Sample records for force impulse elastography

  1. The influence of aminotransferase levels on liver stiffness assessed by Acoustic Radiation Force Impulse Elastography: a retrospective multicentre study.

    PubMed

    Bota, Simona; Sporea, Ioan; Peck-Radosavljevic, Markus; Sirli, Roxana; Tanaka, Hironori; Iijima, Hiroko; Saito, Hidetsugu; Ebinuma, Hirotoshi; Lupsor, Monica; Badea, Radu; Fierbinteanu-Braticevici, Carmen; Petrisor, Ana; Friedrich-Rust, Mireen; Sarrazin, Christoph; Takahashi, Hirokazu; Ono, Naofumi; Piscaglia, Fabio; Marinelli, Sara; D'Onofrio, Mirko; Gallotti, Anna; Salzl, Petra; Popescu, Alina; Danila, Mirela

    2013-09-01

    Acoustic Radiation Force Impulse Elastography is a new method for non-invasive evaluation of liver fibrosis. To evaluate the impact of elevated alanine aminotransferase levels on liver stiffness assessment by Acoustic Radiation Force Impulse Elastography. A multicentre retrospective study including 1242 patients with chronic liver disease, who underwent liver biopsy and Acoustic Radiation Force Impulse. Transient Elastography was also performed in 512 patients. The best Acoustic Radiation Force Impulse cut-off for predicting significant fibrosis was 1.29 m/s in cases with normal alanine aminotransferase levels and 1.44 m/s in patients with alanine aminotransferase levels>5 × the upper limit of normal. The best cut-off for predicting liver cirrhosis were 1.59 and 1.75 m/s, respectively. Acoustic Radiation Force Impulse cut-off for predicting significant fibrosis and cirrhosis were relatively similar in patients with normal alanine aminotransferase and in those with alanine aminotransferase levels between 1.1 and 5 × the upper limit of normal: 1.29 m/s vs. 1.36 m/s and 1.59 m/s vs. 1.57 m/s, respectively. For predicting cirrhosis, the Transient Elastography cut-offs were significantly higher in patients with alanine aminotransferase levels between 1.1 and 5 × the upper limit of normal compared to those with normal alanine aminotransferase: 12.3 kPa vs. 9.1 kPa. Liver stiffness values assessed by Acoustic Radiation Force Impulse and Transient Elastography are influenced by high aminotransferase levels. Transient Elastography was also influenced by moderately elevated aminotransferase levels. Copyright © 2013 Editrice Gastroenterologica Italiana S.r.l. Published by Elsevier Ltd. All rights reserved.

  2. Assessment of liver fibrosis with 2-D shear wave elastography in comparison to transient elastography and acoustic radiation force impulse imaging in patients with chronic liver disease.

    PubMed

    Gerber, Ludmila; Kasper, Daniela; Fitting, Daniel; Knop, Viola; Vermehren, Annika; Sprinzl, Kathrin; Hansmann, Martin L; Herrmann, Eva; Bojunga, Joerg; Albert, Joerg; Sarrazin, Christoph; Zeuzem, Stefan; Friedrich-Rust, Mireen

    2015-09-01

    Two-dimensional shear wave elastography (2-D SWE) is an ultrasound-based elastography method integrated into a conventional ultrasound machine. It can evaluate larger regions of interest and, therefore, might be better at determining the overall fibrosis distribution. The aim of this prospective study was to compare 2-D SWE with the two best evaluated liver elastography methods, transient elastography and acoustic radiation force impulse (point SWE using acoustic radiation force impulse) imaging, in the same population group. The study included 132 patients with chronic hepatopathies, in which liver stiffness was evaluated using transient elastography, acoustic radiation force impulse imaging and 2-D SWE. The reference methods were liver biopsy for the assessment of liver fibrosis (n = 101) and magnetic resonance imaging/computed tomography for the diagnosis of liver cirrhosis (n = 31). No significant difference in diagnostic accuracy, assessed as the area under the receiver operating characteristic curve (AUROC), was found between the three elastography methods (2-D SWE, transient elastography, acoustic radiation force impulse imaging) for the diagnosis of significant and advanced fibrosis and liver cirrhosis in the "per protocol" (AUROCs for fibrosis stages ≥2: 0.90, 0.95 and 0.91; for fibrosis stage [F] ≥3: 0.93, 0.95 and 0.94; for F = 4: 0.92, 0.96 and 0.92) and "intention to diagnose" cohort (AUROCs for F ≥2: 0.87, 0.92 and 0.91; for F ≥3: 0.91, 0.93 and 0.94; for F = 4: 0.88, 0.90 and 0.89). Therefore, 2-D SWE, ARFI imaging and transient elastography seem to be comparably good methods for non-invasive assessment of liver fibrosis. Copyright © 2015 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  3. Comparison of acoustic radiation force impulse elastography and transient elastography for prediction of hepatocellular carcinoma recurrence after radiofrequency ablation.

    PubMed

    Yoon, Jun Sik; Lee, Yu Rim; Kweon, Young-Oh; Tak, Won Young; Jang, Se Young; Park, Soo Young; Hur, Keun; Park, Jung Gil; Lee, Hye Won; Chun, Jae Min; Han, Young Seok; Lee, Won Kee

    2018-05-23

    To compare the clinical value of acoustic radiation force impulse (ARFI) elastography and transient elastography (TE) for hepatocellular carcinoma (HCC) recurrence prediction after radiofrequency ablation (RFA) and to investigate other predictors of HCC recurrence. Between 2011 and 2016, 130 patients with HCC who underwent ARFI elastography and TE within 6 months before curative RFA were prospectively enrolled. Independent predictors of HCC recurrence were analyzed separately using ARFI elastography and TE. ARFI elastography and TE accuracy to predict HCC recurrence was determined by receiver operating characteristic curve analysis. Of all included patients (91 men; mean age, 63.5 years; range: 43-84 years), 51 (42.5%) experienced HCC recurrence during the follow-up period (median, 21.9 months). In multivariable analysis using ARFI velocity, serum albumin and ARFI velocity [hazard ratios: 2.873; 95% confidence interval (CI): 1.806-4.571; P<0.001] were independent predictors of recurrence, and in multivariable analysis using TE value, serum albumin and TE value (hazard ratios: 1.028; 95% CI: 1.013-1.043; P<0.001) were independent predictors of recurrence. The area under the receiver operating characteristic curve of ARFI elastography (0.821; 95% CI: 0.747-0.895) was not statistically different from that of TE (0.793; 95% CI: 0.712-0.874) for predicting HCC recurrence (P=0.827). The optimal ARFI velocity and TE cutoff values were 1.6 m/s and 14 kPa, respectively. ARFI elastography and TE yield comparable predictors of HCC recurrence after RFA.

  4. Acoustic radiation force impulse elastography for differentiation of benign and malignant thyroid nodules with concurrent Hashimoto's thyroiditis.

    PubMed

    Liu, Bo-Ji; Xu, Hui-Xiong; Zhang, Yi-Feng; Xu, Jun-Mei; Li, Dan-Dan; Bo, Xiao-Wan; Li, Xiao-Long; Guo, Le-Hang; Xu, Xiao-Hong; Qu, Shen

    2015-03-01

    The purpose of the study was to explore the diagnostic performance of acoustic radiation force impulse (ARFI) elastography in differential diagnosis between benign and malignant thyroid nodules in patients with coexistent Hashimoto's thyroiditis (HT). A total of 141 pathological proven nodules in 141 HT patients (7 males and 134 females, mean age 50.1 years, range 23-75 years) received conventional ultrasound (US), elasticity imaging (EI) and ARFI elastography, including virtual touch tissue imaging (VTI) and virtual touch tissue quantification (VTQ), before surgery. Shear wave velocity (SWV) and SWV ratio were measured for each nodule on VTQ. The US, EI and ARFI elastography features were compared between benign and malignant nodules in HT patients. Receiver operating characteristic curve (ROC) analyses and area under curve (AUC) were performed to assess the diagnostic performance. Pathologically, 70 nodules were benign and 71 nodules were malignant. Significant differences were found between benign and malignant nodules in HT patients for EI (EI score) and ARFI (VTI grade and SWV) (all P value <0.05). The AUCs for EI, VTI, SWV and SWV ratio were 0.68 [95% confidence interval (CI): 0.59-0.77], 0.90 (95% CI: 0.84-0.95), 0.77 (95%CI: 0.70-0.85) and 0.74 (95%CI: 0.66-0.82), respectively. The cut-off points were EI score ≥3, VTI grade ≥4, SWV ≥2.58 m/s and SWV ratio ≥1.03, respectively. In conclusion, ARFI elastography is useful for differentiation between benign and malignant thyroid nodules in HT patients. The diagnostic performance of ARFI elastography is better than EI.

  5. Comparison of strain and acoustic radiation force impulse elastography of breast lesions by qualitative evaluation.

    PubMed

    Zhao, Qing; Wang, Xiao-Lei; Sun, Jia-Wei; Jiang, Zhao-Peng; Tao, Lin; Zhou, Xian-Li

    2018-04-13

    To compare the diagnostic performance of conventional strain elastography (CSE) and acoustic radiation force impulse (ARFI) induced SE for qualitative assessment of breast lesions and evaluate the additional value of the two techniques combined with Breast Imaging Reporting and Data System (BI-RADS) respectively for the differentiation of benign and malignant breast lesions. In a cohort of 110 women, the conventional ultrasound (US) features and the elasticity scores of CSE and ARFI induced SE were recorded. The diagnostic performances of BI-RADS, elastography and BI-RADS plus elastography were evaluated, including the area under the receiver operating characteristic curve (AUROC), sensitivity, specificity and accuracy. Pathologically, there were forty-eight malignant and sixty-two benign breast lesions in the final analysis. The AUCs for CSE and ARFI induced SE are similar (CSE, 0.807; ARFI induced SE, 0.846; p > 0.05), however, the specificity of the latter method was significantly higher than that of CSE (83.9% vs. 58.1%, p = 0.004) in differentiating breast lesions. The accuracy and specificity of BI-RADS plus ARFI induced SE (84.5%, 80.6%, respectively) were significantly higher than BI-RADS alone (73.6%, 54.8%, respectively) and BI-RADS plus conventional SE (72.7%, 56.5%, respectively), respectively (p < 0.05) without loss of sensitivity. Our study showed that BI-RADS plus ARFI induced SE had a better diagnostic performance in the diagnosis of breast lesions in comparison with BI-RADS alone or BI-RADS plus CSE.

  6. Acoustic radiation force impulse shear wave elastography (ARFI) of acute and chronic pancreatitis and pancreatic tumor.

    PubMed

    Goertz, Ruediger S; Schuderer, Johanna; Strobel, Deike; Pfeifer, Lukas; Neurath, Markus F; Wildner, Dane

    2016-12-01

    Acoustic Radiation Force Impulse (ARFI) elastography evaluates tissue stiffness non-invasively and has rarely been applied to pancreas examinations so far. In a prospective and retrospective analysis, ARFI shear wave velocities of healthy parenchyma, pancreatic lipomatosis, acute and chronic pancreatitis, adenocarcinoma and neuroendocrine tumor (NET) of the pancreas were evaluated and compared. In 95 patients ARFI elastography of the pancreatic head, and also of the tail for a specific group, was analysed retrospectively. Additionally, prospectively in 100 patients ARFI was performed in the head and tail of the pancreas. A total of 195 patients were included in the study. Healthy parenchyma (n=21) and lipomatosis (n=30) showed similar shear wave velocities of about 1.3m/s. Acute pancreatitis (n=35), chronic pancreatitis (n=53) and adenocarcinoma (n=52) showed consecutively increasing ARFI values, respectively. NET (n=4) revealed the highest shear wave velocities amounting to 3.62m/s. ARFI elastography showed relevant differences between acute pancreatitis and chronic pancreatitis or adenocarcinoma. With a cut-off value of 1.74m/s for the diagnosis of a malignant disease the sensitivity was 91.1% whereas the specificity amounted to 60.4%. ARFI shear wave velocities present differences in various pathologies of the pancreas. Acute and chronic pancreatitis as well as neoplastic lesions show high ARFI values. Very high elasticity values may indicate malignant disease of the pancreas. However, there is a considerable overlap between the entities. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  7. Fontan Circulation in Adult Patients: Acoustic Radiation Force Impulse Elastography as a Useful Tool for Liver Assessment.

    PubMed

    Melero-Ferrer, Josep Lluís; Osa-Sáez, Ana; Buendía-Fuentes, Francisco; Ballesta-Cuñat, Antonio; Flors, Lucía; Rodríguez-Serrano, María; Calvillo-Batllés, Pilar; Arnau-Vives, Miguel-Ángel; Palencia-Pérez, Miguel A; Rueda-Soriano, Joaquín

    2014-07-01

    The development of liver fibrosis and cirrhosis due to long-standing liver congestion is known to occur in adult patients with Fontan circulation. Hepatic elastography has shown to be a useful tool for the noninvasive assessment and staging of liver fibrosis in chronic liver diseases, although the utility of this technique in Fontan patients remains to be adequately studied. Twenty-one patients with Fontan circulation underwent an abdominal ultrasound and an acoustic radiation force impulse (ARFI) elastography. In order to compare the results from this group, a cohort of 14 healthy controls and another group containing 17 patients with cirrhosis were included. The association between the velocity values measured with elastography and clinical and analytical parameters were also studied. Mean shear waves propagation velocity in liver tissue in the Fontan group was 1.86 ± 0.5 m/s, with 76% of patients over the cirrhosis threshold (1.55 m/s). The control group had a mean velocity of 1.09 ± 0.06 m/s, while the cirrhotic group obtained 2.71 ± 0.51 m/s. Seven patients with Fontan circulation had increased liver enzymes. Liver ultrasound showed evidence of chronic liver disease in six patients. Velocity values obtained in the presence or absence of analytical or liver ultrasound abnormalities showed significant differences in the univariate analysis (P = .04 and P = .03 respectively). In conclusion, ARFI elastography showed increased wave propagation velocity values in the Fontan population suggesting increased liver stiffness which could be related to advanced fibrosis. A statistically significant association between ARFI values and the presence of analytical and ultrasound abnormalities has been demonstrated. © The Author(s) 2014.

  8. Acoustic radiation force impulse (ARFI) elastography for detection of renal damage in children.

    PubMed

    Göya, Cemil; Hamidi, Cihad; Ece, Aydın; Okur, Mehmet Hanifi; Taşdemir, Bekir; Çetinçakmak, Mehmet Güli; Hattapoğlu, Salih; Teke, Memik; Şahin, Cahit

    2015-01-01

    Acoustic radiation force impulse (ARFI) imaging is a promising method for noninvasive evaluation of the renal parenchyma. To investigate the contribution of ARFI quantitative US elastography for the detection of renal damage in kidneys with and without vesicoureteral reflux (VUR). One hundred seventy-six kidneys of 88 children (46 male, 42 female) who had been referred for voiding cystourethrography and 20 healthy controls were prospectively investigated. Patients were assessed according to severity of renal damage on dimercaptosuccinic acid (DMSA) scintigraphy. Ninety-eight age- and gender-matched healthy children constituted the control group. Quantitative shear wave velocity (SWV) measurements were performed in the upper and lower poles and in the interpolar region of each kidney. DMSA scintigraphy was performed in 62 children (124 kidneys). Comparisons of SWV values of kidneys with and without renal damage and/or VUR were done. Significantly higher SWV values were found in non-damaged kidneys. Severely damaged kidneys had the lowest SWV values (P < 0.001). High-grade (grade V-IV) refluxing kidneys had the lowest SWV values, while non-refluxing kidneys had the highest values (P < 0.05). Significant negative correlations were found between the mean quantitative US elastography values and DMSA scarring score (r = -0.788, P < 0.001) and VUR grade (r = -0.634, P < 0.001). SWV values of the control kidneys were significantly higher than those of damaged kidneys (P < 0.05). Our findings suggest decreasing SWV of renal units with increasing grades of vesicoureteric reflux, increasing DMSA-assessed renal damage and decreasing DMSA-assessed differential function.

  9. Combination of elastography and tissue quantification using the acoustic radiation force impulse (ARFI) technology for differential diagnosis of breast masses.

    PubMed

    Tozaki, Mitsuhiro; Isobe, Sachiko; Sakamoto, Masaaki

    2012-10-01

    We evaluated the diagnostic performance of elastography and tissue quantification using acoustic radiation force impulse (ARFI) technology for differential diagnosis of breast masses. There were 161 mass lesions. First, lesion correspondence on ARFI elastographic images to those on the B-mode images was evaluated: no findings on ARFI images (pattern 1), lesions that were bright inside (pattern 2), lesions that were dark inside (pattern 4), lesions that contained both bright and dark areas (pattern 3). In addition, pattern 4 was subdivided into 4a (dark area same as B-mode lesion) and 4b (dark area larger than lesion). Next, shear wave velocity (SWV) was measured using virtual touch tissue quantification. There were 13 pattern 1 lesions and five pattern 2 lesions; all of these lesions were benign, whereas all pattern 4b lesions (n = 43) were malignant. When the value of 3.59 m/s was chosen as the cutoff value, the combination of elastography and tissue quantification showed 91 % (83-91) sensitivity, 93 % (65-70) specificity, and 92 % (148-161) accuracy. The combination of elastography and tissue quantification is thought to be a promising ultrasound technique for differential diagnosis of breast-mass lesions.

  10. Noninvasive assessment of hepatic sinusoidal obstructive syndrome using acoustic radiation force impulse elastography imaging: A proof-of-concept study in rat models.

    PubMed

    Park, So Hyun; Lee, Seung Soo; Sung, Ji-Youn; Na, Kiyong; Kim, Hyoung Jung; Kim, So Yeon; Park, Beom Jin; Byun, Jae Ho

    2018-05-01

    To determine the feasibility of acoustic radiation force impulse (ARFI) elastography in the evaluation of hepatic sinusoidal obstruction syndrome (SOS) in rat models. Rat SOS models of various severities were created by monocrotaline gavage (n = 40) or by intraperitoneal injection of 5-fluorouracil, leucovorin and oxaliplatin (FOLFOX) (n = 16). Liver shear-wave velocity (SWV) was measured using ARFI elastography. Liver samples were analysed for the SOS score, steatosis, lobular inflammation and fibrosis. The liver SWV was significantly elevated in the SOS models (1.29-2.24 m/s) compared with that of the matched control rats (1.01-1.09; p≤.09; veFor seven FOLFOX-treated rats which were longitudinally followed-up, the liver SWV significantly increased at 7 weeks (1.32±0.13 m/s) compared with the baseline (1.08±0.1 m/s, p=.015) and then significantly declined after a 2-week, treatment-free period (1.15±0.13 m/s; p=.048). Multivariate analysis revealed that the SOS score (p<.001) and lobular inflammation (p=.044) were independently correlated with the liver SWV. Liver SWV is elevated in SOS in proportion to the degree of sinusoidal injury and lobular inflammation in rat SOS models. ARFI elastography has potential as an examination for diagnosis, severity assessment and follow-up of SOS. • Liver SWV using ARFI elastography was significantly elevated in SOS rat. • Sinusoidal injury and lobular inflammation grades had correlation with liver SWV. • ARFI elastography has potential for diagnosis, severity assessment, and follow-up of SOS.

  11. Comparison of non-invasive assessment of liver fibrosis in patients with alpha1-antitrypsin deficiency using magnetic resonance elastography (MRE), acoustic radiation force impulse (ARFI) Quantification, and 2D-shear wave elastography (2D-SWE).

    PubMed

    Reiter, Rolf; Wetzel, Martin; Hamesch, Karim; Strnad, Pavel; Asbach, Patrick; Haas, Matthias; Siegmund, Britta; Trautwein, Christian; Hamm, Bernd; Klatt, Dieter; Braun, Jürgen; Sack, Ingolf; Tzschätzsch, Heiko

    2018-01-01

    Although it has been known for decades that patients with alpha1-antitrypsin deficiency (AATD) have an increased risk of cirrhosis and hepatocellular carcinoma, limited data exist on non-invasive imaging-based methods for assessing liver fibrosis such as magnetic resonance elastography (MRE) and acoustic radiation force impulse (ARFI) quantification, and no data exist on 2D-shear wave elastography (2D-SWE). Therefore, the purpose of this study is to evaluate and compare the applicability of different elastography methods for the assessment of AATD-related liver fibrosis. Fifteen clinically asymptomatic AATD patients (11 homozygous PiZZ, 4 heterozygous PiMZ) and 16 matched healthy volunteers were examined using MRE and ARFI quantification. Additionally, patients were examined with 2D-SWE. A high correlation is evident for the shear wave speed (SWS) determined with different elastography methods in AATD patients: 2D-SWE/MRE, ARFI quantification/2D-SWE, and ARFI quantification/MRE (R = 0.8587, 0.7425, and 0.6914, respectively; P≤0.0089). Four AATD patients with pathologically increased SWS were consistently identified with all three methods-MRE, ARFI quantification, and 2D-SWE. The high correlation and consistent identification of patients with pathologically increased SWS using MRE, ARFI quantification, and 2D-SWE suggest that elastography has the potential to become a suitable imaging tool for the assessment of AATD-related liver fibrosis. These promising results provide motivation for further investigation of non-invasive assessment of AATD-related liver fibrosis using elastography.

  12. Acoustic radiation force impulse elastography of the kidneys: is shear wave velocity affected by tissue fibrosis or renal blood flow?

    PubMed

    Asano, Kenichiro; Ogata, Ai; Tanaka, Keiko; Ide, Yoko; Sankoda, Akiko; Kawakita, Chieko; Nishikawa, Mana; Ohmori, Kazuyoshi; Kinomura, Masaru; Shimada, Noriaki; Fukushima, Masaki

    2014-05-01

    The aim of this study was to identify the main influencing factor of the shear wave velocity (SWV) of the kidneys measured by acoustic radiation force impulse elastography. The SWV was measured in the kidneys of 14 healthy volunteers and 319 patients with chronic kidney disease. The estimated glomerular filtration rate was calculated by the serum creatinine concentration and age. As an indicator of arteriosclerosis of large vessels, the brachial-ankle pulse wave velocity was measured in 183 patients. Compared to the degree of interobserver and intraobserver deviation, a large variance of SWV values was observed in the kidneys of the patients with chronic kidney disease. Shear wave velocity values in the right and left kidneys of each patient correlated well, with high correlation coefficients (r = 0.580-0.732). The SWV decreased concurrently with a decline in the estimated glomerular filtration rate. A low SWV was obtained in patients with a high brachial-ankle pulse wave velocity. Despite progression of renal fibrosis in the advanced stages of chronic kidney disease, these results were in contrast to findings for chronic liver disease, in which progression of hepatic fibrosis results in an increase in the SWV. Considering that a high brachial-ankle pulse wave velocity represents the progression of arteriosclerosis in the large vessels, the reduction of elasticity succeeding diminution of blood flow was suspected to be the main influencing factor of the SWV in the kidneys. This study indicates that diminution of blood flow may affect SWV values in the kidneys more than the progression of tissue fibrosis. Future studies for reducing data variance are needed for effective use of acoustic radiation force impulse elastography in patients with chronic kidney disease.

  13. Acoustic radiation force impulse elastography: comparison and combination with other noninvasive tests for the diagnosis of compensated liver cirrhosis.

    PubMed

    Pfeifer, Lukas; Adler, Werner; Zopf, Steffen; Siebler, Jürgen; Wildner, Dane; Goertz, Ruediger S; Schellhaas, Barbara; Neurath, Markus F; Strobel, Deike

    2017-05-01

    The aim of this study was to compare acoustic radiation force impulse (ARFI) elastography with other noninvasive tests and to develop a new score for the assessment of liver fibrosis/cirrhosis. B-mode ultrasound (including high-frequency liver surface evaluation), routine blood tests, ARFI quantification, and mini-laparoscopic liver evaluation were obtained in compensated patients scheduled for mini-laparoscopic biopsy. Our new cirrhosis score (CS) for the assessment of liver cirrhosis, based on a linear combination of ARFI, platelet (PLT), liver surface, and prothrombin index (PI), was calculated by linear discriminant analysis. Its performance was compared with ARFI-elastography, APRI, FIB-4, alanine aminotransferase (ALT)/aspartate aminotransferase (AST)-ratio, PLT, and PI. For the diagnosis of cirrhosis, a combined gold standard (cirrhosis at histology and/or at macroscopic liver evaluation) was used. In total, 171 patients, of whom 38 had compensated cirrhosis, were included. The CS was significantly better for the diagnosis of cirrhosis compared with ARFI (P=0.028), APRI (P=0.012), PLTs (P=0.013), PI (P=0.025), and ALT/AST ratio (P=0.001), but not the FIB-4 score (P=0.207), with an area under the receiver operating characteristic curve of 0.92 [95% confidence interval (CI): 0.87-0.97], 0.86 (95% CI:0.79-0.93), 0.80 (95% CI: 0.72-0.87), 0.79 (95% CI: 0.7-0.87), 0.81 (95% CI: 0.73-0.89), 0.72 (95% CI:0.64-0.81), and 0.86 (95% CI: 0.8-0.93), respectively. Sensitivity, specificity, positive predictive value, and negative predictive value for CS were 87%, 86%, 63%, and 96%, respectively. The FIB-4 score was significantly superior to the APRI score (P=0.041) and the ALT/AST ratio (P=0.011), with no significant difference from ARFI elastography (P=0.88) for the diagnosis of cirrhosis. Combining ARFI elastography with other noninvasive tests that are used routinely in the workup of patients with suspected liver disease can improve diagnostic accuracy for compensated

  14. The importance of acoustic radiation force impulse (ARFI) elastography in the diagnosis and clinical course of acute pancreatitis.

    PubMed

    Kaya, Muhsin; Değirmenci, Serdar; Göya, Cemil; Tuncel, Elif Tuba; Uçmak, Feyzullah; Kaplan, Mehmet Ali

    2018-05-01

    Acute pancreatitis (AP) is characterized by acute inflammation of the pancreas and it has a highly variable clinical course. The aim of our study was to evaluate the value of acoustic radiation force impulse (ARFI) elastography in the diagnosis and clinical course of AP. Consecutive patients with a diagnosis of AP (patients group) and healthy subject (control group) were prospectively enrolled to the study. Demographic features and clinical, laboratory, and radiological data were recorded. Virtual Touch Tissue Quantification (VTQ) was used to implement ARFI elastography. The tissue elasticity is proportional to the square of the wave velocity (SWV). A total of 108 patients (age, 57±1.8 y) and 79 healthy subjects (age, 53.6±1.81 y) were included in the study. There were 100 (92.5%) edematous and 8 (7.4%) necrotizing AP. The mean SWV was significantly higher in the patient group than in the control group (2.43±0.08 vs. 1.27±0.025 m/s, p < 0.001). There was not significant difference between patient and control group regarding age and gender. SWV cutoff value of 1.63 m/s was associated with 100% sensitivity and 98% specificity for the diagnosis of AP. There was not significant difference between patients with and without complications and patients with edematous and necrotizing AP regarding mean SWV value. There was also not significant correlation between mean SWV value and age, mean length of hospital stay, and mean amylase level. ARFI elastography may be a feasible method for the diagnosis of AP, but it has no value for the prediction of clinical course of AP.

  15. Building an Open-source Simulation Platform of Acoustic Radiation Force-based Breast Elastography

    PubMed Central

    Wang, Yu; Peng, Bo; Jiang, Jingfeng

    2017-01-01

    Ultrasound-based elastography including strain elastography (SE), acoustic radiation force Impulse (ARFI) imaging, point shear wave elastography (pSWE) and supersonic shear imaging (SSI) have been used to differentiate breast tumors among other clinical applications. The objective of this study is to extend a previously published virtual simulation platform built for ultrasound quasi-static breast elastography toward acoustic radiation force-based breast elastography. Consequently, the extended virtual breast elastography simulation platform can be used to validate image pixels with known underlying soft tissue properties (i.e. “ground truth”) in complex, heterogeneous media, enhancing confidence in elastographic image interpretations. The proposed virtual breast elastography system inherited four key components from the previously published virtual simulation platform: an ultrasound simulator (Field II), a mesh generator (Tetgen), a finite element solver (FEBio) and a visualization and data processing package (VTK). Using a simple message passing mechanism, functionalities have now been extended to acoustic radiation force-based elastography simulations. Examples involving three different numerical breast models with increasing complexity – one uniform model, one simple inclusion model and one virtual complex breast model derived from magnetic resonance imaging data, were used to demonstrate capabilities of this extended virtual platform. Overall, simulation results were compared with the published results. In the uniform model, the estimated shear wave speed (SWS) values were within 4% compared to the predetermined SWS values. In the simple inclusion and the complex breast models, SWS values of all hard inclusions in soft backgrounds were slightly underestimated, similar to what has been reported. The elastic contrast values and visual observation show that ARFI images have higher spatial resolution, while SSI images can provide higher inclusion

  16. Building an open-source simulation platform of acoustic radiation force-based breast elastography

    NASA Astrophysics Data System (ADS)

    Wang, Yu; Peng, Bo; Jiang, Jingfeng

    2017-03-01

    Ultrasound-based elastography including strain elastography, acoustic radiation force impulse (ARFI) imaging, point shear wave elastography and supersonic shear imaging (SSI) have been used to differentiate breast tumors among other clinical applications. The objective of this study is to extend a previously published virtual simulation platform built for ultrasound quasi-static breast elastography toward acoustic radiation force-based breast elastography. Consequently, the extended virtual breast elastography simulation platform can be used to validate image pixels with known underlying soft tissue properties (i.e. ‘ground truth’) in complex, heterogeneous media, enhancing confidence in elastographic image interpretations. The proposed virtual breast elastography system inherited four key components from the previously published virtual simulation platform: an ultrasound simulator (Field II), a mesh generator (Tetgen), a finite element solver (FEBio) and a visualization and data processing package (VTK). Using a simple message passing mechanism, functionalities have now been extended to acoustic radiation force-based elastography simulations. Examples involving three different numerical breast models with increasing complexity—one uniform model, one simple inclusion model and one virtual complex breast model derived from magnetic resonance imaging data, were used to demonstrate capabilities of this extended virtual platform. Overall, simulation results were compared with the published results. In the uniform model, the estimated shear wave speed (SWS) values were within 4% compared to the predetermined SWS values. In the simple inclusion and the complex breast models, SWS values of all hard inclusions in soft backgrounds were slightly underestimated, similar to what has been reported. The elastic contrast values and visual observation show that ARFI images have higher spatial resolution, while SSI images can provide higher inclusion-to-background contrast

  17. The efficiency of acoustic radiation force impulse (ARFI) elastography in the diagnosis and staging of carpal tunnel syndrome.

    PubMed

    Arslan, Harun; Yavuz, Alpaslan; İlgen, Ferda; Aycan, Abdurrahman; Ozgokce, Mesut; Akdeniz, Hüseyin; Batur, Abdussamet

    2018-01-12

    The aim of the present study was to quantify the stiffness of the median nerve (MN) at the carpal tunnel inlet by acoustic radiation force impulse (ARFI) elastography and to evaluate whether ARFI can be used in diagnosis and staging of carpal tunnel syndrome (CTS). Sonographic examinations of 96 wrists in 50 patients were included in the study. The cross-sectional area and stiffness of the MN were quantitatively measured by B-mode ultrasonography (USG) and ARFI. The findings of CTS were assigned to four groups: (I) normal (n = 21), (II) mild (n = 39), (III) moderate (n = 38), and (IV) severe (n = 19). The differences between CTS patients and controls and the differences in electrodiagnostic tests among subgroups were statistically compared. ROC analysis was performed to determine the cut-off values between subgroups. Bilateral CTS was present in 46 patients (92 wrists) and unilateral CTS in four patients. Of the 96 nerves in the 50 symptomatic "idiopathic CTS" patients (48 women, 2 men; mean age 45.9 years, range 23-73 years), 39 (40.4%) were mild, 38 (39.8%) were moderate, and 19 (19.8%) were severely affected. When compared to controls, MN stiffness was significantly higher in the CTS group (P < 0.001); furthermore, it was higher in the severe or extreme severity group than the mild or moderate severity group (P < 0.001). A 3.250 m/s cut-off value on ARFI revealed sensitivity, specificity, positive predictive value, negative predictive value, and accuracy of 81, 82, 95.1, 50, and 82%, respectively. The MN stiffness measured by ARFI elastography is significantly higher in patients with CTS then in controls. ARFI elastography appears to be a highly efficient imaging modality for the diagnosis and staging of these patients.

  18. Acoustic Radiation Force Impulse Elastography in Determining the Effects of Type 1 Diabetes on Pancreas and Kidney Elasticity in Children.

    PubMed

    Sağlam, Dilek; Bilgici, Meltem Ceyhan; Kara, Cengiz; Yılmaz, Gülay Can; Çamlıdağ, İlkay

    2017-11-01

    The aim of this study is to determine the effects of type 1 diabetes on pancreas and kidney elasticity in children, using acoustic radiation force impulse ultrasound elastography. Sixty autoantibody-positive patients with type 1 diabetes (45% girls; mean [± SD] age, 11.7 ± 4.4 years; range, 1.9-19.3 years) admitted to the pediatric endocrinology outpatient clinic and 32 healthy children (50% girls; mean age, 10.2 ± 3.8 years; range, 2.1-17.3 years) were included in the study. Acoustic radiation force impulse elastography measurements were performed of the kidneys and pancreas in both groups. Body mass index, duration of diabetes, HbA1c levels, and insulin dosage of patients with type 1 diabetes were recorded. The mean shear-wave velocities of the pancreas were 0.99 ± 0.25 m/s in patients with type 1 diabetes and 1.09 ± 0.22 m/s in healthy control subjects; the difference was not significant (p = 0.08). The median shear-wave velocities of the right and left kidneys in patients with type 1 diabetes were 2.43 ± 0.29 and 2.47 ± 0.25 m/s, respectively. There were no significant differences in the shear-wave velocities of the right and left kidneys between the patients with type 1 diabetes and the healthy control subjects (p = 0.91 and p = 0.73, respectively). Correlation analysis showed no correlation between the shear-wave velocities of the pancreas and kidney versus HbA1c level, duration of diabetes, insulin dosage, height, weight, and body mass index of the patients with type 1 diabetes. The current study showed no significant difference in the shear-wave velocity of kidneys in children with type 1 diabetes with normoalbuminuria compared with the healthy control subjects. We also observed that the shear-wave velocity of the pancreas in children with type 1 diabetes and healthy control subjects did not differ significantly.

  19. Hepatic and Splenic Acoustic Radiation Force Impulse Shear Wave Velocity Elastography in Children with Liver Disease Associated with Cystic Fibrosis

    PubMed Central

    Cañas, Teresa; Maciá, Araceli; Muñoz-Codoceo, Rosa Ana; Fontanilla, Teresa; González-Rios, Patricia; Miralles, María; Gómez-Mardones, Gloria

    2015-01-01

    Background. Liver disease associated with cystic fibrosis (CFLD) is the second cause of mortality in these patients. The diagnosis is difficult because none of the available tests are specific enough. Noninvasive elastographic techniques have been proven to be useful to diagnose hepatic fibrosis. Acoustic radiation force impulse (ARFI) imaging is an elastography imaging system. The purpose of the work was to study the utility of liver and spleen ARFI Imaging in the detection of CFLD. Method. 72 patients with cystic fibrosis (CF) were studied and received ARFI imaging in the liver and in the spleen. SWV values were compared with the values of 60 healthy controls. Results. Comparing the SWV values of CFLD with the control healthy group, values in the right lobe were higher in patients with CFLD. We found a SWV RHL cut-off value to detect CFLD of 1.27 m/s with a sensitivity of 56.5% and a specificity of 90.5%. CF patients were found to have higher SWC spleen values than the control group. Conclusions. ARFI shear wave elastography in the right hepatic lobe is a noninvasive technique useful to detect CFLD in our sample of patients. Splenic SWV values are higher in CF patients, without any clinical consequence. PMID:26609528

  20. Hepatic and Splenic Acoustic Radiation Force Impulse Shear Wave Velocity Elastography in Children with Liver Disease Associated with Cystic Fibrosis.

    PubMed

    Cañas, Teresa; Maciá, Araceli; Muñoz-Codoceo, Rosa Ana; Fontanilla, Teresa; González-Rios, Patricia; Miralles, María; Gómez-Mardones, Gloria

    2015-01-01

    Liver disease associated with cystic fibrosis (CFLD) is the second cause of mortality in these patients. The diagnosis is difficult because none of the available tests are specific enough. Noninvasive elastographic techniques have been proven to be useful to diagnose hepatic fibrosis. Acoustic radiation force impulse (ARFI) imaging is an elastography imaging system. The purpose of the work was to study the utility of liver and spleen ARFI Imaging in the detection of CFLD. Method. 72 patients with cystic fibrosis (CF) were studied and received ARFI imaging in the liver and in the spleen. SWV values were compared with the values of 60 healthy controls. Results. Comparing the SWV values of CFLD with the control healthy group, values in the right lobe were higher in patients with CFLD. We found a SWV RHL cut-off value to detect CFLD of 1.27 m/s with a sensitivity of 56.5% and a specificity of 90.5%. CF patients were found to have higher SWC spleen values than the control group. Conclusions. ARFI shear wave elastography in the right hepatic lobe is a noninvasive technique useful to detect CFLD in our sample of patients. Splenic SWV values are higher in CF patients, without any clinical consequence.

  1. Liver Stiffness Measurements Using Acoustic Radiation Force Impulse in Recipients of Living-Donor and Deceased-Donor Orthotopic Liver Transplant.

    PubMed

    Haberal, Kemal Murat; Turnaoğlu, Hale; Özdemir, Adnan; Uslu, Nihal; Haberal Reyhan, Asuman Nihan; Moray, Gökhan; Haberal, Mehmet

    2017-08-24

    The aim of this study was to evaluate the diagnostic efficiency of the acoustic radiation force impulse (Siemens Medical Solutions, Erlangen, Germany) elastography in assessment of fibrosis in orthotopic liver transplant patients. We enrolled 28 orthotopic liver transplant patients (deceased and living donors), whose biopsy decision had been prospectively given clinically. Ten acoustic radiation force impulse elastographic measurements were applied before the biopsy or within 3 days after the biopsy by 2 radiologists. After the core tissue needle biopsy, specimens of all patients were analyzed according to the modified Ishak scoring system. Measurements of acoustic radiation force impulse elastography and pathology specimen results were compared. From 28 biopsies, fibrosis scores of 4 biopsies were evaluated as F0 (14.3%), 16 as F1 (57.1%), 4 as F2 (14.3%), and 4 as F3 (14.3%). Mean results of acoustic radiation force impulse measurements were calculated as 1.4 ± 0.07 in F0, 1.74 ± 0.57 in F1, 2.19 ± 0.7 in F2, and 2.18 ± 0.35 in F3. There were no significant correlations of mean acoustic radiation force impulse values between the F0 versus F1 (P = .956) and F0 versus F2 stages (P = .234). A statistically significant correlation of mean acoustic radiation force impulse values was found between the F0 and F3 fibrosis stages (P = .046). Acoustic radiation force impulse imaging is a promising screening test for detecting significant liver fibrosis (≥ F3 in modified Ishak) in living-donor or deceased-donor orthotopic liver transplant recipients.

  2. Quantitative Shear Wave Velocity Measurement on Acoustic Radiation Force Impulse Elastography for Differential Diagnosis between Benign and Malignant Thyroid Nodules: A Meta-analysis.

    PubMed

    Liu, Bo-Ji; Li, Dan-Dan; Xu, Hui-Xiong; Guo, Le-Hang; Zhang, Yi-Feng; Xu, Jun-Mei; Liu, Chang; Liu, Lin-Na; Li, Xiao-Long; Xu, Xiao-Hong; Qu, Shen; Xing, Mingzhao

    2015-12-01

    The aim of this study was to evaluate the diagnostic performance of quantitative shear wave velocity (SWV) measurement on acoustic radiation force impulse (ARFI) elastography for differentiation between benign and malignant thyroid nodules using meta-analysis. The databases of PubMed and the Web of Science were searched. Studies published in English on assessment of the sensitivity and specificity of ARFI elastography for the differentiation of thyroid nodules were collected. The quantitative measurement of ARFI elastography was evaluated by SWV (m/s). Meta-Disc Version 1.4 software was used to describe and calculate the sensitivity, specificity, positive likelihood ratio, negative likelihood ratio, diagnostic odds ratio and summary receiver operating characteristic curves. We analyzed a total of 13 studies, which included 1,854 thyroid nodules (including 1,339 benign nodules and 515 malignant nodules) from 1,641 patients. The summary sensitivity and specificity for differential diagnosis between benign and malignant thyroid nodules by SWV were 0.81 (95% confidence interval [CI]: 0.77-0.84) and 0.84 (95% CI: 0.81-0.86), respectively. The pooled positive and negative likelihood ratios were 5.21 (95% CI: 3.56-7.62) and 0.23 (95% CI: 0.17-0.32), respectively. The pooled diagnostic odds ratio was 27.53 (95% CI: 14.58-52.01), and the area under the summary receiver operating characteristic curve was 0.91 (Q* = 0.84). In conclusion, SWV measurement on ARFI elastography has high sensitivity and specificity for differential diagnosis between benign and malignant thyroid nodules and can be used in combination with conventional ultrasound. Copyright © 2015 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  3. Standard value of ultrasound elastography using acoustic radiation force impulse imaging (ARFI) in healthy liver tissue of children and adolescents.

    PubMed

    Eiler, J; Kleinholdermann, U; Albers, D; Dahms, J; Hermann, F; Behrens, C; Luedemann, M; Klingmueller, V; Alzen, G F P

    2012-10-01

    Ultrasound elastography by acoustic radiation force impulse imaging (ARFI) is used in adults for non invasive measurement of liver stiffness, indicating liver diseases like fibrosis. To establish ARFI in children and adolescents we determined standard values of healthy liver tissue and analysed potentially influencing factors. 132 patients between 0 and 17 years old were measured using ARFI. None of them had any liver disease or any other disease that could affect the liver secondarily. All patients had a normal ultrasound scan, a normal BMI and normal liver function tests. The mean value of all ARFI measurements was calculated and potentially influencing factors were analysed. The mean value of all ARFI elastography measurements was 1.16 m/sec (SD ± 0.14 m/sec). Neither age (p = 0.533) nor depth of measurement (p = 0.066) had no significant influence on ARFI values, whereas a significant effect of gender was found with lower ARFI values in females (p = 0.025), however, there was no significant interaction between age groups (before or after puberty) and gender (p = 0.276). There was an interlobar difference with lower values in the right liver lobe compared to the left (p = 0.036) and with a significantly lower variance (p < 0.001). Consistend values were measured by different examiners (p = 0.108), however, the inter examiner variance deviated significantly (p < 0.001). ARFI elastography is a reliable method to measure liver stiffness in children and adolescents. In relation to studies which analyse liver diseases, the standard value of 1.16 m/sec (± 0.14 m/sec) allows a differentiation of healthy versus pathological liver tissue. © Georg Thieme Verlag KG Stuttgart · New York.

  4. Acoustic radiation force impulse (ARFI) elastography in the evaluation of renal parenchymal stiffness in patients with ureteropelvic junction obstruction.

    PubMed

    Habibi, Hatice Arioz; Cicek, Rumeysa Yasemin; Kandemirli, Sedat Giray; Ure, Emel; Ucar, Ayse Kalyoncu; Aslan, Mine; Caliskan, Salim; Adaletli, Ibrahim

    2017-04-01

    To investigate the role of acoustic radiation force impulse (ARFI) elastography in the detection of renal parenchymal damage in kidneys with and without ureteropelvic junction obstruction (UPJO). Twenty-five pediatric patients with a diagnosis of UPJO who underwent surgery and 15 pediatric patients with conservatively managed UPJO were prospectively evaluated with ARFI elastography. Sixteen healthy volunteers constituted the control group. Shear wave velocity (SWV) measurements in the upper, mid, and lower poles of the affected kidney were performed. SWV values of kidneys based on presence of UPJO and hydronephrosis grade were compared. The correlation of SWV values with residual renal function obtained from diethylenetriaminepentaacetic acid or mercaptoacetyltriglycine-3 renal scan was evaluated. Significantly, higher SWV values were found in control kidneys compared to kidneys affected by UPJO. The median SWVs were 2.82 (2.51-3.07) m/s for the control kidneys and 2.36 (2.09-2.53) m/s for the kidneys in the UPJO group (p < 0.001). When UPJO patients were grouped according to the grade of hydronephrosis, grade 0 hydronephrotic kidneys [2.35 (2.11-2.50) m/s] and grade 3-4 hydronephrotic kidneys [1.86 (1.96-2.25) m/s] had significantly lower SWV values compared to grade 1-2 hydronephrotic kidneys [2.62 (2.37-2.90) m/s] (p < 0.05). ARFI as a noninvasive, radiation-free procedure for evaluating parenchymal stiffness may prove useful in the diagnostic work-up and follow-up of children with UPJO-induced renal disease.

  5. Quantitative shear wave optical coherence elastography (SW-OCE) with acoustic radiation force impulses (ARFI) induced by phase array transducer

    NASA Astrophysics Data System (ADS)

    Song, Shaozhen; Le, Nhan Minh; Wang, Ruikang K.; Huang, Zhihong

    2015-03-01

    Shear Wave Optical Coherence Elastography (SW-OCE) uses the speed of propagating shear waves to provide a quantitative measurement of localized shear modulus, making it a valuable technique for the elasticity characterization of tissues such as skin and ocular tissue. One of the main challenges in shear wave elastography is to induce a reliable source of shear wave; most of nowadays techniques use external vibrators which have several drawbacks such as limited wave propagation range and/or difficulties in non-invasive scans requiring precisions, accuracy. Thus, we propose linear phase array ultrasound transducer as a remote wave source, combined with the high-speed, 47,000-frame-per-second Shear-wave visualization provided by phase-sensitive OCT. In this study, we observed for the first time shear waves induced by a 128 element linear array ultrasound imaging transducer, while the ultrasound and OCT images (within the OCE detection range) were triggered simultaneously. Acoustic radiation force impulses are induced by emitting 10 MHz tone-bursts of sub-millisecond durations (between 50 μm - 100 μm). Ultrasound beam steering is achieved by programming appropriate phase delay, covering a lateral range of 10 mm and full OCT axial (depth) range in the imaging sample. Tissue-mimicking phantoms with agarose concentration of 0.5% and 1% was used in the SW-OCE measurements as the only imaging samples. The results show extensive improvements over the range of SW-OCE elasticity map; such improvements can also be seen over shear wave velocities in softer and stiffer phantoms, as well as determining the boundary of multiple inclusions with different stiffness. This approach opens up the feasibility to combine medical ultrasound imaging and SW-OCE for high-resolution localized quantitative measurement of tissue biomechanical property.

  6. Shear wave elastography with a new reliability indicator.

    PubMed

    Dietrich, Christoph F; Dong, Yi

    2016-09-01

    Non-invasive methods for liver stiffness assessment have been introduced over recent years. Of these, two main methods for estimating liver fibrosis using ultrasound elastography have become established in clinical practice: shear wave elastography and quasi-static or strain elastography. Shear waves are waves with a motion perpendicular (lateral) to the direction of the generating force. Shear waves travel relatively slowly (between 1 and 10 m/s). The stiffness of the liver tissue can be assessed based on shear wave velocity (the stiffness increases with the speed). The European Federation of Societies for Ultrasound in Medicine and Biology has published Guidelines and Recommendations that describe these technologies and provide recommendations for their clinical use. Most of the data available to date has been published using the Fibroscan (Echosens, France), point shear wave speed measurement using an acoustic radiation force impulse (Siemens, Germany) and 2D shear wave elastography using the Aixplorer (SuperSonic Imagine, France). More recently, also other manufacturers have introduced shear wave elastography technology into the market. A comparison of data obtained using different techniques for shear wave propagation and velocity measurement is of key interest for future studies, recommendations and guidelines. Here, we present a recently introduced shear wave elastography technology from Hitachi and discuss its reproducibility and comparability to the already established technologies.

  7. Shear wave elastography with a new reliability indicator

    PubMed Central

    Dong, Yi

    2016-01-01

    Non-invasive methods for liver stiffness assessment have been introduced over recent years. Of these, two main methods for estimating liver fibrosis using ultrasound elastography have become established in clinical practice: shear wave elastography and quasi-static or strain elastography. Shear waves are waves with a motion perpendicular (lateral) to the direction of the generating force. Shear waves travel relatively slowly (between 1 and 10 m/s). The stiffness of the liver tissue can be assessed based on shear wave velocity (the stiffness increases with the speed). The European Federation of Societies for Ultrasound in Medicine and Biology has published Guidelines and Recommendations that describe these technologies and provide recommendations for their clinical use. Most of the data available to date has been published using the Fibroscan (Echosens, France), point shear wave speed measurement using an acoustic radiation force impulse (Siemens, Germany) and 2D shear wave elastography using the Aixplorer (SuperSonic Imagine, France). More recently, also other manufacturers have introduced shear wave elastography technology into the market. A comparison of data obtained using different techniques for shear wave propagation and velocity measurement is of key interest for future studies, recommendations and guidelines. Here, we present a recently introduced shear wave elastography technology from Hitachi and discuss its reproducibility and comparability to the already established technologies. PMID:27679731

  8. Acoustic Radiation Force Impulse Elastography for Efficacy Evaluation after Hepatocellular Carcinoma Radiofrequency Ablation: A Comparative Study with Contrast-Enhanced Ultrasound

    PubMed Central

    Xu, Xiaohong; Luo, Liangping; Chen, Jiexin; Wang, Jiexin; Zhou, Honglian; Li, Mingyi; Jin, Zhanqiang; Chen, Nianping; Miao, Huilai; Lin, Manzhou; Dai, Wei; Ahuja, Anil T.; Wang, Yi-Xiang J.

    2014-01-01

    Aim. To explore acoustic radiation force impulse (ARFI) elastography in assessing residual tumors of hepatocellular carcinoma (HCC) after radiofrequency ablation (RFA). Materials and Methods. There were 83 HCC lesions among 72 patients. All patients were examined with ARFI, contrast enhanced ultrasound (CEUS), and CT or MRI. Tumor brightness on virtual touch tissue imaging (VTI) and shear wave velocity (SWV) were assessed before and approximately one month after RFA. Results. There were 14 residual tumors after RFA. VTI showed that all the tumors were darker after RFA. VTI was not able to distinguish the ablated lesions and the residual tumors. 13 residual tumor lesions were detected by CEUS. All completely ablated nodules had SWV demonstration of x.xx., while with those residual nodules, 6 tumors had x.xx measurement and 8 tumors had measurable SWV. nine lesions with residual tumors occurred in cirrhosis subjects and 5 lesions with residual tumors occurred in fibrosis subjects; there was no residual tumor in the normal liver subjects. Conclusion. VTI technique cannot demonstrate residual tumor post RFA. While SWV measurement of less than x.xx is likely associated with residual tumors, measurement of less than x.xx cannot exclude residual tumors. Liver cirrhosis is associated with decreased chance of a complete ablation. PMID:24895624

  9. Model-based optical coherence elastography using acoustic radiation force

    NASA Astrophysics Data System (ADS)

    Aglyamov, Salavat; Wang, Shang; Karpiouk, Andrei; Li, Jiasong; Emelianov, Stanislav; Larin, Kirill V.

    2014-02-01

    Acoustic Radiation Force (ARF) stimulation is actively used in ultrasound elastography to estimate mechanical properties of tissue. Compared with ultrasound imaging, OCT provides advantage in both spatial resolution and signal-to-noise ratio. Therefore, a combination of ARF and OCT technologies can provide a unique opportunity to measure viscoelastic properties of tissue, especially when the use of high intensity radiation pressure is limited for safety reasons. In this presentation we discuss a newly developed theoretical model of the deformation of a layered viscoelastic medium in response to an acoustic radiation force of short duration. An acoustic impulse was considered as an axisymmetric force generated on the upper surface of the medium. An analytical solution of this problem was obtained using the Hankel transform in frequency domain. It was demonstrated that layers at different depths introduce different frequency responses. To verify the developed model, experiments were performed using tissue-simulating, inhomogeneous phantoms of varying mechanical properties. The Young's modulus of the phantoms was varied from 5 to 50 kPa. A single-element focused ultrasound transducer (3.5 MHz) was used to apply the radiation force with various durations on the surface of phantoms. Displacements on the phantom surface were measured using a phase-sensitive OCT at 25 kHz repetition frequency. The experimental results were in good agreement with the modeling results. Therefore, the proposed theoretical model can be used to reconstruct the mechanical properties of tissue based on ARF/OCT measurements.

  10. Acoustic Radiation Force Impulse Quantification in the Evaluation of Thyroid Elasticity in Pediatric Patients With Hashimoto Thyroiditis.

    PubMed

    Yucel, Serap; Ceyhan Bilgici, Meltem; Kara, Cengiz; Can Yilmaz, Gulay; Aydin, H Murat; Elmali, Muzaffer; Tomak, Leman; Saglam, Dilek

    2018-05-01

    To evaluate the parenchymal elasticity of the thyroid gland with acoustic radiation force impulse imaging in pediatric patients with Hashimoto thyroiditis and to compare it with healthy volunteers. Twenty-six patients with Hashimoto thyroiditis and 26 healthy volunteers between 6 and 17 years were included. The shear wave velocity (SWV) values of both thyroid lobes in both groups were evaluated. The age and sex characteristics of the controls and patients with Hashimoto thyroiditis were similar. The SWV of the thyroid gland in patients with Hashimoto thyroiditis (mean ± SD, 1.67 ± 0.63 m/s) was significantly higher than that in the control group (1.30 ± 0.13 m/s; P < .001). There was no significant difference between the thyroid lobes in both groups. A receiver operating characteristic curve analyses showed an optimal cutoff value of 1.41 m/s, with 73.1% sensitivity, 80.8% specificity, a 79.2 % positive predictive value, and a 75.0% negative predictive value (area under the curve, 0.806; P < .001). In patients with Hashimoto thyroiditis, there was a positive correlation between the SWV values versus anti-thyroperoxidase (Pearson r = 0.46; P = .038). There were no correlations between age, body mass index, thyroid function test results, and anti-thyroglobulin values and versus SWV values. Also, no significant differences were seen between the groups for gland size, gland vascularity, and l-thyroxine treatment. Acoustic radiation force impulse elastography showed a significant difference in the stiffness of the thyroid gland between children with Hashimoto thyroiditis and the healthy group. Using acoustic radiation force impulse elastography immediately after a standard ultrasound evaluation may predict chronic autoimmune thyroiditis. © 2017 by the American Institute of Ultrasound in Medicine.

  11. Changes in liver stiffness measurement using acoustic radiation force impulse elastography after antiviral therapy in patients with chronic hepatitis C.

    PubMed

    Chen, Sheng-Hung; Lai, Hsueh-Chou; Chiang, I-Ping; Su, Wen-Pang; Lin, Chia-Hsin; Kao, Jung-Ta; Chuang, Po-Heng; Hsu, Wei-Fan; Wang, Hung-Wei; Chen, Hung-Yao; Huang, Guan-Tarn; Peng, Cheng-Yuan

    2018-01-01

    To compare on-treatment and off-treatment parameters acquired using acoustic radiation force impulse elastography, the Fibrosis-4 (FIB-4) index, and aspartate aminotransferase-to-platelet ratio index (APRI) in patients with chronic hepatitis C (CHC). Patients received therapies based on pegylated interferon or direct-acting antiviral agents. The changes in paired patient parameters, including liver stiffness (LS) values, the FIB-4 index, and APRI, from baseline to sustained virologic response (SVR) visit (24 weeks after the end of treatment) were compared. Multiple regression models were used to identify significant factors that explained the correlations with LS, FIB-4, and APRI values and SVR. A total of 256 patients were included, of which 219 (85.5%) achieved SVR. The paired LS values declined significantly from baseline to SVR visit in all groups and subgroups except the nonresponder subgroup (n = 10). Body mass index (P = 0.0062) and baseline LS (P < 0.0001) were identified as independent factors that explained the LS declines. Likewise, the baseline FIB-4 (P < 0.0001) and APRI (P < 0.0001) values independently explained the declines in the FIB-4 index and APRI, respectively. Moreover, interleukin-28B polymorphisms, baseline LS, and rapid virologic response were identified as independent correlates with SVR. Paired LS measurements in patients treated for CHC exhibited significant declines comparable to those in FIB-4 and APRI values. These declines may have correlated with the resolution of necroinflammation. Baseline LS values predicted SVR.

  12. Effects of compression force on elasticity index and elasticity ratio in ultrasound elastography

    PubMed Central

    Sasaki, Y; Sakamoto, J; Kamio, T; Nishikawa, K; Otonari-Yamamoto, M; Wako, M

    2014-01-01

    Objectives: The purpose of this study was to investigate the relationship between compression force and hardness values in ultrasound elastography. Methods: Ultrasound elastography was performed using an elastography phantom, comprising inclusions with different elasticities and echogenicities. The compression force was set to approximately 100 gw (light force) and approximately 500 gw (heavy force). The elasticity index (EI) of the inclusion was measured. The EI was a relative hardness value of a structure within an elastographic image. Similarly, the EI of the background was measured as a reference. The elasticity ratio (ER) was calculated as the EI of the inclusion divided by the EI of the reference. Results: The hardness of the phantom could be discerned with both the EI and ER, regardless of the compression force. The EI and ER with heavy force tended to be higher than those with light force, but the difference was not significant. A strong correlation was observed between the EI and ER of soft structures, whereas the correlation between the EI and ER of hard structures was weak, and the ER values varied widely. Conclusions: The EI offers potential as a good indicator for assessing the hardness. PMID:24592929

  13. Confocal acoustic radiation force optical coherence elastography using a ring ultrasonic transducer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qi, Wenjuan; Department of Chemical Engineering and Materials Science, University of California, Irvine, Irvine, California 92697; Li, Rui

    2014-03-24

    We designed and developed a confocal acoustic radiation force optical coherence elastography system. A ring ultrasound transducer was used to achieve reflection mode excitation and generate an oscillating acoustic radiation force in order to generate displacements within the tissue, which were detected using the phase-resolved optical coherence elastography method. Both phantom and human tissue tests indicate that this system is able to sense the stiffness difference of samples and quantitatively map the elastic property of materials. Our confocal setup promises a great potential for point by point elastic imaging in vivo and differentiation of diseased tissues from normal tissue.

  14. The influence of hepatic steatosis on the evaluation of fibrosis with non-alcoholic fatty liver disease by acoustic radiation force impulse.

    PubMed

    Yanrong Guo; Haoming Lin; Xinyu Zhang; Huiying Wen; Siping Chen; Xin Chen

    2017-07-01

    Acoustic radiation force impulse (ARFI) elastography is a non-invasive method for the assessment of liver by measuring liver stiffness. The aim of this study is to evaluate the accuracy of ARFI for the diagnosis of liver fibrosis and to assess impact of steatosis on liver fibrosis stiffness measurement, in rats model of non-alcoholic fatty liver disease (NAFLD). The rat models were conducted in 59 rats. The right liver lobe was processed and embedded in a fabricated gelatin solution. Liver mechanics were measured using shear wave velocity (SWV) induced by acoustic radiation force. In rats with NAFLD, the diagnostic performance of ARFI elastography in predicting severe fibrosis (F ≥ 3) and cirrhosis (F ≥ 4) had the areas under the receiver operating characteristic curves (AUROC) of 0.993 and 0.985. Among rats mean SWV values were significantly higher in rats with severe steatosis by histology compared to those mild or without steatosis for F0-F2 fibrosis stages (3.07 versus 2.51 m/s, P = 0.01). ARFI elastography is a promising method for staging hepatic fibrosis with NAFLD in rat models. The presence of severe steatosis is a significant factor for assessing the lower stage of fibrosis.

  15. Evaluation of Acoustic Radiation Force Impulse (ARFI) for Fibrosis Staging in Chronic Liver Diseases.

    PubMed

    Gani, Rino Alvani; Hasan, Irsan; Sanityoso, Andri; Lesmana, Cosmas Rinaldi A; Kurniawan, Juferdy; Jasirwan, Chyntia Olivia Maurine; Kalista, Kemal Fariz; Lutfie, Lutfie

    2017-04-01

    acoustic radiation force impulse (ARFI) is a new proposed noninvasive method for liver fibrosis staging. Integrated with B-mode ultrasonography, ARFI can be used to assess liver tissue condition. However its diagnostic accuracy is still being continuously evaluated. Also, there is lack of data regarding the utilization of ARFI in our population. This study aimed to evaluate the diagnostic value of ARFI as an alternative noninvasive modality for fibrosis staging in chronic hepatitis B and hepatitis C patients in our population. we conducted cross-sectional comparison of ARFI imaging and transient elastography on patients who underwent liver biopsy at Cipto Mangunkusumo Hospital. Fibrosis staging using METAVIR scoring system presented as standard reference. A total of 43 patients underwent liver biopsy was evaluated by ARFI imaging and transient elastography. Cut-off values were determined using receiver-operating characteristic (ROC). both liver stiffness determined by ARFI and transient elastography (TE) were moderately correlated with METAVIR score with value of 0.581 and 0.613, respectively (both P<0.01). Diagnostic accuracy of ARFI predicted significant fibrosis (F≥2) with area under receiver operating characteristic curve (AUROC) of 0.773 (95% CI 0.616-0.930) and even better for cirrhosis (F4 fibrosis), expressed as AUROC of 0.856 (95% CI 0.736-0.975). Transient elastography was better for significant fibrosis with AUROC of 0.761 (95% CI 0.601-0.920) and was best for prediction of cirrhosis, expressed as AUROC of 0.845 (95% CI 0.722-0.968). ARFI is provided with more convenient evaluation of liver tissue condition, and its diagnostic accuracy is not significantly different from TE for staging liver fibrosis.

  16. Acoustic radiation force optical coherence elastography using vibro-acoustography

    NASA Astrophysics Data System (ADS)

    Qu, Yueqiao (.; Ma, Teng; Li, Rui; Qi, Wenjuan; Zhu, Jiang; He, Youmin; Shung, K. K.; Zhou, Qifa; Chen, Zhongping

    2015-03-01

    High-resolution elasticity mapping of tissue biomechanical properties is crucial in early detection of many diseases. We report a method of acoustic radiation force optical coherence elastography (ARF-OCE) based on the methods of vibroacoustography, which uses a dual-ring ultrasonic transducer in order to excite a highly localized 3-D field. The single element transducer introduced previously in our ARF imaging has low depth resolution because the ARF is difficult to discriminate along the entire ultrasound propagation path. The novel dual-ring approach takes advantage of two overlapping acoustic fields and a few-hundred-Hertz difference in the signal frequencies of the two unmodulated confocal ring transducers in order to confine the acoustic stress field within a smaller volume. This frequency difference is the resulting "beating" frequency of the system. The frequency modulation of the transducers has been validated by comparing the dual ring ARF-OCE measurement to that of the single ring using a homogeneous silicone phantom. We have compared and analyzed the phantom resonance frequency to show the feasibility of our approach. We also show phantom images of the ARF-OCE based vibro-acoustography method and map out its acoustic stress region. We concluded that the dual-ring transducer is able to better localize the excitation to a smaller region to induce a focused force, which allows for highly selective excitation of small regions. The beat-frequency elastography method has great potential to achieve high-resolution elastography for ophthalmology and cardiovascular applications.

  17. Ultrasound-based elastography for the diagnosis of portal hypertension in cirrhotics

    PubMed Central

    Şirli, Roxana; Sporea, Ioan; Popescu, Alina; Dănilă, Mirela

    2015-01-01

    Progressive fibrosis is encountered in almost all chronic liver diseases. Its clinical signs are diagnostic in advanced cirrhosis, but compensated liver cirrhosis is harder to diagnose. Liver biopsy is still considered the reference method for staging the severity of fibrosis, but due to its drawbacks (inter and intra-observer variability, sampling errors, unequal distribution of fibrosis in the liver, and risk of complications and even death), non-invasive methods were developed to assess fibrosis (serologic and elastographic). Elastographic methods can be ultrasound-based or magnetic resonance imaging-based. All ultrasound-based elastographic methods are valuable for the early diagnosis of cirrhosis, especially transient elastography (TE) and acoustic radiation force impulse (ARFI) elastography, which have similar sensitivities and specificities, although ARFI has better feasibility. TE is a promising method for predicting portal hypertension in cirrhotic patients, but it cannot replace upper digestive endoscopy. The diagnostic accuracy of using ARFI in the liver to predict portal hypertension in cirrhotic patients is debatable, with controversial results in published studies. The accuracy of ARFI elastography may be significantly increased if spleen stiffness is assessed, either alone or in combination with liver stiffness and other parameters. Two-dimensional shear-wave elastography, the ElastPQ technique and strain elastography all need to be evaluated as predictors of portal hypertension. PMID:26556985

  18. Elasticity standard values of the Achilles tendon assessed with acoustic radiation force impulse elastography on healthy volunteers: a cross section study.

    PubMed

    Wakker, Jonas; Kratzer, Wolfgang; Graeter, Tilmann; Schmidberger, Julian

    2018-05-09

    To determine normal values for acoustic radiation force impulse (ARFI) shear wave elastography of the Achilles tendon. Using the VTIQ mode with the Acuson S3000™ (Siemens Healthcare, Erlangen, Germany), we measured the shear wave velocity (SWV) in m/s and the diameter in mm of both Achilles tendons in 182 healthy volunteers. The tendon was displayed in a sagittal view with a relaxed tendon. The parameters were tested for correlations with the anthropometric data of the subjects, between the genders and different age groups, as well as information obtained from the history, such as smoking and sporting activities. Using a sagittal acoustic window, we determined a mean SWV of 9.09 ± 0.71 m/s for the left Achilles tendon and 9.17 ± 0.61 m/s for the right. There was a significant difference between the results for the right and left side (p < 0.05). The diameter on the left was 4.7 ± 0.9 mm. On the right, it was 4.8 ± 0.9 mm. Likewise there was a significant difference between the results for the diameter of the left and right side (p < 0.05). Neither gender, body mass index (BMI) nor age had a significant effect on either of the measured parameters (p > 0.05). The same goes for the consumption of tobacco and alcohol (p > 0.05). Age, gender, BMI, smoking or the consumption of alcohol did not affect either the elasticity or the diameter of the Achilles tendon.

  19. Ultrasound elastography: the new frontier in direct measurement of muscle stiffness.

    PubMed

    Brandenburg, Joline E; Eby, Sarah F; Song, Pengfei; Zhao, Heng; Brault, Jeffrey S; Chen, Shigao; An, Kai-Nan

    2014-11-01

    The use of brightness-mode ultrasound and Doppler ultrasound in physical medicine and rehabilitation has increased dramatically. The continuing evolution of ultrasound technology has also produced ultrasound elastography, a cutting-edge technology that can directly measure the mechanical properties of tissue, including muscle stiffness. Its real-time and direct measurements of muscle stiffness can aid the diagnosis and rehabilitation of acute musculoskeletal injuries and chronic myofascial pain. It can also help monitor outcomes of interventions affecting muscle in neuromuscular and musculoskeletal diseases, and it can better inform the functional prognosis. This technology has implications for even broader use of ultrasound in physical medicine and rehabilitation practice, but more knowledge about its uses and limitations is essential to its appropriate clinical implementation. In this review, we describe different ultrasound elastography techniques for studying muscle stiffness, including strain elastography, acoustic radiation force impulse imaging, and shear-wave elastography. We discuss the basic principles of these techniques, including the strengths and limitations of their measurement capabilities. We review the current muscle research, discuss physiatric clinical applications of these techniques, and note directions for future research. Copyright © 2014 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  20. Ultrasound Elastography: The New Frontier in Direct Measurement of Muscle Stiffness

    PubMed Central

    Brandenburg, Joline E.; Eby, Sarah F.; Song, Pengfei; Zhao, Heng; Brault, Jeffrey S.; Chen, Shigao; An, Kai-Nan

    2014-01-01

    The use of brightness-mode ultrasound and Doppler ultrasound in physical medicine and rehabilitation has increased dramatically. The continuing evolution of ultrasound technology has also produced ultrasound elastography, a cutting-edge technology that can directly measure the mechanical properties of tissue, including muscle stiffness. Its real-time and direct measurements of muscle stiffness can aid the diagnosis and rehabilitation of acute musculoskeletal injuries and chronic myofascial pain. It can also help monitor outcomes of interventions affecting muscle in neuromuscular and musculoskeletal diseases, and it can better inform the functional prognosis. This technology has implications for even broader use of ultrasound in physical medicine and rehabilitation practice, but more knowledge about its uses and limitations is essential to its appropriate clinical implementation. In this review, we describe different ultrasound elastography techniques for studying muscle stiffness, including strain elastography, acoustic radiation force impulse imaging, and shear-wave elastography. We discuss the basic principles of these techniques, including the strengths and limitations of their measurement capabilities. We review the current muscle research, discuss physiatric clinical applications of these techniques, and note directions for future research. PMID:25064780

  1. High resolution SAW elastography for ex-vivo porcine skin specimen

    NASA Astrophysics Data System (ADS)

    Zhou, Kanheng; Feng, Kairui; Wang, Mingkai; Jamera, Tanatswa; Li, Chunhui; Huang, Zhihong

    2018-02-01

    Surface acoustic wave (SAW) elastography has been proven to be a non-invasive, non-destructive method for accurately characterizing tissue elastic properties. Current SAW elastography technique tracks generated surface acoustic wave impulse point by point which are a few millimeters away. Thus, reconstructed elastography has low lateral resolution. To improve the lateral resolution of current SAW elastography, a new method was proposed in this research. A M-B scan mode, high spatial resolution phase sensitive optical coherence tomography (PhS-OCT) system was employed to track the ultrasonically induced SAW impulse. Ex-vivo porcine skin specimen was tested using this proposed method. A 2D fast Fourier transform based algorithm was applied to process the acquired data for estimating the surface acoustic wave dispersion curve and its corresponding penetration depth. Then, the ex-vivo porcine skin elastogram was established by relating the surface acoustic wave dispersion curve and its corresponding penetration depth. The result from the proposed method shows higher lateral resolution than that from current SAW elastography technique, and the approximated skin elastogram could also distinguish the different layers in the skin specimen, i.e. epidermis, dermis and fat layer. This proposed SAW elastography technique may have a large potential to be widely applied in clinical use for skin disease diagnosis and treatment monitoring.

  2. Elastography: current status, future prospects, and making it work for you.

    PubMed

    Garra, Brian S

    2011-09-01

    Elastography has emerged as a useful adjunct tool for ultrasound diagnosis. Elastograms are images of tissue stiffness and may be in color, grayscale, or a combination of the two. The first and most common application of elastography is for the diagnosis of breast lesions where studies have shown an area under the receiver operating characteristic curve of 0.88 to 0.95 for distinguishing cancer from benign lesions. The technique is also useful for the diagnosis of complex cysts, although different scanners may vary in how they display such lesions. Recent advances in elastography include quantification using strain ratios, acoustic radiation force impulse imaging, and shear wave velocity estimation. These are useful not only for characterizing focal masses but also for diagnosing diffuse organ diseases such as liver cirrhosis. Other near term potential applications for elastography include characterization of thyroid nodules and lymph node evaluation for metastatic disease. Prostate cancer detection is also a potential application, but obtaining high-quality elastograms may be difficult. This area is evolving. Other promising applications include atheromatous plaque and arterial wall evaluation, venous thrombus evaluation, graft rejection, and monitoring of tumor ablation therapy. When contemplating the acquisition of a system with elastography in this rapidly evolving field, a clear picture of the manufacturer's plans for future upgrades (including quantification) should be obtained.

  3. Elastography for the pancreas: Current status and future perspective

    PubMed Central

    Kawada, Natsuko; Tanaka, Sachiko

    2016-01-01

    Elastography for the pancreas can be performed by either ultrasound or endoscopic ultrasound (EUS). There are two types of pancreatic elastographies based on different principles, which are strain elastography and shear wave elastography. The stiffness of tissue is estimated by measuring the grade of strain generated by external pressure in the former, whereas it is estimated by measuring propagation speed of shear wave, the transverse wave, generated by acoustic radiation impulse (ARFI) in the latter. Strain elastography is difficult to perform when the probe, the pancreas and the aorta are not located in line. Accordingly, a fine elastogram can be easily obtained in the pancreatic body but not in the pancreatic head and tail. In contrast, shear wave elastography can be easily performed in the entire pancreas because ARFI can be emitted to wherever desired. However, shear wave elastography cannot be performed by EUS to date. Recently, clinical guidelines for elastography specialized in the pancreas were published from Japanese Society of Medical Ultrasonics. The guidelines show us technical knacks of performing elastography for the pancreas. PMID:27076756

  4. Elastography for the pancreas: Current status and future perspective.

    PubMed

    Kawada, Natsuko; Tanaka, Sachiko

    2016-04-14

    Elastography for the pancreas can be performed by either ultrasound or endoscopic ultrasound (EUS). There are two types of pancreatic elastographies based on different principles, which are strain elastography and shear wave elastography. The stiffness of tissue is estimated by measuring the grade of strain generated by external pressure in the former, whereas it is estimated by measuring propagation speed of shear wave, the transverse wave, generated by acoustic radiation impulse (ARFI) in the latter. Strain elastography is difficult to perform when the probe, the pancreas and the aorta are not located in line. Accordingly, a fine elastogram can be easily obtained in the pancreatic body but not in the pancreatic head and tail. In contrast, shear wave elastography can be easily performed in the entire pancreas because ARFI can be emitted to wherever desired. However, shear wave elastography cannot be performed by EUS to date. Recently, clinical guidelines for elastography specialized in the pancreas were published from Japanese Society of Medical Ultrasonics. The guidelines show us technical knacks of performing elastography for the pancreas.

  5. Force-Time Entropy of Isometric Impulse.

    PubMed

    Hsieh, Tsung-Yu; Newell, Karl M

    2016-01-01

    The relation between force and temporal variability in discrete impulse production has been viewed as independent (R. A. Schmidt, H. Zelaznik, B. Hawkins, J. S. Frank, & J. T. Quinn, 1979 ) or dependent on the rate of force (L. G. Carlton & K. M. Newell, 1993 ). Two experiments in an isometric single finger force task investigated the joint force-time entropy with (a) fixed time to peak force and different percentages of force level and (b) fixed percentage of force level and different times to peak force. The results showed that the peak force variability increased either with the increment of force level or through a shorter time to peak force that also reduced timing error variability. The peak force entropy and entropy of time to peak force increased on the respective dimension as the parameter conditions approached either maximum force or a minimum rate of force production. The findings show that force error and timing error are dependent but complementary when considered in the same framework with the joint force-time entropy at a minimum in the middle parameter range of discrete impulse.

  6. [Contrastive study on conventional ultrasound, compression elastography and acoustic radiation force impulse imaging in the differential diagnosis of benign and malignant breast tumors].

    PubMed

    Zhang, Lu; Zhou, Ping; Deng, Jin; Tian, Shuangming; Qian, Ying; Wu, Xiaomin; Ma, Shuhua; Li, Jiale

    2014-12-01

    To evaluate the diagnostic performance of conventional ultrasound, compression elastography (CE) and acoustic radiation force impulse imaging (ARFI) in differential diagnosis of benign and malignant breast tumors. A total of 98 patients with liver lesions were included in the study. The images of conventional ultrasound, CE and the values of virtual touch tissue quantification (VTQ) of breast lesions were obtained. The diagnostic performance of conventional ultrasound, CE and ARFI were assessed by using pathology as the gold standard, and then evaluate the diagnosis efficiency of these three approaches in differential diagnosing benign and malignant breast tumors. The specificity, sensitivity and accuracy in the diagnosis of malignant breast tumors for conventional ultrasound were 80.0%, 81.1% and 81.7%, respectively, whereas for CE elastic score were 85.7%, 86.7% and 86.3%, respectively. With a cutoff value of 3.71 for the SR, the sensitivity, specificity, accuracy in diagnosis of malignant breast tumors were 97.1%, 83.3% and 88.4%, respectively. With a cutoff value of 3.78 m/s for VTQ, the sensitivity, specificity, accuracy in diagnosis of malignant breast tumors were 94.3%, 91.7% and 92.6%, respectively. The difference in diagnosis efficiency among ARFI, CE and conventional ultrasound in differential diagnosis of benign and malignant breast tumors was significant (P< 0.05). Conventional ultrasound, CE and ARFI are all useful for the differential diagnosis of benign and malignant breast tumors. But the diagnosis efficiency of ARFI is superior to CE and conventional ultrasound. The three approaches can help each other in differential diagnosis of benign and malignant breast tumors.

  7. The diagnostic performance of shear wave elastography for malignant cervical lymph nodes: A systematic review and meta-analysis.

    PubMed

    Suh, Chong Hyun; Choi, Young Jun; Baek, Jung Hwan; Lee, Jeong Hyun

    2017-01-01

    To evaluate the diagnostic performance of shear wave elastography for malignant cervical lymph nodes. We searched the Ovid-MEDLINE and EMBASE databases for published studies regarding the use of shear wave elastography for diagnosing malignant cervical lymph nodes. The diagnostic performance of shear wave elastography was assessed using bivariate modelling and hierarchical summary receiver operating characteristic modelling. Meta-regression analysis and subgroup analysis according to acoustic radiation force impulse imaging (ARFI) and Supersonic shear imaging (SSI) were also performed. Eight eligible studies which included a total sample size of 481 patients with 647 cervical lymph nodes, were included. Shear wave elastography showed a summary sensitivity of 81 % (95 % CI: 72-88 %) and specificity of 85 % (95 % CI: 70-93 %). The results of meta-regression analysis revealed that the prevalence of malignant lymph nodes was a significant factor affecting study heterogeneity (p < .01). According to the subgroup analysis, the summary estimates of the sensitivity and specificity did not differ between ARFI and SSI (p = .93). Shear wave elastography is an acceptable imaging modality for diagnosing malignant cervical lymph nodes. We believe that both ARFI and SSI may have a complementary role for diagnosing malignant cervical lymph nodes. • Shear wave elastography is acceptable modality for diagnosing malignant cervical lymph nodes. • Shear wave elastography demonstrated summary sensitivity of 81 % and specificity of 85 %. • ARFI and SSI have complementary roles for diagnosing malignant cervical lymph nodes.

  8. Phase-resolved acoustic radiation force optical coherence elastography

    NASA Astrophysics Data System (ADS)

    Qi, Wenjuan; Chen, Ruimin; Chou, Lidek; Liu, Gangjun; Zhang, Jun; Zhou, Qifa; Chen, Zhongping

    2012-11-01

    Many diseases involve changes in the biomechanical properties of tissue, and there is a close correlation between tissue elasticity and pathology. We report on the development of a phase-resolved acoustic radiation force optical coherence elastography method (ARF-OCE) to evaluate the elastic properties of tissue. This method utilizes chirped acoustic radiation force to produce excitation along the sample's axial direction, and it uses phase-resolved optical coherence tomography (OCT) to measure the vibration of the sample. Under 500-Hz square wave modulated ARF signal excitation, phase change maps of tissue mimicking phantoms are generated by the ARF-OCE method, and the resulting Young's modulus ratio is correlated with a standard compression test. The results verify that this technique could efficiently measure sample elastic properties accurately and quantitatively. Furthermore, a three-dimensional ARF-OCE image of the human atherosclerotic coronary artery is obtained. The result indicates that our dynamic phase-resolved ARF-OCE method can delineate tissues with different mechanical properties.

  9. The diagnostic performance of shear-wave elastography for liver fibrosis in children and adolescents: A systematic review and diagnostic meta-analysis.

    PubMed

    Kim, Jeong Rye; Suh, Chong Hyun; Yoon, Hee Mang; Lee, Jin Seong; Cho, Young Ah; Jung, Ah Young

    2018-03-01

    To assess the diagnostic performance of shear-wave elastography for determining the severity of liver fibrosis in children and adolescents. An electronic literature search of PubMed and EMBASE was conducted. Bivariate modelling and hierarchical summary receiver-operating-characteristic modelling were performed to evaluate the diagnostic performance of shear-wave elastography. Meta-regression and subgroup analyses according to the modality of shear-wave imaging and the degree of liver fibrosis were also performed. Twelve eligible studies with 550 patients were included. Shear-wave elastography showed a summary sensitivity of 81 % (95 % CI: 71-88) and a specificity of 91 % (95 % CI: 83-96) for the prediction of significant liver fibrosis. The number of measurements of shear-wave elastography performed was a significant factor influencing study heterogeneity. Subgroup analysis revealed shear-wave elastography to have an excellent diagnostic performance according to each degree of liver fibrosis. Supersonic shear imaging (SSI) had a higher sensitivity (p<.01) and specificity (p<.01) than acoustic radiation force impulse imaging (ARFI). Shear-wave elastography is an excellent modality for the evaluation of the severity of liver fibrosis in children and adolescents. Compared with ARFI, SSI showed better diagnostic performance for prediction of significant liver fibrosis. • Shear-wave elastography is beneficial for determining liver fibrosis severity in children. • Shear-wave elastography showed summary sensitivity of 81 %, specificity of 91 %. • SSI showed better diagnostic performance than ARFI for significant liver fibrosis.

  10. Acoustic Radiation Force Impulse (ARFI) Elastography and Serological Markers in Assessment of Liver Fibrosis and Free Portal Pressure in Patients with Hepatitis B.

    PubMed

    Li, Jun; Yu, Jie; Peng, Xin-Yu; Du, Ting-Ting; Wang, Jia-Jia; Tong, Jin; Lu, Gui-Lin; Wu, Xiang-Wei

    2017-07-23

    BACKGROUND The aim of this study was to investigate the feasibility of using acoustic radiation force impulse (ARFI) elastography, AST-to-platelet ratio index (APRI), and FIB-4 in assessing liver fibrosis and free portal pressure in patients with hepatitis B. MATERIAL AND METHODS We enrolled 126 patients with hepatitis B who underwent liver surgery at the General Surgery Department of the First Affiliated Hospital of Shihezi University Medical School from February 2013 to August 2015. Preoperatively, shear wave velocity (SWV) of the liver was measured with the Siemens S2000 ultrasound system to reflect liver stiffness. Serological markers were collected and fibrosis indices APRI and FIB-4 were calculated. Intraoperatively, liver tissues were harvested and free portal pressure (FPP) was measured. Postoperatively, fibrosis of liver tissues was pathologically staged. RESULTS The results of SWV, APRI, FIB-4, and FPP were all correlated with the degree of liver fibrosis (Spearman correlation coefficients: r=0.777, P<0.001; r=0.526, P<0.001; r=0.471, P<0.001; p<0.000; r=0.675, p<0.000). Receiver operating characteristic curve (ROC) analysis showed that the areas under the curve (AUC) of ARFI, APRI, and FIB-4 in diagnosing liver fibrosis were 0.830, 0.768, and 0.717, respectively, for stage F≥1; 0.861, 0.773, and 0.754, respectively, for stage F≥2; 0.941, 0.793, and 0.779, respectively, for stage F≥3; and 0.945, 0.783, and 0.754, respectively, for stage F=4. SWV, APRI, and FIB-4 were all correlated with FPP (Pearson correlation coefficients: 0.387, P<0.001; 0.446, P<0.001; 0.419, P<0.001). CONCLUSIONS ARFI, APRI, and FIB-4 can assess liver fibrosis in patients with hepatitis B when assessing the portal venous pressure. The difference in diagnostic efficacy between the 3 was not significant.

  11. Value of in vitro acoustic radiation force impulse application on uterine adenomyosis.

    PubMed

    Bildaci, Tevfik Berk; Cevik, Halime; Yilmaz, Birnur; Desteli, Guldeniz Aksan

    2017-11-24

    Adenomyosis is the presence of endometrial glandular and stromal tissue in the myometrium. This phenomenon can be the cause of excessive bleeding and menstrual pain in premenopausal women. Diagnosis of adenomyosis may present difficulty with conventional methods such as ultrasound and magnetic resonance imaging. Frequently, diagnosis is accomplished retrospectively based on the hysterectomy specimen. This is a prospective case control study done in vitro on 90 patients' hysterectomy specimens. Acoustic radiation force impulse (ARFI) and color elastography were used to determine the elasticity of hysterectomy specimens of patients undergoing indicated surgeries. Based on histopathological examinations, two groups were formed: a study group (n = 28-with adenomyosis) and a control group (n = 62-without adenomyosis). Elasticity measurements of tissue with adenomyosis were observed to be significantly higher than measurements of normal myometrial tissue (p < 0.01). Uterine fibroids were found to have higher values on ARFI study compared to normal myometrial tissues (p < 0.01). The findings lead to the conclusion that adenomyosis tissue is significantly softer than the normal myometrium. ARFI was found to be beneficial in differentiating myometrial tissue with adenomyosis from normal myometrial tissue. It was found to be feasible and beneficial to implement ARFI in daily gynecology practice for diagnosis of adenomyosis.

  12. Accuracy of transient elastography-FibroScan®, acoustic radiation force impulse (ARFI) imaging, the enhanced liver fibrosis (ELF) test, APRI, and the FIB-4 index compared with liver biopsy in patients with chronic hepatitis C.

    PubMed

    Ragazzo, Taisa Grotta; Paranagua-Vezozzo, Denise; Lima, Fabiana Roberto; de Campos Mazo, Daniel Ferraz; Pessoa, Mário Guimarães; Oliveira, Claudia Pinto; Alves, Venancio Avancini Ferreira; Carrilho, Flair José

    2017-10-01

    Although liver biopsy is the gold standard for determining the degree of liver fibrosis, issues regarding its invasiveness and the small amount of liver tissue evaluated can limit its applicability and interpretation in clinical practice. Non-invasive evaluation methods for liver fibrosis can address some of these limitations. The aim of this study was to evaluate the accuracy of transient elastography-FibroScan®, acoustic radiation force impulse (ARFI), enhanced liver fibrosis (ELF), the aspartate aminotransferase-to-platelet ratio index (APRI), and the FIB-4 index compared with liver biopsy in hepatitis C. We evaluated chronic hepatitis C patients who were followed at the Division of Clinical Gastroenterology and Hepatology, Hospital das Clínicas, Department of Gastroenterology of University of São Paulo School of Medicine, São Paulo, Brazil, and who underwent liver biopsy. The accuracy of each method was determined by a receiver operating characteristic (ROC) curve analysis, and fibrosis was classified as significant fibrosis (≥F2), advanced fibrosis (≥F3), or cirrhosis (F4). The Obuchowski method was also used to determine the diagnostic accuracy of each method at the various stages of fibrosis. In total, 107 FibroScan®, 51 ARFI, 68 ELF, 106 APRI, and 106 FIB-4 analyses were performed. A total of 107 patients were included in the study. The areas under the ROC curve (AUROCs) according to fibrosis degree were as follows: significant fibrosis (≥F2): FibroScan®: 0.83, FIB-4: 0.76, ELF: 0.70, APRI: 0.69, and ARFI: 0.67; advanced fibrosis (≥F3): FibroScan®: 0.85, ELF: 0.82, FIB-4: 0.77, ARFI: 0.74, and APRI: 0.71; and cirrhosis (F4): APRI: 1, FIB-4: 1, FibroScan®: 0.99, ARFI: 0.96, and ELF: 0.94. The accuracies of transient elastography, ARFI, ELF, APRI and FIB-4 determined by the Obuchowski method were F0-F1: 0.81, 0.78, 0.44, 0.72 and 0.67, respectively; F1-F2: 0.73, 0.53, 0.62, 0.60, and 0.68, respectively; F2-F3: 0.70, 0.64, 0.77, 0.60, and 0

  13. Role of acoustic radiation force impulse and shear wave velocity in prediction of preterm birth: a prospective study.

    PubMed

    Agarwal, Arjit; Agarwal, Shubhra; Chandak, Shruti

    2018-06-01

    Background Preterm birth is one of the important causes of neonatal morbidity where we rely on subjective criteria such as modified Bishop's scoring and contemporary sonographic measurement of cervical length. Acoustic radiation force impulse (ARFI) is a technological advancement in elastography that can be employed in prediction of cervical softening and preterm labor. Purpose To evaluate the role of ARFI technique and shear wave velocity (SWV) estimates as a predictor of preterm birth and its comparison with other clinical and sono-elastographic measures. Material and Methods Thirty-four pregnant women (gestation age = 28-37 weeks age) showing features suggestive of preterm labor were included and evaluated with modified Bishop's score, cervical length by ultrasound (US), ARFI to derive Elastography index (EI), and SWV of the cervix. The patients were later divided into two groups, using the clinical outcome of preterm or term delivery. Results Twenty patients delivered at term (gestational age > 37 weeks) and 14 were preterm. Receiver operating characteristics (ROC) curves showed SWV with highest sensitivity and specificity (93% and 90%, respectively) for the prediction of preterm birth at a cutoff value of 2.83 m/s. EI and modified Bishop's score were comparable to each other, but were less sensitive techniques. Conclusion Elastographic assessment of antenatal cervix is a novel technique of virtual palpation of internal os and can be utilized as an objective criterion for preterm birth prediction.

