Sample records for force microscope imaging

  1. A hybrid scanning force and light microscope for surface imaging and three-dimensional optical sectioning in differential interference contrast.

    PubMed

    Stemmer, A

    1995-04-01

    The design of a scanned-cantilever-type force microscope is presented which is fully integrated into an inverted high-resolution video-enhanced light microscope. This set-up allows us to acquire thin optical sections in differential interference contrast (DIC) or polarization while the force microscope is in place. Such a hybrid microscope provides a unique platform to study how cell surface properties determine, or are affected by, the three-dimensional dynamic organization inside the living cell. The hybrid microscope presented in this paper has proven reliable and versatile for biological applications. It is the only instrument that can image a specimen by force microscopy and high-power DIC without having either to translate the specimen or to remove the force microscope. Adaptation of the design features could greatly enhance the suitability of other force microscopes for biological work.

  2. First Atomic Force Microscope Image from Mars

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This calibration image presents three-dimensional data from the atomic force microscope on NASA's Phoenix Mars Lander, showing surface details of a substrate on the microscope station's sample wheel. It will be used as an aid for interpreting later images that will show shapes of minuscule Martian soil particles.

    The area imaged by the microscope is 40 microns by 40 microns, small enough to fit on an eyelash. The grooves in this substrate are 14 microns (0.00055 inch) apart, from center to center. The vertical dimension is exaggerated in the image to make surface details more visible. The grooves are 300 nanometers (0.00001 inch) deep.

    This is the first atomic force microscope image recorded on another planet. It was taken on July 9, 2008, during the 44th Martian day, or sol, of the Phoenix mission since landing.

    Phoenix's Swiss-made atomic force microscope builds an image of the surface shape of a particle by sensing it with a sharp tip at the end of a spring, all microfabricated out of a silicon wafer. A strain gauge records how far the spring flexes to follow the contour of the surface. It can provide details of soil-particle shapes smaller than one-hundredth the width of a human hair. This is about 20 times smaller than what can be resolved with Phoenix's optical microscope, which has provided much higher-magnification imaging than anything seen on Mars previously. Both microscopes are part of Phoenix's Microscopy, Electrochemistry and Conductivity Analyzer.

  3. Images from Phoenix's MECA Instruments

    NASA Technical Reports Server (NTRS)

    2008-01-01

    The image on the upper left is from NASA's Phoenix Mars Lander's Optical Microscope after a sample informally called 'Sorceress' was delivered to its silicon substrate on the 38th Martian day, or sol, of the mission (July 2, 2008).

    A 3D representation of the same sample is on the right, as seen by Phoenix's Atomic Force Microscope. This is 100 times greater magnification than the view from the Optical Microscope, and the most highly magnified image ever seen from another world.

    The Optical Microscope and the Atomic Force Microscope are part of Phoenix's Microscopy, Electrochemistry and Conductivity Analyzer instrument.

    The Atomic Force Microscope was developed by a Swiss-led consortium in collaboration with Imperial College London.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  4. Switched capacitor charge pump used for low-distortion imaging in atomic force microscope.

    PubMed

    Zhang, Jie; Zhang, Lian Sheng; Feng, Zhi Hua

    2015-01-01

    The switched capacitor charge pump (SCCP) is an effective method of linearizing charges on piezoelectric actuators and therefore constitute a significant approach to nano-positioning. In this work, it was for the first time implemented in an atomic force microscope for low-distortion imaging. Experimental results showed that the image quality was improved evidently under the SCCP drive compared with that under traditional linear voltage drive. © Wiley Periodicals, Inc.

  5. Scanning ion-conductance and atomic force microscope with specialized sphere-shaped nanopippettes

    NASA Astrophysics Data System (ADS)

    Zhukov, M. V.; Sapozhnikov, I. D.; Golubok, A. O.; Chubinskiy-Nadezhdin, V. I.; Komissarenko, F. E.; Lukashenko, S. Y.

    2017-11-01

    A scanning ion-conductance microscope was designed on the basis of scanning probe microscope NanoTutor. The optimal parameters of nanopipettes fabrication were found according to scanning electron microscopy diagnostics, current-distance I (Z) and current-voltage characteristics. A comparison of images of test objects, including biological samples, was carried out in the modes of optical microscopy, atomic force microscopy and scanning ion-conductance microscopy. Sphere-shaped nanopippettes probes were developed and tested to increase the stability of pipettes, reduce invasiveness and improve image quality of atomic force microscopy in tapping mode. The efficiency of sphere-shaped nanopippettes is shown.

  6. Atomic force microscopic imaging of Acanthamoeba castellanii and Balamuthia mandrillaris trophozoites and cysts.

    PubMed

    Aqeel, Yousuf; Siddiqui, Ruqaiyyah; Ateeq, Muhammad; Raza Shah, Muhammad; Kulsoom, Huma; Khan, Naveed Ahmed

    2015-01-01

    Light microscopy and electron microscopy have been successfully used in the study of microbes, as well as free-living protists. Unlike light microscopy, which enables us to observe living organisms or the electron microscope which provides a two-dimensional image, atomic force microscopy provides a three-dimensional surface profile. Here, we observed two free-living amoebae, Acanthamoeba castellanii and Balamuthia mandrillaris under the phase contrast inverted microscope, transmission electron microscope and atomic force microscope. Although light microscopy was of lower magnification, it revealed functional biology of live amoebae such as motility and osmoregulation using contractile vacuoles of the trophozoite stage, but it is of limited value in defining the cyst stage. In contrast, transmission electron microscopy showed significantly greater magnification and resolution to reveal the ultra-structural features of trophozoites and cysts including intracellular organelles and cyst wall characteristics but it only produced a snapshot in time of a dead amoeba cell. Atomic force microscopy produced three-dimensional images providing detailed topographic description of shape and surface, phase imaging measuring boundary stiffness, and amplitude measurements including width, height and length of A. castellanii and B. mandrillaris trophozoites and cysts. These results demonstrate the importance of the application of various microscopic methods in the biological and structural characterization of the whole cell, ultra-structural features, as well as surface components and cytoskeleton of protist pathogens. © 2014 The Author(s) Journal of Eukaryotic Microbiology © 2014 International Society of Protistologists.

  7. Imaging and three-dimensional reconstruction of chemical groups inside a protein complex using atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Kim, Duckhoe; Sahin, Ozgur

    2015-03-01

    Scanning probe microscopes can be used to image and chemically characterize surfaces down to the atomic scale. However, the localized tip-sample interactions in scanning probe microscopes limit high-resolution images to the topmost atomic layer of surfaces, and characterizing the inner structures of materials and biomolecules is a challenge for such instruments. Here, we show that an atomic force microscope can be used to image and three-dimensionally reconstruct chemical groups inside a protein complex. We use short single-stranded DNAs as imaging labels that are linked to target regions inside a protein complex, and T-shaped atomic force microscope cantilevers functionalized with complementary probe DNAs allow the labels to be located with sequence specificity and subnanometre resolution. After measuring pairwise distances between labels, we reconstruct the three-dimensional structure formed by the target chemical groups within the protein complex using simple geometric calculations. Experiments with the biotin-streptavidin complex show that the predicted three-dimensional loci of the carboxylic acid groups of biotins are within 2 Å of their respective loci in the corresponding crystal structure, suggesting that scanning probe microscopes could complement existing structural biological techniques in solving structures that are difficult to study due to their size and complexity.

  8. Martian Dust Collected by Phoenix's Arm

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This image from NASA's Phoenix Lander's Optical Microscope shows particles of Martian dust lying on the microscope's silicon substrate. The Robotic Arm sprinkled a sample of the soil from the Snow White trench onto the microscope on July 2, 2008, the 38th Martian day, or sol, of the mission after landing.

    Subsequently, the Atomic Force Microscope, or AFM, zoomed in one of the fine particles, creating the first-ever image of a particle of Mars' ubiquitous fine dust, the most highly magnified image ever seen from another world.

    The Atomic Force Microscope was developed by a Swiss-led consortium in collaboration with Imperial College London. The AFM is part of Phoenix's Microscopy, Electrochemistry and Conductivity Analyzer instrument.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  9. Scanning force microscope for in situ nanofocused X-ray diffraction studies

    PubMed Central

    Ren, Zhe; Mastropietro, Francesca; Davydok, Anton; Langlais, Simon; Richard, Marie-Ingrid; Furter, Jean-Jacques; Thomas, Olivier; Dupraz, Maxime; Verdier, Marc; Beutier, Guillaume; Boesecke, Peter; Cornelius, Thomas W.

    2014-01-01

    A compact scanning force microscope has been developed for in situ combination with nanofocused X-ray diffraction techniques at third-generation synchrotron beamlines. Its capabilities are demonstrated on Au nano-islands grown on a sapphire substrate. The new in situ device allows for in situ imaging the sample topography and the crystallinity by recording simultaneously an atomic force microscope (AFM) image and a scanning X-ray diffraction map of the same area. Moreover, a selected Au island can be mechanically deformed using the AFM tip while monitoring the deformation of the atomic lattice by nanofocused X-ray diffraction. This in situ approach gives access to the mechanical behavior of nanomaterials. PMID:25178002

  10. MIDAS: Lessons learned from the first spaceborne atomic force microscope

    NASA Astrophysics Data System (ADS)

    Bentley, Mark Stephen; Arends, Herman; Butler, Bart; Gavira, Jose; Jeszenszky, Harald; Mannel, Thurid; Romstedt, Jens; Schmied, Roland; Torkar, Klaus

    2016-08-01

    The Micro-Imaging Dust Analysis System (MIDAS) atomic force microscope (AFM) onboard the Rosetta orbiter was the first such instrument launched into space in 2004. Designed only a few years after the technique was invented, MIDAS is currently orbiting comet 67P Churyumov-Gerasimenko and producing the highest resolution 3D images of cometary dust ever made in situ. After more than a year of continuous operation much experience has been gained with this novel instrument. Coupled with operations of the Flight Spare and advances in terrestrial AFM a set of "lessons learned" has been produced, cumulating in recommendations for future spaceborne atomic force microscopes. The majority of the design could be reused as-is, or with incremental upgrades to include more modern components (e.g. the processor). Key additional recommendations are to incorporate an optical microscope to aid the search for particles and image registration, to include a variety of cantilevers (with different spring constants) and a variety of tip geometries.

  11. A versatile atomic force microscope integrated with a scanning electron microscope.

    PubMed

    Kreith, J; Strunz, T; Fantner, E J; Fantner, G E; Cordill, M J

    2017-05-01

    A versatile atomic force microscope (AFM), which can be installed in a scanning electron microscope (SEM), is introduced. The flexible design of the instrument enables correlated analysis for different experimental configurations, such as AFM imaging directly after nanoindentation in vacuum. In order to demonstrate the capabilities of the specially designed AFM installed inside a SEM, slip steps emanating around nanoindents in single crystalline brass were examined. This example showcases how the combination of AFM and SEM imaging can be utilized for quantitative dislocation analysis through the measurement of the slip step heights without the hindrance of oxide formation. Finally, an in situ nanoindentation technique is introduced, illustrating the use of AFM imaging during indentation experiments to examine plastic deformation occurring under the indenter tip. The mechanical indentation data are correlated to the SEM and AFM images to estimate the number of dislocations emitted to the surface.

  12. A universal fluid cell for the imaging of biological specimens in the atomic force microscope.

    PubMed

    Kasas, Sandor; Radotic, Ksenja; Longo, Giovanni; Saha, Bashkar; Alonso-Sarduy, Livan; Dietler, Giovanni; Roduit, Charles

    2013-04-01

    Recently, atomic force microscope (AFM) manufacturers have begun producing instruments specifically designed to image biological specimens. In most instances, they are integrated with an inverted optical microscope, which permits concurrent optical and AFM imaging. An important component of the set-up is the imaging chamber, whose design determines the nature of the experiments that can be conducted. Many different imaging chamber designs are available, usually designed to optimize a single parameter, such as the dimensions of the substrate or the volume of fluid that can be used throughout the experiment. In this report, we present a universal fluid cell, which simultaneously optimizes all of the parameters that are important for the imaging of biological specimens in the AFM. This novel imaging chamber has been successfully tested using mammalian, plant, and microbial cells. Copyright © 2013 Wiley Periodicals, Inc.

  13. Atomic force microscopic study of the influence of physical stresses on Saccharomyces cerevisiae and Schizosaccharomyces pombe.

    PubMed

    Adya, Ashok K; Canetta, Elisabetta; Walker, Graeme M

    2006-01-01

    Morphological changes in the cell surfaces of the budding yeast Saccharomyces cerevisiae (strain NCYC 1681), and the fission yeast Schizosaccharomyces pombe (strain DVPB 1354), in response to thermal and osmotic stresses, were investigated using an atomic force microscope. With this microscope imaging, together with measurements of culture viability and cell size, it was possible to relate topological changes of the cell surface at nanoscale with cellular stress physiology. As expected, when the yeasts were exposed to thermostress or osmostress, their viability together with the mean cell volume decreased in conjunction with the increase in thermal or osmotic shock. Nevertheless, the viability of cells stressed for up to 1 h remained relatively high. For example, viabilities were >50% and >90% for the thermostressed, and >60% and >70% for the osmostressed S. cerevisiae and Schiz. pombe, respectively. Mean cell volume measurements, and bearing and roughness analyses of atomic force microscope images of stressed yeasts indicate that Schiz. pombe may be more resistant to physical stresses than S. cerevisiae. Overall, this study has highlighted the usefulness of atomic force microscope in studies of yeast stress physiology.

  14. Radiation pressure excitation of a low temperature atomic force/magnetic force microscope for imaging in 4-300 K temperature range

    NASA Astrophysics Data System (ADS)

    Ćelik, Ümit; Karcı, Özgür; Uysallı, Yiǧit; Özer, H. Özgür; Oral, Ahmet

    2017-01-01

    We describe a novel radiation pressure based cantilever excitation method for imaging in dynamic mode atomic force microscopy (AFM) for the first time. Piezo-excitation is the most common method for cantilever excitation, however it may cause spurious resonance peaks. Therefore, the direct excitation of the cantilever plays a crucial role in AFM imaging. A fiber optic interferometer with a 1310 nm laser was used both for the excitation of the cantilever at the resonance and the deflection measurement of the cantilever in a commercial low temperature atomic force microscope/magnetic force microscope (AFM/MFM) from NanoMagnetics Instruments. The laser power was modulated at the cantilever's resonance frequency by a digital Phase Locked Loop (PLL). The laser beam is typically modulated by ˜500 μW, and ˜141.8 nmpp oscillation amplitude is obtained in moderate vacuum levels between 4 and 300 K. We have demonstrated the performance of the radiation pressure excitation in AFM/MFM by imaging atomic steps in graphite, magnetic domains in CoPt multilayers between 4 and 300 K and Abrikosov vortex lattice in BSCCO(2212) single crystal at 4 K for the first time.

  15. Radiation pressure excitation of a low temperature atomic force/magnetic force microscope for imaging in 4-300 K temperature range.

    PubMed

    Çelik, Ümit; Karcı, Özgür; Uysallı, Yiğit; Özer, H Özgür; Oral, Ahmet

    2017-01-01

    We describe a novel radiation pressure based cantilever excitation method for imaging in dynamic mode atomic force microscopy (AFM) for the first time. Piezo-excitation is the most common method for cantilever excitation, however it may cause spurious resonance peaks. Therefore, the direct excitation of the cantilever plays a crucial role in AFM imaging. A fiber optic interferometer with a 1310 nm laser was used both for the excitation of the cantilever at the resonance and the deflection measurement of the cantilever in a commercial low temperature atomic force microscope/magnetic force microscope (AFM/MFM) from NanoMagnetics Instruments. The laser power was modulated at the cantilever's resonance frequency by a digital Phase Locked Loop (PLL). The laser beam is typically modulated by ∼500 μW, and ∼141.8 nm pp oscillation amplitude is obtained in moderate vacuum levels between 4 and 300 K. We have demonstrated the performance of the radiation pressure excitation in AFM/MFM by imaging atomic steps in graphite, magnetic domains in CoPt multilayers between 4 and 300 K and Abrikosov vortex lattice in BSCCO(2212) single crystal at 4 K for the first time.

  16. Atomic force-multi-optical imaging integrated microscope for monitoring molecular dynamics in live cells.

    PubMed

    Trache, Andreea; Meininger, Gerald A

    2005-01-01

    A novel hybrid imaging system is constructed integrating atomic force microscopy (AFM) with a combination of optical imaging techniques that offer high spatial resolution. The main application of this instrument (the NanoFluor microscope) is the study of mechanotransduction with an emphasis on extracellular matrix-integrin-cytoskeletal interactions and their role in the cellular responses to changes in external chemical and mechanical factors. The AFM allows the quantitative assessment of cytoskeletal changes, binding probability, adhesion forces, and micromechanical properties of the cells, while the optical imaging applications allow thin sectioning of the cell body at the coverslip-cell interface, permitting the study of focal adhesions using total internal reflection fluorescence (TIRF) and internal reflection microscopy (IRM). Combined AFM-optical imaging experiments show that mechanical stimulation at the apical surface of cells induces a force-generating cytoskeletal response, resulting in focal contact reorganization on the basal surface that can be monitored in real time. The NanoFluor system is also equipped with a novel mechanically aligned dual camera acquisition system for synthesized Forster resonance energy transfer (FRET). The integrated NanoFluor microscope system is described, including its characteristics, applications, and limitations.

  17. Design of a self-aligned, wide temperature range (300 mK-300 K) atomic force microscope/magnetic force microscope with 10 nm magnetic force microscope resolution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karcı, Özgür; Department of Nanotechnology and Nanomedicine, Hacettepe University, Beytepe, 06800 Ankara; Dede, Münir

    We describe the design of a wide temperature range (300 mK-300 K) atomic force microscope/magnetic force microscope with a self-aligned fibre-cantilever mechanism. An alignment chip with alignment groves and a special mechanical design are used to eliminate tedious and time consuming fibre-cantilever alignment procedure for the entire temperature range. A low noise, Michelson fibre interferometer was integrated into the system for measuring deflection of the cantilever. The spectral noise density of the system was measured to be ~12 fm/√Hz at 4.2 K at 3 mW incident optical power. Abrikosov vortices in BSCCO(2212) single crystal sample and a high density hardmore » disk sample were imaged at 10 nm resolution to demonstrate the performance of the system.« less

  18. Apertureless near-field/far-field CW two-photon microscope for biological and material imaging and spectroscopic applications.

    PubMed

    Nowak, Derek B; Lawrence, A J; Sánchez, Erik J

    2010-12-10

    We present the development of a versatile spectroscopic imaging tool to allow for imaging with single-molecule sensitivity and high spatial resolution. The microscope allows for near-field and subdiffraction-limited far-field imaging by integrating a shear-force microscope on top of a custom inverted microscope design. The instrument has the ability to image in ambient conditions with optical resolutions on the order of tens of nanometers in the near field. A single low-cost computer controls the microscope with a field programmable gate array data acquisition card. High spatial resolution imaging is achieved with an inexpensive CW multiphoton excitation source, using an apertureless probe and simplified optical pathways. The high-resolution, combined with high collection efficiency and single-molecule sensitive optical capabilities of the microscope, are demonstrated with a low-cost CW laser source as well as a mode-locked laser source.

  19. Sharp Tips on the Atomic Force Microscope

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This image shows the eight sharp tips of the NASA's Phoenix Mars Lander's Atomic Force Microscope, or AFM. The AFM is part of Phoenix's Microscopy, Electrochemistry, and Conductivity Analyzer, or MECA.

    The microscope maps the shape of particles in three dimensions by scanning them with one of the tips at the end of a beam. For the AFM image taken, the tip at the end of the upper right beam was used. The tip pointing up in the enlarged image is the size of a smoke particle at its base, or 2 microns. This image was taken with a scanning electron microscope before Phoenix launched on August 4, 2007.

    The AFM was developed by a Swiss-led consortium in collaboration with Imperial College London.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  20. Substrate preparation for reliable imaging of DNA molecules with the scanning force microscope.

    PubMed

    Vesenka, J; Guthold, M; Tang, C L; Keller, D; Delaine, E; Bustamante, C

    1992-07-01

    A simple method of substrate preparation for imaging circular DNA molecules with the scanning force microscope (SFM) is presented. These biomolecules are adsorbed onto mica that has been soaked in magnesium acetate, sonicated and glow-discharged. The stylus-sample forces that may be endured before sample damage occurs depends on the ambient relative humidity. Images of circular DNA molecules have been obtained routinely using tips specially modified by an electron beam with a radius of curvature, Rc, of about 10 nm [D. Keller and C. Chih-Chung, Surf. Sci. 268 (1992) 333]. The resolution of these adsorbed biomolecules is determined by the Rc. At higher forces individual circular DNA molecules can be manipulated with the SFM stylus. Strategies to develop still sharper probes will be discussed.

  1. Atomic Force Microscope for Imaging and Spectroscopy

    NASA Technical Reports Server (NTRS)

    Pike, W. T.; Hecht, M. H.; Anderson, M. S.; Akiyama, T.; Gautsch, S.; deRooij, N. F.; Staufer, U.; Niedermann, Ph.; Howald, L.; Mueller, D.

    2000-01-01

    We have developed, built, and tested an atomic force microscope (AFM) for extraterrestrial applications incorporating a micromachined tip array to allow for probe replacement. It is part of a microscopy station originally intended for NASA's 2001 Mars lander to identify the size, distribution, and shape of Martian dust and soil particles. As well as imaging topographically down to nanometer resolution, this instrument can be used to reveal chemical information and perform infrared and Raman spectroscopy at unprecedented resolution.

  2. New implementation of a shear-force microscope suitable to study topographical features over wide areas

    NASA Astrophysics Data System (ADS)

    Ustione, A.; Cricenti, A.; Piacentini, M.; Felici, A. C.

    2006-09-01

    A new implementation of a shear-force microscope is described that uses a shear-force detection system to perform topographical imaging of large areas (˜1×1mm2). This implementation finds very interesting application in the study of archeological or artistic samples. Three dc motors are used to move a sample during a scan, allowing the probe tip to follow the surface and to face height differences of several tens of micrometers. This large-area topographical imaging mode exploits new subroutines that were added to the existing homemade software; these subroutines were created in Microsoft VISUAL BASIC 6.0 programming language. With this new feature our shear-force microscope can be used to study topographical details over large areas of archaeological samples in a nondestructive way. We show results detecting worn reliefs over a coin.

  3. Nanoscale Subsurface Imaging via Resonant Difference-Frequency Atomic Force Ultrasonic Microscopy

    NASA Technical Reports Server (NTRS)

    Cantrell, Sean A.; Cantrell, John H.; Lilehei, Peter T.

    2007-01-01

    A novel scanning probe microscope methodology has been developed that employs an ultrasonic wave launched from the bottom of a sample while the cantilever of an atomic force microscope, driven at a frequency differing from the ultrasonic frequency by the fundamental resonance frequency of the cantilever, engages the sample top surface. The nonlinear mixing of the oscillating cantilever and the ultrasonic wave in the region defined by the cantilever tip-sample surface interaction force generates difference-frequency oscillations at the cantilever fundamental resonance. The resonance-enhanced difference-frequency signals are used to create images of embedded nanoscale features.

  4. Scanning tunneling microscopy and atomic force microscopy: application to biology and technology.

    PubMed

    Hansma, P K; Elings, V B; Marti, O; Bracker, C E

    1988-10-14

    The scanning tunneling microscope (STM) and the atomic force microscope (AFM) are scanning probe microscopes capable of resolving surface detail down to the atomic level. The potential of these microscopes for revealing subtle details of structure is illustrated by atomic resolution images including graphite, an organic conductor, an insulating layered compound, and individual adsorbed oxygen atoms on a semiconductor. Application of the STM for imaging biological materials directly has been hampered by the poor electron conductivity of most biological samples. The use of thin conductive metal coatings and replicas has made it possible to image some biological samples, as indicated by recently obtained images of a recA-DNA complex, a phospholipid bilayer, and an enzyme crystal. The potential of the AFM, which does not require a conductive sample, is shown with molecular resolution images of a nonconducting organic monolayer and an amino acid crystal that reveals individual methyl groups on the ends of the amino acids. Applications of these new microscopes to technology are demonstrated with images of an optical disk stamper, a diffraction grating, a thin-film magnetic recording head, and a diamond cutting tool. The STM has even been used to improve the quality of diffraction gratings and magnetic recording heads.

  5. Hyperbaric hydrothermal atomic force microscope

    DOEpatents

    Knauss, Kevin G.; Boro, Carl O.; Higgins, Steven R.; Eggleston, Carrick M.

    2002-01-01

    A hyperbaric hydrothermal atomic force microscope (AFM) is provided to image solid surfaces in fluids, either liquid or gas, at pressures greater than normal atmospheric pressure. The sample can be heated and its surface imaged in aqueous solution at temperatures greater than 100.degree. C. with less than 1 nm vertical resolution. A gas pressurized microscope base chamber houses the stepper motor and piezoelectric scanner. A chemically inert, flexible membrane separates this base chamber from the sample cell environment and constrains a high temperature, pressurized liquid or gas in the sample cell while allowing movement of the scanner. The sample cell is designed for continuous flow of liquid or gas through the sample environment.

  6. Hyperbaric Hydrothermal Atomic Force Microscope

    DOEpatents

    Knauss, Kevin G.; Boro, Carl O.; Higgins, Steven R.; Eggleston, Carrick M.

    2003-07-01

    A hyperbaric hydrothermal atomic force microscope (AFM) is provided to image solid surfaces in fluids, either liquid or gas, at pressures greater than normal atmospheric pressure. The sample can be heated and its surface imaged in aqueous solution at temperatures greater than 100.degree. C. with less than 1 nm vertical resolution. A gas pressurized microscope base chamber houses the stepper motor and piezoelectric scanner. A chemically inert, flexible membrane separates this base chamber from the sample cell environment and constrains a high temperature, pressurized liquid or gas in the sample cell while allowing movement of the scanner. The sample cell is designed for continuous flow of liquid or gas through the sample environment.

  7. Method for imaging liquid and dielectric materials with scanning polarization force microscopy

    DOEpatents

    Hu, Jun; Ogletree, D. Frank; Salmeron, Miguel; Xiao, Xudong

    1999-01-01

    The invention images dielectric polarization forces on surfaces induced by a charged scanning force microscope (SFM) probe tip. On insulators, the major contribution to the surface polarizability at low frequencies is from surface ions. The mobility of these ions depends strongly on the humidity. Using the inventive SFM, liquid films, droplets, and other weakly adsorbed materials have been imaged.

  8. Apparatus for imaging liquid and dielectric materials with scanning polarization force microscopy

    DOEpatents

    Hu, Jun; Ogletree, D. Frank; Salmeron, Miguel; Xiao, Xudong

    1998-01-01

    The invention images dielectric polarization forces on surfaces induced by a charged scanning force microscope (SFM) probe tip. On insulators, the major contribution to the surface polarizability at low frequencies is from surface ions. The mobility of these ions depends strongly on the humidity. Using the inventive SFM, liquid films, droplets, and other weakly adsorbed materials have been imaged.

  9. Phase modulation atomic force microscope with true atomic resolution

    NASA Astrophysics Data System (ADS)

    Fukuma, Takeshi; Kilpatrick, Jason I.; Jarvis, Suzanne P.

    2006-12-01

    We have developed a dynamic force microscope (DFM) working in a novel operation mode which is referred to as phase modulation atomic force microscopy (PM-AFM). PM-AFM utilizes a fixed-frequency excitation signal to drive a cantilever, which ensures stable imaging even with occasional tip crash and adhesion to the surface. The tip-sample interaction force is detected as a change of the phase difference between the cantilever deflection and excitation signals and hence the time response is not influenced by the Q factor of the cantilever. These features make PM-AFM more suitable for high-speed imaging than existing DFM techniques such as amplitude modulation and frequency modulation atomic force microscopies. Here we present the basic principle of PM-AFM and the theoretical limit of its performance. The design of the developed PM-AFM is described and its theoretically limited noise performance is demonstrated. Finally, we demonstrate the true atomic resolution imaging capability of the developed PM-AFM by imaging atomic-scale features of mica in water.

  10. Seamless stitching of tile scan microscope images.

    PubMed

    Legesse, F B; Chernavskaia, O; Heuke, S; Bocklitz, T; Meyer, T; Popp, J; Heintzmann, R

    2015-06-01

    For diagnostic purposes, optical imaging techniques need to obtain high-resolution images of extended biological specimens in reasonable time. The field of view of an objective lens, however, is often smaller than the sample size. To image the whole sample, laser scanning microscopes acquire tile scans that are stitched into larger mosaics. The appearance of such image mosaics is affected by visible edge artefacts that arise from various optical aberrations which manifest in grey level jumps across tile boundaries. In this contribution, a technique for stitching tiles into a seamless mosaic is presented. The stitching algorithm operates by equilibrating neighbouring edges and forcing the brightness at corners to a common value. The corrected image mosaics appear to be free from stitching artefacts and are, therefore, suited for further image analysis procedures. The contribution presents a novel method to seamlessly stitch tiles captured by a laser scanning microscope into a large mosaic. The motivation for the work is the failure of currently existing methods for stitching nonlinear, multimodal images captured by our microscopic setups. Our method eliminates the visible edge artefacts that appear between neighbouring tiles by taking into account the overall illumination differences among tiles in such mosaics. The algorithm first corrects the nonuniform brightness that exists within each of the tiles. It then compensates for grey level differences across tile boundaries by equilibrating neighbouring edges and forcing the brightness at the corners to a common value. After these artefacts have been removed further image analysis procedures can be applied on the microscopic images. Even though the solution presented here is tailored for the aforementioned specific case, it could be easily adapted to other contexts where image tiles are assembled into mosaics such as in astronomical or satellite photos. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.

  11. Resonant difference-frequency atomic force ultrasonic microscope

    NASA Technical Reports Server (NTRS)

    Cantrell, John H. (Inventor); Cantrell, Sean A. (Inventor)

    2010-01-01

    A scanning probe microscope and methodology called resonant difference-frequency atomic force ultrasonic microscopy (RDF-AFUM), employs an ultrasonic wave launched from the bottom of a sample while the cantilever of an atomic force microscope, driven at a frequency differing from the ultrasonic frequency by one of the contact resonance frequencies of the cantilever, engages the sample top surface. The nonlinear mixing of the oscillating cantilever and the ultrasonic wave in the region defined by the cantilever tip-sample surface interaction force generates difference-frequency oscillations at the cantilever contact resonance. The resonance-enhanced difference-frequency signals are used to create images of nanoscale near-surface and subsurface features.

  12. A compact CCD-monitored atomic force microscope with optical vision and improved performances.

    PubMed

    Mingyue, Liu; Haijun, Zhang; Dongxian, Zhang

    2013-09-01

    A novel CCD-monitored atomic force microscope (AFM) with optical vision and improved performances has been developed. Compact optical paths are specifically devised for both tip-sample microscopic monitoring and cantilever's deflection detecting with minimized volume and optimal light-amplifying ratio. The ingeniously designed AFM probe with such optical paths enables quick and safe tip-sample approaching, convenient and effective tip-sample positioning, and high quality image scanning. An image stitching method is also developed to build a wider-range AFM image under monitoring. Experiments show that this AFM system can offer real-time optical vision for tip-sample monitoring with wide visual field and/or high lateral optical resolution by simply switching the objective; meanwhile, it has the elegant performances of nanometer resolution, high stability, and high scan speed. Furthermore, it is capable of conducting wider-range image measurement while keeping nanometer resolution. Copyright © 2013 Wiley Periodicals, Inc.

  13. Method for imaging liquid and dielectric materials with scanning polarization force microscopy

    DOEpatents

    Hu, J.; Ogletree, D.F.; Salmeron, M.; Xiao, X.

    1999-03-09

    The invention images dielectric polarization forces on surfaces induced by a charged scanning force microscope (SFM) probe tip. On insulators, the major contribution to the surface polarizability at low frequencies is from surface ions. The mobility of these ions depends strongly on the humidity. Using the inventive SFM, liquid films, droplets, and other weakly adsorbed materials have been imaged. 9 figs.

  14. Apparatus for imaging liquid and dielectric materials with scanning polarization force microscopy

    DOEpatents

    Hu, J.; Ogletree, D.F.; Salmeron, M.; Xiao, X.

    1998-04-28

    The invention images dielectric polarization forces on surfaces induced by a charged scanning force microscope (SFM) probe tip. On insulators, the major contribution to the surface polarizability at low frequencies is from surface ions. The mobility of these ions depends strongly on the humidity. Using the inventive SFM, liquid films, droplets, and other weakly adsorbed materials have been imaged. 9 figs.

  15. The Atomic Force Microscopic (AFM) Characterization of Nanomaterials

    DTIC Science & Technology

    2009-06-01

    Several Types of Microscopes ..................................................................................................7 8 OM on Mica Surface...12 9 AFM on Mica Surface...12 10 OM Images SWNTs on Mica After 1) 30 Minutes, b) 60

  16. A Computer-Controlled Classroom Model of an Atomic Force Microscope

    ERIC Educational Resources Information Center

    Engstrom, Tyler A.; Johnson, Matthew M.; Eklund, Peter C.; Russin, Timothy J.

    2015-01-01

    The concept of "seeing by feeling" as a way to circumvent limitations on sight is universal on the macroscopic scale--reading Braille, feeling one's way around a dark room, etc. The development of the atomic force microscope (AFM) in 1986 extended this concept to imaging in the nanoscale. While there are classroom demonstrations that use…

  17. Characterizing the surface roughness of thermomechanical pulp fibers with atomic force microscopy

    Treesearch

    Rebecca Snell; Leslie H. Groom; Timothy G. Rials

    2001-01-01

    Loblolly pine, separated into mature and juvenile portions, was refined at various pressures (4, 8 and 12 bar). Fiber surfaces were investigated using a Scanning Electron Microscope (SEM) and an Atomic Force Microscope (AFM). Refiner pressure had a significant effect on the fiber surefaces. SEM images showed an apparent increase in surface roughness with increased...

  18. Note: Seesaw actuation of atomic force microscope probes for improved imaging bandwidth and displacement range

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Torun, H.; Torello, D.; Degertekin, F. L.

    2011-08-15

    The authors describe a method of actuation for atomic force microscope (AFM) probes to improve imaging speed and displacement range simultaneously. Unlike conventional piezoelectric tube actuation, the proposed method involves a lever and fulcrum ''seesaw'' like actuation mechanism that uses a small, fast piezoelectric transducer. The lever arm of the seesaw mechanism increases the apparent displacement range by an adjustable gain factor, overcoming the standard tradeoff between imaging speed and displacement range. Experimental characterization of a cantilever holder implementing the method is provided together with comparative line scans obtained with contact mode imaging. An imaging bandwidth of 30 kHz inmore » air with the current setup was demonstrated.« less

  19. A multifunctional force microscope for soft matter with in situ imaging

    NASA Astrophysics Data System (ADS)

    Roberts, Paul; Pilkington, Georgia A.; Wang, Yumo; Frechette, Joelle

    2018-04-01

    We present the multifunctional force microscope (MFM), a normal and lateral force-measuring instrument with in situ imaging. In the MFM, forces are calculated from the normal and lateral deflection of a cantilever as measured via fiber optic sensors. The motion of the cantilever is controlled normally by a linear micro-translation stage and a piezoelectric actuator, while the lateral motion of the sample is controlled by another linear micro-translation stage. The micro-translation stages allow for travel distances that span 25 mm with a minimum step size of 50 nm, while the piezo has a minimum step size of 0.2 nm, but a 100 μm maximum range. Custom-designed cantilevers allow for the forces to be measured over 4 orders of magnitude (from 50 μN to 1 N). We perform probe tack, friction, and hydrodynamic drainage experiments to demonstrate the sensitivity, versatility, and measurable force range of the instrument.

  20. Near-Field Acoustical Imaging using Lateral Bending Mode of Atomic Force Microscope Cantilevers

    NASA Astrophysics Data System (ADS)

    Caron, A.; Rabe, U.; Rödel, J.; Arnold, W.

    Scanning probe microscopy techniques enable one to investigate surface properties such as contact stiffness and friction between the probe tip and a sample with nm resolution. So far the bending and the torsional eigenmodes of an atomic force microscope cantilever have been used to image variations of elasticity and shear elasticity, respectively. Such images are near-field images with the resolution given by the contact radius typically between 10 nm and 50 nm. We show that the flexural modes of a cantilever oscillating in the width direction and parallel to the sample surface can also be used for imaging. Additional to the dominant in-plane component of the oscillation, the lateral modes exhibit a vertical component as well, provided there is an asymmetry in the cross-section of the cantilever or in its suspension. The out-of-plane deflection renders the lateral modes detectable by the optical position sensors used in atomic force microscopes. We studied cracks which were generated by Vickers indents, in submicro- and nanocrystalline ZrO2. Images of the lateral contact stiffness were obtained by vibrating the cantilever close to a contact-resonance frequency. A change in contact stiffness causes a shift of the resonant frequency and hence a change of the cantilever vibration amplitude. The lateral contact-stiffness images close to the crack faces display a contrast that we attribute to altered elastic properties indicating a process zone. This could be caused by a stress-induced phase transformation during crack propagation. Using the contact mode of an atomic force microscope, we measured the crack-opening displacement as a function of distance from the crack tip, and we determined the crack-tip toughness Ktip. Furthermore, K1c was inferred from the length of radial cracks of Vickers indents that were measured using classical scanning acoustic microscopy

  1. A hydrothermal atomic force microscope for imaging in aqueous solution up to 150 °C

    NASA Astrophysics Data System (ADS)

    Higgins, Steven R.; Eggleston, Carrick M.; Knauss, Kevin G.; Boro, Carl O.

    1998-08-01

    We present the design of a contact atomic force microscope (AFM) that can be used to image solid surfaces in aqueous solution up to 150 °C and 6 atm. The main features of this unique AFM are: (1) an inert gas pressurized microscope base containing stepper motor for coarse advance and the piezoelectric tube scanner; (2) a chemically inert membrane separating these parts from the fluid cell; (3) a titanium fluid cell with fluid inlet-outlet ports, a thermocouple port, and a sapphire optical window; (4) a resistively heated ceramic booster heater for the fluid cell to maintain the temperature of solutions sourced from a hydrothermal bomb; and (5) mass flow control. The design overcomes current limitations on the temperature and pressure range accessible to AFM imaging in aqueous solutions. Images taken at temperature and pressure are presented, demonstrating the unit-cell scale (<1 nm) vertical resolution of the AFM under hydrothermal conditions.

  2. Imaging powders with the atomic force microscope: from biominerals to commercial materials.

    PubMed

    Friedbacher, G; Hansma, P K; Ramli, E; Stucky, G D

    1991-09-13

    Atomically resolved images of pressed powder samples have been obtained with the atomic force microscope (AFM). The technique was successful in resolving the particle, domain, and atomic structure of pismo clam (Tivela stultorum) and sea urchin (Strongylocentrotus purpuratus) shells and of commercially available calcium carbonate (CaCO(3)) and strontium carbonate (SrCO(3)) powders. Grinding and subsequent pressing of the shells did not destroy the microstructure of these materials. The atomic-resolution imaging capabilities of AFM can be applied to polycrystalline samples by means of pressing powders with a grain size as small as 50 micrometers. These results illustrate that the AFM is a promising tool for material science and the study of biomineralization.

  3. Imaging the microscopic structure of shear thinning and thickening colloidal suspensions.

    PubMed

    Cheng, Xiang; McCoy, Jonathan H; Israelachvili, Jacob N; Cohen, Itai

    2011-09-02

    The viscosity of colloidal suspensions varies with shear rate, an important effect encountered in many natural and industrial processes. Although this non-Newtonian behavior is believed to arise from the arrangement of suspended particles and their mutual interactions, microscopic particle dynamics are difficult to measure. By combining fast confocal microscopy with simultaneous force measurements, we systematically investigate a suspension's structure as it transitions through regimes of different flow signatures. Our measurements of the microscopic single-particle dynamics show that shear thinning results from the decreased relative contribution of entropic forces and that shear thickening arises from particle clustering induced by hydrodynamic lubrication forces. This combination of techniques illustrates an approach that complements current methods for determining the microscopic origins of non-Newtonian flow behavior in complex fluids.

  4. Analytical Model of the Nonlinear Dynamics of Cantilever Tip-Sample Surface Interactions for Various Acoustic-Atomic Force Microscopies

    NASA Technical Reports Server (NTRS)

    Cantrell, John H., Jr.; Cantrell, Sean A.

    2008-01-01

    A comprehensive analytical model of the interaction of the cantilever tip of the atomic force microscope (AFM) with the sample surface is developed that accounts for the nonlinearity of the tip-surface interaction force. The interaction is modeled as a nonlinear spring coupled at opposite ends to linear springs representing cantilever and sample surface oscillators. The model leads to a pair of coupled nonlinear differential equations that are solved analytically using a standard iteration procedure. Solutions are obtained for the phase and amplitude signals generated by various acoustic-atomic force microscope (A-AFM) techniques including force modulation microscopy, atomic force acoustic microscopy, ultrasonic force microscopy, heterodyne force microscopy, resonant difference-frequency atomic force ultrasonic microscopy (RDF-AFUM), and the commonly used intermittent contact mode (TappingMode) generally available on AFMs. The solutions are used to obtain a quantitative measure of image contrast resulting from variations in the Young modulus of the sample for the amplitude and phase images generated by the A-AFM techniques. Application of the model to RDF-AFUM and intermittent soft contact phase images of LaRC-cp2 polyimide polymer is discussed. The model predicts variations in the Young modulus of the material of 24 percent from the RDF-AFUM image and 18 percent from the intermittent soft contact image. Both predictions are in good agreement with the literature value of 21 percent obtained from independent, macroscopic measurements of sheet polymer material.

  5. Dielectrophoretic immobilization of proteins: Quantification by atomic force microscopy.

    PubMed

    Laux, Eva-Maria; Knigge, Xenia; Bier, Frank F; Wenger, Christian; Hölzel, Ralph

    2015-09-01

    The combination of alternating electric fields with nanometer-sized electrodes allows the permanent immobilization of proteins by dielectrophoretic force. Here, atomic force microscopy is introduced as a quantification method, and results are compared with fluorescence microscopy. Experimental parameters, for example the applied voltage and duration of field application, are varied systematically, and the influence on the amount of immobilized proteins is investigated. A linear correlation to the duration of field application was found by atomic force microscopy, and both microscopical methods yield a square dependence of the amount of immobilized proteins on the applied voltage. While fluorescence microscopy allows real-time imaging, atomic force microscopy reveals immobilized proteins obscured in fluorescence images due to low S/N. Furthermore, the higher spatial resolution of the atomic force microscope enables the visualization of the protein distribution on single nanoelectrodes. The electric field distribution is calculated and compared to experimental results with very good agreement to atomic force microscopy measurements. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Subatomic Features on the Silicon (111)-(7x7) Surface Observed by Atomic Force Microscopy.

    PubMed

    Giessibl; Hembacher; Bielefeldt; Mannhart

    2000-07-21

    The atomic force microscope images surfaces by sensing the forces between a sharp tip and a sample. If the tip-sample interaction is dominated by short-range forces due to the formation of covalent bonds, the image of an individual atom should reflect the angular symmetry of the interaction. Here, we report on a distinct substructure in the images of individual adatoms on silicon (111)-(7x7), two crescents with a spherical envelope. The crescents are interpreted as images of two atomic orbitals of the front atom of the tip. Key for the observation of these subatomic features is a force-detection scheme with superior noise performance and enhanced sensitivity to short-range forces.

  7. Atomic Force Microscope Investigations of Bacterial Biofilms Treated with Gas Discharge Plasmas

    NASA Astrophysics Data System (ADS)

    Vandervoort, Kurt; Zelaya, Anna; Brelles-Marino, Graciela

    2012-02-01

    We present investigations of bacterial biofilms before and after treatment with gas discharge plasmas. Gas discharge plasmas represent a way to inactivate bacteria under conditions where conventional disinfection methods are often ineffective. These conditions involve biofilm communities, where bacteria grow embedded in an exopolysaccharide matrix, and cooperative interactions between cells make organisms less susceptible to standard inactivation methods. In this study, biofilms formed by the opportunistic bacterium Pseudomonas aeruginosa were imaged before and after plasma treatment using an atomic force microscope (AFM). Through AFM images and micromechanical measurements we observed bacterial morphological damage and reduced AFM tip-sample surface adhesion following plasma treatment.

  8. Imaging and engineering the nanoscale-domain structure of a Sr0.61Ba0.39Nb2O6 crystal using a scanning force microscope

    NASA Astrophysics Data System (ADS)

    Terabe, K.; Takekawa, S.; Nakamura, M.; Kitamura, K.; Higuchi, S.; Gotoh, Y.; Gruverman, A.

    2002-09-01

    We have investigated the ferroelectric domain structure formed in a Sr0.61Ba0.39Nb2O6 single crystal by cooling the crystal through the Curie point. Imaging the etched surface structure using a scanning force microscope (SFM) in both the topographic mode and the piezoresponse mode revealed that a multidomain structure of nanoscale islandlike domains was formed. The islandlike domains could be inverted by applying an appropriate voltage using a conductive SFM tip. Furthermore, a nanoscale periodically inverted-domain structure was artificially fabricated using the crystal which underwent poling treatment.

  9. Atomic force microscopy of biological samples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doktycz, Mitchel John

    2010-01-01

    The ability to evaluate structural-functional relationships in real time has allowed scanning probe microscopy (SPM) to assume a prominent role in post genomic biological research. In this mini-review, we highlight the development of imaging and ancillary techniques that have allowed SPM to permeate many key areas of contemporary research. We begin by examining the invention of the scanning tunneling microscope (STM) by Binnig and Rohrer in 1982 and discuss how it served to team biologists with physicists to integrate high-resolution microscopy into biological science. We point to the problems of imaging nonconductive biological samples with the STM and relate howmore » this led to the evolution of the atomic force microscope (AFM) developed by Binnig, Quate, and Gerber, in 1986. Commercialization in the late 1980s established SPM as a powerful research tool in the biological research community. Contact mode AFM imaging was soon complemented by the development of non-contact imaging modes. These non-contact modes eventually became the primary focus for further new applications including the development of fast scanning methods. The extreme sensitivity of the AFM cantilever was recognized and has been developed into applications for measuring forces required for indenting biological surfaces and breaking bonds between biomolecules. Further functional augmentation to the cantilever tip allowed development of new and emerging techniques including scanning ion-conductance microscopy (SICM), scanning electrochemical microscope (SECM), Kelvin force microscopy (KFM) and scanning near field ultrasonic holography (SNFUH).« less

  10. Tip localization of an atomic force microscope in transmission microscopy with nanoscale precision

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baumann, Fabian; Pippig, Diana A., E-mail: diana.pippig@physik.uni-muenchen.de; Gaub, Hermann E.

    Since the atomic force microscope (AFM) has evolved into a general purpose platform for mechanical experiments at the nanoscale, the need for a simple and generally applicable localization of the AFM cantilever in the reference frame of an optical microscope has grown. Molecular manipulations like in single molecule cut and paste or force spectroscopy as well as tip mediated nanolithography are prominent examples for the broad variety of applications implemented to date. In contrast to the different kinds of superresolution microscopy where fluorescence is used to localize the emitter, we, here, employ the absorbance of the tip to localize itsmore » position in transmission microscopy. We show that in a low aperture illumination, the tip causes a significant reduction of the intensity in the image plane of the microscope objective when it is closer than a few hundred nm. By independently varying the z-position of the sample slide, we could verify that this diffraction limited image of the tip is not caused by a near field effect but is rather caused by the absorbance of the transmitted light in the low apex needle-like tip. We localized the centroid position of this tip image with a precision of better than 6 nm and used it in a feedback loop to position the tip into nano-apertures of 110 nm radius. Single-molecule force spectroscopy traces on the unfolding of individual green fluorescent proteins within the nano-apertures showed that their center positions were repeatedly approached with very high fidelity leaving the specific handle chemistry on the tip’s surface unimpaired.« less

  11. Tribological behavior of micro/nano-patterned surfaces in contact with AFM colloidal probe

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaoliang; Wang, Xiu; Kong, Wen; Yi, Gewen; Jia, Junhong

    2011-10-01

    In effort to investigate the influence of the micro/nano-patterning or surface texturing on the nanotribological properties of patterned surfaces, the patterned polydimethylsiloxane (PDMS) surfaces with pillars were fabricated by replica molding technique. The surface morphologies of patterned PDMS surfaces with varying pillar sizes and spacing between pillars were characterized by atomic force microscope (AFM) and scanning electron microscope (SEM). The AFM/FFM was used to acquire the friction force images of micro/nano-patterned surfaces using a colloidal probe. A difference in friction force produced a contrast on the friction force images when the colloidal probe slid over different regions of the patterned polymer surfaces. The average friction force of patterned surface was related to the spacing between the pillars and their size. It decreased with the decreasing of spacing between the pillars and the increasing of pillar size. A reduction in friction force was attributed to the reduced area of contact between patterned surface and colloidal probe. Additionally, the average friction force increased with increasing applied load and sliding velocity.

  12. Images from Phoenix's MECA Instruments

    NASA Technical Reports Server (NTRS)

    2008-01-01

    The image on the upper left is from NASA's Phoenix Mars Lander's Optical Microscope after a sample informally called 'Sorceress' was delivered to its silicon substrate on the 38th Martian day, or sol, of the mission (July 2, 2008).

    A 3D representation of the same sample is on the right, as seen by Phoenix's Atomic Force Microscope. This is 200 times greater magnification than the view from the Optical Microscope, and the most highly magnified image ever seen from another world.

    The image shows four round pits, only 5 microns in depth, that were micromachined into the silicon substrate, which is the background plane shown in red. This image has been processed to reflect the levelness of the substrate.

    A Martian particle only one micrometer, or one millionth of a meter, across is held in the upper left pit.

    The rounded particle shown at the highest magnification ever seen from another world is a particle of the dust that cloaks Mars. Such dust particles color the Martian sky pink, feed storms that regularly envelop the planet and produce Mars' distinctive red soil.

    The Optical Microscope and the Atomic Force Microscope are part of Phoenix's Microscopy, Electrochemistry and Conductivity Analyzer instrument.

    The AFM was developed by a Swiss-led consortium, with Imperial College London producing the silicon substrate that holds sampled particles.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  13. Atomic force microscope image contrast mechanisms on supported lipid bilayers.

    PubMed

    Schneider, J; Dufrêne, Y F; Barger, W R; Lee, G U

    2000-08-01

    This work presents a methodology to measure and quantitatively interpret force curves on supported lipid bilayers in water. We then use this method to correlate topographic imaging contrast in atomic force microscopy (AFM) images of phase-separated Langmuir-Blodgett bilayers with imaging load. Force curves collected on pure monolayers of both distearoylphosphatidylethanolamine (DSPE) and monogalactosylethanolamine (MGDG) and dioleoylethanolamine (DOPE) deposited at similar surface pressures onto a monolayer of DSPE show an abrupt breakthrough event at a repeatable, material-dependent force. The breakthrough force for DSPE and MGDG is sizable, whereas the breakthrough force for DOPE is too small to measure accurately. Contact-mode AFM images on 1:1 mixed monolayers of DSPE/DOPE and MGDG/DOPE have a high topographic contrast at loads between the breakthrough force of each phase, and a low topographic contrast at loads above the breakthrough force of both phases. Frictional contrast is inverted and magnified at loads above the breakthrough force of both phases. These results emphasize the important role that surface forces and mechanics can play in imaging multicomponent biomembranes with AFM.

  14. Radiation pressure excitation of Low Temperature Atomic Force & Magnetic Force Microscope (LT-AFM/MFM) for Imaging

    NASA Astrophysics Data System (ADS)

    Karci, Ozgur; Celik, Umit; Oral, Ahmet; NanoMagnetics Instruments Ltd. Team; Middle East Tech Univ Team

    2015-03-01

    We describe a novel method for excitation of Atomic Force Microscope (AFM) cantilevers by means of radiation pressure for imaging in an AFM for the first time. Piezo excitation is the most common method for cantilever excitation, but it may cause spurious resonance peaks. A fiber optic interferometer with 1310 nm laser was used both to measure the deflection of cantilever and apply a force to the cantilever in a LT-AFM/MFM from NanoMagnetics Instruments. The laser power was modulated at the cantilever`s resonance frequency by a digital Phase Lock Loop (PLL). The force exerted by the radiation pressure on a perfectly reflecting surface by a laser beam of power P is F = 2P/c. We typically modulate the laser beam by ~ 800 μW and obtain 10nm oscillation amplitude with Q ~ 8,000 at 2.5x10-4 mbar. The cantilever's stiffness can be accurately calibrated by using the radiation pressure. We have demonstrated performance of the radiation pressure excitation in AFM/MFM by imaging a hard disk sample between 4-300K and Abrikosov vortex lattice in BSCCO single crystal at 4K to for the first time.

  15. Surface imaging microscope

    NASA Astrophysics Data System (ADS)

    Rogala, Eric W.; Bankman, Isaac N.

    2008-04-01

    The three-dimensional shapes of microscopic objects are becoming increasingly important for battlespace CBRNE sensing. Potential applications of microscopic 3D shape observations include characterization of biological weapon particles and manufacturing of micromechanical components. Aerosol signatures of stand-off lidar systems, using elastic backscatter or polarization, are dictated by the aerosol particle shapes and sizes that must be well characterized in the lab. A low-cost, fast instrument for 3D surface shape microscopy will be a valuable point sensor for biological particle sensing applications. Both the cost and imaging durations of traditional techniques such as confocal microscopes, atomic force microscopes, and electron scanning microscopes are too high. We investigated the feasibility of a low-cost, fast interferometric technique for imaging the 3D surface shape of microscopic objects at frame rates limited only by the camera in the system. The system operates at two laser wavelengths producing two fringe images collected simultaneously by a digital camera, and a specialized algorithm we developed reconstructs the surface map of the microscopic object. The current implementation assembled to test the concept and develop the new 3D reconstruction algorithm has 0.25 micron resolution in the x and y directions, and about 0.1 micron accuracy in the z direction, as tested on a microscopic glass test object manufactured with etching techniques. We describe the interferometric instrument, present the reconstruction algorithm, and discuss further development.

  16. Twisted ribbon structure of paired helical filaments revealed by atomic force microscopy.

    PubMed Central

    Pollanen, M. S.; Markiewicz, P.; Bergeron, C.; Goh, M. C.

    1994-01-01

    Progressive deposition of phosphorylated tau into the paired helical filaments (PHF) that compose neurofibrillary tangles, dystrophic neurites, and neuropil threads is an obligate feature of Alzheimer's disease. The standard model of PHF structure, derived from electron microscopic studies, suggests that two 8- to 10-nm filaments each composed of three to four protofilaments are wound into a helix with a maximal diameter of -20 nm and a half period of 65 to 80 nm. However, recent vertical platinum-carbon replicas of PHF more closely resemble a thin helical ribbon without constitutive protofilaments. Here we report that native PHF imaged with an atomic force microscope appear as twisted ribbons rather than the generally accepted structure derived from electron microscopic studies. These data imply that the assembly of PHF is not due to the twisting of pair-wise filaments but rather the helical winding of self-associated tau molecules arranged into a flattened structure. Future structural models of PHF should be based on quantitative data obtained from imaging techniques, such as scanning probe microscopy, which do not require harsh specimen preparation procedures. Images Figure 1 PMID:8178938

  17. Simultaneous topography imaging and broadband nanomechanical mapping on atomic force microscope

    NASA Astrophysics Data System (ADS)

    Li, Tianwei; Zou, Qingze

    2017-12-01

    In this paper, an approach is proposed to achieve simultaneous imaging and broadband nanomechanical mapping of soft materials in air by using an atomic force microscope. Simultaneous imaging and nanomechanical mapping are needed, for example, to correlate the morphological and mechanical evolutions of the sample during dynamic phenomena such as the cell endocytosis process. Current techniques for nanomechanical mapping, however, are only capable of capturing static elasticity of the material, or the material viscoelasticity in a narrow frequency band around the resonant frequency(ies) of the cantilever used, not competent for broadband nanomechanical mapping, nor acquiring topography image of the sample simultaneously. These limitations are addressed in this work by enabling the augmentation of an excitation force stimuli of rich frequency spectrum for nanomechanical mapping in the imaging process. Kalman-filtering technique is exploited to decouple and split the mixed signals for imaging and mapping, respectively. Then the sample indentation generated is quantified online via a system-inversion method, and the effects of the indentation generated and the topography tracking error on the topography quantification are taken into account. Moreover, a data-driven feedforward-feedback control is utilized to track the sample topography. The proposed approach is illustrated through experimental implementation on a polydimethylsiloxane sample with a pre-fabricated pattern.

  18. Atomic Force Microscope

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Day, R.D.; Russell, P.E.

    The Atomic Force Microscope (AFM) is a recently developed instrument that has achieved atomic resolution imaging of both conducting and non- conducting surfaces. Because the AFM is in the early stages of development, and because of the difficulty of building the instrument, it is currently in use in fewer than ten laboratories worldwide. It promises to be a valuable tool for obtaining information about engineering surfaces and aiding the .study of precision fabrication processes. This paper gives an overview of AFM technology and presents plans to build an instrument designed to look at engineering surfaces.

  19. The long range voice coil atomic force microscope

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barnard, H.; Randall, C.; Bridges, D.

