-molecule inhibitor. Specifically, we developed a fluorescence-based assay to measure the binding free energy of the small-molecule inhibitor, SB203580, to the p38α MAP kinase and used it measure the inhibitor's affinity for five different kinase mutants involving two residues (Val38 and Ala51) that contact the inhibitor in the crystal structure of the inhibitor-kinase complex. We then conducted long, explicit-solvent thermodynamic integration (TI) simulations in an attempt to reproduce the experimental relative binding affinities of the inhibitor for the five mutants; in total, a combined simulation time of 18.5 μs was obtained. Two widely used force fields - OPLS-AA/L and Amber ff99SB-ILDN - were tested in the TI simulations. Both force fields produced excellent agreement with experiment for three of the five mutants; simulations performed with the OPLS-AA/L force field, however, produced qualitatively incorrect results for the constructs that contained an A51V mutation. Interestingly, the discrepancies with the OPLS-AA/L force field could be rectified by the imposition of position restraints on the atoms of the protein backbone and the inhibitor without destroying the agreement for other mutations; the ability to reproduce experiment depended, however, upon the strength of the restraints' force constant. Imposition of position restraints in corresponding simulations that used the Amber ff99SB-ILDN force field had little effect on their ability to match experiment. Overall, the study shows that both force fields can work well for predicting the effects of active-site mutations on small molecule binding affinities and demonstrates how a direct combination of experiment and computation can be a powerful strategy for developing an understanding of protein-inhibitor interactions.

  5. Predictability of Subsurface Temperature and the AMOC

    NASA Astrophysics Data System (ADS)

    Chang, Y.; Schubert, S. D.

    2013-12-01

    GEOS 5 coupled model is extensively used for experimental decadal climate prediction. Understanding the limits of decadal ocean predictability is critical for making progress in these efforts. Using this model, we study the subsurface temperature initial value predictability, the variability of the Atlantic meridional overturning circulation (AMOC) and its impacts on the global climate. Our approach is to utilize the idealized data assimilation technology developed at the GMAO. The technique 'replay' allows us to assess, for example, the impact of the surface wind stresses and/or precipitation on the ocean in a very well controlled environment. By running the coupled model in replay mode we can in fact constrain the model using any existing reanalysis data set. We replay the model constraining (nudging) it to the MERRA reanalysis in various fields from 1948-2012. The fields, u,v,T,q,ps, are adjusted towards the 6-hourly analyzed fields in atmosphere. The simulated AMOC variability is studied with a 400-year-long segment of replay integration. The 84 cases of 10-year hindcasts are initialized from 4 different replay cycles. Here, the variability and predictability are examined further by a measure to quantify how much the subsurface temperature and AMOC variability has been influenced by atmospheric forcing and by ocean internal variability. The simulated impact of the AMOC on the multi-decadal variability of the SST, sea surface height (SSH) and sea ice extent is also studied.

  6. First principles crystal engineering of nonlinear optical materials. I. Prototypical case of urea

    NASA Astrophysics Data System (ADS)

    Masunov, Artëm E.; Tannu, Arman; Dyakov, Alexander A.; Matveeva, Anastasia D.; Freidzon, Alexandra Ya.; Odinokov, Alexey V.; Bagaturyants, Alexander A.

    2017-06-01

    The crystalline materials with nonlinear optical (NLO) properties are critically important for several technological applications, including nanophotonic and second harmonic generation devices. Urea is often considered to be a standard NLO material, due to the combination of non-centrosymmetric crystal packing and capacity for intramolecular charge transfer. Various approaches to crystal engineering of non-centrosymmetric molecular materials were reported in the literature. Here we propose using global lattice energy minimization to predict the crystal packing from the first principles. We developed a methodology that includes the following: (1) parameter derivation for polarizable force field AMOEBA; (2) local minimizations of crystal structures with these parameters, combined with the evolutionary algorithm for a global minimum search, implemented in program USPEX; (3) filtering out duplicate polymorphs produced; (4) reoptimization and final ranking based on density functional theory (DFT) with many-body dispersion (MBD) correction; and (5) prediction of the second-order susceptibility tensor by finite field approach. This methodology was applied to predict virtual urea polymorphs. After filtering based on packing similarity, only two distinct packing modes were predicted: one experimental and one hypothetical. DFT + MBD ranking established non-centrosymmetric crystal packing as the global minimum, in agreement with the experiment. Finite field approach was used to predict nonlinear susceptibility, and H-bonding was found to account for a 2.5-fold increase in molecular hyperpolarizability to the bulk value.

  7. Modelling the effects of the radiation reaction force on the interaction of thin foils with ultra-intense laser fields

    NASA Astrophysics Data System (ADS)

    Duff, M. J.; Capdessus, R.; Del Sorbo, D.; Ridgers, C. P.; King, M.; McKenna, P.

    2018-06-01

    The effects of the radiation reaction (RR) force on thin foils undergoing radiation pressure acceleration (RPA) are investigated. Using QED-particle-in-cell simulations, the influence of the RR force on the collective electron dynamics within the target can be examined. The magnitude of the RR force is found to be strongly dependent on the target thickness, leading to effects which can be observed on a macroscopic scale, such as changes to the distribution of the emitted radiation and the target dynamics. This suggests that such parameters may be controlled in experiments at multi-PW laser facilities. In addition, the effects of the RR force are characterized in terms of an average radiation emission angle. We present an analytical model which, for the first time, describes the effect of the RR force on the collective electron dynamics within the ‘light-sail’ regime of RPA. The predictions of this model can be tested in future experiments with ultra-high intensity lasers interacting with solid targets.

  8. An analysis of the high-latitude thermospheric wind pattern calculated by a thermospheric general circulation model. I - Momentum forcing

    NASA Technical Reports Server (NTRS)

    Killeen, T. L.; Roble, R. G.

    1984-01-01

    A diagnostic processor (DP) was developed for analysis of hydrodynamic and thermodynamic processes predicted by the NCAR thermospheric general circulation model (TGCM). The TGCM contains a history file on the projected wind, temperature and composition fields at each grid point for each hour of universal time. The DP assimilates the history file plus ion drag tensors and drift velocities, specific heats, coefficients of viscosity, and thermal conductivity and calculates the individual forcing terms for the momentum and energy equations for a given altitude. Sample momentum forcings were calculated for high latitudes in the presence of forcing by solar radiation and magnetospheric convection with a 60 kV cross-tail potential, i.e., conditions on Oct. 21, 1981. It was found that ion drag and pressure forces balance out at F region heights where ion drift velocities are small. The magnetic polar cap/auroral zone boundary featured the largest residual force or net acceleration. Diurnal oscillations were detected in the thermospheric convection, and geostrophic balance was dominant in the E layer.