  14. Shear wave elastography using amplitude-modulated acoustic radiation force and phase-sensitive optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Nguyen, Thu-Mai; Arnal, Bastien; Song, Shaozhen; Huang, Zhihong; Wang, Ruikang K.; O'Donnell, Matthew

    2015-01-01

    Investigating the elasticity of ocular tissue (cornea and intraocular lens) could help the understanding and management of pathologies related to biomechanical deficiency. In previous studies, we introduced a setup based on optical coherence tomography for shear wave elastography (SWE) with high resolution and high sensitivity. SWE determines tissue stiffness from the propagation speed of shear waves launched within tissue. We proposed acoustic radiation force to remotely induce shear waves by focusing an ultrasound (US) beam in tissue, similar to several elastography techniques. Minimizing the maximum US pressure is essential in ophthalmology for safety reasons. For this purpose, we propose a pulse compression approach. It utilizes coded US emissions to generate shear waves where the energy is spread over a long emission, and then numerically compressed into a short, localized, and high-energy pulse. We used a 7.5-MHz single-element focused transducer driven by coded excitations where the amplitude is modulated by a linear frequency-swept square wave (1 to 7 kHz). An inverse filter approach was used for compression. We demonstrate the feasibility of performing shear wave elastography measurements in tissue-mimicking phantoms at low US pressures (mechanical index <0.6).

  15. Shear wave elastography using amplitude-modulated acoustic radiation force and phase-sensitive optical coherence tomography

    PubMed Central

    Nguyen, Thu-Mai; Arnal, Bastien; Song, Shaozhen; Huang, Zhihong; Wang, Ruikang K.; O’Donnell, Matthew

    2015-01-01

    Abstract. Investigating the elasticity of ocular tissue (cornea and intraocular lens) could help the understanding and management of pathologies related to biomechanical deficiency. In previous studies, we introduced a setup based on optical coherence tomography for shear wave elastography (SWE) with high resolution and high sensitivity. SWE determines tissue stiffness from the propagation speed of shear waves launched within tissue. We proposed acoustic radiation force to remotely induce shear waves by focusing an ultrasound (US) beam in tissue, similar to several elastography techniques. Minimizing the maximum US pressure is essential in ophthalmology for safety reasons. For this purpose, we propose a pulse compression approach. It utilizes coded US emissions to generate shear waves where the energy is spread over a long emission, and then numerically compressed into a short, localized, and high-energy pulse. We used a 7.5-MHz single-element focused transducer driven by coded excitations where the amplitude is modulated by a linear frequency-swept square wave (1 to 7 kHz). An inverse filter approach was used for compression. We demonstrate the feasibility of performing shear wave elastography measurements in tissue-mimicking phantoms at low US pressures (mechanical index <0.6). PMID:25554970

  16. Minimum-domain impulse theory for unsteady aerodynamic force

    NASA Astrophysics Data System (ADS)

    Kang, L. L.; Liu, L. Q.; Su, W. D.; Wu, J. Z.

    2018-01-01

    We extend the impulse theory for unsteady aerodynamics from its classic global form to finite-domain formulation then to minimum-domain form and from incompressible to compressible flows. For incompressible flow, the minimum-domain impulse theory raises the finding of Li and Lu ["Force and power of flapping plates in a fluid," J. Fluid Mech. 712, 598-613 (2012)] to a theorem: The entire force with discrete wake is completely determined by only the time rate of impulse of those vortical structures still connecting to the body, along with the Lamb-vector integral thereof that captures the contribution of all the rest disconnected vortical structures. For compressible flows, we find that the global form in terms of the curl of momentum ∇ × (ρu), obtained by Huang [Unsteady Vortical Aerodynamics (Shanghai Jiaotong University Press, 1994)], can be generalized to having an arbitrary finite domain, but the formula is cumbersome and in general ∇ × (ρu) no longer has discrete structures and hence no minimum-domain theory exists. Nevertheless, as the measure of transverse process only, the unsteady field of vorticity ω or ρω may still have a discrete wake. This leads to a minimum-domain compressible vorticity-moment theory in terms of ρω (but it is beyond the classic concept of impulse). These new findings and applications have been confirmed by our numerical experiments. The results not only open an avenue to combine the theory with computation-experiment in wide applications but also reveal a physical truth that it is no longer necessary to account for all wake vortical structures in computing the force and moment.

  17. Ultrasound elastography: principles, techniques, and clinical applications.

    PubMed

    Dewall, Ryan J

    2013-01-01

    Ultrasound elastography is an emerging set of imaging modalities used to image tissue elasticity and are often referred to as virtual palpation. These techniques have proven effective in detecting and assessing many different pathologies, because tissue mechanical changes often correlate with tissue pathological changes. This article reviews the principles of ultrasound elastography, many of the ultrasound-based techniques, and popular clinical applications. Originally, elastography was a technique that imaged tissue strain by comparing pre- and postcompression ultrasound images. However, new techniques have been developed that use different excitation methods such as external vibration or acoustic radiation force. Some techniques track transient phenomena such as shear waves to quantitatively measure tissue elasticity. Clinical use of elastography is increasing, with applications including lesion detection and classification, fibrosis staging, treatment monitoring, vascular imaging, and musculoskeletal applications.

  18. Interval oscillation criteria for second-order forced impulsive delay differential equations with damping term.

    PubMed

    Thandapani, Ethiraju; Kannan, Manju; Pinelas, Sandra

    2016-01-01

    In this paper, we present some sufficient conditions for the oscillation of all solutions of a second order forced impulsive delay differential equation with damping term. Three factors-impulse, delay and damping that affect the interval qualitative properties of solutions of equations are taken into account together. The results obtained in this paper extend and generalize some of the the known results for forced impulsive differential equations. An example is provided to illustrate the main result.

  19. Viability evaluation of culture cells patterned by femtosecond laser-induced impulsive force

    NASA Astrophysics Data System (ADS)

    Takizawa, Noriko; Okano, Kazunori; Uwada, Takayuki; Hosokawa, Yoichiroh; Masuhara, Hiroshi

    2008-02-01

    PC12 cells, which are derived from a rat pheochromocytoma, were independently patterned utilizing an impulsive force resulting in impulsive shockwave and cavitation bubble generation by focused femtosecond laser irradiation. Since the PC12 cells respond reversibly to nerve growth factor by induction of the neuronal phenotype, we can assess an influence that the impulsive force gives to the bioactivity in term of the cell differentiation. The patterned cells were accumulated on an intact dish and cultured for 3 days. The behavior of appearance and cell differentiation was observed by multipoint time-lapse system. On bases of these results, it was proved that the biological activity of the cell is unaffected by the femtosecond laser patterning.

  20. Structural frequency functions for an impulsive, distributed forcing function

    NASA Technical Reports Server (NTRS)

    Bateman, Vesta I.

    1987-01-01

    The response of a penetrator structure to a spatially distributed mechanical impulse with a magnitude approaching field test force levels (1-2 Mlb) were measured. The frequency response function calculated from the response to this unique forcing function is compared to frequency response functions calculated from response to point forces of about 2000 pounds. The results show that the strain gages installed on the penetrator case respond similiarly to a point, axial force and to a spatially distributed, axial force. This result suggests that the distributed axial force generated in a penetration event may be reconstructed as a point axial force when the penetrator behaves in linear manner.

  1. Improvement of liver stiffness measurement, acoustic radiation force impulse measurements, and noninvasive fibrosis markers after direct-acting antivirals for hepatitis C virus G4 recurrence post living donor liver transplantation: Egyptian cohort.

    PubMed

    Alem, Shereen Abdel; Said, Mohamed; Anwar, Ismail; Abdellatif, Zeinab; Elbaz, Tamer; Eletreby, Rasha; AbouElKhair, Mahmoud; El-Serafy, Magdy; Mogawer, Sherif; El-Amir, Mona; El-Shazly, Mostafa; Hosny, Adel; Yosry, Ayman

    2018-05-02

    Progression of recurrent hepatitis C is accelerated in liver transplant (LT) recipients. Direct-acting antivirals (DAAs) have recently emerged as a promising therapeutic regimen for the treatment of hepatitis C virus infection. Rates of sustained virological response (SVR) have drastically improved since the introduction of DAAs. The aim is to elucidate the changes in liver stiffness measurement (LSM) by transient elastography (TE) as well as acoustic radiation force impulse (ARFI) elastography and fibrosis scores after DAA treatment in LT recipients with hepatitis C virus recurrence. A single-center, prospective study including 58 LT recipients with hepatitis C recurrence who received different sofosbuvir-based treatment regimens. Transient elastography and ARFI elastography values were recorded as well as fibrosis 4 score (FIB-4) and aspartate aminotransferase-to-platelet ratio index were calculated at baseline and SVR at week 24 (SVR24). The outcome was improvement in LSM and at least a 20% decrease in LSM at SVR24 compared with baseline. The sustained virological response was 98.1%. There was improvement of platelet counts, alanine aminotransferase, and aspartate aminotransferase, which in turn caused improvement in fibrosis scores at SVR24. LSM by TE and ARFI elastography decreased from the baseline median value of 6.3 kPa (interquartile range [IQR]; 4.6 to 8.8 kPa) and 1.28 m/s (IQR; 1.07 to 1.53 m/s) to an SVR24 median value of 6.2 kPa (IQR; 4.85 to 8.9 kPa) and 1.12 (IQR; 0.97 to 1.30 m/s), respectively. Logistic regression analysis showed that baseline viral load was the only significant predictor of improvement in LS after DAA therapy at SVR24. Sofosbuvir-based treatment resulted in an early improvement in parameters of liver fibrosis in post-LT patients with hepatitis C recurrence. © 2018 Wiley Periodicals, Inc.

  2. Acoustic radiation force impulse elastography in evaluation of triple-negative breast cancer: A preliminary experience.

    PubMed

    Wan, Jing; Wu, Rong; Yao, Minghua; Xu, Guang; Liu, Hui; Pu, Huan; Xiang, Lihua; Zhang, Shupin

    2018-05-19

    To assess the elastographic features of triple-negative breast cancers and evaluate the diagnostic value of acoustic radiation force impulse imaging (ARFI) for the characterization of triple-negative breast cancers. This study analyzed data from 234 women with breast cancer. Patients were categorized into three groups; 1) triple-negative breast cancers (n = 48); 2) ER-positive tumors (n = 128) and 3) HER2-positive tumors (n = 58). Mean tumor stiffness was evaluated by virtual touch tissue imaging (VTI) and virtual touch tissue quantification (VTQ) and quantified as both qualitative scores (1-5) and shear wave velocity (SWV) (m/s). The relationship between mean SWV and tumor parameters, including tumor size, tumor type, histologic grade and lymph node status, were investigated using multiple linear regression. Triple-negative tumor were more likely to have a large invasive size (p = 0.002), high histological grade (p < 0.001), lymph node involvement (p = 0.022) and strong ki-67 expression (p < 0.001). The highest mean SWV value were recorded in triple-negative tumors (7.36 m/s±1.83), followed by HER2+ tumors (6.65 m/s±2.26) and ER+ tumors (6.60 m/s±2.35) (p = 0.122). Triple-negative tumors were also associated with increased stiffness than ER+ tumors and HER2+ tumors (p = 0.016), as measured by qualitative VTI scores. Tumor size was independently associated with mean SWV value on adjusted regression (p < 0.001). Triple-negative breast cancer is associated with high stiffness scores and SWV in ARFI. The latter may be considered a useful complementary tool in evaluation of triple-negative breast cancer.

  3. Elastography in clinical practice.

    PubMed

    Barr, Richard G

    2014-11-01

    Elastography is a new technique that evaluates tissue stiffness. There are two elastography methods, strain and shear wave elastography. Both techniques are being used to evaluate a wide range of applications in medical imaging. Elastography of breast masses and prostates have been shown to have high accuracy for characterizing masses and can significantly decrease the need for biopsies. Shear wave elastography has been shown to be able to detect and grade liver fibrosis and may decrease the need for liver biopsy. Evaluation of other organs is still preliminary. This article reviews the principles of elastography and its potential clinical applications. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Non-contact quantification of laser micro-impulse in water by atomic force microscopy and its application for biomechanics

    NASA Astrophysics Data System (ADS)

    Hosokawa, Yoichiroh

    2011-12-01

    We developed a local force measurement system of a femtosecond laser-induced impulsive force, which is due to shock and stress waves generated by focusing an intense femtosecond laser into water with a highly numerical aperture objective lens. In this system, the force localized in micron-sized region was detected by bending movement of a cantilever of atomic force microscope (AFM). Here we calculated the bending movement of the AFM cantilever when the femtosecond laser is focused in water at the vicinity of the cantilever and the impulsive force is loaded on the cantilever. From the result, a method to estimate the total of the impulsive force at the laser focal point was suggested and applied to estimate intercellular adhesion strength.

  5. Force-Velocity, Impulse-Momentum Relationships: Implications for Efficacy of Purposefully Slow Resistance Training

    PubMed Central

    Schilling, Brian K.; Falvo, Michael J.; Chiu, Loren Z.F.

    2008-01-01

    The purpose of this brief review is to explain the mechanical relationship between impulse and momentum when resistance exercise is performed in a purposefully slow manner (PS). PS is recognized by ~10s concentric and ~4-10s eccentric actions. While several papers have reviewed the effects of PS, none has yet explained such resistance training in the context of the impulse-momentum relationship. A case study of normal versus PS back squats was also performed. An 85kg man performed both normal speed (3 sec eccentric action and maximal acceleration concentric action) and PS back squats over a several loads. Normal speed back squats produced both greater peak and mean propulsive forces than PS action when measured across all loads. However, TUT was greatly increased in the PS condition, with values fourfold greater than maximal acceleration repetitions. The data and explanation herein point to superior forces produced by the neuromuscular system via traditional speed training indicating a superior modality for inducing neuromuscular adaptation. Key pointsAs velocity approaches zero, propulsive force approaches zero, therefore slow moving objects only require force approximately equal to the weight of the resistance.As mass is constant during resistance training, a greater impulse will result in a greater velocity.The inferior propulsive forces accompanying purposefully slow training suggest other methods of resistance training have a greater potential for adaptation. PMID:24149464

  6. A diffraction correction for storage and loss moduli imaging using radiation force based elastography.

    PubMed

    Budelli, Eliana; Brum, Javier; Bernal, Miguel; Deffieux, Thomas; Tanter, Mickaël; Lema, Patricia; Negreira, Carlos; Gennisson, Jean-Luc

    2017-01-07

    Noninvasive evaluation of the rheological behavior of soft tissues may provide an important diagnosis tool. Nowadays, available commercial ultrasound systems only provide shear elasticity estimation by shear wave speed assessment under the hypothesis of a purely elastic model. However, to fully characterize the rheological behavior of tissues, given by its storage (G') and loss (G″) moduli, it is necessary to estimate both: shear wave speed and shear wave attenuation. Most elastography techniques use the acoustic radiation force to generate shear waves. For this type of source the shear waves are not plane and a diffraction correction is needed to properly estimate the shear wave attenuation. The use of a cylindrical wave approximation to evaluate diffraction has been proposed by other authors before. Here the validity of such approximation is numerically and experimentally revisited. Then, it is used to generate images of G' and G″ in heterogeneous viscoelastic mediums. A simulation algorithm based on the anisotropic and viscoelastic Green's function was used to establish the validity of the cylindrical approximation. Moreover, two experiments were carried out: a transient elastography experiment where plane shear waves were generated using a vibrating plate and a SSI experiment that uses the acoustic radiation force to generate shear waves. For both experiments the shear wave propagation was followed with an ultrafast ultrasound scanner. Then, the shear wave velocity and shear wave attenuation were recovered from the phase and amplitude decay versus distance respectively. In the SSI experiment the cylindrical approximation was applied to correct attenuation due to diffraction effects. The numerical and experimental results validate the use of a cylindrical correction to assess shear wave attenuation. Finally, by applying the cylindrical correction G' and G″ images were generated in heterogeneous phantoms and a preliminary in vivo feasibility study was

  7. A diffraction correction for storage and loss moduli imaging using radiation force based elastography

    NASA Astrophysics Data System (ADS)

    Budelli, Eliana; Brum, Javier; Bernal, Miguel; Deffieux, Thomas; Tanter, Mickaël; Lema, Patricia; Negreira, Carlos; Gennisson, Jean-Luc

    2017-01-01

    Noninvasive evaluation of the rheological behavior of soft tissues may provide an important diagnosis tool. Nowadays, available commercial ultrasound systems only provide shear elasticity estimation by shear wave speed assessment under the hypothesis of a purely elastic model. However, to fully characterize the rheological behavior of tissues, given by its storage (G‧) and loss (G″) moduli, it is necessary to estimate both: shear wave speed and shear wave attenuation. Most elastography techniques use the acoustic radiation force to generate shear waves. For this type of source the shear waves are not plane and a diffraction correction is needed to properly estimate the shear wave attenuation. The use of a cylindrical wave approximation to evaluate diffraction has been proposed by other authors before. Here the validity of such approximation is numerically and experimentally revisited. Then, it is used to generate images of G‧ and G″ in heterogeneous viscoelastic mediums. A simulation algorithm based on the anisotropic and viscoelastic Green’s function was used to establish the validity of the cylindrical approximation. Moreover, two experiments were carried out: a transient elastography experiment where plane shear waves were generated using a vibrating plate and a SSI experiment that uses the acoustic radiation force to generate shear waves. For both experiments the shear wave propagation was followed with an ultrafast ultrasound scanner. Then, the shear wave velocity and shear wave attenuation were recovered from the phase and amplitude decay versus distance respectively. In the SSI experiment the cylindrical approximation was applied to correct attenuation due to diffraction effects. The numerical and experimental results validate the use of a cylindrical correction to assess shear wave attenuation. Finally, by applying the cylindrical correction G‧ and G″ images were generated in heterogeneous phantoms and a preliminary in vivo feasibility study

  8. Non-Invasive Evaluation of Cystic Fibrosis Related Liver Disease in Adults with ARFI, Transient Elastography and Different Fibrosis Scores

    PubMed Central

    Oltmanns, Annett; Güttler, Andrea; Petroff, David; Wirtz, Hubert; Mainz, Jochen G.; Mössner, Joachim; Berg, Thomas; Tröltzsch, Michael; Keim, Volker; Wiegand, Johannes

    2012-01-01

    Background Cystic fibrosis-related liver disease (CFLD) is present in up to 30% of cystic fibrosis patients and can result in progressive liver failure. Diagnosis of CFLD is challenging. Non-invasive methods for staging of liver fibrosis display an interesting diagnostic approach for CFLD detection. Aim We evaluated transient elastography (TE), acoustic radiation force impulse imaging (ARFI), and fibrosis indices for CFLD detection. Methods TE and ARFI were performed in 55 adult CF patients. In addition, AST/Platelets-Ratio-Index (APRI), and Forns' score were calculated. Healthy probands and patients with alcoholic liver cirrhosis served as controls. Results Fourteen CF patients met CFLD criteria, six had liver cirrhosis. Elastography acquisition was successful in >89% of cases. Non-cirrhotic CFLD individuals showed elastography values similar to CF patients without liver involvement. Cases with liver cirrhosis differed significantly from other CFLD patients (ARFI: 1.49 vs. 1.13 m/s; p = 0.031; TE: 7.95 vs. 4.16 kPa; p = 0.020) and had significantly lower results than individuals with alcoholic liver cirrhosis (ARFI: 1.49 vs. 2.99 m/s; p = 0.002). APRI showed the best diagnostic performance for CFLD detection (AUROC 0.815; sensitivity 85.7%, specificity 70.7%). Conclusions ARFI, TE, and laboratory based fibrosis indices correlate with each other and reliably detect CFLD related liver cirrhosis in adult CF patients. CF specific cut-off values for cirrhosis in adults are lower than in alcoholic cirrhosis. PMID:22848732

  9. A Finite-Element Method Model of Soft Tissue Response to Impulsive Acoustic Radiation Force

    PubMed Central

    Palmeri, Mark L.; Sharma, Amy C.; Bouchard, Richard R.; Nightingale, Roger W.; Nightingale, Kathryn R

    2010-01-01

    Several groups are studying acoustic radiation force and its ability to image the mechanical properties of tissue. Acoustic radiation force impulse (ARFI) imaging is one modality using standard diagnostic ultrasound scanners to generate localized, impulsive, acoustic radiation forces in tissue. The dynamic response of tissue is measured via conventional ultrasonic speckle-tracking methods and provides information about the mechanical properties of tissue. A finite-element method (FEM) model has been developed that simulates the dynamic response of tissues, with and without spherical inclusions, to an impulsive acoustic radiation force excitation from a linear array transducer. These FEM models were validated with calibrated phantoms. Shear wave speed, and therefore elasticity, dictates tissue relaxation following ARFI excitation, but Poisson’s ratio and density do not significantly alter tissue relaxation rates. Increased acoustic attenuation in tissue increases the relative amount of tissue displacement in the near field compared with the focal depth, but relaxation rates are not altered. Applications of this model include improving image quality, and distilling material and structural information from tissue’s dynamic response to ARFI excitation. Future work on these models includes incorporation of viscous material properties and modeling the ultrasonic tracking of displaced scatterers. PMID:16382621

  10. Ultrasound Elastography: Review of Techniques and Clinical Applications

    PubMed Central

    Sigrist, Rosa M.S.; Liau, Joy; Kaffas, Ahmed El; Chammas, Maria Cristina; Willmann, Juergen K.

    2017-01-01

    Elastography-based imaging techniques have received substantial attention in recent years for non-invasive assessment of tissue mechanical properties. These techniques take advantage of changed soft tissue elasticity in various pathologies to yield qualitative and quantitative information that can be used for diagnostic purposes. Measurements are acquired in specialized imaging modes that can detect tissue stiffness in response to an applied mechanical force (compression or shear wave). Ultrasound-based methods are of particular interest due to its many inherent advantages, such as wide availability including at the bedside and relatively low cost. Several ultrasound elastography techniques using different excitation methods have been developed. In general, these can be classified into strain imaging methods that use internal or external compression stimuli, and shear wave imaging that use ultrasound-generated traveling shear wave stimuli. While ultrasound elastography has shown promising results for non-invasive assessment of liver fibrosis, new applications in breast, thyroid, prostate, kidney and lymph node imaging are emerging. Here, we review the basic principles, foundation physics, and limitations of ultrasound elastography and summarize its current clinical use and ongoing developments in various clinical applications. PMID:28435467

  11. Effect of depth on shear-wave elastography estimated in the internal and external cervical os during pregnancy

    PubMed Central

    Hernandez-Andrade, Edgar; Aurioles-Garibay, Alma; Garcia, Maynor; Korzeniewski, Steven J.; Schwartz, Alyse G.; Ahn, Hyunyoung; Martinez-Varea, Alicia; Yeo, Lami; Chaiworapongsa, Tinnakorn; Hassan, Sonia S.; Romero, Roberto

    2014-01-01

    Aim To investigate the effect of depth on cervical shear-wave elastography. Methods Shear-wave elastography was applied to estimate the velocity of propagation of the acoustic force impulse (shear-wave) in the cervix of 154 pregnant women at 11-36 weeks of gestation. Shear-wave speed (SWS) was evaluated in cross-sectional views of the internal and external cervical os in five regions of interest: anterior, posterior, lateral right, lateral left, and endocervix. Distance from the center of the US transducer to the center of the each region of interest was registered. Results In all regions, SWS decreased significantly with gestational age (p=0.006). In the internal os SWS was similar among the anterior, posterior and lateral regions, and lower in the endocervix. In the external os, the endocervix and anterior regions showed similar SWS values, lower than those from the posterior and lateral regions. In the endocervix, these differences remained significant after adjustment for depth, gestational age and cervical length. SWS estimations in all regions of the internal os were higher than those of the external os, suggesting denser tissue. Conclusion Depth from the ultrasound probe to different regions in the cervix did not significantly affect the SWS estimations. PMID:25029081

  12. Dynamical relations for left ventricular ejection - Flow rate, momentum, force and impulse

    NASA Technical Reports Server (NTRS)

    Back, L. H.; Selzer, R. H.; Gordon, D. G.; Ledbetter, D. C.; Crawford, D. W.

    1984-01-01

    An investigation was carried out to quantitatively evaluate left ventricular volume flow rate, momentum, force and impulse derived from application of conservation principles for mass and momentum of blood within the ventricle during the ejection phase. An automated digital image processing system was developed and applied to left ventricular angiograms which are computer processed and analyzed frame by frame to determine the dynamical relations by numerical methods. The initial experience with force and impulse has indicated that neither quantity seemed to be a sensitive indicator of coronary artery disease as evaluated by qualitative angiography for the particular patient group studied. Utilization of the dynamical relations in evaluating human left ventricular performance requires improved means of measurement and interpretation of clinical studies.

  13. Added value of Virtual Touch IQ shear wave elastography in the ultrasound assessment of breast lesions.

    PubMed

    Ianculescu, Victor; Ciolovan, Laura Maria; Dunant, Ariane; Vielh, Philippe; Mazouni, Chafika; Delaloge, Suzette; Dromain, Clarisse; Blidaru, Alexandru; Balleyguier, Corinne

    2014-05-01

    To determine the diagnostic performance of Acoustic Radiation Force Impulse (ARFI) Virtual Touch IQ shear wave elastography in the discrimination of benign and malignant breast lesions. Conventional B-mode and elasticity imaging were used to evaluate 110 breast lesions. Elastographic assessment of breast tissue abnormalities was done using a shear wave based technique, Virtual Touch IQ (VTIQ), implemented on a Siemens Acuson S3000 ultrasound machine. Tissue mechanical properties were interpreted as two-dimensional qualitative and quantitative colour maps displaying relative shear wave velocity. Wave speed measurements in m/s were possible at operator defined regions of interest. The pathologic diagnosis was established on samples obtained by ultrasound guided core biopsy or fine needle aspiration. BIRADS based B-mode evaluation of the 48 benign and 62 malignant lesions achieved 92% sensitivity and 62.5% specificity. Subsequently performed VTIQ elastography relying on visual interpretation of the colour overlay displaying relative shear wave velocities managed similar standalone diagnostic performance with 92% sensitivity and 64.6% specificity. Lesion and surrounding tissue shear wave speed values were calculated and a significant difference was found between the benign and malignant populations (Mann-Whitney U test, p<0.0001). By selecting a lesion cut-off value of 3.31m/s we achieved 80.4% sensitivity and 73% specificity. Applying this threshold only to BIRADS 4a masses, we reached overall levels of 92% sensitivity and 72.9% specificity. VTIQ qualitative and quantitative elastography has the potential to further characterise B-mode detected breast lesions, increasing specificity and reducing the number of unnecessary biopsies. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  14. SU-E-J-76: Incorporation of Ultrasound Elastography in Target Volume Delineation for Partial Breast Radiotherapy Planning: A Comparative Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Juneja, P; Harris, E; Bamber, J

    2014-06-01

    Purpose: There is substantial observer variability in the delineation of target volumes for post-surgical partial breast radiotherapy because the tumour bed has poor x-ray contrast. This variability may result in substantial variations in planned dose distribution. Ultrasound elastography (USE) has an ability to detect mechanical discontinuities and therefore, the potential to image the scar and distortion in breast tissue architecture. The goal of this study was to compare USE techniques: strain elastography (SE), shear wave elastography (SWE) and acoustic radiation force impulse (ARFI) imaging using phantoms that simulate features of the tumour bed, for the purpose of incorporating USE inmore » breast radiotherapy planning. Methods: Three gelatine-based phantoms (10% w/v) containing: a stiff inclusion (gelatine 16% w/v) with adhered boundaries, a stiff inclusion (gelatine 16% w/v) with mobile boundaries and fluid cavity inclusion (to mimic seroma), were constructed and used to investigate the USE techniques. The accuracy of the elastography techniques was quantified by comparing the imaged inclusion with the modelled ground-truth using the Dice similarity coefficient (DSC). For two regions of interest (ROI), the DSC measures their spatial overlap. Ground-truth ROIs were modelled using geometrical measurements from B-mode images. Results: The phantoms simulating stiff scar tissue with adhered and mobile boundaries and seroma were successfully developed and imaged using SE and SWE. The edges of the stiff inclusions were more clearly visible in SE than in SWE. Subsequently, for all these phantoms the measured DSCs were found to be higher for SE (DSCs: 0.91–0.97) than SWE (DSCs: 0.68–0.79) with an average relative difference of 23%. In the case of seroma phantom, DSC values for SE and SWE were similar. Conclusion: This study presents a first attempt to identify the most suitable elastography technique for use in breast radiotherapy planning. Further analysis

  15. Shear Wave Imaging of Breast Tissue by Color Doppler Shear Wave Elastography.

    PubMed

    Yamakoshi, Yoshiki; Nakajima, Takahito; Kasahara, Toshihiro; Yamazaki, Mayuko; Koda, Ren; Sunaguchi, Naoki

    2017-02-01

    Shear wave elastography is a distinctive method to access the viscoelastic characteristic of the soft tissue that is difficult to obtain by other imaging modalities. This paper proposes a novel shear wave elastography [color Doppler shear wave imaging (CD SWI)] for breast tissue. Continuous shear wave is produced by a small lightweight actuator, which is attached to the tissue surface. Shear wave wavefront that propagates in tissue is reconstructed as a binary pattern that consists of zero and the maximum flow velocities on color flow image (CFI). Neither any modifications of the ultrasound color flow imaging instrument nor a high frame rate ultrasound imaging instrument is required to obtain the shear wave wavefront map. However, two conditions of shear wave displacement amplitude and shear wave frequency are needed to obtain the map. However, these conditions are not severe restrictions in breast imaging. This is because the minimum displacement amplitude is [Formula: see text] for an ultrasonic wave frequency of 12 MHz and the shear wave frequency is available from several frequencies suited for breast imaging. Fourier analysis along time axis suppresses clutter noise in CFI. A directional filter extracts shear wave, which propagates in the forward direction. Several maps, such as shear wave phase, velocity, and propagation maps, are reconstructed by CD SWI. The accuracy of shear wave velocity measurement is evaluated for homogeneous agar gel phantom by comparing with the acoustic radiation force impulse method. The experimental results for breast tissue are shown for a shear wave frequency of 296.6 Hz.

  16. Targeted isometric force impulses in patients with traumatic brain injury reveal delayed motor programming and change of strategy.

    PubMed

    Cantagallo, Anna; Di Russo, Francesco; Favilla, Marco; Zoccolotti, Pierluigi

    2015-04-15

    The capability of quickly (as soon as possible) producing fast uncorrected and accurate isometric force impulses was examined to assess the motor efficiency of patients with moderate to severe traumatic brain injury (TBI) and good motor recovery at a clinical evaluation. Twenty male right-handed patients with moderate to severe TBI and 24 age-matched healthy male right-handed controls participated in the study. The experimental task required subjects to aim brief and uncorrected isometric force impulses to targets visually presented along with subjects' force displays. Both TBI patients and controls were able to produce force impulses whose mean peak amplitudes varied proportionally to the target load with no detectable group difference. Patients with TBI, however, were slower than controls in initiating their responses (reaction times [RTs] were longer by 125 msec) and were also slower during the execution of their motor responses, reaching the peak forces requested 23 msec later than controls (time to peak force: 35% delay). Further, their mean dF/dt (35 kg/sec) was slower than that of controls (53 kg/sec), again indicating a 34% impairment with respect to controls. Overall, patients with TBI showed accurate but delayed and slower isometric force impulses. Thus, an evaluation taking into account also response time features is more effective in picking up motor impairments than the standard clinical scales focusing on accuracy of movement only.

  17. Mechanics of ultrasound elastography

    PubMed Central

    Li, Guo-Yang

    2017-01-01

    Ultrasound elastography enables in vivo measurement of the mechanical properties of living soft tissues in a non-destructive and non-invasive manner and has attracted considerable interest for clinical use in recent years. Continuum mechanics plays an essential role in understanding and improving ultrasound-based elastography methods and is the main focus of this review. In particular, the mechanics theories involved in both static and dynamic elastography methods are surveyed. They may help understand the challenges in and opportunities for the practical applications of various ultrasound elastography methods to characterize the linear elastic, viscoelastic, anisotropic elastic and hyperelastic properties of both bulk and thin-walled soft materials, especially the in vivo characterization of biological soft tissues. PMID:28413350

  18. A novel 3D-printed mechanical actuator using centrifugal force for magnetic resonance elastography.

    PubMed

    Neumann, Wiebke; Schad, Lothar R; Zollner, Frank G

    2017-07-01

    Magnetic resonance elastography (MRE) is a technique for the quantification of tissue stiffness during MR examinations. It requires consistent methods for mechanical shear wave induction to the region of interest in the human body to reliably quantify elastic properties of soft tissues. This work proposes a novel 3D-printed mechanical actuator using the principle of centrifugal force for wave induction. The driver consists of a 3D-printed turbine vibrator powered by compressed air (located inside the scanner room) and an active driver controlling the pressure of inflowing air (placed outside the scanner room). The generated force of the proposed actuator increases for higher actuation frequencies as opposed to conventionally used air cushions. There, the displacement amplitude decreases with increasing actuation frequency resulting in a smaller signal-to-noise ratio. An initial phantom study is presented which demonstrates the feasibility of the actuator for MRE. The wave-actuation frequency was regulated in a range between 15 Hz and 60 Hz for force measurements and proved sufficiently stable (± 0.3 Hz) for any given nominal frequency. The generated forces depend on the weight of the eccentric unbalance within the turbine and ranged between 0.67 N to 2.70 N (for 15 Hz) and 3.09 N to 7.77 N (for 60 Hz). Therefore, the generated force of the presented actuator increases with rotational speed of the turbine and offers an elegant solution for sufficiently large wave actuation at higher frequencies. In future work, we will investigate an optimal ratio of the weight of unbalance to the size of turbine for appropriately large but tolerable wave actuation for a given nominal frequency.

  19. Liver elastography, comments on EFSUMB elastography guidelines 2013

    PubMed Central

    Cui, Xin-Wu; Friedrich-Rust, Mireen; Molo, Chiara De; Ignee, Andre; Schreiber-Dietrich, Dagmar; Dietrich, Christoph F

    2013-01-01

    Recently the European Federation of Societies for Ultrasound in Medicine and Biology Guidelines and Recommendations have been published assessing the clinical use of ultrasound elastography. The document is intended to form a reference and to guide clinical users in a practical way. They give practical advice for the use and interpretation. Liver disease forms the largest section, reflecting published experience to date including evidence from meta-analyses with shear wave and strain elastography. In this review comments and illustrations on the guidelines are given. PMID:24151351

  20. Study on the impulsive pressure of tank oscillating by force towards multiple degrees of freedom

    NASA Astrophysics Data System (ADS)

    Hibi, Shigeyuki

    2018-06-01

    Impulsive loads should be excited under nonlinear phenomena with free surface fluctuating severely such as sloshing and slamming. Estimating impulsive loads properly are important to recent numerical simulations. But it is still difficult to rely on the results of simulations perfectly because of the nonlinearity of the phenomena. In order to develop the algorithm of numerical simulations experimental results of nonlinear phenomena are needed. In this study an apparatus which can oscillate a tank by force was introduced in order to investigate impulsive pressure on the wall of the tank. This apparatus can oscillate it simultaneously towards 3 degrees of freedom with each phase differences. The impulsive pressure under the various combinations of oscillation direction was examined and the specific phase differences to appear the largest peak values of pressure were identified. Experimental results were verified through FFT analysis and statistical methods.

  1. Comparison of ultrasound B-mode, strain imaging, acoustic radiation force impulse displacement and shear wave velocity imaging using real time clinical breast images

    NASA Astrophysics Data System (ADS)

    Manickam, Kavitha; Machireddy, Ramasubba Reddy; Raghavan, Bagyam

    2016-04-01

    It has been observed that many pathological process increase the elastic modulus of soft tissue compared to normal. In order to image tissue stiffness using ultrasound, a mechanical compression is applied to tissues of interest and local tissue deformation is measured. Based on the mechanical excitation, ultrasound stiffness imaging methods are classified as compression or strain imaging which is based on external compression and Acoustic Radiation Force Impulse (ARFI) imaging which is based on force generated by focused ultrasound. When ultrasound is focused on tissue, shear wave is generated in lateral direction and shear wave velocity is proportional to stiffness of tissues. The work presented in this paper investigates strain elastography and ARFI imaging in clinical cancer diagnostics using real time patient data. Ultrasound B-mode imaging, strain imaging, ARFI displacement and ARFI shear wave velocity imaging were conducted on 50 patients (31 Benign and 23 malignant categories) using Siemens S2000 machine. True modulus contrast values were calculated from the measured shear wave velocities. For ultrasound B-mode, ARFI displacement imaging and strain imaging, observed image contrast and Contrast to Noise Ratio were calculated for benign and malignant cancers. Observed contrast values were compared based on the true modulus contrast values calculated from shear wave velocity imaging. In addition to that, student unpaired t-test was conducted for all the four techniques and box plots are presented. Results show that, strain imaging is better for malignant cancers whereas ARFI imaging is superior than strain imaging and B-mode for benign lesions representations.

  2. [Renal elastography].

    PubMed

    Correas, Jean-Michel; Anglicheau, Dany; Gennisson, Jean-Luc; Tanter, Mickael

    2016-04-01

    Renal elastography has become available with the development of noninvasive quantitative techniques (including shear-wave elastography), following the rapidly growing field of diagnosis and quantification of liver fibrosis, which has a demonstrated major clinical impact. Ultrasound or even magnetic resonance techniques are leaving the pure research area to reach the routine clinical use. With the increased incidence of chronic kidney disease and its specific morbidity and mortality, the noninvasive diagnosis of renal fibrosis can be of critical value. However, it is difficult to simply extend the application from one organ to the other due to a large number of anatomical and technical issues. Indeed, the kidney exhibits various features that make stiffness assessment more complex, such as the presence of various tissue types (cortex, medulla), high spatial orientation (anisotropy), local blood flow, fatty sinus with variable volume and echotexture, perirenal space with variable fatty content, and the variable depth of the organ. Furthermore, the stiffness changes of the renal parenchyma are not exclusively related to fibrosis, as renal perfusion or hydronephrosis will impact the local elasticity. Renal elastography might be able to diagnose acute or chronic obstruction, or to renal tumor or pseudotumor characterization. Today, renal elastography appears as a promising application that still requires optimization and validation, which is the contrary for liver stiffness assessment. Copyright © 2016 Association Société de néphrologie. Published by Elsevier SAS. All rights reserved.

  3. Nonlinear characterization of elasticity using quantitative optical coherence elastography.

    PubMed

    Qiu, Yi; Zaki, Farzana R; Chandra, Namas; Chester, Shawn A; Liu, Xuan

    2016-11-01

    Optical coherence elastography (OCE) has been used to perform mechanical characterization on biological tissue at the microscopic scale. In this work, we used quantitative optical coherence elastography (qOCE), a novel technology we recently developed, to study the nonlinear elastic behavior of biological tissue. The qOCE system had a fiber-optic probe to exert a compressive force to deform tissue under the tip of the probe. Using the space-division multiplexed optical coherence tomography (OCT) signal detected by a spectral domain OCT engine, we were able to simultaneously quantify the probe deformation that was proportional to the force applied, and to quantify the tissue deformation. In other words, our qOCE system allowed us to establish the relationship between mechanical stimulus and tissue response to characterize the stiffness of biological tissue. Most biological tissues have nonlinear elastic behavior, and the apparent stress-strain relationship characterized by our qOCE system was nonlinear an extended range of strain, for a tissue-mimicking phantom as well as biological tissues. Our experimental results suggested that the quantification of force in OCE was critical for accurate characterization of tissue mechanical properties and the qOCE technique was capable of differentiating biological tissues based on the elasticity of tissue that is generally nonlinear.

  4. The effect of total hip and hip resurfacing arthroplasty on vertical ground reaction force and impulse symmetry during a sit-to-stand task.

    PubMed

    Caplan, N; Stewart, S; Kashyap, S; Banaszkiewicz, P; St Clair Gibson, A; Kader, D; Ewen, A

    2014-12-01

    The aim of this study was to determine the influence of total hip arthroplasty and hip resurfacing arthroplasty on limb loading symmetry before, and after, hip reconstruction surgery during a sit-to-stand task. Fourteen patients were recruited that were about to receive either a total hip prosthesis (n=7) or a hip resurfacing prosthesis (n=7), as well as matched controls. Patients performed a sit-to-stand movement before, 3 months after, and 12 months after surgery. Peak vertical ground reaction force and impulse were measured for each leg, from which ground reaction force and impulse symmetry ratios were calculated. Before surgery, hip resurfacing patients showed a small asymmetry which was not different to normal for ground reaction force (0.88(0.28) vs. 1.00(0.11); p=0.311) or impulse (0.87(0.29) vs. 0.99(0.09); p=0.324) symmetry ratios. Total hip patients offloaded their affected hip by 30% in terms of impulse symmetry ratio (0.71(0.36) vs. 0.99(0.23); p=0.018). At 3 months following surgery asymmetries were seen that were different to normal in both hip resurfacing patients for ground reaction force (0.77(0.16); p=0.007), and total hip patients for ground reaction force (0.70(0.15); p=0.018) and impulse (0.72(0.16); p=0.011) symmetry ratios. By 12 months after surgery total hip patients regained a symmetrical loading pattern for both ground reaction force (0.95(0.06); p=0.676) and impulse (1.00(0.06); p=0.702) symmetry ratios. Hip resurfacing patients, however, performed the task by overloading their operated hip, with impulse symmetry ratio being larger than normal (1.16(0.16); p=0.035). Physiotherapists should appreciate the need for early recovery of limb loading symmetry as well as subsequent differences in the responses observed with different prostheses. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Strain Elastography - How To Do It?

    PubMed Central

    Dietrich, Christoph F.; Barr, Richard G.; Farrokh, André; Dighe, Manjiri; Hocke, Michael; Jenssen, Christian; Dong, Yi; Saftoiu, Adrian; Havre, Roald Flesland

    2017-01-01

    Tissue stiffness assessed by palpation for diagnosing pathology has been used for thousands of years. Ultrasound elastography has been developed more recently to display similar information on tissue stiffness as an image. There are two main types of ultrasound elastography, strain and shear wave. Strain elastography is a qualitative technique and provides information on the relative stiffness between one tissue and another. Shear wave elastography is a quantitative method and provides an estimated value of the tissue stiffness that can be expressed in either the shear wave speed through the tissues in meters/second, or converted to the Young’s modulus making some assumptions and expressed in kPa. Each technique has its advantages and disadvantages and they are often complimentary to each other in clinical practice. This article reviews the principles, technique, and interpretation of strain elastography in various organs. It describes how to optimize technique, while pitfalls and artifacts are also discussed. PMID:29226273

  6. Practice guideline for the performance of breast ultrasound elastography.

    PubMed

    Lee, Su Hyun; Chang, Jung Min; Cho, Nariya; Koo, Hye Ryoung; Yi, Ann; Kim, Seung Ja; Youk, Ji Hyun; Son, Eun Ju; Choi, Seon Hyeong; Kook, Shin Ho; Chung, Jin; Cha, Eun Suk; Park, Jeong Seon; Jung, Hae Kyoung; Ko, Kyung Hee; Choi, Hye Young; Ryu, Eun Bi; Moon, Woo Kyung

    2014-01-01

    Ultrasound (US) elastography is a valuable imaging technique for tissue characterization. Two main types of elastography, strain and shear-wave, are commonly used to image breast tissue. The use of elastography is expected to increase, particularly with the increased use of US for breast screening. Recently, the US elastographic features of breast masses have been incorporated into the 2nd edition of the Breast Imaging Reporting and Data System (BI-RADS) US lexicon as associated findings. This review suggests practical guidelines for breast US elastography in consensus with the Korean Breast Elastography Study Group, which was formed in August 2013 to perform a multicenter prospective study on the use of elastography for US breast screening. This article is focused on the role of elastography in combination with B-mode US for the evaluation of breast masses. Practical tips for adequate data acquisition and the interpretation of elastography results are also presented.

  7. Sonographic Elastography of Mastitis.

    PubMed

    Sousaris, Nicholas; Barr, Richard G

    2016-08-01

    Sonographic elastography has been shown to be a useful imaging modality in characterizing breast lesions as benign or malignant. However, in preliminary research, mastitis has given false-positive findings on both strain and shear wave elastography. In this article, we review the findings in mastitis with and without abscess formation on both strain and shear wave elastography. The elastographic findings in all cases were suggestive of a malignancy according to published thresholds. In cases of mastitis with abscess formation, there is a characteristic appearance, with a central very soft area (abscess cavity) and a very stiff outer rim (edema and inflammation). This appearance should raise the suspicion of mastitis with abscess formation, since these findings are rare in breast cancers.

  8. Bubble mass center and fluid feedback force fluctuations activated by constant lateral impulse with variable thrust

    NASA Technical Reports Server (NTRS)

    Hung, R. J.; Long, Y. T.

    1995-01-01

    Sloshing dynamics within a partially filled rotating dewar of superfluid helium 2 are investigated in response to constant lateral impulse with variable thrust. The study, including how the rotating bubble of superfluid helium 2 reacts to the constant impulse with variable time period of thrust action in microgravity, how amplitudes of bubble mass center fluctuates with growth and decay of disturbances, and how fluid feedback forces fluctuates in activating on the rotating dewar through the dynamics of sloshing waves are investigated. The numerical computation of sloshing dynamics is based on the non-inertial frame spacecraft bound coordinate with lateral impulses actuating on the rotating dewar in both inertial and non-inertial frames of thrust. Results of the simulations are illustrated.

  9. Performance of real-time strain elastography, transient elastography, and aspartate-to-platelet ratio index in the assessment of fibrosis in chronic hepatitis C.

    PubMed

    Ferraioli, Giovanna; Tinelli, Carmine; Malfitano, Antonello; Dal Bello, Barbara; Filice, Gaetano; Filice, Carlo; Above, Elisabetta; Barbarini, Giorgio; Brunetti, Enrico; Calderon, Willy; Di Gregorio, Marta; Lissandrin, Raffaella; Ludovisi, Serena; Maiocchi, Laura; Michelone, Giuseppe; Mondelli, Mario; Patruno, Savino F A; Perretti, Alessandro; Poma, Gianluigi; Sacchi, Paolo; Zaramella, Marco; Zicchetti, Mabel

    2012-07-01

    The purpose of this article is to evaluate the diagnostic performance of transient elastography, real-time strain elastography, and aspartate-to-platelet ratio index in assessing fibrosis in patients with chronic hepatitis C by using histologic Metavir scores as reference standard. Consecutive patients with chronic hepatitis C scheduled for liver biopsy were enrolled. Liver biopsy was performed on the same day as transient elastography and real-time strain elastography. Transient elastography and real-time strain elastography were performed in the same patient encounter by a single investigator using a medical device based on elastometry and an ultrasound machine, respectively. Diagnostic performance was assessed by using receiver operating characteristic curves and area under the receiver operating characteristic curve (AUC) analysis. One hundred thirty patients (91 men and 39 women) were analyzed. The cutoff values for transient elastography, real-time strain elastography, and aspartate-to-platelet ratio index were 6.9 kPa, 1.82, and 0.37, respectively, for fibrosis score of 2 or higher; 7.3 kPa, 1.86, and 0.70, respectively, for fibrosis score of 3 or higher; and 9.3 kPa, 2.33, and 0.70, respectively, for fibrosis score of 4. AUC values of transient elastography, real-time strain elastography, aspartate-to-platelet ratio index were 0.88, 0.74, and 0.86, respectively, for fibrosis score of 2 or higher; 0.95, 0.80, and 0.89, respectively, for fibrosis score of 3 or higher; and 0.97, 0.80, and 0.84, respectively, for fibrosis score of 4. A combination of the three methods, when two of three were in agreement, showed AUC curves of 0.93, 0.95, and 0.95 for fibrosis scores of 2 or higher, 3 or higher, and 4, respectively. Transient elastography, real-time strain elastography, and aspartate-to-platelet ratio index values were correlated with histologic stages of fibrosis. Transient elastography offered excellent diagnostic performance in assessing severe fibrosis and

  10. Elastography methods applicable to the eye

    NASA Astrophysics Data System (ADS)

    Khan, Altaf A.; Cortina, Soledad M.; Chamon, Wallace; Royston, Thomas J.

    2014-02-01

    Elastography is the mapping of tissues and cells by their respective mechanical properties, such as elasticity and viscosity. Our interest primarily lies in the human eye. Combining Scanning Laser Doppler Vibrometry (SLDV) with geometrically focused mechanical vibratory excitations of the cornea, it is possible to reconstruct these mechanical properties of the cornea. Experiments were conducted on phantom corneas as well as excised donor human corneas to test feasibility and derive a method of modeling. Finite element analysis was used to recreate the phantom studies and corroborate with the experimental data. Results are in close agreement. To further expand the study, lamb eyes were used in MR Elastography studies. 3D wave reconstruction was created and elastography maps were obtained. With MR Elastography, it would be possible to noninvasively measure mechanical properties of anatomical features not visible to SLDV, such as the lens and retina. Future plans include creating a more robust finite element model, improving the SLDV method for in-vivo application, and continuing experiments with MR Elastography.

  11. Shear-wave elastography of the breast: value of a quality measure and comparison with strain elastography.

    PubMed

    Barr, Richard G; Zhang, Zheng

    2015-04-01

    To determine whether addition of quality measure (QM) of shear-wave (SW) velocity (Vs) estimation can increase SW elastography sensitivity for breast cancer. With written informed consent, this institutional review board-approved, HIPAA-compliant study included 143 women (mean age, 48.5 years ± 8.7) scheduled for breast biopsy. Mean lesion size was 16.4 mm ± 11.8; 95 (66%) lesions were benign; 48 (34%), malignant. If more than one lesion was present, lesion with highest Breast Imaging Reporting and Data System (BI-RADS) category was chosen. If there were more than one with highest BI-RADS category, a lesion was randomly selected. Conventional ultrasonography (US), strain elastography, and SW elastography were performed with QM. QM assesses SW quality to provide accurate Vs. Lesions were evaluated for Vs and QM (high or low). Lesions with Vs of less than 4.5 m/sec were classified benign; lesions with Vs of 4.5 m/sec or greater, malignant. Results were correlated with pathologic findings. Vs data with or without incorporating QM were used to determine SW elastography diagnostic performance. Binomial proportions and exact 95% confidence intervals (CIs) were calculated. In 95 benign lesions, 13 (14%) had no SW elastography signal; 77 (81%), Vs of less than 4.5 m/sec; and five (5%), Vs of 4.5 m/sec or greater. In 48 malignant lesions, eight (17%) had no SW elastography signal; 20 (42%), Vs of less than 4.5 m/sec; and 20 (42%), V of 4.5 m/sec or greater. QM was low in 17 of 20 (85%) malignant lesions with Vs of less than 4.5 m/sec. Without QM, using Vs of 4.5 m/sec or greater as test positive, SW elastography had lesion-level sensitivity of 50% (95% CI: 34%, 66%); specificity, 94% (95% CI: 86%, 98%); positive predictive value (PPV), 80% (95% CI: 59%, 93%); and negative predictive value (NPV), 79% (95% CI: 70%, 87%). Using QM where additional lesions with both low Vs and low QM were treated as test positive, SW elastography had lesion-level sensitivity of 93% (95% CI

  12. Ultrasound Elastography and MR Elastography for Assessing Liver Fibrosis: Part 2, Diagnostic Performance, Confounders, and Future Directions

    PubMed Central

    Tang, An; Cloutier, Guy; Szeverenyi, Nikolaus M.; Sirlin, Claude B.

    2016-01-01

    OBJECTIVE The purpose of the article is to review the diagnostic performance of ultrasound and MR elastography techniques for detection and staging of liver fibrosis, the main current clinical applications of elastography in the abdomen. CONCLUSION Technical and instrument-related factors and biologic and patient-related factors may constitute potential confounders of stiffness measurements for assessment of liver fibrosis. Future developments may expand the scope of elastography for monitoring liver fibrosis and predict complications of chronic liver disease. PMID:25905762

  13. Acoustic radiation force impulse tissue characterization of the anterior talofibular ligament: A promising non-invasive approach in ankle imaging.

    PubMed

    Hotfiel, Thilo; Heiss, Rafael; Janka, Rolf; Forst, Raimund; Raithel, Martine; Lutter, Christoph; Gelse, Kolja; Pachowsky, Milena; Golditz, Tobias

    2018-06-09

    The anterior talofibular ligament (ATFL) is the most frequently injured ligament during inversion strains of the ankle. The purpose of this study was to evaluate the feasibility of acoustic radiation force impulse (ARFI) elastography and to determine the in vivo mechanical properties of the ATFL in healthy athletes. Fifty-one healthy athletes (32 female, 28 male; 29 ±2 years) were recruited from the medical and sports faculty. ARFI values, represented as shear wave velocities (SWV) as well as conventional ultrasound were obtained for the ATFL in neutral ankle position. A clinical assessment was performed in which the American Orthopaedic Foot & Ankle Society (AOFAS) Ankle-Hindfoot Score and the functional ankle ability measure (FAAM) were collected. Interobserver and intraobserver reliability (repeated sessions and repeated days) were assessed using an intra class correlation coefficient (ICC) and typical error (TE) calculation in absolute (TE) and relative units as coefficient of the variation (CV). SWV values of the ATFL had an average velocity of 1.79±0.34 m/s for all participants, with an average of 1.72±0.36 m/s for females and 1.85±0.31 m/s for males. The interobserver and intraobserver reliability revealed an ICC of 0.902 and 0.933 (TE of 0.67 (CV: 5.2 % and 0.51 m/s (CV: 3.83 %), respectively. FAAM and AOFAS revealed the best possible scores. ARFI seems to be a valuable diagnostic modality and represents a promising imaging marker for the assessment and monitoring of ankle ligaments in the context of acute and chronic ankle instabilities; ARFI could also be used to investigate loading or sport dependent adaptions.

  14. Robust intravascular optical coherence elastography driven by acoustic radiation pressure

    NASA Astrophysics Data System (ADS)

    van Soest, Gijs; Bouchard, Richard R.; Mastik, Frits; de Jong, Nico; van der Steen, Anton F. W.

    2007-07-01

    High strain spots in the vessel wall indicate the presence of vulnerable plaques. The majority of acute cardiovascular events are preceded by rupture of such a plaque in a coronary artery. Intracoronary optical coherence tomography (OCT) can be extended, in principle, to an elastography technique, mapping the strain in the vascular wall. However, the susceptibility of OCT to frame-to-frame decorrelation, caused by tissue and catheter motion, inhibits reliable tissue displacement tracking and has to date obstructed the development of OCT-based intravascular elastography. We introduce a new technique for intravascular optical coherence elastography, which is robust against motion artifacts. Using acoustic radiation force, we apply a pressure to deform the tissue synchronously with the line scan rate of the OCT instrument. Radial tissue displacement can be tracked based on the correlation between adjacent lines, instead of subsequent frames in conventional elastography. The viability of the method is demonstrated with a simulation study. The root mean square (rms) error of the displacement estimate is 0.55 μm, and the rms error of the strain is 0.6%. It is shown that high-strain spots in the vessel wall, such as observed at the sites of vulnerable atherosclerotic lesions, can be detected with the technique. Experiments to realize this new elastographic method are presented. Simultaneous optical and ultrasonic pulse-echo tracking demonstrate that the material can be put in a high-frequency oscillatory motion with an amplitude of several micrometers, more than sufficient for accurate tracking with OCT. The resulting data are used to optimize the acoustic pushing sequence and geometry.

  15. Optical Coherence Elastography

    NASA Astrophysics Data System (ADS)

    Kennedy, Brendan F.; Kennedy, Kelsey M.; Oldenburg, Amy L.; Adie, Steven G.; Boppart, Stephen A.; Sampson, David D.

    The mechanical properties of tissue are pivotal in its function and behavior, and are often modified by disease. From the nano- to the macro-scale, many tools have been developed to measure tissue mechanical properties, both to understand the contribution of mechanics in the origin of disease and to improve diagnosis. Optical coherence elastography is applicable to the intermediate scale, between that of cells and whole organs, which is critical in the progression of many diseases and not widely studied to date. In optical coherence elastography, a mechanical load is imparted to a tissue and the resulting deformation is measured using optical coherence tomography. The deformation is used to deduce a mechanical parameter, e.g., Young's modulus, which is mapped into an image, known as an elastogram. In this chapter, we review the development of optical coherence elastography and report on the latest developments. We provide a focus on the underlying principles and assumptions, techniques to measure deformation, loading mechanisms, imaging probes and modeling, including the inverse elasticity problem.

  16. Endoscopic Ultrasound Elastography: Current Clinical Use in Pancreas.

    PubMed

    Mondal, Utpal; Henkes, Nichole; Patel, Sandeep; Rosenkranz, Laura

    2016-08-01

    Elastography is a newer technique for the assessment of tissue elasticity using ultrasound. Cancerous tissue is known to be stiffer (hence, less elastic) than corresponding healthy tissue, and as a result, could be identified in an elasticity-based imaging. Ultrasound elastography has been used in the breast, thyroid, and cervix to differentiate malignant from benign neoplasms and to guide or avoid unnecessary biopsies. In the liver, elastography has enabled a noninvasive and reliable estimate of fibrosis. Endoscopic ultrasound has become a robust diagnostic and therapeutic tool for the management of pancreatic diseases. The addition of elastography to endoscopic ultrasound enabled further characterization of pancreas lesions, and several European and Asian studies have reported encouraging results. The current clinical role of endoscopic ultrasound elastography in the management of pancreas disorders and related literature are reviewed.

  17. Elastography Using Multi-Stream GPU: An Application to Online Tracked Ultrasound Elastography, In-Vivo and the da Vinci Surgical System

    PubMed Central

    Deshmukh, Nishikant P.; Kang, Hyun Jae; Billings, Seth D.; Taylor, Russell H.; Hager, Gregory D.; Boctor, Emad M.

    2014-01-01

    A system for real-time ultrasound (US) elastography will advance interventions for the diagnosis and treatment of cancer by advancing methods such as thermal monitoring of tissue ablation. A multi-stream graphics processing unit (GPU) based accelerated normalized cross-correlation (NCC) elastography, with a maximum frame rate of 78 frames per second, is presented in this paper. A study of NCC window size is undertaken to determine the effect on frame rate and the quality of output elastography images. This paper also presents a novel system for Online Tracked Ultrasound Elastography (O-TRuE), which extends prior work on an offline method. By tracking the US probe with an electromagnetic (EM) tracker, the system selects in-plane radio frequency (RF) data frames for generating high quality elastograms. A novel method for evaluating the quality of an elastography output stream is presented, suggesting that O-TRuE generates more stable elastograms than generated by untracked, free-hand palpation. Since EM tracking cannot be used in all systems, an integration of real-time elastography and the da Vinci Surgical System is presented and evaluated for elastography stream quality based on our metric. The da Vinci surgical robot is outfitted with a laparoscopic US probe, and palpation motions are autonomously generated by customized software. It is found that a stable output stream can be achieved, which is affected by both the frequency and amplitude of palpation. The GPU framework is validated using data from in-vivo pig liver ablation; the generated elastography images identify the ablated region, outlined more clearly than in the corresponding B-mode US images. PMID:25541954

  18. Elastography using multi-stream GPU: an application to online tracked ultrasound elastography, in-vivo and the da Vinci Surgical System.

    PubMed

    Deshmukh, Nishikant P; Kang, Hyun Jae; Billings, Seth D; Taylor, Russell H; Hager, Gregory D; Boctor, Emad M

    2014-01-01

    A system for real-time ultrasound (US) elastography will advance interventions for the diagnosis and treatment of cancer by advancing methods such as thermal monitoring of tissue ablation. A multi-stream graphics processing unit (GPU) based accelerated normalized cross-correlation (NCC) elastography, with a maximum frame rate of 78 frames per second, is presented in this paper. A study of NCC window size is undertaken to determine the effect on frame rate and the quality of output elastography images. This paper also presents a novel system for Online Tracked Ultrasound Elastography (O-TRuE), which extends prior work on an offline method. By tracking the US probe with an electromagnetic (EM) tracker, the system selects in-plane radio frequency (RF) data frames for generating high quality elastograms. A novel method for evaluating the quality of an elastography output stream is presented, suggesting that O-TRuE generates more stable elastograms than generated by untracked, free-hand palpation. Since EM tracking cannot be used in all systems, an integration of real-time elastography and the da Vinci Surgical System is presented and evaluated for elastography stream quality based on our metric. The da Vinci surgical robot is outfitted with a laparoscopic US probe, and palpation motions are autonomously generated by customized software. It is found that a stable output stream can be achieved, which is affected by both the frequency and amplitude of palpation. The GPU framework is validated using data from in-vivo pig liver ablation; the generated elastography images identify the ablated region, outlined more clearly than in the corresponding B-mode US images.

  19. Ultrasound elastography in diagnosis and follow-up for patients with chronic recurrent parotitis.

    PubMed

    Zengel, Pamela; Reichel, Christoph Andreas; Vincek, Teresa; Clevert, Dirk André

    2017-01-01

    Chronic recurrent parotitis (CRP) is a non-obstructive disease with episodes characterized by painful swelling of the parotid gland. It presents in both a juvenile and an adult form, with no clear information on its actual origin. Diagnosis is based on patient medical history and ultrasound examination but is frequently not correctly identified. Acoustic Radiation Force Impulse Imaging (ARFI) is a novel ultrasound elastography technology that has recently been implemented in the diagnostic work-up of patients with malignancies. This study aimed to answer whether ARFI can reasonably be employed in the initial examination and follow-up during therapy in patients with CRP. Mechanical tissue properties of the salivary glands were analyzed by ARFI in 37 parotid glands of patients with CRP. Having integrated ARFI into our diagnostic protocol for CRP, affected parotid glands were found to exhibit lower tissue elasticity compared to both healthy contralateral glands in the same individuals as well as those of healthy individuals. Most importantly, this method enabled us to quantitatively assess the patient benefit of therapy regarding the recovery of the glands' diseased parenchyma. ARFI provides a quick, easy, and reliable diagnostic tool for the assessment of disease severity and progression in patients with CRP that can be seamlessly implemented into preexisting ultrasound protocols.

  20. Acoustic radiation force impulse elastography, FibroScan®, Forns’ index and their combination in the assessment of liver fibrosis in patients with chronic hepatitis B, and the impact of inflammatory activity and steatosis on these diagnostic methods

    PubMed Central

    DONG, DAO-RAN; HAO, MEI-NA; LI, CHENG; PENG, ZE; LIU, XIA; WANG, GUI-PING; MA, AN-LIN

    2015-01-01

    The aim of the present study was to investigate the combination of certain serological markers (Forns’ index; FI), FibroScan® and acoustic radiation force impulse elastography (ARFI) in the assessment of liver fibrosis in patients with hepatitis B, and to explore the impact of inflammatory activity and steatosis on the accuracy of these diagnostic methods. Eighty-one patients who had been diagnosed with hepatitis B were recruited and the stage of fibrosis was determined by biopsy. The diagnostic accuracy of FI, FibroScan and ARFI, as well as that of the combination of these methods, was evaluated based on the conformity of the results from these tests with those of biopsies. The effect of concomitant inflammation on diagnostic accuracy was also investigated by dividing the patients into two groups based on the grade of inflammation (G<2 and G≥2). The overall univariate correlation between steatosis and the diagnostic value of the three methods was also evaluated. There was a significant association between the stage of fibrosis and the results obtained using ARFI and FibroScan (Kruskal-Wallis; P<0.001 for all patients), and FI (t-test, P<0.001 for all patients). The combination of FI with ARFI/FibroScan increased the predictive accuracy with a fibrosis stage of S≥2 or cirrhosis. There was a significant correlation between the grade of inflammation and the results obtained using ARFI and FibroScan (Kruskal-Wallis, P<0.001 for all patients), and FI (t-test; P<0.001 for all patients). No significant correlation was detected between the measurements obtained using ARFI, FibroScan and FI, and steatosis (r=−0.100, P=0.407; r=0.170, P=0.163; and r=0.154, P=0.216, respectively). ARFI was shown to be as effective in the diagnosis of liver fibrosis as FibroScan or FI, and the combination of ARFI or FibroScan with FI may improve the accuracy of diagnosis. The presence of inflammatory activity, but not that of steatosis, may affect the diagnostic accuracy of these

  1. From supersonic shear wave imaging to full-field optical coherence shear wave elastography

    NASA Astrophysics Data System (ADS)

    Nahas, Amir; Tanter, Mickaël; Nguyen, Thu-Mai; Chassot, Jean-Marie; Fink, Mathias; Claude Boccara, A.

    2013-12-01

    Elasticity maps of tissue have proved to be particularly useful in providing complementary contrast to ultrasonic imaging, e.g., for cancer diagnosis at the millimeter scale. Optical coherence tomography (OCT) offers an endogenous contrast based on singly backscattered optical waves. Adding complementary contrast to OCT images by recording elasticity maps could also be valuable in improving OCT-based diagnosis at the microscopic scale. Static elastography has been successfully coupled with full-field OCT (FF-OCT) in order to realize both micrometer-scale sectioning and elasticity maps. Nevertheless, static elastography presents a number of drawbacks, mainly when stiffness quantification is required. Here, we describe the combination of two methods: transient elastography, based on speed measurements of shear waves induced by ultrasonic radiation forces, and FF-OCT, an en face OCT approach using an incoherent light source. The use of an ultrafast ultrasonic scanner and an ultrafast camera working at 10,000 to 30,000 images/s made it possible to follow shear wave propagation with both modalities. As expected, FF-OCT is found to be much more sensitive than ultrafast ultrasound to tiny shear vibrations (a few nanometers and micrometers, respectively). Stiffness assessed in gel phantoms and an ex vivo rat brain by FF-OCT is found to be in good agreement with ultrasound shear wave elastography.

  2. Elastography in Chronic Liver Disease: Modalities, Techniques, Limitations, and Future Directions

    PubMed Central

    Srinivasa Babu, Aparna; Wells, Michael L.; Teytelboym, Oleg M.; Mackey, Justin E.; Miller, Frank H.; Yeh, Benjamin M.; Ehman, Richard L.

    2016-01-01

    Chronic liver disease has multiple causes, many of which are increasing in prevalence. The final common pathway of chronic liver disease is tissue destruction and attempted regeneration, a pathway that triggers fibrosis and eventual cirrhosis. Assessment of fibrosis is important not only for diagnosis but also for management, prognostic evaluation, and follow-up of patients with chronic liver disease. Although liver biopsy has traditionally been considered the reference standard for assessment of liver fibrosis, noninvasive techniques are the emerging focus in this field. Ultrasound-based elastography and magnetic resonance (MR) elastography are gaining popularity as the modalities of choice for quantifying hepatic fibrosis. These techniques have been proven superior to conventional cross-sectional imaging for evaluation of fibrosis, especially in the precirrhotic stages. Moreover, elastography has added utility in the follow-up of previously diagnosed fibrosis, the assessment of treatment response, evaluation for the presence of portal hypertension (spleen elastography), and evaluation of patients with unexplained portal hypertension. In this article, a brief overview is provided of chronic liver disease and the tools used for its diagnosis. Ultrasound-based elastography and MR elastography are explored in depth, including a brief glimpse into the evolution of elastography. Elastography is based on the principle of measuring tissue response to a known mechanical stimulus. Specific elastographic techniques used to exploit this principle include MR elastography and ultrasonography-based static or quasistatic strain imaging, one-dimensional transient elastography, point shear-wave elastography, and supersonic shear-wave elastography. The advantages, limitations, and pitfalls of each modality are emphasized. ©RSNA, 2016 PMID:27689833

  3. Differentiation of benign from malignant liver masses with Acoustic Radiation Force Impulse technique.

    PubMed

    Yu, Hojun; Wilson, Stephanie R

    2011-12-01

    The objective of the study was to determine the performance of Acoustic Radiation Force Impulse (ARFI) imaging to differentiate benign from malignant liver masses, both of hepatocellular origin and metastases, by quantification of their stiffness. This study has institutional review board approval and informed consent. Eighty-nine patients (42 female and 47 male patients) with 105 liver masses had ARFI evaluation on ultrasound, S2000 (Siemens, Mountain View, Calif). Mean age of the patients was 53.67 years (range, 27-83 years). Mean diameter of the masses was 2.77 cm (range, 1.0-13.0 cm). Final diagnoses, confirmed by imaging on contrast-enhanced computed tomography, magnetic resonance, or ultrasound or biopsy, include hepatocellular carcinoma (n = 28), metastasis (n = 13), hemangioma (n = 35), focal nodular hyperplasia (n = 15), focal fat sparing (n = 8), focal fat deposit (n = 4), and adenoma (n = 2). Receiver operating characteristic analysis was performed to evaluate the diagnostic accuracy of the ARFI measurement and to extract the optimal cutoff values in the differentiation of benign from malignant disease. Acoustic Radiation Force Impulse values showed a statistically significant difference between benign (1.73 [SD, 0.8] m/sec) and malignant masses (2.57 [SD, 1.01] m/sec) (P < 0.001). However, the area under the receiver operating characteristic curve was 0.744, suggesting only fair accuracy. For differentiation of malignant from benign masses, the sensitivity, specificity, positive predictive value, and negative predictive value were 68% (28/41), 69% (44/64), 58% (28/48), and 77% (44/57), respectively, when 1.9 m/sec was chosen as a cutoff value, reflective of a wide variation of ARFI values in each diagnosis. For differentiation of metastasis from benign masses, sensitivity, specificity, positive predictive value, and NPV were 69% (9/13), 89% (57/64), 56% (9/16), and 93% (57/61), respectively, when 2.72 m/sec was chosen as a cutoff value. Acoustic

  4. What we need to know when performing and interpreting US elastography

    PubMed Central

    Park, So Hyun; Kim, So Yeon; Suh, Chong Hyun; Lee, Seung Soo; Kim, Kyoung Won; Lee, So Jung; Lee, Moon-Gyu

    2016-01-01

    According to the increasing need for accurate staging of hepatic fibrosis, the ultrasound (US) elastography techniques have evolved significantly over the past two decades. Currently, US elastography is increasingly used in clinical practice. Previously published studies have demonstrated the excellent diagnostic performance of US elastography for the detection and staging of liver fibrosis. Although US elastography may seem easy to perform and interpret, there are many technical and clinical factors which can affect the results of US elastography. Therefore, clinicians who are involved with US elastography should be aware of these factors. The purpose of this article is to present a brief overview of US techniques with the relevant technology, the clinical indications, diagnostic performance, and technical and biological factors which should be considered in order to avoid misinterpretation of US elastography results. PMID:27729637

  5. An ultrasound transient elastography system with coded excitation.

    PubMed

    Diao, Xianfen; Zhu, Jing; He, Xiaonian; Chen, Xin; Zhang, Xinyu; Chen, Siping; Liu, Weixiang

    2017-06-28

    Ultrasound transient elastography technology has found its place in elastography because it is safe and easy to operate. However, it's application in deep tissue is limited. The aim of this study is to design an ultrasound transient elastography system with coded excitation to obtain greater detection depth. The ultrasound transient elastography system requires tissue vibration to be strictly synchronous with ultrasound detection. Therefore, an ultrasound transient elastography system with coded excitation was designed. A central component of this transient elastography system was an arbitrary waveform generator with multi-channel signals output function. This arbitrary waveform generator was used to produce the tissue vibration signal, the ultrasound detection signal and the synchronous triggering signal of the radio frequency data acquisition system. The arbitrary waveform generator can produce different forms of vibration waveform to induce different shear wave propagation in the tissue. Moreover, it can achieve either traditional pulse-echo detection or a phase-modulated or a frequency-modulated coded excitation. A 7-chip Barker code and traditional pulse-echo detection were programmed on the designed ultrasound transient elastography system to detect the shear wave in the phantom excited by the mechanical vibrator. Then an elasticity QA phantom and sixteen in vitro rat livers were used for performance evaluation of the two detection pulses. The elasticity QA phantom's results show that our system is effective, and the rat liver results show the detection depth can be increased more than 1 cm. In addition, the SNR (signal-to-noise ratio) is increased by 15 dB using the 7-chip Barker coded excitation. Applying 7-chip Barker coded excitation technique to the ultrasound transient elastography can increase the detection depth and SNR. Using coded excitation technology to assess the human liver, especially in obese patients, may be a good choice.

  6. An elastography method based on the scanning contact resonance of a piezoelectric cantilever

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fu, Ji; Li, Faxin, E-mail: lifaxin@pku.edu.cn

    2013-12-15

    Purpose: Most tissues may become significantly stiffer than their normal states when there are lesions inside. The tissue's modulus can then act as an identification parameter for clinic diagnosis of tumors or fibrosis, which leads to elastography. This study introduces a novel elastography method that can be used for modulus imaging of superficial organs. Methods: This method is based on the scanning contact-resonance of a unimorph piezoelectric cantilever. The cantilever vibrates in its bending mode with the tip pressed tightly on the sample. The contact resonance frequency of the cantilever-sample system is tracked at each scanning point, from which themore » sample's modulus can be derived based on a beam dynamic model and a contact mechanics model. Scanning is performed by a three-dimensional motorized stage and the whole system is controlled by a homemade software program based on LabVIEW. Results: Testing onin vitro beef tissues indicates that the fat and the muscle can be easily distinguished using this system, and the accuracy of the modulus measurement can be comparable with that of nanoindentation. Imaging on homemade gelatin phantoms shows that the depth information of the abnormalities can be qualitatively obtained by varying the pressing force. The detection limit of this elastography method is specially examined both experimentally and numerically. Results show that it can detect the typical lesions in superficial organs with the depth of several centimeters. The lateral resolution of this elastography method/system is better than 0.5 mm, and could be further enhanced by using more scanning points. Conclusions: The proposed elastography system can be regarded as a sensitive palpation robot, which may be very promising in early diagnosis of tumors in superficial organs such as breast and thyroid.« less

  7. Evaluation of Liver and Spleen Stiffness with Acoustic Radiation Force Impulse Quantification Elastography for Diagnosing Clinically Significant Portal Hypertension.

    PubMed

    Attia, D; Schoenemeier, B; Rodt, T; Negm, A A; Lenzen, H; Lankisch, T O; Manns, M; Gebel, M; Potthoff, A

    2015-12-01

    Hepatic vein pressure gradient (HVPG) is the gold standard for diagnosing clinically significant portal hypertension (CSPH). The aim of this study was to investigate-in comparison to HVPG-the ability to diagnose CSPH by liver and spleen stiffness measurements obtained by acoustic radiation force impulse (ARFI) imaging. A total of 78 patients (mean age: 53 ± 13 years, 62 % male) with chronic liver disease were enrolled in this study. Each patient received liver (LSM) and spleen (SSM) stiffness measurements by ARFI, an HVPG measurement and a transjugular liver biopsy on the same day. Patients were classified according to their HVPG into three different groups: HVPG < 10 mmHg, HVPG ≥ 10-< 12 mmHg and HVPG ≥ 12 mmHg. LSM, SSM were significantly higher in patients with HVPG ≥ 10 - < 12 in comparison to HVPG < 10 mmHg (p < 0.001 and p < 0.001, respectively), and in patients with HVPG ≥ 12 mmHg in comparison to ≥ 10 - < 12 mmHg (p < 0.001 and p < 0.001, respectively). LSM and SSM were able to diagnose HVPG ≥ 10 mmHg and HVPG ≥ 12 mmHg with high diagnostic performance (AUC LSM: 0.93 and 0.87, respectively; AUC SSM: 0.97 and 0.95, respectively). The AUC of SSM in predicting esophageal varices (EVs) plus HVPG ≥ 10 mmHg and EVs plus HVPG ≥ 12 mmHg were higher compared to LSM in both groups of patients (SSM: 0.90 and 0.93 vs. LSM: 0.84 and 0.88, respectively). No significant difference between both AUCs was detected in the different HVPG groups. In the multivariate -analysis SSM remained a factor predicting HVPG (HVPG > 10 mmHg p = 0.007; HVPG ≥ 12 mmHg p = 0.003). LSM and SSM by ARFI are noninvasive diagnostic tools that may help in diagnosing CSPH. LSM and SSM could be used as a guiding noninvasive screening tool in patients with esophageal varices requiring endoscopic evaluation. © Georg Thieme Verlag KG Stuttgart · New York.

  8. Acoustic radiation force impulse elastography, FibroScan®, Forns' index and their combination in the assessment of liver fibrosis in patients with chronic hepatitis B, and the impact of inflammatory activity and steatosis on these diagnostic methods.

    PubMed

    Dong, Dao-Ran; Hao, Mei-Na; Li, Cheng; Peng, Ze; Liu, Xia; Wang, Gui-Ping; Ma, An-Lin

    2015-06-01

    The aim of the present study was to investigate the combination of certain serological markers (Forns' index; FI), FibroScan® and acoustic radiation force impulse elastography (ARFI) in the assessment of liver fibrosis in patients with hepatitis B, and to explore the impact of inflammatory activity and steatosis on the accuracy of these diagnostic methods. Eighty‑one patients who had been diagnosed with hepatitis B were recruited and the stage of fibrosis was determined by biopsy. The diagnostic accuracy of FI, FibroScan and ARFI, as well as that of the combination of these methods, was evaluated based on the conformity of the results from these tests with those of biopsies. The effect of concomitant inflammation on diagnostic accuracy was also investigated by dividing the patients into two groups based on the grade of inflammation (G<2 and G≥2). The overall univariate correlation between steatosis and the diagnostic value of the three methods was also evaluated. There was a significant association between the stage of fibrosis and the results obtained using ARFI and FibroScan (Kruskal‑Wallis; P<0.001 for all patients), and FI (t-test, P<0.001 for all patients). The combination of FI with ARFI/FibroScan increased the predictive accuracy with a fibrosis stage of S≥2 or cirrhosis. There was a significant correlation between the grade of inflammation and the results obtained using ARFI and FibroScan (Kruskal‑Wallis, P<0.001 for all patients), and FI (t-test; P<0.001 for all patients). No significant correlation was detected between the measurements obtained using ARFI, FibroScan and FI, and steatosis (r=‑0.100, P=0.407; r=0.170, P=0.163; and r=0.154, P=0.216, respectively). ARFI was shown to be as effective in the diagnosis of liver fibrosis as FibroScan or FI, and the combination of ARFI or FibroScan with FI may improve the accuracy of diagnosis. The presence of inflammatory activity, but not that of steatosis, may affect the diagnostic accuracy of

  9. Current status of musculoskeletal application of shear wave elastography.

    PubMed

    Ryu, JeongAh; Jeong, Woo Kyoung

    2017-07-01

    Ultrasonography (US) is a very powerful diagnostic modality for the musculoskeletal system due to the ability to perform real-time dynamic high-resolution examinations with the Doppler technique. In addition to acquiring morphologic data, we can now obtain biomechanical information by quantifying the elasticity of the musculoskeletal structures with US elastography. The earlier diagnosis of degeneration and the ability to perform follow-up evaluations of healing and the effects of treatment are possible. US elastography enables a transition from US-based inspection to US-based palpation in order to diagnose the characteristics of tissue. Shear wave elastography is considered the most suitable type of US elastography for the musculoskeletal system. It is widely used for tendons, ligaments, and muscles. It is important to understand practice guidelines in order to enhance reproducibility. Incorporating viscoelasticity and overcoming inconsistencies among manufacturers are future tasks for improving the capabilities of US elastography.

  10. Current status of musculoskeletal application of shear wave elastography

    PubMed Central

    2017-01-01

    Ultrasonography (US) is a very powerful diagnostic modality for the musculoskeletal system due to the ability to perform real-time dynamic high-resolution examinations with the Doppler technique. In addition to acquiring morphologic data, we can now obtain biomechanical information by quantifying the elasticity of the musculoskeletal structures with US elastography. The earlier diagnosis of degeneration and the ability to perform follow-up evaluations of healing and the effects of treatment are possible. US elastography enables a transition from US-based inspection to US-based palpation in order to diagnose the characteristics of tissue. Shear wave elastography is considered the most suitable type of US elastography for the musculoskeletal system. It is widely used for tendons, ligaments, and muscles. It is important to understand practice guidelines in order to enhance reproducibility. Incorporating viscoelasticity and overcoming inconsistencies among manufacturers are future tasks for improving the capabilities of US elastography. PMID:28292005

  11. Characterization of focal breast lesions by means of elastography.

    PubMed

    Fischer, T; Sack, I; Thomas, A

    2013-09-01

    The modern method of sonoelastography of the breast is used for differentiating focal lesions. This review gives an overview of the different techniques available and discusses their roles in the routine clinical setting. The presented techniques include compression or vibration elastography as well as shear wave elastography. Descriptions of the methods are supplemented by a discussion of the clinical role of each technique based on the most recent literature. We discuss by outlining two recent experimental approaches - MRI and tomosynthesis elastography. Currently available data suggest that elastography is an important supplementary tool for the differentiation of breast tumors under routine clinical conditions. The specificity improves with the immediate availability of additional diagnostic information using real-time techniques and/or the calculation of strain ratios (SR). Elastography is especially helpful in women with involuted breasts for differentiating BI-RADS-US 3 and 4 lesions and for evaluating very small cancers without the typical imaging features of malignancy. Here, elastography techniques are highly specific, while the sensitivity decreases compared to B-mode ultrasound. SR calculation is especially helpful in women who have a high risk of breast cancer and high pretest likelihood. B-mode ultrasound is still the first-line method for the initial evaluation of the breast. If suspicious findings are detected, elastography with or without SR calculation is the most crucial supplementary tool. © Georg Thieme Verlag KG Stuttgart · New York.

  12. Effect of baffle on slosh reaction forces in rotating liquid helium subjected to a lateral impulse in microgravity

    NASA Technical Reports Server (NTRS)

    Hung, R. J.; Long, Y. T.

    1995-01-01

    Sloshing dynamics within a partially filled rotating Dewar of superfluid He II are investigated in response to a lateral impulse. The study investigates several factors, including how the rotating bubble of superfluid He II reacts to the impulse in microgravity, how the amplitudes of slosh reaction forces act on the Dewar with various rotating speeds, how the frequencies of the sloshing modes excited differ in terms of differences in rotating speeds, and how the sloshing dynamics differ with and without a baffle. The numerical computation of sloshing dynamics is based on the noninertial frame spacecraft-bound coordinates. Results of the simulations are illustrated.

  13. Relative net vertical impulse determines jumping performance.

    PubMed

    Kirby, Tyler J; McBride, Jeffrey M; Haines, Tracie L; Dayne, Andrea M

    2011-08-01

    The purpose of this investigation was to determine the relationship between relative net vertical impulse and jump height in a countermovement jump and static jump performed to varying squat depths. Ten college-aged males with 2 years of jumping experience participated in this investigation (age: 23.3 ± 1.5 years; height: 176.7 ± 4.5 cm; body mass: 84.4 ± 10.1 kg). Subjects performed a series of static jumps and countermovement jumps in a randomized fashion to a depth of 0.15, 0.30, 0.45, 0.60, and 0.75 m and a self-selected depth (static jump depth = 0.38 ± 0.08 m, countermovement jump depth = 0.49 ± 0.06 m). During the concentric phase of each jump, peak force, peak velocity, peak power, jump height, and net vertical impulse were recorded and analyzed. Net vertical impulse was divided by body mass to produce relative net vertical impulse. Increasing squat depth corresponded to a decrease in peak force and an increase in jump height and relative net vertical impulse for both static jump and countermovement jump. Across all depths, relative net vertical impulse was statistically significantly correlated to jump height in the static jump (r = .9337, p < .0001, power = 1.000) and countermovement jump (r = .925, p < .0001, power = 1.000). Across all depths, peak force was negatively correlated to jump height in the static jump (r = -0.3947, p = .0018, power = 0.8831) and countermovement jump (r = -0.4080, p = .0012, power = 0.9050). These results indicate that relative net vertical impulse can be used to assess vertical jump performance, regardless of initial squat depth, and that peak force may not be the best measure to assess vertical jump performance.

  14. On the Evolution of Pulsatile Flow Subject to a Transverse Impulse Body Force

    NASA Astrophysics Data System (ADS)

    di Labbio, Giuseppe; Keshavarz-Motamed, Zahra; Kadem, Lyes

    2014-11-01

    In the event of an unexpected abrupt traffic stop or car accident, automotive passengers will experience an abrupt body deceleration. This may lead to tearing or dissection of the aortic wall known as Blunt Traumatic Aortic Rupture (BTAR). BTAR is the second leading cause of death in automotive accidents and, although quite frequent, the mechanisms leading to BTAR are still not clearly identified, particularly the contribution of the flow field. As such, this work is intended to provide a fundamental framework for the investigation of the flow contribution to BTAR. In this fundamental study, pulsatile flow in a three-dimensional, straight pipe of circular cross-section is subjected to a unidirectional, transverse, impulse body force applied on a strictly bounded volume of fluid. These models were simulated using the Computational Fluid Dynamics (CFD) software FLUENT. The evolution of fluid field characteristics was investigated during and after the application of the force. The application of the force significantly modified the flow field. The force induces a transverse pressure gradient causing the development of secondary flow structures that dissipate the energy added by the acceleration. Once the force ceases to act, these structures are carried downstream and gradually dissipate their excess energy.

  15. Quantitative shear-wave optical coherence elastography with a programmable phased array ultrasound as the wave source.

    PubMed

    Song, Shaozhen; Le, Nhan Minh; Huang, Zhihong; Shen, Tueng; Wang, Ruikang K

    2015-11-01

    The purpose of this study is to implement a beam-steering ultrasound as the wave source for shear-wave optical coherence elastography (SW-OCE) to achieve an extended range of elastic imaging of the tissue sample. We introduce a linear phased array ultrasound transducer (LPAUT) as the remote and programmable wave source and a phase-sensitive optical coherence tomography (OCT) as the sensitive shear-wave detector. The LPAUT is programmed to launch acoustic radiation force impulses (ARFI) focused at desired locations within the range of OCT imaging, upon which the elasticity map of the entire OCT B-scan cross section is recovered by spatial compounding of the elastic maps derived from each launch of AFRIs. We also propose a directional filter to separate the shear-wave propagation at different directions in order to reduce the effect of tissue heterogeneity on the shear-wave propagation within tissue. The feasibility of this proposed approach is then demonstrated by determining the stiffness of tissue-mimicking phantoms with agarose concentrations of 0.5% and 1% and also by imaging the Young's modulus of retinal and choroidal tissues within a porcine eye ball ex vivo. The approach opens up opportunities to combine medical ultrasound imaging and SW-OCE for high-resolution localized quantitative assessment of tissue biomechanical property.

  16. The effect of applied transducer force on acoustic radiation force impulse quantification within the left lobe of the liver.

    PubMed

    Porra, Luke; Swan, Hans; Ho, Chien

    2015-08-01

    Introduction: Acoustic Radiation Force Impulse (ARFI) Quantification measures shear wave velocities (SWVs) within the liver. It is a reliable method for predicting the severity of liver fibrosis and has the potential to assess fibrosis in any part of the liver, but previous research has found ARFI quantification in the right lobe more accurate than in the left lobe. A lack of standardised applied transducer force when performing ARFI quantification in the left lobe of the liver may account for some of this inaccuracy. The research hypothesis of this present study predicted that an increase in applied transducer force would result in an increase in SWVs measured. Methods: ARFI quantification within the left lobe of the liver was performed within a group of healthy volunteers (n = 28). During each examination, each participant was subjected to ARFI quantification at six different levels of transducer force applied to the epigastric abdominal wall. Results: A repeated measures ANOVA test showed that ARFI quantification was significantly affected by applied transducer force (p = 0.002). Significant pairwise comparisons using Bonferroni correction for multiple comparisons showed that with an increase in applied transducer force, there was a decrease in SWVs. Conclusion: Applied transducer force has a significant effect on SWVs within the left lobe of the liver and it may explain some of the less accurate and less reliable results in previous studies where transducer force was not taken into consideration. Future studies in the left lobe of the liver should take this into account and control for applied transducer force.

  17. Breast elastography: Identification of benign and malignant cancer based on absolute elastic modulus measurement using vibro-elastography

    NASA Astrophysics Data System (ADS)

    Arroyo, Junior; Saavedra, Ana Cecilia; Guerrero, Jorge; Montenegro, Pilar; Aguilar, Jorge; Pinto, Joseph A.; Lobo, Julio; Salcudean, Tim; Lavarello, Roberto; Castañeda, Benjamín.