    2012-02-15

    Most current atomic force microscopes (AFMs) use piezoelectric ceramics for scan actuation. Piezoelectric ceramics provide precision motion with fast response to applied voltage potential. A drawback to piezoelectric ceramics is their inherently limited ranges. For many samples this is a nonissue, as imaging the nanoscale details is the goal. However, a key advantage of AFM over other microscopy techniques is its ability to image biological samples in aqueous buffer. Many biological specimens have topography for which the range of piezoactuated stages is limiting, a notable example of which is bone. In this article, we present the use of voice coilsmore » in scan actuation for an actuation range in the Z-axis an order of magnitude larger than any AFM commercially available today. The increased scan size will allow for imaging an important new variety of samples, including bone fractures.« less

  20. Method for nanoscale spatial registration of scanning probes with substrates and surfaces

    NASA Technical Reports Server (NTRS)

    Wade, Lawrence A. (Inventor)

    2010-01-01

    Embodiments in accordance with the present invention relate to methods and apparatuses for aligning a scanning probe used to pattern a substrate, by comparing the position of the probe to a reference location or spot on the substrate. A first light beam is focused on a surface of the substrate as a spatial reference point. A second light beam then illuminates the scanning probe being used for patterning. An optical microscope images both the focused light beam, and a diffraction pattern, shadow, or light backscattered by the illuminated scanning probe tip of a scanning probe microscope (SPM), which is typically the tip of the scanning probe on an atomic force microscope (AFM). Alignment of the scanning probe tip relative to the mark is then determined by visual observation of the microscope image. This alignment process may be repeated to allow for modification or changing of the scanning probe microscope tip.

  1. Tapping mode imaging with an interfacial force microscope

    NASA Astrophysics Data System (ADS)

    Warren, O. L.; Graham, J. F.; Norton, P. R.

    1997-11-01

    In their present embodiment, sensors used in interfacial force microscopy do not have the necessary mechanical bandwidth to be employed as free-running tapping mode devices. We describe an extremely stable method of obtaining tapping mode images using feedback on the sensor. Our method is immune to small dc drifts in the force signal, and the prospect of diminishing the risk of damaging fragile samples is realized. The feasibility of the technique is demonstrated by our imaging work on a Kevlar fiber-epoxy composite. We also present a model which accounts for the frequency dependence of the sensor in air when operating under closed loop control. A simplified force modulation model is investigated to explore the effect of contact on the closed loop response of the sensor.

  2. Atomic force microscope based on vertical silicon probes

    NASA Astrophysics Data System (ADS)

    Walter, Benjamin; Mairiaux, Estelle; Faucher, Marc

    2017-06-01

    A family of silicon micro-sensors for Atomic Force Microscope (AFM) is presented that allows to operate with integrated transducers from medium to high frequencies together with moderate stiffness constants. The sensors are based on Micro-Electro-Mechanical-Systems technology. The vertical design specifically enables a long tip to oscillate perpendicularly to the surface to be imaged. The tip is part of a resonator including quasi-flexural composite beams, and symmetrical transducers that can be used as piezoresistive detector and/or electro-thermal actuator. Two vertical probes (Vprobes) were operated up to 4.3 MHz with stiffness constants 150 N/m to 500 N/m and the capability to oscillate from 10 pm to 90 nm. AFM images of several samples both in amplitude modulation (tapping-mode) and in frequency modulation were obtained.

  3. Atomic force microscopy contact, tapping, and jumping modes for imaging biological samples in liquids

    NASA Astrophysics Data System (ADS)

    Moreno-Herrero, F.; Colchero, J.; Gómez-Herrero, J.; Baró, A. M.

    2004-03-01

    The capabilities of the atomic force microscope for imaging biomolecules under physiological conditions has been systematically investigated. Contact, dynamic, and jumping modes have been applied to four different biological systems: DNA, purple membrane, Alzheimer paired helical filaments, and the bacteriophage φ29. These samples have been selected to cover a wide variety of biological systems in terms of sizes and substrate contact area, which make them very appropriate for the type of comparative studies carried out in the present work. Although dynamic mode atomic force microscopy is clearly the best choice for imaging soft samples in air, in liquids there is not a leading technique. In liquids, the most appropriate imaging mode depends on the sample characteristics and preparation methods. Contact or dynamic modes are the best choices for imaging molecular assemblies arranged as crystals such as the purple membrane. In this case, the advantage of image acquisition speed predominates over the disadvantage of high lateral or normal force. For imaging individual macromolecules, which are weakly bonded to the substrate, lateral and normal forces are the relevant factors, and hence the jumping mode, an imaging mode which minimizes lateral and normal forces, is preferable to other imaging modes.

  4. Mirror image DNA nanostructures for chiral supramolecular assemblies.

    PubMed

    Lin, Chenxiang; Ke, Yonggang; Li, Zhe; Wang, James H; Liu, Yan; Yan, Hao

    2009-01-01

    L-DNA, the mirror image of natural D-DNA, can be readily self-assembled into designer discrete or periodic nanostructures. The assembly products are characterized by polyacrylamide gel electrophoresis, circular dichroism spectrum, atomic force microscope, and fluorescence microscope. We found that the use of enantiomer DNA as building material leads to the formation of DNA supramolecules with opposite chirality. Therefore, the L-DNA self-assembly is a substantial complement to the structural DNA nanotechnology. Moreover, the L-DNA architectures feature superior nuclease resistance thus are appealing for in vivo medical applications.

  5. Understanding Imaging and Metrology with the Helium Ion Microscope

    NASA Astrophysics Data System (ADS)

    Postek, Michael T.; Vladár, András E.; Ming, Bin

    2009-09-01

    One barrier to innovation confronting all phases of nanotechnology is the lack of accurate metrology for the characterization of nanomaterials. Ultra-high resolution microscopy is a key technology needed to achieve this goal. But, current microscope technology is being pushed to its limits. The scanning and transmission electron microscopes have incrementally improved in performance and other scanned probe technologies such as atomic force microscopy, scanning tunneling microscopy and focused ion beam microscopes have all been applied to nanotechnology with various levels of success. A relatively new tool for nanotechnology is the scanning helium ion microscope (HIM). The HIM is a new complementary imaging and metrology technology for nanotechnology which may be able to push the current resolution barrier lower. But, successful imaging and metrology with this instrument entails new ion beam/specimen interaction physics which must be fully understood. As a new methodology, HIM is beginning to show promise and the abundance of potentially advantageous applications for nanotechnology have yet to be fully exploited. This presentation will discuss some of the progress made at NIST in understanding the science behind this new technique.

  6. Stretching of Single Polymer Chains Using the Atomic Force Microscope

    NASA Astrophysics Data System (ADS)

    Ortiz, C.; van der Vegte, E. W.; van Swieten, E.; Robillard, G. T.; Hadziioannou, G.

    1998-03-01

    A variety of macroscopic phenomenon involve "nanoscale" polymer deformation including rubber elasticity, shear yielding, strain hardening, stress relaxation, fracture, and flow. With the advent of new and improved experimental techniques, such as the atomic force microscope (AFM), the probing of physical properties of polymers has reached finer and finer scales. The development of mixed self-assembling monolayer techniques and the chemical functionalization of AFM probe tips has allowed for mechanical experiments on single polymer chains of molecular dimensions. In our experiments, mixed monolayers are prepared in which end-functionalized, flexible polymer chains of thiol-terminated poly(methacrylic acid) are covalently bonded, isolated, and randomly distributed on gold substrates. The coils are then imaged, tethered to a gold-coated AFM tip, and stretched between the tip and the substrate in a conventional force / distance experiment. An increase in the attractive force due to entropic, elastic resistance to stretching, as well as fracture of the polymer chain is observed. The effect of chain stiffness, topological constraints, strain rate, mechanical hysteresis, and stress relaxation were investigated. Force modulation techniques were also employed in order to image the viscoelastic character of the polymer chains. Parallel work includes similar studies of biological systems such as wheat gluten proteins and polypeptides.

  7. Optical tweezers for the measurement of binding forces: system description and application for the study of E. coli adhesion

    NASA Astrophysics Data System (ADS)

    Fallman, Erik G.; Schedin, Staffan; Andersson, Magnus J.; Jass, Jana; Axner, Ove

    2003-06-01

    Optical tweezers together with a position sensitive detection system allows measurements of forces in the pN range between micro-sized biological objects. A prototype force measurement system has been constructed around in inverted microscope with an argon-ion pumped Ti:sapphire laser as light source for optical trapping. A trapped particle in the focus of the high numerical aperture microscope-objective behaves like an omni-directional mechanical spring if an external force displaces it. The displacement from the equilibrium position is a measure of the exerted force. For position detection of the trapped particle (polystyrene beads), a He-Ne laser beam is focused a small distance below the trapping focus. An image of the bead appears as a distinct spot in the far field, monitored by a photosensitive detector. The position data is converted to a force measurement by a calibration procedure. The system has been used for measuring the binding forces between E-coli bacterial adhesin and their receptor sugars.

  8. Combined low-temperature scanning tunneling/atomic force microscope for atomic resolution imaging and site-specific force spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schwarz, Udo; Albers, Boris J.; Liebmann, Marcus

    2008-02-27

    The authors present the design and first results of a low-temperature, ultrahigh vacuum scanning probe microscope enabling atomic resolution imaging in both scanning tunneling microscopy (STM) and noncontact atomic force microscopy (NC-AFM) modes. A tuning-fork-based sensor provides flexibility in selecting probe tip materials, which can be either metallic or nonmetallic. When choosing a conducting tip and sample, simultaneous STM/NC-AFM data acquisition is possible. Noticeable characteristics that distinguish this setup from similar systems providing simultaneous STM/NC-AFM capabilities are its combination of relative compactness (on-top bath cryostat needs no pit), in situ exchange of tip and sample at low temperatures, short turnaroundmore » times, modest helium consumption, and unrestricted access from dedicated flanges. The latter permits not only the optical surveillance of the tip during approach but also the direct deposition of molecules or atoms on either tip or sample while they remain cold. Atomic corrugations as low as 1 pm could successfully be resolved. In addition, lateral drifts rates of below 15 pm/h allow long-term data acquisition series and the recording of site-specific spectroscopy maps. Results obtained on Cu(111) and graphite illustrate the microscope's performance.« less

  9. Atomic force microscopy of hydrated phosphatidylethanolamine bilayers.

    PubMed Central

    Zasadzinski, J A; Helm, C A; Longo, M L; Weisenhorn, A L; Gould, S A; Hansma, P K

    1991-01-01

    We present images of the polar or headgroup regions of bilayers of dimyristoyl-phosphatidylethanolamine (DMPE), deposited by Langmuir-Blodgett deposition onto mica substrates at high surface pressures and imaged under water at room temperature with the optical lever atomic force microscope. The lattice structure of DMPE is visualized with sufficient resolution that the location of individual headgroups can be determined. The forces are sufficiently small that the same area can be repeatedly imaged with a minimum of damage. The DMPE molecules in the bilayer appear to have relatively good long-range orientational order, but rather short-range and poor positional order. These results are in good agreement with x-ray measurements of unsupported lipid monolayers on the water surface, and with electron diffraction of adsorbed monolayers. Images FIGURE 1 FIGURE 2 PMID:2049529

  10. Specific methodology for capacitance imaging by atomic force microscopy: A breakthrough towards an elimination of parasitic effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Estevez, Ivan; Concept Scientific Instruments, ZA de Courtaboeuf, 2 rue de la Terre de Feu, 91940 Les Ulis; Chrétien, Pascal

    2014-02-24

    On the basis of a home-made nanoscale impedance measurement device associated with a commercial atomic force microscope, a specific operating process is proposed in order to improve absolute (in sense of “nonrelative”) capacitance imaging by drastically reducing the parasitic effects due to stray capacitance, surface topography, and sample tilt. The method, combining a two-pass image acquisition with the exploitation of approach curves, has been validated on sets of calibration samples consisting in square parallel plate capacitors for which theoretical capacitance values were numerically calculated.

  11. Twisted ribbon structure of paired helical filaments revealed by atomic force microscopy.

    PubMed

    Pollanen, M S; Markiewicz, P; Bergeron, C; Goh, M C

    1994-05-01

    Progressive deposition of phosphorylated tau into the paired helical filaments (PHF) that compose neurofibrillary tangles, dystrophic neurites, and neuropil threads is an obligate feature of Alzheimer's disease. The standard model of PHF structure, derived from electron microscopic studies, suggests that two 8- to 10-nm filaments each composed of three to four protofilaments are wound into a helix with a maximal diameter of -20 nm and a half period of 65 to 80 nm. However, recent vertical platinum-carbon replicas of PHF more closely resemble a thin helical ribbon without constitutive protofilaments. Here we report that native PHF imaged with an atomic force microscope appear as twisted ribbons rather than the generally accepted structure derived from electron microscopic studies. These data imply that the assembly of PHF is not due to the twisting of pair-wise filaments but rather the helical winding of self-associated tau molecules arranged into a flattened structure. Future structural models of PHF should be based on quantitative data obtained from imaging techniques, such as scanning probe microscopy, which do not require harsh specimen preparation procedures.

  12. A high-pressure atomic force microscope for imaging in supercritical carbon dioxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lea, Alan S.; Higgins, Steven R.; Knauss, Kevin G.

    2011-04-26

    A high-pressure atomic force microscope (AFM) that enables in-situ, atomic scale measurements of topography of solid surfaces in contact with supercritical CO2 (scCO2) fluids has been developed. This apparatus overcomes the pressure limitations of the hydrothermal AFM and is designed to handle pressures up to 100 atm at temperatures up to ~ 350 K. A standard optically-based cantilever deflection detection system was chosen. When imaging in compressible supercritical fluids such as scCO2, precise control of pressure and temperature in the fluid cell is the primary technical challenge. Noise levels and imaging resolution depend on minimization of fluid density fluctuations thatmore » change the fluid refractive index and hence the laser path. We demonstrate with our apparatus in-situ atomic scale imaging of a calcite (CaCO3) mineral surface in scCO2; both single, monatomic steps and dynamic processes occurring on the (10¯14) surface are presented. This new AFM provides unprecedented in-situ access to interfacial phenomena at solid-fluid interfaces under pressure.« less

  13. Correlation of EBIC and SWBXT Imaged Defects and Epilayer Growth Pits in 6H-SiC Schottky Diodes

    NASA Technical Reports Server (NTRS)

    Schnable, C. M.; Tabib-Azar, M.; Neudeck, P. G.; Bailey, S. G.; Su, H. B.; Dudley, M.; Raffaelle, R. P.

    2000-01-01

    We show the first direct experimental correlation between the presence of closed core screw dislocations in 6H-SiC epilayers with recombination centers, as well as with some of the small growth pits on the epilayer surface in lightly-doped 6H-SiC Schottky diodes. At every Synchrotron White-Beam X-ray Topography (SWBXT)-identified closed core screw dislocation, an Electron Beam Induced Current (EBIC) image showed a dark spot indicating a recombination center, and Nomarski optical microscope and Atomic Force Microscope (AFM) images showed a corresponding small growth pit with a sharp apex on the surface of the epilayer.

  14. Focal depth measurement of scanning helium ion microscope

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, Hongxuan, E-mail: Guo.hongxuan@nims.go.jp; Itoh, Hiroshi; Wang, Chunmei

    2014-07-14

    When facing the challenges of critical dimension measurement of complicated nanostructures, such as of the three dimension integrated circuit, characterization of the focal depth of microscopes is important. In this Letter, we developed a method for characterizing the focal depth of a scanning helium ion microscope (HIM) by using an atomic force microscope tip characterizer (ATC). The ATC was tilted in a sample chamber at an angle to the scanning plan. Secondary electron images (SEIs) were obtained at different positions of the ATC. The edge resolution of the SEIs shows the nominal diameters of the helium ion beam at differentmore » focal levels. With this method, the nominal shapes of the helium ion beams were obtained with different apertures. Our results show that a small aperture is necessary to get a high spatial resolution and high depth of field images with HIM. This work provides a method for characterizing and improving the performance of HIM.« less

  15. Focal depth measurement of scanning helium ion microscope

    NASA Astrophysics Data System (ADS)

    Guo, Hongxuan; Itoh, Hiroshi; Wang, Chunmei; Zhang, Han; Fujita, Daisuke

    2014-07-01

    When facing the challenges of critical dimension measurement of complicated nanostructures, such as of the three dimension integrated circuit, characterization of the focal depth of microscopes is important. In this Letter, we developed a method for characterizing the focal depth of a scanning helium ion microscope (HIM) by using an atomic force microscope tip characterizer (ATC). The ATC was tilted in a sample chamber at an angle to the scanning plan. Secondary electron images (SEIs) were obtained at different positions of the ATC. The edge resolution of the SEIs shows the nominal diameters of the helium ion beam at different focal levels. With this method, the nominal shapes of the helium ion beams were obtained with different apertures. Our results show that a small aperture is necessary to get a high spatial resolution and high depth of field images with HIM. This work provides a method for characterizing and improving the performance of HIM.

  16. EDITORIAL: Nanotechnology in motion Nanotechnology in motion

    NASA Astrophysics Data System (ADS)

    Demming, Anna

    2012-02-01

    Microscopes provide tools of inimitable value for probing the building blocks of the world around us. The identity of the inventor of the first microscope remains under debate, but a name unequivocally linked with early developments in microscopy is Robert Hooke. His Micrographia published in 1665, was the first ever bestseller in science and brought topics in microscopy to the broader public eye with pages of detailed micrographs, most famously the fly's eye and plant cells. Since the first microscopes in the late 16th century, ingenious alternatives to the original optical microscopes have been developed to create images of the world at ever smaller dimensions. Innovations include scanning probe techniques such as the atomic force microscope [1]. As Toshio Ando describes in a review in this issue [2], these devices have also entered a new era in the past decade with the development of high-speed atomic force microscopy. Now, we can not only see the nanoscale components that make up the world around us, but we can watch them at work. One of the first innovations in optical microscopy was the use of dyes. This principle first came into practice with the use of ultraviolet light to reveal previously indistinguishable features. As explained by a researcher in the early 1930s, 'It is obvious that if the dyes used for selective staining in ordinary microscopical work are supplemented by substances which cause a particular detail of the structure to fluoresce with a specific colour in ultraviolet light, then many strings will be added to the bow of the practical microscopist' [3]. More recently, emphasis on the role of plasmons—collective oscillations of electrons in nanoscale metal structures—has received considerable research attention. Plasmons enhance the local electromagnetic field and can lead to increased fluorescence rates from nearby fluorophores depending on the efficiency of the counteracting process, non-radiative transfer [4]. The 1930s also saw the development of the electron microscope, which aimed to exceed the resolving power of diffraction-limited optical microscopes. Since the diffraction limit is proportional to the incident wavelength, the shorter wavelength electron beam allows smaller features to be resolved than optical light. Ernst Ruska shared the Nobel Prize for Physics in 1986 for his work in developing the transmission electron microscope [5]. The technique continues to provide an invaluable tool in nanotechnology studies, as demonstrated recently by a collaboration of researchers in the US, Singapore and Korea used electron and atomic force microscopy in their investigation of the deposition of gold nanoparticles on graphene and the enhanced conductivity of the doped film [6]. The other half of the 1986 Nobel Prize was awarded jointly to Gerd Binnig and Heinrich Rohrer 'for their design of the scanning tunnelling microscope'. The scanning tunnelling microscope offered the first glimpses of atomic scale features, galvanizing research in nanoscale science and technology into a burst of fruitful activity that persists to this day. Instead of using the diffraction and scattering of beams to 'see' nanoscale structures, the atomic force microscope developed by Binnig, Quate and Gerber in the 1980s [1] determines the surface topology 'by touch'. The device uses nanoscale changes in the forces exerted on a tip as it scans the sample surface to generate an image. As might be expected, innovations on the original atomic force microscope have now been developed achieving ever greater sensitivities for imaging soft matter without destroying it. Recent work by collaborators at the University of Bristol and the University of Glasgow used a cigar-shaped nanoparticle held in optical tweezers as the scanning tip. The technique is not diffraction limited, imparts less force on samples than contact scanning probe microscopy techniques, and allows highly curved and strongly scattering samples to be imaged [7]. In this issue, Toshio Ando from the University of Kanazawa provides an overview of developments that have allowed atomic force microscopy to move from rates of the order of one frame a minute to over a thousand frames per second in constant height mode, as reported by Mervyn Miles and colleagues at Bristol University and University College London [8]. Among the pioneers in the field, Ando's group demonstrated the ability to record the Brownian motion of myosin V molecules on mica with image capture rates of 100 x 100 pixels in 80 ms over a decade ago [9]. The developments unleash the potential of atomic force microscopy to observe the dynamics of biological and materials systems. If seeing is believing, the ability to present real motion pictures of the nanoworld cannot fail to capture the public imagination and stimulate burgeoning new avenues of scientific endeavour. Nearly 350 years on from the publication Micrographia, images in microscopy have moved from the page to the movies. References [1] Binnig G, Quate C F, and Gerber Ch 1986 Phys. Rev. Lett. 56 930-3 [2] Ando T 2012 Nanotechnology 23 062001 [3] J G 1934 Nature 134 635-6 [4] Bharadwaj P, Anger P and Novotny L 2007 Nanotechnology 18 044017 [5] The Nobel Prize in Physics 1986 Nobelprize.org [6] Kim K K, Reina A, Shi Y, Park H, Li L-J, Lee Y H and Kong J 2010 Nanotechnology 21 285205 [7] Phillips D B, Grieve J A, Olof S N, Kocher S J, Bowman R, Padgett M J, Miles M J and Carberry D M 2011 Nanotechnology 22 285503 [8] Picco L M, Bozec L, Ulcinas A, Engledew D J, Antognozzi M, Horton M A and Miles M J 2007 Nanotechnology 18 044030 [9] Ando T, Kodera N, Takai E, Maruyama D, Saito K and Toda A 2001 Proc. Natl. Acad. Sci. 98 12468

  17. Use of scanning near-field optical microscope with an aperture probe for detection of luminescent nanodiamonds

    NASA Astrophysics Data System (ADS)

    Shershulin, V. A.; Samoylenko, S. R.; Shenderova, O. A.; Konov, V. I.; Vlasov, I. I.

    2017-02-01

    The suitability of scanning near-field optical microscopy (SNOM) to image photoluminescent diamond nanoparticles with nanoscale resolution is demonstrated. Isolated diamond nanocrystals with an average size of 100 nm, containing negatively charged nitrogen-vacancy (NV-) centers, were chosen as tested material. The NV- luminescence was stimulated by continuous 532 nm laser light. Sizes of analyzed crystallites were monitored by an atomic force microscope. The lateral resolution of the order of 100 nm was reached in SNOM imaging of diamond nanoparticles using 150 nm square aperture of the probe.

  18. Microscopic Image of Martian Surface Material on a Silicone Substrate

    NASA Technical Reports Server (NTRS)

    2008-01-01

    [figure removed for brevity, see original site] Click on image for larger version of Figure 1

    This image taken by the Optical Microscope on NASA's Phoenix Mars Lander shows soil sprinkled from the lander's Robot Arm scoop onto a silicone substrate. The substrate was then rotated in front of the microscope. This is the first sample collected and delivered for instrumental analysis onboard a planetary lander since NASA's Viking Mars missions of the 1970s. It is also the highest resolution image yet seen of Martian soil.

    The image is dominated by fine particles close to the resolution of the microscope. These particles have formed clumps, which may be a smaller scale version of what has been observed by Phoenix during digging of the surface material.

    The microscope took this image during Phoenix's Sol 17 (June 11), or the 17th Martian day after landing. The scale bar is 1 millimeter (0.04 inch).

    Zooming in on the Martian Soil

    In figure 1, three zoomed-in portions are shown with an image of Martian soil particles taken by the Optical Microscope on NASA's Phoenix Mars Lander.

    The left zoom box shows a composite particle. The top of the particle has a green tinge, possibly indicating olivine. The bottom of the particle has been reimaged at a different focus position in black and white (middle zoom box), showing that this is a clump of finer particles.

    The right zoom box shows a rounded, glassy particle, similar to those which have also been seen in an earlier sample of airfall dust collected on a surface exposed during landing.

    The shadows at the bottom of image are of the beams of the Atomic Force Microscope.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  19. Origins of phase contrast in the atomic force microscope in liquids

    PubMed Central

    Melcher, John; Carrasco, Carolina; Xu, Xin; Carrascosa, José L.; Gómez-Herrero, Julio; José de Pablo, Pedro; Raman, Arvind

    2009-01-01

    We study the physical origins of phase contrast in dynamic atomic force microscopy (dAFM) in liquids where low-stiffness microcantilever probes are often used for nanoscale imaging of soft biological samples with gentle forces. Under these conditions, we show that the phase contrast derives primarily from a unique energy flow channel that opens up in liquids due to the momentary excitation of higher eigenmodes. Contrary to the common assumption, phase-contrast images in liquids using soft microcantilevers are often maps of short-range conservative interactions, such as local elastic response, rather than tip-sample dissipation. The theory is used to demonstrate variations in local elasticity of purple membrane and bacteriophage ϕ29 virions in buffer solutions using the phase-contrast images. PMID:19666560

  20. Origins of phase contrast in the atomic force microscope in liquids.

    PubMed

    Melcher, John; Carrasco, Carolina; Xu, Xin; Carrascosa, José L; Gómez-Herrero, Julio; José de Pablo, Pedro; Raman, Arvind

    2009-08-18

    We study the physical origins of phase contrast in dynamic atomic force microscopy (dAFM) in liquids where low-stiffness microcantilever probes are often used for nanoscale imaging of soft biological samples with gentle forces. Under these conditions, we show that the phase contrast derives primarily from a unique energy flow channel that opens up in liquids due to the momentary excitation of higher eigenmodes. Contrary to the common assumption, phase-contrast images in liquids using soft microcantilevers are often maps of short-range conservative interactions, such as local elastic response, rather than tip-sample dissipation. The theory is used to demonstrate variations in local elasticity of purple membrane and bacteriophage 29 virions in buffer solutions using the phase-contrast images.

  1. An integrated approach to piezoactuator positioning in high-speed atomic force microscope imaging

    NASA Astrophysics Data System (ADS)

    Yan, Yan; Wu, Ying; Zou, Qingze; Su, Chanmin

    2008-07-01

    In this paper, an integrated approach to achieve high-speed atomic force microscope (AFM) imaging of large-size samples is proposed, which combines the enhanced inversion-based iterative control technique to drive the piezotube actuator control for lateral x-y axis positioning with the use of a dual-stage piezoactuator for vertical z-axis positioning. High-speed, large-size AFM imaging is challenging because in high-speed lateral scanning of the AFM imaging at large size, large positioning error of the AFM probe relative to the sample can be generated due to the adverse effects—the nonlinear hysteresis and the vibrational dynamics of the piezotube actuator. In addition, vertical precision positioning of the AFM probe is even more challenging (than the lateral scanning) because the desired trajectory (i.e., the sample topography profile) is unknown in general, and the probe positioning is also effected by and sensitive to the probe-sample interaction. The main contribution of this article is the development of an integrated approach that combines advanced control algorithm with an advanced hardware platform. The proposed approach is demonstrated in experiments by imaging a large-size (50μm ) calibration sample at high-speed (50Hz scan rate).

  2. The mapping of yeast's G-protein coupled receptor with an atomic force microscope

    NASA Astrophysics Data System (ADS)

    Takenaka, Musashi; Miyachi, Yusuke; Ishii, Jun; Ogino, Chiaki; Kondo, Akihiko

    2015-03-01

    An atomic force microscope (AFM) can measure the adhesion force between a sample and a cantilever while simultaneously applying a rupture force during the imaging of a sample. An AFM should be useful in targeting specific proteins on a cell surface. The present study proposes the use of an AFM to measure the adhesion force between targeting receptors and their ligands, and to map the targeting receptors. In this study, Ste2p, one of the G protein-coupled receptors (GPCRs), was chosen as the target receptor. The specific force between Ste2p on a yeast cell surface and a cantilever modified with its ligand, α-factor, was measured and found to be approximately 250 pN. In addition, through continuous measuring of the cell surface, a mapping of the receptors on the cell surface could be performed, which indicated the differences in the Ste2p expression levels. Therefore, the proposed AFM system is accurate for cell diagnosis.

  3. Sensing mode atomic force microscope

    DOEpatents

    Hough, Paul V. C.; Wang, Chengpu

    2006-08-22

    An atomic force microscope is described having a cantilever comprising a base and a probe tip on an end opposite the base; a cantilever drive device connected to the base; a magnetic material coupled to the probe tip, such that when an incrementally increasing magnetic field is applied to the magnetic material an incrementally increasing force will be applied to the probe tip; a moveable specimen base; and a controller constructed to obtain a profile height of a specimen at a point based upon a contact between the probe tip and a specimen, and measure an adhesion force between the probe tip and the specimen by, under control of a program, incrementally increasing an amount of a magnetic field until a release force, sufficient to break the contact, is applied. An imaging method for atomic force microscopy involving measuring a specimen profile height and adhesion force at multiple points within an area and concurrently displaying the profile and adhesion force for each of the points is also described. A microscope controller is also described and is constructed to, for a group of points, calculate a specimen height at a point based upon a cantilever deflection, a cantilever base position and a specimen piezo position; calculate an adhesion force between a probe tip and a specimen at the point by causing an incrementally increasing force to be applied to the probe tip until the probe tip separates from a specimen; and move the probe tip to a new point in the group.

  4. Sensing mode atomic force microscope

    DOEpatents

    Hough, Paul V.; Wang, Chengpu

    2004-11-16

    An atomic force microscope is described having a cantilever comprising a base and a probe tip on an end opposite the base; a cantilever drive device connected to the base; a magnetic material coupled to the probe tip, such that when an incrementally increasing magnetic field is applied to the magnetic material an incrementally increasing force will be applied to the probe tip; a moveable specimen base; and a controller constructed to obtain a profile height of a specimen at a point based upon a contact between the probe tip and a specimen, and measure an adhesion force between the probe tip and the specimen by, under control of a program, incrementally increasing an amount of a magnetic field until a release force, sufficient to break the contact, is applied. An imaging method for atomic force microscopy involving measuring a specimen profile height and adhesion force at multiple points within an area and concurrently displaying the profile and adhesion force for each of the points is also described. A microscope controller is also described and is constructed to, for a group of points, calculate a specimen height at a point based upon a cantilever deflection, a cantilever base position and a specimen piezo position; calculate an adhesion force between a probe tip and a specimen at the point by causing an incrementally increasing force to be applied to the probe tip until the probe tip separates from a specimen; and move the probe tip to a new point in the group.

  5. Microscope Image of a Martian Soil Surface Sample

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This is the closest view of the material underneath NASA's Phoenix Mars Lander. This sample was taken from the top centimeter of the Martian soil, and this image from the lander's Optical Microscope demonstrates its overall composition.

    The soil is mostly composed of fine orange particles, and also contains larger grains, about a tenth of a millimeter in diameter, and of various colors. The soil is sticky, keeping together as a slab of material on the supporting substrate even though the substrate is tilted to the vertical.

    The fine orange grains are at or below the resolution of the Optical Microscope. Mixed into the soil is a small amount&mdashabout 0.5 percent&mdashof white grains, possibly of a salt. The larger grains range from black to almost transparent in appearance. At the bottom of the image, the shadows of the Atomic Force Microscope (AFM) beams are visible. This image is 1 millimeter x 2 millimeters.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by JPL, Pasadena, Calif. Spacecraft development was by Lockheed Martin Space Systems, Denver.

  6. Shear Stress Sensing with Elastic Microfence Structures

    NASA Technical Reports Server (NTRS)

    Cisotto, Alexxandra; Palmieri, Frank L.; Saini, Aditya; Lin, Yi; Thurman, Christopher S; Kim, Jinwook; Kim, Taeyang; Connell, John W.; Zhu, Yong; Gopalarathnam, Ashok; hide

    2015-01-01

    In this work, elastic microfences were generated for the purpose of measuring shear forces acting on a wind tunnel model. The microfences were fabricated in a two part process involving laser ablation patterning to generate a template in a polymer film followed by soft lithography with a two-part silicone. Incorporation of a fluorescent dye was demonstrated as a method to enhance contrast between the sensing elements and the substrate. Sensing elements consisted of multiple microfences prepared at different orientations to enable determination of both shear force and directionality. Microfence arrays were integrated into an optical microscope with sub-micrometer resolution. Initial experiments were conducted on a flat plate wind tunnel model. Both image stabilization algorithms and digital image correlation were utilized to determine the amount of fence deflection as a result of airflow. Initial free jet experiments indicated that the microfences could be readily displaced and this displacement was recorded through the microscope.

  7. High-speed atomic force microscopy combined with inverted optical microscopy for studying cellular events

    PubMed Central

    Suzuki, Yuki; Sakai, Nobuaki; Yoshida, Aiko; Uekusa, Yoshitsugu; Yagi, Akira; Imaoka, Yuka; Ito, Shuichi; Karaki, Koichi; Takeyasu, Kunio

    2013-01-01

    A hybrid atomic force microscopy (AFM)-optical fluorescence microscopy is a powerful tool for investigating cellular morphologies and events. However, the slow data acquisition rates of the conventional AFM unit of the hybrid system limit the visualization of structural changes during cellular events. Therefore, high-speed AFM units equipped with an optical/fluorescence detection device have been a long-standing wish. Here we describe the implementation of high-speed AFM coupled with an optical fluorescence microscope. This was accomplished by developing a tip-scanning system, instead of a sample-scanning system, which operates on an inverted optical microscope. This novel device enabled the acquisition of high-speed AFM images of morphological changes in individual cells. Using this instrument, we conducted structural studies of living HeLa and 3T3 fibroblast cell surfaces. The improved time resolution allowed us to image dynamic cellular events. PMID:23823461

  8. High-speed atomic force microscopy combined with inverted optical microscopy for studying cellular events.

    PubMed

    Suzuki, Yuki; Sakai, Nobuaki; Yoshida, Aiko; Uekusa, Yoshitsugu; Yagi, Akira; Imaoka, Yuka; Ito, Shuichi; Karaki, Koichi; Takeyasu, Kunio

    2013-01-01

    A hybrid atomic force microscopy (AFM)-optical fluorescence microscopy is a powerful tool for investigating cellular morphologies and events. However, the slow data acquisition rates of the conventional AFM unit of the hybrid system limit the visualization of structural changes during cellular events. Therefore, high-speed AFM units equipped with an optical/fluorescence detection device have been a long-standing wish. Here we describe the implementation of high-speed AFM coupled with an optical fluorescence microscope. This was accomplished by developing a tip-scanning system, instead of a sample-scanning system, which operates on an inverted optical microscope. This novel device enabled the acquisition of high-speed AFM images of morphological changes in individual cells. Using this instrument, we conducted structural studies of living HeLa and 3T3 fibroblast cell surfaces. The improved time resolution allowed us to image dynamic cellular events.

  9. Time-resolved electric force microscopy of charge traps in polycrystalline pentacene films

    NASA Astrophysics Data System (ADS)

    Jaquith, Michael; Muller, Erik; Marohn, John

    2006-03-01

    The microscopic mechanisms by which charges trap in organic electronic materials are poorly understood. Muller and Marohn recently showed that electric force microscopy (EFM) can be used to image trapped charge in working pentacene thin-film transistors [E. M. Muller et al, Adv. Mater. 17 1410 (2005)]. We have extended their work by imaging trapped charge in pentacene films with much larger grains. In contrast to the previous study in which charge was found to trap inhomogeneously throughout the transistor gap, we find microscopic evidence for a new trapping mechanism in which charges trap predominantly at the pentacene/metal interface in large-grained devices. We have also made localized measurements of the trap growth over time by performing pulsed-gate EFM experiments. Integrated-rate kinetics data supports a charge trap mechanism which is second order in holes, e.g., holes trap in pairs, although the charge-trapping rate appears to depend on gate voltage.

  10. DC thermal microscopy: study of the thermal exchange between a probe and a sample

    NASA Astrophysics Data System (ADS)

    Gomès, Séverine; Trannoy, Nathalie; Grossel, Philippe

    1999-09-01

    The Scanning Thermal Microscopic (SThM) probe, a thin Pt resistance wire, is used in the constant force mode of an Atomic Force Microscope (AFM). Thermal signal-distance curves for differing degrees of relative humidity and different surrounding gases demonstrate how heat is transferred from the heated probe to the sample. It is known that water affects atomic force microscopy and thermal measurements; we report here on the variation of the water interaction on the thermal coupling versus the probe temperature. Measurements were taken for several solid materials and show that the predominant heat transfer mechanisms taking part in thermal coupling are dependent on the thermal conductivity of the sample. The results have important implications for any quantitative interpretation of thermal images made in air.

  11. Diagnosis of cervical cancer cell taken from scanning electron and atomic force microscope images of the same patients using discrete wavelet entropy energy and Jensen Shannon, Hellinger, Triangle Measure classifier.

    PubMed

    Aytac Korkmaz, Sevcan

    2016-05-05

    The aim of this article is to provide early detection of cervical cancer by using both Atomic Force Microscope (AFM) and Scanning Electron Microscope (SEM) images of same patient. When the studies in the literature are examined, it is seen that the AFM and SEM images of the same patient are not used together for early diagnosis of cervical cancer. AFM and SEM images can be limited when using only one of them for the early detection of cervical cancer. Therefore, multi-modality solutions which give more accuracy results than single solutions have been realized in this paper. Optimum feature space has been obtained by Discrete Wavelet Entropy Energy (DWEE) applying to the 3×180 AFM and SEM images. Then, optimum features of these images are classified with Jensen Shannon, Hellinger, and Triangle Measure (JHT) Classifier for early diagnosis of cervical cancer. However, between classifiers which are Jensen Shannon, Hellinger, and triangle distance have been validated the measures via relationships. Afterwards, accuracy diagnosis of normal, benign, and malign cervical cancer cell was found by combining mean success rates of Jensen Shannon, Hellinger, and Triangle Measure which are connected with each other. Averages of accuracy diagnosis for AFM and SEM images by averaging the results obtained from these 3 classifiers are found as 98.29% and 97.10%, respectively. It has been observed that AFM images for early diagnosis of cervical cancer have higher performance than SEM images. Also in this article, surface roughness of malign AFM images in the result of the analysis made for the AFM images, according to the normal and benign AFM images is observed as larger, If the volume of particles has found as smaller. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. New design of a cryostat-mounted scanning near-field optical microscope for single molecule spectroscopy

    NASA Astrophysics Data System (ADS)

    Durand, Yannig; Woehl, Jörg C.; Viellerobe, Bertrand; Göhde, Wolfgang; Orrit, Michel

    1999-02-01

    Due to the weakness of the fluorescence signal from a single fluorophore, a scanning near-field optical microscope for single molecule spectroscopy requires a very efficient setup for the collection and detection of emitted photons. We have developed a home-built microscope for operation in a l-He cryostat which uses a solid parabolic mirror in order to optimize the fluorescence collection efficiency. This microscope works with Al-coated, tapered optical fibers in illumination mode. The tip-sample separation is probed by an optical shear-force detection. First results demonstrate the capability of the microscope to image single molecules and achieve a topographical resolution of a few nanometers vertically and better than 50 nm laterally.

  13. Recognition Imaging with a DNA Aptamer

    PubMed Central

    Lin, Liyun; Wang, Hongda; Liu, Yan; Yan, Hao; Lindsay, Stuart

    2006-01-01

    We have used a DNA-aptamer tethered to an atomic force microscope probe to carry out recognition imaging of IgE molecules attached to a mica substrate. The recognition was efficient (∼90%) and specific, being blocked by injection of IgE molecules in solution, and not being interfered with by high concentrations of a second protein. The signal/noise ratio of the recognition signal was better than that obtained with antibodies, despite the fact that the average force required to break the aptamer-protein bonds was somewhat smaller. PMID:16513776

  14. The structure of cometary dust - first results from the MIDAS Atomic Force Microscope onboard Rosetta

    NASA Astrophysics Data System (ADS)

    Bentley, M. S.; Torkar, K.; Romstedt, J.

    2014-12-01

    A decade after launch the European Space Agency's Rosetta spacecraft has finally arrived at comet 67P/Churyumov-Gerasimenko. Unlike previous cometary missions, Rosetta is not a flyby, limited to taking a snapshot of the comet at a single heliocentric distance. Instead, Rosetta intercepted the comet prior to the onset of major activity and will chart its evolution during its perihelion passage and beyond. Such a unique mission requires a unique payload; as well as the more typical remote sensing instruments, Rosetta also carries sensors to sample in situ the gas and dust environment. One of these instruments is MIDAS, an atomic force microscope designed to collect dust and image it in three dimensions with nanometre resolution. Equipped with an array of sharp tips, four of which are magnetised to allow magnetic force microscopy, MIDAS exposes targets to the incident flux after which they are moved to the microscope for analysis. As well as extending coverage of the dust size distribution down to the finest particles, MIDAS has the unique capability to determine the shape of pristine particles - to determine, for example, if they are compact or fluffy, and to look for features which may be diagnostic of their formation environment or evolution. The magnetic mode lets MIDAS probe samples for magnetic material and to map its location if present. Having been operating almost continuously after hibernation imaging empty targets before exposure, the first exposures were performed when Rosetta entered 30 km bound orbits. The first MIDAS images and analyses of collected dust grains are presented here.

  15. Microfluidics, Chromatography, and Atomic-Force Microscopy

    NASA Technical Reports Server (NTRS)

    Anderson, Mark

    2008-01-01

    A Raman-and-atomic-force microscope (RAFM) has been shown to be capable of performing several liquid-transfer and sensory functions essential for the operation of a microfluidic laboratory on a chip that would be used to perform rapid, sensitive chromatographic and spectro-chemical analyses of unprecedentedly small quantities of liquids. The most novel aspect of this development lies in the exploitation of capillary and shear effects at the atomic-force-microscope (AFM) tip to produce shear-driven flow of liquids along open microchannels of a microfluidic device. The RAFM can also be used to perform such functions as imaging liquids in microchannels; removing liquid samples from channels for very sensitive, tip-localized spectrochemical analyses; measuring a quantity of liquid adhering to the tip; and dip-pen deposition from a chromatographic device. A commercial Raman-spectroscopy system and a commercial AFM were integrated to make the RAFM so as to be able to perform simultaneous topographical AFM imaging and surface-enhanced Raman spectroscopy (SERS) at the AFM tip. The Raman-spectroscopy system includes a Raman microprobe attached to an optical microscope, the translation stage of which is modified to accommodate the AFM head. The Raman laser excitation beam, which is aimed at the AFM tip, has a wavelength of 785 nm and a diameter of about 5 m, and its power is adjustable up to 10 mW. The AFM is coated with gold to enable tip-localized SERS.

  16. Direct observation of the actin filament by tip-scan atomic force microscopy

    PubMed Central

    Narita, Akihiro; Usukura, Eiji; Yagi, Akira; Tateyama, Kiyohiko; Akizuki, Shogo; Kikumoto, Mahito; Matsumoto, Tomoharu; Maéda, Yuichiro; Ito, Shuichi; Usukura, Jiro

    2016-01-01

    Actin filaments, the actin–myosin complex and the actin–tropomyosin complex were observed by a tip-scan atomic force microscope (AFM), which was recently developed by Olympus as the AFM part of a correlative microscope. This newly developed AFM uses cantilevers of similar size as stage-scan AFMs to improve substantially the spatial and temporal resolution. Such an approach has previously never been possible by a tip-scan system, in which a cantilever moves in the x, y and z directions. We evaluated the performance of this developed tip-scan AFM by observing the molecular structure of actin filaments and the actin–tropomyosin complex. In the image of the actin filament, the molecular interval of the actin subunits (∼5.5 nm) was clearly observed as stripes. From the shape of the stripes, the polarity of the actin filament was directly determined and the results were consistent with the polarity determined by myosin binding. In the image of the actin–tropomyosin complex, each tropomyosin molecule (∼2 nm in diameter) on the actin filament was directly observed without averaging images of different molecules. Each tropomyosin molecule on the actin filament has never been directly observed by AFM or electron microscopy. Thus, our developed tip-scan AFM offers significant potential in observing purified proteins and cellular structures at nanometer resolution. Current results represent an important step in the development of a new correlative microscope to observe nm-order structures at an acceptable frame rate (∼10 s/frame) by AFM at the position indicated by the fluorescent dye observed under a light microscope. PMID:27242058

  17. Nanoscale Subsurface Imaging of Nanocomposites via Resonant Difference-Frequency Atomic Force Ultrasonic Microscopy

    NASA Technical Reports Server (NTRS)

    Cantrell, Sean A.; Cantrell, John H.; Lillehei, Peter T.

    2007-01-01

    A scanning probe microscope methodology, called resonant difference-frequency atomic force ultrasonic microscopy (RDF-AFUM), has been developed. The method employs an ultrasonic wave launched from the bottom of a sample while the cantilever of an atomic force microscope engages the sample top surface. The cantilever is driven at a frequency differing from the ultrasonic frequency by one of the contact resonance frequencies of the cantilever. The nonlinear mixing of the oscillating cantilever and the ultrasonic wave at the sample surface generates difference-frequency oscillations at the cantilever contact resonance. The resonance-enhanced difference-frequency signals are used to create amplitude and phase-generated images of nanoscale near-surface and subsurface features. RDF-AFUM phase images of LaRC-CP2 polyimide polymer containing embedded nanostructures are presented. A RDF-AFUM micrograph of a 12.7 micrometer thick film of LaRC-CP2 containing a monolayer of gold nanoparticles embedded 7 micrometers below the specimen surface reveals the occurrence of contiguous amorphous and crystalline phases within the bulk of the polymer and a preferential growth of the crystalline phase in the vicinity of the gold nanoparticles. A RDF-AFUM micrograph of LaRC-CP2 film containing randomly dispersed carbon nanotubes reveals the growth of an interphase region at certain nanotube-polymer interfaces.

  18. Resistance of domain walls created by means of a magnetic force microscope in transversally magnetized epitaxial Fe wires

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hassel, C.; Stienen, S.; Roemer, F. M.

    2009-07-20

    Magnetic domain walls are created in a controllable way in transversally magnetized epitaxial Fe wires on GaAs(110) by approaching a magnetic force microscope (MFM) tip. The electrical resistance-change due to the addition of these domain walls is measured. The anisotropic magnetoresistance as well as the intrinsic domain wall resistance contribute to the resistance-change. The efficiency of this procedure is proven by MFM images, which are obtained subsequent to the domain wall creation at a larger sample-to-probe distance. The contribution of the anisotropic magnetoresistance is calculated using micromagnetic calculations, thus making it possible to quantify the intrinsic domain wall resistance.

  19. Direct atomic force microscopic evidence of hydrogen bonding interaction in phosphatidic acid Langmuir-Blodgett bilayer

    NASA Astrophysics Data System (ADS)

    Chunbo, Yuan; Ying, Wu; Yueming, Sun; Zuhong, Lu; Juzheng, Liu

    1997-12-01

    Molecularly resolved atomic force microscopic images of phosphatidic acid Langmuir-Blodgett bilayers show that phosphate groups in polar region of the films are packing in a distorted hexagonal organization with long-range orientational and positional order. Intermolecular hydrogen bonding interactions, which should be responsible for the ordering and stability of bilayers, are visualized directly between adjacent phosphate groups in the polar region of the bilayer. Some adjacent phosphatidic acid molecules link each other through the formation of intermolecular hydrogen bonds between phosphate groups in polar region to form local supramolecules, which provide the bilayer's potential as a functionized film in the investigation on the lateral conductions of protons in the biological bilayers.

  20. Atomic force microscopic study of the effects of ethanol on yeast cell surface morphology.

    PubMed

    Canetta, Elisabetta; Adya, Ashok K; Walker, Graeme M

    2006-02-01

    The detrimental effects of ethanol toxicity on the cell surface morphology of Saccharomyces cerevisiae (strain NCYC 1681) and Schizosaccharomyces pombe (strain DVPB 1354) were investigated using an atomic force microscope (AFM). In combination with culture viability and mean cell volume measurements AFM studies allowed us to relate the cell surface morphological changes, observed on nanometer lateral resolution, with the cellular stress physiology. Exposing yeasts to increasing stressful concentrations of ethanol led to decreased cell viabilities and mean cell volumes. Together with the roughness and bearing volume analyses of the AFM images, the results provided novel insight into the relative ethanol tolerance of S. cerevisiae and Sc. pombe.

  1. Knowledge Extraction from Atomically Resolved Images.

    PubMed

    Vlcek, Lukas; Maksov, Artem; Pan, Minghu; Vasudevan, Rama K; Kalinin, Sergei V

    2017-10-24

    Tremendous strides in experimental capabilities of scanning transmission electron microscopy and scanning tunneling microscopy (STM) over the past 30 years made atomically resolved imaging routine. However, consistent integration and use of atomically resolved data with generative models is unavailable, so information on local thermodynamics and other microscopic driving forces encoded in the observed atomic configurations remains hidden. Here, we present a framework based on statistical distance minimization to consistently utilize the information available from atomic configurations obtained from an atomically resolved image and extract meaningful physical interaction parameters. We illustrate the applicability of the framework on an STM image of a FeSe x Te 1-x superconductor, with the segregation of the chalcogen atoms investigated using a nonideal interacting solid solution model. This universal method makes full use of the microscopic degrees of freedom sampled in an atomically resolved image and can be extended via Bayesian inference toward unbiased model selection with uncertainty quantification.

  2. Ordered Structure Formed by Biologically Related Molecules

    NASA Astrophysics Data System (ADS)

    Hatta, Ichiro; Nishino, Junichiro; Sumi, Akinori; Hibino, Masahiro

    1995-07-01

    The two-dimensional arrangement of biologically related molecules was studied by means of scanning probe microscopy. For monolayers of fatty acid molecules with a saturated hydrocarbon chain adsorbed on a graphite substrate, in the scanning tunneling microscope image, the position associated with the carbon atoms was clearly distinguished. In addition, based on the image for fatty acid molecules with an unsaturated hydrocarbon chain, at the position of a double bond, local electrical conductance was found to increase. Based on the images, it was pointed out that not the position of each carbon but the interaction between a graphite substrate and an alkyl chain plays an important role in imaging. On the other hand, for the surface of Langmuir-Blodgett films composed of phosphatidic acids with cations, the scanning force microscope image shows, for the first time, evidence of the methyl ends in the arrangement of phospholipid molecules.

  3. High resolution imaging of latent fingerprints by localized corrosion on brass surfaces.

    PubMed

    Goddard, Alex J; Hillman, A Robert; Bond, John W

    2010-01-01

    The Atomic Force Microscope (AFM) is capable of imaging fingerprint ridges on polished brass substrates at an unprecedented level of detail. While exposure to elevated humidity at ambient or slightly raised temperatures does not change the image appreciably, subsequent brief heating in a flame results in complete loss of the sweat deposit and the appearance of pits and trenches. Localized elemental analysis (using EDAX, coupled with SEM imaging) shows the presence of the constituents of salt in the initial deposits. Together with water and atmospheric oxygen--and with thermal enhancement--these are capable of driving a surface corrosion process. This process is sufficiently localized that it has the potential to generate a durable negative topographical image of the fingerprint. AFM examination of surface regions between ridges revealed small deposits (probably microscopic "spatter" of sweat components or transferred particulates) that may ultimately limit the level of ridge detail analysis.

  4. Nanoscale infrared (IR) spectroscopy and imaging of structural lipids in human stratum corneum using an atomic force microscope to directly detect absorbed light from a tunable IR laser source.

    PubMed

    Marcott, Curtis; Lo, Michael; Kjoller, Kevin; Domanov, Yegor; Balooch, Guive; Luengo, Gustavo S

    2013-06-01

    An atomic force microscope (AFM) and a tunable infrared (IR) laser source have been combined in a single instrument (AFM-IR) capable of producing ~200-nm spatial resolution IR spectra and absorption images. This new capability enables IR spectroscopic characterization of human stratum corneum at unprecendented levels. Samples of normal and delipidized stratum corneum were embedded, cross-sectioned and mounted on ZnSe prisms. A pulsed tunable IR laser source produces thermomechanical expansion upon absorption, which is detected through excitation of contact resonance modes in the AFM cantilever. In addition to reducing the total lipid content, the delipidization process damages the stratum corneum morphological structure. The delipidized stratum corneum shows substantially less long-chain CH2 -stretching IR absorption band intensity than normal skin. AFM-IR images that compare absorbances at 2930/cm (lipid) and 3290/cm (keratin) suggest that regions of higher lipid concentration are located at the perimeter of corneocytes in the normal stratum corneum. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  5. Recent developments in dimensional nanometrology using AFMs

    NASA Astrophysics Data System (ADS)

    Yacoot, Andrew; Koenders, Ludger

    2011-12-01

    Scanning probe microscopes, in particular the atomic force microscope (AFM), have developed into sophisticated instruments that, throughout the world, are no longer used just for imaging, but for quantitative measurements. A role of the national measurement institutes has been to provide traceable metrology for these instruments. This paper presents a brief overview as to how this has been achieved, highlights the future requirements for metrology to support developments in AFM technology and describes work in progress to meet this need.

  6. Electromechanical Characterization of Single GaN Nanobelt Probed with Conductive Atomic Force Microscope

    NASA Astrophysics Data System (ADS)

    Yan, X. Y.; Peng, J. F.; Yan, S. A.; Zheng, X. J.

    2018-04-01

    The electromechanical characterization of the field effect transistor based on a single GaN nanobelt was performed under different loading forces by using a conductive atomic force microscope (C-AFM), and the effective Schottky barrier height (SBH) and ideality factor are simulated by the thermionic emission model. From 2-D current image, the high value of the current always appears on the nanobelt edge with the increase of the loading force less than 15 nN. The localized (I-V) characteristic reveals a typical rectifying property, and the current significantly increases with the loading force at the range of 10-190 nN. The ideality factor is simulated as 9.8 within the scope of GaN nano-Schottky diode unity (6.5-18), therefore the thermionic emission current is dominant in the electrical transport of the GaN-tip Schottky junction. The SBH is changed through the piezoelectric effect induced by the loading force, and it is attributed to the enhanced current. Furthermore, a single GaN nanobelt has a high mechanical-induced current ratio that could be made use of in a nanoelectromechanical switch.

  7. Electromechanical Characterization of Single GaN Nanobelt Probed with Conductive Atomic Force Microscope

    NASA Astrophysics Data System (ADS)

    Yan, X. Y.; Peng, J. F.; Yan, S. A.; Zheng, X. J.

    2018-07-01

    The electromechanical characterization of the field effect transistor based on a single GaN nanobelt was performed under different loading forces by using a conductive atomic force microscope (C-AFM), and the effective Schottky barrier height (SBH) and ideality factor are simulated by the thermionic emission model. From 2-D current image, the high value of the current always appears on the nanobelt edge with the increase of the loading force less than 15 nN. The localized ( I- V) characteristic reveals a typical rectifying property, and the current significantly increases with the loading force at the range of 10-190 nN. The ideality factor is simulated as 9.8 within the scope of GaN nano-Schottky diode unity (6.5-18), therefore the thermionic emission current is dominant in the electrical transport of the GaN-tip Schottky junction. The SBH is changed through the piezoelectric effect induced by the loading force, and it is attributed to the enhanced current. Furthermore, a single GaN nanobelt has a high mechanical-induced current ratio that could be made use of in a nanoelectromechanical switch.

  8. Atom-Pair Kinetics with Strong Electric-Dipole Interactions.

    PubMed

    Thaicharoen, N; Gonçalves, L F; Raithel, G

    2016-05-27

    Rydberg-atom ensembles are switched from a weakly to a strongly interacting regime via adiabatic transformation of the atoms from an approximately nonpolar into a highly dipolar quantum state. The resultant electric dipole-dipole forces are probed using a device akin to a field ion microscope. Ion imaging and pair-correlation analysis reveal the kinetics of the interacting atoms. Dumbbell-shaped pair-correlation images demonstrate the anisotropy of the binary dipolar force. The dipolar C_{3} coefficient, derived from the time dependence of the images, agrees with the value calculated from the permanent electric-dipole moment of the atoms. The results indicate many-body dynamics akin to disorder-induced heating in strongly coupled particle systems.

  9. Nonlinear Dynamics of Cantilever-Sample Interactions in Atomic Force Microscopy

    NASA Technical Reports Server (NTRS)

    Cantrell, John H.; Cantrell, Sean A.

    2010-01-01

    The interaction of the cantilever tip of an atomic force microscope (AFM) with the sample surface is obtained by treating the cantilever and sample as independent systems coupled by a nonlinear force acting between the cantilever tip and a volume element of the sample surface. The volume element is subjected to a restoring force from the remainder of the sample that provides dynamical equilibrium for the combined systems. The model accounts for the positions on the cantilever of the cantilever tip, laser probe, and excitation force (if any) via a basis set of set of orthogonal functions that may be generalized to account for arbitrary cantilever shapes. The basis set is extended to include nonlinear cantilever modes. The model leads to a pair of coupled nonlinear differential equations that are solved analytically using a matrix iteration procedure. The effects of oscillatory excitation forces applied either to the cantilever or to the sample surface (or to both) are obtained from the solution set and applied to the to the assessment of phase and amplitude signals generated by various acoustic-atomic force microscope (A-AFM) modalities. The influence of bistable cantilever modes of on AFM signal generation is discussed. The effects on the cantilever-sample surface dynamics of subsurface features embedded in the sample that are perturbed by surface-generated oscillatory excitation forces and carried to the cantilever via wave propagation are accounted by the Bolef-Miller propagating wave model. Expressions pertaining to signal generation and image contrast in A-AFM are obtained and applied to amplitude modulation (intermittent contact) atomic force microscopy and resonant difference-frequency atomic force ultrasonic microscopy (RDF-AFUM). The influence of phase accumulation in A-AFM on image contrast is discussed, as is the effect of hard contact and maximum nonlinearity regimes of A-AFM operation.

  10. Atomic force microscopy for cellular level manipulation: imaging intracellular structures and DNA delivery through a membrane hole.