  9. Reduction of initial shock in decadal predictions using a new initialization strategy

    NASA Astrophysics Data System (ADS)

    He, Yujun; Wang, Bin; Liu, Mimi; Liu, Li; Yu, Yongqiang; Liu, Juanjuan; Li, Ruizhe; Zhang, Cheng; Xu, Shiming; Huang, Wenyu; Liu, Qun; Wang, Yong; Li, Feifei

    2017-08-01

    A novel full-field initialization strategy based on the dimension-reduced projection four-dimensional variational data assimilation (DRP-4DVar) is proposed to alleviate the well-known initial shock occurring in the early years of decadal predictions. It generates consistent initial conditions, which best fit the monthly mean oceanic analysis data along the coupled model trajectory in 1 month windows. Three indices to measure the initial shock intensity are also proposed. Results indicate that this method does reduce the initial shock in decadal predictions by Flexible Global Ocean-Atmosphere-Land System model, Grid-point version 2 (FGOALS-g2) compared with the three-dimensional variational data assimilation-based nudging full-field initialization for the same model and is comparable to or even better than the different initialization strategies for other fifth phase of the Coupled Model Intercomparison Project (CMIP5) models. Better hindcasts of global mean surface air temperature anomalies can be obtained than in other FGOALS-g2 experiments. Due to the good model response to external forcing and the reduction of initial shock, higher decadal prediction skill is achieved than in other CMIP5 models.

  10. Experimental verification of the steric-entropic mode of retention in centrifugal field-flow fractionation using illite clay plates.

    PubMed

    Tadjiki, Soheyl; Beckett, Ronald

    2018-02-23

    The commonly used theory to describe the normal Brownian mode of field-flow fractionation (FFF) assumes the particles to be point masses and hence the shape is ignored. Beckett and Giddings extended this theory to include the effect of thin rods and discs being forced very close to the accumulation wall. By including the decrease in the entropy this causes, they derived new expressions for the retention of such nonspherical particles in FFF. The steric-entropic theory predicts that when the sample cloud thickness is less than the major dimension of the rods or discs then particles elute earlier than predicted by the Brownian mode theory. This leads to an underestimation of the buoyant mass and equivalent spherical diameter calculated from FFF data. In this paper we report for the first time experimental data for the retention of thin illite particles in centrifugal FFF that agrees well with these steric-entropic predictions. Not only do the size distributions calculated using the Brownian mode theory shift to lower size when the field is increased but the shift in the retention ratio of the peak maxima of the FFF fractograms could be predicted fairly accurately by the steric-entropic equations. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Equivalence principle in chameleon models

    NASA Astrophysics Data System (ADS)

    Kraiselburd, Lucila; Landau, Susana J.; Salgado, Marcelo; Sudarsky, Daniel; Vucetich, Héctor

    2018-05-01

    Most theories that predict time and/or space variation of fundamental constants also predict violations of the weak equivalence principle (WEP). In 2004 Khoury and Weltman [1] proposed the so called chameleon field arguing that it could help avoiding experimental bounds on the WEP while having a nontrivial cosmological impact. In this paper we revisit the extent to which these expectations continue to hold as we enter the regime of high precision tests. The basis of the study is the development of a new method for computing the force between two massive bodies induced by the chameleon field which takes into account the influence on the field by both, the large and the test bodies. We confirm that in the thin shell regime the force does depend nontrivially on the test body's composition, even when the chameleon coupling constants βi=β are universal. We also propose a simple criterion based on energy minimization, that we use to determine which of the approximations used in computing the scalar field in a two body problem is better in each specific regime. As an application of our analysis we then compare the resulting differential acceleration of two test bodies with the corresponding bounds obtained from Eötvös type experiments. We consider two setups: (1) an Earth based experiment where the test bodies are made of Be and Al; (2) the Lunar Laser Ranging experiment. We find that for some choices of the free parameters of the chameleon model the predictions of the Eötvös parameter are larger than some of the previous estimates. As a consequence, we put new constrains on these free parameters. Our conclusions strongly suggest that the properties of immunity from experimental tests of the WEP, usually attributed to the chameleon and related models, should be carefully reconsidered. An important result of our analysis is that our approach leads to new constraints on the parameter space of the chameleon models.

  12. Recent Developments and Applications of the CHARMM force fields

    PubMed Central

    Zhu, Xiao; Lopes, Pedro E.M.; MacKerell, Alexander D.

    2011-01-01

    Empirical force fields commonly used to describe the condensed phase properties of complex systems such as biological macromolecules are continuously being updated. Improvements in quantum mechanical (QM) methods used to generate target data, availability of new experimental target data, incorporation of new classes of compounds and new theoretical developments (eg. polarizable methods) make force-field development a dynamic domain of research. Accordingly, a number of improvements and extensions of the CHARMM force fields have occurred over the years. The objective of the present review is to provide an up-to-date overview of the CHARMM force fields. A limited presentation on the historical aspects of force fields will be given, including underlying methodologies and principles, along with a brief description of the strategies used for parameter development. This is followed by information on the CHARMM additive and polarizable force fields, including examples of recent applications of those force fields. PMID:23066428

  13. Effect of intrinsic and extrinsic factors on the simulated D-band length of type I collagen.

    PubMed

    Varma, Sameer; Botlani, Mohsen; Hammond, Jeff R; Scott, H Larry; Orgel, Joseph P R O; Schieber, Jay D

    2015-10-01

    A signature feature of collagen is its axial periodicity visible in TEM as alternating dark and light bands. In mature, type I collagen, this repeating unit, D, is 67 nm long. This periodicity reflects an underlying packing of constituent triple-helix polypeptide monomers wherein the dark bands represent gaps between axially adjacent monomers. This organization is visible distinctly in the microfibrillar model of collagen obtained from fiber diffraction. However, to date, no atomistic simulations of this diffraction model under zero-stress conditions have reported a preservation of this structural feature. Such a demonstration is important as it provides the baseline to infer response functions of physiological stimuli. In contrast, simulations predict a considerable shrinkage of the D-band (11-19%). Here we evaluate systemically the effect of several factors on D-band shrinkage. Using force fields employed in previous studies we find that irrespective of the temperature/pressure coupling algorithms, assumed salt concentration or hydration level, and whether or not the monomers are cross-linked, the D-band shrinks considerably. This shrinkage is associated with the bending and widening of individual monomers, but employing a force field whose backbone dihedral energy landscape matches more closely with our computed CCSD(T) values produces a small D-band shrinkage of < 3%. Since this force field also performs better against other experimental data, it appears that the large shrinkage observed in earlier simulations is a force-field artifact. The residual shrinkage could be due to the absence of certain atomic-level details, such as glycosylation sites, for which we do not yet have suitable data. © 2015 Wiley Periodicals, Inc.