    2018-03-01

    Breast cancer is a public health problem with 1.7 million new cases per year worldwide and with several limitations in the state-of-art screening techniques. Ultrasound elastography involves a set of techniques intended to facilitate the noninvasive diagnosis of cancer. Among these, Vibro-elastography is an ultrasound-based technique that employs external mechanical excitation to infer the elastic properties of soft tissue. In this paper, we evaluate the Vibro-elastography performance in the differentiation of benign and malignant breast lesions. For this study, a group of 18 women with clinically confirmed tumors or suspected malignant breast lesions were invited to participate. For each volunteer, an elastogram was obtained, and the mean elasticity of the lesion and the adjacent healthy tissue were calculated. After the acquisition, the volunteers underwent core-needle biopsy. The histopathological results allowed to validate the Vibro-elastography diagnosis, which ranged from benign to malignant lesions. Results indicate that the mean elasticity value of the benign lesions, malignant lesions and healthy breast tissue were 39.4 +/- 12 KPa, 55.4 +/- 7.02 KPa and 23.91 +/- 4.57 kPa, respectively. The classification between benign and malignant breast cancer was performed using Support Vector Machine based on the measured lesion stiffness. A ROC curve permitted to quantify the accuracy of the differentiation and to define a suitable cutoff value of stiffness, obtaining an AUC of 0.90 and a cutoff value of 44.75 KPa. The results obtained suggest that Vibro-elastography allows differentiating between benign and malignant lesions. Furthermore, the elasticity values obtained for benign, malignant and healthy tissue are consistent with previous reports.

  18. Correlation between acoustic radiation force impulse (ARFI)-based tissue elasticity measurements and perfusion parameters acquired by perfusion CT in cirrhotic livers: a proof of principle.

    PubMed

    Esser, Michael; Bitzer, Michael; Kolb, Manuel; Fritz, Jan; Kurucay, Mustafa; Ruff, Christer; Horger, Marius

    2018-06-13

    To investigate whether liver stiffness measured by acoustic radiation force impulse (ARFI) sonoelastography always correlates with the liver perfusion parameters quantified by perfusion CT in patients with known liver cirrhosis. Sonoelastography and perfusion CT were performed in 50 patients (mean age 65.5; range 45-87 years) with liver cirrhosis, who were classified according to Child-Pugh into class A (30/50, 60%), B (17/50, 34%), and C (3/50, 6%). For standardized ARFI measurements in the left liver lobe at a depth of 4 cm, a convex 6-MHz probe was used. CT examinations were performed using 80 kV, 100 mAs, and 50 ml of iodinated contrast agent injected at 5 ml/s. Using standardized region-of-interest measurements, we quantified arterial, portal venous, and total liver perfusion. There was a significant linear correlation between tissue stiffness and arterial liver perfusion (p = 0.015), and also when limiting the analysis to patients with histology (p = 0.019). In addition, there was a positive correlation between the total blood supply (arterial + portal-venous liver perfusion) to the liver and tissue stiffness (p = 0.001; with histology, p = 0.027). Shear wave velocity increased with higher Child-Pugh stages (p = 0.013). The degree of tissue stiffness in cirrhotic livers correlates expectedly-even if only moderately-with the magnitude of arterial liver perfusion and total liver perfusion. As such, liver elastography remains the leading imaging tool in assessing liver fibrosis.

  19. Use of ARFI elastography in the prediction of placental invasion anomaly via a new Virtual Touch Quantification Technique.

    PubMed

    Cim, Numan; Tolunay, Harun Egemen; Boza, Baris; Arslan, Harun; Ates, Can; İlik, İbrahim; Tezcan, Fatih Mehmet; Yıldızhan, Recep; Sahin, Hanım Guler; Yavuz, Alpaslan

    2018-03-22

    We aimed to evaluate the efficiency of placental elasticity in predicting a placental invasion anomaly with the Virtual Touch Quantification (VTQ) technique. Pregnant women in the third trimester with suspected placental invasion anomaly were enrolled into the research (n = 58). The placenta was evaluated and divided into three equal parts as foetal edge (inner 1/3 of placenta), maternal edge (outer 1/3 of placenta) and the central part (central 1/3 of placenta). Shear wave velocity (SWV) measurements were used in the elastographic evaluation of placentas by VTQ. We performed the measurements at the different regions of placenta for sampling the variety areas of the placenta. Acoustic Radiation Force Impulse (ARFI) Elastography scores were significantly higher in the group in which an invasion was detected during the surgery of patients with preoperative placental invasion suspicion. A significant difference in the measurements of the inner, central and outer third of the placenta between the groups was found (p < .001). In this study, we have shown higher SWV scores of placental measurements of the patients with preoperative suspected anomalies and an invasion detected during their surgery. These findings may reflect an event at the tissue elasticity level and we hope that the use of the VTQ technique may contribute to an early prediction of placental invasions before surgery in the future via new research. Impact statement What is already known on this subject? Placenta invasion anomalies (PIA's) are characterized by haemorrhages which can threat the mother's life. Placental invasion anomalies are among the most important causes of maternal mortality and morbidity. Early diagnosis is very important condition in reducing the mortality and morbidity. Gray scale ultrasonography (US) is mostly used in early diagnosis of PIA's. Acoustic radiation force impulse elastography (ARFI) is a new elastographic ultrasonography technic. We aimed to evaluate a new method

  20. Diagnostic Performance of MR Elastography and Vibration-controlled Transient Elastography in the Detection of Hepatic Fibrosis in Patients with Severe to Morbid Obesity

    PubMed Central

    Chen, Jun; Yin, Meng; Talwalkar, Jayant A.; Oudry, Jennifer; Glaser, Kevin J.; Smyrk, Thomas C.; Miette, Véronique; Sandrin, Laurent

    2017-01-01

    Purpose To evaluate the diagnostic performance and examination success rate of magnetic resonance (MR) elastography and vibration-controlled transient elastography (VCTE) in the detection of hepatic fibrosis in patients with severe to morbid obesity. Materials and Methods This prospective and HIPAA-compliant study was approved by the institutional review board. A total of 111 patients (71 women, 40 men) participated. Written informed consent was obtained from all patients. Patients underwent MR elastography with two readers and VCTE with three observers to acquire liver stiffness measurements for liver fibrosis assessment. The results were compared with those from liver biopsy. Each pathology specimen was evaluated by two hepatopathologists according to the METAVIR scoring system or Brunt classification when appropriate. All imaging observers were blinded to the biopsy results, and all hepatopathologists were blinded to the imaging results. Examination success rate, interobserver agreement, and diagnostic accuracy for fibrosis detection were assessed. Results In this obese patient population (mean body mass index = 40.3 kg/m2; 95% confidence interval [CI]: 38.7 kg/m2, 41.8 kg/m2]), the examination success rate was 95.8% (92 of 96 patients) for MR elastography and 81.3% (78 of 96 patients) or 88.5% (85 of 96 patients) for VCTE. Interobserver agreement was higher with MR elastography than with biopsy (intraclass correlation coefficient, 0.95 vs 0.89). In patients with successful MR elastography and VCTE examinations (excluding unreliable VCTE examinations), both MR elastography and VCTE had excellent diagnostic accuracy in the detection of clinically significant hepatic fibrosis (stage F2–F4) (mean area under the curve: 0.93 [95% CI: 0.85, 0.97] vs 0.91 [95% CI: 0.83, 0.96]; P = .551). Conclusion In this obese patient population, both MR elastography and VCTE had excellent diagnostic performance for assessing hepatic fibrosis; MR elastography was more technically

  1. Shear wave elastography using Wigner-Ville distribution: a simulated multilayer media study.

    PubMed

    Bidari, Pooya Sobhe; Alirezaie, Javad; Tavakkoli, Jahan

    2016-08-01

    Shear Wave Elastography (SWE) is a quantitative ultrasound-based imaging modality for distinguishing normal and abnormal tissue types by estimating the local viscoelastic properties of the tissue. These properties have been estimated in many studies by propagating ultrasound shear wave within the tissue and estimating parameters such as speed of wave. Vast majority of the proposed techniques are based on the cross-correlation of consecutive ultrasound images. In this study, we propose a new method of wave detection based on time-frequency (TF) analysis of the ultrasound signal. The proposed method is a modified version of the Wigner-Ville Distribution (WVD) technique. The TF components of the wave are detected in a propagating ultrasound wave within a simulated multilayer tissue and the local properties are estimated based on the detected waves. Image processing techniques such as Alternative Sequential Filters (ASF) and Circular Hough Transform (CHT) have been utilized to improve the estimation of TF components. This method has been applied to a simulated data from Wave3000™ software (CyberLogic Inc., New York, NY). This data simulates the propagation of an acoustic radiation force impulse within a two-layer tissue with slightly different viscoelastic properties between the layers. By analyzing the local TF components of the wave, we estimate the longitudinal and shear elasticities and viscosities of the media. This work shows that our proposed method is capable of distinguishing between different layers of a tissue.

  2. Ultrasound elastography of the prostate: state of the art.

    PubMed

    Correas, J-M; Tissier, A-M; Khairoune, A; Khoury, G; Eiss, D; Hélénon, O

    2013-05-01

    Prostate cancer is the cancer exhibiting the highest incidence rate and it appears as the second cause of cancer death in men, after lung cancer. Prostate cancer is difficult to detect, and the treatment efficacy remains limited despite the increase use of biological tests (prostate-specific antigen [PSA] dosage), the development of new imaging modalities, and the use of invasive procedures such as biopsy. Ultrasound elastography is a novel imaging technique capable of mapping tissue stiffness of the prostate. It is known that prostatic cancer tissue is often harder than healthy tissue (information used by digital rectal examination [DRE]). Two elastography techniques have been developed based on different principles: first, quasi-static (or strain) technique, and second, shear wave technique. The tissue stiffness information provided by US elastography should improve the detection of prostate cancer and provide guidance for biopsy. Prostate elastography provides high sensitivity for detecting prostate cancer and shows high negative predictive values, ensuring that few cancers will be missed. US elastography should become an additional method of imaging the prostate, complementing the conventional transrectal ultrasound and MRI. This technique requires significant training (especially for quasi-static elastography) to become familiar with acquisition process, acquisition technique, characteristics and limitations, and to achieve correct diagnoses. Copyright © 2013 Éditions françaises de radiologie. Published by Elsevier Masson SAS. All rights reserved.

  3. High-resolution optical polarimetric elastography for measuring the mechanical properties of tissue

    NASA Astrophysics Data System (ADS)

    Hudnut, Alexa W.; Armani, Andrea M.

    2018-02-01

    Traditionally, chemical and molecular markers have been the predominate method in diagnostics. Recently, alternate methods of determining tissue and disease characteristics have been proposed based on testing the mechanical behavior of biomaterials. Existing methods for performing elastography measurements, such as atomic force microscopy, compression testing, and ultrasound elastography, require either extensive sample processing or have poor resolution. In the present work, we demonstrate an optical polarimetric elastography device to characterize the mechanical properties of salmon skeletal muscle. A fiber-coupled 1550nm laser paired with an optical polarizer is used to create a fiber optic sensing region. By measuring the change in polarization from the initial state to the final state within the fiber sensing region with a polarimeter, the loading-unloading curves can be determined for the biomaterial. The device is used to characterize the difference between samples with a range of collagen membranes. The loading-unloading curves are used to determine the change in polarization phase and energy loss of the samples at 10%, 20% and 30% strain. As expected, the energy loss is a better metric for measuring the mechanical properties of the tissues because it incorporates the entire loading-unloading curve rather than a single point. Using this metric, it is demonstrated the device can repeatedly differentiate between the different membrane configurations.

  4. The emergence of optical elastography in biomedicine

    NASA Astrophysics Data System (ADS)

    Kennedy, Brendan F.; Wijesinghe, Philip; Sampson, David D.

    2017-04-01

    Optical elastography, the use of optics to characterize and map the mechanical properties of biological tissue, involves measuring the deformation of tissue in response to a load. Such measurements may be used to form an image of a mechanical property, often elastic modulus, with the resulting mechanical contrast complementary to the more familiar optical contrast. Optical elastography is experiencing new impetus in response to developments in the closely related fields of cell mechanics and medical imaging, aided by advances in photonics technology, and through probing the microscale between that of cells and whole tissues. Two techniques -- optical coherence elastography and Brillouin microscopy -- have recently shown particular promise for medical applications, such as in ophthalmology and oncology, and as new techniques in cell mechanics.

  5. Endoscopic ultrasound elastography: Current status and future perspectives

    PubMed Central

    Cui, Xin-Wu; Chang, Jian-Min; Kan, Quan-Cheng; Chiorean, Liliana; Ignee, Andre; Dietrich, Christoph F

    2015-01-01

    Elastography is a new ultrasound modality that provides images and measurements related to tissue stiffness. Endoscopic ultrasound (EUS) has played an important role in the diagnosis and management of numerous abdominal and mediastinal diseases. Elastography by means of EUS examination can assess the elasticity of tumors in the proximity of the digestive tract that are hard to reach with conventional transcutaneous ultrasound probes, such as pancreatic masses and mediastinal or abdominal lymph nodes, thus improving the diagnostic yield of the procedure. Results from previous studies have promised benefits for EUS elastography in the differential diagnosis of lymph nodes, as well as for assessing masses with pancreatic or gastrointestinal (GI) tract locations. It is important to mention that EUS elastography is not considered a modality that can replace biopsy. However, it may be a useful adjunct, improving the accuracy of EUS-fine needle aspiration biopsy (EUS-FNAB) by selecting the most suspicious area to be targeted. Even more, it may be useful for guiding further clinical management when EUS-FNAB is negative or inconclusive. In the present paper we will discuss the current knowledge of EUS elastography, including the technical aspects, along with its applications in the differential diagnosis between benign and malignant solid pancreatic masses and lymph nodes, as well as its aid in the differentiation between normal pancreatic tissues and chronic pancreatitis. Moreover, the emergent indication and future perspectives are summarized, such as the benefit of EUS elastography in EUS-guided fine needle aspiration biopsy, and its uses for characterization of lesions in liver, biliary tract, adrenal glands and GI tract. PMID:26715804

  6. Use of Ultrasound Elastography in the Assessment of the Musculoskeletal System.

    PubMed

    Paluch, Łukasz; Nawrocka-Laskus, Ewa; Wieczorek, Janusz; Mruk, Bartosz; Frel, Małgorzata; Walecki, Jerzy

    2016-01-01

    This article presents possible applications of ultrasound elastography in musculoskeletal imaging based on the available literature, as well as the possibility of extending indications for the use of elastography in the future. Ultrasound elastography (EUS) is a new method that shows structural changes in tissues following application of physical stress. Elastography techniques have been widely used to assess muscles and tendons in vitro since the early parts of the twentieth century. Only recently with the advent of new technology and creation of highly specialized ultrasound devices, has elastography gained widespread use in numerous applications. The authors performed a search of the Medline/PubMed databases for original research and reviewed publications on the application of ultrasound elastography for musculoskeletal imaging. All publications demonstrate possible uses of ultrasound elastography in examinations of the musculoskeletal system. The most widely studied areas include the muscles, tendons and rheumatic diseases. There are also reports on the employment in vessel imaging. The main limitation of elastography as a technique is above all the variability of applied pressure during imaging, which is operator-dependent. It would therefore be reasonable to provide clear guidelines on the technique applied, as well as clear indications for performing the test. It is important to develop methods for creating artifact-free, closed-loop, compression-decompression cycles. The main advantages include cost-effectiveness, short duration of the study, non-invasive nature of the procedure, as well as a potentially broader clinical availability. There are no clear guidelines with regard to indications as well as examination techniques. Ultrasound elastography is a new and still poorly researched method. We conclude, however, that it can be widely used in the examinations of musculoskeletal system. Therefore, it is necessary to conduct large, multi-center studies to

  7. Acoustic radiation force impulse (ARFI) imaging: Characterizing the mechanical properties of tissues using their transient response to localized force

    NASA Astrophysics Data System (ADS)

    Nightingale, Kathryn R.; Palmeri, Mark L.; Congdon, Amy N.; Frinkely, Kristin D.; Trahey, Gregg E.

    2004-05-01

    Acoustic radiation force impulse (ARFI) imaging utilizes brief, high energy, focused acoustic pulses to generate radiation force in tissue, and conventional diagnostic ultrasound methods to detect the resulting tissue displacements in order to image the relative mechanical properties of tissue. The magnitude and spatial extent of the applied force is dependent upon the transmit beam parameters and the tissue attenuation. Forcing volumes are on the order of 5 mm3, pulse durations are less than 1 ms, and tissue displacements are typically several microns. Images of tissue displacement reflect local tissue stiffness, with softer tissues (e.g., fat) displacing farther than stiffer tissues (e.g., muscle). Parametric images of maximum displacement, time to peak displacement, and recovery time provide information about tissue material properties and structure. In both in vivo and ex vivo data, structures shown in matched B-mode images are in good agreement with those shown in ARFI images, with comparable resolution. Potential clinical applications under investigation include soft tissue lesion characterization, assessment of focal atherosclerosis, and imaging of thermal lesion formation during tissue ablation procedures. Results from ongoing studies will be presented. [Work supported by NIH Grant R01 EB002132-03, and the Whitaker Foundation. System support from Siemens Medical Solutions USA, Inc.

  8. Angular Impulse and Balance Regulation During the Golf Swing.

    PubMed

    Peterson, Travis J; Wilcox, Rand R; McNitt-Gray, Jill L

    2016-08-01

    Our aim was to determine how skilled players regulate linear and angular impulse while maintaining balance during the golf swing. Eleven highly-skilled golf players performed swings with a 6-iron and driver. Components contributing to linear and angular impulse generated by the rear and target legs (resultant horizontal reaction force [RFh], RFh-angle, and moment arm) were quantified and compared across the group and within a player (α = .05). Net angular impulse generated by both the rear and target legs was greater for the driver than the 6-iron. Mechanisms used to regulate angular impulse generation between clubs varied across players and required coordination between the legs. Increases in net angular impulse with a driver involved increases in target leg RFh. Rear leg RFh-angle was maintained between clubs whereas target leg RFh became more aligned with the target line. Net linear impulse perpendicular to the target line remained near zero, preserving balance, while net linear impulse along the target line decreased in magnitude. These results indicate that the net angular impulse was regulated between clubs by coordinating force generation of the rear and target legs while sustaining balance throughout the task.

  9. Muscle-Specific Effective Mechanical Advantage and Joint Impulse in Weightlifting.

    PubMed

    Kipp, Kristof; Harris, Chad

    2017-07-01

    Kipp, K, and Harris, C. Muscle-specific effective mechanical advantage and joint impulse in weightlifting. J Strength Cond Res 31(7): 1905-1910, 2017-Lifting greater loads during weightlifting exercises may theoretically be achieved through increasing the magnitudes of net joint impulses or manipulating the joints' effective mechanical advantage (EMA). The purpose of this study was to investigate muscle-specific EMA and joint impulse as well as impulse-momentum characteristics of the lifter-barbell system across a range of external loads during the execution of the clean. Collegiate-level weightlifters performed submaximal cleans at 65, 75, and 85% of their 1-repetition maximum (1-RM), whereas data from a motion analysis system and a force plate were used to calculate lifter-barbell system impulse and velocity, as well as net extensor impulse generated at the hip, knee, and ankle joints and the EMA of the gluteus maximus, hamstrings, quadriceps, and triceps surae muscles. The results indicated that the lifter-barbell system impulse did not change as load increased, whereas the velocity of the lifter-barbell system decreased with greater load. In addition, the net extensor impulse at all joints increased as load increased. The EMA of all muscles did not, however, change as load increased. The load-dependent effects on the impulse-velocity characteristics of the lifter-barbell system may reflect musculoskeletal force-velocity behaviors, and may further indicate that the weightlifting performance is limited by the magnitude of ground reaction force impulse. In turn, the load-dependent effects observed at the joint level indicated that lifting greater loads were due to greater net extensor impulses generated at the joints of the lower extremity and not greater EMAs of the respective extensor muscles. In combination, these results suggest that lifting greater external loads during the clean is due to the ability to generate large extensor joint impulses, rather than

  10. Modification of Impulse Generation During Pirouette Turns With Increased Rotational Demands.

    PubMed

    Zaferiou, Antonia M; Wilcox, Rand R; McNitt-Gray, Jill L

    2016-10-01

    This study determined how dancers regulated angular and linear impulse during the initiation of pirouettes of increased rotation. Skilled dancers (n = 11) performed single and double pirouette turns with each foot supported by a force plate. Linear and angular impulses generated by each leg were quantified and compared between turn types using probability-based statistical methods. As rotational demands increased, dancers increased the net angular impulse generated. The contribution of each leg to net angular impulse in both single and double pirouettes was influenced by stance configuration strategies. Dancers who generated more angular impulse with the push leg than with the turn leg initiated the turn with the center of mass positioned closer to the turn leg than did other dancers. As rotational demands increased, dancers tended to increase the horizontal reaction force magnitude at one or both feet; however, they used subject-specific mechanisms. By coordinating the generation of reaction forces between legs, changes in net horizontal impulse remained minimal, despite impulse regulation at each leg used to achieve more rotations. Knowledge gained regarding how an individual coordinates the generation of linear and angular impulse between both legs as rotational demand increased can help design tools to improve that individual's performance.

  11. External vibration multi-directional ultrasound shearwave elastography (EVMUSE): application in liver fibrosis staging.

    PubMed

    Zhao, Heng; Song, Pengfei; Meixner, Duane D; Kinnick, Randall R; Callstrom, Matthew R; Sanchez, William; Urban, Matthew W; Manduca, Armando; Greenleaf, James F; Chen, Shigao

    2014-11-01

    Shear wave speed can be used to assess tissue elasticity, which is associated with tissue health. Ultrasound shear wave elastography techniques based on measuring the propagation speed of the shear waves induced by acoustic radiation force are becoming promising alternatives to biopsy in liver fibrosis staging. However, shear waves generated by such methods are typically very weak. Therefore, the penetration may become problematic, especially for overweight or obese patients. In this study, we developed a new method called external vibration multi-directional ultrasound shearwave elastography (EVMUSE), in which external vibration from a loudspeaker was used to generate a multi-directional shear wave field. A directional filter was then applied to separate the complex shear wave field into several shear wave fields propagating in different directions. A 2-D shear wave speed map was reconstructed from each individual shear wave field, and a final 2-D shear wave speed map was constructed by compounding these individual wave speed maps. The method was validated using two homogeneous phantoms and one multi-purpose tissue-mimicking phantom. Ten patients undergoing liver magnetic resonance elastography (MRE) were also studied with EVMUSE to compare results between the two methods. Phantom results showed EVMUSE was able to quantify tissue elasticity accurately with good penetration. In vivo EVMUSE results were well correlated with MRE results, indicating the promise of using EVMUSE for liver fibrosis staging.

  12. External Vibration Multi-directional Ultrasound Shearwave Elastography (EVMUSE): Application in Liver Fibrosis Staging

    PubMed Central

    Zhao, Heng; Song, Pengfei; Meixner, Duane D.; Kinnick, Randall R.; Callstrom, Matthew R.; Sanchez, William; Urban, Matthew W.; Manduca, Armando; Greenleaf, James F.

    2014-01-01

    Shear wave speed can be used to assess tissue elasticity, which is associated with tissue health. Ultrasound shear wave elastography techniques based on measuring the propagation speed of the shear waves induced by acoustic radiation force are becoming promising alternatives to biopsy in liver fibrosis staging. However, shear waves generated by such methods are typically very weak. Therefore, the penetration may become problematic, especially for overweight or obese patients. In this study, we developed a new method called External Vibration Multi-directional Ultrasound Shearwave Elastography (EVMUSE), in which external vibration from a loudspeaker was used to generate a multi-directional shear wave field. A directional filter was then applied to separate the complex shear wave field into several shear wave fields propagating in different directions. A two-dimensional (2D) shear wave speed map was reconstructed from each individual shear wave field, and a final 2D shear wave speed map was constructed by compounding these individual wave speed maps. The method was validated using two homogeneous phantoms and one multi-purpose tissue-mimicking phantom. Ten patients undergoing liver Magnetic Resonance Elastography (MRE) were also studied with EVMUSE to compare results between the two methods. Phantom results showed EVMUSE was able to quantify tissue elasticity accurately with good penetration. In vivo EVMUSE results were well correlated with MRE results, indicating the promise of using EVMUSE for liver fibrosis staging. PMID:25020066

  13. Quantitative shear wave ultrasound elastography: initial experience in solid breast masses

    PubMed Central

    2010-01-01

    Introduction Shear wave elastography is a new method of obtaining quantitative tissue elasticity data during breast ultrasound examinations. The aims of this study were (1) to determine the reproducibility of shear wave elastography (2) to correlate the elasticity values of a series of solid breast masses with histological findings and (3) to compare shear wave elastography with greyscale ultrasound for benign/malignant classification. Methods Using the Aixplorer® ultrasound system (SuperSonic Imagine, Aix en Provence, France), 53 solid breast lesions were identified in 52 consecutive patients. Two orthogonal elastography images were obtained of each lesion. Observers noted the mean elasticity values in regions of interest (ROI) placed over the stiffest areas on the two elastography images and a mean value was calculated for each lesion. A sub-set of 15 patients had two elastography images obtained by an additional operator. Reproducibility of observations was assessed between (1) two observers analysing the same pair of images and (2) findings from two pairs of images of the same lesion taken by two different operators. All lesions were subjected to percutaneous biopsy. Elastography measurements were correlated with histology results. After preliminary experience with 10 patients a mean elasticity cut off value of 50 kilopascals (kPa) was selected for benign/malignant differentiation. Greyscale images were classified according to the American College of Radiology (ACR) Breast Imaging Reporting and Data System (BI-RADS). BI-RADS categories 1-3 were taken as benign while BI-RADS categories 4 and 5 were classified as malignant. Results Twenty-three benign lesions and 30 cancers were diagnosed on histology. Measurement of mean elasticity yielded an intraclass correlation coefficient of 0.99 for two observers assessing the same pairs of elastography images. Analysis of images taken by two independent operators gave an intraclass correlation coefficient of 0.80. Shear

  14. Quantitative shear wave ultrasound elastography: initial experience in solid breast masses.

    PubMed

    Evans, Andrew; Whelehan, Patsy; Thomson, Kim; McLean, Denis; Brauer, Katrin; Purdie, Colin; Jordan, Lee; Baker, Lee; Thompson, Alastair

    2010-01-01

    Shear wave elastography is a new method of obtaining quantitative tissue elasticity data during breast ultrasound examinations. The aims of this study were (1) to determine the reproducibility of shear wave elastography (2) to correlate the elasticity values of a series of solid breast masses with histological findings and (3) to compare shear wave elastography with greyscale ultrasound for benign/malignant classification. Using the Aixplorer® ultrasound system (SuperSonic Imagine, Aix en Provence, France), 53 solid breast lesions were identified in 52 consecutive patients. Two orthogonal elastography images were obtained of each lesion. Observers noted the mean elasticity values in regions of interest (ROI) placed over the stiffest areas on the two elastography images and a mean value was calculated for each lesion. A sub-set of 15 patients had two elastography images obtained by an additional operator. Reproducibility of observations was assessed between (1) two observers analysing the same pair of images and (2) findings from two pairs of images of the same lesion taken by two different operators. All lesions were subjected to percutaneous biopsy. Elastography measurements were correlated with histology results. After preliminary experience with 10 patients a mean elasticity cut off value of 50 kilopascals (kPa) was selected for benign/malignant differentiation. Greyscale images were classified according to the American College of Radiology (ACR) Breast Imaging Reporting and Data System (BI-RADS). BI-RADS categories 1-3 were taken as benign while BI-RADS categories 4 and 5 were classified as malignant. Twenty-three benign lesions and 30 cancers were diagnosed on histology. Measurement of mean elasticity yielded an intraclass correlation coefficient of 0.99 for two observers assessing the same pairs of elastography images. Analysis of images taken by two independent operators gave an intraclass correlation coefficient of 0.80. Shear wave elastography versus

  15. System for robot-assisted real-time laparoscopic ultrasound elastography

    NASA Astrophysics Data System (ADS)

    Billings, Seth; Deshmukh, Nishikant; Kang, Hyun Jae; Taylor, Russell; Boctor, Emad M.

    2012-02-01

    Surgical robots provide many advantages for surgery, including minimal invasiveness, precise motion, high dexterity, and crisp stereovision. One limitation of current robotic procedures, compared to open surgery, is the loss of haptic information for such purposes as palpation, which can be very important in minimally invasive tumor resection. Numerous studies have reported the use of real-time ultrasound elastography, in conjunction with conventional B-mode ultrasound, to differentiate malignant from benign lesions. Several groups (including our own) have reported integration of ultrasound with the da Vinci robot, and ultrasound elastography is a very promising image guidance method for robotassisted procedures that will further enable the role of robots in interventions where precise knowledge of sub-surface anatomical features is crucial. We present a novel robot-assisted real-time ultrasound elastography system for minimally invasive robot-assisted interventions. Our system combines a da Vinci surgical robot with a non-clinical experimental software interface, a robotically articulated laparoscopic ultrasound probe, and our GPU-based elastography system. Elasticity and B-mode ultrasound images are displayed as picture-in-picture overlays in the da Vinci console. Our system minimizes dependence on human performance factors by incorporating computer-assisted motion control that automatically generates the tissue palpation required for elastography imaging, while leaving high-level control in the hands of the user. In addition to ensuring consistent strain imaging, the elastography assistance mode avoids the cognitive burden of tedious manual palpation. Preliminary tests of the system with an elasticity phantom demonstrate the ability to differentiate simulated lesions of varied stiffness and to clearly delineate lesion boundaries.

  16. How useful are ARFI elastography cut-off values proposed by meta-analysis for predicting the significant fibrosis and compensated liver cirrhosis?

    PubMed

    Bota, Simona; Sporea, Ioan; Sirli, Roxana; Popescu, Alina; Gradinaru-Tascau, Oana

    2015-06-01

    To evaluate how often do we "miss" chronic hepatitis C patients with at least significant fibrosis (F>/=2) and those with compensated cirrhosis, by using Acoustic Radiation Force Impulse (ARFI) elastography cut-off values proposed by meta-analysis. Our study included 132 patients with chronic hepatitis C, evaluated by means of ARFI and liver biopsy (LB), in the same session. Reliable measurements were defined as: median value of 10 liver stiffness (LS) measurements with a success rate>/=60% and an interquartile range interval<30%. For predicting F>/=2 and F=4 we used the LS cut-offs proposed in the last published meta-analysis: 1.35 m/s and 1.87 m/s, respectively. Reliable LS measurements by means of ARFI were obtained in 117 patients (87.9%). In our study, 58 patients (49.6%) had LS values <1.35 m/s; from these 75.8% had F>/=2 in LB. From the 59 patients (50.4%) with LS values>/=1.35 m/s, only 6.8% had F0 or F1 in LB. Also, in our study, 88 patients (75.3%) had LS values <1.87 m/s; from these only 2.2 % had F4 in LB. From the 29 patients (24.7%) with LS values>/=1.87 m/s, 41.3% had F4 in LB. Both for prediction of at least significant fibrosis and liver cirrhosis, higher aminotransferases levels were associated with wrongly classified patients, in univariate and multivariate analysis. ARFI elastography had a very good positive predictive value (93.2%) for predicting the presence of significant fibrosis and excellent negative predictive value (97.8%) for excluding the presence of compensated liver cirrhosis.

  17. Copolymer-in-oil phantom materials for elastography.

    PubMed

    Oudry, J; Bastard, C; Miette, V; Willinger, R; Sandrin, L

    2009-07-01

    Phantoms that mimic mechanical and acoustic properties of soft biological tissues are essential to elasticity imaging investigation and to elastography device characterization. Several materials including agar/gelatin, polyvinyl alcohol and polyacrylamide gels have been used successfully in the past to produce tissue phantoms, as reported in the literature. However, it is difficult to find a phantom material with a wide range of stiffness, good stability over time and high resistance to rupture. We aim at developing and testing a new copolymer-in-oil phantom material for elastography. The phantom is composed of a mixture of copolymer, mineral oil and additives for acoustic scattering. The mechanical properties of phantoms were evaluated with a mechanical test instrument and an ultrasound-based elastography technique. The acoustic properties were investigated using a through-transmission water-substituting method. We showed that copolymer-in-oil phantoms are stable over time. Their mechanical and acoustic properties mimic those of most soft tissues: the Young's modulus ranges from 2.2-150 kPa, the attenuation coefficient from 0.4-4.0 dB.cm(-1) and the ultrasound speed from 1420-1464 m/s. Their density is equal to 0.90 +/- 0.04 g/cm3. The results suggest that copolymer-in-oil phantoms are attractive materials for elastography.

  18. Ultrasound elastography of the lower uterine segment in women with a previous cesarean section: Comparison of in-/ex-vivo elastography versus tensile-stress-strain-rupture analysis.

    PubMed

    Seliger, Gregor; Chaoui, Katharina; Lautenschläger, Christine; Jenderka, Klaus-Vitold; Kunze, Christian; Hiller, Grit Gesine Ruth; Tchirikov, Michael

    2018-06-01

    The purpose of this study was to assess, if the biomechanical properties of the lower uterine segment (LUS) in women with a previous cesarean section (CS) can be determined by ultrasound (US) elastography. The first aim was to establish an ex-vivo LUS tensile-stress-strain-rupture(break point) analysis with the possibility of simultaneously using US elastography. The second aim was to investigate the relationship between measurement results of LUS stiffness using US elastography in-/ex-vivo with results of tensile-stress-strain-rupture analysis, and to compare different US elastography LUS-stiffness-measurement methods ex-vivo. An explorative experimental, in-/ex-vivo US study of women with previous CS was conducted. LUS elasticity was measured by point Shear Wave Elastography (pSWE) and bidimensional Shear-Wave-Elastography (2D-SWE) first in-vivo during preoperative examination within 24 h before repeat CS (including resection of the thinnest part of the LUS = uterine scar area during CS), second within 1 h after operation during the ex-vivo experiment, followed by tensile-stress-strain-rupture analysis. Pearson's correlation coefficient and scatter plots, Bland-Altman plots and paired T-tests, were used. Thirty three women were included in the study; elastography measurements n = 1412. The feasibility of ex-vivo assessment of LUS by quantitative US elastography using pSWE and 2D-SWE to detect stiffness of LUS was demonstrated. The strongest correlation with tensile-stress-strain analysis was found in the US elastography examination carried out with 2D-SWE (0.78, p < 0.001, 95%CI [0.48, 0.92]). The laboratory experiment illustrated that, the break point - as a surrogate marker for the risk of rupture of the LUS after CS - is linearly dependent on the thickness of the LUS in the scar area (Coefficient of correlation: 0.79, p < 0.001, 95%CI [0.55, 0.91]). Two extremely stiff LUS-specimens (outlier or extreme values) rupture even at less stroke

  19. [Elastography as an additional tool in breast sonography. Technical principles and clinical applications].

    PubMed

    Rjosk-Dendorfer, D; Reichelt, A; Clevert, D-A

    2014-03-01

    In recent years the use of elastography in addition to sonography has become a routine clinical tool for the characterization of breast masses. Whereas free hand compression elastography results in qualitative imaging of tissue stiffness due to induced compression, shear wave elastography displays quantitative information of tissue displacement. Recent studies have investigated the use of elastography in addition to sonography and improvement of specificity in differentiating benign from malignant breast masses could be shown. Therefore, additional use of elastography could help to reduce the number of unnecessary biopsies in benign breast lesions especially in category IV lesions of the ultrasound breast imaging reporting data system (US-BI-RADS).

  20. Reliability and validity of quantifying absolute muscle hardness using ultrasound elastography.

    PubMed

    Chino, Kentaro; Akagi, Ryota; Dohi, Michiko; Fukashiro, Senshi; Takahashi, Hideyuki

    2012-01-01

    Muscle hardness is a mechanical property that represents transverse muscle stiffness. A quantitative method that uses ultrasound elastography for quantifying absolute human muscle hardness has been previously devised; however, its reliability and validity have not been completely verified. This study aimed to verify the reliability and validity of this quantitative method. The Young's moduli of seven tissue-mimicking materials (in vitro; Young's modulus range, 20-80 kPa; increments of 10 kPa) and the human medial gastrocnemius muscle (in vivo) were quantified using ultrasound elastography. On the basis of the strain/Young's modulus ratio of two reference materials, one hard and one soft (Young's moduli of 7 and 30 kPa, respectively), the Young's moduli of the tissue-mimicking materials and medial gastrocnemius muscle were calculated. The intra- and inter-investigator reliability of the method was confirmed on the basis of acceptably low coefficient of variations (≤6.9%) and substantially high intraclass correlation coefficients (≥0.77) obtained from all measurements. The correlation coefficient between the Young's moduli of the tissue-mimicking materials obtained using a mechanical method and ultrasound elastography was 0.996, which was equivalent to values previously obtained using magnetic resonance elastography. The Young's moduli of the medial gastrocnemius muscle obtained using ultrasound elastography were within the range of values previously obtained using magnetic resonance elastography. The reliability and validity of the quantitative method for measuring absolute muscle hardness using ultrasound elastography were thus verified.

  1. Elastography in the differential diagnosis of thyroid nodules in Hashimoto thyroiditis.

    PubMed

    Şahin, Mustafa; Çakal, Erman; Özbek, Mustafa; Güngünes, Aşkin; Arslan, Müyesser Sayki; Akkaymak, Esra Tutal; Uçan, Bekir; Ünsal, Ilknur Öztürk; Bozkurt, Nujen Çolak; Delibaşi, Tuncay

    2014-08-01

    Elastography is a method which assesses the risk of the malignancy and provides information about the degree of hardness in tissue. Hashimoto's thyroiditis, autoimmune lymphocytic infiltration and fibrosis, is considered to be a very common disease that is able to change the hardness of the tissue. The diagnostic value of elastography of this group of patients has not previously been reported. In our study, we aimed to determine the diagnostic value of elastography in 283 patients (255 female, 28 male) with Hashimoto's thyroiditis. Elastography score and index were measured with real-time ultrasound elastography (Hitachi(®) EUB 7000 HV machine with using 13 MHz linear transducer). The outcome of this measure shows that malignant nodules were with higher elastography scores (ES) and strain indexes (SI) values. ES ≥3 were observed in 16/20 malignant and 130/263 benign nodules, respectively. The area under the curve (AUC) for the elasto score (AUC) was 0.72 (p = 0.001), and AUC for the strain index was 0.77 (p < 0.0001). Accordingly, our study suggests that strain index reflects malignancy better than the elasto score. We conclude that elastography score is ≥3 providing 80 % sensitivity and 50 %, six specificity for diagnosing malignancy. For strain index, we found that 2.45 (72.2 % sensitivity and 70 % specificity) is a cut-off point. We have detected a lower cut-off point for SI in Hashimoto patients although sensitivity and specificity decreases in Hashimoto in this population.

  2. Model-based elastography: a survey of approaches to the inverse elasticity problem

    PubMed Central

    Doyley, M M

    2012-01-01

    Elastography is emerging as an imaging modality that can distinguish normal versus diseased tissues via their biomechanical properties. This article reviews current approaches to elastography in three areas — quasi-static, harmonic, and transient — and describes inversion schemes for each elastographic imaging approach. Approaches include: first-order approximation methods; direct and iterative inversion schemes for linear elastic; isotropic materials; and advanced reconstruction methods for recovering parameters that characterize complex mechanical behavior. The paper’s objective is to document efforts to develop elastography within the framework of solving an inverse problem, so that elastography may provide reliable estimates of shear modulus and other mechanical parameters. We discuss issues that must be addressed if model-based elastography is to become the prevailing approach to quasi-static, harmonic, and transient elastography: (1) developing practical techniques to transform the ill-posed problem with a well-posed one; (2) devising better forward models to capture the transient behavior of soft tissue; and (3) developing better test procedures to evaluate the performance of modulus elastograms. PMID:22222839

  3. Ultrasound elastography in the early diagnosis of plantar fasciitis.

    PubMed

    Lee, So-Yeon; Park, Hee Jin; Kwag, Hyon Joo; Hong, Hyun-Pyo; Park, Hae-Won; Lee, Yong-Rae; Yoon, Kyung Jae; Lee, Yong-Taek

    2014-01-01

    The purpose of this study was to investigate whether ultrasound (US) elastography is useful for the early diagnosis of plantar fasciitis. We retrospectively reviewed US elastography findings of 18 feet with a clinical history and physical examination highly suggestive of plantar fasciitis but with normal findings on conventional US imaging as well as 18 asymptomatic feet. Softening of the plantar fascia was significantly greater in the patient than in the control group [Reviewers 1 and 2: 89% (16/18) vs. 50% (9/18), P=.027, respectively]. US elastography is useful for the early diagnosis of plantar fasciitis. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Efficacy of ultrasound elastography in detecting active myositis in children: can it replace MRI?

    PubMed

    Berko, Netanel S; Hay, Arielle; Sterba, Yonit; Wahezi, Dawn; Levin, Terry L

    2015-09-01

    Juvenile idiopathic inflammatory myopathy is a rare yet potentially debilitating condition. MRI is used both for diagnosis and to assess response to treatment. No study has evaluated the performance of US elastography in the diagnosis of this condition in children. To assess the performance of compression-strain US elastography in detecting active myositis in children with clinically confirmed juvenile idiopathic inflammatory myopathy and to compare its efficacy to MRI. Children with juvenile idiopathic inflammatory myopathy underwent non-contrast MR imaging as well as compression-strain US elastography of the quadriceps muscles. Imaging findings from both modalities were compared to each other as well as to the clinical determination of active disease based on physical examination and laboratory data. Active myositis on MR was defined as increased muscle signal on T2-weighted images. Elastography images were defined as normal or abnormal based on a previously published numerical scale of muscle elastography in normal children. Muscle echogenicity was graded as normal or abnormal based on gray-scale sonographic images. Twenty-one studies were conducted in 18 pediatric patients (15 female, 3 male; age range 3-19 years). Active myositis was present on MRI in ten cases. There was a significant association between abnormal MRI and clinically active disease (P = 0.012). US elastography was abnormal in 4 of 10 cases with abnormal MRI and in 4 of 11 cases with normal MRI. There was no association between abnormal elastography and either MRI (P > 0.999) or clinically active disease (P > 0.999). Muscle echogenicity was normal in 11 patients; all 11 had normal elastography. Of the ten patients with increased muscle echogenicity, eight had abnormal elastography. There was a significant association between muscle echogenicity and US elastography (P < 0.001). The positive and negative predictive values for elastography in the determination of active myositis

  5. Reliability and Validity of Quantifying Absolute Muscle Hardness Using Ultrasound Elastography

    PubMed Central

    Chino, Kentaro; Akagi, Ryota; Dohi, Michiko; Fukashiro, Senshi; Takahashi, Hideyuki

    2012-01-01

    Muscle hardness is a mechanical property that represents transverse muscle stiffness. A quantitative method that uses ultrasound elastography for quantifying absolute human muscle hardness has been previously devised; however, its reliability and validity have not been completely verified. This study aimed to verify the reliability and validity of this quantitative method. The Young’s moduli of seven tissue-mimicking materials (in vitro; Young’s modulus range, 20–80 kPa; increments of 10 kPa) and the human medial gastrocnemius muscle (in vivo) were quantified using ultrasound elastography. On the basis of the strain/Young’s modulus ratio of two reference materials, one hard and one soft (Young’s moduli of 7 and 30 kPa, respectively), the Young’s moduli of the tissue-mimicking materials and medial gastrocnemius muscle were calculated. The intra- and inter-investigator reliability of the method was confirmed on the basis of acceptably low coefficient of variations (≤6.9%) and substantially high intraclass correlation coefficients (≥0.77) obtained from all measurements. The correlation coefficient between the Young’s moduli of the tissue-mimicking materials obtained using a mechanical method and ultrasound elastography was 0.996, which was equivalent to values previously obtained using magnetic resonance elastography. The Young’s moduli of the medial gastrocnemius muscle obtained using ultrasound elastography were within the range of values previously obtained using magnetic resonance elastography. The reliability and validity of the quantitative method for measuring absolute muscle hardness using ultrasound elastography were thus verified. PMID:23029231

  6. Two-dimensional Shear Wave Elastography on Conventional Ultrasound Scanners with Time Aligned Sequential Tracking (TAST) and Comb-push Ultrasound Shear Elastography (CUSE)

    PubMed Central

    Song, Pengfei; Macdonald, Michael C.; Behler, Russell H.; Lanning, Justin D.; Wang, Michael H.; Urban, Matthew W.; Manduca, Armando; Zhao, Heng; Callstrom, Matthew R.; Alizad, Azra; Greenleaf, James F.; Chen, Shigao

    2014-01-01

    Two-dimensional (2D) shear wave elastography presents 2D quantitative shear elasticity maps of tissue, which are clinically useful for both focal lesion detection and diffuse disease diagnosis. Realization of 2D shear wave elastography on conventional ultrasound scanners, however, is challenging due to the low tracking pulse-repetition-frequency (PRF) of these systems. While some clinical and research platforms support software beamforming and plane wave imaging with high PRF, the majority of current clinical ultrasound systems do not have the software beamforming capability, which presents a critical challenge for translating the 2D shear wave elastography technique from laboratory to clinical scanners. To address this challenge, this paper presents a Time Aligned Sequential Tracking (TAST) method for shear wave tracking on conventional ultrasound scanners. TAST takes advantage of the parallel beamforming capability of conventional systems and realizes high PRF shear wave tracking by sequentially firing tracking vectors and aligning shear wave data in the temporal direction. The Comb-push Ultrasound Shear Elastography (CUSE) technique was used to simultaneously produce multiple shear wave sources within the field-of-view (FOV) to enhance shear wave signal-to-noise-ratio (SNR) and facilitate robust reconstructions of 2D elasticity maps. TAST and CUSE were realized on a conventional ultrasound scanner (the General Electric LOGIQ E9). A phantom study showed that the shear wave speed measurements from the LOGIQ E9 were in good agreement to the values measured from other 2D shear wave imaging technologies. An inclusion phantom study showed that the LOGIQ E9 had comparable performance to the Aixplorer (Supersonic Imagine) in terms of bias and precision in measuring different sized inclusions. Finally, in vivo case analysis of a breast with a malignant mass, and a liver from a healthy subject demonstrated the feasibility of using the LOGIQ E9 for in vivo 2D shear wave

  7. Impulse measurement using an Arduíno

    NASA Astrophysics Data System (ADS)

    Espindola, P. R.; Cena, C. R.; Alves, D. C. B.; Bozano, D. F.; Goncalves, A. M. B.

    2018-05-01

    In this paper, we propose a simple experimental apparatus that can measure the force variation over time to study the impulse-momentum theorem. In this proposal, a body attached to a rubber string falls freely from rest until it stretches and changes the linear momentum. During that process the force due to the tension on the rubber string is measured with a load cell by using an Arduíno board. We check the instrumental results with the basic concept of impulse, finding the area under the force versus time curve and comparing this with the linear momentum variation estimated from software analysis. The apparatus is presented as a simple and low cost alternative to mechanical physics laboratories.

  8. Acoustic Radiation Force Impulse Quantification in the Evaluation of Renal Parenchyma Elasticity in Pediatric Patients With Chronic Kidney Disease: Preliminary Results.

    PubMed

    Bilgici, Meltem Ceyhan; Bekci, Tumay; Genc, Gurkan; Tekcan, Demet; Tomak, Leman

    2017-08-01

    To evaluate renal parenchymal elasticity with acoustic radiation force impulse imaging in pediatric patients with chronic kidney disease (CKD) and compare with healthy volunteers. Thirty-eight healthy volunteers and 30 pediatric CKD patients were enrolled in this prospective study. The shear wave velocity (SW) values of both kidneys in CKD patients and healthy volunteers were evaluated. The mean SW in healthy volunteers was 2.21 ± 0.34 m/s, whereas the same value was 1.81 ± 0.49, 1.72 ± 0.63, 1.66 ± 0.29, 1.48 ± 0.37, and 1.23 ± 0.27 for stages 1, 2, 3, 4, and 5 in CKD patients, respectively. The SW was significantly lower for each stage in the CKD patients compared with healthy volunteers. Acoustic radiation force impulse could not predict the different stages of CKD, with the exception of stage 5. The cut-off value for predicting CKD was 1.81 m/s; at this threshold, sensitivity was 76.5% and specificity was 92.1% (area under the curve = 0.870 [95% confidence interval: 0.750-0.990]; P < .001). Interobserver agreement expressed as intraclass coefficient correlation was 0.65 (95% confidence interval: 0.34 to 0.83; P < .001). Acoustic radiation force impulse may be a potentially useful tool in detecting CKD in pediatric patients. © 2017 by the American Institute of Ultrasound in Medicine.

  9. Spin-echo Echo-planar Imaging MR Elastography versus Gradient-echo MR Elastography for Assessment of Liver Stiffness in Children and Young Adults Suspected of Having Liver Disease.

    PubMed

    Serai, Suraj D; Dillman, Jonathan R; Trout, Andrew T

    2017-03-01

    Purpose To compare two-dimensional (2D) gradient-recalled echo (GRE) and 2D spin-echo (SE) echo-planar imaging (EPI) magnetic resonance (MR) elastography for measurement of hepatic stiffness in pediatric and young adult patients suspected of having liver disease. Materials and Methods In this institutional review board-approved, HIPAA-compliant study, 58 patients underwent both 2D GRE and 2D SE-EPI MR elastography at 1.5 T during separate breath holds. Liver stiffness (mean of means; in kilopascals) was measured by five blinded reviewers. Pooled mean liver stiffness and region-of-interest (ROI) size were compared by using paired t tests. Intraclass correlation coefficients (ICCs) were used to assess agreement between techniques. Respiratory motion artifacts were compared across sequences by using the Fisher exact test. Results Mean patient age was 14.7 years ± 5.2 (standard deviation; age range, 0.7-20.5 years), and 55.2% (32 of 58) of patients were male. Mean liver stiffness was 2.92 kPa ± 1.29 measured at GRE MR elastography and 2.76 kPa ± 1.39 at SE-EPI MR elastography (n = 290; P = .15). Mean ROI sizes were 8495 mm 2 ± 4482 for 2D GRE MR elastography and 15 176 mm 2 ± 7609 for 2D SE-EPI MR elastography (n = 290; P < .001). Agreement was excellent for measured stiffness between five reviewers for both 2D GRE (ICC, 0.97; 95% confidence interval: 0.95, 0.98) and 2D SE-EPI (ICC, 0.98; 95% confidence interval: 0.96, 0.99). Mean ICC (n = 5) for agreement between 2D GRE and 2D SE-EPI MR elastography was 0.93 (range, 0.91-0.95). Moderate or severe breathing artifacts were observed on 27.5% (16 of 58) of 2D GRE images versus 0% 2D SE-EPI images (P < .001). Conclusion There is excellent agreement on measured hepatic stiffness between 2D GRE and 2D SE-EPI MR elastography across multiple reviewers. SE-EPI MR elastography allowed for stiffness measurement across larger areas of the liver and can be performed in a single breath hold. © RSNA, 2016.

  10. Frame Rate Considerations for Real-Time Abdominal Acoustic Radiation Force Impulse Imaging

    PubMed Central

    Fahey, Brian J.; Palmeri, Mark L.; Trahey, Gregg E.

    2008-01-01

    With the advent of real-time Acoustic Radiation Force Impulse (ARFI) imaging, elevated frame rates are both desirable and relevant from a clinical perspective. However, fundamental limitations on frame rates are imposed by thermal safety concerns related to incident radiation force pulses. Abdominal ARFI imaging utilizes a curvilinear scanning geometry that results in markedly different tissue heating patterns than those previously studied for linear arrays or mechanically-translated concave transducers. Finite Element Method (FEM) models were used to simulate these tissue heating patterns and to analyze the impact of tissue heating on frame rates available for abdominal ARFI imaging. A perfusion model was implemented to account for cooling effects due to blood flow and frame rate limitations were evaluated in the presence of normal, reduced and negligible tissue perfusions. Conventional ARFI acquisition techniques were also compared to ARFI imaging with parallel receive tracking in terms of thermal efficiency. Additionally, thermocouple measurements of transducer face temperature increases were acquired to assess the frame rate limitations imposed by cumulative heating of the imaging array. Frame rates sufficient for many abdominal imaging applications were found to be safely achievable utilizing available ARFI imaging techniques. PMID:17521042

  11. Relativistic impulse dynamics.

    PubMed

    Swanson, Stanley M

    2011-08-01

    Classical electrodynamics has some annoying rough edges. The self-energy of charges is infinite without a cutoff. The calculation of relativistic trajectories is difficult because of retardation and an average radiation reaction term. By reconceptuallizing electrodynamics in terms of exchanges of impulses rather than describing it by forces and potentials, we eliminate these problems. A fully relativistic theory using photonlike null impulses is developed. Numerical calculations for a two-body, one-impulse-in-transit model are discussed. A simple relationship between center-of-mass scattering angle and angular momentum was found. It reproduces the Rutherford cross section at low velocities and agrees with the leading term of relativistic distinguishable-particle quantum cross sections (Møller, Mott) when the distance of closest approach is larger than the Compton wavelength of the particle. Magnetism emerges as a consequence of viewing retarded and advanced interactions from the vantage point of an instantaneous radius vector. Radiation reaction becomes the local conservation of energy-momentum between the radiating particle and the emitted impulse. A net action is defined that could be used in developing quantum dynamics without potentials. A reinterpretation of Newton's laws extends them to relativistic motion.

  12. Quantified elasticity mapping of ocular tissue using acoustic radiation force optical coherence elastography (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Qu, Yueqiao; He, Youmin; Zhang, Yi; Ma, Teng; Zhu, Jiang; Miao, Yusi; Dai, Cuixia; Silverman, Ronald; Humayun, Mark S.; Zhou, Qifa; Chen, Zhongping

    2017-02-01

    Age-related macular degeneration and keratoconus are two ocular diseases occurring in the posterior and anterior eye, respectively. In both conditions, the mechanical elasticity of the respective tissues changes during the early onset of disease. It is necessary to detect these differences and treat the diseases in their early stages to provide proper treatment. Acoustic radiation force optical coherence elastography is a method of elasticity mapping using confocal ultrasound waves for excitation and Doppler optical coherence tomography for detection. We report on an ARF-OCE system that uses modulated compression wave based excitation signals, and detects the spatial and frequency responses of the tissue. First, all components of the system is synchronized and triggered such that the signal is consistent between frames. Next, phantom studies are performed to validate and calibrate the relationship between the resonance frequency and the Young's modulus. Then the frequency responses of the anterior and posterior eye are detected for porcine and rabbit eyes, and the results correlated to the elasticity. Finally, spatial elastograms are obtained for a porcine retina. Layer segmentation and analysis is performed and correlated to the histology of the retina, where five distinct layers are recognized. The elasticities of the tissue layers will be quantified according to the mean thickness and displacement response for the locations on the retina. This study is a stepping stone to future in-vivo animal studies, where the elastic modulus of the ocular tissue can be quantified and mapped out accordingly.

  13. Amplitude-modulated ultrasound radiation force combined with phase-sensitive optical coherence tomography for shear wave elastography

    NASA Astrophysics Data System (ADS)

    Nguyen, Thu-Mai; Song, Shaozhen; Arnal, Bastien; Wong, Emily Y.; Shen, Tueng T.; Wang, Ruikang K.; O'Donnell, Matthew

    2015-03-01

    Tissue stiffness can be measured from the propagation speed of shear waves. Acoustic radiation force (ARF) can generate shear waves by focusing ultrasound in tissue for ~100 μs. Safety considerations and electronics abilities limit ultrasound pressures. We previously presented shear wave elastography combining ARF and phase-sensitive optical coherence tomography (PhS-OCT) [1]. Here, we use amplitude-modulated ARF to enhance shear wave signal-to-noise ratio (SNR) at low pressures. Experiments were performed on tissue-mimicking phantoms. ARF was applied using a single-element transducer, driven by a 7.5 MHz, 3-ms, sine wave modulated in amplitude by a linear-swept frequency (1 to 7 kHz). Pressures between 1 to 3 MPa were tested. Displacements were tracked using PhS-OCT and numerically compressed using pulse compression methods detailed in previous work [2]. SNR was compared to that of 200-μs bursts. Stiffness maps were reconstructed using time-of-flight computations. 200-μs bursts give barely detectable displacements at 1 MPa (3.7 dB SNR). Pulse compression gives 36.2 dB at 1.5 MPa. In all cases with detectable displacements, shear wave speeds were determined in 5%-gelatin and 10%-gelatin phantoms and compared to literature values. Applicability to ocular tissues (cornea, intraocular lens) is under investigation.

  14. [Shear waves elastography of the placenta in pregnant baboon].

    PubMed

    Quarello, E; Lacoste, R; Mancini, J; Melot-Dusseau, S; Gorincour, G

    2015-03-01

    To evaluate tissue characteristics of the placenta by transabdominal ShearWave Elastography in pregnant baboon. For 9 months (03/2013-12/2013) two operators (EQ, GG) performed ultrasound of the placenta during pregnancy pregnant baboons station partner primatology project. The identification of the placenta was performed previously in 2D ultrasound. The elastography method was then activated. Three measurements were carried out by operator for each placenta. The intraclass correlation coefficients within and between observers were calculated for the objective assessment (elastography) of placental maturity. During the study period, 21 pregnant baboons were included and ultrasounds were performed between 1 and 3 times each. The measurements have been carried out by two operators in 100% of cases. The intra- and inter-observer ICC for single values are respectively 0.657 - 95% CI (0.548 to 0.752) and 0.458 - 95% CI (0.167 to 0.675). The intra- and inter-observer ICC for average values are respectively 0.852 - 95% CI (0.784 to 0.901) and 0.628 - 95% CI (0.286 to 0.806). The study by transabdominal ShearWave Elastography of placenta's pregnant baboons is possible. The intra- and inter-operator reproducibility of this method is good using the average of three measurements. The objective study via elastography ShearWave of the degree of placental maturity seems not yet be used in clinical practice. Studies of larger cohorts are needed. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  15. Modification of impulse generation during piqué turns with increased rotational demands.

    PubMed

    Zaferiou, Antonia M; Wilcox, Rand R; McNitt-Gray, Jill L

    2016-06-01

    During initiation of a piqué turn, a dancer generates impulse to achieve the desired lateral translation and whole-body rotation. The goal of this study was to determine how individuals regulate impulse generation when initiating piqué turns with increased rotational demands. Skilled dancers (n=10) performed single (∼360°) and double (∼720°) piqué turns from a stationary position. Linear and angular impulse generated by the push and turn legs were quantified using ground reaction forces and compared across turn conditions as a group and within a dancer using probability-based statistical methods. The results indicate that as the rotation demands of the piqué turn increased, the net angular impulse generated increased whereas net lateral impulse decreased. Early during turn initiation, the free moment contributed to angular impulse generation. Later during turn initiation, horizontal reaction forces were controlled to generate angular impulse. As rotational demands increased, the moment applied increased primarily from redirection of the horizontal reaction force (RFh) at the push leg and a combination of RFh magnitude and moment arm increases at the turn leg. RFh at each leg were coordinated to limit unwanted net linear impulse. Knowledge of observed subject-specific mechanisms is important to inform the design of turning performance training tools. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Optical coherence elastography – OCT at work in tissue biomechanics [Invited

    PubMed Central

    Larin, Kirill V.; Sampson, David D.

    2017-01-01

    Optical coherence elastography (OCE), as the use of OCT to perform elastography has come to be known, began in 1998, around ten years after the rest of the field of elastography – the use of imaging to deduce mechanical properties of tissues. After a slow start, the maturation of OCT technology in the early to mid 2000s has underpinned a recent acceleration in the field. With more than 20 papers published in 2015, and more than 25 in 2016, OCE is growing fast, but still small compared to the companion fields of cell mechanics research methods, and medical elastography. In this review, we describe the early developments in OCE, and the factors that led to the current acceleration. Much of our attention is on the key recent advances, with a strong emphasis on future prospects, which are exceptionally bright. PMID:28271011

  17. Microwave emission from lead zirconate titanate induced by impulsive mechanical load

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aman, A., E-mail: alexander.aman@ovgu.de; Packaging Group, Institute of Micro- and Sensorsytems, Otto-von-Guericke University, Universitätsplatz 2, 39106 Magdeburg; Majcherek, S.

    2015-10-28

    This paper focuses on microwave emission from Lead zirconate titanate Pb [Zr{sub x}Ti{sub 1−x}] O{sub 3} (PZT) induced by mechanical stressing. The mechanical stress was initiated by impact of a sharp tungsten indenter on the upper surface of PZT ceramic. The sequences of microwave and current impulses, which flew from indenter to electric ground, were detected simultaneously. The voltage between the upper and lower surface of ceramic was measured to obtain the behavior of mechanical force acting on ceramic during the impact. It was found that the amplitude, form, and frequency of measured microwave impulses were different by compression andmore » restitution phase of impact. Two different mechanisms of electron emission, responsible for microwave impulse generation, were proposed based on the dissimilar impulse behavior. The field emission from tungsten indenter is dominant during compression, whereas ferroemission dominates during restitution phase. Indeed, it was observed that the direction of the current flow, i.e., sign of current impulses is changed by transitions from compression to restitution phase of impact. The observed dissimilar behavior of microwave impulses, caused by increasing and decreasing applied force, can be used to calculate the contact time and behavior of mechanical force during mechanical impact on ceramic surface. It is shown that the generation of microwave impulses exhibits high reproducibility, impulse intensity, a low damping factor, and high mechanical failure resistance. Based on these microwave emission properties of PZT, the development of new type of stress sensor with spatial resolution of few microns becomes possible.« less

  18. Tissue-mimicking bladder wall phantoms for evaluating acoustic radiation force-optical coherence elastography systems.

    PubMed

    Ejofodomi, O'tega A; Zderic, Vesna; Zara, Jason M

    2010-04-01

    Acoustic radiation force-optical coherence elastography (ARF-OCE) systems are novel imaging systems that have the potential to simultaneously quantify and characterize the optical and mechanical properties of in vivo tissues. This article presents the construction of bladder wall phantoms for use in ARF-OCE systems. Mechanical, acoustic, and optical properties are reported and compared to published values for the urinary bladder. The phantom consisted of 0.2000 +/- 0.0089 and 6.0000 +/- 0.2830 microm polystyrene microspheres (Polysciences Inc., Warrington, PA, Catalog Nos. 07304 and 07312), 7.5 +/- 1.5 microm copolymer microspheres composed of acrylonitrile and vinylidene chloride, (Expancel, Duluth, GA, Catalog No. 461 DU 20), and bovine serum albumin within a gelatin matrix. Young's modulus was measured by successive compression of the phantom and obtaining the slope of the resulting force-displacement data. Acoustic measurements were performed using the transmission method. The phantoms were submerged in a water bath and placed between transmitting and receiving 13 mm diameter unfocused transducers operating at a frequency of 3.5 MHz. A MATLAB algorithm to extract the optical scattering coefficient from optical coherence tomography (OCT) images of the phantom was used. The phantoms possess a Young's modulus of 17.12 +/- 2.72 kPa, a mass density of 1.05 +/- 0.02 g/cm3, an acoustic attenuation coefficient of 0.66 +/- 0.08 dB/cm/MHz, a speed of sound of 1591 +/- 8.76 m/s, and an optical scattering coefficient of 1.80 +/- 0.23 mm(-1). Ultrasound and OCT images of the bladder wall phantom are presented. A material that mimics the mechanical, optical, and acoustic properties of healthy bladder wall has been developed. This tissue-mimicking bladder wall phantom was developed as a control tool to investigate the feasibility of using ARF-OCE to detect the mechanical and optical changes that may be indicative of the onset or development of cancer in the urinary bladder

  19. Pulmonary ultrasound elastography: a feasibility study with phantoms and ex-vivo tissue

    NASA Astrophysics Data System (ADS)

    Nguyen, Man Minh; Xie, Hua; Paluch, Kamila; Stanton, Douglas; Ramachandran, Bharat

    2013-03-01

    Elastography has become widely used for minimally invasive diagnosis in many tumors as seen with breast, liver and prostate. Among different modalities, ultrasound-based elastography stands out due to its advantages including being safe, real-time, and relatively low-cost. While lung cancer is the leading cause of cancer mortality among both men and women, the use of ultrasound elastography for lung cancer diagnosis has hardly been investigated due to the limitations of ultrasound in air. In this work, we investigate the use of static-compression based endobronchial ultrasound elastography by a 3D trans-oesophageal echocardiography (TEE) transducer for lung cancer diagnosis. A water-filled balloon was designed to 1) improve the visualization of endobronchial ultrasound and 2) to induce compression via pumping motion inside the trachea and bronchiole. In a phantom study, we have successfully generated strain images indicating the stiffness difference between the gelatin background and agar inclusion. A similar strain ratio was confirmed with Philips ultrasound strain-based elastography product. For ex-vivo porcine lung study, different tissue ablation methods including chemical injection, Radio Frequency (RF) ablation, and direct heating were implemented to achieve tumor-mimicking tissue. Stiff ablated lung tissues were obtained and detected with our proposed method. These results suggest the feasibility of pulmonary elastography to differentiate stiff tumor tissue from normal tissue.

  20. Correlates of mammographic density in B-mode ultrasound and real time elastography.

    PubMed

    Jud, Sebastian Michael; Häberle, Lothar; Fasching, Peter A; Heusinger, Katharina; Hack, Carolin; Faschingbauer, Florian; Uder, Michael; Wittenberg, Thomas; Wagner, Florian; Meier-Meitinger, Martina; Schulz-Wendtland, Rüdiger; Beckmann, Matthias W; Adamietz, Boris R

    2012-07-01

    The aim of our study involved the assessment of B-mode imaging and elastography with regard to their ability to predict mammographic density (MD) without X-rays. Women, who underwent routine mammography, were prospectively examined with additional B-mode ultrasound and elastography. MD was assessed quantitatively with a computer-assisted method (Madena). The B-mode and elastography images were assessed by histograms with equally sized gray-level intervals. Regression models were built and cross validated to examine the ability to predict MD. The results of this study showed that B-mode imaging and elastography were able to predict MD. B-mode seemed to give a more accurate prediction. R for B-mode image and elastography were 0.67 and 0.44, respectively. Areas in the B-mode images that correlated with mammographic dense areas were either dark gray or of intermediate gray levels. Concerning elastography only the gray levels that represent extremely stiff tissue correlated positively with MD. In conclusion, ultrasound seems to be able to predict MD. Easy and cheap utilization of regular breast ultrasound machines encourages the use of ultrasound in larger case-control studies to validate this method as a breast cancer risk predictor. Furthermore, the application of ultrasound for breast tissue characterization could enable comprehensive research concerning breast cancer risk and breast density in young and pregnant women.

  1. Quantitative photoacoustic elastography of Young's modulus in humans

    NASA Astrophysics Data System (ADS)

    Hai, Pengfei; Zhou, Yong; Gong, Lei; Wang, Lihong V.

    2017-03-01

    Elastography can noninvasively map the elasticity distribution of biological tissue, which is often altered in pathological states. In this work, we report quantitative photoacoustic elastography (QPAE), capable of measuring Young's modulus of human tissue in vivo. By combining photoacoustic elastography with a stress sensor having known stress-strain behavior, QPAE can simultaneously measure strain and stress, from which Young's modulus is calculated. We first applied QPAE to quantify the Young's modulus of tissue-mimicking agar phantoms with different concentrations. The measured values fitted well with both the empirical expectations based on the agar concentrations and those measured in independent standard compression tests. We then demonstrated the feasibility of QPAE by measuring the Young's modulus of human skeletal muscle in vivo. The data showed a linear relationship between muscle stiffness and loading. The results proved that QPAE can noninvasively quantify the absolute elasticity of biological tissue, thus enabling longitudinal imaging of tissue elasticity. QPAE can be exploited for both preclinical biomechanics studies and clinical applications.

  2. Longitudinally polarized shear wave optical coherence elastography (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Miao, Yusi; Zhu, Jiang; Qi, Li; Qu, Yueqiao; He, Youmin; Gao, Yiwei; Chen, Zhongping

    2017-02-01

    Shear wave measurement enables quantitative assessment of tissue viscoelasticity. In previous studies, a transverse shear wave was measured using optical coherence elastography (OCE), which gives poor resolution along the force direction because the shear wave propagates perpendicular to the applied force. In this study, for the first time to our knowledge, we introduce an OCE method to detect a longitudinally polarized shear wave that propagates along the force direction. The direction of vibration induced by a piezo transducer (PZT) is parallel to the direction of wave propagation, which is perpendicular to the OCT beam. A Doppler variance method is used to visualize the transverse displacement. Both homogeneous phantoms and a side-by-side two-layer phantom were measured. The elastic moduli from mechanical tests closely matched to the values measured by the OCE system. Furthermore, we developed 3D computational models using finite element analysis to confirm the shear wave propagation in the longitudinal direction. The simulation shows that a longitudinally polarized shear wave is present as a plane wave in the near field of planar source due to diffraction effects. This imaging technique provides a novel method for the assessment of elastic properties along the force direction, which can be especially useful to image a layered tissue.

  3. Ultrahigh resolution optical coherence elastography combined with a rigid micro-endoscope (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Fang, Qi; Curatolo, Andrea; Wijesinghe, Philip; Hamzah, Juliana; Ganss, Ruth; Noble, Peter B.; Karnowski, Karol; Sampson, David D.; Kim, Jun Ki; Lee, Wei M.; Kennedy, Brendan F.

    2017-02-01

    The mechanical forces that living cells experience represent an important framework in the determination of a range of intricate cellular functions and processes. Current insight into cell mechanics is typically provided by in vitro measurement systems; for example, atomic force microscopy (AFM) measurements are performed on cells in culture or, at best, on freshly excised tissue. Optical techniques, such as Brillouin microscopy and optical elastography, have been used for ex vivo and in situ imaging, recently achieving cellular-scale resolution. The utility of these techniques in cell mechanics lies in quick, three-dimensional and label-free mechanical imaging. Translation of these techniques toward minimally invasive in vivo imaging would provide unprecedented capabilities in tissue characterization. Here, we take the first steps along this path by incorporating a gradient-index micro-endoscope into an ultrahigh resolution optical elastography system. Using this endoscope, a lateral resolution of 2 µm is preserved over an extended depth-of-field of 80 µm, achieved by Bessel beam illumination. We demonstrate this combined system by imaging stiffness of a silicone phantom containing stiff inclusions and a freshly excised murine liver tissue. Additionally, we test this system on murine ribs in situ. We show that our approach can provide high quality extended depth-of-field images through an endoscope and has the potential to measure cell mechanics deep in tissue. Eventually, we believe this tool will be capable of studying biological processes and disease progression in vivo.

  4. Performance of shear wave elastography for differentiation of benign and malignant solid breast masses.

    PubMed

    Li, Guiling; Li, De-Wei; Fang, Yu-Xiao; Song, Yi-Jiang; Deng, Zhu-Jun; Gao, Jian; Xie, Yan; Yin, Tian-Sheng; Ying, Li; Tang, Kai-Fu

    2013-01-01

    To perform a meta-analysis assessing the ability of shear wave elastography (SWE) to identify malignant breast masses. PubMed, the Cochrane Library, and the ISI Web of Knowledge were searched for studies evaluating the accuracy of SWE for identifying malignant breast masses. The diagnostic accuracy of SWE was evaluated according to sensitivity, specificity, and hierarchical summary receiver operating characteristic (HSROC) curves. An analysis was also performed according to the SWE mode used: supersonic shear imaging (SSI) and the acoustic radiation force impulse (ARFI) technique. The clinical utility of SWE for identifying malignant breast masses was evaluated using analysis of Fagan plot. A total of 9 studies, including 1888 women and 2000 breast masses, were analyzed. Summary sensitivities and specificities were 0.91 (95% confidence interval [CI], 0.88-0.94) and 0.82 (95% CI, 0.75-0.87) by SSI and 0.89 (95% CI, 0.81-0.94) and 0.91 (95% CI, 0.84-0.95) by ARFI, respectively. The HSROCs for SSI and ARFI were 0.92 (95% CI, 0.90-0.94) and 0.96 (95% CI, 0.93-0.97), respectively. SSI and ARFI were both very informative, with probabilities of 83% and 91%, respectively, for correctly differentiating between benign and malignant breast masses following a "positive" measurement (over the threshold value) and probabilities of disease as low as 10% and 11%, respectively, following a "negative" measurement (below the threshold value) when the pre-test probability was 50%. SWE could be used as a good identification tool for the classification of breast masses.

  5. Acoustic radiation force induced resonance elastography of coagulating blood: theoretical viscoelasticity modeling and ex vivo experimentation

    NASA Astrophysics Data System (ADS)

    Bhatt, Manish; Montagnon, Emmanuel; Destrempes, François; Chayer, Boris; Kazemirad, Siavash; Cloutier, Guy

    2018-03-01

    Deep vein thrombosis is a common vascular disease that can lead to pulmonary embolism and death. The early diagnosis and clot age staging are important parameters for reliable therapy planning. This article presents an acoustic radiation force induced resonance elastography method for the viscoelastic characterization of clotting blood. The physical concept of this method relies on the mechanical resonance of the blood clot occurring at specific frequencies. Resonances are induced by focusing ultrasound beams inside the sample under investigation. Coupled to an analytical model of wave scattering, the ability of the proposed method to characterize the viscoelasticity of a mimicked venous thrombosis in the acute phase is demonstrated. Experiments with a gelatin-agar inclusion sample of known viscoelasticity are performed for validation and establishment of the proof of concept. In addition, an inversion method is applied in vitro for the kinetic monitoring of the blood coagulation process of six human blood samples obtained from two volunteers. The computed elasticity and viscosity values of blood samples at the end of the 90 min kinetics were estimated at 411  ±  71 Pa and 0.25  ±  0.03 Pa · s for volunteer #1, and 387  ±  35 Pa and 0.23  ±  0.02 Pa · s for volunteer #2, respectively. The proposed method allowed reproducible time-varying thrombus viscoelastic measurements from samples having physiological dimensions.

  6. Probe Oscillation Shear Wave Elastography: Initial In Vivo Results in Liver.

    PubMed

    Mellema, Daniel C; Song, Pengfei; Kinnick, Randall R; Trzasko, Joshua D; Urban, Matthew W; Greenleaf, James F; Manduca, Armando; Chen, Shigao

    2018-05-01

    Shear wave elastography methods are able to accurately measure tissue stiffness, allowing these techniques to monitor the progression of hepatic fibrosis. While many methods rely on acoustic radiation force to generate shear waves for 2-D imaging, probe oscillation shear wave elastography (PROSE) provides an alternative approach by generating shear waves through continuous vibration of the ultrasound probe while simultaneously detecting the resulting motion. The generated shear wave field in in vivo liver is complicated, and the amplitude and quality of these shear waves can be influenced by the placement of the vibrating probe. To address these challenges, a real-time shear wave visualization tool was implemented to provide instantaneous visual feedback to optimize probe placement. Even with the real-time display, it was not possible to fully suppress residual motion with established filtering methods. To solve this problem, the shear wave signal in each frame was decoupled from motion and other sources through the use of a parameter-free empirical mode decomposition before calculating shear wave speeds. This method was evaluated in a phantom as well as in in vivo livers from five volunteers. PROSE results in the phantom as well as in vivo liver correlated well with independent measurements using the commercial General Electric Logiq E9 scanner.

  7. Elastography for the differentiation of benign and malignant liver lesions: a meta-analysis.

    PubMed

    Ma, Xuelei; Zhan, Wenli; Zhang, Binglan; Wei, Benling; Wu, Xin; Zhou, Min; Liu, Lei; Li, Ping

    2014-05-01

    The objective of this paper was to evaluate the overall accuracy of elastography in the diagnosis of benign and malignant liver lesions by liver biopsy as the gold standard. Literature databases were searched. The studies which were related to evaluate the diagnostic value of elastography for differentiation in benign and malignant liver lesions in English or Chinese were included. The summary receiver operating characteristic (SROC) curve was performed, and the areas under the curve (AUC) were also calculated to present the accuracy of the elastography for the diagnosis of benign and malignant liver lesions. Six studies which included a total of 448 liver lesions in 384 patients were analyzed. The summary sensitivity and specificity of elastography for the differentiation of malignant liver lesions were 85% (95% CI, 80 to 89%) and 84% (95% CI, 80 to 88%), respectively. And the summary diagnostic odds ratio was 46.33 (95% CI, 15.22 to 141.02), and the SROC was 0.9328. Elastography has a high sensitivity and specificity differentiation for benign and malignant liver lesions. As a non-invasive method, it is promising to be applied to clinical practice. To estimate elastography objectively, a large, prospective, international, and multi-center study is still needed.

  8. [Real-time elastography in the diagnosis of prostate cancer: personal experience].

    PubMed

    Romagnoli, Andrea; Autieri, Gaspare; Centrella, Danilo; Gastaldi, Christian; Pedaci, Giuseppe; Rivolta, Lorenzo; Pozzi, Emilio; Anghileri, Alessio; Cerabino, Maurizio; Bianchi, Carlo Maria; Roggia, Alberto

    2010-01-01

    Prostate cancer is the most common cancer in men. In the future, a significant further increase in the incidence of prostate cancer is expected. The indication to perform a prostate biopsy is digital rectal examination suspicious for prostate cancer, total prostate specific antigen (PSA) value, free PSA/total PSA ratio, PSA density and PSA velocity, and an evidence of hypoechoic area at transrectal ultrasound scan. Unfortunately the specificity and sensibility are still poor. The aim of this retrospective study is to evaluate the specificity and sensibility of real time elastography versus ultrasound transrectal B-mode scan. We retrospectively evaluated 108 pts. having undergone TRUS-guided transrectal prostate biopsy (10 samples). The indication for biopsy is: digital rectal examination, total prostate specific antigen (PSA) value, PSA ratio, PSA density and PSA velocity suspicious for prostate cancer, and/or an evidence of hypoechoic area at transrectal ultrasound scan, and/or hard area at real-time elastography. The mean age of patients is 66.8 years, mean PSA 6.5 ng/mL, and mean ratio 16.5%. We compared the histopathological findings of needle prostate biopsies with the results of transrectal ultrasound and transrectal real-time elastography. 32/108 (29.6%) pts. were positive for prostate cancer (mean Gleason score 7.08), mean PSA 14 ng/mL and mean ratio 9.5%. Transrectal ultrasound scan shows a sensibility of 69% and specificity of 68%. Transrectal ultrasound scan shows a VPP of 51.4%. Transrectal ultrasound scan shows a VPN of 80.9%. Real-time elastography shows a sensibility of 56% and specificity of 85.7%. Real-time elastography shows a VPP of 60.1%. Real-time elastography shows a VPN of 83%. Elastography has a significantly higher specificity for the detection of prostate cancer than the conventionally used examinations including DRE and TRUS. It is a useful real-time diagnostic method because it is not invasive, and simultaneous evaluation is possible

  9. Prospective Evaluation of Acoustic Radiation Force Impulse (ARFI) Elastography and High-Frequency B-Mode Ultrasound in Compensated Patients for the Diagnosis of Liver Fibrosis/Cirrhosis in Comparison to Mini-Laparoscopic Biopsy.

    PubMed

    Pfeifer, L; Zopf, S; Siebler, J; Schwitulla, J; Wildner, D; Wachter, D; Neurath, M F; Strobel, D

    2015-12-01

    Ultrasound is a well-established noninvasive test for assessing patients with liver disease. This study aims to prospectively compare ultrasound to the new technique elastography (ARFI) for the assessment of liver fibrosis/cirrhosis. High-frequency B-mode ultrasound (liver surface/vein irregularity, liver homogeneity, spleen size), ARFI quantification, mini-laparoscopic liver evaluation including biopsy were prospectively obtained in compensated patients scheduled for liver biopsy. For the diagnosis of cirrhosis, a combined gold standard (cirrhosis at histology and/or at macroscopic liver evaluation) was used. Out of 157 patients, 35 patients were diagnosed cirrhotic. Ultrasound (combination of liver vein and/or surface irregularity) showed no significant difference compared to ARFI quantification for the diagnosis of significant liver fibrosis (Ishak> = 3) and cirrhosis. Diagnosis of cirrhosis had a sensitivity/specificity/PPV/NPV of 83 %(± 12) / 82 %(± 7) / 57 %(± 14) / 94 %(± 4), respectively, with ultrasound and 86 %(± 12) / 81 %(± 7) / 57 %(± 13) / 95 %(± 4), respectively, with ARFI quantification. The sensitivity/specificity/PPV/NPV for the detection of significant fibrosis were 68 %(± 13) / 86 %(± 7) / 71 %(± 13) / 84 %(± 7), respectively, for ultrasound and 70 %(± 12) / 84 %(± 7) / 69 %(± 12) / 84 %(± 7), respectively, for ARFI quantification. ARFI elastography and high-frequency B-mode ultrasound show similar and good results for the diagnosis of compensated liver cirrhosis and high-grade fibrosis. A key benefit of both methods is the high NPV suggesting them as noninvasive exclusion tests. © Georg Thieme Verlag KG Stuttgart · New York.

  10. Transthoracic Cardiac Acoustic Radiation Force Impulse Imaging

    NASA Astrophysics Data System (ADS)

    Bradway, David Pierson

    This dissertation investigates the feasibility of a real-time transthoracic Acoustic Radiation Force Impulse (ARFI) imaging system to measure myocardial function non-invasively in clinical setting. Heart failure is an important cardiovascular disease and contributes to the leading cause of death for developed countries. Patients exhibiting heart failure with a low left ventricular ejection fraction (LVEF) can often be identified by clinicians, but patients with preserved LVEF might be undetected if they do not exhibit other signs and symptoms of heart failure. These cases motivate development of transthoracic ARFI imaging to aid the early diagnosis of the structural and functional heart abnormalities leading to heart failure. M-Mode ARFI imaging utilizes ultrasonic radiation force to displace tissue several micrometers in the direction of wave propagation. Conventional ultrasound tracks the response of the tissue to the force. This measurement is repeated rapidly at a location through the cardiac cycle, measuring timing and relative changes in myocardial stiffness. ARFI imaging was previously shown capable of measuring myocardial properties and function via invasive open-chest and intracardiac approaches. The prototype imaging system described in this dissertation is capable of rapid acquisition, processing, and display of ARFI images and shear wave elasticity imaging (SWEI) movies. Also presented is a rigorous safety analysis, including finite element method (FEM) simulations of tissue heating, hydrophone intensity and mechanical index (MI) measurements, and thermocouple transducer face heating measurements. For the pulse sequences used in later animal and clinical studies, results from the safety analysis indicates that transthoracic ARFI imaging can be safely applied at rates and levels realizable on the prototype ARFI imaging system. Preliminary data are presented from in vivo trials studying changes in myocardial stiffness occurring under normal and abnormal

  11. Specific Impulse and Mass Flow Rate Error

    NASA Technical Reports Server (NTRS)

    Gregory, Don A.

    2005-01-01

    Specific impulse is defined in words in many ways. Very early in any text on rocket propulsion a phrase similar to .specific impulse is the thrust force per unit propellant weight flow per second. will be found.(2) It is only after seeing the mathematics written down does the definition mean something physically to scientists and engineers responsible for either measuring it or using someone.s value for it.

  12. Biomechanical properties of crystalline lens as a function of intraocular pressure assessed noninvasively by optical coherence elastography

    NASA Astrophysics Data System (ADS)

    Wu, Chen; Aglyamov, Salavat R.; Liu, Chih-Hao; Han, Zhaolong; Singh, Manmohan; Larin, Kirill V.

    2017-02-01

    Many ocular diseases such as glaucoma and uveitis can lead to the elevation of intraocular pressure (IOP). Previous research implies a link between elevated IOP and lens disease. However, the relationship between IOP elevation and biomechanical properties of the crystalline lens has not been directly studied yet. In this work, we investigated the biomechanical properties of porcine lens as a function of IOP by acoustic radiation force optical coherence elastography.

  13. The Latent Structure of Impulsivity: Impulsive Choice, Impulsive Action, and Impulsive Personality Traits

    PubMed Central

    MacKillop, James; Weafer, Jessica; Gray, Joshua; Oshri, Assaf; Palmer, Abraham; de Wit, Harriet

    2016-01-01

    Rationale Impulsivity has been strongly linked to addictive behaviors, but can be operationalized in a number of ways that vary considerably in overlap, suggesting multidimensionality. Objective This study tested the hypothesis that the latent structure among multiple measures of impulsivity would reflect three broad categories: impulsive choice, reflecting discounting of delayed rewards; impulsive action, reflecting ability to inhibit a prepotent motor response; and impulsive personality traits, reflecting self-reported attributions of self-regulatory capacity. Methods The study used a cross-sectional confirmatory factor analysis of multiple impulsivity assessments. Participants were 1252 young adults (62% female) with low levels of addictive behavior who were assessed in individual laboratory rooms at the University of Chicago and the University of Georgia. The battery comprised a delay discounting task, Monetary Choice Questionnaire, Conners Continuous Performance Test, Go/NoGo Task, Stop Signal Task, Barratt Impulsivity Scale, and the UPPS-P Impulsive Behavior Scale. Results The hypothesized three-factor model provided the best fit to the data, although Sensation Seeking was excluded from the final model. The three latent factors were largely unrelated to each other and were variably associated with substance use. Conclusions These findings support the hypothesis that diverse measures of impulsivity can broadly be organized into three categories that are largely distinct from one another. These findings warrant investigation among individuals with clinical levels of addictive behavior and may be applied to understanding the underlying biological mechanisms of these categories. PMID:27449350

  14. Comparison of acoustic radiation force impulse imaging (ARFI) to liver biopsy histologic scores in the evaluation of chronic liver disease: A pilot study.

    PubMed

    Haque, Mazhar; Robinson, Charlotte; Owen, David; Yoshida, Eric M; Harris, Alison

    2010-01-01

    Acoustic Radiation Force Impulse Imaging (ARFI) is a novel non invasive technique studying the localized mechanical properties of tissue by utilising short, high intensity acoustic pulses (shear wave pulses) to assess the mechanical response (tissue displacement), providing a measure of tissue elasticity. The aim of this study is to investigate the feasibility of ARFI imaging as a non-invasive method for the assessment of liver fibrosis compared to liver biopsy scores. A prospective blind comparison study of ARFI elastography (Virtual Touch Imaging., ACUSON S2000 Ultrasound Unit, Siemens, Mountain View CA) in a consecutive series of patients who underwent liver biopsy for assessment of fibrosis in chronic liver disease. ARFI shear-wave propagation velocity was measured in meters per second. Mean ARFI velocities were compared with both Batts-Ludwig (F0 to F4) and Modified Ishak scores (F0 to F4) for fibrosis in liver biopsy findings. Twenty-one patients with chronic liver disease (Hepatitis C (HCV) =16, Hepatitis B (HBV) = 1, both HCV and HBV = 1 Alcoholic liver disease (ALD) = 1, others = 2) underwent ARFI and liver biopsy on the same day. The Spearman correlation coefficients between the median values of the ARFI measurements and the histological fibrosis stage of the Modified Ishak score and Batts-Lud- (3) wig score were both highly significant (p < 0.01) with rho = 0.69 and rho = 0.72 respectively. The median ARFI (total 180 replications; minimum 5, maximum 10 measurements per patients) velocities for our study population range from 0.92 to 4.17 m/sec. Areas under the receiver operating characteristic curve for the accuracy of ARFI imaging was 1.00 and 0.35, for the diagnosis of moderate fibrosis (histologic fibrosis stage, F (3) 2) and 0.85 and 0.85 respectively for Ishak and Batts-Ludwig score, for the diagnosis of cirrhosis. ARFI imaging has a strong correlation with the fibrosis stage of both Batts-Ludwig and shak score in chronic liver disease. It

  15. Design of a phased array for the generation of adaptive radiation force along a path surrounding a breast lesion for dynamic ultrasound elastography imaging.

    PubMed

    Ekeom, Didace; Hadj Henni, Anis; Cloutier, Guy

    2013-03-01

    This work demonstrates, with numerical simulations, the potential of an octagonal probe for the generation of radiation forces in a set of points following a path surrounding a breast lesion in the context of dynamic ultrasound elastography imaging. Because of the in-going wave adaptive focusing strategy, the proposed method is adapted to induce shear wave fronts to interact optimally with complex lesions. Transducer elements were based on 1-3 piezocomposite material. Three-dimensional simulations combining the finite element method and boundary element method with periodic boundary conditions in the elevation direction were used to predict acoustic wave radiation in a targeted region of interest. The coupling factor of the piezocomposite material and the radiated power of the transducer were optimized. The transducer's electrical impedance was targeted to 50 Ω. The probe was simulated by assembling the designed transducer elements to build an octagonal phased-array with 256 elements on each edge (for a total of 2048 elements). The central frequency is 4.54 MHz; simulated transducer elements are able to deliver enough power and can generate the radiation force with a relatively low level of voltage excitation. Using dynamic transmitter beamforming techniques, the radiation force along a path and resulting acoustic pattern in the breast were simulated assuming a linear isotropic medium. Magnitude and orientation of the acoustic intensity (radiation force) at any point of a generation path could be controlled for the case of an example representing a heterogeneous medium with an embedded soft mechanical inclusion.