    PubMed

    Afrin, Rehana; Zohora, Umme Salma; Uehara, Hironori; Watanabe-Nakayama, Takahiro; Ikai, Atsushi

    2009-01-01

    The atomic force microscope (AFM) is a versatile tool for imaging, force measurement and manipulation of proteins, DNA, and living cells basically at the single molecular level. In the cellular level manipulation, extraction, and identification of mRNA's from defined loci of a cell, insertion of plasmid DNA and pulling of membrane proteins, for example, have been reported. In this study, AFM was used to create holes at defined loci on the cell membrane for the investigation of viability of the cells after hole creation, visualization of intracellular structure through the hole and for targeted gene delivery into living cells. To create large holes with an approximate diameter of 5-10 microm, a phospholipase A(2) coated bead was added to the AFM cantilever and the bead was allowed to touch the cell surface for approximately 5-10 min. The evidence of hole creation was obtained mainly from fluorescent image of Vybrant DiO labeled cell before and after the contact with the bead and the AFM imaging of the contact area. In parallel, cells with a hole were imaged by AFM to reveal intracellular structures such as filamentous structures presumably actin fibers and mitochondria which were identified with fluorescent labeling with rhodamine 123. Targeted gene delivery was also attempted by inserting an AFM probe that was coated with the Monster Green Fluorescent Protein phMGFP Vector for transfection of the cell. Following targeted transfection, the gene expression of green fluorescent protein (GFP) was observed and confirmed by the fluorescence microscope. Copyright (c) 2009 John Wiley & Sons, Ltd.

  11. True non-contact atomic force microscopy imaging of heterogeneous biological samples in liquids: topography and material contrast.

    PubMed

    Almonte, Lisa; Colchero, Jaime

    2017-02-23

    The present work analyses how the tip-sample interaction signals critically determine the operation of an Atomic Force Microscope (AFM) set-up immersed in liquid. On heterogeneous samples, the conservative tip-sample interaction may vary significantly from point to point - in particular from attractive to repulsive - rendering correct feedback very challenging. Lipid membranes prepared on a mica substrate are analyzed as reference samples which are locally heterogeneous (material contrast). The AFM set-up is operated dynamically at low oscillation amplitude and all available experimental data signals - the normal force, as well as the amplitude and frequency - are recorded simultaneously. From the analysis of how the dissipation (oscillation amplitude) and the conservative interaction (normal force and resonance frequency) vary with the tip-sample distance we conclude that dissipation is the only appropriate feedback source for stable and correct topographic imaging. The normal force and phase then carry information about the sample composition ("chemical contrast"). Dynamic AFM allows imaging in a non-contact regime where essentially no forces are applied, rendering dynamic AFM a truly non-invasive technique.

  12. Manipulating motions of targeted single cells in solution by an integrated double-ring magnetic tweezers imaging microscope.

    PubMed

    Wu, Meiling; Yadav, Rajeev; Pal, Nibedita; Lu, H Peter

    2017-07-01

    Controlling and manipulating living cell motions in solution hold a high promise in developing new biotechnology and biological science. Here, we developed a magnetic tweezers device that employs a combination of two permanent magnets in up-down double-ring configuration axially fitting with a microscopic objective, allowing a picoNewton (pN) bidirectional force and motion control on the sample beyond a single upward pulling direction. The experimental force calibration and magnetic field simulation using finite element method magnetics demonstrate that the designed magnetic tweezers covers a linear-combined pN force with positive-negative polarization changes in a tenability of sub-pN scale, which can be utilized to further achieve motion manipulation by shifting the force balance. We demonstrate an application of the up-down double-ring magnetic tweezers for single cell manipulation, showing that the cells with internalized paramagnetic beads can be selectively picked up and guided in a controlled fine motion.

  13. Manipulating motions of targeted single cells in solution by an integrated double-ring magnetic tweezers imaging microscope

    NASA Astrophysics Data System (ADS)

    Wu, Meiling; Yadav, Rajeev; Pal, Nibedita; Lu, H. Peter

    2017-07-01

    Controlling and manipulating living cell motions in solution hold a high promise in developing new biotechnology and biological science. Here, we developed a magnetic tweezers device that employs a combination of two permanent magnets in up-down double-ring configuration axially fitting with a microscopic objective, allowing a picoNewton (pN) bidirectional force and motion control on the sample beyond a single upward pulling direction. The experimental force calibration and magnetic field simulation using finite element method magnetics demonstrate that the designed magnetic tweezers covers a linear-combined pN force with positive-negative polarization changes in a tenability of sub-pN scale, which can be utilized to further achieve motion manipulation by shifting the force balance. We demonstrate an application of the up-down double-ring magnetic tweezers for single cell manipulation, showing that the cells with internalized paramagnetic beads can be selectively picked up and guided in a controlled fine motion.

  14. Morphological changes in textile fibres exposed to environmental stresses: atomic force microscopic examination.

    PubMed

    Canetta, Elisabetta; Montiel, Kimberley; Adya, Ashok K

    2009-10-30

    The ability of the atomic force microscope (AFM) to investigate the nanoscopic morphological changes in the surfaces of fabrics was examined for the first time. This study focussed on two natural (cotton and wool), and a regenerated cellulose (viscose) textile fibres exposed to various environmental stresses for different lengths of times. Analyses of the AFM images allowed us to measure quantitatively the surface texture parameters of the environmentally stressed fabrics as a function of the exposure time. It was also possible to visualise at the nanoscale the finest details of the surfaces of three weathered fabrics and clearly distinguish between the detrimental effects of the imposed environmental conditions. This study confirmed that the AFM could become a very powerful tool in forensic examination of textile fibres to provide significant fibre evidence due to its capability of distinguishing between different environmental exposures or forced damages to fibres.

  15. Steady-state force-velocity relation in the ATP-dependent sliding movement of myosin-coated beads on actin cables in vitro studied with a centrifuge microscope.

    PubMed Central

    Oiwa, K; Chaen, S; Kamitsubo, E; Shimmen, T; Sugi, H

    1990-01-01

    To eliminate the gap between the biochemistry of actomyosin in solution and the physiology of contracting muscle, we developed an in vitro force-movement assay system in which the steady-state force-velocity relation in the actin-myosin interaction can be studied. The assay system consists of the internodal cells of an alga, Nitellopsis obtusa, containing well-organized actin filament arrays (actin cables); tosyl-activated polystyrene beads (diameter, 2.8 microns; specific gravity, 1.3) coated with skeletal muscle myosin; and a centrifuge microscope equipped with a stroboscopic light source and a video system. The internodal cell preparation was mounted on the rotor of the centrifuge microscope, so that centrifugal forces were applied to the myosin-coated beads moving along the actin cables in the presence of ATP. Under constant centrifugal forces directed opposite to the bead movement ("positive" loads), the beads continued to move with constant velocities, which decreased with increasing centrifugal forces. The steady-state force-velocity curve thus obtained was analogous to the double-hyperbolic force-velocity curve of single muscle fibers. The unloaded velocity of bead movement was 1.6-3.6 microns/s (20-23 degrees C), while the maximum "isometric" force generated by the myosin molecules on the bead was 1.9-39 pN. If, on the other hand, the beads were subjected to constant centrifugal forces in the direction of bead movement ("negative" loads), the bead also moved with constant velocities. Unexpectedly, the velocity of bead movement did not increase with increasing negative loads but first decreased by 20-60% and then increased towards the initial unloaded velocity until the beads were eventually detached from the actin cables. Images PMID:2236007

  16. Imaging high-speed friction at the nanometer scale

    PubMed Central

    Thorén, Per-Anders; de Wijn, Astrid S.; Borgani, Riccardo; Forchheimer, Daniel; Haviland, David B.

    2016-01-01

    Friction is a complicated phenomenon involving nonlinear dynamics at different length and time scales. Understanding its microscopic origin requires methods for measuring force on nanometer-scale asperities sliding at velocities reaching centimetres per second. Despite enormous advances in experimental technique, this combination of small length scale and high velocity remain elusive. We present a technique for rapidly measuring the frictional forces on a single asperity over a velocity range from zero to several centimetres per second. At each image pixel we obtain the velocity dependence of both conservative and dissipative forces, revealing the transition from stick-slip to smooth sliding friction. We explain measurements on graphite using a modified Prandtl–Tomlinson model, including the damped elastic deformation of the asperity. With its improved force sensitivity and small sliding amplitude, our method enables rapid and detailed surface mapping of the velocity dependence of frictional forces with less than 10 nm spatial resolution. PMID:27958267

  17. AtomicJ: An open source software for analysis of force curves

    NASA Astrophysics Data System (ADS)

    Hermanowicz, Paweł; Sarna, Michał; Burda, Kvetoslava; Gabryś, Halina

    2014-06-01

    We present an open source Java application for analysis of force curves and images recorded with the Atomic Force Microscope. AtomicJ supports a wide range of contact mechanics models and implements procedures that reduce the influence of deviations from the contact model. It generates maps of mechanical properties, including maps of Young's modulus, adhesion force, and sample height. It can also calculate stacks, which reveal how sample's response to deformation changes with indentation depth. AtomicJ analyzes force curves concurrently on multiple threads, which allows for high speed of analysis. It runs on all popular operating systems, including Windows, Linux, and Macintosh.

  18. Model based control of dynamic atomic force microscope.

    PubMed

    Lee, Chibum; Salapaka, Srinivasa M

    2015-04-01

    A model-based robust control approach is proposed that significantly improves imaging bandwidth for the dynamic mode atomic force microscopy. A model for cantilever oscillation amplitude and phase dynamics is derived and used for the control design. In particular, the control design is based on a linearized model and robust H(∞) control theory. This design yields a significant improvement when compared to the conventional proportional-integral designs and verified by experiments.

  19. Optimization of Easy Atomic Force Microscope (ezAFM) Controls for Semiconductor Nanostructure Profiling

    DTIC Science & Technology

    2017-09-01

    in the vertical (z) directions. There are several instruments controls like proportional, integral , and derivative (PID) gain as well as tip force...the PID control, where P stands for proportional gain, I stands for integral gain, and D stands for derivative gain. An additional parameter that...contributes to the scanned image quality is set point. Proportional gain is multiplied by the error to adjust controller output and integral gain sums

  20. Imaging nanoclusters in the constant height mode of the dynamic SFM.

    PubMed

    Barth, Clemens; Pakarinen, Olli H; Foster, Adam S; Henry, Claude R

    2006-04-14

    For the first time, high quality images of metal nanoclusters which were recorded in the constant height mode of a dynamic scanning force microscope (dynamic SFM) are shown. Surfaces of highly ordered pyrolytic graphite (HOPG) were used as a test substrate since metal nanoclusters with well defined and symmetric shapes can be created by epitaxial growth. We performed imaging of gold clusters with sizes between 5 and 15 nm in both scanning modes, constant Δf mode and constant height mode, and compared the image contrast. We notice that clusters in constant height images appear much sharper, and exhibit more reasonable lateral shapes and sizes in comparison to images recorded in the constant Δf mode. With the help of numerical simulations we show that only a microscopically small part of the tip apex (nanotip) is probably the main contributor for the image contrast formation. In principle, the constant height mode can be used for imaging surfaces of any material, e.g. ionic crystals, as shown for the system Au/NaCl(001).

  1. Harnessing the damping properties of materials for high-speed atomic force microscopy.

    PubMed

    Adams, Jonathan D; Erickson, Blake W; Grossenbacher, Jonas; Brugger, Juergen; Nievergelt, Adrian; Fantner, Georg E

    2016-02-01

    The success of high-speed atomic force microscopy in imaging molecular motors, enzymes and microbes in liquid environments suggests that the technique could be of significant value in a variety of areas of nanotechnology. However, the majority of atomic force microscopy experiments are performed in air, and the tapping-mode detection speed of current high-speed cantilevers is an order of magnitude lower in air than in liquids. Traditional approaches to increasing the imaging rate of atomic force microscopy have involved reducing the size of the cantilever, but further reductions in size will require a fundamental change in the detection method of the microscope. Here, we show that high-speed imaging in air can instead be achieved by changing the cantilever material. We use cantilevers fabricated from polymers, which can mimic the high damping environment of liquids. With this approach, SU-8 polymer cantilevers are developed that have an imaging-in-air detection bandwidth that is 19 times faster than those of conventional cantilevers of similar size, resonance frequency and spring constant.

  2. Nanoimaging and ultra structure of Entamoeba histolytica and its pseudopods by using atomic force microscope

    NASA Astrophysics Data System (ADS)

    Joshi, Narahari V.; Medina, Honorio; Urdaneta, H.; Barboza, J.

    2000-04-01

    Nan-imaging of Entamoeba histolytica was carried out by using Atomic Force Microscope (AFM). The structure of the nucleus, endoplasm and ectoplasm were studied separately. The diameter of the nucleus in living E. histolytica was found to be of the order of 10 micrometers which is slightly higher than the earlier reported value. The presence of karysome was detected in the nucleus. Well-organized patterns of chromatoid bodies located within the endoplasm, were detected and their repetitive patterns were examined. The organized structure was also extended within the ectoplasm. The dimensions and form of the organization suggest that chromatic bodies are constituted with ribosomes ordered in the form of folded sheet. Such structures were found to be absent in non-living E. histolytica. AFM images were also captured just in the act when ameba was extending its pseudopods. Alteration in the ultrastructure caused during the process of extension was viewed. Well marked canals of width 694.05 nm. And height 211.05 nm are clearly perceptible towards the direction of the pseudopods. 3D images are presented to appreciate the height variation, which can not be achieved by conventional well-established techniques such as electron microscopy.

  3. EFM data mapped into 2D images of tip-sample contact potential difference and capacitance second derivative.

    PubMed

    Lilliu, S; Maragliano, C; Hampton, M; Elliott, M; Stefancich, M; Chiesa, M; Dahlem, M S; Macdonald, J E

    2013-11-27

    We report a simple technique for mapping Electrostatic Force Microscopy (EFM) bias sweep data into 2D images. The method allows simultaneous probing, in the same scanning area, of the contact potential difference and the second derivative of the capacitance between tip and sample, along with the height information. The only required equipment consists of a microscope with lift-mode EFM capable of phase shift detection. We designate this approach as Scanning Probe Potential Electrostatic Force Microscopy (SPP-EFM). An open-source MATLAB Graphical User Interface (GUI) for images acquisition, processing and analysis has been developed. The technique is tested with Indium Tin Oxide (ITO) and with poly(3-hexylthiophene) (P3HT) nanowires for organic transistor applications.

  4. Noncontact Viscoelastic Imaging of Living Cells Using a Long-Needle Atomic Force Microscope with Dual-Frequency Modulation

    NASA Astrophysics Data System (ADS)

    Guan, Dongshi; Charlaix, Elisabeth; Qi, Robert Z.; Tong, Penger

    2017-10-01

    Imaging of surface topography and elasticity of living cells can provide insight into the roles played by the cells' volumetric and mechanical properties and their response to external forces in regulating the essential cellular events and functions. Here, we report a unique technique of noncontact viscoelastic imaging of live cells using atomic force microscopy (AFM) with a long-needle glass probe. Because only the probe tip is placed in a liquid medium near the cell surface, the AFM cantilever in air functions well under dual-frequency modulation, retaining its high-quality resonant modes. The probe tip interacts with the cell surface through a minute hydrodynamic flow in the nanometer-thin gap region between them without physical contact. Quantitative measurements of the cell height, volume, and Young's modulus are conducted simultaneously. The experiment demonstrates that the long-needle AFM has a wide range of applications in the study of cell mechanics.

  5. EDITORIAL: Scanning probe microscopy: a visionary development Scanning probe microscopy: a visionary development

    NASA Astrophysics Data System (ADS)

    Demming, Anna

    2013-07-01

    The development of scanning probe microscopy repositioned modern physics. When Rohrer and Binnig first used electronic tunnelling effects to image atoms and quantum states they did more than pin down theoretical hypotheses to real-world observables; the scanning tunnelling microscope fed imaginations, prompting researchers to consider new directions and possibilities [1]. As Rohrer once commented, 'We could show that you can easily manipulate or position something small in space with an accuracy of 10 pm.... When you can do that, you simply have ideas of what you can do' [2]. The development heralded a cavalry of scanning probe techniques—such as atomic force microscopy (AFM) [3-5], scanning near-field optical microscopy (SNOM) [6-8] and Kelvin probe force microscopy (KPFM) [9, 10]—that still continue to bring nanomaterials and nanoscale phenomena into fresh focus. Not long after the development of scanning tunnelling microscopy, Binnig, Quate and Gerber collaborating in California in the US published work on a new type of microscope also capable of atomic level resolution [3]. The original concept behind scanning tunnelling microscopy uses electrical conductance, which places substantial limitations on the systems that it can image. Binnig, Quate and Gerber developed the AFM to 'feel' the topology of surfaces like the needle of an old fashioned vinyl player. In this way insulators could be imaged as well. The development of a force modulation mode AFM extended the tool's reach to soft materials making images of biological samples accessible with the technique [4]. There have now been a number of demonstrations of image capture at rates that allow dynamics at the nanoscale to be tracked in real time, opening further possibilities in applications of the AFM as described in a recent review by Toshio Ando at Kanazawa University [5]. Researchers also found a way to retrieve optical information at 'super-resolution' [6, 7]. Optical microscopy provides spectral details that harbour a wealth of additional information about the sample and its environment, like switching from black and white to technicolour. With the invention of SNOM these details were no longer restricted by the diffraction limit to a resolution of half the wavelength of the incident light. The principle behind SNOM remains very similar to STM but instead of measuring an electronic current, information is captured from the non-propagating optical near field, where the diffraction limit does not apply. SNOM continues to be an invaluable imaging technique as demonstrated recently by researchers in Spain and Korea, who used it to measure near-infrared-to-visible upconversion and cathodoluminescence emission properties of Ln3+ in nanocrystalline Ln-doped Lu2O3 materials with 1D morphology [8]. Their work holds promise for controlled incorporation of such optically active nanostructures in future photonic structures and applications. The cantilever-probe system provides a number of highly sensitive interactions that can be exploited to extract details of a sample system. The potential offset between the probe and surface manifests itself in a force and this too has been used in KPFM [9]. The finite tip size has a profound effect on the measured image in scanning probe-microscopes in general. In KPFM, as Rosenwaks and colleagues in Israel, US and Germany point out in this issue [10] the influence of the tip and cantilever on measurements is particularly significant because of the long range nature of the electrostatic forces involved. Measurements at any one point provide a weighted average of the contact potential difference of the sample and to obtain a quantitative image this averaging must be taken into account. Rosenwaks and colleagues tackle this challenge in the work reported in this issue, presenting an algorithm for reconstructing a sample surface potential from its KPFM image. Their study also reveals that the averaging effects are far more significant for amplitude modulated KPFM measurements compared with the frequency modulated mode. Rohrer and Binnig shared the Nobel Prize for Physics 'for their design of the scanning tunnelling microscope' [11]. They are widely recognized among the founding fathers of nanoscience. In an interview in 2005 Rohrer once commented on the benefits of changing fields even if it leaves you feeling a little 'lost and lonely' at first. In fact he attributed his ability to contribute his Nobel Prize winning work to science at a comparatively senior age to the fact that he had changed fields. 'You cannot be the star from the beginning, but I think what is important is that you might bring in a different way of thinking. You have a certain lightness to approach something that is the expert opinion' [2]. In nanotechnology where such a formidable range of disciplines seem to feed into the research such words may be particularly encouraging. Rohrer passed away on 16 May 2013, but the awesome legacy of his life's work continues. With the scanning tunnelling microscope the lofty eccentricities of quantum mechanical theory literally came into view, quite an inspiration. References [1] Binning G, Rohrer H, Gerber Ch and Weibel E 1982 Surface studies by scanning tunneling microscopy Phys. Rev. Lett. 49 57-61 [2] Weiss P S 2007 A conversation with Dr. Heinrich Rohrer: STM Co-inventor and one of the founding fathers of nanoscience ACS Nano 1 3-5 [3] Binnig G, Quate C F and Gerber Ch 1986 Atomic force microscope Phys. Rev. Lett. 56 930-3 [4] Maivald P, Butt H J, Gould S A C, Prater C B, Drake B, Gurley J A, Elings V B and Hansma P K 1991 Using force modulation to image surface elasticities with the atomic force microscope Nanotechnology 2 103-6 [5] Ando T 2012 High-speed atomic force microscopy coming of age Nanotechnology 23 062001 [6] Betzig E, Isaacson M, Barshatzky H, Lewis A and Lin K 1988 Super-resolution imaging with near-field scanning optical microscopy (NSOM) Ultramicroscopy 25 155-63 [7] Thio T, Lezec H J, Ebbesen T W, Pellerin K M, Lewen G D, Nahata A and Linke R A 2002 Giant optical transmission of sub-wavelength apertures: physics and applications Nanotechnology 13 429-32 [8] Barrera E W, Pujol M C, Díaz F, Choi S B, Rotermund F, Park K H, Jeong M S and Cascales C 2011 Emission properties of hydrothermal Yb3+, Er3+ and Yb3+, Tm3+-codoped Lu2O3 nanorods: upconversion, cathodoluminescence and assessment of waveguide behaviour Nanotechnology 22 075205 [9] Nonnenmacher M, O'Boyle M P and Wickramasinghe H K 1991 Kelvin probe force microscopy Appl. Phys. Lett. 58 2921-3 [10] Cohen G, Halpern E, Nanayakkara S U, Luther J M, Held C, Bennewitz R, Boag A and Rosenwaks Y 2013 Reconstruction of surface potential from Kelvin probe force microscopy images Nanotechnology 24 295702 [11] 1986 The Nobel Prize in Physics www.nobelprize.org/nobel prizes/physics/laureates/1986/ index.html

  6. Imaging Carbon Nanotubes in High Performance Polymer Composites via Magnetic Force Microscope

    NASA Technical Reports Server (NTRS)

    Lillehei, Peter T.; Park, Cheol; Rouse, Jason H.; Siochi, Emilie J.; Bushnell, Dennis M. (Technical Monitor)

    2002-01-01

    Application of carbon nanotubes as reinforcement in structural composites is dependent on the efficient dispersion of the nanotubes in a high performance polymer matrix. The characterization of such dispersion is limited by the lack of available tools to visualize the quality of the matrix/carbon nanotube interaction. The work reported herein demonstrates the use of magnetic force microscopy (MFM) as a promising technique for characterizing the dispersion of nanotubes in a high performance polymer matrix.

  7. Tapping mode imaging and measurements with an inverted atomic force microscope.

    PubMed

    Chan, Sandra S F; Green, John-Bruce D

    2006-07-18

    This report demonstrates the successful use of the inverted atomic force microscope (i-AFM) for tapping mode AFM imaging of cantilever-supported samples. i-AFM is a mode of AFM operation in which a sample supported on a tipless cantilever is imaged by one of many tips in a microfabricated tip array. Tapping mode is an intermittent contact mode whereby the cantilever is oscillated at or near its resonance frequency, and the amplitude and/or phase are used to image the sample. In the process of demonstrating that tapping mode images could be obtained in the i-AFM design, it was observed that the amplitude of the cantilever oscillation decreased markedly as the cantilever and tip array were approached. The source of this damping of the cantilever oscillations was identified to be the well-known "squeeze film damping", and the extent of damping was a direct consequence of the relatively shorter tip heights for the tip arrays, as compared to those of commercially available tapping mode cantilevers with integrated tips. The functional form for the distance dependence of the damping coefficient is in excellent agreement with previously published models for squeeze film damping, and the values for the fitting parameters make physical sense. Although the severe damping reduces the cantilever free amplitude substantially, we found that we were still able to access the low-amplitude regime of oscillation necessary for attractive tapping mode imaging of fragile molecules.

  8. Microscopic Analysis of Current and Mechanical Properties of Nafion® Studied by Atomic Force Microscopy

    PubMed Central

    Hiesgen, Renate; Helmly, Stefan; Galm, Ines; Morawietz, Tobias; Handl, Michael; Friedrich, K. Andreas

    2012-01-01

    The conductivity of fuel cell membranes as well as their mechanical properties at the nanometer scale were characterized using advanced tapping mode atomic force microscopy (AFM) techniques. AFM produces high-resolution images under continuous current flow of the conductive structure at the membrane surface and provides some insight into the bulk conducting network in Nafion membranes. The correlation of conductivity with other mechanical properties, such as adhesion force, deformation and stiffness, were simultaneously measured with the current and provided an indication of subsurface phase separations and phase distribution at the surface of the membrane. The distribution of conductive pores at the surface was identified by the formation of water droplets. A comparison of nanostructure models with high-resolution current images is discussed in detail. PMID:24958429

  9. Origin of phase shift in atomic force microscopic investigation of the surface morphology of NR/NBR blend film.

    PubMed

    Thanawan, S; Radabutra, S; Thamasirianunt, P; Amornsakchai, T; Suchiva, K

    2009-01-01

    Atomic force microscopy (AFM) was used to study the morphology and surface properties of NR/NBR blend. Blends at 1/3, 1/1 and 3/1 weight ratios were prepared in benzene and formed film by casting. AFM phase images of these blends in tapping mode displayed islands in the sea morphology or matrix-dispersed structures. For blend 1/3, NR formed dispersed phase while in blends 1/1 and 3/1 phase inversion was observed. NR showed higher phase shift angle in AFM phase imaging for all blends. This circumstance was governed by adhesion energy hysteresis between the device tip and the rubber surface rather than surface stiffness of the materials, as proved by force distance measurements in the AFM contact mode.

  10. Quantitative force measurements in liquid using frequency modulation atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Uchihashi, Takayuki; Higgins, Michael J.; Yasuda, Satoshi; Jarvis, Suzanne P.; Akita, Seiji; Nakayama, Yoshikazu; Sader, John E.

    2004-10-01

    The measurement of short-range forces with the atomic force microscope (AFM) typically requires implementation of dynamic techniques to maintain sensitivity and stability. While frequency modulation atomic force microscopy (FM-AFM) is used widely for high-resolution imaging and quantitative force measurements in vacuum, quantitative force measurements using FM-AFM in liquids have proven elusive. Here we demonstrate that the formalism derived for operation in vacuum can also be used in liquids, provided certain modifications are implemented. To facilitate comparison with previous measurements taken using surface forces apparatus, we choose a model system (octamethylcyclotetrasiloxane) that is known to exhibit short-ranged structural ordering when confined between two surfaces. Force measurements obtained are found to be in excellent agreement with previously reported results. This study therefore establishes FM-AFM as a powerful tool for the quantitative measurement of forces in liquid.

  11. A simple way to higher speed atomic force microscopy by retrofitting with a novel high-speed flexure-guided scanner

    NASA Astrophysics Data System (ADS)

    Ouma Alunda, Bernard; Lee, Yong Joong; Park, Soyeun

    2018-06-01

    A typical line-scan rate for a commercial atomic force microscope (AFM) is about 1 Hz. At such a rate, more than four minutes of scanning time is required to obtain an image of 256 × 256 pixels. Despite control electronics of most commercial AFMs permit faster scan rates, default piezoelectric X–Y scanners limit the overall speed of the system. This is a direct consequence of manufacturers choosing a large scan range over the maximum operating speed for a X–Y scanner. Although some AFM manufacturers offer reduced-scan area scanners as an option, the speed improvement is not significant because such scanners do not have large enough reduction in the scan range and are mainly targeted to reducing the overall cost of the AFM systems. In this article, we present a simple parallel-kinematic substitute scanner for a commercial atomic force microscope to afford a higher scanning speed with no other hardware or software upgrade to the original system. Although the scan area reduction is unavoidable, our modified commercial XE-70 AFM from Park Systems has achieved a line scan rate of over 50 Hz, more than 10 times faster than the original, unmodified system. Our flexure-guided X–Y scanner can be a simple drop-in replacement option for enhancing the speed of various aging atomic force microscopes.

  12. Tunneling magnetic force microscopy

    NASA Technical Reports Server (NTRS)

    Burke, Edward R.; Gomez, Romel D.; Adly, Amr A.; Mayergoyz, Isaak D.

    1993-01-01

    We have developed a powerful new tool for studying the magnetic patterns on magnetic recording media. This was accomplished by modifying a conventional scanning tunneling microscope. The fine-wire probe that is used to image surface topography was replaced with a flexible magnetic probe. Images obtained with these probes reveal both the surface topography and the magnetic structure. We have made a thorough theoretical analysis of the interaction between the probe and the magnetic fields emanating from a typical recorded surface. Quantitative data about the constituent magnetic fields can then be obtained. We have employed these techniques in studies of two of the most important issues of magnetic record: data overwrite and maximizing data-density. These studies have shown: (1) overwritten data can be retrieved under certain conditions; and (2) improvements in data-density will require new magnetic materials. In the course of these studies we have developed new techniques to analyze magnetic fields of recorded media. These studies are both theoretical and experimental and combined with the use of our magnetic force scanning tunneling microscope should lead to further breakthroughs in the field of magnetic recording.

  13. Cometary dust at the smallest scale - latest results of the MIDAS Atomic Force Microscope onboard Rosetta

    NASA Astrophysics Data System (ADS)

    Bentley, Mark; Torkar, Klaus; Jeszenszky, Harald; Romstedt, Jens; Schmied, Roland; Mannel, Thurid

    2015-04-01

    The MIDAS instrument onboard the Rosetta orbit is a unique combination of a dust collection and handling system and a high resolution Atomic Force Microscope (AFM). By building three-dimensional images of the dust particle topography, MIDAS addresses a range of fundamental questions in Solar System and cometary science. The first few months of dust collection and scanning revealed a deficit of smaller (micron and below) particles but eventually several 10 µm-class grains were discovered. In fact these were unexpectedly large and close to the limit of what is observable with MIDAS. As a result the sharp tip used by the AFM struck the particles from the side, causing particle breakage and distortion. Analyses so far suggest that the collected particles are fluffy aggregates of smaller sub-units, although determination of the size of these sub-units and high resolution re-imaging remains to be done. The latest findings will be presented here, including a description of the particles collected and the implications of these observations for cometary science and the Rosetta mission at comet 67P.

  14. A versatile LabVIEW and field-programmable gate array-based scanning probe microscope for in operando electronic device characterization.

    PubMed

    Berger, Andrew J; Page, Michael R; Jacob, Jan; Young, Justin R; Lewis, Jim; Wenzel, Lothar; Bhallamudi, Vidya P; Johnston-Halperin, Ezekiel; Pelekhov, Denis V; Hammel, P Chris

    2014-12-01

    Understanding the complex properties of electronic and spintronic devices at the micro- and nano-scale is a topic of intense current interest as it becomes increasingly important for scientific progress and technological applications. In operando characterization of such devices by scanning probe techniques is particularly well-suited for the microscopic study of these properties. We have developed a scanning probe microscope (SPM) which is capable of both standard force imaging (atomic, magnetic, electrostatic) and simultaneous electrical transport measurements. We utilize flexible and inexpensive FPGA (field-programmable gate array) hardware and a custom software framework developed in National Instrument's LabVIEW environment to perform the various aspects of microscope operation and device measurement. The FPGA-based approach enables sensitive, real-time cantilever frequency-shift detection. Using this system, we demonstrate electrostatic force microscopy of an electrically biased graphene field-effect transistor device. The combination of SPM and electrical transport also enables imaging of the transport response to a localized perturbation provided by the scanned cantilever tip. Facilitated by the broad presence of LabVIEW in the experimental sciences and the openness of our software solution, our system permits a wide variety of combined scanning and transport measurements by providing standardized interfaces and flexible access to all aspects of a measurement (input and output signals, and processed data). Our system also enables precise control of timing (synchronization of scanning and transport operations) and implementation of sophisticated feedback protocols, and thus should be broadly interesting and useful to practitioners in the field.

  15. Advanced atomic force microscopy: Development and application

    NASA Astrophysics Data System (ADS)

    Walters, Deron A.

    Over the decade since atomic force microscopy (AFM) was invented, development of new microscopes has been closely intertwined with application of AFM to problems of interest in physics, chemistry, biology, and engineering. New techniques such as tapping mode AFM move quickly in our lab from the designer's bench to the user's table-since this is often the same piece of furniture. In return, designers get ample feedback as to what problems are limiting current instruments, and thus need most urgent attention. Tip sharpness and characterization are such a problem. Chapter 1 describes an AFM designed to operate in a scanning electron microscope, whose electron beam is used to deposit sharp carbonaceous tips. These tips can be tested and used in situ. Another limitation is addressed in Chapter 2: the difficulty of extracting more than just topographic information from a sample. A combined AFM/confocal optical microscope was built to provide simultaneous, independent images of the topography and fluorescence of a sample. In combination with staining or antibody labelling, this could provide submicron information about the composition of a sample. Chapters 3 and 4 discuss two generations of small cantilevers developed for lower-noise, higher-speed AFM of biological samples. In Chapter 4, a 26 mum cantilever is used to image the process of calcite growth from solution at a rate of 1.6 sec/frame. Finally, Chapter 5 explores in detail a biophysics problem that motivates us to develop fast, quiet, and gentle microscopes; namely, the control of crystal growth in seashells by the action of soluble proteins on a growing calcite surface.

  16. A versatile LabVIEW and field-programmable gate array-based scanning probe microscope for in operando electronic device characterization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berger, Andrew J., E-mail: berger.156@osu.edu; Page, Michael R.; Young, Justin R.

    Understanding the complex properties of electronic and spintronic devices at the micro- and nano-scale is a topic of intense current interest as it becomes increasingly important for scientific progress and technological applications. In operando characterization of such devices by scanning probe techniques is particularly well-suited for the microscopic study of these properties. We have developed a scanning probe microscope (SPM) which is capable of both standard force imaging (atomic, magnetic, electrostatic) and simultaneous electrical transport measurements. We utilize flexible and inexpensive FPGA (field-programmable gate array) hardware and a custom software framework developed in National Instrument's LabVIEW environment to perform themore » various aspects of microscope operation and device measurement. The FPGA-based approach enables sensitive, real-time cantilever frequency-shift detection. Using this system, we demonstrate electrostatic force microscopy of an electrically biased graphene field-effect transistor device. The combination of SPM and electrical transport also enables imaging of the transport response to a localized perturbation provided by the scanned cantilever tip. Facilitated by the broad presence of LabVIEW in the experimental sciences and the openness of our software solution, our system permits a wide variety of combined scanning and transport measurements by providing standardized interfaces and flexible access to all aspects of a measurement (input and output signals, and processed data). Our system also enables precise control of timing (synchronization of scanning and transport operations) and implementation of sophisticated feedback protocols, and thus should be broadly interesting and useful to practitioners in the field.« less

  17. Phase control of austenitic chrome-nickel steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Korkh, M. K., E-mail: KorkhMK@imp.uran.ru; Davidov, D. I., E-mail: davidov@imp.uran.ru; Korkh, J. V., E-mail: Korkh@imp.uran.ru

    2015-10-27

    The paper presents the results of the comparative study of the possibilities of different structural and magnetic methods for detection and visualization of the strain-induced martensitic phase in low carbon austenitic chromium-nickel steel. Results of TEM, SEM, optical microscopy, atomic and magnetic force microscopy, and magnetic measurements are presented. Amount of the magnetic strain-induced martensite was estimated. We pioneered magnetic force microscopic images of the single domain cluster distribution of the strain-induced martensite in austenite-ferrite materials.

  18. A diamond-based scanning probe spin sensor operating at low temperature in ultra-high vacuum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schaefer-Nolte, E.; Wrachtrup, J.; 3rd Institute of Physics and Research Center SCoPE, University Stuttgart, 70569 Stuttgart

    2014-01-15

    We present the design and performance of an ultra-high vacuum (UHV) low temperature scanning probe microscope employing the nitrogen-vacancy color center in diamond as an ultrasensitive magnetic field sensor. Using this center as an atomic-size scanning probe has enabled imaging of nanoscale magnetic fields and single spins under ambient conditions. In this article we describe an experimental setup to operate this sensor in a cryogenic UHV environment. This will extend the applicability to a variety of molecular systems due to the enhanced target spin lifetimes at low temperature and the controlled sample preparation under UHV conditions. The instrument combines amore » tuning-fork based atomic force microscope (AFM) with a high numeric aperture confocal microscope and the facilities for application of radio-frequency (RF) fields for spin manipulation. We verify a sample temperature of <50 K even for strong laser and RF excitation and demonstrate magnetic resonance imaging with a magnetic AFM tip.« less

  19. In Vivo Imaging of Human Sarcomere Twitch Dynamics in Individual Motor Units

    PubMed Central

    Sanchez, Gabriel N.; Sinha, Supriyo; Liske, Holly; Chen, Xuefeng; Nguyen, Viet; Delp, Scott L.; Schnitzer, Mark J.

    2017-01-01

    SUMMARY Motor units comprise a pre-synaptic motor neuron and multiple post-synaptic muscle fibers. Many movement disorders disrupt motor unit contractile dynamics and the structure of sarcomeres, skeletal muscle’s contractile units. Despite the motor unit’s centrality to neuromuscular physiology, no extant technology can image sarcomere twitch dynamics in live humans. We created a wearable microscope equipped with a microendoscope for minimally invasive observation of sarcomere lengths and contractile dynamics in any major skeletal muscle. By electrically stimulating twitches via the microendoscope and visualizing the sarcomere displacements, we monitored single motor unit contractions in soleus and vastus lateralis muscles of healthy individuals. Control experiments verified that these evoked twitches involved neuromuscular transmission and faithfully reported muscle force generation. In post-stroke patients with spasticity of the biceps brachii, we found involuntary microscopic contractions and sarcomere length abnormalities. The wearable microscope facilitates exploration of many basic and disease-related neuromuscular phenomena never visualized before in live humans. PMID:26687220

  20. Precise Orientation of a Single C60 Molecule on the Tip of a Scanning Probe Microscope

    NASA Astrophysics Data System (ADS)

    Chiutu, C.; Sweetman, A. M.; Lakin, A. J.; Stannard, A.; Jarvis, S.; Kantorovich, L.; Dunn, J. L.; Moriarty, P.

    2012-06-01

    We show that the precise orientation of a C60 molecule which terminates the tip of a scanning probe microscope can be determined with atomic precision from submolecular contrast images of the fullerene cage. A comparison of experimental scanning tunneling microscopy data with images simulated using computationally inexpensive Hückel theory provides a robust method of identifying molecular rotation and tilt at the end of the probe microscope tip. Noncontact atomic force microscopy resolves the atoms of the C60 cage closest to the surface for a range of molecular orientations at tip-sample separations where the molecule-substrate interaction potential is weakly attractive. Measurements of the C60C60 pair potential acquired using a fullerene-terminated tip are in excellent agreement with theoretical predictions based on a pairwise summation of the van der Waals interactions between C atoms in each cage, i.e., the Girifalco potential [L. Girifalco, J. Phys. Chem. 95, 5370 (1991)JPCHAX0022-365410.1021/j100167a002].

  1. In Vivo Imaging of Human Sarcomere Twitch Dynamics in Individual Motor Units.

    PubMed

    Sanchez, Gabriel N; Sinha, Supriyo; Liske, Holly; Chen, Xuefeng; Nguyen, Viet; Delp, Scott L; Schnitzer, Mark J

    2015-12-16

    Motor units comprise a pre-synaptic motor neuron and multiple post-synaptic muscle fibers. Many movement disorders disrupt motor unit contractile dynamics and the structure of sarcomeres, skeletal muscle's contractile units. Despite the motor unit's centrality to neuromuscular physiology, no extant technology can image sarcomere twitch dynamics in live humans. We created a wearable microscope equipped with a microendoscope for minimally invasive observation of sarcomere lengths and contractile dynamics in any major skeletal muscle. By electrically stimulating twitches via the microendoscope and visualizing the sarcomere displacements, we monitored single motor unit contractions in soleus and vastus lateralis muscles of healthy individuals. Control experiments verified that these evoked twitches involved neuromuscular transmission and faithfully reported muscle force generation. In post-stroke patients with spasticity of the biceps brachii, we found involuntary microscopic contractions and sarcomere length abnormalities. The wearable microscope facilitates exploration of many basic and disease-related neuromuscular phenomena never visualized before in live humans. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Feature Tracking for High Speed AFM Imaging of Biopolymers.

    PubMed

    Hartman, Brett; Andersson, Sean B

    2018-03-31

    The scanning speed of atomic force microscopes continues to advance with some current commercial microscopes achieving on the order of one frame per second and at least one reaching 10 frames per second. Despite the success of these instruments, even higher frame rates are needed with scan ranges larger than are currently achievable. Moreover, there is a significant installed base of slower instruments that would benefit from algorithmic approaches to increasing their frame rate without requiring significant hardware modifications. In this paper, we present an experimental demonstration of high speed scanning on an existing, non-high speed instrument, through the use of a feedback-based, feature-tracking algorithm that reduces imaging time by focusing on features of interest to reduce the total imaging area. Experiments on both circular and square gratings, as well as silicon steps and DNA strands show a reduction in imaging time by a factor of 3-12 over raster scanning, depending on the parameters chosen.

  3. A brief discussion about image quality and SEM methods for quantitative fractography of polymer composites.

    PubMed

    Hein, L R O; Campos, K A; Caltabiano, P C R O; Kostov, K G

    2013-01-01

    The methodology for fracture analysis of polymeric composites with scanning electron microscopes (SEM) is still under discussion. Many authors prefer to use sputter coating with a conductive material instead of applying low-voltage (LV) or variable-pressure (VP) methods, which preserves the original surfaces. The present work examines the effects of sputter coating with 25 nm of gold on the topography of carbon-epoxy composites fracture surfaces, using an atomic force microscope. Also, the influence of SEM imaging parameters on fractal measurements is evaluated for the VP-SEM and LV-SEM methods. It was observed that topographic measurements were not significantly affected by the gold coating at tested scale. Moreover, changes on SEM setup leads to nonlinear outcome on texture parameters, such as fractal dimension and entropy values. For VP-SEM or LV-SEM, fractal dimension and entropy values did not present any evident relation with image quality parameters, but the resolution must be optimized with imaging setup, accompanied by charge neutralization. © Wiley Periodicals, Inc.

  4. Mars Environmental Compatibility Assessment (MECA): Identifying the Hazards of the Martian Soil

    NASA Technical Reports Server (NTRS)

    Meloy, T. P.; Hecht, M. H.; Anderson, M. S.; Frant, M. A.; Fuerstenau, S. D.; Keller, H. U.; Markiewicz, W. J.; Marshall, J.; Pike, W. T.; Quate, C. F.

    1999-01-01

    Sometime in the next decade NASA will decide whether to send a human expedition to explore the planet Mars. The Mars Environmental Compatibility Assessment (MECA) has been selected by NASA to evaluate the Martian environment for soil and dust hazards to human exploration. The integrated MECA payload contains three elements: a wet-chemistry laboratory, a microscopy station, and enhancements to a lander robot-arm system incorporating arrays of material patches and an electrometer to identify triboelectric charging during soil excavation. The wet-chemistry laboratory will evaluate samples of Martian soil in water to determine the total dissolved solids, redox potential, pH, and quantify the concentration of many soluble ions using ion-selective electrodes. These electrodes can detect potentially dangerous heavy-metal ions, emitted pathogenic gases, and the soil's corrosive potential. MECA's microscopy station combines optical and atomic-force microscopy with a robot-arm camera to provide imaging over nine orders of magnitude, from meters to nanometers. Soil particle properties including size, shape, color, hardness, adhesive potential (electrostatic and magnetic), will be determined on the microscope stage using an ar-ray of sample receptacles and collection substrates, and an abrasion tool,. The simple, rugged atomic-force microscope will image in the submicron size range and has the capability of performing a particle-by-particle analysis of the dust and soil. Although selected by NASA's Human Exploration and Development of Space Enterprise, the MECA instrument suite also has the capability to address basic geology, paleoclimate, and exobiology issues. To understand both contemporaneous and ancient processes on Mars, the mineralogical, petrological, and reactivity of Martian surface materials should be constrained: the NMCA experiment will shed light on these quantities through its combination of chemistry and microscopy. On Earth, the earliest forms of life are preserved as microfossils. The atomic-force microscope will have the required resolution to image down to the scale of terrestrial microfossils and beyond.

  5. Morphology-controllable of Sn doped ZnO nanorods prepared by spray pyrolysis for transparent electrode application

    NASA Astrophysics Data System (ADS)

    Hameed, M. Shahul; Princice, J. Joseph; Babu, N. Ramesh; Zahirullah, S. Syed; Deshmukh, Sampat G.; Arunachalam, A.

    2018-05-01

    Transparent conductive Sn doped ZnO nanorods have been deposited at various doping level by spray pyrolysis technique on glass substrate. The structural, surface morphological and optical properties of these films have been investigated with the help of X-ray diffraction (XRD), scanning electron microscope (SEM), atomic force microscope (AFM) and UV-Vis spectrophotometer respectively. XRD patterns revealed a successful high quality growth of single crystal ZnO nanorods with hexagonal wurtzite structure having (002) preferred orientation. The scanning electron microscope (SEM) image of the prepared films exposed the uniform distribution of Sn doped ZnO nanorod shaped grains. All these films were highly transparent in the visible region with average transmittance of 90%.

  6. A control approach to cross-coupling compensation of piezotube scanners in tapping-mode atomic force microscope imaging.

    PubMed

    Wu, Ying; Shi, Jian; Su, Chanmin; Zou, Qingze

    2009-04-01

    In this article, an approach based on the recently developed inversion-based iterative control (IIC) to cancel the cross-axis coupling effect of piezoelectric tube scanners (piezoscanners) in tapping-mode atomic force microscope (AFM) imaging is proposed. Cross-axis coupling effect generally exists in piezoscanners used for three-dimensional (x-y-z axes) nanopositioning in applications such as AFM, where the vertical z-axis movement can be generated by the lateral x-y axes scanning. Such x/y-to-z cross-coupling becomes pronounced when the scanning is at large range and/or at high speed. In AFM applications, the coupling-caused position errors, when large, can generate various adverse effects, including large imaging and topography distortions, and damage of the cantilever probe and/or the sample. This paper utilizes the IIC technique to obtain the control input to precisely track the coupling-caused x/y-to-z displacement (with sign-flipped). Then the obtained input is augmented as a feedforward control to the existing feedback control in tapping-mode imaging, resulting in the cancellation of the coupling effect. The proposed approach is illustrated through two exemplary applications in industry, the pole-tip recession examination, and the nanoasperity measurement on hard-disk drive. Experimental results show that the x/y-to-z coupling effect in large-range (20 and 45 microm) tapping-mode imaging at both low to high scan rates (2, 12.2 to 24.4 Hz) can be effectively removed.

  7. The Relationship Between Microscopic Grain Surface Structure and the Dynamic Capillary-Driven Advance of Water Films over Individual Dry Natural Sand Grains

    NASA Astrophysics Data System (ADS)

    Kibbey, T. C. G.; Adegbule, A.; Yan, S.

    2017-12-01

    The movement of nonvolatile solutes in unsaturated porous media at low water contents depends on transport in surface-associated water films. The focus of the work described here was on studying solute movement in water films advancing by capillary forces over initially-dry grain surfaces, to understand how microscopic surface roughness features influence the initial velocity of water film advance. For this work, water containing a non-adsorbing conservative tracer was used to track the movement of advancing water films. A stainless steel capillary tube connected to an external reservoir a fixed distance below the grain surface was used to transmit solution to the grain surface under negative pressure (positive capillary pressure), consistent with conditions that might be expected in the unsaturated zone. The small internal diameter of the capillary prevents solution from draining out of the capillary back into the reservoir. When the capillary is contacted with a grain surface, capillary forces that result from contact between the fluid and the rough grain surface cause water films to wick across the grain surface. Multiple experiments were conducted on the same grain, rotating the grain and varying the capillary contact point around the circumference of the grain. Imaging was conducted at fixed intervals using an automated Extended Depth of Field (EDF) imaging system, and images were analyzed to determine initial velocity. Grain surfaces were then characterized through scanning electron microscope (SEM) imaging, using a hybrid stereoscopic reconstruction method designed to extract maximum detail in creating elevation maps of geologic surfaces from tilted pairs of SEM images. The resulting elevation maps were used to relate surface roughness profiles around the grain with initial velocities. Results suggest that velocity varies significant with contact point around an individual grain, and correlates quantitatively with the local grain surface structure. Preliminary simulation results will also be discussed.

  8. Development of first ever scanning probe microscopy capabilities for plutonium

    NASA Astrophysics Data System (ADS)

    Beaux, Miles F.; Cordoba, Miguel Santiago; Zocco, Adam T.; Vodnik, Douglas R.; Ramos, Michael; Richmond, Scott; Moore, David P.; Venhaus, Thomas J.; Joyce, Stephen A.; Usov, Igor O.

    2017-04-01

    Scanning probe microscopy capabilities have been developed for plutonium and its derivative compounds. Specifically, a scanning tunneling microscope and an atomic force microscope housed in an ultra-high vacuum system and an inert atmosphere glove box, respectively, were prepared for the introduction of small non-dispersible δ-Pu coupons. Experimental details, procedures, and preliminary imaging of δ-Pu coupons are presented to demonstrate the functionality of these new capabilities. These first of a kind capabilities for plutonium represent a significant step forward in the ability to characterize and understand plutonium surfaces with high spatial resolution.

  9. Development of first ever scanning probe microscopy capabilities for plutonium

    DOE PAGES

    Beaux, Miles F.; Cordoba, Miguel Santiago; Zocco, Adam T.; ...

    2017-04-01

    Scanning probe microscopy capabilities have been developed for plutonium and its derivative compounds. Specifically, a scanning tunneling microscope and an atomic force microscope housed in an ultra-high vacuum system and an inert atmosphere glove box, respectively, were prepared for the introduction of small non-dispersible δ-Pu coupons. Experimental details, procedures, and preliminary imaging of δ-Pu coupons are presented to demonstrate the functionality of these new capabilities. In conclusion, these first of a kind capabilities for plutonium represent a significant step forward in the ability to characterize and understand plutonium surfaces with high spatial resolution.

  10. Development of liquid-environment frequency modulation atomic force microscope with low noise deflection sensor for cantilevers of various dimensions

    NASA Astrophysics Data System (ADS)

    Fukuma, Takeshi; Jarvis, Suzanne P.

    2006-04-01

    We have developed a liquid-environment frequency modulation atomic force microscope (FM-AFM) with a low noise deflection sensor for a wide range of cantilevers with different dimensions. A simple yet accurate equation describing the theoretical limit of the optical beam deflection method in air and liquid is presented. Based on the equation, we have designed a low noise deflection sensor. Replaceable microscope objective lenses are utilized for providing a high magnification optical view (resolution: <3μm) as well as for focusing a laser beam (laser spot size: ˜10μm). Even for a broad range of cantilevers with lengths from 35to125μm, the sensor provides deflection noise densities of less than 11fm/√Hz in air and 16fm/√Hz in water. In particular, a cantilever with a length of 50μm gives the minimum deflection noise density of 5.7fm/√Hz in air and 7.3fm/√Hz in water. True atomic resolution of the developed FM-AFM is demonstrated by imaging mica in water.

  11. Cometary dust at the nanometre scale - the MIDAS view after perihelion

    NASA Astrophysics Data System (ADS)

    Bentley, M. S.; Torkar, K.; Jeszenszky, H.; Romstedt, J.; Schmied, R.; Mannel, T.

    2015-10-01

    The MIDAS instrument on-board the Rosetta orbiter [1] is a unique combination of a dust collection and handling system and a high resolution Atomic Force Microscope (AFM). By building three-dimensional images of the dust particle topography with nano- to micrometre resolution, MIDAS addresses a range of fundamental questions in Solar System and cometary sciences. The greatest number of particles is expected to be collected around perihelion and the initial results of imaging these will be presented.

  12. High-speed broadband nanomechanical property quantification and imaging of life science materials using atomic force microscope

    NASA Astrophysics Data System (ADS)

    Ren, Juan

    Nanoscale morphological characterization and mechanical properties quantification of soft and biological materials play an important role in areas ranging from nano-composite material synthesis and characterization, cellular mechanics to drug design. Frontier studies in these areas demand the coordination between nanoscale morphological evolution and mechanical behavior variations through simultaneous measurement of these two aspects of properties. Atomic force microscope (AFM) is very promising in achieving such simultaneous measurements at high-speed and broadband owing to its unique capability in applying force stimuli and then, measuring the response at specific locations in a physiologically friendly environment with pico-newton force and nanometer spatial resolution. Challenges, however, arise as current AFM systems are unable to account for the complex and coupled dynamics of the measurement system and probe-sample interaction during high-speed imaging and broadband measurements. In this dissertation, the creation of a set of dynamics and control tools to probe-based high-speed imaging and rapid broadband nanomechanical spectroscopy of soft and biological materials are presented. Firstly, advanced control-based approaches are presented to improve the imaging performance of AFM imaging both in air and in liquid. An adaptive contact mode (ACM) imaging scheme is proposed to replace the traditional contact mode (CM) imaging by addressing the major concerns in both the speed and the force exerted to the sample. In this work, the image distortion caused by the topography tracking error is accounted for in the topography quantification and the quantified sample topography is utilized in a gradient-based optimization method to adjust the cantilever deflection set-point for each scanline closely around the minimal level needed for maintaining a stable probe-sample contact, and a data-driven iterative feedforward control that utilizes a prediction of the next-line tracking is implemented to enhance the sample topography tracking. An adaptive multi-loop mode (AMLM) imaging approach is proposed to substantially increase the imaging speed of tapping mode (TM) while preserving the advantages of TM over CM by integrating an inner-outer feedback control loop to regulate the TM-deflection on top of the conventional TM-amplitude feedback control to improve the sample topography tracking. Experiments demonstrated that the proposed ACM and AMLM are capable of increasing the imaging speed by at least 20 times for conventional contact and tapping mode imaging, respectively, with no loss of imaging quality and well controlled tip-sample interaction force. In addition, an adaptive mode imaging for in-liquid topography quantification on live cells is presented. The experiment results demonstrated that instead of keeping constant scanning speed, the proposed speed optimization scheme is able to increase the imaging speed on live human prostate cancer cells by at least eight-fold with no loss of imaging quality. Secondly, control based approaches to accurate nanomechanical quantification on soft materials for both broadband and in-liquid force-curve measurements are proposed to address the adverse effects caused by the system coupling dynamics and the cantilever acceleration, which were not compensated for by the conventional AFM measurement approach. The proposed nanomechanical measurement approaches are demonstrated through experiments to measure the viscoelastic properties of different polymer samples in air and live human cells in liquid to study the variation of rate-dependent elastic modulus of cervix cancer cell during the epithelial-mesenchymal transition process.

  13. Physical-mechanical image of the cell surface on the base of AFM data in contact mode

    NASA Astrophysics Data System (ADS)

    Starodubtseva, M. N.; Starodubtsev, I. E.; Yegorenkov, N. I.; Kuzhel, N. S.; Konstantinova, E. E.; Chizhik, S. A.

    2017-10-01

    Physical and mechanical properties of the cell surface are well-known markers of a cell state. The complex of the parameters characterizing the cell surface properties, such as the elastic modulus (E), the parameters of adhesive (Fa), and friction (Ff) forces can be measured using atomic force microscope (AFM) in a contact mode and form namely the physical-mechanical image of the cell surface that is a fundamental element of the cell mechanical phenotype. The paper aims at forming the physical-mechanical images of the surface of two types of glutaraldehyde-fixed cancerous cells (human epithelial cells of larynx carcinoma, HEp-2c cells, and breast adenocarcinoma, MCF-7 cells) based on the data obtained by AFM in air and revealing the basic difference between them. The average values of friction, elastic and adhesive forces, and the roughness of lateral force maps, as well as dependence of the fractal dimension of lateral force maps on Z-scale factor have been studied. We have revealed that the response of microscale areas of the HEp-2c cell surface having numerous microvilli to external mechanical forces is less expressed and more homogeneous in comparison with the response of MCF-7 cell surface.

  14. A study on high NA and evanescent imaging with polarized illumination

    NASA Astrophysics Data System (ADS)

    Yang, Seung-Hune

    Simulation techniques are developed for high NA polarized microscopy with Babinet's principle, partial coherence and vector diffraction for non-periodic geometries. A mathematical model for the Babinet approach is developed and interpreted. Simulation results of the Babinet's principle approach are compared with those of Rigorous Coupled Wave Theory (RCWT) for periodic structures to investigate the accuracy of this approach and its limitations. A microscope system using a special solid immersion lens (SIL) is introduced to image Blu-Ray (BD) optical disc samples without removing the protective cover layer. Aberration caused by the cover layer is minimized with a truncated SIL. Sub-surface imaging simulation is achieved by RCWT, partial coherence, vector diffraction and Babinet's Principle. Simulated results are compared with experimental images and atomic force microscopy (AFM) measurement. A technique for obtaining native and induced using a significant amount of evanescent energy is described for a solid immersion lens (SIL) microscope. Characteristics of native and induced polarization images for different object structures and materials are studied in detail. Experiments are conducted with a NA = 1.48 at lambda = 550nm microscope. Near-field images are simulated and analyzed with an RCWT approach. Contrast curve versus object spatial frequency calculations are compared with experimental measurements. Dependencies of contrast versus source polarization angles and air gap for native and induced polarization image profiles are evaluated. By using the relationship between induced polarization and topographical structure, an induced polarization image of an alternating phase shift mask (PSM) is converted into a topographical image, which shows very good agreement with AFM measurement. Images of other material structures include a dielectric grating, chrome-on-glass grating, silicon CPU structure, BD-R and BD-ROM.

  15. Ultrastructural imaging and molecular modeling of live bacteria using soft x-ray contact microscopy with nanoseconds laser-plasma radiation

    NASA Astrophysics Data System (ADS)

    Kado, Masataka; Richardson, Martin C.; Gaebel, Kai; Torres, David S.; Rajyaguru, Jayshree; Muszynski, Michael J.