  14. Amino acid analogues bind to carbon nanotube via π-π interactions: Comparison of molecular mechanical and quantum mechanical calculations

    NASA Astrophysics Data System (ADS)

    Yang, Zaixing; Wang, Zhigang; Tian, Xingling; Xiu, Peng; Zhou, Ruhong

    2012-01-01

    Understanding the interaction between carbon nanotubes (CNTs) and biomolecules is essential to the CNT-based nanotechnology and biotechnology. Some recent experiments have suggested that the π-π stacking interactions between protein's aromatic residues and CNTs might play a key role in their binding, which raises interest in large scale modeling of protein-CNT complexes and associated π-π interactions at atomic detail. However, there is concern on the accuracy of classical fixed-charge molecular force fields due to their classical treatments and lack of polarizability. Here, we study the binding of three aromatic residue analogues (mimicking phenylalanine, tyrosine, and tryptophan) and benzene to a single-walled CNT, and compare the molecular mechanical (MM) calculations using three popular fixed-charge force fields (OPLSAA, AMBER, and CHARMM), with quantum mechanical (QM) calculations using the density-functional tight-binding method with the inclusion of dispersion correction (DFTB-D). Two typical configurations commonly found in π-π interactions are used, one with the aromatic rings parallel to the CNT surface (flat), and the other perpendicular (edge). Our calculations reveal that compared to the QM results the MM approaches can appropriately reproduce the strength of π-π interactions for both configurations, and more importantly, the energy difference between them, indicating that the various contributions to π-π interactions have been implicitly included in the van der Waals parameters of the standard MM force fields. Meanwhile, these MM models are less accurate in predicting the exact structural binding patterns (matching surface), meaning there are still rooms to be improved. In addition, we have provided a comprehensive and reliable QM picture for the π-π interactions of aromatic molecules with CNTs in gas phase, which might be used as a benchmark for future force field developments.

  15. Amino acid analogues bind to carbon nanotube via π-π interactions: comparison of molecular mechanical and quantum mechanical calculations.

    PubMed

    Yang, Zaixing; Wang, Zhigang; Tian, Xingling; Xiu, Peng; Zhou, Ruhong

    2012-01-14

    Understanding the interaction between carbon nanotubes (CNTs) and biomolecules is essential to the CNT-based nanotechnology and biotechnology. Some recent experiments have suggested that the π-π stacking interactions between protein's aromatic residues and CNTs might play a key role in their binding, which raises interest in large scale modeling of protein-CNT complexes and associated π-π interactions at atomic detail. However, there is concern on the accuracy of classical fixed-charge molecular force fields due to their classical treatments and lack of polarizability. Here, we study the binding of three aromatic residue analogues (mimicking phenylalanine, tyrosine, and tryptophan) and benzene to a single-walled CNT, and compare the molecular mechanical (MM) calculations using three popular fixed-charge force fields (OPLSAA, AMBER, and CHARMM), with quantum mechanical (QM) calculations using the density-functional tight-binding method with the inclusion of dispersion correction (DFTB-D). Two typical configurations commonly found in π-π interactions are used, one with the aromatic rings parallel to the CNT surface (flat), and the other perpendicular (edge). Our calculations reveal that compared to the QM results the MM approaches can appropriately reproduce the strength of π-π interactions for both configurations, and more importantly, the energy difference between them, indicating that the various contributions to π-π interactions have been implicitly included in the van der Waals parameters of the standard MM force fields. Meanwhile, these MM models are less accurate in predicting the exact structural binding patterns (matching surface), meaning there are still rooms to be improved. In addition, we have provided a comprehensive and reliable QM picture for the π-π interactions of aromatic molecules with CNTs in gas phase, which might be used as a benchmark for future force field developments.

  16. Comparison of stochastic optimization methods for all-atom folding of the Trp-Cage protein.

    PubMed

    Schug, Alexander; Herges, Thomas; Verma, Abhinav; Lee, Kyu Hwan; Wenzel, Wolfgang

    2005-12-09

    The performances of three different stochastic optimization methods for all-atom protein structure prediction are investigated and compared. We use the recently developed all-atom free-energy force field (PFF01), which was demonstrated to correctly predict the native conformation of several proteins as the global optimum of the free energy surface. The trp-cage protein (PDB-code 1L2Y) is folded with the stochastic tunneling method, a modified parallel tempering method, and the basin-hopping technique. All the methods correctly identify the native conformation, and their relative efficiency is discussed.

  17. Observed differences in upper extremity forces, muscle efforts, postures, velocities and accelerations across computer activities in a field study of office workers.

    PubMed

    Bruno Garza, J L; Eijckelhof, B H W; Johnson, P W; Raina, S M; Rynell, P W; Huysmans, M A; van Dieën, J H; van der Beek, A J; Blatter, B M; Dennerlein, J T

    2012-01-01

    This study, a part of the PRedicting Occupational biomechanics in OFfice workers (PROOF) study, investigated whether there are differences in field-measured forces, muscle efforts, postures, velocities and accelerations across computer activities. These parameters were measured continuously for 120 office workers performing their own work for two hours each. There were differences in nearly all forces, muscle efforts, postures, velocities and accelerations across keyboard, mouse and idle activities. Keyboard activities showed a 50% increase in the median right trapezius muscle effort when compared to mouse activities. Median shoulder rotation changed from 25 degrees internal rotation during keyboard use to 15 degrees external rotation during mouse use. Only keyboard use was associated with median ulnar deviations greater than 5 degrees. Idle activities led to the greatest variability observed in all muscle efforts and postures measured. In future studies, measurements of computer activities could be used to provide information on the physical exposures experienced during computer use. Practitioner Summary: Computer users may develop musculoskeletal disorders due to their force, muscle effort, posture and wrist velocity and acceleration exposures during computer use. We report that many physical exposures are different across computer activities. This information may be used to estimate physical exposures based on patterns of computer activities over time.

