Science.gov

Sample records for force measurement system

  1. Force Measurements in Magnetic Suspension and Balance System

    NASA Technical Reports Server (NTRS)

    Kuzin, Alexander; Shapovalov, George; Prohorov, Nikolay

    1996-01-01

    The description of an infrared telemetry system for measurement of drag forces in Magnetic Suspension and Balance Systems (MSBS) is presented. This system includes a drag force sensor, electronic pack and transmitter placed in the model which is of special construction, and receiver with a microprocessor-based measuring device, placed outside of the test section. Piezosensitive resonators as sensitive elements and non-magnetic steel as the material for the force sensor are used. The main features of the proposed system for load measurements are discussed and the main characteristics are presented.

  2. Icing Research Tunnel (IRT) Force Measurement System (FMS)

    NASA Technical Reports Server (NTRS)

    Roberts, Paul W.

    2012-01-01

    An Electronics Engineer at the Glenn Research Center (GRC), requested the NASA Engineering and Safety Center (NESC) provide technical support for an evaluation of the existing force measurement system (FMS) at the GRC's Icing Research Tunnel (IRT) with the intent of developing conceptual designs to improve the tunnel's force measurement capability in order to better meet test customer needs. This report contains the outcome of the NESC technical review.

  3. Development of cylindrical-type finger force measuring system using force sensors and its characteristics evaluation

    NASA Astrophysics Data System (ADS)

    Kim, Hyeon-Min; Yoon, Joungwon; Shin, Hee-Suk; Kim, Gab-Soon

    2012-02-01

    Some patients cannot use their hands because of the paralysis of their fingers. Their fingers can recover with rehabilitative training, and the extent of rehabilitation can be judged by grasping a cylindrical-object with their fingers. At present, the cylindrical-object used in hospitals is only a plastic cylinder, which cannot measure grasping force of the fingers. Therefore, doctors must judge the extent of rehabilitation by watching patients' fingers as they grasp the plastic cylinder. In this paper, the development of two cylindrical-type finger force measuring systems with four force sensors for left hand and right hand were developed. The developed finger force measuring system can measure the grasping force of patients' each finger (forefinger, middle finger, ring finger and little finger), and the measured results could be used to judge the rehabilitation extent of a finger patient. The grasping force tests of men and women were performed using the developed cylindrical-type finger force measuring systems. The tests confirm that the average finger forces of right hand and left hand for men were about 194 N and 179 N, and for women, 108 N and 95 N.

  4. An Electromotive Force Measurement System for Alloy Fuels

    SciTech Connect

    Changhu Xing; Colby Jensen; Heng Ban; Robert Mariani; J. Rory Kennedy

    2010-11-01

    The development of advanced nuclear fuels requires a better understanding of the transmutation and micro-structural evolution of the materials. Alloy fuels have the advantage of high thermal conductivity and improved characteristics in fuel-cladding chemical reaction. However, information on thermodynamic and thermophysical properties is limited. The objective of this project is to design and build an experimental system to measure the thermodynamic properties of solid materials from which the understanding of their phase change can be determined. The apparatus was used to measure the electromotive force (EMF) of several materials in order to calibrate and test the system. The EMF of chromel was measured from 100°C to 800°C and compared with theoretical values. Additionally, the EMF measurement of Ni-Fe alloy was performed and compared with the Ni-Fe phase diagram. The prototype system is to be modified eventually and used in a radioactive hot-cell in the future.

  5. A force plate system for measuring low-magnitude reaction forces in small laboratory animals.

    PubMed

    Handley, D E; Ross, J F; Carr, G J

    1998-07-01

    We present a force plate system which measures low-magnitude vertical reaction forces generated by small laboratory animals. The force plate mechanical design minimizes radiated transverse waves, acoustic reverberation, and standing waves caused by impacts on the force plate surface. A secondary force plate and PC-based software algorithm minimize floor vibrational artifact. The force plate was used to measure function of rats during two tests: forelimb/hindlimb hopping reaction and surface righting reaction. In control rats, forelimb hopping rate exceeded hindlimb hopping rate during 16 weeks of repeated testing. Subchronic intraperitoneal (i.p.) dosing of 10 mg/kg/day acrylamide produced a selective impairment of hindlimb hopping. In contrast, single doses of haloperidol (1-5 mg/kg, i.p.) slowed the righting reaction and produced a relatively selective impairment of forelimb hopping. The force plate system presents new opportunities for performing quantitative neurological assessments of small laboratory animals when previously such tests had been performed subjectively and qualitatively.

  6. Enclosed electronic system for force measurements in knee implants.

    PubMed

    Forchelet, David; Simoncini, Matteo; Arami, Arash; Bertsch, Arnaud; Meurville, Eric; Aminian, Kamiar; Ryser, Peter; Renaud, Philippe

    2014-08-14

    Total knee arthroplasty is a widely performed surgical technique. Soft tissue force balancing during the operation relies strongly on the experience of the surgeon in equilibrating tension in the collateral ligaments. Little information on the forces in the implanted prosthesis is available during surgery and post-operative treatment. This paper presents the design, fabrication and testing of an instrumented insert performing force measurements in a knee prosthesis. The insert contains a closed structure composed of printed circuit boards and incorporates a microfabricated polyimide thin-film piezoresistive strain sensor for each condylar compartment. The sensor is tested in a mechanical knee simulator that mimics in-vivo conditions. For characterization purposes, static and dynamic load patterns are applied to the instrumented insert. Results show that the sensors are able to measure forces up to 1.5 times body weight with a sensitivity fitting the requirements for the proposed use. Dynamic testing of the insert shows a good tracking of slow and fast changing forces in the knee prosthesis by the sensors.

  7. Enclosed Electronic System for Force Measurements in Knee Implants

    PubMed Central

    Forchelet, David; Simoncini, Matteo; Arami, Arash; Bertsch, Arnaud; Meurville, Eric; Aminian, Kamiar; Ryser, Peter; Renaud, Philippe

    2014-01-01

    Total knee arthroplasty is a widely performed surgical technique. Soft tissue force balancing during the operation relies strongly on the experience of the surgeon in equilibrating tension in the collateral ligaments. Little information on the forces in the implanted prosthesis is available during surgery and post-operative treatment. This paper presents the design, fabrication and testing of an instrumented insert performing force measurements in a knee prosthesis. The insert contains a closed structure composed of printed circuit boards and incorporates a microfabricated polyimide thin-film piezoresistive strain sensor for each condylar compartment. The sensor is tested in a mechanical knee simulator that mimics in-vivo conditions. For characterization purposes, static and dynamic load patterns are applied to the instrumented insert. Results show that the sensors are able to measure forces up to 1.5 times body weight with a sensitivity fitting the requirements for the proposed use. Dynamic testing of the insert shows a good tracking of slow and fast changing forces in the knee prosthesis by the sensors. PMID:25196007

  8. Force-Measuring Clamps

    NASA Technical Reports Server (NTRS)

    Nunnelee, Mark

    2003-01-01

    Force-measuring clamps have been invented to facilitate and simplify the task of measuring the forces or pressures applied to clamped parts. There is a critical need to measure clamping forces or pressures in some applications for example, while bonding sensors to substrates or while clamping any sensitive or delicate parts. Many manufacturers of adhesives and sensors recommend clamping at specific pressures while bonding sensors or during adhesive bonding between parts in general. In the absence of a force-measuring clamp, measurement of clamping force can be cumbersome at best because of the need for additional load sensors and load-indicating equipment. One prior method of measuring clamping force involved the use of load washers or miniature load cells in combination with external power sources and load-indicating equipment. Calibrated spring clamps have also been used. Load washers and miniature load cells constitute additional clamped parts in load paths and can add to the destabilizing effects of loading mechanisms. Spring clamps can lose calibration quickly through weakening of the springs and are limited to the maximum forces that the springs can apply. The basic principle of a force-measuring clamp can be implemented on a clamp of almost any size and can enable measurement of a force of almost any magnitude. No external equipment is needed because the component(s) for transducing the clamping force and the circuitry for supplying power, conditioning the output of the transducers, and displaying the measurement value are all housed on the clamp. In other words, a force-measuring clamp is a complete force-application and force-measurement system all in one package. The advantage of unitary packaging of such a system is that it becomes possible to apply the desired clamping force or pressure with precision and ease.

  9. A force balance system for the measurement of skin friction drag force

    NASA Technical Reports Server (NTRS)

    Moore, J. W.; Mcvey, E. S.

    1971-01-01

    Research on force balance instrumentation to measure the skin friction of hypersonic vehicles at extreme temperatures, high altitudes and in a vibration field is discussed. A rough overall summary and operating instructions for the equipment are presented.

  10. Force measuring valve assemblies, systems including such valve assemblies and related methods

    DOEpatents

    DeWall, Kevin George [Pocatello, ID; Garcia, Humberto Enrique [Idaho Falls, ID; McKellar, Michael George [Idaho Falls, ID

    2012-04-17

    Methods of evaluating a fluid condition may include stroking a valve member and measuring a force acting on the valve member during the stroke. Methods of evaluating a fluid condition may include measuring a force acting on a valve member in the presence of fluid flow over a period of time and evaluating at least one of the frequency of changes in the measured force over the period of time and the magnitude of the changes in the measured force over the period of time to identify the presence of an anomaly in a fluid flow and, optionally, its estimated location. Methods of evaluating a valve condition may include directing a fluid flow through a valve while stroking a valve member, measuring a force acting on the valve member during the stroke, and comparing the measured force to a reference force. Valve assemblies and related systems are also disclosed.

  11. Development of a measuring system of contact force during braille reading using an optical 6-axis force sensor.

    PubMed

    Watanabe, T; Oouchi, S; Yamaguchi, T; Shimojo, M; Shimada, S

    2006-01-01

    A system with an optical 6-axis force sensor was developed to measure contact force during braille reading. In using this system, we encountered two problems. One is a variability of output values depending on the contact point. This was solved by using two transformation techniques. The other is that subjects read braille in a different manner from the usual. We compared two manners of braille reading, one-handed vs two-handed, and found a small reduction in reading speed. Using this system, we collected data from four braille readers and quantitatively showed more minute contact force trajectories than those in earlier studies.

  12. Design and Test of a Soft Plantar Force Measurement System for Gait Detection

    PubMed Central

    Zhang, Xuefeng; Zhao, Yulong; Duan, Zhengyong; Liu, Yan

    2012-01-01

    This work describes a plantar force measurement system. The MEMS pressure sensor, as the key sensing element, is designed, fabricated and embedded into a flexible silicon oil-filled bladder made of silicon rubber to constitute a single sensing unit. A conditioning circuit is designed for signal processing and data acquisition. The characteristics of the plantar force sensing unit are investigated by both static and dynamic tests. A comparison of characteristics between the proposed plantar force sensing unit and a commercial flexible force sensor is presented. A practical experiment of plantar force measurement has been carried out to validate the system. The results demonstrate that the proposed measurement system has a potential for success in the application of plantar force measurement during normal gait. PMID:23208558

  13. The design and implementation of a windowing interface pinch force measurement system

    NASA Astrophysics Data System (ADS)

    Ho, Tze-Yee; Chen, Yuanu-Joan; Chung, Chin-Teng; Hsiao, Ming-Heng

    2010-02-01

    This paper presents a novel windowing interface pinch force measurement system that is basically based on an USB (Universal Series Bus) microcontroller which mainly processes the sensing data from the force sensing resistance sensors mounted on five digits. It possesses several friendly functions, such as the value and curve trace of the applied force by a hand injured patient displayed in real time on a monitoring screen, consequently, not only the physician can easily evaluate the effect of hand injury rehabilitation, but also the patients get more progressive during the hand physical therapy by interacting with the screen of pinch force measurement. In order to facilitate the pinch force measurement system and make it friendly, the detail hardware design and software programming flowchart are described in this paper. Through a series of carefully and detailed experimental tests, first of all, the relationship between the applying force and the FSR sensors are measured and verified. Later, the different type of pinch force measurements are verified by the oscilloscope and compared with the corresponding values and waveform traces in the window interface display panel to obtain the consistency. Finally, a windowing interface pinch force measurement system based on the USB microcontroller is implemented and demonstrated. The experimental results show the verification and feasibility of the designed system.

  14. A wearable force plate system for the continuous measurement of triaxial ground reaction force in biomechanical applications

    NASA Astrophysics Data System (ADS)

    Liu, Tao; Inoue, Yoshio; Shibata, Kyoko

    2010-08-01

    The ambulatory measurement of ground reaction force (GRF) and human motion under free-living conditions is convenient, inexpensive and never restricted to gait analysis in a laboratory environment and is therefore much desired by researchers and clinical doctors in biomedical applications. A wearable force plate system was developed by integrating small triaxial force sensors and three-dimensional (3D) inertial sensors for estimating dynamic triaxial GRF in biomechanical applications. The system, in comparison to existent systems, is characterized by being lightweight, thin and easy-to-wear. A six-axial force sensor (Nitta Co., Japan) was used as a verification measurement device to validate the static accuracy of the developed force plate. To evaluate the precision during dynamic gait measurements, we compared the measurements of the triaxial GRF and the center of pressure (CoP) by using the developed system with the reference measurements made using a stationary force plate and an optical motion analysis system. The root mean square (RMS) differences of the two transverse components (x- and y-axes) and the vertical component (z-axis) of the GRF were 4.3 ± 0.9 N, 6.0 ± 1.3 N and 12.1 ± 1.1 N, respectively, corresponding to 5.1 ± 1.1% and 6.5 ± 1% of the maximum of each transverse component and 1.3 ± 0.2% of the maximum vertical component of GRF. The RMS distance between the two systems' CoP traces was 3.2 ± 0.8 mm, corresponding to 1.2 ± 0.3% of the length of the shoe. Moreover, based on the results of the assessment of the influence of the system on natural gait, we found that gait was almost never affected. Therefore, the wearable system as an alternative device can be a potential solution for measuring CoP and triaxial GRF in non-laboratory environments.

  15. Design and Analysis of a Sensor System for Cutting Force Measurement in Machining Processes.

    PubMed

    Liang, Qiaokang; Zhang, Dan; Coppola, Gianmarc; Mao, Jianxu; Sun, Wei; Wang, Yaonan; Ge, Yunjian

    2016-01-07

    Multi-component force sensors have infiltrated a wide variety of automation products since the 1970s. However, one seldom finds full-component sensor systems available in the market for cutting force measurement in machine processes. In this paper, a new six-component sensor system with a compact monolithic elastic element (EE) is designed and developed to detect the tangential cutting forces Fx, Fy and Fz (i.e., forces along x-, y-, and z-axis) as well as the cutting moments Mx, My and Mz (i.e., moments about x-, y-, and z-axis) simultaneously. Optimal structural parameters of the EE are carefully designed via simulation-driven optimization. Moreover, a prototype sensor system is fabricated, which is applied to a 5-axis parallel kinematic machining center. Calibration experimental results demonstrate that the system is capable of measuring cutting forces and moments with good linearity while minimizing coupling error. Both the Finite Element Analysis (FEA) and calibration experimental studies validate the high performance of the proposed sensor system that is expected to be adopted into machining processes.

  16. Design and Analysis of a Sensor System for Cutting Force Measurement in Machining Processes

    PubMed Central

    Liang, Qiaokang; Zhang, Dan; Coppola, Gianmarc; Mao, Jianxu; Sun, Wei; Wang, Yaonan; Ge, Yunjian

    2016-01-01

    Multi-component force sensors have infiltrated a wide variety of automation products since the 1970s. However, one seldom finds full-component sensor systems available in the market for cutting force measurement in machine processes. In this paper, a new six-component sensor system with a compact monolithic elastic element (EE) is designed and developed to detect the tangential cutting forces Fx, Fy and Fz (i.e., forces along x-, y-, and z-axis) as well as the cutting moments Mx, My and Mz (i.e., moments about x-, y-, and z-axis) simultaneously. Optimal structural parameters of the EE are carefully designed via simulation-driven optimization. Moreover, a prototype sensor system is fabricated, which is applied to a 5-axis parallel kinematic machining center. Calibration experimental results demonstrate that the system is capable of measuring cutting forces and moments with good linearity while minimizing coupling error. Both the Finite Element Analysis (FEA) and calibration experimental studies validate the high performance of the proposed sensor system that is expected to be adopted into machining processes. PMID:26751451

  17. Techniques for determining propulsion system forces for accurate high speed vehicle drag measurements in flight

    NASA Technical Reports Server (NTRS)

    Arnaiz, H. H.

    1975-01-01

    As part of a NASA program to evaluate current methods of predicting the performance of large, supersonic airplanes, the drag of the XB-70 airplane was measured accurately in flight at Mach numbers from 0.75 to 2.5. This paper describes the techniques used to determine engine net thrust and the drag forces charged to the propulsion system that were required for the in-flight drag measurements. The accuracy of the measurements and the application of the measurement techniques to aircraft with different propulsion systems are discussed. Examples of results obtained for the XB-70 airplane are presented.

  18. Force-Measuring Clamp

    NASA Technical Reports Server (NTRS)

    Nunnelee, Mark (Inventor)

    2004-01-01

    A precision clamp that accurately measures force over a wide range of conditions is described. Using a full bridge or other strain gage configuration. the elastic deformation of the clamp is measured or detected by the strain gages. Thc strain gages transmit a signal that corresponds to the degree of stress upon the clamp. Thc strain gage signal is converted to a numeric display. Calibration is achieved by ero and span potentiometers which enable accurate measurements by the force-measuring clamp.

  19. Note: Measurement system for the radiative forcing of greenhouse gases in a laboratory scale.

    PubMed

    Kawamura, Yoshiyuki

    2016-01-01

    The radiative forcing of the greenhouse gases has been studied being based on computational simulations or the observation of the real atmosphere meteorologically. In order to know the greenhouse effect more deeply and to study it from various viewpoints, the study on it in a laboratory scale is important. We have developed a direct measurement system for the infrared back radiation from the carbon dioxide (CO2) gas. The system configuration is similar with that of the practical earth-atmosphere-space system. Using this system, the back radiation from the CO2 gas was directly measured in a laboratory scale, which roughly coincides with meteorologically predicted value.

  20. Note: Measurement system for the radiative forcing of greenhouse gases in a laboratory scale

    SciTech Connect

    Kawamura, Yoshiyuki

    2016-01-15

    The radiative forcing of the greenhouse gases has been studied being based on computational simulations or the observation of the real atmosphere meteorologically. In order to know the greenhouse effect more deeply and to study it from various viewpoints, the study on it in a laboratory scale is important. We have developed a direct measurement system for the infrared back radiation from the carbon dioxide (CO{sub 2}) gas. The system configuration is similar with that of the practical earth-atmosphere-space system. Using this system, the back radiation from the CO{sub 2} gas was directly measured in a laboratory scale, which roughly coincides with meteorologically predicted value.

  1. Note: Measurement system for the radiative forcing of greenhouse gases in a laboratory scale

    NASA Astrophysics Data System (ADS)

    Kawamura, Yoshiyuki

    2016-01-01

    The radiative forcing of the greenhouse gases has been studied being based on computational simulations or the observation of the real atmosphere meteorologically. In order to know the greenhouse effect more deeply and to study it from various viewpoints, the study on it in a laboratory scale is important. We have developed a direct measurement system for the infrared back radiation from the carbon dioxide (CO2) gas. The system configuration is similar with that of the practical earth-atmosphere-space system. Using this system, the back radiation from the CO2 gas was directly measured in a laboratory scale, which roughly coincides with meteorologically predicted value.

  2. Footbridge system identification using wireless inertial measurement units for force and response measurements

    NASA Astrophysics Data System (ADS)

    Brownjohn, James Mark William; Bocian, Mateusz; Hester, David; Quattrone, Antonino; Hudson, William; Moore, Daniel; Goh, Sushma; Lim, Meng Sun

    2016-12-01

    With the main focus on safety, design of structures for vibration serviceability is often overlooked or mismanaged, resulting in some high profile structures failing publicly to perform adequately under human dynamic loading due to walking, running or jumping. A standard tool to inform better design, prove fitness for purpose before entering service and design retrofits is modal testing, a procedure that typically involves acceleration measurements using an array of wired sensors and force generation using a mechanical shaker. A critical but often overlooked aspect is using input (force) to output (response) relationships to enable estimation of modal mass, which is a key parameter directly controlling vibration levels in service. This paper describes the use of wireless inertial measurement units (IMUs), designed for biomechanics motion capture applications, for the modal testing of a 109 m footbridge. IMUs were first used for an output-only vibration survey to identify mode frequencies, shapes and damping ratios, then for simultaneous measurement of body accelerations of a human subject jumping to excite specific vibrations modes and build up bridge deck accelerations at the jumping location. Using the mode shapes and the vertical acceleration data from a suitable body landmark scaled by body mass, thus providing jumping force data, it was possible to create frequency response functions and estimate modal masses. The modal mass estimates for this bridge were checked against estimates obtained using an instrumented hammer and known mass distributions, showing consistency among the experimental estimates. Finally, the method was used in an applied research application on a short span footbridge where the benefits of logistical and operational simplicity afforded by the highly portable and easy to use IMUs proved extremely useful for an efficient evaluation of vibration serviceability, including estimation of modal masses.

  3. Measurement of external forces and torques on a large pointing system

    NASA Technical Reports Server (NTRS)

    Morenus, R. C.

    1980-01-01

    Methods of measuring external forces and torques are discussed, in general and as applied to the Large Pointing System wind tunnel tests. The LPS tests were in two phases. The first test was a preliminary test of three models representing coelostat, heliostat, and on-gimbal telescope configurations. The second test explored the coelostat configuration in more detail. The second test used a different setup for measuring external loads. Some results are given from both tests.

  4. Design and Development of a Flapping Wing System for Unsteady Forces and Power Measurement

    NASA Astrophysics Data System (ADS)

    Mudbhari, Durlav

    Flyers and swimmers flap their wings and fins to propel themselves efficiently over long distances, maneuver in tight spaces and navigate silently to avoid detection by prey. A key element to achieve these amazing feats is the flexibility of their propulsors. While numerous studies have shown that homogeneously flexible wings can enhance force production and efficiency, animals actually have wings with varying flexural rigidity along their chord and span. The goal of this study is to design and develop an experimental setup that would help understand and characterize the force production and energetics of functionally-graded, chordwise flexible wings. A flapping wing composed of a rigid and a flexible region, that define a chordwise gradient in flexural rigidity, is used to model functionally-graded materials. By varying the ratio of the lengths of the rigid to flexible regions, the flexural rigidity of the flexible region, and the flapping frequency, the thrust production of a functionally-graded wing is directly measured. An unsteady force and torque measurement system is developed to measure the lift/drag forces and power consumption during flapping wing flight in wind tunnel. A novel vacuum chamber apparatus is developed to be used in conjunction with the wind tunnel measurements to reliably measure the aerodynamic power input and the propulsive efficiency.

  5. Development of a hybrid atomic force microscopic measurement system combined with white light scanning interferometry.

    PubMed

    Guo, Tong; Wang, Siming; Dorantes-Gonzalez, Dante J; Chen, Jinping; Fu, Xing; Hu, Xiaotang

    2012-01-01

    A hybrid atomic force microscopic (AFM) measurement system combined with white light scanning interferometry for micro/nanometer dimensional measurement is developed. The system is based on a high precision large-range positioning platform with nanometer accuracy on which a white light scanning interferometric module and an AFM head are built. A compact AFM head is developed using a self-sensing tuning fork probe. The head need no external optical sensors to detect the deflection of the cantilever, which saves room on the head, and it can be directly fixed under an optical microscopic interferometric system. To enhance the system's dynamic response, the frequency modulation (FM) mode is adopted for the AFM head. The measuring data can be traceable through three laser interferometers in the system. The lateral scanning range can reach 25 mm × 25 mm by using a large-range positioning platform. A hybrid method combining AFM and white light scanning interferometry is proposed to improve the AFM measurement efficiency. In this method, the sample is measured firstly by white light scanning interferometry to get an overall coarse morphology, and then, further measured with higher resolution by AFM. Several measuring experiments on standard samples demonstrate the system's good measurement performance and feasibility of the hybrid measurement method.

  6. Force Measurement Improvements to the National Transonic Facility Sidewall Model Support System

    NASA Technical Reports Server (NTRS)

    Goodliff, Scott L.; Balakrishna, Sundareswara; Butler, David; Cagle, C. Mark; Chan, David; Jones, Gregory S.; Milholen, William E., II

    2016-01-01

    The National Transonic Facility is a transonic pressurized cryogenic facility. The development of the high Reynolds number semi-span capability has advanced over the years to include transonic active flow control and powered testing using the sidewall model support system. While this system can be used in total temperatures down to -250Â F for conventional unpowered configurations, it is limited to temperatures above -60Â F when used with powered models that require the use of the high-pressure air delivery system. Thermal instabilities and non-repeatable mechanical arrangements revealed several data quality shortfalls by the force and moment measurement system. Recent modifications to the balance cavity recirculation system have improved the temperature stability of the balance and metric model-to-balance hardware. Changes to the mechanical assembly of the high-pressure air delivery system, particularly hardware that interfaces directly with the model and balance, have improved the repeatability of the force and moment measurement system. Drag comparisons with the high-pressure air system removed will also be presented in this paper.

  7. Measurement of Surface Forces

    DTIC Science & Technology

    1990-11-16

    hydration forces were observed in solutions containing chloride salts of Li+ , K+ , Na 4 , and Cs+ , resulting from electrostatic binding of the cation...concentrated solutions of a series of tetraalkylammonium bromide salts [46] [Fig. 13]. In these measurements, the distance of closest approach of the two...solid metal electrodes separated by an electrolytic solution . Electrostatic forces, which are intimately related to electrode kinetics and adsorption

  8. Development of a Forced Oscillation System for Measuring Dynamic Derivatives of Fluidic Vehicles

    NASA Technical Reports Server (NTRS)

    Trieu, B. C.; Tyler, T. R.; Stewart, B. K.; Chamock, J. K.; Fisher, D. W.; Heim, E. H.; Brandon, J.; Grafton, S. B.

    2006-01-01

    A new Forced Oscillation System (FOS) has been designed and built at NASA Langley Research Center that provides new capabilities for aerodynamic researchers to investigate the dynamic derivatives of vehicle configurations. Test vehicles may include high performance and general aviation aircraft, re-entry spacecraft, submarines and other fluidic vehicles. The measured data from forced oscillation testing is used in damping characteristic studies and in simulation databases for control algorithm development and performance analyses. The newly developed FOS hardware provides new flexibility for conducting dynamic derivative studies. The design is based on a tracking principle where a desired motion profile is achieved via a fast closed-loop positional controller. The motion profile for the tracking system is numerically generated and thus not limited to sinusoidal motion. This approach permits non-traditional profiles such as constant velocity and Schroeder sweeps. Also, the new system permits changes in profile parameters including nominal offset angle, waveform, and associated parameters such as amplitude and frequency. Most importantly, the changes may be made remotely without halting the FOS and the tunnel. System requirements, system analysis, and the resulting design are addressed for a new FOS in the 12-Foot Low-Speed Wind Tunnel (LSWT). The overall system including mechanical, electrical, and control subsystems is described. The design is complete, and the FOS has been built and installed in the 12-Foot LSWT. System integration and testing have verified design intent and safe operation. Currently it is being validated for wind-tunnel operations and aerodynamic testing. The system is a potential major enhancement to forced oscillation studies. The productivity gain from the motion profile automation will shorten the testing cycles needed for control surface and aircraft control algorithm development. The new motion capabilities also will serve as a test bed for

  9. System for measurement of small vibrations at material interfaces induced by electrostrictive forces

    SciTech Connect

    Ali, J.S.; Joines, W.T.

    1985-10-01

    The mechanisms of interaction of ELF and ELF-modulated RF fields with biological systems is presently an active area of research. Some models propose that field-induced forces may influence certain observed biological effects such as RF hearing and calcium ion efflux. To investigate the validity of the field-induced force model for the calcium-ion efflux effect, a system is needed which is capable of exposing samples to ELF fields or to ELF-modulated RF fields. At the same time the induced vibration caused by the forces of electrostriction must be monitored preferably by a noncontacting method. A microwave phase-sensitive receiver was designed to sense the small vibrations. Limitations on the receiver sensitivity imposed by phase noise is discussed. Phase noise measurement systems were designed and used to characterize the key receiver components. A limiting amplifier in the IF section of the receiver eliminates the need for knowledge of the reflection coefficient of the object of interest for quantitative vibration measurements.

  10. Single Cell Mass Measurement Using Drag Force Inside Lab-on-Chip Microfluidics System.

    PubMed

    Rahman, Md Habibur; Ahmad, Mohd Ridzuan; Takeuchi, Masaru; Nakajima, Masahiro; Hasegawa, Yasuhisa; Fukuda, Toshio

    2015-12-01

    Single cell mass (SCM) is an intrinsic property of single cell, it arouses a great interest among scientists as cell mass depends on the synthesis of proteins, DNA replication, cell wall stiffness, cell cytoplasm density, cell growth, ribosome, and other analogous of organisms. To date, several great strides have been taken to the advancements of SCM measurement techniques. Nevertheless, more works are required to enable the technology to push frontier in deep analysis of SCM measurement, hence to elucidate intracellular properties. In this paper, we present a lab-on-chip microfluidics system for SCM measurement, related with the force required to drag a single cell and Newton's law of motion inside microfluidics channel. Drag force on the cell was generated by a pressure driven syringe micropump and the motion of the cell was measured using optical observation under an inverted microscope. This approach of measuring SCM was calibrated using known mass (77.3 pg) of a polystyrene particle of 5.2 μm diameter. Furthermore, we used Saccharomyces cerevisiae baker's yeast cells of different sizes ([Formula: see text] diameter) for SCM measurement. Mass of 4.4 μm diameter of single yeast cell was measured as 2.12 pg which is in the range of previously reported single yeast cell mass (2-3 pg). In addition, we also studied the relation between SCM and single cell size. Results showed that single yeast cell mass increases exponentially with the increasing of single cell size.

  11. Single Cell Mass Measurement Using Drag ForceInside Lab-on-Chip Microfluidics System.

    PubMed

    Rahman, Md; Ahmad, Mohd; Takeuchi, Masaru; Nakajima, Masahiro; Hasegawa, Yasuhisa; Fukuda, Toshio

    2015-12-22

    Single Cell Mass (SCM) is an intrinsic property of single cell, it arouses a great interest among scientists as cell mass depends on the synthesis of proteins, DNA replication, cell wall stiffness, cell cytoplasm density, cell growth, ribosome and other analogous of organisms. To date, several great strides have been taken to the advancements of SCM measurement techniques. Nevertheless, more works are required to enable the technology to push frontier in deep analysis of SCM measurement, hence to elucidate intracellular properties. In this paper, we present a Lab-on-Chip microfluidics system for SCM measurement, related with the force required to drag a single cell and Newton's law of motion inside microfluidics channel. Drag force on the cell was generated by a pressure driven syringe micropump and the motion of the cell was measured using optical observation under an inverted microscope. This approach of measuring SCM was calibrated using known mass (77.3 pg) of a polystyrene particle of 5.2 μm diameter. Furthermore, we used Saccharomyces cerevisiae baker's yeast cells of different sizes (2-7 μm diameter) for SCM measurement. Mass of 4.4 μm diameter of single yeast cell was measured as 2.12 pg which is in the range of previously reported single yeast cell mass (2-3 pg). In addition, we also studied the relation between SCM and single cell size. Results showed that single yeast cell mass increases exponentially with the increasing of single cell size.

  12. In Vitro System for Measuring Chordal Force Changes Following Mitral Valve Patch Repair

    PubMed Central

    Ostli, B; Vester-Petersen, J; Askov, JB; Honge, JL; Levine, RA; Hagège, A; Nielsen, SL; Hasenkam, JM; Nygaard, H; Jensen, MO

    2013-01-01

    Background Attention towards optimization of mitral valve repair methods is increasing. Patch augmentation is one strategy utilized to correct functional mitral regurgitation or systolic anterior motion in complex mitral valve repairs. This article describes a system for investigating the redistribution of chordae tendineae tension as a reflection of altered stress distribution of the valve leaflet following patch augmentation. Methods and materials An in vitro test setup was constructed to hold native porcine mitral valves containing an annulus and papillary muscle positioning system. The alterations caused by patch augmentation should be visual from both the atrial and ventricular views. Ventricular pressure was regulated stepwise in a range of 0-150 mmHg. To test the system, the anterior mitral leaflet was extended by a pericardial patch sutured to the mid/basal part of the leaflet, and the chordae tendineae force was measured as the ventricular pressure was applied. Results The system demonstrated the capacity to hold native porcine mitral valves and introducing patch repairs according to clinical practice. The porcine mitral valve test setup indicated strong correlation between the forces in the mitral valve secondary chordae tendineae and the applied transvalvular pressure (R2 = 0.95). Conclusion This test setup proved the ability to obtain normal mid-systolic mitral valve function, secondary chordae force measurements, and important preservation of the visual access: Hence, obtaining the pressure-force relationship as well as identifying any shift of the secondary chordae insertion point on the anterior leaflet relative to the coaptation zone was made possible. PMID:26273417

  13. Accuracy and repeatability of the Pedar Mobile system in long-term vertical force measurements.

    PubMed

    Hurkmans, H L P; Bussmann, J B J; Benda, E; Verhaar, J A N; Stam, H J

    2006-01-01

    Portable insole pressure systems can be used to measure the vertical force during long-term (hours) measurements to determine the patient's amount of weight bearing during daily activities in the hospital and at home. Especially for long-term measurements, the amount and duration of loading pressure insoles can have a large influence on the accuracy, as previous studies found a time-dependent behavior after a relatively short period (minutes) of constant loading. Therefore, this study assessed the accuracy and repeatability of a portable capacitive insole system (Pedar, Novel(GmbH)) to measure vertical force during long-term loading. Static loading experiments were performed during which the Pedar insoles were loaded with 5 and 10 N/cm2 for 7 h. Dynamic loading experiments were performed with one Pedar insole which was cyclically loaded with 300, 500 and 1000 N during two sessions of 1200 load cycles. The static and dynamic experiments were repeated 3 days later. Accuracy, due to offset drift, decreased in time during the start of the static experiments (percent error: -1.9% to 0.3% at hour 0; 26.3% to 34% at hour 7). The percent error for the dynamic experiments ranged from -16% to -19%, from -3% to -7% and from -8% to approximately 0% when the insole was loaded with 300, 500 and 1000 N, respectively. The amount of drift ranged from 12 to 62 N for the 500 and 1000 N loads, respectively. The mean day-to-day percentage difference for the static and dynamic experiments ranged from -2.3% to 0.5%, and from -2.9% to 3.0%, respectively. The results indicate that drift correction is necessary for accurate assessment of vertical force by the Pedar Mobile system to determine the amount of weight bearing during long-term measurements.

  14. High-precision horizontally directed force measurements for high dead loads based on a differential electromagnetic force compensation system

    NASA Astrophysics Data System (ADS)

    Vasilyan, Suren; Rivero, Michel; Schleichert, Jan; Halbedel, Bernd; Fröhlich, Thomas

    2016-04-01

    In this paper, we present an application for realizing high-precision horizontally directed force measurements in the order of several tens of nN in combination with high dead loads of about 10 N. The set-up is developed on the basis of two identical state-of-the-art electromagnetic force compensation (EMFC) high precision balances. The measurement resolution of horizontally directed single-axis quasi-dynamic forces is 20 nN over the working range of  ±100 μN. The set-up operates in two different measurement modes: in the open-loop mode the mechanical deflection of the proportional lever is an indication of the acting force, whereas in the closed-loop mode it is the applied electric current to the coil inside the EMFC balance that compensates deflection of the lever to the offset zero position. The estimated loading frequency (cutoff frequency) of the set-up in the open-loop mode is about 0.18 Hz, in the closed-loop mode it is 0.7 Hz. One of the practical applications that the set-up is suitable for is the flow rate measurements of low electrically conducting electrolytes by applying the contactless technique of Lorentz force velocimetry. Based on a previously developed set-up which uses a single EMFC balance, experimental, theoretical and numerical analyses of the thermo-mechanical properties of the supporting structure are presented.

  15. Electromotive Force Measurements in the Ternary System Bi-In-Zn

    NASA Astrophysics Data System (ADS)

    Knott, Sabine; Li, Zuoan; Wang, C.-H.; Mikula, Adolf

    2010-12-01

    The thermodynamic properties of the ternary Bi-In-Zn system were determined with the electromotive force (EMF) method using a liquid electrolyte. Four different cross sections with constant In/Bi ratios of 1:2, 1:1, 2:1, and 9:1 were applied to measure the thermodynamic properties of the ternary system in the temperature range between the liquidus temperature of the alloys and 973 K (700 °C). Zinc was added in steps of 5 at. pct from 5 to 90 pct. The partial free energies of Zn in liquid Bi-In-Zn alloys were determined as a function of concentration and temperature. The integral Gibbs free energy and the integral enthalpy of the ternary system at 873 K (600 °C) were calculated by Gibbs-Duhem integration. The ternary interaction parameters were evaluated using the Redlich-Kister-Muggianu polynomials.

  16. Development of optical FBG force measurement system for the medical application

    NASA Astrophysics Data System (ADS)

    Song, Hoseok; Kim, Kiyoung; Suh, Jungwook; Lee, Jungju

    2009-12-01

    Haptic feedback plays a very important role in medical surgery. In minimally invasive surgery (MIS), however, very long and stiff bar of instruments take haptic feeling away from the surgeon. In minimally invasive robotic surgery (MIRS), moreover, haptic feelings are totally eliminated. Previous researchers have reported that the absence of force feedback increased the average force magnitude applied to the tissue by at least 50%, and increased the peakforce magnitude by at least a factor of two. Therefore, it is very important to provide haptic information in MIRS. Recently, many sensors are being developed for MIS or MIRS, but they have some obstacles in their application to real situations of medical surgery. The most critical problems are size limit and sterilizability. Optical fiber sensors are one of the most suitable sensors for this environment. Especially, optical fiber Bragg grating (FBG) sensor has one additional advantage than the other optical fiber sensors. FBG sensor is not influenced by intensity of light source. In this paper, we would like to present the initial results of study on the application of the FBG sensor to measure reflected forces in MIRS environments and then suggest the possibility of successful application to the MIRS systems.

  17. Development of optical FBG force measurement system for the medical application

    NASA Astrophysics Data System (ADS)

    Song, Hoseok; Kim, Kiyoung; Suh, Jungwook; Lee, Jungju

    2010-03-01

    Haptic feedback plays a very important role in medical surgery. In minimally invasive surgery (MIS), however, very long and stiff bar of instruments take haptic feeling away from the surgeon. In minimally invasive robotic surgery (MIRS), moreover, haptic feelings are totally eliminated. Previous researchers have reported that the absence of force feedback increased the average force magnitude applied to the tissue by at least 50%, and increased the peakforce magnitude by at least a factor of two. Therefore, it is very important to provide haptic information in MIRS. Recently, many sensors are being developed for MIS or MIRS, but they have some obstacles in their application to real situations of medical surgery. The most critical problems are size limit and sterilizability. Optical fiber sensors are one of the most suitable sensors for this environment. Especially, optical fiber Bragg grating (FBG) sensor has one additional advantage than the other optical fiber sensors. FBG sensor is not influenced by intensity of light source. In this paper, we would like to present the initial results of study on the application of the FBG sensor to measure reflected forces in MIRS environments and then suggest the possibility of successful application to the MIRS systems.

  18. Field measurements of efficiency and duct retrofit effectiveness in residential forced air distributions systems

    SciTech Connect

    Jump, D.A.; Walker, I.S.; Modera, M.P.

    1996-08-01

    Forced air distribution systems can have a significant impact on the energy consumed in residences. It is common practice in U.S. residential buildings to place such duct systems outside the conditioned space. This results in the loss of energy by leakage and conduction to the surroundings. In order to estimate the magnitudes of these losses, 24 houses in the Sacramento, California, area were tested before and after duct retrofitting. The systems in these houses included conventional air conditioning, gas furnaces, electric furnaces and heat pumps. The retrofits consisted of sealing and insulating the duct systems. The field testing consisted of the following measurements: leakage of the house envelopes and their ductwork, flow through individual registers, duct air temperatures, ambient temperatures, surface areas of ducts, and HVAC equipment energy consumption. These data were used to calculate distribution system delivery efficiency as well as the overall efficiency of the distribution system including all interactions with building load and HVAC equipment. Analysis of the test results indicate an average increase in delivery efficiency from 64% to 76% and a corresponding average decrease in HVAC energy use of 18%. This paper summarizes the pre- and post-retrofit efficiency measurements to evaluate the retrofit effectiveness, and includes cost estimates for the duct retrofits. The impacts of leak sealing and insulating will be examined separately. 8 refs., 1 fig., 4 tabs.

  19. Using optical tweezers for measuring the interaction forces between human bone cells and implant surfaces: System design and force calibration

    SciTech Connect

    Andersson, Martin; Madgavkar, Ashwin; Stjerndahl, Maria; Wu, Yanrong; Tan, Weihong; Duran, Randy; Niehren, Stefan; Mustafa, Kamal; Arvidson, Kristina; Wennerberg, Ann

    2007-07-15

    Optical tweezers were used to study the interaction and attachment of human bone cells to various types of medical implant materials. Ideally, the implant should facilitate cell attachment and promote migration of the progenitor cells in order to decrease the healing time. It is therefore of interest, in a controlled manner, to be able to monitor the cell adhesion process. Results from such studies would help foresee the clinical outcome of integrating medical implants. The interactions between two primary cell culture models, human gingival fibroblasts and bone forming human osteoblast cells, and three different implant materials, glass, titanium, and hydroxyapatite, were studied. A novel type of optical tweezers, which has a newly designed quadrant detector and a powerful 3 W laser was constructed and force calibrated using two different methods: one method in which the stiffness of the optical trap was obtained by monitoring the phase lag between the trap and the moved object when imposing a forced oscillation on the trapped object and another method in which the maximum trapping force was derived from the critical velocity at which the object escapes the trap. Polystyrene beads as well as cells were utilized for the calibrations. This is the first time that cells have been used directly for these types of force calibrations and, hence, direct measurements of forces exerted on cells can be performed, thus avoiding the difficulties often encountered when translating the results obtained from cell measurements to the calibrations obtained with reference materials. This more straightforward approach represents an advantage in comparison to established methods.

  20. Direct measurement of depletion and structural forces in a micellar system

    NASA Astrophysics Data System (ADS)

    Richetti, P.; Kékicheff, P.

    1992-03-01

    The force as a function of separation is measured between two mica surfaces coated with adsorbed bilayers of cetyltrimethylammonium bromide (CTAB) and immersed in aqueous ionic micellar solutions of CTAB. At low separations double-layer forces are observed and arise soley from the dissociated counterions and free CTA+. At large separations, the repulsion is reduced and a secondary minimum in the interaction potential deepens when the micellar concentration is increased. Finally, at higher concentrations, structural effects superimpose an oscillatory force profile at further separations.

  1. Measurement of intraarticular wrist joint biomechanics with a force controlled system.

    PubMed

    Erhart, Stefanie; Lutz, Martin; Arora, Rohit; Schmoelz, Werner

    2012-09-01

    Pathologies of the wrist, such as fractures or instabilities, can lead to alterations in joint biomechanics. Accurate treatment of these pathologies is a frequent challenge for the surgeon. For biomechanical investigations, a test-setup that applies physiological loading of the wrist joint is necessary. A force controlled test-bench with agonistic and antagonistic muscle forces was built to move six fresh frozen human upper extremities through flexion and extension of the wrist joint. Tendon forces, range of motion, intraarticular contact area and contact pressure of the lunate and scaphoid facet as well as tendon excursion were investigated and compared with the current literature. During wrist motion the extensors exerted double the force of the flexors. Capsulotomy and sensor insertion decreased the range of motion from 63.4° (SD 14.1) to 45.9° (SD 23.7). The ratio of force transmitted through the radius and ulna was 77:23 and pressure distribution between the scaphoid and lunate facet showed a 70:30 relationship. The obtained data indicate a good agreement with the available literature. Therefore, the force controlled test-bench in combination with intraarticular radiocarpal measurements can be used to investigate the influence of wrist pathologies on joint biomechanics.

  2. Method and system for measuring gate valve clearances and seating force

    DOEpatents

    Casada, Donald A.; Haynes, Howard D.; Moyers, John C.; Stewart, Brian K.

    1996-01-01

    Valve clearances and seating force, as well as other valve operational parameters, are determined by measuring valve stem rotation during opening and closing operations of a translatable gate valve. The magnitude of the stem rotation, and the relative difference between the stem rotation on opening and closing provides valuable data on the valve internals in a non-intrusive manner.

  3. Method and system for measuring gate valve clearances and seating force

    DOEpatents

    Casada, D.A.; Haynes, H.D.; Moyers, J.C.; Stewart, B.K.

    1996-01-30

    Valve clearances and seating force, as well as other valve operational parameters, are determined by measuring valve stem rotation during opening and closing operations of a translatable gate valve. The magnitude of the stem rotation, and the relative difference between the stem rotation on opening and closing provides valuable data on the valve internals in a non-intrusive manner. 8 figs.

  4. Interfacial forces between silica surfaces measured by atomic force microscopy.

    PubMed

    Duan, Jinming

    2009-01-01

    Colloidal particle stability and some other interfacial phenomena are governed by interfacial force interactions. The two well known forces are van der Waals force and electrostatic force, as documented by the classical Derjaguin, Landau, Verwey, and Overbeek (DLVO) theory. Moreover, advances in modern instrumentation and colloid science suggested that some short-ranged forces or structure forces are important for relevant colloidal systems. The interfacial and/or molecular forces can be measured as a resultant force as function of separation distance by atomic force microscopy (AFM) colloid probe. This article presents a discussion on AFM colloid probe measurement of silica particle and silica wafer surfaces in solutions with some technical notifications in measurement and data convolution mechanisms. The measured forces are then analyzed and discussed based on the 'constant charge' and 'constant potential' models of DLVO theory. The difference between the prediction of DLVO theory and the measured results indicates that there is a strong short-range structure force between the two hydrophilic surfaces, even at extremely low ionic concentration, such as Milli-Q water purity solution.

  5. Hand-handle interface force and torque measurement system for pneumatic assembly tool operations: suggested enhancement to ISO 6544.

    PubMed

    Lin, Jia-Hua; McGorry, Raymond W; Chang, Chien-Chi

    2007-05-01

    A hand-handle interface force and torque measurement system is introduced to fill the void acknowledged in the international standard ISO 6544, which governs pneumatic, assembly tool reaction torque and force measurement. This system consists of an instrumented handle with a sensor capable of measuring grip force and reaction hand moment when threaded, fastener-driving tools are used by operators. The handle is rigidly affixed to the tool in parallel to the original tool handle allowing normal fastener-driving operations with minimal interference. Demonstration of this proposed system was made with tools of three different shapes: pistol grip, right angle, and in-line. During tool torque buildup, the proposed system measured operators exerting greater grip force on the soft joint than on the hard joint. The system also demonstrated that the soft joint demanded greater hand moment impulse than the hard joint. The results demonstrate that the measurement system can provide supplemental data useful in exposure assessment with power hand tools as proposed in ISO 6544.

  6. Uncertainty in NIST Force Measurements.

    PubMed

    Bartel, Tom

    2005-01-01

    This paper focuses upon the uncertainty of force calibration measurements at the National Institute of Standards and Technology (NIST). The uncertainty of the realization of force for the national deadweight force standards at NIST is discussed, as well as the uncertainties associated with NIST's voltage-ratio measuring instruments and with the characteristics of transducers being calibrated. The combined uncertainty is related to the uncertainty of dissemination for force transfer standards sent to NIST for calibration.

  7. High-Reynolds Number Active Blowing Semi-Span Force Measurement System Development

    NASA Technical Reports Server (NTRS)

    Lynn, Keith C.; Rhew, Ray D.; Acheson, Michael J.; Jones, Gregory S.; Milholen, William E.; Goodliff, Scott L.

    2012-01-01

    Recent wind-tunnel tests at the NASA Langley Research Center National Transonic Facility utilized high-pressure bellows to route air to the model for evaluating aircraft circulation control. The introduction of these bellows within the Sidewall Model Support System significantly impacted the performance of the external sidewall mounted semi-span balance. As a result of this impact on the semi-span balance measurement performance, it became apparent that a new capability needed to be built into the National Transonic Facility s infrastructure to allow for performing pressure tare calibrations on the balance in order to properly characterize its performance under the influence of static bellows pressure tare loads and bellows thermal effects. The objective of this study was to design both mechanical calibration hardware and an experimental calibration design that can be employed at the facility in order to efficiently and precisely perform the necessary loadings in order to characterize the semi-span balance under the influence of multiple calibration factors (balance forces/moments and bellows pressure/temperature). Using statistical design of experiments, an experimental design was developed allowing for strategically characterizing the behavior of the semi-span balance for use in circulation control and propulsion-type flow control testing at the National Transonic Facility.

  8. A Vibrotactile and Plantar Force Measurement-Based Biofeedback System: Paving the Way towards Wearable Balance-Improving Devices

    PubMed Central

    Ma, Christina Zong-Hao; Wan, Anson Hong-Ping; Wong, Duo Wai-Chi; Zheng, Yong-Ping; Lee, Winson Chiu-Chun

    2015-01-01

    Although biofeedback systems have been used to improve balance with success, they were confined to hospital training applications. Little attempt has been made to investigate the use of in-shoe plantar force measurement and wireless technology to turn hospital training biofeedback systems into wearable devices. This research developed a wearable biofeedback system which detects body sway by analyzing the plantar force and provides users with the corresponding haptic cues. The effects of this system were evaluated in thirty young and elderly subjects with simulated reduced foot sensation. Subjects performed a Romberg test under three conditions: (1) no socks, system turned-off; (2) wearing five layers of socks, system turned-off; (3) wearing five layers of socks, and system turned-on. Degree of body sway was investigated by computing the center of pressure (COP) movement measured by a floor-mounted force platform. Plantar tactile sensation was evaluated using a monofilament test. Wearing multiple socks significantly decreased the plantar tactile sensory input (p < 0.05), and increased the COP parameters (p < 0.017), indicating increased postural sway. After turning on the biofeedback system, the COP parameters decreased significantly (p < 0.017). The positive results of this study should inspire future development of wearable plantar force-based biofeedback systems for improving balance in people with sensory deficits. PMID:26694399

  9. A Vibrotactile and Plantar Force Measurement-Based Biofeedback System: Paving the Way towards Wearable Balance-Improving Devices.

    PubMed

    Ma, Christina Zong-Hao; Wan, Anson Hong-Ping; Wong, Duo Wai-Chi; Zheng, Yong-Ping; Lee, Winson Chiu-Chun

    2015-12-15

    Although biofeedback systems have been used to improve balance with success, they were confined to hospital training applications. Little attempt has been made to investigate the use of in-shoe plantar force measurement and wireless technology to turn hospital training biofeedback systems into wearable devices. This research developed a wearable biofeedback system which detects body sway by analyzing the plantar force and provides users with the corresponding haptic cues. The effects of this system were evaluated in thirty young and elderly subjects with simulated reduced foot sensation. Subjects performed a Romberg test under three conditions: (1) no socks, system turned-off; (2) wearing five layers of socks, system turned-off; (3) wearing five layers of socks, and system turned-on. Degree of body sway was investigated by computing the center of pressure (COP) movement measured by a floor-mounted force platform. Plantar tactile sensation was evaluated using a monofilament test. Wearing multiple socks significantly decreased the plantar tactile sensory input (p < 0.05), and increased the COP parameters (p < 0.017), indicating increased postural sway. After turning on the biofeedback system, the COP parameters decreased significantly (p < 0.017). The positive results of this study should inspire future development of wearable plantar force-based biofeedback systems for improving balance in people with sensory deficits.

  10. Review and Evaluation of Hand–Arm Coordinate Systems for Measuring Vibration Exposure, Biodynamic Responses, and Hand Forces

    PubMed Central

    Dong, Ren G.; Sinsel, Erik W.; Welcome, Daniel E.; Warren, Christopher; Xu, Xueyan S.; McDowell, Thomas W.; Wu, John Z.

    2015-01-01

    The hand coordinate systems for measuring vibration exposures and biodynamic responses have been standardized, but they are not actually used in many studies. This contradicts the purpose of the standardization. The objectives of this study were to identify the major sources of this problem, and to help define or identify better coordinate systems for the standardization. This study systematically reviewed the principles and definition methods, and evaluated typical hand coordinate systems. This study confirms that, as accelerometers remain the major technology for vibration measurement, it is reasonable to standardize two types of coordinate systems: a tool-based basicentric (BC) system and an anatomically based biodynamic (BD) system. However, these coordinate systems are not well defined in the current standard. Definition of the standard BC system is confusing, and it can be interpreted differently; as a result, it has been inconsistently applied in various standards and studies. The standard hand BD system is defined using the orientation of the third metacarpal bone. It is neither convenient nor defined based on important biological or biodynamic features. This explains why it is rarely used in practice. To resolve these inconsistencies and deficiencies, we proposed a revised method for defining the realistic handle BC system and an alternative method for defining the hand BD system. A fingertip-based BD system for measuring the principal grip force is also proposed based on an important feature of the grip force confirmed in this study. PMID:26929824

  11. Jaw bite force measurement device.

    PubMed

    Flanagan, Dennis; Ilies, Horea; O'Brien, Brendan; McManus, Anne; Larrow, Beau

    2012-08-01

    We describe a cost-effective device that uses an off-the-shelf force transducer to measure patient bite force as a diagnostic aid in determining dental implant size, number of implants, and prosthetic design for restoring partial edentulism. The main advantages of the device are its accuracy, simplicity, modularity, ease of manufacturing, and low cost.

  12. Measuring lung function using sound waves: role of the forced oscillation technique and impulse oscillometry system.

    PubMed

    Brashier, Bill; Salvi, Sundeep

    2015-03-01

    Measuring lung function is an important component in the decision making process for patients with obstructive airways disease (OAD). Not only does it help in arriving at a specific diagnosis, but it also helps in evaluating severity so that appropriate pharmacotherapy can be instituted, it helps determine prognosis and it helps evaluate response to therapy. Spirometry is currently the most commonly performed lung function test in clinical practice and is considered to be the gold standard diagnostic test for asthma and COPD. However, spirometry is not an easy test to perform because the forceful expiratory and inspiratory manoeuvres require good patient co-operation. Children aged <5 years, elderly people and those with physical and cognitive limitations cannot perform spirometry easily.

  13. Cooling Force Measurements at CELSIUS

    SciTech Connect

    Ga ring lnander, B.; Lofnes, T.; Ziemann, V.; Fedotov, A. V.; Litvinenko, V. N.; Sidorin, A. O.; Smirnov, A. V.

    2006-03-20

    The design of future high energy coolers relies heavily on extending the results of cooling force measurements into new regimes by using simulation codes. In order to carefully benchmark these codes we have accurately measured the longitudinal friction force in CELSIUS by recording the phase shift between the beam and the RF voltage while varying the RF frequency. Moreover, parameter dependencies on the electron current, solenoid magnetic field and magnetic field alignment were carried out.

  14. COOLING FORCE MEASUREMENTS IN CELSIUS.

    SciTech Connect

    GALNANDER, B.; FEDOTOV, A.V.; LITVINENKO, V.N.; ET AL.

    2005-09-18

    The design of future high energy coolers relies heavily on extending the results of cooling force measurements into new regimes by using simulation codes. In order to carefully benchmark these codes we have accurately measured the longitudinal friction force in CELSIUS by recording the phase shift between the beam and the RF voltage while varying the RF frequency. Moreover, parameter dependencies on the electron current, solenoid magnetic field and magnetic field alignment were carried out.

  15. Normal and system lupus erythematosus red blood cell interactions studied by double trap optical tweezers: direct measurements of aggregation forces

    NASA Astrophysics Data System (ADS)

    Khokhlova, Maria D.; Lyubin, Eugeny V.; Zhdanov, Alexander G.; Rykova, Sophia Yu.; Sokolova, Irina A.; Fedyanin, Andrey A.

    2012-02-01

    Direct measurements of aggregation forces in piconewton range between two red blood cells in pair rouleau are performed under physiological conditions using double trap optical tweezers. Aggregation and disaggregation properties of healthy and pathologic (system lupus erythematosis) blood samples are analyzed. Strong difference in aggregation speed and behavior is revealed using the offered method which is proposed to be a promising tool for SLE monitoring at single cell level.

  16. An fMRI-compatible force measurement system for the evaluation of the neural correlates of step initiation

    PubMed Central

    de Lima-Pardini, Andrea Cristina; de Azevedo Neto, Raymundo Machado; Coelho, Daniel Boari; Boffino, Catarina Costa; Shergill, Sukhwinder S.; de Oliveira Souza, Carolina; Brant, Rachael; Barbosa, Egberto Reis; Cardoso, Ellison Fernando; Teixeira, Luis Augusto; Cohen, Rajal G.; Horak, Fay Bahling; Amaro, Edson

    2017-01-01

    Knowledge of brain correlates of postural control is limited by the technical difficulties in performing controlled experiments with currently available neuroimaging methods. Here we present a system that allows the measurement of anticipatory postural adjustment of human legs to be synchronized with the acquisition of functional magnetic resonance imaging data. The device is composed of Magnetic Resonance Imaging (MRI) compatible force sensors able to measure the level of force applied by both feet. We tested the device in a group of healthy young subjects and a group of elderly subjects with Parkinson’s disease using an event-related functional MRI (fMRI) experiment design. In both groups the postural behavior inside the magnetic resonance was correlated to the behavior during gait initiation outside the scanner. The system did not produce noticeable imaging artifacts in the data. Healthy young people showed brain activation patterns coherent with movement planning. Parkinson’s disease patients demonstrated an altered pattern of activation within the motor circuitry. We concluded that this force measurement system is able to index both normal and abnormal preparation for gait initiation within an fMRI experiment. PMID:28230070

  17. An fMRI-compatible force measurement system for the evaluation of the neural correlates of step initiation.

    PubMed

    de Lima-Pardini, Andrea Cristina; de Azevedo Neto, Raymundo Machado; Coelho, Daniel Boari; Boffino, Catarina Costa; Shergill, Sukhwinder S; de Oliveira Souza, Carolina; Brant, Rachael; Barbosa, Egberto Reis; Cardoso, Ellison Fernando; Teixeira, Luis Augusto; Cohen, Rajal G; Horak, Fay Bahling; Amaro, Edson

    2017-02-23

    Knowledge of brain correlates of postural control is limited by the technical difficulties in performing controlled experiments with currently available neuroimaging methods. Here we present a system that allows the measurement of anticipatory postural adjustment of human legs to be synchronized with the acquisition of functional magnetic resonance imaging data. The device is composed of Magnetic Resonance Imaging (MRI) compatible force sensors able to measure the level of force applied by both feet. We tested the device in a group of healthy young subjects and a group of elderly subjects with Parkinson's disease using an event-related functional MRI (fMRI) experiment design. In both groups the postural behavior inside the magnetic resonance was correlated to the behavior during gait initiation outside the scanner. The system did not produce noticeable imaging artifacts in the data. Healthy young people showed brain activation patterns coherent with movement planning. Parkinson's disease patients demonstrated an altered pattern of activation within the motor circuitry. We concluded that this force measurement system is able to index both normal and abnormal preparation for gait initiation within an fMRI experiment.

  18. Measuring contact area, force, and pressure for bioengineering applications: using Fuji Film and TekScan systems.

    PubMed

    Bachus, Kent N; DeMarco, Alyssa L; Judd, Kyle T; Horwitz, Daniel S; Brodke, Darrel S

    2006-06-01

    The goal of this study was to compare the TekScan I-Scan Pressure Measurement System with two methods of analysis involving the Fuji Film Prescale Pressure Measuring System in estimating area, force and pressure. Fuji Film and TekScan sensors were alternately placed between a cylindrical peg and a finely ground steel base plate, and compressed with known forces. All Fuji stains were digitally scanned and analyzed. The Erase method of Fuji Film analysis consisted of manually removing portions of the image judged by the user to be outside the perimeter of the stain. The second method of Fuji Film analysis, termed the Threshold method, used the threshold tool to analyze only those pixels that were stained from loading. The TekScan system utilized special matrix-based sensors interfaced with a Windows compatible desktop computer that was equipped with specialized data acquisition hardware and analysis software. The data from this study did not support the hypothesis that all three methods would have accuracies within +/-5% of a known value, when estimating area, force and pressure. Specifically, the TekScan system was found to be more accurate than either of the Fuji Film methods when estimating area and pressure.

  19. Force Measurement Device for ARIANE 5 Payloads

    NASA Astrophysics Data System (ADS)

    Brunner, O.; Braeken, R.

    2004-08-01

    ESTEC uses since 1991 a Force Measurement Device (FMD) for the measurement of dynamic mechanical forces and moments. This tool allows the determination of forces and moments applied to the test hardware at its interface to the test facilities during dynamic testing. Three forces and three moments are calculated from the measurements of eight tri-axial force links and used to either characterize the dynamic mechanical behaviour of the test item and/or to control forces and moments during vibration testing (force limited vibration control). The current FMD is limited to test items with an interface diameter of up to about 1.2 m (adapter already available) and a mass compatible with ARIANE 4 payloads. The limitations of the current system come from the maximum of eight tri-axial force links and from the analogue technique of the Signal Processing Unit (SPU) that allows only a limited number of geometric configurations for the mechanical interface. Following the success of the FMD during former test campaigns, e.g. ROSETTA STM + FM, the need for a FMD, compatible with ARIANE 5 payloads has been established. Therefore ESA decided to develop a new FMD system. The system will include a digital real time SPU with 72 force input channels, corresponding to 24 tri-axes force sensors or 72 mono axial force sensors. The SPU design will allow extending the number of force input channels to 144. The set-up of the FMD will be done via a standard PC interface. The user will enter for each force sensor the location and the measurement direction in the reference coordinate system. Based on the geometrical information and the maximum forces and moments expected the PC will calculate the optimum range settings for the charge-amplifiers and the corresponding matrix with weighting factors which will allow to perform a fast calculation of the six output forces and moments from the 72 (or 144) input forces. The six output channels with forces and moments can then be connected either to the

  20. Floating chip mounting system driven by repulsive force of permanent magnets for multiple on-site SPR immunoassay measurements.