    1995-09-01

    X-ray images of the various live bacteria, such as Staphylococcus and Streptococcus, and micromolecule such as chromosomal DNA from Escherichis coli, and Lipopolysacchride from Burkholderia cepacia, are obtained with soft x-ray contact microscopy. A compact tabletop type glass laser system is used to produce x-rays from Al, Si, and Au targets. The PMMA photoresists are used to record x-ray images. An AFM (atomic force microscope) is used to reproduce the x-ray images from the developed photoresists. The performance of the 50nm spatial resolutions are achieved and images are able to be discussed on the biological view.

  16. Stiffness nanotomography of human epithelial cancer cells

    NASA Astrophysics Data System (ADS)

    Staunton, Jack R.; Doss, Bryant L.; Gilbert, C. Michael; Kasas, Sandor; Ros, Robert

    2012-02-01

    The mechanical stiffness of individual cells is important in both cancer initiation and metastasis. We present atomic force microscopy (AFM) based nanoindentation experiments on various human mammary and esophagus cell lines covering the spectrum from normal immortalized cells to highly metastatic ones. The combination of an AFM with a confocal fluorescence lifetime imaging microscope (FLIM) in conjunction with the ability to move the sample and objective independently allow for precise alignment of AFM probe and laser focus with an accuracy down to a few nanometers. This enables us to correlate the mechanical properties with the point of indentation in the FLIM image. We are using force-volume measurements as well as force indentation curves on distinct points on the cells to compare the elastic moduli of the nuclei, nucleoli, and the cytoplasm, and how they vary within and between individual cells and cell lines. Further, a detailed analysis of the force-indentation curves allows study of the cells' mechanical properties at different indentation depths and to generate 3D elasticity maps.

  17. Atomic force microscopy and spectroscopy to probe single membrane proteins in lipid bilayers.

    PubMed

    Sapra, K Tanuj

    2013-01-01

    The atomic force microscope (AFM) has opened vast avenues hitherto inaccessible to the biological scientist. The high temporal (millisecond) and spatial (nanometer) resolutions of the AFM are suited for studying many biological processes in their native conditions. The AFM cantilever stylus is aptly termed as a "lab on a tip" owing to its versatility as an imaging tool as well as a handle to manipulate single bonds and proteins. Recent examples assert that the AFM can be used to study the mechanical properties and monitor processes of single proteins and single cells, thus affording insight into important mechanistic details. This chapter specifically focuses on practical and analytical protocols of single-molecule AFM methodologies related to high-resolution imaging and single-molecule force spectroscopy of membrane proteins. Both these techniques are operator oriented, and require specialized working knowledge of the instrument, theoretical, and practical skills.

  18. Rules of Attraction

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This image composite shows two of the Mars Exploration Rover Opportunity's magnets, the 'capture' magnet (upper portion of left panel) and the 'filter' magnet (lower portion of left panel). Scientists use these tools to study the origins of martian dust in the atmosphere. The left panel was taken by the rover's panoramic camera. The four panels to the right, taken by the microscopic imager, show close-up views of the two magnets. The bull's-eye appearance of the capture magnet is a result of alternating magnetic fields, which are used to increase overall magnetic force. The filter magnet lacks these alternating fields and consequently produces a weaker magnetic force. This weaker force selectively attracts only strong magnetic particles.

    Scientists were surprised by the large dark particles on the magnets because airborne particles are smaller in size. They theorize that these spots might be aggregates of small particles that clump together in a magnetic field.

  19. Design and construction of a novel tribometer with online topography and wear measurement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Korres, Spyridon; Dienwiebel, Martin

    2010-06-15

    We present a novel experimental platform that links topographical and material changes with the friction and wear behavior of oil-lubricated metal surfaces. This concept combines state-of-the-art methods for the analysis of the surface topography on the micro- and nanoscale with the online measurement of wear. At the same time, it allows for frictional and lateral force detection. Information on the topography of one of the two surfaces is gathered in situ with a three-dimensional (3D) holography microscope at a maximum frequency of 15 frames/s and higher resolution images are provided at defined time intervals by an atomic force microscope. Themore » wear measurement is conducted online by means of radio nuclide technique. The quantitative measurement of the lateral and frictional forces is conducted with a custom-built 3D force sensor. The surfaces can be lubricated with an optically transparent oil or water. The stability and precision of the setup have been tested in a model experiment. The results show that the exact same position can be relocated and examined after each load cycle. Wear and topography measurements were performed with a radioactive labeled iron pin sliding against an iron plate.« less

  20. Beyond topography - enhanced imaging of cometary dust with the MIDAS AFM

    NASA Astrophysics Data System (ADS)

    Bentley, M. S.; Torkar, K.; Jeszenszky, H.; Romstedt, J.

    2013-09-01

    The MIDAS atomic force microscope (AFM) onboard the Rosetta spacecraft is primarily designed to return the 3D shape and structure of cometary dust particles collected at comet 67P/Churyumov-Gerasimenko [1]. Commercial AFMs have, however, been further developed to measure many other sample properties. The possibilities to make such measurements with MIDAS are explored here.

  1. Magnetic Force Microscopy Investigation of Magnetic Domains in Nd2Fe14B

    NASA Astrophysics Data System (ADS)

    Talari, Mahesh Kumar; Markandeyulu, G.; Rao, K. Prasad

    2010-07-01

    Remenance and coercivity in Nd2Fe14B materials are strongly dependent on the microstructural aspects like phases morphology and grain size. The coercivity (Hc) of a magnetic material varies inversely with the grain size (D) and there is a critical size below which Hc∝D6. Domain wall pinning by grain boundaries and foreign phases is the important mechanism in explaining the improvement in coercivity and remenance. Nd2Fe14B intermetallic compound with stochiometric composition was prepared from pure elements (Nd -99.5%, Fe—99.95%, B -99.99%) by arc melting in argon atmosphere. Magnetic Force Microscope (MFM) gives high-resolution magnetic domain structural information of ferromagnetic samples. DI-3100 Scanning Probe Microscope with MESP probes was used For MFM characterization of the samples. Magnetic domains observed in cast ingots were very long (up to 40 μm were observed) and approximately 1-5 μm wide due to high anisotropy of the compounds. Magnetic domains have displayed different image contrast and morphologies at different locations of the samples. The domain morphologies and image contrast obtained in this analysis were explained in this paper.

  2. Correlation between resistance-change effect in transition-metal oxides and secondary-electron contrast of scanning electron microscope images

    NASA Astrophysics Data System (ADS)

    Kinoshita, K.; Yoda, T.; Kishida, S.

    2011-09-01

    Conductive atomic-force microscopy (C-AFM) writing is attracting attention as a technique for clarifying the switching mechanism of resistive random-access memory by providing a wide area filled with filaments, which can be regarded as one filament with large radius. The writing area on a nickel-oxide (NiO) film formed by conductive atomic-force microscopy was observed by scanning electron microscope, and a correlation between the contrast in a secondary-electron image (SEI) and the resistance written by C-AFM was revealed. In addition, the dependence of the SEI contrast on the beam accelerating voltage (Vaccel) suggests that the resistance-change effect occurs near the surface of the NiO film. As for the effects of electron irradiation and vacuum annealing on the C-AFM writing area, it was shown that the resistance-change effect is caused by exchange of oxygen with the atmosphere at the surface of the NiO film. This result suggests that the low-resistance and high-resistance areas are, respectively, p-type Ni1+δO (δ < 0) and insulating (stoichiometric) or n-type Ni1+δO (δ ≥ 0).

  3. Simultaneous noncontact AFM and STM of Ag:Si(111)-(3×3)R30∘

    NASA Astrophysics Data System (ADS)

    Sweetman, Adam; Stannard, Andrew; Sugimoto, Yoshiaki; Abe, Masayuki; Morita, Seizo; Moriarty, Philip

    2013-02-01

    The Ag:Si(111)-(3×3)R30∘ surface structure has attracted considerable debate concerning interpretation of scanning tunneling microscope (STM) and noncontact atomic force microscope (NC-AFM) images. In particular, the accepted interpretation of atomic resolution images in NC-AFM has been questioned by theoretical and STM studies. In this paper, we use combined NC-AFM and STM to conclusively show that the inequivalent trimer (IET) configuration best describes the surface ground state. Thermal-averaging effects result in a honeycomb-chained-trimer (HCT) appearance at room temperature, in contrast to studies suggesting that the IET configuration remains stable at higher temperatures [Zhang, Gustafsson, and Johansson, Phys. Rev. BPRBMDO1098-012110.1103/PhysRevB.74.201304 74, 201304(R) (2006) and J. Phys.: Conf. Ser.1742-658810.1088/1742-6596/61/1/264 61, 1336 (2007)]. We also comment on results obtained at an intermediate temperature that suggest an intriguing difference between the imaging mechanisms of NC-AFM and STM on structurally fluctuating samples.

  4. On-axis programmable microscope using liquid crystal spatial light modulator

    NASA Astrophysics Data System (ADS)

    García-Martínez, Pascuala; Martínez, José Luís.; Moreno, Ignacio

    2017-06-01

    Spatial light modulators (SLM) are currently used in many applications in optical microscopy and imaging. One of the most promising methods is the use of liquid crystal displays (LCD) as programmable phase diffractive optical elements (DOE) placed in the Fourier plane giving access to the spatial frequencies which can be phased shifted individually, allowing to emulate a wealth of contrast enhancing methods for both amplitude and phase samples. We use phase and polarization modulation of LCD to implement an on-axis microscope optical system. The LCD used are Hamamatsu liquid crystal on silicon (LCOS) SLM free of flicker, thus showing a full profit of the SLM space bandwidth, as opposed to optical systems in the literature forced to work off-axis due to the strong zero-order component. Taking benefits of the phase modulation of the LCOS we have implemented different microscopic imaging operations, such as high-pass and low-pass filtering in parallel using programmable blazed gratings. Moreover, we are able to control polarization modulation to display two orthogonal linear state of polarization images than can be subtracted or added by changing the period of the blazed grating. In that sense, Differential Interference Contrast (DIC) microscopy can be easily done by generating two images exploiting the polarization splitting properties when a blazed grating is displayed in the SLM. Biological microscopy samples are also used.

  5. Direct manipulation of metallic nanosheets by shear force microscopy.

    PubMed

    Bi, Z; Cai, W; Wang, Y; Shang, G

    2018-05-15

    Micro/nanomanipulation is a rapidly growing technology and holds promising applications in various fields, including photonic/electronic devices, chemical/biosensors etc. In this work, we present that shear force microscopy (ShFM) can be exploited to manipulate metallic nanosheets besides imaging. The manipulation is realized via controlling the shear force sensor probe position and shear force magnitude based on our homemade ShFM system under an optical microscopy for in situ observation. The main feature of the ShFM system is usage of a piezoelectric bimorph sensor, which has the ability of self-excitation and detection. Moreover, the shear force magnitude as a function of the spring constant of the sensor and setpoint is obtained, which indicates that operation modes can be switched between imaging and manipulation through designing the spring constant before experiment and changing the setpoint during manipulation process, respectively. We believe that this alternative manipulation technique could be used to assemble other nanostructures with different shapes, sizes and compositions for new properties and wider applications. © 2018 The Authors Journal of Microscopy © 2018 Royal Microscopical Society.

  6. Atomic Force Microscope Operation

    NASA Technical Reports Server (NTRS)

    2008-01-01

    [figure removed for brevity, see original site] Click on image for animation (large file)

    This animation is a scientific illustration of the operation of NASA's Phoenix Mars Lander's Atomic Force Microscope, or AFM. The AFM is part of Phoenix's Microscopy, Electrochemistry, and Conductivity Analyzer, or MECA.

    The AFM is used to image the smallest Martian particles using a very sharp tip at the end of one of eight beams.

    The beam of the AFM is set into vibration and brought up to the surface of a micromachined silicon substrate. The substrate has etched in it a series of pits, 5 micrometers deep, designed to hold the Martian dust particles.

    The microscope then maps the shape of particles in three dimensions by scanning them with the tip.

    At the end of the animation is a 3D representation of the AFM image of a particle that was part of a sample informally called 'Sorceress.' The sample was delivered to the AFM on the 38th Martian day, or sol, of the mission (July 2, 2008).

    The image shows four round pits, only 5 microns in depth, that were micromachined into the silicon substrate.

    A Martian particle only one micrometer, or one millionth of a meter, across is held in the upper left pit.

    The rounded particle shown at the highest magnification ever seen from another world is a particle of the dust that cloaks Mars. Such dust particles color the Martian sky pink, feed storms that regularly envelop the planet and produce Mars' distinctive red soil.

    The AFM was developed by a Swiss-led consortium, with Imperial College London producing the silicon substrate that holds sampled particles.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  7. Demodulation signal processing in multiphoton imaging

    NASA Astrophysics Data System (ADS)

    Fisher, Walter G.; Wachter, Eric A.; Piston, David W.

    2002-06-01

    Multiphoton laser scanning microscopy offers numerous advantages, but sensitivity can be seriously affected by contamination from ambient room light. Typically, this forces experiments to be performed in an absolutely dark room. Since mode-locked lasers are used to generate detectable signals, signal-processing can be used to avoid such problems by taking advantage of the pulsed characteristics of such lasers. Demodulation of the fluorescence signal generated at the mode-locked frequency can result in significant reduction of interference from ambient noise sources. Such demodulation can be readily adapted to existing microscopes by inserting appropriate processor circuitry between the detector and data collection system, yielding a more robust microscope.

  8. Compressibility of porous TiO2 nanoparticle coating on paperboard

    PubMed Central

    2013-01-01

    Compressibility of liquid flame spray-deposited porous TiO2 nanoparticle coating was studied on paperboard samples using a traditional calendering technique in which the paperboard is compressed between a metal and polymer roll. Surface superhydrophobicity is lost due to a smoothening effect when the number of successive calendering cycles is increased. Field emission scanning electron microscope surface and cross‒sectional images support the atomic force microscope roughness analysis that shows a significant compressibility of the deposited TiO2 nanoparticle coating with decrease in the surface roughness and nanoscale porosity under external pressure. PACS 61.46.-w; 68.08.Bc; 81.07.-b PMID:24160373

  9. Comprehensive modelling and simulation of cylindrical nanoparticles manipulation by using a virtual reality environment.

    PubMed

    Korayem, Moharam Habibnejad; Hoshiar, Ali Kafash; Ghofrani, Maedeh

    2017-08-01

    With the expansion of nanotechnology, robots based on atomic force microscope (AFM) have been widely used as effective tools for displacing nanoparticles and constructing nanostructures. One of the most limiting factors in AFM-based manipulation procedures is the inability of simultaneously observing the controlled pushing and displacing of nanoparticles while performing the operation. To deal with this limitation, a virtual reality environment has been used in this paper for observing the manipulation operation. In the simulations performed in this paper, first, the images acquired by the atomic force microscope have been processed and the positions and dimensions of nanoparticles have been determined. Then, by dynamically modelling the transfer of nanoparticles and simulating the critical force-time diagrams, a controlled displacement of nanoparticles has been accomplished. The simulations have been further developed for the use of rectangular, V-shape and dagger-shape cantilevers. The established virtual reality environment has made it possible to simulate the manipulation of biological particles in a liquid medium. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Combined Atomic Force Microscope-Based Topographical Imaging and Nanometer Scale Resolved Proximal Probe Thermal Desorption/Electrospray Ionization-Mass Spectrometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ovchinnikova, Olga S; Nikiforov, Maxim; Bradshaw, James A

    2011-01-01

    Nanometer scale proximal probe thermal desorption/electrospray ionization mass spectrometry (TD/ESI-MS) was demonstrated for molecular surface sampling of caffeine from a thin film using a 30 nm diameter nano-thermal analysis (nano-TA) probe tip in an atomic force microscope (AFM) coupled via a vapor transfer line and ESI interface to a MS detection platform. Using a probe temperature of 350 C and a spot sampling time of 30 s, conical desorption craters 250 nm in diameter and 100 nm deep were created as shown through subsequent topographical imaging of the surface within the same system. Automated sampling of a 5 x 2more » array of spots, with 2 m spacing between spots, and real time selective detection of the desorbed caffeine using tandem mass spectrometry was also demonstrated. Estimated from the crater volume (~2x106 nm3), only about 10 amol (2 fg) of caffeine was liberated from each thermal desorption crater in the thin film. These results illustrate a relatively simple experimental setup and means to acquire in automated fashion sub-micrometer scale spatial sampling resolution and mass spectral detection of materials amenable to TD. The ability to achieve MS-based chemical imaging with 250 nm scale spatial resolution with this system is anticipated.« less

  11. Comparative study of image contrast in scanning electron microscope and helium ion microscope.

    PubMed

    O'Connell, R; Chen, Y; Zhang, H; Zhou, Y; Fox, D; Maguire, P; Wang, J J; Rodenburg, C

    2017-12-01

    Images of Ga + -implanted amorphous silicon layers in a 110 n-type silicon substrate have been collected by a range of detectors in a scanning electron microscope and a helium ion microscope. The effects of the implantation dose and imaging parameters (beam energy, dwell time, etc.) on the image contrast were investigated. We demonstrate a similar relationship for both the helium ion microscope Everhart-Thornley and scanning electron microscope Inlens detectors between the contrast of the images and the Ga + density and imaging parameters. These results also show that dynamic charging effects have a significant impact on the quantification of the helium ion microscope and scanning electron microscope contrast. © 2017 The Authors Journal of Microscopy © 2017 Royal Microscopical Society.

  12. Imaging initial formation processes of nanobubbles at the graphite-water interface through high-speed atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Liao, Hsien-Shun; Yang, Chih-Wen; Ko, Hsien-Chen; Hwu, En-Te; Hwang, Ing-Shouh

    2018-03-01

    The initial formation process of nanobubbles at solid-water interfaces remains unclear because of the limitations of current imaging techniques. To directly observe the formation process, an astigmatic high-speed atomic force microscope (AFM) was modified to enable imaging in the liquid environment. By using a customized cantilever holder, the resonance of small cantilevers was effectively enhanced in water. The proposed high-speed imaging technique yielded highly dynamic quasi-two-dimensional (2D) gas structures (thickness: 20-30 nm) initially at the graphite-water interface. The 2D structures were laterally mobile mainly within certain areas, but occasionally a gas structure might extensively migrate and settle in a new area. The 2D structures were often confined by substrate step edges in one lateral dimension. Eventually, all quasi-2D gas structures were transformed into cap-shaped nanobubbles of higher heights and reduced lateral dimensions. These nanobubbles were immobile and remained stable under continuous AFM imaging. This study demonstrated that nanobubbles could be stably imaged at a scan rate of 100 lines per second (640 μm/s).

  13. Microscopic image processing systems for measuring nonuniform film thickness profiles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, A.H.; Plawsky, J.L.; DasGupta, S.

    1994-01-01

    In very thin liquid films. transport processes are controlled by the temperature and the interfacial intermolecular force field which is a function of the film thickness profile and interfacial properties. The film thickness profile and interfacial properties can be measured most efficiently using a microscopic image processing system. IPS, to record the intensity pattern of the reflected light from the film. There are two types of IPS: an image analyzing interferometer (IAI) and/or an image scanning ellipsometer (ISE). The ISE is a novel technique to measure the two dimensional thickness profile of a nonuniform, thin film, from 1 nm upmore » to several {mu}m, in a steady state as well as in a transient state. It is a full field imaging technique which can study every point on the surface simultaneously with high spatial resolution and thickness sensitivity, i.e., it can measure and map the 2-D film thickness profile. Using the ISE, the transient thickness profile of a draining thin liquid film was measured and modeled. The interfacial conditions were determined in situ by measuring the Hamaker constant. The ISE and IAI systems are compared.« less

  14. Localized Surface Plasmon Resonance of Metal Nanodot Nanowire Arrays Studied by Far-Field and Near-Field Optical

    DTIC Science & Technology

    2007-09-05

    microscope, nanoholes or nanogrooves can be created on the film. After coating a thin Au film by electron beam evaporation and soaking the sample in acetone...SNOM. III. Results and Discussion: (a) LSPR of Au Nanodots With the use of an indentation force of 3.8 μN, a nanohole array was generated on the...images of (a) a nanohole array on PMMA and (b) the corresponding Au nanodot array after lift-off. SEM images of (c) a Au nanodot pattern “NANO” on

  15. Mechanical characterization of metallic nanowires by using a customized atomic microscope

    NASA Astrophysics Data System (ADS)

    Celik, Emrah

    A new experimental method to characterize the mechanical properties of metallic nanowires is introduced. An accurate and fast mechanical characterization of nanowires requires simultaneous imaging and testing of nanowires. However, there exists no practical experimental procedure in the literature that provides a quantitative mechanical analysis and imaging of the nanowire specimens during mechanical testing. In this study, a customized atomic force microscope (AFM) is placed inside a scanning electron microscope (SEM) in order to locate the position of the nanowires. The tip of the atomic force microscope cantilever is utilized to bend and break the nanowires. The nanowires are prepared by electroplating of nickel ions into the nanoscale pores of the alumina membranes. Force versus bending displacement responses of these nanowires are measured experimentally and then compared against those of the finite element analysis and peridynamic simulations to extract their mechanical properties through an inverse approach. The average elastic modulus of nickel nanowires, which are extracted using finite element analysis and peridynamic simulations, varies between 220 GPa and 225 GPa. The elastic modulus of bulk nickel published in the literature is comparable to that of nickel nanowires. This observation agrees well with the previous findings on nanowires stating that the elastic modulus of nanowires with diameters over 100nm is similar to that of bulk counterparts. The average yield stress of nickel nanowires, which are extracted using finite element analysis and peridynamic simulations, is found to be between 3.6 GPa to 4.1 GPa. The average value of yield stress of nickel nanowires with 250nm diameter is significantly higher than that of bulk nickel. Higher yield stress of nickel nanowires observed in this study can be explained by the lower defect density of nickel nanowires when compared to their bulk counterparts. Deviation in the extracted mechanical properties is investigated by analyzing the major sources of uncertainty in the experimental procedure. The effects of the nanowire orientation, the loading position and the nanowire diameter on the mechanical test results are quantified using ANSYS simulations. Among all of these three sources of uncertainty investigated, the nanowire diameter has been found to have the most significant effect on the extracted mechanical properties.

  16. [Coupling AFM fluid imaging with micro-flocculation filtration process for the technological optimization].

    PubMed

    Zheng, Bei; Ge, Xiao-peng; Yu, Zhi-yong; Yuan, Sheng-guang; Zhang, Wen-jing; Sun, Jing-fang

    2012-08-01

    Atomic force microscope (AFM) fluid imaging was applied to the study of micro-flocculation filtration process and the optimization of micro-flocculation time and the agitation intensity of G values. It can be concluded that AFM fluid imaging proves to be a promising tool in the observation and characterization of floc morphology and the dynamic coagulation processes under aqueous environmental conditions. Through the use of AFM fluid imaging technique, optimized conditions for micro-flocculation time of 2 min and the agitation intensity (G value) of 100 s(-1) were obtained in the treatment of dye-printing industrial tailing wastewater by the micro-flocculation filtration process with a good performance.

  17. Flux lattice imaging of a patterned niobium thin film

    NASA Astrophysics Data System (ADS)

    Roseman, M.; Grütter, P.; Badía, A.; Metlushko, V.

    2001-06-01

    Using our cryogenic magnetic force microscope, we have investigated a superconducting Nb thin film, 100 nm in thickness with Tc˜6.5 K. The film is patterned with a square array (1 μm×1 μm) of antidots, which serve as artificial pinning centers for magnetic flux. We have observed flux lattice matching as a function of applied magnetic field and temperature, for field strengths up to the third matching field, with evidence of flux dragging by the tip around the antidots. Force gradient distance curves acquired at temperatures about Tc clearly demonstrate an observable Meissner force between tip and sample, and allow for an estimation of the magnetic screening penetration depth.

  18. 1.5 nm fabrication of test patterns for characterization of metrological systems

    DOE PAGES

    Babin, Sergey; Calafiore, Giuseppe; Peroz, Christophe; ...

    2015-11-06

    Any metrology tool is only as good as it is calibrated. The characterization of metrology systems requires test patterns at a scale about ten times smaller than the measured features. The fabrication of patterns with linewidths down to 1.5 nm is described. The test sample was designed in such a way that the distribution of linewidths appears to be random at any location. This pseudorandom test pattern is used to characterize dimensional metrology equipment over its entire dynamic range by extracting the modulation transfer function of the system. The test pattern contains alternating lines of silicon and tungsten silicide, eachmore » according to its designed width. As a result, the fabricated test samples were imaged using a transmission electron microscope, a scanning electron microscope, and an atomic force microscope. (C) 2015 American Vacuum Society.« less

  19. Tip-enhanced Raman mapping with top-illumination AFM.

    PubMed

    Chan, K L Andrew; Kazarian, Sergei G

    2011-04-29

    Tip-enhanced Raman mapping is a powerful, emerging technique that offers rich chemical information and high spatial resolution. Currently, most of the successes in tip-enhanced Raman scattering (TERS) measurements are based on the inverted configuration where tips and laser are approaching the sample from opposite sides. This results in the limitation of measurement for transparent samples only. Several approaches have been developed to obtain tip-enhanced Raman mapping in reflection mode, many of which involve certain customisations of the system. We have demonstrated in this work that it is also possible to obtain TERS nano-images using an upright microscope (top-illumination) with a gold-coated Si atomic force microscope (AFM) cantilever without significant modification to the existing integrated AFM/Raman system. A TERS image of a single-walled carbon nanotube has been achieved with a spatial resolution of ∼ 20-50 nm, demonstrating the potential of this technique for studying non-transparent nanoscale materials.

  20. Evolution and control of the phase competition morphology in a manganite film

    NASA Astrophysics Data System (ADS)

    Zhou, Haibiao; Wang, Lingfei; Hou, Yubin; Huang, Zhen; Lu, Qingyou; Wu, Wenbin

    2015-11-01

    The competition among different phases in perovskite manganites is pronounced since their energies are very close under the interplay of charge, spin, orbital and lattice degrees of freedom. To reveal the roles of underlying interactions, many efforts have been devoted towards directly imaging phase transitions at microscopic scales. Here we show images of the charge-ordered insulator (COI) phase transition from a pure ferromagnetic metal with reducing field or increasing temperature in a strained phase-separated manganite film, using a home-built magnetic force microscope. Compared with the COI melting transition, this reverse transition is sharp, cooperative and martensitic-like with astonishingly unique yet diverse morphologies. The COI domains show variable-dimensional growth at different temperatures and their distribution can illustrate the delicate balance of the underlying interactions in manganites. Our findings also display how phase domain engineering is possible and how the phase competition can be tuned in a controllable manner.

  1. Evolution and control of the phase competition morphology in a manganite film.

    PubMed

    Zhou, Haibiao; Wang, Lingfei; Hou, Yubin; Huang, Zhen; Lu, Qingyou; Wu, Wenbin

    2015-11-25

    The competition among different phases in perovskite manganites is pronounced since their energies are very close under the interplay of charge, spin, orbital and lattice degrees of freedom. To reveal the roles of underlying interactions, many efforts have been devoted towards directly imaging phase transitions at microscopic scales. Here we show images of the charge-ordered insulator (COI) phase transition from a pure ferromagnetic metal with reducing field or increasing temperature in a strained phase-separated manganite film, using a home-built magnetic force microscope. Compared with the COI melting transition, this reverse transition is sharp, cooperative and martensitic-like with astonishingly unique yet diverse morphologies. The COI domains show variable-dimensional growth at different temperatures and their distribution can illustrate the delicate balance of the underlying interactions in manganites. Our findings also display how phase domain engineering is possible and how the phase competition can be tuned in a controllable manner.

  2. Schematic Animation of Phoenix's Microscope Station

    NASA Technical Reports Server (NTRS)

    2008-01-01

    [figure removed for brevity, see original site] Click on image for animation

    This animation shows the workings of the microscope station of the Microscopy, Electrochemistry and Conductivity Analyzer (MECA) instrument suite of NASA's Phoenix Mars Lander.

    Samples are delivered to the horizontal portion of the sample wheel (yellow) that pokes outside an opening in the box enclosure. The wheel rotates to present the sample to the microscopes. The Optical Microscope (red) can see particles a little smaller than one-tenth the diameter of a human hair. The Atomic Force Microscope (pink) can see particles forty time smaller. The samples are on a variety of substrate surfaces, the small circles on the beveled edge of the sample wheel. For scale, the diameter of the wheel is about 14 centimeters (5.5 inches). Each substrate is a circle 3 millimeters (0.1 inch) in diameter.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  3. Macroscopic model of scanning force microscope

    DOEpatents

    Guerra-Vela, Claudio; Zypman, Fredy R.

    2004-10-05

    A macroscopic version of the Scanning Force Microscope is described. It consists of a cantilever under the influence of external forces, which mimic the tip-sample interactions. The use of this piece of equipment is threefold. First, it serves as direct way to understand the parts and functions of the Scanning Force Microscope, and thus it is effectively used as an instructional tool. Second, due to its large size, it allows for simple measurements of applied forces and parameters that define the state of motion of the system. This information, in turn, serves to compare the interaction forces with the reconstructed ones, which cannot be done directly with the standard microscopic set up. Third, it provides a kinematics method to non-destructively measure elastic constants of materials, such as Young's and shear modules, with special application for brittle materials.

  4. Imaging, cutting, and collecting instrument and method

    DOEpatents

    Tench, Robert J.; Siekhaus, Wigbert J.; Balooch, Mehdi; Balhorn, Rodney L.; Allen, Michael J.

    1995-01-01

    Instrumentation and techniques to image small objects, such as but not limited to individual human chromosomes, with nanometer resolution, to cut-off identified parts of such objects, to move around and manipulate such cut-off parts on the substrate on which they are being imaged to predetermined locations on the substrate, and to remove the cut-off parts from the substrate. This is accomplished using an atomic force microscope (AFM) and by modification of the conventional cantilever stylus assembly of an AFM, such that plural cantilevers are used with either sharp-tips or knife-edges thereon. In addition, the invention can be utilized for measuring hardness of materials.

  5. Magnetic force driven six degree-of-freedom active vibration isolation system using a phase compensated velocity sensor.

    PubMed

    Kim, Yongdae; Kim, Sangyoo; Park, Kyihwan

    2009-04-01

    A six-axis active vibration isolation system (AVIS) is developed using voice coil actuators. Point contact configuration is employed to have an easy assembly of eight voice coil actuators to an upper and a base plates. The velocity sensor, using an electromagnetic principle that is commonly used in the vibration control, is investigated since its phase lead characteristic causes an instability problem for a low frequency vibration. The performances of the AVIS are investigated in the frequency domain and finally validated by comparing with the passive isolation system using the atomic force microscope images.

  6. Correlation between macro- and nano-scopic measurements of carbon nanostructured paper elastic modulus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Omar, Yamila M.; Al Ghaferi, Amal, E-mail: aalghaferi@masdar.ac.ae, E-mail: mchiesa@masdar.ac.ae; Chiesa, Matteo, E-mail: aalghaferi@masdar.ac.ae, E-mail: mchiesa@masdar.ac.ae

    2015-07-20

    Extensive work has been done in order to determine the bulk elastic modulus of isotropic samples from force curves acquired with atomic force microscopy. However, new challenges are encountered given the development of new materials constructed of one-dimensional anisotropic building blocks, such as carbon nanostructured paper. In the present work, we establish a reliable framework to correlate the elastic modulus values obtained by amplitude modulation atomic force microscope force curves, a nanoscopic technique, with that determined by traditional macroscopic tensile testing. In order to do so, several techniques involving image processing, statistical analysis, and simulations are used to find themore » appropriate path to understand how macroscopic properties arise from anisotropic nanoscale components, and ultimately, being able to calculate the value of bulk elastic modulus.« less

  7. Visualization and characterization of the acoustic radiation force assisted displacement of particles using an OCT technique (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Razani, Marjan; Zam, Azhar; Arezza, Nico J. J.; Wang, Yan J.; Kolios, Michael C.

    2016-03-01

    In this study, we present a technique to image the enhanced particle displacement generated using an acoustic radiation force (ARF) excitation source. A swept-source OCT (SS-OCT) system with a center wavelength of 1310nm, a bandwidth of ~100nm, and an A-scan rate of 100 kHz (MEMS-VCSEL OCT Thorlabs) was used to detect gold nanoparticle (70nm in diameter) displacement .ARF was applied after the nanoparticles passed through a porous membrane and diffused into a collagen (6% collagen) matrix. B-mode, M-B mode, 3D and Speckle Variance (SV) images were acquired before and after the ARF beam was on. Differential OCT speckle variance images with and without the ARF were used to measure the particle displacement. The images were used to detect the microscopic enhancement of nanoparticle displacement generated by the ARF. Using this OCT imaging technique, the extravasation of particles though a porous membrane and characterization of the enhanced particle displacement in a collagen gel after using an ARF excitation was achieved.

  8. A High-Q AFM Sensor Using a Balanced Trolling Quartz Tuning Fork in the Liquid

    PubMed Central

    Li, Yingzi; Song, Zihang; Lin, Rui; Chen, Yifu; Qian, Jianqiang

    2018-01-01

    A quartz tuning fork (QTF) has been widely used as a force sensor of the frequency modulation atomic force microscope due to its ultrahigh stiffness, high quality factor and self-sensing nature. However, due to the bulky structure and exposed surface electrode arrangement, its application is limited, especially in liquid imaging of in situ biological samples, ionic liquids, electrochemical reaction, etc. Although the complication can be resolved by coating insulating materials on the QTF surface and then immersing the whole QTF into the liquid, it would result in a sharp drop of the quality factor, which will reduce the sensitivity of the QTF. To solve the problem, a novel method, called the balanced trolling quartz tuning fork (BT-QTF), is introduced here. In this method, two same probes are glued on both prongs of the QTF separately while only one probe immersed in the liquid. With the method, the hydrodynamic interaction can be reduced, thus the BT-QTF can retain a high quality factor and constant resonance frequency. The stable small vibration of the BT-QTF can be achieved in the liquid. Initially, a theoretical model is presented to analyze the sensing performance of the BT-QTF in the liquid. Then, the sensing performance analysis experiments of the BT-QTF have been performed. At last, the proposed method is applied to atomic force microscope imaging different samples in the liquid, which proves its feasibility. PMID:29783740

  9. In vivo assessment by Mach-Zehnder double-beam interferometry of the invasive force exerted by the Asian soybean rust fungus (Phakopsora pachyrhizi).

    PubMed

    Loehrer, Marco; Botterweck, Jens; Jahnke, Joachim; Mahlmann, Daniel M; Gaetgens, Jochem; Oldiges, Marco; Horbach, Ralf; Deising, Holger; Schaffrath, Ulrich

    2014-07-01

    Asian soybean rust (Phakopsora pachyrhizi) causes a devastating disease in soybean (Glycine max). We tested the hypothesis that the fungus generates high turgor pressure in its hyaline appressoria to mechanically pierce epidermal cells. Turgor pressure was determined by a microscopic technique, called transmitted light double-beam interference Mach-Zehnder microscopy (MZM), which was developed in the 1960s as a forefront of live cell imaging. We revitalized some original microscopes and equipped them for modern image capturing. MZM data were corroborated by cytorrhysis experiments. Incipient cytorrhysis determined the turgor pressure in appressoria of P. pachyrhizi to be equivalent to 5.13 MPa. MZM data revealed that osmotically active sugar alcohols only accounted for 75% of this value. Despite having a lower turgor pressure, hyaline rust appressoria were able to penetrate non-biodegradable polytetrafluoroethylene (PTFE) membranes more efficiently than do melanized appressoria of the anthracnose fungus Colletotrichum graminicola or the rice blast fungus Magnaporthe oryzae. Our findings challenge the hypotheses that force-based penetration is a specific hallmark of fungi differentiating melanized appressoria and that this turgor-driven process is solely caused by metabolic degradation products. The appressorial turgor pressure may explain the capability of P. pachyrhizi to forcefully invade a wide range of different plants and may pave the way to novel plant protection approaches. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

  10. Structure and optical properties of TiO2 thin films deposited by ALD method

    NASA Astrophysics Data System (ADS)

    Szindler, Marek; Szindler, Magdalena M.; Boryło, Paulina; Jung, Tymoteusz

    2017-12-01

    This paper presents the results of study on titanium dioxide thin films prepared by atomic layer deposition method on a silicon substrate. The changes of surface morphology have been observed in topographic images performed with the atomic force microscope (AFM) and scanning electron microscope (SEM). Obtained roughness parameters have been calculated with XEI Park Systems software. Qualitative studies of chemical composition were also performed using the energy dispersive spectrometer (EDS). The structure of titanium dioxide was investigated by X-ray crystallography. A variety of crystalline TiO2 was also confirmed by using the Raman spectrometer. The optical reflection spectra have been measured with UV-Vis spectrophotometry.

  11. Three-dimensional cellular deformation analysis with a two-photon magnetic manipulator workstation.

    PubMed

    Huang, Hayden; Dong, Chen Y; Kwon, Hyuk-Sang; Sutin, Jason D; Kamm, Roger D; So, Peter T C

    2002-04-01

    The ability to apply quantifiable mechanical stresses at the microscopic scale is critical for studying cellular responses to mechanical forces. This necessitates the use of force transducers that can apply precisely controlled forces to cells while monitoring the responses noninvasively. This paper describes the development of a micromanipulation workstation integrating two-photon, three-dimensional imaging with a high-force, uniform-gradient magnetic manipulator. The uniform-gradient magnetic field applies nearly uniform forces to a large cell population, permitting statistical quantification of select molecular responses to mechanical stresses. The magnetic transducer design is capable of exerting over 200 pN of force on 4.5-microm-diameter paramagnetic particles and over 800 pN on 5.0-microm ferromagnetic particles. These forces vary within +/-10% over an area 500 x 500 microm2. The compatibility with the use of high numerical aperture (approximately 1.0) objectives is an integral part of the workstation design allowing submicron-resolution, three-dimensional, two-photon imaging. Three-dimensional analyses of cellular deformation under localized mechanical strain are reported. These measurements indicate that the response of cells to large focal stresses may contain three-dimensional global deformations and show the suitability of this workstation to further studying cellular response to mechanical stresses.

  12. Visual force sensing with flexible nanowire buckling springs

    NASA Astrophysics Data System (ADS)

    Dobrokhotov, Vladimir V.; Yazdanpanah, Mehdi M.; Pabba, Santosh; Safir, Abdelilah; Cohn, Robert W.

    2008-01-01

    A calibrated method of force sensing is demonstrated in which the buckled shape of a long flexible metallic nanowire, referred to as a 'nanoneedle', is interpreted to determine the applied force. An individual needle of 157 nm diameter by 15.6 µm length is grown on an atomic force microscope (AFM) cantilever with a desired orientation (by the method of Yazdanpanah et al 2005 J. Appl. Phys. 98 073510). Using a nanomanipulator the needle is buckled in the chamber of a scanning electron microscope (SEM) and the buckled shapes are recorded in SEM images. Force is determined as a function of deflection for an assumed elastic modulus by fitting the shapes using the generalized elastica model (De Bona and Zelenika 1997 Proc. Inst. Mech. Eng. C 211 509-17). In this calibration the elastic modulus (68.3 GPa) was determined using an auxiliary AFM measurement, with the needle in the same orientation as in the SEM. Following this calibration the needle was used as a sensor in a different orientation than the AFM coordinates to deflect a suspended PLLA polymer fiber from which the elastic modulus (2.96 GPa) was determined. The practical value of the sensing method does depend on the reliability and ruggedness of the needle. In this study the same needle remained rigidly secured to the AFM cantilever throughout the entire SEM/AFM calibration procedure and the characterization of the nanofiber.

  13. Characterization of Akiyama probe applied to dual-probes atomic force microscope

    NASA Astrophysics Data System (ADS)

    Wang, Hequn; Gao, Sitian; Li, Wei; Shi, Yushu; Li, Qi; Li, Shi; Zhu, Zhendong

    2016-10-01

    The measurement of nano-scale line-width has always been important and difficult in the field of nanometer measurements, while the rapid development of integrated circuit greatly raises the demand again. As one kind of scanning probe microscope (SPM), atomic force microscope (AFM) can realize quasi three-dimensional measurement, which is widely used in nanometer scale line-width measurement. Our team researched a dual-probes atomic force microscope, which can eliminate the prevalent effect of probe width on measurement results. In dual-probes AFM system, a novel head are newly designed. A kind of self-sensing and self-exciting probes which is Nanosensors cooperation's patented probe—Akiyama probe, is used in this novel head. The Akiyama probe applied to dual-probe atomic force microscope is one of the most important issues. The characterization of Akiyama probe would affect performance and accuracy of the whole system. The fundamental features of the Akiyama probe are electrically and optically characterized in "approach-withdraw" experiments. Further investigations include the frequency response of an Akiyama probe to small mechanical vibrations externally applied to the tip and the effective loading force yielding between the tip and the sample during the periodic contact. We hope that the characterization of the Akiyama probe described in this paper will guide application for dual-probe atomic force microscope.

  14. Optical forces, torques, and force densities calculated at a microscopic level using a self-consistent hydrodynamics method

    NASA Astrophysics Data System (ADS)

    Ding, Kun; Chan, C. T.

    2018-04-01

    The calculation of optical force density distribution inside a material is challenging at the nanoscale, where quantum and nonlocal effects emerge and macroscopic parameters such as permittivity become ill-defined. We demonstrate that the microscopic optical force density of nanoplasmonic systems can be defined and calculated using the microscopic fields generated using a self-consistent hydrodynamics model that includes quantum, nonlocal, and retardation effects. We demonstrate this technique by calculating the microscopic optical force density distributions and the optical binding force induced by external light on nanoplasmonic dimers. This approach works even in the limit when the nanoparticles are close enough to each other so that electron tunneling occurs, a regime in which classical electromagnetic approach fails completely. We discover that an uneven distribution of optical force density can lead to a light-induced spinning torque acting on individual particles. The hydrodynamics method offers us an accurate and efficient approach to study optomechanical behavior for plasmonic systems at the nanoscale.

  15. Breaking the Time Barrier in Kelvin Probe Force Microscopy: Fast Free Force Reconstruction Using the G-Mode Platform

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Collins, Liam; Ahmadi, Mahshid; Wu, Ting

    The atomic force microscope (AFM) offers unparalleled insight into structure and material functionality across nanometer length scales. However, the spatial resolution afforded by the AFM tip is counterpoised by slow detection speeds compared to other common microscopy techniques (e.g. optical, scanning electron microscopy etc.). In this work, we develop an AFM imaging approach allowing ultrafast reconstruction of the tip-sample forces having ~2 orders of magnitude higher time resolution than standard detection methods. Fast free force recovery (F3R) overcomes the widely-viewed temporal bottleneck in AFM, i.e. the mechanical bandwidth of the cantilever, enabling time-resolved imaging at sub-bandwidth speeds. We demonstrate quantitativemore » recovery of electrostatic forces with ~10 µs temporal resolution, free from cantilever ring-down effects. We further apply the F3R method to Kelvin probe force microscopy (KPFM) measurements. F3R-KPFM is an open loop imaging approach (i.e. no bias feedback), allowing ultrafast surface potential measurements (e.g. < 20 µs) to be performed at regular KPFM scan speeds. F3R-KPFM is demonstrated for exploration of ion migration in organometallic halide perovskites materials and shown to allow spatio-temporal imaging of positively charged ion migration under applied electric field, as well as subsequent formation of accumulated charges at the perovskite/electrode interface. In this work we demonstrate quantitative F3R-KPFM measurements – however, we fully expect the F3R approach to be valid for all modes of non-contact AFM operation, including non-invasive probing of ultrafast electrical and magnetic dynamics.« less

  16. Breaking the Time Barrier in Kelvin Probe Force Microscopy: Fast Free Force Reconstruction Using the G-Mode Platform

    DOE PAGES

    Collins, Liam; Ahmadi, Mahshid; Wu, Ting; ...

    2017-08-06

    The atomic force microscope (AFM) offers unparalleled insight into structure and material functionality across nanometer length scales. However, the spatial resolution afforded by the AFM tip is counterpoised by slow detection speeds compared to other common microscopy techniques (e.g. optical, scanning electron microscopy etc.). In this work, we develop an AFM imaging approach allowing ultrafast reconstruction of the tip-sample forces having ~2 orders of magnitude higher time resolution than standard detection methods. Fast free force recovery (F3R) overcomes the widely-viewed temporal bottleneck in AFM, i.e. the mechanical bandwidth of the cantilever, enabling time-resolved imaging at sub-bandwidth speeds. We demonstrate quantitativemore » recovery of electrostatic forces with ~10 µs temporal resolution, free from cantilever ring-down effects. We further apply the F3R method to Kelvin probe force microscopy (KPFM) measurements. F3R-KPFM is an open loop imaging approach (i.e. no bias feedback), allowing ultrafast surface potential measurements (e.g. < 20 µs) to be performed at regular KPFM scan speeds. F3R-KPFM is demonstrated for exploration of ion migration in organometallic halide perovskites materials and shown to allow spatio-temporal imaging of positively charged ion migration under applied electric field, as well as subsequent formation of accumulated charges at the perovskite/electrode interface. In this work we demonstrate quantitative F3R-KPFM measurements – however, we fully expect the F3R approach to be valid for all modes of non-contact AFM operation, including non-invasive probing of ultrafast electrical and magnetic dynamics.« less

  17. Cellulose powder from Cladophora sp. algae.

    PubMed

    Ek, R; Gustafsson, C; Nutt, A; Iversen, T; Nyström, C

    1998-01-01

    The surface are and crystallinity was measured on a cellulose powder made from Cladophora sp. algae. The algae cellulose powder was found to have a very high surface area (63.4 m2/g, N2 gas adsorption) and build up of cellulose with a high crystallinity (approximately 100%, solid state NMR). The high surface area was confirmed by calculations from atomic force microscope imaging of microfibrils from Cladophora sp. algae.

  18. The nature of (sub-)micrometre cometary dust particles detected with MIDAS

    NASA Astrophysics Data System (ADS)

    Mannel, T.; Bentley, M. S.; Torkar, K.; Jeszenszky, H.; Romstedt, J.; Schmied, R.

    2015-10-01

    The MIDAS Atomic Force Microscope (AFM) onboard Rosetta collects dust particles and produces three-dimensional images with nano- to micrometre resolution. To date, several tens of particles have been detected, allowing determination of their properties at the smallest scale. The key features will be presented, including the particle size, their fragile character, and their morphology. These findings will be compared with the results of other Rosetta dust experiments.

  19. Structure and physico-mechanical properties of low temperature plasma treated electrospun nanofibrous scaffolds examined with atomic force microscopy.

    PubMed

    Chlanda, Adrian; Kijeńska, Ewa; Rinoldi, Chiara; Tarnowski, Michał; Wierzchoń, Tadeusz; Swieszkowski, Wojciech

    2018-04-01

    Electrospun nanofibrous scaffolds are willingly used in tissue engineering applications due to their tunable mechanical, chemical and physical properties. Additionally, their complex openworked architecture is similar to the native extracellular matrix of living tissue. After implantation such scaffolds should provide sufficient mechanical support for cells. Moreover, it is of crucial importance to ensure sterility and hydrophilicity of the scaffold. For this purpose, a low temperature surface plasma treatment can be applied. In this paper, we report physico-mechanical evaluation of stiffness and adhesive properties of electrospun mats after their exposition to low temperature plasma. Complex morphological and mechanical studies performed with an atomic force microscope were followed by scanning electron microscope imaging and a wettability assessment. The results suggest that plasma treatment can be a useful method for the modification of the surface of polymeric scaffolds in a desirable manner. Plasma treatment improves wettability of the polymeric mats without changing their morphology. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. The relation of apple texture with cell wall nanostructure studied using an atomic force microscope.

    PubMed

    Cybulska, Justyna; Zdunek, Artur; Psonka-Antonczyk, Katarzyna M; Stokke, Bjørn T

    2013-01-30

    In this study, the relation of the nanostructure of cell walls with their texture was investigated for six different apple cultivars. Cell wall material (CWM) and cellulose microfibrils were imaged by atomic force microscope (AFM). The mean diameter of cellulose microfibrils for each cultivar was estimated based on the AFM height topographs obtained using the tapping mode of dried specimens. Additionally, crystallinity of cellulose microfibrils and pectin content was determined. Texture of apple cultivars was evaluated by sensory and instrumental analysis. Differences in cellulose diameter as determined from the AFM height topographs of the nanostructure of cell walls of the apple cultivars are found to relate to the degree of crystallinity and pectin content. Cultivars with thicker cellulose microfibrils also revealed crisper, harder and juicier texture, and greater acoustic emission. The data suggest that microfibril thickness affects the mechanical strength of cell walls which has consequences for sensory and instrumental texture. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. [Characterization of microstructure of ibuprofen-hydroxypropyl-beta-cyclodextrin and ibuprofen-beta-cyclodextrin by atomic force microscope].

    PubMed

    Wang, Li-juan; Zhu, Zhao-jing; Che, Ke-ke; Ju, Feng-ge

    2008-09-01

    The microstructures of ibuprofen-hydroxypropyl-bets-cyclodextrin (IBU-HP-beta-CyD) and ibuprofen-beta-cyclodextrin (IBU-beta-CyD) were observed by atomic force microscope (AFM). The high resolving capability of AFM has the tungsten filament probe with the spring constant of 0.06 N x m(-1). Samples were observed in a small scale scanning area of 10.5 nm x 10.5 nm and 800 x 800 pixels. The original scanning images were gained by tapping mode at room temperature. Their three-dimensional reconstruction of microstructure was performed by G3DR software. The outer diameters of HP-beta-CyD and beta-CyD are 1.53 nm. The benzene diameter of IBU is 0.62 nm, fitting to the inner diameters of HP-beta-CyD and beta-CyD. The benzene and hydrophobic chain of IBU enter into the hole of cyclodextrin at 1:1 ratio. The results were evidenced by IR, X-ray diffraction and the phase solubility.

  2. Scanned gate microscopy of inter-edge channel scattering in the quantum Hall regime

    NASA Astrophysics Data System (ADS)

    Woodside, Michael T.; Vale, Chris; McEuen, Paul L.; Kadow, C.; Maranowski, K. D.; Gossard, A. C.

    2000-03-01

    Novel scanned probe techniques have recently been used to study in detail the microscopic properties of 2D electron gases in the quantum Hall regime [1]. We report local measurements of the scattering between edge states in a quantum Hall conductor with non-equilibrium edge state populations. Using an atomic force microscope (AFM) tip as a local gate to perturb the edge states, we find that the scattering is dominated by individual, microscopic scattering sites, which we directly image and characterise. The dependence of the scattering on the AFM tip voltage reveals that it involves tunneling both through quasi-bound impurity states and through disorder-induced weak links between the edge states. [1] S. H. Tessmer et al., Nature 392, 51 (1998); K. L. McCormick et al., Phys. Rev. B 59, 4654 (1999); A. Yacoby et al., Solid State Comm. 111, 1 (1999).

  3. [Cytocompatibility of nanophase hydroxyapatite ceramics].

    PubMed

    Wen, Bo; Chen, Zhi-qing; Jiang, Yin-shan; Yang, Zheng-wen; Xu, Yong-zhong

    2004-12-01

    To evaluate the cytocompatibility of nanophase hydroxyapatite ceramics in vitro. Hydroxyapatite (HA) was prepared via wet method. The grain size of the hydroxyapatite in the study was determined by scanning electron microscope and atomic force microscope with image analysis software. Primary osteoblast culture was established from rat calvaria. Cell adherence and proliferation on nanophase hydroxyapatite ceramics and conventional hydroxyapatite ceramics were examined at 1, 3, 5, 7 days. Morphology of the cells was observed by microscope. The average grain size of the nanophase and conventional HA was 55 nm and 780 nm, respectively. Throughout 7 days period, osteoblast proliferation on the HA was similar to that on tissue culture borosilicate glass controls, osteoblasts could attach, spread and proliferate on HA. However, compared to conventional ceramics, osteoblast proliferation on nanophase HA was significantly better after 1, 3, 5 and 7 days. Cytocompatibility of nanophase HA was significantly better than conventional ceramics.

  4. Optoelectronic tweezers integrated with lensfree holographic microscopy for wide-field interactive cell and particle manipulation on a chip.

    PubMed

    Huang, Kuo-Wei; Su, Ting-Wei; Ozcan, Aydogan; Chiou, Pei-Yu

    2013-06-21

    We demonstrate an optoelectronic tweezer (OET) coupled to a lensfree holographic microscope for real-time interactive manipulation of cells and micro-particles over a large field-of-view (FOV). This integrated platform can record the holographic images of cells and particles over the entire active area of a CCD sensor array, perform digital image reconstruction to identify target cells, dynamically track the positions of cells and particles, and project light beams to trigger light-induced dielectrophoretic forces to pattern and sort cells on a chip. OET technology has been previously shown to be capable of performing parallel single cell manipulation over a large area. However, its throughput has been bottlenecked by the number of cells that can be imaged within the limited FOV of a conventional microscope objective lens. Integrating lensfree holographic imaging with OET solves this fundamental FOV barrier, while also creating a compact on-chip cell/particle manipulation platform. Using this unique platform, we have successfully demonstrated real-time interactive manipulation of thousands of single cells and micro-particles over an ultra-large area of e.g., 240 mm(2) (i.e. 17.96 mm × 13.52 mm).

  5. Identifying traction-separation behavior of self-adhesive polymeric films from in situ digital images under T-peeling

    NASA Astrophysics Data System (ADS)

    Nase, Michael; Rennert, Mirko; Naumenko, Konstantin; Eremeyev, Victor A.

    2016-06-01

    In this paper procedures are developed to identify traction-separation curves from digital images of the deformed flexible films during peeling. T-peel tests were performed for self-adhesive polymeric films. High quality photographs of the deformed shape within and outside the zone of adhesive interaction were made in situ by the digital light microscope. The deformed line is approximated by a power series with coefficients computed by minimizing a least squares functional. Two approaches to identify the traction-separation curve for the given deformation line are proposed. The first one is based on the energy integral of the non-linear theory of rods and allows the direct evaluation of the adhesion force potential. The second one utilizes the complementary energy type variational equation and the Ritz method to compute the adhesion force. The accuracy of both approaches is analyzed with respect to different approximations for the deformed line and the force of interaction. The obtained traction vs. axial coordinate and the traction-separation curves provide several properties of the adhesive system including the maximum adhesion force, the length of the adhesive zone and the equilibrium position, where the adhesive force is zero while the separation is positive.

  6. Restoration of high-resolution AFM images captured with broken probes

    NASA Astrophysics Data System (ADS)

    Wang, Y. F.; Corrigan, D.; Forman, C.; Jarvis, S.; Kokaram, A.

    2012-03-01

    A type of artefact is induced by damage of the scanning probe when the Atomic Force Microscope (AFM) captures a material surface structure with nanoscale resolution. This artefact has a dramatic form of distortion rather than the traditional blurring artefacts. Practically, it is not easy to prevent the damage of the scanning probe. However, by using natural image deblurring techniques in image processing domain, a comparatively reliable estimation of the real sample surface structure can be generated. This paper introduces a novel Hough Transform technique as well as a Bayesian deblurring algorithm to remove this type of artefact. The deblurring result is successful at removing blur artefacts in the AFM artefact images. And the details of the fibril surface topography are well preserved.

  7. Shear-induced aggregation dynamics in a polymer microrod suspension

    NASA Astrophysics Data System (ADS)

    Kumar, Pramukta S.

    A non-Brownian suspension of micron scale rods is found to exhibit reversible shear-driven formation of disordered aggregates resulting in dramatic viscosity enhancement at low shear rates. Aggregate formation is imaged at low magnification using a combined rheometer and fluorescence microscope system. The size and structure of these aggregates are found to depend on shear rate and concentration, with larger aggregates present at lower shear rates and higher concentrations. Quantitative measurements of the early-stage aggregation process are modeled by a collision driven growth of porous structures which show that the aggregate density increases with a shear rate. A Krieger-Dougherty type constitutive relation and steady-state viscosity measurements are used to estimate the intrinsic viscosity of complex structures developed under shear. Higher magnification images are collected and used to validate the aggregate size versus density relationship, as well as to obtain particle flow fields via PIV. The flow fields provide a tantalizing view of fluctuations involved in the aggregation process. Interaction strength is estimated via contact force measurements and JKR theory and found to be extremely strong in comparison to shear forces present in the system, estimated using hydrodynamic arguments. All of the results are then combined to produce a consistent conceptual model of aggregation in the system that features testable consequences. These results represent a direct, quantitative, experimental study of aggregation and viscosity enhancement in rod suspension, and demonstrate a strategy for inferring inaccessible microscopic geometric properties of a dynamic system through the combination of quantitative imaging and rheology.

  8. Intermolecular artifacts in probe microscope images of C60 assemblies

    NASA Astrophysics Data System (ADS)

    Jarvis, Samuel Paul; Rashid, Mohammad Abdur; Sweetman, Adam; Leaf, Jeremy; Taylor, Simon; Moriarty, Philip; Dunn, Janette

    2015-12-01

    Claims that dynamic force microscopy has the capability to resolve intermolecular bonds in real space continue to be vigorously debated. To date, studies have been restricted to planar molecular assemblies with small separations between neighboring molecules. Here we report the observation of intermolecular artifacts over much larger distances in 2D assemblies of C60 molecules, with compelling evidence that in our case the tip apex is terminated by a C60 molecule (rather than the CO termination typically exploited in ultrahigh resolution force microscopy). The complete absence of directional interactions such as hydrogen or halogen bonding, the nonplanar structure of C60, and the fullerene termination of the tip apex in our case highlight that intermolecular artifacts are ubiquitous in dynamic force microscopy.