  18. Attraction between Opposing Planar Dipolar Polymer Brushes

    DOE PAGES

    Mahalik, J. P.; Sumpter, Bobby G.; Kumar, Rajeev

    2017-08-01

    In this paper, we use a field theory approach to study the effects of permanent dipoles on interpenetration and free energy changes as a function of distance between two identical planar polymer brushes. Melts (i.e., solvent-free) and solvated brushes made up of polymers grafted on nonadsorbing substrates are studied. In particular, the weak coupling limit of the dipolar interactions is considered, which leads to concentration-dependent pairwise interactions, and the effects of orientational order are neglected. It is predicted that a gradual increase in the dipole moment of the polymer segments can lead to attractive interactions between the brushes at intermediatemore » separation distances. Finally, because classical theory of polymer brushes based on the strong stretching limit (SSL) and the standard self-consistent field theory (SCFT) simulations using the Flory’s χ parameter always predicts repulsive interactions at all separations, our work highlights the importance of dipolar interactions in tailoring and accurately predicting forces between polar polymeric interfaces in contact with each other.« less

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mahalik, J. P.; Sumpter, Bobby G.; Kumar, Rajeev

    In this paper, we use a field theory approach to study the effects of permanent dipoles on interpenetration and free energy changes as a function of distance between two identical planar polymer brushes. Melts (i.e., solvent-free) and solvated brushes made up of polymers grafted on nonadsorbing substrates are studied. In particular, the weak coupling limit of the dipolar interactions is considered, which leads to concentration-dependent pairwise interactions, and the effects of orientational order are neglected. It is predicted that a gradual increase in the dipole moment of the polymer segments can lead to attractive interactions between the brushes at intermediatemore » separation distances. Finally, because classical theory of polymer brushes based on the strong stretching limit (SSL) and the standard self-consistent field theory (SCFT) simulations using the Flory’s χ parameter always predicts repulsive interactions at all separations, our work highlights the importance of dipolar interactions in tailoring and accurately predicting forces between polar polymeric interfaces in contact with each other.« less

  20. Predicting the velocity and azimuth of fragments generated by the range destruction or random failure of rocket casings and tankage

    NASA Technical Reports Server (NTRS)

    Eck, Marshall; Mukunda, Meera

    1988-01-01

    A calculational method is described which provides a powerful tool for predicting solid rocket motor (SRM) casing and liquid rocket tankage fragmentation response. The approach properly partitions the available impulse to each major system-mass component. It uses the Pisces code developed by Physics International to couple the forces generated by an Eulerian-modeled gas flow field to a Lagrangian-modeled fuel and casing system. The details of the predictive analytical modeling process and the development of normalized relations for momentum partition as a function of SRM burn time and initial geometry are discussed. Methods for applying similar modeling techniques to liquid-tankage-overpressure failures are also discussed. Good agreement between predictions and observations are obtained for five specific events.

  1. Concurrent prediction of ground reaction forces and moments and tibiofemoral contact forces during walking using musculoskeletal modelling.

    PubMed

    Peng, Yinghu; Zhang, Zhifeng; Gao, Yongchang; Chen, Zhenxian; Xin, Hua; Zhang, Qida; Fan, Xunjian; Jin, Zhongmin

    2018-02-01

    Ground reaction forces and moments (GRFs and GRMs) measured from force plates in a gait laboratory are usually used as the input conditions to predict the knee joint forces and moments via musculoskeletal (MSK) multibody dynamics (MBD) model. However, the measurements of the GRFs and GRMs data rely on force plates and sometimes are limited by the difficulty in some patient's gait patterns (e.g. treadmill gait). In addition, the force plate calibration error may influence the prediction accuracy of the MSK model. In this study, a prediction method of the GRFs and GRMs based on elastic contact element was integrated into a subject-specific MSK MBD modelling framework of total knee arthroplasty (TKA), and the GRFs and GRMs and knee contact forces (KCFs) during walking were predicted simultaneously with reasonable accuracy. The ground reaction forces and moments were predicted with an average root mean square errors (RMSEs) of 0.021 body weight (BW), 0.014 BW and 0.089 BW in the antero-posterior, medio-lateral and vertical directions and 0.005 BW•body height (BH), 0.011 BW•BH, 0.004 BW•BH in the sagittal, frontal and transverse planes, respectively. Meanwhile, the medial, lateral and total tibiofemoral (TF) contact forces were predicted by the developed MSK model with RMSEs of 0.025-0.032 BW, 0.018-0.022 BW, and 0.089-0.132 BW, respectively. The accuracy of the predicted medial TF contact force was improved by 12% using the present method. The proposed method can extend the application of the MSK model of TKA and is valuable for understanding the in vivo knee biomechanics and tribological conditions without the force plate data. Copyright © 2017 IPEM. Published by Elsevier Ltd. All rights reserved.

  2. A comparison of measured and theoretical predictions for STS ascent and entry sonic booms

    NASA Technical Reports Server (NTRS)

    Garcia, F., Jr.; Jones, J. H.; Henderson, H. R.

    1983-01-01

    Sonic boom measurements have been obtained during the flights of STS-1 through 5. During STS-1, 2, and 4, entry sonic boom measurements were obtained and ascent measurements were made on STS-5. The objectives of this measurement program were (1) to define the sonic boom characteristics of the Space Transportation System (STS), (2) provide a realistic assessment of the validity of xisting theoretical prediction techniques, and (3) establish a level of confidence for predicting future STS configuration sonic boom environments. Detail evaluation and reporting of the results of this program are in progress. This paper will address only the significant results, mainly those data obtained during the entry of STS-1 at Edwards Air Force Base (EAFB), and the ascent of STS-5 from Kennedy Space Center (KSC). The theoretical prediction technique employed in this analysis is the so called Thomas Program. This prediction technique is a semi-empirical method that required definition of the near field signatures, detailed trajectory characteristics, and the prevailing meteorological characteristics as an input. This analytical procedure then extrapolates the near field signatures from the flight altitude to an altitude consistent with each measurement location.

  3. GEMS (Gravity Electro-Magnetism Strong) SU(5) Theory and The Prediction of Exchange Boson Masses

    NASA Astrophysics Data System (ADS)

    Brandenburg, John

    2012-10-01

    The GEMS SU(5) [1] theory includes short range Nuclear Forces in the GEM unification theory [2], where the importance of the square root of the proton-electron mass ratio: σ = 42.8503 was found. The creation of mass by a Higgs field coupling must, by the Equivalence Principle, be viewed in the context of General Relativity. This is done here using Kaluza-Klein theory in a Feynman-Hawkings path integral formalism. GEM theory, quantum concepts of virtual particles, and ZPF (Zero Point Fluctuation) allow understanding of the Strong Force and Weak forces as the extension of electrodynamics in the quantum limit. The Strong and Weak forces are found to be associated with EM models of the electron and proton as finite sized structures respectively. Higher order Mie resonances off the EM ``mass at a distance'' structures associated with the electron, proton and fifth dimension generate the quanta with masses of the pion mπ = 2 me /α 140.0 MeV and Z boson: mZ = 2σ mp = 80.4 GeV. The ηc meson mη = 2980 GeV is identified with the 5^th dimension compactification force mediated by the Radion field. Another particle associated with this mass inducing field is the ``Radion'' or Higgs scattering quanta off the fifth dimension with a mass σmη 128.6 GeV which is the Higgs Boson. A GEMS SU(5) Georgi-Glashow model, is proposed, where the unification energy is now the Planck energy.[0pt] [1] Brandenburg, J.E. (2012)., STAIF II Conference Albuquerque NM[0pt] [2] Brandenburg, J.E. (2007). IEEE Transactions On Plasma Science, Vol. 35, No. 4., p845.