    PubMed

    Horiuchi, Tsutomu; Tobita, Tatsuya; Miura, Toru; Iwasaki, Yuzuru; Seyama, Michiko; Inoue, Suzuyo; Takahashi, Jun-ichi; Haga, Tsuneyuki; Tamechika, Emi

    2012-10-17

    We have developed a measurement chip installation/removal mechanism for a surface plasmon resonance (SPR) immunoassay analysis instrument designed for frequent testing, which requires a rapid and easy technique for changing chips. The key components of the mechanism are refractive index matching gel coated on the rear of the SPR chip and a float that presses the chip down. The refractive index matching gel made it possible to optically couple the chip and the prism of the SPR instrument easily via elastic deformation with no air bubbles. The float has an autonomous attitude control function that keeps the chip parallel in relation to the SPR instrument by employing the repulsive force of permanent magnets between the float and a float guide located in the SPR instrument. This function is realized by balancing the upward elastic force of the gel and the downward force of the float, which experiences a leveling force from the float guide. This system makes it possible to start an SPR measurement immediately after chip installation and to remove the chip immediately after the measurement with a simple and easy method that does not require any fine adjustment. Our sensor chip, which we installed using this mounting system, successfully performed an immunoassay measurement on a model antigen (spiked human-IgG) in a model real sample (non-homogenized milk) that included many kinds of interfering foreign substances without any sample pre-treatment. The ease of the chip installation/removal operation and simple measurement procedure are suitable for frequent on-site agricultural, environmental and medical testing.

  1. Estimation of Prestress Force Distribution in Multi-Strand System of Prestressed Concrete Structures Using Field Data Measured by Electromagnetic Sensor.

    PubMed

    Cho, Keunhee; Cho, Jeong-Rae; Kim, Sung Tae; Park, Sung Yong; Kim, Young-Jin; Park, Young-Hwan

    2016-08-18

    The recently developed smart strand can be used to measure the prestress force in the prestressed concrete (PSC) structure from the construction stage to the in-service stage. The higher cost of the smart strand compared to the conventional strand renders it unaffordable to replace all the strands by smart strands, and results in the application of only a limited number of smart strands in the PSC structure. However, the prestress forces developed in the strands of the multi-strand system frequently adopted in PSC structures differ from each other, which means that the prestress force in the multi-strand system cannot be obtained by simple proportional scaling using the measurement of the smart strand. Therefore, this study examines the prestress force distribution in the multi-strand system to find the correlation between the prestress force measured by the smart strand and the prestress force distribution in the multi-strand system. To that goal, the prestress force distribution was measured using electromagnetic sensors for various factors of the multi-strand system adopted on site in the fabrication of actual PSC girders. The results verified the possibility to assume normal distribution for the prestress force distribution per anchor head, and a method computing the mean and standard deviation defining the normal distribution is proposed. This paper presents a meaningful finding by proposing an estimation method of the prestress force based upon field-measured data of the prestress force distribution in the multi-strand system of actual PSC structures.

  2. Optimal output feedback control of linear systems in presence of forcing and measurement noise

    NASA Technical Reports Server (NTRS)

    Joshi, S. M.

    1974-01-01

    The problem of obtaining an optimal control law, which is constrained to be a linear feedback of the available measurements, for both continuous and discrete time linear systems subjected to additive white process noise and measurement noise was Necessary conditions are obtained for minimizing a quadratic performance function for both finite and infinite terminal time cases. The feedback gains are constrained to be time invariant for the infinite terminal time cases. For all the cases considered, algorithms are derived for generating sequences of feedback gain matrices which successively improve the performance function. A continuous time numerical example is included for the purpose of demonstration.

  3. Contact sensing from force measurements

    NASA Technical Reports Server (NTRS)

    Bicchi, Antonio; Salisbury, J. K.; Brock, David L.

    1993-01-01

    This article addresses contact sensing (i.e., the problem of resolving the location of a contact, the force at the interface, and the moment about the contact normals). Called 'intrinsic' contact sensing for the use of internal force and torque measurements, this method allows for practical devices that provide simple, relevant contact information in practical robotic applications. Such sensors have been used in conjunction with robot hands to identify objects, determine surface friction, detect slip, augment grasp stability, measure object mass, probe surfaces, and control collision and for a variety of other useful tasks. This article describes the theoretical basis for their operation and provides a framework for future device design.

  4. Automatic HTS force measurement instrument

    DOEpatents

    Sanders, Scott T.; Niemann, Ralph C.

    1999-01-01

    A device for measuring the levitation force of a high temperature superconductor sample with respect to a reference magnet includes a receptacle for holding several high temperature superconductor samples each cooled to superconducting temperature. A rotatable carousel successively locates a selected one of the high temperature superconductor samples in registry with the reference magnet. Mechanism varies the distance between one of the high temperature superconductor samples and the reference magnet, and a sensor measures levitation force of the sample as a function of the distance between the reference magnet and the sample. A method is also disclosed.

  5. Automatic HTS force measurement instrument

    DOEpatents

    Sanders, S.T.; Niemann, R.C.

    1999-03-30

    A device is disclosed for measuring the levitation force of a high temperature superconductor sample with respect to a reference magnet includes a receptacle for holding several high temperature superconductor samples each cooled to superconducting temperature. A rotatable carousel successively locates a selected one of the high temperature superconductor samples in registry with the reference magnet. Mechanism varies the distance between one of the high temperature superconductor samples and the reference magnet, and a sensor measures levitation force of the sample as a function of the distance between the reference magnet and the sample. A method is also disclosed. 3 figs.

  6. Correlating steric hydration forces with water dynamics through surface force and diffusion NMR measurements in a lipid–DMSO–H2O system

    PubMed Central

    Schrader, Alex M.; Donaldson, Stephen H.; Song, Jinsuk; Cheng, Chi-Yuan; Lee, Dong Woog; Han, Songi; Israelachvili, Jacob N.

    2015-01-01

    Dimethyl sulfoxide (DMSO) is a common solvent and biological additive possessing well-known utility in cellular cryoprotection and lipid membrane permeabilization, but the governing mechanisms at membrane interfaces remain poorly understood. Many studies have focused on DMSO–lipid interactions and the subsequent effects on membrane-phase behavior, but explanations often rely on qualitative notions of DMSO-induced dehydration of lipid head groups. In this work, surface forces measurements between gel-phase dipalmitoylphosphatidylcholine membranes in DMSO–water mixtures quantify the hydration- and solvation-length scales with angstrom resolution as a function of DMSO concentration from 0 mol% to 20 mol%. DMSO causes a drastic decrease in the range of the steric hydration repulsion, leading to an increase in adhesion at a much-reduced intermembrane distance. Pulsed field gradient NMR of the phosphatidylcholine (PC) head group analogs, dimethyl phosphate and tetramethylammonium ions, shows that the ion hydrodynamic radius decreases with increasing DMSO concentration up to 10 mol% DMSO. The complementary measurements indicate that, at concentrations below 10 mol%, the primary effect of DMSO is to decrease the solvated volume of the PC head group and that, from 10 mol% to 20 mol%, DMSO acts to gradually collapse head groups down onto the surface and suppress their thermal motion. This work shows a connection between surface forces, head group conformation and dynamics, and surface water diffusion, with important implications for soft matter and colloidal systems. PMID:26261313

  7. A Wearable Ground Reaction Force Sensor System and Its Application to the Measurement of Extrinsic Gait Variability

    PubMed Central

    Liu, Tao; Inoue, Yoshio; Shibata, Kyoko

    2010-01-01

    Wearable sensors for gait analysis are attracting wide interest. In this paper, a wearable ground reaction force (GRF) sensor system and its application to measure extrinsic gait variability are presented. To validate the GRF and centre of pressure (CoP) measurements of the sensor system and examine the effectiveness of the proposed method for gait analysis, we conducted an experimental study on seven volunteer subjects. Based on the assessment of the influence of the sensor system on natural gait, we found that no significant differences were found for almost all measured gait parameters (p-values < 0.05). As for measurement accuracy, the root mean square (RMS) differences for the two transverse components and the vertical component of the GRF were 7.2% ± 0.8% and 9.0% ± 1% of the maximum of each transverse component and 1.5% ± 0.9% of the maximum vertical component of GRF, respectively. The RMS distance between both CoP measurements was 1.4% ± 0.2% of the length of the shoe. The area of CoP distribution on the foot-plate and the average coefficient of variation of the triaxial GRF, are the introduced parameters for analysing extrinsic gait variability. Based on a statistical analysis of the results of the tests with subjects wearing the sensor system, we found that the proposed parameters changed according to walking speed and turning (p-values < 0.05). PMID:22163468

  8. Measuring Adhesion And Friction Forces

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa

    1991-01-01

    Cavendish balance adapted to new purpose. Apparatus developed which measures forces of adhesion and friction between specimens of solid materials in vacuum at temperatures from ambient to 900 degrees C. Intended primarily for use in studying adhesion properties of ceramics and metals, including silicon carbide, aluminum oxide, and iron-base amorphous alloys.

  9. Force measurements in skinned muscle fibres

    PubMed Central

    Hellam, D. C.; Podolsky, R. J.

    1969-01-01

    1. Isometric force was measured in skinned segments of frog semitendinosus muscle fibres exposed to solutions in which the calcium ion concentration was controlled with EGTA. 2. The threshold for force development, calculated from an apparent stability constant for the CaEGTA complex of 106.69 M-1 at pH 7·0, was generally close to pCa 7·5. Maximum force was reached at about pCa 6·0. 3. Maximum force is proportional to the cross-sectional area of the fibres. 4. The rate of force development was slower than that expected from simple diffusion of a substance from the bathing solution into the fibre. The delay appears to be due to slow equilibration of the EGTA buffer system during calcium uptake by the sarcoplasmic reticulum. 5. Addition of deoxycholate (DOC) to the bathing solution produced a reversible increase in the rate of force development. The steady force was also increased for values of pCa that gave less than maximum force, which shifted the force—pCa relation toward lower calcium concentrations by about 0·5 pCa unit. 6. The length—force relation in partially activated preparations is similar to that reported for electrically activated intact fibres. This result suggests that in the region of myofilament overlap the affinity of the binding sites for calcium is uniform along the length of the calciumbinding myofilament. PMID:5765859

  10. Force Modulator System

    SciTech Connect

    Redmond Clark

    2009-04-30

    Many metal parts manufacturers use large metal presses to shape sheet metal into finished products like car body parts, jet wing and fuselage surfaces, etc. These metal presses take sheet metal and - with enormous force - reshape the metal into a fully formed part in a manner of seconds. Although highly efficient, the forces involved in forming metal parts also damage the press itself, limit the metals used in part production, slow press operations and, when not properly controlled, cause the manufacture of large volumes of defective metal parts. To date, the metal-forming industry has not been able to develop a metal-holding technology that allows full control of press forces during the part forming process. This is of particular importance in the automotive lightweighting efforts under way in the US automotive manufacturing marketplace. Metalforming Controls Technology Inc. (MC2) has developed a patented press control system called the Force Modulator that has the ability to control these press forces, allowing a breakthrough in stamping process control. The technology includes a series of hydraulic cylinders that provide controlled tonnage at all points in the forming process. At the same time, the unique cylinder design allows for the generation of very high levels of clamping forces (very high tonnages) in very small spaces; a requirement for forming medium and large panels out of HSS and AHSS. Successful production application of these systems testing at multiple stamping operations - including Ford and Chrysler - has validated the capabilities and economic benefits of the system. Although this technology has been adopted in a number of stamping operations, one of the primary barriers to faster adoption and application of this technology in HSS projects is system cost. The cost issue has surfaced because the systems currently in use are built for each individual die as a custom application, thus driving higher tooling costs. This project proposed to better

  11. Measurement of tool forces in diamond turning

    SciTech Connect

    Drescher, J.; Dow, T.A.

    1988-12-01

    A dynamometer has been designed and built to measure forces in diamond turning. The design includes a 3-component, piezoelectric transducer. Initial experiments with this dynamometer system included verification of its predicted dynamic characteristics as well as a detailed study of cutting parameters. Many cutting experiments have been conducted on OFHC Copper and 6061-T6 Aluminum. Tests have involved investigation of velocity effects, and the effects of depth and feedrate on tool forces. Velocity has been determined to have negligible effects between 4 and 21 m/s. Forces generally increase with increasing depth of cut. Increasing feedrate does not necessarily lead to higher forces. Results suggest that a simple model may not be sufficient to describe the forces produced in the diamond turning process.

  12. Direct measurement of critical Casimir forces

    NASA Astrophysics Data System (ADS)

    Hertlein, C.; Helden, L.; Gambassi, A.; Dietrich, S.; Bechinger, C.

    2008-01-01

    When fluctuating fields are confined between two surfaces, long-range forces arise. A famous example is the quantum-electrodynamical Casimir force that results from zero-point vacuum fluctuations confined between two conducting metal plates. A thermodynamic analogue is the critical Casimir force: it acts between surfaces immersed in a binary liquid mixture close to its critical point and arises from the confinement of concentration fluctuations within the thin film of fluid separating the surfaces. So far, all experimental evidence for the existence of this effect has been indirect. Here we report the direct measurement of critical Casimir force between a single colloidal sphere and a flat silica surface immersed in a mixture of water and 2,6-lutidine near its critical point. We use total internal reflection microscopy to determine in situ the forces between the sphere and the surface, with femtonewton resolution. Depending on whether the adsorption preferences of the sphere and the surface for water and 2,6-lutidine are identical or opposite, we measure attractive and repulsive forces, respectively, that agree quantitatively with theoretical predictions and exhibit exquisite dependence on the temperature of the system. We expect that these features of critical Casimir forces may result in novel uses of colloids as model systems.

  13. Direct measurement of critical Casimir forces.

    PubMed

    Hertlein, C; Helden, L; Gambassi, A; Dietrich, S; Bechinger, C

    2008-01-10

    When fluctuating fields are confined between two surfaces, long-range forces arise. A famous example is the quantum-electrodynamical Casimir force that results from zero-point vacuum fluctuations confined between two conducting metal plates. A thermodynamic analogue is the critical Casimir force: it acts between surfaces immersed in a binary liquid mixture close to its critical point and arises from the confinement of concentration fluctuations within the thin film of fluid separating the surfaces. So far, all experimental evidence for the existence of this effect has been indirect. Here we report the direct measurement of critical Casimir force between a single colloidal sphere and a flat silica surface immersed in a mixture of water and 2,6-lutidine near its critical point. We use total internal reflection microscopy to determine in situ the forces between the sphere and the surface, with femtonewton resolution. Depending on whether the adsorption preferences of the sphere and the surface for water and 2,6-lutidine are identical or opposite, we measure attractive and repulsive forces, respectively, that agree quantitatively with theoretical predictions and exhibit exquisite dependence on the temperature of the system. We expect that these features of critical Casimir forces may result in novel uses of colloids as model systems.

  14. Impact of exacerbations on respiratory system impedance measured by a forced oscillation technique in COPD: a prospective observational study

    PubMed Central

    Kamada, Takahiro; Kaneko, Masahiro; Tomioka, Hiromi

    2017-01-01

    Background Forced oscillation technique (FOT) has been reported to be useful in the evaluation and management of obstructive lung disease, including COPD. To date, no data are available concerning long-term changes in respiratory system impedance measured by FOT. Additionally, although exacerbations have been reported to be associated with excessive lung function decline in COPD, the impact of exacerbations on the results of FOT has not been demonstrated. The aim of this study was to investigate the longitudinal changes in respiratory system impedance and the influence of exacerbations thereon. Methods Between March 2011 and March 2012, outpatients who attended Kobe City Medical Center West Hospital with a diagnosis of COPD were assessed for eligibility. Baseline patient characteristics (age, sex, body mass index, smoking history, current smoking status, COPD stage), lung function (post-bronchodilator forced expiratory volume in 1 second [FEV1]), blood tests (neutrophils and eosinophils), FOT, and COPD assessment test results were collected at enrollment. Lung function and FOT were examined every 6 months until March 2016. Annual changes in FEV1 and FOT parameters were obtained from the slope of the linear regression curve. The patients were divided into 2 groups based on exacerbation history. Results Fifty-one of 58 patients with COPD were enrolled in this study. The median follow-up period was 57 (52–59) months. Twenty-five (49%) patients experienced exacerbations. A significant annual decline in FEV1 and respiratory system impedance were shown. Additionally, annual changes in FEV1, respiratory system resistance at 5 Hz, respiratory system reactance at 5 Hz, and resonant frequency were greater in patients with exacerbations than in those without exacerbations. Conclusion Exacerbations of COPD lead not only to a decline in lung function but also to an increase in respiratory system impedance. PMID:28223791

  15. Estimation of Prestress Force Distribution in Multi-Strand System of Prestressed Concrete Structures Using Field Data Measured by Electromagnetic Sensor

    PubMed Central

    Cho, Keunhee; Cho, Jeong-Rae; Kim, Sung Tae; Park, Sung Yong; Kim, Young-Jin; Park, Young-Hwan

    2016-01-01

    The recently developed smart strand can be used to measure the prestress force in the prestressed concrete (PSC) structure from the construction stage to the in-service stage. The higher cost of the smart strand compared to the conventional strand renders it unaffordable to replace all the strands by smart strands, and results in the application of only a limited number of smart strands in the PSC structure. However, the prestress forces developed in the strands of the multi-strand system frequently adopted in PSC structures differ from each other, which means that the prestress force in the multi-strand system cannot be obtained by simple proportional scaling using the measurement of the smart strand. Therefore, this study examines the prestress force distribution in the multi-strand system to find the correlation between the prestress force measured by the smart strand and the prestress force distribution in the multi-strand system. To that goal, the prestress force distribution was measured using electromagnetic sensors for various factors of the multi-strand system adopted on site in the fabrication of actual PSC girders. The results verified the possibility to assume normal distribution for the prestress force distribution per anchor head, and a method computing the mean and standard deviation defining the normal distribution is proposed. This paper presents a meaningful finding by proposing an estimation method of the prestress force based upon field-measured data of the prestress force distribution in the multi-strand system of actual PSC structures. PMID:27548172

  16. Measure Guideline. Combination Forced-Air Space and Tankless Domestic Hot Water Heating Systems

    SciTech Connect

    Rudd, Armin

    2012-08-01

    This document describes design and application guidance for combination space and tankless domestic hot water heating systems (combination systems) used in residential buildings, based on field evaluation, testing, and industry meetings conducted by Building Science Corporation. As residential building enclosure improvements continue to drive heating loads down, using the same water heating equipment for both space heating and domestic water heating becomes attractive from an initial cost and space-saving perspective. This topic is applicable to single- and multi-family residential buildings, both new and retrofitted.

  17. Measure Guideline: Combination Forced-Air Space and Tankless Domestic Hot Water Heating Systems

    SciTech Connect

    Rudd, A.

    2012-08-01

    This document describes design and application guidance for combination space and tankless domestic hot water heating systems (combination systems) used in residential buildings, based on field evaluation, testing, and industry meetings conducted by Building Science Corporation. As residential building enclosure improvements continue to drive heating loads down, using the same water heating equipment for both space heating and domestic water heating becomes attractive from an initial cost and space-saving perspective. This topic is applicable to single- and multi-family residential buildings, both new and retrofitted.

  18. Electrostatic patch potentials in Casimir force measurements

    NASA Astrophysics Data System (ADS)

    Garrett, Joseph; Somers, David; Munday, Jeremy

    2015-03-01

    Measurements of the Casimir force require the elimination of the electrostatic force between interacting surfaces. The force can be minimized by applying a potential to one of the two surfaces. However, electrostatic patch potentials remain and contribute an additional force which can obscure the Casimir force signal. We will discuss recent measurements of patch potentials made with Heterodyne Amplitude-Modulated Kelvin Probe Force Microscopy that suggest patches could be responsible for >1% of the signal in some Casimir force measurements, and thus make the distinction between different theoretical models of the Casimir force (e.g. a Drude-model or a plasma-model for the dielectric response) difficult to discern.

  19. The preliminary checkout, evaluation and calibration of a 3-component force measurement system for calibrating propulsion simulators for wind tunnel models

    NASA Technical Reports Server (NTRS)

    Scott, W. A.

    1984-01-01

    The propulsion simulator calibration laboratory (PSCL) in which calibrations can be performed to determine the gross thrust and airflow of propulsion simulators installed in wind tunnel models is described. The preliminary checkout, evaluation and calibration of the PSCL's 3 component force measurement system is reported. Methods and equipment were developed for the alignment and calibration of the force measurement system. The initial alignment of the system demonstrated the need for more efficient means of aligning system's components. The use of precision alignment jigs increases both the speed and accuracy with which the system is aligned. The calibration of the force measurement system shows that the methods and equipment for this procedure can be successful.

  20. Future Air Force systems.

    PubMed

    Tremaine, S A

    1986-10-01

    Planning for the future is under way in earnest at the Aeronautical Systems Division (ASD) at Wright-Patterson Air Force Base. It has been statistically established that it takes from 14-16 years from the generation of a new system idea to enter into engineering development. With this unpleasing, but realistic, schedule in mind, ASD has, during the last 3 years, been initiating long-term planning projects that are pre-starts for new system ideas. They are generated from throughout the Air Force and are locally managed and funded. Through this process, which spans from 12-14 months, specific and revolutionary new ideas for the systems of the future are generated. This article addresses more than a dozen specific new ideas in work at ASD today. These ideas range from a need to replace the C-130 type aircraft after the year 2000 to planning a follow-on to the B-18 well into the 21st century. Among other specific projects are investigation into an immortal fighter intended to be free of reliability and maintenance demands for an especially long period of operation, a new training system and advanced trainer to replace the T-38, a transatmospheric vehicle that could operate in the 100,000-500,000 foot flight region (30,480-152,400 m), and a new means of defending against hostile cruise missile launchers and cruise missiles. Other ideas are also addressed. The article concludes with emphasis on systems that can operate hypersonically in and out of the known atmosphere and greater use of airbreathing propulsion systems operating between Mach 3 and Mach 6.

  1. Force Limit System

    NASA Technical Reports Server (NTRS)

    Pawlik, Ralph; Krause, David; Bremenour, Frank

    2011-01-01

    The Force Limit System (FLS) was developed to protect test specimens from inadvertent overload. The load limit value is fully adjustable by the operator and works independently of the test system control as a mechanical (non-electrical) device. When a test specimen is loaded via an electromechanical or hydraulic test system, a chance of an overload condition exists. An overload applied to a specimen could result in irreparable damage to the specimen and/or fixturing. The FLS restricts the maximum load that an actuator can apply to a test specimen. When testing limited-run test articles or using very expensive fixtures, the use of such a device is highly recommended. Test setups typically use electronic peak protection, which can be the source of overload due to malfunctioning components or the inability to react quickly enough to load spikes. The FLS works independently of the electronic overload protection.

  2. A MEMS sensor for microscale force measurements

    NASA Astrophysics Data System (ADS)

    Majcherek, S.; Aman, A.; Fochtmann, J.

    2016-02-01

    This paper describes the development and testing of a new MEMS-based sensor device for microscale contact force measurements. A special MEMS cell was developed to reach higher lateral resolution than common steel-based load cells with foil-type strain gauges as mechanical-electrical converters. The design provided more than one normal force measurement point with spatial resolution in submillimeter range. Specific geometric adaption of the MEMS-device allowed adjustability of its measurement range between 0.5 and 5 N. The thin film nickel-chromium piezo resistors were used to achieve a mechanical-electrical conversion. The production process was realized by established silicon processing technologies such as deep reactive ion etching and vapor deposition (sputtering). The sensor was tested in two steps. Firstly, the sensor characteristics were carried out by application of defined loads at the measurement points by a push-pull tester. As a result, the sensor showed linear behavior. A measurement system analysis (MSA1) was performed to define the reliability of the measurement system. The measured force values had the maximal relative deviation of 1% to average value of 1.97 N. Secondly, the sensor was tested under near-industrial conditions. In this context, the thermal induced relaxation behavior of the electrical connector contact springs was investigated. The handling of emerging problems during the characterization process of the sensor is also described.

  3. Motion recognition from contact force measurement.

    PubMed

    Yabuki, Takumi; Venture, Gentiane

    2013-01-01

    Optical motion capture systems, which are used in broad fields of research, are costly; they need large installation space and calibrations. We find difficulty in applying it in typical homes and care centers. Therefore we propose to use low cost contact force measurement systems to develop rehabilitation and healthcare monitoring tools. Here, we propose a novel algorithm for motion recognition using the feature vector from force data solely obtained during a daily exercise program. We recognized 7 types of movement (Radio Exercises) of two candidates (mean age 22, male). The results show that the recognition rate of each motion has high score (mean: 86.9%). The results also confirm that there is a clustering of each movement in personal exercises data, and a similarity of the clustering even for different candidates thus that motion recognition is possible using contact force data.

  4. Unsteady Aerodynamic Force Sensing from Measured Strain

    NASA Technical Reports Server (NTRS)

    Pak, Chan-Gi

    2016-01-01

    , velocity, and acceleration sensors. This research demonstrates the feasibility of obtaining induced drag and lift forces through the use of distributed sensor technology with measured strain data. An active induced drag control system thus can be designed using the two computed aerodynamic forces, induced drag and lift, to improve the fuel efficiency of an aircraft. Interpolation elements between structural finite element grids and the CFD grids and centroids are successfully incorporated with the unsteady aeroelastic computation scheme. The most critical technology for the success of the proposed approach is the robust on-line parameter estimator, since the least-squares curve fitting method depends heavily on aeroelastic system frequencies and damping factors.

  5. Direct Measurement of Lateral Force Using Dual Cantilevers

    PubMed Central

    Ishikawa, Makoto; Ichikawa, Masaya; Miura, Kouji

    2012-01-01

    We have constructed an experimental system to measure a piconewton lateral force using dual cantilevers which cross with each other. The resolution of the lateral force is estimated to be 3.3 p ± 0.2 pN, which is comparable to forces due to thermal fluctuation. This experimental apparatus works so easily that it will enable us to determine forces during nano-manipulation and nano-tribological measurements. PMID:22737001

  6. Dynamic Force Measurement with Strain Gauges

    ERIC Educational Resources Information Center

    Lee, Bruce E.

    1974-01-01

    Discusses the use of four strain gauges, a Wheatstone bridge, and an oscilloscope to measure forces dynamically. Included is an example of determining the centripetal force of a pendulum in a general physics laboratory. (CC)

  7. Age and Sex Differences in Controlled Force Exertion Measured by a Computing Bar Chart Target-Pursuit System

    ERIC Educational Resources Information Center

    Nagasawa, Yoshinori; Demura, Shinichi

    2009-01-01

    This study aimed to examine the age and sex differences in controlled force exertion measured by the bar chart display in 207 males (age 42.1 [plus or minus] 19.8 years) and 249 females (age 41.7 [plus or minus] 19.1 years) aged 15 to 86 years. The subjects matched their submaximal grip strength to changing demand values, which appeared as a…

  8. Entropic force and entanglement system

    SciTech Connect

    Myung, Yun Soo; Kim, Yong-Wan

    2010-05-15

    We introduce the isothermal cavity, static holographic screen, and accelerating surface as holographic screen to study the entropic force in the presence of the Schwarzschild black hole. These may merge to provide a consistent holographic screen to define the entropic force on the stretched horizon near the event horizon. Considering the similarity between the stretched horizon of black hole and the entanglement system, we may define the entropic force in the entanglement system without referring to the source mass.

  9. Rigid two-axis MEMS force plate for measuring cellular traction force

    NASA Astrophysics Data System (ADS)

    Takahashi, Hidetoshi; Jung, Uijin G.; Kan, Tetsuo; Tsukagoshi, Takuya; Matsumoto, Kiyoshi; Shimoyama, Isao

    2016-10-01

    Cellular traction force is one of the important factors for understanding cell behaviors, such as spreading, migration and differentiation. Cells are known to change their behavior according to the mechanical stiffness of the environment. However, the measurement of cell traction forces on a rigid environment has remained difficult. This paper reports a micro-electromechanical systems (MEMS) force plate that provides a cellular traction force measurement on a rigid substrate. Both the high force sensitivity and high stiffness of the substrate were obtained using piezoresistive sensing elements. The proposed force plate consists of a 70 µm  ×  15 µm  ×  5 µm base as the substrate for cultivating a bovine aortic smooth muscle cell, and the supporting beams with piezoresistors on the sidewall and the surface were used to measure the forces in both the horizontal and vertical directions. The spring constant and force resolution of the fabricated force plate in the horizontal direction were 0.2 N m-1 and less than 0.05 µN, respectively. The cell traction force was measured, and the traction force increased by approximately 1 µN over 30 min. These results demonstrate that the proposed force plate is applicable as an effective traction force measurement.

  10. Determination of Gibbs Energy of Mixing of Tungsten-Boron Binary System by Electromotive Force Measurement Using Solid Electrolyte

    NASA Astrophysics Data System (ADS)

    Yamamoto, Hiroaki; Morishita, Masao; Miyake, Yuta; Hiramatsu, Shusuke

    2017-02-01

    The thermodynamic properties for the tungsten-boron binary system were determined by measuring electromotive forces of galvanic cells using an Y2O3-stabilized ZrO2 solid oxide electrolyte. Assuming that W2B and αWB are the stoichiometric compounds, and W2B5-x and W1-x B3 are the nonstoichiometric compounds having solubility widths of 0.670 ≤ X B ≤ 0.690 and 0.805 ≤ X B ≤ 0.822, respectively, they were treated as the intermediate phases of W0.667B0.333, αW0.50B0.50, W0.330B0.670 W0.310B0.690, and W0.195B0.805 W0.178B0.822. The Gibbs energies of mixing, ∆mix G, determined in the present study are listed as follows: Δ_{mix} G(W_{0.667} B_{0.333} )/{J} {mol}^{ - 1} = {-}78070 + 26.01T ± 70 [1305{-}1422{K}(1032{-}1149° C)], & Δ_{mix} G(α W_{0.50} B_{0.50} )/{J} {mol}^{ - 1} = {-}86140 + 20.19T ± 200 [1310{-}1399{K}(1037{-}1126° C)], & Δ_{mix} G(W_{0.330} B_{0.670} )/{J} {mol}^{ - 1} = {-}78910 + 18.11T ± 200 [1228{-}1410{K}(955{-}1137° C)], & Δ_{mix} G(W_{0.310} B_{0.690} )/{J} {mol}^{ - 1} = {-}77350 + 17.52T ± 500 [1228{-}1410{K}(955{-}1137° C)], & Δ_{mix} G(W_{0.195} B_{0.805} )/{J} {mol}^{ - 1} = {-}63920 + 12.08T ± 500 [1170{-}1340{K}(897{-}1067° C)], & Δ_{mix} G(W_{0.178} B_{0.822} )/{J} {mol}^{ - 1} = {-}60090 + 11.15T ± 200 [1170{-}1340{K}(897{-}1067° C)]. Using the thermodynamic properties determined in the present study, the composition-oxygen partial pressure diagram of the tungsten-boron-oxygen system was constructed under the conditions at 1273 K (1000 °C) and a total pressure of 1 bar (100 kPa). It is useful to understand the oxidation property of tungsten-boron binary alloys.

  11. Two techniques for measuring locomotion impact forces during zero G

    NASA Technical Reports Server (NTRS)

    Greenisen, Michael C.; Smith, Richard A.; Klute, Glenn K.; Mccaulley, James B.

    1993-01-01

    A load-cell-instrumented treadmill mated to a Kistler force plate was used to investigate two methods of force measurement instrumentation during treadmill ambulation in zero g, created by parabolic flight on NASA's KC-135 aircraft. Current spaceflight treadmills do not have adequate instrumentation to determine the resultant foot impact force applied during restrained ambulation. Accurate measurement of foot-ground reaction forces is critical in attaining proper one-g loading, therefore ensuring proper musculoskeletal conditioning. Treadmill instrumentation and force plate measurements were compared for frequency response and linearity. Locomotion impact data were also collected under one-g laboratory settings and in Keplerian flight. The first resonant frequency for both techniques was found to be well above the primary frequency content of the locomotive forces. Peak impact forces measured by the two systems compared to within 10 percent.

  12. Knee joint forces: prediction, measurement, and significance

    PubMed Central

    D’Lima, Darryl D.; Fregly, Benjamin J.; Patil, Shantanu; Steklov, Nikolai; Colwell, Clifford W.

    2011-01-01

    Knee forces are highly significant in osteoarthritis and in the survival and function of knee arthroplasty. A large number of studies have attempted to estimate forces around the knee during various activities. Several approaches have been used to relate knee kinematics and external forces to internal joint contact forces, the most popular being inverse dynamics, forward dynamics, and static body analyses. Knee forces have also been measured in vivo after knee arthroplasty, which serves as valuable validation of computational predictions. This review summarizes the results of published studies that measured knee forces for various activities. The efficacy of various methods to alter knee force distribution, such as gait modification, orthotics, walking aids, and custom treadmills are analyzed. Current gaps in our knowledge are identified and directions for future research in this area are outlined. PMID:22468461

  13. Research on new dynamic force calibration system

    NASA Astrophysics Data System (ADS)

    Zhang, Li

    2008-06-01

    Sinusoidal force calibration method based on electrodynamic shaker and interferometric system was studied several years before at Physikalisch-Technische Bundesanstalt (PTB). In that system a load mass are screwed on the top of force transducer, the sinusoidal forces realized by accelerated load masses are traceable to acceleration and mass according to the force definition F(t) = ma(t), where m is the total mass acting on the sensing element of the force transducer and a is the time and spatial-dependent acceleration of the mass, which is directly measured by a laser interferometer. This paper will introduce a new dynamic force calibration system developed at Changcheng Institute of Metrology and Measurement (CIMM). It uses electrodynamic shakers to generate dynamic force in the range from 1N to 20kN, and heterodyne laser interferometers are used for acceleration measurement. A new air bearing system is developed to increase the performance of shakers and an active vibration isolator is used to reduce enviromental disturbance to the interferometric system.

  14. Axial force measurement for esophageal function testing

    PubMed Central

    Gravesen, Flemming H; Funch-Jensen, Peter; Gregersen, Hans; Drewes, Asbjørn Mohr

    2009-01-01

    The esophagus serves to transport food and fluid from the pharynx to the stomach. Manometry has been the “golden standard” for the diagnosis of esophageal motility diseases for many decades. Hence, esophageal function is normally evaluated by means of manometry even though it reflects the squeeze force (force in radial direction) whereas the bolus moves along the length of esophagus in a distal direction. Force measurements in the longitudinal (axial) direction provide a more direct measure of esophageal transport function. The technique used to record axial force has developed from external force transducers over in-vivo strain gauges of various sizes to electrical impedance based measurements. The amplitude and duration of the axial force has been shown to be as reliable as manometry. Normal, as well as abnormal, manometric recordings occur with normal bolus transit, which have been documented using imaging modalities such as radiography and scintigraphy. This inconsistency using manometry has also been documented by axial force recordings. This underlines the lack of information when diagnostics are based on manometry alone. Increasing the volume of a bag mounted on a probe with combined axial force and manometry recordings showed that axial force amplitude increased by 130% in contrast to an increase of 30% using manometry. Using axial force in combination with manometry provides a more complete picture of esophageal motility, and the current paper outlines the advantages of using this method. PMID:19132762

  15. Comparison of Radiative Forcing Calculations Due to Mineral Dust from a Transport Model, Satellite Measurements and an Assimilation System

    NASA Technical Reports Server (NTRS)

    Weaver, Clark J.; Ginoux, Paul; Hsu, Christina; Joiner, Joanna; Chou, Ming-Dah

    1999-01-01

    This study uses information on mineral aerosol from a transport model to calculate global radiative forcing values. The transport model is driven by assimilated meteorology and outputs three-dimensional dust spatial information for various size ranges. The dust fields are input to an off-line radiative transfer calculation to obtain the direct radiative forcing due to the dust fields. During June, July and August of 1988 presence of dust 1) reduces the global net incoming radiation at the top of atmosphere (TOA) by 0.3 to 0.7 W/sq m and 2) reduces net incoming radiation at the earth's surface by 1.3 to 2.0 W/sq m. Over Africa our estimates of the reduction of radiation at the top of atmosphere compare well with TOA reductions derived from ERBE and TOMS satellite data. However, our heating rates are not consistent with analysis temperature increments produced by the assimilation system over regions of high aerosol loading. These increments are based on differences between temperature observations and temperatures from the assimilation general circulation model. One explanation is that the lower tropospheric temperatures retrieved by TOVS are being contaminated by mineral aerosol.

  16. Measurement of edgewise torque force in vitro.

    PubMed

    Steyn, C L

    1977-05-01

    The construction of a model for the measurement of palatal root torque is described. It was demonstrated that: 1. Halfway between the apex of a tooth and the arch wire the force was double that which was delivered at the apex. 2. The lateral incisors were subjected to appreciably more force than the central incisors. 3. The smaller the number of teeth acted upon, the greater the force they received.

  17. Force measurement enabling precise analysis by dynamic force spectroscopy.

    PubMed

    Taninaka, Atsushi; Hirano, Yuuichi; Takeuchi, Osamu; Shigekawa, Hidemi

    2012-01-01

    Dynamic force spectroscopy (DFS) makes it possible to investigate specific interactions between two molecules such as ligand-receptor pairs at the single-molecule level. In the DFS method based on the Bell-Evans model, the unbinding force applied to a molecular bond is increased at a constant rate, and the force required to rupture the molecular bond is measured. By analyzing the relationship between the modal rupture force and the logarithm of the loading rate, microscopic potential barrier landscapes and the lifetimes of bonds can be obtained. However, the results obtained, for example, in the case of streptavidin/biotin complexes, have differed among previous studies and some results have been inconsistent with theoretical predictions. In this study, using an atomic force microscopy technique that enables the precise analysis of molecular interactions on the basis of DFS, we investigated the effect of the sampling rate on DFS analysis. The shape of rupture force histograms, for example, was significantly deformed at a sampling rate of 1 kHz in comparison with that of histograms obtained at 100 kHz, indicating the fundamental importance of ensuring suitable experimental conditions for further advances in the DFS method.

  18. Augmented Computer Mouse Would Measure Applied Force

    NASA Technical Reports Server (NTRS)

    Li, Larry C. H.

    1993-01-01

    Proposed computer mouse measures force of contact applied by user. Adds another dimension to two-dimensional-position-measuring capability of conventional computer mouse; force measurement designated to represent any desired continuously variable function of time and position, such as control force, acceleration, velocity, or position along axis perpendicular to computer video display. Proposed mouse enhances sense of realism and intuition in interaction between operator and computer. Useful in such applications as three-dimensional computer graphics, computer games, and mathematical modeling of dynamics.

  19. Laser safety evaluation and output measurements for the VITAL -2 Variable Intensity Tactical Aiming Light (laser) used with the Proforce M-4 system in force-on-force exercises.

    SciTech Connect

    Augustoni, Arnold L.

    2004-02-01

    A laser safety hazard evaluation and pertinent output measurements were performed (June 2003 through August 2003) on several VITAL-2 Variable Intensity Tactical Aiming Light--infrared laser, associated with the Proforce M-4 system used in force-on-force exercises. The VITAL-2 contains two diode lasers presenting 'Extended Source' viewing out to a range on the order of 1.3 meters before reverting to a 'Small Source' viewing hazard. Laser hazard evaluation was performed in concert with the ANSI Std. Z136.1-2000 for the safe use of lasers and the ANSI Std. Z136.6-2000 for the safe use of lasers outdoors. The results of the laser hazard analysis for the VITAL-2, indicates that this Tactical Aiming IR laser presents a Class 1 laser hazard to personnel in the area of use. Field measurements performed on 71 units confirmed that the radiant outputs were at all times below the Allowable Emission Limit and that the irradiance of the laser spot was at all locations below the Maximum Exposure Limit. This system is eye-safe and it may be used under current SNL policy in force-on-force exercises. The VITAL-2 Variable Intensity Tactical Aiming Light does not present a laser hazard greater than Class 1, to aided viewing with binoculars.

  20. Measurement of non-monotonic Casimir forces between silicon nanostructures

    NASA Astrophysics Data System (ADS)

    Tang, L.; Wang, M.; Ng, C. Y.; Nikolic, M.; Chan, C. T.; Rodriguez, A. W.; Chan, H. B.

    2017-01-01

    Casimir forces are of fundamental interest because they originate from quantum fluctuations of the electromagnetic field. Apart from controlling this force via the optical properties of materials, a number of novel geometries have been proposed to generate repulsive and/or non-monotonic Casimir forces between bodies separated by vacuum gaps. Experimental realization of these geometries, however, is hindered by the difficulties in alignment when the bodies are brought into close proximity. Here, using an on-chip platform with integrated force sensors and actuators, we circumvent the alignment problem and measure the Casimir force between two surfaces with nanoscale protrusions. We demonstrate that the force depends non-monotonically on the displacement. At some displacements, the Casimir force leads to an effective stiffening of the nanomechanical spring. Our findings pave the way for exploiting the Casimir force in nanomechanical systems using structures of complex and non-conventional shapes.

  1. Piezoresistive cantilever force-clamp system

    SciTech Connect

    Park, Sung-Jin; Petzold, Bryan C.; Pruitt, Beth L.; Goodman, Miriam B.

    2011-04-15

    We present a microelectromechanical device-based tool, namely, a force-clamp system that sets or ''clamps'' the scaled force and can apply designed loading profiles (e.g., constant, sinusoidal) of a desired magnitude. The system implements a piezoresistive cantilever as a force sensor and the built-in capacitive sensor of a piezoelectric actuator as a displacement sensor, such that sample indentation depth can be directly calculated from the force and displacement signals. A programmable real-time controller operating at 100 kHz feedback calculates the driving voltage of the actuator. The system has two distinct modes: a force-clamp mode that controls the force applied to a sample and a displacement-clamp mode that controls the moving distance of the actuator. We demonstrate that the system has a large dynamic range (sub-nN up to tens of {mu}N force and nm up to tens of {mu}m displacement) in both air and water, and excellent dynamic response (fast response time, <2 ms and large bandwidth, 1 Hz up to 1 kHz). In addition, the system has been specifically designed to be integrated with other instruments such as a microscope with patch-clamp electronics. We demonstrate the capabilities of the system by using it to calibrate the stiffness and sensitivity of an electrostatic actuator and to measure the mechanics of a living, freely moving Caenorhabditis elegans nematode.

  2. Micromechanical apparatus for measurement of forces

    DOEpatents

    Tanner, Danelle Mary; Allen, James Joe

    2004-05-25

    A new class of micromechanical dynamometers has been disclosed which are particularly suited to fabrication in parallel with other microelectromechanical apparatus. Forces in the microNewton regime and below can be measured with such dynamometers which are based on a high-compliance deflection element (e.g. a ring or annulus) suspended above a substrate for deflection by an applied force, and one or more distance scales for optically measuring the deflection.

  3. Instrument for measuring human biting force

    NASA Astrophysics Data System (ADS)

    Kopola, Harri K.; Mantyla, Olavi; Makiniemi, Matti; Mahonen, Kalevi; Virtanen, Kauko

    1995-02-01

    Alongside EMG activity, biting force is the primary parameter used for assessing the biting problems of dentulous patients and patients with dentures. In a highly conductive oral cavity, dielectric measurement methods are preferred, for safety reasons. The maximum biting force for patients with removable dentures is not more than 100 ... 300 N. We report here on an instrument developed for measuring human biting force which consists of three units: a mouthpiece, a signal processing and interface unit (SPI), and a PC. The mouthpiece comprises a sensor head of thickness 3.4 mm, width 20 mm and length 30 mm constructed of two stainless steel plates and with a fiber optic microbending sensor between them. This is connected to the SPI unit by a three-meter fiber optic cable, and the SPI unit to the PC by an RS connection. A computer program has been developed that includes measurement, display, zeroing, and calibration operations. The instrument measures biting force as a function of time and displays the time-dependent force profile and maximum force on a screen or plots it in hard copy. The dynamic measurement range of the mouthpiece is from 0 to 1000 N, and the resolution of the instrument is 10 N. The results of preliminary clinical measurements and repeatability tests are reported.

  4. Detecting chameleons through Casimir force measurements

    SciTech Connect

    Brax, Philippe; Davis, Anne-Christine; Shaw, Douglas; Mota, David F.

    2007-12-15

    The best laboratory constraints on strongly coupled chameleon fields come not from tests of gravity per se but from precision measurements of the Casimir force. The chameleonic force between two nearby bodies is more akin to a Casimir-like force than a gravitational one: The chameleon force behaves as an inverse power of the distance of separation between the surfaces of two bodies, just as the Casimir force does. Additionally, experimental tests of gravity often employ a thin metallic sheet to shield electrostatic forces; however, this sheet masks any detectable signal due to the presence of a strongly coupled chameleon field. As a result of this shielding, experiments that are designed to specifically test the behavior of gravity are often unable to place any constraint on chameleon fields with a strong coupling to matter. Casimir force measurements do not employ a physical electrostatic shield and as such are able to put tighter constraints on the properties of chameleons fields with a strong matter coupling than tests of gravity. Motivated by this, we perform a full investigation on the possibility of testing chameleon models with both present and future Casimir experiments. We find that present-day measurements are not able to detect the chameleon. However, future experiments have a strong possibility of detecting or rule out a whole class of chameleon models.

  5. Force based displacement measurement in micromechanical devices

    SciTech Connect

    O {close_quote}Shea, S. J.; Ng, C. K.; Tan, Y. Y.; Xu, Y.; Tay, E. H.; Chua, B. L.; Tien, N. C.; Tang, X. S.; Chen, W. T.

    2001-06-18

    We demonstrate how force detection methods based on atomic force microscopy can be used to measure displacement in micromechanical devices. We show the operation of a simple microfabricated accelerometer, the proof mass of which incorporates a tip which can be moved towards an opposing surface. Both noncontact operation using long range electrostatic forces and tapping mode operation are demonstrated. The displacement sensitivity of the present device using feedback to control the tip-surface separation is approximately 1 nm. {copyright} 2001 American Institute of Physics.

  6. Measuring thermal rupture force distributions from an ensemble of trajectories.

    PubMed

    Swan, J W; Shindel, M M; Furst, E M

    2012-11-09

    Rupture, bond breaking, or extraction from a deep and narrow potential well requires considerable force while producing minimal displacement. In thermally fluctuating systems, there is not a single force required to achieve rupture, but a spectrum, as thermal forces can both augment and inhibit the bond breaking. We demonstrate measurement and interpretation of the distribution of rupture forces between pairs of colloidal particles bonded via the van der Waals attraction. The otherwise irreversible bond is broken by pulling the particles apart with optical tweezers. We show that an ensemble of the particle trajectories before, during and after the rupture event may be used to produce a high fidelity description of the distribution of rupture forces. This analysis is equally suitable for describing rupture forces in molecular and biomolecular contexts with a number of measurement techniques.

  7. Vehicle Lateral State Estimation Based on Measured Tyre Forces

    PubMed Central

    Tuononen, Ari J.

    2009-01-01

    Future active safety systems need more accurate information about the state of vehicles. This article proposes a method to evaluate the lateral state of a vehicle based on measured tyre forces. The tyre forces of two tyres are estimated from optically measured tyre carcass deflections and transmitted wirelessly to the vehicle body. The two remaining tyres are so-called virtual tyre sensors, the forces of which are calculated from the real tyre sensor estimates. The Kalman filter estimator for lateral vehicle state based on measured tyre forces is presented, together with a simple method to define adaptive measurement error covariance depending on the driving condition of the vehicle. The estimated yaw rate and lateral velocity are compared with the validation sensor measurements. PMID:22291535

  8. Variable Acceleration Force Calibration System (VACS)

    NASA Technical Reports Server (NTRS)

    Rhew, Ray D.; Parker, Peter A.; Johnson, Thomas H.; Landman, Drew

    2014-01-01

    Conventionally, force balances have been calibrated manually, using a complex system of free hanging precision weights, bell cranks, and/or other mechanical components. Conventional methods may provide sufficient accuracy in some instances, but are often quite complex and labor-intensive, requiring three to four man-weeks to complete each full calibration. To ensure accuracy, gravity-based loading is typically utilized. However, this often causes difficulty when applying loads in three simultaneous, orthogonal axes. A complex system of levers, cranks, and cables must be used, introducing increased sources of systematic error, and significantly increasing the time and labor intensity required to complete the calibration. One aspect of the VACS is a method wherein the mass utilized for calibration is held constant, and the acceleration is changed to thereby generate relatively large forces with relatively small test masses. Multiple forces can be applied to a force balance without changing the test mass, and dynamic forces can be applied by rotation or oscillating acceleration. If rotational motion is utilized, a mass is rigidly attached to a force balance, and the mass is exposed to a rotational field. A large force can be applied by utilizing a large rotational velocity. A centrifuge or rotating table can be used to create the rotational field, and fixtures can be utilized to position the force balance. The acceleration may also be linear. For example, a table that moves linearly and accelerates in a sinusoidal manner may also be utilized. The test mass does not have to move in a path that is parallel to the ground, and no re-leveling is therefore required. Balance deflection corrections may be applied passively by monitoring the orientation of the force balance with a three-axis accelerometer package. Deflections are measured during each test run, and adjustments with respect to the true applied load can be made during the post-processing stage. This paper will

  9. Sensitivity of Force Specifications to the Errors in Measuring the Interface Force

    NASA Technical Reports Server (NTRS)

    Worth, Daniel

    1999-01-01

    Force-Limited Random Vibration Testing has been applied in the last several years at NASA/GSFC for various programs at the instrument and system level. Different techniques have been developed over the last few decades to estimate the dynamic forces that the test article under consideration will encounter in the operational environment. Some of these techniques are described in the handbook, NASA-HDBK-7004, and the monograph, NASA-RP-1403. A key element in the ability to perform force-limited testing is multi-component force gauges. This paper will show how some measurement and calibration errors in force gauges are compensated for w en tie force specification is calculated. The resulting notches in the acceleration spectrum, when a random vibration test is performed, are the same as the notches produced during an uncompensated test that has no measurement errors. The paper will also present the results of tests that were used to validate this compensation. Knowing that the force specification can compensate for some measurement errors allows tests to continue after force gauge failures or allows dummy gauges to be used in places that are inaccessible.

  10. Measurement methods in atomic force microscopy.

    PubMed

    Torre, Bruno; Canale, Claudio; Ricci, Davide; Braga, Pier Carlo

    2011-01-01

    This chapter is introductory to the measurements: it explains different measurement techniques both for imaging and for force spectroscopy, on which most of the AFM experiments rely. It gives a general overview of the different techniques and of the output expected from the instrument; therefore it is, at a basic level, a good tool to properly start a new experiment. Concepts introduced in this chapter give the base for understanding the applications shown in the following chapters. Subheading 1 introduces the distinction between spectroscopy and imaging experiments and, within the last ones, between DC and AC mode. Subheading 2 is focused on DC mode (contact), explaining the topography and the lateral force channel. Subheading 3 introduces AC mode, both in noncontact and intermittent contact case. Phase imaging and force modulation are also discussed. Subheading 4 explains how the AFM can be used to measure local mechanical and adhesive properties of specimens by means of force spectroscopy technique. An overview on the state of the art and future trends in this field is also given.

  11. Trends of Measured Climate Forcing Agents

    NASA Technical Reports Server (NTRS)

    Hansen, James E.; Sato, Makiko; Einaudi, Franco (Technical Monitor)

    2002-01-01

    The growth rate of climate forcing by measured greenhouse gases peaked near 1980 at almost 5 W/sq m per century. This growth rate has since declined to approximately equal to 3 W/sq m per century, largely because of cooperative international actions. We argue that trends can be reduced to the level needed for the moderate "alternative" climate scenario (approximately equal to 2 W/M2 per century for the next 50 years) by means of concerted actions that have other benefits, but the forcing reductions are not automatic "co-benefits" of actions that slow CO2 emissions. Current trends of climate forcings by aerosols remain very uncertain. Nevertheless, practical constraints on changes in emission levels suggest that global warming at a rate + 0.15 +/- 0.05 C per decade will occur over the next several decades.

  12. Rail supporting transducer posts for three-dimensional force measurement.

    PubMed

    Jin, Z; Kobetic, R

    1997-12-01

    Parallel bars supported on transducer posts were designed, instrumented and calibrated to measure three-dimensional (3-D) forces applied to the rails. These instrumented rails were designed for measuring forces applied by paraplegic patients during development and evaluation of functional electrical stimulation (FES) patterns for standing, side stepping, and ascending and descending stairs. The focus of this study was on the adaptation of the system for measuring support forces during stair climbing and descent. The specific problems with crosstalk among the three axes, nonlinearity, and hysteresis were investigated. In this design, the crosstalk between axes was less than 5%, nonlinearity was less than 2% of full scale, and force accuracy was better than 5%.

  13. Flight Force Measurements on a Spacecraft to Launch Vehicle Interface

    NASA Astrophysics Data System (ADS)

    Kaufman, Daniel S.; Gordon, Scott A.

    2012-07-01

    For several years we had wanted to measure interface forces between a launch vehicle and the Payload. Finally in July 2006 a proposal was made and funded to evaluate the use of flight force measurements (FFM) to improve the loads process of a Spacecraft in its design and test cycle. A NASA/Industry team was formed, the core Team consisted of 20 people. The proposal identified two questions that this assessment would attempt to address by obtaining the flight forces. These questions were: 1) Is flight correlation and reconstruction with acceleration methods sufficient? 2) How much can the loads and therefore the design and qualification be reduced by having force measurements? The objective was to predict the six interface driving forces between the Spacecraft and the Launch Vehicle throughout the boost phase. Then these forces would be compared with reconstructed loads analyses for evaluation in an attempt to answer them. The paper will present the development of a strain based force measurement system and also an acceleration method, actual flight results, post flight evaluations and lessons learned.

  14. Forced free-shear layer measurements

    NASA Technical Reports Server (NTRS)

    Leboeuf, Richard L.

    1994-01-01

    Detailed three-dimensional three-component phase averaged measurements of the spanwise and streamwise vorticity formation and evolution in acoustically forced plane free-shear flows have been obtained. For the first time, phase-averaged measurements of all three velocity components have been obtained in both a mixing layer and a wake on three-dimensional grids, yielding the spanwise and streamwise vorticity distributions without invoking Taylor's hypothesis. Initially, two-frequency forcing was used to phase-lock the roll-up and first pairing of the spanwise vortical structures in a plane mixing layer. The objective of this study was to measure the near-field vortical structure morphology in a mixing layer with 'natural' laminar initial boundary layers. For the second experiment the second and third subharmonics of the fundamental roll-up frequency were added to the previous two-frequency forcing in order to phase-lock the roll-up and first three pairings of the spanwise rollers in the mixing layer. The objective of this study was to determine the details of spanwise scale changes observed in previous time-averaged measurements and flow visualization of unforced mixing layers. For the final experiment, single-frequency forcing was used to phase-lock the Karman vortex street in a plane wake developing from nominally two-dimensional laminar initial boundary layers. The objective of this study was to compare measurements of the three-dimensional structure in a wake developing from 'natural' initial boundary layers to existing models of wake vortical structure.

  15. Measurement-only topological quantum computation without forced measurements

    NASA Astrophysics Data System (ADS)

    Zheng, Huaixiu; Dua, Arpit; Jiang, Liang

    2016-12-01

    We investigate the measurement-only topological quantum computation (MOTQC) approach proposed by Bonderson et al (2008 Phys. Rev. Lett. 101 010501) where the braiding operation is shown to be equivalent to a series of topological charge ‘forced measurements’ of anyons. In a forced measurement, the charge measurement is forced to yield the desired outcome (e.g. charge 0) via repeatedly measuring charges in different bases. This is a probabilistic process with a certain success probability for each trial. In practice, the number of measurements needed will vary from run to run. We show that such an uncertainty associated with forced measurements can be removed by simulating the braiding operation using a fixed number of three measurements supplemented by a correction operator. Furthermore, we demonstrate that in practice we can avoid applying the correction operator in hardware by implementing it in software. Our findings greatly simplify the MOTQC proposal and only require the capability of performing charge measurements to implement topologically protected transformations generated by braiding exchanges without physically moving anyons.

  16. Automatic force balance calibration system

    NASA Technical Reports Server (NTRS)

    Ferris, Alice T. (Inventor)

    1996-01-01

    A system for automatically calibrating force balances is provided. The invention uses a reference balance aligned with the balance being calibrated to provide superior accuracy while minimizing the time required to complete the calibration. The reference balance and the test balance are rigidly attached together with closely aligned moment centers. Loads placed on the system equally effect each balance, and the differences in the readings of the two balances can be used to generate the calibration matrix for the test balance. Since the accuracy of the test calibration is determined by the accuracy of the reference balance and current technology allows for reference balances to be calibrated to within .+-.0.05%, the entire system has an accuracy of a .+-.0.2%. The entire apparatus is relatively small and can be mounted on a movable base for easy transport between test locations. The system can also accept a wide variety of reference balances, thus allowing calibration under diverse load and size requirements.

  17. Measuring the force of drag on air sheared sessile drops

    NASA Astrophysics Data System (ADS)

    Milne, Andrew J. B.; Fleck, Brian; Amirfazli, Alidad

    2012-11-01

    To blow a drop along or off of a surface (i.e. to shed the drop), the drag force on the drop (based on flow conditions, drop shape, and fluid properties) must overcome the adhesion force between the drop and the surface (based on surface tension, drop shape, and contact angle). While the shedding of sessile drops by shear flow has been studied [Milne, A. J. B. & Amirfazli, A. Langmuir 25, 14155 (2009).], no independent measurements of the drag or adhesion forces have been made. Likewise, analytic predictions are limited to hemispherical drops and low air velocities. We present, therefore, measurements of the drag force on sessile drops at air velocities up to the point of incipient motion. Measurements were made using a modified floating element shear sensor in a laminar low speed wind tunnel to record drag force over the surface with the drop absent, and over the combined system of the surface and drop partially immersed in the boundary layer. Surfaces of different wettabilities were used to study the effects of drop shape and contact angles, with drop volume ranged between approximately 10 and 100 microlitres. The drag force for incipient motion (which by definition equals the maximum of the adhesion force) is compared to simplified models for drop adhesion such as that of Furmidge

  18. Forces applied by cilia measured on explants from mucociliary tissue.

    PubMed

    Teff, Zvi; Priel, Zvi; Gheber, Levi A

    2007-03-01

    Forces applied by intact mucus-propelling cilia were measured for the first time that we know of using a combined atomic force microscopy (AFM) and electrooptic system. The AFM probe was dipped into a field of beating cilia and its time-dependent deflection was recorded as it was struck by the cilia while the electrooptic system simultaneously and colocally measured the frequency to ensure that no perturbation was induced by the AFM probe. Using cilia from frog esophagus, we measured forces of approximately 0.21 nN per cilium during the effective stroke. This value, together with the known internal structure of these cilia, leads to the conclusion that most dynein arms along the length of the axoneme contribute to the effective stroke of these cilia.

  19. Measurements of human force control during a constrained arm motion using a force-actuated joystick.

    PubMed

    McIntyre, J; Gurfinkel, E V; Lipshits, M I; Droulez, J; Gurfinkel, V S

    1995-03-01

    1. When interacting with the environment, human arm movements may be prevented in certain directions (i.e., when sliding the hand along a surface) resulting in what is called a "constrained motion." In the directions that the movement is restricted, the subject is instead free to control the forces against the constraint. 2. Control strategies for constrained motion may be characterized by two extreme models. Under the active compliance model, an essentially feedback-based approach, measurements of contact force may be used in real time to modify the motor command and precisely control the forces generated against the constraint. Under the passive compliance model the motion would be executed in a feedforward manner, using an internal model of the constraint geometry. The feedforward model relies on the compliant behavior of the passive mechanical system to maintain contact while avoiding excessive contact forces. 3. Subjects performed a task in which they were required to slide the hand along a rigid surface. This task was performed in a virtual force environment in which contact forces were simulated by a two-dimensional force-actuated joystick. Unknown to the subject, the orientation of the surface constraint was varied from trial to trial, and contact force changes induced by these perturbations were measured. 4. Subjects showed variations in contact force correlated with the direction of the orientation perturbation. "Upward" tilts resulted in higher contact forces, whereas "downward" tilts resulted in lower contact forces. This result is consistent with a feedforward-based control of a passively compliant system. 5. Subject responses did not, however, correspond exactly to the predictions of a static analysis of a passive, feedforward-controlled system. A dynamic analysis reveals a much closer resemblance between a passive, feedforward model and the observed data. Numerical simulations demonstrate that a passive, dynamic system model of the movement captures

  20. Robot arm force control through system linearization by nonlinear feedback

    NASA Technical Reports Server (NTRS)

    Tarn, T. J.; Bejczy, A. K.; Yun, Xiaoping

    1988-01-01

    Based on a differential geometric feedback linearization technique for nonlinear time-varying systems, a dynamic force control method for robot arms is developed. It uses active force-moment measurements at the robot wrist. The controller design fully incorporate the robot-arm dynamics and is so general that it can be reduced to pure position control, hybrid position/force control, pure force control. The controller design is independent of the tasks to be performed. Computer simulations show that the controller improves the position error by a factor of ten in cases in which position errors generate force measurements. A theorem on linearization of time-varying system is also presented.