  9. Two-probe atomic-force microscope manipulator and its applications.

    PubMed

    Zhukov, A A; Stolyarov, V S; Kononenko, O V

    2017-06-01

    We report on a manipulator based on a two-probe atomic force microscope (AFM) with an individual feedback system for each probe. This manipulator works under an upright optical microscope with 3 mm focal distance. The design of the microscope helps us tomanipulate nanowires using the microscope probes as a two-prong fork. The AFM feedback is realized based on the dynamic full-time contact mode. The applications of the manipulator and advantages of its two-probe design are presented.

  10. Modelling of electron beam induced nanowire attraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bitzer, Lucas A.; Benson, Niels, E-mail: niels.benson@uni-due.de; Schmechel, Roland

    2016-04-14

    Scanning electron microscope (SEM) induced nanowire (NW) attraction or bundling is a well known effect, which is mainly ascribed to structural or material dependent properties. However, there have also been recent reports of electron beam induced nanowire bending by SEM imaging, which is not fully explained by the current models, especially when considering the electro-dynamic interaction between NWs. In this article, we contribute to the understanding of this phenomenon, by introducing an electro-dynamic model based on capacitor and Lorentz force interaction, where the active NW bending is stimulated by an electromagnetic force between individual wires. The model includes geometrical, electrical,more » and mechanical NW parameters, as well as the influence of the electron beam source parameters and is validated using in-situ observations of electron beam induced GaAs nanowire (NW) bending by SEM imaging.« less

  11. PREFACE: NC-AFM 2003: Proceedings of the 6th International Conference on Non-contact Atomic Force Microscopy

    NASA Astrophysics Data System (ADS)

    Reichling, Michael

    2004-02-01

    Direct nanoscale and atomic resolution imaging is a key issue in nanoscience and nanotechnology. The invention of the dynamic force microscope in the early 1990s was an important step forward in this direction as this instrument provides a universal tool for measuring the topography and many other physical and chemical properties of surfaces at the nanoscale. Operation in the so-called non-contact mode now allows direct atomic resolution imaging of electrically insulating surfaces and nanostructures which has been an unsolved problem during the first decade of nanotechnology. Today, we face a most rapid development of the technique and an extension of its capabilities far beyond imaging; atomically resolved force spectroscopy provides information about local binding properties and researchers now develop sophisticated schemes of force controlled atomic manipulation with the tip of the force microscope. Progress in the field of non-contact force microscopy is discussed at the annually held NC-AFM conferences that are part of a series started in 1998 with a meeting in Osaka, Japan. The 6th International Conference on Non-contact Atomic Force Microscopy took place in Dingle, Ireland, from 31 August to 3 September 2003 and this special issue is a compilation of the original publications of work presented at this meeting. The papers published here well reflect recent achievements, current trends and some of the challenging new directions in non-contact force microscopy that have been discussed during the most stimulating conference days in Dingle. Fundamental aspects of forces and dissipation relevant in imaging and spectroscopy have been covered by experimental and theoretical contributions yielding a more detailed understanding of tip--surface interaction in force microscopy. Novel and improved imaging and spectroscopy techniques have been introduced that either improve the performance of force microscopy or pave the way towards new functionalities and applications. With regard to studies on the specific systems investigated, there was a strong emphasis on oxides and ionics, as well as on organic systems. Following previous pioneering work in uncovering the atomic structure of insulating oxides with force microscopy, it was shown in the meeting that this important class of materials is now accessible for a quantitative atomic scale surface characterization. Single organic molecules and ordered organic layers are building blocks for functional nanostructures currently developed in many laboratories for applications in molecular electronics and sensor technologies. The Dingle conference impressively demonstrated that dynamic force microscopy is ready for its application as an analytical tool for these promising future nanotechnologies. The meeting was a great success scientifically and participants enjoyed the beauty of the conference site. I would like to thank all members of the international steering committee, the programme committee and the co-chairs, J Pethica, A Shluger and G Thornton, for their efforts in preparing the meeting. The members of the local organising committee, J Ballentine-Armstrong, G Cross, S Dunne, S Jarvis and Ö Özer, kept the meeting running smoothly and created a very pleasant atmosphere. The generous financial support from Science Foundation Ireland (SFI), is greatly appreciated; SFI is dramatically raising the profile of Irish science. I would also like to express my sincere gratitude to N Couzin and the journal team from Institute of Physics Publishing for their editorial management and perfect co-operation in the preparation of this special issue.

  12. Preparation and quality test of superparamagnetic iron oxide labeled antisense oligodeoxynucleotide probe: a preliminary study.

    PubMed

    Wen, Ming; Li, Bibo; Ouyang, Yu; Luo, Yi; Li, Shaolin

    2009-06-01

    Molecular imaging of tumor antisense gene techniques have been applied to the study of magnetic resonance (MR) gene imaging associated with malignant tumors. In this study, we designed, synthesized, and tested a novel molecular probe, in which the antisense oligodeoxynucleotide (ASODN) was labeled with superparamagnetic iron oxide (SPIO), and its efficiency was examined by in vitro MR imaging after SK-Br-3 mammary carcinoma cell lines (oncocytes) transfection. The SPIO-labeled ASODN probe was prepared through SPIO conjugated to ASODN using a chemical cross linking method. Its morphology and size were detected by atomic force microscope, size distribution were detected by laser granulometer, the conjugating rate and biological activity were determined by high performance liquid chromatography, and the stability was determined by polyacrylamide gel electrophoresis. After that, the probes were transfected into the SK-Br-3 oncocytes, cellular iron uptake was analyzed qualitatively at light and electron microscopy and was quantified at atomic absorption spectrometry, and the signal change of the transfected cells was observed and measured using MR imaging. The morphology of the SPIO-labeled ASODN probe was mostly spherical with well-distributed scattering, and the diameters were between 25 and 40 nm (95%) by atomic force microscope and laser granulometer, the conjugating rate of the probe was 99%. Moreover, this probe kept its activity under physiological conditions and could conjugate with antisense oligodeoxynucleotide. In addition, light microscopy revealed an intracellular uptake of iron oxides in the cytosol and electron microscopic studies revealed a lysosomal deposition of iron oxides in the transfected SK-Br-3 oncocytes by antisense probes, some of them gathered stacks, and the iron content of the group of transfected SK-Br-3 oncocytes by antisense probe is significantly higher (18.37 +/- 0.42 pg) than other contrast groups, the MR imaging showed that transfected SK-Br-3 oncocytes by antisense probe had the lowest signal of all. The SPIO-labeled ASODN probe shows unique features including well-distributed spherical morphology, high conjugating rate and loading efficiency, and the signal intensity of SPIO-labeled ASODN-transfected SK-Br-3 oncocytes is reduced in MR imaging. These results indicate that the SPIO-labeled ASODN probe is potentially useful as a MR targeting contrast enhancing agent to specifically diagnose tumors which had over-expression of the c-erbB2 oncogene at an early stage.

  13. Development of a near-field/confocal polarization microscope for local measurements of anisotropy in organic films

    NASA Astrophysics Data System (ADS)

    Kosterin, Andrey Valentinovich

    2000-10-01

    Polarization microscopy is a powerful technique for imaging structure and stress distributions in many transparent materials, and has been particularly useful in morphology studies of polymer films. Recently the possibility of combining polarization imaging with near-field scanning optical microscopy (NSOM) has been demonstrated, offering new opportunities for studying molecular organization with better than 50 nm resolution. However, there are challenges associated with near-field polarization experiments on organic films: (1) the films are susceptible to damage by the near-field probe; (2) the phase shift or retardation (80) is small, often <0.1 rad; (3) interpretation of near-field images is complicated by topography and probe-sample coupling. To address these challenges, we have developed a new combined near-field/confocal polarization microscope and tested its sensitivity to linear birefringence in thin polymer films. For near-field imaging, the microscope employs a commercially available scanhead with cantilevered (bent) optical fiber probes. To study soft samples (point 1), we have modified the scanhead for tapping mode feedback, which eliminates probe-sample shear forces and prolongs the lifetime of the probe, while minimizing damage to the sample. To achieve sensitivity to small phase shifts (point 2), we have implemented the phase modulation (PM) technique in the optical path. Enhanced sensitivity relative to the standard crossed polarizers scheme is achieved because of the better signal-to-noise discrimination common to lock-in detection and because the detected first harmonic intensity, Io , is linearly proportional to deltatheta instead of (deltatheta) 2. To facilitate interpretation of near-field contrast (point 3), we have incorporated near-field and confocal channels in one instrument. This allows consecutive acquisition of both near-field and far-field images on the same sample area. Since the far-field images do not suffer from the same artifacts, they can be used as a source of independent information on sample optical properties. The combined near-field/confocal polarization microscope is discussed in this thesis as well as some of its applications. Specifically we consider the results of polyethylene oxide (PEO) and crosslinked polybutadiene (PB) thin film imaging.

  14. A Computer-Controlled Classroom Model of an Atomic Force Microscope

    NASA Astrophysics Data System (ADS)

    Engstrom, Tyler A.; Johnson, Matthew M.; Eklund, Peter C.; Russin, Timothy J.

    2015-12-01

    The concept of "seeing by feeling" as a way to circumvent limitations on sight is universal on the macroscopic scale—reading Braille, feeling one's way around a dark room, etc. The development of the atomic force microscope (AFM) in 1986 extended this concept to imaging in the nanoscale. While there are classroom demonstrations that use a tactile probe to map the topography or some other property of a sample, the rastering of the probe over the sample is manually controlled, which is both tedious and potentially inaccurate. Other groups have used simulation or tele-operation of an AFM probe. In this paper we describe a teaching AFM with complete computer control to map out topographic and magnetic properties of a "crystal" consisting of two-dimensional arrays of spherical marble "atoms." Our AFM is well suited for lessons on the "Big Ideas of Nanoscale" such as tools and instrumentation, as well as a pre-teaching activity for groups with remote access AFM or mobile AFM. The principle of operation of our classroom AFM is the same as that of a real AFM, excepting the nature of the force between sample and probe.

  15. Mathematical model of a DIC position sensing system within an optical trap

    NASA Astrophysics Data System (ADS)

    Wulff, Kurt D.; Cole, Daniel G.; Clark, Robert L.

    2005-08-01

    The quantitative study of displacements and forces of motor proteins and processes that occur at the microscopic level and below require a high level of sensitivity. For optical traps, two techniques for position sensing have been accepted and used quite extensively: quadrant photodiodes and an interferometric position sensing technique based on DIC imaging. While quadrant photodiodes have been studied in depth and mathematically characterized, a mathematical characterization of the interferometric position sensor has not been presented to the authors' knowledge. The interferometric position sensing method works off of the DIC imaging capabilities of a microscope. Circularly polarized light is sent into the microscope and the Wollaston prism used for DIC imaging splits the beam into its orthogonal components, displacing them by a set distance determined by the user. The distance between the axes of the beams is set so the beams overlap at the specimen plane and effectively share the trapped microsphere. A second prism then recombines the light beams and the exiting laser light's polarization is measured and related to position. In this paper we outline the mathematical characterization of a microsphere suspended in an optical trap using a DIC position sensing method. The sensitivity of this mathematical model is then compared to the QPD model. The mathematical model of a microsphere in an optical trap can serve as a calibration curve for an experimental setup.

  16. Grayscale inhomogeneity correction method for multiple mosaicked electron microscope images

    NASA Astrophysics Data System (ADS)

    Zhou, Fangxu; Chen, Xi; Sun, Rong; Han, Hua

    2018-04-01

    Electron microscope image stitching is highly desired to acquire microscopic resolution images of large target scenes in neuroscience. However, the result of multiple Mosaicked electron microscope images may exist severe gray scale inhomogeneity due to the instability of the electron microscope system and registration errors, which degrade the visual effect of the mosaicked EM images and aggravate the difficulty of follow-up treatment, such as automatic object recognition. Consequently, the grayscale correction method for multiple mosaicked electron microscope images is indispensable in these areas. Different from most previous grayscale correction methods, this paper designs a grayscale correction process for multiple EM images which tackles the difficulty of the multiple images monochrome correction and achieves the consistency of grayscale in the overlap regions. We adjust overall grayscale of the mosaicked images with the location and grayscale information of manual selected seed images, and then fuse local overlap regions between adjacent images using Poisson image editing. Experimental result demonstrates the effectiveness of our proposed method.

  17. Imaging, cutting, and collecting instrument and method

    DOEpatents

    Tench, R.J.; Siekhaus, W.J.; Balooch, M.; Balhorn, R.L.; Allen, M.J.

    1995-10-31

    Instrumentation and techniques are described to image small objects, such as but not limited to individual human chromosomes, with nanometer resolution. This instrument and method are also used to cut-off identified parts of objects, to move around and manipulate the cut-off parts on the substrate on which they are being imaged to predetermined locations on the substrate, and to remove the cut-off parts from the substrate. This is accomplished using an atomic force microscope (AFM) and by modification of the conventional cantilever stylus assembly of an AFM. The plural cantilevers are used with either sharp-tips or knife-edges. In addition, the invention can be utilized for measuring the hardness of materials. 10 figs.

  18. A portable microscopy system for fluorescence, polarized, and brightfield imaging

    NASA Astrophysics Data System (ADS)

    Gordon, Paul; Wattinger, Rolla; Lewis, Cody; Venancio, Vinicius Paula; Mertens-Talcott, Susanne U.; Coté, Gerard

    2018-02-01

    The use of mobile phones to conduct diagnostic microscopy at the point-of-care presents intriguing possibilities for the advancement of high-quality medical care in remote settings. However, it is challenging to create a single device that can adapt to the ever-varying camera technologies in phones or that can image with the customization that multiple modalities require for applications such as malaria diagnosis. A portable multi-modal microscope system is presented that utilizes a Raspberry Pi to collect and transmit data wirelessly to a myriad of electronic devices for image analysis. The microscopy system is capable of providing to the user correlated brightfield, polarized, and fluorescent images of samples fixed on traditional microscopy slides. The multimodal diagnostic capabilities of the microscope were assessed by measuring parasitemia of Plasmodium falciparum-infected thin blood smears. The device is capable of detecting fluorescently-labeled DNA using FITC excitation (490 nm) and emission (525 nm), the birefringent P. falciparum byproduct hemozoin, and detecting brightfield absorption with a resolution of 0.78 micrometers (element 9-3 of a 1951 Air Force Target). This microscopy system is a novel portable imaging tool that may be a viable candidate for field implementation if challenges of system durability, cost considerations, and full automation can be overcome.

  19. Enhanced resolution imaging of ultrathin ZnO layers on Ag(111) by multiple hydrogen molecules in a scanning tunneling microscope junction

    NASA Astrophysics Data System (ADS)

    Liu, Shuyi; Shiotari, Akitoshi; Baugh, Delroy; Wolf, Martin; Kumagai, Takashi

    2018-05-01

    Molecular hydrogen in a scanning tunneling microscope (STM) junction has been found to enhance the lateral spatial resolution of the STM imaging, referred to as scanning tunneling hydrogen microscopy (STHM). Here we report atomic resolution imaging of 2- and 3-monolayer (ML) thick ZnO layers epitaxially grown on Ag(111) using STHM. The enhanced resolution can be obtained at a relatively large tip to surface distance and resolves a more defective structure exhibiting dislocation defects for 3-ML-thick ZnO than for 2 ML. In order to elucidate the enhanced imaging mechanism, the electric and mechanical properties of the hydrogen molecular junction (HMJ) are investigated by a combination of STM and atomic force microscopy. It is found that the HMJ shows multiple kinklike features in the tip to surface distance dependence of the conductance and frequency shift curves, which are absent in a hydrogen-free junction. Based on a simple modeling, we propose that the junction contains several hydrogen molecules and sequential squeezing of the molecules out of the junction results in the kinklike features in the conductance and frequency shift curves. The model also qualitatively reproduces the enhanced resolution image of the ZnO films.

  20. Compensator design for improved counterbalancing in high speed atomic force microscopy.

    PubMed

    Bozchalooi, I S; Youcef-Toumi, K; Burns, D J; Fantner, G E

    2011-11-01

    High speed atomic force microscopy can provide the possibility of many new scientific observations and applications ranging from nano-manufacturing to the study of biological processes. However, the limited imaging speed has been an imperative drawback of the atomic force microscopes. One of the main reasons behind this limitation is the excitation of the AFM dynamics at high scan speeds, severely undermining the reliability of the acquired images. In this research, we propose a piezo based, feedforward controlled, counter actuation mechanism to compensate for the excited out-of-plane scanner dynamics. For this purpose, the AFM controller output is properly filtered via a linear compensator and then applied to a counter actuating piezo. An effective algorithm for estimating the compensator parameters is developed. The information required for compensator design is extracted from the cantilever deflection signal, hence eliminating the need for any additional sensors. The proposed approach is implemented and experimentally evaluated on the dynamic response of a custom made AFM. It is further assessed by comparing the imaging performance of the AFM with and without the application of the proposed technique and in comparison with the conventional counterbalancing methodology. The experimental results substantiate the effectiveness of the method in significantly improving the imaging performance of AFM at high scan speeds. © 2011 American Institute of Physics

  1. Compensator design for improved counterbalancing in high speed atomic force microscopy

    PubMed Central

    Bozchalooi, I. S.; Youcef-Toumi, K.; Burns, D. J.; Fantner, G. E.

    2011-01-01

    High speed atomic force microscopy can provide the possibility of many new scientific observations and applications ranging from nano-manufacturing to the study of biological processes. However, the limited imaging speed has been an imperative drawback of the atomic force microscopes. One of the main reasons behind this limitation is the excitation of the AFM dynamics at high scan speeds, severely undermining the reliability of the acquired images. In this research, we propose a piezo based, feedforward controlled, counter actuation mechanism to compensate for the excited out-of-plane scanner dynamics. For this purpose, the AFM controller output is properly filtered via a linear compensator and then applied to a counter actuating piezo. An effective algorithm for estimating the compensator parameters is developed. The information required for compensator design is extracted from the cantilever deflection signal, hence eliminating the need for any additional sensors. The proposed approach is implemented and experimentally evaluated on the dynamic response of a custom made AFM. It is further assessed by comparing the imaging performance of the AFM with and without the application of the proposed technique and in comparison with the conventional counterbalancing methodology. The experimental results substantiate the effectiveness of the method in significantly improving the imaging performance of AFM at high scan speeds. PMID:22128989

  2. Compensator design for improved counterbalancing in high speed atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Bozchalooi, I. S.; Youcef-Toumi, K.; Burns, D. J.; Fantner, G. E.

    2011-11-01

    High speed atomic force microscopy can provide the possibility of many new scientific observations and applications ranging from nano-manufacturing to the study of biological processes. However, the limited imaging speed has been an imperative drawback of the atomic force microscopes. One of the main reasons behind this limitation is the excitation of the AFM dynamics at high scan speeds, severely undermining the reliability of the acquired images. In this research, we propose a piezo based, feedforward controlled, counter actuation mechanism to compensate for the excited out-of-plane scanner dynamics. For this purpose, the AFM controller output is properly filtered via a linear compensator and then applied to a counter actuating piezo. An effective algorithm for estimating the compensator parameters is developed. The information required for compensator design is extracted from the cantilever deflection signal, hence eliminating the need for any additional sensors. The proposed approach is implemented and experimentally evaluated on the dynamic response of a custom made AFM. It is further assessed by comparing the imaging performance of the AFM with and without the application of the proposed technique and in comparison with the conventional counterbalancing methodology. The experimental results substantiate the effectiveness of the method in significantly improving the imaging performance of AFM at high scan speeds.

  3. Scanning superlens microscopy for non-invasive large field-of-view visible light nanoscale imaging

    NASA Astrophysics Data System (ADS)

    Wang, Feifei; Liu, Lianqing; Yu, Haibo; Wen, Yangdong; Yu, Peng; Liu, Zhu; Wang, Yuechao; Li, Wen Jung

    2016-12-01

    Nanoscale correlation of structural information acquisition with specific-molecule identification provides new insight for studying rare subcellular events. To achieve this correlation, scanning electron microscopy has been combined with super-resolution fluorescent microscopy, despite its destructivity when acquiring biological structure information. Here we propose time-efficient non-invasive microsphere-based scanning superlens microscopy that enables the large-area observation of live-cell morphology or sub-membrane structures with sub-diffraction-limited resolution and is demonstrated by observing biological and non-biological objects. This microscopy operates in both non-invasive and contact modes with ~200 times the acquisition efficiency of atomic force microscopy, which is achieved by replacing the point of an atomic force microscope tip with an imaging area of microspheres and stitching the areas recorded during scanning, enabling sub-diffraction-limited resolution. Our method marks a possible path to non-invasive cell imaging and simultaneous tracking of specific molecules with nanoscale resolution, facilitating the study of subcellular events over a total cell period.

  4. Taking nanomedicine teaching into practice with atomic force microscopy and force spectroscopy.

    PubMed

    Carvalho, Filomena A; Freitas, Teresa; Santos, Nuno C

    2015-12-01

    Atomic force microscopy (AFM) is a useful and powerful tool to study molecular interactions applied to nanomedicine. The aim of the present study was to implement a hands-on atomic AFM course for graduated biosciences and medical students. The course comprises two distinct practical sessions, where students get in touch with the use of an atomic force microscope by performing AFM scanning images of human blood cells and force spectroscopy measurements of the fibrinogen-platelet interaction. Since the beginning of this course, in 2008, the overall rating by the students was 4.7 (out of 5), meaning a good to excellent evaluation. Students were very enthusiastic and produced high-quality AFM images and force spectroscopy data. The implementation of the hands-on AFM course was a success, giving to the students the opportunity of contact with a technique that has a wide variety of applications on the nanomedicine field. In the near future, nanomedicine will have remarkable implications in medicine regarding the definition, diagnosis, and treatment of different diseases. AFM enables students to observe single molecule interactions, enabling the understanding of molecular mechanisms of different physiological and pathological processes at the nanoscale level. Therefore, the introduction of nanomedicine courses in bioscience and medical school curricula is essential. Copyright © 2015 The American Physiological Society.

  5. Correction of image drift and distortion in a scanning electron microscopy.

    PubMed

    Jin, P; Li, X

    2015-12-01

    Continuous research on small-scale mechanical structures and systems has attracted strong demand for ultrafine deformation and strain measurements. Conventional optical microscope cannot meet such requirements owing to its lower spatial resolution. Therefore, high-resolution scanning electron microscope has become the preferred system for high spatial resolution imaging and measurements. However, scanning electron microscope usually is contaminated by distortion and drift aberrations which cause serious errors to precise imaging and measurements of tiny structures. This paper develops a new method to correct drift and distortion aberrations of scanning electron microscope images, and evaluates the effect of correction by comparing corrected images with scanning electron microscope image of a standard sample. The drift correction is based on the interpolation scheme, where a series of images are captured at one location of the sample and perform image correlation between the first image and the consequent images to interpolate the drift-time relationship of scanning electron microscope images. The distortion correction employs the axial symmetry model of charged particle imaging theory to two images sharing with the same location of one object under different imaging fields of view. The difference apart from rigid displacement between the mentioned two images will give distortion parameters. Three-order precision is considered in the model and experiment shows that one pixel maximum correction is obtained for the employed high-resolution electron microscopic system. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.

  6. A method for fast automated microscope image stitching.

    PubMed

    Yang, Fan; Deng, Zhen-Sheng; Fan, Qiu-Hong

    2013-05-01

    Image stitching is an important technology to produce a panorama or larger image by combining several images with overlapped areas. In many biomedical researches, image stitching is highly desirable to acquire a panoramic image which represents large areas of certain structures or whole sections, while retaining microscopic resolution. In this study, we develop a fast normal light microscope image stitching algorithm based on feature extraction. At first, an algorithm of scale-space reconstruction of speeded-up robust features (SURF) was proposed to extract features from the images to be stitched with a short time and higher repeatability. Then, the histogram equalization (HE) method was employed to preprocess the images to enhance their contrast for extracting more features. Thirdly, the rough overlapping zones of the images preprocessed were calculated by phase correlation, and the improved SURF was used to extract the image features in the rough overlapping areas. Fourthly, the features were corresponded by matching algorithm and the transformation parameters were estimated, then the images were blended seamlessly. Finally, this procedure was applied to stitch normal light microscope images to verify its validity. Our experimental results demonstrate that the improved SURF algorithm is very robust to viewpoint, illumination, blur, rotation and zoom of the images and our method is able to stitch microscope images automatically with high precision and high speed. Also, the method proposed in this paper is applicable to registration and stitching of common images as well as stitching the microscope images in the field of virtual microscope for the purpose of observing, exchanging, saving, and establishing a database of microscope images. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Nanospectrofluorometry inside single living cell by scanning near-field optical microscopy

    NASA Astrophysics Data System (ADS)

    Lei, F. H.; Shang, G. Y.; Troyon, M.; Spajer, M.; Morjani, H.; Angiboust, J. F.; Manfait, M.

    2001-10-01

    Near-field fluorescence spectra with subdiffraction limit spatial resolution have been taken in the proximity of mitochondrial membrane inside breast adenocarcinoma cells (MCF7) treated with the fluorescent dye (JC-1) by using a scanning near-field optical microscope coupled with a confocal laser microspectrofluorometer. The probe-sample distance control is based on a piezoelectric bimorph shear force sensor having a static spring constant k=5 μN/nm and a quality factor Q=40 in a physiological medium of viscosity η=1.0 cp. The sensitivity of the force sensor has been tested by imaging a MCF7 cell surface.

  8. Atomic force microscopy of starch systems.

    PubMed

    Zhu, Fan

    2017-09-22

    Atomic force microscopy (AFM) generates information on topography, adhesion, and elasticity of sample surface by touching with a tip. Under suitable experimental settings, AFM can image biopolymers of few nanometers. Starch is a major food and industrial component. AFM has been used to probe the morphology, properties, modifications, and interactions of starches from diverse botanical origins at both micro- and nano-structural levels. The structural information obtained by AFM supports the blocklet structure of the granules, and provides qualitative and quantitative basis for some physicochemical properties of diverse starch systems. It becomes evident that AFM can complement other microscopic techniques to provide novel structural insights for starch systems.

  9. Correlation between surface morphology and surface forces of protein A adsorbed on mica.

    PubMed Central

    Ohnishi, S; Murata, M; Hato, M

    1998-01-01

    We have investigated the morphology and surface forces of protein A adsorbed on mica surface in the protein solutions of various concentrations. The force-distance curves, measured with a surface force apparatus (SFA), were interpreted in terms of two different regimens: a "large-distance" regimen in which an electrostatic double-layer force dominates, and an "adsorbed layer" regimen in which a force of steric origin dominates. To further clarify the forces of steric origin, the surface morphology of the adsorbed protein layer was investigated with an atomic force microscope (AFM) because the steric repulsive forces are strongly affected by the adsorption mode of protein A molecules on mica. At lower protein concentrations (2 ppm, 10 ppm), protein A molecules were adsorbed "side-on" parallel to the mica surfaces, forming a monolayer of approximately 2.5 nm. AFM images at higher concentrations (30 ppm, 100 ppm) showed protruding structures over the monolayer, which revealed that the adsorbed protein A molecules had one end oriented into the solution, with the remainder of each molecule adsorbed side-on to the mica surface. These extending ends of protein A overlapped each other and formed a "quasi-double layer" over the mica surface. These AFM images proved the existence of a monolayer of protein A molecules at low concentrations and a "quasi-double layer" with occasional protrusions at high concentrations, which were consistent with the adsorption mode observed in the force-distance curves. PMID:9449346

  10. High-speed atomic force microscopy and peak force tapping control

    NASA Astrophysics Data System (ADS)

    Hu, Shuiqing; Mininni, Lars; Hu, Yan; Erina, Natalia; Kindt, Johannes; Su, Chanmin

    2012-03-01

    ITRS Roadmap requires defect size measurement below 10 nanometers and challenging classifications for both blank and patterned wafers and masks. Atomic force microscope (AFM) is capable of providing metrology measurement in 3D at sub-nanometer accuracy but has long suffered from drawbacks in throughput and limitation of slow topography imaging without chemical information. This presentation focus on two disruptive technology developments, namely high speed AFM and quantitative nanomechanical mapping, which enables high throughput measurement with capability of identifying components through concurrent physical property imaging. The high speed AFM technology has allowed the imaging speed increase by 10-100 times without loss of the data quality. Such improvement enables the speed of defect review on a wafer to increase from a few defects per hour to nearly 100 defects an hour, approaching the requirements of ITRS Roadmap. Another technology development, Peak Force Tapping, substantially simplified the close loop system response, leading to self-optimization of most challenging samples groups to generate expert quality data. More importantly, AFM also simultaneously provides a series of mechanical property maps with a nanometer spatial resolution during defect review. These nanomechanical maps (including elastic modulus, hardness, and surface adhesion) provide complementary information for elemental analysis, differentiate defect materials by their physical properties, and assist defect classification beyond topographic measurements. This paper will explain the key enabling technologies, namely high speed tip-scanning AFM using innovative flexure design and control algorithm. Another critical element is AFM control using Peak Force Tapping, in which the instantaneous tip-sample interaction force is measured and used to derive a full suite of physical properties at each imaging pixel. We will provide examples of defect review data on different wafers and media disks. The similar AFM-based defect review capacity was also applied to EUV masks.

  11. Cluster secondary ion mass spectrometry microscope mode mass spectrometry imaging.

    PubMed

    Kiss, András; Smith, Donald F; Jungmann, Julia H; Heeren, Ron M A

    2013-12-30

    Microscope mode imaging for secondary ion mass spectrometry is a technique with the promise of simultaneous high spatial resolution and high-speed imaging of biomolecules from complex surfaces. Technological developments such as new position-sensitive detectors, in combination with polyatomic primary ion sources, are required to exploit the full potential of microscope mode mass spectrometry imaging, i.e. to efficiently push the limits of ultra-high spatial resolution, sample throughput and sensitivity. In this work, a C60 primary source was combined with a commercial mass microscope for microscope mode secondary ion mass spectrometry imaging. The detector setup is a pixelated detector from the Medipix/Timepix family with high-voltage post-acceleration capabilities. The system's mass spectral and imaging performance is tested with various benchmark samples and thin tissue sections. The high secondary ion yield (with respect to 'traditional' monatomic primary ion sources) of the C60 primary ion source and the increased sensitivity of the high voltage detector setup improve microscope mode secondary ion mass spectrometry imaging. The analysis time and the signal-to-noise ratio are improved compared with other microscope mode imaging systems, all at high spatial resolution. We have demonstrated the unique capabilities of a C60 ion microscope with a Timepix detector for high spatial resolution microscope mode secondary ion mass spectrometry imaging. Copyright © 2013 John Wiley & Sons, Ltd.

  12. Wide-Spectrum Microscope with a Long Working Distance Aspherical Objective Based on Obscuration Constraint

    PubMed Central

    Wang, Weibo; Wang, Chao; Liu, Jian; Tan, Jiubin

    2016-01-01

    We present an approach for an initial configuration design based on obscuration constraint and on-axis Taylor series expansion to realize the design of long working distance microscope (numerical aperture (NA) = 0.13 and working distance (WD) = 525 mm) with a low obscuration aspherical Schwarzschild objective in wide-spectrum imaging (λ = 400–900 nm). Experiments of the testing on the resolution target and inspection on United States Air Force (USAF) resolution chart and a line charge-coupled device (CCD) (pixel size of 14 μm × 56 μm) with different wavelength light sources (λ = 480 nm, 550 nm, 660 nm, 850 nm) were implemented to verify the validity of the proposed method. PMID:27834874

  13. Assembly and microscopic characterization of DNA origami structures.

    PubMed

    Scheible, Max; Jungmann, Ralf; Simmel, Friedrich C

    2012-01-01

    DNA origami is a revolutionary method for the assembly of molecular nanostructures from DNA with precisely defined dimensions and with an unprecedented yield. This can be utilized to arrange nanoscale components such as proteins or nanoparticles into pre-defined patterns. For applications it will now be of interest to arrange such components into functional complexes and study their geometry-dependent interactions. While commonly DNA nanostructures are characterized by atomic force microscopy or electron microscopy, these techniques often lack the time-resolution to study dynamic processes. It is therefore of considerable interest to also apply fluorescence microscopic techniques to DNA nanostructures. Of particular importance here is the utilization of novel super-resolved microscopy methods that enable imaging beyond the classical diffraction limit.

  14. Effect of Curcumin on the metal ion induced fibrillization of Amyloid-β peptide

    NASA Astrophysics Data System (ADS)

    Banerjee, Rona

    2014-01-01

    The effect of Curcumin on Cu(II) and Zn(II) induced oligomerization and protofibrillization of the amyloid-beta (Aβ) peptide has been studied by spectroscopic and microscopic methods. Curcumin could significantly reduce the β-sheet content of the peptide in a time dependent manner. It also plays an antagonistic role in β-sheet formation that is promoted by metal ions like Cu(II) and Zn(II) as observed by Circular Dichroism (CD) spectroscopy. Atomic force microscopic (AFM) images show that spontaneous fibrillization of the peptide occurs in presence of Cu(II) and Zn(II) but is inhibited on incubation of the peptide with Curcumin indicating the beneficial role of Curcumin in preventing the aggregation of Aβ peptide.

  15. Fast scanning mode and its realization in a scanning acoustic microscope

    NASA Astrophysics Data System (ADS)

    Ju, Bing-Feng; Bai, Xiaolong; Chen, Jian

    2012-03-01

    The scanning speed of the two-dimensional stage dominates the efficiency of mechanical scanning measurement systems. This paper focused on a detailed scanning time analysis of conventional raster and spiral scan modes and then proposed two fast alternative scanning modes. Performed on a self-developed scanning acoustic microscope (SAM), the measured images obtained by using the conventional scan mode and fast scan modes are compared. The total scanning time is reduced by 29% of the two proposed fast scan modes. It will offer a better solution for high speed scanning without sacrificing the system stability, and will not introduce additional difficulties to the configuration of scanning measurement systems. They can be easily applied to the mechanical scanning measuring systems with different driving actuators such as piezoelectric, linear motor, dc motor, and so on. The proposed fast raster and square spiral scan modes are realized in SAM, but not specially designed for it. Therefore, they have universal adaptability and can be applied to other scanning measurement systems with two-dimensional mechanical scanning stages, such as atomic force microscope or scanning tunneling microscope.

  16. Three-dimensional morphological imaging of human induced pluripotent stem cells by using low-coherence quantitative phase microscopy

    NASA Astrophysics Data System (ADS)

    Yamauchi, Toyohiko; Kakuno, Yumi; Goto, Kentaro; Fukami, Tadashi; Sugiyama, Norikazu; Iwai, Hidenao; Mizuguchi, Yoshinori; Yamashita, Yutaka

    2014-03-01

    There is an increasing need for non-invasive imaging techniques in the field of stem cell research. Label-free techniques are the best choice for assessment of stem cells because the cells remain intact after imaging and can be used for further studies such as differentiation induction. To develop a high-resolution label-free imaging system, we have been working on a low-coherence quantitative phase microscope (LC-QPM). LC-QPM is a Linnik-type interference microscope equipped with nanometer-resolution optical-path-length control and capable of obtaining three-dimensional volumetric images. The lateral and vertical resolutions of our system are respectively 0.5 and 0.93 μm and this performance allows capturing sub-cellular morphological features of live cells without labeling. Utilizing LC-QPM, we reported on three-dimensional imaging of membrane fluctuations, dynamics of filopodia, and motions of intracellular organelles. In this presentation, we report three-dimensional morphological imaging of human induced pluripotent stem cells (hiPS cells). Two groups of monolayer hiPS cell cultures were prepared so that one group was cultured in a suitable culture medium that kept the cells undifferentiated, and the other group was cultured in a medium supplemented with retinoic acid, which forces the stem cells to differentiate. The volumetric images of the 2 groups show distinctive differences, especially in surface roughness. We believe that our LC-QPM system will prove useful in assessing many other stem cell conditions.

  17. Microscopic Mapping of Subnanometric Motion with Multiple-Beam Differential Holographic Technique

    NASA Astrophysics Data System (ADS)

    Lin, Hungyi

    The measurement of ultrasmall displacement is usually performed by laser interferometry. In most cases, this method is specified for the surface measurement and requires a relatively smooth surface capable of reflecting light. In this research, a newly developed method, mutiple -beam microdifferential holography, is introduced to measure a small configuration change. This configuration change can happen on the surface of an object or inside a semitransparent object. In the experiment, two reference beams are used to record a pair of phase biased holographic images simultaneously. During the image reconstruction, the CCD image acquisition system is employed to record the pair of images one at a time and then process them digitally. The subtraction image intuitively shows that the deformation of tested object occurs between the double exposures applied during the holographic recording. A second object beam, usually a plane wave, is added to the imaging system for the purpose of image registration, which is required for the image processing. Several developments upgraded the system performance. The calibration was done with an extremely consistent moving object, a small air bubble drifting in a glycerine-filled capillary. Displacements as small as 0.4 nanometer are reported. In application, a living cell, a single frog muscle fiber, was under examination. This part of the research focused mainly on the crossbridge mechanism of striated muscle contraction. The images made at the plateau of tetanus suggest either that the cycling time constant is much longer than 10 msec, that the displacement for a power stroke is substantially less than 12 nanometer, or that the crossbridge is not cycling during the isometric force generation. The images made at the initial state of force development suggest that a large number of crossbridges shift toward the actin filament at the onset of the force development and stay there (at least without large scale rotation) even when the force has started to develop.

  18. Live Imaging of Shoot Meristems on an Inverted Confocal Microscope Using an Objective Lens Inverter Attachment

    PubMed Central

    Nimchuk, Zachary L.; Perdue, Tony D.

    2017-01-01

    Live imaging of above ground meristems can lead to new insights in plant development not possible from static imaging of fixed tissue. The use of an upright confocal microscope offers several technical and biological advantages for live imaging floral or shoot meristems. However, many departments and core facilities possess only inverted confocal microscopes and lack the funding for an additional upright confocal microscope. Here we show that imaging of living apical meristems can be performed on existing inverted confocal microscopes with the use of an affordable and detachable InverterScope accessory. PMID:28579995

  19. Live Imaging of Shoot Meristems on an Inverted Confocal Microscope Using an Objective Lens Inverter Attachment.

    PubMed

    Nimchuk, Zachary L; Perdue, Tony D

    2017-01-01

    Live imaging of above ground meristems can lead to new insights in plant development not possible from static imaging of fixed tissue. The use of an upright confocal microscope offers several technical and biological advantages for live imaging floral or shoot meristems. However, many departments and core facilities possess only inverted confocal microscopes and lack the funding for an additional upright confocal microscope. Here we show that imaging of living apical meristems can be performed on existing inverted confocal microscopes with the use of an affordable and detachable InverterScope accessory.

  20. Physics and engineering aspects of cell and tissue imaging systems: microscopic devices and computer assisted diagnosis.

    PubMed

    Chen, Xiaodong; Ren, Liqiang; Zheng, Bin; Liu, Hong

    2013-01-01

    The conventional optical microscopes have been used widely in scientific research and in clinical practice. The modern digital microscopic devices combine the power of optical imaging and computerized analysis, archiving and communication techniques. It has a great potential in pathological examinations for improving the efficiency and accuracy of clinical diagnosis. This chapter reviews the basic optical principles of conventional microscopes, fluorescence microscopes and electron microscopes. The recent developments and future clinical applications of advanced digital microscopic imaging methods and computer assisted diagnosis schemes are also discussed.

  1. Stimulated Raman spectroscopy and nanoscopy of molecules using near field photon induced forces without resonant electronic enhancement gain

    NASA Astrophysics Data System (ADS)

    Tamma, Venkata Ananth; Huang, Fei; Nowak, Derek; Kumar Wickramasinghe, H.

    2016-06-01

    We report on stimulated Raman spectroscopy and nanoscopy of molecules, excited without resonant electronic enhancement gain, and recorded using near field photon induced forces. Photon-induced interaction forces between the sharp metal coated silicon tip of an Atomic Force Microscope (AFM) and a sample resulting from stimulated Raman excitation were detected. We controlled the tip to sample spacing using the higher order flexural eigenmodes of the AFM cantilever, enabling the tip to come very close to the sample. As a result, the detection sensitivity was increased compared with previous work on Raman force microscopy. Raman vibrational spectra of azobenzene thiol and l-phenylalanine were measured and found to agree well with published results. Near-field force detection eliminates the need for far-field optical spectrometer detection. Recorded images show spatial resolution far below the optical diffraction limit. Further optimization and use of ultrafast pulsed lasers could push the detection sensitivity towards the single molecule limit.

  2. Stimulated Raman spectroscopy and nanoscopy of molecules using near field photon induced forces without resonant electronic enhancement gain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tamma, Venkata Ananth; Huang, Fei; Kumar Wickramasinghe, H., E-mail: hkwick@uci.edu

    We report on stimulated Raman spectroscopy and nanoscopy of molecules, excited without resonant electronic enhancement gain, and recorded using near field photon induced forces. Photon-induced interaction forces between the sharp metal coated silicon tip of an Atomic Force Microscope (AFM) and a sample resulting from stimulated Raman excitation were detected. We controlled the tip to sample spacing using the higher order flexural eigenmodes of the AFM cantilever, enabling the tip to come very close to the sample. As a result, the detection sensitivity was increased compared with previous work on Raman force microscopy. Raman vibrational spectra of azobenzene thiol andmore » l-phenylalanine were measured and found to agree well with published results. Near-field force detection eliminates the need for far-field optical spectrometer detection. Recorded images show spatial resolution far below the optical diffraction limit. Further optimization and use of ultrafast pulsed lasers could push the detection sensitivity towards the single molecule limit.« less

  3. Performance evaluation of image segmentation algorithms on microscopic image data.

    PubMed

    Beneš, Miroslav; Zitová, Barbara

    2015-01-01

    In our paper, we present a performance evaluation of image segmentation algorithms on microscopic image data. In spite of the existence of many algorithms for image data partitioning, there is no universal and 'the best' method yet. Moreover, images of microscopic samples can be of various character and quality which can negatively influence the performance of image segmentation algorithms. Thus, the issue of selecting suitable method for a given set of image data is of big interest. We carried out a large number of experiments with a variety of segmentation methods to evaluate the behaviour of individual approaches on the testing set of microscopic images (cross-section images taken in three different modalities from the field of art restoration). The segmentation results were assessed by several indices used for measuring the output quality of image segmentation algorithms. In the end, the benefit of segmentation combination approach is studied and applicability of achieved results on another representatives of microscopic data category - biological samples - is shown. © 2014 The Authors Journal of Microscopy © 2014 Royal Microscopical Society.

  4. Optimal Control-Enabled Imaging and Spectroscopy using a Nanowire Magnetic Resonance Force Microscope

    NASA Astrophysics Data System (ADS)

    Rose, William; Haas, Holger; Chen, Angela; Cory, David; Budakian, Raffi

    Magnetic resonance imaging (MRI) is a powerful non-invasive technique that has transformed our ability to study the structure and function of biological systems. Key to its success has been the unique ability to combine imaging with magnetic resonance spectroscopy. Although it remains a significant challenge, there is considerable interest in extending MRI spectroscopy to the nanometer scale because it would provide a fundamentally new route for determining the structure and function of complex biomolecules. We present data taken with a nanowire magnetic resonance force microscopy (MRFM) setup. We show how the capabilities of this very sensitive spin-detection system can be extended to include spectroscopy and nanometer-scale imaging by combining optimal control theory (OCT) techniques with magic echo sequences. We apply OCT-based dynamical-decoupling pulses to nanoscale ensembles of proton spins in polystyrene, and demonstrate a 500-fold line-narrowing of the proton spin resonance, from 30 kHz to 60 Hz. We further demonstrate 1-D imaging over a 35-nm region with an average voxel size of 2.2 nm. Funding provided by the U.S. Army Research Office, Grant No. W911NF-12-1-0341.

  5. A Minimal Optical Trapping and Imaging Microscopy System

    PubMed Central

    Hernández Candia, Carmen Noemí; Tafoya Martínez, Sara; Gutiérrez-Medina, Braulio

    2013-01-01

    We report the construction and testing of a simple and versatile optical trapping apparatus, suitable for visualizing individual microtubules (∼25 nm in diameter) and performing single-molecule studies, using a minimal set of components. This design is based on a conventional, inverted microscope, operating under plain bright field illumination. A single laser beam enables standard optical trapping and the measurement of molecular displacements and forces, whereas digital image processing affords real-time sample visualization with reduced noise and enhanced contrast. We have tested our trapping and imaging instrument by measuring the persistence length of individual double-stranded DNA molecules, and by following the stepping of single kinesin motor proteins along clearly imaged microtubules. The approach presented here provides a straightforward alternative for studies of biomaterials and individual biomolecules. PMID:23451216

  6. Low-noise humidity controller for imaging water mediated processes in atomic force microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gaponenko, I., E-mail: iaroslav.gaponenko@unige.ch; Gamperle, L.; Herberg, K.

    2016-06-15

    We demonstrate the construction of a novel low-noise continuous flow humidity controller and its integration with a commercial variable-temperature atomic force microscope fluid cell, allowing precise control of humidity and temperature at the sample during nanoscale measurements. Based on wet and dry gas mixing, the design allows a high mechanical stability to be achieved by means of an ultrasonic atomiser for the generation of water-saturated gas, improving upon previous bubbler-based architectures. Water content in the flow is measured both at the inflow and outflow of the fluid cell, enabling the monitoring of water condensation and icing, and allowing controlled variationmore » of the sample temperature independently of the humidity. To benchmark the performance of the controller, the results of detailed noise studies and time-based imaging of the formation of ice layers on highly oriented pyrolytic graphite are shown.« less

  7. Atomic force microscopic investigation of commercial pressure sensitive adhesives for forensic analysis.

    PubMed

    Canetta, Elisabetta; Adya, Ashok K

    2011-07-15

    Pressure sensitive adhesive (PSA), such as those used in packaging and adhesive tapes, are very often encountered in forensic investigations. In criminal activities, packaging tapes may be used for sealing packets containing drugs, explosive devices, or questioned documents, while adhesive and electrical tapes are used occasionally in kidnapping cases. In this work, the potential of using atomic force microscopy (AFM) in both imaging and force mapping (FM) modes to derive additional analytical information from PSAs is demonstrated. AFM has been used to illustrate differences in the ultrastructural and nanomechanical properties of three visually distinguishable commercial PSAs to first test the feasibility of using this technique. Subsequently, AFM was used to detect nanoscopic differences between three visually indistinguishable PSAs. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  8. Stretching of red blood cells by optical tweezers quantified by digital holographic microscopy

    NASA Astrophysics Data System (ADS)

    Cardenas, Nelson; Yu, Lingfeng; Mohanty, Samarendra K.

    2011-03-01

    Red blood cells (RBC) possess unique viscoelastic characteristics which allow them to pass through capillaries narrower than their size. Measurement of viscoelastic property of cells (e.g. RBC) in low-force regime is of high significance as it represents conditions of membrane fluctuation in response to physiological conditions. Estimation of visco-elastic properties of RBC requires measurement of extent of deformation in RBC subjected to known force. Optical tweezers, being gentle and absolutely sterile, are emerging as the tool of choice for application of localized force on cells. However, stretching of RBC in very low force regime has not been quantified. Further, though deformations in transverse directions have been measured, vertical deformations due to stretching of cells cannot be quantified by classical microscopic images. Here, we report realization of offaxis digital holographic microscopy (DHM) for highly sensitive axial changes in RBC shape due to stretching by optical tweezers without attaching microscopic beads. The RBC was stretched in axial direction with nanometer precision by change of divergence of the trapping beam. The obtained deformation patterns were compared with the axial position of the tweezers focus. Since the pathophysiology of progression of diseases like malaria and cancer is reflected in the biophysical (both mechanical and material) properties of the cells, it is possible to identify the changes by simultaneous measurement of refractive index and elasticity using this approach.

  9. Intraoral corrosion of self-ligating metallic brackets and archwires and the effect on friction

    NASA Astrophysics Data System (ADS)

    Tima, Lori Lynn

    The purpose of this study was to investigate how the frictional coefficient was affected due to intraoral use. A secondary aim of this study was to determine whether or not there was a relationship between corrosion of orthodontic alloys and friction via scanning electron microscopic qualitative analysis. Orthodontic brackets and 0.019 x 0.025 inch stainless steel archwires were collected and divided into three groups of n=10: used bracket and used wires (UBUW), used brackets and new wires (UBNW), and new brackets and new wires (NBNW). New materials were as-received from the manufacturer, and used materials were clinically used bracket and wires collected from patients following orthodontic treatment. Archwires were pulled through bracket slots at a rate of 0.5mm/min while friction forces were measured. Following a cleaning process, the surface topography of the bracket slots was examined under a scanning electron microscope (SEM). Based on a 1-factor MANOVA, there was no significant group effect (all p>0.05) on frictional forces. Partial eta squared values indicated that intraoral exposure had only a small effect on frictional forces (≤ 3%). Qualitative analysis of SEM images did not show an association between surface characteristics of the bracket slots and magnitude of frictional force. Results suggest that surface corrosion from intraoral use does not significantly affect friction at the bracket wire interface.

  10. Quantitative in-situ scanning electron microscope pull-out experiments and molecular dynamics simulations of carbon nanotubes embedded in palladium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hartmann, S., E-mail: steffen.hartmann@etit.tu-chemnitz.de; Blaudeck, T.; Hermann, S.

    2014-04-14

    In this paper, we present our results of experimental and numerical pull-out tests on carbon nanotubes (CNTs) embedded in palladium. We prepared simple specimens by employing standard silicon wafers, physical vapor deposition of palladium and deposition of CNTs with a simple drop coating technique. An AFM cantilever with known stiffness connected to a nanomanipulation system was utilized inside a scanning electron microscope (SEM) as a force sensor to determine forces acting on a CNT during the pull-out process. SEM-images of the cantilever attached to a CNT have been evaluated for subsequent displacement steps with greyscale correlation to determine the cantilevermore » deflection. We compare the experimentally obtained pull-out forces with values of numerical investigations by means of molecular dynamics and give interpretations for deviations according to material impurities or defects and their influence on the pull-out data. We find a very good agreement of force data from simulation and experiment, which is 17 nN and in the range of 10–61 nN, respectively. Our findings contribute to the ongoing research of the mechanical characterization of CNT-metal interfaces. This is of significant interest for the design of future mechanical sensors utilizing the intrinsic piezoresistive effect of CNTs or other future devices incorporating CNT-metal interfaces.« less

  11. Microscope basics.

    PubMed

    Sluder, Greenfield; Nordberg, Joshua J

    2013-01-01

    This chapter provides information on how microscopes work and discusses some of the microscope issues to be considered in using a video camera on the microscope. There are two types of microscopes in use today for research in cell biology-the older finite tube-length (typically 160mm mechanical tube length) microscopes and the infinity optics microscopes that are now produced. The objective lens forms a magnified, real image of the specimen at a specific distance from the objective known as the intermediate image plane. All objectives are designed to be used with the specimen at a defined distance from the front lens element of the objective (the working distance) so that the image formed is located at a specific location in the microscope. Infinity optics microscopes differ from the finite tube-length microscopes in that the objectives are designed to project the image of the specimen to infinity and do not, on their own, form a real image of the specimen. Three types of objectives are in common use today-plan achromats, plan apochromats, and plan fluorite lenses. The concept of mounting video cameras on the microscope is also presented in the chapter. Copyright © 2003 Elsevier Inc. All rights reserved.

  12. Development of carbon electrodes for electrochemistry, solid-state electronics and multimodal atomic force microscopy imaging

    NASA Astrophysics Data System (ADS)

    Morton, Kirstin Claire

    Carbon is one of the most remarkable elements due to its wide abundance on Earth and its many allotropes, which include diamond and graphite. Many carbon allotropes are conductive and in recent decades scientists have discovered and synthesized many new forms of carbon, including graphene and carbon nanotubes. The work in this thesis specifically focuses on the fabrication and characterization of pyrolyzed parylene C (PPC), a conductive pyrocarbon, as an electrode material for diodes, as a conductive coating for atomic force microscopy (AFM) probes and as an ultramicroelectrode (UME) for the electrochemical interrogation of cellular systems in vitro. Herein, planar and three-dimensional (3D) PPC electrodes were microscopically, spectroscopically and electrochemically characterized. First, planar PPC films and PPC-coated nanopipettes were utilized to detect a model redox species, Ru(NH3) 6Cl3. Then, free-standing PPC thin films were chemically doped, with hydrazine and concentrated nitric acid, to yield p- and n-type carbon films. Doped PPC thin films were positioned in conjunction with doped silicon to create Schottky and p-n junction diodes for use in an alternating current half-wave rectifier circuit. Pyrolyzed parylene C has found particular merit as a 3D electrode coating of AFM probes. Current sensing-atomic force microscopy imaging in air of nanoscale metallic features was undertaken to demonstrate the electronic imaging applicability of PPC AFM probes. Upon further insulation with parylene C and modification with a focused ion beam, a PPC UME was microfabricated near the AFM probe apex and utilized for electrochemical imaging. Subsequently, scanning electrochemical microscopy-atomic force microscopy imaging was undertaken to electrochemically quantify and image the spatial location of dopamine exocytotic release, elicited mechanically via the AFM probe itself, from differentiated pheochromocytoma 12 cells in vitro.

  13. Refined tip preparation by electrochemical etching and ultrahigh vacuum treatment to obtain atomically sharp tips for scanning tunneling microscope and atomic force microscope.

    PubMed

    Hagedorn, Till; El Ouali, Mehdi; Paul, William; Oliver, David; Miyahara, Yoichi; Grütter, Peter

    2011-11-01

    A modification of the common electrochemical etching setup is presented. The described method reproducibly yields sharp tungsten tips for usage in the scanning tunneling microscope and tuning fork atomic force microscope. In situ treatment under ultrahigh vacuum (p ≤10(-10) mbar) conditions for cleaning and fine sharpening with minimal blunting is described. The structure of the microscopic apex of these tips is atomically resolved with field ion microscopy and cross checked with field emission. © 2011 American Institute of Physics

  14. Multifunctional hydrogel nano-probes for atomic force microscopy

    PubMed Central

    Lee, Jae Seol; Song, Jungki; Kim, Seong Oh; Kim, Seokbeom; Lee, Wooju; Jackman, Joshua A.; Kim, Dongchoul; Cho, Nam-Joon; Lee, Jungchul

    2016-01-01

    Since the invention of the atomic force microscope (AFM) three decades ago, there have been numerous advances in its measurement capabilities. Curiously, throughout these developments, the fundamental nature of the force-sensing probe—the key actuating element—has remained largely unchanged. It is produced by long-established microfabrication etching strategies and typically composed of silicon-based materials. Here, we report a new class of photopolymerizable hydrogel nano-probes that are produced by bottom-up fabrication with compressible replica moulding. The hydrogel probes demonstrate excellent capabilities for AFM imaging and force measurement applications while enabling programmable, multifunctional capabilities based on compositionally adjustable mechanical properties and facile encapsulation of various nanomaterials. Taken together, the simple, fast and affordable manufacturing route and multifunctional capabilities of hydrogel AFM nano-probes highlight the potential of soft matter mechanical transducers in nanotechnology applications. The fabrication scheme can also be readily utilized to prepare hydrogel cantilevers, including in parallel arrays, for nanomechanical sensor devices. PMID:27199165

  15. A variable-temperature nanostencil compatible with a low-temperature scanning tunneling microscope/atomic force microscope

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steurer, Wolfram, E-mail: wst@zurich.ibm.com; Gross, Leo; Schlittler, Reto R.

    2014-02-15

    We describe a nanostencil lithography tool capable of operating at variable temperatures down to 30 K. The setup is compatible with a combined low-temperature scanning tunneling microscope/atomic force microscope located within the same ultra-high-vacuum apparatus. The lateral movement capability of the mask allows the patterning of complex structures. To demonstrate operational functionality of the tool and estimate temperature drift and blurring, we fabricated LiF and NaCl nanostructures on Cu(111) at 77 K.

  16. A variable-temperature nanostencil compatible with a low-temperature scanning tunneling microscope/atomic force microscope.

    PubMed

    Steurer, Wolfram; Gross, Leo; Schlittler, Reto R; Meyer, Gerhard

    2014-02-01

    We describe a nanostencil lithography tool capable of operating at variable temperatures down to 30 K. The setup is compatible with a combined low-temperature scanning tunneling microscope/atomic force microscope located within the same ultra-high-vacuum apparatus. The lateral movement capability of the mask allows the patterning of complex structures. To demonstrate operational functionality of the tool and estimate temperature drift and blurring, we fabricated LiF and NaCl nanostructures on Cu(111) at 77 K.

  17. A Cost-Effective Atomic Force Microscope for Undergraduate Control Laboratories

    ERIC Educational Resources Information Center

    Jones, C. N.; Goncalves, J.

    2010-01-01

    This paper presents a simple, cost-effective and robust atomic force microscope (AFM), which has been purposely designed and built for use as a teaching aid in undergraduate controls labs. The guiding design principle is to have all components be open and visible to the students, so the inner functioning of the microscope has been made clear to…

  18. An automatic system to study sperm motility and energetics

    PubMed Central

    Nascimento, Jaclyn M.; Chandsawangbhuwana, Charlie; Botvinick, Elliot L.; Berns, Michael W.