  4. Density-Functional Theory with Dispersion-Correcting Potentials for Methane: Bridging the Efficiency and Accuracy Gap between High-Level Wave Function and Classical Molecular Mechanics Methods.

    PubMed

    Torres, Edmanuel; DiLabio, Gino A

    2013-08-13

    Large clusters of noncovalently bonded molecules can only be efficiently modeled by classical mechanics simulations. One prominent challenge associated with this approach is obtaining force-field parameters that accurately describe noncovalent interactions. High-level correlated wave function methods, such as CCSD(T), are capable of correctly predicting noncovalent interactions, and are widely used to produce reference data. However, high-level correlated methods are generally too computationally costly to generate the critical reference data required for good force-field parameter development. In this work we present an approach to generate Lennard-Jones force-field parameters to accurately account for noncovalent interactions. We propose the use of a computational step that is intermediate to CCSD(T) and classical molecular mechanics, that can bridge the accuracy and computational efficiency gap between them, and demonstrate the efficacy of our approach with methane clusters. On the basis of CCSD(T)-level binding energy data for a small set of methane clusters, we develop methane-specific, atom-centered, dispersion-correcting potentials (DCPs) for use with the PBE0 density-functional and 6-31+G(d,p) basis sets. We then use the PBE0-DCP approach to compute a detailed map of the interaction forces associated with the removal of a single methane molecule from a cluster of eight methane molecules and use this map to optimize the Lennard-Jones parameters for methane. The quality of the binding energies obtained by the Lennard-Jones parameters we obtained is assessed on a set of methane clusters containing from 2 to 40 molecules. Our Lennard-Jones parameters, used in combination with the intramolecular parameters of the CHARMM force field, are found to closely reproduce the results of our dispersion-corrected density-functional calculations. The approach outlined can be used to develop Lennard-Jones parameters for any kind of molecular system.

  5. Cumulant-based expressions for the multibody terms for the correlation between local and electrostatic interactions in the united-residue force field

    NASA Astrophysics Data System (ADS)

    Liwo, Adam; Czaplewski, Cezary; Pillardy, Jarosław; Scheraga, Harold A.

    2001-08-01

    A general method to derive site-site or united-residue potentials is presented. The basic principle of the method is the separation of the degrees of freedom of a system into the primary and secondary ones. The primary degrees of freedom describe the basic features of the system, while the secondary ones are averaged over when calculating the potential of mean force, which is hereafter referred to as the restricted free energy (RFE) function. The RFE can be factored into one-, two-, and multibody terms, using the cluster-cumulant expansion of Kubo. These factors can be assigned the functional forms of the corresponding lowest-order nonzero generalized cumulants, which can, in most cases, be evaluated analytically, after making some simplifying assumptions. This procedure to derive coarse-grain force fields is very valuable when applied to multibody terms, whose functional forms are hard to deduce in another way (e.g., from structural databases). After the functional forms have been derived, they can be parametrized based on the RFE surfaces of model systems obtained from all-atom models or on the statistics derived from structural databases. The approach has been applied to our united-residue force field for proteins. Analytical expressions were derived for the multibody terms pertaining to the correlation between local and electrostatic interactions within the polypeptide backbone; these expressions correspond to up to sixth-order terms in the cumulant expansion of the RFE. These expressions were subsequently parametrized by fitting to the RFEs of selected peptide fragments, calculated with the empirical conformational energy program for peptides force field. The new multibody terms enable not only the heretofore predictable α-helical segments, but also regular β-sheets, to form as the lowest-energy structures, as assessed by test calculations on a model helical protein A, as well as a model 20-residue polypeptide (betanova); the latter was not possible without introducing these new terms.

  6. Using Mason number to predict MR damper performance from limited test data

    NASA Astrophysics Data System (ADS)

    Becnel, Andrew C.; Wereley, Norman M.

    2017-05-01

    The Mason number can be used to produce a single master curve which relates MR fluid stress versus strain rate behavior across a wide range of shear rates, temperatures, and applied magnetic fields. As applications of MR fluid energy absorbers expand to a variety of industries and operating environments, Mason number analysis offers a path to designing devices with desired performance from a minimal set of preliminary test data. Temperature strongly affects the off-state viscosity of the fluid, as the passive viscous force drops considerably at higher temperatures. Yield stress is not similarly affected, and stays relatively constant with changing temperature. In this study, a small model-scale MR fluid rotary energy absorber is used to measure the temperature correction factor of a commercially-available MR fluid from LORD Corporation. This temperature correction factor is identified from shear stress vs. shear rate data collected at four different temperatures. Measurements of the MR fluid yield stress are also obtained and related to a standard empirical formula. From these two MR fluid properties - temperature-dependent viscosity and yield stress - the temperature-corrected Mason number is shown to predict the force vs. velocity performance of a full-scale rotary MR fluid energy absorber. This analysis technique expands the design space of MR devices to high shear rates and allows for comprehensive predictions of overall performance across a wide range of operating conditions from knowledge only of the yield stress vs. applied magnetic field and a temperature-dependent viscosity correction factor.

  7. Computing the Rotational Diffusion of Biomolecules via Molecular Dynamics Simulation and Quaternion Orientations.

    PubMed

    Chen, Po-Chia; Hologne, Maggy; Walker, Olivier

    2017-03-02

    Rotational diffusion (D rot ) is a fundamental property of biomolecules that contains information about molecular dimensions and solute-solvent interactions. While ab initio D rot prediction can be achieved by explicit all-atom molecular dynamics simulations, this is hindered by both computational expense and limitations in water models. We propose coarse-grained force fields as a complementary solution, and show that the MARTINI force field with elastic networks is sufficient to compute D rot in >10 proteins spanning 5-157 kDa. We also adopt a quaternion-based approach that computes D rot orientation directly from autocorrelations of best-fit rotations as used in, e.g., RMSD algorithms. Over 2 μs trajectories, isotropic MARTINI+EN tumbling replicates experimental values to within 10-20%, with convergence analyses suggesting a minimum sampling of >50 × τ theor to achieve sufficient precision. Transient fluctuations in anisotropic tumbling cause decreased precision in predictions of axisymmetric anisotropy and rhombicity, the latter of which cannot be precisely evaluated within 2000 × τ theor for GB3. Thus, we encourage reporting of axial decompositions D x , D y , D z to ease comparability between experiment and simulation. Where protein disorder is absent, we observe close replication of MARTINI+EN D rot orientations versus CHARMM22*/TIP3p and experimental data. This work anticipates the ab initio prediction of NMR-relaxation by combining coarse-grained global motions with all-atom local motions.