  1. Direct Aerosol Radiative Forcing: Calculations and Measurements from the Tropospheric

    NASA Technical Reports Server (NTRS)

    Russell, P. B.; Hignett, P.; Stowe, L. L.; Livingston, J. M.; Kinne, S.; Wong, J.; Chan, K. Roland (Technical Monitor)

    1997-01-01

    Radiative forcing is defined as the change in the net (downwelling minus upwelling) radiative flux at a given level in the atmosphere. This net flux is the radiative power density available to drive climatic processes in the earth-atmosphere system below that level. Recent research shows that radiative forcing by aerosol particles is a major source of uncertainty in climate predictions. To reduce those uncertainties, TARFOX was designed to determine direct (cloud-free) radiative forcing by the aerosols in one of the world's major industrial pollution plumes--that flowing from the east coast of the US over the Atlantic Ocean. TARFOX measured a variety of aerosol radiative effects (including direct forcing) while simultaneously measuring the chemical, physical, and optical properties of the aerosol particles causing those effects. The resulting data sets permit a wide variety of tests of the consistency, or closure, among the measurements and the models that link them. Because climate predictions use the same or similar model components, closure tests help to assess and reduce prediction uncertainties. In this work we use the TARFOX-determined aerosol, gas, and surface properties to compute radiative forcing for a variety of aerosol episodes, with inadvisable optical depths ranging from 0.07 to 0.6. We calculate forcing by several techniques with varying degrees of sophistication, in part to test the range of applicability of simplified techniques--which are often the only ones feasible in climate predictions by general circulation models (GCMs). We then compare computed forcing to that determined from: (1) Upwelling and downwelling fluxes (0.3-0.7 mm and 0.7-3.0 mm) measured by radiometers on the UK MRF C-130. and (2) Daily average cloud-free absorbed solar and emitted thermal radiative flux at the top of the atmosphere derived from the AVHRR radiometer on the NOAA- 14 satellite. The calculations and measurements all yield aerosol direct radiative forcing in the

  2. Microsystems for cellular force measurement: a review

    NASA Astrophysics Data System (ADS)

    Rayne Zheng, Xiaoyu; Zhang, Xin

    2011-05-01

    Microsystems are providing key advances in studying single cell mechanical behavior. The mechanical interaction of cells with their extracellular matrix is fundamentally important for cell migration, division, phagocytosis and aptoptosis. This review reports the development of microsystems on studying cell forces. Microsystems provide advantages of studying single cells since the scale of cells is on the micron level. The components of microsystems provide culture, loading, guiding, trapping and on chip analysis of cellular mechanical forces. This paper gives overviews on how MEMS are advancing in the field of cell biomechno sensory systems. It presents different materials, and mode of studying cell mechanics. Finally, we comment on the future directions and challenges on the state of art techniques.

  3. Microgravity Acceleration Measurement System

    NASA Technical Reports Server (NTRS)

    Foster, William

    2009-01-01

    Microgravity Acceleration Measurement System (MAMS) is an ongoing study of the small forces (vibrations and accelerations) on the ISS that result from the operation of hardware, crew activities, as well as dockings and maneuvering. Results will be used to generalize the types of vibrations affecting vibration-sensitive experiments. Investigators seek to better understand the vibration environment on the space station to enable future research.

  4. Combined atomic force microscopy and voltage pulse technique to accurately measure electrostatic force

    NASA Astrophysics Data System (ADS)

    Inami, Eiichi; Sugimoto, Yoshiaki

    2016-08-01

    We propose a new method of extracting electrostatic force. The technique is based on frequency modulation atomic force microscopy (FM-AFM) combined with a voltage pulse. In this method, the work that the electrostatic field does on the oscillating tip is measured through the cantilever energy dissipation. This allows us to directly extract capacitive forces including the longer range part, to which the conventional FM-AFM is insensitive. The distance-dependent contact potential difference, which is modulated by local charges distributed on the surfaces of the tip and/or sample, could also be correctly obtained. In the absence of local charges, our method can perfectly reproduce the electrostatic force as a function of the distance and the bias voltage. Furthermore, we demonstrate that the system serves as a sensitive sensor enabling us to check the existence of the local charges such as trapped charges and patch charges.

  5. Phoretic Force Measurement for Microparticles Under Microgravity Conditions

    NASA Technical Reports Server (NTRS)

    Davis, E. J.; Zheng, R.

    1999-01-01

    This theoretical and experimental investigation of the collisional interactions between gas molecules and solid and liquid surfaces of microparticles involves fundamental studies of the transfer of energy, mass and momentum between gas molecules and surfaces. The numerous applications include particle deposition on semiconductor surfaces and on surfaces in combustion processes, containerless processing, the production of nanophase materials, pigments and ceramic precursors, and pollution abatement technologies such as desulfurization of gaseous effluents from combustion processes. Of particular emphasis are the forces exerted on microparticles present in a nonuniform gas, that is, in gaseous surroundings involving temperature and concentration gradients. These so-called phoretic forces become the dominant forces when the gravitational force is diminished, and they are strongly dependent on the momentum transfer between gas molecules and the surface. The momentum transfer, in turn, depends on the gas and particle properties and the mean free path and kinetic energy of the gas molecules. The experimental program involves the particle levitation system shown. A micrometer size particle is held between two heat exchangers enclosed in a vacuum chamber by means of ac and dc electric fields. The ac field keeps the particle centered on the vertical axis of the chamber, and the dc field balances the gravitational force and the thermophoretic force. Some measurements of the thermophoretic force are presented in this paper.

  6. Time-Localization of Forced Oscillations in Power Systems

    SciTech Connect

    Follum, James D.; Pierre, John W.

    2015-07-26

    In power systems forced oscillations occur, and identification of these oscillations is important for the proper operation of the system. Two of the parameters of interest in analyzing and addressing forced oscillations are the starting and ending points. To obtain estimates of these parameters, this paper proposes a time-localization algorithm based on the geometric analysis of the sample cross-correlation between the measured data and a complex sinusoid at the frequency of the forced oscillation. Results from simulated and measured synchrophasor data demonstrate the algorithm's ability to accurately estimate the starting and ending points of forced oscillations.

  7. Effect of permanent-magnet irregularities in levitation force measurements

    NASA Astrophysics Data System (ADS)

    Hull, John R.

    2000-06-01

    In the measurement of the levitation force between a vertically magnetized permanent magnet (PM) and a bulk high-temperature superconductor (HTS), PM domains with horizontal components of magnetization are shown to produce a non-negligible contribution to the levitation force in most systems. Such domains are typically found in all PMs, even in those that exhibit zero net horizontal magnetic moment. Extension of this analysis leads to an HTS analogue of Earnshaw's theorem, in which the vertical stiffness is equal to the sum of the horizontal stiffness at the field-cooling position, independent of the angular distribution of magnetic moments within the PM.

  8. Effect of permanent-magnet irregularities in levitation force measurements.

    SciTech Connect

    Hull, J. R.

    1999-10-14

    In the measurement of the levitation force between a vertically magnetized permanent magnet (PM) and a bulk high-temperature superconductor (HTS), PM domains with horizontal components of magnetization are shown to produce a nonnegligible contribution to the levitation force in most systems. Such domains are typically found in all PMs, even in those that exhibit zero net horizontal magnetic moment. Extension of this analysis leads to an HTS analog of Earnshaw's theorem, in which at the field-cooling position the vertical stiffness is equal to the sum of the horizontal stiffnesses, independent of angular distribution of magnetic moments within the PM.

  9. Measurements of the rotordynamic shroud forces for centrifugal pumps

    NASA Technical Reports Server (NTRS)

    Guinzburg, A.; Brennen, C. E.; Acosta, A. J.; Caughey, T. K.

    1990-01-01

    An experiment was designed to measure the rotordynamic shroud forces on a centrifugal pump impeller. The measurements were done for various whirl/impeller speed ratios and for different flow rates. A destabilizing tangential force was measured for small positive whirl ratios and this force decreased with increasing flow rate.

  10. Influence of Nanoscale Surface Roughness on Colloidal Force Measurements.

    PubMed

    Zou, Yi; Jayasuriya, Sunil; Manke, Charles W; Mao, Guangzhao

    2015-09-29

    Forces between colloidal particles determine the performances of many industrial processes and products. Colloidal force measurements conducted between a colloidal particle AFM probe and particles immobilized on a flat substrate are valuable in selecting appropriate surfactants for colloidal stabilization. One of the features of inorganic fillers and extenders is the prevalence of rough surfaces-even the polymer latex particles, often used as model colloidal systems including the current study, have rough surfaces albeit at a much smaller scale. Surface roughness is frequently cited as the reason for disparity between experimental observations and theoretical treatment but seldom verified by direct evidence. This work reports the effect of nanoscale surface roughness on colloidal force measurements carried out in the presence of surfactants. We applied a heating method to reduce the mean surface roughness of commercial latex particles from 30 to 1 nm. We conducted force measurements using the two types of particles at various salt and surfactant concentrations. The surfactants used were pentaethylene glycol monododecyl ether, Pluronic F108, and a styrene/acrylic copolymer, Joncryl 60. In the absence of the surfactant, nanometer surface roughness affects colloidal forces only in high salt conditions when the Debye length becomes smaller than the surface roughness. The adhesion is stronger between colloids with higher surface roughness and requires a higher surfactant concentration to be eliminated. The effect of surface roughness on colloidal forces was also investigated as a function of the adsorbed surfactant layer structure characterized by AFM indentation and dynamic light scattering. We found that when the layer thickness exceeds the surface roughness, the colloidal adhesion is less influenced by surfactant concentration variation. This study demonstrates that surface roughness at the nanoscale can influence colloidal forces significantly and should be taken

  11. Aquifer-System Compaction and Land Subsidence: Measurements, Analyses, and Simulations-the Holly Site, Edwards Air Force Base, Antelope Valley, California

    USGS Publications Warehouse

    Sneed, Michelle; Galloway, Devin L.

    2000-01-01

    Land subsidence resulting from ground-water-level declines has long been recognized as a problem in Antelope Valley, California. At Edwards Air Force Base (EAFB), ground-water extractions have caused more than 150 feet of water-level decline, resulting in nearly 4 feet of subsidence. Differential land subsidence has caused sinklike depressions and earth fissures and has accelerated erosion of the playa lakebed surface of Rogers Lake at EAFB, adversely affecting the runways on the lakebed which are used for landing aircraft such as the space shuttles. Since 1990, about 0.4 foot of aquifer-system compaction has been measured at a deep (840 feet) borehole extensometer (Holly site) at EAFB. More than 7 years of paired ground-water-level and aquifer-system compaction measurements made at the Holly site were analyzed for this study. Annually, seasonal water-level fluctuations correspond to steplike variations in aquifer-system compaction; summer water-level drawdowns are associated with larger rates of compaction, and winter water-level recoveries are associated with smaller rates of compaction. The absence of aquifer-system expansion during recovery is consistent with the delayed drainage and resultant delayed, or residual, compaction of thick aquitards. A numerical one-dimensional MODFLOW model of aquitard drainage was used to refine estimates of aquifer-system hydraulic parameters that control compaction and to predict potential future compaction at the Holly site. The analyses and simulations of aquifer-system compaction are based on established theories of aquitard drainage. Historical ground-water-level and land-subsidence data collected near the Holly site were used to constrain simulations of aquifer-system compaction and land subsidence at the site for the period 1908?90, and ground-water-level and aquifer- system compaction measurements collected at the Holly site were used to constrain the model for the period 1990?97. Model results indicate that two thick

  12. DropBot: An open-source digital microfluidic control system with precise control of electrostatic driving force and instantaneous drop velocity measurement

    SciTech Connect

    Fobel, Ryan; Fobel, Christian; Wheeler, Aaron R.

    2013-05-13

    We introduce DropBot: an open-source instrument for digital microfluidics (http://microfluidics.utoronto.ca/dropbot). DropBot features two key functionalities for digital microfluidics: (1) real-time monitoring of instantaneous drop velocity (which we propose is a proxy for resistive forces), and (2) application of constant electrostatic driving forces through compensation for amplifier-loading and device capacitance. We anticipate that this system will enhance insight into failure modes and lead to new strategies for improved device reliability, and will be useful for the growing number of users who are adopting digital microfluidics for automated, miniaturized laboratory operation.

  13. Prototypes of Cognitive Measures for Air Force Officers: Test Development and Item Banking

    DTIC Science & Technology

    1990-05-01

    AFHRL-TP-89-737 3, COPY AIR FORCE PROTOTYPES OF COGNITIVE MEASURES FOR AIR FORCE OFFICERS: TEST DEVELOPMENT AND ITEM BANKING DTIC f1 ELECTF H Frances...Jacobina Skinner MANPOWER AND PERSONNEL DIVISION R Brooks Air Force Base, Texas 78235-5601 E S O May 1990U Final Technical Paper for Period September 1987...November 1989 R C Approved for public release; distribution is unlimited. E S LABORATORY AIR FORCE SYSTEMS COMMAND BROOKS AIR FORCE BASE, TEXAS

  14. Measuring the Magnetic Force on a Current-Carrying Conductor.

    ERIC Educational Resources Information Center

    Herreman, W.; Huysentruyt, R.

    1995-01-01

    Describes a fast and simple method for measuring the magnetic force acting on a current-carrying conductor using a digital balance. Discusses the influence of current intensity and wire length on the magnetic force on the conductor. (JRH)

  15. Dynamometer for measuring machining forces in two perpendicular directions

    NASA Technical Reports Server (NTRS)

    Sutherland, I. A.

    1974-01-01

    Published report discusses development of two-component force dynamometer which is used for dynamic measurement of machining forces in cutting and thrust directions. Resulting data suggest that faster metal-cutting machines may be developed that have reduced vibrations.

  16. Cantilevers orthodontics forces measured by fiber sensors

    NASA Astrophysics Data System (ADS)

    Schneider, Neblyssa; Milczewski, Maura S.; de Oliveira, Valmir; Guariza Filho, Odilon; Lopes, Stephani C. P. S.; Kalinowski, Hypolito J.

    2015-09-01

    Fibers Bragg Gratings were used to evaluate the transmission of the forces generates by orthodontic mechanic based one and two cantilevers used to move molars to the upright position. The results showed levels forces of approximately 0,14N near to the root of the molar with one and two cantilevers.

  17. Measurement of dynamic bite force during mastication.

    PubMed

    Shimada, A; Yamabe, Y; Torisu, T; Baad-Hansen, L; Murata, H; Svensson, P

    2012-05-01

    Efficient mastication of different types and size of food depends on fast integration of sensory information from mechanoreceptors and central control mechanisms of jaw movements and applied bite force. The neural basis underlying mastication has been studied for decades but little progress in understanding the dynamics of bite force has been made mainly due to technical limitations of bite force recorders. The aims of this study were to develop a new intraoral bite force recorder which would allow the study of natural mastication without an increase in the occlusal vertical dimension and subsequently to analyze the relation between electromyographic (EMG) activity of jaw-closing muscles, jaw movements and bite force during mastication of five different types of food. Customized force recorders based on strain gauge sensors were fitted to the upper and lower molar teeth on the preferred chewing side in fourteen healthy and dentate subjects (21-39 years), and recordings were carried out during voluntary mastication of five different kinds of food. Intraoral force recordings were successively obtained from all subjects. anova showed that impulse of bite force as well as integrated EMG was significantly influenced by food (P<0·05), while time-related parameters were significantly affected by chewing cycles (P<0·001). This study demonstrates that intraoral force recordings are feasible and can provide new information on the dynamics of human mastication with direct implications for oral rehabilitation. We also propose that the control of bite force during mastication is achieved by anticipatory adjustment and encoding of bolus characteristics.

  18. Heart cell contractions measured using a micromachined polysilicon force transducer

    NASA Astrophysics Data System (ADS)

    Lin, Gisela; Pister, Kristofer S. J.; Roos, Kenneth P.

    1995-09-01

    A microelectromechanical systems (MEMS) force transducer, with a volume less than one cubic millimeter, is being developed to measure forces generated by living, isolated cardiac muscle cells in order to resolve the complex mechanisms of muscle contraction. The force transducer consists of two movable clamps facing each other. Each clamp contains two vertical, parallel hinged polysilicon plates attached to a moveable shuttle, and the entire structure is suspended 2 micrometers above the substrate via support beams attached to the substrate at one end. Each end of a living rat heart cell is glued between a pair of vertical plates. Calcium is then introduced into the cell's nutrient bath and stimulates the cell to contract. Upon contraction the support beams bend, and the amount of deflection is translated to force via the known spring constant in the beams. Typcially the 70 micrometers long central portion of a 120 micrometers long cell will contract approximately 6-7 micrometers in full activating solution, resulting in forces up to 16 (mu) N. The average value obtained for Fmax per cross-sectional area was 21.8mN/mm2 which is comparable to the value found in other laboratories using standard transducer technology.

  19. Fundamental aspects of electric double layer force-distance measurements at liquid-solid interfaces using atomic force microscopy

    PubMed Central

    Black, Jennifer M.; Zhu, Mengyang; Zhang, Pengfei; Unocic, Raymond R.; Guo, Daqiang; Okatan, M. Baris; Dai, Sheng; Cummings, Peter T.; Kalinin, Sergei V.; Feng, Guang; Balke, Nina

    2016-01-01

    Atomic force microscopy (AFM) force-distance measurements are used to investigate the layered ion structure of Ionic Liquids (ILs) at the mica surface. The effects of various tip properties on the measured force profiles are examined and reveal that the measured ion position is independent of tip properties, while the tip radius affects the forces required to break through the ion layers as well as the adhesion force. Force data is collected for different ILs and directly compared with interfacial ion density profiles predicted by molecular dynamics. Through this comparison it is concluded that AFM force measurements are sensitive to the position of the ion with the larger volume and mass, suggesting that ion selectivity in force-distance measurements are related to excluded volume effects and not to electrostatic or chemical interactions between ions and AFM tip. The comparison also revealed that at distances greater than 1 nm the system maintains overall electroneutrality between the AFM tip and sample, while at smaller distances other forces (e.g., van der waals interactions) dominate and electroneutrality is no longer maintained. PMID:27587276

  20. Fundamental aspects of electric double layer force-distance measurements at liquid-solid interfaces using atomic force microscopy

    DOE PAGES

    Black, Jennifer M.; Zhu, Mengyang; Zhang, Pengfei; ...

    2016-09-02

    In this paper, atomic force microscopy (AFM) force-distance measurements are used to investigate the layered ion structure of Ionic Liquids (ILs) at the mica surface. The effects of various tip properties on the measured force profiles are examined and reveal that the measured ion position is independent of tip properties, while the tip radius affects the forces required to break through the ion layers as well as the adhesion force. Force data is collected for different ILs and directly compared with interfacial ion density profiles predicted by molecular dynamics. Through this comparison it is concluded that AFM force measurements aremore » sensitive to the position of the ion with the larger volume and mass, suggesting that ion selectivity in force-distance measurements are related to excluded volume effects and not to electrostatic or chemical interactions between ions and AFM tip. Finally, the comparison also revealed that at distances greater than 1 nm the system maintains overall electroneutrality between the AFM tip and sample, while at smaller distances other forces (e.g., van der waals interactions) dominate and electroneutrality is no longer maintained.« less

  1. Fundamental aspects of electric double layer force-distance measurements at liquid-solid interfaces using atomic force microscopy

    SciTech Connect

    Black, Jennifer M.; Zhu, Mengyang; Zhang, Pengfei; Unocic, Raymond R.; Guo, Daqiang; Okatan, M. Baris; Dai, Sheng; Cummings, Peter T.; Kalinin, Sergei V.; Feng, Guang; Balke, Nina

    2016-09-02

    In this paper, atomic force microscopy (AFM) force-distance measurements are used to investigate the layered ion structure of Ionic Liquids (ILs) at the mica surface. The effects of various tip properties on the measured force profiles are examined and reveal that the measured ion position is independent of tip properties, while the tip radius affects the forces required to break through the ion layers as well as the adhesion force. Force data is collected for different ILs and directly compared with interfacial ion density profiles predicted by molecular dynamics. Through this comparison it is concluded that AFM force measurements are sensitive to the position of the ion with the larger volume and mass, suggesting that ion selectivity in force-distance measurements are related to excluded volume effects and not to electrostatic or chemical interactions between ions and AFM tip. Finally, the comparison also revealed that at distances greater than 1 nm the system maintains overall electroneutrality between the AFM tip and sample, while at smaller distances other forces (e.g., van der waals interactions) dominate and electroneutrality is no longer maintained.

  2. Fundamental aspects of electric double layer force-distance measurements at liquid-solid interfaces using atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Black, Jennifer M.; Zhu, Mengyang; Zhang, Pengfei; Unocic, Raymond R.; Guo, Daqiang; Okatan, M. Baris; Dai, Sheng; Cummings, Peter T.; Kalinin, Sergei V.; Feng, Guang; Balke, Nina

    2016-09-01

    Atomic force microscopy (AFM) force-distance measurements are used to investigate the layered ion structure of Ionic Liquids (ILs) at the mica surface. The effects of various tip properties on the measured force profiles are examined and reveal that the measured ion position is independent of tip properties, while the tip radius affects the forces required to break through the ion layers as well as the adhesion force. Force data is collected for different ILs and directly compared with interfacial ion density profiles predicted by molecular dynamics. Through this comparison it is concluded that AFM force measurements are sensitive to the position of the ion with the larger volume and mass, suggesting that ion selectivity in force-distance measurements are related to excluded volume effects and not to electrostatic or chemical interactions between ions and AFM tip. The comparison also revealed that at distances greater than 1 nm the system maintains overall electroneutrality between the AFM tip and sample, while at smaller distances other forces (e.g., van der waals interactions) dominate and electroneutrality is no longer maintained.

  3. Direct measurements of drag forces in C. elegans crawling locomotion.

    PubMed

    Rabets, Yegor; Backholm, Matilda; Dalnoki-Veress, Kari; Ryu, William S

    2014-10-21

    With a simple and versatile microcantilever-based force measurement technique, we have probed the drag forces involved in Caenorhabditis elegans locomotion. As a worm crawls on an agar surface, we found that substrate viscoelasticity introduces nonlinearities in the force-velocity relationships, yielding nonconstant drag coefficients that are not captured by original resistive force theory. A major contributing factor to these nonlinearities is the formation of a shallow groove on the agar surface. We measured both the adhesion forces that cause the worm's body to settle into the agar and the resulting dynamics of groove formation. Furthermore, we quantified the locomotive forces produced by C. elegans undulatory motions on a wet viscoelastic agar surface. We show that an extension of resistive force theory is able to use the dynamics of a nematode's body shape along with the measured drag coefficients to predict the forces generated by a crawling nematode.

  4. Measuring the efficacy of flunixin meglumine and meloxicam for lame sows using a GAITFour pressure mat and an embedded microcomputer-based force plate system.

    PubMed

    Pairis-Garcia, M D; Johnson, A K; Abell, C A; Coetzee, J F; Karriker, L A; Millman, S T; Stalder, K J

    2015-05-01

    Pain associated with lameness on farm is a negative affective state and has a detrimental impact on individual farm animal welfare. Animal pain can be managed utilizing husbandry tools and through pharmacological approaches. Nonsteroidal anti-inflammatory drugs including meloxicam and flunixin meglumine are compounds used in many species for pain management because they are easy to administer, long lasting, and cost-effective. Assessing an animal's biomechanical parameters using such tools as the embedded microcomputer-based force plate system and GAITFour pressure mat gait analysis walkway system provides an objective, sensitive, and precise means to detect animals in lame states. The objectives of this study were to determine the efficacy of meloxicam and flunixin meglumine for pain mitigation in lame sows using the embedded microcomputer-based force plate system and GAITFour pressure mat gait analysis walkway system. Lameness was induced in 24 mature mixed-parity sows using a chemical synovitis model and compared 3 treatments: meloxicam (1.0 mg/kg per os), flunixin meglumine (2.2 mg/kg intramuscular) and sterile saline (intramuscular). Weight distribution (kg) for each foot was collected twice per second for a total of 5 min for each time point using the embedded microcomputer-based force plate system. Stride time, stride length, maximum pressure, activated sensors, and stance time were collected using 3 quality walks (readings) for each time point using the GAITFour pressure mat gait analysis walkway system. Sows administered flunixin meglumine or meloxicam tolerated more weight on their lame leg compared with saline sows (P < 0.005). Sows administered flunixin meglumine or meloxicam had smaller differences in stance time, maximum pressure, and activated sensors between the sound and lame legs compared with saline-treated sows between 37 and 60 h after lameness induction (P < 0.03). In conclusion, flunixin meglumine and meloxicam administration mitigated pain

  5. Measurement of Forces and Moments Transmitted to the Residual Limb

    DTIC Science & Technology

    2009-08-01

    produced oscillations in the anterior-posterior ground reaction force during the interval when the force transitions from a braking direction to a...for braking force on the prosthetic limb. Propulsive force appeared to increase on the prosthetic limb with ESAR feet, but evidence was too limited to...Tech Caliper & Outrigger System (V-Tech Systems, Corp.) is available and may be used. Prior to the beginning of data collection it will be emphasized

  6. Force feedback systems in undersea manipulator applications

    NASA Technical Reports Server (NTRS)

    Pesch, A. J.; Bertsche, W. R.; Winget, C. L.

    1975-01-01

    The manual control behavior of the operator with various levels of manipulator system complexity was studied in order to determine the relationships among control system dynamics, certain base engineering variables, controller designs and system performance. Based on the data obtained, a set of general transfer functions were prepared to provide a mathematical model of the various levels of potential force feedback fidelity as a function of force backlash present in alternate engineering designs.

  7. Theoretical Models for Surface Forces and Adhesion and Their Measurement Using Atomic Force Microscopy

    PubMed Central

    Leite, Fabio L.; Bueno, Carolina C.; Da Róz, Alessandra L.; Ziemath, Ervino C.; Oliveira, Osvaldo N.

    2012-01-01

    The increasing importance of studies on soft matter and their impact on new technologies, including those associated with nanotechnology, has brought intermolecular and surface forces to the forefront of physics and materials science, for these are the prevailing forces in micro and nanosystems. With experimental methods such as the atomic force spectroscopy (AFS), it is now possible to measure these forces accurately, in addition to providing information on local material properties such as elasticity, hardness and adhesion. This review provides the theoretical and experimental background of AFS, adhesion forces, intermolecular interactions and surface forces in air, vacuum and in solution. PMID:23202925

  8. Theoretical models for surface forces and adhesion and their measurement using atomic force microscopy.

    PubMed

    Leite, Fabio L; Bueno, Carolina C; Da Róz, Alessandra L; Ziemath, Ervino C; Oliveira, Osvaldo N

    2012-10-08

    The increasing importance of studies on soft matter and their impact on new technologies, including those associated with nanotechnology, has brought intermolecular and surface forces to the forefront of physics and materials science, for these are the prevailing forces in micro and nanosystems. With experimental methods such as the atomic force spectroscopy (AFS), it is now possible to measure these forces accurately, in addition to providing information on local material properties such as elasticity, hardness and adhesion. This review provides the theoretical and experimental background of afs, adhesion forces, intermolecular interactions and surface forces in air, vacuum and in solution.

  9. System analysis of force feedback microscopy

    SciTech Connect

    Rodrigues, Mario S.; Chevrier, Joël; Comin, Fabio

    2014-02-07

    It was shown recently that the Force Feedback Microscope (FFM) can avoid the jump-to-contact in Atomic force Microscopy even when the cantilevers used are very soft, thus increasing force resolution. In this letter, we explore theoretical aspects of the associated real time control of the tip position. We take into account lever parameters such as the lever characteristics in its environment, spring constant, mass, dissipation coefficient, and the operating conditions such as controller gains and interaction force. We show how the controller parameters are determined so that the FFM functions at its best and estimate the bandwidth of the system under these conditions.

  10. The effect of patch potentials in Casimir force measurements determined by heterodyne Kelvin probe force microscopy

    NASA Astrophysics Data System (ADS)

    Garrett, Joseph L.; Somers, David; Munday, Jeremy N.

    2015-06-01

    Measurements of the Casimir force require the elimination of the electrostatic force between the surfaces. However, due to electrostatic patch potentials, the voltage required to minimize the total force may not be sufficient to completely nullify the electrostatic interaction. Thus, these surface potential variations cause an additional force, which can obscure the Casimir force signal. In this paper, we inspect the spatially varying surface potential of e-beamed, sputtered, sputtered and annealed, and template stripped gold surfaces with Heterodyne amplitude modulated Kelvin probe force microscopy (HAM-KPFM). It is demonstrated that HAM-KPFM improves the spatial resolution of surface potential measurements compared to amplitude modulated Kelvin probe force microscopy. We find that patch potentials vary depending on sample preparation, and that the calculated pressure can be similar to the pressure difference between Casimir force calculations employing the plasma and Drude models.

  11. Subminiature transducers for measuring forces and deformation of heart muscle

    NASA Technical Reports Server (NTRS)

    Feldstein, C.; Osher, J. V.; Lewis, G. W.; Silver, R. H.; Duran, E. N.

    1975-01-01

    Two subminiature transducers, one measuring muscle forces and one measuring muscle displacement, can be inserted into heart muscle without interfering with it. Probe, approximately 1 mm (0.04 in), causes no damage to heart muscle. Probe can be rotated to different positions to measure muscle forces from various directions.

  12. Development of a Force Measurement Device for Lower-Body Muscular Strength Measuring of Skaters

    NASA Astrophysics Data System (ADS)

    Kim, Dong Ki; Lee, Jeong Tae

    This paper presents a force measurement system that can measure a lower-body muscular strength of skaters. The precise measurement and analysis of the left and right lower-body strength of skaters is necessary, because a left/right lower-body strength balance is helpful to improve the athletes' performance and to protect them from injury. The system is constructed with a skate sliding board, a couple of sensor-units with load cell, indicator and control box, guard, force pad, and support bracket. The developed force measurement system is calibrated by the calibration setup, and the uncertainty of the force sensing unit on the left is within 0.087% and the uncertainty of the force sensing unit on the right is within 0.109%. In order to check the feasibility of the developed measurement device, a kinematic analysis is conducted with skater. As a result, the subject shows the deviation of left and right of 12.1 N with respect to average strength and 39.1 N with respect to the maximum strength. This evaluation results are reliable enough to make it possible to measure a lower-body muscular strength of skaters. The use of this measurement system will be expected to correct the posture of skaters and record the sports dynamics data for each athlete. It is believed that through the development of this equipment, skaters in elementary, middle, high schools, colleges, and the professional level have the systematic training to compete with world-class skaters.

  13. Development of Field Excavator with Embedded Force Measurement

    NASA Technical Reports Server (NTRS)

    Johnson, K.; Creager, C.; Izadnegahdar, A.; Bauman, S.; Gallo, C.; Abel, P.

    2012-01-01

    A semi-intelligent excavation mechanism was developed for use with the NASA-built Centaur 2 rover prototype. The excavator features a continuously rotatable large bucket supported between two parallel arms, both of which share a single pivot axis near the excavator base attached to the rover. The excavator is designed to simulate the collection of regolith, such as on the Moon, and to dump the collected soil into a hopper up to one meter tall for processing to extract oxygen. Because the vehicle can be autonomous and the terrain is generally unknown, there is risk of damaging equipment or using excessive power when attempting to extract soil from dense or rocky terrain. To minimize these risks, it is critical for the rover to sense the digging forces and adjust accordingly. It is also important to understand the digging capabilities and limitations of the excavator. This paper discusses the implementation of multiple strain gages as an embedded force measurement system in the excavator's arms. These strain gages can accurately measure and resolve multi-axial forces on the excavator. In order to validate these sensors and characterize the load capabilities, a series of controlled excavation tests were performed at Glenn Research Center with the excavator at various depths and cut angles while supported by a six axis load cell. The results of these tests are both compared to a force estimation model and used for calibration of the embedded strain gages. In addition, excavation forces generated using two different types of bucket edge (straight vs. with teeth) were compared.

  14. Vertical Magnetic Levitation Force Measurement on Single Crystal YBaCuO Bulk at Different Temperatures

    NASA Astrophysics Data System (ADS)

    Celik, Sukru; Guner, Sait Baris; Ozturk, Kemal; Ozturk, Ozgur

    Magnetic levitation force measurements of HTS samples are performed with the use of liquid nitrogen. It is both convenient and cheap. However, the temperature of the sample cannot be changed (77 K) and there is problem of frost. So, it is necessary to build another type of system to measure the levitation force high Tc superconductor at different temperatures. In this study, we fabricated YBaCuO superconducting by top-seeding-melting-growth (TSMG) technique and measured vertical forces of them at FC (Field Cooling) and ZFC (Zero Field Cooling) regimes by using our new designed magnetic levitation force measurement system. It was used to investigate the three-dimensional levitation force and lateral force in the levitation system consisting of a cylindrical magnet and a permanent cylindrical superconductor at different temperatures (37, 47, 57, 67 and 77 K).

  15. Measuring the Forces between Magnetic Dipoles

    ERIC Educational Resources Information Center

    Gayetsky, Lisa E.; Caylor, Craig L.

    2007-01-01

    We describe a simple undergraduate lab in which students determine how the force between two magnetic dipoles depends on their separation. We consider the case where both dipoles are permanent and the case where one of the dipoles is induced by the field of the other (permanent) dipole. Agreement with theoretically expected results is quite good.

  16. Force plate for measuring small animal forces by digital speckle pattern interferometry

    NASA Astrophysics Data System (ADS)

    Arroyo, M. Pilar; Bea, José Antonio; Andrés, Nieves; Osta, Rosario; Doblaré, Manuel

    2007-06-01

    This paper presents a force plate specially designed for measuring ground reaction forces in small animals. Digital Speckle Pattern Interferometry (DSPI) is used to measure the plate deformation produced by the animal. Elasticity theory is used to obtain force magnitude and application position from the vertical displacement field measured with DSPI. The force plate has been tested with static weights of 5g and 10g at various locations on the plate. Some experiments with 20g body weight transgenic mice are also reported.

  17. Force Measurement on the GLAST Delta II Flight

    NASA Technical Reports Server (NTRS)

    Gordon, Scott; Kaufman, Daniel

    2009-01-01

    This viewgraph presentation reviews the interface force measurement at spacecraft separation of GLAST Delta II. The contents include: 1) Flight Force Measurement (FFM) Background; 2) Team Members; 3) GLAST Mission Overview; 4) Methodology Development; 5) Ground Test Validation; 6) Flight Data; 7) Coupled Loads Simulation (VCLA & Reconstruction); 8) Basedrive Simulation; 9) Findings; and 10) Summary and Conclusions.

  18. Measurements of particle-wall interaction forces using simultaneous position and force detection (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Kashchuk, Anatolii V.; Bui, Ann A. M.; Stilgoe, Alexander B.; Carberry, David M.; Nieminen, Timo A.; Rubinsztein-Dunlop, Halina

    2016-09-01

    Particle-wall interactions are important in biology, micromachining, coagulation studies, and many other areas of science. As a contactless tool, optical tweezers are ideal for measuring these kind of interactions. Here we will present a new method for calculating the non-optical forces acting on a trapped particle using simultaneous position and force detection. Analysis of the particle's Brownian motion when trapped gives a measure of all the forces experienced by the particle. In contrast, measuring only the light's momentum change directly gives the solely optical force. This is achieved measuring the changes in the scattered light. The difference between the forces recorded by the two techniques reveals the external forces acting on the trapped particle. Therefore, by trapping the particle close to a wall, one can study the particle-wall interaction force in details. The simulation were done using the optical tweezer toolbox [1] to find the optical force acting on a particle. The net force was calculated from a Brownian motion's statistics of a trapped particle in the presence of the exponential external force. By using the proposed method, we were able to successfully reconstruct the external force. The experiment was done on a trapped spherical PMMA particle (d=2.2um) close to the 3D-printed wall. For the particle-wall distance 0.7um the non-optical force is 100fN . The experiment and simulation results confirm the efficiency of the proposed method for an external force measurements. [1] Nieminen et al., J. Opt. A 9, S196-S203 (2007).

  19. Recent Investments by NASA's National Force Measurement Technology Capability

    NASA Technical Reports Server (NTRS)

    Commo, Sean A.; Ponder, Jonathan D.

    2016-01-01

    The National Force Measurement Technology Capability (NFMTC) is a nationwide partnership established in 2008 and sponsored by NASA's Aeronautics Evaluation and Test Capabilities (AETC) project to maintain and further develop force measurement capabilities. The NFMTC focuses on force measurement in wind tunnels and provides operational support in addition to conducting balance research. Based on force measurement capability challenges, strategic investments into research tasks are designed to meet the experimental requirements of current and future aerospace research programs and projects. This paper highlights recent and force measurement investments into several areas including recapitalizing the strain-gage balance inventory, developing balance best practices, improving calibration and facility capabilities, and researching potential technologies to advance balance capabilities.

  20. Impact of Thermal Gradients on Wind Tunnel Force Measurements

    NASA Technical Reports Server (NTRS)

    Hereford, James; Parker, Peter A.; Rhew, Ray D.

    1999-01-01

    In a wind tunnel facility, the direct measurement of forces and moments induced on the model are performed by a force measurement balance. The measurement balance is a precision-machined device that has strain gages at strategic locations to measure the strain (i.e., deformations) due to applied forces and moments. The strain gages convert the strain (and hence the applied force) to an electrical voltage that is measured by external meters. Thermal gradients can complicate the process, however. Thermal gradients on the balance cause differential expansion (or contraction) of various parts of the balance that induce a strain that is detected by the strain gages and is indistinguishable from an external applied force. The thermal gradients can result when testing is done at elevated temperatures or at cryogenic temperatures such as at the National Transonic Facility (NTF) at NASA Langley Research Center (LaRC).

  1. Complex Squeezing and Force Measurement Beyond the Standard Quantum Limit

    NASA Astrophysics Data System (ADS)

    Buchmann, L. F.; Schreppler, S.; Kohler, J.; Spethmann, N.; Stamper-Kurn, D. M.

    2016-07-01

    A continuous quantum field, such as a propagating beam of light, may be characterized by a squeezing spectrum that is inhomogeneous in frequency. We point out that homodyne detectors, which are commonly employed to detect quantum squeezing, are blind to squeezing spectra in which the correlation between amplitude and phase fluctuations is complex. We find theoretically that such complex squeezing is a component of ponderomotive squeezing of light through cavity optomechanics. We propose a detection scheme called synodyne detection, which reveals complex squeezing and allows the accounting of measurement backaction. Even with the optomechanical system subject to continuous measurement, such detection allows the measurement of one component of an external force with sensitivity only limited by the mechanical oscillator's thermal occupation.

  2. Complex Squeezing and Force Measurement Beyond the Standard Quantum Limit.

    PubMed

    Buchmann, L F; Schreppler, S; Kohler, J; Spethmann, N; Stamper-Kurn, D M

    2016-07-15

    A continuous quantum field, such as a propagating beam of light, may be characterized by a squeezing spectrum that is inhomogeneous in frequency. We point out that homodyne detectors, which are commonly employed to detect quantum squeezing, are blind to squeezing spectra in which the correlation between amplitude and phase fluctuations is complex. We find theoretically that such complex squeezing is a component of ponderomotive squeezing of light through cavity optomechanics. We propose a detection scheme called synodyne detection, which reveals complex squeezing and allows the accounting of measurement backaction. Even with the optomechanical system subject to continuous measurement, such detection allows the measurement of one component of an external force with sensitivity only limited by the mechanical oscillator's thermal occupation.

  3. The Adhesive System and Anisotropic Shear Force of Guizhou Gastromyzontidae

    NASA Astrophysics Data System (ADS)

    Zou, Jun; Wang, Jinrong; Ji, Chen

    2016-11-01

    The Guizhou gastromyzontidae (Beaufortia kweichowensis) can adhere to slippery and fouled surfaces in torrential streams. A unique adhesive system utilized by the fish was observed by microscope and CLSM as an attachment disc sealed by a round belt of micro bubbles. The system is effective in wet or underwater environments and can resist a normal pulling force up to 1000 times the fish’s weight. Moreover, a mechanism for passive anisotropic shear force was observed. The shear forces of the fish under different conditions were measured, showing that passive shear force plays an important role in wet environments. The adhesive system of the fish was compared with other biological adhesion principles, from which we obtained potential values for the system that refer to the unique micro sealing and enhanced adhesion in a wet environment.

  4. The Adhesive System and Anisotropic Shear Force of Guizhou Gastromyzontidae

    PubMed Central

    Zou, Jun; Wang, Jinrong; Ji, Chen

    2016-01-01

    The Guizhou gastromyzontidae (Beaufortia kweichowensis) can adhere to slippery and fouled surfaces in torrential streams. A unique adhesive system utilized by the fish was observed by microscope and CLSM as an attachment disc sealed by a round belt of micro bubbles. The system is effective in wet or underwater environments and can resist a normal pulling force up to 1000 times the fish’s weight. Moreover, a mechanism for passive anisotropic shear force was observed. The shear forces of the fish under different conditions were measured, showing that passive shear force plays an important role in wet environments. The adhesive system of the fish was compared with other biological adhesion principles, from which we obtained potential values for the system that refer to the unique micro sealing and enhanced adhesion in a wet environment. PMID:27849018

  5. Measurement of Forces and Moments Transmitted to the Residual Limb

    DTIC Science & Technology

    2008-08-01

    anterior-posterior ground reaction force during the interval when the force transitions from a braking direction to a propulsive direction. The authors...reported for the contra-lateral limb. Similarly, no statistically significant effects have been found for braking force on the prosthetic limb...eliminates hazards associated with laser exposure) . A V-Tech Caliper & Outrigger System (V-Tech Systems, Corp.) is available and may be used. Prior

  6. Contact force measurements and stress-induced anisotropy in granular materials.

    PubMed

    Majmudar, T S; Behringer, R P

    2005-06-23

    Interparticle forces in granular media form an inhomogeneous distribution of filamentary force chains. Understanding such forces and their spatial correlations, specifically in response to forces at the system boundaries, represents a fundamental goal of granular mechanics. The problem is of relevance to civil engineering, geophysics and physics, being important for the understanding of jamming, shear-induced yielding and mechanical response. Here we report measurements of the normal and tangential grain-scale forces inside a two-dimensional system of photoelastic disks that are subject to pure shear and isotropic compression. Various statistical measures show the underlying differences between these two stress states. These differences appear in the distributions of normal forces (which are more rounded for compression than shear), although not in the distributions of tangential forces (which are exponential in both cases). Sheared systems show anisotropy in the distributions of both the contact network and the contact forces. Anisotropy also occurs in the spatial correlations of forces, which provide a quantitative replacement for the idea of force chains. Sheared systems have long-range correlations in the direction of force chains, whereas isotropically compressed systems have short-range correlations regardless of the direction.

  7. A measurable force driven by an excitonic condensate

    SciTech Connect

    Hakioğlu, T.; Özgün, Ege; Günay, Mehmet

    2014-04-21

    Free energy signatures related to the measurement of an emergent force (≈10{sup −9}N) due to the exciton condensate (EC) in Double Quantum Wells are predicted and experiments are proposed to measure the effects. The EC-force is attractive and reminiscent of the Casimir force between two perfect metallic plates, but also distinctively different from it by its driving mechanism and dependence on the parameters of the condensate. The proposed experiments are based on a recent experimental work on a driven micromechanical oscillator. Conclusive observations of EC in recent experiments also provide a strong promise for the observation of the EC-force.

  8. Correct height measurement in noncontact atomic force microscopy.

    PubMed

    Sadewasser, Sascha; Lux-Steiner, Martha Ch

    2003-12-31

    We demonstrate that topography measurements by noncontact atomic force microscopy are subject to residual electrostatic forces. On highly oriented pyrolitic graphite (HOPG) with a submonolayer coverage of C60, we monitor the step height from C60 to HOPG as a function of dc bias between tip and sample. Because of the different contact potential of C60 and HOPG ( approximately 50 mV), the step height is strongly dependent on the dc bias. The presented results and additional simulations demonstrate clearly that for correct height measurements it is mandatory to use a Kelvin probe force microscopy method with active compensation of electrostatic forces.

  9. Medical Services: Armed Forces Medical Examiner System

    DTIC Science & Technology

    2007-11-02

    Armed Forces Medical Examiner system Procedural Guide. 3–4. Forensic dental identification The Forensic Dentistry Section of the Department of Oral...Pathology at AFIP and special consultants in forensic dentistry to the surgeons general of the Armed Forces will serve as the principal advisers to the...a. Courses and programs. (1) Forensic dentistry /odontology. (2) Aerospace pathology. (3) Basic forensic pathology. (4) Advanced forensic pathology

  10. Measurement of friction drag force on discontinuous glass and polymer fibers

    NASA Astrophysics Data System (ADS)

    Tresso, Riccardo; Munoz, David R.

    2000-09-01

    This article describes the development of a piezoelectric force transducer specially designed to measure the fluctuating drag force experienced by a discontinuous micro fiber immersed in a turbulent airflow. The newly designed measurement tool possesses a fundamental frequency of approximately 940 Hz with a resolution of 10-4 N. A correlation for the friction drag coefficient as a function of the Reynolds number was found. This equation is of similar form but with differing slope and intercept to that previously published for continuous fibers. Although the driving frequency of the flow system was underestimated, resulting in limited utility of the instrument to the fine scale forces imposed on micro fibers, the sensor provided a necessary measurement of average drag forces. It may also be a useful tool for measuring small forces with lower frequency excitation than observed among the micro fibers exposed to a turbulent air stream. This study represents a first attempt at measuring dynamic drag forces on discontinuous micro fibers.

  11. Micromechanical cohesion force measurements to determine cyclopentane hydrate interfacial properties.

    PubMed

    Aman, Zachary M; Joshi, Sanjeev E; Sloan, E Dendy; Sum, Amadeu K; Koh, Carolyn A

    2012-06-15

    Hydrate aggregation and deposition are critical factors in determining where and when hydrates may plug a deepwater flowline. We present the first direct measurement of structure II (cyclopentane) hydrate cohesive forces in the water, liquid hydrocarbon and gas bulk phases. For fully annealed hydrate particles, gas phase cohesive forces were approximately twice that obtained in a liquid hydrocarbon phase, and approximately six times that obtained in the water phase. Direct measurements show that hydrate cohesion force in a water-continuous bulk may be only the product of solid-solid cohesion. When excess water was present on the hydrate surface, gas phase cohesive forces increased by a factor of three, suggesting the importance of the liquid or quasi-liquid layer (QLL) in determining cohesive force. Hydrate-steel adhesion force measurements show that, when the steel surface is coated with hydrophobic wax, forces decrease up to 96%. As the micromechanical force technique is uniquely capable of measuring hydrate-surface forces with variable contact time, the present work contains significant implications for hydrate applications in flow assurance.

  12. A measurement of the hysteresis loop in force-spectroscopy curves using a tuning-fork atomic force microscope.

    PubMed

    Lange, Manfred; van Vörden, Dennis; Möller, Rolf

    2012-01-01

    Measurements of the frequency shift versus distance in noncontact atomic force microscopy (NC-AFM) allow measurements of the force gradient between the oscillating tip and a surface (force-spectroscopy measurements). When nonconservative forces act between the tip apex and the surface the oscillation amplitude is damped. The dissipation is caused by bistabilities in the potential energy surface of the tip-sample system, and the process can be understood as a hysteresis of forces between approach and retraction of the tip. In this paper, we present the direct measurement of the whole hysteresis loop in force-spectroscopy curves at 77 K on the PTCDA/Ag/Si(111) √3 × √3 surface by means of a tuning-fork-based NC-AFM with an oscillation amplitude smaller than the distance range of the hysteresis loop. The hysteresis effect is caused by the making and breaking of a bond between PTCDA molecules on the surface and a PTCDA molecule at the tip. The corresponding energy loss was determined to be 0.57 eV by evaluation of the force-distance curves upon approach and retraction. Furthermore, a second dissipation process was identified through the damping of the oscillation while the molecule on the tip is in contact with the surface. This dissipation process occurs mainly during the retraction of the tip. It reaches a maximum value of about 0.22 eV/cycle.

  13. Measurement of axial forces via natural frequency

    NASA Astrophysics Data System (ADS)

    Petro, Samer H.; Reynolds, Don; EnChen, Shen; GangaRao, Hota V. S.

    1998-03-01

    This paper presents results from testing several suspender ropes of the Delaware Memorial Bridge using vibration measurements and a non-destructive evaluation (NDE) instrument called the Axial Load Monitor (ALM). The testing consisted of measuring the frequencies of suspender ropes and determining their tension levels. Results were compared to theoretical predictions. This paper presents the results of the testing and discusses the problems associated with vibration measurements on actual bridges.

  14. Magnetic tweezers: micromanipulation and force measurement at the molecular level.

    PubMed Central

    Gosse, Charlie; Croquette, Vincent

    2002-01-01

    Cantilevers and optical tweezers are widely used for micromanipulating cells or biomolecules for measuring their mechanical properties. However, they do not allow easy rotary motion and can sometimes damage the handled material. We present here a system of magnetic tweezers that overcomes those drawbacks while retaining most of the previous dynamometers properties. Electromagnets are coupled to a microscope-based particle tracking system through a digital feedback loop. Magnetic beads are first trapped in a potential well of stiffness approximately 10(-7) N/m. Thus, they can be manipulated in three dimensions at a speed of approximately 10 microm/s and rotated along the optical axis at a frequency of 10 Hz. In addition, our apparatus can work as a dynamometer relying on either usual calibration against the viscous drag or complete calibration using Brownian fluctuations. By stretching a DNA molecule between a magnetic particle and a glass surface, we applied and measured vertical forces ranging from 50 fN to 20 pN. Similarly, nearly horizontal forces up to 5 pN were obtained. From those experiments, we conclude that magnetic tweezers represent a low-cost and biocompatible setup that could become a suitable alternative to the other available micromanipulators. PMID:12023254

  15. Measurement of Metal Cutting Forces at High Speeds

    NASA Astrophysics Data System (ADS)

    Princehouse, David W.

    1996-03-01

    Proposed numerically-controlled milling machines will cut aluminum alloys with cutter tip speeds of up to 130 m/s (300 MPH). There are a variety of challenging technical problems to be solved--high power density motors, inverters, cutter/machine dynamics, servo control systems--and compelling reasons to do so. We measured time-varying cutting forces at these tip speeds with a 25.4-cm (10-in) diameter cutter turning at rates up to 167 Hz (10,000 RPM.) We took special care to measure and compensate for the dynamic response of the force transducer (a three-axis quartz-crystal milling dynamometer), extending the useful bandwidth of the measurements well into the mechanical resonances of the dynamometer. We instrumented a production milling machine on the factory floor and processed megabytes of data, obtaining results minutes after a cut was made. This case study shows how a physicist's background in mechanics, instrumentation, signal processing, and computing hardware and software can help advance the state of the art in aerospace manufacturing.

  16. Measured force/current relations in solid magnetic thrust bearings

    SciTech Connect

    Allaire, P.E.; Fittro, R.L.; Maslen, E.H.; Wakefield, W.C.

    1997-01-01

    When magnetic bearings are employed in a pump, compressor, turbine, or other rotating machine, measurement of the current in the bearing coils provides knowledge of the forces imposed on the bearings. This can be a significant indicator of machine problems. Additionally, magnetic bearings can be utilized as a load cell for measuring impeller forces in test rigs. The forces supported by magnetic bearings are directly related to the currents, air gaps, and other parameters in the bearings. This paper discusses the current/force relation for magnetic thrust bearings. Force versus current measurements were made on a particular magnetic bearing in a test rig as the bearing coil currents were cycled at various time rates of change.d the quasi-static force versus current relations were measured for a variety of air gaps and currents. The thrust bearing exhibits a hysteresis effect, which creates a significant difference between the measured force when the current is increasing as compared to that when the current is decreasing. For design current loops, 0.95 A to 2.55 A, at the time rate of change of 0.1 A/s, the difference between increasing and decreasing current curves due to hysteresis ranged from 4 to 8%. If the bearing is operated in small trajectories about a fixed (nonzero) operation point on the F/I (force/current) curve, the scatter in the measurement error could be expected to be on the order of 4%. A quasi-static nonlinear current/force equation was developed to model the data and curve-fit parameters established for the measured data. The effects of coercive force and iron reluctance, obtained from conventional magnetic materials tests, were included to improve the model, but theoretically calculated values from simple magnetic circuit theory do not produce accurate results. Magnetic fringing, leakage, and other effects must be included.

  17. Measurement and analysis of forces in grinding of silicon nitride

    SciTech Connect

    Jahanmir, S.; Hwang, T.; Whitenton, E.P.; Job, L.S.; Evans, C.J.

    1995-12-31

    Using an instrumented surface grinder, the two components of grinding forces (normal and tangential) were measured for different types of silicon nitride ceramics. The influences of grinding parameters, such as down feed and table speed, and grinding fluids on forces were determined. In addition to these measurements, the specific grinding energy defined as the energy per unit volume of removed material was calculated. This parameter and the measured forces were then analyzed to determine possible correlations with mechanical properties of the silicon nitrides. It was found that, in general, the grinding forces and the specific grinding energy increase with the hardness. Both the grinding forces and the specific grinding energy were influenced by the grinding fluid and the grinding parameters. The implication of these results on the mechanisms of material removal in grinding of silicon nitride and the possible tribological effects are discussed.

  18. Nanonewton force measurement using a modified Michelson interferometer

    NASA Astrophysics Data System (ADS)

    Tahviliyan, Masoud; Charsooghi, Mohammad A.; Akhlaghi, Ehsan A.; Taghi Tavassoly, Mohammad

    2017-04-01

    In this paper, we introduce a new method to measure forces in the nanonewton range. The method is based on modification of a Michelson interferometer in which the rigid mirrors are replaced with two thin rod-like mirrors. One of the rod-like mirrors is fixed at both ends and the other has one free end. As the mirror with free end deflects in response to an applied force the spatial interference pattern is changed. Analysis of the interference fringes provides a readout of the rod deflection and thereby the applied force. The device is calibrated by applying known forces to the mirror with a free end and measuring the resulting displacement. Two different methods, mechanical and electrostatic, are used for calibration. The precision of the measurements and the propagation of the calibration uncertainty are investigated. The results show that this optical method is a good candidate for detecting small forces in the nanonewton range.

  19. Direct measurement of the forces generated by an undulatory microswimmer

    NASA Astrophysics Data System (ADS)

    Schulman, Rafael; Backholm, Matilda; Ryu, William; Dalnoki-Veress, Kari

    2014-11-01

    C. elegans is a millimeter-sized nematode which has served as a model organism in biology for several decades, primarily due to its simple anatomy. Employing an undulatory form of locomotion, this worm is capable of propelling itself through various media. Using a micropipette deflection technique, in conjunction with high speed imaging, we directly measure the time-varying forces generated by C. elegans. We observe excellent agreement between our measured forces and the predictions of resistive force theory, through which we determine the drag coefficients of the worm. We also perform the direct force measurements at controlled distances from a single solid boundary as well as between two solid boundaries. We extract the drag coefficients of the worm to quantify the influence of the boundary on the swimming and the hydrodynamic forces involved.

  20. Report of the Task Force on Institutional Effectiveness Measures.

    ERIC Educational Resources Information Center

    Arizona State Board of Directors for Community Colleges, Phoenix.

    The Task Force on Institutional Effectiveness Measures was formed by the State Board of Directors for Community Colleges of Arizona to develop a statewide plan for systematically demonstrating the degree to which community colleges accomplish their diverse missions. Two subgroups were formed in the Task Force on transfer and college programs and…

  1. From static to animated: Measuring mechanical forces in tissues.

    PubMed

    Nelson, Celeste M

    2017-01-02

    Cells are physical objects that exert mechanical forces on their surroundings as they migrate and take their places within tissues. New techniques are now poised to enable the measurement of cell-generated mechanical forces in intact tissues in vivo, which will illuminate the secret dynamic lives of cells and change our current perception of cell biology.

  2. Direct measurement of Vorticella contraction force by micropipette deflection.

    PubMed

    France, Danielle; Tejada, Jonathan; Matsudaira, Paul

    2017-02-01

    The ciliated protozoan Vorticella convallaria is noted for its exceptionally fast adenosine triphosphate-independent cellular contraction, but direct measurements of contractile force have proven difficult given the length scale, speed, and forces involved. We used high-speed video microscopy to image live Vorticella stalled in midcontraction by deflection of an attached micropipette. Stall forces correlate with both distance contracted and the resting stalk length. Estimated isometric forces range from 95 to 177 nanonewtons (nN), or 1.12 nN·μm(-1) of the stalk. Maximum velocity and work are also proportional to distance contracted. These parameters constrain proposed biochemical/physical models of the contractile mechanism.

  3. Interpreting atomic force microscopy measurements of hydrodynamic and surface forces with nonlinear parametric estimation.

    PubMed

    Cui, Song; Manica, Rogerio; Tabor, Rico F; Chan, Derek Y C

    2012-10-01

    A nonlinear parameter estimation method has been developed to extract the separation-dependent surface force and cantilever spring constant from atomic force microscope data taken at different speeds for the interaction between a silica colloidal probe and plate in aqueous solution. The distinguishing feature of this approach is that it exploits information from the velocity dependence of the force-displacement data due to hydrodynamic interaction to provide an unbiased estimate of the functional form of the separation-dependent surface force. An assumed function for the surface force with unknown parameters is not required. In addition, the analysis also yields a consistent estimate of the in situ cantilever spring constant. In combination with data from static force measurements, this approach can further be used to quantify the extent of hydrodynamic slip.

  4. Force Developments. The Measurement of Effectiveness

    DTIC Science & Technology

    1973-01-01

    14309 Prevention and Control of Cormmunicable Diseases oi Animals . 14689 Analysis to Identify Non-Divisional TOE Combat FSarvi~e Support Units Requiring...powerful tool for performing comparative analyses if experimentaion is properly de- signed and conducted. 4. Specifics in the Measurement .f

  5. Measuring Drag Force in Newtonian Liquids

    ERIC Educational Resources Information Center

    Mawhinney, Matthew T.; O'Donnell, Mary Kate; Fingerut, Jonathan; Habdas, Piotr

    2012-01-01

    The experiments described in this paper have two goals. The first goal is to show how students can perform simple but fundamental measurements of objects moving through simple liquids (such as water, oil, or honey). In doing so, students can verify Stokes' law, which governs the motion of spheres through simple liquids, and see how it fails at…

  6. Detection of forced oscillations in power systems with multichannel methods

    SciTech Connect

    Follum, James D.

    2015-09-30

    The increasing availability of high fidelity, geographically dispersed measurements in power systems improves the ability of researchers and engineers to study dynamic behaviors in the grid. One such behavior that is garnering increased attention is the presence of forced oscillations. Power system engineers are interested in forced oscillations because they are often symptomatic of the malfunction or misoperation of equipment. Though the resulting oscillation is not always large in amplitude, the root cause may be serious. In this report, multi-channel forced oscillation detection methods are developed. These methods leverage previously developed detection approaches based on the periodogram and spectral-coherence. Making use of geographically distributed channels of data is shown to improved detection performance and shorten the delay before an oscillation can be detected in the online environment. Results from simulated and measured power system data are presented.

  7. Multiphase patterns in periodically forced oscillatory systems

    SciTech Connect

    Elphick, C.; Hagberg, A.; Meron, E.

    1999-05-01

    Periodic forcing of an oscillatory system produces frequency locking bands within which the system frequency is rationally related to the forcing frequency. We study extended oscillatory systems that respond to uniform periodic forcing at one quarter of the forcing frequency (the 4:1 resonance). These systems possess four coexisting stable states, corresponding to uniform oscillations with successive phase shifts of {pi}/2. Using an amplitude equation approach near a Hopf bifurcation to uniform oscillations, we study front solutions connecting different phase states. These solutions divide into two groups: {pi} fronts separating states with a phase shift of {pi} and {pi}/2 fronts separating states with a phase shift of {pi}/2. We find a type of front instability where a stationary {pi} front {open_quotes}decomposes{close_quotes} into a pair of traveling {pi}/2 fronts as the forcing strength is decreased. The instability is degenerate for an amplitude equation with cubic nonlinearities. At the instability point a continuous family of pair solutions exists, consisting of {pi}/2 fronts separated by distances ranging from zero to infinity. Quintic nonlinearities lift the degeneracy at the instability point but do not change the basic nature of the instability. We conjecture the existence of similar instabilities in higher 2n:1 resonances (n=3,4,{hor_ellipsis}) where stationary {pi} fronts decompose into {ital n} traveling {pi}/n fronts. The instabilities designate transitions from stationary two-phase patterns to traveling 2n-phase patterns. As an example, we demonstrate with a numerical solution the collapse of a four-phase spiral wave into a stationary two-phase pattern as the forcing strength within the 4:1 resonance is increased. {copyright} {ital 1999} {ital The American Physical Society}

  8. Optical fibre bragg gratings based magnetic force measurement of magnetic bearings

    NASA Astrophysics Data System (ADS)

    Ding, Guoping; Zhou, Zude; Hu, Yefa; Zhou, Jianhua

    2008-12-01

    Magnetic bearings are typical electromechanical systems of high performance. Current-displacement-force relationship between stator and rotor is an important research topic of magnetic bearings. The critical issue is to realize magnetic force online dynamic measurement. This paper presents a novel method on magnetic force measurement of magnetic bearings with optical fibre bragg gratings (FBG), which realizes a non-contact and online force measurement with simple configuration, good noise immunity even when the rotor is running. A novel micro force transducer is designed and fabricated, which is mounted within the stator magnetic pole. To obtain current-displacement-force relationship a FBG based magnetic force measurement test rig is setup to simulate magnetic bearing working states as the stator coils currents, air gap between stator and rotor, rotor speed is adjustable. Magnetic force is measured under three classifications of test conditions and test results are presented. The measurement data show good consistency with the theory analysis and calculation, which means that the FBG based magnetic force measurement is available and of good accuracy.