    2012-01-01

    An integrated robotic laser and microscope system has been developed to automatically analyze individual sperm motility and energetics. The custom-designed optical system directs near-infrared laser light into an inverted microscope to create a single-point 3-D gradient laser trap at the focal spot of the microscope objective. A two-level computer structure is described that quantifies the sperm motility (in terms of swimming speed and swimming force) and energetics (measuring mid-piece membrane potential) using real-time tracking (done by the upper-level system) and fluorescent ratio imaging (done by the lower-level system). The communication between these two systems is achieved by a gigabit network. The custom-built image processing algorithm identifies the sperm swimming trajectory in real-time using phase contrast images, and then subsequently traps the sperm by automatically moving the microscope stage to relocate the sperm to the laser trap focal plane. Once the sperm is stably trapped (determined by the algorithm), the algorithm can also gradually reduce the laser power by rotating the polarizer in the laser path to measure the trapping power at which the sperm is capable of escaping the trap. To monitor the membrane potential of the mitochondria located in a sperm’s mid-piece, the sperm is treated with a ratiometrically-encoded fluorescent probe. The proposed algorithm can relocate the sperm to the center of the ratio imaging camera and the average ratio value can be measured in real-time. The three parameters, sperm escape power, sperm swimming speed and ratio values of the mid-piece membrane potential of individual sperm can be compared with respect to time. This two-level automatic system to study individual sperm motility and energetics has not only increased experimental throughput by an order of magnitude but also has allowed us to monitor sperm energetics prior to and after exposure to the laser trap. This system should have application in both the human fertility clinic and in animal husbandry. PMID:18299996

  19. An automatic system to study sperm motility and energetics.

    PubMed

    Shi, Linda Z; Nascimento, Jaclyn M; Chandsawangbhuwana, Charlie; Botvinick, Elliot L; Berns, Michael W

    2008-08-01

    An integrated robotic laser and microscope system has been developed to automatically analyze individual sperm motility and energetics. The custom-designed optical system directs near-infrared laser light into an inverted microscope to create a single-point 3-D gradient laser trap at the focal spot of the microscope objective. A two-level computer structure is described that quantifies the sperm motility (in terms of swimming speed and swimming force) and energetics (measuring mid-piece membrane potential) using real-time tracking (done by the upper-level system) and fluorescent ratio imaging (done by the lower-level system). The communication between these two systems is achieved by a gigabit network. The custom-built image processing algorithm identifies the sperm swimming trajectory in real-time using phase contrast images, and then subsequently traps the sperm by automatically moving the microscope stage to relocate the sperm to the laser trap focal plane. Once the sperm is stably trapped (determined by the algorithm), the algorithm can also gradually reduce the laser power by rotating the polarizer in the laser path to measure the trapping power at which the sperm is capable of escaping the trap. To monitor the membrane potential of the mitochondria located in a sperm's mid-piece, the sperm is treated with a ratiometrically-encoded fluorescent probe. The proposed algorithm can relocate the sperm to the center of the ratio imaging camera and the average ratio value can be measured in real-time. The three parameters, sperm escape power, sperm swimming speed and ratio values of the mid-piece membrane potential of individual sperm can be compared with respect to time. This two-level automatic system to study individual sperm motility and energetics has not only increased experimental throughput by an order of magnitude but also has allowed us to monitor sperm energetics prior to and after exposure to the laser trap. This system should have application in both the human fertility clinic and in animal husbandry.

  20. Modeling and Observations of Phase-Mask Trapezoidal Profiles with Grating-Fiber Image Reproduction

    NASA Technical Reports Server (NTRS)

    Lyons, Donald R.; Lindesay, James V.; Lee, Hyung R.; Ndlela, Zolili U.; Thompso, Erica J.

    2000-01-01

    We report on an investigation of the trapezoidal design and fabrication defects in phase masks used to produce Bragg reflection gratings in optical fibers. We used a direct visualization technique to examine the nonuniformity of the interference patterns generated by several phase masks. Fringe patterns from the phase masks are compared with the analogous patterns resulting from two-beam interference. Atomic force microscope imaging of the actual phase gratings that give rise to anomalous fringe patterns is used to determine input parameters for a general theoretical model. Phase masks with pitches of 0.566 and 1.059 microns are modeled and investigated.

  1. Error mapping of high-speed AFM systems

    NASA Astrophysics Data System (ADS)

    Klapetek, Petr; Picco, Loren; Payton, Oliver; Yacoot, Andrew; Miles, Mervyn

    2013-02-01

    In recent years, there have been several advances in the development of high-speed atomic force microscopes (HSAFMs) to obtain images with nanometre vertical and lateral resolution at frame rates in excess of 1 fps. To date, these instruments are lacking in metrology for their lateral scan axes; however, by imaging a series of two-dimensional lateral calibration standards, it has been possible to obtain information about the errors associated with these HSAFM scan axes. Results from initial measurements are presented in this paper and show that the scan speed needs to be taken into account when performing a calibration as it can lead to positioning errors of up to 3%.

  2. Midinfrared absorption measured at a lambda/400 resolution with an atomic force microscope.

    PubMed

    Houel, Julien; Homeyer, Estelle; Sauvage, Sébastien; Boucaud, Philippe; Dazzi, Alexandre; Prazeres, Rui; Ortéga, Jean-Michel

    2009-06-22

    Midinfrared absorption can be locally measured using a detection combining an atomic force microscope and a pulsed excitation. This is illustrated for the midinfrared bulk GaAs phonon absorption and for the midinfrared absorption of thin SiO(2) microdisks. We show that the signal given by the cantilever oscillation amplitude of the atomic force microscope follows the spectral dependence of the bulk material absorption. The absorption spatial resolution achieved with microdisks is around 50 nanometer for an optical excitation around 22 micrometer wavelength.

  3. Identification of staphylococcus species with hyperspectral microscope imaging and classification algrorithms

    USDA-ARS?s Scientific Manuscript database

    Hyperspectral microscope imaging is presented as a rapid and efficient tool to classify foodborne bacteria species. The spectral data were obtained from five different species of Staphylococcus spp. with a hyperspectral microscope imaging system that provided a maximum of 89 contiguous spectral imag...

  4. Cross-Scale Molecular Analysis of Chemical Heterogeneity in Shale Rocks

    DOE PAGES

    Hao, Zhao; Bechtel, Hans A.; Kneafsey, Timothy; ...

    2018-02-07

    The organic and mineralogical heterogeneity in shale at micrometer and nanometer spatial scales contributes to the quality of gas reserves, gas flow mechanisms and gas production. Here, we demonstrate two molecular imaging approaches based on infrared spectroscopy to obtain mineral and kerogen information at these mesoscale spatial resolutions in large-sized shale rock samples. The first method is a modified microscopic attenuated total reflectance measurement that utilizes a large germanium hemisphere combined with a focal plane array detector to rapidly capture chemical images of shale rock surfaces spanning hundreds of micrometers with micrometer spatial resolution. The second method, synchrotron infrared nano-spectroscopy,more » utilizes a metallic atomic force microscope tip to obtain chemical images of micrometer dimensions but with nanometer spatial resolution. This chemically "deconvoluted" imaging at the nano-pore scale is then used to build a machine learning model to generate a molecular distribution map across scales with a spatial span of 1000 times, which enables high-throughput geochemical characterization in greater details across the nano-pore and micro-grain scales and allows us to identify co-localization of mineral phases with chemically distinct organics and even with gas phase sorbents. Finally, this characterization is fundamental to understand mineral and organic compositions affecting the behavior of shales.« less

  5. Cross-Scale Molecular Analysis of Chemical Heterogeneity in Shale Rocks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hao, Zhao; Bechtel, Hans A.; Kneafsey, Timothy

    The organic and mineralogical heterogeneity in shale at micrometer and nanometer spatial scales contributes to the quality of gas reserves, gas flow mechanisms and gas production. Here, we demonstrate two molecular imaging approaches based on infrared spectroscopy to obtain mineral and kerogen information at these mesoscale spatial resolutions in large-sized shale rock samples. The first method is a modified microscopic attenuated total reflectance measurement that utilizes a large germanium hemisphere combined with a focal plane array detector to rapidly capture chemical images of shale rock surfaces spanning hundreds of micrometers with micrometer spatial resolution. The second method, synchrotron infrared nano-spectroscopy,more » utilizes a metallic atomic force microscope tip to obtain chemical images of micrometer dimensions but with nanometer spatial resolution. This chemically "deconvoluted" imaging at the nano-pore scale is then used to build a machine learning model to generate a molecular distribution map across scales with a spatial span of 1000 times, which enables high-throughput geochemical characterization in greater details across the nano-pore and micro-grain scales and allows us to identify co-localization of mineral phases with chemically distinct organics and even with gas phase sorbents. Finally, this characterization is fundamental to understand mineral and organic compositions affecting the behavior of shales.« less

  6. Quantification of substrate and cellular strains in stretchable 3D cell cultures: an experimental and computational framework.

    PubMed

    González-Avalos, P; Mürnseer, M; Deeg, J; Bachmann, A; Spatz, J; Dooley, S; Eils, R; Gladilin, E

    2017-05-01

    The mechanical cell environment is a key regulator of biological processes . In living tissues, cells are embedded into the 3D extracellular matrix and permanently exposed to mechanical forces. Quantification of the cellular strain state in a 3D matrix is therefore the first step towards understanding how physical cues determine single cell and multicellular behaviour. The majority of cell assays are, however, based on 2D cell cultures that lack many essential features of the in vivo cellular environment. Furthermore, nondestructive measurement of substrate and cellular mechanics requires appropriate computational tools for microscopic image analysis and interpretation. Here, we present an experimental and computational framework for generation and quantification of the cellular strain state in 3D cell cultures using a combination of 3D substrate stretcher, multichannel microscopic imaging and computational image analysis. The 3D substrate stretcher enables deformation of living cells embedded in bead-labelled 3D collagen hydrogels. Local substrate and cell deformations are determined by tracking displacement of fluorescent beads with subsequent finite element interpolation of cell strains over a tetrahedral tessellation. In this feasibility study, we debate diverse aspects of deformable 3D culture construction, quantification and evaluation, and present an example of its application for quantitative analysis of a cellular model system based on primary mouse hepatocytes undergoing transforming growth factor (TGF-β) induced epithelial-to-mesenchymal transition. © 2017 The Authors. Journal of Microscopy published by JohnWiley & Sons Ltd on behalf of Royal Microscopical Society.

  7. Design of small confocal endo-microscopic probe working under multiwavelength environment

    NASA Astrophysics Data System (ADS)

    Kim, Young-Duk; Ahn, MyoungKi; Gweon, Dae-Gab

    2010-02-01

    Recently, optical imaging system is widely used in medical purpose. By using optical imaging system specific diseases can be easily diagnosed at early stage because optical imaging system has high resolution performance and various imaging method. These methods are used to get high resolution image of human body and can be used to verify whether the cell is infected by virus. Confocal microscope is one of the famous imaging systems which is used for in-vivo imaging. Because most of diseases are accompanied with cellular level changes, doctors can diagnosis at early stage by observing the cellular image of human organ. Current research is focused in the development of endo-microscope that has great advantage in accessibility to human body. In this research, I designed small probe that is connected to confocal microscope through optical fiber bundle and work as endo-microscope. And this small probe is mainly designed to correct chromatic aberration to use various laser sources for both fluorescence type and reflection type confocal images. By using two kinds of laser sources at the same time we demonstrated multi-modality confocal endo-microscope.

  8. Simultaneous imaging of cellular morphology and multiple biomarkers using an acousto-optic tunable filter-based bright field microscope.

    PubMed

    Wachman, Elliot S; Geyer, Stanley J; Recht, Joel M; Ward, Jon; Zhang, Bill; Reed, Murray; Pannell, Chris

    2014-05-01

    An acousto-optic tunable filter (AOTF)-based multispectral imaging microscope system allows the combination of cellular morphology and multiple biomarker stainings on a single microscope slide. We describe advances in AOTF technology that have greatly improved spectral purity, field uniformity, and image quality. A multispectral imaging bright field microscope using these advances demonstrates pathology results that have great potential for clinical use.

  9. Measuring Roughnesses Of Optical Surfaces

    NASA Technical Reports Server (NTRS)

    Coulter, Daniel R.; Al-Jumaily, Gahnim A.; Raouf, Nasrat A.; Anderson, Mark S.

    1994-01-01

    Report discusses use of scanning tunneling microscopy and atomic force microscopy to measure roughnesses of optical surfaces. These techniques offer greater spatial resolution than other techniques. Report notes scanning tunneling microscopes and atomic force microscopes resolve down to 1 nm.

  10. Multi-scale Observation of Biological Interactions of Nanocarriers: from Nano to Macro

    PubMed Central

    Jin, Su-Eon; Bae, Jin Woo; Hong, Seungpyo

    2010-01-01

    Microscopic observations have played a key role in recent advancements in nanotechnology-based biomedical sciences. In particular, multi-scale observation is necessary to fully understand the nano-bio interfaces where a large amount of unprecedented phenomena have been reported. This review describes how to address the physicochemical and biological interactions of nanocarriers within the biological environments using microscopic tools. The imaging techniques are categorized based on the size scale of detection. For observation of the nano-scale biological interactions of nanocarriers, we discuss atomic force microscopy (AFM), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). For the micro to macro-scale (in vitro and in vivo) observation, we focus on confocal laser scanning microscopy (CLSM) as well as in vivo imaging systems such as magnetic resonance imaging (MRI), superconducting quantum interference devices (SQUIDs), and IVIS®. Additionally, recently developed combined techniques such as AFM-CLSM, correlative Light and Electron Microscopy (CLEM), and SEM-spectroscopy are also discussed. In this review, we describe how each technique helps elucidate certain physicochemical and biological activities of nanocarriers such as dendrimers, polymers, liposomes, and polymeric/inorganic nanoparticles, thus providing a toolbox for bioengineers, pharmaceutical scientists, biologists, and research clinicians. PMID:20232368

  11. Corrosion process monitoring by AFM higher harmonic imaging

    NASA Astrophysics Data System (ADS)

    Babicz, S.; Zieliński, A.; Smulko, J.; Darowicki, K.

    2017-11-01

    The atomic force microscope (AFM) was invented in 1986 as an alternative to the scanning tunnelling microscope, which cannot be used in studies of non-conductive materials. Today the AFM is a powerful, versatile and fundamental tool for visualizing and studying the morphology of material surfaces. Moreover, additional information for some materials can be recovered by analysing the AFM’s higher cantilever modes when the cantilever motion is inharmonic and generates frequency components above the excitation frequency, usually close to the resonance frequency of the lowest oscillation mode. This method has been applied and developed to monitor corrosion processes. The higher-harmonic imaging is especially helpful for sharpening boundaries between objects in heterogeneous samples, which can be used to identify variations in steel structures (e.g. corrosion products, steel heterogeneity). The corrosion products have different chemical structures because they are composed of chemicals other than the original metal base (mainly iron oxides). Thus, their physicochemical properties are different from the primary basis. These structures have edges at which higher harmonics should be more intense because of stronger interference between the tip and the specimen structure there. This means that the AFM’s higher-harmonic imaging is an excellent tool for monitoring surficial effects of the corrosion process.

  12. Serial sectioning methods for 3D investigations in materials science.

    PubMed

    Zankel, Armin; Wagner, Julian; Poelt, Peter

    2014-07-01

    A variety of methods for the investigation and 3D representation of the inner structure of materials has been developed. In this paper, techniques based on slice and view using scanning microscopy for imaging are presented and compared. Three different methods of serial sectioning combined with either scanning electron or scanning ion microscopy or atomic force microscopy (AFM) were placed under scrutiny: serial block-face scanning electron microscopy, which facilitates an ultramicrotome built into the chamber of a variable pressure scanning electron microscope; three-dimensional (3D) AFM, which combines an (cryo-) ultramicrotome with an atomic force microscope, and 3D FIB, which delivers results by slicing with a focused ion beam. These three methods complement one another in many respects, e.g., in the type of materials that can be investigated, the resolution that can be obtained and the information that can be extracted from 3D reconstructions. A detailed review is given about preparation, the slice and view process itself, and the limitations of the methods and possible artifacts. Applications for each technique are also provided. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Reversible mechano-electrochemical writing of metallic nanostructures with the tip of an atomic force microscope.

    PubMed

    Obermair, Christian; Kress, Marina; Wagner, Andreas; Schimmel, Thomas

    2012-01-01

    We recently introduced a method that allows the controlled deposition of nanoscale metallic patterns at defined locations using the tip of an atomic force microscope (AFM) as a "mechano-electrochemical pen", locally activating a passivated substrate surface for site-selective electrochemical deposition. Here, we demonstrate the reversibility of this process and study the long-term stability of the resulting metallic structures. The remarkable stability for more than 1.5 years under ambient air without any observable changes can be attributed to self-passivation. After AFM-activated electrochemical deposition of copper nanostructures on a polycrystalline gold film and subsequent AFM imaging, the copper nanostructures could be dissolved by reversing the electrochemical potential. Subsequent AFM-tip-activated deposition of different copper nanostructures at the same location where the previous structures were deleted, shows that there is no observable memory effect, i.e., no effect of the previous writing process on the subsequent writing process. Thus, the four processes required for reversible information storage, "write", "read", "delete" and "re-write", were successfully demonstrated on the nanometer scale.

  14. Reversible mechano-electrochemical writing of metallic nanostructures with the tip of an atomic force microscope

    PubMed Central

    Kress, Marina; Wagner, Andreas; Schimmel, Thomas

    2012-01-01

    Summary We recently introduced a method that allows the controlled deposition of nanoscale metallic patterns at defined locations using the tip of an atomic force microscope (AFM) as a “mechano-electrochemical pen”, locally activating a passivated substrate surface for site-selective electrochemical deposition. Here, we demonstrate the reversibility of this process and study the long-term stability of the resulting metallic structures. The remarkable stability for more than 1.5 years under ambient air without any observable changes can be attributed to self-passivation. After AFM-activated electrochemical deposition of copper nanostructures on a polycrystalline gold film and subsequent AFM imaging, the copper nanostructures could be dissolved by reversing the electrochemical potential. Subsequent AFM-tip-activated deposition of different copper nanostructures at the same location where the previous structures were deleted, shows that there is no observable memory effect, i.e., no effect of the previous writing process on the subsequent writing process. Thus, the four processes required for reversible information storage, “write”, “read”, “delete” and “re-write”, were successfully demonstrated on the nanometer scale. PMID:23365795

  15. Direct atomic force microscopy observation of DNA tile crystal growth at the single-molecule level.

    PubMed

    Evans, Constantine G; Hariadi, Rizal F; Winfree, Erik

    2012-06-27

    While the theoretical implications of models of DNA tile self-assembly have been extensively researched and such models have been used to design DNA tile systems for use in experiments, there has been little research testing the fundamental assumptions of those models. In this paper, we use direct observation of individual tile attachments and detachments of two DNA tile systems on a mica surface imaged with an atomic force microscope (AFM) to compile statistics of tile attachments and detachments. We show that these statistics fit the widely used kinetic Tile Assembly Model and demonstrate AFM movies as a viable technique for directly investigating DNA tile systems during growth rather than after assembly.

  16. Penny for Your Reference

    NASA Technical Reports Server (NTRS)

    2004-01-01

    15 April 2004 This close-up image of a penny shows the degree to which the microscopic imager on the Mars Exploration Rover Spirit can zoom in on a target. The penny is seen exactly as it would be on Mars if it were placed under the microscopic imager. This picture was taken by the imager during testing at JPL.

    [figure removed for brevity, see original site] Spirit's Microscopic Vision Demonstrated

    This close-up image of a penny shows the power of the microscopic imager onboard the Mars Exploration Rover Spirit to see fine details. The picture was taken by the imager during testing at JPL.

  17. Versatile variable temperature and magnetic field scanning probe microscope for advanced material research

    NASA Astrophysics Data System (ADS)

    Jung, Jin-Oh; Choi, Seokhwan; Lee, Yeonghoon; Kim, Jinwoo; Son, Donghyeon; Lee, Jhinhwan

    2017-10-01

    We have built a variable temperature scanning probe microscope (SPM) that covers 4.6 K-180 K and up to 7 T whose SPM head fits in a 52 mm bore magnet. It features a temperature-controlled sample stage thermally well isolated from the SPM body in good thermal contact with the liquid helium bath. It has a 7-sample-holder storage carousel at liquid helium temperature for systematic studies using multiple samples and field emission targets intended for spin-polarized spectroscopic-imaging scanning tunneling microscopy (STM) study on samples with various compositions and doping conditions. The system is equipped with a UHV sample preparation chamber and mounted on a two-stage vibration isolation system made of a heavy concrete block and a granite table on pneumatic vibration isolators. A quartz resonator (qPlus)-based non-contact atomic force microscope (AFM) sensor is used for simultaneous STM/AFM operation for research on samples with highly insulating properties such as strongly underdoped cuprates and strongly correlated electron systems.

  18. A Comparative Study of Microscopic Images Captured by a Box Type Digital Camera Versus a Standard Microscopic Photography Camera Unit

    PubMed Central

    Desai, Nandini J.; Gupta, B. D.; Patel, Pratik Narendrabhai

    2014-01-01

    Introduction: Obtaining images of slides viewed by a microscope can be invaluable for both diagnosis and teaching.They can be transferred among technologically-advanced hospitals for further consultation and evaluation. But a standard microscopic photography camera unit (MPCU)(MIPS-Microscopic Image projection System) is costly and not available in resource poor settings. The aim of our endeavour was to find a comparable and cheaper alternative method for photomicrography. Materials and Methods: We used a NIKON Coolpix S6150 camera (box type digital camera) with Olympus CH20i microscope and a fluorescent microscope for the purpose of this study. Results: We got comparable results for capturing images of light microscopy, but the results were not as satisfactory for fluorescent microscopy. Conclusion: A box type digital camera is a comparable, less expensive and convenient alternative to microscopic photography camera unit. PMID:25478350

  19. Haptic-STM: a human-in-the-loop interface to a scanning tunneling microscope.

    PubMed

    Perdigão, Luís M A; Saywell, Alex

    2011-07-01

    The operation of a haptic device interfaced with a scanning tunneling microscope (STM) is presented here. The user moves the STM tip in three dimensions by means of a stylus attached to the haptic instrument. The tunneling current measured by the STM is converted to a vertical force, applied to the stylus and felt by the user, with the user being incorporated into the feedback loop that controls the tip-surface distance. A haptic-STM interface of this nature allows the user to feel atomic features on the surface and facilitates the tactile manipulation of the adsorbate/substrate system. The operation of this device is demonstrated via the room temperature STM imaging of C(60) molecules adsorbed on an Au(111) surface in ultra-high vacuum.

  20. Scanning Microscopes Using X Rays and Microchannels

    NASA Technical Reports Server (NTRS)

    Wang, Yu

    2003-01-01

    Scanning microscopes that would be based on microchannel filters and advanced electronic image sensors and that utilize x-ray illumination have been proposed. Because the finest resolution attainable in a microscope is determined by the wavelength of the illumination, the xray illumination in the proposed microscopes would make it possible, in principle, to achieve resolutions of the order of nanometers about a thousand times as fine as the resolution of a visible-light microscope. Heretofore, it has been necessary to use scanning electron microscopes to obtain such fine resolution. In comparison with scanning electron microscopes, the proposed microscopes would likely be smaller, less massive, and less expensive. Moreover, unlike in scanning electron microscopes, it would not be necessary to place specimens under vacuum. The proposed microscopes are closely related to the ones described in several prior NASA Tech Briefs articles; namely, Miniature Microscope Without Lenses (NPO-20218), NASA Tech Briefs, Vol. 22, No. 8 (August 1998), page 43; and Reflective Variants of Miniature Microscope Without Lenses (NPO-20610), NASA Tech Briefs, Vol. 26, No. 9 (September 2002) page 6a. In all of these microscopes, the basic principle of design and operation is the same: The focusing optics of a conventional visible-light microscope are replaced by a combination of a microchannel filter and a charge-coupled-device (CCD) image detector. A microchannel plate containing parallel, microscopic-cross-section holes much longer than they are wide is placed between a specimen and an image sensor, which is typically the CCD. The microchannel plate must be made of a material that absorbs the illuminating radiation reflected or scattered from the specimen. The microchannels must be positioned and dimensioned so that each one is registered with a pixel on the image sensor. Because most of the radiation incident on the microchannel walls becomes absorbed, the radiation that reaches the image sensor consists predominantly of radiation that was launched along the longitudinal direction of the microchannels. Therefore, most of the radiation arriving at each pixel on the sensor must have traveled along a straight line from a corresponding location on the specimen. Thus, there is a one-to-one mapping from a point on a specimen to a pixel in the image sensor, so that the output of the image sensor contains image information equivalent to that from a microscope.

  1. Design of a normal incidence multilayer imaging X-ray microscope

    NASA Astrophysics Data System (ADS)

    Shealy, David L.; Gabardi, David R.; Hoover, Richard B.; Walker, Arthur B. C., Jr.; Lindblom, Joakim F.

    Normal incidence multilayer Cassegrain X-ray telescopes were flown on the Stanford/MSFC Rocket X-ray Spectroheliograph. These instruments produced high spatial resolution images of the sun and conclusively demonstrated that doubly reflecting multilayer X-ray optical systems are feasible. The images indicated that aplanatic imaging soft X-ray/EUV microscopes should be achievable using multilayer optics technology. A doubly reflecting normal incidence multilayer imaging X-ray microscope based on the Schwarzschild configuration has been designed. The design of the microscope and the results of the optical system ray trace analysis are discussed. High resolution aplanatic imaging X-ray microscopes using normal incidence multilayer X-ray mirrors should have many important applications in advanced X-ray astronomical instrumentation, X-ray lithography, biological, biomedical, metallurgical, and laser fusion research.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakayama, T.; Kubo, O.; Shingaya, Y.

    the research of advanced materials based on nanoscience and nanotechnology, it is often desirable to measure nanoscale local electrical conductivity at a designated position of a given sample. For this purpose, multiple-probe scanning probe microscopes (MP-SPMs), in which two, three or four scanning tunneling microscope (STM) or atomic force microscope (AFM) probes are operated independently, have been developed. Each probe in an MP-SPM is used not only for observing high-resolution STM or AFM images but also for forming an electrical contact enabling nanoscale local electrical conductivity measurement. The world's first double-probe STM (DP-STM) developed by the authors, which was subsequentlymore » modified to a triple-probe STM (TP-STM), has been used to measure the conductivities of one-dimensional metal nanowires and carbon nanotubes and also two-dimensional molecular films. A quadruple-probe STM (QP-STM) has also been developed and used to measure the conductivity of two-dimensional molecular films without the ambiguity of contact resistance between the probe and sample. Moreover, a quadruple-probe AFM (QP-AFM) with four conductive tuning-fork-type self-detection force sensing probes has been developed to measure the conductivity of a nanostructure on an insulating substrate. A general-purpose computer software to control four probes at the same time has also been developed and used in the operation of the QP-AFM. These developments and applications of MP-SPMs are reviewed in this paper.« less

  3. Imaging, microscopic analysis, and modeling of a CdTe module degraded by heat and light

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnston, Steve; Albin, David; Hacke, Peter

    Photoluminescence (PL), electroluminescence (EL), and dark lock-in thermography are collected during stressing of a CdTe module under one-Sun light at an elevated temperature of 100 degrees C. The PL imaging system is simple and economical. The PL images show differing degrees of degradation across the module and are less sensitive to effects of shunting and resistance that appear on the EL images. Regions of varying degradation are chosen based on avoiding pre-existing shunt defects. These regions are evaluated using time-of-flight secondary ion-mass spectrometry and Kelvin probe force microscopy. Reduced PL intensity correlates to increased Cu concentration at the front interface.more » Numerical modeling and measurements agree that the increased Cu concentration at the junction also correlates to a reduced space charge region.« less

  4. Imaging, microscopic analysis, and modeling of a CdTe module degraded by heat and light

    DOE PAGES

    Johnston, Steve; Albin, David; Hacke, Peter; ...

    2018-01-12

    Photoluminescence (PL), electroluminescence (EL), and dark lock-in thermography are collected during stressing of a CdTe module under one-Sun light at an elevated temperature of 100 degrees C. The PL imaging system is simple and economical. The PL images show differing degrees of degradation across the module and are less sensitive to effects of shunting and resistance that appear on the EL images. Regions of varying degradation are chosen based on avoiding pre-existing shunt defects. These regions are evaluated using time-of-flight secondary ion-mass spectrometry and Kelvin probe force microscopy. Reduced PL intensity correlates to increased Cu concentration at the front interface.more » Numerical modeling and measurements agree that the increased Cu concentration at the junction also correlates to a reduced space charge region.« less

  5. Three-channel false colour AFM images for improved interpretation of complex surfaces: a study of filamentous cyanobacteria.

    PubMed

    Kurk, Toby; Adams, David G; Connell, Simon D; Thomson, Neil H

    2010-05-01

    Imaging signals derived from the atomic force microscope (AFM) are typically presented as separate adjacent images with greyscale or pseudo-colour palettes. We propose that information-rich false-colour composites are a useful means of presenting three-channel AFM image data. This method can aid the interpretation of complex surfaces and facilitate the perception of information that is convoluted across data channels. We illustrate this approach with images of filamentous cyanobacteria imaged in air and under aqueous buffer, using both deflection-modulation (contact) mode and amplitude-modulation (tapping) mode. Topography-dependent contrast in the error and tertiary signals aids the interpretation of the topography signal by contributing additional data, resulting in a more detailed image, and by showing variations in the probe-surface interaction. Moreover, topography-independent contrast and topography-dependent contrast in the tertiary data image (phase or friction) can be distinguished more easily as a consequence of the three dimensional colour-space.

  6. Methyl green and nitrotetrazolium blue chloride co-expression in colon tissue: A hyperspectral microscopic imaging analysis

    NASA Astrophysics Data System (ADS)

    Li, Qingli; Liu, Hongying; Wang, Yiting; Sun, Zhen; Guo, Fangmin; Zhu, Jianzhong

    2014-12-01

    Histological observation of dual-stained colon sections is usually performed by visual observation under a light microscope, or by viewing on a computer screen with the assistance of image processing software in both research and clinical settings. These traditional methods are usually not sufficient to reliably differentiate spatially overlapping chromogens generated by different dyes. Hyperspectral microscopic imaging technology offers a solution for these constraints as the hyperspectral microscopic images contain information that allows differentiation between spatially co-located chromogens with similar but different spectra. In this paper, a hyperspectral microscopic imaging (HMI) system is used to identify methyl green and nitrotetrazolium blue chloride in dual-stained colon sections. Hyperspectral microscopic images are captured and the normalized score algorithm is proposed to identify the stains and generate the co-expression results. Experimental results show that the proposed normalized score algorithm can generate more accurate co-localization results than the spectral angle mapper algorithm. The hyperspectral microscopic imaging technology can enhance the visualization of dual-stained colon sections, improve the contrast and legibility of each stain using their spectral signatures, which is helpful for pathologist performing histological analyses.

  7. Automatic Focus Adjustment of a Microscope

    NASA Technical Reports Server (NTRS)

    Huntsberger, Terrance

    2005-01-01

    AUTOFOCUS is a computer program for use in a control system that automatically adjusts the position of an instrument arm that carries a microscope equipped with an electronic camera. In the original intended application of AUTOFOCUS, the imaging microscope would be carried by an exploratory robotic vehicle on a remote planet, but AUTOFOCUS could also be adapted to similar applications on Earth. Initially control software other than AUTOFOCUS brings the microscope to a position above a target to be imaged. Then the instrument arm is moved to lower the microscope toward the target: nominally, the target is approached from a starting distance of 3 cm in 10 steps of 3 mm each. After each step, the image in the camera is subjected to a wavelet transform, which is used to evaluate the texture in the image at multiple scales to determine whether and by how much the microscope is approaching focus. A focus measure is derived from the transform and used to guide the arm to bring the microscope to the focal height. When the analysis reveals that the microscope is in focus, image data are recorded and transmitted.

  8. Micromechanics of Damage Accumulation in Micro- and Nano-Scale Laminates for Microelectromechanical Systems

    DTIC Science & Technology

    2009-04-06

    samples to gauge their roughness. The study was conducted using a Dimension 3100 atomic force microscope produced by Veeco, and using tips produced...image of the sample, along with a close up of the gage section highlighting the notch. Gauge sections were 2 mm long, having 200, 160 and 100μm widths...and slots with semicircular ends which spanned 33% of the gauge widths and had a 3μm root radius. The thickness of the films was reported to be

  9. Single molecule imaging of RNA polymerase II using atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Rhodin, Thor; Fu, Jianhua; Umemura, Kazuo; Gad, Mohammed; Jarvis, Suzi; Ishikawa, Mitsuru

    2003-03-01

    An atomic force microscopy (AFM) study of the shape, orientation and surface topology of RNA polymerase II supported on silanized freshly cleaved mica was made. The overall aim is to define the molecular topology of RNA polymerase II in appropriate fluids to help clarify the relationship of conformational features to biofunctionality. A Nanoscope III atomic force microscope was used in the tapping mode with oxide-sharpened (8-10 nm) Si 3N 4 probes in aqueous zinc chloride buffer. The main structural features observed by AFM were compared to those derived from electron-density plots based on X-ray crystallographic studies. The conformational features included a bilobal silhouette with an inverted umbrella-shaped crater connected to a reaction site. These studies provide a starting point for constructing a 3D-AFM profiling analysis of proteins such as RNA polymerase complexes.

  10. Scanning hall probe microscopy (SHPM) using quartz crystal AFM feedback.

    PubMed

    Dede, M; Urkmen, K; Girişen, O; Atabak, M; Oral, A; Farrer, I; Ritchie, D

    2008-02-01

    Scanning Hall Probe Microscopy (SHPM) is a quantitative and non-invasive technique for imaging localized surface magnetic field fluctuations such as ferromagnetic domains with high spatial and magnetic field resolution of approximately 50 nm and 7 mG/Hz(1/2) at room temperature. In the SHPM technique, scanning tunneling microscope (STM) or atomic force microscope (AFM) feedback is used to keep the Hall sensor in close proximity of the sample surface. However, STM tracking SHPM requires conductive samples; therefore the insulating substrates have to be coated with a thin layer of gold. This constraint can be eliminated with the AFM feedback using sophisticated Hall probes that are integrated with AFM cantilevers. However it is very difficult to micro fabricate these sensors. In this work, we have eliminated the difficulty in the cantilever-Hall probe integration process, just by gluing a Hall Probe chip to a quartz crystal tuning fork force sensor. The Hall sensor chip is simply glued at the end of a 32.768 kHz or 100 kHz Quartz crystal, which is used as force sensor. An LT-SHPM system is used to scan the samples. The sensor assembly is dithered at the resonance frequency using a digital Phase Locked Loop circuit and frequency shifts are used for AFM tracking. SHPM electronics is modified to detect AFM topography and the frequency shift, along with the magnetic field image. Magnetic domains and topography of an Iron Garnet thin film crystal, NdFeB demagnetised magnet and hard disk samples are presented at room temperature. The performance is found to be comparable with the SHPM using STM feedback.

  11. High-resolution imaging of cellular processes across textured surfaces using an indexed-matched elastomer.

    PubMed

    Ravasio, Andrea; Vaishnavi, Sree; Ladoux, Benoit; Viasnoff, Virgile

    2015-03-01

    Understanding and controlling how cells interact with the microenvironment has emerged as a prominent field in bioengineering, stem cell research and in the development of the next generation of in vitro assays as well as organs on a chip. Changing the local rheology or the nanotextured surface of substrates has proved an efficient approach to improve cell lineage differentiation, to control cell migration properties and to understand environmental sensing processes. However, introducing substrate surface textures often alters the ability to image cells with high precision, compromising our understanding of molecular mechanisms at stake in environmental sensing. In this paper, we demonstrate how nano/microstructured surfaces can be molded from an elastomeric material with a refractive index matched to the cell culture medium. Once made biocompatible, contrast imaging (differential interference contrast, phase contrast) and high-resolution fluorescence imaging of subcellular structures can be implemented through the textured surface using an inverted microscope. Simultaneous traction force measurements by micropost deflection were also performed, demonstrating the potential of our approach to study cell-environment interactions, sensing processes and cellular force generation with unprecedented resolution. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  12. Smartphone adapters for digital photomicrography.

    PubMed

    Roy, Somak; Pantanowitz, Liron; Amin, Milon; Seethala, Raja R; Ishtiaque, Ahmed; Yousem, Samuel A; Parwani, Anil V; Cucoranu, Ioan; Hartman, Douglas J

    2014-01-01

    Photomicrographs in Anatomic Pathology provide a means of quickly sharing information from a glass slide for consultation, education, documentation and publication. While static image acquisition historically involved the use of a permanently mounted camera unit on a microscope, such cameras may be expensive, need to be connected to a computer, and often require proprietary software to acquire and process images. Another novel approach for capturing digital microscopic images is to use smartphones coupled with the eyepiece of a microscope. Recently, several smartphone adapters have emerged that allow users to attach mobile phones to the microscope. The aim of this study was to test the utility of these various smartphone adapters. We surveyed the market for adapters to attach smartphones to the ocular lens of a conventional light microscope. Three adapters (Magnifi, Skylight and Snapzoom) were tested. We assessed the designs of these adapters and their effectiveness at acquiring static microscopic digital images. All adapters facilitated the acquisition of digital microscopic images with a smartphone. The optimal adapter was dependent on the type of phone used. The Magnifi adapters for iPhone were incompatible when using a protective case. The Snapzoom adapter was easiest to use with iPhones and other smartphones even with protective cases. Smartphone adapters are inexpensive and easy to use for acquiring digital microscopic images. However, they require some adjustment by the user in order to optimize focus and obtain good quality images. Smartphone microscope adapters provide an economically feasible method of acquiring and sharing digital pathology photomicrographs.

  13. A Novel Method to Reconstruct the Force Curve by Higher Harmonics of the First Two Flexural Modes in Frequency Modulation Atomic Force Microscope (FM-AFM).

    PubMed

    Zhang, Suoxin; Qian, Jianqiang; Li, Yingzi; Zhang, Yingxu; Wang, Zhenyu

    2018-06-04

    Atomic force microscope (AFM) is an idealized tool to measure the physical and chemical properties of the sample surfaces by reconstructing the force curve, which is of great significance to materials science, biology, and medicine science. Frequency modulation atomic force microscope (FM-AFM) collects the frequency shift as feedback thus having high force sensitivity and it accomplishes a true noncontact mode, which means great potential in biological sample detection field. However, it is a challenge to establish the relationship between the cantilever properties observed in practice and the tip-sample interaction theoretically. Moreover, there is no existing method to reconstruct the force curve in FM-AFM combining the higher harmonics and the higher flexural modes. This paper proposes a novel method that a full force curve can be reconstructed by any order higher harmonics of the first two flexural modes under any vibration amplitude in FM-AFM. Moreover, in the small amplitude regime, short range forces are reconstructed more accurately by higher harmonics analysis compared with fundamental harmonics using the Sader-Jarvis formula.

  14. A light field microscope imaging spectrometer based on the microlens array

    NASA Astrophysics Data System (ADS)

    Yao, Yu-jia; Xu, Feng; Xia, Yin-xiang

    2017-10-01

    A new light field spectrometry microscope imaging system, which was composed by microscope objective, microlens array and spectrometry system was designed in this paper. 5-D information (4-D light field and 1-D spectrometer) of the sample could be captured by the snapshot system in only one exposure, avoiding the motion blur and aberration caused by the scanning imaging process of the traditional imaging spectrometry. Microscope objective had been used as the former group while microlens array used as the posterior group. The optical design of the system was simulated by Zemax, the parameter matching condition between microscope objective and microlens array was discussed significantly during the simulation process. The result simulated in the image plane was analyzed and discussed.

  15. Eight-channel Kirkpatrick-Baez microscope for multiframe x-ray imaging diagnostics in laser plasma experiments.

    PubMed

    Yi, Shengzhen; Zhang, Zhe; Huang, Qiushi; Zhang, Zhong; Mu, Baozhong; Wang, Zhanshan; Fang, Zhiheng; Wang, Wei; Fu, Sizu

    2016-10-01

    Because grazing-incidence Kirkpatrick-Baez (KB) microscopes have better resolution and collection efficiency than pinhole cameras, they have been widely used for x-ray imaging diagnostics of laser inertial confinement fusion. The assembly and adjustment of a multichannel KB microscope must meet stringent requirements for image resolution and reproducible alignment. In the present study, an eight-channel KB microscope was developed for diagnostics by imaging self-emission x-rays with a framing camera at the Shenguang-II Update (SGII-Update) laser facility. A consistent object field of view is ensured in the eight channels using an assembly method based on conical reference cones, which also allow the intervals between the eight images to be tuned to couple with the microstrips of the x-ray framing camera. The eight-channel KB microscope was adjusted via real-time x-ray imaging experiments in the laboratory. This paper describes the details of the eight-channel KB microscope, its optical and multilayer design, the assembly and alignment methods, and results of imaging in the laboratory and at the SGII-Update.

  16. Highly Sophisticated Virtual Laboratory Instruments in Education

    NASA Astrophysics Data System (ADS)

    Gaskins, T.

    2006-12-01

    Many areas of Science have advanced or stalled according to the ability to see what can not normally be seen. Visual understanding has been key to many of the world's greatest breakthroughs, such as discovery of DNAs double helix. Scientists use sophisticated instruments to see what the human eye can not. Light microscopes, scanning electron microscopes (SEM), spectrometers and atomic force microscopes are employed to examine and learn the details of the extremely minute. It's rare that students prior to university have access to such instruments, or are granted full ability to probe and magnify as desired. Virtual Lab, by providing highly authentic software instruments and comprehensive imagery of real specimens, provides them this opportunity. Virtual Lab's instruments let explorers operate virtual devices on a personal computer to examine real specimens. Exhaustive sets of images systematically and robotically photographed at thousands of positions and multiple magnifications and focal points allow students to zoom in and focus on the most minute detail of each specimen. Controls on each Virtual Lab device interactively and smoothly move the viewer through these images to display the specimen as the instrument saw it. Users control position, magnification, focal length, filters and other parameters. Energy dispersion spectrometry is combined with SEM imagery to enable exploration of chemical composition at minute scale and arbitrary location. Annotation capabilities allow scientists, teachers and students to indicate important features or areas. Virtual Lab is a joint project of NASA and the Beckman Institute at the University of Illinois at Urbana- Champaign. Four instruments currently compose the Virtual Lab suite: A scanning electron microscope and companion energy dispersion spectrometer, a high-power light microscope, and a scanning probe microscope that captures surface properties to the level of atoms. Descriptions of instrument operating principles and uses are also part of Virtual Lab. The Virtual Lab software and its increasingly rich collection of specimens are free to anyone. This presentation describes Virtual Lab and its uses in formal and informal education.

  17. Imaging properties and its improvements of scanning/imaging x-ray microscope

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takeuchi, Akihisa, E-mail: take@spring8.or.jp; Uesugi, Kentaro; Suzuki, Yoshio

    A scanning / imaging X-ray microscope (SIXM) system has been developed at SPring-8. The SIXM consists of a scanning X-ray microscope with a one-dimensional (1D) X-ray focusing device and an imaging (full-field) X-ray microscope with a 1D X-ray objective. The motivation of the SIXM system is to realize a quantitative and highly-sensitive multimodal 3D X-ray tomography by taking advantages of both the scanning X-ray microscope using multi-pixel detector and the imaging X-ray microscope. Data acquisition process of a 2D image is completely different between in the horizontal direction and in the vertical direction; a 1D signal is obtained with themore » linear-scanning while the other dimensional signal is obtained with the imaging optics. Such condition have caused a serious problem on the imaging properties that the imaging quality in the vertical direction has been much worse than that in the horizontal direction. In this paper, two approaches to solve this problem will be presented. One is introducing a Fourier transform method for phase retrieval from one phase derivative image, and the other to develop and employ a 1D diffuser to produce an asymmetrical coherent illumination.« less

  18. Dielectrophoretic spectroscopy using a microscopic electrode array

    NASA Astrophysics Data System (ADS)

    Kirmani, Syed Abdul Mannan; Gudagunti, Fleming Dackson; Velmanickam, Logeeshan; Nawarathna, Dharmakeerthi; Lima, Ivan T.

    2017-02-01

    Dielectrophoresis (DEP) is a commonly used technique in biomedical engineering to manipulate biomolecules. DEP is defined as the force acting on dielectric particles when they are exposed to non-uniform electric fields. DEP effect can be divided in three categories: positive (dielectric particles are attracted to the electrodes), negative, and zero force DEP. The cross-over frequency is the frequency in which the DEP force is equal to zero. The cross-over frequency depends on the conductivity and the permittivity of the particles and of the suspended medium. The DEP cross-over frequency has been utilized in detecting/quantifying biomolecules. A manual procedure is commonly used to estimate the cross-over frequency of biomolecules. Therefore, the accuracy of this detection method is significantly limited. To address this issue, we designed and tested an automated procedure to carry out DEP spectroscopy in dielectric particles dissolved in a biological buffer solution. Our method efficiently measures the effect of the DEP force through a live video feed from the microscope camera and performs real-time image processing. It records the change in the fluorescence emission as the system automatically scans the electric frequency of the function generator over a specified time interval. We demonstrated the effectiveness of the method by extracting the crossover frequencies and the DEP spectrum of polystyrene beads with blue color dye (1000 nm diameter) and green fluorescent polystyrene beads with 500 nm diameter using this procedure. This approach can lead to the development of a biosensor with significantly higher sensitivity than existing detection methods.

  19. Hyperspectral microscope imaging methods to classify gram-positive and gram-negative foodborne pathogenic bacteria

    USDA-ARS?s Scientific Manuscript database

    An acousto-optic tunable filter-based hyperspectral microscope imaging method has potential for identification of foodborne pathogenic bacteria from microcolony rapidly with a single cell level. We have successfully developed the method to acquire quality hyperspectral microscopic images from variou...

  20. Optical design and system characterization of an imaging microscope at 121.6 nm

    NASA Astrophysics Data System (ADS)

    Gao, Weichuan; Finan, Emily; Kim, Geon-Hee; Kim, Youngsik; Milster, Thomas D.

    2018-03-01

    We present the optical design and system characterization of an imaging microscope prototype at 121.6 nm. System engineering processes are demonstrated through the construction of a Schwarzschild microscope objective, including tolerance analysis, fabrication, alignment, and testing. Further improvements on the as-built system with a correction phase plate are proposed and analyzed. Finally, the microscope assembly and the imaging properties of the prototype are demonstrated.

  1. Advanced imaging microscope tools applied to microgravity research investigations

    NASA Astrophysics Data System (ADS)

    Peterson, L.; Samson, J.; Conrad, D.; Clark, K.

    1998-01-01

    The inability to observe and interact with experiments on orbit has been an impediment for both basic research and commercial ventures using the shuttle. In order to open the frontiers of space, the Center for Microgravity Automation Technology has developed a unique and innovative system for conducting experiments at a distance, the ``Remote Scientist.'' The Remote Scientist extends laboratory automation capability to the microgravity environment. While the Remote Scientist conceptually encompasses a broad spectrum of elements and functionalities, the development approach taken is to: • establish a baseline capability that is both flexible and versatile • incrementally augment the baseline with additional functions over time. Since last year, the application of the Remote Scientist has changed from protein crystal growth to tissue culture, specifically, the development of skeletal muscle under varying levels of tension. This system includes a series of bioreactor chambers that allow for three-dimensional growth of muscle tissue on a membrane suspended between the two ends of a programmable force transducer that can provide automated or investigator-initiated tension on the developing tissue. A microscope objective mounted on a translation carriage allows for high-resolution microscopy along a large area of the tissue. These images will be mosaiced on orbit to detect features and structures that span multiple images. The use of fluorescence and pseudo-confocal microscopy will maximize the observational capabilities of this system. A series of ground-based experiments have been performed to validate the bioreactor, the force transducer, the translation carriage and the image acquisition capabilities of the Remote Scientist. • The bioreactor is capable of sustaining three dimensional tissue culture growth over time. • The force transducer can be programmed to provide static tension on cells or to simulate either slow or fast growth of underlying tissues in vivo, ranging from 0.2 mm per day to 32 mm per day. • The two-axis translation carriage is capable of scanning the camera along the bioreactor and adjusting the focus with 25 μm resolution. • Time-lapse sequences of images have been acquired, stored and transmitted to a remote computer system. Although the current application of the Remote Scientist technology is the observation and manipulation of a tissue culture growth system, the hardware has been designed to be easily reconfigured to accommodate a multitude of experiments, including animal observation, combustion studies, protein crystal growth, plant growth and aquatic research.

  2. Scanning electron microscope observation of dislocations in semiconductor and metal materials.

    PubMed

    Kuwano, Noriyuki; Itakura, Masaru; Nagatomo, Yoshiyuki; Tachibana, Shigeaki

    2010-08-01

    Scanning electron microscope (SEM) image contrasts have been investigated for dislocations in semiconductor and metal materials. It is revealed that single dislocations can be observed in a high contrast in SEM images formed by backscattered electrons (BSE) under the condition of a normal configuration of SEM. The BSE images of dislocations were compared with those of the transmission electron microscope and scanning transmission electron microscope (STEM) and the dependence of BSE image contrast on the tilting of specimen was examined to discuss the origin of image contrast. From the experimental results, it is concluded that the BSE images of single dislocations are attributed to the diffraction effect and related with high-angle dark-field images of STEM.

  3. CHAMP (Camera, Handlens, and Microscope Probe)

    NASA Technical Reports Server (NTRS)

    Mungas, Greg S.; Boynton, John E.; Balzer, Mark A.; Beegle, Luther; Sobel, Harold R.; Fisher, Ted; Klein, Dan; Deans, Matthew; Lee, Pascal; Sepulveda, Cesar A.

    2005-01-01

    CHAMP (Camera, Handlens And Microscope Probe)is a novel field microscope capable of color imaging with continuously variable spatial resolution from infinity imaging down to diffraction-limited microscopy (3 micron/pixel). As a robotic arm-mounted imager, CHAMP supports stereo imaging with variable baselines, can continuously image targets at an increasing magnification during an arm approach, can provide precision rangefinding estimates to targets, and can accommodate microscopic imaging of rough surfaces through a image filtering process called z-stacking. CHAMP was originally developed through the Mars Instrument Development Program (MIDP) in support of robotic field investigations, but may also find application in new areas such as robotic in-orbit servicing and maintenance operations associated with spacecraft and human operations. We overview CHAMP'S instrument performance and basic design considerations below.

  4. Nanometer-scale surface potential and resistance mapping of wide-bandgap Cu(In,Ga)Se2 thin films

    NASA Astrophysics Data System (ADS)

    Jiang, C.-S.; Contreras, M. A.; Mansfield, L. M.; Moutinho, H. R.; Egaas, B.; Ramanathan, K.; Al-Jassim, M. M.

    2015-01-01

    We report microscopic characterization studies of wide-bandgap Cu(In,Ga)Se2 photovoltaic thin films using the nano-electrical probes of scanning Kelvin probe force microscopy and scanning spreading resistance microscopy. With increasing bandgap, the potential imaging shows significant increases in both the large potential features due to extended defects or defect aggregations and the potential fluctuation due to unresolvable point defects with single or a few charges. The resistance imaging shows increases in both overall resistance and resistance nonuniformity due to defects in the subsurface region. These defects are expected to affect open-circuit voltage after the surfaces are turned to junction upon device completion.

  5. Electric Field Controlled Magnetism in BiFeO3/Ferromagnet Films

    NASA Astrophysics Data System (ADS)

    Barry, M.; Lee, K.; Chu, Y. H.; Yang, P. L.; Martin, L. W.; Jenkins, C. A.; Ramesh, R.; Scholl, A.; Doran, A.

    2007-03-01

    BiFeO3 is the only single phase room temperature multiferroic that is currently known. Not only does it have applications as a lead-free replacement for ferroelectric memory cells and piezoelectric sensors, but its interactions with other materials are now attracting a great deal of attention. Its multiferroic nature has potential in the field of exchange bias, where it could allow electric-field control of the ferromagnetic (FM) magnetization. In order to understand this coupling, an understanding of the magnetization in BiFeO3 is necessary. X-ray linear and circular dichroism images were obtained using a high spatial resolution photoelectron emission microscope (PEEM), allowing elemental specificity and surface sensitivity. A piezoelectric force microscope (PFM) was used to map the ferroelectric state in micron-sized regions of the films, which were then probed using crystallographic measurements and temperature dependent PEEM measurements. Temperature dependent structural measurements allow decoupling of the two order parameters, ferroelectric and magnetic, contributing to the photoemission signal. Careful analysis of linear and circular dichroism images allows determination of magnetic directions in BiFeO3 and FM layers.

  6. Time Resolved Microscopy of Charge Trapping in Polycrystalline Pentacene

    NASA Astrophysics Data System (ADS)

    Jaquith, Michael; Muller, Erik; Marohn, John

    2007-03-01

    The microscopic mechanisms by which charges trap in organic electronic materials are poorly understood. Muller and Marohn recently showed that electric force microscopy (EFM) can be used to image trapped charge in working pentacene thin-film transistors [E. M. Muller et al., Adv. Mater. 17 1410 (2005)]. We have made a new discovery by imaging trapped charge in pentacene films with much larger grains. In contrast to the previous study in which charge was found to trap inhomogeneously throughout the transistor gap, we find microscopic evidence for a new trapping mechanism in which charges trap predominantly at the pentacene/metal interface in large-grained devices. We conclude that at least two charge trapping mechanisms are at play in polycrystalline pentacene. We have made localized measurements of the trap growth over time by performing pulsed-gate EFM experiments. Trap formation is not instantaneous, taking up to a second to complete. Furthermore, the charge-trapping rate depends strongly on gate voltage (or hole concentration). This kinetics data is consistent with the hypothesis that traps form by chemical reaction.

  7. Design of a normal incidence multilayer imaging x-ray microscope.

    PubMed

    Shealy, D L; Gabardi, D R; Hoover, R B; Walker, A B; Lindblom, J F; Barbee, T W

    1989-01-01

    Normal incidence multilayer Cassegrain x-ray telescopes were flown on the Stanford/MSFC Rocket X-Ray Spectroheliograph. These instruments produced high spatial resolution images of the Sun and conclusively demonstrated that doubly reflecting multilayer x-ray optical systems are feasible. The images indicated that aplanatic imaging soft x-ray /EUV microscopes should be achievable using multilayer optics technology. We have designed a doubly reflecting normal incidence multilayer imaging x-ray microscope based on the Schwarzschild configuration. The Schwarzschild microscope utilizes two spherical mirrors with concentric radii of curvature which are chosen such that the third-order spherical aberration and coma are minimized. We discuss the design of the microscope and the results of the optical system ray trace analysis which indicates that diffraction-limited performance with 600 Å spatial resolution should be obtainable over a 1 mm field of view at a wavelength of 100 Å. Fabrication of several imaging soft x-ray microscopes based upon these designs, for use in conjunction with x-ray telescopes and laser fusion research, is now in progress. High resolution aplanatic imaging x-ray microscopes using normal incidence multilayer x-ray mirrors should have many important applications in advanced x-ray astronomical instrumentation, x-ray lithography, biological, biomedical, metallurgical, and laser fusion research.

  8. Telecytology: Is it possible with smartphone images?

    PubMed

    Sahin, Davut; Hacisalihoglu, Uguray Payam; Kirimlioglu, Saime Hale

    2018-01-01

    This study aimed to discuss smartphone usage in telecytology and determine intraobserver concordance between microscopic cytopathological diagnoses and diagnoses derived via static smartphone images. The study was conducted with 172 cytologic material. A pathologist captured static images of the cytology slides from the ocular lens of a microscope using a smartphone. The images were transferred via WhatsApp® to a cytopathologist working in another center who made all the microscopic cytopathological diagnoses 5-27 months ago. The cytopathologist diagnosed images on a smartphone without knowledge of their previous microscopic diagnoses. The Kappa agreement between microscopic cytopathological diagnoses and smartphone image diagnoses was determined. The average image capturing, transfer, and remote cytopathological diagnostic time for one case was 6.20 minutes. The percentage of cases whose microscopic and smartphone image diagnoses were concordant was 84.30%, and the percentage of those whose diagnoses were discordant was 15.69%. The highest Kappa agreement was observed in endoscopic ultrasound-guided fine needle aspiration (1.000), and the lowest agreement was observed in urine cytology (0.665). Patient management changed with smart phone image diagnoses at 11.04%. This study showed that easy, fast, and high-quality image capturing and transfer is possible from cytology slides using smartphones. The intraobserver Kappa agreement between the microscopic cytopathological diagnoses and remote smartphone image diagnoses was high. It was found that remote diagnosis due to difficulties in telecytology might change patient management. The developments in the smartphone camera technology and transfer software make them efficient telepathology and telecytology tools. © 2017 Wiley Periodicals, Inc.

  9. Volume 10, Issue 11-12© 2001 WILEY-VCH Verlag Berlin GmbH, Fed. Rep. of GermanySave Title to My Profile

    E-MailPrint

    Volume 10, Issue 11-12, Pages 887-984(November 2001)

    Original Paper

    Imaging of atomic orbitals with the Atomic Force Microscope - experiments and simulations

    NASA Astrophysics Data System (ADS)

    Giessibl, F. J.; Bielefeldt, H.; Hembacher, S.; Mannhart, J.

    2001-11-01

    Atomic force microscopy (AFM) is a mechanical profiling technique that allows to image surfaces with atomic resolution. Recent progress in reducing the noise of this technique has led to a resolution level where previously undetectable symmetries of the images of single atoms are observed. These symmetries are related to the nature of the interatomic forces. The Si(111)-(7 × 7) surface is studied by AFM with various tips and AFM images are simulated with chemical and electrostatic model forces. The calculation of images from the tip-sample forces is explained in detail and the implications of the imaging parameters are discussed. Because the structure of the Si(111)-(7 × 7) surface is known very well, the shape of the adatom images is used to determine the tip structure. The observability of atomic orbitals by AFM and scanning tunneling microscopy is discussed.