  16. Concurrent Validity of a Portable Force Plate Using Vertical Jump Force-Time Characteristics.

    PubMed

    Lake, Jason; Mundy, Peter; Comfort, Paul; McMahon, John J; Suchomel, Timothy J; Carden, Patrick

    2018-05-29

    This study examined concurrent validity of countermovement vertical jump (CMJ) reactive strength index modified and force-time characteristics recorded using a one dimensional portable and laboratory force plate system. Twenty-eight men performed bilateral CMJs on two portable force plates placed on top of two in-ground force plates, both recording vertical ground reaction force at 1000 Hz. Time to take-off, jump height, reactive strength index modified, braking and propulsion impulse, mean net force, and duration were calculated from the vertical force from both force plate systems. Results from both systems were highly correlated (r≥.99). There were small (d<.12) but significant differences between their respective braking impulse, braking mean net force, propulsion impulse, and propulsion mean net force (p<.001). However, limits of agreement yielded a mean value of 1.7% relative to the laboratory force plate system (95% CL: .9% to 2.5%), indicating very good agreement across all of the dependent variables. The largest limits of agreement belonged to jump height (2.1%), time to take-off (3.4%), and reactive strength index modified (3.8%). The portable force plate system provides a valid method of obtaining reactive strength measures, and several underpinning force-time variables, from unloaded CMJ and practitioners can use both force plates interchangeably.

  17. An Impulse Based Substructuring approach for impact analysis and load case simulations

    NASA Astrophysics Data System (ADS)

    Rixen, Daniel J.; van der Valk, Paul L. C.

    2013-12-01

    In the present paper we outline the basic theory of assembling substructures for which the dynamics are described as Impulse Response Functions. The assembly procedure computes the time response of a system by evaluating per substructure the convolution product between the Impulse Response Functions and the applied forces, including the interface forces that are computed to satisfy the interface compatibility. We call this approach the Impulse Based Substructuring method since it transposes to the time domain the Frequency Based Substructuring approach. In the Impulse Based Substructuring technique the Impulse Response Functions of the substructures can be gathered either from experimental tests using a hammer impact or from time-integration of numerical submodels. In this paper the implementation of the method is outlined for the case when the impulse responses of the substructures are computed numerically. A simple bar example is shown in order to illustrate the concept. The Impulse Based Substructuring allows fast evaluation of impact response of a structure when the impulse response of its components is known. It can thus be used to efficiently optimize designs of consumer products by including impact behavior at the early stage of the design, but also for performing substructured simulations of complex structures such as offshore wind turbines.

  18. Impulse-variability theory: implications for ballistic, multijoint motor skill performance.

    PubMed

    Urbin, M A; Stodden, David F; Fischman, Mark G; Weimar, Wendi H

    2011-01-01

    Impulse-variability theory (R. A. Schmidt, H. N. Zelaznik, B. Hawkins, J. S. Frank, & J. T. Quinn, 1979) accounts for the curvilinear relationship between the magnitude and resulting variability of the muscular forces that influence the success of goal-directed limb movements. The historical roots of impulse-variability theory are reviewed in the 1st part of this article, including the relationship between movement speed and spatial error. The authors then address the relevance of impulse-variability theory for the control of ballistic, multijoint skills, such as throwing, striking, and kicking. These types of skills provide a stark contrast to the relatively simple, minimal degrees of freedom movements that characterized early research. However, the inherent demand for ballistic force generation is a strong parallel between these simple laboratory tasks and multijoint motor skills. Therefore, the authors conclude by recommending experimental procedures for evaluating the adequacy of impulse variability as a theoretical model within the context of ballistic, multijoint motor skill performance. Copyright © Taylor & Francis Group, LLC

  19. A novel breast software phantom for biomechanical modeling of elastography.

    PubMed

    Bhatti, Syeda Naema; Sridhar-Keralapura, Mallika

    2012-04-01

    In developing breast imaging technologies, testing is done with phantoms. Physical phantoms are normally used but their size, shape, composition, and detail cannot be modified readily. These difficulties can be avoided by creating a software breast phantom. Researchers have created software breast phantoms using geometric and/or mathematical methods for applications like image fusion. The authors report a 3D software breast phantom that was built using a mechanical design tool, to investigate the biomechanics of elastography using finite element modeling (FEM). The authors propose this phantom as an intermediate assessment tool for elastography simulation; for use after testing with commonly used phantoms and before clinical testing. The authors design the phantom to be flexible in both, the breast geometry and biomechanical parameters, to make it a useful tool for elastography simulation. The authors develop the 3D software phantom using a mechanical design tool based on illustrations of normal breast anatomy. The software phantom does not use geometric primitives or imaging data. The authors discuss how to create this phantom and how to modify it. The authors demonstrate a typical elastography experiment of applying a static stress to the top surface of the breast just above a simulated tumor and calculate normal strains in 3D and in 2D with plane strain approximations with linear solvers. In particular, they investigate contrast transfer efficiency (CTE) by designing a parametric study based on location, shape, and stiffness of simulated tumors. The authors also compare their findings to a commonly used elastography phantom. The 3D breast software phantom is flexible in shape, size, and location of tumors, glandular to fatty content, and the ductal structure. Residual modulus, maps, and profiles, served as a guide to optimize meshing of this geometrically nonlinear phantom for biomechanical modeling of elastography. At best, low residues (around 1-5 KPa) were

  20. Optical coherence elastography in ophthalmology

    NASA Astrophysics Data System (ADS)

    Kirby, Mitchell A.; Pelivanov, Ivan; Song, Shaozhen; Ambrozinski, Łukasz; Yoon, Soon Joon; Gao, Liang; Li, David; Shen, Tueng T.; Wang, Ruikang K.; O'Donnell, Matthew

    2017-12-01

    Optical coherence elastography (OCE) can provide clinically valuable information based on local measurements of tissue stiffness. Improved light sources and scanning methods in optical coherence tomography (OCT) have led to rapid growth in systems for high-resolution, quantitative elastography using imaged displacements and strains within soft tissue to infer local mechanical properties. We describe in some detail the physical processes underlying tissue mechanical response based on static and dynamic displacement methods. Namely, the assumptions commonly used to interpret displacement and strain measurements in terms of tissue elasticity for static OCE and propagating wave modes in dynamic OCE are discussed with the ultimate focus on OCT system design for ophthalmic applications. Practical OCT motion-tracking methods used to map tissue elasticity are also presented to fully describe technical developments in OCE, particularly noting those focused on the anterior segment of the eye. Clinical issues and future directions are discussed in the hope that OCE techniques will rapidly move forward to translational studies and clinical applications.

  1. Identifying Vulnerable Plaques with Acoustic Radiation Force Impulse Imaging

    NASA Astrophysics Data System (ADS)

    Doherty, Joshua Ryan

    The rupture of arterial plaques is the most common cause of ischemic complications including stroke, the fourth leading cause of death and number one cause of long term disability in the United States. Unfortunately, because conventional diagnostic tools fail to identify plaques that confer the highest risk, often a disabling stroke and/or sudden death is the first sign of disease. A diagnostic method capable of characterizing plaque vulnerability would likely enhance the predictive ability and ultimately the treatment of stroke before the onset of clinical events. This dissertation evaluates the hypothesis that Acoustic Radiation Force Impulse (ARFI) imaging can noninvasively identify lipid regions, that have been shown to increase a plaque's propensity to rupture, within carotid artery plaques in vivo. The work detailed herein describes development efforts and results from simulations and experiments that were performed to evaluate this hypothesis. To first demonstrate feasibility and evaluate potential safety concerns, finite- element method simulations are used to model the response of carotid artery plaques to an acoustic radiation force excitation. Lipid pool visualization is shown to vary as a function of lipid pool geometry and stiffness. A comparison of the resulting Von Mises stresses indicates that stresses induced by an ARFI excitation are three orders of magnitude lower than those induced by blood pressure. This thesis also presents the development of a novel pulse inversion harmonic tracking method to reduce clutter-imposed errors in ultrasound-based tissue displacement estimates. This method is validated in phantoms and was found to reduce bias and jitter displacement errors for a marked improvement in image quality in vivo. Lastly, this dissertation presents results from a preliminary in vivo study that compares ARFI imaging derived plaque stiffness with spatially registered composition determined by a Magnetic Resonance Imaging (MRI) gold standard

  2. Effect of Compression Garments on the Development of Delayed-Onset Muscle Soreness: A Multimodal Approach Using Contrast-Enhanced Ultrasound and Acoustic Radiation Force Impulse Elastography.

    PubMed

    Heiss, Rafael; Kellermann, Marion; Swoboda, Bernd; Grim, Casper; Lutter, Christoph; May, Matthias S; Wuest, Wolfgang; Uder, Michael; Nagel, Armin M; Hotfiel, Thilo

    2018-06-12

    Study Design Controlled laboratory study with repeated measures. Background Delayed-onset muscle soreness (DOMS) is one of the most common reasons for impaired muscle performance in sports. However, little consensus exists regarding which treatments may be most effective and the underlying mechanisms are poorly understood. Objectives To investigate the influence of compression garments on the development of DOMS, focusing on changes in muscle perfusion and muscle stiffness. Methods Muscle perfusion and stiffness, calf circumference, muscle soreness, passive ankle dorsiflexion, and creatine kinase levels were assessed on participants before (baseline) a DOMS-inducing eccentric calf exercise intervention and 60 h later (follow-up). After DOMS induction, a sports compression garment (18-21 mmHg) was worn on one randomized calf until follow-up. The contralateral calf served as an internal control. Muscle perfusion was assessed using contrast-enhanced ultrasound (peak enhancement [PE] and wash-in area under the curve [WiAUC]), while muscle stiffness was assessed using acoustic radiation force impulse (shear wave velocities [SWV]). An MRI scan of both lower legs was also performed during the follow-up testing session to characterize the extent of exercise-induced muscle damage. Comparisons were made between limbs and over time. Results SWV values of the medial gastrocnemius showed a significant interaction between time and limb (p=0.006) with the non-compressed muscle demonstrating lower muscle stiffness values at follow-up compared to baseline or the compressed muscle. No significant differences in soleus muscle stiffness were noted between limb or over time, as was the case for muscle perfusion metrics (PE and WiAUC) for the medial gastrocnemius and soleus muscles. Further, compression had no significant effect on passive ankle dorsiflexion, muscle soreness, calf circumference, or injury severity per MRI. Conclusion Continuous wearing of compression garments during the

  3. Reproducibility of shear wave elastography (SWE) in patients with chronic liver disease

    PubMed Central

    Salomone Megna, Angelo; Ragucci, Monica; De Luca, Massimo; Marino Marsilia, Giuseppina; Nardone, Gerardo; Coccoli, Pietro; Prinster, Anna; Mannelli, Lorenzo; Vergara, Emilia; Monti, Serena; Liuzzi, Raffaele; Incoronato, Mariarosaria

    2017-01-01

    The presence of significant fibrosis is an indicator for liver disease staging and prognosis. The aim of the study was to determine reproducibility of real-time shear wave elastography using a hepatic biopsy as the reference standard to identify patients with chronic liver disease. Forty patients with chronic liver disease and 12 normal subjects received shear wave elastography performed by skilled operators. Interoperator reproducibility was studied in 29 patients. Fibrosis was evaluated using the Metavir score. The median and range shear wave elastography values in chronic liver disease subjects were 6.15 kPa and 3.14–16.7 kPa and were 4.49 kPa and 2.92–7.32 kPa in normal subjects, respectively. With respect to fibrosis detected by liver biopsy, shear wave elastography did not change significantly between F0 and F1 (p = 0.334), F1 and F2 (p = 0.611), or F3 and F4 (0.327); a significant difference was observed between the F0-F2 and F3-F4 groups (p = 0.002). SWE also correlated with inflammatory activity (Rs = 0.443, p = 0.0023) and ALT levels (Rs = 0.287, p = 0.0804). Age, sex and body mass index did not affect shear wave elastography measurements. Using receiver operator characteristic curves, two threshold values for shear wave elastography were identified: 5.62 kPa for patients with fibrosis (≥F2; sensitivity 80%, specificity 69.4%, and accuracy 77%) and 7.04 kPa for patients with severe fibrosis (≥F3; sensitivity 88.9%, specificity 81%, and accuracy 89%). Overall interobserver agreement was excellent and was analysed using an interclass correlation coefficient (0.94; CI 0.87–0.97).This study shows that shear wave elastography executed by skilled operators can be performed on almost all chronic liver disease patients with high reproducibility. It is not influenced by age, sex or body mass index, identifies severely fibrotic patients and is also related to inflammatory activity. PMID:29023554

  4. Lumbar annulus fibrosus biomechanical characterization in healthy children by ultrasound shear wave elastography.

    PubMed

    Vergari, Claudio; Dubois, Guillaume; Vialle, Raphael; Gennisson, Jean-Luc; Tanter, Mickael; Dubousset, Jean; Rouch, Philippe; Skalli, Wafa

    2016-04-01

    Intervertebral disc (IVD) is key to spine biomechanics, and it is often involved in the cascade leading to spinal deformities such as idiopathic scoliosis, especially during the growth spurt. Recent progress in elastography techniques allows access to non-invasive measurement of cervical IVD in adults; the aim of this study was to determine the feasibility and reliability of shear wave elastography in healthy children lumbar IVD. Elastography measurements were performed in 31 healthy children (6-17 years old), in the annulus fibrosus and in the transverse plane of L5-S1 or L4-L5 IVD. Reliability was determined by three experienced operators repeating measurements. Average shear wave speed in IVD was 2.9 ± 0.5 m/s; no significant correlations were observed with sex, age or body morphology. Intra-operator repeatability was 5.0 % while inter-operator reproducibility was 6.2 %. Intraclass correlation coefficient was higher than 0.9 for each operator. Feasibility and reliability of IVD shear wave elastography were demonstrated. The measurement protocol is compatible with clinical routine and the results show the method's potential to give an insight into spine deformity progression and early detection. • Intervertebral disc mechanical properties are key to spine biomechanics • Feasibility of shear wave elastography in children lumbar disc was assessed • Measurement was fast and reliable • Elastography could represent a novel biomarker for spine pathologies.

  5. Transient elastography for the assessment of chronic liver disease: Ready for the clinic?

    PubMed Central

    Cobbold, JFL; Morin, S; Taylor-Robinson, SD

    2007-01-01

    Transient elastography is a recently developed non-invasive technique for the assessment of hepatic fibrosis. The technique has been subject to rigorous evaluation in a number of studies in patients with chronic liver disease of varying aetiology. Transient elastography has been compared with histological assessment of percutaneous liver biopsy, with high sensitivity and specificity for the diagnosis of cirrhosis, and has also been used to assess pre-cirrhotic disease. However, the cut-off values between different histological stages vary substantially in different studies, patient groups and aetiology of liver disease. More recent studies have examined the possible place of transient elastography in clinical practice, including risk stratification for the development of complications of cirrhosis. This review describes the technique of transient elastography and discusses the interpretation of recent studies, emphasizing its applicability in the clinical setting. PMID:17828808

  6. Toric focusing for radiation force applications using a toric lens coupled to a spherically focused transducer.

    PubMed

    Arnal, Bastien; Nguyen, Thu-Mai; O'Donnell, Matthew

    2014-12-01

    Dynamic elastography using radiation force requires that an ultrasound field be focused during hundreds of microseconds at a pressure of several megapascals. Here, we address the importance of the focal geometry. Although there is usually no control of the elevational focal width in generating a tissue mechanical response, we propose a tunable approach to adapt the focus geometry that can significantly improve radiation force efficiency. Several thin, in-house-made polydimethylsiloxane lenses were designed to modify the focal spot of a spherical transducer. They exhibited low absorption and the focal spot widths were extended up to 8-fold in the elevation direction. Radiation force experiments demonstrated an 8-fold increase in tissue displacements using the same pressure level in a tissue-mimicking phantom with a similar shear wave spectrum, meaning it does not affect elastography resolution. Our results demonstrate that larger tissue responses can be obtained for a given pressure level, or that similar response can be reached at a much lower mechanical index (MI). We envision that this work will impact 3-D elastography using 2-D phased arrays, where such shaping can be achieved electronically with the potential for adaptive optimization.

  7. Experimental and calculative estimation of femtosecond laser induced-impulsive force in culture medium solution with motion analysis of polymer micro-beads

    NASA Astrophysics Data System (ADS)

    Yamakawa, Takeshi; Maruyama, Akihiro; Uedan, Hirohisa; Iino, Takanori; Hosokawa, Yoichiroh

    2015-03-01

    A new methodology to estimate the dynamics of femtosecond laser-induced impulsive force generated into water under microscope was developed. In this method, the position shift of the bead in water before and after the femtosecond laser irradiation was investigated experimentally and compared with motion equation assuming stress wave propagation with expansion and collapse the cavitation bubble. In the process of the comparison, parameters of force and time of the stress wave were determined. From these results, dynamics of propagations of shock and stress waves, cavitation bubble generation, and these actions to micro-objects were speculated.

  8. Technical Failure of MR Elastography Examinations of the Liver: Experience from a Large Single-Center Study.

    PubMed

    Wagner, Mathilde; Corcuera-Solano, Idoia; Lo, Grace; Esses, Steven; Liao, Joseph; Besa, Cecilia; Chen, Nelson; Abraham, Ginu; Fung, Maggie; Babb, James S; Ehman, Richard L; Taouli, Bachir

    2017-08-01

    Purpose To assess the determinants of technical failure of magnetic resonance (MR) elastography of the liver in a large single-center study. Materials and Methods This retrospective study was approved by the institutional review board. Seven hundred eighty-one MR elastography examinations performed in 691 consecutive patients (mean age, 58 years; male patients, 434 [62.8%]) in a single center between June 2013 and August 2014 were retrospectively evaluated. MR elastography was performed at 3.0 T (n = 443) or 1.5 T (n = 338) by using a gradient-recalled-echo pulse sequence. MR elastography and anatomic image analysis were performed by two observers. Additional observers measured liver T2* and fat fraction. Technical failure was defined as no pixel value with a confidence index higher than 95% and/or no apparent shear waves imaged. Logistic regression analysis was performed to assess potential predictive factors of technical failure of MR elastography. Results The technical failure rate of MR elastography at 1.5 T was 3.5% (12 of 338), while it was higher, 15.3% (68 of 443), at 3.0 T. On the basis of univariate analysis, body mass index, liver iron deposition, massive ascites, use of 3.0 T, presence of cirrhosis, and alcoholic liver disease were all significantly associated with failure of MR elastography (P < .004); but on the basis of multivariable analysis, only body mass index, liver iron deposition, massive ascites, and use of 3.0 T were significantly associated with failure of MR elastography (P < .004). Conclusion The technical failure rate of MR elastography with a gradient-recalled-echo pulse sequence was low at 1.5 T but substantially higher at 3.0 T. Massive ascites, iron deposition, and high body mass index were additional independent factors associated with failure of MR elastography of the liver with a two-dimensional gradient-recalled-echo pulse sequence. © RSNA, 2017.

  9. 3D Myocardial Elastography In Vivo.

    PubMed

    Papadacci, Clement; Bunting, Ethan A; Wan, Elaine Y; Nauleau, Pierre; Konofagou, Elisa E

    2017-02-01

    Strain evaluation is of major interest in clinical cardiology as it can quantify the cardiac function. Myocardial elastography, a radio-frequency (RF)-based cross-correlation method, has been developed to evaluate the local strain distribution in the heart in vivo. However, inhomogeneities such as RF ablation lesions or infarction require a three-dimensional approach to be measured accurately. In addition, acquisitions at high volume rate are essential to evaluate the cardiac strain in three dimensions. Conventional focused transmit schemes using 2D matrix arrays, trade off sufficient volume rate for beam density or sector size to image rapid moving structure such as the heart, which lowers accuracy and precision in the strain estimation. In this study, we developed 3D myocardial elastography at high volume rates using diverging wave transmits to evaluate the local axial strain distribution in three dimensions in three open-chest canines before and after radio-frequency ablation. Acquisitions were performed with a 2.5 MHz 2D matrix array fully programmable used to emit 2000 diverging waves at 2000 volumes/s. Incremental displacements and strains enabled the visualization of rapid events during the QRS complex along with the different phases of the cardiac cycle in entire volumes. Cumulative displacement and strain volumes depict high contrast between non-ablated and ablated myocardium at the lesion location, mapping the tissue coagulation. 3D myocardial strain elastography could thus become an important technique to measure the regional strain distribution in three dimensions in humans.

  10. Impulse Measurement Using an Arduíno

    ERIC Educational Resources Information Center

    Espindola, P. R.; Cena, C. R.; Alves, D. C. B.; Bozano, D. F.; Goncalves, A. M. B.

    2018-01-01

    In this paper, we propose a simple experimental apparatus that can measure the force variation over time to study the impulse-momentum theorem. In this proposal, a body attached to a rubber string falls freely from rest until it stretches and changes the linear momentum. During that process the force due to the tension on the rubber string is…

  11. Effect of bone-soft tissue friction on ultrasound axial shear strain elastography.

    PubMed

    Tang, Songyuan; Chaudhry, Anuj; Kim, Namhee; Reddy, J N; Righetti, Raffaella

    2017-07-12

    Bone-soft tissue friction is an important factor affecting several musculoskeletal disorders, frictional syndromes and the ability of a bone fracture to heal. However, this parameter is difficult to determine using non-invasive imaging modalities, especially in clinical settings. Ultrasound axial shear strain elastography is a non-invasive imaging modality that has been used in the recent past to estimate the bonding between different tissue layers. As most elastography methods, axial shear strain elastography is primarily used in soft tissues. More recently, this technique has been proposed to assess the bone-soft tissue interface. In this paper, we investigate the effect of a variation in bone-soft tissue friction coefficient in the resulting axial shear strain elastograms. Finite element poroelastic models of bone specimens exhibiting different bone-soft tissue friction coefficients were created and mechanically analyzed. These models were then imported to an ultrasound elastography simulation module to assess the presence of axial shear strain patterns. In vitro experiments were performed to corroborate selected simulation results. The results of this study show that the normalized axial shear strain estimated at the bone-soft tissue interface is statistically correlated to the bone-soft tissue coefficient of friction. This information may prove useful to better interpret ultrasound elastography results obtained in bone-related applications and, possibly, monitor bone healing.

  12. Effect of bone-soft tissue friction on ultrasound axial shear strain elastography

    NASA Astrophysics Data System (ADS)

    Tang, Songyuan; Chaudhry, Anuj; Kim, Namhee; Reddy, J. N.; Righetti, Raffaella

    2017-08-01

    Bone-soft tissue friction is an important factor affecting several musculoskeletal disorders, frictional syndromes and the ability of a bone fracture to heal. However, this parameter is difficult to determine using non-invasive imaging modalities, especially in clinical settings. Ultrasound axial shear strain elastography is a non-invasive imaging modality that has been used in the recent past to estimate the bonding between different tissue layers. As most elastography methods, axial shear strain elastography is primarily used in soft tissues. More recently, this technique has been proposed to assess the bone-soft tissue interface. In this paper, we investigate the effect of a variation in bone-soft tissue friction coefficient in the resulting axial shear strain elastograms. Finite element poroelastic models of bone specimens exhibiting different bone-soft tissue friction coefficients were created and mechanically analyzed. These models were then imported to an ultrasound elastography simulation module to assess the presence of axial shear strain patterns. In vitro experiments were performed to corroborate selected simulation results. The results of this study show that the normalized axial shear strain estimated at the bone-soft tissue interface is statistically correlated to the bone-soft tissue coefficient of friction. This information may prove useful to better interpret ultrasound elastography results obtained in bone-related applications and, possibly, monitor bone healing.

  13. Performance of Shear Wave Elastography for Differentiation of Benign and Malignant Solid Breast Masses

    PubMed Central

    Song, Yi-Jiang; Deng, Zhu-Jun; Gao, Jian; Xie, Yan; Yin, Tian-Sheng; Ying, Li; Tang, Kai-Fu

    2013-01-01

    Objectives To perform a meta-analysis assessing the ability of shear wave elastography (SWE) to identify malignant breast masses. Methods PubMed, the Cochrane Library, and the ISI Web of Knowledge were searched for studies evaluating the accuracy of SWE for identifying malignant breast masses. The diagnostic accuracy of SWE was evaluated according to sensitivity, specificity, and hierarchical summary receiver operating characteristic (HSROC) curves. An analysis was also performed according to the SWE mode used: supersonic shear imaging (SSI) and the acoustic radiation force impulse (ARFI) technique. The clinical utility of SWE for identifying malignant breast masses was evaluated using analysis of Fagan plot. Results A total of 9 studies, including 1888 women and 2000 breast masses, were analyzed. Summary sensitivities and specificities were 0.91 (95% confidence interval [CI], 0.88–0.94) and 0.82 (95% CI, 0.75–0.87) by SSI and 0.89 (95% CI, 0.81–0.94) and 0.91 (95% CI, 0.84–0.95) by ARFI, respectively. The HSROCs for SSI and ARFI were 0.92 (95% CI, 0.90–0.94) and 0.96 (95% CI, 0.93–0.97), respectively. SSI and ARFI were both very informative, with probabilities of 83% and 91%, respectively, for correctly differentiating between benign and malignant breast masses following a “positive” measurement (over the threshold value) and probabilities of disease as low as 10% and 11%, respectively, following a “negative” measurement (below the threshold value) when the pre-test probability was 50%. Conclusions SWE could be used as a good identification tool for the classification of breast masses. PMID:24204613

  14. A Freehand Ultrasound Elastography System with Tracking for In-vivo Applications

    PubMed Central

    Foroughi, Pezhman; Kang, Hyun-Jae; Carnegie, Daniel A.; van Vledder, Mark G.; Choti, Michael A.; Hager, Gregory D.; Boctor, Emad M.

    2012-01-01

    Ultrasound transducers are commonly tracked in modern ultrasound navigation/guidance systems. In this paper, we demonstrate the advantages of incorporating tracking information into ultrasound elastography for clinical applications. First, we address a common limitation of freehand palpation: speckle decorrelation due to out-of-plane probe motion. We show that by automatically selecting pairs of radio frequency (RF) frames with minimal lateral and out-of-plane motions combined with a fast and robust displacement estimation technique greatly improves in-vivo elastography results. We also use tracking information and image quality measure to fuse multiple images with similar strain that are taken roughly from the same location to obtain a high quality elastography image. Finally, we show that tracking information can be used to give the user partial control over the rate of compression. Our methods are tested on tissue mimicking phantom and experiments have been conducted on intra-operative data acquired during animal and human experiments involving liver ablation. Our results suggest that in challenging clinical conditions, our proposed method produces reliable strain images and eliminates the need for a manual search through the ultrasound data in order to find RF pairs suitable for elastography. PMID:23257351

  15. Quantitative micro-elastography: imaging of tissue elasticity using compression optical coherence elastography

    PubMed Central

    Kennedy, Kelsey M.; Chin, Lixin; McLaughlin, Robert A.; Latham, Bruce; Saunders, Christobel M.; Sampson, David D.; Kennedy, Brendan F.

    2015-01-01

    Probing the mechanical properties of tissue on the microscale could aid in the identification of diseased tissues that are inadequately detected using palpation or current clinical imaging modalities, with potential to guide medical procedures such as the excision of breast tumours. Compression optical coherence elastography (OCE) maps tissue strain with microscale spatial resolution and can delineate microstructural features within breast tissues. However, without a measure of the locally applied stress, strain provides only a qualitative indication of mechanical properties. To overcome this limitation, we present quantitative micro-elastography, which combines compression OCE with a compliant stress sensor to image tissue elasticity. The sensor consists of a layer of translucent silicone with well-characterized stress-strain behaviour. The measured strain in the sensor is used to estimate the two-dimensional stress distribution applied to the sample surface. Elasticity is determined by dividing the stress by the strain in the sample. We show that quantification of elasticity can improve the ability of compression OCE to distinguish between tissues, thereby extending the potential for inter-sample comparison and longitudinal studies of tissue elasticity. We validate the technique using tissue-mimicking phantoms and demonstrate the ability to map elasticity of freshly excised malignant and benign human breast tissues. PMID:26503225

  16. Tissue mimicking materials for the detection of prostate cancer using shear wave elastography: a validation study.

    PubMed

    Cao, Rui; Huang, Zhihong; Varghese, Tomy; Nabi, Ghulam

    2013-02-01

    Quantification of stiffness changes may provide important diagnostic information and aid in the early detection of cancers. Shear wave elastography is an imaging technique that assesses tissue stiffness using acoustic radiation force as an alternate to manual palpation reported previously with quasistatic elastography. In this study, the elastic properties of tissue mimicking materials, including agar, polyacrylamide (PAA), and silicone, are evaluated with an objective to determine material characteristics which resemble normal and cancerous prostate tissue. Acoustic properties and stiffness of tissue mimicking phantoms were measured using compressional mechanical testing and shear wave elastography using supersonic shear imaging. The latter is based on the principles of shear waves generated using acoustic radiation force. The evaluation included tissue mimicking materials (TMMs) within the prostate at different positions and sizes that could mimic cancerous and normal prostate tissue. Patient data on normal and prostate cancer tissues quantified using biopsy histopathology were used to validate the findings. Pathologist reports on histopathology were blinded to mechanical testing and elastographic findings. Young's modulus values of 86.2 ± 4.5 and 271.5 ± 25.7 kPa were obtained for PAA mixed with 2% Al(2)O(3) particles and silicone, respectively. Young's modulus of TMMs from mechanical compression testing showed a clear trend of increasing stiffness with an increasing percentage of agar. The silicone material had higher stiffness values when compared with PAA with Al(2)O(3). The mean Young's modulus value in cancerous tissue was 90.5 ± 4.5 kPa as compared to 93.8 ± 4.4 and 86.2 ± 4.5 kPa obtained with PAA with 2% Al(2)O(3) phantom at a depth of 52.4 and 36.6 mm, respectively. PAA mixed with Al(2)O(3) provides the most suitable tissue mimicking material for prostate cancer tumor material, while agar could form the surrounding background to simulate normal

  17. Tissue mimicking materials for the detection of prostate cancer using shear wave elastography: A validation study

    PubMed Central

    Cao, Rui; Huang, Zhihong; Varghese, Tomy; Nabi, Ghulam

    2013-01-01

    Purpose: Quantification of stiffness changes may provide important diagnostic information and aid in the early detection of cancers. Shear wave elastography is an imaging technique that assesses tissue stiffness using acoustic radiation force as an alternate to manual palpation reported previously with quasistatic elastography. In this study, the elastic properties of tissue mimicking materials, including agar, polyacrylamide (PAA), and silicone, are evaluated with an objective to determine material characteristics which resemble normal and cancerous prostate tissue. Methods: Acoustic properties and stiffness of tissue mimicking phantoms were measured using compressional mechanical testing and shear wave elastography using supersonic shear imaging. The latter is based on the principles of shear waves generated using acoustic radiation force. The evaluation included tissue mimicking materials (TMMs) within the prostate at different positions and sizes that could mimic cancerous and normal prostate tissue. Patient data on normal and prostate cancer tissues quantified using biopsy histopathology were used to validate the findings. Pathologist reports on histopathology were blinded to mechanical testing and elastographic findings. Results: Young's modulus values of 86.2 ± 4.5 and 271.5 ± 25.7 kPa were obtained for PAA mixed with 2% Al2O3 particles and silicone, respectively. Young's modulus of TMMs from mechanical compression testing showed a clear trend of increasing stiffness with an increasing percentage of agar. The silicone material had higher stiffness values when compared with PAA with Al2O3. The mean Young's modulus value in cancerous tissue was 90.5 ± 4.5 kPa as compared to 93.8 ± 4.4 and 86.2 ± 4.5 kPa obtained with PAA with 2% Al2O3 phantom at a depth of 52.4 and 36.6 mm, respectively. Conclusions: PAA mixed with Al2O3 provides the most suitable tissue mimicking material for prostate cancer tumor material, while agar could form the surrounding

  18. Probe Oscillation Shear Elastography (PROSE): A High Frame-Rate Method for Two-Dimensional Ultrasound Shear Wave Elastography.

    PubMed

    Mellema, Daniel C; Song, Pengfei; Kinnick, Randall R; Urban, Matthew W; Greenleaf, James F; Manduca, Armando; Chen, Shigao

    2016-09-01

    Ultrasound shear wave elastography (SWE) utilizes the propagation of induced shear waves to characterize the shear modulus of soft tissue. Many methods rely on an acoustic radiation force (ARF) "push beam" to generate shear waves. However, specialized hardware is required to generate the push beams, and the thermal stress that is placed upon the ultrasound system, transducer, and tissue by the push beams currently limits the frame-rate to about 1 Hz. These constraints have limited the implementation of ARF to high-end clinical systems. This paper presents Probe Oscillation Shear Elastography (PROSE) as an alternative method to measure tissue elasticity. PROSE generates shear waves using a harmonic mechanical vibration of an ultrasound transducer, while simultaneously detecting motion with the same transducer under pulse-echo mode. Motion of the transducer during detection produces a "strain-like" compression artifact that is coupled with the observed shear waves. A novel symmetric sampling scheme is proposed such that pulse-echo detection events are acquired when the ultrasound transducer returns to the same physical position, allowing the shear waves to be decoupled from the compression artifact. Full field-of-view (FOV) two-dimensional (2D) shear wave speed images were obtained by applying a local frequency estimation (LFE) technique, capable of generating a 2D map from a single frame of shear wave motion. The shear wave imaging frame rate of PROSE is comparable to the vibration frequency, which can be an order of magnitude higher than ARF based techniques. PROSE was able to produce smooth and accurate shear wave images from three homogeneous phantoms with different moduli, with an effective frame rate of 300 Hz. An inclusion phantom study showed that increased vibration frequencies improved the accuracy of inclusion imaging, and allowed targets as small as 6.5 mm to be resolved with good contrast (contrast-to-noise ratio ≥ 19 dB) between the target and

  19. Probe Oscillation Shear Elastography (PROSE): A High Frame-Rate Method for Two-Dimensional Ultrasound Shear Wave Elastography

    PubMed Central

    Mellema, Daniel C.; Song, Pengfei; Kinnick, Randall R.; Urban, Matthew W.; Greenleaf, James F.; Manduca, Armando; Chen, Shigao

    2017-01-01

    Ultrasound shear wave elastography (SWE) utilizes the propagation of induced shear waves to characterize the shear modulus of soft tissue. Many methods rely on an acoustic radiation force (ARF) “push beam” to generate shear waves. However, specialized hardware is required to generate the push beams, and the thermal stress that is placed upon the ultrasound system, transducer, and tissue by the push beams currently limits the frame-rate to about 1 Hz. These constraints have limited the implementation of ARF to high-end clinical systems. This paper presents Probe Oscillation Shear Elastography (PROSE) as an alternative method to measure tissue elasticity. PROSE generates shear waves using a harmonic mechanical vibration of an ultrasound transducer, while simultaneously detecting motion with the same transducer under pulse-echo mode. Motion of the transducer during detection produces a “strain-like” compression artifact that is coupled with the observed shear waves. A novel symmetric sampling scheme is proposed such that pulse-echo detection events are acquired when the ultrasound transducer returns to the same physical position, allowing the shear waves to be decoupled from the compression artifact. Full field-of-view (FOV) two-dimensional (2D) shear wave speed images were obtained by applying a local frequency estimation (LFE) technique, capable of generating a 2D map from a single frame of shear wave motion. The shear wave imaging frame rate of PROSE is comparable to the vibration frequency, which can be an order of magnitude higher than ARF based techniques. PROSE was able to produce smooth and accurate shear wave images from three homogeneous phantoms with different moduli, with an effective frame rate of 300Hz. An inclusion phantom study showed that increased vibration frequencies improved the accuracy of inclusion imaging, and allowed targets as small as 6.5 mm to be resolved with good contrast (contrast-to-noise ratio ≥19 dB) between the target and

  20. Analisys of pectoralis major tendon in weightlifting athletes using ultrasonography and elastography.

    PubMed

    Pochini, Alberto de Castro; Ferretti, Mario; Kawakami, Eduardo Felipe Kin Ito; Fernandes, Artur da Rocha Corrêa; Yamada, Andre Fukunishi; Oliveira, Gabriela Clemente de; Cohen, Moisés; Andreoli, Carlos Vicente; Ejnisman, Benno

    2015-01-01

    To evaluate tendinopathy of the pectoralis major muscle in weightlifting athletes using ultrasound and elastography. This study included 20 patients, 10 with rupture of the pectoralis major muscle and 10 control patients. We evaluated pectoralis major muscle contralateral tendon with ultrasonographic and elastography examinations. The ultrasonographic examinations were performed using a high-resolution B mode ultrasound device. The elastography evaluation was classified into three patterns: (A), if stiff (more than 50% area with blue staining); (B), if intermediate (more than 50% green); and (C), if softened (more than 50% red). Patients' mean age was 33±5.3 years. The presence of tendinous injury measured by ultrasound had a significant different (p=0.0055), because 80% of cases had tendinous injury versus 10% in the Control Group. No significant differences were seen between groups related with change in elastography (p=0.1409). Long-term bodybuilders had ultrasound image with more tendinous injury than those in Control Group. There was no statistical significance regarding change in tendon elasticity compared with Control Group.

  1. Analisys of pectoralis major tendon in weightlifting athletes using ultrasonography and elastography

    PubMed Central

    Pochini, Alberto de Castro; Ferretti, Mario; Kawakami, Eduardo Felipe Kin Ito; Fernandes, Artur da Rocha Corrêa; Yamada, Andre Fukunishi; de Oliveira, Gabriela Clemente; Cohen, Moisés; Andreoli, Carlos Vicente; Ejnisman, Benno

    2015-01-01

    ABSTRACT Objective To evaluate tendinopathy of the pectoralis major muscle in weightlifting athletes using ultrasound and elastography. Methods This study included 20 patients, 10 with rupture of the pectoralis major muscle and 10 control patients. We evaluated pectoralis major muscle contralateral tendon with ultrasonographic and elastography examinations. The ultrasonographic examinations were performed using a high-resolution B mode ultrasound device. The elastography evaluation was classified into three patterns: (A), if stiff (more than 50% area with blue staining); (B), if intermediate (more than 50% green); and (C), if softened (more than 50% red). Results Patients’ mean age was 33±5.3 years. The presence of tendinous injury measured by ultrasound had a significant different (p=0.0055), because 80% of cases had tendinous injury versus 10% in the Control Group. No significant differences were seen between groups related with change in elastography (p=0.1409). Conclusion Long-term bodybuilders had ultrasound image with more tendinous injury than those in Control Group. There was no statistical significance regarding change in tendon elasticity compared with Control Group. PMID:26761551

  2. Prospective comparison among transient elastography, supersonic shear imaging, and ARFI imaging for predicting fibrosis in nonalcoholic fatty liver disease

    PubMed Central

    Joo, Sae Kyung; Woo, Hyunsik; Lee, Dong Hyeon; Jung, Yong Jin; Kim, Byeong Gwan; Lee, Kook Lae

    2017-01-01

    The diagnostic performance of supersonic shear imaging (SSI) in comparison with those of transient elastography (TE) and acoustic radiation force impulse imaging (ARFI) for staging fibrosis in nonalcoholic fatty liver disease (NAFLD) patients has not been fully assessed, especially in Asian populations with relatively lean NAFLD compared to white populations. Thus, we focused on comparing the diagnostic performances of TE, ARFI, and SSI for staging fibrosis in a head-to-head manner, and identifying the clinical, anthropometric, biochemical, and histological features which might affect liver stiffness measurement (LSM) in our prospective biopsy-proven NAFLD cohort. In this study, ninety-four patients with biopsy-proven NAFLD were included prospectively. Liver stiffness was measured using TE, SSI, and ARFI within 1 month of liver biopsy. The diagnostic performance for staging fibrosis was assessed using receiver operating characteristic (ROC) analysis. Anthropometric data were evaluated as covariates influencing LSM by regression analyses. Liver stiffness correlated with fibrosis stage (p < 0.05); the area under the ROC curve of TE (kPa), SSI (kPa), and ARFI (m/s) were as follows: 0.757, 0.759, and 0.657 for significant fibrosis and 0.870, 0.809, and 0.873 for advanced fibrosis. Anthropometric traits were significant confounders affecting SSI, while serum liver injury markers significantly confounded TE and ARFI. In conclusion, the LSM methods had similar diagnostic performance for staging fibrosis in patients with NAFLD. Pre-LSM anthropometric evaluation may help predict the reliability of SSI. PMID:29176844

  3. WE-AB-202-09: Feasibility and Quantitative Analysis of 4DCT-Based High Precision Lung Elastography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hasse, K; Neylon, J; Low, D

    2016-06-15

    Purpose: The purpose of this project is to derive high precision elastography measurements from 4DCT lung scans to facilitate the implementation of elastography in a radiotherapy context. Methods: 4DCT scans of the lungs were acquired, and breathing stages were subsequently registered to each other using an optical flow DIR algorithm. The displacement of each voxel gleaned from the registration was taken to be the ground-truth deformation. These vectors, along with the 4DCT source datasets, were used to generate a GPU-based biomechanical simulation that acted as a forward model to solve the inverse elasticity problem. The lung surface displacements were appliedmore » as boundary constraints for the model-guided lung tissue elastography, while the inner voxels were allowed to deform according to the linear elastic forces within the model. A biomechanically-based anisotropic convergence magnification technique was applied to the inner voxels in order to amplify the subtleties of the interior deformation. Solving the inverse elasticity problem was accomplished by modifying the tissue elasticity and iteratively deforming the biomechanical model. Convergence occurred when each voxel was within 0.5 mm of the ground-truth deformation and 1 kPa of the ground-truth elasticity distribution. To analyze the feasibility of the model-guided approach, we present the results for regions of low ventilation, specifically, the apex. Results: The maximum apical boundary expansion was observed to be between 2 and 6 mm. Simulating this expansion within an apical lung model, it was observed that 100% of voxels converged within 0.5 mm of ground-truth deformation, while 91.8% converged within 1 kPa of the ground-truth elasticity distribution. A mean elasticity error of 0.6 kPa illustrates the high precision of our technique. Conclusion: By utilizing 4DCT lung data coupled with a biomechanical model, high precision lung elastography can be accurately performed, even in low ventilation

  4. Elastographic techniques of thyroid gland: current status.

    PubMed

    Andrioli, Massimiliano; Persani, Luca

    2014-08-01

    Thyroid nodules are very common with malignancies accounting for about 5 %. Fine-needle biopsy is the most accurate test for thyroid cancer diagnosis. Elastography, a new technology directly evaluating the elastic property of the tissue, has been recently added to the diagnostic armamentarium of the endocrinologists as noninvasive predictor of thyroid malignancy. In this paper, we critically reviewed characteristics and applications of elastographic methods in thyroid gland. Elastographic techniques can be classified on the basis of the following: source-of-tissue compression (free-hand, carotid vibration, ultrasound pulses), processing time (real-time, off-line), stiffness expression (qualitative, semi-quantitative, or quantitative). Acoustic radiation force impulse and aixplorer shear wave are the newest and most promising quantitative elastographic methods. Primary application of elastography is the detection of nodular lesions suspicious for malignancy. Published data show a high sensitivity and negative predictive value of the technique. Insufficient data are available on the possible application of elastography in the differential diagnosis of indeterminate lesions and in thyroiditis. Elastography represents a noninvasive tool able to increase the performance of ultrasound in the selection of thyroid nodules at higher risk of malignancy. Some technical improvements and definition of more robust quantitative diagnostic criteria are required for assigning a definite role in the management of thyroid nodules and thyroiditis to elastography.

  5. Feasibility of transient elastography versus real-time two-dimensional shear wave elastography in difficult-to-scan patients.

    PubMed

    Staugaard, Benjamin; Christensen, Peer Brehm; Mössner, Belinda; Hansen, Janne Fuglsang; Madsen, Bjørn Stæhr; Søholm, Jacob; Krag, Aleksander; Thiele, Maja

    2016-11-01

    Transient elastography (TE) is hampered in some patients by failures and unreliable results. We hypothesized that real time two-dimensional shear wave elastography (2D-SWE), the FibroScan XL probe, and repeated TE exams, could be used to obtain reliable liver stiffness measurements in patients with an invalid TE examination. We reviewed 1975 patients with 5764 TE exams performed between 2007 and 2014, to identify failures and unreliable exams. Fifty-four patients with an invalid TE at their latest appointment entered a comparative feasibility study of TE vs. 2D-SWE. The initial TE exam was successful in 93% (1835/1975) of patients. Success rate increased from 89% to 96% when the XL probe became available (OR: 1.07, 95% CI 1.06-1.09). Likewise, re-examining those with a failed or unreliable TE led to a reliable TE in 96% of patients. Combining availability of the XL probe with TE re-examination resulted in a 99.5% success rate on a per-patient level. When comparing the feasibility of TE vs. 2D-SWE, 96% (52/54) of patients obtained a reliable TE, while 2D-SWE was reliable in 63% (34/54, p < 0.001). The odds of a successful 2D-SWE exam decreased with higher skin-capsule distance (OR = 0.77, 95% CI 0.67-0.98). Transient elastography can be accomplished in nearly all patients by use of the FibroScan XL probe and repeated examinations. In difficult-to-scan patients, the feasibility of TE is superior to 2D-SWE.

  6. A novel shape similarity based elastography system for prostate cancer assessment

    NASA Astrophysics Data System (ADS)

    Wang, Haisu; Mousavi, Seyed Reza; Samani, Abbas

    2012-03-01

    Prostate cancer is the second common cancer among men worldwide and remains the second leading cancer-related cause of death in mature men. The disease can be cured if it is detected at early stage. This implies that prostate cancer detection at early stage is very critical for desirable treatment outcome. Conventional techniques of prostate cancer screening and detection, such as Digital Rectal Examination (DRE), Prostate-Specific Antigen (PSA) and Trans Rectal Ultra-Sonography (TRUS), are known to have low sensitivity and specificity. Elastography is an imaging technique that uses tissue stiffness as contrast mechanism. As the association between the degree of prostate tissue stiffness alteration and its pathology is well established, elastography can potentially detect prostate cancer with a high degree of sensitivity and specificity. In this paper, we present a novel elastography technique which, unlike other elastography techniques, does not require displacement data acquisition system. This technique requires the prostate's pre-compression and postcompression transrectal ultrasound images. The conceptual foundation of reconstructing the prostate's normal and pathological tissues elastic moduli is to determine these moduli such that the similarity between calculated and observed shape features of the post compression prostate image is maximized. Results indicate that this technique is highly accurate and robust.

  7. Does oxygen delivery explain interindividual variation in forearm critical impulse?

    PubMed

    Kellawan, J Mikhail; Bentley, Robert F; Bravo, Michael F; Moynes, Jackie S; Tschakovsky, Michael E

    2014-11-01

    Within individuals, critical power appears sensitive to manipulations in O2 delivery. We asked whether interindividual differences in forearm O2 delivery might account for a majority of the interindividual differences in forearm critical force impulse (critical impulse), the force analog of critical power. Ten healthy men (24.6 ± 7.10 years) completed a maximal effort rhythmic handgrip exercise test (1 sec contraction-2 sec relaxation) for 10 min. The average of contraction impulses over the last 30 sec quantified critical impulse. Forearm brachial artery blood flow (FBF; echo and Doppler ultrasound) and mean arterial pressure (MAP; finger photoplethysmography) were measured continuously. O2 delivery (FBF arterial oxygen content (venous blood [hemoglobin] and oxygen saturation from pulse oximetry)) and forearm vascular conductance (FVC; FBF·MAP(-1)) were calculated. There was a wide range in O2 delivery (59.98-121.15 O2 mL·min(-1)) and critical impulse (381.5-584.8 N) across subjects. During maximal effort exercise, O2 delivery increased rapidly, plateauing well before the declining forearm impulse and explained most of the interindividual differences in critical impulse (r(2) = 0.85, P < 0.01). Both vasodilation (r(2) = 0.64, P < 0.001) and the exercise pressor response (r(2) = 0.33, P < 0.001) independently contributed to interindividual differences in FBF. In conclusion, interindividual differences in forearm O2 delivery account for most of the interindividual variation in critical impulse. Furthermore, individual differences in pressor response play an important role in determining differences in O2 delivery in addition to vasodilation. The mechanistic origins of this vasodilatory and pressor response heterogeneity across individuals remain to be determined. © 2014 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.

  8. Does oxygen delivery explain interindividual variation in forearm critical impulse?

    PubMed Central

    Kellawan, J. Mikhail; Bentley, Robert F.; Bravo, Michael F.; Moynes, Jackie S.; Tschakovsky, Michael E.

    2014-01-01

    Abstract Within individuals, critical power appears sensitive to manipulations in O2 delivery. We asked whether interindividual differences in forearm O2 delivery might account for a majority of the interindividual differences in forearm critical force impulse (critical impulse), the force analog of critical power. Ten healthy men (24.6 ± 7.10 years) completed a maximal effort rhythmic handgrip exercise test (1 sec contraction‐2 sec relaxation) for 10 min. The average of contraction impulses over the last 30 sec quantified critical impulse. Forearm brachial artery blood flow (FBF; echo and Doppler ultrasound) and mean arterial pressure (MAP; finger photoplethysmography) were measured continuously. O2 delivery (FBF arterial oxygen content (venous blood [hemoglobin] and oxygen saturation from pulse oximetry)) and forearm vascular conductance (FVC; FBF·MAP−1) were calculated. There was a wide range in O2 delivery (59.98–121.15 O2 mL·min−1) and critical impulse (381.5–584.8 N) across subjects. During maximal effort exercise, O2 delivery increased rapidly, plateauing well before the declining forearm impulse and explained most of the interindividual differences in critical impulse (r2 = 0.85, P < 0.01). Both vasodilation (r2 = 0.64, P < 0.001) and the exercise pressor response (r2 = 0.33, P < 0.001) independently contributed to interindividual differences in FBF. In conclusion, interindividual differences in forearm O2 delivery account for most of the interindividual variation in critical impulse. Furthermore, individual differences in pressor response play an important role in determining differences in O2 delivery in addition to vasodilation. The mechanistic origins of this vasodilatory and pressor response heterogeneity across individuals remain to be determined. PMID:25413323

  9. Real time endoscopic ultrasound elastography and strain ratio in the diagnosis of solid pancreatic lesions.

    PubMed

    Okasha, Hussein; Elkholy, Shaimaa; El-Sayed, Ramy; Wifi, Mohamed-Naguib; El-Nady, Mohamed; El-Nabawi, Walid; El-Dayem, Waleed A; Radwan, Mohamed I; Farag, Ali; El-Sherif, Yahya; Al-Gemeie, Emad; Salman, Ahmed; El-Sherbiny, Mohamed; El-Mazny, Ahmed; Mahdy, Reem E

    2017-08-28

    To evaluate the accuracy of the elastography score combined to the strain ratio in the diagnosis of solid pancreatic lesions (SPL). A total of 172 patients with SPL identified by endoscopic ultrasound were enrolled in the study to evaluate the efficacy of elastography and strain ratio in differentiating malignant from benign lesions. The semi quantitative score of elastography was represented by the strain ratio method. Two areas were selected, area (A) representing the region of interest and area (B) representing the normal area. Area (B) was then divided by area (A). Sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and accuracy were calculated by comparing diagnoses made by elastography, strain ratio and final diagnoses. SPL were shown to be benign in 49 patients and malignant in 123 patients. Elastography alone had a sensitivity of 99%, a specificity of 63%, and an accuracy of 88%, a PPV of 87% and an NPV of 96%. The best cut-off level of strain ratio to obtain the maximal area under the curve was 7.8 with a sensitivity of 92%, specificity of 77%, PPV of 91%, NPV of 80% and an accuracy of 88%. Another estimated cut off strain ratio level of 3.8 had a higher sensitivity of 99% and NPV of 96%, but with less specificity, PPV and accuracy 53%, 84% and 86%, respectively. Adding both elastography to strain ratio resulted in a sensitivity of 98%, specificity of 77%, PPV of 91%, NPV of 95% and accuracy of 92% for the diagnosis of SPL. Combining elastography to strain ratio increases the accuracy of the differentiation of benign from malignant SPL.

  10. Real time endoscopic ultrasound elastography and strain ratio in the diagnosis of solid pancreatic lesions

    PubMed Central

    Okasha, Hussein; Elkholy, Shaimaa; El-Sayed, Ramy; Wifi, Mohamed-Naguib; El-Nady, Mohamed; El-Nabawi, Walid; El-Dayem, Waleed A; Radwan, Mohamed I; Farag, Ali; El-sherif, Yahya; Al-Gemeie, Emad; Salman, Ahmed; El-Sherbiny, Mohamed; El-Mazny, Ahmed; Mahdy, Reem E

    2017-01-01

    AIM To evaluate the accuracy of the elastography score combined to the strain ratio in the diagnosis of solid pancreatic lesions (SPL). METHODS A total of 172 patients with SPL identified by endoscopic ultrasound were enrolled in the study to evaluate the efficacy of elastography and strain ratio in differentiating malignant from benign lesions. The semi quantitative score of elastography was represented by the strain ratio method. Two areas were selected, area (A) representing the region of interest and area (B) representing the normal area. Area (B) was then divided by area (A). Sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and accuracy were calculated by comparing diagnoses made by elastography, strain ratio and final diagnoses. RESULTS SPL were shown to be benign in 49 patients and malignant in 123 patients. Elastography alone had a sensitivity of 99%, a specificity of 63%, and an accuracy of 88%, a PPV of 87% and an NPV of 96%. The best cut-off level of strain ratio to obtain the maximal area under the curve was 7.8 with a sensitivity of 92%, specificity of 77%, PPV of 91%, NPV of 80% and an accuracy of 88%. Another estimated cut off strain ratio level of 3.8 had a higher sensitivity of 99% and NPV of 96%, but with less specificity, PPV and accuracy 53%, 84% and 86%, respectively. Adding both elastography to strain ratio resulted in a sensitivity of 98%, specificity of 77%, PPV of 91%, NPV of 95% and accuracy of 92% for the diagnosis of SPL. CONCLUSION Combining elastography to strain ratio increases the accuracy of the differentiation of benign from malignant SPL. PMID:28932088

  11. Ultrasound Shear Wave Elastography for Liver Disease. A Critical Appraisal of the Many Actors on the Stage.

    PubMed

    Piscaglia, F; Salvatore, V; Mulazzani, L; Cantisani, V; Schiavone, C

    2016-02-01

    transient elastography, performed with Fibroscan(®), a technology dedicated exclusively to liver elastography. Since then, more than 1300 articles dealing with transient elastography have been listed in PubMed, some describing results with more than 10,000 patients 5. The technique has been tested in nearly all liver disease etiologies, with histology as the reference standard. Meta-analysis of data, available in many etiologies 6, showed good performance and reproducibility as well as some situations limiting reliability 5. Thresholds for the different fibrosis stages (F0 to F4) have been provided by many large-scale studies utilizing histology as the reference standard 7. Transient elastography tracks the velocity of shear waves generated by the gentle hit of a piston on the skin, with the resulting compression wave traveling in the liver along its longitudinal axis. The measurement is made in a 4 cm long section of the liver, thus able to average slightly inhomogeneous fibrotic deposition.In 2008 a new modality became available, Acoustic Radiation Force Impulse (ARFI) quantification, and classified by EFSUMB 1 as point shear wave elastography (pSWE), since the speed of the shear wave (perpendicular to the longitudinal axis) is measured in a small region (a "point", few millimeters) at a freely-choosen depth within 8 cm from the skin. This technology was the first to be implemented in a conventional ultrasound scanner by Siemens(®) 8. Several articles have been published regarding this technology, most with the best reference standards 9, some including findings on more than 1000 hepatitis C patients 10 or reporting meta-analysis of data 11. Although the correlation between Siemens pSWE and transient elastography appeared high 12 13, the calculated thresholds for the different fibrosis stages and the stiffness ranges between the two techniques are not superimposable.Interestingly, pSWE appears to provide greater applicability than transient elastography for

  12. Automated 3D ultrasound elastography of the breast: a phantom validation study

    NASA Astrophysics Data System (ADS)

    Hendriks, Gijs A. G. M.; Holländer, Branislav; Menssen, Jan; Milkowski, Andy; Hansen, Hendrik H. G.; de Korte, Chris L.

    2016-04-01

    In breast cancer screening, the automated breast volume scanner (ABVS) was introduced as an alternative for mammography since the latter technique is less suitable for women with dense breasts. Although clinical studies show promising results, clinicians report two disadvantages: long acquisition times (>90 s) introducing breathing artefacts, and high recall rates due to detection of many small lesions of uncertain malignant potential. Technical improvements for faster image acquisition and better discrimination between benign and malignant lesions are thus required. Therefore, the aim of this study was to investigate if 3D ultrasound elastography using plane-wave imaging is feasible. Strain images of a breast elastography phantom were acquired by an ABVS-mimicking device that allowed axial and elevational movement of the attached transducer. Pre- and post-deformation volumes were acquired with different constant speeds (between 1.25 and 40.0 mm s-1) and by three protocols: Go-Go (pre- and post-volumes with identical start and end positions), Go-Return (similar to Go-Go with opposite scanning directions) and Control (pre- and post-volumes acquired per position, this protocol can be seen as reference). Afterwards, 2D and 3D cross-correlation and strain algorithms were applied to the acquired volumes and the results were compared. The Go-Go protocol was shown to be superior with better strain image quality (CNRe and SNRe) than Go-Return and to be similar as Control. This can be attributed to applying opposite mechanical forces to the phantom during the Go-Return protocol, leading to out-of-plane motion. This motion was partly compensated by using 3D cross-correlation. However, the quality was still inferior to Go-Go. Since these results were obtained in a phantom study with controlled deformations, the effect of possible uncontrolled in vivo tissue motion artefacts has to be addressed in future studies. In conclusion, it seems feasible to implement 3D ultrasound

  13. Magnetic resonance elastography using an air ball-actuator.

    PubMed

    Numano, Tomokazu; Kawabata, Yoshihiko; Mizuhara, Kazuyuki; Washio, Toshikatsu; Nitta, Naotaka; Homma, Kazuhiro

    2013-07-01

    The purpose of this study was to develop a new technique for a powerful compact MR elastography (MRE) actuator based on a pneumatic ball-vibrator. This is a compact actuator that generates powerful centrifugal force vibrations via high speed revolutions of an internal ball using compressed air. This equipment is easy to handle due to its simple principles and structure. Vibration frequency and centrifugal force are freely adjustable via air pressure changes (air flow volume), and replacement of the internal ball. In order to achieve MRI compatibility, all parts were constructed from non-ferromagnetic materials. Vibration amplitudes (displacements) were measured optically by a laser displacement sensor. From a bench test of displacement, even though the vibration frequency increased, the amount of displacement did not decrease. An essential step in MRE is the generation of mechanical waves within tissue via an actuator, and MRE sequences are synchronized to several phase offsets of vibration. In this system, the phase offset was detected by a four-channel optical-fiber sensor, and it was used as an MRI trigger signal. In an agarose gel phantom experiment, this actuator was used to make an MR elastogram. This study shows that the use of a ball actuator for MRE is feasible. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. Usefulness of elastography in predicting the outcome of Foley catheter labour induction.

    PubMed

    Wozniak, Slawomir; Czuczwar, Piotr; Szkodziak, Piotr; Paszkowski, Tomasz

    2015-06-01

    Incorrect selection of women for labour induction may increase the risk of caesarean section and other postpartum and neonatal complications. It has been recently shown that elastography of the uterine cervix holds the potential to predict the outcome of pharmacological labour induction. There are no data on the usefulness of elastography in predicting the outcome of mechanical induction of labour. To assess the usefulness of elastographic cervical assessment in predicting the success of Foley catheter labour induction. This prospective observational study included 39 pregnant women at term with an unfavourable cervix (Bishop score ≤ 6) suitable for Foley catheter labour induction. Before labour induction the following data were recorded: Bishop score, cervical length (measured by ultrasound) and the stiffness of cervical internal os, canal and external os assessed by elastography (elastography index - EI). Statistical relationships between pre-interventional assessment of the cervix and outcome of Foley catheter labour induction (successful induction, time to delivery and route of delivery) were analysed. EI's of internal cervical os and cervical canal were significantly lower (softer) in women with successful labour induction and vaginal delivery, while EI's of the external cervical os, Bishop score and cervix length were not significantly different. Time to vaginal delivery was significantly correlated with the EI's of internal cervical os, cervical canal and Bishop score, but not with EI's of the external cervical os and cervix length. Elastography has the potential to predict the outcome of Foley catheter labour induction. © 2015 The Royal Australian and New Zealand College of Obstetricians and Gynaecologists.

  15. A first demonstration of audio-frequency optical coherence elastography of tissue

    NASA Astrophysics Data System (ADS)

    Adie, Steven G.; Alexandrov, Sergey A.; Armstrong, Julian J.; Kennedy, Brendan F.; Sampson, David D.

    2008-12-01

    Optical elastography is aimed at using the visco-elastic properties of soft tissue as a contrast mechanism, and could be particularly suitable for high-resolution differentiation of tumour from surrounding normal tissue. We present a new approach to measure the effect of an applied stimulus in the kilohertz frequency range that is based on optical coherence tomography. We describe the approach and present the first in vivo optical coherence elastography measurements in human skin at audio excitation frequencies.

  16. Modeling and parameter identification of impulse response matrix of mechanical systems

    NASA Astrophysics Data System (ADS)

    Bordatchev, Evgueni V.

    1998-12-01

    A method for studying the problem of modeling, identification and analysis of mechanical system dynamic characteristic in view of the impulse response matrix for the purpose of adaptive control is developed here. Two types of the impulse response matrices are considered: (i) on displacement, which describes the space-coupled relationship between vectors of the force and simulated displacement, which describes the space-coupled relationship between vectors of the force and simulated displacement and (ii) on acceleration, which also describes the space-coupled relationship between the vectors of the force and measured acceleration. The idea of identification consists of: (a) the practical obtaining of the impulse response matrix on acceleration by 'impact-response' technique; (b) the modeling and parameter estimation of the each impulse response function on acceleration through the fundamental representation of the impulse response function on displacement as a sum of the damped sine curves applying linear and non-linear least square methods; (c) simulating the impulse provides the additional possibility to calculate masses, damper and spring constants. The damped natural frequencies are used as a priori information and are found through the standard FFT analysis. The problem of double numerical integration is avoided by taking two derivations of the fundamental dynamic model of a mechanical system as linear combination of the mass-damper-spring subsystems. The identified impulse response matrix on displacement represents the dynamic properties of the mechanical system. From the engineering point of view, this matrix can be also understood as a 'dynamic passport' of the mechanical system and can be used for dynamic certification and analysis of the dynamic quality. In addition, the suggested approach mathematically reproduces amplitude-frequency response matrix in a low-frequency band and on zero frequency. This allows the possibility of determining the matrix of the

  17. Walking Through the Impulse-Momentum Theorem

    NASA Astrophysics Data System (ADS)

    Haugland, Ole Anton

    2013-02-01

    Modern force platforms are handy tools for investigating forces during human motion. Earlier they were very expensive and were mostly used in research laboratories. But now even platforms that can measure in two directions are quite affordable. In this work we used the PASCO 2-Axis Force Platform. The analysis of the data can serve as a nice illustration of qualitative or quantitative use of the impulse-momentum theorem p - p0 = ∫t0t Fdt = I. The most common use of force platforms is to study the force from the base during the push-off period of a vertical jump. I think this is an activity of great value, and I would recommend it. The use of force platforms in teaching is well documented in research literature.1-4

  18. Mapping tissue shear modulus on Thiel soft-embalmed mouse skin with shear wave optical coherence elastography

    NASA Astrophysics Data System (ADS)

    Song, Shaozhen; Joy, Joyce; Wang, Ruikang K.; Huang, Zhihong

    2015-03-01

    A quantitative measurement of the mechanical properties of biological tissue is a useful assessment of its physiologic conditions, which may aid medical diagnosis and treatment of, e.g., scleroderma and skin cancer. Traditional elastography techniques such as magnetic resonance elastography and ultrasound elastography have limited scope of application on skin due to insufficient spatial resolution. Recently, dynamic / transient elastography are attracting more applications with the advantage of non-destructive measurements, and revealing the absolute moduli values of tissue mechanical properties. Shear wave optical coherence elastography (SW-OCE) is a novel transient elastography method, which lays emphasis on the propagation of dynamic mechanical waves. In this study, high speed shear wave imaging technique was applied to a range of soft-embalmed mouse skin, where 3 kHz shear waves were launched with a piezoelectric actuator as an external excitation. The shear wave velocity was estimated from the shear wave images, and used to recover a shear modulus map in the same OCT imaging range. Results revealed significant difference in shear modulus and structure in compliance with gender, and images on fresh mouse skin are also compared. Thiel embalming technique is also proven to present the ability to furthest preserve the mechanical property of biological tissue. The experiment results suggest that SW-OCE is an effective technique for quantitative estimation of skin tissue biomechanical status.

  19. Sex differences in impulsive action and impulsive choice.

    PubMed

    Weafer, Jessica; de Wit, Harriet

    2014-11-01

    Here, we review the evidence for sex differences in behavioral measures of impulsivity for both humans and laboratory animals. We focus on two specific components of impulsivity: impulsive action (i.e., difficulty inhibiting a prepotent response) and impulsive choice (i.e., difficulty delaying gratification). Sex differences appear to exist on these measures, but the direction and magnitude of the differences vary. In laboratory animals, impulsive action is typically greater in males than females, whereas impulsive choice is typically greater in females. In humans, women discount more steeply than men, but sex differences on measures of impulsive action depend on tasks and subject samples. We discuss implications of these findings as they relate to drug addiction. We also point out the major gaps in this research to date, including the lack of studies designed specifically to examine sex differences in behavioral impulsivity, and the lack of consideration of menstrual or estrous phase or sex hormone levels in the studies. © 2013.

  20. Sex differences in impulsive action and impulsive choice

    PubMed Central

    Weafer, Jessica; de Wit, Harriet

    2013-01-01

    Here, we review the evidence for sex differences in behavioral measures of impulsivity for both humans and laboratory animals. We focus on two specific components of impulsivity: impulsive action (i.e., difficulty inhibiting a prepotent response) and impulsive choice (i.e., difficulty delaying gratification). Sex differences appear to exist on these measures, but the direction and magnitude of the differences vary. In laboratory animals, impulsive action is typically greater in males than females, whereas impulsive choice is typically greater in females. In humans, women discount more steeply than men, but sex differences on measures of impulsive action depend on tasks and subject samples. We discuss implications of these findings as they relate to drug addiction. We also point out the major gaps in this research to date, including the lack of studies designed specifically to examine sex differences in behavioral impulsivity, and the lack of consideration of menstrual or estrous phase or sex hormone levels in the studies. PMID:24286704

  1. The Feasibility of Classifying Breast Masses Using a Computer-Assisted Diagnosis (CAD) System Based on Ultrasound Elastography and BI-RADS Lexicon.

    PubMed

    Fleury, Eduardo F C; Gianini, Ana Claudia; Marcomini, Karem; Oliveira, Vilmar

    2018-01-01

    To determine the applicability of a computer-aided diagnostic system strain elastography system for the classification of breast masses diagnosed by ultrasound and scored using the criteria proposed by the breast imaging and reporting data system ultrasound lexicon and to determine the diagnostic accuracy and interobserver variability. This prospective study was conducted between March 1, 2016, and May 30, 2016. A total of 83 breast masses subjected to percutaneous biopsy were included. Ultrasound elastography images before biopsy were interpreted by 3 radiologists with and without the aid of computer-aided diagnostic system for strain elastography. The parameters evaluated by each radiologist results were sensitivity, specificity, and diagnostic accuracy, with and without computer-aided diagnostic system for strain elastography. Interobserver variability was assessed using a weighted κ test and an intraclass correlation coefficient. The areas under the receiver operating characteristic curves were also calculated. The areas under the receiver operating characteristic curve were 0.835, 0.801, and 0.765 for readers 1, 2, and 3, respectively, without computer-aided diagnostic system for strain elastography, and 0.900, 0.926, and 0.868, respectively, with computer-aided diagnostic system for strain elastography. The intraclass correlation coefficient between the 3 readers was 0.6713 without computer-aided diagnostic system for strain elastography and 0.811 with computer-aided diagnostic system for strain elastography. The proposed computer-aided diagnostic system for strain elastography system has the potential to improve the diagnostic performance of radiologists in breast examination using ultrasound associated with elastography.

  2. Transurethral prostate magnetic resonance elastography: prospective imaging requirements.

    PubMed

    Arani, Arvin; Plewes, Donald; Chopra, Rajiv

    2011-02-01

    Tissue stiffness is known to undergo alterations when affected by prostate cancer and may serve as an indicator of the disease. Stiffness measurements can be made with magnetic resonance elastography performed using a transurethral actuator to generate shear waves in the prostate gland. The goal of this study was to help determine the imaging requirements of transurethral magnetic resonance elastography and to evaluate whether the spatial and stiffness resolution of this technique overlapped with the requirements for prostate cancer detection. Through the use of prostate-mimicking gelatin phantoms, frequencies of at least 400 Hz were necessary to obtain accurate stiffness measurements of 10 mm diameter inclusions, but the detection of inclusions with diameters as small as 4.75 mm was possible at 200 Hz. The shear wave attenuation coefficient was measured in vivo in the canine prostate gland, and was used to predict the detectable penetration depth of shear waves in prostate tissue. These results suggested that frequencies below 200 Hz could propagate to the prostate boundary with a signal to noise ratio (SNR) of 60 and an actuator capable of producing 60 μm displacements. These requirements are achievable with current imaging and actuator technologies, and motivate further investigation of magnetic resonance elastography for the targeting of prostate cancer. Copyright © 2010 Wiley-Liss, Inc.

  3. Transient and 2-Dimensional Shear-Wave Elastography Provide Comparable Assessment of Alcoholic Liver Fibrosis and Cirrhosis.

    PubMed

    Thiele, Maja; Detlefsen, Sönke; Sevelsted Møller, Linda; Madsen, Bjørn Stæhr; Fuglsang Hansen, Janne; Fialla, Annette Dam; Trebicka, Jonel; Krag, Aleksander

    2016-01-01

    Alcohol abuse causes half of all deaths from cirrhosis in the West, but few tools are available for noninvasive diagnosis of alcoholic liver disease. We evaluated 2 elastography techniques for diagnosis of alcoholic fibrosis and cirrhosis; liver biopsy with Ishak score and collagen-proportionate area were used as reference. We performed a prospective study of 199 consecutive patients with ongoing or prior alcohol abuse, but without known liver disease. One group of patients had a high pretest probability of cirrhosis because they were identified at hospital liver clinics (in Southern Denmark). The second, lower-risk group, was recruited from municipal alcohol rehabilitation centers and the Danish national public health portal. All subjects underwent same-day transient elastography (FibroScan), 2-dimensional shear wave elastography (Supersonic Aixplorer), and liver biopsy after an overnight fast. Transient elastography and 2-dimensional shear wave elastography identified subjects in each group with significant fibrosis (Ishak score ≥3) and cirrhosis (Ishak score ≥5) with high accuracy (area under the curve ≥0.92). There was no difference in diagnostic accuracy between techniques. The cutoff values for optimal identification of significant fibrosis by transient elastography and 2-dimensional shear wave elastography were 9.6 kPa and 10.2 kPa, and for cirrhosis 19.7 kPa and 16.4 kPa. Negative predictive values were high for both groups, but the positive predictive value for cirrhosis was >66% in the high-risk group vs approximately 50% in the low-risk group. Evidence of alcohol-induced damage to cholangiocytes, but not ongoing alcohol abuse, affected liver stiffness. The collagen-proportionate area correlated with Ishak grades and accurately identified individuals with significant fibrosis and cirrhosis. In a prospective study of individuals at risk for liver fibrosis due to alcohol consumption, we found elastography to be an excellent tool for diagnosing liver

  4. Dynamic and quantitative assessment of blood coagulation using optical coherence elastography

    PubMed Central

    Xu, Xiangqun; Zhu, Jiang; Chen, Zhongping

    2016-01-01

    Reliable clot diagnostic systems are needed for directing treatment in a broad spectrum of cardiovascular diseases and coagulopathy. Here, we report on non-contact measurement of elastic modulus for dynamic and quantitative assessment of whole blood coagulation using acoustic radiation force orthogonal excitation optical coherence elastography (ARFOE-OCE). In this system, acoustic radiation force (ARF) is produced by a remote ultrasonic transducer, and a shear wave induced by ARF excitation is detected by the optical coherence tomography (OCT) system. During porcine whole blood coagulation, changes in the elastic property of the clots increase the shear modulus of the sample, altering the propagating velocity of the shear wave. Consequently, dynamic blood coagulation status can be measured quantitatively by relating the velocity of the shear wave with clinically relevant coagulation metrics, including reaction time, clot formation kinetics and maximum shear modulus. The results show that the ARFOE-OCE is sensitive to the clot formation kinetics and can differentiate the elastic properties of the recalcified porcine whole blood, blood added with kaolin as an activator, and blood spiked with fibrinogen. PMID:27090437

  5. Dynamic and quantitative assessment of blood coagulation using optical coherence elastography

    NASA Astrophysics Data System (ADS)

    Xu, Xiangqun; Zhu, Jiang; Chen, Zhongping

    2016-04-01

    Reliable clot diagnostic systems are needed for directing treatment in a broad spectrum of cardiovascular diseases and coagulopathy. Here, we report on non-contact measurement of elastic modulus for dynamic and quantitative assessment of whole blood coagulation using acoustic radiation force orthogonal excitation optical coherence elastography (ARFOE-OCE). In this system, acoustic radiation force (ARF) is produced by a remote ultrasonic transducer, and a shear wave induced by ARF excitation is detected by the optical coherence tomography (OCT) system. During porcine whole blood coagulation, changes in the elastic property of the clots increase the shear modulus of the sample, altering the propagating velocity of the shear wave. Consequently, dynamic blood coagulation status can be measured quantitatively by relating the velocity of the shear wave with clinically relevant coagulation metrics, including reaction time, clot formation kinetics and maximum shear modulus. The results show that the ARFOE-OCE is sensitive to the clot formation kinetics and can differentiate the elastic properties of the recalcified porcine whole blood, blood added with kaolin as an activator, and blood spiked with fibrinogen.

  6. Relationship between isometric contraction intensity and muscle hardness assessed by ultrasound strain elastography.

    PubMed

    Inami, Takayuki; Tsujimura, Toru; Shimizu, Takuya; Watanabe, Takemasa; Lau, Wing Yin; Nosaka, Kazunori

    2017-05-01

    Ultrasound elastography is used to assess muscle hardness or stiffness; however, no previous studies have validated muscle hardness measures using ultrasound strain elastography (SE). This study investigated the relationship between plantar flexor isometric contraction intensity and gastrocnemius hardness assessed by SE. We hypothesised that the muscle would become harder linearly with an increase in the contraction intensity of the plantar flexors. Fifteen young women (20.1 ± 0.8 years) performed isometric contractions of the ankle plantar flexors at four different intensities (25, 50, 75, 100% of maximal voluntary contraction force: MVC) at 0° plantar flexion. Using SE images, the strain ratio (SR) between the muscle and an acoustic coupler (elastic modulus 22.6 kPa) placed over the skin was calculated (muscle/coupler); pennation angle and muscle thickness were measured for the resting and contracting conditions. SR decreased with increasing contraction intensity from rest (1.28 ± 0.20) to 25% (0.99 ± 0.21), 50% (0.61 ± 0.15), 75% (0.34 ± 0.1) and 100% MVC (0.20 ± 0.05). SR decreased linearly (P < 0.05) with increasing MVC from rest to 75% MVC, but levelled off from 75 and 100% MVC. SR was negatively correlated with pennation angle (r = -0.80, P < 0.01) and muscle thickness ( r= -0.78,  P< 0.01). SR appears to represent muscle hardness changes in response to contraction intensity changes, in the assumption that the gastrocnemius muscle contraction intensity is proportional to the plantar flexion intensity. We concluded that gastrocnemius muscle hardness changes could be validly assessed by SR, and the force-hardness relationship was not linear.

  7. In vivo time-harmonic multifrequency elastography of the human liver

    NASA Astrophysics Data System (ADS)

    Tzschätzsch, Heiko; Ipek-Ugay, Selcan; Guo, Jing; Streitberger, Kaspar-Josche; Gentz, Enno; Fischer, Thomas; Klaua, Robert; Schultz, Michael; Braun, Jürgen; Sack, Ingolf

    2014-04-01

    Elastography is capable of noninvasively detecting hepatic fibrosis by imposing mechanical stress and measuring the viscoelastic response in the liver. Magnetic resonance elastography (MRE) relies on time-harmonic vibrations, while most dynamic ultrasound elastography methods employ transient stimulation methods. This study attempts to benefit from the advantages of time-harmonic tissue stimulation, i.e. relative insensitivity to obesity and ascites and mechanical approachability of the entire liver, and the advantages of ultrasound, i.e. time efficiency, low costs, and wide availability, by introducing in vivo time-harmonic elastography (THE) of the human liver using ultrasound and a broad range of harmonic stimulation frequencies. THE employs continuous harmonic shear vibrations at 7 frequencies from 30 to 60 Hz in a single examination and determines the elasticity and the viscosity of the liver from the dispersion of the shear wave speed within the applied frequency range. The feasibility of the method is demonstrated in the livers of eight healthy volunteers and a patient with cirrhosis. Multifrequency MRE at the same drive frequencies was used as elastographic reference method. Similar values of shear modulus and shear viscosity according the Kelvin-Voigt model were obtained by MRE and THE, indicating that the new method is suitable for in vivo quantification of the shear viscoelastic properties of the liver, however, in real-time and at a fraction of the costs of MRE. In conclusion, THE may provide a useful tool for fast assessment of the viscoelastic properties of the liver at low costs and without limitations in obesity, ascites or hemochromatosis.

  8. Repeatability of shear wave elastography in liver fibrosis phantoms—Evaluation of five different systems

    PubMed Central

    2018-01-01

    This study aimed to assess and validate the repeatability and agreement of quantitative elastography of novel shear wave methods on four individual tissue-mimicking liver fibrosis phantoms with different known Young’s modulus. We used GE Logiq E9 2D-SWE, Philips iU22 ARFI (pSWE), Samsung TS80A SWE (pSWE), Hitachi Ascendus (SWM) and Transient Elastography (TE). Two individual investigators performed all measurements non-continued and in parallel. The methods were evaluated for inter- and intraobserver variability by intraclass correlation, coefficient of variation and limits of agreement using the median elastography value. All systems used in this study provided high repeatability in quantitative measurements in a liver fibrosis phantom and excellent inter- and intraclass correlations. All four elastography platforms showed excellent intra-and interobserver agreement (interclass correlation 0.981–1.000 and intraclass correlation 0.987–1.000) and no significant difference in mean elasticity measurements for all systems, except for TE on phantom 4. All four liver fibrosis phantoms could be differentiated by quantitative elastography, by all platforms (p<0.001). In the Bland-Altman analysis the differences in measurements were larger for the phantoms with higher Young’s modulus. All platforms had a coefficient of variation in the range 0.00–0.21 for all four phantoms, equivalent to low variance and high repeatability. PMID:29293527

  9. Ground Reaction Forces of the Lead and Trail Limbs when Stepping Over an Obstacle

    PubMed Central

    Bovonsunthonchai, Sunee; Khobkhun, Fuengfa; Vachalathiti, Roongtiwa

    2015-01-01

    Background Precise force generation and absorption during stepping over different obstacles need to be quantified for task accomplishment. This study aimed to quantify how the lead limb (LL) and trail limb (TL) generate and absorb forces while stepping over obstacle of various heights. Material/Methods Thirteen healthy young women participated in the study. Force data were collected from 2 force plates when participants stepped over obstacles. Two limbs (right LL and left TL) and 4 conditions of stepping (no obstacle, stepping over 5 cm, 20 cm, and 30 cm obstacle heights) were tested for main effect and interaction effect by 2-way ANOVA. Paired t-test and 1-way repeated-measure ANOVA were used to compare differences of variables between limbs and among stepping conditions, respectively. The main effects on the limb were found in first peak vertical force, minimum vertical force, propulsive peak force, and propulsive impulse. Results Significant main effects of condition were found in time to minimum force, time to the second peak force, time to propulsive peak force, first peak vertical force, braking peak force, propulsive peak force, vertical impulse, braking impulse, and propulsive impulse. Interaction effects of limb and condition were found in first peak vertical force, propulsive peak force, braking impulse, and propulsive impulse. Conclusions Adaptations of force generation in the LL and TL were found to involve adaptability to altered external environment during stepping in healthy young adults. PMID:26169293

  10. Multiresolution MR elastography using nonlinear inversion

    PubMed Central

    McGarry, M. D. J.; Van Houten, E. E. W.; Johnson, C. L.; Georgiadis, J. G.; Sutton, B. P.; Weaver, J. B.; Paulsen, K. D.

    2012-01-01

    Purpose: Nonlinear inversion (NLI) in MR elastography requires discretization of the displacement field for a finite element (FE) solution of the “forward problem”, and discretization of the unknown mechanical property field for the iterative solution of the “inverse problem”. The resolution requirements for these two discretizations are different: the forward problem requires sufficient resolution of the displacement FE mesh to ensure convergence, whereas lowering the mechanical property resolution in the inverse problem stabilizes the mechanical property estimates in the presence of measurement noise. Previous NLI implementations use the same FE mesh to support the displacement and property fields, requiring a trade-off between the competing resolution requirements. Methods: This work implements and evaluates multiresolution FE meshes for NLI elastography, allowing independent discretizations of the displacements and each mechanical property parameter to be estimated. The displacement resolution can then be selected to ensure mesh convergence, and the resolution of the property meshes can be independently manipulated to control the stability of the inversion. Results: Phantom experiments indicate that eight nodes per wavelength (NPW) are sufficient for accurate mechanical property recovery, whereas mechanical property estimation from 50 Hz in vivo brain data stabilizes once the displacement resolution reaches 1.7 mm (approximately 19 NPW). Viscoelastic mechanical property estimates of in vivo brain tissue show that subsampling the loss modulus while holding the storage modulus resolution constant does not substantially alter the storage modulus images. Controlling the ratio of the number of measurements to unknown mechanical properties by subsampling the mechanical property distributions (relative to the data resolution) improves the repeatability of the property estimates, at a cost of modestly decreased spatial resolution. Conclusions: Multiresolution

  11. Considering Angle Selection When Using Ultrasound Electrode Displacement Elastography to Evaluate Radiofrequency Ablation of Tissues

    PubMed Central

    Li, Qiang; Chen, Pin-Yu; Wang, Chiao-Yin; Liu, Hao-Li; Teng, Jianfu

    2014-01-01

    Percutaneous radiofrequency ablation (RFA) is a minimally invasive treatment to thermally destroy tumors. Ultrasound-based electrode-displacement elastography is an emerging technique for evaluating the region of RFA-induced lesions. The angle between the imaging probe and the RFA electrode can influence electrode-displacement elastography when visualizing the ablation zone. We explored the angle effect on electrode-displacement elastography to measure the ablation zone. Phantoms embedded with meatballs were fabricated and then ablated using an RFA system to simulate RFA-induced lesions. For each phantom, a commercial ultrasound scanner with a 7.5 MHz linear probe was used to acquire raw image data at different angles, ranging from 30° to 90° at increments of 10°, to construct electrode-displacement images and facilitate comparisons with tissue section images. The results revealed that the ablation regions detected using electrode-displacement elastography were highly correlated with those from tissue section images when the angle was between 30° and 60°. However, the boundaries of lesions were difficult to distinguish, when the angle was larger than 60°. The experimental findings suggest that angle selection should be considered to achieve reliable electrode-displacement elastography to describe ablation zones. PMID:24971347

  12. Diagnostic potential of real-time elastography (RTE) and shear wave elastography (SWE) to differentiate benign and malignant thyroid nodules

    PubMed Central

    Hu, Xiangdong; Liu, Yujiang; Qian, Linxue

    2017-01-01

    Abstract Background: Real-time elastography (RTE) and shear wave elastography (SWE) are noninvasive and easily available imaging techniques that measure the tissue strain, and it has been reported that the sensitivity and the specificity of elastography were better in differentiating between benign and malignant thyroid nodules than conventional technologies. Methods: Relevant articles were searched in multiple databases; the comparison of elasticity index (EI) was conducted with the Review Manager 5.0. Forest plots of the sensitivity and specificity and SROC curve of RTE and SWE were performed with STATA 10.0 software. In addition, sensitivity analysis and bias analysis of the studies were conducted to examine the quality of articles; and to estimate possible publication bias, funnel plot was used and the Egger test was conducted. Results: Finally 22 articles which eventually satisfied the inclusion criteria were included in this study. After eliminating the inefficient, benign and malignant nodules were 2106 and 613, respectively. The meta-analysis suggested that the difference of EI between benign and malignant nodules was statistically significant (SMD = 2.11, 95% CI [1.67, 2.55], P < .00001). The overall sensitivities of RTE and SWE were roughly comparable, whereas the difference of specificities between these 2 methods was statistically significant. In addition, statistically significant difference of AUC between RTE and SWE was observed between RTE and SWE (P < .01). Conclusion: The specificity of RTE was statistically higher than that of SWE; which suggests that compared with SWE, RTE may be more accurate on differentiating benign and malignant thyroid nodules. PMID:29068996

  13. Transient elastography with the XL probe rapidly identifies patients with nonhepatic ascites.

    PubMed

    Kohlhaas, Anna; Durango, Esteban; Millonig, Gunda; Bastard, Cecile; Sandrin, Laurent; Golriz, Mohammad; Mehrabi, Arianeb; Büchler, Markus W; Seitz, Helmut Karl; Mueller, Sebastian

    2012-01-01

    In contrast with other elastographic techniques, ascites is considered an exclusion criterion for assessment of fibrosis stage by transient elastography. However, a normal liver stiffness could rule out hepatic causes of ascites at an early stage. The aim of the present study was to determine whether liver stiffness can be generally determined by transient elastography through an ascites layer, to determine whether the ascites-mediated increase in intra-abdominal pressure affects liver stiffness, and to provide initial data from a pilot cohort of patients with various causes of ascites. Using the XL probe in an artificial ascites model, we demonstrated (copolymer phantoms surrounded by water) that a transient elastography-generated shear wave allows accurate determination of phantom stiffness up to a water lamella of 20 mm. We next showed in an animal ascites model that increased intra-abdominal pressure does not affect liver stiffness. Liver stiffness was then determined in 24 consecutive patients with ascites due to hepatic (n = 18) or nonhepatic (n = 6) causes. The cause of ascites was eventually clarified using routine clinical, imaging, laboratory, and other tools. Valid (75%) or acceptable (25%) liver stiffness data could be obtained in 23 patients (95.8%) with ascites up to an ascites lamella of 39 mm. The six patients (25%) with nonhepatic causes of ascites (eg, pancreatitis, peritoneal carcinomatosis) had a significantly lower liver stiffness (<8 kPa) as compared with the remaining patients with hepatic ascites (>30 kPa). Mean liver stiffness was 5.4 kPa ± 1.3 versus 66.2 ± 13.3 kPa. In conclusion, the presence of ascites and increased intra-abdominal pressure does not alter underlying liver stiffness as determined by transient elastography. We suggest that, using the XL probe, transient elastography can be used first-line to identify patients with nonhepatic ascites at an early stage.

  14. ARFI quantitative elastography of the submandibular glands. Normal measurements and the diagnosis value of the method in radiation submaxillitis.