  8. TOUCHSTONE II: a new approach to ab initio protein structure prediction.

    PubMed

    Zhang, Yang; Kolinski, Andrzej; Skolnick, Jeffrey

    2003-08-01

    We have developed a new combined approach for ab initio protein structure prediction. The protein conformation is described as a lattice chain connecting C(alpha) atoms, with attached C(beta) atoms and side-chain centers of mass. The model force field includes various short-range and long-range knowledge-based potentials derived from a statistical analysis of the regularities of protein structures. The combination of these energy terms is optimized through the maximization of correlation for 30 x 60,000 decoys between the root mean square deviation (RMSD) to native and energies, as well as the energy gap between native and the decoy ensemble. To accelerate the conformational search, a newly developed parallel hyperbolic sampling algorithm with a composite movement set is used in the Monte Carlo simulation processes. We exploit this strategy to successfully fold 41/100 small proteins (36 approximately 120 residues) with predicted structures having a RMSD from native below 6.5 A in the top five cluster centroids. To fold larger-size proteins as well as to improve the folding yield of small proteins, we incorporate into the basic force field side-chain contact predictions from our threading program PROSPECTOR where homologous proteins were excluded from the data base. With these threading-based restraints, the program can fold 83/125 test proteins (36 approximately 174 residues) with structures having a RMSD to native below 6.5 A in the top five cluster centroids. This shows the significant improvement of folding by using predicted tertiary restraints, especially when the accuracy of side-chain contact prediction is >20%. For native fold selection, we introduce quantities dependent on the cluster density and the combination of energy and free energy, which show a higher discriminative power to select the native structure than the previously used cluster energy or cluster size, and which can be used in native structure identification in blind simulations. These procedures are readily automated and are being implemented on a genomic scale.

  9. The Role of Self-Organized Criticality in the Substorm Phenomenon and its Relation to Localized Reconnection in the Magnetospheric Plasma Sheet

    NASA Technical Reports Server (NTRS)

    Klimas, Alex J.; Valdivia, J. A.; Vassiliadis, D.; Baker, D. N.; Hesse, M.; Takalo, J.

    1999-01-01

    Evidence is presented that suggests there is a significant self-organized criticality (SOC) component in the dynamics of substorms in the magnetosphere. Observations of BBFs, fast flows, localized dipolarizations, plasma turbulence, etc. are taken to show that multiple localized reconnection sites provide the basic avalanche phenomenon in the establishment of SOC in the plasma sheet. First results are presented from a continuing plasma physical study of this avalanche process. A one-dimensional resistive MHD model of a magnetic field reversal is discussed. Resistivity, in this model, is self-consistently generated in response to the excitation of an idealized current-driven instability. When forced by convection of magnetic flux into the field reversal region, the model yields rapid magnetic field annihilation through a dynamic behavior that is shown to exhibit many of the characteristics of SOC. Over a large range of forcing strengths, the annihilation rate is shown to self-adjust to balance the rate at which flux is convected into the reversal region. Several analogies to magnetotail dynamics are discussed: (1) It is shown that the presence of a localized criticality in the model produces a remarkable stability in the global configuration of the field reversal while simultaneously exciting extraordinarily dynamic internal evolution. (2) Under steady forcing, it is shown that a loading-unloading cycle may arise that, as a consequence of the global stability, is quasi-periodic and, therefore, predictable despite the presence of internal turbulence in the field distribution. Indeed, it is shown that the global loading-unloading cycle is a consequence of the internal turbulence. (3) It is shown that, under steady, strong forcing the loading-unloading cycle vanishes. Instead, a recovery from a single unloading persists indefinitely. The field reversal is globally very steady while internally it is very dynamic as field annihilation goes on at the rate necessary to match the strong forcing. From this result we speculate that steady magnetospheric convection events result when the plasma sheet has been driven close to criticality over an extended spatial domain. During these events, we would expect to find localized reconnection sites distributed over the spatial domain of near criticality and we would expect to find plasma sheet transport in that domain to be closely related to that of BBF and fast flow events.

  10. A physical model for low-frequency electromagnetic induction in the near field based on direct interaction between transmitter and receiver electrons

    PubMed Central

    Smith, Ray T.; Jjunju, Fred P. M.; Young, Iain S.; Taylor, Stephen

    2016-01-01

    A physical model of electromagnetic induction is developed which relates directly the forces between electrons in the transmitter and receiver windings of concentric coaxial finite coils in the near-field region. By applying the principle of superposition, the contributions from accelerating electrons in successive current loops are summed, allowing the peak-induced voltage in the receiver to be accurately predicted. Results show good agreement between theory and experiment for various receivers of different radii up to five times that of the transmitter. The limitations of the linear theory of electromagnetic induction are discussed in terms of the non-uniform current distribution caused by the skin effect. In particular, the explanation in terms of electromagnetic energy and Poynting’s theorem is contrasted with a more direct explanation based on variable filament induction across the conductor cross section. As the direct physical model developed herein deals only with forces between discrete current elements, it can be readily adapted to suit different coil geometries and is widely applicable in various fields of research such as near-field communications, antenna design, wireless power transfer, sensor applications and beyond. PMID:27493580

  11. A physical model for low-frequency electromagnetic induction in the near field based on direct interaction between transmitter and receiver electrons.

    PubMed

    Smith, Ray T; Jjunju, Fred P M; Young, Iain S; Taylor, Stephen; Maher, Simon

    2016-07-01

    A physical model of electromagnetic induction is developed which relates directly the forces between electrons in the transmitter and receiver windings of concentric coaxial finite coils in the near-field region. By applying the principle of superposition, the contributions from accelerating electrons in successive current loops are summed, allowing the peak-induced voltage in the receiver to be accurately predicted. Results show good agreement between theory and experiment for various receivers of different radii up to five times that of the transmitter. The limitations of the linear theory of electromagnetic induction are discussed in terms of the non-uniform current distribution caused by the skin effect. In particular, the explanation in terms of electromagnetic energy and Poynting's theorem is contrasted with a more direct explanation based on variable filament induction across the conductor cross section. As the direct physical model developed herein deals only with forces between discrete current elements, it can be readily adapted to suit different coil geometries and is widely applicable in various fields of research such as near-field communications, antenna design, wireless power transfer, sensor applications and beyond.