  9. A measurement of the hysteresis loop in force-spectroscopy curves using a tuning-fork atomic force microscope

    PubMed Central

    van Vörden, Dennis; Möller, Rolf

    2012-01-01

    Summary Measurements of the frequency shift versus distance in noncontact atomic force microscopy (NC-AFM) allow measurements of the force gradient between the oscillating tip and a surface (force-spectroscopy measurements). When nonconservative forces act between the tip apex and the surface the oscillation amplitude is damped. The dissipation is caused by bistabilities in the potential energy surface of the tip–sample system, and the process can be understood as a hysteresis of forces between approach and retraction of the tip. In this paper, we present the direct measurement of the whole hysteresis loop in force-spectroscopy curves at 77 K on the PTCDA/Ag/Si(111) √3 × √3 surface by means of a tuning-fork-based NC-AFM with an oscillation amplitude smaller than the distance range of the hysteresis loop. The hysteresis effect is caused by the making and breaking of a bond between PTCDA molecules on the surface and a PTCDA molecule at the tip. The corresponding energy loss was determined to be 0.57 eV by evaluation of the force–distance curves upon approach and retraction. Furthermore, a second dissipation process was identified through the damping of the oscillation while the molecule on the tip is in contact with the surface. This dissipation process occurs mainly during the retraction of the tip. It reaches a maximum value of about 0.22 eV/cycle. PMID:22496993

  10. Measuring the complete force field of an optical trap.

    PubMed

    Jahnel, Marcus; Behrndt, Martin; Jannasch, Anita; Schäffer, Erik; Grill, Stephan W

    2011-04-01

    The use of optical traps to measure or apply forces on the molecular level requires a precise knowledge of the trapping force field. Close to the trap center, this field is typically approximated as linear in the displacement of the trapped microsphere. However, applications demanding high forces at low laser intensities can probe the light-microsphere interaction beyond the linear regime. Here, we measured the full nonlinear force and displacement response of an optical trap in two dimensions using a dual-beam optical trap setup with back-focal-plane photodetection. We observed a substantial stiffening of the trap beyond the linear regime that depends on microsphere size, in agreement with Mie theory calculations. Surprisingly, we found that the linear detection range for forces exceeds the one for displacement by far. Our approach allows for a complete calibration of an optical trap.

  11. Cutting force measurement of electrical jigsaw by strain gauges

    NASA Astrophysics Data System (ADS)

    Kazup, L.; Varadine Szarka, A.

    2016-11-01

    This paper describes a measuring method based on strain gauges for accurate specification of electric jigsaw's cutting force. The goal of the measurement is to provide an overall perspective about generated forces in a jigsaw's gearbox during a cutting period. The lifetime of the tool is affected by these forces primarily. This analysis is part of the research and development project aiming to develop a special linear magnetic brake for realizing automatic lifetime tests of electric jigsaws or similar handheld tools. The accurate specification of cutting force facilitates to define realistic test cycles during the automatic lifetime test. The accuracy and precision resulted by the well described cutting force characteristic and the possibility of automation provide new dimension for lifetime testing of the handheld tools with alternating movement.

  12. Fat-Line Towed-Array Force Measurement Apparatus

    DTIC Science & Technology

    2000-06-12

    No. 78872 n 3 FAT -LINE TOWED-ARRAY FORCE MEASUREMENT APPARATUS 4 5 STATEMENT OF GOVERNMENT INTEREST 6 The invention described herein may be...application. 16 17 BACKGROUND OF THE INVENTION 18 (1) Field of the Invention 19 The present invention relates generally to fat -line towed- 2 0 arrays, and...more particularly to an apparatus for measuring the 21 force applied to fat -line towed-arrays during flushing cycles. 22 (2) Description of the

  13. Laser Photon Force Measurements using a CW Laser

    NASA Technical Reports Server (NTRS)

    Gray, Perry; Edwards, David L.; Carruth, M. Ralph, Jr.; Munafo, Paul M. (Technical Monitor)

    2002-01-01

    The photon force resulting from the non-damaging impact of laser derived photons on a metallic target was measured using a vacuum compatible microbalance. This experiment quantitatively verified that the force resulting from laser photons impacting a reflective surface is measurable and predictable. The photon wavelength is 1064 mn and the laser is a multi-mode 30OW Nd YAG continuous wave (CW) laser.

  14. Flight of a Rufous Hummingbird Robotic Model-Force Measurements

    NASA Astrophysics Data System (ADS)

    Chavez Alarcon, Ramiro; Bocanegra Evans, Humberto; Ferreira de Sousa, Paulo; Tobalske, Bret; Allen, James

    2008-11-01

    Aerodynamic force data was measured on a 2-DOF scaled robotic hummingbird model for both hovering and translational flight. Experiments were conducted in a large water channel facility at New Mexico State University. Reynolds and Strouhal numbers for the experiment are in the range of 3600 and 0.97, respectively. Forces are directly measured using strain gages and compared with phase-locked PIV results.

  15. Contact position sensor using constant contact force control system

    NASA Technical Reports Server (NTRS)

    Sturdevant, Jay (Inventor)

    1995-01-01

    A force control system (50) and method are provided for controlling a position contact sensor (10) so as to produce a constant controlled contact force therewith. The system (50) includes a contact position sensor (10) which has a contact probe (12) for contacting the surface of a target to be measured and an output signal (V.sub.o) for providing a position indication thereof. An actuator (30) is provided for controllably driving the contact position sensor (10) in response to an actuation control signal (I). A controller (52) receives the position indication signal (V.sub.o) and generates in response thereto the actuation control signal (I) so as to provide a substantially constant selective force (F) exerted by the contact probe (12). The actuation drive signal (I) is generated further in response to substantially linear approximation curves based on predetermined force and position data attained from the sensor (10) and the actuator (30).

  16. Special Forces Interpersonal Performance Assessment System

    DTIC Science & Technology

    2005-04-01

    Phase I interpersonal performance assessment system: selection of the target group , identification of performance dimensions, and performance scale...development. > Target Group Selection The U.S. Army Special Forces (SF) was chosen as the target group because interpersonal skills are critical for the...1 IDENTIFYING THE TARGET GROUP ................................................................................... 2 IDENTIFYING CRITICAL

  17. Systems Engineering Measurement Primer

    DTIC Science & Technology

    1998-03-01

    Systems Engineering Measurement Primer A Basic Introduction to Systems Engineering Measurement Concepts and Use Version 1.0 March 1998 This document...Federal Systems Garry Roedler Lockheed Martin Management & Data Systems Cathy Tilton The National Registry, Inc. E. Richard Widmann Raytheon Systems...IV 1. INTRODUCTION

  18. Acoustic force measurement in a dual-temperature resonant chamber

    NASA Technical Reports Server (NTRS)

    Robey, Judith L.; Trinh, Eugene H.; Wang, Taylor G.

    1987-01-01

    The acoustic radiation force was measured for a dual-temperature resonant chamber. This rectangular chamber has its long dimension approximately 8.5 times the square cross-sectional dimension, and the opposite ends are at widely different temperatures. Force profiles were obtained for two hot end temperatures of 520 C and 760 C, while the cool end remained at approximately room temperature. Force magnitudes as high as 17 dyn for a sample 1.2 cm in diameter at 760 C and at 162-dB input level were measured.

  19. Does an instrumented treadmill correctly measure the ground reaction forces?

    PubMed Central

    Willems, Patrick A.; Gosseye, Thierry P.

    2013-01-01

    Summary Since the 1990s, treadmills have been equipped with multi-axis force transducers to measure the three components of the ground reaction forces during walking and running. These measurements are correctly performed if the whole treadmill (including the motor) is mounted on the transducers. In this case, the acceleration of the treadmill centre of mass relative to the reference frame of the laboratory is nil. The external forces exerted on one side of the treadmill are thus equal in magnitude and opposite in direction to the external forces exerted on the other side. However, uncertainty exists about the accuracy of these measures: due to friction between the belt and the tread-surface, due to the motor pulling the belt, some believe that it is not possible to correctly measure the horizontal components of the forces exerted by the feet on the belt. Here, we propose a simple model of an instrumented treadmill and we demonstrate (1) that the forces exerted by the subject moving on the upper part of the treadmill are accurately transmitted to the transducers placed under it and (2) that all internal forces – including friction – between the parts of the treadmill are cancelling each other. PMID:24285705

  20. Measurement of forces inside a three-dimensional pile of frictionless droplets.

    PubMed

    Zhou, J; Long, S; Wang, Q; Dinsmore, A D

    2006-06-16

    We present systematic and detailed measurements of interparticle contact forces inside three-dimensional piles of frictionless liquid droplets. We measured long-range chainlike correlations of the directions and magnitudes of large forces, thereby establishing the presence of force chains in three dimensions. Our correlation definition provides a chain persistence length of 10 mean droplet diameters, decreasing as load is applied to the pile. We also measured the angles between contacts and showed that the chainlike arrangement arises from the balance of forces. Moreover, we found that piles whose height was comparable to the chain persistence length exhibited substantially greater strain hardening than did tall piles, which we attributed to the force chains. Together, the results establish a connection between the microscopic force network and the elastic response of meso- or macroscopic granular piles. The conclusions drawn here should be relevant in jammed systems generally, including concentrated emulsions and piles of sand or other heavy particles.

  1. MEMS-Based Flexible Force Sensor for Tri-Axial Catheter Contact Force Measurement.

    PubMed

    Pandya, Hardik J; Sheng, Jun; Desai, Jaydev P

    2017-02-01

    Atrial fibrillation (AFib) is a significant healthcare problem caused by the uneven and rapid discharge of electrical signals from pulmonary veins (PVs). The technique of radiofrequency (RF) ablation can block these abnormal electrical signals by ablating myocardial sleeves inside PVs. Catheter contact force measurement during RF ablation can reduce the rate of AFib recurrence, since it helps to determine effective contact of the catheter with the tissue, thereby resulting in effective power delivery for ablation. This paper presents the development of a three-dimensional (3D) force sensor to provide the real-time measurement of tri-axial catheter contact force. The 3D force sensor consists of a plastic cubic bead and five flexible force sensors. Each flexible force sensor was made of a PEDOT:PSS strain gauge and a PDMS bump on a flexible PDMS substrate. Calibration results show that the fabricated sensor has a linear response in the force range required for RF ablation. To evaluate its working performance, the fabricated sensor was pressed against gelatin tissue by a micromanipulator and also integrated on a catheter tip to test it within deionized water flow. Both experiments simulated the ventricular environment and proved the validity of applying the 3D force sensor in RF ablation.

  2. [Organization of rehabilitation and treatment measures in the armed forces of foreign countries].

    PubMed

    Trishkin, D V; Malykh, A B; Ponomarenko, G N; Merzlikin, A V

    2015-07-01

    The authors present an analysis of current state of rehabilitation and treatment system in the armed forces of foreign countries, and main directions of its development. The authors summarize an experience in the field of organization and carrying out of rehabilitation and treatment measures in the armed forces of foreign countries, and also define possible ways of how to apply gained experience in organizing sanatorium-resort provision for servicemen of Armed Forces of the Russian Federation.

  3. Quantitative measurements of force and displacement using an optical trap.

    PubMed Central

    Simmons, R M; Finer, J T; Chu, S; Spudich, J A

    1996-01-01

    We combined a single-beam gradient optical trap with a high-resolution photodiode position detector to show that an optical trap can be used to make quantitative measurements of nanometer displacements and piconewton forces with millisecond resolution. When an external force is applied to a micron-sized bead held by an optical trap, the bead is displaced from the center of the trap by an amount proportional to the applied force. When the applied force is changed rapidly, the rise time of the displacement is on the millisecond time scale, and thus a trapped bead can be used as a force transducer. The performance can be enhanced by a feedback circuit so that the position of the trap moves by means of acousto-optic modulators to exert a force equal and opposite to the external force applied to the bead. In this case the position of the trap can be used to measure the applied force. We consider parameters of the trapped bead such as stiffness and response time as a function of bead diameter and laser beam power and compare the results with recent ray-optic calculations. PMID:8785341

  4. The Kilogram and Measurements of Mass and Force

    PubMed Central

    Jabbour, Z. J.; Yaniv, S. L.

    2001-01-01

    This paper describes the facilities, measurement capabilities, and ongoing research activities in the areas of mass and force at the National Institute of Standards and Technology (NIST). The first section of the paper is devoted to mass metrology and starts with a brief historical perspective on the developments that led to the current definition of the kilogram. An overview of mass measurement procedures is given with a brief discussion of current research on alternative materials for mass standards and surface profiles of the U.S. national prototype kilograms. A brief outlook into the future possible redefinition of the unit of mass based on fundamental principles is included. The second part of this paper focuses on the unit of force and describes the realization of the unit, measurement procedures, uncertainty in the realized force, facilities, and current efforts aimed at the realization of small forces. PMID:27500016

  5. Novel Low-Cost Sensor for Human Bite Force Measurement

    PubMed Central

    Fastier-Wooller, Jarred; Phan, Hoang-Phuong; Dinh, Toan; Nguyen, Tuan-Khoa; Cameron, Andrew; Öchsner, Andreas; Dao, Dzung Viet

    2016-01-01

    This paper presents the design and development of a low cost and reliable maximal voluntary bite force sensor which can be manufactured in-house by using an acrylic laser cutting machine. The sensor has been designed for ease of fabrication, assembly, calibration, and safe use. The sensor is capable of use within an hour of commencing production, allowing for rapid prototyping/modifications and practical implementation. The measured data shows a good linear relationship between the applied force and the electrical resistance of the sensor. The output signal has low drift, excellent repeatability, and a large measurable range of 0 to 700 N. A high signal-to-noise response to human bite forces was observed, indicating the high potential of the proposed sensor for human bite force measurement. PMID:27509496

  6. NASA ATP Force Measurement Technology Capability Strategic Plan

    NASA Technical Reports Server (NTRS)

    Rhew, Ray D.

    2008-01-01

    The Aeronautics Test Program (ATP) within the National Aeronautics and Space Administration (NASA) Aeronautics Research Mission Directorate (ARMD) initiated a strategic planning effort to re-vitalize the force measurement capability within NASA. The team responsible for developing the plan included members from three NASA Centers (Langley, Ames and Glenn) as well as members from the Air Force s Arnold Engineering and Development Center (AEDC). After visiting and discussing force measurement needs and current capabilities at each participating facility as well as selected force measurement companies, a strategic plan was developed to guide future NASA investments. This paper will provide the details of the strategic plan and include asset management, organization and technology research and development investment priorities as well as efforts to date.

  7. Scaffolding students' understanding of force in pulley systems

    NASA Astrophysics Data System (ADS)

    Rouinfar, Amy; Madsen, Adrian M.; Hoang, Tram Do Ngoc; Puntambekar, Sadhana; Rebello, N. Sanjay

    2013-01-01

    Recent research results have found that students using virtual manipulatives perform as well or better on measures of conceptual understanding than their peers who used physical equipment. We report on a study with students in a conceptual physics laboratory using either physical or virtual manipulatives to investigate forces in pulley systems. Written materials guided students through a sequence of activities designed to scaffold their understanding of force in pulley systems. The activity sequences facilitated students' sense making by requiring them to make and test predictions about various pulley systems by building and comparing different systems. We investigate the ways in which students discuss force while navigating the scaffolding activities and how these discussions compare between the physical and virtual treatments.

  8. Phoretic and Radiometric Force Measurements on Microparticles in Microgravity Conditions

    NASA Technical Reports Server (NTRS)

    Davis, E. James

    1996-01-01

    Thermophoretic, diffusiophoretic and radiometric forces on microparticles are being measured over a wide range of gas phase and particle conditions using electrodynamic levitation of single particles to simulate microgravity conditions. The thermophoretic force, which arises when a particle exists in a gas having a temperature gradient, is measured by levitating an electrically charged particle between heated and cooled plates mounted in a vacuum chamber. The diffusiophoretic force arising from a concentration gradient in the gas phase is measured in a similar manner except that the heat exchangers are coated with liquids to establish a vapor concentration gradient. These phoretic forces and the radiation pressure force acting on a particle are measured directly in terms of the change in the dc field required to levitate the particle with and without the force applied. The apparatus developed for the research and the experimental techniques are discussed, and results obtained by thermophoresis experiments are presented. The determination of the momentum and energy accommodation coefficients associated with molecular collisions between gases molecules and particles and the measurement of the interaction between electromagnetic radiation and small particles are of particular interest.

  9. Measurement of laterally induced optical forces at the nanoscale

    NASA Astrophysics Data System (ADS)

    Huang, Fei; Tamma, Venkata Ananth; Rajaei, Mohsen; Almajhadi, Mohammad; Kumar Wickramasinghe, H.

    2017-02-01

    We demonstrate the measurement of laterally induced optical forces using an Atomic Force Microscope (AFM). The lateral electric field distribution between a gold coated AFM probe and a single nano-aperture in a gold film is mapped by measuring the lateral optical force between the apex of the AFM probe and the nano-aperture. The fundamental torsional eigen-mode of an AFM cantilever probe was used to detect the laterally induced optical forces. We engineered the cantilever shape using focused ion beam milling to improve the detected signal to noise ratio. The measured distributions of lateral optical force agree well with electromagnetic simulations of the metal coated AFM probe interacting with the nano-aperture. This technique can be extended to simultaneously detect both lateral and longitudinal optical forces at the nanoscale by using an AFM cantilever as a multi-channel detector. This will enable simultaneous Photon Induced Force Microscopy detection of molecular responses with different incident field polarizations. The technique can be implemented on both cantilever and tuning fork based AFMs.

  10. Measuring the Drag Force on a Falling Ball

    NASA Astrophysics Data System (ADS)

    Cross, Rod; Lindsey, Crawford

    2014-03-01

    The effect of the aerodynamic drag force on an object in flight is well known and has been described in this and other journals many times. At speeds less than about 1 m/s, the drag force on a sphere is proportional to the speed and is given by Stokes' law. At higher speeds, the drag force is proportional to the velocity squared and is usually small compared with the gravitational force if the object mass is large and its speed is low. In order to observe a significant effect, or to measure the terminal velocity, experiments are often conducted with very light objects such as a balloon or coffee filter3 or muffin cup,4 or are conducted in a liquid rather than in air. The effect of the drag force can also be increased by increasing the surface area of the object.

  11. Directly measuring single-molecule heterogeneity using force spectroscopy

    PubMed Central

    Hinczewski, Michael; Thirumalai, D.

    2016-01-01

    One of the most intriguing results of single-molecule experiments on proteins and nucleic acids is the discovery of functional heterogeneity: the observation that complex cellular machines exhibit multiple, biologically active conformations. The structural differences between these conformations may be subtle, but each distinct state can be remarkably long-lived, with interconversions between states occurring only at macroscopic timescales, fractions of a second or longer. Although we now have proof of functional heterogeneity in a handful of systems—enzymes, motors, adhesion complexes—identifying and measuring it remains a formidable challenge. Here, we show that evidence of this phenomenon is more widespread than previously known, encoded in data collected from some of the most well-established single-molecule techniques: atomic force microscopy or optical tweezer pulling experiments. We present a theoretical procedure for analyzing distributions of rupture/unfolding forces recorded at different pulling speeds. This results in a single parameter, quantifying the degree of heterogeneity, and also leads to bounds on the equilibration and conformational interconversion timescales. Surveying 10 published datasets, we find heterogeneity in 5 of them, all with interconversion rates slower than 10 s−1. Moreover, we identify two systems where additional data at realizable pulling velocities is likely to find a theoretically predicted, but so far unobserved crossover regime between heterogeneous and nonheterogeneous behavior. The significance of this regime is that it will allow far more precise estimates of the slow conformational switching times, one of the least understood aspects of functional heterogeneity. PMID:27317744

  12. Calibration of holographic optical tweezers for force measurements on biomaterials

    NASA Astrophysics Data System (ADS)

    van der Horst, Astrid; Forde, Nancy

    2009-05-01

    Holographic optical tweezers (HOTs) modify the phase of a laser beam to create and dynamically position multiple optical traps independently in 3D; refractive micrometer-sized particles can be held in these traps to function as probing handles. HOTs offer the flexibility needed to probe the mechanics of complex systems such as cells or protein networks. Thus far, however, HOTs have not found wide use in biophysics, in large part due to lack of evidence as to how exerted forces vary as the positions of HOT traps are changed. To perform quantitative force measurements, parameters such as trap stiffness, range of trap steering, and minimum step size are of key importance. We find for our HOT setup that stiffness does not change significantly over a range of ˜25μm. In addition, we control and detect, using high-speed (>kHz) camera imaging, trap displacements to ˜1nm. Our results suggest that after full characterization HOTs can be successfully employed in quantitative experiments on biomaterials, e.g., probing elastomeric properties of structural protein networks.

  13. Fiber optic micro sensor for the measurement of tendon forces.

    PubMed

    Behrmann, Gregory P; Hidler, Joseph; Mirotznik, Mark S

    2012-10-03

    A fiber optic sensor developed for the measurement of tendon forces was designed, numerically modeled, fabricated, and experimentally evaluated. The sensor incorporated fiber Bragg gratings and micro-fabricated stainless steel housings. A fiber Bragg grating is an optical device that is spectrally sensitive to axial strain. Stainless steel housings were designed to convert radial forces applied to the housing into axial forces that could be sensed by the fiber Bragg grating. The metal housings were fabricated by several methods including laser micromachining, swaging, and hydroforming. Designs are presented that allow for simultaneous temperature and force measurements as well as for simultaneous resolution of multi-axis forces.The sensor was experimentally evaluated by hydrostatic loading and in vitro testing. A commercial hydraulic burst tester was used to provide uniform pressures on the sensor in order to establish the linearity, repeatability, and accuracy characteristics of the sensor. The in vitro experiments were performed in excised tendon and in a dynamic gait simulator to simulate biological conditions. In both experimental conditions, the sensor was found to be a sensitive and reliable method for acquiring minimally invasive measurements of soft tissue forces. Our results suggest that this sensor will prove useful in a variety of biomechanical measurements.

  14. Fiber optic micro sensor for the measurement of tendon forces

    PubMed Central

    2012-01-01

    A fiber optic sensor developed for the measurement of tendon forces was designed, numerically modeled, fabricated, and experimentally evaluated. The sensor incorporated fiber Bragg gratings and micro-fabricated stainless steel housings. A fiber Bragg grating is an optical device that is spectrally sensitive to axial strain. Stainless steel housings were designed to convert radial forces applied to the housing into axial forces that could be sensed by the fiber Bragg grating. The metal housings were fabricated by several methods including laser micromachining, swaging, and hydroforming. Designs are presented that allow for simultaneous temperature and force measurements as well as for simultaneous resolution of multi-axis forces. The sensor was experimentally evaluated by hydrostatic loading and in vitro testing. A commercial hydraulic burst tester was used to provide uniform pressures on the sensor in order to establish the linearity, repeatability, and accuracy characteristics of the sensor. The in vitro experiments were performed in excised tendon and in a dynamic gait simulator to simulate biological conditions. In both experimental conditions, the sensor was found to be a sensitive and reliable method for acquiring minimally invasive measurements of soft tissue forces. Our results suggest that this sensor will prove useful in a variety of biomechanical measurements. PMID:23033868

  15. The Optical Bichromatic Force in Molecular Systems

    NASA Astrophysics Data System (ADS)

    Aldridge, Leland M.; Galica, Scott E.; Eyler, Edward E.

    2015-06-01

    The bichromatic optical force (BCF), which can greatly exceed radiative forces, seems ideal for laser slowing and cooling of molecules because it minimizes the effects of radiative decay. However, it relies on sustained coherences between optically coupled states, and molecules, with their many sublevels and decay pathways, present new challenges in maintaining these coherences compared with simple atoms. We have conducted extensive numerical simulations of BCFs in model molecular systems based on the B leftrightarrow X transition in CaF, and have begun experimental tests in a molecular beam. In our modeling, the effects of fine and hyperfine structure are examined using a simplified level scheme that is still sufficiently complete to include the major pathways leading to loss or decoherence. To circumvent optical pumping into coherent dark states we explore two possible schemes: (1) a skewed dc magnetic field, and (2) rapid optical polarization switching. The effects of repumping to compensate for out-of-system radiative decay are also examined. Our results verify that the BCF is a promising method for creating large forces in molecular beams while minimizing out-of-system radiative losses, and provide detailed guidance for experimental designs. Compared to a two-level atom, the peak force is reduced by about an order of magnitude, but there is little reduction in the velocity range over which the force is effective. Our experiments on deflection and slowing using the CaF B leftrightarrow X, (0-0) transition, still at an early stage, include studies of both the P11(1.5)/^PQ12(0.5) branch, a quasi-cycling configuration with extensive hfs, and the R11(0.5)/^RQ21(0.5) branch, which has a much simpler hfs but requires rotational repumping. Supported by the National Science Foundation

  16. Easy and direct method for calibrating atomic force microscopy lateral force measurements

    PubMed Central

    Liu, Wenhua; Bonin, Keith; Guthold, Martin

    2010-01-01

    We have designed and tested a new, inexpensive, easy-to-make and easy-to-use calibration standard for atomic force microscopy (AFM) lateral force measurements. This new standard simply consists of a small glass fiber of known dimensions and Young’s modulus, which is fixed at one end to a substrate and which can be bent laterally with the AFM tip at the other end. This standard has equal or less error than the commonly used method of using beam mechanics to determine a cantilever’s lateral force constant. It is transferable, thus providing a universal tool for comparing the calibrations of different instruments. It does not require knowledge of the cantilever dimensions and composition or its tip height. This standard also allows direct conversion of the photodiode signal to force and, thus, circumvents the requirement for a sensor response (sensitivity) measurement. PMID:17614616

  17. Isoelectric point of fluorite by direct force measurements using atomic force microscopy.

    PubMed

    Assemi, Shoeleh; Nalaskowski, Jakub; Miller, Jan D; Johnson, William P

    2006-02-14

    Interaction forces between a fluorite (CaF2) surface and colloidal silica were measured by atomic force microscopy (AFM) in 1 x 10(-3) M NaNO3 at different pH values. Forces between the silica colloid and fluorite flat were measured at a range of pH values above the isoelectric point (IEP) of silica so that the forces were mainly controlled by the fluorite surface charge. In this way, the IEP of the fluorite surface was deduced from AFM force curves at pH approximately 9.2. Experimental force versus separation distance curves were in good agreement with theoretical predictions based on long-range electrostatic interactions, allowing the potential of the fluorite surface to be estimated from the experimental force curves. AFM-deduced surface potentials were generally lower than the published zeta potentials obtained from electrokinetic methods for powdered samples. Differences in methodology, orientation of the fluorite, surface carbonation, and equilibration time all could have contributed to this difference.

  18. Air Force Enlisted Force Management: System Interactions and Synchronization Strategies

    DTIC Science & Technology

    2007-01-01

    NCO noncommissioned officer NPS non-prior service OSD Office of the Secretary of Defense OSI Office of Special Investigations PFE Promotion Fitness Exam...of airmen with disciplinary or low performance issues. 44 Air Force Enlisted Force Management ness exam ( PFE ), score on the Skills Knowledge Test...serpentine logic trail: Suppose an AFSC has a difficult SKT or a difficult version of the PFE . Tests that are more difficult lead to a wider range of

  19. Adhesion Forces between Lewis(X) Determinant Antigens as Measured by Atomic Force Microscopy.

    PubMed

    Tromas, C; Rojo, J; de la Fuente, J M; Barrientos, A G; García, R; Penadés, S

    2001-01-01

    The adhesion forces between individual molecules of Lewis(X) trisaccharide antigen (Le(X) ) have been measured in water and in calcium solution by using atomic force microscopy (AFM, see graph). These results demonstrate the self-recognition capability of this antigen, and reinforce the hypothesis that carbohydrate-carbohydrate interaction could be considered as the first step in the cell-adhesion process in nature.

  20. Topological and geometric measurements of force-chain structure

    NASA Astrophysics Data System (ADS)

    Giusti, Chad; Papadopoulos, Lia; Owens, Eli T.; Daniels, Karen E.; Bassett, Danielle S.

    2016-09-01

    Developing quantitative methods for characterizing structural properties of force chains in densely packed granular media is an important step toward understanding or predicting large-scale physical properties of a packing. A promising framework in which to develop such methods is network science, which can be used to translate particle locations and force contacts into a graph in which particles are represented by nodes and forces between particles are represented by weighted edges. Recent work applying network-based community-detection techniques to extract force chains opens the door to developing statistics of force-chain structure, with the goal of identifying geometric and topological differences across packings, and providing a foundation on which to build predictions of bulk material properties from mesoscale network features. Here we discuss a trio of related but fundamentally distinct measurements of the mesoscale structure of force chains in two-dimensional (2D) packings, including a statistic derived using tools from algebraic topology, which together provide a tool set for the analysis of force chain architecture. We demonstrate the utility of this tool set by detecting variations in force-chain architecture with pressure. Collectively, these techniques can be generalized to 3D packings, and to the assessment of continuous deformations of packings under stress or strain.

  1. Topological and geometric measurements of force-chain structure.

    PubMed

    Giusti, Chad; Papadopoulos, Lia; Owens, Eli T; Daniels, Karen E; Bassett, Danielle S

    2016-09-01

    Developing quantitative methods for characterizing structural properties of force chains in densely packed granular media is an important step toward understanding or predicting large-scale physical properties of a packing. A promising framework in which to develop such methods is network science, which can be used to translate particle locations and force contacts into a graph in which particles are represented by nodes and forces between particles are represented by weighted edges. Recent work applying network-based community-detection techniques to extract force chains opens the door to developing statistics of force-chain structure, with the goal of identifying geometric and topological differences across packings, and providing a foundation on which to build predictions of bulk material properties from mesoscale network features. Here we discuss a trio of related but fundamentally distinct measurements of the mesoscale structure of force chains in two-dimensional (2D) packings, including a statistic derived using tools from algebraic topology, which together provide a tool set for the analysis of force chain architecture. We demonstrate the utility of this tool set by detecting variations in force-chain architecture with pressure. Collectively, these techniques can be generalized to 3D packings, and to the assessment of continuous deformations of packings under stress or strain.

  2. Monitoring Coaxial-Probe Contact Force for Dielectric Properties Measurement

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A means is described for measuring and monitoring the contact force applied to a material sample with an open-ended coaxial-line probe for purposes of measuring the dielectric properties of semisolid material samples such as fruit, vegetable and animal tissues. The equipment consists of a stainless...

  3. Field measurement of basal forces generated by erosive debris flows

    USGS Publications Warehouse

    McCoy, S.W.; Tucker, G.E.; Kean, J.W.; Coe, J.A.

    2013-01-01

    It has been proposed that debris flows cut bedrock valleys in steeplands worldwide, but field measurements needed to constrain mechanistic models of this process remain sparse due to the difficulty of instrumenting natural flows. Here we present and analyze measurements made using an automated sensor network, erosion bolts, and a 15.24 cm by 15.24 cm force plate installed in the bedrock channel floor of a steep catchment. These measurements allow us to quantify the distribution of basal forces from natural debris‒flow events that incised bedrock. Over the 4 year monitoring period, 11 debris‒flow events scoured the bedrock channel floor. No clear water flows were observed. Measurements of erosion bolts at the beginning and end of the study indicated that the bedrock channel floor was lowered by 36 to 64 mm. The basal force during these erosive debris‒flow events had a large‒magnitude (up to 21 kN, which was approximately 50 times larger than the concurrent time‒averaged mean force), high‒frequency (greater than 1 Hz) fluctuating component. We interpret these fluctuations as flow particles impacting the bed. The resulting variability in force magnitude increased linearly with the time‒averaged mean basal force. Probability density functions of basal normal forces were consistent with a generalized Pareto distribution, rather than the exponential distribution that is commonly found in experimental and simulated monodispersed granular flows and which has a lower probability of large forces. When the bed sediment thickness covering the force plate was greater than ~ 20 times the median bed sediment grain size, no significant fluctuations about the time‒averaged mean force were measured, indicating that a thin layer of sediment (~ 5 cm in the monitored cases) can effectively shield the subjacent bed from erosive impacts. Coarse‒grained granular surges and water‒rich, intersurge flow had very similar basal force distributions despite

  4. Capillary-force measurement on SiC surfaces

    NASA Astrophysics Data System (ADS)

    Sedighi, M.; Svetovoy, V. B.; Palasantzas, G.

    2016-06-01

    Capillary forces have been measured by atomic force microscopy in the sphere-plate geometry, in a controlled humidity environment, between smooth silicon carbide and borosilicate glass spheres. The force measurements were performed as a function of the rms surface roughness ˜4-14 nm mainly due to sphere morphology, the relative humidity (RH) ˜0%-40%, the applied load on the cantilever, and the contact time. The pull-off force was found to decrease by nearly two orders of magnitude with increasing rms roughness from 8 to 14 nm due to formation of a few capillary menisci for the roughest surfaces, while it remained unchanged for rms roughness <8 nm implying fully wetted surface features leading to a single meniscus. The latter reached a steady state in less than 5 s for the smoothest surfaces, as force measurements versus contact time indicated for increased RH˜40%. Finally, the pull-off force increases and reaches a maximum with applied load, which is associated with plastic deformation of surface asperities, and decreases at higher loads.

  5. Measurement of noise and vibration in Canadian forces armoured vehicles.

    PubMed

    Nakashima, Ann M; Borland, Matthew J; Abel, Sharon M

    2007-04-01

    Noise and whole-body vibration measurements were made in the following Canadian Forces vehicles: LAV III, Bison and M113A2 ADATS (air defence anti-tank system). Measurements were made at different crew positions while the vehicles were driven at different speeds over rough terrain and paved roads. The participants completed a questionnaire at the end of each measurement session on their reactions to the noise and vibration. Noise levels were as high as 115 dBA in the ADATS, 102 dBA in the Bison and 96 dBA in the LAV III, exceeding the Canada Labour Code exposure limit of 87 dBA for 8 h(1)). A communications headset was found to be sufficient to reduce the noise exposure to safe levels in most cases. The vector sum vibration magnitudes for the LAV III and Bison were relatively low during highway driving (0.3 m/s(2) for both vehicles) compared to rough terrain (0.71 and 1.36 m/s(2), respectively). The ADATS vibration increased with driving speed (0.62 m/s(2) at 8 km/h and 1.26 m/s(2) at 32 km/h). The questionnaire responses indicated that half the crewmembers had difficulty communicating in vehicle noise, but were generally unaffected physically by vibration. The latter result may have been due to the relatively short exposure duration.

  6. Sensitivity of Force Specifications to the Errors in Measuring the Interface Force

    NASA Technical Reports Server (NTRS)

    Worth, Daniel

    2000-01-01

    Force-Limited Random Vibration Testing has been applied in the last several years at the NASA Goddard Space Flight Center (GSFC) and other NASA centers for various programs at the instrument and spacecraft level. Different techniques have been developed over the last few decades to estimate the dynamic forces that the test article under consideration will encounter in the flight environment. Some of these techniques are described in the handbook, NASA-HDBK-7004, and the monograph, NASA-RP-1403. This paper will show the effects of some measurement and calibration errors in force gauges. In some cases, the notches in the acceleration spectrum when a random vibration test is performed with measurement errors are the same as the notches produced during a test that has no measurement errors. The paper will also present the results Of tests that were used to validate this effect. Knowing the effect of measurement errors can allow tests to continue after force gauge failures or allow dummy gauges to be used in places that are inaccessible to a force gage.

  7. Electrodynamic forces in tethered satellite systems. Part 1: System control

    NASA Astrophysics Data System (ADS)

    Netzer, Ehud; Kane, Thomas R.

    1994-10-01

    Part 1 of this work deals with the use of electrodynamic forces for control of tethered satellite system. A system formed by two massive end-bodies connected to each other by a current carrying tether is to be kept in an earth-pointing orientation by means of joint actions of thrusters on one of the end-bodies and electrodynamic forces acting on the tether.

  8. Screw-in forces during instrumentation by various file systems

    PubMed Central

    2016-01-01

    Objectives The purpose of this study was to compare the maximum screw-in forces generated during the movement of various Nickel-Titanium (NiTi) file systems. Materials and Methods Forty simulated canals in resin blocks were randomly divided into 4 groups for the following instruments: Mtwo size 25/0.07 (MTW, VDW GmbH), Reciproc R25 (RPR, VDW GmbH), ProTaper Universal F2 (PTU, Dentsply Maillefer), and ProTaper Next X2 (PTN, Dentsply Maillefer, n = 10). All the artificial canals were prepared to obtain a standardized lumen by using ProTaper Universal F1. Screw-in forces were measured using a custom-made experimental device (AEndoS-k, DMJ system) during instrumentation with each NiTi file system using the designated movement. The rotation speed was set at 350 rpm with an automatic 4 mm pecking motion at a speed of 1 mm/sec. The pecking depth was increased by 1 mm for each pecking motion until the file reach the working length. Forces were recorded during file movement, and the maximum force was extracted from the data. Maximum screw-in forces were analyzed by one-way ANOVA and Tukey's post hoc comparison at a significance level of 95%. Results Reciproc and ProTaper Universal files generated the highest maximum screw-in forces among all the instruments while M-two and ProTaper Next showed the lowest (p < 0.05). Conclusions Geometrical differences rather than shaping motion and alloys may affect the screw-in force during canal instrumentation. To reduce screw-in forces, the use of NiTi files with smaller cross-sectional area for higher flexibility is recommended. PMID:27847752

  9. An aspect of denture base retention: direct measurement of force due to surface tension.

    PubMed

    Murray, M D; Darvell, B W

    1991-01-01

    A fixed-volume drop of liquid between a pair of parallel surfaces has been a common model for the denture-mucosa system. The reported one-term equation for the model, the derivation of which is suspect, implies that the acting force is inversely proportional to the square of the separation. Direct measurement of the force, however, showed that a better approximation is given by a two-term equation, with force varying as the inverse of the separation. The need for rigorous theoretical derivation is thereby emphasized. The experimental data suggest that a maximum retention force might occur for denture bases at separations of about 15 microns.

  10. Note: Electrical resolution during conductive atomic force microscopy measurements under different environmental conditions and contact forces

    SciTech Connect

    Lanza, M.; Porti, M.; Nafria, M.; Aymerich, X.; Whittaker, E.; Hamilton, B.

    2010-10-15

    Conductive atomic force microscopy experiments on gate dielectrics in air, nitrogen, and UHV have been compared to evaluate the impact of the environment on topography and electrical measurements. In current images, an increase of the lateral resolution and a reduction of the conductivity were observed in N{sub 2} and, especially, in UHV (where current depends also on the contact force). Both effects were related to the reduction/elimination of the water layer between the tip and the sample in N{sub 2}/UHV. Therefore, since current measurements are very sensitive to environmental conditions, these factors must be taken into consideration when comparisons between several experiments are performed.

  11. Elasticity measurement of breast cancer cells by atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Xu, Chaoxian; Wang, Yuhua; Jiang, Ningcheng; Yang, Hongqin; Lin, Juqiang; Xie, Shusen

    2014-09-01

    Mechanical properties of living cells play an important role in understanding various cells' function and state. Therefore cell biomechanics is expected to become a useful tool for cancer diagnosis. In this study, atomic force microscopy (AFM) using a square pyramid probe was performed to investigate cancerous (MCF-7) and benign (MCF-10A) human breast epithelial cells. The new QITM mode was used to acquire high-resolution topographic images and elasticity of living cells. Furthermore, individual force curves were recorded at maximum loads of 0.2, 0.5 and 1 nN, and the dependence of cell's elasticity with loading force was discussed. It was showed that the cancerous cells exhibited smaller elasticity modulus in comparison to non-cancerous counterparts. The elasticity modulus increased as the loading force increased from 0.2 nN to 1 nN. This observation indicates that loading force affects the cell's apparent elasticity and it is important to choose the appropriate force applied to cells in order to distinguish normal and cancer cells. The results reveal that the mechanical properties of living cells measured by atomic force microscopy may be a useful indicator of cell type and disease.

  12. Measured long-range repulsive Casimir–Lifshitz forces

    PubMed Central

    Munday, J. N.; Capasso, Federico; Parsegian, V. Adrian

    2014-01-01

    Quantum fluctuations create intermolecular forces that pervade macroscopic bodies1–3. At molecular separations of a few nanometres or less, these interactions are the familiar van der Waals forces4. However, as recognized in the theories of Casimir, Polder and Lifshitz5–7, at larger distances and between macroscopic condensed media they reveal retardation effects associated with the finite speed of light. Although these long-range forces exist within all matter, only attractive interactions have so far been measured between material bodies8–11. Here we show experimentally that, in accord with theoretical prediction12, the sign of the force can be changed from attractive to repulsive by suitable choice of interacting materials immersed in a fluid. The measured repulsive interaction is found to be weaker than the attractive. However, in both cases the magnitude of the force increases with decreasing surface separation. Repulsive Casimir–Lifshitz forces could allow quantum levitation of objects in a fluid and lead to a new class of switchable nanoscale devices with ultra-low static friction13–15. PMID:19129843

  13. Systemic risk measures

    NASA Astrophysics Data System (ADS)

    Guerra, Solange Maria; Silva, Thiago Christiano; Tabak, Benjamin Miranda; de Souza Penaloza, Rodrigo Andrés; de Castro Miranda, Rodrigo César

    2016-01-01

    In this paper we present systemic risk measures based on contingent claims approach and banking sector multivariate density. We also apply network measures to analyze bank common risk exposure. The proposed measures aim to capture credit risk stress and its potential to become systemic. These indicators capture not only individual bank vulnerability, but also the stress dependency structure between them. Furthermore, these measures can be quite useful for identifying systemically important banks. The empirical results show that these indicators capture with considerable fidelity the moments of increasing systemic risk in the Brazilian banking sector in recent years.

  14. Measurement of transmitted blast force-time histories

    SciTech Connect

    Dr. Benjamin Langhorst; Corey Cook; James Schondel; Dr. Henry S. Chu

    2010-03-01

    A simple, reliable, and cost effective method is presented for the measurement of transmitted force behind a panel subjected to blast loads. Sensors were designed for a specific blast environment and successfully used to measure transmitted blast force behind solid polyethylene plates of thickness 0.125 and 0.25 inches. Experimental data was collected and examined to reveal consistent differences in the response of different thicknesses of otherwise identical panels. Finally, recommendations are made for future design, construction and use of similar sensors.

  15. Numerical study of the hydrodynamic drag force in atomic force microscopy measurements undertaken in fluids.

    PubMed

    Méndez-Méndez, J V; Alonso-Rasgado, M T; Faria, E Correia; Flores-Johnson, E A; Snook, R D

    2014-11-01

    When atomic force microscopy (AFM) is employed for in vivo study of immersed biological samples, the fluid medium presents additional complexities, not least of which is the hydrodynamic drag force due to viscous friction of the cantilever with the liquid. This force should be considered when interpreting experimental results and any calculated material properties. In this paper, a numerical model is presented to study the influence of the drag force on experimental data obtained from AFM measurements using computational fluid dynamics (CFD) simulation. The model provides quantification of the drag force in AFM measurements of soft specimens in fluids. The numerical predictions were compared with experimental data obtained using AFM with a V-shaped cantilever fitted with a pyramidal tip. Tip velocities ranging from 1.05 to 105 μm/s were employed in water, polyethylene glycol and glycerol with the platform approaching from a distance of 6000 nm. The model was also compared with an existing analytical model. Good agreement was observed between numerical results, experiments and analytical predictions. Accurate predictions were obtained without the need for extrapolation of experimental data. In addition, the model can be employed over the range of tip geometries and velocities typically utilized in AFM measurements.

  16. Instrumented figure skating blade for measuring on-ice skating forces

    NASA Astrophysics Data System (ADS)

    Acuña, S. A.; Smith, D. M.; Robinson, J. M.; Hawks, J. C.; Starbuck, P.; King, D. L.; Ridge, S. T.; Charles, S. K.

    2014-12-01

    Competitive figure skaters experience substantial, repeated impact loading during jumps and landings. Although these loads, which are thought to be as high as six times body weight, can lead to overuse injuries, it is not currently possible to measure these forces on-ice. Consequently, efforts to improve safety for skaters are significantly limited. Here we present the development of an instrumented figure skating blade for measuring forces on-ice. The measurement system consists of strain gauges attached to the blade, Wheatstone bridge circuit boards, and a data acquisition device. The system is capable of measuring forces in the vertical and horizontal directions (inferior-superior and anterior-posterior directions, respectively) in each stanchion with a sampling rate of at least 1000 Hz and a resolution of approximately one-tenth of body weight. The entire system weighs 142 g and fits in the space under the boot. Calibration between applied and measured force showed excellent agreement (R > 0.99), and a preliminary validation against a force plate showed good predictive ability overall (R ≥ 0.81 in vertical direction). The system overestimated the magnitude of the first and second impact peaks but detected their timing with high accuracy compared to the force plate.

  17. Wettability and surface forces measured by atomic force microscopy: the role of roughness

    NASA Astrophysics Data System (ADS)

    Gavoille, J.; Takadoum, J.; Martin, N.; Durand, D.

    2009-10-01

    Thin films of titanium, copper and silver with various roughnesses were prepared by physical vapour deposition technique: dc magnetron sputtering. By varying the deposition time from few minutes to one hour it was possible to obtain metallic films with surface roughness average ranging from 1 to 20 nm. The wettability of these films was studied by measuring the contact angle using the sessile drop method and surface forces were investigated using the atomic force microscopy (AFM) by measuring the pull-off force between the AFM tip and the surfaces. Experimental results have been mainly discussed in terms of metal surface reactivity, Young modulus of the materials and real surface of contact between the AFM tip and the film surfaces.

  18. Objective measurements of muscle force in a group of after-stroke patients with hemiparesis.

    PubMed

    Pasternak-Mladzka, Irena; Mladzki, Zbigniew; Bedzinski, Romuald; Baran, Bogusława

    2007-01-01

    The aim of this study was to estimate the strength of spastic muscles using Biodex System 3 within a group of patients with hemiparesis in after-stroke population. Measurements of the moments of force in elbow flexors and extensors of both spastic and non-spastic limbs were conducted under isostatic conditions. We analysed the values obtained for both limbs in order to determine the spasticity level on an Ashworth scale (0-4). The subjects were 10 patients with hemiparesis and varying spasticity selected from an after-stroke population. The analysis showed that spastic muscles activated less force than non-spastic muscles of the same patient. Furthermore, in a spastic limb, higher values of force were noted in the flexors than in the extensors of the elbow. In a non-spastic limb, the values of force were higher in the extensors of the elbow joint than in flexors. It is worth adding that the dynamics of force exposure, defined by a gradient of force, was much lower in spastic muscles than in non-spastic ones. Objective estimation of muscle force can be done by measuring the moments of force in particular groups of muscles upon the isokinetic contraction appearing. The repeatability of measurements may enable the kind of kinesitherapy to be determined as well as the assessment of the effectiveness of exercises in regard to force increase and dynamics of spastic muscles.

  19. A Simple Instrument for Measuring Surface Forces in Liquids

    NASA Astrophysics Data System (ADS)

    Hannon, James; Tromp, Rudolf; Haight, Richard; Ellis, Arthur

    2015-03-01

    We have constructed a simple instrument to measure the interaction force between two surfaces in solution, or in vacuum. Specifically, we measure the interaction between a lens and a thin silicon cantilever. Either the lens, or the cantilever (or both) can be coated with the species of interest. When the lens is brought close to the cantilever surface, the force of interaction causes the cantilever to bend. By measuring the deflection as a function of the distance between the lens and cantilever, the long-range interactions between the two surfaces can be determined. Our approach includes three important innovations. First, a commercial lens with a radius of ~ 1 cm is used for one surface. The relatively large radius of curvature enhances force sensitivity of the method. Second, we use optical interference (Newton's Rings) to determine the distance between lens and cantilever with ~ 1 nm accuracy. Third, we make use of thin crystalline cantilevers (100 μm thick) whose elastic properties can be easily measured. We have achieved a force sensitivity F / R better than 0.001 mN/m. I will discuss the theory of operation of the new instrument and describe measurements made on SiO2 and metal oxide surfaces in water.

  20. Systematic review of ground reaction force measurements in cats.

    PubMed

    Schnabl, E; Bockstahler, B

    2015-10-01

    Although orthopaedic abnormalities in cats are frequently observed radiographically, they remain clinically underdiagnosed, and kinetic motion analysis, a fundamental aspect of orthopaedic research in dogs and horses, is not commonly performed. More information obtained with non-invasive measurement techniques to assess normal and abnormal gait in cats would provide a greater insight into their locomotion and biomechanics and improve the objective measurement of disease alterations and treatment modalities. In this systematic review, 12 previously performed studies that investigated ground reaction force measurements in cats during locomotion were evaluated. The aims of these studies, the measurement methods and equipment used, and the outcomes of parameters used to assess both sound and diseased cats are summarised and discussed. All reviewed studies used pressure sensitive walkways to gain data and all provided an acclimatisation period as a prerequisite for measurements. In sound cats during walking, the forelimb peak vertical force was greater than in the hindlimb and the peak vertical force in the hindlimb was greater in cats than in dogs. This review confirms that ground reaction forces can be used to evaluate lameness and treatment effects in the cat.

  1. Stable force identification in structural dynamics using Kalman filtering and dummy-measurements

    NASA Astrophysics Data System (ADS)

    Naets, F.; Cuadrado, J.; Desmet, W.

    2015-01-01

    Many engineering applications require the knowledge of input forces to mechanical systems. However, in practice, it is quite difficult to measure these forces directly. In order to obtain an estimate of the input forces to structural systems, Kalman filtering based techniques have recently been introduced. These state-estimation techniques allow estimating the forces concurrent with the states of a system, based on a limited number of measurements. In practice, acceleration measurements are most convenient to use in structural dynamics applications. This paper proposes an analytical analysis of the stability of the Kalman based force estimation techniques and shows that only using acceleration measurements inherently leads to unreliable results. In order to circumvent this issue, the addition of dummy-measurements on a position level is proposed. These fictitious measurements dictate the estimator to return to an undeformed state and lead to a stable estimation approach. The proposed method is validated through both a numerical and a practical experiment. Both experiments show the inadequacy of the augmented Kalman filter based on only acceleration measurements to provide stable results. The estimator with dummy measurements on the other hand provides good results in the case of an unbiased external load.

  2. Precision volume measurement system.

    SciTech Connect

    Fischer, Erin E.; Shugard, Andrew D.

    2004-11-01

    A new precision volume measurement system based on a Kansas City Plant (KCP) design was built to support the volume measurement needs of the Gas Transfer Systems (GTS) department at Sandia National Labs (SNL) in California. An engineering study was undertaken to verify or refute KCP's claims of 0.5% accuracy. The study assesses the accuracy and precision of the system. The system uses the ideal gas law and precise pressure measurements (of low-pressure helium) in a temperature and computer controlled environment to ratio a known volume to an unknown volume.

  3. Force-Velocity Measurements of a Few Growing Actin Filaments

    PubMed Central

    Brangbour, Coraline; du Roure, Olivia; Helfer, Emmanuèle; Démoulin, Damien; Mazurier, Alexis; Fermigier, Marc; Carlier, Marie-France; Bibette, Jérôme; Baudry, Jean

    2011-01-01

    The polymerization of actin in filaments generates forces that play a pivotal role in many cellular processes. We introduce a novel technique to determine the force-velocity relation when a few independent anchored filaments grow between magnetic colloidal particles. When a magnetic field is applied, the colloidal particles assemble into chains under controlled loading or spacing. As the filaments elongate, the beads separate, allowing the force-velocity curve to be precisely measured. In the widely accepted Brownian ratchet model, the transduced force is associated with the slowing down of the on-rate polymerization. Unexpectedly, in our experiments, filaments are shown to grow at the same rate as when they are free in solution. However, as they elongate, filaments are more confined in the interspace between beads. Higher repulsive forces result from this higher confinement, which is associated with a lower entropy. In this mechanism, the production of force is not controlled by the polymerization rate, but is a consequence of the restriction of filaments' orientational fluctuations at their attachment point. PMID:21541364

  4. Measurement of impact force, simulation of fall and hip fracture.

    PubMed

    Gardner, T N; Simpson, A H; Booth, C; Sprukkelhorst, P; Evans, M; Kenwright, J; Evans, J G

    1998-01-01

    It has been shown that the incidence of hip fracture in the elderly may be influenced by the type of floor covering commonly used in homes for the elderly. This study describes the development of a method for modelling a fall during a hip fracture event, to examine the influence of different floors on impact force. An impact transducer is dropped in free fall through a smooth plastic tube. The impactor nose of the transducer models the curvature of the greater trochanter, and a steel spring is used to simulate the compliance of the skeletal structure. A weight, which corresponds to one-sixteenth of average body mass, compresses the spring and applies force to the impactor nose on striking the floor. The temporal variation in the force of impact with the floor is measured by the transducer to within 0.41 percent (SD = 0.63%, n = 10). Five common floor coverings were tested over a concrete floor slab (vinyl, loop carpet and pile carpet--both with and without underpad). ANOVA analysis showed that the differences between mean forces for each floor covering were highly significant (p > 0.001), with the thicker coverings producing 7 percent lower forces. The transducer may be used to examine the correlation between impact force and fracture incidence for a variety of different floors in homes for the elderly.

  5. 21 CFR 890.1575 - Force-measuring platform.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Force-measuring platform. 890.1575 Section 890.1575 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Diagnostic Devices § 890.1575...

  6. 21 CFR 890.1575 - Force-measuring platform.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Force-measuring platform. 890.1575 Section 890.1575 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Diagnostic Devices § 890.1575...

  7. 21 CFR 890.1575 - Force-measuring platform.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Force-measuring platform. 890.1575 Section 890.1575 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Diagnostic Devices § 890.1575...

  8. 21 CFR 890.1575 - Force-measuring platform.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Force-measuring platform. 890.1575 Section 890.1575 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Diagnostic Devices § 890.1575...

  9. 21 CFR 890.1575 - Force-measuring platform.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Force-measuring platform. 890.1575 Section 890.1575 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Diagnostic Devices § 890.1575...

  10. Force Exertion Capacity Measurements in Haptic Virtual Environments

    ERIC Educational Resources Information Center

    Munih, Marko; Bardorfer, Ales; Ceru, Bojan; Bajd, Tadej; Zupan, Anton

    2010-01-01

    An objective test for evaluating functional status of the upper limbs (ULs) in patients with muscular distrophy (MD) is presented. The method allows for quantitative assessment of the UL functional state with an emphasis on force exertion capacity. The experimental measurement setup and the methodology for the assessment of maximal exertable force…

  11. Harnessing bifurcations in tapping-mode atomic force microscopy to calibrate time-varying tip-sample force measurements.

    PubMed

    Sahin, Ozgur

    2007-10-01

    Torsional harmonic cantilevers allow measurement of time-varying tip-sample forces in tapping-mode atomic force microscopy. Accuracy of these force measurements is important for quantitative nanomechanical measurements. Here we demonstrate a method to convert the torsional deflection signals into a calibrated force wave form with the use of nonlinear dynamical response of the tapping cantilever. Specifically the transitions between steady oscillation regimes are used to calibrate the torsional deflection signals.

  12. Noncontact intraoral measurement of force-related tooth mobility.

    PubMed

    Göllner, Matthias; Holst, Alexandra; Berthold, Christine; Schmitt, Johannes; Wichmann, Manfred; Holst, Stefan

    2010-10-01

    The aim of this pilot study was to measure force-related tooth mobility. Vertical and horizontal anterior tooth mobility in 31 healthy periodontal subjects was measured by a noncontact optical measurement technique. The subjects continuously increased the force on each tooth by biting on a load cell. An automated software program recorded tooth displacement at 9-N intervals. Vertical and horizontal displacements were subsequently measured. The vector of tooth mobility in the buccal direction was calculated using the Pythagorean theorem. The average displacements over all subjects for each tooth were determined. Global differences were assessed with the Wilcoxon test. There were no significant differences between contralateral teeth overall load stages. There were no significant differences in tooth mobility between the central and lateral incisors except for in the horizontal direction. However, there were significant differences between central incisor and canine and lateral incisor and canine teeth.

  13. Bite force measurements with hard and soft bite surfaces.

    PubMed

    Serra, C M; Manns, A E

    2013-08-01

    Bite force has been measured by different methods and over a wide variety of designs. In several instruments, the fact that bite surface has been manufactured with stiff materials might interfere in obtaining reliable data, by a more prompt activation of inhibitory reflex mechanisms. The purpose of this study was to compare the maximum voluntary bite force measured by a digital occlusal force gauge (GM10 Nagano Keiki, Japan) between different opponent teeth, employing semi-hard or soft bite surfaces. A sample of 34 young adults with complete natural dentition was studied. The original semi-hard bite surface was exchanged by a soft one, made of leather and rubber. Maximum voluntary bite force recordings were made for each tooth group and for both bite surfaces. Statistical analyses (Student's t-test) revealed significant differences, with higher scores while using the soft surface across sexes and tooth groups (P < 0·05). Differential activation of periodontal mechanoreceptors of a specific tooth group is mainly conditioned by the hardness of the bite surface; a soft surface induces greater activation of elevator musculature, while a hard one induces inhibition more promptly. Thus, soft bite surfaces are recommended for higher reliability in maximum voluntary bite force recordings.

  14. Model Engine Performance Measurement From Force Balance Instrumentation

    NASA Technical Reports Server (NTRS)

    Jeracki, Robert J.

    1998-01-01

    A large scale model representative of a low-noise, high bypass ratio turbofan engine was tested for acoustics and performance in the NASA Lewis 9- by 15-Foot Low-Speed Wind Tunnel. This test was part of NASA's continuing Advanced Subsonic Technology Noise Reduction Program. The low tip speed fan, nacelle, and an un-powered core passage (with core inlet guide vanes) were simulated. The fan blades and hub are mounted on a rotating thrust and torque balance. The nacelle, bypass duct stators, and core passage are attached to a six component force balance. The two balance forces, when corrected for internal pressure tares, measure the total thrust-minus-drag of the engine simulator. Corrected for scaling and other effects, it is basically the same force that the engine supports would feel, operating at similar conditions. A control volume is shown and discussed, identifying the various force components of the engine simulator thrust and definitions of net thrust. Several wind tunnel runs with nearly the same hardware installed are compared, to identify the repeatability of the measured thrust-minus-drag. Other wind tunnel runs, with hardware changes that affected fan performance, are compared to the baseline configuration, and the thrust and torque effects are shown. Finally, a thrust comparison between the force balance and nozzle gross thrust methods is shown, and both yield very similar results.

  15. Development of low temperature atomic force microscopy with an optical beam deflection system capable of simultaneously detecting the lateral and vertical forces

    NASA Astrophysics Data System (ADS)

    Arima, Eiji; Wen, Huanfei; Naitoh, Yoshitaka; Li, Yan Jun; Sugawara, Yasuhiro

    2016-09-01

    The atomic force microscopy (AFM) is a very important tool for imaging and investigating the complex force interactions on sample surfaces with high spatial resolution. In the AFM, two types of detection systems of the tip-sample interaction forces have been used: an optical detection system and an electrical detection system. In optical detection systems, such as optical beam deflection system or optical fiber interferometer system, both the lateral and the vertical tip-sample forces can be measured simultaneously. In electrical detection systems, such as qPlus or Kolibri sensors, either the lateral or vertical forces can be measured. Simultaneous measurement of the lateral and vertical interaction forces effectively allows investigation of force interactions because the force is a vector with magnitude and direction. In this study, we developed a low-temperature, frequency-modulation AFM using an optical beam deflection system to simultaneously measure the vertical and lateral forces. In this system, the heat sources, such as a laser diode and a current-to-voltage converter, for measuring the photocurrent of the four-segmented photodiode are located outside the observation chamber to avoid a temperature increase of the AFM unit. The focused optical beam is three-dimensionally adjustable on the back side of the cantilever. We demonstrate low-noise displacement measurement of the cantilever and successful atomic resolution imaging using the vertical and lateral forces at low temperatures.

  16. Development of low temperature atomic force microscopy with an optical beam deflection system capable of simultaneously detecting the lateral and vertical forces.

    PubMed

    Arima, Eiji; Wen, Huanfei; Naitoh, Yoshitaka; Li, Yan Jun; Sugawara, Yasuhiro

    2016-09-01

    The atomic force microscopy (AFM) is a very important tool for imaging and investigating the complex force interactions on sample surfaces with high spatial resolution. In the AFM, two types of detection systems of the tip-sample interaction forces have been used: an optical detection system and an electrical detection system. In optical detection systems, such as optical beam deflection system or optical fiber interferometer system, both the lateral and the vertical tip-sample forces can be measured simultaneously. In electrical detection systems, such as qPlus or Kolibri sensors, either the lateral or vertical forces can be measured. Simultaneous measurement of the lateral and vertical interaction forces effectively allows investigation of force interactions because the force is a vector with magnitude and direction. In this study, we developed a low-temperature, frequency-modulation AFM using an optical beam deflection system to simultaneously measure the vertical and lateral forces. In this system, the heat sources, such as a laser diode and a current-to-voltage converter, for measuring the photocurrent of the four-segmented photodiode are located outside the observation chamber to avoid a temperature increase of the AFM unit. The focused optical beam is three-dimensionally adjustable on the back side of the cantilever. We demonstrate low-noise displacement measurement of the cantilever and successful atomic resolution imaging using the vertical and lateral forces at low temperatures.