    PubMed

    Badea, Alexandru Florin; Tamas Szora, Attila; Ciuleanu, Elisabeta; Chioreanu, Ioana; Băciuţ, Grigore; Lupşor Platon, Monica; Badea, Radu

    2013-09-01

    Evaluation of Acoustic Radiation Force Impulse Imaging (ARFI) elastography performance in predicting the elasticity of the submandibular glands in normal situations and after radiation therapy. A number of 54 normal submandibular glands from 27 voluntary subjects and 33 pathological submandibular glands (radiation submaxillities) from 18 patients who had undergone radiation therapy for various cervical and facial oncological conditions were included in study. All the patients had undergone a B mode ultrasonography (Tissue Harmonic Imaging, 8-14 MHz) while the submandibular volume was determined and subsequently an ARFI examination while the shear wave velocity (SWV) was measured (in the central, peripheral and subcapsular areas, with the results expressed in m/s). In the volunteers' group the mean value of the SWV of the left submandibular gland was 1.68 ± 0.46 m/s, determined in the centre of the gland, 1.88 ± 0.4 m/s in the periphery (corresponding to the subcapsular parenchyma) and the SWV of the right submandibular gland was 1.74 ± 0.35 m/s (centrally) and 1.84 ± 0.43 m/s in the periphery. The mean value of all measurements was 1.82 ± 0.41 m/s. The mean volume of the glands was 7.97 ± 2.63 cm3. In the group of patients who had underwent radiation therapy (at least 35Gy), the mean value of the SWV was 2.24 ± 0.49 m/s centrally and 2.1 ± 0.58 m/s in the periphery on the left and 1.99 ± 0.5 m/s centrally and 2.21 ± 0.52 m/s in the periphery on the right. The mean value of all the measurements was 2.13 ± 0.52 m/s and the mean volume of the gland was 5.95 ± 4.16 cm3. Elastography using ARFI technique is a valid examination in the evaluation of the normal and pathological submandibular gland stiffness. The values of the shear wave velocities that correspond to a normal stiffness, determined through the ARFI technique, are similar in the two glands. After cervical and facial radiation therapy the values of the SWV are increased, indicating a change in the

  15. Shear Wave Elastography May Add a New Dimension to Ultrasound Evaluation of Thyroid Nodules: Case Series with Comparative Evaluation

    PubMed Central

    Slapa, Rafal Z.; Piwowonski, Antoni; Jakubowski, Wieslaw S.; Bierca, Jacek; Szopinski, Kazimierz T.; Slowinska-Srzednicka, Jadwiga; Migda, Bartosz; Mlosek, R. Krzysztof

    2012-01-01

    Although elastography can enhance the differential diagnosis of thyroid nodules, its diagnostic performance is not ideal at present. Further improvements in the technique and creation of robust diagnostic criteria are necessary. The purpose of this study was to compare the usefulness of strain elastography and a new generation of elasticity imaging called supersonic shear wave elastography (SSWE) in differential evaluation of thyroid nodules. Six thyroid nodules in 4 patients were studied. SSWE yielded 1 true-positive and 5 true-negative results. Strain elastography yielded 5 false-positive results and 1 false-negative result. A novel finding appreciated with SSWE, were punctate foci of increased stiffness corresponding to microcalcifications in 4 nodules, some not visible on B-mode ultrasound, as opposed to soft, colloid-inspissated areas visible on B-mode ultrasound in 2 nodules. This preliminary paper indicates that SSWE may outperform strain elastography in differentiation of thyroid nodules with regard to their stiffness. SSWE showed the possibility of differentiation of high echogenic foci into microcalcifications and inspissated colloid, adding a new dimension to thyroid elastography. Further multicenter large-scale studies of thyroid nodules evaluating different elastographic methods are warranted. PMID:22685685

  16. Prediction of Esophageal Varices in Patients with Cirrhosis: Usefulness of Three-dimensional MR Elastography with Echo-planar Imaging Technique

    PubMed Central

    Shin, Sung Ui; Yu, Mi Hye; Yoon, Jeong Hee; Han, Joon Koo; Choi, Byung-Ihn; Glaser, Kevin J.; Ehman, Richard L.

    2014-01-01

    Purpose To determine the diagnostic performance of magnetic resonance (MR) elastography in comparison to spleen length and dynamic contrast material–enhanced (DCE) MR imaging in association with esophageal varices in patients with liver cirrhosis by using endoscopy as the reference standard. Materials and Methods This retrospective study received institutional review board approval, and informed consent was waived. One hundred thirty-nine patients with liver cirrhosis who underwent liver DCE MR imaging, including MR elastography, were included. Hepatic stiffness (HS) and spleen stiffness (SS) values assessed with MR elastography, as well as spleen length, were correlated with the presence of esophageal varices and high-risk varices by using Spearman correlation analysis. The diagnostic performance of MR elastography was compared with that of DCE MR imaging and combined assessment of MR elastography and DCE MR imaging by using receiver operating characteristic analysis. MR elastography reproducibility was assessed prospectively, with informed consent, in another 15 patients by using intraclass correlation coefficients. Results There were significant positive linear correlations between HS, SS, and spleen length and the grade of esophageal varices (r = 0.46, r = 0.48, and r = 0.36, respectively; all P < .0001). HS and SS values (>4.81 kPa and >7.60 kPa, respectively) showed better performance than did spleen length in the association with esophageal varices (P = .0306 and P = .0064, respectively). Diagnostic performance of HS and SS in predicting high-risk varices was comparable to that of DCE MR imaging (P = .1282 and P = .1371, respectively). When MR elastography and DCE MR imaging were combined, sensitivity improved significantly (P = .0004). MR elastography was highly reproducible (intraclass correlation coefficient > 0.9). Conclusion HS and SS are associated with esophageal varices and showed better performance than did spleen length in assessing the presence

  17. Does acoustic radiation force elastography improve the diagnostic capability of ultrasound in the preoperative characterization of masses of the parotid gland?

    PubMed

    Zengel, Pamela; Notter, Florian; Clevert, Dirk A

    2018-06-06

    Ultrasound is the method of choice for preoperative evaluation of tumours of the parotid glands. However, existing methods do not allow for clear differentiation between the most common benign tumours and malignant tumours. The aim of our study was to evaluate if acoustic radiation force, Virtual Touch Quantification (VTQ) elastography helps to improve the preoperative evaluation of parotid masses. We investigated the parenchyma of 102 parotid glands, 14 lymph nodes of healthy volunteers and 51 tumours of the parotid gland via ultrasound, colour Doppler ultrasound and VTQ. The results were matched with histopathology and analyzed. The perfusion in pleomorphic adenoma, the most frequent benign tumour of the parotid gland, was significantly lower in comparison to malignant tumours. All tumours showed statistically significant higher perfusion in comparison to the parenchyma or the lymph nodes of the gland. Shear wave velocity of the user-defined region of interest was statistically significant more frequently an overflow value higher than 8.5 m/s in total tumours in comparison to parenchyma or lymph nodes. The different tumour types presented no significant difference in the shear wave velocity. VTQ in combination with classical ultrasound examination provides additional data useful in distinguishing between benign and malignant tumours and thus shows promise for integration into preexisting ultrasound protocols. However, despite the improvement, clear differentiation of tumours is still not possible and further investigation is recommended.

  18. Application of Elastography for the Noninvasive Assessment of Biomechanics in Engineered Biomaterials and Tissues

    PubMed Central

    Kim, Woong; Ferguson, Virginia L.; Borden, Mark; Neu, Corey P.

    2016-01-01

    The elastic properties of engineered biomaterials and tissues impact their post-implantation repair potential and structural integrity, and are critical to help regulate cell fate and gene expression. The measurement of properties (e.g., stiffness or shear modulus) can be attained using elastography, which exploits noninvasive imaging modalities to provide functional information of a material indicative of the regeneration state. In this review, we outline the current leading elastography methodologies available to characterize the properties of biomaterials and tissues suitable for repair and mechanobiology research. We describe methods utilizing magnetic resonance, ultrasound, and optical coherent elastography, highlighting their potential for longitudinal monitoring of implanted materials in vivo, in addition to spatiotemporal limits of each method for probing changes in cell-laden constructs. Micro-elastography methods now allow acquisitions at length scales approaching 5–100 μm in two and three dimensions. Many of the methods introduced in this review are therefore capable of longitudinal monitoring in biomaterials and tissues approaching the cellular scale. However, critical factors such as anisotropy, heterogeneity and viscoelasity—inherent in many soft tissues—are often not fully described and therefore require further advancements and future developments. PMID:26790865

  19. A soft patellar tendon on ultrasound elastography is associated with pain and functional deficit in volleyball players.

    PubMed

    Ooi, Chin Chin; Richards, Paula J; Maffulli, Nicola; Ede, David; Schneider, Michal E; Connell, David; Morrissey, Dylan; Malliaras, Peter

    2016-05-01

    To investigate the diagnostic performance of grey scale Ultrasound (US), power Doppler (PD) and US elastography for diagnosing painful patellar tendinopathy, and to establish their relationship with Victorian Institute of Sport Assessment-Patella (VISA-P) scores in a group of volleyball players with and without symptoms of patellar tendinopathy. Cross-sectional study. Thirty-five volleyball players (70 patellar tendons) were recruited during a national university volleyball competition. Players were imaged with conventional US followed by elastography. The clinical findings of painful patellar tendons were used as the reference standard for diagnosing patellar tendinopathy. In addition, all participants completed the VISA-P questionnaires. Of the 70 patellar tendons, 40 (57.1%) were clinically painful. The diagnostic accuracy of grey scale US, PD and elastography were 60%, 50%, 62.9%, respectively, with sensitivity/specificity of 72.5%/43.3%, 12.5%/100%, and 70%/53.3%, respectively. Combined US elastography and grey scale imaging achieved 82.5% sensitivity, 33.3% specificity and 61.4% accuracy while routine combination technique of PD and grey scale imaging revealed 72.5% sensitivity, 43.3% specificity and 60.0% accuracy. Tendons in players categorized as soft on elastography had statistically significantly greater AP thickness (p<0.001) and lower VISA-P scores (p=0.004) than those categorized as hard. There was no significant association between grey scale US abnormalities (hypoechogenicities and/or fusiform swelling) and VISA-P scores (p=0.098). Soft tendon properties depicted by US elastography may be more related to patellar tendon symptoms compared to grey scale US abnormalities. The supplementation of US elastography to conventional US may enhance the sensitivity for diagnosing patellar tendinopathy in routine clinical practice. Copyright © 2015 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  20. How birds direct impulse to minimize the energetic cost of foraging flight

    NASA Astrophysics Data System (ADS)

    Chin, Diana; Lentink, David

    2017-11-01

    Foraging arboreal birds frequently hop and fly between branches by extending long-jumps with a few wingbeats. Their legs transfer impulse to the branch during takeoff and landing, and their wings transfer impulse to the air to support their bodyweight during flight. To determine the mechanical energy tradeoffs of this bimodal locomotion, we studied how Pacific parrotlets transfer impulse during voluntary perch-to-perch flights. We tested five foraging flight variations by varying the inclination and distance between instrumented perches inside a novel aerodynamic force platform. This setup enables direct, time-resolved in vivo measurements of both leg and wing forces, which we combined with high-speed kinematics to develop a new bimodal long-jump and flight model. The model demonstrates how parrotlets direct their leg impulse to minimize the mechanical energy needed for each flight, and further shows how even a single proto-wingbeat would have significantly lengthened the long-jump of foraging arboreal dinosaurs. By directing jumps and flapping their wings, both extant and ancestral birds could thus improve foraging effectiveness. Similarly, bimodal robots could also employ these locomotion strategies to traverse cluttered environments more effectively.

  1. Braking and Propulsive Impulses Increase with Speed during Accelerated and Decelerated Walking

    PubMed Central

    Peterson, Carrie L.; Kautz, Steven A.; Neptune, Richard R.

    2011-01-01

    The ability to accelerate and decelerate is important for daily activities and likely more demanding than maintaining a steady-state walking speed. Walking speed is modulated by anterior-posterior (AP) ground reaction force (GRF) impulses. The purpose of this study was to investigate AP impulses across a wide range of speeds during accelerated and decelerated walking. Kinematic and GRF data were collected from ten healthy subjects walking on an instrumented treadmill. Subjects completed trials at steady-state speeds and at four rates of acceleration and deceleration across a speed range of 0 to 1.8 m/s. Mixed regression models were generated to predict AP impulses, step length and frequency from speed, and joint moment impulses from AP impulses during non-steady-state walking. Braking and propulsive impulses were positively related to speed. The braking impulse had a greater relationship with speed than the propulsive impulse, suggesting that subjects modulate the braking impulse more than the propulsive impulse to change speed. Hip and knee extensor, and ankle plantarflexor moment impulses were positively related to the braking impulse, and knee flexor and ankle plantarflexor moment impulses were positively related to the propulsive impulse. Step length and frequency increased with speed and were near the subjects’ preferred combination at steady-state speeds, at which metabolic cost is minimized in nondisabled walking. Thus, these variables may be modulated to minimize metabolic cost while accelerating and decelerating. The outcomes of this work provide the foundation to investigate motor coordination in pathological subjects in response to the increased task demands of non-steady-state walking. PMID:21356590

  2. Impulsive stabilization and impulsive synchronization of discrete-time delayed neural networks.

    PubMed

    Chen, Wu-Hua; Lu, Xiaomei; Zheng, Wei Xing

    2015-04-01

    This paper investigates the problems of impulsive stabilization and impulsive synchronization of discrete-time delayed neural networks (DDNNs). Two types of DDNNs with stabilizing impulses are studied. By introducing the time-varying Lyapunov functional to capture the dynamical characteristics of discrete-time impulsive delayed neural networks (DIDNNs) and by using a convex combination technique, new exponential stability criteria are derived in terms of linear matrix inequalities. The stability criteria for DIDNNs are independent of the size of time delay but rely on the lengths of impulsive intervals. With the newly obtained stability results, sufficient conditions on the existence of linear-state feedback impulsive controllers are derived. Moreover, a novel impulsive synchronization scheme for two identical DDNNs is proposed. The novel impulsive synchronization scheme allows synchronizing two identical DDNNs with unknown delays. Simulation results are given to validate the effectiveness of the proposed criteria of impulsive stabilization and impulsive synchronization of DDNNs. Finally, an application of the obtained impulsive synchronization result for two identical chaotic DDNNs to a secure communication scheme is presented.

  3. Muscle ultrasound elastography and MRI in preschool children with Duchenne muscular dystrophy.

    PubMed

    Pichiecchio, Anna; Alessandrino, Francesco; Bortolotto, Chandra; Cerica, Alessandra; Rosti, Cristina; Raciti, Maria Vittoria; Rossi, Marta; Berardinelli, Angela; Baranello, Giovanni; Bastianello, Stefano; Calliada, Fabrizio

    2018-06-01

    The aim of this study was to determine muscle tissue elasticity, measured with shear-wave elastography, in selected lower limb muscles of patients affected by Duchenne muscular dystrophy (DMD) and to correlate the values obtained with those recorded in healthy children and with muscle magnetic resonance imaging (MRI) data from the same DMD children, specifically the pattern on T1-weighted (w) and short-tau inversion recovery (STIR) sequences. Five preschool DMD children and five age-matched healthy children were studied with shear-wave elastography. In the DMD children, muscle stiffness was moderately higher compared with the muscle stiffness in HC, in the rectus femoris, vastus lateralis, adductor magnus and gluteus maximus muscles. On muscle MRI T1-w images showed fatty replacement in 3/5 patients at the level of the GM, while thigh and leg muscles were affected in 2/5; hyperintensity on STIR images was identified in 4/5 patients. No significant correlation was observed between stiffness values and MRI scoring. Our study demonstrated that lower limb muscles of preschool DMD patients show fatty replacement and patchy edema on muscle MRI and increased stiffness on shear-wave elastography. In conclusion, although further studies in larger cohorts are needed, shear-wave elastography could be considered a useful non-invasive tool to easily monitor muscle changes in early stages of the disease. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Accuracy of localization of prostate lesions using manual palpation and ultrasound elastography

    NASA Astrophysics Data System (ADS)

    Kut, Carmen; Schneider, Caitlin; Carter-Monroe, Naima; Su, Li-Ming; Boctor, Emad; Taylor, Russell

    2009-02-01

    Purpose: To compare the accuracy of detecting tumor location and size in the prostate using both manual palpation and ultrasound elastography (UE). Methods: Tumors in the prostate were simulated using both synthetic and ex vivo tissue phantoms. 25 participants were asked to provide the presence, size and depth of these simulated lesions using manual palpation and UE. Ultrasound images were captured using a laparoscopic ultrasound probe, fitted with a Gore-Tetrad transducer with frequency of 7.5 MHz and a RF capture depth of 4-5 cm. A MATLAB GUI application was employed to process the RF data for ex vivo phantoms, and to generate UE images using a cross-correlation algorithm. Ultrasonix software was used to provide real time elastography during laparoscopic palpation of the synthetic phantoms. Statistical analyses were performed based on a two-tailed, student t-test with α = 0.05. Results: UE displays both a higher accuracy and specificity in tumor detection (sensitivity = 84%, specificity = 74%). Tumor diameters and depths are better estimated using ultrasound elastography when compared with manual palpation. Conclusions: Our results indicate that UE has strong potential in assisting surgeons to intra-operatively evaluate the tumor depth and size. We have also demonstrated that ultrasound elastography can be implemented in a laparoscopic environment, in which manual palpation would not be feasible. With further work, this application can provide accurate and clinically relevant information for surgeons during prostate resection.

  5. Comparison of strain and shear wave elastography for qualitative and quantitative assessment of breast masses in the same population.

    PubMed

    Kim, Hyo Jin; Kim, Sun Mi; Kim, Bohyoung; La Yun, Bo; Jang, Mijung; Ko, Yousun; Lee, Soo Hyun; Jeong, Heeyeong; Chang, Jung Min; Cho, Nariya

    2018-04-18

    We investigated addition of strain and shear wave elastography to conventional ultrasonography for the qualitative and quantitative assessment of breast masses; cut-off points were determined for strain ratio, elasticity ratio, and visual score for differentiating between benign and malignant masses. In all, 108 masses from 94 patients were evaluated with strain and shear wave elastography and scored for suspicion of malignancy, visual score, strain ratio, and elasticity ratio. The diagnostic performance between ultrasonography alone and ultrasonography combined with either type of elastography was compared; cut-off points were determined for strain ratio, elasticity ratio, and visual score. Of the 108 masses, 44 were malignant and 64 were benign. The areas under the curves were significantly higher for strain and shear wave elastography-supplemented ultrasonography (0.839 and 0.826, respectively; P = 0.656) than for ultrasonography alone (0.764; P = 0.018 and 0.035, respectively). The diagnostic performances of strain and elasticity ratios were similar when differentiating benign from malignant masses. Cut-off values for strain ratio, elasticity ratio, and visual scores for strain and shear wave elastography were 2.93, 4, 3, and 2, respectively. Both forms of elastography similarly improved the diagnostic performance of conventional ultrasonography in the qualitative and quantitative assessment of breast masses.

  6. Elastography methods for the non-invasive assessment of portal hypertension.

    PubMed

    Roccarina, Davide; Rosselli, Matteo; Genesca, Joan; Tsochatzis, Emmanuel A

    2018-02-01

    The gold standard to assess the presence and severity of portal hypertension remains the hepatic vein pressure gradient, however the recent development of non-invasive assessment using elastography techniques offers valuable alternatives. In this review, we discuss the diagnostic accuracy and utility of such techniques in patients with portal hypertension due to cirrhosis. Areas covered: A literature search focused on liver and spleen stiffness measurement with different elastographic techniques for the assessment of the presence and severity of portal hypertension and oesophageal varices in people with chronic liver disease. The combination of elastography with parameters such as platelet count and spleen size is also discussed. Expert commentary: Non-invasive assessment of liver fibrosis and portal hypertension is a validated tool for the diagnosis and follow-up of patients. Baveno VI recommended the combination of transient elastography and platelet count for ruling out varices needing treatment in patients with compensated advanced chronic liver disease. Assessment of aetiology specific cut-offs for ruling in and ruling out clinically significant portal hypertension is an unmet clinical need. The incorporation of spleen stiffness measurements in non-invasive algorithms using validated software and improved measuring scales might enhance the non-invasive diagnosis of portal hypertension in the next 5 years.

  7. Transient elastography with the XL probe rapidly identifies patients with nonhepatic ascites

    PubMed Central

    Kohlhaas, Anna; Durango, Esteban; Millonig, Gunda; Bastard, Cecile; Sandrin, Laurent; Golriz, Mohammad; Mehrabi, Arianeb; Büchler, Markus W; Seitz, Helmut Karl; Mueller, Sebastian

    2012-01-01

    Background In contrast with other elastographic techniques, ascites is considered an exclusion criterion for assessment of fibrosis stage by transient elastography. However, a normal liver stiffness could rule out hepatic causes of ascites at an early stage. The aim of the present study was to determine whether liver stiffness can be generally determined by transient elastography through an ascites layer, to determine whether the ascites-mediated increase in intra-abdominal pressure affects liver stiffness, and to provide initial data from a pilot cohort of patients with various causes of ascites. Methods and results Using the XL probe in an artificial ascites model, we demonstrated (copolymer phantoms surrounded by water) that a transient elastography-generated shear wave allows accurate determination of phantom stiffness up to a water lamella of 20 mm. We next showed in an animal ascites model that increased intra-abdominal pressure does not affect liver stiffness. Liver stiffness was then determined in 24 consecutive patients with ascites due to hepatic (n = 18) or nonhepatic (n = 6) causes. The cause of ascites was eventually clarified using routine clinical, imaging, laboratory, and other tools. Valid (75%) or acceptable (25%) liver stiffness data could be obtained in 23 patients (95.8%) with ascites up to an ascites lamella of 39 mm. The six patients (25%) with nonhepatic causes of ascites (eg, pancreatitis, peritoneal carcinomatosis) had a significantly lower liver stiffness (<8 kPa) as compared with the remaining patients with hepatic ascites (>30 kPa). Mean liver stiffness was 5.4 kPa ± 1.3 versus 66.2 ± 13.3 kPa. Conclusion In conclusion, the presence of ascites and increased intra-abdominal pressure does not alter underlying liver stiffness as determined by transient elastography. We suggest that, using the XL probe, transient elastography can be used first-line to identify patients with nonhepatic ascites at an early stage. PMID:24367229

  8. Impulsive action: emotional impulses and their control

    PubMed Central

    Frijda, Nico H.; Ridderinkhof, K. Richard; Rietveld, Erik

    2014-01-01

    This paper presents a novel theoretical view on impulsive action, integrating thus far separate perspectives on non-reflective action, motivation, emotion regulation, and impulse control. We frame impulsive action in terms of directedness of the individual organism toward, away, or against other givens – toward future states and away from one’s present state. First, appraisal of a perceived or thought-of event or object on occasion, rapidly and without premonition or conscious deliberation, triggers a motive to modify one’s relation to that event or object. Situational specifics of the event as perceived and appraised motivate and guide selection of readiness for a particular kind of purposive action. Second, perception of complex situations can give rise to multiple appraisals, multiple motives, and multiple simultaneous changes in action readiness. Multiple states of action readiness may interact in generating action, by reinforcing or attenuating each other, thereby yielding impulse control. We show how emotion control can itself result from a motive state or state of action readiness. Our view links impulsive action mechanistically to states of action readiness, which is the central feature of what distinguishes one kind of emotion from another. It thus provides a novel theoretical perspective to the somewhat fragmented literature on impulsive action. PMID:24917835

  9. The potential role of elastography in differentiating between endometrial polyps and submucosal fibroids: a preliminary study

    PubMed Central

    2015-01-01

    Endometrial polyps and submucosal fibroids are common causes of abnormal uterine bleeding (AUB) and less commonly infertility. The prevalence of such intrauterine lesions increases with age during the reproductive years, and usually decreases after menopause. The first-line imaging examination in the diagnosis of endometrial polyps as well as submucosal fibroidsis ultrasound, but its accuracy is not obvious. Elastography is an ultrasound-based imaging modality that is used to assess the stiffness of examined tissues. Considering the fact that endometrial polyps derive from soft endometrial tissue and submucosal fibroids are made of hard muscle tissue, elastography seems a perfect tool to differentiate between such lesions. I present two groups of patients with AUB and intrauterine lesions suspected on ultrasound. In the first group of patients, elastography showed that the stiffness of the lesion was similar to the endometrium and softer than the myometrium. During hysteroscopies endometrial polyps were removed. In the second group of patients, elastography showed that the stiffness of the lesion was similar to the myometrium and harder than the endometrium. During hysteroscopies submucosal fibroids were removed. In both groups, the diagnosis was confirmed by the pathological examination in all cases. It was demonstrated that with the use of elastography it is possible to assess the stiffness of intrauterine lesions, which may be useful in differentiating between endometrial polyps and submucosal fibroids. PMID:26327901

  10. The potential role of elastography in differentiating between endometrial polyps and submucosal fibroids: a preliminary study.

    PubMed

    Woźniak, Sławomir

    2015-06-01

    Endometrial polyps and submucosal fibroids are common causes of abnormal uterine bleeding (AUB) and less commonly infertility. The prevalence of such intrauterine lesions increases with age during the reproductive years, and usually decreases after menopause. The first-line imaging examination in the diagnosis of endometrial polyps as well as submucosal fibroidsis ultrasound, but its accuracy is not obvious. Elastography is an ultrasound-based imaging modality that is used to assess the stiffness of examined tissues. Considering the fact that endometrial polyps derive from soft endometrial tissue and submucosal fibroids are made of hard muscle tissue, elastography seems a perfect tool to differentiate between such lesions. I present two groups of patients with AUB and intrauterine lesions suspected on ultrasound. In the first group of patients, elastography showed that the stiffness of the lesion was similar to the endometrium and softer than the myometrium. During hysteroscopies endometrial polyps were removed. In the second group of patients, elastography showed that the stiffness of the lesion was similar to the myometrium and harder than the endometrium. During hysteroscopies submucosal fibroids were removed. In both groups, the diagnosis was confirmed by the pathological examination in all cases. It was demonstrated that with the use of elastography it is possible to assess the stiffness of intrauterine lesions, which may be useful in differentiating between endometrial polyps and submucosal fibroids.

  11. [Differential diagnostic value of real-time tissue elastography and three dimensional ultrasound imaging in breast lumps].

    PubMed

    Li, M H; Liu, Y; Liu, L S; Li, P X; Chen, Q

    2016-05-24

    To investigate the real-time tissue elastography and 3D contrast-enhanced ultrasonography(CEUS) in breast lumps differential diagnostic value. A total of 126 patients (180 lumps) with breast mass were retrospectively analyzed from December 2012 to December 2014 in Tumor Hospital Affiliated To Xinjiang Medical University.All patients were divided into three groups by using stratified random method.Each group was detected by real-time tissue elastography, 3D CEUS and two joint inspection.Each group of 42 cases (60 lumps) was confirmed by the pathological results as gold standard.Diagnostic sensitivity, specificity and coincidence rate of different methods were compared. The benign masses of ultrasound contrast showed the punctate, linear and nodular enhancement, and the border of enhancement was smooth.The malignant tumors were mainly dominated by uneven and high enhancement. There was no statistical difference in sensitivity, specificity and coincidence rate between elastography group and 3D CEUS group (64.7% vs 73.5%, 69.2% vs 76.9%, 66.7% vs 75.0%, all P>0.05). The sensitivity, specificity and coincidence rate of two joint inspection group were higher than those of elastography group and 3D CEUS group, the differences were statistically significant (97.1%, 92.3% and 98.3% , all P<0.05). 3D CEUS combined with real-time tissue elastography is of high value in the diagnosis of breast masses.

  12. Extensor indicis proprius tendon transfer using shear wave elastography.

    PubMed

    Lamouille, J; Müller, C; Aubry, S; Bensamoun, S; Raffoul, W; Durand, S

    2017-06-01

    The means for judging optimal tension during tendon transfers are approximate and not very quantifiable. The purpose of this study was to demonstrate the feasibility of quantitatively assessing muscular mechanical properties intraoperatively using ultrasound elastography (shear wave elastography [SWE]) during extensor indicis proprius (EIP) transfer. We report two cases of EIP transfer for post-traumatic rupture of the extensor pollicis longus muscle. Ultrasound acquisitions measured the elasticity modulus of the EIP muscle at different stages: rest, active extension, active extension against resistance, EIP section, distal passive traction of the tendon, after tendon transfer at rest and then during active extension. A preliminary analysis was conducted of the distribution of values for this modulus at the various transfer steps. Different shear wave velocity and elasticity modulus values were observed at the various transfer steps. The tension applied during the transfer seemed close to the resting tension if a traditional protocol were followed. The elasticity modulus varied by a factor of 37 between the active extension against resistance step (565.1 kPa) and after the tendon section (15.3 kPa). The elasticity modulus values were distributed in the same way for each patient. The therapeutic benefit of SWE elastography was studied for the first time in tendon transfers. Quantitative data on the elasticity modulus during this test may make it an effective means of improving intraoperative adjustments. Copyright © 2017 SFCM. Published by Elsevier Masson SAS. All rights reserved.

  13. Imaging of idle breast implants with ultrasound-strain elastography- A first experimental study to establish criteria for accurate imaging of idle implants via ultrasound-strain elastography.

    PubMed

    Kuehlmann, Britta; Prantl, Lukas; Michael Jung, Ernst

    2016-01-01

    To investigate whether there are fundamental sonographic and elastographic criteria to precisely assess different surfaces and fillings of idle breast implants and to determine their most distinctive parameters. This was a comparative study of different unused breast implant materials, neighter in animals nor in humans. This knowledge should be transferred in vivo to develop an objective measurement tool. Nine idle breast implants-silicone and polyurethane (PU)-were examined in an experimental study by using ultrasound B-mode with tissue harmonic imaging (THI), speckle reduction imaging (SRI, level 0-4), cross-beam (CB, low, medium, high), photopic and the colour coded ultrasound-strain elastography with a multifrequency probe (9-15 MHz).Using a standardised protocol the implants' centre as well as the edge were analysed by one experienced examiner. Two independent readers performed analysis and evaluation. For image interpretation a score was created (score 0:inadequate image, score 5:best image quality). The highest score result for the centre was achieved by using ultrasound with B-mode in addition with CB level medium, SRI level 2, THI and photopic (mean:3.22±SD:1.56), but without any statistic significant difference (t-value = 0.71). With elastography the implants' edge in general was represented without disruptive artefacts (3.89±0.60) with statistic significant difference (t-value = 5.29). Implants filled with inner cohesive silicone gel II° showed best imaging conditions for their centre via ultrasound (5±0) as well as for their edge via elastography (4.50±0.71). Ultrasound-strain elastography and high resolution ultrasound represent a valuable measurement tool to evaluate different properties of idle breast implants. These modified ultrasound examinations could be an additional help for clinical investigations and be correlated with Baker's Classification.

  14. Full skin quantitative optical coherence elastography achieved by combining vibration and surface acoustic wave methods

    NASA Astrophysics Data System (ADS)

    Li, Chunhui; Guan, Guangying; Huang, Zhihong; Wang, Ruikang K.; Nabi, Ghulam

    2015-03-01

    By combining with the phase sensitive optical coherence tomography (PhS-OCT), vibration and surface acoustic wave (SAW) methods have been reported to provide elastography of skin tissue respectively. However, neither of these two methods can provide the elastography in full skin depth in current systems. This paper presents a feasibility study on an optical coherence elastography method which combines both vibration and SAW in order to give the quantitative mechanical properties of skin tissue with full depth range, including epidermis, dermis and subcutaneous fat. Experiments are carried out on layered tissue mimicking phantoms and in vivo human forearm and palm skin. A ring actuator generates vibration while a line actuator were used to excited SAWs. A PhS-OCT system is employed to provide the ultrahigh sensitive measurement of the generated waves. The experimental results demonstrate that by the combination of vibration and SAW method the full skin bulk mechanical properties can be quantitatively measured and further the elastography can be obtained with a sensing depth from ~0mm to ~4mm. This method is promising to apply in clinics where the quantitative elasticity of localized skin diseases is needed to aid the diagnosis and treatment.

  15. Periodic components of hand acceleration/deceleration impulses during telemanipulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Draper, J.V.; Handel, S.

    1994-01-01

    Responsiveness is the ability of a telemanipulator to recreate user trajectories and impedance in time and space. For trajectory production, a key determinant of responsiveness is the ability of the system to accept user inputs, which are forces on the master handle generated by user hand acceleration/deceleration (a/d) impulses, and translate them into slave arm acceleration/deceleration. This paper presents observations of master controller a/d impulses during completion of a simple target acquisition task. Power spectral density functions (PSDF`s) calculated from hand controller a/d impulses were used to assess impulse waveform. The relative contributions of frequency intervals ranging up to 25more » Hz for three spatially different versions of the task were used to determine which frequencies were most important. The highest relative power was observed in frequencies between 1 Hz and 6 Hz. The key frequencies related to task difficulty were in the range from 2 Hz to 8 Hz. the results provide clues to the source of the performance inhibition.« less

  16. Electro-impulse de-icing electrodynamic solution by discrete elements

    NASA Technical Reports Server (NTRS)

    Bernhart, W. D.; Schrag, R. L.

    1988-01-01

    This paper describes a technique for analyzing the electrodynamic phenomena associated with electro-impulse deicing. The analysis is done in the time domain and utilizes a discrete element formulation concept expressed in state variable form. Calculated results include coil current, eddy currents in the target (aircraft leading edge skin), pressure distribution on the target, and total force and impulse on the target. Typical results are presented and described. Some comparisons are made between calculated and experimental results, and also between calculated values from other theoretical approaches. Application to the problem of a nonrigid target is treated briefly.

  17. Ultrasound Elastography of the Neonatal Brain: Preliminary Study.

    PubMed

    Kim, Hyun Gi; Park, Moon Sung; Lee, Jung-Dong; Park, Seon Young

    2017-07-01

    To determine the ultrasound elasticity of the brain in neonates METHODS: Strain elastography was performed in 21 healthy neonates (mean gestational age [GA], 34 weeks; range, 28-40 weeks). Elastographic scores were assigned to the following structures on a 5-point color scale (1-5): ventricle, periventricular white matter, caudate, subcortical, cortical gray matter, and subdural space. Three elastographic images were evaluated in each patient, and median elastographic scores were calculated. The scores were compared between regions and were correlated with the corrected GA. Interobserver agreements for assignment of elastographic scores were analyzed. The ventricle and subdural space showed an elasticity score of 1 in all patients. The cortical gray matter (median, 3.0; first-third quartiles, 2.33-3.33) showed higher elasticity compared to the periventricular white mater (4.0; 3.00-4.00; P < .001), caudate (4.3; 3.67-4.67; P < .001), and subcortical white matter (4.0; 4.00-4.00; P < .001). The caudate showed lower elasticity compared to periventricular white matter (P = .004). The periventricular white matter showed higher elasticity compared to subcortical white matter (P = .009). There was a positive trend between the corrected GA and cortical gray matter elastographic score (γ = 0.376; P = .093). Interobserver agreement was moderate to almost perfect (κ = 0.53-0.89). Neonatal intracranial regions showed different elasticity, which could be accessed by strain elastography. These normal findings should prompt future studies investigating the use of ultrasound elastography in the neonatal brain. © 2017 by the American Institute of Ultrasound in Medicine.

  18. Shear wave induced resonance elastography of spherical masses with polarized torsional waves

    NASA Astrophysics Data System (ADS)

    Hadj Henni, Anis; Schmitt, Cédric; Trop, Isabelle; Cloutier, Guy

    2012-03-01

    Shear wave induced resonance (SWIR) is a technique for dynamic ultrasound elastography of confined mechanical inclusions. It was developed for breast tumor imaging and tissue characterization. This method relies on the polarization of torsional shear waves modeled with the Helmholtz equation in spherical coordinates. To validate modeling, an invitro set-up was used to measure and image the first three eigenfrequencies and eigenmodes of a soft sphere. A preliminary invivo SWIR measurement on a breast fibroadenoma is also reported. Results revealed the potential of SWIR elastography to detect and mechanically characterize breast lesions for early cancer detection.

  19. Shear wave induced resonance elastography of spherical masses with polarized torsional waves.

    PubMed

    Henni, Anis Hadj; Schmitt, Cédric; Trop, Isabelle; Cloutier, Guy

    2012-03-26

    Shear Wave Induced Resonance (SWIR) is a technique for dynamic ultrasound elastography of confined mechanical inclusions. It was developed for breast tumor imaging and tissue characterization. This method relies on the polarization of torsional shear waves modeled with the Helmholtz equation in spherical coordinates. To validate modeling, an in vitro set-up was used to measure and image the first three eigenfrequencies and eigenmodes of a soft sphere. A preliminary in vivo SWIR measurement on a breast fibroadenoma is also reported. Results revealed the potential of SWIR elastography to detect and mechanically characterize breast lesions for early cancer detection.

  20. Comparison and Combination of Strain and Shear Wave Elastography of Breast Masses for Differentiation of Benign and Malignant Lesions by Quantitative Assessment: Preliminary Study.

    PubMed

    Seo, Mirinae; Ahn, Hye Shin; Park, Sung Hee; Lee, Jong Beum; Choi, Byung Ihn; Sohn, Yu-Mee; Shin, So Youn

    2018-01-01

    To compare the diagnostic performance of strain and shear wave elastography of breast masses for quantitative assessment in differentiating benign and malignant lesions and to evaluate the diagnostic accuracy of combined strain and shear wave elastography. Between January and February 2016, 37 women with 45 breast masses underwent both strain and shear wave ultrasound (US) elastographic examinations. The American College of Radiology Breast Imaging Reporting and Data System (BI-RADS) final assessment on B-mode US imaging was assessed. We calculated strain ratios for strain elastography and the mean elasticity value and elasticity ratio of the lesion to fat for shear wave elastography. Diagnostic performances were compared by using the area under the receiver operating characteristic curve (AUC). The 37 women had a mean age of 47.4 years (range, 20-79 years). Of the 45 lesions, 20 were malignant, and 25 were benign. The AUCs for elasticity values on strain and shear wave elastography showed no significant differences (strain ratio, 0.929; mean elasticity, 0.898; and elasticity ratio, 0.868; P > .05). After selectively downgrading BI-RADS category 4a lesions based on strain and shear wave elastographic cutoffs, the AUCs for the combined sets of B-mode US and elastography were improved (B-mode + strain, 0.940; B-mode + shear wave; 0.964; and B-mode, 0.724; P < .001). Combined strain and shear wave elastography showed significantly higher diagnostic accuracy than each individual elastographic modality (P = .031). These preliminary results showed that strain and shear wave elastography had similar diagnostic performance. The addition of strain and shear wave elastography to B-mode US improved diagnostic performance. The combination of strain and shear wave elastography results in a higher diagnostic yield than each individual elastographic modality. © 2017 by the American Institute of Ultrasound in Medicine.

  1. Value of ultrasound shear wave elastography in the diagnosis of adenomyosis.

    PubMed

    Acar, S; Millar, E; Mitkova, M; Mitkov, V

    2016-11-01

    The aim of the study was to assess the accuracy of ultrasound shear wave elastography in the diagnosis of adenomyosis. One hundred and fifty three patients were examined. Ninety-seven patients were with suspected adenomyosis and 56 patients were with unremarkable myometrium. Adenomyosis was confirmed in 39 cases (A subgroup) and excluded in 14 cases (B subgroup) in the main group based on morphological examination. All patients underwent ultrasound examination using an Aixplorer (Supersonic Imagine, France) scanner with application of shear wave elastography during transvaginal scanning. Retrospective analysis of the elastography criteria against the findings from morphological/histological examination was performed. The following values of Young's modulus were found in subgroup A (adenomyosis): Emean - 72.7 (22.6-274.2) kPa (median, 5-95th percentiles), Emax - 94.8 (29.3-300.0) kPa, SD - 9.9 (2.6-26.3) kPa; in subgroup B (non adenomyosis) - 28.3 (12.7-59.5) kPa, 33.6 (16.0-80.8) kPa, 3.0 (1.4-15.6) kPa; in the control group - 24.4 (17.9-32.4) kPa, 29.8 (21.6-40.8) kPa, 2.3 (1.3-6.1) kPa, respectively (P < 0.05 for all comparison with subgroup В and the control group). The Emean cut-off value for adenomyosis diagnosis was 34.6 kPa. The sensitivity, specificity, positive predictive value, negative predictive value and area under curve (AUC) were 89.7%, 92.9%, 97.2%, 76.5% and 0.908. The Emax cut-off value was 45.4 kPa (89.7%, 92.9%, 97.2%, 76.5% and 0.907, respectively). This study showed a significant increase of the myometrial stiffness estimated with shear wave elastography use in patients with adenomyosis.

  2. "Impulsive" youth suicide attempters are not necessarily all that impulsive.

    PubMed

    Witte, Tracy K; Merrill, Katherine A; Stellrecht, Nadia E; Bernert, Rebecca A; Hollar, Daniel L; Schatschneider, Christopher; Joiner, Thomas E

    2008-04-01

    The relationship between impulsivity and suicide has been conceptualized in the literature as a direct one. In contrast, Joiner's [Joiner, T.E., 2005. Why people die by suicide. Harvard University Press, Cambridge, MA.] theory posits that this relationship is indirect in that impulsive individuals are more likely to engage in suicidal behavior because impulsivity makes one more likely to be exposed to painful and provocative stimuli. Adolescents were selected from the Youth Risk Behavior Survey (YRBS) sample between the years of 1993-2003 who had planned for a suicide attempt but did not actually attempt (n=5685), who did not plan but did attempt ("impulsive attempters;" n=1172), and who both planned and attempted (n=4807). Items were selected from the YRBS to assess demographic variables, suicidal behaviors, and impulsive behaviors. Participants who had planned suicide without attempting were significantly less impulsive than those who had attempted without planning and than those who had both planned and attempted. Crucially, participants who had made a suicide attempt without prior planning were less impulsive than those who had planned and attempted. We were unable to conduct a multi-method assessment (i.e., measures were self-report); the measure of impulsivity consisted of items pulled from the YRBS rather than a previously validated impulsivity measure. The notion that the most impulsive individuals are more likely to plan for suicide attempts is an important one for many reasons both theoretical and clinical, including that it may refine risk assessment and attendant clinical decision-making.

  3. A new approach to determining net impulse and identification of its characteristics in countermovement jumping: reliability and validity.

    PubMed

    Mizuguchi, Satoshi; Sands, William A; Wassinger, Craig A; Lamont, Hugh S; Stone, Michael H

    2015-06-01

    Examining a countermovement jump (CMJ) force-time curve related to net impulse might be useful in monitoring athletes' performance. This study aimed to investigate the reliability of alternative net impulse calculation and net impulse characteristics (height, width, rate of force development, shape factor, and proportion) and validate against the traditional calculation in the CMJ. Twelve participants performed the CMJ in two sessions (48 hours apart) for test-retest reliability. Twenty participants were involved for the validity assessment. Results indicated intra-class correlation coefficient (ICC) of ≥ 0.89 and coefficient of variation (CV) of ≤ 5.1% for all of the variables except for rate of force development (ICC = 0.78 and CV = 22.3%). The relationship between the criterion and alternative calculations was r = 1.00. While the difference between them was statistically significant (245.96 ± 63.83 vs. 247.14 ± 64.08 N s, p < 0.0001), the effect size was trivial and deemed practically minimal (d = 0.02). In conclusion, variability of rate of force development will pose a greater challenge in detecting performance changes. Also, the alternative calculation can be used practically in place of the traditional calculation to identify net impulse characteristics and monitor and study athletes' performance in greater depth.

  4. Shear-Wave Elastography: Basic Physics and Musculoskeletal Applications.

    PubMed

    Taljanovic, Mihra S; Gimber, Lana H; Becker, Giles W; Latt, L Daniel; Klauser, Andrea S; Melville, David M; Gao, Liang; Witte, Russell S

    2017-01-01

    In the past 2 decades, sonoelastography has been progressively used as a tool to help evaluate soft-tissue elasticity and add to information obtained with conventional gray-scale and Doppler ultrasonographic techniques. Recently introduced on clinical scanners, shear-wave elastography (SWE) is considered to be more objective, quantitative, and reproducible than compression sonoelastography with increasing applications to the musculoskeletal system. SWE uses an acoustic radiation force pulse sequence to generate shear waves, which propagate perpendicular to the ultrasound beam, causing transient displacements. The distribution of shear-wave velocities at each pixel is directly related to the shear modulus, an absolute measure of the tissue's elastic properties. Shear-wave images are automatically coregistered with standard B-mode images to provide quantitative color elastograms with anatomic specificity. Shear waves propagate faster through stiffer contracted tissue, as well as along the long axis of tendon and muscle. SWE has a promising role in determining the severity of disease and treatment follow-up of various musculoskeletal tissues including tendons, muscles, nerves, and ligaments. This article describes the basic ultrasound physics of SWE and its applications in the evaluation of various traumatic and pathologic conditions of the musculoskeletal system. © RSNA, 2017.

  5. Time Harmonic Elastography Reveals Sensitivity of Liver Stiffness to Water Ingestion.

    PubMed

    Ipek-Ugay, Selcan; Tzschätzsch, Heiko; Hudert, Christian; Marticorena Garcia, Stephan Rodrigo; Fischer, Thomas; Braun, Jürgen; Althoff, Christian; Sack, Ingolf

    2016-06-01

    The aim of the study was to test the sensitivity of liver stiffness (LS) measured by time harmonic elastography in large tissue windows to water uptake and post-prandial effects. Each subject gave written informed consent to participate in this institutional review board-approved prospective study. LS was measured by time harmonic elastography in 10 healthy volunteers pre- and post-prandially, as well as before, directly after and 2 h after drinking water. The LS-time function during water intake was measured in 14 scans over 3 h in five volunteers. LS increased by 10% (p = 0.0015) post-prandially and by 11% (p = 0.0024) after pure water ingestion, and decreased to normal values after 2 h. LS was lower after overnight fasting than after 2-h fasting (3%, p = 0.04). Over the time course, LS increased to post-water peak values 15 min after drinking 0.25 L water and remained unaffected by further ingestion of water. In conclusion, our study indicates that LS measured by time harmonic elastography represents an effective-medium property sensitive to physiologic changes in vascular load of the liver. Copyright © 2016 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  6. Optical tracking of acoustic radiation force impulse-induced dynamics in a tissue-mimicking phantom

    PubMed Central

    Bouchard, Richard R.; Palmeri, Mark L.; Pinton, Gianmarco F.; Trahey, Gregg E.; Streeter, Jason E.; Dayton, Paul A.

    2009-01-01

    Optical tracking was utilized to investigate the acoustic radiation force impulse (ARFI)-induced response, generated by a 5-MHz piston transducer, in a translucent tissue-mimicking phantom. Suspended 10-μm microspheres were tracked axially and laterally at multiple locations throughout the field of view of an optical microscope with 0.5-μm displacement resolution, in both dimensions, and at frame rates of up to 36 kHz. Induced dynamics were successfully captured before, during, and after the ARFI excitation at depths of up to 4.8 mm from the phantom’s proximal boundary. Results are presented for tracked axial and lateral displacements resulting from on-axis and off-axis (i.e., shear wave) acquisitions; these results are compared to matched finite element method modeling and independent ultrasonically based empirical results and yielded reasonable agreement in most cases. A shear wave reflection, generated by the proximal boundary, consistently produced an artifact in tracked displacement data later in time (i.e., after the initial ARFI-induced displacement peak). This tracking method provides high-frame-rate, two-dimensional tracking data and thus could prove useful in the investigation of complex ARFI-induced dynamics in controlled experimental settings. PMID:19894849

  7. Impulsive and non-impulsive suicide attempts in patients treated for alcohol dependence.

    PubMed

    Wojnar, Marcin; Ilgen, Mark A; Czyz, Ewa; Strobbe, Stephen; Klimkiewicz, Anna; Jakubczyk, Andrzej; Glass, Jennifer; Brower, Kirk J

    2009-05-01

    Suicidal behavior has been recognized as an increasing problem among alcohol-dependent subjects. The aim of the study was to identify correlates of impulsive and non-impulsive suicide attempts among a treated population of alcohol-dependent patients. A total of 154 patients with alcohol dependence consecutively admitted for addiction treatment participated in the study. Suicidal behavior was assessed together with severity of alcohol dependence, childhood abuse, impulsivity, and family history. A stop-signal procedure was used as a behavioral measure of impulsivity. Lifetime suicide attempts were reported by 43% of patients in alcohol treatment; of which 62% were impulsive. Compared to patients without a suicide attempt, those with a non-impulsive attempt were more likely to have a history of sexual abuse (OR=7.17), a family history of suicide (OR=4.09), and higher scores on a personality measure of impulsiveness (OR=2.27). The only significant factor that distinguished patients with impulsive suicide attempts from patients without a suicide attempt and from patients with a non-impulsive suicide attempt was a higher level of behavioral impulsivity (OR=1.84-2.42). Retrospective self-report of suicide attempts and family history. Lack of diagnostic measure.

  8. Cardiac elastography: detecting pathological changes in myocardium tissues

    NASA Astrophysics Data System (ADS)

    Konofagou, Elisa E.; Harrigan, Timothy; Solomon, Scott

    2003-05-01

    Estimation of the mechanical properties of the cardiac muscle has been shown to play a crucial role in the detection of cardiovascular disease. Elastography was recently shown feasible on RF cardiac data in vivo. In this paper, the role of elastography in the detection of ischemia/infarct is explored with simulations and in vivo experiments. In finite-element simulations of a portion of the cardiac muscle containing an infarcted region, the cardiac cycle was simulated with successive compressive and tensile strains ranging between -30% and 20%. The incremental elastic modulus was also mapped uisng adaptive methods. We then demonstrated this technique utilizing envelope-detected sonographic data (Hewlett-Packard Sonos 5500) in a patient with a known myocardial infarction. In cine-loop and M-Mode elastograms from both normal and infarcted regions in simulations and experiments, the infarcted region was identifed by the up to one order of magnitude lower incremental axial displacements and strains, and higher modulus. Information on motion, deformation and mechanical property should constitute a unique tool for noninvasive cardiac diagnosis.

  9. Impulsive and non-impulsive suicide attempts in patients treated for alcohol dependence

    PubMed Central

    Wojnar, Marcin; Ilgen, Mark A.; Czyz, Ewa; Strobbe, Stephen; Klimkiewicz, Anna; Jakubczyk, Andrzej; Glass, Jennifer; Brower, Kirk J.

    2009-01-01

    Background Suicidal behavior has been recognized as an increasing problem among alcohol-dependent subjects. The aim of the study was to identify correlates of impulsive and non-impulsive suicide attempts among a treated population of alcohol-dependent patients. Methods A total of 154 patients with alcohol dependence consecutively admitted for addiction treatment participated in the study. Suicidal behavior was assessed together with severity of alcohol dependence, childhood abuse, impulsivity, and family history. A stop-signal procedure was used as a behavioral measure of impulsivity. Results and conclusions Lifetime suicide attempts were reported by 43% of patients in alcohol treatment; of which 62% were impulsive. Compared to patients without a suicide attempt, those with a non-impulsive attempt were more likely to have a history of sexual abuse (OR = 7.17), a family history of suicide (OR = 4.09), and higher scores on a personality measure of impulsiveness (OR = 2.27). The only significant factor that distinguished patients with impulsive suicide attempts from patients without a suicide attempt and from patients with a non-impulsive suicide attempt was a higher level of behavioral impulsivity (OR = 1.84 – 2.42). Limitations Retrospective self-report of suicide attempts and family history. Lack of diagnostic measure. PMID:18835498

  10. Acceleration capability in elite sprinters and ground impulse: Push more, brake less?

    PubMed

    Morin, Jean-Benoît; Slawinski, Jean; Dorel, Sylvain; de Villareal, Eduardo Saez; Couturier, Antoine; Samozino, Pierre; Brughelli, Matt; Rabita, Giuseppe

    2015-09-18

    Overground sprint studies have shown the importance of net horizontal ground reaction force impulse (IMPH) for acceleration performance, but only investigated one or two steps over the acceleration phase, and not in elite sprinters. The main aim of this study was to distinguish between propulsive (IMPH+) and braking (IMPH-) components of the IMPH and seek whether, for an expected higher IMPH, faster elite sprinters produce greater IMPH+, smaller IMPH-, or both. Nine high-level sprinters (100-m best times range: 9.95-10.60s) performed 7 sprints (2×10 m, 2×15 m, 20 m, 30 m and 40 m) during which ground reaction force was measured by a 6.60 m force platform system. By placing the starting-blocks further from the force plates at each trial, and pooling the data, we could assess the mechanics of an entire "virtual" 40-m acceleration. IMPH and IMPH+ were significantly correlated with 40-m mean speed (r=0.868 and 0.802, respectively; P<0.01), whereas vertical impulse and IMPH- were not. Multiple regression analyses confirmed the significantly higher importance of IMPH+ for sprint acceleration performance. Similar results were obtained when considering these mechanical data averaged over the first half of the sprint, but not over the second half. In conclusion, faster sprinters were those who produced the highest amounts of horizontal net impulse per unit body mass, and those who "pushed more" (higher IMPH+), but not necessarily those who also "braked less" (lower IMPH-) in the horizontal direction. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Impulse oscillometry in the evaluation of diseases of the airways in children

    PubMed Central

    Komarow, Hirsh D.; Myles, Ian A.; Uzzaman, Ashraf; Metcalfe, Dean D.

    2012-01-01

    Objective To provide an overview of impulse oscillometry and its application to the evaluation of children with diseases of the airways. Data Sources Medline and PubMed search, limited to English language and human disease, with keywords forced oscillation, impulse oscillometry, and asthma. Study Selections The opinions of the authors were used to select studies for inclusion in this review. Results Impulse oscillometry is a noninvasive and rapid technique requiring only passive cooperation by the patient. Pressure oscillations are applied at the mouth to measure pulmonary resistance and reactance. It is employed by health care professionals to help diagnose pediatric pulmonary diseases such asthma and cystic fibrosis; assess therapeutic responses; and measure airway resistance during provocation testing. Conclusions Impulse oscillometry provides a rapid, noninvasive measure of airway impedance. It may be easily employed in the diagnosis and management of diseases of the airways in children. PMID:21354020

  12. Measuring shear-wave speed with point shear-wave elastography and MR elastography: a phantom study

    PubMed Central

    Kishimoto, Riwa; Suga, Mikio; Koyama, Atsuhisa; Omatsu, Tokuhiko; Tachibana, Yasuhiko; Ebner, Daniel K; Obata, Takayuki

    2017-01-01

    Objectives To compare shear-wave speed (SWS) measured by ultrasound-based point shear-wave elastography (pSWE) and MR elastography (MRE) on phantoms with a known shear modulus, and to assess method validity and variability. Methods 5 homogeneous phantoms of different stiffnesses were made. Shear modulus was measured by a rheometer, and this value was used as the standard. 10 SWS measurements were obtained at 4 different depths with 1.0–4.5 MHz convex (4C1) and 4.0–9.0 MHz linear (9L4) transducers using pSWE. MRE was carried out once per phantom, and SWSs at 5 different depths were obtained. These SWSs were then compared with those from a rheometer using linear regression analyses. Results SWSs obtained with both pSWE as well as MRE had a strong correlation with those obtained by a rheometer (R2>0.97). The relative difference in SWS between the procedures was from −25.2% to 25.6% for all phantoms, and from −8.1% to 6.9% when the softest and hardest phantoms were excluded. Depth dependency was noted in the 9L4 transducer of pSWE and MRE. Conclusions SWSs from pSWE and MRE showed a good correlation with a rheometer-determined SWS. Although based on phantom studies, SWSs obtained with these methods are not always equivalent, the measurement can be thought of as reliable and these SWSs were reasonably close to each other for the middle range of stiffness within the measurable range. PMID:28057657

  13. Reduced step length reduces knee joint contact forces during running following anterior cruciate ligament reconstruction but does not alter inter-limb asymmetry.

    PubMed

    Bowersock, Collin D; Willy, Richard W; DeVita, Paul; Willson, John D

    2017-03-01

    Anterior cruciate ligament reconstruction is associated with early onset knee osteoarthritis. Running is a typical activity following this surgery, but elevated knee joint contact forces are thought to contribute to osteoarthritis degenerative processes. It is therefore clinically relevant to identify interventions to reduce contact forces during running among individuals after anterior cruciate ligament reconstruction. The primary purpose of this study was to evaluate the effect of reducing step length during running on patellofemoral and tibiofemoral joint contact forces among people with a history of anterior cruciate ligament reconstruction. Inter limb knee joint contact force differences during running were also examined. 18 individuals at an average of 54.8months after unilateral anterior cruciate ligament reconstruction ran in 3 step length conditions (preferred, -5%, -10%). Bilateral patellofemoral, tibiofemoral, and medial tibiofemoral compartment peak force, loading rate, impulse, and impulse per kilometer were evaluated between step length conditions and limbs using separate 2 factor analyses of variance. Reducing step length 5% decreased patellofemoral, tibiofemoral, and medial tibiofemoral compartment peak force, impulse, and impulse per kilometer bilaterally. A 10% step length reduction further decreased peak forces and force impulses, but did not further reduce force impulses per kilometer. Tibiofemoral joint impulse, impulse per kilometer, and patellofemoral joint loading rate were lower in the previously injured limb compared to the contralateral limb. Running with a shorter step length is a feasible clinical intervention to reduce knee joint contact forces during running among people with a history of anterior cruciate ligament reconstruction. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Efficacy of an artificial neural network-based approach to endoscopic ultrasound elastography in diagnosis of focal pancreatic masses.

    PubMed

    Săftoiu, Adrian; Vilmann, Peter; Gorunescu, Florin; Janssen, Jan; Hocke, Michael; Larsen, Michael; Iglesias-Garcia, Julio; Arcidiacono, Paolo; Will, Uwe; Giovannini, Marc; Dietrich, Cristoph F; Havre, Roald; Gheorghe, Cristian; McKay, Colin; Gheonea, Dan Ionuţ; Ciurea, Tudorel

    2012-01-01

    By using strain assessment, real-time endoscopic ultrasound (EUS) elastography provides additional information about a lesion's characteristics in the pancreas. We assessed the accuracy of real-time EUS elastography in focal pancreatic lesions using computer-aided diagnosis by artificial neural network analysis. We performed a prospective, blinded, multicentric study at of 258 patients (774 recordings from EUS elastography) who were diagnosed with chronic pancreatitis (n = 47) or pancreatic adenocarcinoma (n = 211) from 13 tertiary academic medical centers in Europe (the European EUS Elastography Multicentric Study Group). We used postprocessing software analysis to compute individual frames of elastography movies recorded by retrieving hue histogram data from a dynamic sequence of EUS elastography into a numeric matrix. The data then were analyzed in an extended neural network analysis, to automatically differentiate benign from malignant patterns. The neural computing approach had 91.14% training accuracy (95% confidence interval [CI], 89.87%-92.42%) and 84.27% testing accuracy (95% CI, 83.09%-85.44%). These results were obtained using the 10-fold cross-validation technique. The statistical analysis of the classification process showed a sensitivity of 87.59%, a specificity of 82.94%, a positive predictive value of 96.25%, and a negative predictive value of 57.22%. Moreover, the corresponding area under the receiver operating characteristic curve was 0.94 (95% CI, 0.91%-0.97%), which was significantly higher than the values obtained by simple mean hue histogram analysis, for which the area under the receiver operating characteristic was 0.85. Use of the artificial intelligence methodology via artificial neural networks supports the medical decision process, providing fast and accurate diagnoses. Copyright © 2012 AGA Institute. Published by Elsevier Inc. All rights reserved.

  15. Feasibility of a transient elastography technique for in vitro arterial elasticity assessment.

    PubMed

    Brum, J; Balay, G; Bia, D; Armentano, R L; Negreira, C

    2010-01-01

    The early detection of biomechanical modifications in the arterial wall could be used as a predictor factor for various diseases, for example hypertension or atherosclerosis. In this work a transient elastography technique is used for the in vitro evaluation of the arterial wall elasticity. The obtained Young modulus is compared with the one obtained by a more classical approach: pressure-diameter relationships. As a sample an arterial phantom made of PolyVinyl Alcohol (PVA) gel was used. Diameter variation due to pressure variation inside the phantom was recorded by means of ultrasound. Through both techniques similar Young modulus estimations are obtained showing in this way the feasibility of applying transient elastography for the arterial wall elasticity assessment.

  16. Value of ultrasound shear wave elastography in the diagnosis of adenomyosis

    PubMed Central

    Millar, E; Mitkova, M; Mitkov, V

    2016-01-01

    Background The aim of the study was to assess the accuracy of ultrasound shear wave elastography in the diagnosis of adenomyosis. Methods One hundred and fifty three patients were examined. Ninety-seven patients were with suspected adenomyosis and 56 patients were with unremarkable myometrium. Adenomyosis was confirmed in 39 cases (A subgroup) and excluded in 14 cases (B subgroup) in the main group based on morphological examination. All patients underwent ultrasound examination using an Aixplorer (Supersonic Imagine, France) scanner with application of shear wave elastography during transvaginal scanning. Retrospective analysis of the elastography criteria against the findings from morphological/histological examination was performed. Results The following values of Young’s modulus were found in subgroup A (adenomyosis): Emean – 72.7 (22.6–274.2) kPa (median, 5–95th percentiles), Emax – 94.8 (29.3–300.0) kPa, SD – 9.9 (2.6–26.3) kPa; in subgroup B (non adenomyosis) – 28.3 (12.7–59.5) kPa, 33.6 (16.0–80.8) kPa, 3.0 (1.4–15.6) kPa; in the control group – 24.4 (17.9–32.4) kPa, 29.8 (21.6–40.8) kPa, 2.3 (1.3–6.1) kPa, respectively (P < 0.05 for all comparison with subgroup В and the control group). The Emean cut-off value for adenomyosis diagnosis was 34.6 kPa. The sensitivity, specificity, positive predictive value, negative predictive value and area under curve (AUC) were 89.7%, 92.9%, 97.2%, 76.5% and 0.908. The Emax cut-off value was 45.4 kPa (89.7%, 92.9%, 97.2%, 76.5% and 0.907, respectively). Conclusion This study showed a significant increase of the myometrial stiffness estimated with shear wave elastography use in patients with adenomyosis. PMID:27847535

  17. Improving arrival time identification in transient elastography

    NASA Astrophysics Data System (ADS)

    Klein, Jens; McLaughlin, Joyce; Renzi, Daniel

    2012-04-01

    In this paper, we improve the first step in the arrival time algorithm used for shear wave speed recovery in transient elastography. In transient elastography, a shear wave is initiated at the boundary and the interior displacement of the propagating shear wave is imaged with an ultrasound ultra-fast imaging system. The first step in the arrival time algorithm finds the arrival times of the shear wave by cross correlating displacement time traces (the time history of the displacement at a single point) with a reference time trace located near the shear wave source. The second step finds the shear wave speed from the arrival times. In performing the first step, we observe that the wave pulse decorrelates as it travels through the medium, which leads to inaccurate estimates of the arrival times and ultimately to blurring and artifacts in the shear wave speed image. In particular, wave ‘spreading’ accounts for much of this decorrelation. Here we remove most of the decorrelation by allowing the reference wave pulse to spread during the cross correlation. This dramatically improves the images obtained from arrival time identification. We illustrate the improvement of this method on phantom and in vivo data obtained from the laboratory of Mathias Fink at ESPCI, Paris.

  18. Instantaneous Impulses.

    ERIC Educational Resources Information Center

    Erlichson, Herman

    2000-01-01

    Describes an experiment that extends Newton's instantaneous-impulse method of orbital analysis to a graphical method of orbit determination. Discusses the experiment's usefulness for teaching both horizontal projectile motion and instantaneous impulse. (WRM)

  19. Analyses and tests for design of an electro-impulse de-icing system

    NASA Technical Reports Server (NTRS)

    Zumwalt, G. W.; Schrag, R. L.; Bernhart, W. D.; Friedberg, R. A.

    1985-01-01

    De-icing of aircraft by using the electro-magnetic impulse phenomenon was proposed and demonstrated in several European countries. However, it is not available as a developed system due to lack of research on the basic physical mechanisms and necessary design parameters. The de-icing is accomplished by rapidly discharging high voltage capacitors into a wire coil rigidly supported just inside the aircraft skin. Induced eddy currents in the skin create a repulsive force resulting in a hammer-like force which cracks, de-bonds, and expels ice on the skin surface. The promised advantages are very low energy, high reliability of de-icing, and low maintenance. Three years of Electo-Impulse De-icing (EIDI) research is summarized and the analytical studies and results of testing done in the laboratory, in the NASA Icing Research Tunnel, and in flight are presented. If properly designed, EIDI was demonstrated to be an effective and practical ice protection system for small aircraft, turbojet engine inlets, elements of transport aircraft, and shows promise for use on helicopter rotor blades. Included are practical techniques of fabrication of impulse coils and their mountings. The use of EIDI with nonmetallic surface materials is also described.

  20. Improved measurement of vibration amplitude in dynamic optical coherence elastography

    PubMed Central

    Kennedy, Brendan F.; Wojtkowski, Maciej; Szkulmowski, Maciej; Kennedy, Kelsey M.; Karnowski, Karol; Sampson, David D.

    2012-01-01

    Abstract: Optical coherence elastography employs optical coherence tomography (OCT) to measure the displacement of tissues under load and, thus, maps the resulting strain into an image, known as an elastogram. We present a new improved method to measure vibration amplitude in dynamic optical coherence elastography. The tissue vibration amplitude caused by sinusoidal loading is measured from the spread of the Doppler spectrum, which is extracted using joint spectral and time domain signal processing. At low OCT signal-to-noise ratio (SNR), the method provides more accurate vibration amplitude measurements than the currently used phase-sensitive method. For measurements performed on a mirror at OCT SNR = 5 dB, our method introduces <3% error, compared to >20% using the phase-sensitive method. We present elastograms of a tissue-mimicking phantom and excised porcine tissue that demonstrate improvements, including a 50% increase in the depth range of reliable vibration amplitude measurement. PMID:23243565

  1. Thin film eddy current impulse deicer

    NASA Technical Reports Server (NTRS)

    Smith, Samuel O.; Zieve, Peter B.

    1990-01-01

    Two new styles of electrical impulse deicers has been developed and tested in NASA's Icing Research Tunnel. With the Eddy Current Repulsion Deicing Boot (EDB), a thin and flexible spiral coil is encapsulated between two thicknesses of elastomer. The coil, made by an industrial printed circuit board manufacturer, is bonded to the aluminum aircraft leading edge. A capacitor bank is discharged through the coil. Induced eddy currents repel the coil from the aluminum aircraft structure and shed accumulated ice. A second configuration, the Eddy Current Repulsion Deicing-Strip (EDS) uses an outer metal erosion strip fastened over the coil. Opposite flowing eddy currents repel the strip and create the impulse deicing force. The outer strip serves as a surface for the collection and shedding of ice and does not require any structural properties. The EDS is suitable for composite aircraft structures. Both systems successfully dispelled over 95 percent of the accumulated ice from airfoils over the range of the FAA icing envelope.

  2. Tissue elasticity of in vivo skeletal muscles measured in the transverse and longitudinal planes using shear wave elastography.

    PubMed

    Chino, Kentaro; Kawakami, Yasuo; Takahashi, Hideyuki

    2017-07-01

    The aim of the present study was to measure in vivo skeletal muscle elasticity in the transverse and longitudinal planes using shear wave elastography and then to compare the image stability, measurement values and measurement repeatability between these imaging planes. Thirty-one healthy males participated in this study. Tissue elasticity (shear wave velocity) of the medial gastrocnemius, rectus femoris, biceps brachii and rectus abdominis was measured in both the transverse and longitudinal planes using shear wave elastography. Image stability was evaluated by the standard deviation of the colour distribution in the shear wave elastography image. Measurement repeatability was assessed by the coefficient of variance obtained from three measurement values. Image stability of all tested muscles was significantly higher in the longitudinal plane (P<0·001), but measurement repeatability did not differ significantly between the imaging planes (P>0·05), except in the biceps brachii (P = 0·001). Measurement values of the medial gastrocnemius, rectus femoris and biceps brachii were significantly different between the imaging planes (P<0·001). Image stability and measurement values of shear wave elastography images varied with imaging plane, which indicates that imaging plane should be considered when measuring skeletal muscle tissue elasticity by shear wave elastography. © 2015 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.

  3. Campground marketing - the impulse camper

    Treesearch

    Wilbur F. LaPage; Dale P. Ragain

    1972-01-01

    Impulse or unplanned campground visits may account for one-fourth to one-half of all camping activity. The concepts of impulse travel and impulse camping appear to be potentially useful extensions of the broader concept of impulse purchasing, which has become an important influence in retail marketing. Impulse campers may also be impulse buyers; they were found to...

  4. Diagnostic performance of quantitative shear wave elastography in the evaluation of solid breast masses: determination of the most discriminatory parameter.

    PubMed

    Au, Frederick Wing-Fai; Ghai, Sandeep; Moshonov, Hadas; Kahn, Harriette; Brennan, Cressida; Dua, Hemi; Crystal, Pavel

    2014-09-01

    The purpose of this article is to assess the diagnostic performance of quantitative shear wave elastography in the evaluation of solid breast masses and to determine the most discriminatory parameter. B-mode ultrasound and shear wave elastography were performed before core biopsy of 123 masses in 112 women. The diagnostic performance of ultrasound and quantitative shear wave elastography parameters (mean elasticity, maximum elasticity, and elasticity ratio) were compared. The added effect of shear wave elastography on the performance of ultrasound was determined. The mean elasticity, maximum elasticity, and elasticity ratio were 24.8 kPa, 30.3 kPa, and 1.90, respectively, for 79 benign masses and 130.7 kPa, 154.9 kPa, and 11.52, respectively, for 44 malignant masses (p < 0.001). The optimal cutoff value for each parameter was determined to be 42.5 kPa, 46.7 kPa, and 3.56, respectively. The AUC of each shear wave elastography parameter was higher than that of ultrasound (p < 0.001); the AUC value for the elasticity ratio (0.943) was the highest. By adding shear wave elastography parameters to the evaluation of BI-RADS category 4a masses, about 90% of masses could be downgraded to BI-RADS category 3. The numbers of downgraded masses were 40 of 44 (91%) for mean elasticity, 39 of 44 (89%) for maximum elasticity, and 42 of 44 (95%) for elasticity ratio. The numbers of correctly downgraded masses were 39 of 40 (98%) for mean elasticity, 38 of 39 (97%) for maximum elasticity, and 41 of 42 (98%) for elasticity ratio. There was improvement in the diagnostic performance of ultrasound of mass assessment with shear wave elastography parameters added to BI-RADS category 4a masses compared with ultrasound alone. Combined ultrasound and elasticity ratio had the highest improvement, from 35.44% to 87.34% for specificity, from 45.74% to 80.77% for positive predictive value, and from 57.72% to 90.24% for accuracy (p < 0.0001). The AUC of combined ultrasound and elasticity ratio (0

  5. Comparison of two ways of altering carpal tunnel pressure with ultrasound surface wave elastography.

    PubMed

    Cheng, Yu-Shiuan; Zhou, Boran; Kubo, Kazutoshi; An, Kai-Nan; Moran, Steven L; Amadio, Peter C; Zhang, Xiaoming; Zhao, Chunfeng

    2018-06-06

    Higher carpal tunnel pressure is related to the development of carpal tunnel syndrome. Currently, the measurement of carpal tunnel pressure is invasive and therefore, a noninvasive technique is needed. We previously demonstrated that speed of wave propagation through a tendon in the carpal tunnel measured by ultrasound elastography could be used as an indicator of carpal tunnel pressure in a cadaveric model, in which a balloon had to be inserted into the carpal tunnel to adjust the carpal tunnel pressure. However, the method for adjusting the carpal tunnel pressure in the cadaveric model is not applicable for the in vivo model. The objective of this study was to utilize a different technique to adjust carpal tunnel pressure via pressing the palm and to validate it with ultrasound surface wave elastography in a human cadaveric model. The outcome was also compared with a previous balloon insertion technique. Results showed that wave speed of intra-carpal tunnel tendon and the ratio of wave speed of intra-and outer-carpal tunnel tendons increased linearly with carpal tunnel pressure. Moreover, wave speed of intra carpal tunnel tendon via both ways of altering carpal tunnel pressure showed similar results with high correlation. Therefore, it was concluded that the technique of pressing the palm can be used to adjust carpal tunnel pressure, and pressure changes can be detected via ultrasound surface wave elastography in an ex vivo model. Future studies will utilize this technique in vivo to validate the usefulness of ultrasound surface wave elastography for measuring carpal tunnel pressure. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Diagnostic potential of real-time elastography (RTE) and shear wave elastography (SWE) to differentiate benign and malignant thyroid nodules: A systematic review and meta-analysis.

    PubMed

    Hu, Xiangdong; Liu, Yujiang; Qian, Linxue

    2017-10-01

    Real-time elastography (RTE) and shear wave elastography (SWE) are noninvasive and easily available imaging techniques that measure the tissue strain, and it has been reported that the sensitivity and the specificity of elastography were better in differentiating between benign and malignant thyroid nodules than conventional technologies. Relevant articles were searched in multiple databases; the comparison of elasticity index (EI) was conducted with the Review Manager 5.0. Forest plots of the sensitivity and specificity and SROC curve of RTE and SWE were performed with STATA 10.0 software. In addition, sensitivity analysis and bias analysis of the studies were conducted to examine the quality of articles; and to estimate possible publication bias, funnel plot was used and the Egger test was conducted. Finally 22 articles which eventually satisfied the inclusion criteria were included in this study. After eliminating the inefficient, benign and malignant nodules were 2106 and 613, respectively. The meta-analysis suggested that the difference of EI between benign and malignant nodules was statistically significant (SMD = 2.11, 95% CI [1.67, 2.55], P < .00001). The overall sensitivities of RTE and SWE were roughly comparable, whereas the difference of specificities between these 2 methods was statistically significant. In addition, statistically significant difference of AUC between RTE and SWE was observed between RTE and SWE (P < .01). The specificity of RTE was statistically higher than that of SWE; which suggests that compared with SWE, RTE may be more accurate on differentiating benign and malignant thyroid nodules.

  7. Shear-Wave Elastography: Basic Physics and Musculoskeletal Applications

    PubMed Central

    Gimber, Lana H.; Becker, Giles W.; Latt, L. Daniel; Klauser, Andrea S.; Melville, David M.; Gao, Liang; Witte, Russell S.

    2017-01-01

    In the past 2 decades, sonoelastography has been progressively used as a tool to help evaluate soft-tissue elasticity and add to information obtained with conventional gray-scale and Doppler ultrasonographic techniques. Recently introduced on clinical scanners, shear-wave elastography (SWE) is considered to be more objective, quantitative, and reproducible than compression sonoelastography with increasing applications to the musculoskeletal system. SWE uses an acoustic radiation force pulse sequence to generate shear waves, which propagate perpendicular to the ultrasound beam, causing transient displacements. The distribution of shear-wave velocities at each pixel is directly related to the shear modulus, an absolute measure of the tissue’s elastic properties. Shear-wave images are automatically coregistered with standard B-mode images to provide quantitative color elastograms with anatomic specificity. Shear waves propagate faster through stiffer contracted tissue, as well as along the long axis of tendon and muscle. SWE has a promising role in determining the severity of disease and treatment follow-up of various musculoskeletal tissues including tendons, muscles, nerves, and ligaments. This article describes the basic ultrasound physics of SWE and its applications in the evaluation of various traumatic and pathologic conditions of the musculoskeletal system. ©RSNA, 2017 PMID:28493799

  8. Diffuse shear wave imaging: toward passive elastography using low-frame rate spectral-domain optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Nguyen, Thu-Mai; Zorgani, Ali; Lescanne, Maxime; Boccara, Claude; Fink, Mathias; Catheline, Stefan

    2016-12-01

    Optical coherence tomography (OCT) can map the stiffness of biological tissue by imaging mechanical perturbations (shear waves) propagating in the tissue. Most shear wave elastography (SWE) techniques rely on active shear sources to generate controlled displacements that are tracked at ultrafast imaging rates. Here, we propose a noise-correlation approach to retrieve stiffness information from the imaging of diffuse displacement fields using low-frame rate spectral-domain OCT. We demonstrated the method on tissue-mimicking phantoms and validated the results by comparison with classic ultrafast SWE. Then we investigated the in vivo feasibility on the eye of an anesthetized rat by applying noise correlation to naturally occurring displacements. The results suggest a great potential for passive elastography based on the detection of natural pulsatile motions using conventional spectral-domain OCT systems. This would facilitate the transfer of OCT-elastography to clinical practice, in particular, in ophthalmology or dermatology.

  9. Diffuse shear wave imaging: toward passive elastography using low-frame rate spectral-domain optical coherence tomography.

    PubMed

    Nguyen, Thu-Mai; Zorgani, Ali; Lescanne, Maxime; Boccara, Claude; Fink, Mathias; Catheline, Stefan

    2016-12-01

    Optical coherence tomography (OCT) can map the stiffness of biological tissue by imaging mechanical perturbations (shear waves) propagating in the tissue. Most shear wave elastography (SWE) techniques rely on active shear sources to generate controlled displacements that are tracked at ultrafast imaging rates. Here, we propose a noise-correlation approach to retrieve stiffness information from the imaging of diffuse displacement fields using low-frame rate spectral-domain OCT. We demonstrated the method on tissue-mimicking phantoms and validated the results by comparison with classic ultrafast SWE. Then we investigated the in vivo feasibility on the eye of an anesthetized rat by applying noise correlation to naturally occurring displacements. The results suggest a great potential for passive elastography based on the detection of natural pulsatile motions using conventional spectral-domain OCT systems. This would facilitate the transfer of OCT-elastography to clinical practice, in particular, in ophthalmology or dermatology.

  10. Placental elastography in a murine intrauterine growth restriction model.

    PubMed

    Quibel, T; Deloison, B; Chammings, F; Chalouhi, G E; Siauve, N; Alison, M; Bessières, B; Gennisson, J L; Clément, O; Salomon, L J

    2015-11-01

    To compare placental elasticity in normal versus intrauterine growth restriction (IUGR) murine pregnancies using shear wave elastography (SWE). Intrauterine growth restriction was created by ligation of the left uterine artery of Sprague-Dawley rats on E17. Ultrasonography (US) and elastography were performed 2 days later on exteriorized horns after laparotomy. Biparietal diameter (BPD) and abdominal diameter (AD) were measured and compared in each horn. Placental elasticity of each placenta was compared in the right and left horns, respectively, using the Young's modulus, which increases with increasing stiffness of the tissue. Two hundred seventeen feto-placental units from 18 rats were included. Fetuses in the left ligated horn had smaller biometric measurements than those in the right horn (6.7 vs 7.2 mm, p < 0.001, and 9.2 vs 11.2 mm, p < 0.001 for BPD and AD, respectively). Mean fetal weight was lower in the pups from the left than the right horn (1.65 vs 2.11 g; p < 0.001). Mean (SD) Young's modulus was higher for placentas from the left than the right horn (11.7 ± 1.5 kPa vs 8.01 ± 3.8 kPa, respectively; p < 0.001), indicating increased stiffness in placentas from the left than the right horn. There was an inverse relationship between fetal weight and placental elasticity (r = 0.42; p < 0.001). Shear wave elastography may be used to provide quantitative elasticity measurements of the placenta. In our model, placentas from IUGR fetuses demonstrated greater stiffness, which correlated with the degree of fetal growth restriction. © 2015 John Wiley & Sons, Ltd.

  11. Transient Elastography vs. Aspartate Aminotransferase to Platelet Ratio Index in Hepatitis C: A Meta-Analysis.

    PubMed

    Mattos, A Z; Mattos, A A

    Many different non-invasive methods have been studied with the purpose of staging liver fibrosis. The objective of this study was verifying if transient elastography is superior to aspartate aminotransferase to platelet ratio index for staging fibrosis in patients with chronic hepatitis C. A systematic review with meta-analysis of studies which evaluated both non-invasive tests and used biopsy as the reference standard was performed. A random-effects model was used, anticipating heterogeneity among studies. Diagnostic odds ratio was the main effect measure, and summary receiver operating characteristic curves were created. A sensitivity analysis was planned, in which the meta-analysis would be repeated excluding each study at a time. Eight studies were included in the meta-analysis. Regarding the prediction of significant fibrosis, transient elastography and aspartate aminotransferase to platelet ratio index had diagnostic odds ratios of 11.70 (95% confidence interval = 7.13-19.21) and 8.56 (95% confidence interval = 4.90-14.94) respectively. Concerning the prediction of cirrhosis, transient elastography and aspartate aminotransferase to platelet ratio index had diagnostic odds ratios of 66.49 (95% confidence interval = 23.71-186.48) and 7.47 (95% confidence interval = 4.88-11.43) respectively. In conclusion, there was no evidence of significant superiority of transient elastography over aspartate aminotransferase to platelet ratio index regarding the prediction of significant fibrosis, but the former proved to be better than the latter concerning prediction of cirrhosis.

  12. Validity of measurement of shear modulus by ultrasound shear wave elastography in human pennate muscle.

    PubMed

    Miyamoto, Naokazu; Hirata, Kosuke; Kanehisa, Hiroaki; Yoshitake, Yasuhide

    2015-01-01

    Ultrasound shear wave elastography is becoming a valuable tool for measuring mechanical properties of individual muscles. Since ultrasound shear wave elastography measures shear modulus along the principal axis of the probe (i.e., along the transverse axis of the imaging plane), the measured shear modulus most accurately represents the mechanical property of the muscle along the fascicle direction when the probe's principal axis is parallel to the fascicle direction in the plane of the ultrasound image. However, it is unclear how the measured shear modulus is affected by the probe angle relative to the fascicle direction in the same plane. The purpose of the present study was therefore to examine whether the angle between the principal axis of the probe and the fascicle direction in the same plane affects the measured shear modulus. Shear modulus in seven specially-designed tissue-mimicking phantoms, and in eleven human in-vivo biceps brachii and medial gastrocnemius were determined by using ultrasound shear wave elastography. The probe was positioned parallel or 20° obliquely to the fascicle across the B-mode images. The reproducibility of shear modulus measurements was high for both parallel and oblique conditions. Although there was a significant effect of the probe angle relative to the fascicle on the shear modulus in human experiment, the magnitude was negligibly small. These findings indicate that the ultrasound shear wave elastography is a valid tool for evaluating the mechanical property of pennate muscles along the fascicle direction.

  13. Differences in liver stiffness values obtained with new ultrasound elastography machines and Fibroscan: A comparative study.

    PubMed

    Piscaglia, Fabio; Salvatore, Veronica; Mulazzani, Lorenzo; Cantisani, Vito; Colecchia, Antonio; Di Donato, Roberto; Felicani, Cristina; Ferrarini, Alessia; Gamal, Nesrine; Grasso, Valentina; Marasco, Giovanni; Mazzotta, Elena; Ravaioli, Federico; Ruggieri, Giacomo; Serio, Ilaria; Sitouok Nkamgho, Joules Fabrice; Serra, Carla; Festi, Davide; Schiavone, Cosima; Bolondi, Luigi

    2017-07-01

    Whether Fibroscan thresholds can be immediately adopted for none, some or all other shear wave elastography techniques has not been tested. The aim of the present study was to test the concordance of the findings obtained from 7 of the most recent ultrasound elastography machines with respect to Fibroscan. Sixteen hepatitis C virus-related patients with fibrosis ≥2 and having reliable results at Fibroscan were investigated in two intercostal spaces using 7 different elastography machines. Coefficients of both precision (an index of data dispersion) and accuracy (an index of bias correction factors expressing different magnitudes of changes in comparison to the reference) were calculated. Median stiffness values differed among the different machines as did coefficients of both precision (range 0.54-0.72) and accuracy (range 0.28-0.87). When the average of the measurements of two intercostal spaces was considered, coefficients of precision significantly increased with all machines (range 0.72-0.90) whereas of accuracy improved more scatteredly and by a smaller degree (range 0.40-0.99). The present results showed only moderate concordance of the majority of elastography machines with the Fibroscan results, preventing the possibility of the immediate universal adoption of Fibroscan thresholds for defining liver fibrosis staging for all new machines. Copyright © 2017 Editrice Gastroenterologica Italiana S.r.l. Published by Elsevier Ltd. All rights reserved.

  14. Investigation of the acute plantar fasciitis with contrast-enhanced ultrasound and shear wave elastography - first results.

    PubMed

    Putz, Franz Josef; Hautmann, Matthias G; Banas, Miriam C; Jung, Ernst Michael

    2017-01-01

    The plantar fasciitis is a common disease with a high prevalence in public and a frequent cause of heel pain. In our pilot study, we wanted to characterise the feasibility of shear-wave elastography and contrast-enhanced ultrasound (CEUS) in the assessment of the plantar fasciitis. 23 cases of painful heels were examined by B-Mode ultrasound, Power Doppler (PD), shear wave elastography and contrast-enhanced ultrasound before anti-inflammatory radiation. Time-intensity-curves were analysed by the integrated software. The results for area-under-the-curve (AUC), peak, time-to-peak (TTP) and mean-transit-time (MTT) were compared between the plantar fascia and the surrounding tissue. All cases showed thickening of the plantar fascia, in most cases with interstitial oedema (87.0%). Shear wave elastography showed inhomogeneous stiffness of the plantar fascia. 83.3% of cases showed a visible hyperperfusion in CEUS at the proximal plantar fascia in comparison to the surrounding tissue. This hyperperfusion could also be found in 75.0% of cases with no signs of vascularisation in PD. AUC (p = 0.0005) and peak (p = 0.037) were significantely higher in the plantar fascia than in the surrounding tissue. CEUS and shear wave elastography are new diagnostic tools in the assessment of plantar fasciitis and can provide quantitative parameters for monitoring therapy.

  15. Establishing ultrasound based transient elastography cutoffs for different stages of hepatic fibrosis and cirrhosis in Egyptian chronic hepatitis C patients.

    PubMed

    Elsharkawy, Aisha; Alboraie, Mohamed; Fouad, Rabab; Asem, Noha; Abdo, Mahmoud; Elmakhzangy, Hesham; Mehrez, Mai; Khattab, Hany; Esmat, Gamal

    2017-12-01

    Transient elastography is widely used to assess fibrosis stage in chronic hepatitis C (CHC). We aimed to establish and validate different transient elastography cut-off values for significant fibrosis and cirrhosis in CHC genotype 4 patients. The data of 100 treatment-naive CHC patients (training set) and 652 patients (validation set) were analysed. The patients were subjected to routine pretreatment laboratory investigations, liver biopsy and histopathological staging of hepatic fibrosis according to the METAVIR scoring system. Transient elastography was performed before and in the same week as liver biopsy using FibroScan (Echosens, Paris, France). Transient elastography results were correlated to different stages of hepatic fibrosis in both the training and validation sets. ROC curves were constructed. In the training set, the best transient elastography cut-off values for significant hepatic fibrosis (≥F2 METAVIR), advanced hepatic fibrosis (≥F3 METAVIR) and cirrhosis (F4 METAVIR) were 7.1, 9 and 12.2 kPa, with sensitivities of 87%, 87.5% and 90.9% and specificities of 100%, 99.9% and 99.9%, respectively. The application of these cut-offs in the validation set showed sensitivities of 85.5%, 82.8% and 92% and specificities of 86%, 89.4% and 99.01% for significant hepatic fibrosis, advanced hepatic fibrosis and cirrhosis, respectively. Transient elastography performs well for significant hepatic fibrosis, advanced hepatic fibrosis and cirrhosis, with validated cut-offs of 7.1, 9 and 12.2 kPa, respectively, in genotype 4 CHC patients. Copyright © 2017 Pan-Arab Association of Gastroenterology. Published by Elsevier B.V. All rights reserved.

  16. Bifurcation Analysis and Application for Impulsive Systems with Delayed Impulses

    NASA Astrophysics Data System (ADS)

    Church, Kevin E. M.; Liu, Xinzhi

    In this article, we present a systematic approach to bifurcation analysis of impulsive systems with autonomous or periodic right-hand sides that may exhibit delayed impulse terms. Methods include Lyapunov-Schmidt reduction and center manifold reduction. Both methods are presented abstractly in the context of the stroboscopic map associated to a given impulsive system, and are illustrated by way of two in-depth examples: the analysis of a SIR model of disease transmission with seasonality and unevenly distributed moments of treatment, and a scalar logistic differential equation with a delayed census impulsive harvesting effort. It is proven that in some special cases, the logistic equation can exhibit a codimension two bifurcation at a 1:1 resonance point.

  17. [The diagnostic value of ultrasonic elastography and ultrasonography comprehensive score in cervical lesions].

    PubMed

    Lu, R; Xiao, Y

    2017-07-18

    Objective: To evaluate the clinical value of ultrasonic elastography and ultrasonography comprehensive scoring method in the diagnosis of cervical lesions. Methods: A total of 116 patients were selected from the Department of Gynecology of the first hospital affiliated with Central South University from March 2014 to September 2015.All of the lesions were preoperatively examined by Doppler Ultrasound and elastography.The elasticity score was determined by a 5-point scoring method. Calculation of the strain ratio was based on a comparison of the average strain measured in the lesion with the adjacent tissue of the same depth, size, and shape.All these ultrasonic parameters were quantified, added, and arrived at ultrasonography comprehensive scores.To use surgical pathology as the gold standard, the sensitivity, specificity, accuracy of Doppler Ultrasound, elasticity score and strain ratio methods and ultrasonography comprehensive scoring method were comparatively analyzed. Results: (1) The sensitivity, specificity, and accuracy of Doppler Ultrasound in diagnosing cervical lesions were 82.89% (63/76), 85.0% (34/40), and 83.62% (97/116), respectively.(2) The sensitivity, specificity, and accuracy of the elasticity score method were 77.63% (59/76), 82.5% (33/40), and 79.31% (92/116), respectively; the sensitivity, specificity, and accuracy of the strain ratio measure method were 84.21% (64/76), 87.5% (35/40), and 85.34% (99/116), respectively.(3) The sensitivity, specificity, and accuracy of ultrasonography comprehensive scoring method were 90.79% (69/76), 92.5% (37/40), and 91.38% (106/116), respectively. Conclusion: (1) It was obvious that ultrasonic elastography had certain diagnostic value in cervical lesions. Strain ratio measurement can be more objective than elasticity score method.(2) The combined application of ultrasonography comprehensive scoring method, ultrasonic elastography and conventional sonography was more accurate than single parameter.