  12. Predictable chaos: a review of the effects of emotions on attention, memory and decision making.

    PubMed

    LeBlanc, Vicki R; McConnell, Meghan M; Monteiro, Sandra D

    2015-03-01

    Healthcare practice and education are highly emotional endeavors. While this is recognized by educators and researchers seeking to develop interventions aimed at improving wellness in health professionals and at providing them with skills to deal with emotional interpersonal situations, the field of health professions education has largely ignored the role that emotions play on cognitive processes. The purpose of this review is to provide an introduction to the broader field of emotions, with the goal of better understanding the integral relationship between emotions and cognitive processes. Individuals, at any given time, are in an emotional state. This emotional state influences how they perceive the world around them, what they recall from it, as well as the decisions they make. Rather than treating emotions as undesirable forces that wreak havoc on the rational being, the field of health professions education could be enriched by a greater understanding of how these emotions can shape cognitive processes in increasingly predictable ways.

  13. Investigation of protein folding by coarse-grained molecular dynamics with the UNRES force field.

    PubMed

    Maisuradze, Gia G; Senet, Patrick; Czaplewski, Cezary; Liwo, Adam; Scheraga, Harold A

    2010-04-08

    Coarse-grained molecular dynamics simulations offer a dramatic extension of the time-scale of simulations compared to all-atom approaches. In this article, we describe the use of the physics-based united-residue (UNRES) force field, developed in our laboratory, in protein-structure simulations. We demonstrate that this force field offers about a 4000-times extension of the simulation time scale; this feature arises both from averaging out the fast-moving degrees of freedom and reduction of the cost of energy and force calculations compared to all-atom approaches with explicit solvent. With massively parallel computers, microsecond folding simulation times of proteins containing about 1000 residues can be obtained in days. A straightforward application of canonical UNRES/MD simulations, demonstrated with the example of the N-terminal part of the B-domain of staphylococcal protein A (PDB code: 1BDD, a three-alpha-helix bundle), discerns the folding mechanism and determines kinetic parameters by parallel simulations of several hundred or more trajectories. Use of generalized-ensemble techniques, of which the multiplexed replica exchange method proved to be the most effective, enables us to compute thermodynamics of folding and carry out fully physics-based prediction of protein structure, in which the predicted structure is determined as a mean over the most populated ensemble below the folding-transition temperature. By using principal component analysis of the UNRES folding trajectories of the formin-binding protein WW domain (PDB code: 1E0L; a three-stranded antiparallel beta-sheet) and 1BDD, we identified representative structures along the folding pathways and demonstrated that only a few (low-indexed) principal components can capture the main structural features of a protein-folding trajectory; the potentials of mean force calculated along these essential modes exhibit multiple minima, as opposed to those along the remaining modes that are unimodal. In addition, a comparison between the structures that are representative of the minima in the free-energy profile along the essential collective coordinates of protein folding (computed by principal component analysis) and the free-energy profile projected along the virtual-bond dihedral angles gamma of the backbone revealed the key residues involved in the transitions between the different basins of the folding free-energy profile, in agreement with existing experimental data for 1E0L .

  14. Analysis of the mechanical behavior of single wall carbon nanotubes by a modified molecular structural mechanics model incorporating an advanced chemical force field

    NASA Astrophysics Data System (ADS)

    Eberhardt, Oliver; Wallmersperger, Thomas

    2018-03-01

    The outstanding properties of carbon nanotubes (CNTs) keep attracting the attention of researchers from different fields. CNTs are promising candidates for applications e.g. in lightweight construction but also in electronics, medicine and many more. The basis for the realization of the manifold applications is a detailed knowledge of the material properties of the carbon nanotubes. In particular for applications in lightweight constructions or in composites, the knowledge of the mechanical behavior of the CNTs is of vital interest. Hence, a lot of effort is put into the experimental and theoretical determination of the mechanical material properties of CNTs. Due to their small size, special techniques have to be applied. In this research, a modified molecular structural mechanics model for the numerical determination of the mechanical behavior of carbon nanotubes is presented. It uses an advanced approach for the geometrical representation of the CNT structure while the covalent bonds in the CNTs are represented by beam elements. Furthermore, the model is specifically designed to overcome major drawbacks in existing molecular structural mechanics models. This includes energetic consistency with the underlying chemical force field. The model is developed further to enable the application of a more advanced chemical force field representation. The developed model is able to predict, inter alia, the lateral and radial stiffness properties of the CNTs. The results for the lateral stiffness are given and discussed in order to emphasize the progress made with the presented approach.

  15. Debye screening of dislocations.

    PubMed

    Groma, I; Györgyi, G; Kocsis, B

    2006-04-28

    Debye-like screening by edge dislocations of some externally given stress is studied by means of a variational approach to coarse grained field theory. Explicitly given are the force field and the induced geometrically necessary dislocation (GND) distribution, in the special case of a single glide axis in 2D, for (i) a single edge dislocation and (ii) a dislocation wall. Numerical simulation demonstrates that the correlation in relaxed dislocation configurations is in good agreement with the induced GND in case (i). Furthermore, the result (ii) well predicts the experimentally observed decay length for the GND developing close to grain boundaries.

  16. A Maximum-Likelihood Approach to Force-Field Calibration.

    PubMed

    Zaborowski, Bartłomiej; Jagieła, Dawid; Czaplewski, Cezary; Hałabis, Anna; Lewandowska, Agnieszka; Żmudzińska, Wioletta; Ołdziej, Stanisław; Karczyńska, Agnieszka; Omieczynski, Christian; Wirecki, Tomasz; Liwo, Adam