  10. Smartphone adapters for digital photomicrography

    PubMed Central

    Roy, Somak; Pantanowitz, Liron; Amin, Milon; Seethala, Raja R.; Ishtiaque, Ahmed; Yousem, Samuel A.; Parwani, Anil V.; Cucoranu, Ioan; Hartman, Douglas J.

    2014-01-01

    Background: Photomicrographs in Anatomic Pathology provide a means of quickly sharing information from a glass slide for consultation, education, documentation and publication. While static image acquisition historically involved the use of a permanently mounted camera unit on a microscope, such cameras may be expensive, need to be connected to a computer, and often require proprietary software to acquire and process images. Another novel approach for capturing digital microscopic images is to use smartphones coupled with the eyepiece of a microscope. Recently, several smartphone adapters have emerged that allow users to attach mobile phones to the microscope. The aim of this study was to test the utility of these various smartphone adapters. Materials and Methods: We surveyed the market for adapters to attach smartphones to the ocular lens of a conventional light microscope. Three adapters (Magnifi, Skylight and Snapzoom) were tested. We assessed the designs of these adapters and their effectiveness at acquiring static microscopic digital images. Results: All adapters facilitated the acquisition of digital microscopic images with a smartphone. The optimal adapter was dependent on the type of phone used. The Magnifi adapters for iPhone were incompatible when using a protective case. The Snapzoom adapter was easiest to use with iPhones and other smartphones even with protective cases. Conclusions: Smartphone adapters are inexpensive and easy to use for acquiring digital microscopic images. However, they require some adjustment by the user in order to optimize focus and obtain good quality images. Smartphone microscope adapters provide an economically feasible method of acquiring and sharing digital pathology photomicrographs. PMID:25191623

  11. Adaptive optical microscope for brain imaging in vivo

    NASA Astrophysics Data System (ADS)

    Wang, Kai

    2017-04-01

    The optical heterogeneity of biological tissue imposes a major limitation to acquire detailed structural and functional information deep in the biological specimens using conventional microscopes. To restore optimal imaging performance, we developed an adaptive optical microscope based on direct wavefront sensing technique. This microscope can reliably measure and correct biological samples induced aberration. We demonstrated its performance and application in structural and functional brain imaging in various animal models, including fruit fly, zebrafish and mouse.

  12. On the detection of early osteoarthritis by quantitative microscopic imaging

    NASA Astrophysics Data System (ADS)

    Mittelstaedt, Daniel John

    Articular cartilage is a thin layer of connective tissue that protects the ends of bones in diarthroidal joints. Cartilage distributes mechanical forces during daily movement throughout its unique depth-dependent structure. The extracellular matrix (ECM) of cartilage primarily contains water, collagen, and glycosaminoglycan (GAG). The collagen fibers are intertwined with negatively charged GAG and surround the cells (i.e. chondrocytes) in cartilage. Degradation to the ECM reduces the load bearing properties of cartilage which can be initiated by injury (e.g. anterior cruciate ligament (ACL) rupture) or disease (e.g. osteoarthritis (OA)). Magnetic resonance imaging (MRI) and x-ray computed tomography (CT) are noninvasive imaging techniques that are increasingly being used in the clinical detection of cartilage degradation. The aim of the first project in this dissertation was to quantify and compare the depth-dependent GAG concentration from healthy and biochemically degraded humeral ex vivo articular cartilage using quantitative contrast enhanced micro-computed tomography (qCECT) at high resolution. The second project in this dissertation was aimed to measure the topographical and depth-dependent GAG concentration using qCECT and delayed gadolinium enhanced magnetic resonance imaging of cartilage (dGEMRIC) from the medial tibia cartilage three weeks after unilateral ACL transection which is an animal model of OA (i.e. modified Pond-Nuki model). These GAG measurements were correlated with a biochemical method, inductively couple plasma optical emission spectrometry, to compare the degradation on the medial tibia between the OA and contralateral cartilage. The third project in this dissertation used the same cartilage specimens as in project two to investigate the change in T2 due to OA and the effect on T2 from a contrast agent. Furthermore, the change in T2 relaxation was investigated from static unconfined compression with correlations by biomechanical measurements. These studies demonstrate the ability to use two quantitative microscopic imaging techniques, microCT and microMRI, to detect microscopic changes in collagen and GAG from healthy, biochemically degraded, and early OA cartilage. The capability for microscopic imaging to detect alterations at the earliest stages of OA will ultimately improve the understanding of degradation and may help aid in the detection for the prevention of disease and repair of damaged cartilage.

  13. The effect of inoculum source and fluid shear force on the development of in vitro oral multispecies biofilms.

    PubMed

    Fernández, C E; Aspiras, M B; Dodds, M W; González-Cabezas, C; Rickard, A H

    2017-03-01

    Saliva has been previously used as an inoculum for in vitro oral biofilm studies. However, the microbial community profile of saliva is markedly different from hard- and soft-tissue-associated oral biofilms. Here, we investigated the changes in the biofilm architecture and microbial diversity of in vitro oral biofilms developed from saliva, tongue or plaque-derived inocula under different salivary shear forces. Four inoculum types (saliva, bacteria harvested from the tongue, toothbrush and curette-harvested plaque) were collected and pooled. Biofilms (n ≥ 15) were grown for 20 h in cell-free human saliva flowing at three different shear forces. Stained biofilms were imaged using a confocal laser scanning microscope. Biomass, thickness and roughness were determined by image analysis and bacterial community composition analysed using Ion Torrent. All developed biofilms showed a significant reduction in observed diversity compared with their respective original inoculum. Shear force altered biofilm architecture of saliva and curette-collected plaque and community composition of saliva, tongue and curette-harvested plaque. Different intraoral inocula served as precursors of in vitro oral polymicrobial biofilms which can be influenced by shear. Inoculum selection and shear force are key factors to consider when developing multispecies biofilms within in vitro models. © 2016 The Society for Applied Microbiology.

  14. A simple optical tweezers for trapping polystyrene particles

    NASA Astrophysics Data System (ADS)

    Shiddiq, Minarni; Nasir, Zulfa; Yogasari, Dwiyana

    2013-09-01

    Optical tweezers is an optical trap. For decades, it has become an optical tool that can trap and manipulate any particle from the very small size like DNA to the big one like bacteria. The trapping force comes from the radiation pressure of laser light which is focused to a group of particles. Optical tweezers has been used in many research areas such as atomic physics, medical physics, biophysics, and chemistry. Here, a simple optical tweezers has been constructed using a modified Leybold laboratory optical microscope. The ocular lens of the microscope has been removed for laser light and digital camera accesses. A laser light from a Coherent diode laser with wavelength λ = 830 nm and power 50 mW is sent through an immersion oil objective lens with magnification 100 × and NA 1.25 to a cell made from microscope slides containing polystyrene particles. Polystyrene particles with size 3 μm and 10 μm are used. A CMOS Thorlabs camera type DCC1545M with USB Interface and Thorlabs camera lens 35 mm are connected to a desktop and used to monitor the trapping and measure the stiffness of the trap. The camera is accompanied by camera software which makes able for the user to capture and save images. The images are analyzed using ImageJ and Scion macro. The polystyrene particles have been trapped successfully. The stiffness of the trap depends on the size of the particles and the power of the laser. The stiffness increases linearly with power and decreases as the particle size larger.

  15. Visible-to-visible four-photon ultrahigh resolution microscopic imaging with 730-nm diode laser excited nanocrystals.

    PubMed

    Wang, Baoju; Zhan, Qiuqiang; Zhao, Yuxiang; Wu, Ruitao; Liu, Jing; He, Sailing

    2016-01-25

    Further development of multiphoton microscopic imaging is confronted with a number of limitations, including high-cost, high complexity and relatively low spatial resolution due to the long excitation wavelength. To overcome these problems, for the first time, we propose visible-to-visible four-photon ultrahigh resolution microscopic imaging by using a common cost-effective 730-nm laser diode to excite the prepared Nd(3+)-sensitized upconversion nanoparticles (Nd(3+)-UCNPs). An ordinary multiphoton scanning microscope system was built using a visible CW diode laser and the lateral imaging resolution as high as 161-nm was achieved via the four-photon upconversion process. The demonstrated large saturation excitation power for Nd(3+)-UCNPs would be more practical and facilitate the four-photon imaging in the application. A sample with fine structure was imaged to demonstrate the advantages of visible-to-visible four-photon ultrahigh resolution microscopic imaging with 730-nm diode laser excited nanocrystals. Combining the uniqueness of UCNPs, the proposed visible-to-visible four-photon imaging would be highly promising and attractive in the field of multiphoton imaging.

  16. Proper alignment of the microscope.

    PubMed

    Rottenfusser, Rudi

    2013-01-01

    The light microscope is merely the first element of an imaging system in a research facility. Such a system may include high-speed and/or high-resolution image acquisition capabilities, confocal technologies, and super-resolution methods of various types. Yet more than ever, the proverb "garbage in-garbage out" remains a fact. Image manipulations may be used to conceal a suboptimal microscope setup, but an artifact-free image can only be obtained when the microscope is optimally aligned, both mechanically and optically. Something else is often overlooked in the quest to get the best image out of the microscope: Proper sample preparation! The microscope optics can only do its job when its design criteria are matched to the specimen or vice versa. The specimen itself, the mounting medium, the cover slip, and the type of immersion medium (if applicable) are all part of the total optical makeup. To get the best results out of a microscope, understanding the functions of all of its variable components is important. Only then one knows how to optimize these components for the intended application. Different approaches might be chosen to discuss all of the microscope's components. We decided to follow the light path which starts with the light source and ends at the camera or the eyepieces. To add more transparency to this sequence, the section up to the microscope stage was called the "Illuminating Section", to be followed by the "Imaging Section" which starts with the microscope objective. After understanding the various components, we can start "working with the microscope." To get the best resolution and contrast from the microscope, the practice of "Koehler Illumination" should be understood and followed by every serious microscopist. Step-by-step instructions as well as illustrations of the beam path in an upright and inverted microscope are included in this chapter. A few practical considerations are listed in Section 3. Copyright © 2013 Elsevier Inc. All rights reserved.

  17. Microscopic derivation of particle-based coarse-grained dynamics: Exact expression for memory function

    NASA Astrophysics Data System (ADS)

    Izvekov, Sergei

    2017-03-01

    We consider the generalized Langevin equations of motion describing exactly the particle-based coarse-grained dynamics in the classical microscopic ensemble that were derived recently within the Mori-Zwanzig formalism based on new projection operators [S. Izvekov, J. Chem. Phys. 138(13), 134106 (2013)]. The fundamental difference between the new family of projection operators and the standard Zwanzig projection operator used in the past to derive the coarse-grained equations of motion is that the new operators average out the explicit irrelevant trajectories leading to the possibility of solving the projected dynamics exactly. We clarify the definition of the projection operators and revisit the formalism to compute the projected dynamics exactly for the microscopic system in equilibrium. The resulting expression for the projected force is in the form of a "generalized additive fluctuating force" describing the departure of the generalized microscopic force associated with the coarse-grained coordinate from its projection. Starting with this key expression, we formulate a new exact formula for the memory function in terms of microscopic and coarse-grained conservative forces. We conclude by studying two independent limiting cases of practical importance: the Markov limit (vanishing correlations of projected force) and the limit of weak dependence of the memory function on the particle momenta. We present computationally affordable expressions which can be efficiently evaluated from standard molecular dynamics simulations.

  18. Nanobubble induced formation of quantum emitters in monolayer semiconductors

    NASA Astrophysics Data System (ADS)

    Shepard, Gabriella D.; Ajayi, Obafunso A.; Li, Xiangzhi; Zhu, X.-Y.; Hone, James; Strauf, Stefan

    2017-06-01

    The recent discovery of exciton quantum emitters in transition metal dichalcogenides (TMDCs) has triggered renewed interest of localized excitons in low-dimensional systems. Open questions remain about the microscopic origin previously attributed to dopants and/or defects as well as strain potentials. Here we show that the quantum emitters can be deliberately induced by nanobubble formation in WSe2 and BN/WSe2 heterostructures. Correlations of atomic-force microscope and hyperspectral photoluminescence images reveal that the origin of quantum emitters and trion disorder is extrinsic and related to 10 nm tall nanobubbles and 70 nm tall wrinkles, respectively. We further demonstrate that ‘hot stamping’ results in the absence of 0D quantum emitters and trion disorder. The demonstrated technique is useful for advances in nanolasers and deterministic formation of cavity-QED systems in monolayer materials.

  19. Optimization of the imaging response of scanning microwave microscopy measurements

    NASA Astrophysics Data System (ADS)

    Sardi, G. M.; Lucibello, A.; Kasper, M.; Gramse, G.; Proietti, E.; Kienberger, F.; Marcelli, R.

    2015-07-01

    In this work, we present the analytical modeling and preliminary experimental results for the choice of the optimal frequencies when performing amplitude and phase measurements with a scanning microwave microscope. In particular, the analysis is related to the reflection mode operation of the instrument, i.e., the acquisition of the complex reflection coefficient data, usually referred as S11. The studied configuration is composed of an atomic force microscope with a microwave matched nanometric cantilever probe tip, connected by a λ/2 coaxial cable resonator to a vector network analyzer. The set-up is provided by Keysight Technologies. As a peculiar result, the optimal frequencies, where the maximum sensitivity is achieved, are different for the amplitude and for the phase signals. The analysis is focused on measurements of dielectric samples, like semiconductor devices, textile pieces, and biological specimens.

  20. Studies on the ultrastructure in Anacardium occidentale L. leaves from Amazon in northern Brazil by scanning microscopy.

    PubMed

    Ramos, Glenda Quaresma; Cotta, Eduardo Adriano; da Fonseca Filho, Henrique Duarte

    2016-07-01

    Leaves surfaces have various structures with specific functions and contribute to the relationship with the environment. On morphological studies are analyzed various parameters, ranging from macro scale through the micro scale to the nanometer scale, which contribute to the study of taxonomy, pharmacognosy, and ecology, among others. Functional structures found in leaves are responsible for the wide variety of surfaces and some behaviors are given in terms of cellular adaptation and the presence or absence of wax. This study reports the characterization of Anacardium occidentale L. leaf surface and the techniques used therein. A set of scanning electron microscope (SEM) and atomic force microscope (AFM) images performed on fresh leaf allowed observation of textured and heterogeneous profiles on both sides. SCANNING 38:329-335, 2016. © 2015 Wiley Periodicals, Inc. © Wiley Periodicals, Inc.

  1. A Student-Built Scanning Tunneling Microscope

    ERIC Educational Resources Information Center

    Ekkens, Tom

    2015-01-01

    Many introductory and nanotechnology textbooks discuss the operation of various microscopes including atomic force (AFM), scanning tunneling (STM), and scanning electron microscopes (SEM). In a nanotechnology laboratory class, students frequently utilize microscopes to obtain data without a thought about the detailed operation of the tool itself.…

  2. Biological applications of near-field scanning optical microscopy

    NASA Astrophysics Data System (ADS)

    Moers, Marco H. P.; Ruiter, A. G. T.; Jalocha, Alain; van Hulst, Niko F.; Kalle, W. H. J.; Wiegant, J. C. A. G.; Raap, A. K.

    1995-09-01

    Near-field Scanning Optical Microscopy (NSOM) is a true optical microscopic technique allowing fluorescence, absorption, reflection and polarization contrast with the additional advantage of nanometer lateral resolution, unlimited by diffraction and operation at ambient conditions. NSOM based on metal coated adiabatically tapered fibers, combined with shear force feedback and operated in illumination mode, has proven to be the most powerful NSOM arrangement, because of its true localization of the optical interaction, its various optical contrast possibilities and its sensitivity down to the single molecular level. In this paper applications of `aperture' NSOM to Fluorescence In Situ Hybridization of human metaphase chromosomes are presented, where the localized fluorescence allows to identify specific DNA sequences. All images are accompanied by the simultaneously acquired force image, enabling direct comparison of the optical contrast with the sample topography on nanometer scale, far beyond the diffraction limit. Thus the unique combination of high resolution, specific optical contrast and ambient operation offers many new direction possibilities in biological studies.

  3. Remote Histology Learning from Static versus Dynamic Microscopic Images

    ERIC Educational Resources Information Center

    Mione, Sylvia; Valcke, Martin; Cornelissen, Maria

    2016-01-01

    Histology is the study of microscopic structures in normal tissue sections. Curriculum redesign in medicine has led to a decrease in the use of optical microscopes during practical classes. Other imaging solutions have been implemented to facilitate remote learning. With advancements in imaging technologies, learning material can now be digitized.…

  4. A frameless stereotaxic operating microscope for neurosurgery.

    PubMed

    Friets, E M; Strohbehn, J W; Hatch, J F; Roberts, D W

    1989-06-01

    A new system, which we call the frameless stereotaxic operating microscope, is discussed. Its purpose is to display CT or other image data in the operating microscope in the correct scale, orientation, and position without the use of a stereotaxic frame. A nonimaging ultrasonic rangefinder allows the position of the operating microscope and the position of the patient to be determined. Discrete fiducial points on the patient's external anatomy are located in both image space and operating room space, linking the image data and the operating room. Physician-selected image information, e.g., tumor contours or guidance to predetermined targets, is projected through the optics of the operating microscope using a miniature cathode ray tube and a beam splitter. Projected images superpose the surgical field, reconstructed from image data to match the focal plane of the operating microscope. The algorithms on which the system is based are described, and the sources and effects of errors are discussed. The system's performance is simulated, providing an estimate of accuracy. Two phantoms are used to measure accuracy experimentally. Clinical results and observations are given.

  5. Automatic analysis for neuron by confocal laser scanning microscope

    NASA Astrophysics Data System (ADS)

    Satou, Kouhei; Aoki, Yoshimitsu; Mataga, Nobuko; Hensh, Takao K.; Taki, Katuhiko

    2005-12-01

    The aim of this study is to develop a system that recognizes both the macro- and microscopic configurations of nerve cells and automatically performs the necessary 3-D measurements and functional classification of spines. The acquisition of 3-D images of cranial nerves has been enabled by the use of a confocal laser scanning microscope, although the highly accurate 3-D measurements of the microscopic structures of cranial nerves and their classification based on their configurations have not yet been accomplished. In this study, in order to obtain highly accurate measurements of the microscopic structures of cranial nerves, existing positions of spines were predicted by the 2-D image processing of tomographic images. Next, based on the positions that were predicted on the 2-D images, the positions and configurations of the spines were determined more accurately by 3-D image processing of the volume data. We report the successful construction of an automatic analysis system that uses a coarse-to-fine technique to analyze the microscopic structures of cranial nerves with high speed and accuracy by combining 2-D and 3-D image analyses.

  6. Lateral resolution testing of a novel developed confocal microscopic imaging system

    NASA Astrophysics Data System (ADS)

    Zhang, Xin; Zhang, Yunhai; Chang, Jian; Huang, Wei; Xue, Xiaojun; Xiao, Yun

    2015-10-01

    Laser scanning confocal microscope has been widely used in biology, medicine and material science owing to its advantages of high resolution and tomographic imaging. Based on a set of confirmatory experiments and system design, a novel confocal microscopic imaging system is developed. The system is composed of a conventional fluorescence microscope and a confocal scanning unit. In the scanning unit a laser beam coupling module provides four different wavelengths 405nm 488nm 561nm and 638nm which can excite a variety of dyes. The system works in spot-to-spot scanning mode with a two-dimensional galvanometer. A 50 microns pinhole is used to guarantee that stray light is blocked and only the fluorescence signal from the focal point can be received . The three-channel spectral splitter is used to perform fluorescence imaging at three different working wavelengths simultaneously. The rat kidney tissue slice is imaged using the developed confocal microscopic imaging system. Nucleues labeled by DAPI and kidney spherule curved pipe labeled by Alexa Fluor 488 can be imaged clearly and respectively, realizing the distinction between the different components of mouse kidney tissue. The three-dimensional tomographic imaging of mouse kidney tissue is reconstructed by several two-dimensional images obtained in different depths. At last the resolution of the confocal microscopic imaging system is tested quantitatively. The experimental result shows that the system can achieve lateral resolution priority to 230nm.

  7. Field-Portable Pixel Super-Resolution Colour Microscope

    PubMed Central

    Greenbaum, Alon; Akbari, Najva; Feizi, Alborz; Luo, Wei; Ozcan, Aydogan

    2013-01-01

    Based on partially-coherent digital in-line holography, we report a field-portable microscope that can render lensfree colour images over a wide field-of-view of e.g., >20 mm2. This computational holographic microscope weighs less than 145 grams with dimensions smaller than 17×6×5 cm, making it especially suitable for field settings and point-of-care use. In this lensfree imaging design, we merged a colorization algorithm with a source shifting based multi-height pixel super-resolution technique to mitigate ‘rainbow’ like colour artefacts that are typical in holographic imaging. This image processing scheme is based on transforming the colour components of an RGB image into YUV colour space, which separates colour information from brightness component of an image. The resolution of our super-resolution colour microscope was characterized using a USAF test chart to confirm sub-micron spatial resolution, even for reconstructions that employ multi-height phase recovery to handle dense and connected objects. To further demonstrate the performance of this colour microscope Papanicolaou (Pap) smears were also successfully imaged. This field-portable and wide-field computational colour microscope could be useful for tele-medicine applications in resource poor settings. PMID:24086742

  8. Field-portable pixel super-resolution colour microscope.

    PubMed

    Greenbaum, Alon; Akbari, Najva; Feizi, Alborz; Luo, Wei; Ozcan, Aydogan

    2013-01-01

    Based on partially-coherent digital in-line holography, we report a field-portable microscope that can render lensfree colour images over a wide field-of-view of e.g., >20 mm(2). This computational holographic microscope weighs less than 145 grams with dimensions smaller than 17×6×5 cm, making it especially suitable for field settings and point-of-care use. In this lensfree imaging design, we merged a colorization algorithm with a source shifting based multi-height pixel super-resolution technique to mitigate 'rainbow' like colour artefacts that are typical in holographic imaging. This image processing scheme is based on transforming the colour components of an RGB image into YUV colour space, which separates colour information from brightness component of an image. The resolution of our super-resolution colour microscope was characterized using a USAF test chart to confirm sub-micron spatial resolution, even for reconstructions that employ multi-height phase recovery to handle dense and connected objects. To further demonstrate the performance of this colour microscope Papanicolaou (Pap) smears were also successfully imaged. This field-portable and wide-field computational colour microscope could be useful for tele-medicine applications in resource poor settings.

  9. Nanoimaging using soft X-ray and EUV laser-plasma sources

    NASA Astrophysics Data System (ADS)

    Wachulak, Przemyslaw; Torrisi, Alfio; Ayele, Mesfin; Bartnik, Andrzej; Czwartos, Joanna; Węgrzyński, Łukasz; Fok, Tomasz; Fiedorowicz, Henryk

    2018-01-01

    In this work we present three experimental, compact desk-top imaging systems: SXR and EUV full field microscopes and the SXR contact microscope. The systems are based on laser-plasma EUV and SXR sources based on a double stream gas puff target. The EUV and SXR full field microscopes, operating at 13.8 nm and 2.88 nm wavelengths are capable of imaging nanostructures with a sub-50 nm spatial resolution and short (seconds) exposure times. The SXR contact microscope operates in the "water-window" spectral range and produces an imprint of the internal structure of the imaged sample in a thin layer of SXR sensitive photoresist. Applications of such desk-top EUV and SXR microscopes, mostly for biological samples (CT26 fibroblast cells and Keratinocytes) are also presented. Details about the sources, the microscopes as well as the imaging results for various objects will be presented and discussed. The development of such compact imaging systems may be important to the new research related to biological, material science and nanotechnology applications.

  10. AFM stiffness nanotomography of normal, metaplastic and dysplastic human esophageal cells

    NASA Astrophysics Data System (ADS)

    Fuhrmann, A.; Staunton, J. R.; Nandakumar, V.; Banyai, N.; Davies, P. C. W.; Ros, R.

    2011-02-01

    The mechanical stiffness of individual cells is important in tissue homeostasis, cell growth, division and motility, and the epithelial-mesenchymal transition in the initiation of cancer. In this work, a normal squamous cell line (EPC2) and metaplastic (CP-A) as well as dysplastic (CP-D) Barrett's Esophagus columnar cell lines are studied as a model of pre-neoplastic progression in the human esophagus. We used the combination of an atomic force microscope (AFM) with a scanning confocal fluorescence lifetime imaging microscope to study the mechanical properties of single adherent cells. Sixty four force indentation curves were taken over the nucleus of each cell in an 8 × 8 grid pattern. Analyzing the force indentation curves, indentation depth-dependent Young's moduli were found for all cell lines. Stiffness tomograms demonstrate distinct differences between the mechanical properties of the studied cell lines. Comparing the stiffness for indentation forces of 1 nN, most probable Young's moduli were calculated to 4.7 kPa for EPC2 (n = 18 cells), 3.1 kPa for CP-A (n = 10) and 2.6 kPa for CP-D (n = 19). We also tested the influence of nuclei and nucleoli staining organic dyes on the mechanical properties of the cells. For stained EPC2 cells (n = 5), significant stiffening was found (9.9 kPa), while CP-A cells (n = 5) showed no clear trend (2.9 kPa) and a slight softening was observed (2.1 kPa) in the case of CP-D cells (n = 16). Some force-indentation curves show non-monotonic discontinuities with segments of negative slope, resembling a sawtooth pattern. We found the incidence of these 'breakthrough events' to be highest in the dysplastic CP-D cells, intermediate in the metaplastic CP-A cells and lowest in the normal EPC2 cells. This observation suggests that the microscopic explanation for the increased compliance of cancerous and pre-cancerous cells may lie in their susceptibility to 'crumble and yield' rather than their ability to 'bend and flex'.

  11. A wide field-of-view microscope based on holographic focus grid

    NASA Astrophysics Data System (ADS)

    Wu, Jigang; Cui, Xiquan; Zheng, Guoan; Lee, Lap Man; Yang, Changhuei

    2010-02-01

    We have developed a novel microscope technique that can achieve wide field-of-view (FOV) imaging and yet possess resolution that is comparable to conventional microscope. The principle of wide FOV microscope system breaks the link between resolution and FOV magnitude of traditional microscopes. Furthermore, by eliminating bulky optical elements from its design and utilizing holographic optical elements, the wide FOV microscope system is more cost-effective. In our system, a hologram was made to focus incoming collimated beam into a focus grid. The sample is put in the focal plane and the transmissions of the focuses are detected by an imaging sensor. By scanning the incident angle of the incoming beam, the focus grid will scan across the sample and the time-varying transmission can be detected. We can then reconstruct the transmission image of the sample. The resolution of microscopic image is limited by the size of the focus formed by the hologram. The scanning area of each focus spot is determined by the separation of the focus spots and can be made small for fast imaging speed. We have fabricated a prototype system with a 2.4-mm FOV and 1-μm resolution. The prototype system was used to image onion skin cells for a demonstration. The preliminary experiments prove the feasibility of the wide FOV microscope technique, and the possibility of a wider FOV system with better resolution.

  12. Athermalization in atomic force microscope based force spectroscopy using matched microstructure coupling.

    PubMed

    Torun, H; Finkler, O; Degertekin, F L

    2009-07-01

    The authors describe a method for athermalization in atomic force microscope (AFM) based force spectroscopy applications using microstructures that thermomechanically match the AFM probes. The method uses a setup where the AFM probe is coupled with the matched structure and the displacements of both structures are read out simultaneously. The matched structure displaces with the AFM probe as temperature changes, thus the force applied to the sample can be kept constant without the need for a separate feedback loop for thermal drift compensation, and the differential signal can be used to cancel the shift in zero-force level of the AFM.

  13. Modular Scanning Confocal Microscope with Digital Image Processing.

    PubMed

    Ye, Xianjun; McCluskey, Matthew D

    2016-01-01

    In conventional confocal microscopy, a physical pinhole is placed at the image plane prior to the detector to limit the observation volume. In this work, we present a modular design of a scanning confocal microscope which uses a CCD camera to replace the physical pinhole for materials science applications. Experimental scans were performed on a microscope resolution target, a semiconductor chip carrier, and a piece of etched silicon wafer. The data collected by the CCD were processed to yield images of the specimen. By selecting effective pixels in the recorded CCD images, a virtual pinhole is created. By analyzing the image moments of the imaging data, a lateral resolution enhancement is achieved by using a 20 × / NA = 0.4 microscope objective at 532 nm laser wavelength.

  14. Atomic force microscope with combined FTIR-Raman spectroscopy having a micro thermal analyzer

    DOEpatents

    Fink, Samuel D [Aiken, SC; Fondeur, Fernando F [North Augusta, SC

    2011-10-18

    An atomic force microscope is provided that includes a micro thermal analyzer with a tip. The micro thermal analyzer is configured for obtaining topographical data from a sample. A raman spectrometer is included and is configured for use in obtaining chemical data from the sample.

  15. Uncertainty quantification in nanomechanical measurements using the atomic force microscope

    Treesearch

    Ryan Wagner; Robert Moon; Jon Pratt; Gordon Shaw; Arvind Raman

    2011-01-01

    Quantifying uncertainty in measured properties of nanomaterials is a prerequisite for the manufacture of reliable nanoengineered materials and products. Yet, rigorous uncertainty quantification (UQ) is rarely applied for material property measurements with the atomic force microscope (AFM), a widely used instrument that can measure properties at nanometer scale...

  16. CHAMP - Camera, Handlens, and Microscope Probe

    NASA Technical Reports Server (NTRS)

    Mungas, G. S.; Beegle, L. W.; Boynton, J.; Sepulveda, C. A.; Balzer, M. A.; Sobel, H. R.; Fisher, T. A.; Deans, M.; Lee, P.

    2005-01-01

    CHAMP (Camera, Handlens And Microscope Probe) is a novel field microscope capable of color imaging with continuously variable spatial resolution from infinity imaging down to diffraction-limited microscopy (3 micron/pixel). As an arm-mounted imager, CHAMP supports stereo-imaging with variable baselines, can continuously image targets at an increasing magnification during an arm approach, can provide precision range-finding estimates to targets, and can accommodate microscopic imaging of rough surfaces through a image filtering process called z-stacking. Currently designed with a filter wheel with 4 different filters, so that color and black and white images can be obtained over the entire Field-of-View, future designs will increase the number of filter positions to include 8 different filters. Finally, CHAMP incorporates controlled white and UV illumination so that images can be obtained regardless of sun position, and any potential fluorescent species can be identified so the most astrobiologically interesting samples can be identified.

  17. Nanoindentation hardness and atomic force microscope imaging studies of pressure-quenched zirconium metal

    NASA Astrophysics Data System (ADS)

    Catledge, Shane A.; Spencer, Philemon T.; Vohra, Yogesh K.

    2000-11-01

    We have carried out mechanical property measurements on zirconium metal compressed in a diamond anvil cell to 19 GPa at room temperature with subsequent quenching to room pressure. The irreversible transformation from the ambient hexagonal-close-packed phase to the simple hexagonal ω phase (AlB2 structure) is confirmed by synchrotron energy dispersive x-ray diffraction followed by nanoindentation of the pressure-quenched sample. We document an 80% increase in hardness as a consequence of the pressure-induced transformation to the ω phase at room temperature. This is a large increase for a metallic phase transformation and can be attributed to the presence of sp2-hybrid bonds forming graphite-like nets in the (0001) plane of the AlB2 structure. Atomic force microscopy of the indents shows that a plastic deformation of 2 μm in depth was achieved with a force of 200 mN.

  18. Nanomachining by rubbing at ultrasonic frequency under controlled shear force.

    PubMed

    Muraoka, Mikio

    2011-03-01

    This study proposes a new method of proximal-probe machining that uses a rubbing process by introducing concentrated-mass (CM) cantilevers. At the second resonance of the CM cantilever vibration, the tip site of the cantilever becomes a node of the standing deflection wave because of the sufficient inertia of the attached concentrated mass. The tip makes a cyclic motion that is tangential to the sample surface, not vertical to it, as in a tapping motion. This lateral tip motion that is selectively excited by CM cantilevers was effective for the material modification of a sample due to the friction between the tip and the sample. Imaging and nanomachining under controlled shear force were demonstrated by means of the modified cantilever and a normal atomic force microscope. We were able to write a micron-sized letter "Z" having a line width of 30-100 nm on a resin surface.

  19. Mechanical Sensing with Flexible Metallic Nanowires

    NASA Astrophysics Data System (ADS)

    Dobrokhotov, Vladimir; Yazdanpanah, Mehdi; Pabba, Santosh; Safir, Abdelilah; Cohn, Robert

    2008-03-01

    A calibrated method of force sensing is demonstrated in which the buckled shape of a long flexible metallic nanowire is interpreted to determine the applied force. Using a nanomanipulator the nanowire is buckled in the chamber of a scanning electron microscope (SEM) and the buckled shapes are recorded in SEM images. Force is determined as a function of deflection for an assumed elastic modulus by fitting the shapes using the generalized elastica model. In this calibration the elastic modulus was determined using an auxiliary AFM measurement, with the needle in the same orientation as in the SEM. Following this calibration the needle was used as a sensor in a different orientation than the AFM coordinates to deflect a suspended PLLA polymer fiber from which the elastic modulus (2.96 GPa) was determined. In this study the same needle remained rigidly secured to the AFM cantilever throughout the entire SEM/AFM calibration procedure and the characterization of the nanofiber.

  20. Cellular Tug-of-War: Forces at Work and DNA Stretching in Mitosis

    NASA Astrophysics Data System (ADS)

    Griffin, Brian; Kilfoil, Maria L.

    2013-03-01

    In the microscopic world of the cell dominated by thermal noise, a cell must be able to successfully segregate its DNA with high fidelity in order to pass its genetic information on to its progeny. In this process of mitosis in eukaryotes, driving forces act on the cytoskeleton-based architecture called the mitotic spindle to promote this division. Our preliminary data demonstrates that the dynamics of this process in yeast cells is universal. Moreover, the dynamics suggest an increasing load as the chromosomes are pulled apart. To investigate this, we use three-dimensional imaging to track the dynamics of the poles of this architecture and the points of attachment to chromosomes simultaneously and with high spatial resolution. We analyze the relative motions of chromosomes as they are organized before segregation and as they are pulled apart, using this data to investigate the force-response behavior of this cytoskeleton-chromosome polymer system.

  1. Adhesion and transfer of polytetrafluoroethylene to tungsten studied by field ion microscopy

    NASA Technical Reports Server (NTRS)

    Brainard, W. A.; Buckley, D. H.

    1972-01-01

    Mechanical contacts between polytetrafluoroethylene (PTFE) and tungsten field ion tips were made in situ in the field ion microscope. Both load and force of adhesion were measured for varying contact times and for clean and contaminated tungsten tips. Strong adhesion between the PTFE and clean tungsten was observed at contact times greater than 2.5 min (forces of adhesion were greater than three times the load). For times less than 2.5 min, the force of adhesion was immeasurably small. The increase in adhesion with contact time after 2.5 min can be attributed to the increase in true contact area by creep of PTFE. No adhesion was measurable at long contact times with contaminated tungsten tips. Neon field ion micrographs taken after the contacts show many linear and branched arrays which appear to represent PTFE that remains adhered to the surface even at the high electric fields required for imaging.

  2. Quantitative measurement of solvation shells using frequency modulated atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Uchihashi, T.; Higgins, M.; Nakayama, Y.; Sader, J. E.; Jarvis, S. P.

    2005-03-01

    The nanoscale specificity of interaction measurements and additional imaging capability of the atomic force microscope make it an ideal technique for measuring solvation shells in a variety of liquids next to a range of materials. Unfortunately, the widespread use of atomic force microscopy for the measurement of solvation shells has been limited by uncertainties over the dimensions, composition and durability of the tip during the measurements, and problems associated with quantitative force calibration of the most sensitive dynamic measurement techniques. We address both these issues by the combined use of carbon nanotube high aspect ratio probes and quantifying the highly sensitive frequency modulation (FM) detection technique using a recently developed analytical method. Due to the excellent reproducibility of the measurement technique, additional information regarding solvation shell size as a function of proximity to the surface has been obtained for two very different liquids. Further, it has been possible to identify differences between chemical and geometrical effects in the chosen systems.

  3. Development of a SEM-based low-energy in-line electron holography microscope for individual particle imaging.

    PubMed

    Adaniya, Hidehito; Cheung, Martin; Cassidy, Cathal; Yamashita, Masao; Shintake, Tsumoru

    2018-05-01

    A new SEM-based in-line electron holography microscope has been under development. The microscope utilizes conventional SEM and BF-STEM functionality to allow for rapid searching of the specimen of interest, seamless interchange between SEM, BF-STEM and holographic imaging modes, and makes use of coherent low-energy in-line electron holography to obtain low-dose, high-contrast images of light element materials. We report here an overview of the instrumentation and first experimental results on gold nano-particles and carbon nano-fibers for system performance tests. Reconstructed images obtained from the holographic imaging mode of the new microscope show substantial image contrast and resolution compared to those acquired by SEM and BF-STEM modes, demonstrating the feasibility of high-contrast imaging via low-energy in-line electron holography. The prospect of utilizing the new microscope to image purified biological specimens at the individual particle level is discussed and electron optical issues and challenges to further improve resolution and contrast are considered. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. EDITORIAL: Three decades of scanning tunnelling microscopy that changed the course of surface science Three decades of scanning tunnelling microscopy that changed the course of surface science

    NASA Astrophysics Data System (ADS)

    Ramachandra Rao, M. S.; Margaritondo, Giorgio

    2011-11-01

    Three decades ago, with a tiny tip of platinum, the scientific world saw the real space imaging of single atoms with unprecedented spatial resolution. This signalled the birth of one of the most versatile surface probes, based on the physics of quantum mechanical tunnelling: the scanning tunnelling microscope (STM). Invented in 1981 by Gerd Binnig and Heinrich Rohrer of IBM, Zurich, it led to their award of the 1986 Nobel Prize. Atoms, once speculated to be abstract entities used by theoreticians for mere calculations, can be seen to exist for real with the nano-eye of an STM tip that also gives real-space images of molecules and adsorbed complexes on surfaces. From a very fundamental perspective, the STM changed the course of surface science and engineering. STM also emerged as a powerful tool to study various fundamental phenomena relevant to the properties of surfaces in technological applications such as tribology, medical implants, catalysis, sensors and biology—besides elucidating the importance of local bonding geometries and defects, non-periodic structures and the co-existence of nano-scale phases. Atom-level probing, once considered a dream, has seen the light with the evolution of STM. An important off-shoot of STM was the atomic force microscope (AFM) for surface mapping of insulating samples. Then followed the development of a flurry of techniques under the general name of scanning probe microscopy (SPM). These techniques (STM, AFM, MFM, PFM etc) designed for atomic-scale-resolution imaging and spectroscopy, have led to brand new developments in surface analysis. All of these novel methods enabled researchers in recent years to image and analyse complex surfaces on microscopic and nanoscopic scales. All of them utilize a small probe for sensing the surface. The invention of AFM by Gerd Binnig, Calvin Quate and Christopher Gerber opened up new opportunities for characterization of a variety of materials, and various industrial applications could be envisaged. AFM observations of thin-film surfaces give us a picture of surface topography and morphology and any visible defects. The growing importance of ultra-thin films for magnetic recording in hard disk drive systems requires an in-depth understanding of the fundamental mechanisms occurring during growth. This special issue of Journal of Physics D: Applied Physics covers all of the different aspects of SPM that illustrate the achievements of this methodology: nanoscale imaging and mapping (Chiang, and Douillard and Charra), piezoresponse force microscopy (Soergel) and STM engineering (Okuyama and Hamada, and Huang et al). Chiang takes the reader on a journey along the STM imaging of atoms and molecules on surfaces. Jesse and Kalinin explore the band excitations that occur during the corresponding processes. Jia et al propose STM and molecular beam epitaxy as a winning experimental combination at the interface of science and technology. Douillard and Charra describe the high-resolution mapping of plasmonic modes using photoemission and scanning tunnelling microscopy. Cricenti et al demonstrate the importance of SPM in material science and biology. Wiebe et al have probed atomic scale magnetism, revealed by spin polarized scanning tunnelling microscopy. In addition, Simon et al present Fourier transform scanning tunnelling spectroscopy and the possibility to obtain constant energy maps and band dispersion using local measurements. Lackinger and Heckl give a perspective of the use of STM to study covalent intermolecular coupling reactions on surfaces. Okuyama and Hamada investigated hydrogen bond imaging and engineering with STM. Soergel describes the study of substrate-dependent self-assembled CuPc molecules using piezo force microscope (PFM). We are very grateful to the authors and reviewers for the papers in this special issue of Journal of Physics D: Applied Physics. Their contributions have provided a comprehensive picture of the evolution, status and potential of scanning probe microscopy, conveying to the readers the full excitement of this forefront domain of physics.

  5. Sparse imaging for fast electron microscopy

    NASA Astrophysics Data System (ADS)

    Anderson, Hyrum S.; Ilic-Helms, Jovana; Rohrer, Brandon; Wheeler, Jason; Larson, Kurt

    2013-02-01

    Scanning electron microscopes (SEMs) are used in neuroscience and materials science to image centimeters of sample area at nanometer scales. Since imaging rates are in large part SNR-limited, large collections can lead to weeks of around-the-clock imaging time. To increase data collection speed, we propose and demonstrate on an operational SEM a fast method to sparsely sample and reconstruct smooth images. To accurately localize the electron probe position at fast scan rates, we model the dynamics of the scan coils, and use the model to rapidly and accurately visit a randomly selected subset of pixel locations. Images are reconstructed from the undersampled data by compressed sensing inversion using image smoothness as a prior. We report image fidelity as a function of acquisition speed by comparing traditional raster to sparse imaging modes. Our approach is equally applicable to other domains of nanometer microscopy in which the time to position a probe is a limiting factor (e.g., atomic force microscopy), or in which excessive electron doses might otherwise alter the sample being observed (e.g., scanning transmission electron microscopy).

  6. Telepresence in neurosurgery: the integrated remote neurosurgical system.

    PubMed

    Kassell, N F; Downs, J H; Graves, B S

    1997-01-01

    This paper describes the Integrated Remote Neurosurgical System (IRNS), a remotely-operated neurosurgical microscope with high-speed communications and a surgeon-accessible user interface. The IRNS will allow high quality bidirectional mentoring in the neurosurgical suite. The research goals of this effort are twofold: to develop a clinical system allowing a remote neurosurgeon to lend expertise to the OR-based neurosurgical team and to provide an integrated training environment. The IRNS incorporates a generic microscope/transport model, Called SuMIT (Surgical Manipulator Interface Translator). Our system is currently under test using the Zeiss MKM surgical transport. A SuMIT interface is also being constructed for the Robotics Research 1607. The IRNS Remote Planning and Navigation Workstation incorporates surgical planning capabilities, real-time, 30 fps video from the microscope and overhead video camera. The remote workstation includes a force reflecting handcontroller which gives the remote surgeon an intuitive way to position the microscope head. Bidirectional audio, video whiteboarding, and image archiving are also supported by the remote workstation. A simulation mode permits pre-surgical simulation, post-surgical critique, and training for surgeons without access to an actual microscope transport system. The components of the IRNS are integrated using ATM switching to provide low latency data transfer. The research, along with the more sophisticated systems that will follow, will serve as a foundation and test-bed for extending the surgeon's skills without regard to time zone or geographic boundaries.

  7. Analysis of leaf surfaces using scanning ion conductance microscopy.

    PubMed

    Walker, Shaun C; Allen, Stephanie; Bell, Gordon; Roberts, Clive J

    2015-05-01

    Leaf surfaces are highly complex functional systems with well defined chemistry and structure dictating the barrier and transport properties of the leaf cuticle. It is a significant imaging challenge to analyse the very thin and often complex wax-like leaf cuticle morphology in their natural state. Scanning electron microscopy (SEM) and to a lesser extent Atomic force microscopy are techniques that have been used to study the leaf surface but their remains information that is difficult to obtain via these approaches. SEM is able to produce highly detailed and high-resolution images needed to study leaf structures at the submicron level. It typically operates in a vacuum or low pressure environment and as a consequence is generally unable to deal with the in situ analysis of dynamic surface events at submicron scales. Atomic force microscopy also possess the high-resolution imaging required and can follow dynamic events in ambient and liquid environments, but can over exaggerate small features and cannot image most leaf surfaces due to their inherent roughness at the micron scale. Scanning ion conductance microscopy (SICM), which operates in a liquid environment, provides a potential complementary analytical approach able to address these issues and which is yet to be explored for studying leaf surfaces. Here we illustrate the potential of SICM on various leaf surfaces and compare the data to SEM and atomic force microscopy images on the same samples. In achieving successful imaging we also show that SICM can be used to study the wetting of hydrophobic surfaces in situ. This has potentially wider implications than the study of leaves alone as surface wetting phenomena are important in a range of fundamental and applied studies. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.

  8. Improvement of sidestream dark field imaging with an image acquisition stabilizer.

    PubMed

    Balestra, Gianmarco M; Bezemer, Rick; Boerma, E Christiaan; Yong, Ze-Yie; Sjauw, Krishan D; Engstrom, Annemarie E; Koopmans, Matty; Ince, Can

    2010-07-13

    In the present study we developed, evaluated in volunteers, and clinically validated an image acquisition stabilizer (IAS) for Sidestream Dark Field (SDF) imaging. The IAS is a stainless steel sterilizable ring which fits around the SDF probe tip. The IAS creates adhesion to the imaged tissue by application of negative pressure. The effects of the IAS on the sublingual microcirculatory flow velocities, the force required to induce pressure artifacts (PA), the time to acquire a stable image, and the duration of stable imaging were assessed in healthy volunteers. To demonstrate the clinical applicability of the SDF setup in combination with the IAS, simultaneous bilateral sublingual imaging of the microcirculation were performed during a lung recruitment maneuver (LRM) in mechanically ventilated critically ill patients. One SDF device was operated handheld; the second was fitted with the IAS and held in position by a mechanic arm. Lateral drift, number of losses of image stability and duration of stable imaging of the two methods were compared. Five healthy volunteers were studied. The IAS did not affect microcirculatory flow velocities. A significantly greater force had to applied onto the tissue to induced PA with compared to without IAS (0.25 +/- 0.15 N without vs. 0.62 +/- 0.05 N with the IAS, p < 0.001). The IAS ensured an increased duration of a stable image sequence (8 +/- 2 s without vs. 42 +/- 8 s with the IAS, p < 0.001). The time required to obtain a stable image sequence was similar with and without the IAS. In eight mechanically ventilated patients undergoing a LRM the use of the IAS resulted in a significantly reduced image drifting and enabled the acquisition of significantly longer stable image sequences (24 +/- 5 s without vs. 67 +/- 14 s with the IAS, p = 0.006). The present study has validated the use of an IAS for improvement of SDF imaging by demonstrating that the IAS did not affect microcirculatory perfusion in the microscopic field of view. The IAS improved both axial and lateral SDF image stability and thereby increased the critical force required to induce pressure artifacts. The IAS ensured a significantly increased duration of maintaining a stable image sequence.

  9. Performance assessment of methods for estimation of fractal dimension from scanning electron microscope images.

    PubMed

    Risović, Dubravko; Pavlović, Zivko

    2013-01-01

    Processing of gray scale images in order to determine the corresponding fractal dimension is very important due to widespread use of imaging technologies and application of fractal analysis in many areas of science, technology, and medicine. To this end, many methods for estimation of fractal dimension from gray scale images have been developed and routinely used. Unfortunately different methods (dimension estimators) often yield significantly different results in a manner that makes interpretation difficult. Here, we report results of comparative assessment of performance of several most frequently used algorithms/methods for estimation of fractal dimension. To that purpose, we have used scanning electron microscope images of aluminum oxide surfaces with different fractal dimensions. The performance of algorithms/methods was evaluated using the statistical Z-score approach. The differences between performances of six various methods are discussed and further compared with results obtained by electrochemical impedance spectroscopy on the same samples. The analysis of results shows that the performance of investigated algorithms varies considerably and that systematically erroneous fractal dimensions could be estimated using certain methods. The differential cube counting, triangulation, and box counting algorithms showed satisfactory performance in the whole investigated range of fractal dimensions. Difference statistic is proved to be less reliable generating 4% of unsatisfactory results. The performances of the Power spectrum, Partitioning and EIS were unsatisfactory in 29%, 38%, and 75% of estimations, respectively. The results of this study should be useful and provide guidelines to researchers using/attempting fractal analysis of images obtained by scanning microscopy or atomic force microscopy. © Wiley Periodicals, Inc.

  10. Spatially multiplexed interferometric microscopy with partially coherent illumination

    NASA Astrophysics Data System (ADS)

    Picazo-Bueno, José Ángel; Zalevsky, Zeev; García, Javier; Ferreira, Carlos; Micó, Vicente

    2016-10-01

    We have recently reported on a simple, low cost, and highly stable way to convert a standard microscope into a holographic one [Opt. Express 22, 14929 (2014)]. The method, named spatially multiplexed interferometric microscopy (SMIM), proposes an off-axis holographic architecture implemented onto a regular (nonholographic) microscope with minimum modifications: the use of coherent illumination and a properly placed and selected one-dimensional diffraction grating. In this contribution, we report on the implementation of partially (temporally reduced) coherent illumination in SMIM as a way to improve quantitative phase imaging. The use of low coherence sources forces the application of phase shifting algorithm instead of off-axis holographic recording to recover the sample's phase information but improves phase reconstruction due to coherence noise reduction. In addition, a less restrictive field of view limitation (1/2) is implemented in comparison with our previously reported scheme (1/3). The proposed modification is experimentally validated in a regular Olympus BX-60 upright microscope considering a wide range of samples (resolution test, microbeads, swine sperm cells, red blood cells, and prostate cancer cells).

  11. Applications of virtual reality technology in pathology.

    PubMed

    Grimes, G J; McClellan, S A; Goldman, J; Vaughn, G L; Conner, D A; Kujawski, E; McDonald, J; Winokur, T; Fleming, W

    1997-01-01

    TelePath(SM) a telerobotic system utilizing virtual microscope concepts based on high quality still digital imaging and aimed at real-time support for surgery by remote diagnosis of frozen sections. Many hospitals and clinics have an application for the remote practice of pathology, particularly in the area of reading frozen sections in support of surgery, commonly called anatomic pathology. The goal is to project the expertise of the pathologist into the remote setting by giving the pathologist access to the microscope slides with an image quality and human interface comparable to what the pathologist would experience at a real rather than a virtual microscope. A working prototype of a virtual microscope has been defined and constructed which has the needed performance in both the image quality and human interface areas for a pathologist to work remotely. This is accomplished through the use of telerobotics and an image quality which provides the virtual microscope the same diagnostic capabilities as a real microscope. The examination of frozen sections is performed a two-dimensional world. The remote pathologist is in a virtual world with the same capabilities as a "real" microscope, but response times may be slower depending on the specific computing and telecommunication environments. The TelePath system has capabilities far beyond a normal biological microscope, such as the ability to create a low power image of the entire sample using multiple images digitally matched together; the ability to digitally retrace a viewing trajectory; and the ability to archive images using CD ROM and other mass storage devices.

  12. High-resolution, high-throughput imaging with a multibeam scanning electron microscope.

    PubMed

    Eberle, A L; Mikula, S; Schalek, R; Lichtman, J; Knothe Tate, M L; Zeidler, D

    2015-08-01

    Electron-electron interactions and detector bandwidth limit the maximal imaging speed of single-beam scanning electron microscopes. We use multiple electron beams in a single column and detect secondary electrons in parallel to increase the imaging speed by close to two orders of magnitude and demonstrate imaging for a variety of samples ranging from biological brain tissue to semiconductor wafers. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.

  13. Comprehensive optical and data management infrastructure for high-throughput light-sheet microscopy of whole mouse brains.

    PubMed

    Müllenbroich, M Caroline; Silvestri, Ludovico; Onofri, Leonardo; Costantini, Irene; Hoff, Marcel Van't; Sacconi, Leonardo; Iannello, Giulio; Pavone, Francesco S

    2015-10-01

    Comprehensive mapping and quantification of neuronal projections in the central nervous system requires high-throughput imaging of large volumes with microscopic resolution. To this end, we have developed a confocal light-sheet microscope that has been optimized for three-dimensional (3-D) imaging of structurally intact clarified whole-mount mouse brains. We describe the optical and electromechanical arrangement of the microscope and give details on the organization of the microscope management software. The software orchestrates all components of the microscope, coordinates critical timing and synchronization, and has been written in a versatile and modular structure using the LabVIEW language. It can easily be adapted and integrated to other microscope systems and has been made freely available to the light-sheet community. The tremendous amount of data routinely generated by light-sheet microscopy further requires novel strategies for data handling and storage. To complete the full imaging pipeline of our high-throughput microscope, we further elaborate on big data management from streaming of raw images up to stitching of 3-D datasets. The mesoscale neuroanatomy imaged at micron-scale resolution in those datasets allows characterization and quantification of neuronal projections in unsectioned mouse brains.

  14. Scanning Miniature Microscopes without Lenses

    NASA Technical Reports Server (NTRS)

    Wang, Yu

    2009-01-01

    The figure schematically depicts some alternative designs of proposed compact, lightweight optoelectronic microscopes that would contain no lenses and would generate magnified video images of specimens. Microscopes of this type were described previously in Miniature Microscope Without Lenses (NPO - 20218), NASA Tech Briefs, Vol. 22, No. 8 (August 1998), page 43 and Reflective Variants of Miniature Microscope Without Lenses (NPO 20610), NASA Tech Briefs, Vol. 26, No. 9 (September 1999), page 6a. To recapitulate: In the design and construction of a microscope of this type, the focusing optics of a conventional microscope are replaced by a combination of a microchannel filter and a charge-coupled-device (CCD) image detector. Elimination of focusing optics reduces the size and weight of the instrument and eliminates the need for the time-consuming focusing operation. The microscopes described in the cited prior articles contained two-dimensional CCDs registered with two-dimensional arrays of microchannels and, as such, were designed to produce full two-dimensional images, without need for scanning. The microscopes of the present proposal would contain one-dimensional (line image) CCDs registered with linear arrays of microchannels. In the operation of such a microscope, one would scan a specimen along a line perpendicular to the array axis (in other words, one would scan in pushbroom fashion). One could then synthesize a full two-dimensional image of the specimen from the line-image data acquired at one-pixel increments of position along the scan. In one of the proposed microscopes, a beam of unpolarized light for illuminating the specimen would enter from the side. This light would be reflected down onto the specimen by a nonpolarizing beam splitter attached to the microchannels at their lower ends. A portion of the light incident on the specimen would be reflected upward, through the beam splitter and along the microchannels, to form an image on the CCD. If the nonpolarizing beam splitter were replaced by a polarizing one, then the specimen would be illuminated by s-polarized light. Upon reflection from the specimen, some of the s-polarized light would become p-polarized. Only the p-polarized light would contribute to the image on the CCD; in other words, the image would contain information on the polarization rotating characteristic of the specimen.

  15. EDITORIAL: Nature's building blocks Nature's building blocks

    NASA Astrophysics Data System (ADS)

    Engel, Andreas

    2009-10-01

    The scanning tunnelling microscope (STM), invented by Gerd Binnig and Heinrich Rohrer in the early 1980s in the IBM Laboratory in Zurich, and the atomic force microscope (AFM) that followed shortly afterwards, were key developments that initiated a new era in scientific research: nanotechnology. These and related scanning probe microscopes have become fruitful tools in the study of cells, supramolecular assemblies and single biomolecules, as well as other nanoscale structures. In particular, the ability to investigate living matter in native environments made possible by atomic force microscopy, has allowed pronounced progress in biological research. The journal Nanotechnology was the first to serve as a publication platform for this rapidly developing field of science. The journal celebrates its 20th volume with this special issue, which presents a collection of original research articles in various fields of science, but all with the common feature that the structures, processes and functions all take place at the nanometre scale. Scanning probe microscopes are constantly being devised with increasingly sophisticated sensing and actuating features that optimize their performance. However, while these tools continue to provide impressive and informative images of nanoscale systems and allow single molecules to be manipulated with increasing dexterity, a wider field of research activity stimulated either by or for biology has emerged. The unique properties of matter at the nanoscale, such as localized surface plasmons supported by nanostructures, have been exploited in sensors with unprecedented sensitivity. Nanostructures have also found a profitable role in the encapsulation of molecules for 'smart' drug delivery. The potential application of DNA in the self-assembly of nanostructures guided by molecular recognition is another rapidly advancing area of research. In this issue a group of researchers in Germany report how the addition of copper ions can promote the stability of modified double-stranded DNA. They use scanning force microscope observations to provide insights into the energy landscape as DNA complexes form. This research provides just one example of how developments on biological systems are being applied to research across the spectrum of disciplines. This 20th volume special issue provides a snapshot of current state-of-the-art research activity in various areas of nanotechnology, and highlights the breadth and range of research progressing in this field. The developments reported here highlight the continued prominence of biology-related research and promise a bright future for nanotechnology.

  16. Modular Scanning Confocal Microscope with Digital Image Processing

    PubMed Central

    McCluskey, Matthew D.

    2016-01-01

    In conventional confocal microscopy, a physical pinhole is placed at the image plane prior to the detector to limit the observation volume. In this work, we present a modular design of a scanning confocal microscope which uses a CCD camera to replace the physical pinhole for materials science applications. Experimental scans were performed on a microscope resolution target, a semiconductor chip carrier, and a piece of etched silicon wafer. The data collected by the CCD were processed to yield images of the specimen. By selecting effective pixels in the recorded CCD images, a virtual pinhole is created. By analyzing the image moments of the imaging data, a lateral resolution enhancement is achieved by using a 20 × / NA = 0.4 microscope objective at 532 nm laser wavelength. PMID:27829052

  17. Stress Wave Attenuation in Aluminum Alloy and Mild Steel Specimens Under SHPB Tensile Testing

    NASA Astrophysics Data System (ADS)

    Pothnis, J. R.; Ravikumar, G.; Arya, H.; Yerramalli, Chandra S.; Naik, N. K.