  18. Genetics of impulsive behaviour

    PubMed Central

    Bevilacqua, Laura; Goldman, David

    2013-01-01

    Impulsivity, defined as the tendency to act without foresight, comprises a multitude of constructs and is associated with a variety of psychiatric disorders. Dissecting different aspects of impulsive behaviour and relating these to specific neurobiological circuits would improve our understanding of the etiology of complex behaviours for which impulsivity is key, and advance genetic studies in this behavioural domain. In this review, we will discuss the heritability of some impulsivity constructs and their possible use as endophenotypes (heritable, disease-associated intermediate phenotypes). Several functional genetic variants associated with impulsive behaviour have been identified by the candidate gene approach and re-sequencing, and whole genome strategies can be implemented for discovery of novel rare and common alleles influencing impulsivity. Via deep sequencing an uncommon HTR2B stop codon, common in one population, was discovered, with implications for understanding impulsive behaviour in both humans and rodents and for future gene discovery. PMID:23440466

  19. Numerical simulation of flows in a circular pipe transversely subjected to a localized impulsive body force with applications to blunt traumatic aortic rupture

    NASA Astrophysics Data System (ADS)

    Di Labbio, G.; Keshavarz-Motamed, Z.; Kadem, L.

    2017-06-01

    Much debate surrounds the mechanisms responsible for the occurrence of blunt traumatic aortic rupture in car accidents, particularly on the role of the inertial body force experienced by the blood due to the abrupt deceleration. The isolated influence of such body forces acting on even simple fluid flows is a fundamental problem in fluid dynamics that has not been thoroughly investigated. This study numerically investigates the fundamental physical problem, where the pulsatile flow in a straight circular pipe is subjected to a transverse body force on a localized volume of fluid. The body force is applied as a brief rectangular impulse in three distinct cases, namely during the accelerating, peak, and decelerating phases of the pulsatile flow. A dimensionless number, termed the degree of influence of the body force (Ψ), is devised to quantify the relative strength of the body force over the flow inertia. The impact induces counter-rotating cross-stream vortices at the boundaries of the forced section accompanied by complex secondary flow structures. This secondary flow is found to develop slowest for an impact occurring during an accelerating flow and fastest during a decelerating flow. The peak skewness of the velocity field, however, occurred at successively later times for the three respective cases. After the impact, these secondary flows act to restore the unforced state and such dominant spatial structures are revealed by proper orthogonal decomposition of the velocity field. This work presents a new class of problems that requires further theoretical and experimental investigation.

  20. Rethinking impulsivity in suicide.

    PubMed

    Klonsky, E David; May, Alexis

    2010-12-01

    Elevated impulsivity is thought to facilitate the transition from suicidal thoughts to suicidal behavior. Therefore, impulsivity should distinguish those who have attempted suicide (attempters) from those who have only considered suicide (ideators-only). This hypothesis was examined in three large nonclinical samples: (1) 2,011 military recruits, (2) 1,296 college students, and (3) 399 high school students. In sample 1, contrary to traditional models of suicide risk, a unidimensional measure of impulsivity failed to distinguish attempters from ideators-only. In samples 2 and 3, which were administered a multidimensional measure of impulsivity (i.e., the UPPS impulsive behavior scale; Whiteside & Lynam, 2001), different impulsivity-related traits characterized attempters and ideators-only. Whereas both attempters and ideators-only exhibited high urgency (the tendency to act impulsive in the face of negative emotions), only attempters exhibited poor premeditation (a diminished ability to think through the consequences of one's actions). Neither attempters nor ideators-only exhibited high sensation seeking or lack of perseverance. Future research should continue to distinguish impulsivity-related traits that predict suicide ideation from those that predict suicide attempts, and models of suicide risk should be revised accordingly.

  1. Pathological gambling: an impulse control disorder? Measurement of impulsivity using neurocognitive tests.

    PubMed

    Dannon, Pinhas N; Shoenfeld, Netta; Rosenberg, Oded; Kertzman, Semion; Kotler, Moshe

    2010-04-01

    Pathological gambling is classified in the DSM-IV-TR (Diagnostic and Statistical Manual of Mental Disorders) and in the ICD-10 (International Classification of Disease) as an impulse control disorder. The association between impulsivity and pathological gambling remains a matter of debate: some researchers find high levels of impulsivity within pathological gamblers, others report no difference compared to controls, and yet others even suggest that it is lower. In this review we examine the relationship between pathological gambling and impulsivity assessed by various neurocognitive tests. These tests--the Stroop task, the Stop Signal Task, the Matching Familiar Figures Task, the Iowa Gambling Task, the Wisconsin Card Sorting Test, the Tower of London test, and the Continuous Performance Test--demonstrated less impulsivity in gambling behavior. The differences in performance between pathological gamblers and healthy controls on the neurocognitive tasks could be due to addictive behavior features rather than impulsive behavior.

  2. Effect of aging and direction of impulse in video head impulse test.

    PubMed

    Kim, Tae Hwan; Kim, Min-Beom

    2017-09-12

    The aim of this study was to identify the difference of gain value in the video head impulse test (vHIT) according to the age of the patient and the direction of the impulse. All participants were subjected to vHIT with horizontal semicircular canal (HSCC). vHIT with vertical canal (posterior and anterior semicircular canal [PSCC and ASCC]) additionally was performed in 434 participants. The mean vestibulo-ocular reflex (VOR) gain was maintained in patients in the HSCC at below 70 years (1.025 ± 0.08) and in the vertical canal at below 80 years (PSCC: 0.965 ± 0.12, ASCC: 0.975 ± 0.14). However, the decrease of VOR gain was significant in patients over 70 years in the HSCC (0.978 ± 0.35, P < .001) and in patients over 80 years in the vertical canal (PSCC: 0.828 ± 0.16, ASCC: 0.851 ± 0.13, P < .001). In addition, a VOR gain of rightward impulse was higher than the leftward impulse, but there was no difference based on the direction of impulse in the vertical impulse test. VOR gain declines with increasing age, over 70 years on the horizontal canal, and over 80 years on the vertical canal. Additionally, horizontal VOR gain of rightward impulse was higher than the leftward impulse in right-eye recordings only, but the vertical canal showed no difference of gain according to the direction of impulse. 2b. Laryngoscope, 2017. © 2017 The American Laryngological, Rhinological and Otological Society, Inc.

  3. Robust stochastic resonance: Signal detection and adaptation in impulsive noise

    NASA Astrophysics Data System (ADS)

    Kosko, Bart; Mitaim, Sanya

    2001-11-01

    Stochastic resonance (SR) occurs when noise improves a system performance measure such as a spectral signal-to-noise ratio or a cross-correlation measure. All SR studies have assumed that the forcing noise has finite variance. Most have further assumed that the noise is Gaussian. We show that SR still occurs for the more general case of impulsive or infinite-variance noise. The SR effect fades as the noise grows more impulsive. We study this fading effect on the family of symmetric α-stable bell curves that includes the Gaussian bell curve as a special case. These bell curves have thicker tails as the parameter α falls from 2 (the Gaussian case) to 1 (the Cauchy case) to even lower values. Thicker tails create more frequent and more violent noise impulses. The main feedback and feedforward models in the SR literature show this fading SR effect for periodic forcing signals when we plot either the signal-to-noise ratio or a signal correlation measure against the dispersion of the α-stable noise. Linear regression shows that an exponential law γopt(α)=cAα describes this relation between the impulsive index α and the SR-optimal noise dispersion γopt. The results show that SR is robust against noise ``outliers.'' So SR may be more widespread in nature than previously believed. Such robustness also favors the use of SR in engineering systems. We further show that an adaptive system can learn the optimal noise dispersion for two standard SR models (the quartic bistable model and the FitzHugh-Nagumo neuron model) for the signal-to-noise ratio performance measure. This also favors practical applications of SR and suggests that evolution may have tuned the noise-sensitive parameters of biological systems.

  4. High-resolution harmonic motion imaging (HR-HMI) for tissue biomechanical property characterization

    PubMed Central

    Ma, Teng; Qian, Xuejun; Chiu, Chi Tat; Yu, Mingyue; Jung, Hayong; Tung, Yao-Sheng; Shung, K. Kirk

    2015-01-01

    Background Elastography, capable of mapping the biomechanical properties of biological tissues, serves as a useful technique for clinicians to perform disease diagnosis and determine stages of many diseases. Many acoustic radiation force (ARF) based elastography, including acoustic radiation force impulse (ARFI) imaging and harmonic motion imaging (HMI), have been developed to remotely assess the elastic properties of tissues. However, due to the lower operating frequencies of these approaches, their spatial resolutions are insufficient for revealing stiffness distribution on small scale applications, such as cancerous tumor margin detection, atherosclerotic plaque composition analysis and ophthalmologic tissue characterization. Though recently developed ARF-based optical coherence elastography (OCE) methods open a new window for the high resolution elastography, shallow imaging depths significantly limit their usefulness in clinics. Methods The aim of this study is to develop a high-resolution HMI method to assess the tissue biomechanical properties with acceptable field of view (FOV) using a 4 MHz ring transducer for efficient excitation and a 40 MHz needle transducer for accurate detection. Under precise alignment of two confocal transducers, the high-resolution HMI system has a lateral resolution of 314 µm and an axial resolution of 
147 µm with an effective FOV of 2 mm in depth. Results The performance of this high resolution imaging system was validated on the agar-based tissue mimicking phantoms with different stiffness distributions. These data demonstrated the imaging system’s improved resolution and sensitivity on differentiating materials with varying stiffness. In addition, ex vivo imaging of a human atherosclerosis coronary artery demonstrated the capability of high resolution HMI in identifying layer-specific structures and characterizing atherosclerotic plaques based on their stiffness differences. Conclusions All together high resolution HMI

  5. High-resolution harmonic motion imaging (HR-HMI) for tissue biomechanical property characterization.

    PubMed

    Ma, Teng; Qian, Xuejun; Chiu, Chi Tat; Yu, Mingyue; Jung, Hayong; Tung, Yao-Sheng; Shung, K Kirk; Zhou, Qifa

    2015-02-01

    Elastography, capable of mapping the biomechanical properties of biological tissues, serves as a useful technique for clinicians to perform disease diagnosis and determine stages of many diseases. Many acoustic radiation force (ARF) based elastography, including acoustic radiation force impulse (ARFI) imaging and harmonic motion imaging (HMI), have been developed to remotely assess the elastic properties of tissues. However, due to the lower operating frequencies of these approaches, their spatial resolutions are insufficient for revealing stiffness distribution on small scale applications, such as cancerous tumor margin detection, atherosclerotic plaque composition analysis and ophthalmologic tissue characterization. Though recently developed ARF-based optical coherence elastography (OCE) methods open a new window for the high resolution elastography, shallow imaging depths significantly limit their usefulness in clinics. The aim of this study is to develop a high-resolution HMI method to assess the tissue biomechanical properties with acceptable field of view (FOV) using a 4 MHz ring transducer for efficient excitation and a 40 MHz needle transducer for accurate detection. Under precise alignment of two confocal transducers, the high-resolution HMI system has a lateral resolution of 314 µm and an axial resolution of 
147 µm with an effective FOV of 2 mm in depth. The performance of this high resolution imaging system was validated on the agar-based tissue mimicking phantoms with different stiffness distributions. These data demonstrated the imaging system's improved resolution and sensitivity on differentiating materials with varying stiffness. In addition, ex vivo imaging of a human atherosclerosis coronary artery demonstrated the capability of high resolution HMI in identifying layer-specific structures and characterizing atherosclerotic plaques based on their stiffness differences. All together high resolution HMI appears to be a promising ultrasound

  6. Magnetic resonance elastography of the brain: A comparison between pigs and humans.

    PubMed

    Weickenmeier, Johannes; Kurt, Mehmet; Ozkaya, Efe; Wintermark, Max; Pauly, Kim Butts; Kuhl, Ellen

    2018-01-01

    Magnetic resonance elastography holds promise as a non-invasive, easy-to-use, in vivo biomarker for neurodegenerative diseases. Throughout the past decade, pigs have gained increased popularity as large animal models for human neurodegeneration. However, the volume of a pig brain is an order of magnitude smaller than the human brain, its skull is 40% thicker, and its head is about twice as big. This raises the question to which extent established vibration devices, actuation frequencies, and analysis tools for humans translate to large animal studies in pigs. Here we explored the feasibility of using human brain magnetic resonance elastography to characterize the dynamic properties of the porcine brain. In contrast to humans, where vibration devices induce an anterior-posterior displacement recorded in transverse sections, the porcine anatomy requires a dorsal-ventral displacement recorded in coronal sections. Within these settings, we applied a wide range of actuation frequencies, from 40Hz to 90Hz, and recorded the storage and loss moduli for human and porcine brains. Strikingly, we found that optimal actuation frequencies for humans translate one-to-one to pigs and reliably generate shear waves for elastographic post-processing. In a direct comparison, human and porcine storage and loss moduli followed similar trends and increased with increasing frequency. When translating these frequency-dependent storage and loss moduli into the frequency-independent stiffnesses and viscosities of a standard linear solid model, we found human values of μ 1 =1.3kPa, μ 2 =2.1kPa, and η=0.025kPas and porcine values of μ 1 =2.0kPa, μ 2 =4.9kPa, and η=0.046kPas. These results suggest that living human brain is softer and less viscous than dead porcine brain. Our study compares, for the first time, magnetic resonance elastography in human and porcine brains, and paves the way towards systematic interspecies comparison studies and ex vivo validation of magnetic resonance

  7. Collision forces for compliant projectiles

    NASA Technical Reports Server (NTRS)

    Grady, Joseph E.

    1990-01-01

    Force histories resulting from the impact of compliant projectiles were determined experimentally. A long instrumented rod was used as the target, and the impact force was calculated directly from the measured strain response. Results from a series of tests on several different sized impactors were used to define four dimensionless parameters that determine, for a specified impactor velocity and size, the amplitude, duration, shape, and impulse of the impact force history.

  8. Interobserver variability of ultrasound elastography and the ultrasound BI-RADS lexicon of breast lesions.

    PubMed

    Park, Chang Suk; Kim, Sung Hun; Jung, Na Young; Choi, Jae Jung; Kang, Bong Joo; Jung, Hyun Seouk

    2015-03-01

    Elastographpy is a newly developed noninvasive imaging technique that uses ultrasound (US) to evaluate tissue stiffness. The interpretation of the same elastographic images may be variable according to reviewers. Because breast lesions are usually reported according to American College of Radiology Breast Imaging and Data System (ACR BI-RADS) lexicons and final category, we tried to compare observer variability between lexicons and final categorization of US BI-RADS and the elasticity score of US elastography. From April 2009 to February 2010, 1356 breast lesions in 1330 patients underwent ultrasound-guided core biopsy. Among them, 63 breast lesions in 55 patients (mean age, 45.7 years; range, 21-79 years) underwent both conventional ultrasound and elastography and were included in this study. Two radiologists independently performed conventional ultrasound and elastography, and another three observers reviewed conventional ultrasound images and elastography videos. Observers independently recorded the elasticity score for a 5-point scoring system proposed by Itoh et al., BI-RADS lexicons and final category using ultrasound BI-RADS. The histopathologic results were obtained and used as the reference standard. Interobserver variability was evaluated. Of the 63 lesions, 42 (66.7 %) were benign, and 21 (33.3 %) were malignant. The highest value of concordance among all variables was achieved for the elasticity score (k = 0.59), followed by shape (k = 0.54), final category (k = 0.48), posterior acoustic features (k = 0.44), echogenecity and orientation (k = 0.43). The least concordances were margin (k = 0.26), lesion boundary (k = 0.29) and calcification (k = 0.3). Elasticity score showed a higher level of interobserver agreement for the diagnosis of breast lesions than BI-RADS lexicons and final category.

  9. Shear-wave elastography of the testis in the healthy man - determination of standard values.

    PubMed

    Trottmann, M; Marcon, J; D'Anastasi, M; Bruce, M F; Stief, C G; Reiser, M F; Buchner, A; Clevert, D A

    2016-01-01

    Real-time shear-wave elastography (SWE) is a newly developed technique for the sonographic quantification of tissue elasticity, which already is used in the assessment of breast and thyroid lesions. Due to limited overlying tissue, the testes are ideally suited for assessment using shear wave elastography. To our knowledge, no published data exist on real-time SWE of the testes. Sixty six male volunteers (mean age 51.86±18.82, range 20-86) with no known testicular pathology underwent normal B-mode sonography and multi-frame shear-wave elastography of both testes using the Aixplorer ® ultrasound system (SuperSonic Imagine, Aix en Provence, France). Three measurements were performed for each testis; one in the upper pole, in the middle portion and in the lower pole respectively. The results were statistically evaluated using multivariate analysis. Mean shear-wave velocity values were similar in the inferior and superior part of the testicle (1.15 m/s) and were significantly lower in the centre (0.90 m/s). These values were age-independent. Testicular stiffness was significantly lower in the upper pole than in the rest of the testis with increasing volume (p = 0.007). Real-time shear-wave elastography proved to be feasible in the assessment of testicular stiffness. It is important to consider the measurement region as standard values differ between the centre and the testicular periphery. Further studies with more subjects may be required to define the normal range of values for each age group. Useful clinical applications could include the diagnostic work-up of patients with scrotal masses or male infertility.

  10. Acoustic radiation force due to arbitrary incident fields on spherical particles in soft tissue

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Treweek, Benjamin C., E-mail: btreweek@utexas.edu; Ilinskii, Yurii A.; Zabolotskaya, Evgenia A.

    Acoustic radiation force is of interest in a wide variety of biomedical applications ranging from tissue characterization (e.g. elastography) to tissue treatment (e.g. high intensity focused ultrasound, kidney stone fragment removal). As tissue mechanical properties are reliable indicators of tissue health, the former is the focus of the present contribution. This is accomplished through an investigation of the acoustic radiation force on a spherical scatterer embedded in tissue. Properties of both the scatterer and the surrounding tissue are important in determining the magnitude and the direction of the force. As these properties vary, the force computation shows changes in magnitudemore » and direction, which may enable more accurate noninvasive determination of tissue properties.« less

  11. Acoustic radiation force due to arbitrary incident fields on spherical particles in soft tissue

    NASA Astrophysics Data System (ADS)

    Treweek, Benjamin C.; Ilinskii, Yurii A.; Zabolotskaya, Evgenia A.; Hamilton, Mark F.

    2015-10-01

    Acoustic radiation force is of interest in a wide variety of biomedical applications ranging from tissue characterization (e.g. elastography) to tissue treatment (e.g. high intensity focused ultrasound, kidney stone fragment removal). As tissue mechanical properties are reliable indicators of tissue health, the former is the focus of the present contribution. This is accomplished through an investigation of the acoustic radiation force on a spherical scatterer embedded in tissue. Properties of both the scatterer and the surrounding tissue are important in determining the magnitude and the direction of the force. As these properties vary, the force computation shows changes in magnitude and direction, which may enable more accurate noninvasive determination of tissue properties.

  12. Differences of standard values of Supersonic shear imaging and ARFI technique - in vivo study of testicular tissue.

    PubMed

    Trottmann, M; Rübenthaler, J; Marcon, J; Stief, C G; Reiser, M F; Clevert, D A

    2016-01-01

    To investigate the difference of standard values of Supersonic shear imaging (SSI) and Acoustic Radiation Force Impulse (ARFI) technique in the evaluation of testicular tissue stiffness in vivo. 58 healthy male testes were examined using B-mode sonography and ARFI and SSI. B-mode sonography was performed in order to scan the testis for pathologies followed by performance of real-time elastography in three predefined areas (upper pole, central portion and lower pole) using the SuperSonic® Aixplorer ultrasound device (SuperSonic Imagine, Aix-en-Provence, France). Afterwards a second assessment of the same testicular regions by elastography followed using the ARFI technique of the Siemens Acuson 2000™ ultrasound device (Siemens Health Care, Germany). Values of shear wave velocity were described in m/s. Parameters of elastography techniques were compared using paired sample t-test. The values of SSI were all significantly higher in all measured areas compared to ARFI (p < 0.001 to p = 0.015). Quantitatively there was a higher mean SSI wave velocity value of 1,1 compared to 0.8 m/s measured by ARFI. SSI values are significantly higher than ARFI values when measuring the stiffness of testicular tissue and should only be compared with caution.

  13. Noninvasive assessment of liver fibrosis in patients with chronic hepatitis B.

    PubMed

    Enomoto, Masaru; Morikawa, Hiroyasu; Tamori, Akihiro; Kawada, Norifumi

    2014-09-14

    Infection with hepatitis B virus is an important health problem worldwide: it affects more than 350 million people and is a leading cause of liver-related morbidity, accounting for 1 million deaths annually. Hepatic fibrosis is a consequence of the accumulation of extracellular matrix components in the liver. An accurate diagnosis of liver fibrosis is essential for the management of chronic liver disease. Liver biopsy has been considered the gold standard for diagnosing disease, grading necroinflammatory activity, and staging fibrosis. However, liver biopsy is unsuitable for repeated evaluations because it is invasive and can cause major complications, including death. Several noninvasive evaluations have been introduced for the assessment of liver fibrosis: serum biomarkers, combined indices or scores, and imaging techniques including transient elastography, acoustic radiation force impulse, real-time tissue elastography, and magnetic resonance elastography. Here, we review the recent progress of noninvasive assessment of liver fibrosis in patients with chronic hepatitis B. Most noninvasive evaluations for liver fibrosis have been validated first in patients with chronic hepatitis C, and later in those with chronic hepatitis B. The establishment of a noninvasive assessment of liver fibrosis is urgently needed to aid in the management of this leading cause of chronic liver disease.

  14. Impulsivity in borderline personality disorder: a matter of disturbed impulse control or a facet of emotional dysregulation?

    PubMed

    Sebastian, Alexandra; Jacob, Gitta; Lieb, Klaus; Tüscher, Oliver

    2013-02-01

    Impulsivity is regarded as a clinical, diagnostic and pathophysiological hallmark of borderline personality disorder (BPD). Self-report measures of impulsivity consistently support the notion of higher impulsive traits in BPD patients as compared to healthy control subjects. Laboratory tests of impulsivity, i.e. neuropsychological tests of impulse control render weak and inconsistent results both across different cognitive components of impulse control and within the same cognitive component of impulse control. One important factor worsening impulsive behaviors and impulse control deficits in BPD is comorbid attention-deficit/hyperactivity disorder (ADHD). In addition, emotional dysregulation interacts with impulse control especially for BPD salient emotions. In sum, although basic mechanisms of impulse control seem not to be disturbed in BPD, clinically well observed impulsive behaviors may be explained by comorbid ADHD or may be the consequence of dysregulation of BPD salient emotions.

  15. Independent effects of step length and foot strike pattern on tibiofemoral joint forces during running.

    PubMed

    Bowersock, Collin D; Willy, Richard W; DeVita, Paul; Willson, John D

    2017-10-01

    The purpose of this study was to examine the effects of step length and foot strike pattern along with their interaction on tibiofemoral joint (TFJ) and medial compartment TFJ kinetics during running. Nineteen participants ran with a rear foot strike pattern at their preferred speed using a short (-10%), preferred, and long (+10%) step length. These step length conditions were then repeated using a forefoot strike pattern. Regardless of foot strike pattern, a 10% shorter step length resulted in decreased peak contact force, force impulse per step, force impulse per kilometre, and average loading rate at the TFJ and medial compartment, while a 10% increased step length had the opposite effects (all P < 0.05). A forefoot strike pattern significantly lowered TFJ and medial compartment TFJ average loading rates compared with a rear foot strike pattern (both <0.05) but did not change TFJ or medial compartment peak force, force impulse per step, or force impulse per km. The combination of a shorter step length and forefoot strike pattern produced the greatest reduction in peak medial compartment contact force (P < 0.05). Knowledge of these running modification effects may be relevant to the management or prevention of TFJ injury or pathology among runners.

  16. Thrust measurements of a complete axisymmetric scramjet in an impulse facility

    NASA Technical Reports Server (NTRS)

    Paull, A.; Stalker, R. J.; Mee, D.

    1995-01-01

    This paper describes tests which were conducted in the hypersonic impulse facility T4 on a fully integrated axisymmetric scramjet configuration. In these tests the net force on the scramjet vehicle was measured using a deconvolution force balance. This measurement technique and its application to a complex model such as the scramjet are discussed. Results are presented for the scramjet's aerodynamic drag and the net force on the scramjet when fuel is injected into the combustion chambers. It is shown that a scramjet using a hydrogen-silane fuel produces greater thrust than its aerodynamic drag at flight speeds equivalent to 260 m/s.

  17. Impact of nonlinear distortion on acoustic radiation force elastography.

    PubMed

    Draudt, Andrew B; Cleveland, Robin O

    2011-11-01

    High-intensity focused ultrasound (HIFU) produces an acoustic radiation force that induces tissue displacement, which can be measured by monitoring time shifts in the backscattered signals from interrogation pulses. If the pulse occurs simultaneously with the HIFU, the arrival time of the backscatter will be biased because nonlinearity associated with the HIFU changes the local sound speed. Measurements of the pressure field using 1.1 MHz HIFU and a 7.5 MHz pulse in water exhibited a nonlinearly induced apparent displacement (NIAD) that varied with the HIFU pressure, propagation distance and the timing of the pulse relative to the HIFU. Nonlinear simulations employing the KZK equation predicted NIADs that agreed with measurements. Experiments with chicken breast demonstrated a NIAD with magnitude similar to that expected from the radiation force. Finally it was shown that if two pulses were fired with different phases relative to the HIFU, then upon averaging, the NIAD could be mitigated. Copyright © 2011 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  18. Impulse Pump

    DTIC Science & Technology

    2016-06-17

    APPLICATIONS [0002] None. BACKGROUND OF THE INVENTION (1) Field of the Invention [0003] The present invention relates to an impulse pump for generating...impulse pump 15. The sleeve bearings 98 are affixed to the head block 90 to ease axial motion while the plunger 72 is under torsional loads. [0041

  19. Test-retest reliability of behavioral measures of impulsive choice, impulsive action, and inattention

    PubMed Central

    Weafer, Jessica; Baggott, Matthew J.; de Wit, Harriet

    2014-01-01

    Behavioral measures of impulsivity are widely used in substance abuse research, yet relatively little attention has been devoted to establishing their psychometric properties, especially their reliability over repeated administration. The current study examined the test-retest reliability of a battery of standardized behavioral impulsivity tasks, including measures of impulsive choice (delay discounting, probability discounting, and the Balloon Analogue Risk Task), impulsive action (the stop signal task, the go/no-go task, and commission errors on the continuous performance task), and inattention (attention lapses on a simple reaction time task and omission errors on the continuous performance task). Healthy adults (n=128) performed the battery on two separate occasions. Reliability estimates for the individual tasks ranged from moderate to high, with Pearson correlations within the specific impulsivity domains as follows: impulsive choice (r = .76 - .89, ps < .001); impulsive action (r = .65 - .73, ps < .001); and inattention (r = .38-.42, ps < .001). Additionally, the influence of day-to-day fluctuations in mood as measured by the Profile of Mood States was assessed in relation to variability in performance on each of the behavioral tasks. Change in performance on the delay discounting task was significantly associated with change in positive mood and arousal. No other behavioral measures were significantly associated with mood. In sum, the current analysis demonstrates that behavioral measures of impulsivity are reliable measures and thus can be confidently used to assess various facets of impulsivity as intermediate phenotypes for drug abuse. PMID:24099351

  20. Force Plate Gait Analysis in Doberman Pinschers with and without Cervical Spondylomyelopathy

    PubMed Central

    Foss, K.; da Costa, R.C.; Rajala-Shultz, P.J.; Allen, M.J.

    2014-01-01

    Background The most accepted means of evaluating the response of a patient with cervical spondylomyelopathy (CSM) to treatment is subjective and based on the owner and clinician's perception of the gait. Objective To establish and compare kinetic parameters based on force plate gait analysis between normal and CSM-affected Dobermans. Animals Nineteen Doberman Pinschers: 10 clinically normal and 9 with CSM. Methods Force plate analysis was prospectively performed in all dogs. At least 4 runs of ipsilateral limbs were collected from each dog. Eight force platform parameters were evaluated, including peak vertical force (PVF) and peak vertical impulse (PVI), peak mediolateral force (PMLF) and peak mediolateral impulse, peak braking force and peak braking impulse, and peak propulsive force (PPF) and peak propulsive impulse. In addition, the coefficient of variation (CV) for each limb was calculated for each parameter. Data analysis was performed by a repeated measures approach. Results PMLF (P = .0062), PVI (P = .0225), and PPF (P = .0408) were found to be lower in CSM-affected dogs compared with normal dogs. Analysis by CV as the outcome indicated more variability in PVF in CSM-affected dogs (P = 0.0045). The largest difference in the CV of PVF was seen in the thoracic limbs of affected dogs when compared with the thoracic limbs of normal dogs (P = 0.0019). Conclusions and Clinical Importance The CV of PVF in all 4 limbs, especially the thoracic limbs, distinguished clinically normal Dobermans from those with CSM. Other kinetic parameters less reliably distinguished CSM-affected from clinically normal Dobermans. PMID:23278957

  1. Test-retest reliability of behavioral measures of impulsive choice, impulsive action, and inattention.

    PubMed

    Weafer, Jessica; Baggott, Matthew J; de Wit, Harriet

    2013-12-01

    Behavioral measures of impulsivity are widely used in substance abuse research, yet relatively little attention has been devoted to establishing their psychometric properties, especially their reliability over repeated administration. The current study examined the test-retest reliability of a battery of standardized behavioral impulsivity tasks, including measures of impulsive choice (i.e., delay discounting, probability discounting, and the Balloon Analogue Risk Task), impulsive action (i.e., the stop signal task, the go/no-go task, and commission errors on the continuous performance task), and inattention (i.e., attention lapses on a simple reaction time task and omission errors on the continuous performance task). Healthy adults (n = 128) performed the battery on two separate occasions. Reliability estimates for the individual tasks ranged from moderate to high, with Pearson correlations within the specific impulsivity domains as follows: impulsive choice (r range: .76-.89, ps < .001); impulsive action (r range: .65-.73, ps < .001); and inattention (r range: .38-.42, ps < .001). Additionally, the influence of day-to-day fluctuations in mood, as measured by the Profile of Mood States, was assessed in relation to variability in performance on each of the behavioral tasks. Change in performance on the delay discounting task was significantly associated with change in positive mood and arousal. No other behavioral measures were significantly associated with mood. In sum, the current analysis demonstrates that behavioral measures of impulsivity are reliable measures and thus can be confidently used to assess various facets of impulsivity as intermediate phenotypes for drug abuse.

  2. Real-time shear wave elastography may predict autoimmune thyroid disease.

    PubMed

    Vlad, Mihaela; Golu, Ioana; Bota, Simona; Vlad, Adrian; Timar, Bogdan; Timar, Romulus; Sporea, Ioan

    2015-05-01

    To evaluate and compare the values of the elasticity index as measured by shear wave elastography in healthy subjects and in patients with autoimmune thyroid disease, in order to establish if this investigation can predict the occurrence of autoimmune thyroid disease. A total of 104 cases were included in the study group: 91 women (87.5%), out of which 52 (50%) with autoimmune thyroid disease diagnosed by specific tests and 52 (50%) healthy volunteers, matched for age and gender. For all the subjects, three measurements were performed on each thyroid lobe and a mean value was calculated. The data were expressed in kPa. The investigation was performed with an Aixplorer system (SuperSonic Imagine, France), using a linear high-resolution 15-4 MHz transducer. The mean value for the elasticity index was similar in the right and the left thyroid lobes, both in normal subjects and in patients with autoimmune thyroid disease: 19.6 ± 6.6 vs. 19.5 ± 6.8 kPa, p = 0.92, and 26.6 ± 10.0 vs. 25.8 ± 11.7 kPa, p = 0.71, respectively. This parameter was significantly higher in patients with autoimmune thyroid disease than in controls (p < 0.001). For a cut-off value of 22.3 kPa, which resulted in the highest sum of sensitivity and specificity, the elasticity index assessed by shear wave elastography had a sensitivity of 59.6% and a specificity of 76.9% (AUROC = 0.71; p < 0.001) for predicting the presence of autoimmune thyroid disease. Quantitative elasticity index measured by shear wave elastography was significantly higher in autoimmune thyroid disease than in normal thyroid parenchyma and may predict the presence of autoimmune thyroid disease.

  3. Thyroid nodule classification using ultrasound elastography via linear discriminant analysis.

    PubMed

    Luo, Si; Kim, Eung-Hun; Dighe, Manjiri; Kim, Yongmin

    2011-05-01

    The non-surgical diagnosis of thyroid nodules is currently made via a fine needle aspiration (FNA) biopsy. It is estimated that somewhere between 250,000 and 300,000 thyroid FNA biopsies are performed in the United States annually. However, a large percentage (approximately 70%) of these biopsies turn out to be benign. Since the aggressive FNA management of thyroid nodules is costly, quantitative risk assessment and stratification of a nodule's malignancy is of value in triage and more appropriate healthcare resources utilization. In this paper, we introduce a new method for classifying the thyroid nodules based on the ultrasound (US) elastography features. Unlike approaches to assess the stiffness of a thyroid nodule by visually inspecting the pseudo-color pattern in the strain image, we use a classification algorithm to stratify the nodule by using the power spectrum of strain rate waveform extracted from the US elastography image sequence. Pulsation from the carotid artery was used to compress the thyroid nodules. Ultrasound data previously acquired from 98 thyroid nodules were used in this retrospective study to evaluate our classification algorithm. A classifier was developed based on the linear discriminant analysis (LDA) and used to differentiate the thyroid nodules into two types: (I) no FNA (observation-only) and (II) FNA. Using our method, 62 nodules were classified as type I, all of which were benign, while 36 nodules were classified as Type-II, 16 malignant and 20 benign, resulting in a sensitivity of 100% and specificity of 75.6% in detecting malignant thyroid nodules. This indicates that our triage method based on US elastography has the potential to substantially reduce the number of FNA biopsies (63.3%) by detecting benign nodules and managing them via follow-up observations rather than an FNA biopsy. Published by Elsevier B.V.

  4. Imaging Feedback of Histotripsy Treatments Using Ultrasound Shear Wave Elastography

    PubMed Central

    Wang, Tzu-Yin; Hall, Timothy L.; Xu, Zhen; Fowlkes, J. Brian; Cain, Charles A.

    2013-01-01

    Histotripsy is a cavitation-based ultrasound therapy that mechanically fractionates soft solid tissues into fluid-like homogenates. This paper investigates the feasibility of imaging the tissue elasticity change during the histotripsy process as a tool to provide feedback for the treatments. The treatments were performed on agar tissue phantoms and ex vivo kidneys using 3-cycle ultrasound pulses delivered by a 750-kHz therapeutic array at peak negative/positive pressure of 17/108 MPa and a repetition rate of 50 Hz. Lesions with different degrees of damage were created with increasing numbers of therapy pulses from 0 to 2000 pulses per treatment location. The elasticity of the lesions was measured with ultrasound shear wave elastography, in which a quasi-planar shear wave was induced by acoustic radiation force generated by the therapeutic array, and tracked with ultrasound imaging at 3000 frames per second. Based on the shear wave velocity calculated from the sequentially captured frames, the Young’s modulus was reconstructed. Results showed that the lesions were more easily identified on the shear wave velocity images than on B-mode images. As the number of therapy pulses increased from 0 to 2000 pulses/location, the Young’s modulus decreased exponentially from 22.1 ± 2.7 to 2.1 ± 1.1 kPa in the tissue phantoms (R2 = 0.99, N = 9 each), and from 33.0 ± 7.1 to 4.0 ± 2.5 kPa in the ex vivo kidneys (R2 = 0.99, N = 8 each). Correspondingly, the tissues transformed from completely intact to completely fractionated as examined via histology. A good correlation existed between the lesions’ Young’s modulus and the degree of tissue fractionation as examined with the percentage of remaining structurally intact cell nuclei (R2 = 0.91, N = 8 each). These results indicate that lesions produced by histotripsy can be detected with high sensitivity using shear wave elastography. Because the decrease in the tissue elasticity corresponded well with the morphological and

  5. Imaging feedback of histotripsy treatments using ultrasound shear wave elastography.

    PubMed

    Wang, Tzu-Yin; Hall, Timothy L; Xu, Zhen; Fowlkes, J Brian; Cain, Charles A

    2012-06-01

    Histotripsy is a cavitation-based ultrasound therapy that mechanically fractionates soft solid tissues into fluid-like homogenates. This paper investigates the feasibility of imaging the tissue elasticity change during the histotripsy process as a tool to provide feedback for the treatments. The treatments were performed on agar tissue phantoms and ex vivo kidneys using 3-cycle ultrasound pulses delivered by a 750-kHz therapeutic array at peak negative/positive pressure of 17/108 MPa and a repetition rate of 50 Hz. Lesions with different degrees of damage were created with increasing numbers of therapy pulses from 0 to 2000 pulses per treatment location. The elasticity of the lesions was measured with ultrasound shear wave elastography, in which a quasi-planar shear wave was induced by acoustic radiation force generated by the therapeutic array, and tracked with ultrasound imaging at 3000 frames per second. Based on the shear wave velocity calculated from the sequentially captured frames, the Young's modulus was reconstructed. Results showed that the lesions were more easily identified on the shear wave velocity images than on B-mode images. As the number of therapy pulses increased from 0 to 2000 pulses/location, the Young's modulus decreased exponentially from 22.1 ± 2.7 to 2.1 ± 1.1 kPa in the tissue phantoms (R2 = 0.99, N = 9 each), and from 33.0 ± 7.1 to 4.0 ± 2.5 kPa in the ex vivo kidneys (R2 = 0.99, N = 8 each). Correspondingly, the tissues transformed from completely intact to completely fractionated as examined via histology. A good correlation existed between the lesions' Young's modulus and the degree of tissue fractionation as examined with the percentage of remaining structurally intact cell nuclei (R2 = 0.91, N = 8 each). These results indicate that lesions produced by histotripsy can be detected with high sensitivity using shear wave elastography. Because the decrease in the tissue elasticity corresponded well with the morphological and

  6. Comparison Between Neck and Shoulder Stiffness Determined by Shear Wave Ultrasound Elastography and a Muscle Hardness Meter.

    PubMed

    Akagi, Ryota; Kusama, Saki

    2015-08-01

    The goals of this study were to compare neck and shoulder stiffness values determined by shear wave ultrasound elastography with those obtained with a muscle hardness meter and to verify the correspondence between objective and subjective stiffness in the neck and shoulder. Twenty-four young men and women participated in the study. Their neck and shoulder stiffness was determined at six sites. Before the start of the measurements, patients rated their present subjective symptoms of neck and shoulder stiffness on a 6-point verbal scale. At all measurement sites, the correlation coefficients between the values of muscle hardness indices determined by the muscle hardness meter and shear wave ultrasound elastography were not significant. Furthermore, individuals' subjective neck and shoulder stiffness did not correspond to their objective symptoms. These results suggest that the use of shear wave ultrasound elastography is essential to more precisely assess neck and shoulder stiffness. Copyright © 2015 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  7. Advanced concepts. [specific impulse, mass drivers, electromagnetic launchers, and the rail gun

    NASA Technical Reports Server (NTRS)

    Banks, B. A.

    1980-01-01

    The relative strengths of those interactions which enable propulsive forces are listed as well as the specific impulse of various propellants. Graphics show the linear synchronous motor of the mass driver, the principle of the direct current electromagnetic launcher, and the characteristics of the rail gun.

  8. Osteochondral Tissue Cell Viability Is Affected by Total Impulse during Impaction Grafting

    PubMed Central

    Balash, Paul; Kang, Richard W.; Schwenke, Thorsten; Cole, Brian J.; Wimmer, Markus A.

    2010-01-01

    Objective: Osteochondral graft transplantation has garnered significant attention because of its ability to replace the lesion with true hyaline cartilage. However, surgical impaction of the graft to anchor it into the defect site can be traumatic and lead to cell death and cartilage degeneration. This study aimed to test the hypothesis that increasing impulse magnitude during impaction of osteochondral plugs has a direct effect on loss of cell viability. Design: In this controlled laboratory study, the impaction force was kept constant while the impulse was varied. Ninety-six osteochondral plugs were extracted from the trochlea of bovine stifle joints and were randomly assigned into 3 experimental and 1 (nonimpacted) control group. The transferred impulse of the experimental groups reflected the median and the lower and upper quartiles of preceding clinical measurements. Data were obtained at day 0, day 4, and day 8; at each point, cell viability was assessed using the Live/Dead staining kit and histological assessments were performed to visualize matrix structural changes. Results: After impaction, cartilage samples stayed intact and did not show any histological signs of matrix disruption. As expected, higher impulse magnitudes introduced more cell death; however, this relationship was lost at day 8 after impaction. Conclusion: Impulse magnitude has a direct effect on cell viability of the graft. Because impulse magnitude is mostly governed by the press-fit characteristics of the recipient site, this study aids in the definition of optimal insertion conditions for osteochondral grafts. PMID:26069558

  9. Impulsive social influence increases impulsive choices on a temporal discounting task in young adults.

    PubMed

    Gilman, Jodi M; Curran, Max T; Calderon, Vanessa; Stoeckel, Luke E; Evins, A Eden

    2014-01-01

    Adolescents and young adults who affiliate with friends who engage in impulsive behavior are more likely to engage in impulsive behaviors themselves, and those who associate with prosocial (i.e. more prudent, future oriented) peers are more likely to engage in prosocial behavior. However, it is difficult to disentangle the contribution of peer influence vs. peer selection (i.e., whether individuals choose friends with similar traits) when interpreting social behaviors. In this study, we combined a novel social manipulation with a well-validated delay discounting task assessing impulsive behavior to create a social influence delay discounting task, in which participants were exposed to both impulsive (smaller, sooner or SS payment) and non-impulsive (larger, later or LL payment) choices from their peers. Young adults in this sample, n = 51, aged 18-25 had a higher rate of SS choices after exposure to impulsive peer influence than after exposure to non-impulsive peer influence. Interestingly, in highly susceptible individuals, the rate of non-impulsive choices did not increase after exposure to non-impulsive influence. There was a positive correlation between self-reported suggestibility and degree of peer influence on SS choices. These results suggest that, in young adults, SS choices appear to be influenced by the choices of same-aged peers, especially for individuals who are highly susceptible to influence.

  10. Impulsive Social Influence Increases Impulsive Choices on a Temporal Discounting Task in Young Adults

    PubMed Central

    Gilman, Jodi M.; Curran, Max T.; Calderon, Vanessa; Stoeckel, Luke E.; Evins, A. Eden

    2014-01-01

    Adolescents and young adults who affiliate with friends who engage in impulsive behavior are more likely to engage in impulsive behaviors themselves, and those who associate with prosocial (i.e. more prudent, future oriented) peers are more likely to engage in prosocial behavior. However, it is difficult to disentangle the contribution of peer influence vs. peer selection (i.e., whether individuals choose friends with similar traits) when interpreting social behaviors. In this study, we combined a novel social manipulation with a well-validated delay discounting task assessing impulsive behavior to create a social influence delay discounting task, in which participants were exposed to both impulsive (smaller, sooner or SS payment) and non-impulsive (larger, later or LL payment) choices from their peers. Young adults in this sample, n = 51, aged 18–25 had a higher rate of SS choices after exposure to impulsive peer influence than after exposure to non-impulsive peer influence. Interestingly, in highly susceptible individuals, the rate of non-impulsive choices did not increase after exposure to non-impulsive influence. There was a positive correlation between self-reported suggestibility and degree of peer influence on SS choices. These results suggest that, in young adults, SS choices appear to be influenced by the choices of same-aged peers, especially for individuals who are highly susceptible to influence. PMID:24988440

  11. Cross-bridge mechanism of residual force enhancement after stretching in a skeletal muscle.

    PubMed

    Tamura, Youjiro

    2018-01-01

    A muscle model that uses a modified Langevin equation with actomyosin potentials was used to describe the residual force enhancement after active stretching. Considering that the new model uses cross-bridge theory to describe the residual force enhancement, it is different from other models that use passive stretching elements. Residual force enhancement was simulated using a half sarcomere comprising 100 myosin molecules. In this paper, impulse is defined as the integral of an excess force from the steady isometric force over the time interval for which a stretch is applied. The impulse was calculated from the force response due to fast and slow muscle stretches to demonstrate the viscoelastic property of the cross-bridges. A cross-bridge mechanism was proposed as a way to describe the residual force enhancement on the basis of the impulse results with reference to the compliance of the actin filament. It was assumed that the period of the actin potential increased by 0.5% and the amplitude of the potential decreased by 0.5% when the half sarcomere was stretched by 10%. The residual force enhancement after 21.0% sarcomere stretching was 6.9% of the maximum isometric force of the muscle; this value was due to the increase in the number of cross-bridges.

  12. Ultrasound Elastography for Estimation of Regional Strain of Multilayered Hydrogels and Tissue-Engineered Cartilage

    PubMed Central

    Chung, Chen-Yuan; Heebner, Joseph; Baskaran, Harihara; Welter, Jean F.; Mansour, Joseph M.

    2015-01-01

    Tissue-engineered (TE) cartilage constructs tend to develop inhomogeneously, thus, to predict the mechanical performance of the tissue, conventional biomechanical testing, which yields average material properties, is of limited value. Rather, techniques for evaluating regional and depth-dependent properties of TE cartilage, preferably non-destructively, are required. The purpose of this study was to build upon our previous results and to investigate the feasibility of using ultrasound elastography to non-destructively assess the depth-dependent biomechanical characteristics of TE cartilage while in a sterile bioreactor. As a proof-of-concept, and to standardize an assessment protocol, a well-characterized three-layered hydrogel construct was used as a surrogate for TE cartilage, and was studied under controlled incremental compressions. The strain field of the construct predicted by elastography was then validated by comparison with a poroelastic finite-element analysis (FEA). On average, the differences between the strains predicted by elastography and the FEA were within 10%. Subsequently engineered cartilage tissue was evaluated in the same test fixture. Results from these examinations showed internal regions where the local strain was 1–2 orders of magnitude greater than that near the surface. These studies document the feasibility of using ultrasound to evaluate the mechanical behaviors of maturing TE constructs in a sterile environment. PMID:26077987

  13. Audio frequency in vivo optical coherence elastography

    NASA Astrophysics Data System (ADS)

    Adie, Steven G.; Kennedy, Brendan F.; Armstrong, Julian J.; Alexandrov, Sergey A.; Sampson, David D.

    2009-05-01

    We present a new approach to optical coherence elastography (OCE), which probes the local elastic properties of tissue by using optical coherence tomography to measure the effect of an applied stimulus in the audio frequency range. We describe the approach, based on analysis of the Bessel frequency spectrum of the interferometric signal detected from scatterers undergoing periodic motion in response to an applied stimulus. We present quantitative results of sub-micron excitation at 820 Hz in a layered phantom and the first such measurements in human skin in vivo.

  14. Ground vibration test results of a JetStar airplane using impulsive sine excitation

    NASA Technical Reports Server (NTRS)

    Kehoe, Michael W.; Voracek, David F.

    1989-01-01

    Structural excitation is important for both ground vibration and flight flutter testing. The structural responses caused by this excitation are analyzed to determine frequency, damping, and mode shape information. Many excitation waveforms have been used throughout the years. The use of impulsive sine (sin omega t)/omega t as an excitation waveform for ground vibration testing and the advantages of using this waveform for flight flutter testing are discussed. The ground vibration test results of a modified JetStar airplane using impulsive sine as an excitation waveform are compared with the test results of the same airplane using multiple-input random excitation. The results indicated that the structure was sufficiently excited using the impulsive sine waveform. Comparisons of input force spectrums, mode shape plots, and frequency and damping values for the two methods of excitation are presented.

  15. The Minimum Impulse Thruster

    NASA Technical Reports Server (NTRS)

    Parker, J. Morgan; Wilson, Michael J.

    2005-01-01

    The Minimum Impulse Thruster (MIT) was developed to improve the state-of-the-art minimum impulse capability of hydrazine monopropellant thrusters. Specifically, a new fast response solenoid valve was developed, capable of responding to a much shorter electrical pulse width, thereby reducing the propellant flow time and the minimum impulse bit. The new valve was combined with the Aerojet MR-103, 0.2 lbf (0.9 N) thruster and put through an extensive Delta-qualification test program, resulting in a factor of 5 reduction in the minimum impulse bit, from roughly 1.1 milli-lbf-seconds (5 milliNewton seconds) to - 0.22 milli-lbf-seconds (1 mN-s). To maintain it's extensive heritage, the thruster itself was left unchanged. The Minimum Impulse Thruster provides mission and spacecraft designers new design options for precision pointing and precision translation of spacecraft.

  16. Injury tolerance criteria for short-duration axial impulse loading of the isolated tibia.

    PubMed

    Quenneville, Cheryl E; McLachlin, Stewart D; Greeley, Gillian S; Dunning, Cynthia E

    2011-01-01

    Impulse loading of the lower leg during events such as ejection seat landings or in-vehicle land mine blasts may result in devastating injuries. These impacts achieve higher forces over shorter durations than car crashes, from which experimental results have formed the current basis for protective measures of an axial force limit of 5.4 kN, as registered by an anthropomorphic test device (ATD). The hypotheses of this study were that the injury tolerance of the isolated tibia to short-duration axial loading is higher than that previously reported and that secondary parameters such as momentum or kinetic energy are significant for fracture tolerance, in addition to force. Seven pairs of cadaveric tibias were impacted using a pneumatic testing apparatus, replicating short-duration axial impulse events. One specimen from each pair was impacted with a light mass and the contralateral impacted with a heavy mass, to investigate the effects of momentum and kinetic energy, as well as force, on injury. Impacts were applied incrementally until failure. Force, kinetic energy, age, and height were shown to be significant factors in the probability of fracture. A 10% risk of injury corresponded to an impact force of 7.9 kN, with an average kinetic energy of 240 J. In comparison, this same impact level applied to an ATD would register a force of 16.2 kN because of the higher stiffness of the ATD. These results suggest that the current injury standard may be too conservative for the tibia during high-speed impacts such as in-vehicle land mine blasts and that factors in addition to force should be taken into consideration.

  17. ImpulseDE: detection of differentially expressed genes in time series data using impulse models.

    PubMed

    Sander, Jil; Schultze, Joachim L; Yosef, Nir

    2017-03-01

    Perturbations in the environment lead to distinctive gene expression changes within a cell. Observed over time, those variations can be characterized by single impulse-like progression patterns. ImpulseDE is an R package suited to capture these patterns in high throughput time series datasets. By fitting a representative impulse model to each gene, it reports differentially expressed genes across time points from a single or between two time courses from two experiments. To optimize running time, the code uses clustering and multi-threading. By applying ImpulseDE , we demonstrate its power to represent underlying biology of gene expression in microarray and RNA-Seq data. ImpulseDE is available on Bioconductor ( https://bioconductor.org/packages/ImpulseDE/ ). niryosef@berkeley.edu. Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com

  18. Real-Time Elastography Visualization and Histopathological Characterization of Rabbit Atherosclerotic Carotid Arteries.

    PubMed

    Wang, ZhenZhen; Liu, NaNa; Zhang, LiFeng; Li, XiaoYing; Han, XueSong; Peng, YanQing; Dang, MeiZheng; Sun, LiTao; Tian, JiaWei

    2016-01-01

    To evaluate the feasibility of non-invasive vascular real-time elastography imaging (RTE) in visualizing the composition of rabbit carotid atherosclerotic plaque as determined by histopathology, a rabbit model of accelerated carotid atherosclerosis was used. Thirty rabbits were randomly divided into two groups of 15 rabbits each. The first group was fed a cholesterol-rich diet and received balloon-induced injury the left common carotid artery endothelium, whereas the second group only received a cholesterol-rich diet. The rabbits were all examined in vivo with HITACHI non-invasive vascular real-time elastography (Hi-RTE) at baseline and 12 wk, and results from the elastography were compared with American Heart Association histologic classifications. Hi-RTE and the American Heart Association histologic classifications had good agreement, with weighted Cohen's kappa (95% confidence internal) of 0.785 (0.649-0.920). Strains of segmented plaques that were stained in different colors were statistically different (p < 0.0001). The sensitivity and specificity of elastograms for detecting a lipid core were 95.5% and 61.5%, respectively, and the area under the receiver operating characteristic curve was 0.789, with a 95% confidence interval of 0.679 to 0.876. This study is the first to indicate the feasibility of utilizing Hi-RTE in visualizing normal and atherosclerotic rabbit carotid arteries non-invasively. This affordable and reliable method can be widely applied in research of both animal and human peripheral artery atherosclerosis. Copyright © 2016 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  19. Visualizing ex vivo radiofrequency and microwave ablation zones using electrode vibration elastography

    PubMed Central

    DeWall, Ryan J.; Varghese, Tomy; Brace, Chris L.

    2012-01-01

    Purpose: Electrode vibration elastography is a new shear wave imaging technique that can be used to visualize thermal ablation zones. Prior work has shown the ability of electrode vibration elastography to delineate radiofrequency ablations; however, there has been no previous study of delineation of microwave ablations or radiological–pathological correlations using multiple observers. Methods: Radiofrequency and microwave ablations were formed in ex vivo bovine liver tissue. Their visualization was compared on shear wave velocity and maximum displacement images. Ablation dimensions were compared to gross pathology. Elastographic imaging and gross pathology overlap and interobserver variability were quantified using similarity measures. Results: Elastographic imaging correlated with gross pathology. Correlation of area estimates was better in radiofrequency than in microwave ablations, with Pearson coefficients of 0.79 and 0.54 on shear wave velocity images and 0.90 and 0.70 on maximum displacement images for radiofrequency and microwave ablations, respectively. The absolute relative difference in area between elastographic imaging and gross pathology was 18.9% and 22.9% on shear wave velocity images and 16.0% and 23.1% on maximum displacement images for radiofrequency and microwave ablations, respectively. Conclusions: Statistically significant radiological–pathological correlation was observed in this study, but correlation coefficients were lower than other modulus imaging techniques, most notably in microwave ablations. Observers provided similar delineations for most thermal ablations. These results suggest that electrode vibration elastography is capable of imaging thermal ablations, but refinement of the technique may be necessary before it can be used to monitor thermal ablation procedures clinically. PMID:23127063

  20. High speed all optical shear wave imaging optical coherence elastography (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Song, Shaozhen; Hsieh, Bao-Yu; Wei, Wei; Shen, Tueng; O'Donnell, Matthew; Wang, Ruikang K.

    2016-03-01

    Optical Coherence Elastography (OCE) is a non-invasive testing modality that maps the mechanical property of soft tissues with high sensitivity and spatial resolution using phase-sensitive optical coherence tomography (PhS-OCT). Shear wave OCE (SW-OCE) is a leading technique that relies on the speed of propagating shear waves to provide a quantitative elastography. Previous shear wave imaging OCT techniques are based on repeated M-B scans, which have several drawbacks such as long acquisition time and repeated wave stimulations. Recent developments of Fourier domain mode-locked high-speed swept-source OCT system has enabled enough speed to perform KHz B-scan rate OCT imaging. Here we propose ultra-high speed, single shot shear wave imaging to capture single-shot transient shear wave propagation to perform SW-OCE. The frame rate of shear wave imaging is 16 kHz, at A-line rate of ~1.62 MHz, which allows the detection of high-frequency shear wave of up to 8 kHz. The shear wave is generated photothermal-acoustically, by ultra-violet pulsed laser, which requires no contact to OCE subjects, while launching high frequency shear waves that carries rich localized elasticity information. The image acquisition and processing can be performed at video-rate, which enables real-time 3D elastography. SW-OCE measurements are demonstrated on tissue-mimicking phantoms and porcine ocular tissue. This approach opens up the feasibility to perform real-time 3D SW-OCE in clinical applications, to obtain high-resolution localized quantitative measurement of tissue biomechanical property.

  1. Theoretical analysis of the electrical aspects of the basic electro-impulse problem in aircraft de-icing applications

    NASA Technical Reports Server (NTRS)

    Henderson, R. A.; Schrag, R. L.

    1986-01-01

    A summary of modeling the electrical system aspects of a coil and metal target configuration resembling a practical electro-impulse deicing (EIDI) installation, and a simple circuit for providing energy to the coil, was presented. The model was developed in sufficient theoretical detail to allow the generation of computer algorithms for the current in the coil, the magnetic induction on both surfaces of the target, the force between the coil and target, and the impulse delivered to the target. These algorithms were applied to a specific prototype EIDI test system for which the current, magnetic fields near the target surfaces, and impulse were previously measured.

  2. Performance of 2-D shear wave elastography in liver fibrosis assessment compared with serologic tests and transient elastography in clinical routine.

    PubMed

    Bota, Simona; Paternostro, Rafael; Etschmaier, Alexandra; Schwarzer, Remy; Salzl, Petra; Mandorfer, Mattias; Kienbacher, Christian; Ferlitsch, Monika; Reiberger, Thomas; Trauner, Michael; Peck-Radosavljevic, Markus; Ferlitsch, Arnulf

    2015-09-01

    Liver stiffness values assessed with 2-D shear wave elastography (SWE), transient elastography (TE) and simple serologic tests were compared with respect to non-invasive assessment in a cohort of 127 consecutive patients with chronic liver diseases. The rate of reliable liver stiffness measurements was significantly higher with 2-D SWE than with TE: 99.2% versus 74.8%, p < 0.0001 (different reliability criteria used, according to current recommendations). In univariate analysis, liver stiffness measured with 2-D SWE correlated best with fibrosis stage estimated with TE (r = 0.699, p < 0.0001), followed by Forns score (r = 0.534, p < 0.0001) and King's score (r = 0.512, p < 0.0001). However, in multivariate analysis, only 2-D SWE-measured values remained correlated with fibrosis stage (p < 0.0001). The optimal 2-D SWE cutoff values for predicting significant fibrosis were 8.03 kPa for fibrosis stage ≥2 (area under the receiver operating characteristic curve = 0.832) and 13.1 kPa for fibrosis stage 4 (area under the receiver operating characteristic curve = 0.915), respectively. In conclusion, 2-D SWE can be used to obtain reliable liver stiffness measurements in almost all patients and performs very well in predicting the presence of liver cirrhosis. Copyright © 2015 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  3. AN OVERVIEW OF ELASTOGRAPHY – AN EMERGING BRANCH OF MEDICAL IMAGING

    PubMed Central

    Sarvazyan, Armen; Hall, Timothy J.; Urban, Matthew W.; Fatemi, Mostafa; Aglyamov, Salavat R.; Garra, Brian S.

    2011-01-01

    From times immemorial manual palpation served as a source of information on the state of soft tissues and allowed detection of various diseases accompanied by changes in tissue elasticity. During the last two decades, the ancient art of palpation gained new life due to numerous emerging elasticity imaging (EI) methods. Areas of applications of EI in medical diagnostics and treatment monitoring are steadily expanding. Elasticity imaging methods are emerging as commercial applications, a true testament to the progress and importance of the field. In this paper we present a brief history and theoretical basis of EI, describe various techniques of EI and, analyze their advantages and limitations, and overview main clinical applications. We present a classification of elasticity measurement and imaging techniques based on the methods used for generating a stress in the tissue (external mechanical force, internal ultrasound radiation force, or an internal endogenous force), and measurement of the tissue response. The measurement method can be performed using differing physical principles including magnetic resonance imaging (MRI), ultrasound imaging, X-ray imaging, optical and acoustic signals. Until recently, EI was largely a research method used by a few select institutions having the special equipment needed to perform the studies. Since 2005 however, increasing numbers of mainstream manufacturers have added EI to their ultrasound systems so that today the majority of manufacturers offer some sort of Elastography or tissue stiffness imaging on their clinical systems. Now it is safe to say that some sort of elasticity imaging may be performed on virtually all types of focal and diffuse disease. Most of the new applications are still in the early stages of research, but a few are becoming common applications in clinical practice. PMID:22308105

  4. Application of new optical coherence elastography to monitor the mineralization processing in bone tissue engineering constructs

    NASA Astrophysics Data System (ADS)

    Guan, Guangying; Song, Shaozhen; Huang, Zhihong; Yang, Ying

    2015-03-01

    Generation of functional tissue in vitro through tissue engineering technique is a promising direction to repair and replace malfunctioned organ and tissue in the modern medicine for various diseases which could not been treated well by conventional therapy. Similar to the embryo development, the generation of tissue in vitro is a highly dynamic processing. Obtaining the feedback of the processing real time is highly demanded. In this study, a new methodology has been explored aiming to monitor the morphological and mechanical property alteration of bone tissue engineering constructs simultaneously. Optical coherence elastography (OCE) equipped with a LDS V201 permanent magnet shaker and a modulated acoustic radiation force (ARF) to provide a vibration signal, has been used for the real time and non-destructive monitoring. A phantom construct system has been used to optimize the measurement conditions in which agar hydrogel with concentration from 0, 0.75 to 2% with/without hydroxyappatite particles have been injected to 3D porous poly (lactic acid) scaffolds to simulate the collagenous extracellular matrix (ECM) and mineralized ECM. The structural and elastography images of the constructs have clearly demonstrated the linear relation with the increased mechanical property versus the increase of agar concentration within the pores of the scaffolds. The MG63 bone cells seeded in the scaffolds and cultured for 4 weeks have been monitored by the established protocol exhibiting the increased mechanical strength in the pore wall where the ECM or mineralized ECM was assumed to be formed in comparison to empty pores. This study confirms that OCE-ARF could become a valuable tool in regenerative medicine to assess the biological events during in vitro culture and conditioning.

  5. Modeling and measurement of tissue elastic moduli using optical coherence elastography

    NASA Astrophysics Data System (ADS)

    Liang, Xing; Oldenburg, Amy L.; Crecea, Vasilica; Kalyanam, Sureshkumar; Insana, Michael F.; Boppart, Stephen A.

    2008-02-01

    Mechanical forces play crucial roles in tissue growth, patterning and development. To understand the role of mechanical stimuli, biomechanical properties are of great importance, as well as our ability to measure biomechanical properties of developing and engineered tissues. To enable these measurements, a novel non-invasive, micron-scale and high-speed Optical Coherence Elastography (OCE) system has been developed utilizing a titanium:sapphire based spectral-domain Optical Coherence Tomography (OCT) system and a mechanical wave driver. This system provides axial resolution of 3 microns, transverse resolution of 13 microns, and an acquisition rate as high as 25,000 lines per second. External lowfrequency vibrations are applied to the samples in the system. Step and sinusoidal steady-state responses are obtained to first characterize the OCE system and then characterize samples. Experimental results of M-mode OCE on silicone phantoms and human breast tissues are obtained, which correspond to biomechanical models developed for this analysis. Quantified results from the OCE system correspond directly with results from an indentation method from a commercial. With micron-scale resolution and a high-speed acquisition rate, our OCE system also has the potential to rapidly measure dynamic 3-D tissue biomechanical properties.

  6. Cannabinoid CB1 Receptor Activation Mediates the Opposing Effects of Amphetamine on Impulsive Action and Impulsive Choice

    PubMed Central

    Wiskerke, Joost; Stoop, Nicky; Schetters, Dustin; Schoffelmeer, Anton N. M.; Pattij, Tommy

    2011-01-01

    It is well known that acute challenges with psychostimulants such as amphetamine affect impulsive behavior. We here studied the pharmacology underlying the effects of amphetamine in two rat models of impulsivity, the 5-choice serial reaction time task (5-CSRTT) and the delayed reward task (DRT), providing measures of inhibitory control, an aspect of impulsive action, and impulsive choice, respectively. We focused on the role of cannabinoid CB1 receptor activation in amphetamine-induced impulsivity as there is evidence that acute challenges with psychostimulants activate the endogenous cannabinoid system, and CB1 receptor activity modulates impulsivity in both rodents and humans. Results showed that pretreatment with either the CB1 receptor antagonist/inverse agonist SR141716A or the neutral CB1 receptor antagonist O-2050 dose-dependently improved baseline inhibitory control in the 5-CSRTT. Moreover, both compounds similarly attenuated amphetamine-induced inhibitory control deficits, suggesting that CB1 receptor activation by endogenously released cannabinoids mediates this aspect of impulsive action. Direct CB1 receptor activation by Δ9-Tetrahydrocannabinol (Δ9-THC) did, however, not affect inhibitory control. Although neither SR141716A nor O-2050 affected baseline impulsive choice in the DRT, both ligands completely prevented amphetamine-induced reductions in impulsive decision making, indicating that CB1 receptor activity may decrease this form of impulsivity. Indeed, acute Δ9-THC was found to reduce impulsive choice in a CB1 receptor-dependent way. Together, these results indicate an important, though complex role for cannabinoid CB1 receptor activity in the regulation of impulsive action and impulsive choice as well as the opposite effects amphetamine has on both forms of impulsive behavior. PMID:22016780

  7. Impulsive force on the head during performance of typical ukemi techniques following different judo throws.

    PubMed

    Hashimoto, Toshihiko; Ishii, Takanori; Okada, Naoyuki; Itoh, Masahiro

    2015-01-01

    In this study, eight judo athletes who are major candidates for the Japan national team were recruited as participants. Kinematic analysis of exemplary ukemi techniques was carried out using two throws, o-soto-gari, a throw linked to frequent injury, and o-uchi-gari. The aim of this study was to kinematically quantify the timing patterns of exemplary ukemi techniques and to obtain kinematic information of the head, in a sequence of ukemi from the onset of the throw to the completion of ukemi. The results indicated that the vertical velocity with which the uke's head decelerated was reduced by increasing the body surface exposed to the collision with the tatami and by increasing the elapsed time. In particular, overall upper limb contact with the tatami is greatly associated with deceleration. In o-soto-gari, the impulsive force on the faller's head as the head reached the lowest point was 204.82 ± 19.95 kg m · s(-2) while in o-uchi-gari it was 118.46 ± 63.62 kg m · s(-2), z = -1.75, P = 0.08, and it did present a large-sized effect with r = 0.78. These findings indicate that the exemplary o-soto-gari as compared to o-uchi-gari is the technique that causes more significant damage to the uke's head.

  8. Diagnosis of hyperfunctional thyroid nodules: impact of US-elastography.

    PubMed

    Ruhlmann, M; Stebner, V; Görges, R; Farahati, J; Simon, D; Bockisch, A; Rosenbaum-Krumme, S; Nagarajah, J

    2014-01-01

    Several studies described the ultrasound based real-time elastography (USE) having a high sensitivity, specificity and negative predictive value in the diagnosis of suspicious thyroid nodules. Recently published studies called these results into question. Until now the usefulness of USE in the diagnosis of scintigraphically hyperfunctional thyroid nodules is not examined. This study included 135 hyperfunctional thyroid nodules of 102 consecutive patients. The following attributes of the nodules were analyzed: stiffness with the USE using scores of Rago or Asteria and ultrasound criteria using TIRADS. 94 of the examined thyroid nodules (70%) were rated as hard (suspicious for malignancy) and 41 nodules (30%) as soft (not suspicious) with a specificity of 30%. The scoring systems of Rago and Asteria showed no significant difference. Applying the TIRADS criteria 44 nodules (33%) have a higher risk for malignancy (33 nodules TIRADS 4a, 11 nodules TIRADS 4b). Combining USE and TIRADS 32 nodules (24%) are categorized as suspicious (intersection of hard nodules that are categorized as TIRADS 4a or 4b). Ultrasound based real-time elastography cannot identify scintigraphically hyperfunctional thyroid nodules as benign nodules reliably. Its accuracy in the assessment of at least "hot" thyroid nodules is to be questioned.

  9. Quantitative assessment of the mechanical properties of prostate tissue with optical coherence elastography

    NASA Astrophysics Data System (ADS)

    Ling, Yuting; Li, Chunhui; Zhou, Kanheng; Guan, Guangying; Lang, Stephen; McGloin, David; Nabi, Ghulam; Huang, Zhihong

    2018-02-01

    Prostate cancer (PCa) is a heterogeneous disease with multifocal origin. In current clinical care, the Gleason scoring system is the well-established diagnosis by microscopic evaluation of the tissue from trans-rectal ultrasound (TRUS) guided biopsies. Nevertheless, the sensitivity and specificity in detecting PCa can range from 40 to 50% for conventional TRUS B-mode imaging. Tissue elasticity is associated with the disease progression and elastography technique has recently shown promise in aiding PCa diagnosis. However, many cancer foci in the prostate gland has very small size less than 1 mm and those detected by medical elastography were larger than 2 mm. Hereby, we introduce optical coherence elastography (OCE) to quantify the prostate stiffness with high resolution in the magnitude of 10 µm. Following our feasibility study of 10 patients reported previously, we recruited 60 more patients undergoing 12-core TRUS guided biopsies for suspected PCa with a total of 720 biopsies. The stiffness of cancer tissue was approximately 57.63% higher than that of benign ones. Using histology as reference standard and cut-off threshold of 600kPa, the data analysis showed sensitivity and specificity of 89.6% and 99.8% respectively. The method also demonstrated potential in characterising different grades of PCa based on the change of tissue morphology and quantitative mechanical properties. In conclusion, quantitative OCE can be a reliable technique to identify PCa lesion and differentiate indolent from aggressive cancer.

  10. Differences between Impulsive and Non-Impulsive Suicide Attempts among Individuals Treated in Emergency Rooms of South Korea

    PubMed Central

    Lim, Meerae; Lee, Soojung

    2016-01-01

    Objective A considerable proportion of suicide attempts are the result of sudden desires. Understanding such impulsive suicide attempts is necessary for effective interventions. We evaluated the impulsivity of suicide attempters treated in emergency rooms. The aim of the study was to identify the characteristics of impulsive suicide attempts by comparing these individuals to those who attempted to commit suicide in a non-impulsive manner. Methods This study analyzed suicide attempters who visited the emergency departments of seven selected university hospitals. A total of 269 medical records in which impulsivity of suicide attempt were confirmed were subject to be analyzed. The impulsivity of the suicide attempt was examined using a summative score of items 6 and 15 on the Suicide Intent Scale. Results A total of 48.0% of the participants were impelled by sudden inclinations to attempt suicide. Impulsive attempters were younger, unmarried and less physical illness than non-impulsive attempters, whereas no significant differences were found on psychiatric history and previous suicide history. Impulsive suicide attempters had suicide ideations that were not as severe (χ2=55.33, p<0.001) or intense (t=-8.38, p<0.001) as their counterparts'. Furthermore, medical results of impulsive suicide attempts were better than non-impulsive suicide attempts (t=-3.77, p<0.001). Conclusion The results suggested that a considerable proportion of suicide attempts were the result of sudden inclinations. Impulsive attempts were made in relatively earlier stages of suicide ideation; consequently, they have less intent than non-impulsive attempts. PMID:27482239

  11.  Usefulness of acoustic radiation force impulse and fibrotest in liver fibrosis assessment after liver transplant.

    PubMed

    Bignulin, Sara; Falleti, Edmondo; Cmet, Sara; Cappello, Dario; Cussigh, Annarosa; Lenisa, Ilaria; Dissegna, Denis; Pugliese, Fabio; Vivarelli, Cinzia; Fabris, Carlo; Fabris, Carlo; Toniutto, Pierluigi

    2016-01-01

     Background and rationale. Acoustic radiation force impulse (ARFI) is a non-invasive tool used in the evaluation of liver fibrosis in HCV positive immune-competent patients. This study aimed to assess the accuracy of ARFI in discriminating liver transplanted patients with different graft fibrosis severity and to verify whether ARFI, eventually combined with non-invasive biochemical tests, could spare liver biopsies. This prospective study included 51 HCV positive liver transplanted patients who consecutively underwent to annual liver biopsy concomitantly with ARFI and blood chemistry tests measurements needed to calculate several non-invasive liver fibrosis tests. Overall ARFI showed an AUC of 0.885 in discriminating between patients without or with significant fibrosis (Ishak score 0-2vs. 3-6). Using a cut-off of 1.365 m/s, ARFI possesses a negative predictive value of 100% in identifying patients without significant fibrosis. AUC for Fibrotest was 0.848 in discriminating patients with Ishak fibrosis score 0-2 vs. 3-6. The combined assessment of ARFI and Fibro-test did not improve the results obtained by ARFI alone. ARFI measurement in HCV positive liver transplanted patients can be considered an easy and accurate non-invasive tool in identify patients with a benign course of HCV recurrence.

  12. Acoustic radiation force impulse imaging for real-time observation of lesion development during radiofrequency ablation procedures

    NASA Astrophysics Data System (ADS)

    Fahey, Brian J.; Trahey, Gregg E.

    2005-04-01

    When performing radiofrequency ablation (RFA) procedures, physicians currently have little or no feedback concerning the success of the treatment until follow-up assessments are made days to weeks later. To be successful, RFA must induce a thermal lesion of sufficient volume to completely destroy a target tumor or completely isolate an aberrant cardiac pathway. Although ultrasound, computed tomography (CT), and CT-based fluoroscopy have found use in guiding RFA treatments, they are deficient in giving accurate assessments of lesion size or boundaries during procedures. As induced thermal lesion size can vary considerably from patient to patient, the current lack of real-time feedback during RFA procedures is troublesome. We have developed a technique for real-time monitoring of thermal lesion size during RFA procedures utilizing acoustic radiation force impulse (ARFI) imaging. In both ex vivo and in vivo tissues, ARFI imaging provided better thermal lesion contrast and better overall appreciation for lesion size and boundaries relative to conventional sonography. The thermal safety of ARFI imaging for use at clinically realistic depths was also verified through the use of finite element method models. As ARFI imaging is implemented entirely on a diagnostic ultrasound scanner, it is a convenient, inexpensive, and promising modality for monitoring RFA procedures in vivo.

  13. Diet-induced impulsivity: Effects of a high-fat and a high-sugar diet on impulsive choice in rats.

    PubMed

    Steele, Catherine C; Pirkle, Jesseca R A; Kirkpatrick, Kimberly

    2017-01-01

    Impulsive choice is a common charactertistic among individuals with gambling problems, obesity, and substance abuse issues. Impulsive choice has been classified as a trans-disease process, and understanding the etiology of trait impulsivity could help to understand how diseases and disorders related to impulsive choice are manifested. The Western diet is a possible catalyst of impulsive choice as individuals who are obese and who eat diets high in fat and sugar are typically more impulsive. However, such correlational evidence is unable to discern the direction and causal nature of the relationship. The present study sought to determine how diet may directly contribute to impulsive choice. After 8 weeks of dietary exposure (high-fat, high-sugar, chow), the rats were tested on an impulsive choice task, which presented choices between a smaller-sooner reward (SS) and a larger-later reward (LL). Then, the rats were transferred to a chow diet and retested on the impulsive choice task. The high-sugar and high-fat groups made significantly more impulsive choices than the chow group. Both groups became more self-controlled when they were off the diet, but there were some residual effects of the diet on choice behavior. These results suggest that diet, specifically one high in processed fat or sugar, induces impulsive choice. This diet-induced impulsivity could be a precursor to other disorders that are characterized by impulsivity, such as diet-induced obesity, and could offer potential understanding of the trans-disease nature of impulsive choice.

  14. Attenuation measuring ultrasound shearwave elastography and in vivo application in post-transplant liver patients

    NASA Astrophysics Data System (ADS)

    Nenadic, Ivan Z.; Qiang, Bo; Urban, Matthew W.; Zhao, Heng; Sanchez, William; Greenleaf, James F.; Chen, Shigao

    2017-01-01

    Ultrasound and magnetic resonance elastography techniques are used to assess mechanical properties of soft tissues. Tissue stiffness is related to various pathologies such as fibrosis, loss of compliance, and cancer. One way to perform elastography is measuring shear wave velocity of propagating waves in tissue induced by intrinsic motion or an external source of vibration, and relating the shear wave velocity to tissue elasticity. All tissues are inherently viscoelastic and ignoring viscosity biases the velocity-based estimates of elasticity and ignores a potentially important parameter of tissue health. We present attenuation measuring ultrasound shearwave elastography (AMUSE), a technique that independently measures both shear wave velocity and attenuation in tissue and therefore allows characterization of viscoelasticity without using a rheological model. The theoretical basis for AMUSE is first derived and validated in finite element simulations. AMUSE is validated against the traditional methods for assessing shear wave velocity (phase gradient) and attenuation (amplitude decay) in tissue mimicking phantoms and excised tissue. The results agreed within one standard deviation. AMUSE was used to measure shear wave velocity and attenuation in 15 transplanted livers in patients with potential acute rejection, and the results were compared with the biopsy findings in a preliminary study. The comparison showed excellent agreement and suggests that AMUSE can be used to separate transplanted livers with acute rejection from livers with no rejection.

  15. The use of real-time elastography in the assessment of gallbladder polyps: preliminary observations.

    PubMed

    Teber, Mehmet Akif; Tan, Sinan; Dönmez, Uğur; İpek, Ali; Uçar, Ali Erkan; Yıldırım, Halil; Aslan, Ahmet; Arslan, Halil

    2014-12-01

    Gallbladder polyps often have a benign nature. Current guidelines suggest surgical removal of polyps greater than 10 mm. However, the accuracy of the size criteria is limited because neoplasia can be found in gallbladder polyps less than 10 mm. The aim of this study was to evaluate the feasibility of real time elastography for gallbladder polyps and to demonstrate the elasticity properties of the polyps. Fifty-three polypoid lesions of the gallbladder were prospectively examined with real-time elastography. Of these patients, 52 had a diagnosis of benign gallbladder polyps and one patient was accepted as a gallbladder carcinoma due to its clinical and radiological findings. B-mode and real-time elastographic images were simultaneously presented as a two-panel image, and the elastogram was displayed in a color scale that ranged from red (greatest strain, softest component), to green (average strain, intermediate component), to blue (no strain, hardest component). The mean size for benign gallbladder polyps was 7.2 +/- 3 mm (range, 5-21 mm). All benign gallbladder polyps on consecutive real-time elastographic images appeared as having a high-strain elastographic pattern. Only one patient who was accepted with gallbladder carcinoma had a gallbladder polyp with low elasticity properties. Our study showed that real time elastography of gallbladder polyps is feasible. This novel approach may be useful for the characterization of polypoid lesions of the gallbladder.

  16. The annoyance of impulsive helicopter noise

    NASA Technical Reports Server (NTRS)

    Karamcheti, K.

    1981-01-01

    A total of 96 impulsive and non-impulsive sounds were rated for annoyance by 10 subjects. The signals had the same amplitude spectrum with a maximum frequency of 4.75 kHz. By changing the phase of the spectral components different levels of impulsivity were obtained. The signals had coefficients of impulsivity of 10,8, 7,9, and -0.2 respectively. Further, signals had intensity levels 89 and 95 dBA, pulse repetition rates 10 and 20 Hz, and half the signals had pink noise added at a level 12 dBA lower than the level of the sound. The significant results were: The four females and six male subjects rated the impulsive sounds respectively 3.7 dB less annoying and 2.6 dB more annoying than the non-impulsive sounds. Overall, impulsivity had no effect. The hish pulse repetition rate increased annoyance by 2.2 dB. Addition of pink noise increased annoyance of the non-impulsive sounds 1.2 dB, but decreased the annoyance of the impulsive sounds 0.5 dB.

  17. The Shock and Vibration Bulletin. Part 4. Impact, Packaging and Shipping, Blast and Impulsive Loading

    DTIC Science & Technology

    1975-06-01

    Explosive forces are completely through undisturbed air where appreciable dominant and the plate is rotated through an aerodynamic forces retard its...are relatively of the explosive system drops rapidly with dense compared to air , do produce sufficient flyer thickness, little is gained by increasing...impulsive loadings generated by a fuel air explosive . A membrane model based on a total plastic strain energy function, a rigid strain hardening

  18. Modeling of Soft Poroelastic Tissue in Time-Harmonic MR Elastography

    PubMed Central

    Perriñez, Phillip R.; Kennedy, Francis E.; Van Houten, Elijah E. W.; Weaver, John B.; Paulsen, Keith D.

    2010-01-01

    Elastography is an emerging imaging technique that focuses on assessing the resistance to deformation of soft biological tissues in vivo. Magnetic resonance elastography (MRE) uses measured displacement fields resulting from low-amplitude, low-frequency (10 Hz–1 kHz) time-harmonic vibration to recover images of the elastic property distribution of tissues including breast, liver, muscle, prostate, and brain. While many soft tissues display complex time-dependent behavior not described by linear elasticity, the models most commonly employed in MRE parameter reconstructions are based on elastic assumptions. Further, elasticity models fail to include the interstitial fluid phase present in vivo. Alternative continuum models, such as consolidation theory, are able to represent tissue and other materials comprising two distinct phases, generally consisting of a porous elastic solid and penetrating fluid. MRE reconstructions of simulated elastic and poroelastic phantoms were performed to investigate the limitations of current-elasticity-based methods in producing accurate elastic parameter estimates in poroelastic media. The results indicate that linearly elastic reconstructions of fluid-saturated porous media at amplitudes and frequencies relevant to steady-state MRE can yield misleading effective property distributions resulting from the complex interaction between their solid and fluid phases. PMID:19272864

  19. Entropic forces in Brownian motion

    NASA Astrophysics Data System (ADS)

    Roos, Nico

    2014-12-01

    Interest in the concept of entropic forces has risen considerably since Verlinde proposed in 2011 to interpret the force in Newton's second law and gravity as entropic forces. Brownian motion—the motion of a small particle (pollen) driven by random impulses from the surrounding molecules—may be the first example of a stochastic process in which such forces are expected to emerge. In this article, it is shown that at least two types of entropic force can be identified in three-dimensional Brownian motion. This analysis yields simple derivations of known results of Brownian motion, Hooke's law, and—applying an external (non-radial) force—Curie's law and the Langevin-Debye equation.

  20. Assessment of liver fibrosis in chronic hepatitis: comparison of shear wave elastography and transient elastography.

    PubMed

    Paul, Shashi B; Das, Prasenjit; Mahanta, Mousumi; Sreenivas, Vishnubhatla; Kedia, Saurabh; Kalra, Nancy; Kaur, Harpreet; Vijayvargiya, Maneesh; Ghosh, Shouriyo; Gamanagatti, Shivanand R; Shalimar; Gupta, Siddhartha Dutta; Acharya, Subrat K

    2017-12-01

    To evaluate the diagnostic accuracy of shear wave elastography (SWE) and transient elastography (TE) in the evaluation of liver fibrosis in chronic hepatitis B (CHB) and C (CHC) patients taking liver biopsy as gold standard. Ethics committee approved this prospective cross-sectional study. Between October 2012 and December 2014, consecutive CHB/CHC patients fulfilling the inclusion criteria were included-age more than 18 years, informed written consent, willing and suitable for liver biopsy. SWE, TE, and biopsy were performed the same day. Liver stiffness measurement (LSM) cut-offs for various stages of fibrosis were generated for SWE and TE. AUC, sensitivity, specificity, and positive/negative predictive values were estimated individually or in combination. CH patients (n = 240, CHB 172, CHC 68), 176 males, 64 females, mean age 32.6 ± 11.6 years were enrolled. Mean LSM of patients with no histological fibrosis (F0) was 5.0 ± 0.7 and 5.1+1.4 kPa on SWE and TE, respectively. For differentiating F2 and F3-4 fibrosis on SWE, at 7.0 kPa cut-off, the sensitivity was 81.3% and specificity 77.6%. For TE, at 8.3 kPa cut-off, sensitivity was 81.8% and specificity 83.1%. For F3 vs. F4, SWE sensitivity was 83.3% and specificity 90.7%. At 14.8 kPa cut-off, TE showed similar sensitivity (83.3%) but specificity increased to 96.5%. Significant correlation between SWE and TE was observed (r = 0.33, p < 0.001). On combining SWE and TE, a drop in sensitivity with increased specificity for all stages of liver fibrosis occured. SWE is an accurate technique for evaluating liver fibrosis. SWE compares favorably with TE especially for predicting advanced fibrosis/cirrhosis. Combining SWE and TE further improves specificity.

  1. Passive optical coherence elastography using a time-reversal approach (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Nguyen, Thu-Mai; Zorgani, Ali; Fink, Mathias; Catheline, Stefan; Boccara, A. Claude

    2017-02-01

    Background and motivation - Conventional Optical Coherence Elastography (OCE) methods consist in launching controlled shear waves in tissues, and measuring their propagation speed using an ultrafast imaging system. However, the use of external shear sources limits transfer to clinical practice, especially for ophthalmic applications. Here, we propose a totally passive OCE method for ocular tissues based on time-reversal of the natural vibrations. Methods - Experiments were first conducted on a tissue-mimicking phantom containing a stiff inclusion. Pulsatile motions were reproduced by stimulating the phantom surface with two piezoelectric actuators excited asynchronously at low frequencies (50-500 Hz). The resulting random displacements were tracked at 190 frames/sec using spectral-domain optical coherence tomography (SD-OCT), with a 10x5µm² resolution over a 3x2mm² field-of-view (lateral x depth). The shear wavefield was numerically refocused (i.e. time-reversed) at each pixel using noise-correlation algorithms. The focal spot size yields the shear wavelength. Results were validated by comparison with shear wave speed measurements obtained from conventional active OCE. In vivo tests were then conducted on anesthetized rats. Results - The stiff inclusion of the phantom was delineated on the wavelength map with a wavelength ratio between the inclusion and the background (1.6) consistent with the speed ratio (1.7). This validates the wavelength measurements. In vivo, natural shear waves were detected in the eye and wavelength maps of the anterior segment showed a clear elastic contrast between the cornea, the sclera and the iris. Conclusion - We validated the time-reversal approach for passive elastography using SD-OCT imaging at low frame-rate. This method could accelerate the clinical transfer of ocular elastography.

  2. Value of the Strain Ratio on Ultrasonic Elastography for Differentiation of Benign and Malignant Soft Tissue Tumors.

    PubMed

    Hahn, Seok; Lee, Young Han; Lee, Seung Hyun; Suh, Jin-Suck

    2017-01-01

    The purpose of this study was to evaluate whether the strain ratio provides additional value to conventional visual elasticity scores in the differentiation of benign and malignant soft tissue tumors by ultrasonic elastography. The Institutional Review Board approved the protocol of this retrospective review. Seventy-three patients who underwent elastography and had a soft tissue mass pathologically confirmed by ultrasound-guided core biopsy or surgical excision were enrolled from April 2012 through October 2014. On elastography, elasticity scores were determined with a 5-point visual scale, and the strain ratio to adjacent soft tissue at the same depth was calculated. Tumors were divided into benign and malignant groups according to the pathologic diagnoses. Elasticity scores and strain ratios were compared between benign and malignant groups, and diagnostic performance was evaluated by receiver operating characteristic curves. Of the 73 patients, 40 had benign tumors, and 33 had malignant tumors. Strain ratios (P = .003) and elasticity scores (P = .048) were significantly different between pathologic results. The areas under the receiver operating characteristic curves were 0.700 (95% confidence interval, 0.581-0.802) for the strain ratio and 0.623 (95% confidence interval, 0.515-0.746) for elastography. The strain ratios of malignant soft tissue tumors were lower than those of benign tumors and showed better diagnostic performance than did elasticity scores. The strain ratio can be used as a diagnostic indicator to predict the malignant potential of soft tissue tumors. © 2016 by the American Institute of Ultrasound in Medicine.