  17. Measuring and Understanding Forces on Atomic Length Scales with the Atomic Force Microscope

    NASA Astrophysics Data System (ADS)

    Cleveland, Jason Paul

    Most microscopes can be used with little understanding of how they work--much can be learned looking through a light microscope without ever knowing what a photon is or who Maxwell was--and the Atomic Force Microscope (AFM) is no exception. Many AFM images don't look much different from a mountainous landscape, and much is learned interpreting them as such; however, to really push a microscope to its limits means understanding the interactions creating the contrast in the picture. For a Scanning Electron Microscope, this means understanding how electrons interact with matter, for an AFM it means understanding forces. The focus of this thesis is understanding the forces acting (especially in liquids) between tip and sample in AFM and a better understanding the instrument itself. Chapters I, II and VI involve better characterizing and improving the most important part of the AFM, the tiny cantilever used to measure forces. Chapter I describes a solution to one of the most basic problems that must be solved before forces can be accurately measured--measuring the stiffness of these cantilevers. Many limitations in AFM are set by physical characteristics of the cantilever itself, such as resonance frequency, spring constant, and quality factor. If an external force can be applied to the cantilever, feedback can be used to improve these characteristics. Chapter II shows how to do this using a magnetically applied external force, which has the advantage of working in liquids. These physical characteristics also change drastically when the cantilever is immersed in fluid. The resonance frequency of common cantilevers drops by as much as a factor of six in going from air to water. Chapter VI studies these changes and shows how further miniaturization of cantilevers can improve imaging speeds and signal-to-noise ratio. Early in its career, the AFM was heralded as having atomic resolution, but as the field matured researchers realized that the contact area between tip and

  18. Air Force Enlisted Force Management: System Interactions and Synchronization Strategies

    DTIC Science & Technology

    2007-01-01

    Defense OSI Office of Special Investigations PFE Promotion Fitness Exam PPBE Planning, Programming, Budgeting, and Execution RAW AFPC’s Retrieval...Force Management ness exam ( PFE ), score on the Skills Knowledge Test (SKT), time in service (TIS), and time in grade (TIG).8 Promotion to E8 and E9 has...the PFE . Tests that are more difficult lead to a wider range of test scores. Within an AFSC, this tends to favor good testers by 8 E4s–E6s earn up to

  19. Friction of ice measured using lateral force microscopy

    SciTech Connect

    Bluhm, Hendrik; Inoue, Takahito; Salmeron, Miquel

    2000-03-15

    The friction of nanometer thin ice films grown on mica substrates is investigated using atomic force microscopy (AFM). Friction was found to be of similar magnitude as the static friction of ice reported in macroscopic experiments. The possible existence of a lubricating film of water due to pressure melting, frictional heating, and surface premelting is discussed based on the experimental results using noncontact, contact, and lateral force microscopy. We conclude that AFM measures the dry friction of ice due to the low scan speed and the squeezing out of the water layer between the sharp AFM tip and the ice surface. (c) 2000 The American Physical Society.

  20. The force module for the bending art system. Preliminary results.

    PubMed

    Fischer-Brandies, H; Orthuber, W; Ermert, M; Hussmanns, A

    1998-01-01

    The force module for the bending art system (BAS) is used to calculate the initial forces and moments expected to act on a tooth after changing arch wires. The present study analyses the accuracy of the force module on the basis of 10 patients treated with the BAS (with an average observation period of 10 months). An average of 6 arch wires (0.16" x 0.016" steel) were used on each jaw. The approximate pressure in the periodontium was determined and statistically evaluated from the force module readings. The resulting average pressure values for the molars ranged between 0.26 N/cm2 and 0.54 N/cm2. The value in the area of the incisors, cuspids and bicuspids ranged between 1.03 N/cm2 and 2.83 N/cm2. Maximum pressure was 8.02 N/cm2. The results are discussed from a clinical point of view on a case-to-case basis. They are plausible in and for themselves. The more severe the initial state of misalignment, the higher the pressure values. These forces can be reduced by increasing the number of arch wires or by altering the form of the archwire correspondingly. The computer-generated values should be confirmed by taking a direct measurement on the tooth. The force module is just the first step in providing a reproducible estimation of the forces acting on a tooth. Even if the calculated absolute values should still be judged with reservation, they are nevertheless suitable for providing a comparative evaluation of various treatment concepts with reference to the forces acting on the periodontium and can serve clinicians as a rapidly available decision-making aid.

  1. Dynamic force signal processing system of a robot manipulator

    NASA Technical Reports Server (NTRS)

    Uchiyama, M.; Kitagaki, K.; Hakomori, K.

    1987-01-01

    If dynamic noises such as those caused by the inertia forces of the hand can be eliminated from the signal of the force sensor installed on the wrist of the robot manipulator and if the necessary information of the external force can be detected with high sensitivity and high accuracy, a fine force feedback control for robots used in high speed and various fields will be possible. As the dynamic force sensing system, an external force estimate method with the extended Kalman filter is suggested and simulations and tests for a one axis force were performed. Later a dynamic signal processing system of six axes was composed and tested. The results are presented.

  2. Ultrasonic linear measurement system

    NASA Technical Reports Server (NTRS)

    Marshall, Scot H. (Inventor)

    1991-01-01

    An ultrasonic linear measurement system uses the travel time of surface waves along the perimeter of a three-dimensional curvilinear body to determine the perimeter of the curvilinear body. The system can also be used piece-wise to measure distances along plane surfaces. The system can be used to measure perimeters where use of laser light, optical means or steel tape would be extremely difficult, time consuming or impossible. It can also be used to determine discontinuities in surfaces of known perimeter or dimension.

  3. Development and testing of an integrated smart tool holder for four-component cutting force measurement

    NASA Astrophysics Data System (ADS)

    Xie, Zhengyou; Lu, Yong; Li, Jianguang

    2017-09-01

    Cutting force measurement is a significant requirement for monitoring and controlling the machining processes. Hence, various methods of measuring the cutting force have been proposed by many researchers. In this study, an innovative integrated smart tool holder system based on capacitive sensors is designed, constructed and tested, which is capable of measuring triaxial cutting force and a torque simultaneously in a wireless environment system. A standard commercial tool holder is modified to make itself be the force sensing element that has advantages of simple structure and easy machining. Deformable beams are created in the tool holder, and the tiny deformations of which used to calculate the four-component cutting force are detected by six high precision capacitive sensors. All the sensors and other electronics, like data acquisition and transmitting unit, and wireless power unit, are incorporated into the tool holder as a whole system. The device is intended to be used in a rotating spindle such as in milling and drilling processes. Eventually, the static and dynamic characteristics of the smart tool holder have been determined by a series of tests. Cutting tests have also been carried out and the results show it is stable and practical to measure the cutting force in milling and drilling processes.

  4. Photothermally excited force modulation microscopy for broadband nanomechanical property measurements

    SciTech Connect

    Wagner, Ryan Killgore, Jason P.

    2015-11-16

    We demonstrate photothermally excited force modulation microscopy (PTE FMM) for mechanical property characterization across a broad frequency range with an atomic force microscope (AFM). Photothermal excitation allows for an AFM cantilever driving force that varies smoothly as a function of drive frequency, thus avoiding the problem of spurious resonant vibrations that hinder piezoelectric excitation schemes. A complication of PTE FMM is that the sub-resonance cantilever vibration shape is fundamentally different compared to piezoelectric excitation. By directly measuring the vibrational shape of the cantilever, we show that PTE FMM is an accurate nanomechanical characterization method. PTE FMM is a pathway towards the characterization of frequency sensitive specimens such as polymers and biomaterials with frequency range limited only by the resonance frequency of the cantilever and the low frequency limit of the AFM.

  5. Measurement of the Casimir force between dissimilar metals.

    PubMed

    Decca, R S; López, D; Fischbach, E; Krause, D E

    2003-08-01

    The first precise measurement of the Casimir force between dissimilar metals is reported. The attractive force, between a Cu layer evaporated on a microelectromechanical torsional oscillator and an Au layer deposited on an Al2O3 sphere, was measured dynamically with a noise level of 6 fN/sqrt[Hz]. Measurements were performed for separations in the 0.2-2 micro m range. The results agree to better than 1% in the 0.2-0.5 micro m range with a theoretical model that takes into account the finite conductivity and roughness of the two metals. The observed discrepancies, which are much larger than the experimental precision, can be attributed to a lack of a complete characterization of the optical properties of the specific samples used in the experiment.

  6. Micromechanical cohesion force between gas hydrate particles measured under high pressure and low temperature conditions.

    PubMed

    Lee, Bo Ram; Sum, Amadeu K

    2015-04-07

    To prevent hydrate plugging conditions in the transportation of oil/gas in multiphase flowlines, one of the key processes to control is the agglomeration/deposition of hydrate particles, which are determined by the cohesive/adhesive forces. Previous studies reporting measurements of the cohesive/adhesive force between hydrate particles used cyclopentane hydrate particles in a low-pressure micromechanical force apparatus. In this study, we report the cohesive forces of particles measured in a new high-pressure micromechanical force (MMF) apparatus for ice particles, mixed (methane/ethane, 74.7:25.3) hydrate particles (Structure II), and carbon dioxide hydrate particles (Structure I). The cohesive forces are measured as a function of the contact time, contact force, temperature, and pressure, and determined from pull-off measurements. For the measurements performed of the gas hydrate particles in the gas phase, the determined cohesive force is about 30-35 mN/m, about 8 times higher than the cohesive force of CyC5 hydrates in the liquid CyC5, which is about 4.3 mN/m. We show from our results that the hydrate structure (sI with CO2 hydrates and sII with CH4/C2H6 hydrates) has no influence on the cohesive force. These results are important in the deposition of a gas-dominated system, where the hydrate particles formed in the liquid phase can then stick to the hydrate deposited in the wall exposed to the gas phase.

  7. Detection of Periodic Forced Oscillations in Power Systems

    SciTech Connect

    Follum, Jim; Pierre, John W.

    2015-08-27

    An algorithm for the detection and frequency estimation of forced oscillations in power systems is proposed. The method operates by comparing the periodogram of synchrophasor measurements to a detection threshold. This threshold is established by deriving a general expression for the distribution of the periodogram and is related to the algorithm's probabilities of false alarm and detection. Unlike classic detection algorithms designed for use with white Gaussian noise, the proposed algorithm uses a detection threshold that varies with frequency to account for the colored nature of synchrophasor measurements. Further, a detection scheme based on multiple segments of data is proposed to improve the algorithm's performance as a monitoring tool in the online environment. A design approach that helps to ensure that the best-available probability of detection from any one detection segment is constantly increasing with the duration of the forced oscillation is also developed. Results from application of the detection algorithm to simulated and measured power system data suggest that the algorithm provides the expected detection performance and can be used to detect forced oscillations in practical monitoring of power systems.

  8. Use of force-measuring transducers in manipulator control. I - Theory. II - Implementation

    NASA Astrophysics Data System (ADS)

    Jansen, John; Kress, Reid

    Two types of control structures for teleoperated manipulators are investigated using force-measuring transducers with each type targeting specific properties of the manipulator. One approach is to measure torque in the drive train of the manipulator to increase backdriveability, sensitivity, and stiffness. The second is to measure the forces and torques at the wrist of the manipulator. This force/torque vector is then employed in a stiffness control algorithm which resolves dissimilar kinematics and increases sensitivity. It is shown that torque feedback can be used to reduce the apparent friction in a manipulator drive train caused by gear boxes, bearings, and transmissions. For teleoperated systems, drive-train torque feedback yields improved backdriveability, better sensitivity, and improved stiffness. Cartesian stiffness control allows the operator to specify the relationship between force and displacement in any direction at the manipulator end effector.

  9. Friction and Adhesion Forces of Bacillus thuringiensis Spores on Planar Surfaces in Atmospheric Systems

    SciTech Connect

    Kweon, Hyojin; Yiacoumi, Sotira; Tsouris, Costas

    2011-01-01

    The kinetic friction force and the adhesion force of Bacillus thuringiensis spores on planar surfaces in atmospheric systems were studied using atomic force microscopy. The influence of relative humidity (RH) on these forces varied for different surface properties including hydrophobicity, roughness, and surface charge. The friction force of the spore was greater on a rougher surface than on mica, which is atomically flat. As RH increases, the friction force of the spores decreases on mica whereas it increases on rough surfaces. The influence of RH on the interaction forces between hydrophobic surfaces is not as strong as for hydrophilic surfaces. The friction force of the spore is linear to the sum of the adhesion force and normal load on the hydrophobic surface. The poorly defined surface structure of the spore and the adsorption of contaminants from the surrounding atmosphere are believed to cause a discrepancy between the calculated and measured adhesion forces.

  10. Electrochemical thermodynamic measurement system

    DOEpatents

    Reynier, Yvan; Yazami, Rachid; Fultz, Brent T.

    2009-09-29

    The present invention provides systems and methods for accurately characterizing thermodynamic and materials properties of electrodes and electrochemical energy storage and conversion systems. Systems and methods of the present invention are configured for simultaneously collecting a suite of measurements characterizing a plurality of interconnected electrochemical and thermodynamic parameters relating to the electrode reaction state of advancement, voltage and temperature. Enhanced sensitivity provided by the present methods and systems combined with measurement conditions that reflect thermodynamically stabilized electrode conditions allow very accurate measurement of thermodynamic parameters, including state functions such as the Gibbs free energy, enthalpy and entropy of electrode/electrochemical cell reactions, that enable prediction of important performance attributes of electrode materials and electrochemical systems, such as the energy, power density, current rate and the cycle life of an electrochemical cell.

  11. Metabolic rate measurement system

    NASA Technical Reports Server (NTRS)

    Koester, K.; Crosier, W.

    1980-01-01

    The Metabolic Rate Measurement System (MRMS) is an uncomplicated and accurate apparatus for measuring oxygen consumption and carbon dioxide production of a test subject. From this one can determine the subject's metabolic rate for a variety of conditions, such as resting or light exercise. MRMS utilizes an LSI/11-03 microcomputer to monitor and control the experimental apparatus.

  12. Digital design and fabrication of simulation model for measuring orthodontic force.

    PubMed

    Liu, Yun-Feng; Zhang, Peng-Yuan; Zhang, Qiao-Fang; Zhang, Jian-Xing; Chen, Jie

    2014-01-01

    Three dimensional (3D) forces are the key factors for determining movement of teeth during orthodontic treatment. Designing precise forces and torques on tooth before treatment can result accurate tooth movements, but it is too difficult to realize. In orthodontic biomechanical systems, the periodontal tissues, including bones, teeth, and periodontal ligaments (PDL), are affected by braces, and measuring the forces applied on the teeth by braces should be based on a simulated model composed of these three types of tissues. This study explores the design and fabrication of a simulated oral model for 3D orthodontic force measurements. Based on medical image processing, tissue reconstruction, 3D printing, and PDL simulation and testing, a model for measuring force was designed and fabricated, which can potentially be used for force prediction, design of treatment plans, and precise clinical operation. The experiment illustrated that bi-component silicones with 2:8 ratios had similar mechanical properties to PDL, and with a positioning guide, the teeth were assembled in the mandible sockets accurately, and so a customized oral model for 3D orthodontic force measurement was created.

  13. Vision-based force measurement using neural networks for biological cell microinjection.

    PubMed

    Karimirad, Fatemeh; Chauhan, Sunita; Shirinzadeh, Bijan

    2014-03-21

    This paper presents a vision-based force measurement method using an artificial neural network model. The proposed model is used for measuring the applied load to a spherical biological cell during micromanipulation process. The devised vision-based method is most useful when force measurement capability is required, but it is very challenging or even infeasible to use a force sensor. Artificial neural networks in conjunction with image processing techniques have been used to estimate the applied load to a cell. A bio-micromanipulation system capable of force measurement has also been established in order to collect the training data required for the proposed neural network model. The geometric characterization of zebrafish embryos membranes has been performed during the penetration of the micropipette prior to piercing. The geometric features are extracted from images using image processing techniques. These features have been used to describe the shape and quantify the deformation of the cell at different indentation depths. The neural network is trained by taking the visual data as the input and the measured corresponding force as the output. Once the neural network is trained with sufficient number of data, it can be used as a precise sensor in bio-micromanipulation setups. However, the proposed neural network model is applicable for indentation of any other spherical elastic object. The results demonstrate the capability of the proposed method. The outcomes of this study could be useful for measuring force in biological cell micromanipulation processes such as injection of the mouse oocyte/embryo.

  14. Current measuring system

    DOEpatents

    Dahl, David A.; Appelhans, Anthony D.; Olson, John E.

    1997-01-01

    A current measuring system comprising a current measuring device having a first electrode at ground potential, and a second electrode; a current source having an offset potential of at least three hundred volts, the current source having an output electrode; and a capacitor having a first electrode electrically connected to the output electrode of the current source and having a second electrode electrically connected to the second electrode of the current measuring device.

  15. Current measuring system

    DOEpatents

    Dahl, D.A.; Appelhans, A.D.; Olson, J.E.

    1997-09-09

    A current measuring system is disclosed comprising a current measuring device having a first electrode at ground potential, and a second electrode; a current source having an offset potential of at least three hundred volts, the current source having an output electrode; and a capacitor having a first electrode electrically connected to the output electrode of the current source and having a second electrode electrically connected to the second electrode of the current measuring device. 4 figs.

  16. Joint force protection advanced security system (JFPASS) "the future of force protection: integrate and automate"

    NASA Astrophysics Data System (ADS)

    Lama, Carlos E.; Fagan, Joe E.

    2009-09-01

    The United States Department of Defense (DoD) defines 'force protection' as "preventive measures taken to mitigate hostile actions against DoD personnel (to include family members), resources, facilities, and critical information." Advanced technologies enable significant improvements in automating and distributing situation awareness, optimizing operator time, and improving sustainability, which enhance protection and lower costs. The JFPASS Joint Capability Technology Demonstration (JCTD) demonstrates a force protection environment that combines physical security and Chemical, Biological, Radiological, Nuclear, and Explosive (CBRNE) defense through the application of integrated command and control and data fusion. The JFPASS JCTD provides a layered approach to force protection by integrating traditional sensors used in physical security, such as video cameras, battlefield surveillance radars, unmanned and unattended ground sensors. The optimization of human participation and automation of processes is achieved by employment of unmanned ground vehicles, along with remotely operated lethal and less-than-lethal weapon systems. These capabilities are integrated via a tailorable, user-defined common operational picture display through a data fusion engine operating in the background. The combined systems automate the screening of alarms, manage the information displays, and provide assessment and response measures. The data fusion engine links disparate sensors and systems, and applies tailored logic to focus the assessment of events. It enables timely responses by providing the user with automated and semi-automated decision support tools. The JFPASS JCTD uses standard communication/data exchange protocols, which allow the system to incorporate future sensor technologies or communication networks, while maintaining the ability to communicate with legacy or existing systems.

  17. Chapter 16: Magnetic manipulation for force measurements in cell biology.

    PubMed

    Tim O'Brien, E; Cribb, Jeremy; Marshburn, David; Taylor, Russell M; Superfine, Richard

    2008-01-01

    Life is a mechanical process. Cells, tissues, and bodies must act within their environments to grow, divide, move, communicate, and defend themselves. The stiffness and viscosity of cells and biologic materials will vary depending upon a wide variety of variables including for example environmental conditions, activation of signaling pathways, stage of development, gene expression. By pushing and pulling cells or materials such as mucus or extracellular matrix, one can learn about their mechanical properties. By varying the conditions, signaling pathways or genetic background, one can also assess how the response of the cell or material is modulated by that pathway. Magnetic particles are available commercially in many useful sizes, magnetic contents, and surface chemistries. The variety of surface chemistries allow forces to be applied to a specimen through specific linkages such as receptors or particular proteins, allowing the biologist to ask fundamental questions about the role of those linkages in the transduction of force or motion. In this chapter, we discuss the use of a magnetic system designed to apply a wide range of forces and force patterns fully integrated into a high numerical aperture inverted fluorescence microscope. Fine, thin and flat magnetic poles allow the use of high magnification microscope objectives, and flexible software to control the direction and pattern of applied forces supports a variety of experimental situations. The system can be coupled with simple video acquisition for medium-bandwidth, two-dimensional particle tracking. Alternatively, the system can be coupled with a laser tracking and position feedback system for higher resolution, high bandwidth, three-dimensional tracking.

  18. [Methodology and Implementation of Forced Oscillation Technique for Respiratory Mechanics Measurement].

    PubMed

    Zhang, Zhengbo; Ni, Lu; Liu, Xiaoli; Li, Deyu; Wang, Weidong

    2015-11-01

    The forced oscillation technique (FOT) is a noninvasive method for respiratory mechanics measurement. For the FOT, external signals (e.g. forced oscillations around 4-40 Hz) are used to drive the respiratory system, and the mechanical characteristic of the respiratory system can be determined with the linear system identification theory. Thus, respiratory mechanical properties and components at different frequency and location of the airway can be explored by specifically developed forcing waveforms. In this paper, the theory, methodology and clinical application of the FOT is reviewed, including measure ment theory, driving signals, models of respiratory system, algorithm for impedance identification, and requirement on apparatus. Finally, the future development of this technique is also discussed.

  19. Digital capacitance measuring system

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The hardware phase of a digital capacitance measuring system is presented with the major emphasis placed on the electrical design and operation. Test results are included of the three units fabricated. The system's interface is applicable to existing requirements for the space shuttle vehicle.

  20. Uncertainty quantification in nanomechanical measurements using the atomic force microscope.

    PubMed

    Wagner, Ryan; Moon, Robert; Pratt, Jon; Shaw, Gordon; Raman, Arvind

    2011-11-11

    Quantifying uncertainty in measured properties of nanomaterials is a prerequisite for the manufacture of reliable nanoengineered materials and products. Yet, rigorous uncertainty quantification (UQ) is rarely applied for material property measurements with the atomic force microscope (AFM), a widely used instrument that can measure properties at nanometer scale resolution of both inorganic and biological surfaces and nanomaterials. We present a framework to ascribe uncertainty to local nanomechanical properties of any nanoparticle or surface measured with the AFM by taking into account the main uncertainty sources inherent in such measurements. We demonstrate the framework by quantifying uncertainty in AFM-based measurements of the transverse elastic modulus of cellulose nanocrystals (CNCs), an abundant, plant-derived nanomaterial whose mechanical properties are comparable to Kevlar fibers. For a single, isolated CNC the transverse elastic modulus was found to have a mean of 8.1 GPa and a 95% confidence interval of 2.7-20 GPa. A key result is that multiple replicates of force-distance curves do not sample the important sources of uncertainty, which are systematic in nature. The dominant source of uncertainty is the nondimensional photodiode sensitivity calibration rather than the cantilever stiffness or Z-piezo calibrations. The results underscore the great need for, and open a path towards, quantifying and minimizing uncertainty in AFM-based material property measurements of nanoparticles, nanostructured surfaces, thin films, polymers and biomaterials.

  1. Dynamic Force Sensing Using an Optically Trapped Probing System

    PubMed Central

    Huang, Yanan; Cheng, Peng; Menq, Chia-Hsiang

    2013-01-01

    This paper presents the design of an adaptive observer that is implemented to enable real-time dynamic force sensing and parameter estimation in an optically trapped probing system. According to the principle of separation of estimation and control, the design of this observer is independent of that of the feedback controller when operating within the linear range of the optical trap. Dynamic force sensing, probe steering/clamping, and Brownian motion control can, therefore, be developed separately and activated simultaneously. The adaptive observer utilizes the measured motion of the trapped probe and input control effort to recursively estimate the probe–sample interaction force in real time, along with the estimation of the probing system’s trapping bandwidth. This capability is very important to achieving accurate dynamic force sensing in a time-varying process, wherein the trapping dynamics is nonstationary due to local variations of the surrounding medium. The adaptive estimator utilizes the Kalman filter algorithm to compute the time-varying gain in real time and minimize the estimation error for force probing. A series of experiments are conducted to validate the design of and assess the performance of the adaptive observer. PMID:24382944

  2. Air Force Officer Evaluation System Project

    DTIC Science & Technology

    1987-01-01

    supervisor-subordinate relationships, and most private sector organizations ti"-n supervisors to give such feedback. AIR FORCE CULTURE o There exists...Alternative OER designs should reflect and sustain the larger Air Force culture ; 0 Within the Air Force, the alternative OER designs should encourage change...given the Air Force history and culture favoring "firewalling*, there is substantial risk that this approach would meet considerable resistance to

  3. Lorentz force electrical impedance tomography using magnetic field measurements.

    PubMed

    Zengin, Reyhan; Gençer, Nevzat Güneri

    2016-08-21

    In this study, magnetic field measurement technique is investigated to image the electrical conductivity properties of biological tissues using Lorentz forces. This technique is based on electrical current induction using ultrasound together with an applied static magnetic field. The magnetic field intensity generated due to induced currents is measured using two coil configurations, namely, a rectangular loop coil and a novel xy coil pair. A time-varying voltage is picked-up and recorded while the acoustic wave propagates along its path. The forward problem of this imaging modality is defined as calculation of the pick-up voltages due to a given acoustic excitation and known body properties. Firstly, the feasibility of the proposed technique is investigated analytically. The basic field equations governing the behaviour of time-varying electromagnetic fields are presented. Secondly, the general formulation of the partial differential equations for the scalar and magnetic vector potentials are derived. To investigate the feasibility of this technique, numerical studies are conducted using a finite element method based software. To sense the pick-up voltages a novel coil configuration (xy coil pairs) is proposed. Two-dimensional numerical geometry with a 16-element linear phased array (LPA) ultrasonic transducer (1 MHz) and a conductive body (breast fat) with five tumorous tissues is modeled. The static magnetic field is assumed to be 4 Tesla. To understand the performance of the imaging system, the sensitivity matrix is analyzed. The sensitivity matrix is obtained for two different locations of LPA transducer with eleven steering angles from [Formula: see text] to [Formula: see text] at intervals of [Formula: see text]. The characteristics of the imaging system are shown with the singular value decomposition (SVD) of the sensitivity matrix. The images are reconstructed with the truncated SVD algorithm. The signal-to-noise ratio in measurements is assumed 80 d

  4. Lorentz force electrical impedance tomography using magnetic field measurements

    NASA Astrophysics Data System (ADS)

    Zengin, Reyhan; Güneri Gençer, Nevzat

    2016-08-01

    In this study, magnetic field measurement technique is investigated to image the electrical conductivity properties of biological tissues using Lorentz forces. This technique is based on electrical current induction using ultrasound together with an applied static magnetic field. The magnetic field intensity generated due to induced currents is measured using two coil configurations, namely, a rectangular loop coil and a novel xy coil pair. A time-varying voltage is picked-up and recorded while the acoustic wave propagates along its path. The forward problem of this imaging modality is defined as calculation of the pick-up voltages due to a given acoustic excitation and known body properties. Firstly, the feasibility of the proposed technique is investigated analytically. The basic field equations governing the behaviour of time-varying electromagnetic fields are presented. Secondly, the general formulation of the partial differential equations for the scalar and magnetic vector potentials are derived. To investigate the feasibility of this technique, numerical studies are conducted using a finite element method based software. To sense the pick-up voltages a novel coil configuration (xy coil pairs) is proposed. Two-dimensional numerical geometry with a 16-element linear phased array (LPA) ultrasonic transducer (1 MHz) and a conductive body (breast fat) with five tumorous tissues is modeled. The static magnetic field is assumed to be 4 Tesla. To understand the performance of the imaging system, the sensitivity matrix is analyzed. The sensitivity matrix is obtained for two different locations of LPA transducer with eleven steering angles from -{{25}\\circ} to {{25}\\circ} at intervals of {{5}\\circ} . The characteristics of the imaging system are shown with the singular value decomposition (SVD) of the sensitivity matrix. The images are reconstructed with the truncated SVD algorithm. The signal-to-noise ratio in measurements is assumed 80 dB. Simulation studies

  5. Evaluation of the sensing block method for dynamic force measurement

    NASA Astrophysics Data System (ADS)

    Zhang, Qinghui; Chen, Hao; Li, Wenzhao; Song, Li

    2017-01-01

    Sensing block method was proposed for the dynamic force measurement by Tanimura et al. in 1994. Comparing with the Split Hopkinson pressure bar (SHPB) technique, it can provide a much longer measuring time for the dynamic properties test of materials. However, the signals recorded by sensing block are always accompanied with additional oscillations. Tanimura et al. discussed the effect of force rising edge on the test results, whereas more research is still needed. In this paper, some more dominant factors have been extracted through dimensional analysis. The finite element simulation has been performed to assess these factors. Base on the analysis and simulation, some valuable results are obtained and some criterions proposed in this paper can be applied in design or selection of the sensing block.

  6. Measurement of Multiple Blade Rate Unsteady Propeller Forces

    DTIC Science & Technology

    1990-05-01

    Report I 0 Measurement of Multiple Blade Rate Unsteady Propeller Forces _ by Stuart D. Jessup DTIC SELECTE JUN07 1990 00 U,);i -,,I-ll lll ll mml~ CODE...blade rat and multiple axia wake inflow harmonics. The axial wake distributions weret meaured using a Piot tube. Unsteady propeller bearing thrust and...diameter EAR Propeller expanded area ratio f Maximum camber of section J Advance coefficient, Vvm/nD K Integer multiple of blade number KT Thrust

  7. Dynamic Forces in Spur Gears - Measurement, Prediction, and Code Validation

    NASA Technical Reports Server (NTRS)

    Oswald, Fred B.; Townsend, Dennis P.; Rebbechi, Brian; Lin, Hsiang Hsi

    1996-01-01

    Measured and computed values for dynamic loads in spur gears were compared to validate a new version of the NASA gear dynamics code DANST-PC. Strain gage data from six gear sets with different tooth profiles were processed to determine the dynamic forces acting between the gear teeth. Results demonstrate that the analysis code successfully simulates the dynamic behavior of the gears. Differences between analysis and experiment were less than 10 percent under most conditions.

  8. Coefficients of variation of ground reaction force measurement in cats

    PubMed Central

    Tichy, Alexander

    2017-01-01

    Gait analysis has been extensively performed in dogs and horses; however, very little is known about feline biomechanics. It was, therefore, the aim of this study to determine the coefficient of variation (CV) among three ground reaction force (GRF) measurements taken for 15 client-owned European shorthaired cats without a training period and a short acclimatisation time. Gait was measured as each cat walked across a pressure-sensitive walkway, and measurements were made three times over a multi-week period (range: 2 to 17 weeks). The parameters evaluated were peak vertical force (PFz), vertical impulse (IFz), stance phase duration (SPD), step length (SL), paw contact area (PCA) and symmetry index (SI%) of the front and hind limbs. After averaging each of the values from the three measurements, the CV and 95% confidence interval (CI) were calculated for all parameters. PFz showed the lowest CV (~ 3%), while IFz showed the highest CV (~11%) when normalised to body mass. When the GRFs were normalised to total force, the CV of PFz dropped to ~2% and that of IFz dropped to ~3%. The CV of SL and PCA were lower (~6% respectively ~5%) compared to the CV for SPD (~10%). The SI% for both PFz and IFz were comparable to the values reported in the gait analysis literature for dogs. Results of the current study indicate that gait analysis of cats using pressure-sensitive walkways produces reliable data and is a promising approach for evaluation of lameness. The results also suggest that PFz may be a more reliable parameter than IFz and that normalisation to percent of total force may aid in interpretation of the evaluated data. PMID:28355209

  9. Evaluation of intermolecular forces in a circulating system.

    PubMed

    Guo, Qiuquan; Liu, Mei; Yang, Jun

    2011-11-01

    Intercellular interactions, which are mediated by a variety of complex intercellular molecules through the processes of formation and dissociation of molecular bonds, play a critical role in regulating cellular functions in biological systems. Various approaches are applied to evaluate intercellular or molecular bonding forces. To quantify the intermolecular interaction forces, flow chamber has become a meaningful technique as it can ultimately mimic the cellular microenvironment in vivo under physiological flow conditions. Hydrodynamic forces are usually used to predict the intercellular forces down to the single molecular level. However, results show that only using hydrodynamic force will overestimate up to 30% of the receptor-ligand strength when the non-specific forces such as Derjaguin-Landau-Verway-Overbeek (DLVO) forces become un-neglected. Due to the nature of high ion concentration in the physiological condition, electrostatic force is largely screened which will cause DLVO force unbalanced. In this study, we propose to take account of the DLVO force, including van der Waals (VDW) force and electrostatic force, to predict the intermolecular forces of a cell doublet and cell-substrate model in a circulating system. Results also show that the DLVO force has a nonlinear effect as the cell-cell or cell-substrate distance changes. In addition, we used the framework of high accuracy hydrodynamic theories proved in colloidal systems. It is concluded that DLVO force could not be ignored in quantitative studies of molecular interaction forces in circulating system. More accurate prediction of intercellular forces needs to take account of both hydrodynamic force and DLVO force.

  10. Force protection demining system (FPDS) detection subsystem

    NASA Astrophysics Data System (ADS)

    Zachery, Karen N.; Schultz, Gregory M.; Collins, Leslie M.

    2005-06-01

    This study describes the U.S. Army Force Protection Demining System (FPDS); a remotely-operated, multisensor platform developed for reliable detection and neutralization of both anti-tank and anti-personnel landmines. The ongoing development of the prototype multisensor detection subsystem is presented, which integrates an advanced electromagnetic pulsed-induction array and ground penetrating synthetic aperture radar array on a single standoff platform. The FPDS detection subsystem is mounted on a robotic rubber-tracked vehicle and incorporates an accurate and precise navigation/positioning module making it well suited for operation in varied and irregular terrains. Detection sensors are optimally configured to minimize interference without loss in sensitivity or performance. Mine lane test data acquired from the prototype sensors are processed to extract signal- and image-based features for automatic target recognition. Preliminary results using optimal feature and classifier selection indicate the potential of the system to achieve high probabilities of detection while minimizing false alarms. The FPDS detection software system also exploits modern multi-sensor data fusion algorithms to provide real-time detection and discrimination information to the user.

  11. Arctic Climate Forcing Observations to Improve Earth System Models: Measurements at High Frequency, Fine Spatial Resolution, and Climatically Relevant Spatial Scales with the use of the Recently Deployed NGEE-Arctic Tram

    NASA Astrophysics Data System (ADS)

    Curtis, J. B.; Serbin, S.; Dafflon, B.; Raz Yaseef, N.; Torn, M. S.; Cook, P. J.; Lewin, K. F.; Wullschleger, S. D.

    2014-12-01

    In order to improve the representation of the land surface and subsurface properties and their associated feedbacks with climate forcings, climate change, and drivers in Earth System Models (ESMs), detailed observations need to be made at climatically relevant spatial and temporal scales. Pan-Arctic spatial heterogeneity and temporal variation present major challenges to the current generation of ESMs. To enable highly spatially resolved and high temporal frequency measurements for the independent validation of modeled energy and greenhouse gas surface fluxes at core to intermediate scales, we have developed, tested, and deployed an automated observational platform, the Next Generation Ecosystem Experiment (NGEE)-Arctic Tram. The NGEE-Arctic Tram, installed on the Barrow Environmental Observatory (BEO) near Barrow, AK in mid May 2014, consists of 65 meters of elevated track and a fully automated cart carrying a suite of radiation and remote sensing instrumentation. The tram transect is located within the NGEE eddy covariance tower footprint to help better understand the relative contribution of different landforms (e.g. low center vs high center polygonal tundra and associated vegetation) to the overall energy budget of the footprint. Electrical resistivity tomography (ERT), soil moisture, and soil temperature sensors are acquired autonomously and co-located with the tram to link subsurface properties with surface observations. To complement the high frequency and fine spatial resolution of the tram, during the summer field seasons of 2013 and 2014 a portable version of the NGEE-Arctic Tram (also know as the portable energy pole or PEP); was used to characterize surface albedo, NDVI, surface temperature, and photosynthetically active radiation (PAR) across two ~500 m BEO transects co-located with subsurface ERT and ground penetrating radar (GPR) measurements. In addition, a ~ 3 Km transect across three drained thaw-lake basins (DTLB) of different climate

  12. Use of piezoelectric multicomponent force measuring devices in fluid mechanics

    NASA Technical Reports Server (NTRS)

    Richter, A.; Stefan, K.

    1979-01-01

    The characterisitics of piezoelectric multicomponent transducers are discussed, giving attention to the advantages of quartz over other materials. The main advantage of piezoelectric devices in aerodynamic studies is their ability to indicate rapid changes in the values of physical parameters. Problems in the accuracy of measurments by piezoelectric devices can be overcome by suitable design approaches. A practical example is given of how such can be utilized to measure rapid fluctuations of fluid forces exerted on a circular cylinder mounted in a water channel.

  13. Instrumented Bolts Would Measure Shear Forces In Joints

    NASA Technical Reports Server (NTRS)

    Sawyer, James Wayne; Mcwithey, Robert R.

    1994-01-01

    Bolts instrumented with strain gauges used to measure shear forces. Bolts installed in multiple-bolt lap joints to obtain data on distribution of stresses and deformations in and around joints. Strain gauges indicate share of applied load borne by each individual bolt. In original application, bolted panels made of advanced refractory composite materials designed to withstand use at temperatures up to 4,000 degrees F. Also applicable to other joint materials and measurement of shear loads in other connections such as, shear loads on shafts in pulleys or gears.

  14. Video integrated measurement system.

    PubMed

    Spector, B; Eilbert, L; Finando, S; Fukuda, F

    1982-06-01

    A Video Integrated Measurement (VIM) System is described which incorporates the use of various noninvasive diagnostic procedures (moire contourography, electromyography, posturometry, infrared thermography, etc.), used individually or in combination, for the evaluation of neuromusculoskeletal and other disorders and their management with biofeedback and other therapeutic procedures. The system provides for measuring individual diagnostic and therapeutic modes, or multiple modes by split screen superimposition, of real time (actual) images of the patient and idealized (ideal-normal) models on a video monitor, along with analog and digital data, graphics, color, and other transduced symbolic information. It is concluded that this system provides an innovative and efficient method by which the therapist and patient can interact in biofeedback training/learning processes and holds considerable promise for more effective measurement and treatment of a wide variety of physical and behavioral disorders.

  15. Development of walking analysis system consisting of mobile force plate and motion sensor.

    PubMed

    Adachi, Wataru; Tsujiuchi, Nobutaka; Koizumi, Takayuki; Aikawa, Masataka; Shiojima, Kouzou; Tsuchiya, Youtaro; Inoue, Yoshio

    2011-01-01

    In walking analysis, which is one useful method for efficient physical rehabilitation, the ground reaction force, the center of pressure, and the body orientation data are measured during walking. In the past, these data were measured by a 3D motion analysis system consisting of high-speed cameras and force plates, which must be installed in the floor. However, a conventional 3D motion analysis system can measure the ground reaction force and the center of pressure just on force plates during a few steps. In addition, the subjects' stride lengths are limited because they have to walk on the center of the force plate. These problems can be resolved by converting conventional devices into wearable devices. We used a measuring device consisting of portable force plates and motion sensors. We developed a walking analysis system that calculates the ground reaction force, the center of pressure, and the body orientations and measured a walking subject to estimate this system. We simultaneously used a conventional 3D motion analysis system to compare with our development system and showed its validity for measurements of ground reaction force and the center of pressure.

  16. Oceanic wave measurement system

    NASA Technical Reports Server (NTRS)

    Holmes, J. F.; Miles, R. T. (Inventor)

    1980-01-01

    An oceanic wave measured system is disclosed wherein wave height is sensed by a barometer mounted on a buoy. The distance between the trough and crest of a wave is monitored by sequentially detecting positive and negative peaks of the output of the barometer and by combining (adding) each set of two successive half cycle peaks. The timing of this measurement is achieved by detecting the period of a half cycle of wave motion.

  17. Robust high-resolution imaging and quantitative force measurement with tuned-oscillator atomic force microscopy.

    PubMed

    Dagdeviren, Omur E; Götzen, Jan; Hölscher, Hendrik; Altman, Eric I; Schwarz, Udo D

    2016-02-12

    Atomic force microscopy (AFM) and spectroscopy are based on locally detecting the interactions between a surface and a sharp probe tip. For highest resolution imaging, noncontact modes that avoid tip-sample contact are used; control of the tip's vertical position is accomplished by oscillating the tip and detecting perturbations induced by its interaction with the surface potential. Due to this potential's nonlinear nature, however, achieving reliable control of the tip-sample distance is challenging, so much so that despite its power vacuum-based noncontact AFM has remained a niche technique. Here we introduce a new pathway to distance control that prevents instabilities by externally tuning the oscillator's response characteristics. A major advantage of this operational scheme is that it delivers robust position control in both the attractive and repulsive regimes with only one feedback loop, thereby providing an easy-to-implement route to atomic resolution imaging and quantitative tip-sample interaction force measurement.

  18. Sensorimotor System Measurement Techniques

    PubMed Central

    Riemann, Bryan L.; Myers, Joseph B.; Lephart, Scott M.

    2002-01-01

    Objective: To provide an overview of currently available sensorimotor assessment techniques. Data Sources: We drew information from an extensive review of the scientific literature conducted in the areas of proprioception, neuromuscular control, and motor control measurement. Literature searches were conducted using MEDLINE for the years 1965 to 1999 with the key words proprioception, somatosensory evoked potentials, nerve conduction testing, electromyography, muscle dynamometry, isometric, isokinetic, kinetic, kinematic, posture, equilibrium, balance, stiffness, neuromuscular, sensorimotor, and measurement. Additional sources were collected using the reference lists of identified articles. Data Synthesis: Sensorimotor measurement techniques are discussed with reference to the underlying physiologic mechanisms, influential factors and locations of the variable within the system, clinical research questions, limitations of the measurement technique, and directions for future research. Conclusions/Recommendations: The complex interactions and relationships among the individual components of the sensorimotor system make measuring and analyzing specific characteristics and functions difficult. Additionally, the specific assessment techniques used to measure a variable can influence attained results. Optimizing the application of sensorimotor research to clinical settings can, therefore, be best accomplished through the use of common nomenclature to describe underlying physiologic mechanisms and specific measurement techniques. PMID:16558672

  19. Possibility of measuring thermal effects in the Casimir force

    SciTech Connect

    Geyer, B.; Klimchitskaya, G. L.; Mostepanenko, V. M.

    2010-09-15

    We analyze the possibility of measuring small thermal effects in the Casimir force between metal test bodies in configurations of a sphere above a plate and two parallel plates. For the sphere-plate geometry used in many experiments, we investigate the applicability of the proximity force approximation (PFA) to calculation of thermal effects in the Casimir force and its gradient. It is shown that for real metals the two formulations of the PFA used in the literature lead to relative differences in the results obtained being less than a small parameter equal to the ratio of separation distance to sphere radius. For ideal metals, PFA results for the thermal correction are obtained and compared with available exact results. It is emphasized that in the experimental region in the zeroth order of the small parameter already mentioned, the thermal Casimir force and its gradient calculated using the PFA (and thermal corrections in their own right) coincide with the respective exact results. For real metals, available exact results are outside the application region of the PFA. However, the exact results are shown to converge with the PFA results when the small parameter goes down to experimental values. We arrive at the conclusion that the large thermal effects predicted by the Drude-model approach, if they exist, could be measured in both static and dynamic experiments in sphere-plate and plate-plate configurations. As for the small thermal effects predicted by the plasma-model approach, the static experiment in the configuration of two parallel plates is found to be the best for their observation.

  20. Uncertainty quantification in nanomechanical measurements using the atomic force microscope

    NASA Astrophysics Data System (ADS)

    Wagner, Ryan; Moon, Robert; Pratt, Jon; Shaw, Gordon; Raman, Arvind

    2011-11-01

    Quantifying uncertainty in measured properties of nanomaterials is a prerequisite for the manufacture of reliable nanoengineered materials and products. Yet, rigorous uncertainty quantification (UQ) is rarely applied for material property measurements with the atomic force microscope (AFM), a widely used instrument that can measure properties at nanometer scale resolution of both inorganic and biological surfaces and nanomaterials. We present a framework to ascribe uncertainty to local nanomechanical properties of any nanoparticle or surface measured with the AFM by taking into account the main uncertainty sources inherent in such measurements. We demonstrate the framework by quantifying uncertainty in AFM-based measurements of the transverse elastic modulus of cellulose nanocrystals (CNCs), an abundant, plant-derived nanomaterial whose mechanical properties are comparable to Kevlar fibers. For a single, isolated CNC the transverse elastic modulus was found to have a mean of 8.1 GPa and a 95% confidence interval of 2.7-20 GPa. A key result is that multiple replicates of force-distance curves do not sample the important sources of uncertainty, which are systematic in nature. The dominant source of uncertainty is the nondimensional photodiode sensitivity calibration rather than the cantilever stiffness or Z-piezo calibrations. The results underscore the great need for, and open a path towards, quantifying and minimizing uncertainty in AFM-based material property measurements of nanoparticles, nanostructured surfaces, thin films, polymers and biomaterials. This work is a partial contribution of the USDA Forest Service and NIST, agencies of the US government, and is not subject to copyright.

  1. Harmonic force microscope: A new tool for biomolecular identification and material characterization based on nanomechanical measurements

    NASA Astrophysics Data System (ADS)

    Sahin, Ozgur

    At the molecular level, physical and chemical properties of materials are tightly coupled to the mechanical properties. The potential of mechanics for interacting with matter at the nanoscale has been largely unexplored due to lack of instruments capable of performing mechanical measurements at nanometer length scales. This thesis describes nanomechanical sensing techniques and applications based on time-resolved tip-sample force measurements in tapping-mode atomic force microscopy. Tapping mode is the most successful operation mode of atomic force microscopes. Theoretical calculations presented in the first part of this thesis show that time variations of the tip-sample forces in the tapping-mode depend on the physical and chemical properties of the sample and therefore, have the potential to be used for nanomechanical measurements. Unfortunately, the force-sensing probe of the tapping-mode atomic force microscope, the vibrating cantilever, is limited in its response to the variations of forces in time within a period of oscillations. We are describing two types of special micromachined cantilevers that enable measurements of time variations of tip-sample forces: the harmonic cantilever and the coupled torsional cantilever. These special cantilevers allow sensitive mechanical measurements at the nanoscale and single molecular level. The operation of these cantilevers does not require any modifications to the existing atomic force microscopy systems. With the nanomechanical sensing techniques we have developed, we investigated phase transformations of sub-micron domains of composite polymers and observed their glass transitions for the first time. Conventional measurements on bulk properties of these samples do not provide information on the physical changes at the nanoscale. Studies on nucleic acids attached to a surface, a configuration commonly used in DNA microarray technology, showed that the hybridized DNA molecules can be detected at the single molecule

  2. Dynamic stability of repulsive-force maglev suspension systems

    SciTech Connect

    Cai, Y.; Rote, D.M.; Mulcahy, T.M.; Wang, Z.

    1996-11-01

    This report summarizes the research performed on maglev vehicle dynamic stability at Argonne National Laboratory during the past few years. It also documents both measured and calculated magnetic-force data. Because dynamic instability is not acceptable for any commercial maglev system, it is important to consider this phenomenon in the development of all maglev systems. This report presents dynamic stability experiments on maglev systems and compares the results with predictions calculated by a nonlinear-dynamics computer code. Instabilities of an electrodynamic-suspension system type vehicle model were obtained by experimental observation and computer simulation of a five-degree-of-freedom maglev vehicle moving on a guideway that consists of a pair of L-shaped aluminum conductors attached to a rotating wheel. The experimental and theoretical analyses developed in this study identify basic stability characteristics and future research needs of maglev systems.

  3. In situ measurement system

    DOEpatents

    Lord, D.E.

    1980-11-24

    A multipurpose in situ underground measurement system comprising a plurality of long electrical resistance elements in the form of rigid reinforcing bars, each having an open loop hairpin configuration of shorter length than the other resistance elements. The resistance elements are arranged in pairs in a unitized structure, and grouted in place in the underground volume. Measurement means are provided for obtaining for each pair the electrical resistance of each element and the difference in electrical resistance of the paired elements, which difference values may be used in analytical methods involving resistance as a function of temperature. A scanner means sequentially connects the resistance-measuring apparatus to each individual pair of elements. A source of heating current is also selectively connectable for heating the elements to an initial predetermined temperature prior to electrical resistance measurements when used as an anemometer.

  4. Unaccounted-for gas project. Measurement Task Force (orifice meter studies). Volume 2B. Final report

    SciTech Connect

    Godkin, B.J.; Robertson, J.D.; Wlasenko, R.G.; Cowgill, R.M.; Grinstead, J.R.

    1990-06-01

    The study was aimed at determining unaccounted-for (UAF) gas volumes resulting from operating Pacific Gas and Electric Co.'s transmission and distribution systems during 1987. Activities and methods are described and results are presented for research conducted on orifice meter accuracy. The Measurement Task Force determined that orifice metering inaccuracies were the largest single contributor to 1987 UAF.

  5. Measurement of solution viscosity by atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Ahmed, Nabil; Nino, Diego F.; Moy, Vincent T.

    2001-06-01

    We report on studies aimed at employing the atomic force microscope (AFM) to measure the viscosity of aqueous solutions. At ambient temperature, the AFM cantilever undergoes thermal fluctuations that are highly sensitive to the local environment. Here, we present measurements of the cantilever's resonant frequency in aqueous solutions of glycerol, sucrose, ethanol, sodium chloride, polyethylene glycol, and bovine plasma albumin. The measurements revealed that variations in the resonant frequency of the cantilever in the different solutions are largely dependent on the viscosity of the medium. An application of this technique is to monitor the progression of a chemical reaction where a change in viscosity is expected to occur. An example is demonstrated through monitoring of the hydrolysis of double stranded deoxyribonucleic acid by DNase I.

  6. A force measuring treadmill in clinical gait analysis.

    PubMed

    Dierick, Frédéric; Penta, Massimo; Renaut, David; Detrembleur, Christine

    2004-12-01

    This preliminary study presents the development and testing of an instrumented treadmill device measuring the ground reaction forces (GRFs) and the feasibility of using this force measuring treadmill (FMT) in clinical gait analysis. A commercially available treadmill was modified and fitted out with three-dimensional strain-gauge force transducers. Tests of linearity, centre of pressure position (CoP), cross talk, natural frequency, background noises, and belt speed were undertaken in order to assess the performance of the FMT. In addition, the GRFs and segmental kinematics were recorded while healthy subjects and patients walked on the FMT, in order to compute the net ankle joint moments and the body centre of mass (CMb) kinematics and mechanics. The preliminary results of technical tests were satisfactory with an error less than 10% and dynamic tests in healthy subjects corresponded to the literature. The results of patients were clearly disturbed, demonstrating the ability of the FMT to discriminate pathological gaits from normal ones. We concluded that the GRFs measurements obtained from the FMT seem valid and the clinical assessment of net joint moments and CMb kinematics and mechanics seem feasible. The FMT could be useful device for clinical research and routine gait analysis since it allows gaining some extra room and quickly collecting the GRFs during a large number of successive gait cycles and over a wide range of steady-state gait speeds. However, more work is needed in this area in order to confirm the present results, collect reference data and validate the methodology across pathologies.

  7. Contractile force measured in unskinned isolated adult rat heart fibres.

    PubMed

    Brady, A J; Tan, S T; Ricchiuti, N V

    1979-12-13

    A number of investigators have succeeded in preparing isolated cardiac cells by enzymatic digestion which tolerate external [Ca2+] in the millimolar range. However, a persistent problem with these preparations is that, unlike in situ adult ventricular fibres, the isolated fibres usually beat spontaneously. This spontaneity suggests persistent ionic leakage not present in situ. A preferable preparation for mechanical and electrical studies would be one which is quiescent but excitable in response to electrical stimulation and which does not undergo contracture with repeated stimulation. We report here a modified method of cardiac fibre isolation and perfusion which leaves the fibre membrane electrically excitable and moderately resistant to mechanical stress so that the attachment of suction micropipettes to the fibre is possible for force measurement and length control. Force generation in single isolated adult rat heart fibres is consistent with in situ contractile force. The negative staircase effect (treppe) characteristic of adult not heart tissue is present with increased frequency of stimulation. Isometric developed tension increases with fibre length as in in situ ventricular tissue.

  8. Dynamics and stability of mechanical systems with follower forces

    NASA Technical Reports Server (NTRS)

    Herrmann, G.

    1971-01-01

    A monograph on problems of stability of equilibrium of mechanical systems with follower forces is presented. Concepts of stability and criteria of stability are reviewed briefly, together with means of analytical specification of follower forces. Nondissipative systems with two degrees of freedom are discussed, and destabilizing effects due to various types of dissipative forces both in discrete and continuous systems, are treated. The analyses are accompanied by some quantative experiments and observations on demonstrational laboratory models.

  9. Systems and methods of detecting force and stress using tetrapod nanocrystal

    DOEpatents

    Choi, Charina L.; Koski, Kristie J.; Sivasankar, Sanjeevi; Alivisatos, A. Paul

    2013-08-20

    Systems and methods of detecting force on the nanoscale including methods for detecting force using a tetrapod nanocrystal by exposing the tetrapod nanocrystal to light, which produces a luminescent response by the tetrapod nanocrystal. The method continues with detecting a difference in the luminescent response by the tetrapod nanocrystal relative to a base luminescent response that indicates a force between a first and second medium or stresses or strains experienced within a material. Such systems and methods find use with biological systems to measure forces in biological events or interactions.

  10. Probing Gravitational Sensitivity in Biological Systems Using Magnetic Body Forces

    NASA Technical Reports Server (NTRS)

    Guevorkian, Karine; Wurzel, Sam; Mihalusova, Mariana; Valles, Jim

    2003-01-01

    At Brown University, we are developing the use of magnetic body forces as a means to simulate variable gravity body forces on biological systems. This tool promises new means to probe gravi-sensing and the gravi-response of biological systems. It also has the potential as a technique for screening future systems for space flight experiments.

  11. Laser angle measurement system

    NASA Technical Reports Server (NTRS)

    Pond, C. R.; Texeira, P. D.; Wilbert, R. E.

    1980-01-01

    The design and fabrication of a laser angle measurement system is described. The instrument is a fringe counting interferometer that monitors the pitch attitude of a model in a wind tunnel. A laser source and detector are mounted above the mode. Interference fringes are generated by a small passive element on the model. The fringe count is accumulated and displayed by a processor in the wind tunnel control room. Optical and electrical schematics, system maintenance and operation procedures are included, and the results of a demonstration test are given.

  12. Wear Measurement System

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Lewis Research Center developed a tribometer for in-house wear tests. Implant Sciences Corporation (ISC), working on a NASA contract to develop coatings to enhance the wear capabilities of materials, adapted the tribometer for its own use and developed a commercial line of user-friendly systems. The ISC-200 is a pin-on-disk type of tribometer, functioning like a record player and creating a wear groove on the disk, with variables of speed and load. The system can measure the coefficient of friction, the wear behavior between materials, and the integrity of thin films or coatings. Applications include measuring wear on contact lenses and engine parts and testing disk drives.

  13. Wireless Acoustic Measurement System

    NASA Technical Reports Server (NTRS)

    Anderson, Paul D.; Dorland, Wade D.

    2005-01-01

    A prototype wireless acoustic measurement system (WAMS) is one of two main subsystems of the Acoustic Prediction/Measurement Tool, which comprises software, acoustic instrumentation, and electronic hardware combined to afford integrated capabilities for predicting and measuring noise emitted by rocket and jet engines. The other main subsystem is described in "Predicting Rocket or Jet Noise in Real Time" (SSC-00215-1), which appears elsewhere in this issue of NASA Tech Briefs. The WAMS includes analog acoustic measurement instrumentation and analog and digital electronic circuitry combined with computer wireless local-area networking to enable (1) measurement of sound-pressure levels at multiple locations in the sound field of an engine under test and (2) recording and processing of the measurement data. At each field location, the measurements are taken by a portable unit, denoted a field station. There are ten field stations, each of which can take two channels of measurements. Each field station is equipped with two instrumentation microphones, a micro-ATX computer, a wireless network adapter, an environmental enclosure, a directional radio antenna, and a battery power supply. The environmental enclosure shields the computer from weather and from extreme acoustically induced vibrations. The power supply is based on a marine-service lead-acid storage battery that has enough capacity to support operation for as long as 10 hours. A desktop computer serves as a control server for the WAMS. The server is connected to a wireless router for communication with the field stations via a wireless local-area network that complies with wireless-network standard 802.11b of the Institute of Electrical and Electronics Engineers. The router and the wireless network adapters are controlled by use of Linux-compatible driver software. The server runs custom Linux software for synchronizing the recording of measurement data in the field stations. The software includes a module that

  14. Wireless Acoustic Measurement System

    NASA Technical Reports Server (NTRS)

    Anderson, Paul D.; Dorland, Wade D.; Jolly, Ronald L.

    2007-01-01

    A prototype wireless acoustic measurement system (WAMS) is one of two main subsystems of the Acoustic Prediction/ Measurement Tool, which comprises software, acoustic instrumentation, and electronic hardware combined to afford integrated capabilities for predicting and measuring noise emitted by rocket and jet engines. The other main subsystem is described in the article on page 8. The WAMS includes analog acoustic measurement instrumentation and analog and digital electronic circuitry combined with computer wireless local-area networking to enable (1) measurement of sound-pressure levels at multiple locations in the sound field of an engine under test and (2) recording and processing of the measurement data. At each field location, the measurements are taken by a portable unit, denoted a field station. There are ten field stations, each of which can take two channels of measurements. Each field station is equipped with two instrumentation microphones, a micro- ATX computer, a wireless network adapter, an environmental enclosure, a directional radio antenna, and a battery power supply. The environmental enclosure shields the computer from weather and from extreme acoustically induced vibrations. The power supply is based on a marine-service lead-acid storage battery that has enough capacity to support operation for as long as 10 hours. A desktop computer serves as a control server for the WAMS. The server is connected to a wireless router for communication with the field stations via a wireless local-area network that complies with wireless-network standard 802.11b of the Institute of Electrical and Electronics Engineers. The router and the wireless network adapters are controlled by use of Linux-compatible driver software. The server runs custom Linux software for synchronizing the recording of measurement data in the field stations. The software includes a module that provides an intuitive graphical user interface through which an operator at the control server

  15. Optical absorption measurement system

    DOEpatents

    Draggoo, Vaughn G.; Morton, Richard G.; Sawicki, Richard H.; Bissinger, Horst D.

    1989-01-01

    The system of the present invention contemplates a non-intrusive method for measuring the temperature rise of optical elements under high laser power optical loading to determine the absorption coefficient. The method comprises irradiating the optical element with a high average power laser beam, viewing the optical element with an infrared camera to determine the temperature across the optical element and calculating the absorption of the optical element from the temperature.

  16. Contour measurement system

    NASA Technical Reports Server (NTRS)

    Currie, J. R.; Kissel, R. R.; Deaton, E. T., Jr.; Campbell, R. A. (Inventor)

    1979-01-01

    A measurement system for measuring the departures from a straight line of discrete track sections of a track along a coal face in a mine employing a vehicle having a pair of spaced wheel assemblies which align with the track is presented. A reference arm pivotally connects between the wheel assemblies, and there is indicating means for measuring the angle of pivot between the arm and each of the wheel assemblies. The length of the device is less than the length of a track section, and thus when one of the wheel assemblies is on one track section and one is on an adjoining track section, the sum of the indicated angles will be indicative of the angle between track sections. Thus, from the length of a track section and angle, the departure of each track section from the line may be calculated.

  17. Measurement of interactions between protein layers adsorbed on silica by atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Valle-Delgado, J. J.; Molina-Bolívar, J. A.; Galisteo-González, F.; Gálvez-Ruiz, M. J.; Feiler, A.; Rutland, M. W.

    2004-07-01

    The present work, using an atomic force microscope and the colloid probe technique, investigates the interaction forces between bovine serum albumin (BSA) layers and between apoferritin layers adsorbed on silica surfaces. The measurements have been carried out in an aqueous medium at different pH values and NaCl concentrations. Similar behaviours have been found with both proteins. Electrostatic and steric forces dominate the interactions between the protein layers at low NaCl concentrations. However, a very strange behaviour is found as a function of pH at high NaCl concentrations. The results obtained under these conditions could be explained if the presence of hydration forces in these systems is assumed.

  18. Gravitational Force and the Cardiovascular System

    NASA Technical Reports Server (NTRS)

    Pendergast, D. R.; Olszowka, A. J.; Rokitka, M. A.; Farhi, L. E.

    1991-01-01

    Cardiovascular responses to changes in gravitational force are considered. Man is ideally suited to his 1-g environment. Although cardiovascular adjustments are required to accommodate to postural changes and exercise, these are fully accomplished for short periods (min). More challenging stresses are those of short-term microgravity (h) and long-term microgravity (days) and of gravitational forces greater than that of Earth. The latter can be simulated in the laboratory and quantitative studies can be conducted.