    2015-09-28

    A new approach to the calibration of the force fields is proposed, in which the force-field parameters are obtained by maximum-likelihood fitting of the calculated conformational ensembles to the experimental ensembles of training system(s). The maximum-likelihood function is composed of logarithms of the Boltzmann probabilities of the experimental conformations, calculated with the current energy function. Because the theoretical distribution is given in the form of the simulated conformations only, the contributions from all of the simulated conformations, with Gaussian weights in the distances from a given experimental conformation, are added to give the contribution to the target function from this conformation. In contrast to earlier methods for force-field calibration, the approach does not suffer from the arbitrariness of dividing the decoy set into native-like and non-native structures; however, if such a division is made instead of using Gaussian weights, application of the maximum-likelihood method results in the well-known energy-gap maximization. The computational procedure consists of cycles of decoy generation and maximum-likelihood-function optimization, which are iterated until convergence is reached. The method was tested with Gaussian distributions and then applied to the physics-based coarse-grained UNRES force field for proteins. The NMR structures of the tryptophan cage, a small α-helical protein, determined at three temperatures (T = 280, 305, and 313 K) by Hałabis et al. ( J. Phys. Chem. B 2012 , 116 , 6898 - 6907 ), were used. Multiplexed replica-exchange molecular dynamics was used to generate the decoys. The iterative procedure exhibited steady convergence. Three variants of optimization were tried: optimization of the energy-term weights alone and use of the experimental ensemble of the folded protein only at T = 280 K (run 1); optimization of the energy-term weights and use of experimental ensembles at all three temperatures (run 2); and optimization of the energy-term weights and the coefficients of the torsional and multibody energy terms and use of experimental ensembles at all three temperatures (run 3). The force fields were subsequently tested with a set of 14 α-helical and two α + β proteins. Optimization run 1 resulted in better agreement with the experimental ensemble at T = 280 K compared with optimization run 2 and in comparable performance on the test set but poorer agreement of the calculated folding temperature with the experimental folding temperature. Optimization run 3 resulted in the best fit of the calculated ensembles to the experimental ones for the tryptophan cage but in much poorer performance on the training set, suggesting that use of a small α-helical protein for extensive force-field calibration resulted in overfitting of the data for this protein at the expense of transferability. The optimized force field resulting from run 2 was found to fold 13 of the 14 tested α-helical proteins and one small α + β protein with the correct topologies; the average structures of 10 of them were predicted with accuracies of about 5 Å C(α) root-mean-square deviation or better. Test simulations with an additional set of 12 α-helical proteins demonstrated that this force field performed better on α-helical proteins than the previous parametrizations of UNRES. The proposed approach is applicable to any problem of maximum-likelihood parameter estimation when the contributions to the maximum-likelihood function cannot be evaluated at the experimental points and the dimension of the configurational space is too high to construct histograms of the experimental distributions.

  17. Comparison of free flux flow in two single crystals of V3Si with slightly different pinning strengths

    NASA Astrophysics Data System (ADS)

    Gafarov, Ozarfar; Gapud, Albert A.; Moraes, Sunhee; Thompson, James R.; Christen, David K.; Reyes, Arneil P.

    2011-03-01

    Results of recent measurements on two very clean, single-crystal samples of the A15 superconductor V3 Si are presented. Magnetization and transport data confirm the ``clean'' quality of both samples, as manifested by: (i) high residual resistivity ratio, (ii) low critical current densities, and (iii) a ``peak'' effect in the field dependence of critical current. The (H,T) phase line for this peak effect is shifted in the slightly ``dirtier'' sample, which also has higher critical current density Jc (H). High-current Lorentz forces are applied on mixed-state vortices in order to induce the highly ordered free flux flow (FFF) phase, using the same methods as in previous work. A traditional model by Bardeen and Stephen (BS) predicts a simple field dependence of flux flow resistivity ρf (H), presuming a field-independent flux core size. A model by Kogan and Zelezhina (KZ) takes core size into account, and predicts a deviation from BS. In this study, ρf (H) is confirmed to be consistent with predictions of KZ, as will be discussed. Funded by Research Corporation and the National Science Foundation.

  18. Ab initio calculation of harmonic force fields and vibrational spectra for the arsine oxides and sulfides R sub 3 AsY (R = H, F; Y = O, S) and related compounds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schneider, W.; Thiel, W.; Komornicki, A.

    1990-04-05

    Ab initio self-consistent-field calculations using effective core potentials and polarized double-zeta basis sets are reported for the arsenic compounds H{sub 3}As, H{sub 3}AsO, H{sub 3}AsS, F{sub 3}As, F{sub 3}AsO, F{sub 3}AsS, cis- and trans-H{sub 2}AsOH, and HAsO. The calculated geometries, rotational constants, vibrational frequencies, Coriolis coupling constants, centrifugal distortion constants, infrared band intensities, and force fields are compared with the available experimental data. Good agreement is found in the case of the known molecules, especially H{sub 3}As and F{sub 3}As, so that the predictions for the unknown molecules are expected to be realistic. The theoretical results confirm a recent spectroscopicmore » identification of H{sub 3}AsO, H{sub 2}AsOH, and HAsO and suggest reassignment of several observed frequencies.« less

  19. Optical waveguide loop for planar trapping of blood cells and microspheres

    NASA Astrophysics Data System (ADS)

    Ahluwalia, Balpreet S.; Hellesø, Olav G.

    2013-09-01

    The evanescent field from a waveguide can be used to trap and propel a particle. An optical waveguide loop with an intentional gap at the center is used for planar transport and stable trapping of particles. The waveguide acts as a conveyor belt to trap and deliver spheres towards the gap. At the gap, the counter-diverging light fields hold the sphere at a fixed position. Numerical simulation based on the finite element method was performed in three dimensions using a computer cluster. The field distribution and optical forces for rib and strip waveguide designs are compared and discussed. The optical force on a single particle was computed for various positions of the particle in the gap. Simulation predicted stable trapping of particles in the gap. Depending on the gap separation (2-50 μm) a single or multiple spheres and red blood cells were trapped at the gap. Waveguides were made of tantalum pentaoxide material. The waveguides are only 180 nm thick and thus could be integrated with other functions on the chip.

  20. Importance of solar subsurface heating in ocean general circulation models

    NASA Astrophysics Data System (ADS)

    Rochford, Peter A.; Kara, A. Birol; Wallcraft, Alan J.; Arnone, Robert A.

    2001-12-01

    The importance of subsurface heating on surface mixed layer properties in an ocean general circulation model (OGCM) is examined using attenuation of solar irradiance with depth below the ocean surface. The depth-dependent attenuation of subsurface heating is given by global monthly mean fields for the attenuation of photosynthetically available radiation (PAR), kPAR. These global fields of kPAR are derived from Sea-viewing Wide Field-of-view Sensor (SeaWiFS) data on the spectral diffuse attenuation coefficient at 490 nm (k490), and have been processed to have the smoothly varying and continuous coverage necessary for use in OGCM applications. These monthly fields provide the first complete global data sets of subsurface optical fields that can be used for OGCM applications of subsurface heating and bio-optical processes. The effect on global OGCM prediction of sea surface temperature (SST) and surface mixed layer depth (MLD) is examined when solar heating, as given by monthly mean kPAR and PAR fields, is included in the model. It is found that subsurface heating yields a marked increase in the SST predictive skill of the OGCM at low latitudes. No significant improvement in MLD predictive skill is obtained when including subsurface heating. Use of the monthly mean kPAR produces an SST decrease of up to 0.8°C and a MLD increase of up to only 4-5 m for climatological surface forcing, with this primarily confined to the equatorial regions. Remarkably, a constant kPAR value of 0.06 m-1, which is indicative of optically clear open ocean conditions, is found to serve very well for OGCM prediction of SST and MLD over most of the global ocean.

Top