  3. Partial admission effect on the performance and vibration of a supersonic impulse turbine

    NASA Astrophysics Data System (ADS)

    Lee, Hang Gi; Shin, Ju Hyun; Choi, Chang-Ho; Jeong, Eunhwan; Kwon, Sejin

    2018-04-01

    This study experimentally investigates the effects of partial admission on the performance and vibration outcomes of a supersonic impulse turbine with circular nozzles. The turbine of a turbopump for a gas-generator-type liquid rocket engine in the Korea Space Launch Vehicle-II is of the supersonic impulse type with the partial admission configuration for obtaining a high specific power. Partial admission turbines with a low-flow-rate working gas exhibit benefits over turbines with full admission, such as loss reduction, ease of controllability of the turbine power output, and simple turbine configurations with separate starting sections. However, the radial force of the turbine rotor due to the partial admission causes an increase in turbine vibration. Few experimental studies have previously been conducted regarding the partial admission effects on supersonic impulse turbines with circular nozzles. In the present study, performance tests of supersonic impulse turbines with circular nozzles were conducted for various partial admission ratios using a turbine test facility with high-pressure air in order to investigate the resulting aerodynamic performance and vibration. Four types of turbines with partial admission ratios of 0.17, 0.42, 0.75 and 0.83 were tested. Results show that the efficiencies at the design point increase linearly as the partial admission ratios increase. Moreover, as the velocity ratios increase, the difference in efficiency from the reference turbine with a partial admission ratio of 0.83 becomes increasingly significant, and the magnitudes of these differences are proportional to the square of the velocity ratios. Likewise, the decrease in the partial admission ratio results in an increase in the turbine vibration level owing to the increase in the radial force.

  4. The effect of spinal manipulation impulse duration on spine neuromechanical responses

    PubMed Central

    Pagé, Isabelle; Nougarou, François; Dugas, Claude; Descarreaux, Martin

    2014-01-01

    Introduction: Spinal manipulation therapy (SMT) is characterized by specific kinetic and kinematic parameters that can be modulated. The purpose of this study is to investigate fundamental aspects of SMT dose-physiological response relation in humans by varying SMT impulse duration. Methods: Twenty healthy adults were subjected to four different SMT force-time profiles delivered by a servo-controlled linear actuator motor and differing in their impulse duration. EMG responses of the left and right thoracic paraspinal muscles (T6 and T8 levels) and vertebral displacements of T7 and T8 were evaluated for all SMT phases. Results: Significant differences in paraspinal EMG were observed during the “Thrust phase” and immediately after (“Post-SMT1”) (all T8 ps < 0.01 and T6 during the thrust ps < 0.05). Sagittal vertebral displacements were similar across all conditions (p > 0.05). Conclusion: Decreasing SMT impulse duration leads to a linear increase in EMG response of thoracic paraspinal during and following the SMT thrust. PMID:24932018

  5. Comparison of shear wave velocities on ultrasound elastography between different machines, transducers, and acquisition depths: a phantom study.

    PubMed

    Shin, Hyun Joo; Kim, Myung-Joon; Kim, Ha Yan; Roh, Yun Ho; Lee, Mi-Jung

    2016-10-01

    To investigate consistency in shear wave velocities (SWVs) on ultrasound elastography using different machines, transducers and acquisition depths. The SWVs were measured using an elasticity phantom with a Young's modulus of 16.9 kPa, with three recently introduced ultrasound elastography machines (A, B and C from different vendors) and two transducers (low and high frequencies) at four depths (2, 3, 4 and 5 cm). Mean SWVs from 15 measurements and coefficient of variations (CVs) were compared between three machines, two transducers and four acquisition depths. The SWVs using the high frequency transducer were not acquired at 5 cm depth in machine B, and a high frequency transducer was not available in machine C. The mean SWVs in the three machines were different (p ≤ 0.002). The CVs were 0-0.09 in three machines. The mean SWVs between the two transducers were different (p < 0.001) except at 4 and 5 cm depths in machine A. The SWVs were affected by the acquisition depths in all conditions (p < 0.001). There is considerable difference in SWVs on ultrasound elastography depending on different machines, transducers and acquisition depths. Caution is needed when using the cutoff values of SWVs in different conditions. • The shear wave velocities (SWVs) are different between different ultrasound elastography machines • The SWVs are also different between different transducers and acquisition depths • Caution is needed when using the cutoff SWVs measured under different conditions.

  6. Skilful force control in expert pianists.

    PubMed

    Oku, Takanori; Furuya, Shinichi

    2017-05-01

    Dexterous object manipulation in skilful behaviours such as surgery, craft making, and musical performance involves fast, precise, and efficient control of force with the fingers. A challenge in playing musical instruments is the requirement of independent control of the magnitude and rate of force production, which typically vary in relation to loudness and tempo. However, it is unknown how expert musicians skilfully control finger force to elicit tones with a wide range of loudness and tempi. Here, we addressed this issue by comparing the variation of spatiotemporal characteristics of force during repetitive and simultaneous piano keystrokes in relation to the loudness and tempo between pianists and musically untrained individuals. While the peak key-descending velocity varied with loudness but not with tempo in both groups, the peak and impulse of the key-depressing force were smaller in pianists than in the non-musicians, specifically when eliciting loud tones, suggesting superior energetic efficiency in the trained individuals. The key-depressing force was more consistent across strikes in pianists than in the non-musicians at all loudness levels but only at slow tempi, confirming expertise-dependency of precise force control. A regression analysis demonstrated that individual differences in the keystroke rates when playing at the fastest tempo across the trained pianists were negatively associated with the force impulse during the key depression but not with the peak force only at the loudest tone. This suggests that rapid reductions of force following the key depression plays a role in considerably fast performance of repetitive piano keystrokes.

  7. Diet-induced impulsivity: Effects of a high-fat and a high-sugar diet on impulsive choice in rats

    PubMed Central

    Pirkle, Jesseca R. A.; Kirkpatrick, Kimberly

    2017-01-01

    Impulsive choice is a common charactertistic among individuals with gambling problems, obesity, and substance abuse issues. Impulsive choice has been classified as a trans-disease process, and understanding the etiology of trait impulsivity could help to understand how diseases and disorders related to impulsive choice are manifested. The Western diet is a possible catalyst of impulsive choice as individuals who are obese and who eat diets high in fat and sugar are typically more impulsive. However, such correlational evidence is unable to discern the direction and causal nature of the relationship. The present study sought to determine how diet may directly contribute to impulsive choice. After 8 weeks of dietary exposure (high-fat, high-sugar, chow), the rats were tested on an impulsive choice task, which presented choices between a smaller-sooner reward (SS) and a larger-later reward (LL). Then, the rats were transferred to a chow diet and retested on the impulsive choice task. The high-sugar and high-fat groups made significantly more impulsive choices than the chow group. Both groups became more self-controlled when they were off the diet, but there were some residual effects of the diet on choice behavior. These results suggest that diet, specifically one high in processed fat or sugar, induces impulsive choice. This diet-induced impulsivity could be a precursor to other disorders that are characterized by impulsivity, such as diet-induced obesity, and could offer potential understanding of the trans-disease nature of impulsive choice. PMID:28662133

  8. Partial sleep deprivation impacts impulsive action but not impulsive decision-making.

    PubMed

    Demos, K E; Hart, C N; Sweet, L H; Mailloux, K A; Trautvetter, J; Williams, S E; Wing, R R; McCaffery, J M

    2016-10-01

    Sleep deprivation may lead to increased impulsivity, however, previous literature has focused on examining effects of total sleep deprivation (TSD) rather than the more common condition, partial sleep deprivation (PSD) or 'short sleep'. Moreover, it has been unclear whether PSD impacts impulse-related cognitive processes, and specifically if it differentially affects impulsive action versus impulsive decision-making. We sought to determine if short compared to long sleep (6 vs. 9h/night) impacts impulsive action via behavioral inhibition (Go/No-Go), and/or impulsive decision-making processes of risk taking (Balloon Analogue Risk Task [BART]) and preferences for immediate over delayed rewards (Delay Discounting). In a within-subject design, 34 participants (71% female, mean age=37.0years, SD=10.54) were assigned to four consecutive nights of 6h/night (short sleep) and 9h/night (long sleep) in their own home in random counterbalanced order. Sleep was measured via wrist-worn actigraphs to confirm adherence to the sleep schedules (mean short sleep=5.9h, SD=0.3; mean long sleep=8.6h, SD=0.3, p<0.001). The Go/No-Go, BART, and Delay Discounting tasks were completed following both sleep conditions. Participants had more inhibition errors on the Go/No-Go task after short (mean false alarms=19.79%, SD=14.51) versus long sleep (mean=15.97%, SD=9.51, p=0.039). This effect was strongest in participants reporting longer habitual time in bed (p=0.04). There were no differences in performance following long- versus short-sleep for either delay discounting or the BART (p's>0.4). Overall, these results indicate that four days of PSD diminishes behavioral inhibition abilities, but may not alter impulsive decision-making. These findings contribute to the emerging understanding of how partial sleep deprivation, currently an epidemic, impacts cognitive ability. Future research should continue to explore the connection between PSD and cognitive functions, and ways to minimize the

  9. Partial sleep deprivation impacts impulsive action but not impulsive decision-making

    PubMed Central

    Demos, K.E.; Hart, C.N.; Sweet, LH.; Mailloux, K.A.; Trautvetter, J.; Williams, S.E.; Wing, R.R.; McCaffery, J.M.

    2017-01-01

    Sleep deprivation may lead to increased impulsivity, however, previous literature has focused on examining effects of total sleep deprivation (TSD) rather than the more common condition, partial sleep deprivation (PSD) or ‘short sleep’. Moreover, it has been unclear whether PSD impacts impulse-related cognitive processes, and specifically if it differentially affects impulsive action versus impulsive decision-making. We sought to determine if short compared to long sleep (6 vs. 9 h/night) impacts impulsive action via behavioral inhibition (Go/No-Go), and/or impulsive decision-making processes of risk taking (Balloon Analogue Risk Task [BART]) and preferences for immediate over delayed rewards (Delay Discounting). In a within-subject design, 34 participants (71% female, mean age = 37.0 years, SD = 10.54) were assigned to four consecutive nights of 6 h/night (short sleep) and 9 h/night (long sleep) in their own home in random counterbalanced order. Sleep was measured via wrist-worn actigraphs to confirm adherence to the sleep schedules (mean short sleep = 5.9 h, SD = 0.3; mean long sleep = 8.6 h, SD = 0.3, p < 0.001). The Go/No-Go, BART, and Delay Discounting tasks were completed following both sleep conditions. Participants had more inhibition errors on the Go/No-Go task after short (mean false alarms = 19.79%, SD = 14.51) versus long sleep (mean = 15.97%, SD = 9.51, p = 0.039). This effect was strongest in participants reporting longer habitual time in bed (p = 0.04). There were no differences in performance following long- versus short-sleep for either delay discounting or the BART (p’s > 0.4). Overall, these results indicate that four days of PSD diminishes behavioral inhibition abilities, but may not alter impulsive decision-making. These findings contribute to the emerging understanding of how partial sleep deprivation, currently an epidemic, impacts cognitive ability. Future research should continue to explore the connection between PSD and cognitive

  10. Non-invasive measurement of liver and pancreas fibrosis in patients with cystic fibrosis.

    PubMed

    Friedrich-Rust, Mireen; Schlueter, Nina; Smaczny, Christina; Eickmeier, Olaf; Rosewich, Martin; Feifel, Kirstin; Herrmann, Eva; Poynard, Thierry; Gleiber, Wolfgang; Lais, Christoph; Zielen, Stefan; Wagner, Thomas O F; Zeuzem, Stefan; Bojunga, Joerg

    2013-09-01

    Patients with cystic fibrosis (CF) have a relevant morbidity and mortality caused by CF-related liver-disease. While transient elastography (TE) is an established elastography method in hepatology centers, Acoustic-Radiation-Force-Impulse (ARFI)-Imaging is a novel ultrasound-based elastography method which is integrated in a conventional ultrasound-system. The aim of the present study was to evaluate the prevalence of liver-fibrosis in patients with CF using TE, ARFI-imaging and fibrosis blood tests. 106 patients with CF were prospectively included in the present study and received ARFI-imaging of the left and right liver-lobe, ARFI of the pancreas TE of the liver and laboratory evaluation. The prevalence of liver-fibrosis according to recently published best practice guidelines for CFLD was 22.6%. Prevalence of significant liver-fibrosis assessed by TE, ARFI-right-liver-lobe, ARFI-left-liver-lobe, Fibrotest, Fibrotest-corrected-by-haptoglobin was 17%, 24%, 40%, 7%, and 16%, respectively. The best agreement was found for TE, ARFI-right-liver-lobe and Fibrotest-corrected-by-haptoglobin. Patients with pancreatic-insufficiency had significantly lower pancreas-ARFI-values as compared to patients without. ARFI-imaging and TE seem to be promising non-invasive methods for detection of liver-fibrosis in patients with CF. Copyright © 2013 European Cystic Fibrosis Society. Published by Elsevier B.V. All rights reserved.

  11. Power strain imaging based on vibro-elastography techniques

    NASA Astrophysics Data System (ADS)

    Wen, Xu; Salcudean, S. E.

    2007-03-01

    This paper describes a new ultrasound elastography technique, power strain imaging, based on vibro-elastography (VE) techniques. With this method, tissue is compressed by a vibrating actuator driven by low-pass or band-pass filtered white noise, typically in the 0-20 Hz range. Tissue displacements at different spatial locations are estimated by correlation-based approaches on the raw ultrasound radio frequency signals and recorded in time sequences. The power spectra of these time sequences are computed by Fourier spectral analysis techniques. As the average of the power spectrum is proportional to the squared amplitude of the tissue motion, the square root of the average power over the range of excitation frequencies is used as a measure of the tissue displacement. Then tissue strain is determined by the least squares estimation of the gradient of the displacement field. The computation of the power spectra of the time sequences can be implemented efficiently by using Welch's periodogram method with moving windows or with accumulative windows with a forgetting factor. Compared to the transfer function estimation originally used in VE, the computation of cross spectral densities is not needed, which saves both the memory and computational times. Phantom experiments demonstrate that the proposed method produces stable and operator-independent strain images with high signal-to-noise ratio in real time. This approach has been also tested on a few patient data of the prostate region, and the results are encouraging.

  12. Differential effects of co-administration of oxotremorine with SCH 23390 on impulsive choice in high-impulsive rats and low-impulsive rats.

    PubMed

    Tian, Lin; Qin, Xingna; Sun, Jinling; Li, Xinwang; Wei, Li

    2016-03-01

    The effect of acetylcholine on impulsive choice is thought to be due to interactions between cholinergic and dopaminergic systems, but this hypothesis has not been proven. This study investigated whether D1-like receptors were involved in the effects of the muscarinic cholinergic agonist oxotremorine on impulsive choice in high-impulsive rats (HI rats, n=8) and low-impulsive rats (LI rats, n=8) characterized by basal levels of impulsive choice in a delay-discounting task. The results revealed that oxotremorine (0.05mg/kg) significantly increased the choice of the large reinforcer in HI rats, whereas decreased the choice of the large reinforcer in LI rats. The D1-like antagonist SCH 23390 produced significant reductions in the large-reinforcer choice in HI rats (0.01mg/kg) and LI rats (0.005, 0.0075, and 0.01mg/kg). SCH 23390 significantly inhibited the increase in the choice of the large reinforcer induced by oxotremorine (0.05mg/kg) in HI rats at doses of 0.005 and 0.0075mg/kg, but enhanced the effect of oxotremorine in LI rats only at the dose of 0.0075mg/kg. These findings suggested that D1-like receptors might be involved in the differential effects of oxotremorine on impulsive choice between HI rats and LI rats. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. [Impulse control in addiction: a translational perspective].

    PubMed

    Schmaal, L; Broos, N; Joos, L; Pattij, T; Goudriaan, A E

    2013-01-01

    Impulsivity is a hallmark of addiction and predicts treatment response and relapse. Impulsivity is, however, a complex construct. Translational cross-species research is needed to give us greater insight into the neurobiology and the role of impulsivity in addiction and to help with the development of new treatment strategies for improving patients' impulse control. To review recent evidence concerning the concept of impulsivity and the role of impulsivity in addiction. The concept and neurobiology of impulsivity are reviewed from a translational perspective. The role of impulsivity in addiction and implications for treatment are discussed. Our recent translational cross-species study indicates that impulsivity is made up of several, separate independent features with partly distinct underlying neurobiological substrates. There are also indications that these features make a unique and independent contribution to separate stages of the addiction cycle. In addition, the improvement of impulse control is a promising new target area for treatments that could lead to better results. However, those involved in developing new treatment strategies will have to take into account the complexity and multidimensional character of impulsivity.

  14. Impulsive behavior in adults with attention deficit/ hyperactivity disorder: characterization of attentional, motor and cognitive impulsiveness.

    PubMed

    Malloy-Diniz, L; Fuentes, D; Leite, W Borges; Correa, H; Bechara, A

    2007-07-01

    Attention-deficit/hyperactivity disorder (ADHD) is characterized by inattention and/or hyperactivity/impulsivity. Impulsivity persists in adults with ADHD and might be the basis of much of the impairment observed in the daily lives of such individuals. The objective of this study was to address the presence, and more importantly, the three dimensions of impulsivity: attentional, non-planning and motor, in how they may relate to neuropsychological mechanisms of impulse control. We studied a sample of 50 adults with ADHD and 51 healthy comparison controls using the Barratt Impulsivity Scale Version 11 (BIS), and neuropsychological tasks, namely the Continuous Performance Task (CPT-II) and the Iowa Gambling Task (IGT). The ADHD group showed more signs of impulsivity on the three dimensions of BIS, committed more errors of omission and commission on the CPT-II, and made more disadvantageous choices on the IGT. These results support the existence of deficits related to three components of impulsivity: motor, cognitive, and attentional among adults with ADHD. Most importantly, this study also highlights the complementary nature of self-report questionnaires and neuropsychological tasks in the assessment of impulsivity in ADHD adults.

  15. [IMPORTANCE OF SHEAR WAVE ELASTOGRAPHY OF LIVERS IN PRACTICALLY HEALTHY PREGNANT WOMEN].

    PubMed

    Sariyeva, E; Salahova, S; Bayramov, N

    2017-01-01

    Pulse-wave elastography (SWE) that is one of the mostly used methods in the recent years holds important place in assessment of liver fibrosis. However there is no exact information on the results of liver elastography in healthy pregnant women in the world literature. The aim of the study was to investigate theSWE parameters of liver elastography in practically healthy pregnant women. The subject of the research was 50 practically healthy pregnant women within 18-45 years old (mean age 27.7±0.7). The pregnant women with genital and extragenital diseases were not included to the research. The research work was executed in the II Department of Obstetrics and Gynecology of Azerbaijan Medical University. SWE of liver in pregnant women was conducted in the I Department of Surgical Diseases of Azerbaijan Medical University through Supersonic Aixplorer Multi Wave device presented by the Scientific Development Foundation under the President of the Azerbaijan Republic. The obtained tissue hardness indicators are assessed under METAVIR scale. The results of the research showed that the measures of liver in practically healthy pregnant women are normal, edges flat, its echogenicity mainly normal, echostructure of its parenchyma homogenous, hardness was F0-F1 (normal) under METAVIR scale, fibrosis not observed. The obtained results were processed by variational (power average, percentile distribution) and correlation (ρ-Spearman) analyzes using the statistical package SPSS-20. A statistical study of the distribution of liver density in healthy women showed that the average density was 4,43±0,01 with 95% confidence interval (4,23 - 4,63). The histogram of distribution of liver density in practically healthy women belongs to the family of normal distributions with coefficients of variation coefficient (16.3%), asymmetry (-0.861±0.337) and excess (-0.068±0.662). Correlation analysis in healthy women did not reveal a reliable relationship between age and liver density (ρ=0

  16. Prefrontal Cortex and Impulsive Decision Making

    PubMed Central

    Kim, Soyoun; Lee, Daeyeol

    2010-01-01

    Impulsivity refers to a set of heterogeneous behaviors that are tuned suboptimally along certain temporal dimensions. Impulsive inter-temporal choice refers to the tendency to forego a large but delayed reward and to seek an inferior but more immediate reward, whereas impulsive motor responses also result when the subjects fail to suppress inappropriate automatic behaviors. In addition, impulsive actions can be produced when too much emphasis is placed on speed rather than accuracy in a wide range of behaviors, including perceptual decision making. Despite this heterogeneous nature, the prefrontal cortex and its connected areas, such as the basal ganglia, play an important role in gating impulsive actions in a variety of behavioral tasks. Here, we describe key features of computations necessary for optimal decision making, and how their failures can lead to impulsive behaviors. We also review the recent findings from neuroimaging and single-neuron recording studies on the neural mechanisms related to impulsive behaviors. Converging approaches in economics, psychology, and neuroscience provide a unique vista for better understanding the nature of behavioral impairments associated with impulsivity. PMID:20728878

  17. Prospective comparison of magnetic resonance imaging to transient elastography and serum markers for liver fibrosis detection.

    PubMed

    Dyvorne, Hadrien A; Jajamovich, Guido H; Bane, Octavia; Fiel, M Isabel; Chou, Hsin; Schiano, Thomas D; Dieterich, Douglas; Babb, James S; Friedman, Scott L; Taouli, Bachir

    2016-05-01

    Establishing accurate non-invasive methods of liver fibrosis quantification remains a major unmet need. Here, we assessed the diagnostic value of a multiparametric magnetic resonance imaging (MRI) protocol including diffusion-weighted imaging (DWI), dynamic contrast-enhanced (DCE)-MRI and magnetic resonance elastography (MRE) in comparison with transient elastography (TE) and blood tests [including ELF (Enhanced Liver Fibrosis) and APRI] for liver fibrosis detection. In this single centre cross-sectional study, we prospectively enrolled 60 subjects with liver disease who underwent multiparametric MRI (DWI, DCE-MRI and MRE), TE and blood tests. Correlation was assessed between non-invasive modalities and histopathologic findings including stage, grade and collagen content, while accounting for covariates such as age, sex, BMI, HCV status and MRI-derived fat and iron content. ROC curve analysis evaluated the performance of each technique for detection of moderate-to-advanced liver fibrosis (F2-F4) and advanced fibrosis (F3-F4). Magnetic resonance elastography provided the strongest correlation with fibrosis stage (r = 0.66, P < 0.001), inflammation grade (r = 0.52, P < 0.001) and collagen content (r = 0.53, P = 0.036). For detection of moderate-to-advanced fibrosis (F2-F4), AUCs were 0.78, 0.82, 0.72, 0.79, 0.71 for MRE, TE, DCE-MRI, DWI and APRI, respectively. For detection of advanced fibrosis (F3-F4), AUCs were 0.94, 0.77, 0.79, 0.79 and 0.70, respectively. Magnetic resonance elastography provides the highest correlation with histopathologic markers and yields high diagnostic performance for detection of advanced liver fibrosis and cirrhosis, compared to DWI, DCE-MRI, TE and serum markers. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  18. The Video Head Impulse Test.

    PubMed

    Halmagyi, G M; Chen, Luke; MacDougall, Hamish G; Weber, Konrad P; McGarvie, Leigh A; Curthoys, Ian S

    2017-01-01

    In 1988, we introduced impulsive testing of semicircular canal (SCC) function measured with scleral search coils and showed that it could accurately and reliably detect impaired function even of a single lateral canal. Later we showed that it was also possible to test individual vertical canal function in peripheral and also in central vestibular disorders and proposed a physiological mechanism for why this might be so. For the next 20 years, between 1988 and 2008, impulsive testing of individual SCC function could only be accurately done by a few aficionados with the time and money to support scleral search-coil systems-an expensive, complicated and cumbersome, semi-invasive technique that never made the transition from the research lab to the dizzy clinic. Then, in 2009 and 2013, we introduced a video method of testing function of each of the six canals individually. Since 2009, the method has been taken up by most dizzy clinics around the world, with now close to 100 refereed articles in PubMed. In many dizzy clinics around the world, video Head Impulse Testing has supplanted caloric testing as the initial and in some cases the final test of choice in patients with suspected vestibular disorders. Here, we consider seven current, interesting, and controversial aspects of video Head Impulse Testing: (1) introduction to the test; (2) the progress from the head impulse protocol (HIMPs) to the new variant-suppression head impulse protocol (SHIMPs); (3) the physiological basis for head impulse testing; (4) practical aspects and potential pitfalls of video head impulse testing; (5) problems of vestibulo-ocular reflex gain calculations; (6) head impulse testing in central vestibular disorders; and (7) to stay right up-to-date-new clinical disease patterns emerging from video head impulse testing. With thanks and appreciation we dedicate this article to our friend, colleague, and mentor, Dr Bernard Cohen of Mount Sinai Medical School, New York, who since his first

  19. Effectiveness of the Benign and Malignant Diagnosis of Mediastinal and Hilar Lymph Nodes by Endobronchial Ultrasound Elastography.

    PubMed

    Huang, Haidong; Huang, Zhiang; Wang, Qin; Wang, Xinan; Dong, Yuchao; Zhang, Wei; Zarogoulidis, Paul; Man, Yan-Gao; Schmidt, Wolfgang Hohenforst; Bai, Chong

    2017-01-01

    Background and Objectives: Endobronchial ultrasound elastography is a new technique for describing the stiffness of tissue during endobronchial ultrasound-guided transbronchial needle aspiration (EBUS-TBNA). The aims of this study were to investigate the diagnostic value of Endobronchial ultrasound (EBUS) elastography for distinguishing the difference between benign and malignant lymph nodes among mediastinal and hilar lymph node. Materials and Methods: From June 2015 to August 2015, 47 patients confirmed of mediastinal and hilar lymph node enlargement through examination of Computed tomography (CT) were enrolled, and a total of 78 lymph nodes were evaluated by endobronchial ultrasound-guided transbronchial needle aspiration (EBUS-TBNA). EBUS-guided elastography of lymph nodes was performed prior to EBUS-TBNA. A convex probe EBUS was used with a new EBUS processor to assess elastographic patterns that were classified based on color distribution as follows: Type 1, predominantly non-blue (green, yellow and red); Type 2, part blue, part non-blue (green, yellow and red); Type 3, predominantly blue. Pathological determination of malignant or benign lymph nodes was used as the gold standard for this study. The elastographic patterns were compared with the final pathologic results from EBUS-TBNA. Results: On pathological evaluation of the lymph nodes, 45 were benign and 33 were malignant. The lymph nodes that were classified as Type 1 on endobronchial ultrasound elastography were benign in 26/27 (96.3%) and malignant in 1/27 (3.7%); for Type 2 lymph nodes, 15/20 (75.0%) were benign and 5/20 (25.0%) were malignant; Type 3 lymph nodes were benign in 4/31 (12.9%) and malignant in 27/31 (87.1%). In classifying Type 1 as 'benign' and Type 3 as 'malignant,' the sensitivity, specificity, positive predictive value, negative predictive value and diagnostic accuracy rates were 96.43%, 86.67%, 87.10%, 96.30%, 91.38%, respectively. Conclusion: EBUS elastography of mediastinal and

  20. Age-related changes in pancreatic elasticity: When should we be concerned about their effect on strain elastography?

    PubMed

    Chantarojanasiri, Tanyaporn; Hirooka, Yoshiki; Kawashima, Hiroki; Ohno, Eizaburo; Sugimoto, Hiroyuki; Hayashi, Daijuro; Kuwahara, Takamichi; Yamamura, Takeshi; Funasaka, Kohei; Nakamura, Masanao; Miyahara, Ryoji; Ishigami, Masatoshi; Watanabe, Osamu; Hashimoto, Senju; Goto, Hidemi

    2016-07-01

    Ultrasound strain elastography is one of the useful methods for evaluating pancreatic lesions. During aging, several pancreatic parenchymal changes occur that may interfere with the interpretation of the ultrasound images. We studied age-related changes in pancreatic elasticity using transabdominal ultrasound strain elastography in subjects without known pancreatic disease. This study was conducted at Nagoya University Hospital, which is an academic medical center, and included 102 subjects (66 women and 39 men) aged 20-85years (mean 58.6±17.5) who underwent transabdominal ultrasonography for screening and follow-up for non-pancreatic diseases. Strain elastography of the pancreas was performed, and the results were subjected to quantitative strain histogram analysis. The correlations of age with four elastographic parameters (Mean, Standard deviation, Skewness, and Kurtosis) and other findings, including hyperechoic pancreas, hyperechoic liver, and diabetes, were evaluated. There was a significant correlation between increasing age and elastographic parameters such as the Mean (P=0.004), Skewness (P=0.007), and Kurtosis (P=0.03), and these differences became significant after the age of 40. The prevalence of hyperechoic pancreas increased with age (P<0.001), and the Means were lower in those with hyperechoic pancreas (P=0.004) and a higher body mass index (BMI, P=0.008). No significant correlations with diabetes, hyperechoic liver, or elastographic parameters were demonstrated. Strain elastography demonstrated elastographic changes in the pancreas with aging that included a decreasing Mean and increasing Skewness and Kurtosis after the age of 40. The prevalence of pancreatic hyperechogenicity increased, and the pancreatic hyperechogenicity was significantly negatively correlated with the Mean. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Three-dimensional knee joint contact forces during walking in unilateral transtibial amputees.

    PubMed

    Silverman, Anne K; Neptune, Richard R

    2014-08-22

    Individuals with unilateral transtibial amputations have greater prevalence of osteoarthritis in the intact knee joint relative to the residual leg and non-amputees, but the cause of this greater prevalence is unclear. The purpose of this study was to compare knee joint contact forces and the muscles contributing to these forces between amputees and non-amputees during walking using forward dynamics simulations. We predicted that the intact knee contact forces would be higher than those of the residual leg and non-amputees. In the axial and mediolateral directions, the intact and non-amputee legs had greater peak tibio-femoral contact forces and impulses relative to the residual leg. The peak axial contact force was greater in the intact leg relative to the non-amputee leg, but the stance phase impulse was greater in the non-amputee leg. The vasti and hamstrings muscles in early stance and gastrocnemius in late stance were the largest contributors to the joint contact forces in the non-amputee and intact legs. Through dynamic coupling, the soleus and gluteus medius also had large contributions, even though they do not span the knee joint. In the residual leg, the prosthesis had large contributions to the joint forces, similar to the soleus in the intact and non-amputee legs. These results identify the muscles that contribute to knee joint contact forces during transtibial amputee walking and suggest that the peak knee contact forces may be more important than the knee contact impulses in explaining the high prevalence of intact leg osteoarthritis. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Differential diagnosis of idiopathic granulomatous mastitis and breast cancer using acoustic radiation force impulse imaging.

    PubMed

    Teke, Memik; Teke, Fatma; Alan, Bircan; Türkoğlu, Ahmet; Hamidi, Cihad; Göya, Cemil; Hattapoğlu, Salih; Gumus, Metehan

    2017-01-01

    Differentiation of idiopathic granulomatous mastitis (IGM) from carcinoma with routine imaging methods, such as ultrasonography (US) and mammography, is difficult. Therefore, we evaluated the value of a newly developed noninvasive technique called acoustic radiation force impulse imaging in differentiating IGM versus malignant lesions in the breast. Four hundred and eighty-six patients, who were referred to us with a presumptive diagnosis of a mass, underwent Virtual Touch tissue imaging (VTI; Siemens) and Virtual Touch tissue quantification (VTQ; Siemens) after conventional gray-scale US. US-guided percutaneous needle biopsy was then performed on 276 lesions with clinically and radiologically suspicious features. Malignant lesions (n = 122) and IGM (n = 48) were included in the final study group. There was a statistically significant difference in shear wave velocity marginal and internal values between the IGM and malignant lesions. The median marginal velocity for IGM and malignant lesions was 3.19 m/s (minimum-maximum 2.49-5.82) and 5.05 m/s (minimum-maximum 2.09-8.46), respectively (p < 0.001). The median internal velocity for IGM and malignant lesions was 2.76 m/s (minimum-maximum 1.14-4.12) and 4.79 m/s (minimum-maximum 2.12-8.02), respectively (p < 0.001). The combination of VTI and VTQ as a complement to conventional US provides viscoelastic properties of tissues, and thus has the potential to increase the specificity of US.

  3. Tethered swimming can be used to evaluate force contribution for short-distance swimming performance.

    PubMed

    Morouço, Pedro G; Marinho, Daniel A; Keskinen, Kari L; Badillo, Juan J; Marques, Mário C

    2014-11-01

    The purpose of this study was two-fold: (a) to compare stroke and the physiological responses between maximal tethered and free front crawl swimming and (b) to evaluate the contribution of force exertion for swimming performance over short distances. A total of 34 male swimmers, representing various levels of competitive performance, participated in this study. Each participant was tested in both a 30-second maximal tethered swimming test and a 50-m free swimming test. The tethered force parameters, the swimming speed, stroke (stroke rate [SR]), and the physiological responses (increase in blood lactate concentration [ΔBLa], heart rate, and rate of perceived exertion) were recorded and calculated. The results showed no differences in stroke and the physiological responses between tethered and free swimming, with a high level of agreement for the SR and ΔBLa. A strong correlation was obtained between the maximum impulse of force per stroke and the speed (r = 0.91; p < 0.001). Multiple regression analysis revealed that the maximum impulse and SR in the tethered condition explained 84% of the free swimming performance. The relationship between the swimming speed and maximum force tended to be nonlinear, whereas linear relationships were observed with the maximum impulse. This study demonstrates that tethered swimming does not significantly alter stroke and the physiological responses compared with free swimming, and that the maximum impulse per stroke should be used to evaluate the balance between force and the ability to effectively apply force during sprint swimming. Consequently, coaches can rely on tethered forces to identify strength deficits and improve swimming performance over short distances.

  4. Impulsive action and impulsive choice across substance and behavioral addictions: cause or consequence?

    PubMed

    Grant, Jon E; Chamberlain, Samuel R

    2014-11-01

    Substance use disorders are prevalent and debilitating. Certain behavioral syndromes ('behavioral addictions') characterized by repetitive habits, such as gambling disorder, stealing, shopping, and compulsive internet use, may share clinical, co-morbid, and neurobiological parallels with substance addictions. This review considers overlap between substance and behavioral addictions with a particular focus on impulsive action (inability to inhibit motor responses), and impulsive choice (preference for immediate smaller rewards to the detriment of long-term outcomes). We find that acute consumption of drugs with abuse potential is capable of modulating impulsive choice and action, although magnitude and direction of effect appear contingent on baseline function. Many lines of evidence, including findings from meta-analyses, show an association between chronic drug use and elevated impulsive choice and action. In some instances, elevated impulsive choice and action have been found to predate the development of substance use disorders, perhaps signifying their candidacy as objective vulnerability markers. Research in behavioral addictions is preliminary, and has mostly focused on impulsive action, finding this to be elevated versus controls, similar to that seen in chronic substance use disorders. Only a handful of imaging studies has explored the neural correlates of impulsive action and choice across these disorders. Key areas for future research are highlighted along with potential implications in terms of neurobiological models and treatment. In particular, future work should further explore whether the cognitive deficits identified are state or trait in nature: i.e. are evident before addiction perhaps signaling risk; or are a consequence of repetitive engagement in habitual behavior; and effects of novel agents known to modulate these cognitive abilities on various addictive disorders. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Impulsivity and the Sexes: Measurement and Structural Invariance of the UPPS-P Impulsive Behavior Scale

    ERIC Educational Resources Information Center

    Cyders, Melissa A.

    2013-01-01

    Before it is possible to test whether men and women differ in impulsivity, it is necessary to evaluate whether impulsivity measures are invariant across sex. The UPPS-P Impulsive Behavior Scale (negative urgency, lack of premeditation, lack of perseverance, and sensation seeking, with added subscale of positive urgency) is one measure of five…

  6. Impulsiveness and venturesomeness in German smokers.

    PubMed

    Bernow, Nina; Kruck, Bernadette; Pfeifer, Philippe; Lieb, Klaus; Tüscher, Oliver; Fehr, Christoph

    2011-08-01

    Cigarette smoking is a behavior, which is influenced by genetic, demographic, and psychological factors. A large body of research has examined the association of cigarette smoking variables with individual differences in personality traits. The aim of the current study was to replicate the findings of higher self-reported impulsivity in smokers compared with never-smokers in a German sample using Eysenck´s construct of impulsivity. Furthermore, it was intended to further the knowledge about associations between different self-reported impulsivity components and different smoking variables. We used the Impulsiveness-Venturesomeness-Empathy questionnaire (I7) to measure self-reported impulsiveness and venturesomeness and the Temperament and Character Inventory (TCI) to measure novelty seeking (NS) in a sample of 82 nicotine-dependent smokers and 119 never-smokers. Smokers scored higher on impulsiveness, venturesomeness, and NS than never-smokers independent of age, gender, and years of education. We found a significant association between venturesomeness, impulsiveness and smoking status in daily smokers. In summary, this study provides evidence that impulsiveness and venturesomeness as well as the novelty-seeking subscale extravagance are significantly associated with smoking status in a German sample of female and male smokers compared with never-smokers.

  7. Impaired Decisional Impulsivity in Pathological Videogamers

    PubMed Central

    Irvine, Michael A.; Worbe, Yulia; Bolton, Sorcha; Harrison, Neil A.; Bullmore, Edward T.; Voon, Valerie

    2013-01-01

    Background Pathological gaming is an emerging and poorly understood problem. Impulsivity is commonly impaired in disorders of behavioural and substance addiction, hence we sought to systematically investigate the different subtypes of decisional and motor impulsivity in a well-defined pathological gaming cohort. Methods Fifty-two pathological gaming subjects and age-, gender- and IQ-matched healthy volunteers were tested on decisional impulsivity (Information Sampling Task testing reflection impulsivity and delay discounting questionnaire testing impulsive choice), and motor impulsivity (Stop Signal Task testing motor response inhibition, and the premature responding task). We used stringent diagnostic criteria highlighting functional impairment. Results In the Information Sampling Task, pathological gaming participants sampled less evidence prior to making a decision and scored fewer points compared with healthy volunteers. Gaming severity was also negatively correlated with evidence gathered and positively correlated with sampling error and points acquired. In the delay discounting task, pathological gamers made more impulsive choices, preferring smaller immediate over larger delayed rewards. Pathological gamers made more premature responses related to comorbid nicotine use. Greater number of hours played also correlated with a Motivational Index. Greater frequency of role playing games was associated with impaired motor response inhibition and strategy games with faster Go reaction time. Conclusions We show that pathological gaming is associated with impaired decisional impulsivity with negative consequences in task performance. Decisional impulsivity may be a potential target in therapeutic management. PMID:24146789

  8. Liver fibrosis diagnosis by blood test and elastography in chronic hepatitis C: agreement or combination?

    PubMed

    Calès, P; Boursier, J; Lebigot, J; de Ledinghen, V; Aubé, C; Hubert, I; Oberti, F

    2017-04-01

    In chronic hepatitis C, the European Association for the Study of the Liver and the Asociacion Latinoamericana para el Estudio del Higado recommend performing transient elastography plus a blood test to diagnose significant fibrosis; test concordance confirms the diagnosis. To validate this rule and improve it by combining a blood test, FibroMeter (virus second generation, Echosens, Paris, France) and transient elastography (constitutive tests) into a single combined test, as suggested by the American Association for the Study of Liver Diseases and the Infectious Diseases Society of America. A total of 1199 patients were included in an exploratory set (HCV, n = 679) or in two validation sets (HCV ± HIV, HBV, n = 520). Accuracy was mainly evaluated by correct diagnosis rate for severe fibrosis (pathological Metavir F ≥ 3, primary outcome) by classical test scores or a fibrosis classification, reflecting Metavir staging, as a function of test concordance. Score accuracy: there were no significant differences between the blood test (75.7%), elastography (79.1%) and the combined test (79.4%) (P = 0.066); the score accuracy of each test was significantly (P < 0.001) decreased in discordant vs. concordant tests. Classification accuracy: combined test accuracy (91.7%) was significantly (P < 0.001) increased vs. the blood test (84.1%) and elastography (88.2%); accuracy of each constitutive test was significantly (P < 0.001) decreased in discordant vs. concordant tests but not with combined test: 89.0 vs. 92.7% (P = 0.118). Multivariate analysis for accuracy showed an interaction between concordance and fibrosis level: in the 1% of patients with full classification discordance and severe fibrosis, non-invasive tests were unreliable. The advantage of combined test classification was confirmed in the validation sets. The concordance recommendation is validated. A combined test, expressed in classification instead of score, improves this rule and validates the

  9. Shear wave pulse compression for dynamic elastography using phase-sensitive optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Nguyen, Thu-Mai; Song, Shaozhen; Arnal, Bastien; Wong, Emily Y.; Huang, Zhihong; Wang, Ruikang K.; O'Donnell, Matthew

    2014-01-01

    Assessing the biomechanical properties of soft tissue provides clinically valuable information to supplement conventional structural imaging. In the previous studies, we introduced a dynamic elastography technique based on phase-sensitive optical coherence tomography (PhS-OCT) to characterize submillimetric structures such as skin layers or ocular tissues. Here, we propose to implement a pulse compression technique for shear wave elastography. We performed shear wave pulse compression in tissue-mimicking phantoms. Using a mechanical actuator to generate broadband frequency-modulated vibrations (1 to 5 kHz), induced displacements were detected at an equivalent frame rate of 47 kHz using a PhS-OCT. The recorded signal was digitally compressed to a broadband pulse. Stiffness maps were then reconstructed from spatially localized estimates of the local shear wave speed. We demonstrate that a simple pulse compression scheme can increase shear wave detection signal-to-noise ratio (>12 dB gain) and reduce artifacts in reconstructing stiffness maps of heterogeneous media.

  10. Application of Eshelby's Solution to Elastography for Diagnosis of Breast Cancer.

    PubMed

    Shin, Bonghun; Gopaul, Darindra; Fienberg, Samantha; Kwon, Hyock Ju

    2016-03-01

    Eshelby's solution is the analytical method that can derive the elastic field within and around an ellipsoidal inclusion embedded in a matrix. Since breast tumor can be regarded as an elastic inclusion with different elastic properties from those of surrounding matrix when the deformation is small, we applied Eshelby's solution to predict the stress and strain fields in the breast containing a suspicious lesion. The results were used to investigate the effectiveness of strain ratio (SR) from elastography in representing modulus ratio (MR) that may be the meaningful indicator of the malignancy of the lesion. This study showed that SR significantly underestimates MR and is varied with the shape and the modulus of the lesion. Based on the results from Eshelby's solution and finite element analysis (FEA), we proposed a surface regression model as a polynomial function that can predict the MR of the lesion to the matrix. The model has been applied to gelatin-based phantoms and clinical ultrasound images of human breasts containing different types of lesions. The results suggest the potential of the proposed method to improve the diagnostic performance of breast cancer using elastography. © The Author(s) 2015.

  11. Arterial waveguide model for shear wave elastography: implementation and in vitro validation

    NASA Astrophysics Data System (ADS)

    Vaziri Astaneh, Ali; Urban, Matthew W.; Aquino, Wilkins; Greenleaf, James F.; Guddati, Murthy N.

    2017-07-01

    Arterial stiffness is found to be an early indicator of many cardiovascular diseases. Among various techniques, shear wave elastography has emerged as a promising tool for estimating local arterial stiffness through the observed dispersion of guided waves. In this paper, we develop efficient models for the computational simulation of guided wave dispersion in arterial walls. The models are capable of considering fluid-loaded tubes, immersed in fluid or embedded in a solid, which are encountered in in vitro/ex vivo, and in vivo experiments. The proposed methods are based on judiciously combining Fourier transformation and finite element discretization, leading to a significant reduction in computational cost while fully capturing complex 3D wave propagation. The developed methods are implemented in open-source code, and verified by comparing them with significantly more expensive, fully 3D finite element models. We also validate the models using the shear wave elastography of tissue-mimicking phantoms. The computational efficiency of the developed methods indicates the possibility of being able to estimate arterial stiffness in real time, which would be beneficial in clinical settings.

  12. Magnetic resonance elastography (MRE) in cancer: Technique, analysis, and applications

    PubMed Central

    Pepin, Kay M.; Ehman, Richard L.; McGee, Kiaran P.

    2015-01-01

    Tissue mechanical properties are significantly altered with the development of cancer. Magnetic resonance elastography (MRE) is a noninvasive technique capable of quantifying tissue mechanical properties in vivo. This review describes the basic principles of MRE and introduces some of the many promising MRE methods that have been developed for the detection and characterization of cancer, evaluation of response to therapy, and investigation of the underlying mechanical mechanisms associated with malignancy. PMID:26592944

  13. The Video Head Impulse Test

    PubMed Central

    Halmagyi, G. M.; Chen, Luke; MacDougall, Hamish G.; Weber, Konrad P.; McGarvie, Leigh A.; Curthoys, Ian S.

    2017-01-01

    In 1988, we introduced impulsive testing of semicircular canal (SCC) function measured with scleral search coils and showed that it could accurately and reliably detect impaired function even of a single lateral canal. Later we showed that it was also possible to test individual vertical canal function in peripheral and also in central vestibular disorders and proposed a physiological mechanism for why this might be so. For the next 20 years, between 1988 and 2008, impulsive testing of individual SCC function could only be accurately done by a few aficionados with the time and money to support scleral search-coil systems—an expensive, complicated and cumbersome, semi-invasive technique that never made the transition from the research lab to the dizzy clinic. Then, in 2009 and 2013, we introduced a video method of testing function of each of the six canals individually. Since 2009, the method has been taken up by most dizzy clinics around the world, with now close to 100 refereed articles in PubMed. In many dizzy clinics around the world, video Head Impulse Testing has supplanted caloric testing as the initial and in some cases the final test of choice in patients with suspected vestibular disorders. Here, we consider seven current, interesting, and controversial aspects of video Head Impulse Testing: (1) introduction to the test; (2) the progress from the head impulse protocol (HIMPs) to the new variant—suppression head impulse protocol (SHIMPs); (3) the physiological basis for head impulse testing; (4) practical aspects and potential pitfalls of video head impulse testing; (5) problems of vestibulo-ocular reflex gain calculations; (6) head impulse testing in central vestibular disorders; and (7) to stay right up-to-date—new clinical disease patterns emerging from video head impulse testing. With thanks and appreciation we dedicate this article to our friend, colleague, and mentor, Dr Bernard Cohen of Mount Sinai Medical School, New York, who since his

  14. Parental monitoring may protect impulsive children from overeating.

    PubMed

    Bennett, C; Blissett, J

    2017-10-01

    Research has highlighted links between impulsivity and weight in children and adults. Nevertheless, little is known about the nature of this link in very young children or about the underlying mechanism by which impulsivity leads to greater adiposity. The present study aimed to explore relationships between impulsivity, weight and eating behaviour in a sample of 95 2 to 4-year-olds. Parent-child dyads visited the laboratory and consumed a meal after which parents completed measures of child impulsivity, eating behaviour and parental feeding, whilst children completed impulsivity tasks measuring the impulsivity facet delay of gratification (Snack Delay task), motor impulsivity (Line Walking task) and inhibitory control (Tower task). Pearson's correlations showed that girls with greater motor impulsivity were heavier. Additionally, monitoring moderated the relationship between impulsivity and food approach behaviour, indicating that monitoring may protect more impulsive children from displaying problematic eating behaviours. The motor impulsivity facet appears particularly relevant to child weight; parents can modulate the impact of impulsivity on child eating behaviour through their feeding style. © 2016 World Obesity Federation.

  15. Impulsive behavior and nicotinic acetylcholine receptors.

    PubMed

    Ohmura, Yu; Tsutsui-Kimura, Iku; Yoshioka, Mitsuhiro

    2012-01-01

    Higher impulsivity is thought to be a risk factor for drug addiction, criminal involvement, and suicide. Excessive levels of impulsivity are often observed in several psychiatric disorders including attention-deficit/hyperactivity disorder and schizophrenia. Previous studies have demonstrated that nicotinic acetylcholine receptors (nAChRs) are involved in impulsive behavior. Here, we introduce recent advances in this field and describe the role of the following nAChR-related brain mechanisms in modulating impulsive behavior: dopamine release in the ventral striatum; α4β2 nAChRs in the infralimbic cortex, which is a ventral part of the medial prefrontal cortex (mPFC); and dopamine release in the mPFC. We also suggest several potential therapeutic drugs to address these mechanisms in impulsivity-related disorders and explore future directions to further elucidate the roles of central nAChRs in impulsive behavior.

  16. Narcissism predicts impulsive buying: phenotypic and genetic evidence

    PubMed Central

    Cai, Huajian; Shi, Yuanyuan; Fang, Xiang; Luo, Yu L. L.

    2015-01-01

    Impulsive buying makes billions of dollars for retail businesses every year, particularly in an era of thriving e-commerce. Narcissism, characterized by impulsivity and materialism, may serve as a potential antecedent to impulsive buying. To test this hypothesis, two studies examined the relationship between narcissism and impulsive buying. In Study 1, we surveyed an online sample and found that while adaptive narcissism was not correlated with impulsive buying, maladaptive narcissism was significantly predictive of the impulsive buying tendency. By investigating 304 twin pairs, Study 2 showed that global narcissism and its two components, adaptive and maladaptive narcissism, as well as the impulsive buying tendency were heritable. The study found, moreover, that the connections between global narcissism and impulsive buying, and between maladaptive narcissism and impulsive buying were genetically based. These findings not only establish a link between narcissism and impulsive buying but also help to identify the origins of the link. The present studies deepen our understanding of narcissism, impulsive buying, and their interrelationship. PMID:26217251

  17. Narcissism predicts impulsive buying: phenotypic and genetic evidence.

    PubMed

    Cai, Huajian; Shi, Yuanyuan; Fang, Xiang; Luo, Yu L L

    2015-01-01

    Impulsive buying makes billions of dollars for retail businesses every year, particularly in an era of thriving e-commerce. Narcissism, characterized by impulsivity and materialism, may serve as a potential antecedent to impulsive buying. To test this hypothesis, two studies examined the relationship between narcissism and impulsive buying. In Study 1, we surveyed an online sample and found that while adaptive narcissism was not correlated with impulsive buying, maladaptive narcissism was significantly predictive of the impulsive buying tendency. By investigating 304 twin pairs, Study 2 showed that global narcissism and its two components, adaptive and maladaptive narcissism, as well as the impulsive buying tendency were heritable. The study found, moreover, that the connections between global narcissism and impulsive buying, and between maladaptive narcissism and impulsive buying were genetically based. These findings not only establish a link between narcissism and impulsive buying but also help to identify the origins of the link. The present studies deepen our understanding of narcissism, impulsive buying, and their interrelationship.

  18. Trait impulsivity in suicide attempters: preliminary study.

    PubMed

    Doihara, Chiho; Kawanishi, Chiaki; Ohyama, Nene; Yamada, Tomoki; Nakagawa, Makiko; Iwamoto, Yohko; Odawara, Toshinari; Hirayasu, Yoshio

    2012-10-01

    Suicide attempt is a risk factor for suicide. To investigate trait impulsivity among suicide attempters, 93 attempters admitted to an emergency department and 113 healthy controls were evaluated using the Japanese version of the Barratt Impulsiveness Scale (BIS-11J). Impulsivity was analyzed in relation to clinical data in the attempters. Total BIS-11J, attention impulsiveness, and motor impulsiveness scores were significantly higher in the attempters than in the controls. Both total BIS-11J and non-planning impulsiveness scores were significantly higher in attempters with schizophrenia and other psychotic disorders among the diagnostic groups. Control of impulsivity should be considered as one of the targets for suicide prevention. © 2012 The Authors. Psychiatry and Clinical Neurosciences © 2012 Japanese Society of Psychiatry and Neurology.

  19. Liver reserve function assessment by acoustic radiation force impulse imaging

    PubMed Central

    Sun, Xiao-Lan; Liang, Li-Wei; Cao, Hui; Men, Qiong; Hou, Ke-Zhu; Chen, Zhen; Zhao, Ya-E

    2015-01-01

    AIM: To evaluate the utility of liver reserve function by acoustic radiation force impulse (ARFI) imaging in patients with liver tumors. METHODS: Seventy-six patients with liver tumors were enrolled in this study. Serum biochemical indexes, such as aminotransferase (ALT), aspartate aminotransferase (AST), serum albumin (ALB), total bilirubin (T-Bil), and other indicators were observed. Liver stiffness (LS) was measured by ARFI imaging, measurements were repeated 10 times, and the average value of the results was taken as the final LS value. Indocyanine green (ICG) retention was performed, and ICG-K and ICG-R15 were recorded. Child-Pugh (CP) scores were carried out based on patient’s preoperative biochemical tests and physical condition. Correlations among CP scores, ICG-R15, ICG-K and LS values were observed and analyzed using either the Pearson correlation coefficient or the Spearman rank correlation coefficient. Kruskal-Wallis test was used to compare LS values of CP scores, and the receiver-operator characteristic (ROC) curve was used to analyze liver reserve function assessment accuracy. RESULTS: LS in the ICG-R15 10%-20% group was significantly higher than in the ICG-R15 < 10% group; and the difference was statistically significant (2.19 ± 0.27 vs 1.59 ± 0.32, P < 0.01). LS in the ICG-R15 > 20% group was significantly higher than in the ICG-R15 < 10% group; and the difference was statistically significant (2.92 ± 0.29 vs 1.59 ± 0.32, P < 0.01). The LS value in patients with CP class A was lower than in patients with CP class B (1.57 ± 0.34 vs 1.86 ± 0.27, P < 0.05), while the LS value in patients with CP class B was lower than in patients with CP class C (1.86 ± 0.27 vs 2.47 ± 0.33, P < 0.01). LS was positively correlated with ICG-R15 (r = 0.617, P < 0.01) and CP score (r = 0.772, P < 0.01). Meanwhile, LS was negatively correlated with ICG-K (r = -0.673, P < 0.01). AST, ALT and T-Bil were positively correlated with LS, while ALB was negatively

  20. Controlling chaos with localized heterogeneous forces in oscillator chains.

    PubMed

    Chacón, Ricardo

    2006-10-01

    The effects of decreasing the impulse transmitted by localized periodic pulses on the chaotic behavior of homogeneous chains of coupled nonlinear oscillators are studied. It is assumed that when the oscillators are driven synchronously, i.e., all driving pulses transmit the same impulse, the chains display chaotic dynamics. It is shown that decreasing the impulse transmitted by the pulses of the two free end oscillators results in regularization with the whole array exhibiting frequency synchronization, irrespective of the chain size. A maximum level of amplitude desynchrony as the pulses of the two end oscillators narrow is typically found, which is explained as the result of two competing universal mechanisms: desynchronization induced by localized heterogeneous pulses and oscillation death of the complete chain induced by drastic decreasing of the impulse transmitted by such localized pulses. These findings demonstrate that decreasing the impulse transmitted by localized external forces can suppress chaos and lead to frequency-locked states in networks of dissipative systems.

  1. Correlations between the disintegration of melt and the measured impulses in steam explosions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Froehlich, G.; Linca, A.; Schindler, M.

    To find our correlations in steam explosions (melt water interactions) between the measured impulses and the disintegration of the melt, experiments were performed in three configurations i.e. stratified, entrapment and jet experiments. Linear correlations were detected between the impulse and the total surface of the fragments. Theoretical considerations point out that a linear correlation assumes superheating of a water layer around the fragments of a constant thickness during the fragmentation process to a constant temperature (here the homogeneous nucleation temperature of water was assumed) and a constant expansion velocity of the steam in the main expansion time. The correlation constantmore » does not depend on melt temperature and trigger pressure, but it depends on the configuration of the experiment or of a scenario of an accident. Further research is required concerning the correlation constant. For analysing steam explosion accidents the explosivity is introduced. The explosivity is a mass specific impulse. The explosivity is linear correlated with the degree of fragmentation. Knowing the degree of fragmentation with proper correlation constant the explosivity can be calculated and from the explosivity combined with the total mass of fragments the impulse is obtained which can be used to an estimation of the maximum force.« less

  2. Unique aspects of impulsive traits in substance use and overeating: specific contributions of common assessments of impulsivity.

    PubMed

    Beaton, Derek; Abdi, Hervé; Filbey, Francesca M

    2014-11-01

    Abstract Background: Impulsivity is a complex trait often studied in substance abuse and overeating disorders, but the exact nature of impulsivity traits and their contribution to these disorders are still debated. Thus, understanding how to measure impulsivity is essential for comprehending addictive behaviors. Identify unique impulsivity traits specific to substance use and overeating. Impulsive Sensation Seeking (ImpSS) and Barratt's Impulsivity scales (BIS) Scales were analyzed with a non-parametric factor analytic technique (discriminant correspondence analysis) to identify group-specific traits on 297 individuals from five groups: Marijuana (n = 88), Nicotine (n = 82), Overeaters (n = 27), Marijuauna + Nicotine (n = 63), and CONTROLs (n = 37). A significant overall factor structure revealed three components of impulsivity that explained respectively 50.19% (pperm < 0.0005), 24.18% (pperm < 0.0005), and 15.98% (pperm < 0.0005) of the variance. All groups were significantly different from one another. When analyzed together, the BIS and ImpSS produce a multi-factorial structure that identified the impulsivity traits specific to these groups. The group specific traits are (1) CONTROL: low impulse, avoids thrill-seeking behaviors; (2) Marijuana: seeks mild sensation, is focused and attentive; (3) Marijuana + Nicotine: pursues thrill-seeking, lacks focus and attention; (4) Nicotine: lacks focus and planning; (5) Overeating: lacks focus, but plans (short and long term). Our results reveal impulsivity traits specific to each group. This may provide better criteria to define spectrums and trajectories - instead of categories - of symptoms for substance use and eating disorders. Defining symptomatic spectrums could be an important step forward in diagnostic strategies.

  3. Unique aspects of impulsive traits in substance use and overeating: specific contributions of common assessments of impulsivity

    PubMed Central

    Beaton, Derek; Abdi, Hervé; Filbey, Francesca M.

    2015-01-01

    Background Impulsivity is a complex trait often studied in substance abuse and overeating disorders, but the exact nature of impulsivity traits and their contribution to these disorders are still debated. Thus, understanding how to measure impulsivity is essential for comprehending addictive behaviors. Objectives Identify unique impulsivity traits specific to substance use and overeating. Methods Impulsive Sensation Seeking (ImpSS) and Barratt’s Impulsivity scales (BIS) Scales were analyzed with a non-parametric factor analytic technique (discriminant correspondence analysis) to identify group-specific traits on 297 individuals from five groups: Marijuana (n = 88), Nicotine (n = 82), Overeaters (n = 27), Marijuauna + Nicotine (n = 63), and Controls (n = 37). Results A significant overall factor structure revealed three components of impulsivity that explained respectively 50.19% (pperm<0.0005), 24.18% (pperm<0.0005), and 15.98% (pperm<0.0005) of the variance. All groups were significantly different from one another. When analyzed together, the BIS and ImpSS produce a multi-factorial structure that identified the impulsivity traits specific to these groups. The group specific traits are (1) Control: low impulse, avoids thrill-seeking behaviors; (2) Marijuana: seeks mild sensation, is focused and attentive; (3) Marijuana + Nicotine: pursues thrill-seeking, lacks focus and attention; (4) Nicotine: lacks focus and planning; (5) Overeating: lacks focus, but plans (short and long term). Conclusions Our results reveal impulsivity traits specific to each group. This may provide better criteria to define spectrums and trajectories – instead of categories – of symptoms for substance use and eating disorders. Defining symptomatic spectrums could be an important step forward in diagnostic strategies. PMID:25115831

  4. The role of impulse parameters in force variability

    NASA Technical Reports Server (NTRS)

    Carlton, L. G.; Newell, K. M.

    1986-01-01

    One of the principle limitations of the human motor system is the ability to produce consistent motor responses. When asked to repeatedly make the same movement, performance outcomes are characterized by a considerable amount of variability. This occurs whether variability is expressed in terms of kinetics or kinematics. Variability in performance is of considerable importance because for tasks requiring accuracy it is a critical variable in determining the skill of the performer. What has long been sought is a description of the parameter or parameters that determine the degree of variability. Two general experimental protocals were used. One protocal is to use dynamic actions and record variability in kinematic parameters such as spatial or temporal error. A second strategy was to use isometric actions and record kinetic variables such as peak force produced. What might be the important force related factors affecting variability is examined and an experimental approach to examine the influence of each of these variables is provided.

  5. "Impulsive" suicide attempts: What do we really mean?

    PubMed

    May, Alexis M; Klonsky, E David

    2016-07-01

    Suicide attempts are often regarded as impulsive acts. However, there is little consensus regarding the definition or clinical characteristics of an "impulsive" attempt. To clarify this issue, we examined 3 indicators of the impulsivity of an attempt: (a) preparation, (b) time contemplating the attempt, and (c) self-report that impulsivity motivated the attempt. We examined relationships among the indicators and their relationship to trait impulsivity and characteristics of the suicide attempt. Adult participants (N = 205) with a history of suicide attempts were administered validated interviews and questionnaires. In general, the 3 attempt impulsivity indicators correlated only moderately with each other and not at all with trait impulsivity or with important characteristics of the attempt (e.g., lethality, preattempt communication, motivations). However, there were 2 exceptions. First, intent to die was inversely related to the 3 attempt impulsivity indicators (rs ranged from -.17 to .45) such that more impulsive attempts were associated with lower intent. Second, self-report that the attempt was motivated by impulsivity was related to 3 facets of trait impulsivity (rs ranged from .16 to .41). These findings suggest that individuals endorsing trait impulsivity are likely to describe their attempts as motivated by impulsivity, regardless of the presence of preparation or prolonged contemplation. Overall, study results suggest that the common conception of a unidimensional impulsive attempt may be inaccurate and that the emphasis on general impulsivity in prevention guidelines should be tempered. Implications for suicide risk assessment and prevention are discussed. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  6. Self-reported impulsivity, but not behavioral choice or response impulsivity, partially mediates the effect of stress on drinking behavior.

    PubMed

    Hamilton, Kristen R; Ansell, Emily B; Reynolds, Brady; Potenza, Marc N; Sinha, Rajita

    2013-01-01

    Stress and impulsivity contribute to alcohol use, and stress may also act via impulsivity to increase drinking behavior. Impulsivity represents a multi-faceted construct and self-report and behavioral assessments may effectively capture distinct clinically relevant factors. The present research investigated whether aspects of impulsivity mediate the effect of stress on alcohol use. A community-based sample of 192 men and women was assessed on measures of cumulative stress, alcohol use, self-reported impulsivity, and behavioral choice and response impulsivity. Data were analyzed using regression and bootstrapping techniques to estimate indirect effects of stress on drinking via impulsivity. Cumulative adversity exhibited both direct effects and indirect effects (via self-reported impulsivity) on drinking behavior. Additional models examining specific types of stress indicated direct and indirect effects of trauma and recent life events, and indirect effects of major life events and chronic stressors on drinking behavior. Overall, cumulative stress was associated with increased drinking behavior, and this effect was partially mediated by self-reported impulsivity. Self-reported impulsivity also mediated the effects of different types of stress on drinking behavior. These findings highlight the value of mediation models to examine the pathways through which different types of stress increase drinking behavior. Treatment and prevention strategies should focus on enhancing stress management and self-control.

  7. Self-reported impulsivity, but not behavioral choice or response impulsivity, partially mediates the effect of stress on drinking behavior

    PubMed Central

    HAMILTON, KRISTEN R.; ANSELL, EMILY B.; REYNOLDS, BRADY; POTENZA, MARC N.; SINHA, RAJITA

    2013-01-01

    Stress and impulsivity contribute to alcohol use, and stress may also act via impulsivity to increase drinking behavior. Impulsivity represents a multi-faceted construct and self-report and behavioral assessments may effectively capture distinct clinically relevant factors. The present research investigated whether aspects of impulsivity mediate the effect of stress on alcohol use. A community-based sample of 192 men and women was assessed on measures of cumulative stress, alcohol use, self-reported impulsivity, and behavioral choice and response impulsivity. Data were analyzed using regression and bootstrapping techniques to estimate indirect effects of stress on drinking via impulsivity. Cumulative adversity exhibited both direct effects and indirect effects (via self-reported impulsivity) on drinking behavior. Additional models examining specific types of stress indicated direct and indirect effects of trauma and recent life events, and indirect effects of major life events and chronic stressors on drinking behavior. Overall, cumulative stress was associated with increased drinking behavior, and this effect was partially mediated by self-reported impulsivity. Self-reported impulsivity also mediated the effects of different types of stress on drinking behavior. These findings highlight the value of mediation models to examine the pathways through which different types of stress increase drinking behavior. Treatment and prevention strategies should focus on enhancing stress management and self-control. PMID:22376044

  8. Impact Forces of Plyometric Exercises Performed on Land and in Water

    PubMed Central

    Donoghue, Orna A.; Shimojo, Hirofumi; Takagi, Hideki

    2011-01-01

    Background: Aquatic plyometric programs are becoming increasingly popular because they provide a less stressful alternative to land-based programs. Buoyancy reduces the impact forces experienced in water. Purpose: To quantify the landing kinetics during a range of typical lower limb plyometric exercises performed on land and in water. Study Design: Crossover design. Methods: Eighteen male participants performed ankle hops, tuck jumps, a countermovement jump, a single-leg vertical jump, and a drop jump from 30 cm in a biomechanics laboratory and in a swimming pool. Land and underwater force plates (Kistler) were used to obtain peak impact force, impulse, rate of force development, and time to reach peak force for the landing phase of each jump. Results: Significant reductions were observed in peak impact forces (33%-54%), impulse (19%-54%), and rate of force development (33%-62%) in water compared with land for the majority of exercises in this study (P < 0.05). Conclusions: The level of force reduction varies with landing technique, water depth, and participant height and body composition. Clinical Relevance: This information can be used to reintroduce athletes to the demands of plyometric exercises after injury. PMID:23016022

  9. Real-time 3-D ultrafast ultrasound quasi-static elastography in vivo

    PubMed Central

    Papadacci, Clement; Bunting, Ethan A.; Konofagou, Elisa E.

    2017-01-01

    Ultrasound elastography, a technique used to assess mechanical properties of soft tissue is of major interest in the detection of breast cancer as it is stiffer than the surroundings. Techniques such as ultrasound quasi-static elastography have been developed to assess the strain distribution in soft tissues in two dimensions using a quasi-static compression. However, tumors can exhibit very heterogeneous shape, a three dimensions approach would be then necessary to measure accurately the tumor volume and remove operator dependency. To ensure this issue, several 3-D quasi-static elastographic approaches have been proposed. However, all these approaches suffered from a long acquisition time to acquire 3-D volumes resulting in the impossibility to perform real-time and the creation of artifacts. The long acquisition time comes from both the use of focused ultrasound emissions and the fact that the volume was made from a stack of two dimensions images acquired by mechanically translating an ultrasonic array. Being able to acquire volume at high volume rates is thus crucial to perform real-time with a simple freehand compression and to avoid signal decorrelation coming from hand motions or natural motions such as the respiratory. In this study we developed for the first time, the 3-D ultrafast ultrasound quasi-static elastography method to estimate 3-D axial strain distribution in vivo in real-time. Acquisitions were performed with a 2-D matrix array probe of 256 elements (16-by-16 elements). 100 plane waves were emitted at a volume rate of 100 volumes/sec during a continuous motorized compression. 3-D B-mode volumes and 3-D B-mode cumulative axial strain volumes were estimated on a two-layers gelatin phantom with different stiffness, in a stiff inclusion embedded in a soft gelatin phantoms, in a soft inclusion embedded in a stiff gelatin phantom and in an ex vivo canine liver before and after a high focused ultrasound (HIFU) ablation. In each case, we were able to

  10. Ability of Magnetic Resonance Elastography to Assess Taut Bands

    PubMed Central

    Chen, Qingshan; Basford, Jeffery; An, Kai-Nan

    2008-01-01

    Background Myofascial taut bands are central to diagnosis of myofascial pain. Despite their importance, we still lack either a laboratory test or imaging technique capable of objectively confirming either their nature or location. This study explores the ability of magnetic resonance elastography to localize and investigate the mechanical properties of myofascial taut bands on the basis of their effects on shear wave propagation. Methods This study was conducted in three phases. The first involved the imaging of taut bands in gel phantoms, the second a finite element modeling of the phantom experiment, and the third a preliminary evaluation involving eight human subjects-four of whom had, and four of whom did not have myofascial pain. Experiments were performed with a 1.5 Tesla magnetic resonance imaging scanner. Shear wave propagation was imaged and shear stiffness was reconstructed using matched filtering stiffness inversion algorithms. Findings The gel phantom imaging and finite element calculation experiments supported our hypothesis that taut bands can be imaged based on its outstanding shear stiffness. The preliminary human study showed a statistically significant 50-100% (p=0.01) increase of shear stiffness in the taut band regions of the involved subjects relative to that of the controls or in nearby uninvolved muscle. Interpretation This study suggests that magnetic resonance elastography may have a potential for objectively characterizing myofascial taut bands that have been up to now detectable only by the clinician's fingers. PMID:18206282

  11. Angular distributions of plasma edge velocity and integrated intensity: Update on specific impulse for Ablative Laser Propulsion

    NASA Astrophysics Data System (ADS)

    Lin, Jun; Pakhomov, Andrew V.

    2005-04-01

    This work concludes our discussion of the image processing technique developed earlier for determination of specific impulse (Isp) for Ablative Laser Propulsion (ALP). The plasma plumes are recorded with a time-resolved intensified charge-coupled device (ICCD) camera. The plasma was formed in vacuum (˜ 3×10-3 Torr) by focusing output pulses of a laser system (100-ps pulsewidth at 532 nm wavelength and ˜35 mJ energy) on surfaces of C (graphite), Al, Si, Fe, Cu, Zn, Sn, and Pb elements. Angular profiles for integrated intensity and plasma expansion velocity were determined for the tested elements. Such profiles were used further for assessment of specific impulse. Specific impulses derived from angular distributions of plasma expansion velocity and integral intensity appeared in excellent agreement with the data derived earlier from force measurements.

  12. Impulsivity, self-control, and hypnotic suggestibility.

    PubMed

    Ludwig, V U; Stelzel, C; Krutiak, H; Prunkl, C E; Steimke, R; Paschke, L M; Kathmann, N; Walter, H

    2013-06-01

    Hypnotic responding might be due to attenuated frontal lobe functioning after the hypnotic induction. Little is known about whether personality traits linked with frontal functioning are associated with responsiveness to hypnotic suggestions. We assessed whether hypnotic suggestibility is related to the traits of self-control and impulsivity in 154 participants who completed the Brief Self-Control Scale, the Self-Regulation Scale, the Barratt Impulsiveness Scale (BIS-11), and the Harvard Group Scale of Hypnotic Susceptibility (HGSHS:A). BIS-11 non-planning impulsivity correlated positively with HGSHS:A (Bonferroni-corrected). Furthermore, in the best model emerging from a stepwise multiple regression, both non-planning impulsivity and self-control positively predicted hypnotic suggestibility, and there was an interaction of BIS-11 motor impulsivity with gender. For men only, motor impulsivity tended to predict hypnotic suggestibility. Hypnotic suggestibility is associated with personality traits linked with frontal functioning, and hypnotic responding in men and women might differ. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. Impulse noise generator--design and operation.

    PubMed

    Brinkmann, H

    1991-01-01

    In the seventies PFANDER (Pfander, 1975) proposed a screening test with an impulse noise simulator to check the particular responsivity of soldiers on vulnerability of the inner ear concerning the impulse noise-induced hearing loss. According to a system developed at the University of Oldenburg (Germany) (Klug & Radek, 1987), we have constructed an impulse noise generator designed for our specific requirements that will be presented. The simulator consists of an electrical ignited impulse noise spark gap which is supplied by a 3.5 kV high voltage source. At a distance of 1.10 m from the center of the impulse noise spark gap a peak pressure level of 155 dB with a C-Duration (Pfander, 1975) of .2 msec and with the main energy in the frequency range from 1 kHz to 2 kHz was good reproducible. It would be preferable to shift the impulse noise spectrum to lower frequencies but experimental effort has failed so far.

  14. Rethinking Impulsivity in Suicide

    ERIC Educational Resources Information Center

    Klonsky, E. David; May, Alexis

    2010-01-01

    Elevated impulsivity is thought to facilitate the transition from suicidal thoughts to suicidal behavior. Therefore, impulsivity should distinguish those who have attempted suicide (attempters) from those who have only considered suicide (ideators-only). This hypothesis was examined in three large nonclinical samples: (1) 2,011 military recruits,…

  15. The horizontal computerized rotational impulse test.

    PubMed

    Furman, Joseph M; Shirey, Ian; Roxberg, Jillyn; Kiderman, Alexander

    2016-01-01

    Whole-body impulsive rotations were used to overcome several limitations associated with manual head impulse testing. A computer-controlled rotational chair delivered brief, whole-body, earth-vertical axis yaw impulsive rotations while eye movements were measured using video-oculography. Results from an unselected group of 20 patients with dizziness and a group of 22 control subjects indicated that the horizontal computerized rotational head impulse test (crHIT) is well-tolerated and provides an estimate of unidirectional vestibulo-ocular reflex gain comparable to results from caloric testing. This study demonstrates that the horizontal crHIT is a new assessment tool that overcomes many of the limitations of manual head impulse testing and provides a reliable laboratory-based measure of unilateral horizontal semicircular canal function.

  16. EUS elastography (strain ratio) and fractal-based quantitative analysis for the diagnosis of solid pancreatic lesions.

    PubMed

    Carrara, Silvia; Di Leo, Milena; Grizzi, Fabio; Correale, Loredana; Rahal, Daoud; Anderloni, Andrea; Auriemma, Francesco; Fugazza, Alessandro; Preatoni, Paoletta; Maselli, Roberta; Hassan, Cesare; Finati, Elena; Mangiavillano, Benedetto; Repici, Alessandro

    2018-06-01

    EUS elastography is useful in characterizing solid pancreatic lesions (SPLs), and fractal analysis-based technology has been used to evaluate geometric complexity in oncology. The aim of this study was to evaluate EUS elastography (strain ratio) and fractal analysis for the characterization of SPLs. Consecutive patients with SPLs were prospectively enrolled between December 2015 and February 2017. Elastographic evaluation included parenchymal strain ratio (pSR) and wall strain ratio (wSR) and was performed with a new compact US processor. Elastographic images were analyzed using a computer program to determine the 3-dimensional histogram fractal dimension. A composite cytology/histology/clinical reference standard was used to assess sensitivity, specificity, positive predictive value, negative predictive value, and area under the receiver operating curve. Overall, 102 SPLs from 100 patients were studied. At final diagnosis, 69 (68%) were malignant and 33 benign. At elastography, both pSR and wSR appeared to be significantly higher in malignant as compared with benign SPLs (pSR, 24.5 vs 6.4 [P < .001]; wSR, 56.6 vs 15.3 [P < .001]). When the best cut-off levels of pSR and wSR at 9.10 and 16.2, respectively, were used, sensitivity, specificity, positive predictive value, negative predictive value, and area under the receiver operating curve were 88.4%, 78.8%, 89.7%, 76.9%, and 86.7% and 91.3%, 69.7%, 86.5%, 80%, and 85.7%, respectively. Fractal analysis showed a significant statistical difference (P = .0087) between the mean surface fractal dimension of malignant lesions (D = 2.66 ± .01) versus neuroendocrine tumor (D = 2.73 ± .03) and a statistical difference for all 3 channels red, green, and blue (P < .0001). EUS elastography with pSR and fractal-based analysis are useful in characterizing SPLs. (Clinical trial registration number: NCT02855151.). Copyright © 2018 American Society for Gastrointestinal Endoscopy. Published by Elsevier Inc. All rights

  17. Impulsive personality traits in male pedophiles versus healthy controls: is pedophilia an impulsive-aggressive disorder?

    PubMed

    Cohen, Lisa J; Gans, Sniezyna Watras; McGeoch, Pamela G; Poznansky, Olga; Itskovich, Yelena; Murphy, Sean; Klein, Erik; Cullen, Ken; Galynker, Igor I

    2002-01-01

    Pedophilia is characterized by sexual attraction to prepubescent children. Despite the extensive literature documenting the pervasive and pernicious effects of childhood sexual abuse, there is surprisingly little psychiatric literature on pedophilia and its etiology remains enigmatic. In recent years, the psychiatric literature on the phenomenology, neurobiology, and treatment of impulsive-aggressive disorders has grown significantly. As some investigators have conceptualized pedophilia as an impulsive-aggressive disorder, it is of interest whether recent advances in the study of impulsive-aggressive disorders might shed light on pathological mechanisms underlying pedophilia. In the following study, 20 male subjects with a DSM-IV diagnosis of pedophilia, heterosexual type were recruited from an outpatient facility for sexual offenders and compared to 24 demographically similar control subjects. Groups were compared on three personality instruments--the Millon Clinical Multiaxial Inventory-II (MCMI-II), the Temperament and Character Inventory (TCI), and the Dimensional Assessment of Personality Impairment-Questionnaire (DAPI-Q)--to assess for select impairment in impulsive-aggressive personality traits. Pedophiles showed severe and pervasive personality impairment relative to controls. Although there was evidence of impulsivity, the findings do not suggest a predominance of impulsive-aggressive traits, and in fact provide evidence of inhibition, passive-aggression, and harm avoidance. The notion of "compulsive-aggression" in pedophilia is proposed.

  18. The influence of cadence and power output on force application and in-shoe pressure distribution during cycling by competitive and recreational cyclists.

    PubMed

    Sanderson, D J; Hennig, E M; Black, A H

    2000-03-01

    The aim of this study was to determine the response of cyclists to manipulations of cadence and power output in terms of force application and plantar pressure distribution. Two groups of cyclists, 17 recreational and 12 competitive, rode at three nominal cadences (60, 80, 100 rev x min(-1)) and four power outputs (100, 200, 300, 400 W) while simultaneous force and in-shoe pressure data were collected. Two piezoelectric triaxial force transducers mounted in the right pedal measured components of the pedal force and orientation, and a discrete transducer system with 12 transducers recorded the in-shoe pressures. Force application was characterized by calculating peak resultant and peak effective pedal forces and positive and negative impulses. In-shoe pressures were analysed as peak pressures and as the percent relative load. The force data showed no significant group effect but there was a cadence and power main effect. The impulse data showed a significant three-way interaction. Increased cadence resulted in a decreased positive impulse, while increased power output resulted in an increased impulse. The competitive group produced less positive impulse but the difference became less at higher cadences. Few between-group differences were found in pressure, notable only in the pressure under the first metatarsal region. This showed a consistent pattern of in-shoe pressure distribution, where the primary loading structures were the first metatarsal and hallux. There was no indication that pressure at specific sites influenced the pedal force application. The absence of group differences indicated that pressure distribution was not the result of training, but reflected the intrinsic relationship between the foot, the shoe and the pedal.

  19. Noncontact phase-sensitive dynamic optical coherence elastography at megahertz rate

    NASA Astrophysics Data System (ADS)

    Singh, Manmohan; Wu, Chen; Liu, Chih-Hao; Li, Jiasong; Schill, Alexander; Nair, Achuth; Kistenev, Yury V.; Larin, Kirill V.

    2016-03-01

    Dynamic optical coherence elastography (OCE) techniques have shown great promise at quantitatively obtaining the biomechanical properties of tissue. However, the majority of these techniques have required multiple temporal OCT acquisitions (M-B mode) and corresponding excitations, which lead to clinically unfeasible acquisition times and potential tissue damage. Furthermore, the large data sets and extended laser exposures hinder their translation to the clinic, where patient discomfort and safety are critical criteria. In this work we demonstrate noncontact true kilohertz frame-rate dynamic optical coherence elastography by directly imaging a focused air-pulse induced elastic wave with a home-built phase-sensitive OCE system based on a 4X buffered Fourier Domain Mode Locked swept source laser with an A-scan rate of ~1.5 MHz. The elastic wave was imaged at a frame rate of ~7.3 kHz using only a single excitation. In contrast to previous techniques, successive B-scans were acquired over the measurement region (B-M mode) in this work. The feasibility of this method was validated by quantifying the elasticity of tissue-mimicking agar phantoms as well as porcine corneas ex vivo at different intraocular pressures. The results demonstrate that this method can acquire a depth-resolved elastogram in milliseconds. The reduced data set enabled a rapid elasticity assessment, and the ultra-fast acquisition speed allowed for a clinically safe laser exposure to the cornea.

  20. Imaging mechanical properties of hepatic tissue by magnetic resonance elastography

    NASA Astrophysics Data System (ADS)

    Yin, Meng; Rouviere, Olivier; Burgart, Lawrence J.; Fidler, Jeff L.; Manduca, Armando; Ehman, Richard L.

    2006-03-01

    PURPOSE: To assess the feasibility of a modified phase-contrast MRI technique (MR Elastography) for quantitatively assessing the mechanical properties of hepatic tissues by imaging propagating acoustic shear waves. MATERIALS AND METHODS: Both phantom and human studies were performed to develop and optimize a practical imaging protocol by visualizing and investigating the diffraction field of shear waves generated from pneumatic longitudinal drivers. The effects of interposed ribs in a transcostal approach were also investigated. A gradient echo MRE pulse sequence was adapted for shear wave imaging in the liver during suspended respiration, and then tested to measure hepatic shear stiffness in 13 healthy volunteers and 1 patient with chronic liver disease to determine the potential of non-invasively detecting liver fibrosis. RESULTS: Phantom studies demonstrate that longitudinal waves generated by the driver are mode-converted to shear waves in a distribution governed by diffraction principles. The transcostal approach was determined to be the most effective method for generating shear waves in human studies. Hepatic stiffness measurements in the 13 normal volunteers demonstrated a mean value of 2.0+/-0.2kPa. The shear stiffness measurement in the patient was much higher at 8.5kPa. CONCLUSION: MR Elastography of the liver shows promise as a method to non-invasively detect and characterize diffuse liver disease, potentially reducing the need for biopsy to diagnose hepatic fibrosis.

  1. Computationally-efficient optical coherence elastography to assess degenerative osteoarthritis based on ultrasound-induced fringe washout (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Tong, Minh Q.; Hasan, M. Monirul; Gregory, Patrick D.; Shah, Jasmine; Park, B. Hyle; Hirota, Koji; Liu, Junze; Choi, Andy; Low, Karen; Nam, Jin

    2017-02-01

    We demonstrate a computationally-efficient optical coherence elastography (OCE) method based on fringe washout. By introducing ultrasound in alternating depth profile, we can obtain information on the mechanical properties of a sample within acquisition of a single image. This can be achieved by simply comparing the intensity in adjacent depth profiles in order to quantify the degree of fringe washout. Phantom agar samples with various densities were measured and quantified by our OCE technique, the correlation to Young's modulus measurement by atomic force micrscopy (AFM) were observed. Knee cartilage samples of monoiodo acetate-induced arthiritis (MIA) rat models were utilized to replicate cartilage damages where our proposed OCE technique along with intensity and birefringence analyses and AFM measurements were applied. The results indicate that our OCE technique shows a correlation to the techniques as polarization-sensitive OCT, AFM Young's modulus measurements and histology were promising. Our OCE is applicable to any of existing OCT systems and demonstrated to be computationally-efficient.

  2. Accuracy of real-time shear wave elastography in the assessment of normal liver tissue in the guinea pig (cavia porcellus).

    PubMed

    Glińska-Suchocka, K; Kubiak, K; Spużak, J; Jankowski, M; Borusewicz, P

    2017-03-28

    Shear wave elastography is a novel technique enabling real-time measurement of the elasticity of liver tissue. The color map is superimposed on the classic ultrasound image of the assessed tissue, which enables a precise evaluation of the stiffness of the liver tissue. The aim of the study was to assess the stiffness of normal liver tissue in the guinea pig using shear wave elastography. The study was carried out on 36 guinea pigs using the SuperSonic Imagine Aixplorer scanner, and a 1 to 6 MH convex SC6-1 transducer. An ultrasound guided Try-Cut liver core needle biopsy was carried out in all the studied animals and the collected samples were examined to exclude pathological lesions. The mean liver tissue stiffness ranged from 0.89 to 5.40 kPa. We found that shear wave elastography is an easy, non-invasive technique that can be used to assess the stiffness of liver tissue. The obtained results can be used in future studies to assess the types and changes of liver tissue in the course of various types of liver disease.

  3. Non-invasive assessment of liver fibrosis by transient elastography in post transfusional iron overload.

    PubMed

    Mirault, Tristan; Lucidarme, Damien; Turlin, Bruno; Vandevenne, Philippe; Gosset, Pierre; Ernst, Olivier; Rose, Christian

    2008-04-01

    Liver fibrosis, assessed by biopsy, is the main complication of post transfusional liver iron overload. Transient elastography (TE) is a new, non invasive method able to measure liver stiffness (LS) caused by fibrosis. We prospectively evaluated the predictive value of LS measurement for liver fibrosis evaluation in 15 chronically transfused patients and compared these results with the METAVIR histological fibrosis stage from liver biopsies. Mean TE values significantly differed in patients with severe fibrosis (METAVIR F3, F4): 9.1 (+/-3.7 SD) kPa from those with mild or no fibrosis (METAVIR F0, F1, F2): 5.9 (+/-1.8 SD) kPa (P = 0.046). TE value above 6.25 kPa (Se = 80%; Sp = 70%; AUROC = 0.820) identified patients at risk for severe fibrosis (Negative Predictive Value 88%; Positive Predictive Value 57%). Transient elastography appears to be a reliable tool to evaluate liver fibrosis in post-transfusional iron overload.

  4. Ethanol induces impulsive-like responding in a delay-of-reward operant choice procedure: impulsivity predicts autoshaping.

    PubMed

    Tomie, A; Aguado, A S; Pohorecky, L A; Benjamin, D

    1998-10-01

    Autoshaping conditioned responses (CRs) are reflexive and targeted motor responses expressed as a result of experience with reward. To evaluate the hypothesis that autoshaping may be a form of impulsive responding, within-subjects correlations between performance on autoshaping and impulsivity tasks were assessed in 15 Long-Evans hooded rats. Autoshaping procedures [insertion of retractable lever conditioned stimulus (CS) followed by the response-independent delivery of food (US)] were followed by testing for impulsive-like responding in a two-choice lever-press operant delay-of-reward procedure (immediate small food reward versus delayed large food reward). Delay-of-reward functions revealed two distinct subject populations. Subjects in the Sensitive group (n=7) were more impulsive-like, increasing immediate reward choices at longer delays for large reward, while those in the Insensitive group (n=8) responded predominantly on only one lever. During the prior autoshaping phase, the Sensitive group had performed more autoshaping CRs, and correlations revealed that impulsive subjects acquired the autoshaping CR in fewer trials. In the Sensitive group, acute injections of ethanol (0, 0.25, 0.50, 1.00, 1.50 g/kg) given immediately before delay-of-reward sessions yielded an inverted U-shaped dose-response curve with increased impulsivity induced by the 0.25, 0.50, and 1.00 g/kg doses of ethanol, while choice strategy of the Insensitive group was not influenced by ethanol dose. Ethanol induced impulsive-like responding only in rats that were flexible in their response strategy (Sensitive group), and this group also performed more autoshaping CRs. Data support the hypothesis that autoshaping and impulsivity are linked.

  5. Diagnosing cysts with correlation coefficient images from 2-dimensional freehand elastography.

    PubMed

    Booi, Rebecca C; Carson, Paul L; O'Donnell, Matthew; Richards, Michael S; Rubin, Jonathan M

    2007-09-01

    We compared the diagnostic potential of using correlation coefficient images versus elastograms from 2-dimensional (2D) freehand elastography to characterize breast cysts. In this preliminary study, which was approved by the Institutional Review Board and compliant with the Health Insurance Portability and Accountability Act, we imaged 4 consecutive human subjects (4 cysts, 1 biopsy-verified benign breast parenchyma) with freehand 2D elastography. Data were processed offline with conventional 2D phase-sensitive speckle-tracking algorithms. The correlation coefficient in the cyst and surrounding tissue was calculated, and appearances of the cysts in the correlation coefficient images and elastograms were compared. The correlation coefficient in the cysts was considerably lower (14%-37%) than in the surrounding tissue because of the lack of sufficient speckle in the cysts, as well as the prominence of random noise, reverberations, and clutter, which decorrelated quickly. Thus, the cysts were visible in all correlation coefficient images. In contrast, the elastograms associated with these cysts each had different elastographic patterns. The solid mass in this study did not have the same high decorrelation rate as the cysts, having a correlation coefficient only 2.1% lower than that of surrounding tissue. Correlation coefficient images may produce a more direct, reliable, and consistent method for characterizing cysts than elastograms.

  6. Mechanism of transient force augmentation varying with two distinct timescales for interacting vortex rings

    NASA Astrophysics Data System (ADS)

    Fu, Zhidong; Qin, Suyang; Liu, Hong

    2014-01-01

    The dynamics of dual vortex ring flows is studied experimentally and numerically in a model system that consists of a piston-cylinder apparatus. The flows are generated by double identical strokes which have the velocity profile characterized by the sinusoidal function of half the period. By calculating the total wake impulse in two strokes in the experiments, it is found that the average propulsive force increases by 50% in the second stroke for the sufficiently small stroke length, compared with the first stroke. In the numerical simulations, two types of transient force augmentation are revealed, there being the transient force augmentation for the small stroke lengths and the absolute transient force augmentation for the large stroke lengths. The relative transient force augmentation increases to 78% for L/D = 1, while the absolute transient force augmentation for L/D = 4 is twice as much as that for L/D = 1. Further investigation demonstrates that the force augmentation is attributed to the interaction between vortex rings, which induces transport of vortex impulse and more evident fluid entrainment. The critical situation of vortex ring separation is defined and indicated, with vortex spacing falling in a narrow gap when the stroke lengths vary. A new model is proposed concerning the limiting process of impulse, further suggesting that apart from vortex formation timescale, vortex spacing should be interpreted as an independent timescale to reflect the dynamics of vortex interaction.