  19. Measuring shear force transmission across a biomimetic glycocalyx

    NASA Astrophysics Data System (ADS)

    Bray, Isabel; Young, Dylan; Scrimgeour, Jan

    Human blood vessels are lined with a low-density polymer brush known as the glycocalyx. This brush plays an active role in defining the mechanical and biochemical environment of the endothelial cell in the blood vessel wall. In addition, it is involved in the detection of mechanical stimuli, such as the shear stress from blood flowing in the vessel. In this work, we construct a biomimetic version of the glycocalyx on top of a soft deformable substrate in order to measure its ability to modulate the effects of shear stress at the endothelial cell surface. The soft substrate is stamped on to a glass substrate and then enclosed inside a microfluidic device that generates a controlled flow over the substrate. The hydrogel chemistry has been optimized so that it reliably stamps into a defined shape and has consistent mechanical properties. Fluorescent microbeads embedded in the gel allow measurement of the surface deformation, and subsequently, calculation of the shear force at the surface of the soft substrate. We investigate the effect of the major structural elements of the glycocalyx, hyaluronic acid and charged proteoglycans, on the magnitude of the shear force transmitted to the surface of the hydrogel.

  20. Absolute rotation detection by Coriolis force measurement using optomechanics

    NASA Astrophysics Data System (ADS)

    Davuluri, Sankar; Li, Yong

    2016-10-01

    In this article, we present an application of the optomechanical cavities for absolute rotation detection. Two optomechanical cavities, one in each arm, are placed in a Michelson interferometer. The interferometer is placed on a rotating table and is moved with a uniform velocity of \\dot{\\bar{y}} with respect to the rotating table. The Coriolis force acting on the interferometer changes the length of the optomechanical cavity in one arm, while the length of the optomechanical cavity in the other arm is not changed. The phase shift corresponding to the change in the optomechanical cavity length is measured at the interferometer output to estimate the angular velocity of the absolute rotation. An analytic expression for the minimum detectable rotation rate corresponding to the standard quantum limit of measurable Coriolis force in the interferometer is derived. Squeezing technique is discussed to improve the rotation detection sensitivity by a factor of \\sqrt{{γ }m/{ω }m} at 0 K temperature, where {γ }m and {ω }m are the damping rate and angular frequency of the mechanical oscillator. The temperature dependence of the rotation detection sensitivity is studied.

  1. High performance target measurement flights from Vandenberg Air Force Base

    NASA Astrophysics Data System (ADS)

    Chalfant, C. P.; Rosen, H.; Jerger, J. H.

    A description is presented of a new launch facility which is being prepared for the High Performance Target Measurement (HPTEM) booster at Vandenberg Air Force Base (VAFB). A deactivated Atlas launch complex is currently being modified to allow the rocket to be launched from a semisilo. The underground launch operations building will contain a new control center and instrumentation room. Attention is given to the Multi-Spectral Measurement Program (MSMP), details concerning the launch facility, and a target and flight safety trajectory analysis. Construction and modification of the facility is scheduled to be completed in mid-1983. The first HPTEM launch is planned to occur in April 1984. The HPTEM launch facility can also be utilized to launch Aries I (single stage) and Aries II (two-stage) probes with minor modification.

  2. Blade Vibration Measurement System

    NASA Technical Reports Server (NTRS)

    Platt, Michael J.

    2014-01-01

    The Phase I project successfully demonstrated that an advanced noncontacting stress measurement system (NSMS) could improve classification of blade vibration response in terms of mistuning and closely spaced modes. The Phase II work confirmed the microwave sensor design process, modified the sensor so it is compatible as an upgrade to existing NSMS, and improved and finalized the NSMS software. The result will be stand-alone radar/tip timing radar signal conditioning for current conventional NSMS users (as an upgrade) and new users. The hybrid system will use frequency data and relative mode vibration levels from the radar sensor to provide substantially superior capabilities over current blade-vibration measurement technology. This frequency data, coupled with a reduced number of tip timing probes, will result in a system capable of detecting complex blade vibrations that would confound traditional NSMS systems. The hardware and software package was validated on a compressor rig at Mechanical Solutions, Inc. (MSI). Finally, the hybrid radar/tip timing NSMS software package and associated sensor hardware will be installed for use in the NASA Glenn spin pit test facility.

  3. A novel collagen gel-based measurement technique for quantitation of cell contraction force.

    PubMed

    Jin, Tianrong; Li, Li; Siow, Richard C M; Liu, Kuo-Kang

    2015-05-06

    Cell contraction force plays an important role in wound healing, inflammation,angiogenesis and metastasis. This study describes a novel method to quantify single cell contraction force in vitro using human aortic adventitial fibroblasts embedded in a collagen gel. The technique is based on a depth sensing nano-indentation tester to measure the thickness and elasticity of collagen gels containing stimulated fibroblasts and a microscopy imaging system to estimate the gel area. In parallel, a simple theoretical model has been developed to calculate cell contraction force based on the measured parameters. Histamine (100 mM) was used to stimulate fibroblast contraction while the myosin light chain kinase inhibitor ML-7 (25 mM) was used to inhibit cell contraction. The collagen matrix used in the model provides a physiological environment for fibroblast contraction studies. Measurement of changes in collagen gel elasticity and thickness arising from histamine treatments provides a novel convenient technique to measure cell contraction force within a collagen matrix. This study demonstrates that histamine can elicit a significant increase in contraction force of fibroblasts embedded in collagen,while the Young's modulus of the gel decreases due to the gel degradation.

  4. A novel collagen gel-based measurement technique for quantitation of cell contraction force

    PubMed Central

    Jin, Tianrong; Li, Li; Siow, Richard C. M.; Liu, Kuo-Kang

    2015-01-01

    Cell contraction force plays an important role in wound healing, inflammation, angiogenesis and metastasis. This study describes a novel method to quantify single cell contraction force in vitro using human aortic adventitial fibroblasts embedded in a collagen gel. The technique is based on a depth sensing nano-indentation tester to measure the thickness and elasticity of collagen gels containing stimulated fibroblasts and a microscopy imaging system to estimate the gel area. In parallel, a simple theoretical model has been developed to calculate cell contraction force based on the measured parameters. Histamine (100 µM) was used to stimulate fibroblast contraction while the myosin light chain kinase inhibitor ML-7 (25 µM) was used to inhibit cell contraction. The collagen matrix used in the model provides a physiological environment for fibroblast contraction studies. Measurement of changes in collagen gel elasticity and thickness arising from histamine treatments provides a novel convenient technique to measure cell contraction force within a collagen matrix. This study demonstrates that histamine can elicit a significant increase in contraction force of fibroblasts embedded in collagen, while the Young's modulus of the gel decreases due to the gel degradation. PMID:25977960

  5. Development of a quartz tuning-fork-based force sensor for measurements in the tens of nanoNewton force range during nanomanipulation experiments

    SciTech Connect

    Oiko, V. T. A. Rodrigues, V.; Ugarte, D.; Martins, B. V. C.; Silva, P. C.

    2014-03-15

    Understanding the mechanical properties of nanoscale systems requires new experimental and theoretical tools. In particular, force sensors compatible with nanomechanical testing experiments and with sensitivity in the nN range are required. Here, we report the development and testing of a tuning-fork-based force sensor for in situ nanomanipulation experiments inside a scanning electron microscope. The sensor uses a very simple design for the electronics and it allows the direct and quantitative force measurement in the 1–100 nN force range. The sensor response is initially calibrated against a nN range force standard, as, for example, a calibrated Atomic Force Microscopy cantilever; subsequently, applied force values can be directly derived using only the electric signals generated by the tuning fork. Using a homemade nanomanipulator, the quantitative force sensor has been used to analyze the mechanical deformation of multi-walled carbon nanotube bundles, where we analyzed forces in the 5–40 nN range, measured with an error bar of a few nN.

  6. Measurement of Hand/Handrim Grip Forces in Two Different One Arm Drive Wheelchairs

    PubMed Central

    2014-01-01

    Purpose. The aim of this study was to explore the total and regional grip forces in the hand when propelling two different manual one arm drive wheelchairs: the Neater Uni-wheelchair (NUW) and a foot steered Action3 wheelchair. Methods. 17 nondisabled users were randomly assigned to each wheelchair to drive around an indoor obstacle course. The Grip, a multiple sensor system taking continuous measurement of handgrip force, was attached to the propelling hand. Total grip force in each region of the hand and total grip force across the whole hand were calculated per user per wheelchair. Results. The Action3 with foot steering only generated significantly greater total grip force in straight running compared to the NUW and also in the fingers and thumb in straight running. Conclusions. The results suggest that the Action3 with foot steering generated greater grip forces which may infer a greater potential for repetitive strain injury in the upper limb. Further work is required to explore whether the difference in grip force is of clinical significance in a disabled population. PMID:25045684

  7. Stable dynamics in forced systems with sufficiently high/low forcing frequency.

    PubMed

    Bartuccelli, M; Gentile, G; Wright, J A

    2016-08-01

    We consider parametrically forced Hamiltonian systems with one-and-a-half degrees of freedom and study the stability of the dynamics when the frequency of the forcing is relatively high or low. We show that, provided the frequency is sufficiently high, Kolmogorov-Arnold-Moser (KAM) theorem may be applied even when the forcing amplitude is far away from the perturbation regime. A similar result is obtained for sufficiently low frequency, but in that case we need the amplitude of the forcing to be not too large; however, we are still able to consider amplitudes which are outside of the perturbation regime. In addition, we find numerically that the dynamics may be stable even when the forcing amplitude is very large, well beyond the range of validity of the analytical results, provided the frequency of the forcing is taken correspondingly low.

  8. Verification of joint input-state estimation for force identification by means of in situ measurements on a footbridge

    NASA Astrophysics Data System (ADS)

    Maes, K.; Nimmen, K. Van; Lourens, E.; Rezayat, A.; Guillaume, P.; Roeck, G. De; Lombaert, G.

    2016-06-01

    This paper presents a verification of a joint input-state estimation algorithm using data obtained from in situ experiments on a footbridge. The estimation of the input and the system states is performed in a minimum-variance unbiased way, based on a limited number of response measurements and a system model. A dynamic model of the footbridge is obtained using a detailed finite element model that is updated using a set of experimental modal characteristics. The joint input-state estimation algorithm is used for the identification of two impact, harmonic, and swept sine forces applied to the bridge deck. In addition to these forces, unknown stochastic forces, such as wind loads, are acting on the structure. These forces, as well as measurement errors, give rise to uncertainty in the estimated forces and system states. Quantification of the uncertainty requires determination of the power spectral density of the unknown stochastic excitation, which is identified from the structural response under ambient loading. The verification involves comparing the estimated forces with the actual, measured forces. Although a good overall agreement is obtained between the estimated and measured forces, modeling errors prohibit a proper distinction between multiple forces applied to the structure for the case of harmonic and swept sine excitation.

  9. Acoustic power measurement of high intensity focused ultrasound in medicine based on radiation force.

    PubMed

    Shou, Wende; Huang, Xiaowei; Duan, Shimei; Xia, Rongmin; Shi, Zhonglong; Geng, Xiaoming; Li, Faqi

    2006-12-22

    How to measure the acoustic power of HIFU is one of the most important tasks in its medical application. In the paper a whole series of formula for calculating the radiation force related to the acoustic power radiated by a single element focusing transducer and by the focusing transducer array were given. Various system of radiation force balance (RFB) to measure the acoustic power of HIFU in medicine were designed and applied in China. In high power experiments, the dependence of radiation force acting the absorbing target on the target position at the beam axis of focusing transducer was fined. There is a peak value of "radiation force" acting the absorbing target in the focal region when the acoustic power through the focal plane exceeds some threshold. In order to avoid this big measurement error caused by the 'peak effect' in focal region, the distance between the absorbing target of RFB and the focusing transducer or transducer array was defined to be equal to or less than 0.7 times of the focal length in the National Standard of China for the measurements of acoustic power and field characteristics of HIFU. More than six different therapeutic equipments of HIFU have been examined by RFB for measuring the acoustic power since 1998. These results show that RFB with the absorbing target is valid in the acoustic power range up to 500W with good linearity for the drive voltage squared of focusing transducer or array. The uncertainty of measurement is within +/-15%.

  10. In-Situ-measurement of restraining forces during forming of rectangular cups

    NASA Astrophysics Data System (ADS)

    Singer, M.; Liewald, M.

    2016-11-01

    This contribution introduces a new method for evaluating the restraining forces during forming of rectangular cups with the goal of eliminating the disadvantages of the currently used scientifically established measurement procedures. With this method forming forces are measured indirectly by the elastic deformation of die structure caused by locally varying tribological system. Therefore, two sensors were integrated into the punch, which measure the restraining forces during the forming process. Furthermore, it was possible to evaluate the effects of different lubricants showing the time dependent trend as a function of stroke during the forming of the materials DP600 and DC04. A main advantage of this testing method is to get real friction corresponding data out of the physical deep drawing process as well as the measurement of real acting restraining forces at different areas of the deep drawing part by one single test. Measurement results gained by both sensors have been integrated into LS-Dyna simulation in which the coefficient of friction was regarded as a function of time. The simulated and deep drawn parts afterwards are analysed and compared to specific areas with regard to locally measured thickness of part. Results show an improvement of simulation quality when using locally varying, time dependent coefficients of friction compared to commonly used constant values.

  11. Parameters affecting the adhesion strength between a living cell and a colloid probe when measured by the atomic force microscope.

    PubMed

    McNamee, Cathy E; Pyo, Nayoung; Tanaka, Saaya; Vakarelski, Ivan U; Kanda, Yoichi; Higashitani, Ko

    2006-03-15

    In this study, we used the colloid probe atomic force microscopy (AFM) technique to investigate the adhesion force between a living cell and a silica colloid particle in a Leibovitz's L-15 medium (L-15). The L-15 liquid maintained the pharmaceutical conditions necessary to keep the cells alive in the outside environment during the AFM experiment. The force curves in such a system showed a steric repulsion in the compression force curve, due to the compression of the cells by the colloid probe, and an adhesion force in the decompression force curve, due to binding events between the cell and the probe. We also investigated for the first time how the position on the cell surface, the strength of the pushing force, and the residence time of the probe at the cell surface individually affected the adhesion force between a living cell and a 6.84 microm diameter silica colloid particle in L-15. The position of measuring the force on the cell surface was seen not to affect the value of the maximum adhesion force. The loading force was also seen not to notably affect the value of the maximum adhesion force, if it was small enough not to pierce and damage the cell. The residence time of the probe at the cell surface, however, clearly affected the adhesion force, where a longer residence time gave a larger maximum force. From these results, we could conclude that the AFM force measurements should be made using a loading force small enough not to damage the cell and a fixed residence time, when comparing results of different systems.

  12. Operations Research in a New Spanish Air Force Planning System

    DTIC Science & Technology

    1991-06-01

    Until nowadays, when any Air Force felt that a weapon system was obsolete, they studied the potential market , or they built up a system that fulfilled...for a new weapons system which will cover all the requirements. If the weapon system already exists in the national or foreign market , then the system...medium transport. This can be an important factor to be considered but, sometimes, the Spanish Air Force has to look at the for- eign markets for the

  13. Measurement of Force of Bow Holding and Contact Force between Bow Hair and String in Violin Playing by Pressure Measuring Film

    NASA Astrophysics Data System (ADS)

    Matsutani, Akihiro

    2001-09-01

    The force of bow holding and the contact force between bow hair and string in violin playing were measured by a pressure measuring film for the first time. It was scientifically identified that relaxed bowing was important for achieving a good violin tone. The proposed measurement manner may be helpful for objective evaluation of the bowing skill of amateur violinists.

  14. A technique for conditioning and calibrating force-sensing resistors for repeatable and reliable measurement of compressive force.

    PubMed

    Hall, Rick S; Desmoulin, Geoffrey T; Milner, Theodore E

    2008-12-05

    Miniature sensors that could measure forces applied by the fingers and hand without interfering with manual dexterity or range of motion would have considerable practical value in ergonomics and rehabilitation. In this study, techniques have been developed to use inexpensive pressure-sensing resistors (FSRs) to accurately measure compression force. The FSRs are converted from pressure-sensing to force-sensing devices. The effects of nonlinear response properties and dependence on loading history are compensated by signal conditioning and calibration. A fourth-order polynomial relating the applied force to the current voltage output and a linearly weighted sum of prior outputs corrects for sensor hysteresis and drift. It was found that prolonged (>20h) shear force loading caused sensor gain to change by approximately 100%. Shear loading also had the effect of eliminating shear force effects on sensor output, albeit only in the direction of shear loading. By applying prolonged shear loading in two orthogonal directions, the sensors were converted into pure compression sensors. Such preloading of the sensor is, therefore, required prior to calibration. The error in compression force after prolonged shear loading and calibration was consistently <5% from 0 to 30N and <10% from 30 to 40N. This novel method of calibrating FSRs for measuring compression force provides an inexpensive tool for biomedical and industrial design applications where measurements of finger and hand force are needed.

  15. Measurement of forces due to liquid motion in a propellant tank

    NASA Technical Reports Server (NTRS)

    Tegart, J. R.; Berry, R. L.; Demchak, L. J.; Craig, M. K.

    1981-01-01

    This paper presents the results of a study to develop an analytical model capable of predicting the forces acting on a tank caused by large-amplitude propellant motion. This effort contributed to an analysis of the influence of propellant dynamics on separation of the External Tank from the space shuttle orbiter. This paper is concerned with an experimental investigation that aided in development and verification of the analytical model. A scaling approach was developed that allowed the liquid motion to be simulated in subscale tanks. Liquid reorientation forces were measured using two test systems. One operated in the low-gravity environment produced in a drop tower and the second operated aboard the KC-135 'zero-g' test aircraft. The manner of liquid motion, influence of various factors, and the measured forces are discussed.

  16. Partnership for the Revitalization of National Wind Tunnel Force Measurement Capability

    NASA Technical Reports Server (NTRS)

    Rhew, Ray D.; Skelley, Marcus L.; Woike, Mark R.; Bader, Jon B.; Marshall, Timothy J.

    2009-01-01

    Lack of funding and lack of focus on research over the past several years, coupled with force measurement capabilities being decentralized and distributed across the National Aeronautics and Space Administration (NASA) research centers, has resulted in a significant erosion of (1) capability and infrastructure to produce and calibrate force measurement systems; (2) NASA s working knowledge of those systems; and (3) the quantity of high-quality, full-capability force measurement systems available for use in aeronautics testing. Simultaneously, and at proportional rates, the capability of industry to design, manufacture, and calibrate these test instruments has been eroding primarily because of a lack of investment by the aeronautics community. Technical expertise in this technology area is a core competency in aeronautics testing; it is highly specialized and experience-based, and it represents a niche market for only a few small precision instrument shops in the United States. With this backdrop, NASA s Aeronautics Test Program (ATP) chartered a team to examine the issues and risks associated with the problem, focusing specifically on strain- gage balances. The team partnered with the U.S. Air Force s Arnold Engineering Development Center (AEDC) to exploit their combined capabilities and take a national level government view of the problem. This paper describes the team s approach, its findings, and its recommendations, and the current status for revitalizing the government s balance capability with respect to designing, fabricating, calibrating, and using the instruments.

  17. SUMP MEASURING SYSTEM

    SciTech Connect

    Vrettos, N; Athneal Marzolf, A; Casandra Robinson, C; James Fiscus, J; Daniel Krementz, D; Thomas Nance, T

    2007-11-26

    The process sumps in H-Canyon at the Savannah River Site (SRS) collect leaks from process tanks and jumpers. To prevent build-up of fissile material the sumps are frequently flushed which generates liquid waste and is prone to human error. The development of inserts filled with a neutron poison will allow a reduction in the frequency of flushing. Due to concrete deterioration and deformation of the sump liners the current dimensions of the sumps are unknown. Knowledge of these dimensions is necessary for development of the inserts. To solve this problem a remote Sump Measurement System was designed, fabricated, and tested to aid development of the sump inserts.

  18. Real time drift measurement for colloidal probe atomic force microscope: a visual sensing approach

    SciTech Connect

    Wang, Yuliang Bi, Shusheng; Wang, Huimin

    2014-05-15

    Drift has long been an issue in atomic force microscope (AFM) systems and limits their ability to make long time period measurements. In this study, a new method is proposed to directly measure and compensate for the drift between AFM cantilevers and sample surfaces in AFM systems. This was achieved by simultaneously measuring z positions for beads at the end of an AFM colloidal probe and on sample surface through an off-focus image processing based visual sensing method. The working principle and system configuration are presented. Experiments were conducted to validate the real time drift measurement and compensation. The implication of the proposed method for regular AFM measurements is discussed. We believe that this technique provides a practical and efficient approach for AFM experiments requiring long time period measurement.

  19. Direct measurement of cortical force generation and polarization in a living parasite.

    PubMed

    Stadler, Rachel V; White, Lauren A; Hu, Ke; Helmke, Brian P; Guilford, William H

    2017-02-16

    Apicomplexa is a large phylum of intracellular parasites that are notable for the diseases they cause, including toxoplasmosis, malaria and cryptosporidiosis. A conserved motile system is critical to their lifecycles as it drives directional gliding motility between cells, as well as invasion of and egress from host cells. However, our understanding of this system is limited by a lack of measurements of the forces driving parasite motion. We used a laser trap to measure the function of the motility apparatus of living Toxoplasma gondii by adhering a microsphere to the surface of an immobilized parasite. Motion of the microsphere reflected underlying forces exerted by the motile apparatus. We found that force generated at the parasite surface begins with no preferential directionality, but becomes directed toward the rear of the cell after a period of time. The transition from non-directional to directional force generation occurs on spatial intervals consistent with the lateral periodicity of structures associated with the membrane pellicle, and is influenced by the kinetics of actin filament polymerization and cytoplasmic calcium. A lysine methyltransferase regulates both the magnitude and polarization of the force. Our work provides a novel means to dissect the motile mechanisms of these pathogens.

  20. Biophysical characterization of DNA binding from single molecule force measurements

    NASA Astrophysics Data System (ADS)

    Chaurasiya, Kathy R.; Paramanathan, Thayaparan; McCauley, Micah J.; Williams, Mark C.

    2010-09-01

    Single molecule force spectroscopy is a powerful method that uses the mechanical properties of DNA to explore DNA interactions. Here we describe how DNA stretching experiments quantitatively characterize the DNA binding of small molecules and proteins. Small molecules exhibit diverse DNA binding modes, including binding into the major and minor grooves and intercalation between base pairs of double-stranded DNA (dsDNA). Histones bind and package dsDNA, while other nuclear proteins such as high mobility group proteins bind to the backbone and bend dsDNA. Single-stranded DNA (ssDNA) binding proteins slide along dsDNA to locate and stabilize ssDNA during replication. Other proteins exhibit binding to both dsDNA and ssDNA. Nucleic acid chaperone proteins can switch rapidly between dsDNA and ssDNA binding modes, while DNA polymerases bind both forms of DNA with high affinity at distinct binding sites at the replication fork. Single molecule force measurements quantitatively characterize these DNA binding mechanisms, elucidating small molecule interactions and protein function.

  1. Biophysical characterization of DNA binding from single molecule force measurements

    PubMed Central

    Chaurasiya, Kathy R.; Paramanathan, Thayaparan; McCauley, Micah J.; Williams, Mark C.

    2010-01-01

    Single molecule force spectroscopy is a powerful method that uses the mechanical properties of DNA to explore DNA interactions. Here we describe how DNA stretching experiments quantitatively characterize the DNA binding of small molecules and proteins. Small molecules exhibit diverse DNA binding modes, including binding into the major and minor grooves and intercalation between base pairs of double-stranded DNA (dsDNA). Histones bind and package dsDNA, while other nuclear proteins such as high mobility group proteins bind to the backbone and bend dsDNA. Single-stranded DNA (ssDNA) binding proteins slide along dsDNA to locate and stabilize ssDNA during replication. Other proteins exhibit binding to both dsDNA and ssDNA. Nucleic acid chaperone proteins can switch rapidly between dsDNA and ssDNA binding modes, while DNA polymerases bind both forms of DNA with high affinity at distinct binding sites at the replication fork. Single molecule force measurements quantitatively characterize these DNA binding mechanisms, elucidating small molecule interactions and protein function. PMID:20576476

  2. Sensor Prototype to Evaluate the Contact Force in Measuring with Coordinate Measuring Arms

    PubMed Central

    Cuesta, Eduardo; Telenti, Alejandro; Patiño, Hector; González-Madruga, Daniel; Martínez-Pellitero, Susana

    2015-01-01

    This paper describes the design, development and evaluation tests of an integrated force sensor prototype for portable Coordinate Measuring Arms (CMAs or AACMMs). The development is based on the use of strain gauges located on the surface of the CMAs’ hard probe. The strain gauges as well as their cables and connectors have been protected with a custom case, made by Additive Manufacturing techniques (Polyjet 3D). The same method has been selected to manufacture an ergonomic handle that includes trigger mechanics and the electronic components required for synchronizing the trigger signal when probing occurs. The paper also describes the monitoring software that reads the signals in real time, the calibration procedure of the prototype and the validation tests oriented towards increasing knowledge of the forces employed in manual probing. Several experiments read and record the force in real time comparing different ways of probing (discontinuous and continuous contact) and measuring different types of geometric features, from single planes to exterior cylinders, cones, or spheres, through interior features. The probing force is separated into two components allowing the influence of these strategies in probe deformation to be known. The final goal of this research is to improve the probing technique, for example by using an operator training programme, allowing extra-force peaks and bad contacts to be minimized or just to avoid bad measurements. PMID:26057038

  3. Force.

    ERIC Educational Resources Information Center

    Gamble, Reed

    1989-01-01

    Discusses pupil misconceptions concerning forces. Summarizes some of Assessment of Performance Unit's findings on meaning of (1) force, (2) force and motion in one dimension and two dimensions, and (3) Newton's second law. (YP)

  4. Atomic force microscope adhesion measurements and atomistic molecular dynamics simulations at different humidities

    NASA Astrophysics Data System (ADS)

    Seppä, Jeremias; Reischl, Bernhard; Sairanen, Hannu; Korpelainen, Virpi; Husu, Hannu; Heinonen, Martti; Raiteri, Paolo; Rohl, Andrew L.; Nordlund, Kai; Lassila, Antti

    2017-03-01

    Due to their operation principle atomic force microscopes (AFMs) are sensitive to all factors affecting the detected force between the probe and the sample. Relative humidity is an important and often neglected—both in experiments and simulations—factor in the interaction force between AFM probe and sample in air. This paper describes the humidity control system designed and built for the interferometrically traceable metrology AFM (IT-MAFM) at VTT MIKES. The humidity control is based on circulating the air of the AFM enclosure via dryer and humidifier paths with adjustable flow and mixing ratio of dry and humid air. The design humidity range of the system is 20–60 %rh. Force–distance adhesion studies at humidity levels between 25 %rh and 53 %rh are presented and compared to an atomistic molecular dynamics (MD) simulation. The uncertainty level of the thermal noise method implementation used for force constant calibration of the AFM cantilevers is 10 %, being the dominant component of the interaction force measurement uncertainty. Comparing the simulation and the experiment, the primary uncertainties are related to the nominally 7 nm radius and shape of measurement probe apex, possible wear and contamination, and the atomistic simulation technique details. The interaction forces are of the same order of magnitude in simulation and measurement (5 nN). An elongation of a few nanometres of the water meniscus between probe tip and sample, before its rupture, is seen in simulation upon retraction of the tip in higher humidity. This behaviour is also supported by the presented experimental measurement data but the data is insufficient to conclusively verify the quantitative meniscus elongation.

  5. Beyond the Hookean Spring Model: Direct Measurement of Optical Forces Through Light Momentum Changes.

    PubMed

    Farré, Arnau; Marsà, Ferran; Montes-Usategui, Mario

    2017-01-01

    The ability to measure forces in the range of 0.1-100 pN is a key feature of optical tweezers used for biophysical and cell biological studies. Analysis of the interactions between biomolecules and the forces that biomolecular motors generate at the single-molecule level has provided valuable insights in the molecular mechanisms that govern key cellular functions such as gene expression and the long-distance transport of organelles. Methods for determining the minute forces that biomolecular motors generate exhibit notable constraints that limit their application for studies other than the well-controlled in vitro experiments (although recent advances have been made that permit more quantitative optical tweezers studies insight living cells). One constraint comes from the linear approximation of the distance vs. force relationship used to extract the force from the position of the bead in the trap. This commonly employed "indirect" approach, although usually sufficiently precise, restricts the use of optical tweezers to a limited range of displacements (typically up to ±150 nm for small beads). Measurements based on the detection of the light-momentum changes, on the other hand, offer a "direct" and precise way to determine forces even when the generated displacements reach the escape point, thus covering the complete force range developed by the trap. In this chapter, we detail the requirements for the design of a force-sensor instrument based on light-momentum changes using a high-numerical-aperture objective lens and provide insights into its construction. We further discuss the calibration of the system and the main steps for its routine operation.

  6. Ballistic Missile Early Warning System Clear Air Force Station, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Ballistic Missile Early Warning System - Clear Air Force Station, Ballistic Missile Early Warning System Site II, One mile west of mile marker 293.5 on Parks Highway, 5 miles southwest of Anderson, Anderson, Denali Borough, AK

  7. Simultaneous scanning tunneling microscopy and stress measurements to elucidate the origins of surface forces.

    PubMed

    Narushima, Tetsuya; Kinahan, Niall T; Boland, John J

    2007-05-01

    We have developed a new combined measurement system to investigate the underlying origins of forces on solid state surfaces from the viewpoint of atomic surface morphology. This system consists of two main parts: the measurements of force based on displacements and detailed atomic resolution observations of the surface morphology. The former involves a large sample cantilever and a capacitive detection method that provide sufficient resolution to detect changes of a few meV/atom or pN/atom at surfaces. For the latter, a scanning tunneling microscope was incorporated to observe structural changes occurring on the surface of the cantilever sample. Although this combined observation is not trivial, it was accomplished by carefully designing sample dimensions while suppressing the self-oscillation of the cantilever. To demonstrate the performance of this system a preliminary study of the room temperature adsorption of Br(2) on the clean Si(111)-7x7 surface is presented.

  8. The Measurement and Prediction of Rotordynamic Forces for Labyrinth Seals

    DTIC Science & Technology

    1988-03-01

    Rhode prepared for Air Force Office of Scientific Research Boiling Air Force Base Washington, D. C. 20332 Contract F49620-82-K083’ DTIC ELECTE JUN 2 9...by D. W. Childs D. L. Rhode prepared for Air Force Office of Scientific Research Boiling Air Force Base Washington, D. C. 20332 Contract F49620-82...S. . -° .. :... &ii:~:--&.c..-:&. -~ , 4 TEST APPARATUS . The test results reported here were obtained using the Texas A&M Air Seal Test

  9. Lateral force calibration of an atomic force microscope with a diamagnetic levitation spring system

    SciTech Connect

    Li, Q.; Kim, K.-S.; Rydberg, A.

    2006-06-15

    A novel diamagnetic lateral force calibrator (D-LFC) has been developed to directly calibrate atomic force microscope (AFM) cantilever-tip or -bead assemblies. This enables an AFM to accurately measure the lateral forces encountered in friction or biomechanical-testing experiments at a small length scale. In the process of development, deformation characteristics of the AFM cantilever assemblies under frictional loading have been analyzed and four essential response variables, i.e., force constants, of the assembly have been identified. Calibration of the lateral force constant and the 'crosstalk' lateral force constant, among the four, provides the capability of measuring absolute AFM lateral forces. The D-LFC is composed of four NdFeB magnets and a diamagnetic pyrolytic graphite sheet, which can calibrate the two constants with an accuracy on the order of 0.1%. Preparation of the D-LFC and the data processing required to get the force constants is significantly simpler than any other calibration methods. The most up-to-date calibration technique, known as the 'wedge method', calibrates mainly one of the two constants and, if the crosstalk effect is properly analyzed, is primarily applicable to a sharp tip. In contrast, the D-LFC can calibrate both constants simultaneously for AFM tips or beads with any radius of curvature. These capabilities can extend the applicability of AFM lateral force measurement to studies of anisotropic multiscale friction processes and biomechanical behavior of cells and molecules under combined loading. Details of the D-LFC method as well as a comparison with the wedge method are provided in this article.

  10. Development of a shear measurement sensor for measuring forces at human-machine interfaces.

    PubMed

    Cho, Young Kuen; Kim, Seong Guk; Kim, Donghyun; Kim, Hyung Joo; Ryu, Jeicheong; Lim, Dohyung; Ko, Chang-Yong; Kim, Han Sung

    2014-12-01

    Measuring shear force is crucial for investigating the pathology and treatment of pressure ulcers. In this study, we introduced a bi-axial shear transducer based on strain gauges as a new shear sensor. The sensor consisted of aluminum and polyvinyl chloride plates placed between quadrangular aluminum plates. On the middle plate, two strain gauges were placed orthogonal to one another. The shear sensor (54 mm × 54 mm × 4.1 mm), which was validated by using standard weights, displayed high accuracy and precision (measurement range, -50 to 50 N; sensitivity, 0.3N; linear relationship, R(2)=0.9625; crosstalk error, 0.635% ± 0.031%; equipment variation, 4.183). The shear force on the interface between the human body and a stand-up wheelchair was measured during sitting or standing movements, using two mats (44.8 cm × 44.8 cm per mat) that consisted of 24 shear sensors. Shear forces on the sacrum and ischium were almost five times higher (15.5 N at last posture) than those on other sites (3.5 N on average) during experiments periods. In conclusion, the proposed shear sensor may be reliable and useful for measuring the shear force on human-machine interfaces.

  11. Relativistic tidal forces and the possibility of measuring them

    SciTech Connect

    Mashhoon, B.; Theiss, D.S.

    1982-11-22

    The relativistic corrections to the Newtonian tidal accelerations generated by a rotating system are studied. The possibility of testing the relativistic theory of gravitation by measuring such effects in a laboratory in orbit around the Earth is considered. A recent proposal to measure a rotation-dependent tidal acceleration as an alternative to the Stanford gyroscope experiment is critically examined and it is shown that such an experiment does not circumvent the basic difficulties associated with the gyroscope experiment.

  12. Analysis of the traction forces in different skull traction systems.

    PubMed

    Nyström, B; Allard, H; Karlsson, H

    1988-03-01

    During transportation of patients under skull traction, swinging of the weights produces acceleration forces that not only can cause pain and discomfort for the patient, but also can cause worsening of the cervical fracture or dislocation. Skull traction systems also involve friction forces. In a system with one pulley, the friction forces were 10 to 21.5% of the weight applied but, in a system with three pulleys (Stryker SurgiBed 965), they were as much as 65%. A new spring traction device that permits traction during transportation showed better physical characteristics than the hanging weight systems.

  13. Simultaneous measurement of aerodynamic forces and kinematics in flapping wings of tethered locust.

    PubMed

    Shkarayev, Sergey; Kumar, Rajeev

    2015-10-23

    Aerodynamic and inertial forces and corresponding kinematics of flapping wings of locusts, Schistocerca americana, were investigated in a low-speed wind tunnel. The experimental setup included live locusts mounted on microbalance synchronized with a high-speed video system. Simultaneous measurements of wing kinematics and forces were carried out on three locusts at 7° angle of attack and velocities of 0 m s(-1) and 4 m s(-1). Time variations of flapping and pitching angles exhibit similar patterns in fore- and hindwings and among the animals. Significant tip to root variations in pitching angle are found in both wings. The locusts have much larger flapping and pitching amplitudes in still air causing larger oscillations in inertial forces. Inertial forces are added to the lift and thrust on one part of the stroke, resulting in higher reaction forces and subtracted on the other part. Plots of the lift demonstrate similar trends with and without the wind. The global maxima and peak-to-peak amplitudes in lift are about the same in both tests. However, local minima are significantly lower in still air, resulting in much smaller stroke-averaged lift. Amplitudes of thrust force oscillations are much higher in still air; consequently, the stroke-averaged thrust is higher compared to the non-zero freestream velocity case.

  14. In vivo motion and force measurement of surgical needle intervention during prostate brachytherapy

    SciTech Connect

    Podder, Tarun; Clark, Douglas; Sherman, Jason; Fuller, Dave; Messing, Edward; Rubens, Deborah; Strang, John; Brasacchio, Ralph; Liao, Lydia; Ng, W.-S.; Yu Yan

    2006-08-15

    In this paper, we present needle insertion forces and motion trajectories measured during actual brachytherapy needle insertion while implanting radioactive seeds in the prostate glands of 20 different patients. The needle motion was captured using ultrasound images and a 6 degree-of-freedom electromagnetic-based position sensor. Needle velocity was computed from the position information and the corresponding time stamps. From in vivo data we found the maximum needle insertion forces to be about 15.6 and 8.9 N for 17 gauge (1.47 mm) and 18 gauge (1.27 mm) needles, respectively. Part of this difference in insertion forces is due to the needle size difference (17G and 18G) and the other part is due to the difference in tissue properties that are specific to the individual patient. Some transverse forces were observed, which are attributed to several factors such as tissue heterogeneity, organ movement, human factors in surgery, and the interaction between the template and the needle. However, theses insertion forces are significantly responsible for needle deviation from the desired trajectory and target movement. Therefore, a proper selection of needle and modulated velocity (translational and rotational) may reduce the tissue deformation and target movement by reducing insertion forces and thereby improve the seed delivery accuracy. The knowledge gleaned from this study promises to be useful for not only designing mechanical/robotic systems but also developing a predictive deformation model of the prostate and real-time adaptive controlling of the needle.

  15. Thermal microstructure measurement system

    NASA Technical Reports Server (NTRS)

    Carver, Michael J. (Inventor)

    1985-01-01

    A thermal microstructure measurement system (TMMS) operates autonomously h its own internal power supply and telemeters data to a platform. A thermal array is mounted on a cross-braced frame designed to orient itself normal to existing currents with fixed sensor positioning bars protruding from the cross bars. A plurality of matched thermistors, conductivity probes and inclinometers are mounted on the frame. A compass and pressure transducer are contained in an electronics package suspended below the array. The array is deployed on a taut mooring below a subsurface float. Data are digitized, transmitted via cable to a surface buoy and then telemetered to the platform where the data is processed via a computer, recorded and/or displayed. The platform computer also sends commands to the array via telemetry.

  16. Measurement System and Method

    NASA Technical Reports Server (NTRS)

    Arndt, G. Dickey (Inventor); Ngo, Phong H. (Inventor); Carl, James R. (Inventor); Byerly, Kent A. (Inventor)

    2003-01-01

    System and methods are disclosed for fluid measurements which may be utilized to determine mass flow rates such as instantaneous mass flow of a fluid stream. In a preferred embodiment, the present invention may be utilized to compare an input mass flow to an output mass flow of a drilling fluid circulation stream. In one embodiment, a fluid flow rate is determined by utilizing a microwave detector in combination with an acoustic sensor. The acoustic signal is utilized to eliminate 2pi phase ambiguities in a reflected microwave signal. In another embodiment, a fluid flow rate may be determined by detecting a phase shift of an acoustic signal across two different predetermined transmission paths. A fluid density may be determined by detecting a calibrated phase shift of an acoustic signal through the fluid. In another embodiment, a second acoustic signal may be transmitted through the fluid to define a particular 2pi phase range which defines the phase shift. The present invention may comprise multiple transmitters/receivers operating at different frequencies to measure instantaneous fuel levels of cryogenic fuels within containers positioned in zero or near zero gravity environments. In one embodiment, a moveable flexible collar of transmitter/receivers may be utilized to determine inhomogenuities within solid rocket fuel tubes.

  17. Advanced Active-Magnetic-Bearing Thrust-Measurement System

    NASA Technical Reports Server (NTRS)

    Imlach, Joseph; Kasarda, Mary; Blumber, Eric

    2008-01-01

    An advanced thrust-measurement system utilizes active magnetic bearings to both (1) levitate a floating frame in all six degrees of freedom and (2) measure the levitation forces between the floating frame and a grounded frame. This system was developed for original use in measuring the thrust exerted by a rocket engine mounted on the floating frame, but can just as well be used in other force-measurement applications. This system offers several advantages over prior thrust-measurement systems based on mechanical support by flexures and/or load cells: The system includes multiple active magnetic bearings for each degree of freedom, so that by selective use of one, some, or all of these bearings, it is possible to test a given article over a wide force range in the same fixture, eliminating the need to transfer the article to different test fixtures to obtain the benefit of full-scale accuracy of different force-measurement devices for different force ranges. Like other active magnetic bearings, the active magnetic bearings of this system include closed-loop control subsystems, through which the stiffness and damping characteristics of the magnetic bearings can be modified electronically. The design of the system minimizes or eliminates cross-axis force-measurement errors. The active magnetic bearings are configured to provide support against movement along all three orthogonal Cartesian axes, and such that the support along a given axis does not produce force along any other axis. Moreover, by eliminating the need for such mechanical connections as flexures used in prior thrust-measurement systems, magnetic levitation of the floating frame eliminates what would otherwise be major sources of cross-axis forces and the associated measurement errors. Overall, relative to prior mechanical-support thrust-measurement systems, this system offers greater versatility for adaptation to a variety of test conditions and requirements. The basic idea of most prior active

  18. Investigation and experimental measurement of scissor blade cutting forces using fiber Bragg grating sensors

    NASA Astrophysics Data System (ADS)

    Callaghan, D. J.; Rajan, G.; McGrath, M. M.; Coyle, E.; Semenova, Y.; Farrell, G.

    2011-10-01

    This paper reports on unique and scalable sensorized medical scissor blades for application in minimally invasive robotic surgery. The blades exploit the strain sensing capabilities of a single fiber Bragg grating (FBG) sensor bonded to the blade surface. This smart sensing structure allows detection of friction and material fracture forces during cutting and subsequently enables accurate estimation of the blade kinetic friction coefficient and fracture toughness values of the material being cut. We present theory on the determination of strain variation along the blade length during combined direct and lateral loading of the blade element during operation. Demonstration of the sensorized instrument is realized on an application specific experimental test-bed employing a commercial interrogation system for signal demodulation. Friction and cutting forces measured using the FBG are validated against load cell force data from the test-bed. Characterization tests showed that the sensorized blade has an unfiltered force sensing resolution of 0.5 N over a 30 N load range. This work demonstrates that a single optical fiber placed onto cutting instrument blades can, in an unobtrusive manner, reliably measure friction forces and material fracture properties during surgical cutting.

  19. Structure of force networks in tapped particulate systems of disks and pentagons. I. Clusters and loops.

    PubMed

    Pugnaloni, Luis A; Carlevaro, C Manuel; Kramár, M; Mischaikow, K; Kondic, L

    2016-06-01

    The force network of a granular assembly, defined by the contact network and the corresponding contact forces, carries valuable information about the state of the packing. Simple analysis of these networks based on the distribution of force strengths is rather insensitive to the changes in preparation protocols or to the types of particles. In this and the companion paper [Kondic et al., Phys. Rev. E 93, 062903 (2016)10.1103/PhysRevE.93.062903], we consider two-dimensional simulations of tapped systems built from frictional disks and pentagons, and study the structure of the force networks of granular packings by considering network's topology as force thresholds are varied. We show that the number of clusters and loops observed in the force networks as a function of the force threshold are markedly different for disks and pentagons if the tangential contact forces are considered, whereas they are surprisingly similar for the network defined by the normal forces. In particular, the results indicate that, overall, the force network is more heterogeneous for disks than for pentagons. Such differences in network properties are expected to lead to different macroscale response of the considered systems, despite the fact that averaged measures (such as force probability density function) do not show any obvious differences. Additionally, we show that the states obtained by tapping with different intensities that display similar packing fraction are difficult to distinguish based on simple topological invariants.

  20. A relationship between three-dimensional surface hydration structures and force distribution measured by atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Miyazawa, Keisuke; Kobayashi, Naritaka; Watkins, Matthew; Shluger, Alexander L.; Amano, Ken-Ichi; Fukuma, Takeshi

    2016-03-01

    Hydration plays important roles in various solid-liquid interfacial phenomena. Very recently, three-dimensional scanning force microscopy (3D-SFM) has been proposed as a tool to visualise solvated surfaces and their hydration structures with lateral and vertical (sub) molecular resolution. However, the relationship between the 3D force map obtained and the equilibrium water density, ρ(r), distribution above the surface remains an open question. Here, we investigate this relationship at an interface of an inorganic mineral, fluorite, and water. The force maps measured in pure water are directly compared to force maps generated using the solvent tip approximation (STA) model and from explicit molecular dynamics simulations. The results show that the simulated STA force map describes the major features of the experimentally obtained force image. The agreement between the STA data and the experiment establishes the correspondence between the water density used as an input to the STA model and the experimental hydration structure and thus provides a tool to bridge the experimental force data and atomistic solvation structures. Further applications of this method should improve the accuracy and reliability of both interpretation of 3D-SFM force maps and atomistic simulations in a wide range of solid-liquid interfacial phenomena.Hydration plays important roles in various solid-liquid interfacial phenomena. Very recently, three-dimensional scanning force microscopy (3D-SFM) has been proposed as a tool to visualise solvated surfaces and their hydration structures with lateral and vertical (sub) molecular resolution. However, the relationship between the 3D force map obtained and the equilibrium water density, ρ(r), distribution above the surface remains an open question. Here, we investigate this relationship at an interface of an inorganic mineral, fluorite, and water. The force maps measured in pure water are directly compared to force maps generated using the solvent

  1. Estimation of Prestress Force Distribution in the Multi-Strand System of Prestressed Concrete Structures

    PubMed Central

    Cho, Keunhee; Park, Sung Yong; Cho, Jeong-Rae; Kim, Sung Tae; Park, Young-Hwan

    2015-01-01

    Prestressed concrete (PSC) is one of the most reliable, durable and widely used construction materials, which overcomes the weakness of concrete in tension by the introduction of a prestress force. Smart strands enabling measurement of the prestress force have recently been developed to maintain PSC structures throughout their lifetime. However, the smart strand cannot give a representative indication of the whole prestress force when used in multi-strand systems since each strand sustains a different prestress force. In this paper, the actual distribution of the prestress force in a multi-strand system is examined using elastomagnetic (EM) sensors to develop a method for tracking representative indicators of the prestress force using smart strands. PMID:26083230

  2. Wavenumber Locking And Pattern Formation In Spatially Forced Systems

    SciTech Connect

    Hagberg, Aric; Meron, Ehud; Manor, Rotem

    2008-01-01

    We study wavenumber locking and pattern formation resulting from weak spatially periodic one-dimensional forcing of two-dimensional systems. We consider systems that support stationary or traveling stripe patterns in the absence of the forcing, and assume that the one-dimensional forcing is aligned with the direction of the stripe patterns. When the forcing wavenumber is about twice as large as the wavenumber of the unforced system we find that the forcing can either select or stabilize a resonant stripe solution at half the forcing wavenumber, or create a new resonant solution. When the wavenumber mismatch is high we find that the wave-vector component of the pattern in the direction of the forcing can stilI lock at half the forcing wavenumber, but a wave-vector component in the orthogonal direction develops to compensate for the total wavenumber. As a result stationary two-dimensional rectangular and oblique patterns form. When the unforced system supports traveling waves resonant rectangular patterns remain stationary but the oblique patterns travel in a direction orthogonal to the traveling-waves.

  3. Managing Non-Standard Force Demands: Risk Implications of the Global Force Management System

    DTIC Science & Technology

    2012-04-26

    GLOBAL FORCE MANAGEMENT SYSTEM by James C. Wright GS-14, Department of Defense A paper submitted to the Faculty of the Joint Advanced Warfighting...School in partial satisfaction of the requirements of a Master of Science Degree in Joint Campaign Planning and Strategy. The contents of this paper ...reflect my own personal views and are not necessarily endorsed by the Joint Forces Staff College or the Department of Defense. This paper is entirely

  4. Air Force Environmental Management System Overview

    DTIC Science & Technology

    2011-05-01

    Key to ~:ning the environn ental portion of lbiJ vi ’lion i3 copcrot:oll41iling cnvirorunentlll monagcmcnt Air Force-wide. Operotiooa:tzl.o...approach for addressing environmental aspects of internal agency operations and activities”  For the AF, “appropriate facilities” equates to “major...y y y Authority 7. Communication y y y 16. Internal EMS Audit y y y 8. Documentation & y y y 17. Management Review y y y Doc Control 9

  5. Evaluation of a flexible force sensor for measurement of helmet foam impact performance.

    PubMed

    Ouckama, Ryan; Pearsall, David J

    2011-03-15

    The association between translational head acceleration and concussion remains unclear and provides a weak predictive measure for this type of injury; thus, alternative methods of helmet evaluation are warranted. Recent finite element analysis studies suggest that better estimates of concussion risk can be obtained when regional parameters of the cranium, brain and surrounding tissues are included. Lacking, however, are empirical data at the head-helmet interface with regards to contact area and force. Hence, the purpose of this study was to evaluate a system to capture the impact force distribution of helmet foams. Thirteen Flexiforce(®) sensors were arranged in a 5 × 5 cm array, secured to a load cell. Three densities of foam were repeatedly impacted with 5 J of energy during ambient (20°C) and cold (-25°C) conditions. RMS error, calculated relative to the global force registered by the load cell, was <1.5% of the measurement range during individual calibration of the Flexiforce(®) sensors. RMS error was 5% of the measured range for the global force estimated by the sensor array. Load distribution measurement revealed significant differences between repeated impacts of cold temperature foams for which acceleration results were non-significant. The sensor array, covering only 36% of the total area, possessed sufficient spatial and temporal resolution to capture dynamic load distribution patterns. Implementation of this force mapping system is not limited to helmet testing. Indeed it may be adopted to assess other body regions vulnerable to contact injuries (e.g., chest, hip and shin protectors).

  6. Inverse combustion force estimation based on response measurements outside the combustion chamber and signal processing

    NASA Astrophysics Data System (ADS)

    Hosseini Fouladi, Mohammad; Mohd. Nor, Mohd. Jailani; Kamal Ariffin, Ahmad; Abdullah, Shahrir

    2009-11-01

    Exposure to vibration has various physiological effects on vehicle passengers. Engine is one of the main sources of vehicle vibration. The major causes of engine vibration are combustion forces transmitted through the pistons and connection rods. Evaluation of sources is the first step to attenuate this vibration. Assessment of these sources is not an easy task because internal parts of machinery are not accessible. Often, instrumentation for such systems is costly, time consuming and some modifications would be necessary. Aim of the first part of this paper was to validate an inverse technique and carry out mobility analysis on a vehicle crankshaft to achieve matrix of Frequency Response Functions (FRFs). Outcomes were implemented to reconstruct the applied force for single and multiple-input systems. In the second part, the validated inverse technique and FRFs were used to estimate piston forces of an operating engine. Bearings of crankshaft were chosen as nearest accessible parts to piston connecting rods. Accelerometers were connected to the bearings for response measurement during an ideal engine operation. These responses together with FRFs, which were estimated in the previous part, were utilised in the inverse technique. Tikhonov regularization was used to solve the ill-conditioned inverse system. Two methods, namely L-curve criterion and Generalized Cross Validation (GCV), were employed to find the regularization parameter for the Tikhonov method. The inverse problem was solved and piston forces applied to crankpins were estimated. Results were validated by pressure measurement inside a cylinder and estimating the corresponding combustion force. This validation showed that inverse technique and measurement outcomes were roughly in agreement. In presence of various noise, L-curve criterion conduces to more robust results compared to the GCV method. But in the absence of high correlation between sources ( f>600 HzHz), the GCV technique leads to more accurate

  7. Merging Psychophysical and Psychometric Theory to Estimate Global Visual State Measures from Forced-Choices

    NASA Astrophysics Data System (ADS)

    Massof, Robert W.; Schmidt, Karen M.; Laby, Daniel M.; Kirschen, David; Meadows, David

    2013-09-01

    Visual acuity, a forced-choice psychophysical measure of visual spatial resolution, is the sine qua non of clinical visual impairment testing in ophthalmology and optometry patients with visual system disorders ranging from refractive error to retinal, optic nerve, or central visual system pathology. Visual acuity measures are standardized against a norm, but it is well known that visual acuity depends on a variety of stimulus parameters, including contrast and exposure duration. This paper asks if it is possible to estimate a single global visual state measure from visual acuity measures as a function of stimulus parameters that can represent the patient's overall visual health state with a single variable. Psychophysical theory (at the sensory level) and psychometric theory (at the decision level) are merged to identify the conditions that must be satisfied to derive a global visual state measure from parameterised visual acuity measures. A global visual state measurement model is developed and tested with forced-choice visual acuity measures from 116 subjects with no visual impairments and 560 subjects with uncorrected refractive error. The results are in agreement with the expectations of the model.

  8. Measuring the Drag Force on a Falling Ball

    ERIC Educational Resources Information Center

    Cross, Rod; Lindsey, Crawford

    2014-01-01

    The effect of the aerodynamic drag force on an object in flight is well known and has been described in this and other journals many times. At speeds less than about 1 m/s, the drag force on a sphere is proportional to the speed and is given by Stokes' law. At higher speeds, the drag force is proportional to the velocity squared and is…

  9. Non-additivity of molecule-surface van der Waals potentials from force measurements

    PubMed Central

    Wagner, Christian; Fournier, Norman; Ruiz, Victor G.; Li, Chen; Müllen, Klaus; Rohlfing, Michael; Tkatchenko, Alexandre; Temirov, Ruslan; Tautz, F. Stefan

    2014-01-01

    Van der Waals (vdW) forces act ubiquitously in condensed matter. Despite being weak on an atomic level, they substantially influence molecular and biological systems due to their long range and system-size scaling. The difficulty to isolate and measure vdW forces on a single-molecule level causes our present understanding to be strongly theory based. Here we show measurements of the attractive potential between differently sized organic molecules and a metal surface using an atomic force microscope. Our choice of molecules and the large molecule-surface separation cause this attraction to be purely of vdW type. The experiment allows testing the asymptotic vdW force law and its validity range. We find a superlinear growth of the vdW attraction with molecular size, originating from the increased deconfinement of electrons in the molecules. Because such non-additive vdW contributions are not accounted for in most first-principles or empirical calculations, we suggest further development in that direction. PMID:25424490

  10. Unbinding forces and energies between a siRNA molecule and a dendrimer measured by force spectroscopy

    NASA Astrophysics Data System (ADS)

    Dumitru, Andra C.; Herruzo, Elena T.; Rausell, Estrella; Ceña, Valentin; Garcia, Ricardo

    2015-11-01

    We have measured the intermolecular forces between small interference RNA (siRNA) and polyamidoamine dendrimers at the single molecular level. A single molecule force spectroscopy approach has been developed to measure the unbinding forces and energies between a siRNA molecule and polyamidoamine dendrimers deposited on a mica surface in a buffer solution. We report three types of unbinding events which are characterized by forces and free unbinding energies, respectively, of 28 pN, 0.709 eV; 38 pN, 0.722 eV; and 50 pN, 0.724 eV. These events reflect different possible electrostatic interactions between the positive charges of one or two dendrimers and the negatively charged phosphate groups of a single siRNA. We have evidence of a high binding affinity of siRNA towards polyamidoamine dendrimers that leads to a 45% probability of measuring specific unbinding events.

  11. Unbinding forces and energies between a siRNA molecule and a dendrimer measured by force spectroscopy.

    PubMed

    Dumitru, Andra C; Herruzo, Elena T; Rausell, Estrella; Ceña, Valentin; Garcia, Ricardo

    2015-12-21

    We have measured the intermolecular forces between small interference RNA (siRNA) and polyamidoamine dendrimers at the single molecular level. A single molecule force spectroscopy approach has been developed to measure the unbinding forces and energies between a siRNA molecule and polyamidoamine dendrimers deposited on a mica surface in a buffer solution. We report three types of unbinding events which are characterized by forces and free unbinding energies, respectively, of 28 pN, 0.709 eV; 38 pN, 0.722 eV; and 50 pN, 0.724 eV. These events reflect different possible electrostatic interactions between the positive charges of one or two dendrimers and the negatively charged phosphate groups of a single siRNA. We have evidence of a high binding affinity of siRNA towards polyamidoamine dendrimers that leads to a 45% probability of measuring specific unbinding events.

  12. Magnetic Signals of High-Temperature Superconductor Bulk During the Levitation Force Measurement Process

    NASA Astrophysics Data System (ADS)

    Huang, Huan; Zheng, Jun; Qian, Nan; Che, Tong; Zheng, Botian; Jin, Liwei; Deng, Zigang

    2017-02-01

    In order to study the commonly neglected magnetic field information in the course of levitation force measurement process in a superconducting maglev system, a multipoint magnetic field measurement platform was employed to acquire magnetic signals of a bulk high-Tc superconductor on both the top and the bottom surface. Working conditions including field cooling (FC) and zero field cooling were investigated for these vertical down and up motions above a permanent magnet guideway performed on a HTS maglev measurement system. We have discussed the magnetic flux variation process based on the Bean model. A magnetic hysteresis effect similar to the levitation force hysteresis loop of the bulk superconductor was displayed and analyzed in this paper. What is more valuable, there exists some available magnetic flux on the top surface of the bulk superconductor, and the proportion is as high as 62.42% in the FC condition, which provides an experimental hint to design the superconductor bulk and the applied field for practical use in a more efficient way. In particular, this work reveals real-time magnetic flux variation of the bulk superconductor in the levitation application, which is the other important information in contrast to the macroscopic levitation and guidance force investigations in previous studies, and it enriches the existing research methods. The results are significant for understanding the magnetic characteristic of superconductors, and they can contribute to optimize the present HTS maglev system design.

  13. A force sensor and peak-reading recorder for measurement of cervical dilatation force.

    PubMed

    Crawford, A J; Plant, G R; Filshie, G M; Macpherson, M B; McCabe, A R

    1984-10-01

    Earlier dilatation force-sensing transducers, when subjected to side loads, suffered frictional losses which affected their accuracy. This new instrument incorporates a thermal-writing chart recorder and a digital readout of the peak force during dilatation of the cervix.

  14. Measuring stall forces in vivo with optical tweezers through light momentum changes

    NASA Astrophysics Data System (ADS)

    Mas, J.; Farré, A.; López-Quesada, C.; Fernández, X.; Martín-Badosa, E.; Montes-Usategui, M.

    2011-10-01

    The stall forces of processive molecular motors have been widely studied previously in vitro. Even so, in vivo experiments are required for determining the actual performance of each molecular motor in its natural environment. We report the direct measurement of light momentum changes in single beam optical tweezers as a suitable technique for measuring forces inside living cells, where few alternatives exist. The simplicity of this method, which does not require force calibration for each trapped object, makes it convenient for measuring the forces involved in fast dynamic biological processes such us intracellular traffic. Here we present some measurements of the stall force of processive molecular motors inside living Allium cepa cells.

  15. A Biomechanical Assessment of Hand/Arm Force with Pneumatic Nail Gun Actuation Systems.

    PubMed

    Lowe, Brian D; Albers, James; Hudock, Stephen D

    2014-09-01

    A biomechanical model is presented, and combined with measurements of tip press force, to estimate total user hand force associated with two pneumatic nail gun trigger systems. The contact actuation trigger (CAT) can fire a nail when the user holds the trigger depressed first and then "bumps" the nail gun tip against the workpiece. With a full sequential actuation trigger (SAT) the user must press the tip against the workpiece prior to activating the trigger. The SAT is demonstrably safer in reducing traumatic injury risk, but increases the duration (and magnitude) of tip force exertion. Time integrated (cumulative) hand force was calculated for a single user from measurements of the tip contact force with the workpiece and transfer time between nails as inputs to a static model of the nail gun and workpiece in two nailing task orientations. The model shows the hand force dependence upon the orientation of the workpiece in addition to the trigger system. Based on standard time allowances from work measurement systems (i.e. Methods-Time Measurement - 1) it is proposed that efficient application of hand force with the SAT in maintaining tip contact can reduce force exertion attributable to the sequential actuation trigger to 2-8% (horizontal nailing) and 9-20% (vertical nailing) of the total hand/arm force. The present model is useful for considering differences in cumulative hand/arm force exposure between the SAT and CAT systems and may explain the appeal of the CAT trigger in reducing the user's perception of muscular effort.

  16. A Biomechanical Assessment of Hand/Arm Force with Pneumatic Nail Gun Actuation Systems

    PubMed Central

    Lowe, Brian D.; Albers, James; Hudock, Stephen D.

    2015-01-01

    A biomechanical model is presented, and combined with measurements of tip press force, to estimate total user hand force associated with two pneumatic nail gun trigger systems. The contact actuation trigger (CAT) can fire a nail when the user holds the trigger depressed first and then “bumps” the nail gun tip against the workpiece. With a full sequential actuation trigger (SAT) the user must press the tip against the workpiece prior to activating the trigger. The SAT is demonstrably safer in reducing traumatic injury risk, but increases the duration (and magnitude) of tip force exertion. Time integrated (cumulative) hand force was calculated for a single user from measurements of the tip contact force with the workpiece and transfer time between nails as inputs to a static model of the nail gun and workpiece in two nailing task orientations. The model shows the hand force dependence upon the orientation of the workpiece in addition to the trigger system. Based on standard time allowances from work measurement systems (i.e. Methods-Time Measurement - 1) it is proposed that efficient application of hand force with the SAT in maintaining tip contact can reduce force exertion attributable to the sequential actuation trigger to 2–8% (horizontal nailing) and 9–20% (vertical nailing) of the total hand/arm force. The present model is useful for considering differences in cumulative hand/arm force exposure between the SAT and CAT systems and may explain the appeal of the CAT trigger in reducing the user’s perception of muscular effort. PMID:26321780

  17. Measuring the elastic properties of living cells with atomic force microscopy indentation.

    PubMed

    Mackay, Joanna L; Kumar, Sanjay

    2013-01-01

    Atomic force microscopy (AFM) is a powerful and versatile tool for probing the mechanical properties of biological samples. This chapter describes the procedures for using AFM indentation to measure the elastic moduli of living cells. We include step-by-step instructions for cantilever calibration and data acquisition using a combined AFM/optical microscope system, as well as a detailed protocol for data analysis. Our protocol is written specifically for the BioScope™ Catalyst™ AFM system (Bruker AXS Inc.); however, most of the general concepts can be readily translated to other commercial systems.

  18. Force measurements of the alpha5beta1 integrin-fibronectin interaction.

    PubMed

    Li, Feiya; Redick, Sambra D; Erickson, Harold P; Moy, Vincent T

    2003-02-01

    The interaction of the alpha(5)beta(1) integrin and its ligand, fibronectin (FN), plays a crucial role in the adhesion of cells to the extracellular matrix. An important intrinsic property of the alpha(5)beta(1)/FN interaction is the dynamic response of the complex to a pulling force. We have carried out atomic force microscopy measurements of the interaction between alpha(5)beta(1) and a fibronectin fragment derived from the seventh through tenth type III repeats of FN (i.e., FN7-10) containing both the arg-gly-asp (RGD) sequence and the synergy site. Direct force measurements obtained from an experimental system consisting of an alpha(5)beta(1) expressing K562 cell attached to the atomic force microscopy cantilever and FN7-10 adsorbed on a substrate were used to determine the dynamic response of the alpha(5)beta(1)/FN7-10 complex to a pulling force. The experiments were carried out over a three-orders-of-magnitude change in loading rate and under conditions that allowed for detection of individual alpha(5)beta(1)/FN7-10 interactions. The dynamic rupture force of the alpha(5)beta(1)/FN7-10 complex revealed two regimes of loading: a fast loading regime (>10,000 pN/s) and a slow loading regime (<10,000 pN/s) that characterize the inner and outer activation barriers of the complex, respectively. Activation by TS2/16 antibody increased both the frequency of adhesion and elevated the rupture force of the alpha(5)beta(1)/wild type FN7-10 complex to higher values in the slow loading regime. In experiments carried out with a FN7-10 RGD deleted mutant, the force measurements revealed that both inner and outer activation barriers were suppressed by the mutation. Mutations to the synergy site of FN, however, suppressed only the outer barrier activation of the complex. For both the RGD and synergy deletions, the frequency of adhesion was less than that of the wild type FN7-10, but was increased by integrin activation. The rupture force of these mutants was only slightly less

  19. Force Measurements of the α5β1 Integrin–Fibronectin Interaction

    PubMed Central

    Li, Feiya; Redick, Sambra D.; Erickson, Harold P.; Moy, Vincent T.

    2003-01-01

    The interaction of the α5β1 integrin and its ligand, fibronectin (FN), plays a crucial role in the adhesion of cells to the extracellular matrix. An important intrinsic property of the α5β1/FN interaction is the dynamic response of the complex to a pulling force. We have carried out atomic force microscopy measurements of the interaction between α5β1 and a fibronectin fragment derived from the seventh through tenth type III repeats of FN (i.e., FN7-10) containing both the arg-gly-asp (RGD) sequence and the synergy site. Direct force measurements obtained from an experimental system consisting of an α5β1 expressing K562 cell attached to the atomic force microscopy cantilever and FN7-10 adsorbed on a substrate were used to determine the dynamic response of the α5β1/FN7-10 complex to a pulling force. The experiments were carried out over a three-orders-of-magnitude change in loading rate and under conditions that allowed for detection of individual α5β1/FN7-10 interactions. The dynamic rupture force of the α5β1/FN7-10 complex revealed two regimes of loading: a fast loading regime (>10,000 pN/s) and a slow loading regime (<10,000 pN/s) that characterize the inner and outer activation barriers of the complex, respectively. Activation by TS2/16 antibody increased both the frequency of adhesion and elevated the rupture force of the α5β1/wild type FN7-10 complex to higher values in the slow loading regime. In experiments carried out with a FN7-10 RGD deleted mutant, the force measurements revealed that both inner and outer activation barriers were suppressed by the mutation. Mutations to the synergy site of FN, however, suppressed only the outer barrier activation of the complex. For both the RGD and synergy deletions, the frequency of adhesion was less than that of the wild type FN7-10, but was increased by integrin activation. The rupture force of these mutants was only slightly less than that of the wild type, and was not increased by activation. These

  20. Forced oscillations in quadratically damped systems

    NASA Technical Reports Server (NTRS)

    Bayliss, A.

    1978-01-01

    Bayliss (1975) has studied the question whether in the case of linear differential equations the relationship between the stability of the homogeneous equations and the existence of almost periodic solutions to the inhomogeneous equation is preserved by finite difference approximations. In the current investigation analogous properties are considered for the case in which the damping is quadratic rather than linear. The properties of the considered equation for arbitrary forcing terms are examined and the validity is proved of a theorem concerning the characteristics of the unique solution. By using the Lipschitz continuity of the mapping and the contracting mapping principle, almost periodic solutions can be found for perturbations of the considered equation. Attention is also given to the Lipschitz continuity of the solution operator and the results of numerical tests which have been conducted to test the discussed theory.

  1. A test program to measure fluid mechanical whirl-excitation forces in centrifugal pumps

    NASA Technical Reports Server (NTRS)

    Brennen, C. E.; Acosta, A. J.; Caughey, T. K.

    1980-01-01

    The details of a test program for the measurement of the unsteady forces on centrifugal impellers are discussed. Various hydrodynamic flows are identified as possible contributors to these destabilizing forces.

  2. View of building 11070 showing vents and forced air system ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of building 11070 showing vents and forced air system on east side, looking southwest. - Naval Ordnance Test Station Inyokern, China Lake Pilot Plant, Maintenance Shop, C Street, China Lake, Kern County, CA

  3. Register Closing Effects on Forced Air Heating System Performance

    SciTech Connect

    Walker, Iain S.

    2003-11-01

    Closing registers in forced air heating systems and leaving some rooms in a house unconditioned has been suggested as a method of quickly saving energy for California consumers. This study combined laboratory measurements of the changes in duct leakage as registers are closed together with modeling techniques to estimate the changes in energy use attributed to closing registers. The results of this study showed that register closing led to increased energy use for a typical California house over a wide combination of climate, duct leakage and number of closed registers. The reduction in building thermal loads due to conditioning only a part of the house was offset by increased duct system losses; mostly due to increased duct leakage. Therefore, the register closing technique is not recommended as a viable energy saving strategy for California houses with ducts located outside conditioned space. The energy penalty associated with the register closing technique was found to be minimized if registers furthest from the air handler are closed first because this tends to only affect the pressures and air leakage for the closed off branch. Closing registers nearer the air handler tends to increase the pressures and air leakage for the whole system. Closing too many registers (more than 60%) is not recommended because the added flow resistance severely restricts the air flow though the system leading to safety concerns. For example, furnaces may operate on the high-limit switch and cooling systems may suffer from frozen coils.

  4. Thermal noise limitations to force measurements with torsion pendulums: Applications to the measurement of the Casimir force and its thermal correction

    SciTech Connect

    Lamoreaux, S.K.; Buttler, W.T.

    2005-03-01

    A general analysis of thermal noise in torsion pendulums is presented. The specific case where the torsion angle is kept fixed by electronic feedback is analyzed. This analysis is applied to a recent experiment that employed a torsion pendulum to measure the Casimir force. The ultimate limit to the distance at which the Casimir force can be measured to high accuracy is discussed, and in particular we elaborate on the prospects for measuring the thermal correction.

  5. Force Analysis of Qi Chaotic System

    NASA Astrophysics Data System (ADS)

    Qi, Guoyuan; Liang, Xiyin

    2016-12-01

    The Qi chaotic system is transformed into Kolmogorov type of system. The vector field of the Qi chaotic system is decomposed into four types of torques: inertial torque, internal torque, dissipation and external torque. Angular momentum representing the physical analogue of the state variables of the chaotic system is identified. The Casimir energy law relating to the orbital behavior is identified and the bound of Qi chaotic attractor is given. Five cases of study have been conducted to discover the insights and functions of different types of torques of the chaotic attractor and also the key factors of producing different types of modes of dynamics.

  6. Visualized Multiprobe Electrical Impedance Measurements with STM Tips Using Shear Force Feedback Control

    PubMed Central

    Botaya, Luis; Coromina, Xavier; Samitier, Josep; Puig-Vidal, Manel; Otero, Jorge

    2016-01-01

    Here we devise a multiprobe electrical measurement system based on quartz tuning forks (QTFs) and metallic tips capable of having full 3D control over the position of the probes. The system is based on the use of bent tungsten tips that are placed in mechanical contact (glue-free solution) with a QTF sensor. Shear forces acting in the probe are measured to control the tip-sample distance in the Z direction. Moreover, the tilting of the tip allows the visualization of the experiment under the optical microscope, allowing the coordination of the probes in X and Y directions. Meanwhile, the metallic tips are connected to a current–voltage amplifier circuit to measure the currents and thus the impedance of the studied samples. We discuss here the different aspects that must be addressed when conducting these multiprobe experiments, such as the amplitude of oscillation, shear force distance control, and wire tilting. Different results obtained in the measurement of calibration samples and microparticles are presented. They demonstrate the feasibility of the system to measure the impedance of the samples with a full 3D control on the position of the nanotips. PMID:27231911

  7. Electrostatic forces in muscle and cylindrical gel systems

    SciTech Connect

    Millman, B.M.; Nickel, B.G.

    1980-10-01

    Repulsive pressure has been measured as a function of lattice spacing in gels of tobacco mosaic virus (TMV) and in the filament lattice of vertebrate striated muscle. External pressures up to ten atm have been applied to these lattices by an osmotic stress method. Numerical solutions to the Poisson-Boltzmann equation in hexagonal lattices have been obtained and compared to the TMV and muscle data. The theoretical curves using values for kappa calculated from the ionic strength give a good fit to experimental data from TMV gels, and an approximate fit to that from the muscle lattice, provided that a charge radius for the muscle thick filaments of approx. 16 nm is assumed. Variations in ionic strength, sarcomere length and state of the muscle give results which agree qualitatively with the theory, though a good fit between experiment and theory in the muscle case will clearly require consideration of other types of forces. We conclude that Poisson-Boltzmann theory can provide a good first approximation to the long-range electrostatic forces operating in such biological gel systems.

  8. Multiplexed single-molecule force proteolysis measurements using magnetic tweezers.

    PubMed

    Adhikari, Arjun S; Chai, Jack; Dunn, Alexander R

    2012-07-25

    The generation and detection of mechanical forces is a ubiquitous aspect of cell physiology, with direct relevance to cancer metastasis(1), atherogenesis(2) and wound healing(3). In each of these examples, cells both exert force on their surroundings and simultaneously enzymatically remodel the extracellular matrix (ECM). The effect of forces on ECM has thus become an area of considerable interest due to its likely biological and medical importance(4-7). Single molecule techniques such as optical trapping(8), atomic force microscopy(9), and magnetic tweezers(10,11) allow researchers to probe the function of enzymes at a molecular level by exerting forces on individual proteins. Of these techniques, magnetic tweezers (MT) are notable for their low cost and high throughput. MT exert forces in the range of ~1-100 pN and can provide millisecond temporal resolution, qualities that are well matched to the study of enzyme mechanism at the single-molecule level(12). Here we report a highly parallelizable MT assay to study the effect of force on the proteolysis of single protein molecules. We present the specific example of the proteolysis of a trimeric collagen peptide by matrix metalloproteinase 1 (MMP-1); however, this assay can be easily adapted to study other substrates and proteases.

  9. Direct Measurements of Drag Forces in C. elegans Crawling Locomotion

    PubMed Central

    Rabets, Yegor; Backholm, Matilda; Dalnoki-Veress, Kari; Ryu, William S.

    2014-01-01

    With a simple and versatile microcantilever-based force measurement technique, we have probed the drag forces involved in Caenorhabditis elegans locomotion. As a worm crawls on an agar surface, we found that substrate viscoelasticity introduces nonlinearities in the force-velocity relationships, yielding nonconstant drag coefficients that are not captured by original resistive force theory. A major contributing factor to these nonlinearities is the formation of a shallow groove on the agar surface. We measured both the adhesion forces that cause the worm’s body to settle into the agar and the resulting dynamics of groove formation. Furthermore, we quantified the locomotive forces produced by C. elegans undulatory motions on a wet viscoelastic agar surface. We show that an extension of resistive force theory is able to use the dynamics of a nematode’s body shape along with the measured drag coefficients to predict the forces generated by a crawling nematode. PMID:25418179

  10. Load measurement system with load cell lock-out mechanism

    NASA Technical Reports Server (NTRS)

    Le, Thang; Carroll, Monty; Liu, Jonathan

    1995-01-01

    In the frame work of the project Shuttle Plume Impingement Flight Experiment (SPIFEX), a Load Measurement System was developed and fabricated to measure the impingement force of Shuttle Reaction Control System (RCS) jets. The Load Measurement System is a force sensing system that measures any combination of normal and shear forces up to 40 N (9 lbf) in the normal direction and 22 N (5 lbf) in the shear direction with an accuracy of +/- 0.04 N (+/- 0.01 lbf) Since high resolution is required for the force measurement, the Load Measurement System is built with highly sensitive load cells. To protect these fragile load cells in the non-operational mode from being damaged due to flight loads such as launch and landing loads of the Shuttle vehicle, a motor driven device known as the Load Cell Lock-Out Mechanism was built. This Lock-Out Mechanism isolates the load cells from flight loads and re-engages the load cells for the force measurement experiment once in space. With this highly effective protection system, the SPIFEX load measurement experiment was successfully conducted on STS-44 in September 1994 with all load cells operating properly and reading impingement forces as expected.

  11. Repeatability of measurements: Non-Hermitian observables and quantum Coriolis force

    NASA Astrophysics Data System (ADS)

    Gardas, Bartłomiej; Deffner, Sebastian; Saxena, Avadh

    2016-08-01

    A noncommuting measurement transfers, via the apparatus, information encoded in a system's state to the external "observer." Classical measurements determine properties of physical objects. In the quantum realm, the very same notion restricts the recording process to orthogonal states as only those are distinguishable by measurements. Therefore, even a possibility to describe physical reality by means of non-Hermitian operators should volens nolens be excluded as their eigenstates are not orthogonal. Here, we show that non-Hermitian operators with real spectra can be treated within the standard framework of quantum mechanics. Furthermore, we propose a quantum canonical transformation that maps Hermitian systems onto non-Hermitian ones. Similar to classical inertial forces this map is accompanied by an energetic cost, pinning the system on the unitary path.

  12. Collective behaviors of the Casimir force in microelectromechanical systems

    SciTech Connect

    Chan, H. B.; Yelton, J.

    2013-01-23

    Our goal was to explore the strong dependence of the Casimir force on the shape of the interacting bodies. We made significant progress and measured the Casimir force on silicon surface with rectangular corrugation and showed that the results agree with theoretical calculations, provided that the optical properties of silicon are taken into account. Furthermore, we performed measurement of the Casimir force within a single chip for the first time, between a doubly clamped beam and a movable, on-chip electrode at liquid helium temperature. This experiment represents a new way of studying the Casimir effect, a significant advance from the conventional approach of placing an external surface close to a force transducer.

  13. Analysis of operational comfort in manual tasks using human force manipulability measure.

    PubMed

    Tanaka, Yoshiyuki; Nishikawa, Kazuo; Yamada, Naoki; Tsuji, Toshio

    2015-01-01

    This paper proposes a scheme for human force manipulability (HFM) based on the use of isometric joint torque properties to simulate the spatial characteristics of human operation forces at an end-point of a limb with feasible magnitudes for a specified limb posture. This is also applied to the evaluation/prediction of operational comfort (OC) when manually operating a human-machine interface. The effectiveness of HFM is investigated through two experiments and computer simulations of humans generating forces by using their upper extremities. Operation force generation with maximum isometric effort can be roughly estimated with an HFM measure computed from information on the arm posture during a maintained posture. The layout of a human-machine interface is then discussed based on the results of operational experiments using an electric gear-shifting system originally developed for robotic devices. The results indicate a strong relationship between the spatial characteristics of the HFM and OC levels when shifting, and the OC is predicted by using a multiple regression model with HFM measures.

  14. Measurements of the force fields within an acoustic standing wave using holographic optical tweezers

    SciTech Connect

    Bassindale, P. G.; Drinkwater, B. W.; Phillips, D. B.; Barnes, A. C.

    2014-04-21

    Direct measurement of the forces experienced by micro-spheres in an acoustic standing wave device have been obtained using calibrated optical traps generated with holographic optical tweezers. A micro-sphere, which is optically trapped in three dimensions, can be moved through the acoustic device to measure forces acting upon it. When the micro-sphere is subjected to acoustic forces, it's equilibrium position is displaced to a position where the acoustic forces and optical forces are balanced. Once the optical trapping stiffness has been calibrated, observation of this displacement enables a direct measurement of the forces acting upon the micro-sphere. The measured forces are separated into a spatially oscillating component, attributed to the acoustic radiation force, and a constant force, attributed to fluid streaming. As the drive conditions of the acoustic device were varied, oscillating forces (>2.5 pN{sub pp}) and streaming forces (<0.2 pN) were measured. A 5 μm silica micro-sphere was used to characterise a 6.8 MHz standing wave, λ = 220 μm, to a spatial resolution limited by the uncertainty in the positioning of the micro-sphere (here to within 2 nm) and with a force resolution on the order of 10 fN. The results have application in the design and testing of acoustic manipulation devices.

  15. Reconstruction of Energy Surfaces from Friction Force Microscopy Measurements with the Jarzynski Equality

    NASA Astrophysics Data System (ADS)

    Berkovich, Ronen; Klafter, Joseph; Urbakh, Michael

    Free energy is one of the most fundamental thermodynamic functions, determining relative phase stability and serving as a generating function for other thermodynamic quantities. The calculation of free energies is a challenging enterprise. In equilibrium statistical mechanics, the free energy is related to the canonical partition function. The partition function itself involves integrations over all degrees of freedom in the system and, in most cases, cannot be easily calculated directly. In 1997, Jarzynski proved a remarkable equality that allows computing the equilibrium free-energy difference between two states from the probability distribution of the nonequilibrium work done on the system to switch between the two states. The Jarzynski equality provides a powerful free-energy difference estimator from a set of irreversible experiments. This method is closely related to free-energy perturbation approach, which is also a computational technique for estimating free-energy differences. The ability to map potential profiles and topologies is of major significance to areas as diverse as biological recognition and nanoscale friction. This capability has been demonstrated for frictional studies where a force between the tip of the scanning force microscope and the surface is probed. The surface free-energy corrugation produces a detectable friction forces. Thus, friction force microscopy (FFM) should be able to discriminate between energetically different areas on the probed surface. Here, we apply the Jarzynski equality for the analysis of FFM measurements and thus obtain a variation of the free energy along a surface.

  16. Mining volume measurement system

    NASA Technical Reports Server (NTRS)

    Heyman, Joseph Saul (Inventor)

    1988-01-01

    In a shaft with a curved or straight primary segment and smaller off-shooting segments, at least one standing wave is generated in the primary segment. The shaft has either an open end or a closed end and approximates a cylindrical waveguide. A frequency of a standing wave that represents the fundamental mode characteristic of the primary segment can be measured. Alternatively, a frequency differential between two successive harmonic modes that are characteristic of the primary segment can be measured. In either event, the measured frequency or frequency differential is characteristic of the length and thus the volume of the shaft based on length times the bore area.

  17. Space Acceleration Measurement System-II

    NASA Technical Reports Server (NTRS)

    Foster, William

    2009-01-01

    Space Acceleration Measurement System (SAMS-II) is an ongoing study of the small forces (vibrations and accelerations) on the ISS that result from the operation of hardware, crew activities, as well as dockings and maneuvering. Results will be used to generalize the types of vibrations affecting vibration-sensitive experiments. Investigators seek to better understand the vibration environment on the space station to enable future research.

  18. Repulsive force support system feasibility study

    NASA Technical Reports Server (NTRS)

    Boom, R. W.; Abdelsalam, M. K.; Eyssa, Y. M.; Mcintosh, G. E.

    1987-01-01

    A new concept in magnetic levitation and control is introduced for levitation above a plane. A set of five vertical solenoid magnets mounted flush below the plane supports and controls the model in five degrees of freedom. The compact system of levitation coils is contained in a space 2.4 m (96 in) diameter by 1 m (40 in) deep with the top of the levitation system 0.9 m (36 in) below the center line of the suspended model. The levitated model has a permanent magnet core held in position by the five parallel superconductive solenoids symmetrically located in a circle. The control and positioning system continuously corrects for model position in five dimensions using computer current pulses superimposed on the levitation coil base currents. The conceptual designs include: superconductive and Nd-Fe-B permanent magnet model cores and levitation solenoids of either superconductive, cryoresistive, or room temperature windings.

  19. Performance enhancement of a Lorentz force velocimeter using a buoyancy-compensated magnet system

    NASA Astrophysics Data System (ADS)

    Ebert, R.; Leineweber, J.; Resagk, C.

    2015-07-01

    Lorentz force velocimetry (LFV) is a highly feasible method for measuring flow rate in a pipe or a duct. This method has been established for liquid metal flows but also for electrolytes such as saltwater. A decrease in electrical conductivity of the medium causes a decrease of the Lorentz force which needs to be resolved, affecting the accuracy of the measurement. We use an electrical force compensation (EFC) balance for the determination of the tiny force signals in a test channel filled with electrolyte solution. It is used in a 90°-rotated orientation with a magnet system hanging vertically on its load bar. The thin coupling elements of its parallel guiding system limit the mass of the magnets to 1 kg. To overcome this restriction, which limits the magnetic flux density and hence the Lorentz forces, a weight force compensation mechanism is developed. Therefore, different methods such as air bearing are conceivable, but for the elimination of additional horizontal force components which would disturb the force signal, only compensation by lift force provided by buoyancy is reasonable. We present a swimming body setup that will allow larger magnet systems than before, because a large amount of the weight force will be compensated by this lift force. Thus the implementation of this concept has to be made with respect to hydrodynamical and mechanical stability. This is necessary to avoid overturning of the swimming body setup and to prevent inelastic deformation. Additionally, the issue will be presented and discussed whether thermal convection around the lifting body diminishes the signal-to-noise ratio (SNR) significantly or not.

  20. Calibration procedure of measuring system for vehicle wheel load estimation

    NASA Astrophysics Data System (ADS)

    Kluziewicz, M.; Maniowski, M.

    2016-09-01

    The calibration procedure of wheel load measuring system is presented. Designed method allows estimation of selected wheel load components while the vehicle is in motion. Mentioned system is developed to determine friction forces between tire and road surface, basing on measured internal reaction forces in wheel suspension mechanism. Three strain gauge bridges and three-component piezoelectric load cell are responsible for internal force measurement in suspension components, two wire sensors are measuring displacements. External load is calculated via kinematic model of suspension mechanism implemented in Matlab environment. In the described calibration procedure, internal reactions are measured on a test stand while the system is loaded by a force of known direction and value.

  1. Measurement of the Shear Lift Force on a Bubble in a Channel Flow

    NASA Technical Reports Server (NTRS)

    Nahra, Henry K.; Motil, Brian; Skor, Mark

    2005-01-01

    Two-phase flow systems play vital roles in the design of some current and anticipated space applications of two-phase systems which include: thermal management systems, transfer line flow in cryogenic storage, space nuclear power facilities, design and operation of thermal bus, life support systems, propulsion systems, In Situ Resource Utilization (ISRU), and space processes for pharmaceutical applications. The design of two-phase flow systems for space applications requires a clear knowledge of the behaviors of the dispersed phase (bubble), its interaction with the continuous phase (liquid) and its effect on heat and mass transfer processes, The need to understand the bubble generation process arises from the fact that for all space applications, the size and distribution of bubbles are extremely crucial for heat and mass transfer control. One important force in two-phase flow systems is the lift force on a bubble or particle in a liquid shear flow. The shear lift is usually overwhelmed by buoyancy in normal gravity, but it becomes an important force in reduced gravity. Since the liquid flow is usually sheared because of the confining wall, the trajectories of bubbles and particles injected into the liquid flow are affected by the shear lift in reduced gravity. A series of experiments are performed to investigate the lift force on a bubble in a liquid shear flow and its effect on the detachment of a bubble from a wall under low gravity conditions. Experiments are executed in a Poiseuille flow in a channel. An air-water system is used in these experiments that are performed in the 2.2 second drop tower. A bubble is injected into the shear flow from a small injector and the shear lift is measured while the bubble is held stationary relative to the fluid. The trajectory of the bubble prior, during and after its detachment from the injector is investigated. The measured shear lift force is calculated from the trajectory of the bubble at the detachment point. These

  2. Understanding force-generating microtubule systems through in vitro reconstitution

    PubMed Central

    Kok, Maurits; Dogterom, Marileen

    2016-01-01

    ABSTRACT Microtubules switch between growing and shrinking states, a feature known as dynamic instability. The biochemical parameters underlying dynamic instability are modulated by a wide variety of microtubule-associated proteins that enable the strict control of microtubule dynamics in cells. The forces generated by controlled growth and shrinkage of microtubules drive a large range of processes, including organelle positioning, mitotic spindle assembly, and chromosome segregation. In the past decade, our understanding of microtubule dynamics and microtubule force generation has progressed significantly. Here, we review the microtubule-intrinsic process of dynamic instability, the effect of external factors on this process, and how the resulting forces act on various biological systems. Recently, reconstitution-based approaches have strongly benefited from extensive biochemical and biophysical characterization of individual components that are involved in regulating or transmitting microtubule-driven forces. We will focus on the current state of reconstituting increasingly complex biological systems and provide new directions for future developments. PMID:27715396

  3. [Professional psychological selection system in the Air Force - 50 years].

    PubMed

    Pokrovskiĭ, B L

    2014-08-01

    Given the data about the establishment of the professional psychological selection system in the Air Force in 1958-1964 in the NIIIAM Air Force by the team psychological department under the leadership of K.K.Platonova. Given the names of the developers of this system and given the results of their research. The result of all made work the order of Air Force Commander about the introduction of the psychological selection in Higher Military Aviation School of Pilots, starting from a set of 1964 became. Recommendations for professional psychological selection of a wide range of aviation professionals in various fields, and in the future - and other professionals of the Armed Forces, became the results of future work.

  4. Determination of External Forces in Alpine Skiing Using a Differential Global Navigation Satellite System

    PubMed Central

    Gilgien, Matthias; Spörri, Jörg; Chardonnens, Julien; Kröll, Josef; Müller, Erich

    2013-01-01

    In alpine ski racing the relationships between skier kinetics and kinematics and their effect on performance and injury-related aspects are not well understood. There is currently no validated system to determine all external forces simultaneously acting on skiers, particularly under race conditions and throughout entire races. To address the problem, this study proposes and assesses a method for determining skier kinetics with a single lightweight differential global navigation satellite system (dGNSS). The dGNSS kinetic method was compared to a reference system for six skiers and two turns each. The pattern differences obtained between the measurement systems (offset ± SD) were −26 ± 152 N for the ground reaction force, 1 ± 96 N for ski friction and −6 ± 6 N for the air drag force. The differences between turn means were small. The error pattern within the dGNSS kinetic method was highly repeatable and precision was therefore good (SD within system: 63 N ground reaction force, 42 N friction force and 7 N air drag force) allowing instantaneous relative comparisons and identification of discriminative meaningful changes. The method is therefore highly valid in assessing relative differences between skiers in the same turn, as well as turn means between different turns. The system is suitable to measure large capture volumes under race conditions. PMID:23917257

  5. Landing Force Organizational Systems Study (LFOSS).

    DTIC Science & Technology

    1979-01-01

    ion Bxecut iwe". o Should we convert from our present acquisition management system to the "Program Manager Method "? o How can we more fully...retransmission. o Capable of sophisticated error detection ^in<] correction. o Better protect ion against electronic warfare (EW). o The capability of...voice telephone. In 1986, another secure voice telephone, the ANDVT (Advanced Narrowband Digital Voice Terminal), will extend the secure voice and data

  6. Haptic control of the hand force feedback system

    NASA Astrophysics Data System (ADS)

    Prisco, Giuseppe M.; Ortiz, Massimiliano; Barbagli, Frederico; Avizzano, Carlo A.; Bergamasco, Massimo

    1999-11-01

    The Hand Force Feedback System is an anthropomorphic haptic interface for the replication of the forces arising during grasping and fine manipulation operations. It is composed of four independent finger dorsal exoskeletons which wrap up four fingers of the human hand (the little finger is excluded). Each finger possesses three electrically actuated DOF placed in correspondence with the human finger flexion axes and a passive DOF allowing finger abduction movements.

  7. Systems Measures of Water Distribution System Resilience

    SciTech Connect

    Klise, Katherine A.; Murray, Regan; Walker, La Tonya Nicole

    2015-01-01

    Resilience is a concept that is being used increasingly to refer to the capacity of infrastructure systems to be prepared for and able to respond effectively and rapidly to hazardous events. In Section 2 of this report, drinking water hazards, resilience literature, and available resilience tools are presented. Broader definitions, attributes and methods for measuring resilience are presented in Section 3. In Section 4, quantitative systems performance measures for water distribution systems are presented. Finally, in Section 5, the performance measures and their relevance to measuring the resilience of water systems to hazards is discussed along with needed improvements to water distribution system modeling tools.

  8. Automated ac galvanomagnetic measurement system

    NASA Technical Reports Server (NTRS)

    Szofran, F. R.; Espy, P. N.

    1985-01-01

    An automated, ac galvanomagnetic measurement system is described. Hall or van der Pauw measurements in the temperature range 10-300 K can be made at a preselected magnetic field without operator attendance. Procedures to validate sample installation and correct operation of other system functions, such as magnetic field and thermometry, are included. Advantages of ac measurements are discussed.

  9. Direct measurement of the intermolecular forces between counterion-condensed DNA double helices. Evidence for long range attractive hydration forces.

    PubMed

    Rau, D C; Parsegian, V A

    1992-01-01

    Rather than acting by modifying van der Waals or electrostatic double layer interactions or by directly bridging neighboring molecules, polyvalent ligands bound to DNA double helices appear to act by reconfiguring the water between macromolecular surfaces to create attractive long range hydration forces. We have reached this conclusion by directly measuring the repulsive forces between parallel B-form DNA double helices pushed together from the separations at which they have self organized into hexagonal arrays of parallel rods. For all of the wide variety of "condensing agents" from divalent Mn to polymeric protamines, the resulting intermolecular force varies exponentially with a decay rate of 1.4-1.5 A, exactly one-half that seen previously for hydration repulsion. Such behavior qualitatively contradicts the predictions of all electrostatic double layer and van der Waals force potentials previously suggested. It fits remarkably well with the idea, developed and tested here, that multivalent counterion adsorption reorganizes the water at discrete sites complementary to unadsorbed sites on the apposing surface. The measured strength and range of these attractive forces together with their apparent specificity suggest the presence of a previously unexpected force in molecular organization.

  10. Direct measurement of the intermolecular forces between counterion-condensed DNA double helices. Evidence for long range attractive hydration forces.

    PubMed Central

    Rau, D C; Parsegian, V A

    1992-01-01

    Rather than acting by modifying van der Waals or electrostatic double layer interactions or by directly bridging neighboring molecules, polyvalent ligands bound to DNA double helices appear to act by reconfiguring the water between macromolecular surfaces to create attractive long range hydration forces. We have reached this conclusion by directly measuring the repulsive forces between parallel B-form DNA double helices pushed together from the separations at which they have self organized into hexagonal arrays of parallel rods. For all of the wide variety of "condensing agents" from divalent Mn to polymeric protamines, the resulting intermolecular force varies exponentially with a decay rate of 1.4-1.5 A, exactly one-half that seen previously for hydration repulsion. Such behavior qualitatively contradicts the predictions of all electrostatic double layer and van der Waals force potentials previously suggested. It fits remarkably well with the idea, developed and tested here, that multivalent counterion adsorption reorganizes the water at discrete sites complementary to unadsorbed sites on the apposing surface. The measured strength and range of these attractive forces together with their apparent specificity suggest the presence of a previously unexpected force in molecular organization. Images FIGURE 1 PMID:1540693

  11. Application of a positioning and measuring machine for metrological long-range scanning force microscopy

    NASA Astrophysics Data System (ADS)

    Hausotte, T.; Jaeger, G.; Manske, E.; Hofmann, N.; Dorozhovets, N.

    2005-08-01

    This article deals with a high-precision three-dimensional positioning and measuring machine and its application as a metrological long-range scanning force microscope. At the Institute of Process Measurement and Sensor Technology of the Technische Universitaet Ilmenau an interferometric nanopositioning and nanomeasuring machine has been developed. Which is able to achieve a resolution of less than 0.1 nm over the entire positioning and measurement range of 25 mm x 25 mm x 5 mm and is traceable to the length standard. The Abbe offset-free design in conjunction with a corner mirror as a reference coordinate system provides extraordinary accuracy. The integration of several probe systems and nanotools (AFM, STM, focus sensor, tactile probes) makes the nanopositioning and nanomeasuring machine suitable for various tasks in the micro- and nanotechnologies. Various probe systems have been integrated in the last few years. For example, a commercial piezo tube AFM was integrated and tested. Additionally, interferometeric measurement systems of the nanopositioning and nanomeasuring machine enables the calibration of probe systems. Also in order to achieve the best possible measurement results special probe systems have been developed and tested and are discussed briefly.

  12. Force Measurement Using Non-Restrained Models In A Shock Tunnel

    NASA Astrophysics Data System (ADS)

    Tanno, Hideyuki; Sato, Kazuo; Komuro, Tomoyuki; Takahashi, Massahiro; Itoh, Katsuhiro; Fujita, Kazuhisa; Laurence, Stuart; Hannemann, Klaus

    2011-05-01

    A novel force measurement technique has been developed at the impulsive facility HIEST, in which the test model is completely non-restrained for the duration of the test, so it experiences free-flight conditions for a period on the order of milliseconds. This technique was demonstrated with a three-component aerodynamic force measurement with a blunted cone of total length 318 mm and a total mass of 22 kg. At the beginning of the wind tunnel test, the blunted cone test model was suspended from electromagnets fixed on the test-section ceiling. The model was released when a triggering signal arrived from the tunnel start signal. The model then fell so that it met the hypersonic test flow just as it arrived in the test section, and made a soft landing on a model catcher with four hydraulic shock absorbers. A miniature model-onboard data-logger, which was a key technology for this technique, was also developed in order to store the measured data. The data-logger was designed to be small enough to be instrumented in test models, with an overall size of 50 mm x 70 mm x 50 mm, including batteries. Since the logger was designed to measure force and pressure, it includes six piezoelectric amplifiers and four piezoresistive amplifiers, as well as high-speed analog-digital converters, which digitize the measured data with 16-bit resolution. The logger’s sampling rate and sample size are 500 kHz and 200 ms, respectively. The logger waits for a trigger signal (accelerometer output) and then starts to take measurements. The trigger threshold and pre-trigger delay time can be adjusted arbitrarily. Measured data is stored to static memory for transfer to a PC via a USB interface after a wind tunnel test. To demonstrate the entire measurement system, wind tunnel experiments were conducted in HIEST. In the present wind tunnel test campaign, records of pressure and axial force were obtained under conditions of H0 = 4 MJ/kg, P0 = 14 MPa. This demonstrated that the system worked

  13. Role of silver ions in destabilization of intermolecular adhesion forces measured by atomic force microscopy in Staphylococcus epidermidis biofilms.

    PubMed

    Chaw, K C; Manimaran, M; Tay, Francis E H

    2005-12-01

    In this paper, we report on the potential use of atomic force microscopy (AFM) as a tool to measure the intermolecular forces in biofilm structures and to study the effect of silver ions on sessile Staphylococcus epidermidis cell viability and stability. We propose a strategy of destabilizing the biofilm matrix by reducing the intermolecular forces within the extracellular polymeric substances (EPSs) using a low concentration (50 ppb) of silver ions. Our AFM studies on the intermolecular forces within the EPSs of S. epidermidis RP62A and S.epidermidis 1457 biofilms suggest that the silver ions can destabilize the biofilm matrix by binding to electron donor groups of the biological molecules. This leads to reductions in the number of binding sites for hydrogen bonds and electrostatic and hydrophobic interactions and, hence, the destabilization of the biofilm structure.

  14. Optimum control forces for multibody systems with intermittent motion

    NASA Technical Reports Server (NTRS)

    Ider, Sitki Kemal; Amirouche, F. M. L.

    1989-01-01

    The objective is to address the continuity of motion when a dynamical system is suddenly subjected to constraint conditions. Motion discontinuity due to the initial constraint violation is avoided by prior control forces that adjust the motion and yield velocity and acceleration consistent at the point of application of the constraint. The optimum control forces are determined for a specified control interval. The method proposed provides an optimum adjustment of the system's motion and assures that the stresses developed at the system components are kept within acceptable limits. The procedures developed will be illustrated making use of inequality constraints applied to obstacle avoidance problems in robotics.

  15. Measurement of wheelchair contact force with a low cost bench test.

    PubMed

    Silva, L C A; Dedini, F G; Corrêa, F C; Eckert, J J; Becker, M

    2016-02-01

    In mechanical engineering, it is well established that contact between the tire and the ground is a key parameter in characterizing the dynamic behavior of vehicles and an important factor in design control. Therefore, it is an important part of dynamic simulation models for vehicles, including wheelchairs. This work presents a bench test designed to experimentally monitor and measure the forces transmitted to the ground by a moving wheel. The test bench is composed of a table and a track with a fixed wheel structure and powertrain system. The table is an integrated structure that measures the longitudinal and lateral forces produced by tire contact. This table allows characterization of the tire and tests the tire under varying loads at different slip and camber angles. Additionally, the test bench can also be used to evaluate other tires, such as caster tires. The performances of the new device are illustrated, and the results show the differences between tires, which are related to the dynamic behaviors of wheelchair model. Finally, preliminary experiments performed using the test bench have shown that it is able to monitor and measure the forces generated by the contact between the tire and the ground.

  16. Thin-film dielectric elastomer sensors to measure the contraction force of smooth muscle cells

    NASA Astrophysics Data System (ADS)

    Araromi, O.; Poulin, A.; Rosset, S.; Favre, M.; Giazzon, M.; Martin-Olmos, C.; Liley, M.; Shea, H.

    2015-04-01

    The development of thin-film dielectric elastomer strain sensors for the characterization of smooth muscle cell (SMC) contraction is presented here. Smooth muscle disorders are an integral part of diseases such as asthma and emphysema. Analytical tools enabling the characterization of SMC function i.e. contractile force and strain, in a low-cost and highly parallelized manner are necessary for toxicology screening and for the development of new and more effective drugs. The main challenge with the design of such tools is the accurate measurement of the extremely low contractile cell forces expected as a result of SMC monolayer contraction (as low as ~ 100 μN). Our approach utilizes ultrathin (~5 μm) and soft elastomer membranes patterned with elastomer-carbon composite electrodes, onto which the SMCs are cultured. The cell contraction induces an in-plane strain in the elastomer membrane, predicted to be in the order 1 %, which can be measured via the change in the membrane capacitance. The cell force can subsequently be deduced knowing the mechanical properties of the elastomer membrane. We discuss the materials and fabrication methods selected for our system and present preliminary results indicating their biocompatibility. We fabricate functional capacitive senor prototypes with good signal stability over the several hours (~ 0.5% variation). We succeed in measuring in-plane strains of 1 % with our fabricated devices with good repeatability and signal to noise ratio.

  17. Measuring colloidal forces with the magnetic chaining technique

    NASA Astrophysics Data System (ADS)

    Dreyfus, R.; Lacoste, D.; Bibette, J.; Baudry, J.

    2009-02-01

    In 1994 Leal Calderon et al. (Phys. Rev. Lett. 72, 2959 (1994)) introduced the magnetic chaining technique to directly probe the force-distance profile between colloidal particles. In this paper, we revisit this approach in two ways. First, we describe a new experimental design which allows us to utilize sample volumes as low as a few microliters, involving femtomoles of surface active macromolecules. Secondly, we extensively describe the characterization and preparation of the magnetic colloids, and we give a quantitative evaluation of performance and resolution of the technique in terms of force and interparticle separation.

  18. 10. DETAIL SHOWING THRUST MEASURING SYSTEM. Looking up from the ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. DETAIL SHOWING THRUST MEASURING SYSTEM. Looking up from the test stand deck to east. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Test Stand 1-A, Test Area 1-120, north end of Jupiter Boulevard, Boron, Kern County, CA

  19. Measurement Systems Advisory Group

    DTIC Science & Technology

    1974-04-01

    noted with the aluminum wire used in the lacing. For these reasons the tests were concluded and deemed unsatisfactory. The second system tested was an...vehicle for "bringing many particulate pollutants into contact with the tape or magnetic heads, e.g., from deodorant spray powders, face powder and

  20. Structure of force networks in tapped particulate systems of disks and pentagons. II. Persistence analysis.

    PubMed

    Kondic, L; Kramár, M; Pugnaloni, Luis A; Carlevaro, C Manuel; Mischaikow, K

    2016-06-01

    In the companion paper [Pugnaloni et al., Phys. Rev. E 93, 062902 (2016)10.1103/PhysRevE.93.062902], we use classical measures based on force probability density functions (PDFs), as well as Betti numbers (quantifying the number of components, related to force chains, and loops), to describe the force networks in tapped systems of disks and pentagons. In the present work, we focus on the use of persistence analysis, which allows us to describe these networks in much more detail. This approach allows us not only to describe but also to quantify the differences between the force networks in different realizations of a system, in different parts of the considered domain, or in different systems. We show that persistence analysis clearly distinguishes the systems that are very difficult or impossible to differentiate using other means. One important finding is that the differences in force networks between disks and pentagons are most apparent when loops are considered: the quantities describing properties of the loops may differ significantly even if other measures (properties of components, Betti numbers, force PDFs, or the stress tensor) do not distinguish clearly or at all the investigated systems.

  1. Development of a Microforce Sensor and Its Array Platform for Robotic Cell Microinjection Force Measurement.

    PubMed

    Xie, Yu; Zhou, Yunlei; Lin, Yuzi; Wang, Lingyun; Xi, Wenming

    2016-04-06

    Robot-assisted cell microinjection, which is precise and can enable a high throughput, is attracting interest from researchers. Conventional probe-type cell microforce sensors have some real-time injection force measurement limitations, which prevent their integration in a cell microinjection robot. In this paper, a novel supported-beam based cell micro-force sensor with a piezoelectric polyvinylidine fluoride film used as the sensing element is described, which was designed to solve the real-time force-sensing problem during a robotic microinjection manipulation, and theoretical mechanical and electrical models of the sensor function are derived. Furthermore, an array based cell-holding device with a trapezoidal microstructure is micro-fabricated, which serves to improve the force sensing speed and cell manipulation rates. Tests confirmed that the sensor showed good repeatability and a linearity of 1.82%. Finally, robot-assisted zebrafish embryo microinjection experiments were conducted. These results demonstrated the effectiveness of the sensor working with the robotic cell manipulation system. Moreover, the sensing structure, theoretical model, and fabrication method established in this study are not scale dependent. Smaller cells, e.g., mouse oocytes, could also be manipulated with this approach.

  2. Development of a Microforce Sensor and Its Array Platform for Robotic Cell Microinjection Force Measurement

    PubMed Central

    Xie, Yu; Zhou, Yunlei; Lin, Yuzi; Wang, Lingyun; Xi, Wenming

    2016-01-01

    Robot-assisted cell microinjection, which is precise and can enable a high throughput, is attracting interest from researchers. Conventional probe-type cell microforce sensors have some real-time injection force measurement limitations, which prevent their integration in a cell microinjection robot. In this paper, a novel supported-beam based cell micro-force sensor with a piezoelectric polyvinylidine fluoride film used as the sensing element is described, which was designed to solve the real-time force-sensing problem during a robotic microinjection manipulation, and theoretical mechanical and electrical models of the sensor function are derived. Furthermore, an array based cell-holding device with a trapezoidal microstructure is micro-fabricated, which serves to improve the force sensing speed and cell manipulation rates. Tests confirmed that the sensor showed good repeatability and a linearity of 1.82%. Finally, robot-assisted zebrafish embryo microinjection experiments were conducted. These results demonstrated the effectiveness of the sensor working with the robotic cell manipulation system. Moreover, the sensing structure, theoretical model, and fabrication method established in this study are not scale dependent. Smaller cells, e.g., mouse oocytes, could also be manipulated with this approach. PMID:27058545

  3. Comparison of optical and electrical measurements of the pantograph-catenary contact force

    NASA Astrophysics Data System (ADS)

    Bocciolone, Marco; Bucca, Giuseppe; Collina, Andrea; Comolli, Lorenzo

    2010-09-01

    In railway engineering the monitoring of contact force between pantograph and catenary gives information about the interaction between the two systems and it is useful to check the status of the overhead line. Indeed the failure of the catenary is one of the main causes of out of order problems. This study was conducted in a test campaign on an underground train instrumented with sensors able to monitor the line status. One of the more important measured quantities is the pantograph contact force, and two measurement systems were implemented: one optical and another electrical. The optical one was based on FBG sensors applied on the pantograph collector strip; the electrical one was based on two load cells positioned at the sides of the collector strip. The in-line measurements show that the optical solution is very promising, providing very reliable results that can be successfully used in the monitoring application, allowing the determination of the critical point in the line. The thermal compensation of any FBG sensors is a known problem and here is no exception: a thermal compensator was used to get also mean value measurements and the results are discussed.

  4. Measuring equilibrants with a bracket-mounted force sensor

    NASA Astrophysics Data System (ADS)

    Kingman, Robert; Maddox, David

    1999-03-01

    One of the important concepts in introductory physics is vectors and their addition. We have developed a method that restores simplicity to teaching the idea of adding several forces, and does it with an experimental error of one percent or less.

  5. Ozone measurement systems improvements studies

    NASA Technical Reports Server (NTRS)

    Thomas, R. W.; Guard, K.; Holland, A. C.; Spurling, J. F.

    1974-01-01

    Results are summarized of an initial study of techniques for measuring atmospheric ozone, carried out as the first phase of a program to improve ozone measurement techniques. The study concentrated on two measurement systems, the electro chemical cell (ECC) ozonesonde and the Dobson ozone spectrophotometer, and consisted of two tasks. The first task consisted of error modeling and system error analysis of the two measurement systems. Under the second task a Monte-Carlo model of the Dobson ozone measurement technique was developed and programmed for computer operation.

  6. Microbial ecology measurement system

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The sensitivity and potential rapidity of the PIA test that was demonstrated during the feasibility study warranted continuing the effort to examine the possibility of adapting this test to an automated procedure that could be used during manned missions. The effort during this program has optimized the test conditions for two important respiratory pathogens, influenza virus and Mycoplasma pneumoniae, developed a laboratory model automated detection system, and investigated a group antigen concept for virus detection. Preliminary tests on the handling of oropharygeal clinical samples for PIA testing were performed using the adenovirus system. The results obtained indicated that the PIA signal is reduced in positive samples and is increased in negative samples. Treatment with cysteine appeared to reduce nonspecific agglutination in negative samples but did not maintain the signal in positive samples.

  7. Purchasing Productivity Measurement Systems.

    DTIC Science & Technology

    1980-09-01

    Defense More Productive", Perspectives in Defense Management, Winter 1974-1975. 4. Encyclopaedia Britannica, Macropaedia, " Taylor , Frederick Winslow ", v...Some of the earliest successes in Productivity Systems and studies are attributed to Frederick W. Taylor and his concept of Scientific Management...sociological interactions. Taylorism , as it became known, provoked resentment and opposition from labor when it was carried to extremes. It was, however

  8. Patterning in systems driven by nonlocal external forces

    NASA Astrophysics Data System (ADS)

    Luneville, L.; Mallick, K.; Pontikis, V.; Simeone, D.

    2016-11-01

    This work focuses on systems displaying domain patterns resulting from competing external and internal dynamics. To this end, we introduce a Lyapunov functional capable of describing the steady states of systems subject to external forces, by adding nonlocal terms to the Landau Ginzburg free energy of the system. Thereby, we extend the existing methodology treating long-range order interactions, to the case of external nonlocal forces. By studying the quadratic term of this Lyapunov functional, we compute the phase diagram in the temperature versus external field and we determine all possible modulated phases (domain patterns) as a function of the external forces and the temperature. Finally, we investigate patterning in chemical reactive mixtures and binary mixtures under irradiation, and we show that the last case opens the path toward micro-structural engineering of materials.

  9. Patterning in systems driven by nonlocal external forces.

    PubMed

    Luneville, L; Mallick, K; Pontikis, V; Simeone, D

    2016-11-01

    This work focuses on systems displaying domain patterns resulting from competing external and internal dynamics. To this end, we introduce a Lyapunov functional capable of describing the steady states of systems subject to external forces, by adding nonlocal terms to the Landau Ginzburg free energy of the system. Thereby, we extend the existing methodology treating long-range order interactions, to the case of external nonlocal forces. By studying the quadratic term of this Lyapunov functional, we compute the phase diagram in the temperature versus external field and we determine all possible modulated phases (domain patterns) as a function of the external forces and the temperature. Finally, we investigate patterning in chemical reactive mixtures and binary mixtures under irradiation, and we show that the last case opens the path toward micro-structural engineering of materials.

  10. Correlation of embryonic skeletal muscle myotube physical characteristics with contractile force generation on an atomic force microscope-based bio-microelectromechanical systems device

    NASA Astrophysics Data System (ADS)

    Pirozzi, K. L.; Long, C. J.; McAleer, C. W.; Smith, A. S. T.; Hickman, J. J.

    2013-08-01

    Rigorous analysis of muscle function in in vitro systems is needed for both acute and chronic biomedical applications. Forces generated by skeletal myotubes on bio-microelectromechanical cantilevers were calculated using a modified version of Stoney's thin-film equation and finite element analysis (FEA), then analyzed for regression to physical parameters. The Stoney's equation results closely matched the more intensive FEA and the force correlated to cross-sectional area (CSA). Normalizing force to measured CSA significantly improved the statistical sensitivity and now allows for close comparison of in vitro data to in vivo measurements for applications in exercise physiology, robotics, and modeling neuromuscular diseases.

  11. Correlation of embryonic skeletal muscle myotube physical characteristics with contractile force generation on an atomic force microscope-based bio-microelectromechanical systems device

    PubMed Central

    Pirozzi, K. L.; Long, C. J.; McAleer, C. W.; Smith, A. S. T.; Hickman, J. J.

    2013-01-01

    Rigorous analysis of muscle function in in vitro systems is needed for both acute and chronic biomedical applications. Forces generated by skeletal myotubes on bio-microelectromechanical cantilevers were calculated using a modified version of Stoney's thin-film equation and finite element analysis (FEA), then analyzed for regression to physical parameters. The Stoney's equation results closely matched the more intensive FEA and the force correlated to cross-sectional area (CSA). Normalizing force to measured CSA significantly improved the statistical sensitivity and now allows for close comparison of in vitro data to in vivo measurements for applications in exercise physiology, robotics, and modeling neuromuscular diseases. PMID:24046483

  12. Measurement and calculation of forces in a magnetic journal bearing actuator

    NASA Technical Reports Server (NTRS)

    Knight, Josiah; Mccaul, Edward; Xia, Zule

    1991-01-01

    Numerical calculations and experimental measurements of forces from an actuator of the type used in active magnetic journal bearings are presented. The calculations are based on solution of the scalar magnetic potential field in and near the gap regions. The predicted forces from single magnet with steady current are compared with experimental measurements in the same geometry. The measured forces are smaller than calculated ones in the principal direction but are larger than calculated in the normal direction. This combination of results indicate that material and spatial effects other than saturation play roles in determining the force available from an actuator.

  13. DESIGN AND CONSTRUCTION OF A FORCE-REFLECTING TELEOPERATION SYSTEM

    SciTech Connect

    M.A. Ebadian, Ph.D.

    1999-01-01

    For certain applications, such as space servicing, undersea operations, and hazardous material handling tasks in nuclear reactors, the environments can be uncertain, complex, and hazardous. Lives may be in danger if humans were to work under these conditions. As a result, a man-machine system--a teleoperator system--has been developed to work in these types of environments. In a typical teleoperator system, the actual system operates at a remote site; the operator located away from this system usually receives visual information from a video image and/or graphical animation on the computer screen. Additional feedback, such as aural and force information, can significantly enhance performance of the system. Force reflection is a type of feedback in which forces experienced by the remote manipulator are fed back to the manual controller. Various control methods have been proposed for implementation on a teleoperator system. In order to examine different control schemes, a one Degree-Of-Freedom (DOF) Force-Reflecting Manual Controller (FRMC) is constructed and integrated into a PC. The system parameters are identified and constructed as a mathematical model. The Proportional-Integral-Derivative (PID) and fuzzy logic controllers are developed and tested experimentally. Numerical simulation results obtained from the mathematical model are compared with those of experimental data for both types of controllers. In addition, the concept of a telesensation system is introduced. A telesensation system is an advanced teleoperator system that attempts to provide the operator with sensory feedback. In this context, a telesensation system integrates the use of a Virtual Reality (VR) unit, FRMC, and Graphical User Interface (GUI). The VR unit is used to provide the operator with a 3-D visual effect. Various commercial VR units are reviewed and features compared for use in a telesensation system. As for the FRMC, the conceptual design of a 3-DOF FRMC is developed in an effort to

  14. Development of a combined atomic force microscopy and side-view imaging system for mechanotransduction research

    NASA Astrophysics Data System (ADS)

    Beicker, Kellie N.

    Key metrics for understanding cell response to mechanical stimuli include rearrangement of the cytoskeletal and nucleoskeletal structure, induced strains and biochemical distributions; however, structural information during applied stress is limited by our ability to image cells under load. In order to study the mechanics of single cells and subcellular components under load, I have developed a unique imaging system that combines an atomic force microscope (AFM) with both vertical light-sheet (VLS) illumination and a new imaging technique called PRISM - Pathway Rotated Imaging for Sideways Microscopy. The combined AFM and PRISM system facilitates the imaging of cell deformation in the direction of applied force with accompanying pico-Newton resolution force measurements. The additional inclusion of light-sheet microscopy improves the signal-to-noise ratio achieved by illumination of only a thin layer of the cell. This system is capable of pico-newton resolution force measurements with simultaneous side-view high frame rate imaging for single-molecule and single-cell force studies. Longer-term goals for this instrument are to investigate how external mechanical stimuli, specifically single-molecule interactions, alter gene expression, motility, and differentiation. The overall goal of my dissertation work is to design a tool useful for mechanobiology studies of single cells. This requires the design and implementation of PRISM and VLS systems that can be coupled to the standard Asylum AFM on inverted optical microscope. I also examine the strategy and implementation of experimental procedures and data analysis pipelines for single-cell and single-molecule force spectroscopy. These goals can be broken down as follows: • Performed single-molecule force spectroscopy experiments. • Performed single-cell force spectroscopy experiments. • Constructed and characterized the side-view microscopy system. • Applied combined AFM and side-vew microscopy system.

  15. Tissue oxygen measurement system

    NASA Technical Reports Server (NTRS)

    Soller, Babs R. (Inventor)

    2004-01-01

    A device and method in accordance with the invention for determining the oxygen partial pressure (PO.sub.2) of a tissue by irradiating the tissue with optical radiation such that the light is emitted from the tissue, and by collecting the reflected or transmitted light from the tissue to form an optical spectrum. A spectral processor determines the PO.sub.2 level in tissue by processing this spectrum with a previously-constructed spectral calibration model. The tissue may, for example, be disposed underneath a covering tissue, such as skin, of a patient, and the tissue illuminated and light collected through the skin. Alternatively, direct tissue illumination and collection may be effected with a hand-held or endoscopic probe. A preferred system also determines pH from the same spectrum, and the processor may determine critical conditions and issue warnings based on parameter values.

  16. Measurement Methods and Analysis: Forces on Underwater Gliders

    DTIC Science & Technology

    2007-11-02

    resistance. The resistance range will be several M -ohms to fewer than 100 K-ohm. The operation resistance range for a sensor is dependent on the...575.48x2 - 1915.9x + 1973 0 200 400 600 800 1000 1200 1400 1600 1800 2000 0.00 0.50 1.00 1.50 2.00 2.50 Force (lbs) R es is ta nc e (k oh m s) Axial...

  17. Method to measure the force to pull and to break pin bones of fish.

    PubMed

    Balaban, Murat O; Jie, Hubert; Yin Yee, Yin; Alçiçek, Zayde

    2015-02-01

    A texture measurement device was modified to measure the force required to pull pin bones from King salmon (Oncorhynchus tshawytscha), snapper (Pagrus auratus), and kahawai (Arripis trutta). Pulled bones were also subjected to tension to measure the breaking force. For all fish, the pulling force depended on the size of the fish, and on the length of the pin bone (P < 0.05). In general, larger fish required greater pulling force to remove pin bones. For example, fresh small salmon (about 1500 g whole) required 600 g on average to pull pin bones, and large fish (about 3700 g whole) required 850 g. Longer bones required greater pulling force. The breaking force followed the same trend. In general, the breaking force was greater than the pulling force. This allows the removal of the bones without breaking them. There was no statistically significant (P > 0.05) difference between the forces (both pulling and breaking) from fresh and frozen/thawed samples, although in general frozen/thawed samples required less force to pull. With the quantification of pulling and breaking forces for pin bones, it is possible to design and build better, "more intelligent" pin bone removal equipment.

  18. The height of biomolecules measured with the atomic force microscope depends on electrostatic interactions.

    PubMed Central

    Müller, D J; Engel, A

    1997-01-01

    In biological applications of atomic force microscopy, the different surface properties of the biological sample and its support become apparent. Observed height differences between the biomolecule and its supporting surface are thus not only of structural origin, but also depend on the different sample-tip and support-tip interactions. This can result in negative or positive contributions to the measured height, effects that are described by the DLVO (Derjaguin, Landau, Verwey, Overbeek) theory. Experimental verification shows that the electrostatic interactions between tip and sample can strongly influence the result obtained. To overcome this problem, pH and electrolyte concentration of the buffer solution have to be adjusted to screen out electrostatic forces. Under these conditions, the tip comes into direct contact with the surface of support and biological system, even when low forces required to prevent sample deformation are applied. In this case, the measured height can be related to the thickness of the native biological structure. The observed height dependence of the macromolecules on electrolyte concentration makes it possible to estimate surface charge densities. Images FIGURE 1 FIGURE 2 FIGURE 8 FIGURE 10 FIGURE 11 PMID:9284330

  19. Measurement strategy and analytic model to determine firing pin force

    NASA Astrophysics Data System (ADS)

    Lesenciuc, Ioan; Suciu, Cornel

    2016-12-01

    As illustrated in literature, ballistics is a branch of theoretical mechanics, which studies the construction and working principles of firearms and ammunition, their effects, as well as the motions of projectiles and bullets1. Criminalistics identification, as part of judiciary identification represents an activity aimed at finding common traits of different objects, objectives, phenomena and beings, but more importantly, traits that differentiate each of them from similar ones2-4. In judicial ballistics, in the case of rifled firearms it is relatively simple for experts to identify the used weapon from traces left on the projectile, as the rifling of the barrel leaves imprints on the bullet, which remain approximately identical even after the respective weapon is fired 100 times with the same barrel. However, in the case of smoothbore firearms, their identification becomes much more complicated. As the firing cap suffers alterations from being hit by the firing pin, determination of the force generated during impact creates the premises for determining the type of firearm used to shoot the respective cartridge. The present paper proposes a simple impact model that can be used to evaluate the force generated by the firing pin during its impact with the firing cap. The present research clearly showed that each rifle, by the combination of the three investigated parameters (impact force maximum value, its variation diagram, and impact time) leave a unique trace. Application of such a method in ballistics can create the perspectives for formulating clear conclusions that eliminate possible judicial errors in this field.

  20. A Measurement of the Force between Two Current-Carrying Wires

    ERIC Educational Resources Information Center

    Straulino, S.; Cartacci, A.

    2014-01-01

    The measurement of the force acting between two parallel, current-carrying wires is known as Ampère's experiment. A mechanical balance was historically employed to measure that force. We report a simple experiment based on an electronic precision balance that is useful in clearly showing students the existence of this interaction and how to…

  1. Frequency, amplitude, and phase measurements in contact resonance atomic force microscopies.

    PubMed

    Stan, Gheorghe; Solares, Santiago D

    2014-01-01

    The resonance frequency, amplitude, and phase response of the first two eigenmodes of two contact-resonance atomic force microscopy (CR-AFM) configurations, which differ in the method used to excite the system (cantilever base vs sample excitation), are analyzed in this work. Similarities and differences in the observables of the cantilever dynamics, as well as the different effect of the tip-sample contact properties on those observables in each configuration are discussed. Finally, the expected accuracy of CR-AFM using phase-locked loop detection is investigated and quantification of the typical errors incurred during measurements is provided.

  2. Measures of Autonomic Nervous System

    DTIC Science & Technology

    2011-04-01

    Gastro- intestinal Pupillary Response Respiratory Salivary Amylase Vascular Manipulative Body-Based/ Tension-Release Practices Trauma...Physiological Activities ANS Physiological Activities Cardiac Pupillary Response Catecholamines Respiration Cortisol Salivary Amylase Galvanic Skin...Measures of Autonomic Nervous System Regulation Salivary Amylase Measurement Most measures of salivary amylase

  3. Instrument for spatially resolved simultaneous measurements of forces and currents in particle beams

    SciTech Connect

    Spethmann, A. Trottenberg, T. Kersten, H.