  7. Extending the impulse response in order to reduce errors due to impulse noise and signal fading

    NASA Technical Reports Server (NTRS)

    Webb, Joseph A.; Rolls, Andrew J.; Sirisena, H. R.

    1988-01-01

    A finite impulse response (FIR) digital smearing filter was designed to produce maximum intersymbol interference and maximum extension of the impulse response of the signal in a noiseless binary channel. A matched FIR desmearing filter at the receiver then reduced the intersymbol interference to zero. Signal fades were simulated by means of 100 percent signal blockage in the channel. Smearing and desmearing filters of length 256, 512, and 1024 were used for these simulations. Results indicate that impulse response extension by means of bit smearing appears to be a useful technique for correcting errors due to impulse noise or signal fading in a binary channel.

  8. Doppler ultrasonography combined with transient elastography improves the non-invasive assessment of fibrosis in patients with chronic liver diseases.

    PubMed

    Alempijevic, Tamara; Zec, Simon; Nikolic, Vladimir; Veljkovic, Aleksandar; Stojanovic, Zoran; Matovic, Vera; Milosavljevic, Tomica

    2017-01-31

    Accurate clinical assessment of liver fibrosis is essential and the aim of our study was to compare and combine hemodynamic Doppler ultrasonography, liver stiffness by transient elastography, and non-invasive serum biomarkers with the degree of fibrosis confirmed by liver biopsy, and thereby to determine the value of combining non-invasive method in the prediction significant liver fibrosis. We included 102 patients with chronic liver disease of various etiology. Each patient was evaluated using Doppler ultrasonography measurements of the velocity and flow pattern at portal trunk, hepatic and splenic artery, serum fibrosis biomarkers, and transient elastography. These parameters were then input into a multilayer perceptron artificial neural network with two hidden layers, and used to create models for predicting significant fibrosis. According to METAVIR score, clinically significant fibrosis (≥F2) was detected in 57.8% of patients. A model based only on Doppler parameters (hepatic artery diameter, hepatic artery systolic and diastolic velocity, splenic artery systolic velocity and splenic artery Resistance Index), predicted significant liver fibrosis with a sensitivity and specificity of75.0% and 60.0%. The addition of unrelated non-invasive tests improved the diagnostic accuracy of Doppler examination. The best model for prediction of significant fibrosis was obtained by combining Doppler parameters, non-invasive markers (APRI, ASPRI, and FIB-4) and transient elastography, with a sensitivity and specificity of 88.9% and 100%. Doppler parameters alone predict the presence of ≥F2 fibrosis with fair accuracy. Better prediction rates are achieved by combining Doppler variables with non-invasive markers and liver stiffness by transient elastography.

  9. Review of MR Elastography Applications and Recent Developments

    PubMed Central

    Glaser, Kevin J.; Manduca, Armando; Ehman, Richard L.

    2012-01-01

    The technique of MR elastography (MRE) has emerged as a useful modality for quantitatively imaging the mechanical properties of soft tissues in vivo. Recently, MRE has been introduced as a clinical tool for evaluating chronic liver disease, but many other potential applications are being explored. These applications include measuring tissue changes associated with diseases of the liver, breast, brain, heart, and skeletal muscle including both focal lesions (e.g., hepatic, breast, and brain tumors) and diffuse diseases (e.g., fibrosis and multiple sclerosis). The purpose of this review article is to summarize some of the recent developments of MRE and to highlight some emerging applications. PMID:22987755

  10. Maximizing the endosonography: The role of contrast harmonics, elastography and confocal endomicroscopy.

    PubMed

    Seicean, Andrada; Mosteanu, Ofelia; Seicean, Radu

    2017-01-07

    New technologies in endoscopic ultrasound (EUS) evaluation have been developed because of the need to improve the EUS and EUS-fine needle aspiration (EUS-FNA) diagnostic rate. This paper reviews the principle, indications, main literature results, limitations and future expectations for each of the methods presented. Contrast-enhanced harmonic EUS uses a low mechanical index and highlights slow-flow vascularization. This technique is useful for differentiating solid and cystic pancreatic lesions and assessing biliary neoplasms, submucosal neoplasms and lymph nodes. It is also useful for the discrimination of pancreatic masses based on their qualitative patterns; however, the quantitative assessment needs to be improved. The detection of small solid lesions is better, and the EUS-FNA guidance needs further research. The differentiation of cystic lesions of the pancreas and the identification of the associated malignancy features represent the main indications. Elastography is used to assess tissue hardness based on the measurement of elasticity. Despite its low negative predictive value, elastography might rule out the diagnosis of malignancy for pancreatic masses. Needle confocal laser endomicroscopy offers useful information about cystic lesions of the pancreas and is still under evaluation for use with solid pancreatic lesions of lymph nodes.

  11. Estimating Thruster Impulses From IMU and Doppler Data

    NASA Technical Reports Server (NTRS)

    Lisano, Michael E.; Kruizinga, Gerhard L.

    2009-01-01

    A computer program implements a thrust impulse measurement (TIM) filter, which processes data on changes in velocity and attitude of a spacecraft to estimate the small impulsive forces and torques exerted by the thrusters of the spacecraft reaction control system (RCS). The velocity-change data are obtained from line-of-sight-velocity data from Doppler measurements made from the Earth. The attitude-change data are the telemetered from an inertial measurement unit (IMU) aboard the spacecraft. The TIM filter estimates the threeaxis thrust vector for each RCS thruster, thereby enabling reduction of cumulative navigation error attributable to inaccurate prediction of thrust vectors. The filter has been augmented with a simple mathematical model to compensate for large temperature fluctuations in the spacecraft thruster catalyst bed in order to estimate thrust more accurately at deadbanding cold-firing levels. Also, rigorous consider-covariance estimation is applied in the TIM to account for the expected uncertainty in the moment of inertia and the location of the center of gravity of the spacecraft. The TIM filter was built with, and depends upon, a sigma-point consider-filter algorithm implemented in a Python-language computer program.

  12. A bifurcation giving birth to order in an impulsively driven complex system

    NASA Astrophysics Data System (ADS)

    Seshadri, Akshay; Sujith, R. I.

    2016-08-01

    Nonlinear oscillations lie at the heart of numerous complex systems. Impulsive forcing arises naturally in many scenarios, and we endeavour to study nonlinear oscillators subject to such forcing. We model these kicked oscillatory systems as a piecewise smooth dynamical system, whereby their dynamics can be investigated. We investigate the problem of pattern formation in a turbulent combustion system and apply this formalism with the aim of explaining the observed dynamics. We identify that the transition of this system from low amplitude chaotic oscillations to large amplitude periodic oscillations is the result of a discontinuity induced bifurcation. Further, we provide an explanation for the occurrence of intermittent oscillations in the system.

  13. Impulsivity and sexual assault in college men.

    PubMed

    Mouilso, Emily R; Calhoun, Karen S; Rosenbloom, Thomas G

    2013-01-01

    Although impulsivity has been consistently linked to perpetration of sexual aggression, results lack clarity because they do not account for the substantial heterogeneity associated with the construct. The UPPS-P model (Lynam, Smith, Whiteside, & Cyders, 2006), which was proposed to clarify the multidimensional nature of impulsivity, has yet to be applied to sexual aggression. We measured UPPS-P Impulsivity in a sample of male college students who also self-reported on perpetration of sexual aggression. As predicted, impulsivity distinguished perpetrators from nonperpetrators. Perpetrators scored higher than non-perpetrators on Negative Urgency, Positive Urgency, and lack of Premeditation. Results suggest that the impulsivity traits most relevant to sexual aggression are the tendency to act impulsively when experiencing intense emotions (Positive and Negative Urgency) and lack of forethought and planning (lack of Premeditation).

  14. Optimum Multi-Impulse Rendezvous Program

    NASA Technical Reports Server (NTRS)

    Glandorf, D. R.; Onley, A. G.; Rozendaal, H. L.

    1970-01-01

    OMIRPROGRAM determines optimal n-impulse rendezvous trajectories under the restrictions of two-body motion in free space. Lawden's primer vector theory is applied to determine optimum number of midcourse impulse applications. Global optimality is not guaranteed.

  15. Impulsive choice and pre-exposure to delays: iv. effects of delay- and immediacy-exposure training relative to maturational changes in impulsivity.

    PubMed

    Renee Renda, C; Rung, Jillian M; Hinnenkamp, Jay E; Lenzini, Stephanie N; Madden, Gregory J

    2018-04-23

    Impulsive choice describes preference for smaller, sooner rewards over larger, later rewards. Excessive delay discounting (i.e., rapid devaluation of delayed rewards) underlies some impulsive choices, and is observed in many maladaptive behaviors (e.g., substance abuse, gambling). Interventions designed to reduce delay discounting may provide therapeutic gains. One such intervention provides rats with extended training with delayed reinforcers. When compared to a group given extended training with immediate reinforcers, delay-exposed rats make significantly fewer impulsive choices. To what extent is this difference due to delay-exposure training shifting preference toward self-control or immediacy-exposure training (the putative control group) shifting preference toward impulsivity? The current study compared the effects of delay- and immediacy-exposure training to a no-training control group and evaluated within-subject changes in impulsive choice across 51 male Wistar rats. Delay-exposed rats made significantly fewer impulsive choices than immediacy-exposed and control rats. Between-group differences in impulsive choice were not observed in the latter two groups. While delay-exposed rats showed large, significant pre- to posttraining reductions in impulsive choice, immediacy-exposed and control rats showed small reductions in impulsive choice. These results suggest that extended training with delayed reinforcers reduces impulsive choice, and that extended training with immediate reinforcers does not increase impulsive choice. © 2018 Society for the Experimental Analysis of Behavior.

  16. Impulsivity and compulsive buying are associated in a non-clinical sample: an evidence for the compulsivity-impulsivity continuum?

    PubMed

    Paula, Jonas J de; Costa, Danielle de S; Oliveira, Flavianne; Alves, Joana O; Passos, Lídia R; Malloy-Diniz, Leandro F

    2015-01-01

    Compulsive buying is controversial in clinical psychiatry. Although it is defined as an obsessive-compulsive disorder, other personality aspects besides compulsivity are related to compulsive buying. Recent studies suggest that compulsivity and impulsivity might represent a continuum, with several psychiatric disorders lying between these two extremes. In this sense, and following the perspective of dimensional psychiatry, symptoms of impulsivity and compulsivity should correlate even in a non-clinical sample. The present study aims to investigate whether these two traits are associated in a healthy adult sample. We evaluated 100 adults, with no self-reported psychiatric disorders, using the Barratt Impulsiveness Scale-11 and two scales of compulsive buying. Using multiple linear regressions, we found that impulsivity accounted for about 15% of variance in the compulsive-buying measure. Our results suggest that an association between impulsivity and compulsive buying occurs even in non-clinical samples, evidence that compulsivity and impulsivity might form a continuum and that compulsive buying might be an intermediate condition between these two personality traits.

  17. Spectral analysis of hearing protector impulsive insertion loss.

    PubMed

    Fackler, Cameron J; Berger, Elliott H; Murphy, William J; Stergar, Michael E

    2017-01-01

    To characterise the performance of hearing protection devices (HPDs) in impulsive-noise conditions and to compare various protection metrics between impulsive and steady-state noise sources with different characteristics. HPDs were measured per the impulsive test methods of ANSI/ASA S12.42- 2010 . Protectors were measured with impulses generated by both an acoustic shock tube and an AR-15 rifle. The measured data were analysed for impulse peak insertion loss (IPIL) and impulsive spectral insertion loss (ISIL). These impulsive measurements were compared to insertion loss measured with steady-state noise and with real-ear attenuation at threshold (REAT). Tested HPDs included a foam earplug, a level-dependent earplug and an electronic sound-restoration earmuff. IPIL for a given protector varied between measurements with the two impulse noise sources, but ISIL agreed between the two sources. The level-dependent earplug demonstrated level-dependent effects both in IPIL and ISIL. Steady-state insertion loss and REAT measurements tended to provide a conservative estimate of the impulsively-measured attenuation. Measurements of IPIL depend strongly on the source used to measure them, especially for HPDs with less attenuation at low frequencies. ISIL provides an alternative measurement of impulse protection and appears to be a more complete description of an HPD's performance.

  18. Update on Breast Cancer Detection Using Comb-push Ultrasound Shear Elastography

    PubMed Central

    Denis, Max; Bayat, Mahdi; Mehrmohammadi, Mohammad; Gregory, Adriana; Song, Pengfei; Whaley, Dana H.; Pruthi, Sandhya; Chen, Shigao; Fatemi, Mostafa; Alizad, Azra

    2015-01-01

    In this work, tissue stiffness estimates are used to differentiate between benign and malignant breast masses in a group of pre-biopsy patients. The rationale being that breast masses are often stiffer than healthy tissue; furthermore, malignant masses are stiffer than benign masses. The comb-push ultrasound shear elastography (CUSE) method is used to noninvasively assess a tissue’s mechanical properties. CUSE utilizes a simultaneous multiple laterally spaced radiation force (ARF) excitations and detection sequence to reconstruct the region of interest (ROI) shear wave speed map, from which a tissue stiffness property is quantified by Young’s modulus. In this study, the tissue stiffness of 73 breast masses is interrogated. The mean shear wave speeds for malignant masses (3.42 ± 1.32 m/s) were higher than benign breast masses (6.04 ± 1.25 m/s). These speed values correspond to higher stiffness in malignant breast masses (114.9 ± 40.6 kPa) than benign masses (39.4 ± 28.1 kPa and p < 0.001), when tissue elasticity is quantified by Young’s modulus. A Young’s modulus > 83 kPa is established as a cut-off value for differentiating between malignant and benign suspicious breast masses, with receiver operating characteristic curve (ROC) of 89.19% sensitivity, 88.69% specificity, and 0.911 for the area under the curve (AUC). PMID:26688871

  19. Update on Breast Cancer Detection Using Comb-Push Ultrasound Shear Elastography.

    PubMed

    Denis, Max; Bayat, Mahdi; Mehrmohammadi, Mohammad; Gregory, Adriana; Song, Pengfei; Whaley, Dana H; Pruthi, Sandhya; Chen, Shigao; Fatemi, Mostafa; Alizad, Azra

    2015-09-01

    In this work, tissue stiffness estimates are used to differentiate between benign and malignant breast masses in a group of pre-biopsy patients. The rationale is that breast masses are often stiffer than healthy tissue; furthermore, malignant masses are stiffer than benign masses. The comb-push ultrasound shear elastography (CUSE) method is used to noninvasively assess a tissue's mechanical properties. CUSE utilizes a sequence of simultaneous multiple laterally spaced acoustic radiation force (ARF) excitations and detection to reconstruct the region of interest (ROI) shear wave speed map, from which a tissue stiffness property can be quantified. In this study, the tissue stiffnesses of 73 breast masses were interrogated. The mean shear wave speeds for benign masses (3.42 ± 1.32 m/s) were lower than malignant breast masses (6.04 ± 1.25 m/s). These speed values correspond to higher stiffness in malignant breast masses (114.9 ± 40.6 kPa) than benign masses (39.4 ± 28.1 kPa and p <; 0.001), when tissue elasticity is quantified by Young's modulus. A Young's modulus >83 kPa is established as a cut-off value for differentiating between malignant and benign suspicious breast masses, with a receiver operating characteristic curve (ROC) of 89.19% sensitivity, 88.69% specificity, and 0.911 for the area under the curve (AUC).

  20. Shear-wave elastography of the liver and spleen identifies clinically significant portal hypertension: A prospective multicentre study.

    PubMed

    Jansen, Christian; Bogs, Christopher; Verlinden, Wim; Thiele, Maja; Möller, Philipp; Görtzen, Jan; Lehmann, Jennifer; Vanwolleghem, Thomas; Vonghia, Luisa; Praktiknjo, Michael; Chang, Johannes; Krag, Aleksander; Strassburg, Christian P; Francque, Sven; Trebicka, Jonel

    2017-03-01

    Clinically significant portal hypertension (CSPH) is associated with severe complications and decompensation of cirrhosis. Liver stiffness measured either by transient elastography (TE) or Shear-wave elastography (SWE) and spleen stiffness by TE might be helpful in the diagnosis of CSPH. We recently showed the algorithm to rule-out CSPH using sequential liver- (L-SWE) and spleen-Shear-wave elastography (S-SWE). This study investigated the diagnostic value of S-SWE for diagnosis of CSPH. One hundred and fifty-eight cirrhotic patients with pressure gradient measurements were included into this prospective multicentre study. L-SWE was measured in 155 patients, S-SWE in 112 patients, and both in 109 patients. Liver-shear-wave elastography and S-SWE correlated with clinical events and decompensation. SWE of liver and spleen revealed strong correlations with the pressure gradient and to differentiate between patients with and without CSPH. The best cut-off values were 24.6 kPa:L-SWE and 26.3 kPa:S-SWE. L-SWE ≤16.0 kPa and S-SWE ≤21.7 kPa were able to rule-out CSPH. Cut-off values of L-SWE >29.5 kPa and S-SWE >35.6 kPa were able to rule-in CSPH (specificity >92%). Patients with a L-SWE >38.0 kPa had likely CSPH. In patients with L-SWE ≤38.0 kPa, a S-SWE >27.9 kPa ruled in CSPH. This algorithm has a sensitivity of 89.2% and a specificity of 91.4% to rule-in CSPH. Patients not fulfilling these criteria may undergo HVPG measurement. Liver and spleen SWE correlate with portal pressure and can both be used as a non-invasive method to investigate CSPH. Even though external validation is still missing, these algorithms to rule-out and rule-in CSPH using sequential SWE of liver and spleen might change the clinical practice. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  1. Impulsive spherical gravitational waves

    NASA Astrophysics Data System (ADS)

    Aliev, A. N.; Nutku, Y.

    2001-03-01

    Penrose's identification with warp provides the general framework for constructing the continuous form of impulsive gravitational wave metrics. We present the two-component spinor formalism for the derivation of the full family of impulsive spherical gravitational wave metrics which brings out the power in identification with warp and leads to the simplest derivation of exact solutions. These solutions of the Einstein vacuum field equations are obtained by cutting Minkowski space into two pieces along a null cone and re-identifying them with warp which is given by an arbitrary nonlinear holomorphic transformation. Using two-component spinor techniques we construct a new metric describing an impulsive spherical gravitational wave where the vertex of the null cone lies on a worldline with constant acceleration.

  2. The effects of dorso-lumbar motion restriction on the ground reaction force components during running.

    PubMed

    Morley, Joseph J; Traum, Edward

    2016-04-01

    The effects of restricting dorso-lumbar spine mobility on ground reaction forces in runners was measured and assessed. A semi-rigid cast was used to restrict spinal motion during running. Subjects ran across a force platform at 3.6 m/s, planting the right foot on the platform. Data was collected from ten running trials with the cast and ten without the cast and analysed. Casted running showed that the initial vertical heel strike maximum was increased (p < .02) and that the anterior-posterior deceleration impulse was increased (p < .01). The maximum vertical ground reaction force was decreased in casted running (p < .01), as was the anterior-posterior acceleration impulse (p < .02). There was a trend for increased medial-lateral impulse in the uncasted state, but this was not statistically significant. Spinal mobility and fascia contribute to load transfer between joints and body segments. Experimentally restricting spinal motion during running results in measurable and repeatable alterations in ground reaction force components. Alterations in load transfer due to decreased spinal motion may be a factor contributing to selected injuries in runners. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Different relations between schedule-induced polydipsia and impulsive behaviour in the Spontaneously Hypertensive Rat and in high impulsive Wistar rats: questioning the role of impulsivity in adjunctive behaviour.

    PubMed

    Ibias, Javier; Pellón, Ricardo

    2014-09-01

    Rats belonging to three different strains (15 Wistar, 8 Spontaneously Hypertensive - SHR- and 8 Wistar Kyoto - WKY-) were used to evaluate the possible relationship between different levels of impulsivity and development of schedule-induced polydipsia (SIP). We first measured the rats' levels of impulsivity by means of delay-discounting and indifference-point procedures. Secondly, development of SIP was studied under a series of fixed time 15, 30, 60 and 120s food schedules, which were counterbalanced by means of a Latin-square design. Finally, we re-assessed the rats' levels of impulsivity by replicating the delay-discounting test. The findings showed that, starting from equivalent levels of impulsivity, development of SIP differed among the groups of rats. In comparison with the rest of the animals, the SHRs were observed to attain elevated drinking rates under SIP. On the other hand, the Wistar rats which had initial high impulsivity levels similar to those of the SHRs, displayed the lowest rates of induced drinking. Moreover, low levels of impulsivity in Wistar rats prior to SIP acquisition were reflected into high drinking rates. Relation of SIP and impulsivity is questioned by present results, which gives ground to the understanding of the behavioural mechanisms involved in adjunctive behaviour and its usefulness as an animal model of excessive behaviour. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Barratt Impulsivity and Neural Regulation of Physiological Arousal.

    PubMed

    Zhang, Sheng; Hu, Sien; Hu, Jianping; Wu, Po-Lun; Chao, Herta H; Li, Chiang-shan R

    2015-01-01

    Theories of personality have posited an increased arousal response to external stimulation in impulsive individuals. However, there is a dearth of studies addressing the neural basis of this association. We recorded skin conductance in 26 individuals who were assessed with Barratt Impulsivity Scale (BIS-11) and performed a stop signal task during functional magnetic resonance imaging. Imaging data were processed and modeled with Statistical Parametric Mapping. We used linear regressions to examine correlations between impulsivity and skin conductance response (SCR) to salient events, identify the neural substrates of arousal regulation, and examine the relationship between the regulatory mechanism and impulsivity. Across subjects, higher impulsivity is associated with greater SCR to stop trials. Activity of the ventromedial prefrontal cortex (vmPFC) negatively correlated to and Granger caused skin conductance time course. Furthermore, higher impulsivity is associated with a lesser strength of Granger causality of vmPFC activity on skin conductance, consistent with diminished control of physiological arousal to external stimulation. When men (n = 14) and women (n = 12) were examined separately, however, there was evidence suggesting association between impulsivity and vmPFC regulation of arousal only in women. Together, these findings confirmed the link between Barratt impulsivity and heightened arousal to salient stimuli in both genders and suggested the neural bases of altered regulation of arousal in impulsive women. More research is needed to explore the neural processes of arousal regulation in impulsive individuals and in clinical conditions that implicate poor impulse control.

  5. The Stomach-Derived Hormone Ghrelin Increases Impulsive Behavior

    PubMed Central

    Anderberg, Rozita H; Hansson, Caroline; Fenander, Maya; Richard, Jennifer E; Dickson, Suzanne L; Nissbrandt, Hans; Bergquist, Filip; Skibicka, Karolina P

    2016-01-01

    Impulsivity, defined as impaired decision making, is associated with many psychiatric and behavioral disorders, such as attention-deficit/hyperactivity disorder as well as eating disorders. Recent data indicate that there is a strong positive correlation between food reward behavior and impulsivity, but the mechanisms behind this relationship remain unknown. Here we hypothesize that ghrelin, an orexigenic hormone produced by the stomach and known to increase food reward behavior, also increases impulsivity. In order to assess the impact of ghrelin on impulsivity, rats were trained in three complementary tests of impulsive behavior and choice: differential reinforcement of low rate (DRL), go/no-go, and delay discounting. Ghrelin injection into the lateral ventricle increased impulsive behavior, as indicated by reduced efficiency of performance in the DRL test, and increased lever pressing during the no-go periods of the go/no-go test. Central ghrelin stimulation also increased impulsive choice, as evidenced by the reduced choice for large rewards when delivered with a delay in the delay discounting test. In order to determine whether signaling at the central ghrelin receptors is necessary for maintenance of normal levels of impulsive behavior, DRL performance was assessed following ghrelin receptor blockade with central infusion of a ghrelin receptor antagonist. Central ghrelin receptor blockade reduced impulsive behavior, as reflected by increased efficiency of performance in the DRL task. To further investigate the neurobiological substrate underlying the impulsivity effect of ghrelin, we microinjected ghrelin into the ventral tegmental area, an area harboring dopaminergic cell bodies. Ghrelin receptor stimulation within the VTA was sufficient to increase impulsive behavior. We further evaluated the impact of ghrelin on dopamine-related gene expression and dopamine turnover in brain areas key in impulsive behavior control. This study provides the first

  6. Impulsive Behaviors as an Emotion Regulation Strategy: Examining Associations between PTSD, Emotion Dysregulation, and Impulsive Behaviors among Substance Dependent Inpatients

    PubMed Central

    Weiss, Nicole H.; Tull, Matthew T.; Viana, Andres G.; Anestis, Michael D.; Gratz, Kim L.

    2012-01-01

    Recent investigations have demonstrated that posttraumatic stress disorder (PTSD) is associated with a range of impulsive behaviors (e.g., risky sexual behavior and antisocial behavior). The purpose of the present study was to extend extant research by exploring whether emotion dysregulation explains the association between PTSD and impulsive behaviors. Participants were an ethnically diverse sample of 206 substance use disorder (SUD) patients in residential substance abuse treatment. Results demonstrated an association between PTSD and impulsive behaviors, with SUD patients with PTSD reporting significantly more impulsive behaviors than SUD patients without PTSD (in general and when controlling for relevant covariates). Further, emotion dysregulation was found to fully mediate the relationship between PTSD and impulsive behaviors. Results highlight the relevance of emotion dysregulation to impulsive behaviors and suggest that treatments targeting emotion dysregulation may be useful in reducing impulsive behaviors among SUD patients with PTSD. PMID:22366447

  7. Accuracy and precision of loadsol® insole force-sensors for the quantification of ground reaction force-based biomechanical running parameters.

    PubMed

    Seiberl, Wolfgang; Jensen, Elisabeth; Merker, Josephine; Leitel, Marco; Schwirtz, Ansgar

    2018-05-29

    Force plates represent the "gold standard" in measuring running kinetics to predict performance or to identify the sources of running-related injuries. As these measurements are generally limited to laboratory analyses, wireless high-quality sensors for measuring in the field are needed. This work analysed the accuracy and precision of a new wireless insole forcesensor for quantifying running-related kinetic parameters. Vertical ground reaction force (GRF) was simultaneously measured with pit-mounted force plates (1 kHz) and loadsol ® sensors (100 Hz) under unshod forefoot and rearfoot running-step conditions. GRF data collections were repeated four times, each separated by 30 min treadmill running, to test influence of extended use. A repeated-measures ANOVA was used to identify differences between measurement devices. Additionally, mean bias and Bland-Altman limits of agreement (LoA) were calculated. We found a significant difference (p < .05) in ground contact time, peak force, and force rate, while there was no difference in parameters impulse, time to peak, and negative force rate. There was no influence of time point of measurement. The mean bias of ground contact time, impulse, peak force, and time to peak ranged between 0.6% and 3.4%, demonstrating high accuracy of loadsol ® devices for these parameters. For these same parameters, the LoA analysis showed that 95% of all measurement differences between insole and force plate measurements were less than 12%, demonstrating high precision of the sensors. However, highly dynamic behaviour of GRF, such as force rate, is not yet sufficiently resolved by the insole devices, which is likely explained by the low sampling rate.

  8. Dissecting Impulsivity and its Relationships to Drug Addictions

    PubMed Central

    Ashenhurst, James R.; Cervantes, M. Catalina; James, Alexander S.; Groman, Stephanie M.; Pennington, Zachary T.

    2015-01-01

    Addictions are often characterized as forms of impulsive behavior. That said, it is often noted that impulsivity is a multidimensional construct, spanning several psychological domains. This review describes the relationship between varieties of impulsivity and addiction-related behaviors, the nature of the causal relationship between the two and the underlying neurobiological mechanisms that promote impulsive behaviors. We conclude that the available data strongly supports the notion that impulsivity is both a risk factor for, and a consequence of, drug and alcohol consumption. While the evidence indicating that subtypes of impulsive behavior are uniquely informative – either biologically or with respect to their relationships to addictions – is convincing, multiple lines of study link “distinct” subtypes of impulsivity to low dopamine D2 receptor function and perturbed serotonergic transmission, revealing shared mechanisms between the subtypes. Therefore, a common biological framework involving monoaminergic transmitters in key frontostriatal circuits may link multiple forms of impulsivity to drug self-administration and addiction-related behaviors. Further dissection of these relationships is needed before the next phase of genetic and genomic discovery will be able to reveal the biological sources of the vulnerability for addiction indexed by impulsivity. PMID:24654857

  9. Normal values of spleen stiffness in healthy children assessed by acoustic radiation force impulse imaging (ARFI): comparison between two ultrasound transducers.

    PubMed

    Cañas, Teresa; Fontanilla, Teresa; Miralles, María; Maciá, Araceli; Malalana, Ana; Román, Enriqueta

    2015-08-01

    Portal hypertension, a major complication of hepatic fibrosis, can affect the stiffness of the spleen. To suggest normal values of spleen stiffness determined by acoustic radiation force impulse imaging in healthy children and to compare measurements using two different US probes. In a prospective study, 60 healthy children between 1 day and 14 years of age were assigned to four age groups with 15 children in each. Measurements were performed using two transducers (convex 4C1 and linear 9L4), and 10 measurements were obtained in each child, 5 with each probe. The mean splenic shear wave velocities were 2.17 m/s (SD 0.35, 95% CI 2.08-2.26) with the 4C1 probe and 2.15 m/s (SD 0.23, 95% CI 2.09-2.21) with the 9L4 probe (not significant). We found normal values for spleen stiffness with no difference in the mean values obtained using two types of US transducers, but with higher variability using a convex compared to a linear transducer.

  10. Impulse-control disorders in a college sample: results from the self-administered Minnesota Impulse Disorders Interview (MIDI).

    PubMed

    Odlaug, Brian L; Grant, Jon E

    2010-01-01

    This study sought to examine the prevalence rates of and gender differences among impulse-control disorders in a college sample. During the fall semester of 2006, 791 college students from 2 private colleges in the Midwest completed a self-administered, modified version of the Minnesota Impulse Disorders Interview to assess lifetime rates of DSM-IV-TR-diagnosed impulse-control disorders. Participation was voluntary and anonymous. The mean age of the sample was 20.0 +/- 1.25 years, with females comprising 67.9% of the respondents. Of the individuals, 10.4% (n = 82) met criteria for at least 1 lifetime impulse-control disorder. The most common disorders were trichotillomania (3.91%) and compulsive sexual behavior (3.66%). Kleptomania was the least common (0.38%). Males were significantly more likely to screen positive for pathological gambling (P = .003) and compulsive sexual behavior (P = .002). Females were more likely to have compulsive buying (P = .033). Impulse-control disorders appear to be common among college students. The high rates indicate that these disorders may be incipient during late adolescence and early adulthood and should be addressed prior to onset of clinical versions of the impulse-control disorder.

  11. Genetic and Modeling Approaches Reveal Distinct Components of Impulsive Behavior

    PubMed Central

    Nautiyal, Katherine M; Wall, Melanie M; Wang, Shuai; Magalong, Valerie M; Ahmari, Susanne E; Balsam, Peter D; Blanco, Carlos; Hen, René

    2017-01-01

    Impulsivity is an endophenotype found in many psychiatric disorders including substance use disorders, pathological gambling, and attention deficit hyperactivity disorder. Two behavioral features often considered in impulsive behavior are behavioral inhibition (impulsive action) and delayed gratification (impulsive choice). However, the extent to which these behavioral constructs represent distinct facets of behavior with discrete biological bases is unclear. To test the hypothesis that impulsive action and impulsive choice represent statistically independent behavioral constructs in mice, we collected behavioral measures of impulsivity in a single cohort of mice using well-validated operant behavioral paradigms. Mice with manipulation of serotonin 1B receptor (5-HT1BR) expression were included as a model of disordered impulsivity. A factor analysis was used to characterize correlations between the measures of impulsivity and to identify covariates. Using two approaches, we dissociated impulsive action from impulsive choice. First, the absence of 5-HT1BRs caused increased impulsive action, but not impulsive choice. Second, based on an exploratory factor analysis, a two-factor model described the data well, with measures of impulsive action and choice separating into two independent factors. A multiple-indicator multiple-causes analysis showed that 5-HT1BR expression and sex were significant covariates of impulsivity. Males displayed increased impulsivity in both dimensions, whereas 5-HT1BR expression was a predictor of increased impulsive action only. These data support the conclusion that impulsive action and impulsive choice are distinct behavioral phenotypes with dissociable biological influences that can be modeled in mice. Our work may help inform better classification, diagnosis, and treatment of psychiatric disorders, which present with disordered impulsivity. PMID:27976680

  12. Spectral analysis of hearing protector impulsive insertion loss

    PubMed Central

    Fackler, Cameron J.; Berger, Elliott H.; Murphy, William J.; Stergar, Michael E.

    2017-01-01

    Objective To characterize the performance of hearing protection devices in impulsive-noise conditions and to compare various protection metrics between impulsive and steady-state noise sources with different characteristics. Design Hearing protectors were measured per the impulsive test methods of ANSI/ASA S12.42-2010. Protectors were measured with impulses generated by both an acoustic shock tube and an AR-15 rifle. The measured data were analyzed for impulse peak insertion loss (IPIL) and impulsive spectral insertion loss (ISIL). These impulsive measurements were compared to insertion loss measured with steady-state noise and with real-ear attenuation at threshold (REAT). Study Sample Tested devices included a foam earplug, a level-dependent earplug, and an electronic sound-restoration earmuff. Results IPIL for a given protector varied between measurements with the two impulse noise sources, but ISIL agreed between the two sources. The level-dependent earplug demonstrated level-dependent effects both in IPIL and ISIL. Steady-state insertion loss and REAT measurements tended to provide a conservative estimate of the impulsively-measured attenuation. Conclusions Measurements of IPIL depend strongly on the source used to measure them, especially for hearing protectors with less attenuation at low frequencies. ISIL provides an alternative measurement of impulse protection and appears to be a more complete description of an HPD’s performance. PMID:27885881

  13. Endeavour Impulse Tests

    NASA Image and Video Library

    2003-10-27

    In the Orbiter Processing Facility, Eric Madaras, NASA-Langley Research Center, conducts impulse tests on the right wing leading edge (WLE) of Space Shuttle Endeavour. The tests monitor how sound impulses propagate through the WLE area. The data collected will be analyzed to explore the possibility of adding new instrumentation to the wing that could automatically detect debris or micrometeroid impacts on the Shuttle while in flight. The study is part of the initiative ongoing at KSC and around the agency to return the orbiter fleet to flight status.

  14. Analysis of Transient Shear Wave in Lossy Media.

    PubMed

    Parker, Kevin J; Ormachea, Juvenal; Will, Scott; Hah, Zaegyoo

    2018-07-01

    The propagation of shear waves from impulsive forces is an important topic in elastography. Observations of shear wave propagation can be obtained with numerous clinical imaging systems. Parameter estimations of the shear wave speed in tissues, and more generally the viscoelastic parameters of tissues, are based on some underlying models of shear wave propagation. The models typically include specific choices of the spatial and temporal shape of the impulsive force and the elastic or viscoelastic properties of the medium. In this work, we extend the analytical treatment of 2-D shear wave propagation in a biomaterial. The approach applies integral theorems relevant to the solution of the generalized Helmholtz equation, and does not depend on a specific rheological model of the tissue's viscoelastic properties. Estimators of attenuation and shear wave speed are derived from the analytical solutions, and these are applied to an elastic phantom, a viscoelastic phantom and in vivo liver using a clinical ultrasound scanner. In these samples, estimated shear wave group velocities ranged from 1.7 m/s in the liver to 2.5 m/s in the viscoelastic phantom, and these are lower-bounded by independent measurements of phase velocity. Copyright © 2018 World Federation for Ultrasound in Medicine and Biology. Published by Elsevier Inc. All rights reserved.

  15. Effects of acoustic impulses on hearing

    NASA Astrophysics Data System (ADS)

    Fleischer, Gerald; Müller, Reinhard; Heppelmann, Guido; Bache, Thomas

    2002-05-01

    It is well known that acoustic impulses are especially dangerous to the ear. In order to understand the damaging mechanisms involved, cases of acute acoustic trauma in man were systematically collected and documented for many years. When possible, the damaging impulses were recreated and measured, to correlate the impulses with the auditory damage they caused. Detailed pure-tone audiometry up to 16 kHz was used to determine the effects on hearing. Together with epidemiological studies on various occupations, three different damaging mechanisms can be discerned. Relatively long and massive impulses (some explosions, some airbags) often lead to damage at low frequencies, from about 0.5 to 1.5 kHz. The typical notch at about 4 to 6 kHz typically is the result of strong peaks, lasting several milliseconds, or longer. There is another notch at 12 to 14 kHz, characteristic of very short, needle-like impulses that are caused by many hand weapons, toy pistols, and firecrackers. Probable mechanisms are discussed.

  16. Impulsivity, "advergames," and food intake.

    PubMed

    Folkvord, Frans; Anschütz, Doeschka J; Nederkoorn, Chantal; Westerik, Henk; Buijzen, Moniek

    2014-06-01

    Previous studies have focused on the effect of food advertisements on the caloric intake of children. However, the role of individual susceptibility in this effect is unclear. The aim of this study was to examine the role of impulsivity in the effect of advergames that promote energy-dense snacks on children's snack intake. First, impulsivity scores were assessed with a computer task. Then a randomized between-subject design was conducted with 261 children aged 7 to 10 years who played an advergame promoting either energy-dense snacks or nonfood products. As an extra manipulation, half of the children in each condition were rewarded for refraining from eating, the other half were not. Children could eat freely while playing the game. Food intake was measured. The children then completed questionnaire measures, and were weighed and measured. Overall, playing an advergame containing food cues increased general caloric intake. Furthermore, rewarding children to refrain from eating decreased their caloric intake. Finally, rewarding impulsive children to refrain from eating had no influence when they were playing an advergame promoting energy-dense snacks, whereas it did lead to reduced intake among low impulsive children and children who played nonfood advergames. Playing an advergame promoting energy-dense snacks contributes to increased caloric intake in children. The advergame promoting energy-dense snacks overruled the inhibition task to refrain from eating among impulsive children, making it more difficult for them to refrain from eating. The findings suggest that impulsivity plays an important role in susceptibility to food advertisements. Copyright © 2014 by the American Academy of Pediatrics.

  17. Barratt Impulsivity and Neural Regulation of Physiological Arousal

    PubMed Central

    Zhang, Sheng; Hu, Sien; Hu, Jianping; Wu, Po-Lun; Chao, Herta H.; Li, Chiang-shan R.

    2015-01-01

    Background Theories of personality have posited an increased arousal response to external stimulation in impulsive individuals. However, there is a dearth of studies addressing the neural basis of this association. Methods We recorded skin conductance in 26 individuals who were assessed with Barratt Impulsivity Scale (BIS-11) and performed a stop signal task during functional magnetic resonance imaging. Imaging data were processed and modeled with Statistical Parametric Mapping. We used linear regressions to examine correlations between impulsivity and skin conductance response (SCR) to salient events, identify the neural substrates of arousal regulation, and examine the relationship between the regulatory mechanism and impulsivity. Results Across subjects, higher impulsivity is associated with greater SCR to stop trials. Activity of the ventromedial prefrontal cortex (vmPFC) negatively correlated to and Granger caused skin conductance time course. Furthermore, higher impulsivity is associated with a lesser strength of Granger causality of vmPFC activity on skin conductance, consistent with diminished control of physiological arousal to external stimulation. When men (n = 14) and women (n = 12) were examined separately, however, there was evidence suggesting association between impulsivity and vmPFC regulation of arousal only in women. Conclusions Together, these findings confirmed the link between Barratt impulsivity and heightened arousal to salient stimuli in both genders and suggested the neural bases of altered regulation of arousal in impulsive women. More research is needed to explore the neural processes of arousal regulation in impulsive individuals and in clinical conditions that implicate poor impulse control. PMID:26079873

  18. Measurement of real-time tissue elastography in a phantom model and comparison with transient elastography in pediatric patients with liver diseases.

    PubMed

    Schenk, Jens-Peter; Alzen, Gerhard; Klingmüller, Volker; Teufel, Ulrike; El Sakka, Saroa; Engelmann, Guido; Selmi, Buket

    2014-01-01

    We aimed to determine the comparability of real-time tissue elastography (RTE) and transient elastography (TE) in pediatric patients with liver diseases. RTE was performed on the Elasticity QA Phantom Model 049 (Computerized Imaging Reference Systems Company Inc., Norfolk, Virginia, USA), which has five areas with different levels of stiffness. RTE measurements of relative stiffness (MEAN [mean value of tissue elasticity], AREA [% of blue color-coded stiffer tissue]) in the phantom were compared with the phantom stiffness specified in kPa (measurement unit of TE). RTE and TE were performed on 147 pediatric patients with various liver diseases. A total of 109 measurements were valid. The participants had following diseases: metabolic liver disease (n=25), cystic fibrosis (n=20), hepatopathy of unknown origin (n=11), autoimmune hepatitis (n=12), Wilson's disease (n=11), and various liver parenchyma alterations (n=30). Correlations between RTE and TE measurements in the patients were calculated. In addition, RTE was performed on a control group (n=30), and the RTE values between the patient and control groups were compared. The RTE parameters showed good correlation in the phantom model with phantom stiffness (MEAN/kPa, r=-0.97; AREA/kPa, r=0.98). However, the correlation of RTE and TE was weak in the patient group (MEAN/kPa, r=-0.23; AREA/kPa, r=0.24). A significant difference was observed between the patient and control groups (MEAN, P = 5.32 e-7; AREA, P = 1.62 e-6). In the phantom model, RTE was correlated with kPa, confirming the presumed comparability of the methods. However, there was no direct correlation between RTE and TE in patients with defined liver diseases under real clinical conditions.

  19. Real time elastography - a non-invasive diagnostic method of small hepatocellular carcinoma in cirrhosis.

    PubMed

    Gheorghe, Liana; Iacob, Speranta; Iacob, Razvan; Dumbrava, Mona; Becheanu, Gabriel; Herlea, Vlad; Gheorghe, Cristian; Lupescu, Ioana; Popescu, Irinel

    2009-12-01

    Small nodules (under 3 cm) detected on ultrasound (US) in cirrhotics represent the most challenging category for noninvasive diagnosis of hepatocellular carcinoma (HCC). To evaluate real-time sonoelastography as a noninvasive tool for the diagnosis of small HCC nodules in cirrhotic patients. 42 cirrhotic patients with 58 nodules (1-3 cm) were evaluated with real-time elastography (Hitachi EUB-6500); the mean intensity of colors red, blue, green were measured using a semi-quantitative method. Analysis of histograms for each color of the sonoelastography images was performed for quantifying the elasticity of nodule tissue in comparison with the cirrhotic liver tissue. AUROC curves were constructed to define the best cut-off points to distinguish malignant features of the nodules. Univariate and multivariate logistic regression analysis was performed. 595 sonoelastography images from 42 patients (25 men; 17 women) were analyzed. The mean age was 56.4 +/- 0.7 years and 69% patients were in Child-Pugh class A, 19% class B, 11% class C. For the mean intensity of green color AUROC=0.81, a cut-off value under 108.7 being diagnostic for HCC with a Sp=91.1%, Se=50%, PPV=92.1%, NPV=47.1%. Mean intensity of blue color proved to be an excellent diagnostic tool for HCC (AUROC=0.94); for a cut-off value greater than 128.9, Sp=92.2%, Se=78.9%, PPV=95.4%, NPV=68%. Independent predictive factors of HCC for a small nodule in cirrhotic patients were: blue color over 128.9 at sonoelastography and hypervascular appearance at Doppler US. US elastography is a promising method for the non-invasive diagnosis of early HCC. Blue color at elastography and hypervascular aspects are independent predictors of HCC.

  20. Reference Values for Shear Wave Elastography of Neck and Shoulder Muscles in Healthy Individuals.

    PubMed

    Ewertsen, Caroline; Carlsen, Jonathan; Perveez, Mohammed Aftab; Schytz, Henrik

    2018-01-01

    to establish reference values for ultrasound shear-wave elastography for pericranial muscles in healthy individuals (m. trapezius, m. splenius capitis, m. semispinalis capitis, m. sternocleidomastoideus and m. masseter). Also to evaluate day-to-day variations in the shear-wave speeds and evaluate the effect of the pennation of the muscle fibers, ie scanning parallel or perpendicularly to the fibers. 10 healthy individuals (5 males and 5 females) had their pericranial muscles examined with shear-wave elastography in two orthogonal planes on two different days for their dominant and non-dominant side. Mean shear wave speeds from 5 ROI's in each muscle, for each scan plane for the dominant and non-dominant side for the two days were calculated. The effect of the different parameters - muscle pennation, gender, dominant vs non-dominant side and day was evaluated. The effect of scan plane in relation to muscle pennation was statistically significant (p<0.0001). The mean shear-wave speed when scanning parallel to the muscle fibers was significantly higher than the mean shear-wave speed when scanning perpendicularly to the fibers. The day-to-day variation was statistically significant (p=0.0258), but not clinically relevant. Shear-wave speeds differed significantly between muscles. Mean shear wave speeds (m/s) for the muscles in the parallel plane were: for masseter 2.45 (SD:+/-0.25), semispinal 3.36 (SD:+/-0.75), splenius 3.04 (SD:+/-0.65), sternocleidomastoid 2.75 (SD:+/-0.23), trapezius 3.20 (SD:+/-0.27) and trapezius lateral 3.87 (SD:+/-3.87). The shear wave speed variation depended on the direction of scanning. Shear wave elastography may be a method to evaluate muscle stiffness in patients suffering from chronic neck pain.

  1. Effects of Acoustic Impulses on the Middle Ear

    DTIC Science & Technology

    2015-10-01

    and civilian law enforcement weapon systems, civilian recreational hunting and shooting, and industrial high-level impulsive noises (impacts and...PERSON USAMRMC a. REPORT Unclassified b. ABSTRACT Unclassified c. THIS PAGE Unclassified 19b. TELEPHONE NUMBER (include area code) Standard Form...impulsive noises (impacts and impulses). Keywords: Noise exposure; hearing loss, noise -induced; impulsive noise ; reflex; conditioned response

  2. Sit-to-stand ground reaction force characteristics in blind and sighted female children.

    PubMed

    Faraji Aylar, Mozhgan; Jafarnezhadgero, Amir Ali; Salari Esker, Fatemeh

    2018-03-05

    The association between visual sensory and sit-to-stand ground reaction force characteristics is not clear. Impulse is the amount of force applied over a period of time. Also, free moment represents the vertical moment applied in the center of pressure (COP). How the ground reaction force components, vertical loading rate, impulses and free moment respond to long and short term restricted visual information? Fifteen female children with congenital blindness and 45 healthy girls with no visual impairments participated in this study. The girls with congenital blindness were placed in one group and the 45 girls with no visual impairments were randomly divided into three groups of 15; eyes open, permanently eyes closed, and temporary eyes closed. The participants in the permanently eyes closed group closed their eyes for 20 min before the test, whereas temporary eyes closed group did tests with their eyes closed throughout, and those in the eyes open group kept their eyes open. Congenital blindness was associated with increased vertical loading rate, range of motion of knee and hip in the medio-lateral plane. Also, medio-lateral and vertical ground reaction force impulses. Similar peak negative and positive free moments were observed in three groups. In conclusion, the results reveal that sit-to-stand ground reaction force components in blind children may have clinical importance for improvement of balance control of these individuals. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Monitoring Cartilage Tissue Engineering Using Magnetic Resonance Spectroscopy, Imaging, and Elastography

    PubMed Central

    Klatt, Dieter; Magin, Richard L.

    2013-01-01

    A key technical challenge in cartilage tissue engineering is the development of a noninvasive method for monitoring the composition, structure, and function of the tissue at different growth stages. Due to its noninvasive, three-dimensional imaging capabilities and the breadth of available contrast mechanisms, magnetic resonance imaging (MRI) techniques can be expected to play a leading role in assessing engineered cartilage. In this review, we describe the new MR-based tools (spectroscopy, imaging, and elastography) that can provide quantitative biomarkers for cartilage tissue development both in vitro and in vivo. Magnetic resonance spectroscopy can identify the changing molecular structure and alternations in the conformation of major macromolecules (collagen and proteoglycans) using parameters such as chemical shift, relaxation rates, and magnetic spin couplings. MRI provides high-resolution images whose contrast reflects developing tissue microstructure and porosity through changes in local relaxation times and the apparent diffusion coefficient. Magnetic resonance elastography uses low-frequency mechanical vibrations in conjunction with MRI to measure soft tissue mechanical properties (shear modulus and viscosity). When combined, these three techniques provide a noninvasive, multiscale window for characterizing cartilage tissue growth at all stages of tissue development, from the initial cell seeding of scaffolds to the development of the extracellular matrix during construct incubation, and finally, to the postimplantation assessment of tissue integration in animals and patients. PMID:23574498

  4. Ultrahigh resolution optical coherence elastography using a Bessel beam for extended depth of field

    NASA Astrophysics Data System (ADS)

    Curatolo, Andrea; Villiger, Martin; Lorenser, Dirk; Wijesinghe, Philip; Fritz, Alexander; Kennedy, Brendan F.; Sampson, David D.

    2016-03-01

    Visualizing stiffness within the local tissue environment at the cellular and sub-cellular level promises to provide insight into the genesis and progression of disease. In this paper, we propose ultrahigh-resolution optical coherence elastography, and demonstrate three-dimensional imaging of local axial strain of tissues undergoing compressive loading. The technique employs a dual-arm extended focus optical coherence microscope to measure tissue displacement under compression. The system uses a broad bandwidth supercontinuum source for ultrahigh axial resolution, Bessel beam illumination and Gaussian beam detection, maintaining sub-2 μm transverse resolution over nearly 100 μm depth of field, and spectral-domain detection allowing high displacement sensitivity. The system produces strain elastograms with a record resolution (x,y,z) of 2×2×15 μm. We benchmark the advances in terms of resolution and strain sensitivity by imaging a suitable inclusion phantom. We also demonstrate this performance on freshly excised mouse aorta and reveal the mechanical heterogeneity of vascular smooth muscle cells and elastin sheets, otherwise unresolved in a typical, lower resolution optical coherence elastography system.

  5. Impulse position control algorithms for nonlinear systems

    NASA Astrophysics Data System (ADS)

    Sesekin, A. N.; Nepp, A. N.

    2015-11-01

    The article is devoted to the formalization and description of impulse-sliding regime in nonlinear dynamical systems that arise in the application of impulse position controls of a special kind. The concept of trajectory impulse-sliding regime formalized as some limiting network element Euler polygons generated by a discrete approximation of the impulse position control This paper differs from the previously published papers in that it uses a definition of solutions of systems with impulse controls, it based on the closure of the set of smooth solutions in the space of functions of bounded variation. The need for the study of such regimes is the fact that they often arise when parry disturbances acting on technical or economic control system.

  6. Impulse position control algorithms for nonlinear systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sesekin, A. N., E-mail: sesekin@list.ru; Institute of Mathematics and Mechanics, Ural Division of Russian Academy of Sciences, 16 S. Kovalevskaya, Ekaterinburg, 620990; Nepp, A. N., E-mail: anepp@urfu.ru

    2015-11-30

    The article is devoted to the formalization and description of impulse-sliding regime in nonlinear dynamical systems that arise in the application of impulse position controls of a special kind. The concept of trajectory impulse-sliding regime formalized as some limiting network element Euler polygons generated by a discrete approximation of the impulse position control This paper differs from the previously published papers in that it uses a definition of solutions of systems with impulse controls, it based on the closure of the set of smooth solutions in the space of functions of bounded variation. The need for the study of suchmore » regimes is the fact that they often arise when parry disturbances acting on technical or economic control system.« less

  7. Norepinephrine and impulsivity: Effects of acute yohimbine

    PubMed Central

    Swann, Alan C.; Lijffijt, Marijn; Lane, Scott D.; Cox, Blake; Steinberg, Joel L.; Moeller, F. Gerard

    2013-01-01

    Rationale Rapid-response impulsivity, characterized by inability to withhold response to a stimulus until it is adequately appraised, is associated with risky behavior and may be increased in a state-dependent manner by norepinephrine. Objective We assessed effects of yohimbine, which increases norepinephrine release by blocking alpha-2 noradrenergic receptors, on plasma catecholamine metabolites, blood pressure, subjective symptoms, and laboratory-measured rapid-response impulsivity. Methods Subjects were twenty-three healthy controls recruited from the community, with normal physical examination and ECG, and negative history for hypertension, cardiovascular illness, and Axis I or II disorder. Blood pressure, pulse, and behavioral measures were obtained before and periodically after 0.4 mg/kg oral yohimbine or placebo in a randomized, counterbalanced design. Metabolites of norepinephrine (3-methoxy-4-hydroxyphenylglycol, MHPG; vanillylmandelic acid, VMA) and dopamine (homovanillic acid, HVA) were measured by high pressure liquid chromatography with electrochemical detection. Rapid-response impulsivity was measured by commission errors and reaction times on the Immediate Memory Task (IMT), a continuous performance test designed to measure impulsivity and attention. Results Yohimbine increased plasma MHPG and VMA but not HVA. Yohimbine increased systolic and diastolic blood pressure and pulse rate. On the IMT, yohimbine increased impulsive errors and impulsive response bias and accelerated reaction times. Yohimbine-associated increase in plasma MHPG correlated with increased impulsive response rates. Time courses varied; effects on blood pressure generally preceded those on metabolites and test performance. Conclusions These effects are consistent with increased rapid-response impulsivity after pharmacological noradrenergic stimulation in healthy controls. Labile noradrenergic responses, or increased sensitivity to norepinephrine, may increase risk for impulsive

  8. A bifurcation giving birth to order in an impulsively driven complex system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seshadri, Akshay, E-mail: akshayseshadri@gmail.com; Sujith, R. I., E-mail: sujith@iitm.ac.in

    Nonlinear oscillations lie at the heart of numerous complex systems. Impulsive forcing arises naturally in many scenarios, and we endeavour to study nonlinear oscillators subject to such forcing. We model these kicked oscillatory systems as a piecewise smooth dynamical system, whereby their dynamics can be investigated. We investigate the problem of pattern formation in a turbulent combustion system and apply this formalism with the aim of explaining the observed dynamics. We identify that the transition of this system from low amplitude chaotic oscillations to large amplitude periodic oscillations is the result of a discontinuity induced bifurcation. Further, we provide anmore » explanation for the occurrence of intermittent oscillations in the system.« less

  9. Destabilizing Effects of Impulse in Delayed Bam Neural Networks

    NASA Astrophysics Data System (ADS)

    Li, Chuandong; Li, Chaojie; Liu, Chao

    This paper further studies the global exponential stability of the equilibrium point of the delayed bidirectional associative memory (DBAM) neural networks with impulse effects. Several results characterizing the aggregated effects of impulse and dynamical property of the impulse-free DBAM on the exponential stability of the considered DBAM have been established. It is shown that the impulsive DBAM will preserve the global exponential stability of the impulse-free DBAM even if the impulses have enlarging effects on the states of neurons.

  10. Excitation of vertical coronal loop oscillations by impulsively driven flows

    NASA Astrophysics Data System (ADS)

    Kohutova, P.; Verwichte, E.

    2018-05-01

    Context. Flows of plasma along a coronal loop caused by the pressure difference between loop footpoints are common in the solar corona. Aims: We aim to investigate the possibility of excitation of loop oscillations by an impulsively driven flow triggered by an enhanced pressure in one of the loop footpoints. Methods: We carry out 2.5D magnetohydrodynamic (MHD) simulations of a coronal loop with an impulsively driven flow and investigate the properties and evolution of the resulting oscillatory motion of the loop. Results: The action of the centrifugal force associated with plasma moving at high speeds along the curved axis of the loop is found to excite the fundamental harmonic of a vertically polarised kink mode. We analyse the dependence of the resulting oscillations on the speed and kinetic energy of the flow. Conclusions: We find that flows with realistic speeds of less than 100 km s-1 are sufficient to excite oscillations with observable amplitudes. We therefore propose plasma flows as a possible excitation mechanism for observed transverse loop oscillations.

  11. Magnetomotive optical coherence elastography for relating lung structure and function in cystic fibrosis

    NASA Astrophysics Data System (ADS)

    Chhetri, Raghav K.; Carpenter, Jerome; Superfine, Richard; Randell, Scott H.; Oldenburg, Amy L.

    2010-02-01

    Cystic fibrosis (CF) is a genetic defect in the cystic fibrosis transmembrane conductance regulator protein and is the most common life-limiting genetic condition affecting the Caucasian population. It is an autosomal recessive, monogenic inherited disorder characterized by failure of airway host defense against bacterial infection, which results in bronchiectasis, the breakdown of airway wall extracellular matrix (ECM). In this study, we show that the in vitro models consisting of human tracheo-bronchial-epithelial (hBE) cells grown on porous supports with embedded magnetic nanoparticles (MNPs) at an air-liquid interface are suitable for long term, non-invasive assessment of ECM remodeling using magnetomotive optical coherence elastography (MMOCE). The morphology of ex vivo CF and normal lung tissues using OCT and correlative study with histology is also examined. We also demonstrate a quantitative measure of normal and CF airway elasticity using MMOCE. The improved understanding of pathologic changes in CF lung structure and function and the novel method of longitudinal in vitro ECM assessment demonstrated in this study may lead to new in vivo imaging and elastography methods to monitor disease progression and treatment in cystic fibrosis.

  12. A STUDY OF METHODS OF CONTROLLING IMPULSES.

    ERIC Educational Resources Information Center

    WHITESIDE, RAY

    THE PERSON LESS ABLE TO CONTROL HIS IMPULSES IS ALSO APT TO EXHIBIT SOCIALLY DISVALUED BEHAVIOR. VOCATIONAL AND ACADEMIC FAILURE IS A PARTIAL CONSEQUENCE OF IMPULSIVENESS AND LACK OF SELF-CONTROL. TO INVESTIGATE IMPULSE CONTROL, TWO INSTRUMENTS BELIEVED TO MEASURE ATTRIBUTES OF OPPOSITE POLES OF THIS CONCEPT (SEQUENTIAL TESTS OF EDUCATIONAL…

  13. Experimental system for in-situ measurement of temperature rise in animal tissue under exposure to acoustic radiation force impulse.

    PubMed

    Nitta, Naotaka; Ishiguro, Yasunao; Sasanuma, Hideki; Taniguchi, Nobuyuki; Akiyama, Iwaki

    2015-01-01

    Acoustic radiation force impulse (ARFI) has recently been used for tissue elasticity measurement and imaging. On the other hand, it is predicted that a rise in temperature occurs. In-situ measurement of temperature rise in animal experiments is important, yet measurement using thermocouples has some problems such as position mismatch of the temperature measuring junction of the thermocouple and the focal point of ultrasound. Therefore, an in-situ measurement system for solving the above problems was developed in this study. The developed system is composed mainly of an ultrasound irradiation unit including a custom-made focused transducer with a through hole for inserting a thin-wire thermocouple, and a temperature measurement unit including the thermocouple. The feasibility of the developed system was evaluated by means of experiments using a tissue-mimicking material (TMM), a TMM containing a bone model or a chicken bone, and an extracted porcine liver. The similarity between the experimental results and the results of simulation using a finite element method (FEM) implied the reasonableness of in-situ temperature rise measured by the developed system. The developed system will become a useful tool for measuring in-situ temperature rise in animal experiments and obtaining findings with respect to the relationship between ultrasound irradiation conditions and in-situ temperature rise.

  14. A theoretical study of inertial cavitation from acoustic radiation force impulse (ARFI) imaging and implications for the mechanical index

    PubMed Central

    Church, Charles C.; Labuda, Cecille; Nightingale, Kathryn

    2014-01-01

    The mechanical index (MI) attempts to quantify the likelihood that exposure to diagnostic ultrasound will produce an adverse biological effect by a nonthermal mechanism. The current formulation of the MI implicitly assumes that the acoustic field is generated using the short pulse durations appropriate to B-mode imaging. However, acoustic radiation force impulse (ARFI) imaging employs high-intensity pulses up to several hundred acoustic periods long. The effect of increased pulse durations on the thresholds for inertial cavitation was studied computationally in water, urine, blood, cardiac and skeletal muscle, brain, kidney, liver and skin. The results show that while the effect of pulse duration on cavitation thresholds in the three liquids can be considerable, reducing them by, e.g., 6% – 24% at 1 MHz, the effect in tissue is minor. More importantly, the frequency dependence of the MI appears to be unnecessarily conservative, i.e., that the magnitude of the exponent on frequency could be increased to 0.75. Comparison of these theoretical results with experimental measurements suggests that some tissues do not contain the pre-existing, optimally sized bubbles assumed for the MI. This means that in these tissues the MI is not necessarily a strong predictor of the probability for an adverse biological effect. PMID:25592457

  15. Comparison of body weight distribution, peak vertical force, and vertical impulse as measures of hip joint pain and efficacy of total hip replacement.

    PubMed

    Seibert, Rachel; Marcellin-Little, Denis J; Roe, Simon C; DePuy, Venita; Lascelles, B Duncan X

    2012-05-01

    To determine whether there is a difference between the ability of peak vertical force (PVF), vertical impulse (VI), and percentage body weight distribution (%BW(dist) ) in differentiating which leg is most affected by hip joint pain before total hip replacement (THR) surgery, and for measuring changes in limb use after THR surgery. Prospective clinical study. Dogs (n = 47). Ground reaction force (GRF) data were collected using a pressure-sensitive walkway the day before THR surgery and at ∼3, 6, and 12 months postoperatively. PVF and VI expressed as a percentage of body weight (%PVF, %VI), and %BW(dist) were recorded. Regression models performed separately for each outcome were used for statistical analysis. When comparing limb use between the affected limb (AP) and the nonaffected limb (NP) preoperatively, differences between limbs were statistically significant when evaluated using PVF (P = .023), VI (P = .010), and %BW(dist) (P = .012). When evaluating the magnitude of absolute and percentage change difference in AP limb use preoperatively versus postoperatively, differences were statistically significant when evaluated using PVF (P < .001 and P = .001, respectively), VI (P = .001 and P < .001) and %BW(dist) (P < .001 and P < .001). There appeared to be no difference in the sensitivity of VI, PVF, and %BW(dist) for evaluating limb use before and after THR. © Copyright 2012 by The American College of Veterinary Surgeons.

  16. Advantage of impulse oscillometry over spirometry to diagnose chronic obstructive pulmonary disease and monitor pulmonary responses to bronchodilators: An observational study.

    PubMed

    Saadeh, Constantine; Saadeh, Charles; Cross, Blake; Gaylor, Michael; Griffith, Melissa

    2015-01-01

    This retrospective study was a comparative analysis of sensitivity of impulse oscillometry and spirometry techniques for use in a mixed chronic obstructive pulmonary disease group for assessing disease severity and inhalation therapy. A total of 30 patients with mild-to-moderate chronic obstructive pulmonary disease were monitored by impulse oscillometry, followed by spirometry. Lung function was measured at baseline after bronchodilation and at follow-up (3-18 months). The impulse oscillometry parameters were resistance in the small and large airways at 5 Hz (R5), resistance in the large airways at 15 Hz (R15), and lung reactance (area under the curve X; AX). After the bronchodilator therapy, forced expiratory volume in 1 second (FEV1) readings evaluated by spirometry were unaffected at baseline and at follow-up, while impulse oscillometry detected an immediate improvement in lung function, in terms of AX (p = 0.043). All impulse oscillometry parameters significantly improved at follow-up, with a decrease in AX by 37% (p = 0.0008), R5 by 20% (p = 0.0011), and R15 by 12% (p = 0.0097). Impulse oscillometry parameters demonstrated greater sensitivity compared with spirometry for monitoring reversibility of airway obstruction and the effect of maintenance therapy. Impulse oscillometry may facilitate early treatment dose optimization and personalized medicine for chronic obstructive pulmonary disease patients.

  17. Ballistic impulse gauge

    DOEpatents

    Ault, Stanley K.

    1993-01-01

    A gauge for detecting the impulse generated in sample materials by X-rays or other impulse producing mechanisms utilizes a pair of flat annular springs to support a plunger relative to a housing which may itself be supported by a pair of flat annular springs in a second housing. The plunger has a mounting plate mounted on one end and at the other, a position or velocity transducer is mounted. The annular springs consist of an outer ring and an inner ring with at least three arcuate members connecting the outer ring with the inner ring.

  18. Ballistic impulse gauge

    DOEpatents

    Ault, S.K.

    1993-12-21

    A gauge for detecting the impulse generated in sample materials by X-rays or other impulse producing mechanisms utilizes a pair of flat annular springs to support a plunger relative to a housing which may itself be supported by a pair of flat annular springs in a second housing. The plunger has a mounting plate mounted on one end and at the other, a position or velocity transducer is mounted. The annular springs consist of an outer ring and an inner ring with at least three arcuate members connecting the outer ring with the inner ring. 4 figures.

  19. Impulsive action and motivation.

    PubMed

    Frijda, Nico H

    2010-07-01

    This paper explores the way in which emotions are causal determinants of action. It argues that emotional events, as appraised by the individual, elicit changes in motive states (called states of action readiness), which in turn may (or may not) cause action. Actions can be elicited automatically, without prior intention (called impulsive actions), or intentionally. Impulsive actions reflect the simplest and biologically most general form in which emotions can cause action, since they require no reflection, no foresight, and no planning. Impulsive actions are determined conjointly by the nature of action readiness, the affordances perceived in the eliciting event as appraised, and the individual's action repertoire. Those actions from one's repertoire are performed that both match the perceived affordances and the aim of the state of action readiness. Copyright © 2010 Elsevier B.V. All rights reserved.

  20. Teaching about Impulse and Momentum

    ERIC Educational Resources Information Center

    Franklin, Bill

    2004-01-01

    This American Association of Physics Teachers/Physics Teaching Resource Agents (APPT/PTRA) spiral-bound manual features labs and demos physics teachers can use to give students hands-on opportunities to learn about impulse and momentum. "Make-and-take activities" include AAPT Apparatus Contest winners "An Air Impulse Rocket," "A Fan Driven…

  1. Behind impulsive suicide attempts: indications from a community study.

    PubMed

    Wyder, Marianne; De Leo, Diego

    2007-12-01

    A considerable proportion of suicide attempts are made on impulse. However, knowledge of characteristics of impulsive attempters is still limited. The present study investigated some of these characteristics and aimed to identify the pattern (if any) of suicidal ideation before an impulsive attempt. Data from a randomized and stratified population of 5130 individuals from Brisbane, Australia, were analysed. Computer-assisted telephone interviews (CATI) were adopted to recruit subjects. Those reporting previous suicidal behaviour were sent a questionnaire by mail. One hundred and twelve subjects reported a suicide attempt. One quarter of these described a pattern consistent with an impulsive attempt. Most impulsive attempters experienced suicidal thoughts before their attempt. They were less likely to believe that their attempt would cause death, and less likely to experience depression. Impulsive attempters did not differ significantly from non-impulsive attempters in regards to age, gender, and motivations for the attempt. Surprisingly, no differences in mean scores of trait impulsivity between impulsive and non-impulsive attempters were found. In addition, the majority of suicide attempters (whether impulsive or not) experienced the suicidal process as fluctuating and not as developing along a continuum. The number of attempters who validly entered the study limited our ability to identify potential confounders. Due to the retrospective nature of the survey, the reliability of the information collected may have been affected by recall biases. In addition, as the surveys were administered by mail, it is possible that some questions may have been misinterpreted. The presence of suicidal feelings prior to an attempt constitutes an opportunity for intervention also in impulsive attempters. However, the identification of impulsiveness requires more research efforts.

  2. Impulsivity and AMPA receptors: aniracetam ameliorates impulsive behavior induced by a blockade of AMPA receptors in rats.

    PubMed

    Nakamura, K; Kurasawa, M; Shirane, M

    2000-04-17

    The study aimed to ascertain the involvement of central AMPA receptors in impulsive behaviors of aged rats and to examine the effects of aniracetam. Premature response in the two-lever choice reaction task was assessed as an index of impulsivity. Intracerebroventricular injection of 2, 3-dihydroxy-6-nitro-7-sulfamoyl-benzo(F)quinoxaline (NBQX), an AMPA receptor antagonist, dose-dependently (10.1-1009 ng/rat) increased only premature response without altering responding speed and choice accuracy 30 min after the injection. Aniracetam (30 mg/kg p.o.), a positive allosteric modulator of AMPA receptors, or AMPA (55.9 ng/rat, co-injected with NBQX) completely restored the NBQX-induced increase in impulsivity. These results indicate that AMPA receptors are tonically involved in the regulation of impulsivity.

  3. Flexural waves induced by electro-impulse deicing forces

    NASA Technical Reports Server (NTRS)

    Gien, P. H.

    1990-01-01

    The generation, reflection and propagation of flexural waves created by electroimpulsive deicing forces are demonstrated both experimentally and analytically in a thin circular plate and a thin semicylindrical shell. Analytical prediction of these waves with finite element models shows good correlation with acceleration and displacement measurements at discrete points on the structures studied. However, sensitivity to spurious flexural waves resulting from the spatial discretization of the structures is shown to be significant. Consideration is also given to composite structures as an extension of these studies.

  4. Recursive Inversion By Finite-Impulse-Response Filters

    NASA Technical Reports Server (NTRS)

    Bach, Ralph E., Jr.; Baram, Yoram

    1991-01-01

    Recursive approximation gives least-squares best fit to exact response. Algorithm yields finite-impulse-response approximation of unknown single-input/single-output, causal, time-invariant, linear, real system, response of which is sequence of impulses. Applicable to such system-inversion problems as suppression of echoes and identification of target from its scatter response to incident impulse.

  5. Comparison of Two Different Ultrasound Devices Using Strain Elastography Technology in the Diagnosis of Breast Lesions Related to the Histologic Results.

    PubMed

    Farrokh, André; Schaefer, Fritz; Degenhardt, Friedrich; Maass, Nicolai

    2018-05-01

    This study was conducted to provide evidence that elastograms of two different devices and different manufacturers using the same technical approach provide the same diagnoses. A total of 110 breast lesions were prospectively analysed by two experts in ultrasound, using the strain elastography function from two different manufacturers (Hitachi HI-RTE, Hitachi Medical Systems, Wiesbaden, Germany; and Siemens eSie Touch, Siemens Medical Systems, Erlangen, Germany). Results were compared with the histopathologic results. Applying the Bowker test of symmetry, no statistically significant difference between the two elastography functions of these two devices was found (p = 0.120). The Cohen's kappa of k = 0.591 showed moderate strength of agreement between the two elastograms. The two examiners yielded moderate strength of agreement analysing the elastograms (Hitachi HI-RTE, k = 0.478; Siemens eSie Touch, k = 0.441). In conclusion, evidence is provided that elastograms of the same lesion generated by two different ultrasound devices equipped with a strain elastography function do not significantly differ. Copyright © 2018 World Federation for Ultrasound in Medicine and Biology. Published by Elsevier Inc. All rights reserved.

  6. Sweet taste liking is associated with impulsive behaviors in humans

    PubMed Central

    Weafer, Jessica; Burkhardt, Anne; de Wit, Harriet

    2014-01-01

    Evidence from both human and animal studies suggests that sensitivity to rewarding stimuli is positively associated with impulsive behaviors, including both impulsive decision making and inhibitory control. The current study examined associations between the hedonic value of a sweet taste and two forms of impulsivity (impulsive choice and impulsive action) in healthy young adults (N = 100). Participants completed a sweet taste test in which they rated their liking of various sweetness concentrations. Subjects also completed measures of impulsive choice (delay discounting), and impulsive action (go/no-go task). Subjects who discounted more steeply (i.e., greater impulsive choice) liked the high sweetness concentration solutions more. By contrast, sweet liking was not related to impulsive action. These findings indicate that impulsive choice may be associated with heightened sensitivity to the hedonic value of a rewarding stimulus, and that these constructs might share common underlying neurobiological mechanisms. PMID:24987343

  7. Comb-push ultrasound shear elastography of breast masses: initial results show promise.

    PubMed

    Denis, Max; Mehrmohammadi, Mohammad; Song, Pengfei; Meixner, Duane D; Fazzio, Robert T; Pruthi, Sandhya; Whaley, Dana H; Chen, Shigao; Fatemi, Mostafa; Alizad, Azra

    2015-01-01

    To evaluate the performance of Comb-push Ultrasound Shear Elastography (CUSE) for classification of breast masses. CUSE is an ultrasound-based quantitative two-dimensional shear wave elasticity imaging technique, which utilizes multiple laterally distributed acoustic radiation force (ARF) beams to simultaneously excite the tissue and induce shear waves. Female patients who were categorized as having suspicious breast masses underwent CUSE evaluations prior to biopsy. An elasticity estimate within the breast mass was obtained from the CUSE shear wave speed map. Elasticity estimates of various types of benign and malignant masses were compared with biopsy results. Fifty-four female patients with suspicious breast masses from our ongoing study are presented. Our cohort included 31 malignant and 23 benign breast masses. Our results indicate that the mean shear wave speed was significantly higher in malignant masses (6 ± 1.58 m/s) in comparison to benign masses (3.65 ± 1.36 m/s). Therefore, the stiffness of the mass quantified by the Young's modulus is significantly higher in malignant masses. According to the receiver operating characteristic curve (ROC), the optimal cut-off value of 83 kPa yields 87.10% sensitivity, 82.61% specificity, and 0.88 for the area under the curve (AUC). CUSE has the potential for clinical utility as a quantitative diagnostic imaging tool adjunct to B-mode ultrasound for differentiation of malignant and benign breast masses.

  8. Impulsive Behavior and Associated Clinical Variables in Parkinson's Disease

    PubMed Central

    Abosch, Aviva; Gupte, Akshay; Eberly, Lynn E.; Tuite, Paul J.; Nance, Martha; Grant, Jon E.

    2011-01-01

    Parkinson's disease (PD) is a degenerative brain disorder accompanied by the loss of dopaminergic neurons and the presence of motor and non-motor symptoms. We performed a cross-sectional, questionnaire-based analysis of impulsive behavior in our PD clinic population to assess prevalence and associated characteristics. We found a higher prevalence of impulsive behavior (29.7%) than previously reported, and found multiple, concurrent impulsive behaviors in 26% of subjects reporting impulsive behavior. Our findings contribute to the growing awareness of impulsive behavior in PD, and support the need for longitudinal studies to assess changes in impulsive behaviors in Parkinson's patients. PMID:21300194

  9. Factors that influence ground reaction force profiles during counter movement jumping.

    PubMed

    Eagles, Alexander N; Sayers, Mark G; Lovell, Dale I

    2017-05-01

    The purpose of this study was to examine how hip, knee and ankle kinetics and kinematics influence effective impulse production during countermovement jumps. Eighteen semi-professional soccer players (22.8±2.2 years) volunteered to participate in the study. Participants completed three maximal countermovement jumps on two force platforms (1000 Hz) that were linked to a nine camera infrared motion capture system (500 Hz). Kinetic and kinematic data revealed jumpers who fail to achieve uniform ground reaction force curves that result in optimal impulse production during their jump always display hip adduction and or hip internal rotation during the concentric phase of the countermovement jump. The variation of hip adduction and or internal rotation likely represents failed joint transition during the concentric phase of the countermovement jump and appears to account for a non-uniform force trace seen in these jumpers. The findings suggest rehabilitation and conditioning exercises for injury prevention and performance may benefit from targeting frontal and transverse plane movement.

  10. Measurement of shear wave speed dispersion in the placenta by transient elastography: A preliminary ex vivo study.

    PubMed

    Simon, Emmanuel G; Callé, Samuel; Perrotin, Franck; Remenieras, Jean-Pierre

    2018-01-01

    Placental elasticity may be modified in women with placental insufficiency. Shear wave elastography (SWE) can measure this, using acoustic radiation force, but the safety of its use in pregnant women has not yet been demonstrated. Transient elastography (TE) is a safer alternative, but has not yet been applied to the placenta. Moreover, the dispersion of shear wave speed (SWS) as a function of frequency has received relatively little study for placental tissue, although it might improve the accuracy of biomechanical assessment. To explore the feasibility and reproducibility of TE for placental analysis, to compare the values of SWS and Young's modulus (YM) from TE and SWE, and to analyze SWS dispersion as a function of frequency ex vivo in normal placentas. Ten normal placentas were analyzed ex vivo by an Aixplorer ultrasound system as shear waves were generated by a vibrating plate and by using an Aixplorer system. The frequency analysis provided the value of the exponent n from a fractional rheological model applied to the TE method. We calculated intra- and interobserver agreement for SWS and YM with 95% prediction intervals, created Bland-Altman plots with 95% limits of agreement, and estimated the intraclass correlation coefficient (ICC). The mean SWS was 1.80 m/s +/- 0.28 (standard deviation) with the TE method at 50 Hz and 1.82 m/s +/-0.13 with SWE (P = 0.912). No differences were observed between the central and peripheral regions of placentas with either TE or SWE. With TE, the intraobserver ICC for SWS was 0.68 (0.50-0.82), and the interobserver ICC for SWS 0.65 (0.37-0.85). The mean parameter n obtained from the fractional rheological model was 1.21 +/- 0.12, with variable values of n for any given SWS. TE is feasible and reproducible on placentas ex vivo. The frequency analysis of SWS provides additional information about placental elasticity and appears to be able to distinguish differences between placental structures.

  11. Measurement of shear wave speed dispersion in the placenta by transient elastography: A preliminary ex vivo study

    PubMed Central

    Callé, Samuel; Perrotin, Franck; Remenieras, Jean-Pierre

    2018-01-01

    Background Placental elasticity may be modified in women with placental insufficiency. Shear wave elastography (SWE) can measure this, using acoustic radiation force, but the safety of its use in pregnant women has not yet been demonstrated. Transient elastography (TE) is a safer alternative, but has not yet been applied to the placenta. Moreover, the dispersion of shear wave speed (SWS) as a function of frequency has received relatively little study for placental tissue, although it might improve the accuracy of biomechanical assessment. Objective To explore the feasibility and reproducibility of TE for placental analysis, to compare the values of SWS and Young’s modulus (YM) from TE and SWE, and to analyze SWS dispersion as a function of frequency ex vivo in normal placentas. Materials and methods Ten normal placentas were analyzed ex vivo by an Aixplorer ultrasound system as shear waves were generated by a vibrating plate and by using an Aixplorer system. The frequency analysis provided the value of the exponent n from a fractional rheological model applied to the TE method. We calculated intra- and interobserver agreement for SWS and YM with 95% prediction intervals, created Bland-Altman plots with 95% limits of agreement, and estimated the intraclass correlation coefficient (ICC). Main results The mean SWS was 1.80 m/s +/- 0.28 (standard deviation) with the TE method at 50 Hz and 1.82 m/s +/-0.13 with SWE (P = 0.912). No differences were observed between the central and peripheral regions of placentas with either TE or SWE. With TE, the intraobserver ICC for SWS was 0.68 (0.50–0.82), and the interobserver ICC for SWS 0.65 (0.37–0.85). The mean parameter n obtained from the fractional rheological model was 1.21 +/- 0.12, with variable values of n for any given SWS. Conclusions TE is feasible and reproducible on placentas ex vivo. The frequency analysis of SWS provides additional information about placental elasticity and appears to be able to distinguish

  12. Solar Impulse's Solar-Powered Plane

    ScienceCinema

    Moniz, Ernest; Piccard, Bertrand; Reicher, Dan

    2018-01-16

    Solar Impulse lands in Washington, DC at Washington Dulles International Airport as part of its journey across the United States. Secretary Ernest Moniz speaks about how advancements like those at the Department of Energy are leading the way for innovations like the solar-powered plane. Footage of the solar-powered plane courtesy of Solar Impulse.

  13. Solar Impulse's Solar-Powered Plane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moniz, Ernest; Piccard, Bertrand; Reicher, Dan

    Solar Impulse lands in Washington, DC at Washington Dulles International Airport as part of its journey across the United States. Secretary Ernest Moniz speaks about how advancements like those at the Department of Energy are leading the way for innovations like the solar-powered plane. Footage of the solar-powered plane courtesy of Solar Impulse.

  14. Cognitive control training for emotion-related impulsivity.

    PubMed

    Peckham, Andrew D; Johnson, Sheri L

    2018-06-01

    Many forms of psychopathology are tied to a heightened tendency to respond impulsively to strong emotions, and this tendency, in turn, is closely tied to problems with cognitive control. The goal of the present study was to test whether a two-week, six-session cognitive control training program is efficacious in reducing emotion-related impulsivity. Participants (N = 52) reporting elevated scores on an emotion-related impulsivity measure completed cognitive control training targeting working memory and response inhibition. A subset of participants were randomized to a waitlist control group. Impulsivity, emotion regulation, and performance on near and far-transfer cognitive tasks were assessed at baseline and after completion of training. Emotion-related impulsivity declined significantly from pre-training to post-training and at two-week follow-up; improvements were not observed in the waitlist control group. A decrease in brooding rumination and an increase in reappraisal were also observed. Participants showed significant improvements on trained versions of the working memory and inhibition tasks as well as improvements on an inhibition transfer task. In sum, these preliminary findings show that cognitive training appears to be well-tolerated for people with significant emotion-driven impulsivity. Results provide preliminary support for the efficacy of cognitive training interventions as a way to reduce emotion-related impulsivity. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Impulsivity in bipolar disorders in a Tunisian sample.

    PubMed

    Feki, Ines; Moalla, Mariem; Baati, Imen; Trigui, Dorsaf; Sellami, Rim; Masmoudi, Jaweher

    2016-08-01

    Impulsivity as a trait characteristic is increased in bipolar disorder and may be a core factor of the illness. The objectives of our work are to evaluate the level of impulsivity among patients with bipolar disorder and to study its relation with mood state, alcohol misuse, suicide attempts and other socio-demographic and clinical factors. We measured impulsivity in 60 subjects with bipolar disorder in relationship to socio-demographic and clinical variables. The subjects completed Data included socio-demographic details and clinical variables, the Barratt Impulsiveness Scale (BIS-11) in an Arabic version to assess impulsivity, The Mini International Neuropsychiatric Interview "MINI" version 05 to screen for alcohol abuse or dependence and mood graphic rate scale (MGRS) to evaluate mood state. Our results show that the mean score of BIS-11 was 71.5. Fifty-five per cent of the patients had a high level of impulsiveness. No differences were found relating to mood state. Impulsivity was related to Male gender, lower educational level, early age of onset, smoking, alcohol and drug misuse and prior suicide attempts. The treatment of patients with BD should consider to reduce impulsivity to improve morbidity. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Comparison among various methods of assessment of impulsiveness.

    PubMed

    Carrillo-de-la-Peña, M T; Otero, J M; Romero, E

    1993-10-01

    The current confused status of the research on impulsivity may be attributed to the lack of precise definitions, the reliance of most operationalizations on a single index, and inconsistency among different measures of the construct. Empirical measurements of impulsivity by self-reports, rating scales, or performance tasks suggest that the instruments employed measure aspects that have very little in common, a finding that throws serious doubts on the validity of the construct and implies a need for further research. To clarify this topic, we applied four different measures of impulsivity to 46 7th-grade (12 to 13 years old) schoolchildren. The children were rated by their teachers on an impulsivity behavior scale and were administered Kagan's Matching Familiar Figures Test, Version MFF-20, and two self-report forms, the Eysenck Impulsiveness Questionnaire, and the Barratt Impulsiveness Scale. Although the results confirmed the lack of convergence among these measures, high latencies on matching were associated with the cognitive aspect of the self-report scales. Treating impulsivity as a multidimensional construct is discussed.

  17. Impulsivity in remitted depression: a meta-analytical review.

    PubMed

    Saddichha, Sahoo; Schuetz, Christian

    2014-06-01

    Depressive disorder and suicide have been associated with impulsivity in several studies. This paper aimed to review measures of trait impulsivity in remitted depressive disorder. We used keywords "impulsivity and depression"; "impulsivity and depressive disorder" to narrow down our search on Medline, EMBASE and Psychinfo to include those studies that had reported impulsivity scores using validated and reliable assessment measures in remitted depressive disorder. We searched all English language studies from 1990 to December 2012 with 9 reports meeting the inclusion criteria for depression, which were then reviewed by the two reviewers independently. We generated weighted mean differences (WMDs) for depression from the pooled data using RevManager 5.1 from Cochrane analysis. The Barratt Impulsivity Scale (BIS) 11 was the instrument commonly used in depression. 9 studies met inclusion criteria in depression, which yielded a WMD of 10.12 on BIS 11 total scores. There is a strong association of impulsivity and depression, which persists even in remission. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Characterizing Impulsivity in Mania

    PubMed Central

    Strakowski, Stephen M.; Fleck, David E.; DelBello, Melissa P.; Adler, Caleb M.; Shear, Paula K.; McElroy, Susan L.; Keck, Paul E.; Moss, Quinton; Cerullo, Michael A.; Kotwal, Renu; Arndt, Stephan

    2008-01-01

    Objective To determine whether specific aspects of impulsivity (response disinhibition, inability to delay gratification, inattention) differ between healthy and bipolar manic subjects, and whether these aspects of impulsivity were associated with each other and severity of affective symptoms. Methods Performance of 70 bipolar I manic or mixed patients was compared to that of 34 healthy subjects on three tasks specifically designed to study response inhibition, ability to delay gratification, and attention; namely a stop signal task, a delayed reward task, and a continuous performance task respectively. Correlations among tasks and with symptom ratings were also performed. Results Bipolar subjects demonstrated significant deficits on all three tasks as compared to healthy subjects. Performance on the three tasks was largely independent. Task performance was not significantly associated with the severity of affective symptom ratings. However, measures of response inhibition and attention were sensitive to medication effects. Differences in the delayed reward task were independent of medication effects or symptom ratings. During the delayed reward task, although bipolar patients made their choices more slowly than healthy subjects, they were significantly more likely to choose a smaller, but more quickly obtained reward. Moreover performance on this task was not associated with performance on the other impulsivity measures. Manic patients showed more impulsive responding than mixed patients. Conclusions Bipolar I manic patients demonstrate deficits on tests of various aspects of impulsivity as compared to healthy subjects. Some of these differences between groups may be mediated by medication effects. Findings suggested that inability to delay gratification (i.e., delayed reward task) was not simply a result of the speed of decision making or inattention, but rather that it reflected differences between bipolar and healthy subjects in the valuation of reward relative

  19. Power and impulse applied during push press exercise.

    PubMed

    Lake, Jason P; Mundy, Peter D; Comfort, Paul

    2014-09-01

    The aim of this study was to quantify the load, which maximized peak and mean power, and impulse applied to these loads, during the push press and to compare them to equivalent jump squat data. Resistance-trained men performed 2 push press (n = 17; age: 25.4 ± 7.4 years; height: 183.4 ± 5 cm; body mass: 87 ± 15.6 kg) and jump squat (n = 8 of original 17; age: 28.7 ± 8.1 years; height: 184.3 ± 5.5 cm; mass: 98 ± 5.3 kg) singles with 10-90% of their push press and back squat 1 repetition maximum (1RM), respectively, in 10% 1RM increments while standing on a force platform. Push press peak and mean power was maximized with 75.3 ± 16.4 and 64.7 ± 20% 1RM, respectively, and impulses applied to these loads were 243 ± 29 N·s and 231 ± 36 N·s. Increasing and decreasing load, from the load that maximized peak and mean power, by 10 and 20% 1RM reduced peak and mean power by 6-15% (p ≤ 0.05). Push press and jump squat maximum peak power (7%, p = 0.08) and the impulse that was applied to the load that maximized peak (8%, p = 0.17) and mean (13%, p = 0.91) power were not significantly different, but push press maximum mean power was significantly greater than the jump squat equivalent (∼9.5%, p = 0.03). The mechanical demand of the push press is comparable with the jump squat and could provide a time-efficient combination of lower-body power and upper-body and trunk strength training.

  20. Optimal impulsive manoeuvres and aerodynamic braking

    NASA Technical Reports Server (NTRS)

    Jezewski, D. J.

    1985-01-01

    A method developed for obtaining solutions to the aerodynamic braking problem, using impulses in the exoatmospheric phases is discussed. The solution combines primer vector theory and the results of a suboptimal atmospheric guidance program. For a specified initial and final orbit, the solution determines: (1) the minimum impulsive cost using a maximum of four impulses, (2) the optimal atmospheric entry and exit-state vectors subject to equality and inequality constraints, and (3) the optimal coast times. Numerical solutions which illustrate the characteristics of the solution are presented.