    2015-01-15

    The article presents a device for spatially resolved and simultaneous measurements of forces and currents in particle beams, especially in beams composed of ions and neutral atoms. The forces are exerted by the impinging beam particles on a plane circular conductive target plate of 20 mm diameter mounted on a pendulum with electromagnetic force compensation. The force measurement in the micronewton range is achieved by electromagnetic compensation by means of static Helmholtz coils and permanent magnets attached to the pendulum. Exemplary measurements are performed in the 1.2 keV beam of a broad beam ion source. The simultaneous measurements of forces and currents onto the same target are compared with each other and with Faraday cup measurements.

  4. Force Measurement Services at Kebs: AN Overview of Equipment, Procedures and Uncertainty

    NASA Astrophysics Data System (ADS)

    Bangi, J. O.; Maranga, S. M.; Nganga, S. P.; Mutuli, S. M.

    This paper describes the facilities, instrumentation and procedures currently used in the force laboratory at the Kenya Bureau of Standards (KEBS) for force measurement services. The laboratory uses the Force Calibration Machine (FCM) to calibrate force-measuring instruments. The FCM derives its traceability via comparisons using reference transfer force transducers calibrated by the Force Standard Machines (FSM) of a National Metrology Institute (NMI). The force laboratory is accredited to ISO/IEC 17025 by the Germany Accreditation Body (DAkkS). The accredited measurement scope of the laboratory is 1 MN to calibrate force transducers in both compression and tension modes. ISO 376 procedures are used while calibrating force transducers. The KEBS reference transfer standards have capacities of 10, 50, 300 and 1000 kN to cover the full range of the FCM. The uncertainty in the forces measured by the FCM were reviewed and determined in accordance to the new EURAMET calibration guide. The relative expanded uncertainty of force W realized by FCM was evaluated in a range from 10 kN-1 MN, and was found to be 5.0 × 10-4 with the coverage factor k being equal to 2. The overall normalized error (En) of the comparison results was also found to be less than 1. The accredited Calibration and Measurement Capability (CMC) of the KEBS force laboratory was based on the results of those intercomparisons. The FCM enables KEBS to provide traceability for the calibration of class ‘1’ force instruments as per the ISO 376.

  5. Net force on an asymmetrically excited two-atom system from vacuum fluctuations

    NASA Astrophysics Data System (ADS)

    Donaire, M.

    2016-12-01

    A net force on a system of two dissimilar atoms, one of which is excited, is shown to result from their van der Waals interaction. It is accompanied by a net transfer of linear momentum to the quantum fluctuations of the electromagnetic field. This momentum results from the asymmetric interference of the virtual photons scattered off each atom along the interatomic direction, which is in itself a manifestation of the optical theorem. Ultimately, the virtual photons' momentum, of equal strength and opposite direction to the momentum gained by the two-atom system while excited, is released through directional spontaneous emission, which allows for an indirect measure, a posteriori, of the total force on the excited system. A quantitative prediction is made in a two-alkali atom system. It is conjectured that a net force and hence a nonzero momentum of quantum fluctuations take place in any asymmetrically excited system.

  6. A Multi-Channel Method for Detecting Periodic Forced Oscillations in Power Systems

    SciTech Connect

    Follum, James D.; Tuffner, Francis K.

    2016-11-14

    Forced oscillations in electric power systems are often symptomatic of equipment malfunction or improper operation. Detecting and addressing the cause of the oscillations can improve overall system operation. In this paper, a multi-channel method of detecting forced oscillations and estimating their frequencies is proposed. The method operates by comparing the sum of scaled periodograms from various channels to a threshold. A method of setting the threshold to specify the detector's probability of false alarm while accounting for the correlation between channels is also presented. Results from simulated and measured power system data indicate that the method outperforms its single-channel counterpart and is suitable for real-world applications.

  7. Modifications of the structure of the pericellular matrix measured via optical force probe microscopy

    NASA Astrophysics Data System (ADS)

    McLane, Louis; Kramer, Anthony; Chang, Patrick; Curtis, Jennifer

    2013-03-01

    The pericellular matrix is a large protein and polysaccharide rich polymer layer attached to the surface of many cells, and which often extends several microns out from the cell surface into the surrounding extracellular space. Here we study the intrinsic nature and modifications of the structure of the pericellular coat on rat chondrocytes with the use of optical force probe microscopy. Optical force probe studies allow us to make both dynamic force measurements as well as equilibrium force measurements throughout the coat. These force measurements are used to observe the structural change in the coat with the addition of exogenous aggrecan. Not only does addition of exogenous aggrecan dramatically swell our coat to well over twice in size, our analysis indicates that the addition of exogenous aggrecan decreases the mesh size throughout the coat. We speculate that the added aggrecan binds to available binding sites along the hyaluronan chain, both enlarging the coat's size as well as tightening up the opening within the coat. We further suggest that the available binding sites for the exogenous aggrecan are abundant in the outer edges of the coat, as both the dynamic and equilibrium forces in this region are changed. Here, both force measurements show that forces closest to the cell membrane remain relatively unchanged, while the forces in the outer region of the coat are increased. These results are consistent with those obtained with complementary measurements using quantitative particle exclusion assays.

  8. Development and validation of a method to directly measure the cable force during the hammer throw.

    PubMed

    Brice, Sara M; Ness, Kevin F; Rosemond, Doug; Lyons, Keith; Davis, Mark

    2008-05-01

    The development of cable force during hammer-throw turns is crucial to the throw distance. In this paper, we present a method that is capable of measuring cable force in real time and, as it does not interfere with technique, it is capable of providing immediate feedback to coaches and athletes during training. A strain gauge was mounted on the wires of three hammers to measure the tension in the wire and an elite male hammer thrower executed three throws with each hammer. The output from the gauges was recorded by a data logger positioned on the lower back of the thrower. The throws were captured by three high-speed video cameras and the three-dimensional position of the hammer's head was determined by digitizing the images manually. The five best throws were analysed. The force acting on the hammer's head was calculated from Newton's second law of motion and this was compared with the force measured via the strain gauge. Qualitatively the time dependence of the two forces was essentially the same, although the measured force showed more detail in the troughs of the force-time curves. Quantitatively the average difference between the measured and calculated forces over the five throws was 76 N, which corresponds to a difference of 3.8% for a cable force of 2000 N.

  9. A flexible tactile sensor calibration method based on an air-bearing six-dimensional force measurement platform.

    PubMed

    Huang, Bin

    2015-07-01

    A number of common issues related to the process of flexible tactile sensor calibration are discussed in this paper, and an estimate of the accuracy of classical calibration methods, as represented by a weight-pulley device, is presented. A flexible tactile sensor calibration method that is based on a six-dimensional force measurement is proposed on the basis of a theoretical analysis. A high-accuracy flexible tactile sensor calibration bench based on the air-bearing six-dimensional force measurement principle was developed to achieve a technically challenging measurement accuracy of 2% full scale (FS) for three-dimensional (3D) flexible tactile sensor calibration. The experimental results demonstrate that the accuracy of the air-bearing six-dimensional force measurement platform can reach 0.2% FS. Thus, the system satisfies the 3D flexible tactile sensor calibration requirement of 2% FS.

  10. Design and testing of a high-speed treadmill to measure ground reaction forces at the limit of human gait.

    PubMed

    Bundle, Matthew W; Powell, Michael O; Ryan, Laurence J

    2015-09-01

    Investigations focused on the gait and physiological limits of human speed have been on-going for more than a century. However, due to measurement limitation a kinetic understanding of the foot-ground collision and how these dynamics differ between individuals to confer speed and limit gait has only recently begun to come forth. Therefore, we designed and tested an instrumented high-speed force treadmill to measure the forces occurring at the limits of human performance. The treadmill was designed to maximize flexural stiffness and natural frequency by using a honeycomb sandwich panel as the bed surface and a flexible drive shaft between the drive roller and servo motor to reduce the mass of the supported elements which contribute to the system's response frequency. The functional performance of the force treadmill met or exceeded the measurement criteria established for ideal force plates: high natural frequency (z-axis = 113 Hz), low crosstalk between components of the force (Fx/Fz = 0.0020[SD = 0.0010]; Fy/Fz = 0.0016[SD = 0.0003]), a linear response (R(2) > 0.999) for loading with known weights (range: 44-3857 N), and an accuracy of 2.5[SD = 1.7] mm and 2.8[SD = 1.5] mm in the x and y-axes, respectively, for the point of force application. In dynamic testing at running speeds up to 10 m s(-1), the measured durations and magnitudes of force application were similar between the treadmill and over-ground running using a force platform. This design provides a precise instrumented treadmill capable of recording multi-axis ground reaction forces applied during the foot ground contacts of the fastest men and animals known to science.

  11. Advanced Bio-Energy Systems for Air Force Installations.

    DTIC Science & Technology

    1981-10-01

    This investigation was sponsored by the US Air Force to determine the potential of using innovative biomass energy conversion technology interface...base environment before full implementation is possible. The investigation found that a biomass energy island system could be achieved through a

  12. Force control of a multi-arm robot system

    NASA Technical Reports Server (NTRS)

    Alberts, Thomas E.; Soloway, Donald I.

    1988-01-01

    A force-compensated control method for multiple manipulators is presented that allows coordinated manipulation of a jointly grasped object. In this scheme, each arm independently carries out the motions required to realize the desired motion of a prescribed point on the manipulated object. The approach has been implemented and demonstrated on a laboratory system consisting of two industrial, computer-controller manipulators.

  13. Magnetic levitation force measurement on high [Tc] superconducting ceramic/polymer composites

    SciTech Connect

    Unsworth, J.; Du, Jia; Crosby, B.J. ); Macfarlane, J.C. )

    1993-01-01

    An experimental study of magnetic levitation force for 0--3 and 3--3 superconducting ceramic/polymer composites is presented. A simple, inexpensive force versus distance measurement technique is described. The measurements of force against distance or magnetic field show strong hysteretic behavior, which is similar to the sintered superconductor ceramics and is consistent with the hysteresis in magnetization of superconductor. The volume fraction dependence and sample thickness dependence of the levitation forces are also studied for 0--3 composites. Results suggest that the new composite materials are most suitable for levitation applications.

  14. Measurement of cell adhesion force by vertical forcible detachment using an arrowhead nanoneedle and atomic force microscopy

    SciTech Connect

    Ryu, Seunghwan; Hashizume, Yui; Mishima, Mari; Kawamura, Ryuzo; Tamura, Masato; Matsui, Hirofumi; Matsusaki, Michiya; Akashi, Mitsuru; Nakamura, Chikashi

    2014-08-15

    Graphical abstract: - Highlights: • We developed a method to measure cell adhesion force by detaching cell using an arrowhead nanoneedle and AFM. • A nanofilm consisting of fibronectin and gelatin was formed on cell surface to reinforce the cell cortex. • By the nanofilm lamination, detachment efficiencies of strongly adherent cell lines were improved markedly. - Abstract: The properties of substrates and extracellular matrices (ECM) are important factors governing the functions and fates of mammalian adherent cells. For example, substrate stiffness often affects cell differentiation. At focal adhesions, clustered–integrin bindings link cells mechanically to the ECM. In order to quantitate the affinity between cell and substrate, the cell adhesion force must be measured for single cells. In this study, forcible detachment of a single cell in the vertical direction using AFM was carried out, allowing breakage of the integrin–substrate bindings. An AFM tip was fabricated into an arrowhead shape to detach the cell from the substrate. Peak force observed in the recorded force curve during probe retraction was defined as the adhesion force, and was analyzed for various types of cells. Some of the cell types adhered so strongly that they could not be picked up because of plasma membrane breakage by the arrowhead probe. To address this problem, a technique to reinforce the cellular membrane with layer-by-layer nanofilms composed of fibronectin and gelatin helped to improve insertion efficiency and to prevent cell membrane rupture during the detachment process, allowing successful detachment of the cells. This method for detaching cells, involving cellular membrane reinforcement, may be beneficial for evaluating true cell adhesion forces in various cell types.

  15. Measurement of Giardia lamblia adhesion force using an integrated microfluidic assay.

    PubMed

    Lu, Ling; Zheng, Guo-Xia; Yang, Yu-Suo; Feng, Cheng-Yu; Liu, Fang-Fang; Wang, Yun-Hua

    2017-02-01

    The mechanisms how Giardias attach to the intestinal epithelium remain unclear. None of the methods currently being used to measure the attachment force could provide a continuous nutrition supply and a micro-aerobic atmosphere to the Giardia. Besides, they are all labor-intensive. In the present research, a microfluidic method based on electric circuit analogy was developed. The input fluid flowed through the inlet channel with different lengths and was distributed in four assay chambers. Shear force gradients were generated in chambers, too. This allowed an easy control of fluids and the shear forces. Most importantly, the shear stress large enough to detach Giardia could be generated in laminar flow regime. Moreover, analysis could be accomplished in one single test. By applying inlet flow rates of 30, 60, and 120 μL ml(-1), shear force gradients ranging from 19.47 to 60.50 Pa were generated. The adhesion forces of trophozoites were analyzed and the EC50 of the force that caused 50% trophozoites detachment was calculated as 36.60 Pa. This paper presents a novel method for measurement of Giardia adhesion force. Graphical Abstract Measurement of Giardia adhesion force. Various of flow rates were applied to generate different shear forces and Giardia trophozoites remaining attached were counted (a-c). The percentages of attachment vs shear stress were plotted and the EC50 of adhesion force was calculated (d).

  16. On the correct interpretation of measured force and calculation of material stress in biaxial tests.

    PubMed

    Nolan, D R; McGarry, J P

    2016-01-01

    Biaxial tests are commonly used to investigate the mechanical behaviour of soft biological tissues and polymers. In the current paper we uncover a fundamental problem associated with the calculation of material stress from measured force in standard biaxial tests. In addition to measured forces, localised unmeasured shear forces also occur at the clamps and the inability to quantify such forces has significant implications for the calculation of material stress from simplified force-equilibrium relationships. Unmeasured shear forces are shown to arise due to two distinct competing contributions: (1) negative shear force due to stretching of the orthogonal clamp, and (2) positive shear force as a result of material Poisson-effect. The clamp shear force is highly dependent on the specimen geometry and the clamp displacement ratio, as consequently, is the measured force-stress relationship. Additionally in this study we demonstrate that commonly accepted formulae for the estimation of material stress in the central region of a cruciform specimen are highly inaccurate. A reliable empirical correction factor for the general case of isotropic materials must be a function of specimen geometry and the biaxial clamp displacement ratio. Finally we demonstrate that a correction factor for the general case of non-linear anisotropic materials is not feasible and we suggest the use of inverse finite element analysis as a practical means of interpreting experimental data for such complex materials.

  17. Force measurement reveals structure of a confined liquid: Observation of the impenetrable space

    NASA Astrophysics Data System (ADS)

    Amano, Ken-ichi; Tanaka, Eisuke; Kobayashi, Kazuya; Onishi, Hiroshi; Nishi, Naoya; Sakka, Tetsuo

    2015-11-01

    Understanding of the structure of a confined liquid is an important subject for developments in surface science, tribology, biophysics, etc. In this study, we propose its measurement theory and conduct a test of the theory. The measurement theory uses a force curve obtained by surface force apparatus and transforms the force curve into the confined liquid structure. To check the validity of the measurement theory, we perform a verification test in a computer. It is found that the theory can semi-quantitatively reproduce the confined liquid structure. The theory will lead to the first step toward measuring a liquid structure confined between optically impenetrable substrates.

  18. Isometric knee extension force measured using a handheld dynamometer with and without belt-stabilization.

    PubMed

    Bohannon, Richard W; Kindig, Jeffrey; Sabo, Gregory; Duni, Allison E; Cram, Peter

    2012-10-01

    Although evidence suggests that tester strength limits the magnitude of isometric force that can be measured using a handheld dynamometer (HHD), previous studies have not investigated the actual limits of force magnitude that can be measured by trained testers when a belt is or is not used to stabilize the dynamometer. Therefore, the primary aims of this study were to determine: 1) the magnitude of knee extension forces that could be measured with a HHD with and without belt-stabilization and 2) the relationship between tester characteristics and knee extension strength measured with and without belt-stabilization. The characteristics of 20 trained testers (10 men, 10 women) were determined. Thereafter, they measured isometric knee extension strength using the MicroFET HHD with and without belt-stabilization. Paired t-tests were used to compare maximal knee extension forces under two conditions. Pearson product-moment correlations were calculated to determine the relationship between tester characteristics and knee extension forces measured under the two conditions. Knee extension forces (Newtons) measured using the HHD without belt-stabilization (470.6 ± 179.8) were significantly lower (t= -7.968, p<0.001) than those measured with belt-stabilization (866.9 ± 131.7). Pearson correlations between tester characteristics and knee extension forces measured with no belt-stabilization were all statistically significant (p ≤ 0.002); however, the correlations were not statistically significant under the belt-stabilization condition. The forces that can be measured with a HHD are higher than those suggested by previous researchers. By rectifying limitations imposed by tester strength, use of a belt allows very high knee extension forces to be measured.

  19. Comparisons of Force Measurement Methods for DBD Plasma Actuators in Quiescent Air

    NASA Technical Reports Server (NTRS)

    Hoskinson, Alan R.; Hershkowitz, Noah; Ashpis, David E.

    2009-01-01

    We have performed measurements of the force induced by both single (one electrode insulated) and double (both electrodes insulated) dielectric barrier discharge plasma actuators in quiescent air. We have shown that, for single barrier actuators with cylindrical exposed electrodes, as the electrode diameter decrease the force efficiencies increase much faster than a previously reported linear trend. This behavior has been experimentally verified using two different measurement techniques: stagnation probe measurements of the induced flow velocity and direct measurement of the force using an electronic balance. Actuators with rectangular cross-section exposed electrodes do not show the same rapid increase at small thicknesses. We have also shown that the induced force is independent of the material used for the exposed electrode. The same techniques have shown that the induced force of a double barrier actuator increases with decreasing narrow electrode diameter.

  20. Force Measurements of Single and Double Barrier DBD Plasma Actuators in Quiescent Air

    NASA Technical Reports Server (NTRS)

    Hoskinson, Alan R.; Hershkowitz, Noah; Ashpis, David E.

    2008-01-01

    We have performed measurements of the force induced by both single (one electrode insulated) and double (both electrodes insulated) dielectric barrier discharge plasma actuators in quiescent air. We have shown that, for single barrier actuators, as the electrode diameter decreased below those values previously studied the induced Force increases exponentially rather than linearly. This behavior has been experimentally verified using two different measurement techniques: stagnation probe measurements of the induced flow velocity and direct measurement of the force using an electronic balance. In addition, we have shown the the induced force is independent of the material used for the exposed electrode. The same techniques have shown that the induced force of a double barrier actuator increases with decreasing narrow electrode diameter.

  1. Combined measures of movement and force variability distinguish Parkinson’s disease from essential tremor

    PubMed Central

    Poon, Cynthia; Robichaud, Julie A.; Corcos, Daniel M.; Goldman, Jennifer G.; Vaillancourt, David E.

    2011-01-01

    Objective To examine whether behavioral and electrophysiological measures of motor performance accurately differentiate Parkinson’s disease (PD) and essential tremor (ET). Methods Twenty-four patients (12 PD; 12 ET) performed isometric force, ballistic movements, and tremor tasks. Receiver operating characteristic (ROC) analyses were conducted on all dependent measures that were significantly different between the two patient groups. Results Patients with PD were more impaired on measures of movement deceleration than ET. Patients with ET were more impaired on measures of force variability than PD. ROC analyses revealed that sensitivity and specificity were excellent when combining measures during the isometric force task (torque rise time and force variability; 92% sensitivity and 92% specificity; AUC = 0.97). When combining measures across the force and movement tasks, the ROC analysis revealed improved sensitivity and specificity (force variability and peak deceleration; 92% sensitivity and 100% specificity; AUC = 0.99). Conclusions Combining measures of force variability and movement deceleration accurately differentiate patients with PD from those with ET with high sensitivity and specificity. Significance If validated in a larger sample, these measures can serve as markers to confirm the diagnosis of PD or ET and thus, enhance decision making for appropriate treatments for patients with these respective diseases. PMID:21570904

  2. Implementing Automated Information Systems in the Air Force

    DTIC Science & Technology

    1984-04-01

    phased development approach. V. Recommendations: The new Air Staff organization must exert creative leadership so the rest of the Air Force can benefit...ment - System design strategy, strike a new balance between machine efficiency and system effectiveness - Management control strategy. control the...cost- effectiveness (2s2-11 - 2-12). Viewing information as a resource has caused Federal agencies to reassess the way they have managed information in

  3. Telerobotic-assisted bone-drilling system using bilateral control with feed operation scaling and cutting force scaling

    PubMed Central

    Kasahara, Yusuke; Kawana, Hiromasa; Usuda, Shin; Ohnishi, Kouhei

    2012-01-01

    Background Drilling is used in the medical field, especially in oral surgery and orthopaedics. In recent years, oral surgery involving dental implants has become more common. However, the risky drilling process causes serious accidents. To prevent these accidents, supporting systems such as robotic drilling systems are required. Methods A telerobotic-assisted drilling system is proposed. An acceleration-based four-channel bilateral control system is implemented in linear actuators in a master–slave system for drill feeding. A reaction force observer is used instead of a force sensor for measuring cutting force. Cutting force transmits from a cutting material to a surgeon, who may feel a static cutting resistance force and vigorous cutting vibrations, via the master–slave system. Moreover, position scaling and force scaling are achieved. Scaling functions are used to achieve precise drilling and hazard detection via force sensation. Results Cutting accuracy and reproducibility of the cutting force were evaluated by angular velocity/position error and frequency analysis of the cutting force, respectively, and errors were > 2.0 rpm and > 0.2 mm, respectively. Spectrum peaks of the cutting vibration were at the theoretical vibration frequencies of 30, 60 and 90 Hz. Conclusions The proposed telerobotic-assisted drilling system achieved precise manipulation of the drill feed and vivid feedback from the cutting force. Copyright © 2012 John Wiley & Sons, Ltd. PMID:22271710

  4. A multi-station dynamic-culture force monitor system to study cell mechanobiology.

    PubMed

    Peperzak, Katherin A; Gilbert, Thomas W; Wang, James H-C

    2004-05-01

    To study mechanobiological responses of cells, a dynamic-culture force monitor (D-CFM) system has been developed. The D-CFM extends our previous work to measure contractile forces of a cell-populated collagen gel (CPCG) using a cantilever beam with semiconductor strain gauges. Linear actuators are used in the system and are computer controlled using a LabVIEW interface to independently apply precise motion waveforms to multiple CPCGs. The feasibility tests showed that the new system can detect the differences in force patterns resulting from different motion waveforms imparted to the CPCG. This new system will facilitate the study of the effects of dynamic mechanical loading on cells, remodeling of extracellular matrix, and cell-matrix interactions in vitro.

  5. Dynamic measurement of the force required to move a liquid drop on a solid surface.

    PubMed

    Pilat, D W; Papadopoulos, P; Schäffel, D; Vollmer, D; Berger, R; Butt, H-J

    2012-12-11

    We measured the forces required to slide sessile drops over surfaces. The forces were measured by means of a vertical deflectable capillary stuck in the drop. The drop adhesion force instrument (DAFI) allowed the investigation of the dynamic lateral adhesion force of water drops of 0.1 to 2 μL volume at defined velocities. On flat PDMS surfaces, the dynamic lateral adhesion force increases linearly with the diameter of the contact area of the solid-liquid interface and linearly with the sliding velocity. The movement of the drop relative to the surfaces enabled us to resolve the pinning of the three-phase contact line to individual defects. We further investigated a 3D superhydrophobic pillar array. The depinning of the receding part of the rim of the drop occurred almost simultaneously from four to five pillars, giving rise to peaks in the lateral adhesion force.

  6. Indirect method for wheel-rail force measurement and derailment evaluation

    NASA Astrophysics Data System (ADS)

    Wei, Lai; Zeng, Jing; Wu, Pingbo; Gao, Hao

    2014-12-01

    Wheel set flange derailment criteria for railway vehicles are derived and the influence of wheel-rail contact parameters is studied. An indirect method for wheel-rail force measurement based on these derailment evaluation criteria is proposed. Laboratory tests for the calibration of strain-force devices on the bearing box are carried out to determine the relationship between the applied force and the measured strain. The simulation package, SIMPACK, is used to develop a passenger car model to generate wheel-rail forces and vibration signals. Different cases are considered in this model to provide an accurate validation of the identified wheel-rail forces. A feasibility test is conducted in the Beijing Loop test line using a passenger car equipped with a set of strain gauges on the wheel set. The comparison of the force time history applied to the instrumented wheel set and that obtained using the indirect method is presented.

  7. A recurrence network approach to analyzing forced synchronization in hydrodynamic systems

    NASA Astrophysics Data System (ADS)

    Murugesan, Meenatchidevi; Zhu, Yuanhang; Li, Larry K. B.

    2016-11-01

    Hydrodynamically self-excited systems can lock into external forcing, but their lock-in boundaries and the specific bifurcations through which they lock in can be difficult to detect. We propose using recurrence networks to analyze forced synchronization in a hydrodynamic system: a low-density jet. We find that as the jet bifurcates from periodicity (unforced) to quasiperiodicity (weak forcing) and then to lock-in (strong forcing), its recurrence network changes from a regular distribution of links between nodes (unforced) to a disordered topology (weak forcing) and then to a regular distribution again at lock-in (strong forcing). The emergence of order at lock-in can be either smooth or abrupt depending on the specific lock-in route taken. Furthermore, we find that before lock-in, the probability distribution of links in the network is a function of the characteristic scales of the system, which can be quantified with network measures and used to estimate the proximity to the lock-in boundaries. This study shows that recurrence networks can be used (i) to detect lock-in, (ii) to distinguish between different routes to lock-in, and (iii) as an early warning indicator of the proximity of a system to its lock-in boundaries. This work was supported by the Research Grants Council of Hong Kong (Project No. 16235716 and 26202815).

  8. A Solar System Survey of Forced Librations in Longitude

    NASA Technical Reports Server (NTRS)

    Cornstock, Robert L.; Bills, Bruce G.

    2003-01-01

    Forced librations are periodic rotational rate variations due to gravitational interactions with an orbital partner. We have developed an analytic theory capable of calculating expected amplitudes of forced librations for nonresonant rotators as well as for bodies existing in a spin-orbit resonance. The theory has been applied to 34 solar system bodies, including terrestrial planets, planetary satellites, and the asteroid Eros. Parameters governing libration amplitude are the body s orbital eccentricity, moment difference, and the ratio of its spin rate to its orbital rate. In each case the largest libration amplitude is associated with the forcing frequency 2 (p - 1) n, where n is the orbital mean motion and p is the spin/orbit rate ratio. This dominant frequency is simply semidiurnal as seen from the position of the torquing body. The maximum libration angular amplitude is 1.3 x 10(exp -2) radians for Thebe, and the maximum mean equatorial displacement is 1.4 km for Mimas.

  9. Forced oscillation measurements of seismic attenuation in fluid saturated sandstone

    NASA Astrophysics Data System (ADS)

    Subramaniyan, Shankar; Quintal, Beatriz; Saenger, Erik H.

    2017-02-01

    Adopting the method of forced oscillation, attenuation was studied in Fontainebleau sandstone (porosity 10%, permeability 10 mD) at seismic frequencies (1-100 Hz). Confining pressures of 5, 10, and 15 MPa were chosen to simulate reservoir conditions. First, the strain effect on attenuation was investigated in the dry sample for 11 different strains across the range 1 × 10-6-8 × 10-6, at the confining pressure of 5 MPa. The comparison showed that a strain of at least 5 × 10-6 is necessary to obtain a good signal to noise ratio. These results also indicate that nonlinear effects are absent for strains up to 8 × 10-6. For all the confining pressures, attenuation in the dry rock was low, while partial (90%) and full (100%) saturation with water yielded a higher magnitude and frequency dependence of attenuation. The observed high and frequency dependent attenuation was interpreted as being caused by squirt flow.

  10. Measuring viscoelasticity of soft samples using atomic force microscopy.

    PubMed

    Tripathy, S; Berger, E J

    2009-09-01

    Relaxation indentation experiments using atomic force microscopy (AFM) are used to obtain viscoelastic material properties of soft samples. The quasilinear viscoelastic (QLV) model formulated by Fung (1972, "Stress Strain History Relations of Soft Tissues in Simple Elongation," in Biomechanics, Its Foundation and Objectives, Prentice-Hall, Englewood Cliffs, NJ, pp. 181-207) for uniaxial compression data was modified for the indentation test data in this study. Hertz contact mechanics was used for the instantaneous deformation, and a reduced relaxation function based on continuous spectrum is used for the time-dependent part in the model. The modified QLV indentation model presents a novel method to obtain viscoelastic properties from indentation data independent of relaxation times of the test. The major objective of the present study is to develop the QLV indentation model and implement the model on AFM indentation data for 1% agarose gel and a viscoelastic polymer using spherical indenter.

  11. Measurement of Frost Heave Forces on H-Piles and Pipe Piles

    DTIC Science & Technology

    1988-12-01

    inherent problem with the reaction beam experiments both showed the fluctuations in heave and force-balance methods is that they may under- 3 estimate the...shear stresses developed on the pile in the soil be- frost penetration. low the 0*C isotherm. Therefore, the reaction beam and force-balance methods ...actually measure a net uplift force, which is the total uplift load less METHODS AND MATERIALS the total restraining load acting on the pile. Johnson and

  12. Achilles tendon reflex measuring system

    NASA Astrophysics Data System (ADS)

    Szebeszczyk, Janina; Straszecka, Joanna

    1995-06-01

    The examination of Achilles tendon reflex is widely used as a simple, noninvasive clinical test in diagnosis and pharmacological therapy monitoring in such diseases as: hypothyroidism, hyperthyroidism, diabetic neuropathy, the lower limbs obstructive angiopathies and intermittent claudication. Presented Achilles tendon reflect measuring system is based on the piezoresistive sensor connected with the cylinder-piston system. To determinate the moment of Achilles tendon stimulation a detecting circuit was used. The outputs of the measuring system are connected to the PC-based data acquisition board. Experimental results showed that the measurement accuracy and repeatability is good enough for diagnostics and therapy monitoring purposes. A user friendly, easy-to-operate measurement system fulfills all the requirements related to recording, presentation and storing of the patients' reflexograms.

  13. Measurement of polyamide and polystyrene adhesion with coated-tip atomic force microscopy.

    PubMed

    Thio, Beng Joo Reginald; Meredith, J Carson

    2007-10-01

    This work presents atomic force microscopy (AFM) measurements of adhesion forces between polyamides, polystyrene and AFM tips coated with the same materials. The polymers employed were polyamide 6 (PA6), PA66, PA12 and polystyrene (PS). All adhesion forces between the various unmodified or modified AFM tips and the polymer surfaces were in the range -1.5 to -8 nN. The weakest force was observed for an unmodified AFM tip with a PS surface and the strongest was between a PS-coated tip and PS surface. The results point to both the benefits and drawbacks of coated-tip AFM force-distance measurements. Adhesion forces between the two most dissimilar (PA6-PS and PA66-PS) materials were significantly asymmetric, e.g., the forces were different depending on the relative placement of each polymer on the AFM tip or substrate. Materials with similar chemistry and intermolecular interactions yielded forces in close agreement regardless of placement on tip or substrate. Using experimental forces, we calculated the contact radii via four models: Derjaguin, Muller, and Toporov; Johnson, Kendall, and Roberts; parametric tip-force-distance relation; and a square pyramid-flat surface (SPFS) model developed herein. The SPFS model gave the most reasonable contact tip radius estimate. Hamaker constants calculated from the SPFS model using this radius agreed in both magnitude and trends with experiment and Lifshitz theory.

  14. Quantitative force and dissipation measurements in liquids using piezo-excited atomic force microscopy: a unifying theory.

    PubMed

    Kiracofe, Daniel; Raman, Arvind

    2011-12-02

    The use of a piezoelectric element (acoustic excitation) to vibrate the base of microcantilevers is a popular method for dynamic atomic force microscopy. In air or vacuum, the base motion is so small (relative to tip motion) that it can be neglected. However, in liquid environments the base motion can be large and cannot be neglected. Yet it cannot be directly observed in most AFMs. Therefore, in liquids, quantitative force and energy dissipation spectroscopy with acoustic AFM relies on theoretical formulae and models to estimate the magnitude of the base motion. However, such formulae can be inaccurate due to several effects. For example, a significant component of the piezo excitation does not mechanically excite the cantilever but rather transmits acoustic waves through the surrounding liquid, which in turn indirectly excites the cantilever. Moreover, resonances of the piezo, chip and holder can obscure the true cantilever dynamics even in well-designed liquid cells. Although some groups have tried to overcome these limitations (either by theory modification or better design of piezos and liquid cells), it is generally accepted that acoustic excitation is unsuitable for quantitative force and dissipation spectroscopy in liquids. In this paper the authors present a careful study of the base motion and excitation forces and propose a method by which quantitative analysis is in fact possible, thus opening this popular method for quantitative force and dissipation spectroscopy using dynamic AFM in liquids. This method is validated by experiments in water on mica using a scanning laser Doppler vibrometer, which can measure the actual base motion. Finally, the method is demonstrated by using small-amplitude dynamic AFM to extract the force gradients and dissipation on solvation shells of octamethylcyclotetrasiloxane (OMCTS) molecules on mica.

  15. The development of a two-component force dynamometer and tool control system for dynamic machine tool research

    NASA Technical Reports Server (NTRS)

    Sutherland, I. A.

    1973-01-01

    The development is presented of a tooling system that makes a controlled sinusoidal oscillation simulating a dynamic chip removal condition. It also measures the machining forces in two mutually perpendicular directions without any cross sensitivity.

  16. Endovascular blood flow measurement system

    NASA Astrophysics Data System (ADS)

    Khe, A. K.; Cherevko, A. A.; Chupakhin, A. P.; Krivoshapkin, A. L.; Orlov, K. Yu

    2016-06-01

    In this paper an endovascular measurement system used for intraoperative cerebral blood flow monitoring is described. The system is based on a Volcano ComboMap Pressure and Flow System extended with analogue-to-digital converter and PC laptop. A series of measurements performed in patients with cerebrovascular pathologies allows us to introduce “velocity-pressure” and “flow rate-energy flow rate” diagrams as important characteristics of the blood flow. The measurement system presented here can be used as an additional instrument in neurosurgery for assessment and monitoring of the operation procedure. Clinical data obtained with the system are used for construction of mathematical models and patient-specific simulations. The monitoring of the blood flow parameters during endovascular interventions was approved by the Ethics Committee at the Meshalkin Novosibirsk Research Institute of Circulation Pathology and included in certain surgical protocols for pre-, intra- and postoperative examinations.

  17. Mass properties measurement system dynamics

    NASA Technical Reports Server (NTRS)

    Doty, Keith L.

    1993-01-01

    The MPMS mechanism possess two revolute degrees-of-freedom and allows the user to measure the mass, center of gravity, and the inertia tensor of an unknown mass. The dynamics of the Mass Properties Measurement System (MPMS) from the Lagrangian approach to illustrate the dependency of the motion on the unknown parameters.

  18. Cardiac reflections and natural vibrations: Force-frequency relation recording system in the stress echo lab

    PubMed Central

    Bombardini, Tonino; Gemignani, Vincenzo; Bianchini, Elisabetta; Venneri, Lucia; Petersen, Christina; Pasanisi, Emilio; Pratali, Lorenza; Pianelli, Mascia; Faita, Francesco; Giannoni, Massimo; Picano, Eugenio

    2007-01-01

    Background The inherent ability of ventricular myocardium to increase its force of contraction in response to an increase in contraction frequency is known as the cardiac force-frequency relation (FFR). This relation can be easily obtained in the stress echo lab, where the force is computed as the systolic pressure/end-systolic volume index ratio, and measured for increasing heart rates during stress. Ideally, the noninvasive, imaging independent, objective assessment of FFR would greatly enhance its practical appeal. Objectives 1 – To evaluate the feasibility of the cardiac force measurement by a precordial cutaneous sensor. 2 – To build the curve of force variation as a function of the heart rate. 3 – To compare the standard stress echo results vs. this sensor operator-independent built FFR. Methods The transcutaneous force sensor was positioned in the precordial region in 88 consecutive patients referred for exercise, dipyridamole, or pacing stress. The force was measured as the myocardial vibrations amplitude in the isovolumic contraction period. FFR was computed as the curve of force variation as a function of heart rate. Standard echocardiographic FFR measurements were performed. Results A consistent FFR was obtained in all patients. Both the sensor built and the echo built FFR identifiy pts with normal or abnormal contractile reserve. The best cut-off value of the sensor built FFR was 15.5 g * 10-3 (Sensitivity = 0.85, Specificity = 0.77). Sensor built FFR slope and shape mirror pressure/volume relation during stress. This approach is extendable to daily physiological exercise and could be potentially attractive in home monitoring systems. PMID:18031588

  19. Parallel force measurement with a polymeric microbeam array using an optical microscope and micromanipulator.

    PubMed

    Sasoglu, F Mert; Bohl, Andrew J; Allen, Kathleen B; Layton, Bradley E

    2009-01-01

    An image analysis method and its validation are presented for tracking the displacements of parallel mechanical force sensors. Force is measured using a combination of beam theory, optical microscopy, and image analysis. The primary instrument is a calibrated polymeric microbeam array mounted on a micromanipulator with the intended purpose of measuring traction forces on cell cultures or cell arrays. One application is the testing of hypotheses involving cellular mechanotransduction mechanisms. An Otsu-based image analysis code calculates displacement and force on cellular or other soft structures by using edge detection and image subtraction on digitally captured optical microscopy images. Forces as small as 250+/-50 nN and as great as 25+/-2.5 microN may be applied and measured upon as few as one or as many as hundreds of structures in parallel. A validation of the method is provided by comparing results from a rigid glass surface and a compliant polymeric surface.

  20. Measuring the radiation force of megahertz ultrasound acting on a solid spherical scatterer

    NASA Astrophysics Data System (ADS)

    Nikolaeva, A. V.; Tsysar, S. A.; Sapozhnikov, O. A.

    2016-01-01

    The paper considers the problem of precise measurement of the acoustic radiation force of an ultrasonic beam on targets in the form of solid spherical scatterers. Using known analytic relations, a numerical model is developed to perform calculations for different sizes of spherical scatterers and arbitrary frequencies of the incident acoustic wave. A novel method is proposed for measuring the radiation force, which is based on the principle of acoustic echolocation. The radiation force is measured experimentally in a wide range of incident wave intensities using two chosen methods differing in the way the location of the target is controlled.

  1. Update: Partnership for the Revitalization of National Wind Tunnel Force Measurement Technology Capability

    NASA Technical Reports Server (NTRS)

    Rhew, Ray D.

    2010-01-01

    NASA's Aeronautics Test Program (ATP) chartered a team to examine the issues and risks associated with the lack of funding and focus on force measurement over the past several years, focusing specifically on strain-gage balances. NASA partnered with the U.S. Air Force's Arnold Engineering Development Center (AEDC) to exploit their combined capabilities and take a national level government view of the problem and established the National Force Measurement Technology Capability (NFMTC) project. This paper provides an update on the team's status for revitalizing the government's balance capability with respect to designing, fabricating, calibrating, and using the these critical measurement devices.

  2. Measurements of dispersion forces between colloidal latex particles with the atomic force microscope and comparison with Lifshitz theory

    SciTech Connect

    Elzbieciak-Wodka, Magdalena; Ruiz-Cabello, F. Javier Montes; Trefalt, Gregor; Maroni, Plinio; Borkovec, Michal; Popescu, Mihail N.

    2014-03-14

    Interaction forces between carboxylate colloidal latex particles of about 2 μm in diameter immersed in aqueous solutions of monovalent salts were measured with the colloidal probe technique, which is based on the atomic force microscope. We have systematically varied the ionic strength, the type of salt, and also the surface charge densities of the particles through changes in the solution pH. Based on these measurements, we have accurately measured the dispersion forces acting between the particles and estimated the apparent Hamaker constant to be (2.0 ± 0.5) × 10{sup −21} J at a separation distance of about 10 nm. This value is basically independent of the salt concentration and the type of salt. Good agreement with Lifshitz theory is found when roughness effects are taken into account. The combination of retardation and roughness effects reduces the value of the apparent Hamaker constant and its ionic strength dependence with respect to the case of ideally smooth surfaces.

  3. Measurements of dispersion forces between colloidal latex particles with the atomic force microscope and comparison with Lifshitz theory.

    PubMed

    Elzbieciak-Wodka, Magdalena; Popescu, Mihail N; Montes Ruiz-Cabello, F Javier; Trefalt, Gregor; Maroni, Plinio; Borkovec, Michal

    2014-03-14

    Interaction forces between carboxylate colloidal latex particles of about 2 μm in diameter immersed in aqueous solutions of monovalent salts were measured with the colloidal probe technique, which is based on the atomic force microscope. We have systematically varied the ionic strength, the type of salt, and also the surface charge densities of the particles through changes in the solution pH. Based on these measurements, we have accurately measured the dispersion forces acting between the particles and estimated the apparent Hamaker constant to be (2.0 ± 0.5) × 10(-21) J at a separation distance of about 10 nm. This value is basically independent of the salt concentration and the type of salt. Good agreement with Lifshitz theory is found when roughness effects are taken into account. The combination of retardation and roughness effects reduces the value of the apparent Hamaker constant and its ionic strength dependence with respect to the case of ideally smooth surfaces.

  4. Developing accurate molecular mechanics force fields for conjugated molecular systems.

    PubMed

    Do, Hainam; Troisi, Alessandro

    2015-10-14

    A rapid method to parameterize the intramolecular component of classical force fields for complex conjugated molecules is proposed. The method is based on a procedure of force matching with a reference electronic structure calculation. It is particularly suitable for those applications where molecular dynamics simulations are used to generate structures that are therefore analysed by electronic structure methods, because it is possible to build force fields that are consistent with electronic structure calculations that follow classical simulations. Such applications are commonly encountered in organic electronics, spectroscopy of complex systems and photobiology (e.g. photosynthetic systems). We illustrate the method by parameterizing the force fields of a molecule used in molecular semiconductors (2,2-dicyanovinyl-capped S,N-heteropentacene or DCV-SN5), a polymeric semiconductor (thieno[3,2-b]thiophene-diketopyrrolopyrrole TT-DPP) and a chromophore embedded in a protein environment (15,16-dihydrobiliverdin or DBV) where several hundreds of parameters need to be optimized in parallel.

  5. Portable Positron Measurement System (PPMS)

    SciTech Connect

    2011-01-01

    Portable Positron Measurement System (PPMS) is an automated, non-destructive inspection system based on positron annihilation, which characterizes a material's in situatomic-level properties during the manufacturing processes of formation, solidification, and heat treatment. Simultaneous manufacturing and quality monitoring now are possible. Learn more about the lab's project on our facebook site http://www.facebook.com/idahonationallaboratory.

  6. Portable Positron Measurement System (PPMS)

    ScienceCinema

    None

    2016-07-12

    Portable Positron Measurement System (PPMS) is an automated, non-destructive inspection system based on positron annihilation, which characterizes a material's in situatomic-level properties during the manufacturing processes of formation, solidification, and heat treatment. Simultaneous manufacturing and quality monitoring now are possible. Learn more about the lab's project on our facebook site http://www.facebook.com/idahonationallaboratory.

  7. A flexible micromachined optical sensor for simultaneous measurement of pressure and shear force distribution on foot

    NASA Astrophysics Data System (ADS)

    Wang, Wei-Chih; Panergo, Reynold R.; Galvanin, Christopher M.; Ledoux, William; Sangeorzan, Bruce; Reinhall, Per G.

    2003-07-01

    Lower limb complications associated with diabetes include the development of plantar ulcers that can lead to infection and subsequent amputation. While it is known from force plate analyses that there are medial/lateral and anterior/posterior shear components of the ground reaction force, there is little known about the actual distribution of this force during daily activities, nor about the role that shear plays in causing plantar ulceration. Furthermore, one critical reason why these data have not been obtained previously is the lack of a validated, widely used, commercially available shear sensor, in part because of the various technical issues associated with shear measurement. Here we have developed novel means of tranducing plantar shear and pressure stress via a new microfabricated optical system. The pressure/shear sensor consists of an array of optical waveguides lying in perpendicular rows and columns separated by elastomeric pads. A map of pressure and shear stress is constructed based on observed macro bending through the intensity attenuation from the physical deformation of two adjacent perpendicular optical waveguides. The uniqueness of the sensor is in its batch fabrication process, which involves injection molding and embossing techniques with Polydimethylsiloxane (PDMS) as the optical medium. Here we present the preliminary results of the prototype. The sensor has been shown to have low noise and responds linearly to applied loads. The smallest detectable force on each sensor element based on the current setup is ~0.1 N. The smallest area we have resolved in our mesh sensor is currently 950x950μm2

  8. Airborne Atmospheric Aerosol Measurement System

    NASA Astrophysics Data System (ADS)

    Ahn, K.; Park, Y.; Eun, H.; Lee, H.

    2015-12-01

    It is important to understand the atmospheric aerosols compositions and size distributions since they greatly affect the environment and human health. Particles in the convection layer have been a great concern in global climate changes. To understand these characteristics satellite, aircraft, and radio sonde measurement methods have usually been used. An aircraft aerosol sampling using a filter and/or impactor was the method commonly used (Jay, 2003). However, the flight speed particle sampling had some technical limitations (Hermann, 2001). Moreover, the flight legal limit, altitude, prohibited airspace, flight time, and cost was another demerit. To overcome some of these restrictions, Tethered Balloon Package System (T.B.P.S.) and Recoverable Sonde System(R.S.S.) were developed with a very light optical particle counter (OPC), impactor, and condensation particle counter (CPC). Not only does it collect and measure atmospheric aerosols depending on altitudes, but it also monitors the atmospheric conditions, temperature, humidity, wind velocity, pressure, GPS data, during the measurement (Eun, 2013). In this research, atmospheric aerosol measurement using T.B.P.S. in Ansan area is performed and the measurement results will be presented. The system can also be mounted to an unmanned aerial vehicle (UAV) and create an aerial particle concentration map. Finally, we will present measurement data using Tethered Balloon Package System (T.B.P.S.) and R.S.S (Recoverable Sonde System).

  9. Exploiting the relationship between birefringence and force to measure airway smooth muscle contraction with PS-OCT (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Adams, David C.; Hariri, Lida P.; Holz, Jasmin A.; Szabari, Margit V.; Harris, R. Scott; Cho, Jocelyn L.; Hamilos, Daniel L.; Luster, Andrew D.; Medoff, Benjamin D.; Suter, Melissa J.

    2016-03-01

    The ability to observe airway dynamics is fundamental to forming a complete understanding of pulmonary diseases such as asthma. We have previously demonstrated that Optical Coherence Tomography (OCT) can be used to observe structural changes in the airway during bronchoconstriction, but standard OCT lacks the contrast to discriminate airway smooth muscle (ASM) bands- ASM being responsible for generating the force that drives airway constriction- from the surrounding tissue. Since ASM in general exhibits a greater degree of birefringence than the surrounding tissue, a potential solution to this problem lies in the implementation of polarization sensitivity (PS) to the OCT system. By modifying the OCT system so that it is sensitive to the birefringence of tissue under inspection, we can visualize the ASM with much greater clarity and definition. In this presentation we show that the force of contraction can be indirectly measured by an associated increase in the birefringence signal of the ASM. We validate this approach by attaching segments of swine trachea to an isometric force transducer and stimulating contraction, while simultaneously measuring the exerted force and imaging the segment with PS-OCT. We then show how our results may be used to extrapolate the force of contraction of closed airways in absence of additional measurement devices. We apply this technique to assess ASM contractility volumetrically and in vivo, in both asthmatic and non-asthmatic human volunteers.

  10. Two-axis probing system for atomic force microscopy.

    PubMed

    Jayanth, G R; Jhiang, Sissy M; Menq, Chia-Hsiang

    2008-02-01

    A novel two-axis probing system is proposed for multiaxis atomic force microscopy (AFM). It employs a compliant manipulator that is optimally designed in terms of geometries and kinematics, and is actuated by multiple magnetic actuators to simultaneously control tip position and change tip orientation to achieve greater accessibility of the sample surface when imaging surfaces having large geometric variations. It leads to the creation of a multiaxis AFM system, which is a three-dimensional surface tool rather than a two-dimensional planar surface tool. The use of the system to scan the bottom corner of a grating step is reported.

  11. Measurements of Tidally Forced Bedforms, Sediment Transport, Flow and Turbulence at New River Inlet, NC

    NASA Astrophysics Data System (ADS)

    Traykovski, P.; Geyer, W. R.

    2012-12-01

    Observations of bedforms and near-bed hydrodynamics in New River Inlet, NC reveal a highly temporally and spatially variable bedform field with rapid migration rates. Time series measurements were conducted at two tidally dominated stations with instrumented frames, and spatial surveys were conducted with a small vessel and REMUS AUV. The spatial surveys showed that the bedforms were largest in the ~3 m deep tidal channels, with wavelengths of ~4 m and heights of ~40 cm. These channels also had the strongest tidal flows with ebb directed velocities of up to 1.5 m/s, and coarsest sand. On the finer grained shoals, bedforms were smaller with wavelengths less than 1 m. Time series measurements of the bedforms taken with rotary sidescan and pencil beam sonars revealed most of the variability occurred at semi-diurnal tidal and spring-neap tidal time scales. The largest ~4 m wavelength bedforms only occurred on spring tides and bedforms were smaller during neap tides. At the measurement sites, the flow and bedforms were tidally dominated with the bedforms responding to wave forcing less than 20% of the time during periods of flood and high tides with energetic wave forcing. On individual tidal cycles, the bedforms changed from ebb directed asymmetry to flood direct asymmetry and migrated approximately one wavelength. The relationship between flow asymmetry, with ebb dominated flows, and bedform migration asymmetry will be examined. Flow and turbulence above the bedforms was measured with a multi-frequency pulse coherent Doppler profiler and two ADVs. The velocity profiles show pronounced wake velocity deficits when large bedform crests were present just upstream of the profiler. Turbulence levels as a function of bedform geometry, location, and forcing flow will be examined. The measurements of flow and turbulence, combined with bedform geometry and migration measurements and suspended sediment transport measurements from a 3-frequency acoustic backscatter system will

  12. Rotor component displacement measurement system

    DOEpatents

    Mercer, Gary D.; Li, Ming C.; Baum, Charles R.

    2003-05-27

    A measuring system for measuring axial displacement of a tube relative to an axially stationary component in a rotating rotor assembly includes at least one displacement sensor adapted to be located normal to a longitudinal axis of the tube; an insulated cable system adapted for passage through the rotor assembly; a rotatable proximitor module located axially beyond the rotor assembly to which the cables are connected; and a telemetry system operatively connected to the proximitor module for sampling signals from the proximitor module and forwarding data to a ground station.

  13. The FORCE Fitness Profile--Adding a Measure of Health-Related Fitness to the Canadian Armed Forces Operational Fitness Evaluation.

    PubMed

    Gagnon, Patrick; Spivock, Michael; Reilly, Tara; Mattie, Paige; Stockbrugger, Barry

    2015-11-01

    In 2013, the Canadian Armed Forces (CAF) implemented the Fitness for Operational Requirements of Canadian Armed Forces Employment (FORCE), a field expedient fitness test designed to predict the physical requirements of completing common military tasks. Given that attaining this minimal physical fitness standard may not represent a challenge to some personnel, a fitness incentive program was requested by the chain of command to recognize and reward fitness over and above the minimal standard. At the same time, it was determined that the CAF would benefit from a measure of general health-related fitness, in addition to this measure of operational fitness. The resulting incentive program structure is based on gender and 8 age categories. The results on the 4 elements of the FORCE evaluation were converted to a point scale from which normative scores were derived, where the median score corresponds to the bronze level, and silver, gold, and platinum correspond to a score which is 1, 2, and 3 SDs above this median, respectively. A suite of rewards including merit board point toward promotions and recognition on the uniform and material rewards was developed. A separate group rewards program was also tabled, to recognize achievements in fitness at the unit level. For general fitness, oxygen capacity was derived from FORCE evaluation results and combined with a measure of abdominal circumference. Fitness categories were determined based on relative risks of mortality and morbidity for each age and gender group. Pilot testing of this entire program was performed with 624 participants to assess participants' reactions to the enhanced test, and also to verify logistical aspects of the electronic data capture, calculation, and transfer system. The newly dubbed fitness profile program was subsequently approved by the senior leadership of the CAF and is scheduled to begin a phased implementation in June 2015.

  14. Portable plant health measurement system

    NASA Astrophysics Data System (ADS)

    Aksoy, Nejat

    1999-01-01

    This system is designed to assist diagnosis of the plant health globally. The system is formed by portable plant health measurement devices connected to a diagnosis and analysis center through a flexible information network. A flexible network is formed so that users from the remote areas as well as internet are able to use the system. The hardware and software is designed in an open technology for easier upgrades. Portable plant health measurement instrument is a networkable leaf flash spectrophotometer capable of measuring Qa, Electrochromy, P700, Fluorescence, S Fluorescence, reflectance spectra, temperature, humidity and image of the leaf with GPS information. The network and intelligent user interface options of the system can be used by any commercially or user designed instrument.

  15. Colored polydimethylsiloxane micropillar arrays for high throughput measurements of forces applied by genetic model organisms

    PubMed Central

    Khare, Siddharth M.; Awasthi, Anjali; Venkataraman, V.; Koushika, Sandhya P.

    2015-01-01

    Measuring forces applied by multi-cellular organisms is valuable in investigating biomechanics of their locomotion. Several technologies have been developed to measure such forces, for example, strain gauges, micro-machined sensors, and calibrated cantilevers. We introduce an innovative combination of techniques as a high throughput screening tool to assess forces applied by multiple genetic model organisms. First, we fabricated colored Polydimethylsiloxane (PDMS) micropillars where the color enhances contrast making it easier to detect and track pillar displacement driven by the organism. Second, we developed a semi-automated graphical user interface to analyze the images for pillar displacement, thus reducing the analysis time for each animal to minutes. The addition of color reduced the Young's modulus of PDMS. Therefore, the dye-PDMS composite was characterized using Yeoh's hyperelastic model and the pillars were calibrated using a silicon based force sensor. We used our device to measure forces exerted by wild type and mutant Caenorhabditis elegans moving on an agarose surface. Wild type C. elegans exert an average force of ∼1 μN on an individual pillar and a total average force of ∼7.68 μN. We show that the middle of C. elegans exerts more force than its extremities. We find that C. elegans mutants with defective body wall muscles apply significantly lower force on individual pillars, while mutants defective in sensing externally applied mechanical forces still apply the same average force per pillar compared to wild type animals. Average forces applied per pillar are independent of the length, diameter, or cuticle stiffness of the animal. We also used the device to measure, for the first time, forces applied by Drosophila melanogaster larvae. Peristaltic waves occurred at 0.4 Hz applying an average force of ∼1.58 μN on a single pillar. Our colored microfluidic device along with its displacement tracking software allows us to measure forces

  16. Large area scanning probe microscope in ultra-high vacuum demonstrated for electrostatic force measurements on high-voltage devices

    PubMed Central

    Glatzel, Thilo; Schmölzer, Thomas; Schöner, Adolf; Reshanov, Sergey; Bartolf, Holger; Meyer, Ernst

    2015-01-01

    Summary Background: The resolution in electrostatic force microscopy (EFM), a descendant of atomic force microscopy (AFM), has reached nanometre dimensions, necessary to investigate integrated circuits in modern electronic devices. However, the characterization of conducting or semiconducting power devices with EFM methods requires an accurate and reliable technique from the nanometre up to the micrometre scale. For high force sensitivity it is indispensable to operate the microscope under high to ultra-high vacuum (UHV) conditions to suppress viscous damping of the sensor. Furthermore, UHV environment allows for the analysis of clean surfaces under controlled environmental conditions. Because of these requirements we built a large area scanning probe microscope operating under UHV conditions at room temperature allowing to perform various electrical measurements, such as Kelvin probe force microscopy, scanning capacitance force microscopy, scanning spreading resistance microscopy, and also electrostatic force microscopy at higher harmonics. The instrument incorporates beside a standard beam deflection detection system a closed loop scanner with a scan range of 100 μm in lateral and 25 μm in vertical direction as well as an additional fibre optics. This enables the illumination of the tip–sample interface for optically excited measurements such as local surface photo voltage detection. Results: We present Kelvin probe force microscopy (KPFM) measurements before and after sputtering of a copper alloy with chromium grains used as electrical contact surface in ultra-high power switches. In addition, we discuss KPFM measurements on cross sections of cleaved silicon carbide structures: a calibration layer sample and a power rectifier. To demonstrate the benefit of surface photo voltage measurements, we analysed the contact potential difference of a silicon carbide p/n-junction under illumination. PMID:26885461

  17. Tactical Automated Security System Air Force expeditionary security

    NASA Astrophysics Data System (ADS)

    Butler, Ken

    2002-08-01

    The US Air Force's TASS (Tactical Automated Security System) program has been in existence since 1996. The TASS program meets the growing need to supplement security personnel with modern technology, when these forces are deployed around the world. TASS combines five equipment elements into an integrated security solution, providing both a detection and an assessment capability. TASS does this in a way which maximizes the mobility and user friendliness objectives of the system. In this paper, we will take a closer look at TASS. We will examine the concepts that drive the TASS development process. We will provide an overview of the TASS technical elements, and provide a roadmap for further development of those elements. Finally, we will provide recommendations to security providers who aim to have their products included in the TASS baseline of equipment.

  18. Measuring lifting forces in rock climbing: effect of hold size and fingertip structure.

    PubMed

    Bourne, Roger; Halaki, Mark; Vanwanseele, Benedicte; Clarke, Jillian

    2011-02-01

    This study investigates the hypothesis that shallow edge lifting force in high-level rock climbers is more strongly related to fingertip soft tissue anatomy than to absolute strength or strength to body mass ratio. Fifteen experienced climbers performed repeated maximal single hand lifting exercises on rectangular sandstone edges of depth 2.8, 4.3, 5.8, 7.3, and 12.5 mm while standing on a force measurement platform. Fingertip soft tissue dimensions were assessed by ultrasound imaging. Shallow edge (2.8 and 4.3 mm) lifting force, in newtons or body mass normalized, was uncorrelated with deep edge (12.5 mm) lifting force (r < .1). There was a positive correlation (r = .65, p < .05) between lifting force in newtons at 2.8 mm edge depth and tip of bone to tip of finger pulp measurement (r < .37 at other edge depths). The results confirm the common perception that maximum lifting force on a deep edge ("strength") does not predict maximum force production on very shallow edges. It is suggested that increased fingertip pulp dimension or plasticity may enable increased deformation of the fingertip, increasing the skin to rock contact area on very shallow edges, and thus increase the limit of force production. The study also confirmed previous assumptions of left/right force symmetry in climbers.

  19. A simple method for measuring power, force, velocity properties, and mechanical effectiveness in sprint running.

    PubMed

    Samozino, P; Rabita, G; Dorel, S; Slawinski, J; Peyrot, N; Saez de Villarreal, E; Morin, J-B

    2016-06-01

    This study aimed to validate a simple field method for determining force- and power-velocity relationships and mechanical effectiveness of force application during sprint running. The proposed method, based on an inverse dynamic approach applied to the body center of mass, estimates the step-averaged ground reaction forces in runner's sagittal plane of motion during overground sprint acceleration from only anthropometric and spatiotemporal data. Force- and power-velocity relationships, the associated variables, and mechanical effectiveness were determined (a) on nine sprinters using both the proposed method and force plate measurements and (b) on six other sprinters using the proposed method during several consecutive trials to assess the inter-trial reliability. The low bias (<5%) and narrow limits of agreement between both methods for maximal horizontal force (638 ± 84 N), velocity (10.5 ± 0.74 m/s), and power output (1680 ± 280 W); for the slope of the force-velocity relationships; and for the mechanical effectiveness of force application showed high concurrent validity of the proposed method. The low standard errors of measurements between trials (<5%) highlighted the high reliability of the method. These findings support the validity of the proposed simple method, convenient for field use, to determine power, force, velocity properties, and mechanical effectiveness in sprint running.

  20. A modified blade element theory for estimation of forces generated by a beetle-mimicking flapping wing system.

    PubMed

    Truong, Q T; Nguyen, Q V; Truong, V T; Park, H C; Byun, D Y; Goo, N S

    2011-09-01

    We present an unsteady blade element theory (BET) model to estimate the aerodynamic forces produced by a freely flying beetle and a beetle-mimicking flapping wing system. Added mass and rotational forces are included to accommodate the unsteady force. In addition to the aerodynamic forces needed to accurately estimate the time history of the forces, the inertial forces of the wings are also calculated. All of the force components are considered based on the full three-dimensional (3D) motion of the wing. The result obtained by the present BET model is validated with the data which were presented in a reference paper. The difference between the averages of the estimated forces (lift and drag) and the measured forces in the reference is about 5.7%. The BET model is also used to estimate the force produced by a freely flying beetle and a beetle-mimicking flapping wing system. The wing kinematics used in the BET calculation of a real beetle and the flapping wing system are captured using high-speed cameras. The results show that the average estimated vertical force of the beetle is reasonably close to the weight of the beetle, and the average estimated thrust of the beetle-mimicking flapping wing system is in good agreement with the measured value. Our results show that the unsteady lift and drag coefficients measured by Dickinson et al are still useful for relatively higher Reynolds number cases, and the proposed BET can be a good way to estimate the force produced by a flapping wing system.