    2018-02-01

    Investigations on the effect of intensity of incident pressure wave applied through the striker bar on the specimen force histories and stress wave attenuation during split Hopkinson pressure bar (SHPB) tensile testing are presented. Details of the tensile SHPB along with Lagrangian x- t diagram of the setup are included. Studies were carried out on aluminum alloy 7075 T651 and IS 2062 mild steel. While testing specimens using the tensile SHPB setup, it was observed that the force calculated from the transmitter bar strain gauge was smaller than the force obtained from the incident bar strain gauge. This mismatch between the forces in the incident bar and the transmitter bar is explained on the basis of stress wave attenuation in the specimens. A methodology to obtain force histories using the strain gauges on the specimen during SHPB tensile testing is also presented. Further, scanning electron microscope images and photomicrographs are given. Correlation between the microstructure and mechanical properties is explained. Further, uncertainty analysis was conducted to ascertain the accuracy of the results.

  18. Force-detected nuclear magnetic resonance: recent advances and future challenges.

    PubMed

    Poggio, M; Degen, C L

    2010-08-27

    We review recent efforts to detect small numbers of nuclear spins using magnetic resonance force microscopy. Magnetic resonance force microscopy (MRFM) is a scanning probe technique that relies on the mechanical measurement of the weak magnetic force between a microscopic magnet and the magnetic moments in a sample. Spurred by the recent progress in fabricating ultrasensitive force detectors, MRFM has rapidly improved its capability over the last decade. Today it boasts a spin sensitivity that surpasses conventional, inductive nuclear magnetic resonance detectors by about eight orders of magnitude. In this review we touch on the origins of this technique and focus on its recent application to nanoscale nuclear spin ensembles, in particular on the imaging of nanoscale objects with a three-dimensional (3D) spatial resolution better than 10 nm. We consider the experimental advances driving this work and highlight the underlying physical principles and limitations of the method. Finally, we discuss the challenges that must be met in order to advance the technique towards single nuclear spin sensitivity-and perhaps-to 3D microscopy of molecules with atomic resolution.

  19. Optimized surface topography of thermoplastics blends modified by graphene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joshi, Girish M., E-mail: varadgm@gmail.com, E-mail: girish.joshi@vit.ac.in; Sharma, Ajay; Pandey, Mayank

    2016-05-23

    Polyacrilonitrile (PAN)/ Polyvinylfloride (PVDF) blends were modified by loading the graphene (0.5 to 1.5 wt %). The presence of graphene reveals the interesting surface properties. The decrease in surface roughness as function of graphene loading was confirmed by the topographic method of recording (two and three dimensional images) with atomic force microscope (AFM). The blends become smoother in nature due to occupied smaller surface area of graphene. This property may be useful for several applications in the marine, naval, nuclear domain and engineering applications as barrier medium.

  20. Micromechanics of root development in soil.

    PubMed

    Dupuy, L X; Mimault, M; Patko, D; Ladmiral, V; Ameduri, B; MacDonald, M P; Ptashnyk, M

    2018-04-16

    Our understanding of how roots develop in soil may be at the eve of significant transformations. The formidable expansion of imaging technologies enables live observations of the rhizosphere micro-pore architecture at unprecedented resolution. Granular matter physics provides ways to understand the microscopic fluctuations of forces in soils, and the increasing knowledge of plant mechanobiology may shed new lights on how roots perceive soil heterogeneity. This opinion paper exposes how recent scientific achievements may contribute to refresh our views on root growth in heterogeneous environments. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. The Analog Atomic Force Microscope: Measuring, Modeling, and Graphing for Middle School

    ERIC Educational Resources Information Center

    Goss, Valerie; Brandt, Sharon; Lieberman, Marya

    2013-01-01

    using an analog atomic force microscope (A-AFM) made from a cardboard box and mailing tubes. Varying numbers of ping pong balls inside the tubes mimic atoms on a surface. Students use a dowel to make macroscale measurements similar to those of a nanoscale AFM tip as it…

  2. A simple water-immersion condenser for imaging living brain slices on an inverted microscope.

    PubMed

    Prusky, G T

    1997-09-05

    Due to some physical limitations of conventional condensers, inverted compound microscopes are not optimally suited for imaging living brain slices with transmitted light. Herein is described a simple device that converts an inverted microscope into an effective tool for this application by utilizing an objective as a condenser. The device is mounted on a microscope in place of the condenser, is threaded to accept a water immersion objective, and has a slot for a differential interference contrast (DIC) slider. When combined with infrared video techniques, this device allows an inverted microscope to effectively image living cells within thick brain slices in an open perfusion chamber.

  3. Preclinical evaluation and intraoperative human retinal imaging with a high-resolution microscope-integrated spectral domain optical coherence tomography device.

    PubMed

    Hahn, Paul; Migacz, Justin; O'Donnell, Rachelle; Day, Shelley; Lee, Annie; Lin, Phoebe; Vann, Robin; Kuo, Anthony; Fekrat, Sharon; Mruthyunjaya, Prithvi; Postel, Eric A; Izatt, Joseph A; Toth, Cynthia A

    2013-01-01

    The authors have recently developed a high-resolution microscope-integrated spectral domain optical coherence tomography (MIOCT) device designed to enable OCT acquisition simultaneous with surgical maneuvers. The purpose of this report is to describe translation of this device from preclinical testing into human intraoperative imaging. Before human imaging, surgical conditions were fully simulated for extensive preclinical MIOCT evaluation in a custom model eye system. Microscope-integrated spectral domain OCT images were then acquired in normal human volunteers and during vitreoretinal surgery in patients who consented to participate in a prospective institutional review board-approved study. Microscope-integrated spectral domain OCT images were obtained before and at pauses in surgical maneuvers and were compared based on predetermined diagnostic criteria to images obtained with a high-resolution spectral domain research handheld OCT system (HHOCT; Bioptigen, Inc) at the same time point. Cohorts of five consecutive patients were imaged. Successful end points were predefined, including ≥80% correlation in identification of pathology between MIOCT and HHOCT in ≥80% of the patients. Microscope-integrated spectral domain OCT was favorably evaluated by study surgeons and scrub nurses, all of whom responded that they would consider participating in human intraoperative imaging trials. The preclinical evaluation identified significant improvements that were made before MIOCT use during human surgery. The MIOCT transition into clinical human research was smooth. Microscope-integrated spectral domain OCT imaging in normal human volunteers demonstrated high resolution comparable to tabletop scanners. In the operating room, after an initial learning curve, surgeons successfully acquired human macular MIOCT images before and after surgical maneuvers. Microscope-integrated spectral domain OCT imaging confirmed preoperative diagnoses, such as full-thickness macular hole and vitreomacular traction, and demonstrated postsurgical changes in retinal morphology. Two cohorts of five patients were imaged. In the second cohort, the predefined end points were exceeded with ≥80% correlation between microscope-mounted OCT and HHOCT imaging in 100% of the patients. This report describes high-resolution MIOCT imaging using the prototype device in human eyes during vitreoretinal surgery, with successful achievement of predefined end points for imaging. Further refinements and investigations will be directed toward fully integrating MIOCT with vitreoretinal and other ocular surgery to image surgical maneuvers in real time.

  4. Highest Resolution Image of Dust and Sand Yet Acquired on Mars

    NASA Technical Reports Server (NTRS)

    2008-01-01

    [figure removed for brevity, see original site] [figure removed for brevity, see original site] [figure removed for brevity, see original site] Click on image for Figure 1Click on image for Figure 2Click on image for Figure 3

    This mosaic of four side-by-side microscope images (one a color composite) was acquired by the Optical Microscope, a part of the Microscopy, Electrochemistry, and Conductivity Analyzer (MECA) instrument suite on NASA's Phoenix Mars Lander. Taken on the ninth Martian day of the mission, or Sol 9 (June 3, 2008), the image shows a 3 millimeter (0.12 inch) diameter silicone target after it has been exposed to dust kicked up by the landing. It is the highest resolution image of dust and sand ever acquired on Mars. The silicone substrate provides a sticky surface for holding the particles to be examined by the microscope.

    Martian Particles on Microscope's Silicone Substrate In figure 1, the particles are on a silcone substrate target 3 millimeters (0.12 inch) in diameter, which provides a sticky surface for holding the particles while the microscope images them. Blow-ups of four of the larger particles are shown in the center. These particles range in size from about 30 microns to 150 microns (from about one one-thousandth of an inch to six one-thousandths of an inch).

    Possible Nature of Particles Viewed by Mars Lander's Optical Microscope In figure 2, the color composite on the right was acquired to examine dust that had fallen onto an exposed surface. The translucent particle highlighted at bottom center is of comparable size to white particles in a Martian soil sample (upper pictures) seen two sols earlier inside the scoop of Phoenix's Robotic Arm as imaged by the lander's Robotic Arm Camera. The white particles may be examples of the abundant salts that have been found in the Martian soil by previous missions. Further investigations will be needed to determine the white material's composition and whether translucent particles like the one in this microscopic image are found in Martian soil samples.

    Scale of Phoenix Optical Microscope Images This set of pictures in figure 3 gives context for the size of individual images from the Optical Microscope on NASA's Mars Phoenix Lander.

    The picture in the upper left was taken on Mars by the Surface Stereo Imager on Phoenix. It shows a portion of the microscope's sample stage exposed to accept a sample. In this case, the sample was of dust kicked up by the spacecraft thrusters during landers. Later samples will include soil delivered by the Robotic Arm.

    The other pictures were taken on Earth. They show close-ups of circular substrates on which the microscopic samples rest when the microscope images them. Each circular substrate target is 3 millimeters (about one-tenth of an inch) in diameter. Each image taken by the microscope covers and area 2 millimeters by 1 millimeter (0.08 inch by 0.04 inch), the size of a large grain of sand.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  5. A mini-microscope for in situ monitoring of cells.

    PubMed

    Kim, Sang Bok; Koo, Kyo-in; Bae, Hojae; Dokmeci, Mehmet R; Hamilton, Geraldine A; Bahinski, Anthony; Kim, Sun Min; Ingber, Donald E; Khademhosseini, Ali

    2012-10-21

    A mini-microscope was developed for in situ monitoring of cells by modifying off-the-shelf components of a commercial webcam. The mini-microscope consists of a CMOS imaging module, a small plastic lens and a white LED illumination source. The CMOS imaging module was connected to a laptop computer through a USB port for image acquisition and analysis. Due to its compact size, 8 × 10 × 9 cm, the present microscope is portable and can easily fit inside a conventional incubator, and enables real-time monitoring of cellular behaviour. Moreover, the mini-microscope can be used for imaging cells in conventional cell culture flasks, such as Petri dishes and multi-well plates. To demonstrate the operation of the mini-microscope, we monitored the cellular migration of mouse 3T3 fibroblasts in a scratch assay in medium containing three different concentrations of fetal bovine serum (5, 10, and 20%) and demonstrated differential responses depending on serum levels. In addition, we seeded embryonic stem cells inside poly(ethylene glycol) microwells and monitored the formation of stem cell aggregates in real time using the mini-microscope. Furthermore, we also combined a lab-on-a-chip microfluidic device for microdroplet generation and analysis with the mini-microscope and observed the formation of droplets under different flow conditions. Given its cost effectiveness, robust imaging and portability, the presented platform may be useful for a range of applications for real-time cellular imaging using lab-on-a-chip devices at low cost.

  6. A mini-microscope for in situ monitoring of cells†‡

    PubMed Central

    Kim, Sang Bok; Koo, Kyo-in; Bae, Hojae; Dokmeci, Mehmet R.; Hamilton, Geraldine A.; Bahinski, Anthony; Kim, Sun Min; Ingber, Donald E.

    2013-01-01

    A mini-microscope was developed for in situ monitoring of cells by modifying off-the-shelf components of a commercial webcam. The mini-microscope consists of a CMOS imaging module, a small plastic lens and a white LED illumination source. The CMOS imaging module was connected to a laptop computer through a USB port for image acquisition and analysis. Due to its compact size, 8 × 10 × 9 cm, the present microscope is portable and can easily fit inside a conventional incubator, and enables real-time monitoring of cellular behaviour. Moreover, the mini-microscope can be used for imaging cells in conventional cell culture flasks, such as Petri dishes and multi-well plates. To demonstrate the operation of the mini-microscope, we monitored the cellular migration of mouse 3T3 fibroblasts in a scratch assay in medium containing three different concentrations of fetal bovine serum (5, 10, and 20%) and demonstrated differential responses depending on serum levels. In addition, we seeded embryonic stem cells inside poly(ethylene glycol) microwells and monitored the formation of stem cell aggregates in real time using the mini-microscope. Furthermore, we also combined a lab-on-a-chip microfluidic device for microdroplet generation and analysis with the mini-microscope and observed the formation of droplets under different flow conditions. Given its cost effectiveness, robust imaging and portability, the presented platform may be useful for a range of applications for real-time cellular imaging using lab-on-a-chip devices at low cost. PMID:22911426

  7. Nanoscale live cell optical imaging of the dynamics of intracellular microvesicles in neural cells.

    PubMed

    Lee, Sohee; Heo, Chaejeong; Suh, Minah; Lee, Young Hee

    2013-11-01

    Recent advances in biotechnology and imaging technology have provided great opportunities to investigate cellular dynamics. Conventional imaging methods such as transmission electron microscopy, scanning electron microscopy, and atomic force microscopy are powerful techniques for cellular imaging, even at the nanoscale level. However, these techniques have limitations applications in live cell imaging because of the experimental preparation required, namely cell fixation, and the innately small field of view. In this study, we developed a nanoscale optical imaging (NOI) system that combines a conventional optical microscope with a high resolution dark-field condenser (Cytoviva, Inc.) and halogen illuminator. The NOI system's maximum resolution for live cell imaging is around 100 nm. We utilized NOI to investigate the dynamics of intracellular microvesicles of neural cells without immunocytological analysis. In particular, we studied direct, active random, and moderate random dynamic motions of intracellular microvesicles and visualized lysosomal vesicle changes after treatment of cells with a lysosomal inhibitor (NH4Cl). Our results indicate that the NOI system is a feasible, high-resolution optical imaging system for live small organelles that does not require complicated optics or immunocytological staining processes.

  8. Microscope-on-Chip Using Micro-Channel and Solid State Image Sensors

    NASA Technical Reports Server (NTRS)

    Wang, Yu

    2000-01-01

    Recently, Jet Propulsion Laboratory has invented and developed a miniature optical microscope, microscope-on-chip using micro-channel and solid state image sensors. It is lightweight, low-power, fast speed instrument, it has no image lens, does not need focus adjustment, and the total mass is less than 100g. A prototype has been built and demonstrated at JPL.

  9. Cryotomography x-ray microscopy state

    DOEpatents

    Le Gros, Mark; Larabell, Carolyn A.

    2010-10-26

    An x-ray microscope stage enables alignment of a sample about a rotation axis to enable three dimensional tomographic imaging of the sample using an x-ray microscope. A heat exchanger assembly provides cooled gas to a sample during x-ray microscopic imaging.

  10. Understanding gas-surface interactions from direct force measurements using a specialized torsion balance

    NASA Technical Reports Server (NTRS)

    Cook, S. R.; Hoffbauer, M. A.

    1996-01-01

    The first comprehensive measurements of the magnitude and direction of the forces exerted on surfaces by molecular beams are discussed and used to obtain information about the microscopic properties of the gas-surface interactions. This unique approach is not based on microscopic measurements of the scattered molecules. The reduced force coefficients are introduced as a new set of parameters that completely describe the macroscopic average momentum transfer to a surface by an incident molecular beam. By using a specialized torsion balance and molecular beams of N2, CO, CO2, and H2, the reduced force coefficients are determined from direct measurements of the force components exerted on surface of a solar panel array material, Kapton, SiO2-coated Kapton, and Z-93 as a function of the angle of incidence ranging from 0 degrees to 85 degrees. The absolute flux densities of the molecular beams were measured using a different torsion balance with a beam-stop that nullified the force of the scattered molecules. Standard time-of-flight techniques were used to determine the flux-weighted average velocities of the various molecular beams ranging from 1600 m/s to 4600 m/s. The reduced force coefficients can be used to directly obtain macroscopic average properties of the scattered molecules, such as the flux-weighted average velocity and translational energy, that can then be used to determine microscopic details concerning gas-surface interactions without the complications associated with averaging microscopic measurements.

  11. Visualizing Electric Fields at Au(111) Step Edges via Tip-Enhanced Raman Scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    Tip-enhanced Raman scattering (TERS) can be used to image plasmon-enhanced local electric fields on the nanoscale. This is illustrated through ambient TERS measurements recorded using silver atomic force microscope tips coated with 4-mercaptobenzonitrile molecules and used to image step edges on an Au(111) surface. The observed 2D TERS images uniquely map electric fields localized at Au(111) step edges following 671-nm excitation. We establish that our measurements are not only sensitive to spatial variations in the enhanced electric fields but also to their vector components. We also experimentally demonstrate that (i) few nanometer precision is attainable in TERS nanoscopy using corrugatedmore » tips with nominally radii on the order of 100-200 nm, and (ii) TERS signals do not necessarily exhibit the expected E4 dependence. Overall, we illustrate the concept of electric field imaging via TERS and establish the connections between our observations and conventional TERS chemical imaging measurements.« less

  12. Characterization of fiber-forming peptides and proteins by means of atomic force microscopy.

    PubMed

    Creasey, Rhiannon G; Gibson, Christopher T; Voelcker, Nicolas H

    2012-05-01

    The atomic force microscope (AFM) is widely used in biological sciences due to its ability to perform imaging experiments at high resolution in a physiological environment, without special sample preparation such as fixation or staining. AFM is unique, in that it allows single molecule information of mechanical properties and molecular recognition to be gathered. This review sets out to identify methodological applications of AFM for characterization of fiber-forming proteins and peptides. The basics of AFM operation are detailed, with in-depth information for any life scientist to get a grasp on AFM capabilities. It also briefly describes antibody recognition imaging and mapping of nanomechanical properties on biological samples. Subsequently, examples of AFM application to fiber-forming natural proteins, and fiber-forming synthetic peptides are given. Here, AFM is used primarily for structural characterization of fibers in combination with other techniques, such as circular dichroism and fluorescence spectroscopy. More recent developments in antibody recognition imaging to identify constituents of protein fibers formed in human disease are explored. This review, as a whole, seeks to encourage the life scientists dealing with protein aggregation phenomena to consider AFM as a part of their research toolkit, by highlighting the manifold capabilities of this technique.

  13. Fluid flows and forces in development: functions, features and biophysical principles

    PubMed Central

    Freund, Jonathan B.; Goetz, Jacky G.; Hill, Kent L.; Vermot, Julien

    2012-01-01

    Throughout morphogenesis, cells experience intracellular tensile and contractile forces on microscopic scales. Cells also experience extracellular forces, such as static forces mediated by the extracellular matrix and forces resulting from microscopic fluid flow. Although the biological ramifications of static forces have received much attention, little is known about the roles of fluid flows and forces during embryogenesis. Here, we focus on the microfluidic forces generated by cilia-driven fluid flow and heart-driven hemodynamics, as well as on the signaling pathways involved in flow sensing. We discuss recent studies that describe the functions and the biomechanical features of these fluid flows. These insights suggest that biological flow determines many aspects of cell behavior and identity through a specific set of physical stimuli and signaling pathways. PMID:22395739

  14. Lensless high-resolution on-chip optofluidic microscopes for Caenorhabditis elegans and cell imaging

    PubMed Central

    Cui, Xiquan; Lee, Lap Man; Heng, Xin; Zhong, Weiwei; Sternberg, Paul W.; Psaltis, Demetri; Yang, Changhuei

    2008-01-01

    Low-cost and high-resolution on-chip microscopes are vital for reducing cost and improving efficiency for modern biomedicine and bioscience. Despite the needs, the conventional microscope design has proven difficult to miniaturize. Here, we report the implementation and application of two high-resolution (≈0.9 μm for the first and ≈0.8 μm for the second), lensless, and fully on-chip microscopes based on the optofluidic microscopy (OFM) method. These systems abandon the conventional microscope design, which requires expensive lenses and large space to magnify images, and instead utilizes microfluidic flow to deliver specimens across array(s) of micrometer-size apertures defined on a metal-coated CMOS sensor to generate direct projection images. The first system utilizes a gravity-driven microfluidic flow for sample scanning and is suited for imaging elongate objects, such as Caenorhabditis elegans; and the second system employs an electrokinetic drive for flow control and is suited for imaging cells and other spherical/ellipsoidal objects. As a demonstration of the OFM for bioscience research, we show that the prototypes can be used to perform automated phenotype characterization of different Caenorhabditis elegans mutant strains, and to image spores and single cellular entities. The optofluidic microscope design, readily fabricable with existing semiconductor and microfluidic technologies, offers low-cost and highly compact imaging solutions. More functionalities, such as on-chip phase and fluorescence imaging, can also be readily adapted into OFM systems. We anticipate that the OFM can significantly address a range of biomedical and bioscience needs, and engender new microscope applications. PMID:18663227

  15. Augmented microscopy with near-infrared fluorescence detection

    NASA Astrophysics Data System (ADS)

    Watson, Jeffrey R.; Martirosyan, Nikolay; Skoch, Jesse; Lemole, G. Michael; Anton, Rein; Romanowski, Marek

    2015-03-01

    Near-infrared (NIR) fluorescence has become a frequently used intraoperative technique for image-guided surgical interventions. In procedures such as cerebral angiography, surgeons use the optical surgical microscope for the color view of the surgical field, and then switch to an electronic display for the NIR fluorescence images. However, the lack of stereoscopic, real-time, and on-site coregistration adds time and uncertainty to image-guided surgical procedures. To address these limitations, we developed the augmented microscope, whereby the electronically processed NIR fluorescence image is overlaid with the anatomical optical image in real-time within the optical path of the microscope. In vitro, the augmented microscope can detect and display indocyanine green (ICG) concentrations down to 94.5 nM, overlaid with the anatomical color image. We prepared polyacrylamide tissue phantoms with embedded polystyrene beads, yielding scattering properties similar to brain matter. In this model, 194 μM solution of ICG was detectable up to depths of 5 mm. ICG angiography was then performed in anesthetized rats. A dynamic process of ICG distribution in the vascular system overlaid with anatomical color images was observed and recorded. In summary, the augmented microscope demonstrates NIR fluorescence detection with superior real-time coregistration displayed within the ocular of the stereomicroscope. In comparison to other techniques, the augmented microscope retains full stereoscopic vision and optical controls including magnification and focus, camera capture, and multiuser access. Augmented microscopy may find application in surgeries where the use of traditional microscopes can be enhanced by contrast agents and image guided delivery of therapeutics, including oncology, neurosurgery, and ophthalmology.

  16. Video-Rate Confocal Microscopy for Single-Molecule Imaging in Live Cells and Superresolution Fluorescence Imaging

    PubMed Central

    Lee, Jinwoo; Miyanaga, Yukihiro; Ueda, Masahiro; Hohng, Sungchul

    2012-01-01

    There is no confocal microscope optimized for single-molecule imaging in live cells and superresolution fluorescence imaging. By combining the swiftness of the line-scanning method and the high sensitivity of wide-field detection, we have developed a, to our knowledge, novel confocal fluorescence microscope with a good optical-sectioning capability (1.0 μm), fast frame rates (<33 fps), and superior fluorescence detection efficiency. Full compatibility of the microscope with conventional cell-imaging techniques allowed us to do single-molecule imaging with a great ease at arbitrary depths of live cells. With the new microscope, we monitored diffusion motion of fluorescently labeled cAMP receptors of Dictyostelium discoideum at both the basal and apical surfaces and obtained superresolution fluorescence images of microtubules of COS-7 cells at depths in the range 0–85 μm from the surface of a coverglass. PMID:23083712

  17. Thermal-Wave Microscope

    NASA Technical Reports Server (NTRS)

    Jones, Robert E.; Kramarchuk, Ihor; Williams, Wallace D.; Pouch, John J.; Gilbert, Percy

    1989-01-01

    Computer-controlled thermal-wave microscope developed to investigate III-V compound semiconductor devices and materials. Is nondestructive technique providing information on subsurface thermal features of solid samples. Furthermore, because this is subsurface technique, three-dimensional imaging also possible. Microscope uses intensity-modulated electron beam of modified scanning electron microscope to generate thermal waves in sample. Acoustic waves generated by thermal waves received by transducer and processed in computer to form images displayed on video display of microscope or recorded on magnetic disk.

  18. Optical Coherence Tomography–Enhanced Microlaryngoscopy: Preliminary Report of a Noncontact Optical Coherence Tomography System Integrated With a Surgical Microscope

    PubMed Central

    Vokes, David E.; Jackson, Ryan; Guo, Shuguang; Perez, Jorge A.; Su, Jianping; Ridgway, James M.; Armstrong, William B.; Chen, Zhongping; Wong, Brian J. F.

    2014-01-01

    Objectives Optical coherence tomography (OCT) is a new imaging modality that uses near-infrared light to produce cross-sectional images of tissue with a resolution approaching that of light microscopy. We have previously reported use of OCT imaging of the vocal folds (VFs) during direct laryngoscopy with a probe held in contact or near-contact with the VFs. This aim of this study was to develop and evaluate a novel OCT system integrated with a surgical microscope to allow hands-free OCT imaging of the VFs, which could be performed simultaneously with microscopic visualization. Methods We performed a prospective evaluation of a new method of acquiring OCT images of the VFs. Results An OCT system was successfully integrated with a surgical microscope to permit noncontact OCT imaging of the VFs of 10 patients. With this novel device we were able to identify VF epithelium and lamina propria; however, the resolution was reduced compared to that achieved with the standard contact or near-contact OCT. Conclusions Optical coherence tomography is able to produce high-resolution images of vocal fold mucosa to a maximum depth of 1.6 mm. It may be used in the diagnosis of VF lesions, particularly early squamous cell carcinoma, in which OCT can show disruption of the basement membrane. Mounting the OCT device directly onto the operating microscope allows hands-free noncontact OCT imaging and simultaneous conventional microscopic visualization of the VFs. However, the lateral resolution of the OCT microscope system is 50 µm, in contrast to the conventional handheld probe system (10 µm). Although such images at this resolution are still useful clinically, improved resolution would enhance the system’s performance, potentially enabling real-time OCT-guided microsurgery of the larynx. PMID:18700431

  19. Mark of the Moessbauer

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This image, taken by an instrument called the microscopic imager on the Mars Exploration Rover Spirit, reveals an imprint left by another instrument, the Moessbauer spectrometer. The imprint is at a location within the rover wheel track named 'Middle of Road.' Both instruments are located on the rover's instrument deployment device, or 'arm.'

    Not only was the Moessbauer spectrometer able to gain important mineralogical information about this site, it also aided in the placement of the microscopic imager. On hard rocks, the microscopic imager uses its tiny metal sensor to determine proper placement for best possible focus. However, on the soft martian soil this guide would sink, prohibiting proper placement of the microscopic imager. After the Moessbauer spectrometer's much larger, donut-shaped plate touches the surface, Spirit can correctly calculate where to position the microscopic imager.

    Scientists find this image particularly interesting because of the compacted nature of the soil that was underneath the Moessbauer spectrometer plate. Also of interest are the embedded, round grains and the fractured appearance of the material disturbed within the hole. The material appears to be slightly cohesive. The field of view in this image, taken on Sol 43 (February 16, 2004), measures approximately 3 centimeters (1.2 inches) across.

  20. An integrated instrumental setup for the combination of atomic force microscopy with optical spectroscopy.

    PubMed

    Owen, R J; Heyes, C D; Knebel, D; Röcker, C; Nienhaus, G U

    2006-07-01

    In recent years, the study of single biomolecules using fluorescence microscopy and atomic force microscopy (AFM) techniques has resulted in a plethora of new information regarding the physics underlying these complex biological systems. It is especially advantageous to be able to measure the optical, topographical, and mechanical properties of single molecules simultaneously. Here an AFM is used that is especially designed for integration with an inverted optical microscope and that has a near-infrared light source (850 nm) to eliminate interference between the optical experiment and the AFM operation. The Tip Assisted Optics (TAO) system consists of an additional 100 x 100-microm(2) X-Y scanner for the sample, which can be independently and simultaneously used with the AFM scanner. This allows the offset to be removed between the confocal optical image obtained with the sample scanner and the simultaneously acquired AFM topography image. The tip can be positioned exactly into the optical focus while the user can still navigate within the AFM image for imaging or manipulation of the sample. Thus the tip-enhancement effect can be maximized and it becomes possible to perform single molecule manipulation experiments within the focus of a confocal optical image. Here this is applied to simultaneous measurement of single quantum dot fluorescence and topography with high spatial resolution. (c) 2006 Wiley Periodicals, Inc.

  1. To boldly glow ... applications of laser scanning confocal microscopy in developmental biology.

    PubMed

    Paddock, S W

    1994-05-01

    The laser scanning confocal microscope (LSCM) is now established as an invaluable tool in developmental biology for improved light microscope imaging of fluorescently labelled eggs, embryos and developing tissues. The universal application of the LSCM in biomedical research has stimulated improvements to the microscopes themselves and the synthesis of novel probes for imaging biological structures and physiological processes. Moreover the ability of the LSCM to produce an optical series in perfect register has made computer 3-D reconstruction and analysis of light microscope images a practical option.

  2. Remote microscopy and volumetric imaging on the surface of icy satellites

    NASA Astrophysics Data System (ADS)

    Soto, Alejandro; Nowicki, Keith; Howett, Carly; Feldkhun, Daniel; Retherford, Kurt D.

    2017-10-01

    With NASA PIDDP support we have applied recent advancements in Fourier-domain microscopy to develop an instrument capable of microscopic imaging from meter-scale distances for use on a planetary lander on the surface of an icy satellite or other planetary bodies. Without moving parts, our instrument projects dynamic patterns of laser light onto a distant target using a lightweight large-aperture reflector, which then collects the light scattered or fluoresced by the target on a fast photon-bucket detector. Using Fourier Transform based techniques, we reconstruct an image from the detected light. The remote microscope has been demonstrated to produce 2D images with better than 15 micron lateral resolution for targets at a distance of 5 meters and is capable of linearly proportionally higher resolution at shorter distances. The remote microscope is also capable of providing three-dimensional (3D) microscopic imaging capabilities, allowing future surface scientists to explore the morphology of microscopic features in surface ices, for example. The instrument enables microscopic in-situ imaging during day or night without the use of a robotic arm, greatly facilitating the surface operations for a lander or rover while expanding the area of investigation near a landing site for improved science targeting. We are developing this remote microscope for in-situ planetary exploration as a collaboration between the Southwest Research Institute, LambdaMetrics, and the University of Colorado.

  3. Sensing mode atomic force microscope

    DOEpatents

    Hough, Paul V. C.; Wang, Chengpu

    2003-01-01

    An atomic force microscope utilizes a pulse release system and improved method of operation to minimize contact forces between a probe tip affixed to a flexible cantilever and a specimen being measured. The pulse release system includes a magnetic particle affixed proximate the probe tip and an electromagnetic coil. When energized, the electromagnetic coil generates a magnetic field which applies a driving force on the magnetic particle sufficient to overcome adhesive forces exhibited between the probe tip and specimen. The atomic force microscope includes two independently displaceable piezo elements operable along a Z-axis. A controller drives the first Z-axis piezo element to provide a controlled approach between the probe tip and specimen up to a point of contact between the probe tip and specimen. The controller then drives the first Z-axis piezo element to withdraw the cantilever from the specimen. The controller also activates the pulse release system which drives the probe tip away from the specimen during withdrawal. Following withdrawal, the controller adjusts the height of the second Z-axis piezo element to maintain a substantially constant approach distance between successive samples.

  4. YieldStar based reticle 3D measurements and its application

    NASA Astrophysics Data System (ADS)

    Vaenkatesan, Vidya; Finders, Jo; ten Berge, Peter; Plug, Reinder; Sijben, Anko; Schellekens, Twan; Dillen, Harm; Pocobiej, Wojciech; Jorge, Vasco G.; van Dijck, Jurgen

    2016-09-01

    YieldStar (YS) is an established ASML-built scatterometer that is capable of measuring wafer Critical Dimension (CD), Overlay and Focus. In a recent work, the application range of YS was extended to measure 3D CD patterns on a reticle (pattern CD, height, Side Wall Angle-SWA). The primary motivation for this study came from imaging studies that indicated a need for measuring and controlling reticle 3D topography. CD scanning electron microscope (CD-SEM), Atomic force microscope (AFM), 3D multiple detector SEM (3D-SEM) are the preferred tools for reticle metrology. While these tools serve the industry well, the current research to the impact of reticle 3D involves extensive costs, logistic challenges and increased reticle lead time. YS provides an attractive alternative as it can measure pattern CD, SWA and height in a single measurement and at high throughput. This work demonstrates the capability of YS as a reticle metrology tool.

  5. The construction and characterization of optical traps for manipulating microscopic particles

    NASA Astrophysics Data System (ADS)

    Thompson, Tiffany; Behringer, Ernest

    2011-04-01

    Optical traps use tightly focused laser light to manipulate microscopic particles and have applications in nanofabrication, characterizing DNA, and in vitro fertilization [1]. We will describe the design, construction, and characterization of an optical trap that is capable of trapping and imaging 3 μm polystyrene spheres using a 12 mW HeNe laser. The design was based on previous work [2,3] describing how to build affordable optical traps. We will discuss trapping forces and their calibration. [4pt] [1] D.G. Grier, "A Revolution in Optical Manipulation," Nature 424, 810-816 (2003). [0pt] [2] S.P. Smith et al., "Inexpensive optical tweezers for undergraduate laboratories," Am. J. Phys. 67 (1), 26-35 (1999).[0pt] [3] J. Bechhoefer et al., "Faster, cheaper, safer optical tweezers for the undergraduate laboratory," Am. J. Phys. 70 (4), 393-400 (2001).

  6. Failure Analysis of Heavy-Ion-Irradiated Schottky Diodes

    NASA Technical Reports Server (NTRS)

    Casey, Megan C.; Lauenstein, Jean-Marie; Wilcox, Edward P.; Topper, Alyson D.; Campola, Michael J.; Label, Kenneth A.

    2017-01-01

    In this work, we use high- and low-magnitude optical microscope images, infrared camera images, and scanning electron microscope images to identify and describe the failure locations in heavy-ion-irradiated Schottky diodes.

  7. Imaging Schwarzschild multilayer X-ray microscope

    NASA Technical Reports Server (NTRS)

    Hoover, Richard B.; Baker, Phillip C.; Shealy, David L.; Core, David B.; Walker, Arthur B. C., Jr.; Barbee, Troy W., Jr.; Kerstetter, Ted

    1993-01-01

    We have designed, analyzed, fabricated, and tested Schwarzschild multilayer X-ray microscopes. These instruments use flow-polished Zerodur mirror substrates which have been coated with multilayers optimized for maximum reflectivity at normal incidence at 135 A. They are being developed as prototypes for the Water Window Imaging X-Ray Microscope. Ultrasmooth mirror sets of hemlite grade sapphire have been fabricated and they are now being coated with multilayers to reflect soft X-rays at 38 A, within the biologically important 'water window'. In this paper, we discuss the fabrication of the microscope optics and structural components as well as the mounting of the optics and assembly of the microscopes. We also describe the optical alignment, interferometric and visible light testing of the microscopes, present interferometrically measured performance data, and provide the first results of optical imaging tests.

  8. Controlled manipulation of oxygen vacancies using nanoscale flexoelectricity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Das, Saikat; Wang, Bo; Cao, Ye

    Oxygen vacancies, especially their distribution, are directly coupled to the electromagnetic properties of oxides and related emergent functionalities that have implications for device applications. Here using a homoepitaxial strontium titanate thin film, we demonstrate a controlled manipulation of the oxygen vacancy distribution using the mechanical force from a scanning probe microscope tip. By combining Kelvin probe force microscopy imaging and phase-field simulations, we show that oxygen vacancies can move under a stress-gradient-induced depolarisation field. When tailored, this nanoscale flexoelectric effect enables a controlled spatial modulation. In motion, the scanning probe tip thereby deterministically reconfigures the spatial distribution of vacancies. Finally,more » the ability to locally manipulate oxygen vacancies on-demand provides a tool for the exploration of mesoscale quantum phenomena and engineering multifunctional oxide devices.« less

  9. Development of High-Speed Copper Chemical Mechanical Polishing Slurry for Through Silicon Via Application Based on Friction Analysis Using Atomic Force Microscope

    NASA Astrophysics Data System (ADS)

    Amanokura, Jin; Ono, Hiroshi; Hombo, Kyoko

    2011-05-01

    In order to obtain a high-speed copper chemical mechanical polishing (CMP) process for through silicon vias (TSV) application, we developed a new Cu CMP slurry through friction analysis of Cu reaction layer by an atomic force microscope (AFM) technique. A lateral modulation friction force microscope (LM-FFM) is able to measure the friction value properly giving a vibration to the layer. We evaluated the torsional displacement between the probe of the LM-FFM and the Cu reaction layer under a 5 nm vibration to cancel the shape effect of the Cu reaction layer. The developed Cu CMP slurry forms a frictionally easy-removable Cu reaction layer.

  10. Compact variable-temperature scanning force microscope.

    PubMed

    Chuang, Tien-Ming; de Lozanne, Alex

    2007-05-01

    A compact design for a cryogenic variable-temperature scanning force microscope using a fiber-optic interferometer to measure cantilever deflection is presented. The tip-sample coarse approach and the lateral tip positioning are performed by piezoelectric positioners in situ. The microscope has been operated at temperatures between 6 and 300 K. It is designed to fit into an 8 T superconducting magnet with the field applied in the out-of-plane direction. The results of scanning in various modes are demonstrated, showing contrast based on magnetic field gradients or surface potentials.

  11. Design, Fabrication and Testing of Multilayer Coated X-Ray Optics for the Water Window Imaging X-Ray Microscope

    NASA Technical Reports Server (NTRS)

    Spencer, Dwight C.

    1996-01-01

    Hoover et. al. built and tested two imaging Schwarzschild multilayer microscopes. These instruments were constructed as prototypes for the "Water Window Imaging X-Ray Microscope," which is a doubly reflecting, multilayer x-ray microscope configured to operate within the "water window." The "water window" is the narrow region of the x-ray spectrum between the K absorption edges of oxygen (lamda = 23.3 Angstroms) and of carbon (lamda = 43.62 Angstroms), where water is relatively highly transmissive and carbon is highly absorptive. This property of these materials, thus permits the use of high resolution multilayer x-ray microscopes for producing high contrast images of carbon-based structures within the aqueous physiological environments of living cells. We report the design, fabrication and testing of multilayer optics that operate in this regime.

  12. Electron beam detection of a Nanotube Scanning Force Microscope.

    PubMed

    Siria, Alessandro; Niguès, Antoine

    2017-09-14

    Atomic Force Microscopy (AFM) allows to probe matter at atomic scale by measuring the perturbation of a nanomechanical oscillator induced by near-field interaction forces. The quest to improve sensitivity and resolution of AFM forced the introduction of a new class of resonators with dimensions at the nanometer scale. In this context, nanotubes are the ultimate mechanical oscillators because of their one dimensional nature, small mass and almost perfect crystallinity. Coupled to the possibility of functionalisation, these properties make them the perfect candidates as ultra sensitive, on-demand force sensors. However their dimensions make the measurement of the mechanical properties a challenging task in particular when working in cavity free geometry at ambient temperature. By using a focused electron beam, we show that the mechanical response of nanotubes can be quantitatively measured while approaching to a surface sample. By coupling electron beam detection of individual nanotubes with a custom AFM we image the surface topography of a sample by continuously measuring the mechanical properties of the nanoresonators. The combination of very small size and mass together with the high resolution of the electron beam detection method offers unprecedented opportunities for the development of a new class of nanotube-based scanning force microscopy.

  13. Adaptive optics plug-and-play setup for high-resolution microscopes with multi-actuator adaptive lens

    NASA Astrophysics Data System (ADS)

    Quintavalla, M.; Pozzi, P.; Verhaegen, Michelle; Bijlsma, Hielke; Verstraete, Hans; Bonora, S.

    2018-02-01

    Adaptive Optics (AO) has revealed as a very promising technique for high-resolution microscopy, where the presence of optical aberrations can easily compromise the image quality. Typical AO systems however, are almost impossible to implement on commercial microscopes. We propose a simple approach by using a Multi-actuator Adaptive Lens (MAL) that can be inserted right after the objective and works in conjunction with an image optimization software allowing for a wavefront sensorless correction. We presented the results obtained on several commercial microscopes among which a confocal microscope, a fluorescence microscope, a light sheet microscope and a multiphoton microscope.

  14. An open source, wireless capable miniature microscope system

    NASA Astrophysics Data System (ADS)

    Liberti, William A., III; Perkins, L. Nathan; Leman, Daniel P.; Gardner, Timothy J.

    2017-08-01

    Objective. Fluorescence imaging through head-mounted microscopes in freely behaving animals is becoming a standard method to study neural circuit function. Flexible, open-source designs are needed to spur evolution of the method. Approach. We describe a miniature microscope for single-photon fluorescence imaging in freely behaving animals. The device is made from 3D printed parts and off-the-shelf components. These microscopes weigh less than 1.8 g, can be configured to image a variety of fluorophores, and can be used wirelessly or in conjunction with active commutators. Microscope control software, based in Swift for macOS, provides low-latency image processing capabilities for closed-loop, or BMI, experiments. Main results. Miniature microscopes were deployed in the songbird premotor region HVC (used as a proper name), in singing zebra finches. Individual neurons yield temporally precise patterns of calcium activity that are consistent over repeated renditions of song. Several cells were tracked over timescales of weeks and months, providing an opportunity to study learning related changes in HVC. Significance. 3D printed miniature microscopes, composed completely of consumer grade components, are a cost-effective, modular option for head-mounting imaging. These easily constructed and customizable tools provide access to cell-type specific neural ensembles over timescales of weeks.

  15. Self-Assembly of Polysaccharides Gives Rise to Distinct Mechanical Signatures in Marine Gels

    PubMed Central

    Pletikapić, G.; Lannon, H.; Murvai, Ü.; Kellermayer, M.S.Z.; Svetličić, V.; Brujic, J.

    2014-01-01

    Marine-gel biopolymers were recently visualized at the molecular level using atomic force microscopy (AFM) to reveal fine fibril-forming networks with low to high degrees of cross-linking. In this work, we use force spectroscopy to quantify the intra- and intermolecular forces within the marine-gel network. Combining force measurements, AFM imaging, and the known chemical composition of marine gels allows us to identify the microscopic origins of distinct mechanical responses. At the single-fibril level, we uncover force-extension curves that resemble those of individual polysaccharide fibrils. They exhibit entropic elasticity followed by extensions associated with chair-to-boat transitions specific to the type of polysaccharide at high forces. Surprisingly, a low degree of cross-linking leads to sawtooth patterns that we attribute to the unraveling of polysaccharide entanglements. At a high degree of cross-linking, we observe force plateaus that arise from unzipping, as well as unwinding, of helical bundles. Finally, the complex 3D network structure gives rise to force staircases of increasing height that correspond to the hierarchical peeling of fibrils away from the junction zones. In addition, we show that these diverse mechanical responses also arise in reconstituted polysaccharide gels, which highlights their dominant role in the mechanical architecture of marine gels. PMID:25028877

  16. Smartphone confocal microscopy for imaging cellular structures in human skin in vivo.

    PubMed

    Freeman, Esther E; Semeere, Aggrey; Osman, Hany; Peterson, Gary; Rajadhyaksha, Milind; González, Salvador; Martin, Jeffery N; Anderson, R Rox; Tearney, Guillermo J; Kang, Dongkyun

    2018-04-01

    We report development of a low-cost smartphone confocal microscope and its first demonstration of in vivo human skin imaging. The smartphone confocal microscope uses a slit aperture and diffraction grating to conduct two-dimensional confocal imaging without using any beam scanning devices. Lateral and axial resolutions of the smartphone confocal microscope were measured as 2 and 5 µm, respectively. In vivo confocal images of human skin revealed characteristic cellular structures, including spinous and basal keratinocytes and papillary dermis. Results suggest that the smartphone confocal microscope has a potential to examine cellular details in vivo and may help disease diagnosis in resource-poor settings, where conducting standard histopathologic analysis is challenging.

  17. Smartphone confocal microscopy for imaging cellular structures in human skin in vivo

    PubMed Central

    Freeman, Esther E.; Semeere, Aggrey; Osman, Hany; Peterson, Gary; Rajadhyaksha, Milind; González, Salvador; Martin, Jeffery N.; Anderson, R. Rox; Tearney, Guillermo J.; Kang, Dongkyun

    2018-01-01

    We report development of a low-cost smartphone confocal microscope and its first demonstration of in vivo human skin imaging. The smartphone confocal microscope uses a slit aperture and diffraction grating to conduct two-dimensional confocal imaging without using any beam scanning devices. Lateral and axial resolutions of the smartphone confocal microscope were measured as 2 and 5 µm, respectively. In vivo confocal images of human skin revealed characteristic cellular structures, including spinous and basal keratinocytes and papillary dermis. Results suggest that the smartphone confocal microscope has a potential to examine cellular details in vivo and may help disease diagnosis in resource-poor settings, where conducting standard histopathologic analysis is challenging. PMID:29675328

  18. Scanning evanescent electro-magnetic microscope

    DOEpatents

    Xiang, Xiao-Dong; Gao, Chen; Schultz, Peter G.; Wei, Tao

    2003-01-01

    A novel scanning microscope is described that uses near-field evanescent electromagnetic waves to probe sample properties. The novel microscope is capable of high resolution imaging and quantitative measurements of the electrical properties of the sample. The inventive scanning evanescent wave electromagnetic microscope (SEMM) can map dielectric constant, tangent loss, conductivity, complex electrical impedance, and other electrical parameters of materials. The quantitative map corresponds to the imaged detail. The novel microscope can be used to measure electrical properties of both dielectric and electrically conducting materials.

  19. Scanning evanescent electro-magnetic microscope

    DOEpatents

    Xiang, Xiao-Dong; Gao, Chen

    2001-01-01

    A novel scanning microscope is described that uses near-field evanescent electromagnetic waves to probe sample properties. The novel microscope is capable of high resolution imaging and quantitative measurements of the electrical properties of the sample. The inventive scanning evanescent wave electromagnetic microscope (SEMM) can map dielectric constant, tangent loss, conductivity, complex electrical impedance, and other electrical parameters of materials. The quantitative map corresponds to the imaged detail. The novel microscope can be used to measure electrical properties of both dielectric and electrically conducting materials.

  20. Changes in surface characteristics of two different resin composites after 1 year water storage: An SEM and AFM study.

    PubMed

    Tekçe, Neslihan; Pala, Kansad; Demirci, Mustafa; Tuncer, Safa

    2016-11-01

    To evaluate changes in surface characteristics of two different resin composites after 1 year of water storage using a profilometer, Vickers hardness, scanning electron microscopy (SEM), and atomic force microscopy (AFM). A total of 46 composite disk specimens (10 mm in diameter and 2 mm thick) were fabricated using Clearfil Majesty Esthetic and Clearfil Majesty Posterior (Kuraray Medical Co, Tokyo, Japan). Ten specimens from each composite were used for surface roughness and microhardness tests (n = 10). For each composite, scanning electron microscope (SEM, n = 2) and atomic force microscope (AFM, n = 1) images were obtained after 24 h and 1 year of water storage. The data were analyzed using two-way analysis of variance and a post-hoc Bonferroni test. Microhardness values of Clearfil Majesty Esthetic decreased significantly (78.15-63.74, p = 0.015) and surface roughness values did not change after 1 year of water storage (0.36-0.39, p = 0.464). Clearfil Majesty Posterior microhardness values were quite stable (138.74-137.25, p = 0.784), and surface roughness values increased significantly (0.39-0.48, p = 0.028) over 1 year. One year of water storage caused microhardness values for Clearfil Majesty Esthetic to decrease and the surface roughness of Clearfil Majesty Posterior increased. AFM and SEM images demonstrated surface detoration of the materials after 1 year and ensured similar results with the quantitative test methods. SCANNING 38:694-700, 2016. © 2016 Wiley Periodicals, Inc. © Wiley Periodicals, Inc.

  1. Spin microscope based on optically detected magnetic resonance

    DOEpatents

    Berman, Gennady P [Los Alamos, NM; Chernobrod, Boris M [Los Alamos, NM

    2010-06-29

    The invention relates to scanning magnetic microscope which has a photoluminescent nanoprobe implanted in the tip apex of an atomic force microscope (AFM), a scanning tunneling microscope (STM) or a near-field scanning optical microscope (NSOM) and exhibits optically detected magnetic resonance (ODMR) in the vicinity of unpaired electron spins or nuclear magnetic moments in the sample material. The described spin microscope has demonstrated nanoscale lateral resolution and single spin sensitivity for the AFM and STM embodiments.

  2. Spin microscope based on optically detected magnetic resonance

    DOEpatents

    Berman, Gennady P.; Chernobrod, Boris M.

    2009-11-10

    The invention relates to scanning magnetic microscope which has a photoluminescent nanoprobe implanted in the tip apex of an atomic force microscope (AFM), a scanning tunneling microscope (STM) or a near-field scanning optical microscope (NSOM) and exhibits optically detected magnetic resonance (ODMR) in the vicinity of impaired electron spins or nuclear magnetic moments in the sample material. The described spin microscope has demonstrated nanoscale lateral resolution and single spin sensitivity for the AFM and STM embodiments.

  3. Spin microscope based on optically detected magnetic resonance

    DOEpatents

    Berman, Gennady P.; Chernobrod, Boris M.

    2007-12-11

    The invention relates to scanning magnetic microscope which has a photoluminescent nanoprobe implanted in the tip apex of an atomic force microscope (AFM), a scanning tunneling microscope (STM) or a near-field scanning optical microscope (NSOM) and exhibits optically detected magnetic resonance (ODMR) in the vicinity of unpaired electron spins or nuclear magnetic moments in the sample material. The described spin microscope has demonstrated nanoscale lateral resolution and single spin sensitivity for the AFM and STM embodiments.

  4. Spin microscope based on optically detected magnetic resonance

    DOEpatents

    Berman, Gennady P [Los Alamos, NM; Chernobrod, Boris M [Los Alamos, NM

    2010-07-13

    The invention relates to scanning magnetic microscope which has a photoluminescent nanoprobe implanted in the tip apex of an atomic force microscope (AFM), a scanning tunneling microscope (STM) or a near-field scanning optical microscope (NSOM) and exhibits optically detected magnetic resonance (ODMR) in the vicinity of unpaired electron spins or nuclear magnetic moments in the sample material. The described spin microscope has demonstrated nanoscale lateral resolution and single spin sensitivity for the AFM and STM embodiments.

  5. Spin microscope based on optically detected magnetic resonance

    DOEpatents

    Berman, Gennady P [Los Alamos, NM; Chernobrod, Boris M [Los Alamos, NM

    2009-10-27

    The invention relates to scanning magnetic microscope which has a photoluminescent nanoprobe implanted in the tip apex of an atomic force microscope (AFM), a scanning tunneling microscope (STM) or a near-field scanning optical microscope (NSOM) and exhibits optically detected magnetic resonance (ODMR) in the vicinity of unpaired electron spins or nuclear magnetic moments in the sample material. The described spin microscope has demonstrated nanoscale lateral resolution and single spin sensitivity for the AFM and STM embodiments.

  6. Stimulated penetrating keratoplasty using real-time virtual intraoperative surgical optical coherence tomography

    PubMed Central

    Lee, Changho; Kim, Kyungun; Han, Seunghoon; Kim, Sehui; Lee, Jun Hoon; Kim, Hong kyun; Kim, Chulhong; Jung, Woonggyu; Kim, Jeehyun

    2014-01-01

    Abstract. An intraoperative surgical microscope is an essential tool in a neuro- or ophthalmological surgical environment. Yet, it has an inherent limitation to classify subsurface information because it only provides the surface images. To compensate for and assist in this problem, combining the surgical microscope with optical coherence tomography (OCT) has been adapted. We developed a real-time virtual intraoperative surgical OCT (VISOCT) system by adapting a spectral-domain OCT scanner with a commercial surgical microscope. Thanks to our custom-made beam splitting and image display subsystems, the OCT images and microscopic images are simultaneously visualized through an ocular lens or the eyepiece of the microscope. This improvement helps surgeons to focus on the operation without distraction to view OCT images on another separate display. Moreover, displaying the OCT live images on the eyepiece helps surgeon’s depth perception during the surgeries. Finally, we successfully processed stimulated penetrating keratoplasty in live rabbits. We believe that these technical achievements are crucial to enhance the usability of the VISOCT system in a real surgical operating condition. PMID:24604471

  7. Replication of Muscle Cell Using Bioimprint

    NASA Astrophysics Data System (ADS)

    Samsuri, Fahmi; Mitchell, John S.; Alkaisi, Maan M.; Evans, John J.

    2009-07-01

    In our earlier study a heat-curable PDMS or a UV curable elastomer, was used as the replicating material to introduce Bioimprint methodology to facilitate cell imaging [1-2] But, replicating conditions for thermal polymerization is known to cause cell dehydration during curing. In this study, a new type of polymer was developed for use in living cell replica formation, and it was tested on human muscle cells. The cells were incubated and cultured according to standard biological culturing procedures, and they were grown for about 10 days. The replicas were then separated from the muscle cells and taken for analysis under an Atomic Force Microscope (AFM). The new polymer was designed to be biocompatible with higher resolution and fast curing process compared to other types of silicon-based organic polymers such as polydimethylsiloxane (PDMS). Muscle cell imprints were achieved and higher resolution images were able to show the micro structures of the muscle cells, including the cellular fibers and cell membranes. The AFM is able to image features at nanoscale resolution. This capacity enables a number of characteristics of biological cells to be visualized in a unique manner. Polymer and muscle cells preparations were developed at Hamilton, in collaboration between Plant and Food Research and the Department of Electrical and Computer Engineering, University of Canterbury. Tapping mode was used for the AFM image analysis as it has low tip-sample forces and non-destructive imaging capability. We will be presenting the bioimprinting processes of muscle cells, their AFM imaging and characterization of the newly developed polymer.

  8. Image simulation and surface reconstruction of undercut features in atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Qian, Xiaoping; Villarrubia, John; Tian, Fenglei; Dixson, Ronald

    2007-03-01

    CD-AFMs (critical dimension atomic force microscopes) are instruments with servo-control of the tip in more than one direction. With appropriately "boot-shaped" or flared tips, such instruments can image vertical or even undercut features. As with any AFM, the image is a dilation of the sample shape with the tip shape. Accurate extraction of the CD requires a correction for the tip effect. Analytical methods to correct images for the tip shape have been available for some time for the traditional (vertical feedback only) AFMs, but were until recently unavailable for instruments with multi-dimensional feedback. Dahlen et al. [J. Vac. Sci. Technol. B23, pp. 2297-2303, (2005)] recently introduced a swept-volume approach, implemented for 2-dimensional (2D) feedback. It permits image simulation and sample reconstruction, techniques previously developed for the traditional instruments, to be extended for the newer tools. We have introduced [X. Qian and J. S. Villarrubia, Ultramicroscopy, in press] an alternative dexel-based method, that does the same in either 2D or 3D. This paper describes the application of this method to sample shapes of interest in semiconductor manufacturing. When the tip shape is known (e.g., by prior measurement using a tip characterizer) a 3D sample surface may be reconstructed from its 3D image. Basing the CD measurement upon such a reconstruction is shown here to remove some measurement artifacts that are not removed (or are incompletely removed) by the existing measurement procedures.

  9. Vibrational and UV spectroscopic studies of 2-coumaranone by experimental and density functional theory calculations

    NASA Astrophysics Data System (ADS)

    Priya, Y. Sushma; Rao, K. Ramachandra; Chalapathi, P. V.; Satyavani, M.; Veeraiah, A.

    2017-09-01

    The vibrational and electronic properties of 2-coumaranone have been reported in the ground state using experimental techniques (FT-IR, FT-Raman, UV spectra and fluorescence microscopic imaging) and density functional theory (DFT) employing B3LYP correlation with the 6-31G(d, p) basis set. The theoretically reported optimized parameters, vibrational frequencies etc., were compared with the experimental values, which yielded good concurrence between the experimental and calculated values. The assignments of the vibrational spectra were done with the help of normal co-ordinate analysis (NCA) following the Scaled Quantum Mechanical Force Field(SQMFF) methodology. The whole assignments of fundamental modes were based on the potential energy distribution (PED) matrix. The electric dipole moment and the first order hyperpolarizability of the 2-coumaranone have been computed using quantum mechanical calculations. NBO and HOMO, LUMO analyses have been carried out. UV spectrum of 2-coumaranone was recorded in the region 100-300 nm and compared with the theoretical UV spectrum using TD-DFT and SAC-CI methods by which a good agreement is observed. Fluorescence microscopic imaging study reflects that the compound fluoresces in the green-yellow region.

  10. Hot-stage microscopy for determination of API fragmentation: comparison with other methods.

    PubMed

    Šimek, Michal; Grünwaldová, Veronika; Kratochvíl, Bohumil

    2016-08-01

    Although the fragmentation of the active pharmaceutical ingredient (API) is a phenomenon that is mentioned in many literature sources, no well-suited analytical tools for its investigation are currently known. We used the hot-stage microscopy method, already presented in our previous work, and studied the real fragmentation of the tadalafil particles in model tablets which were prepared under different compaction pressures. The morphology, spectral imaging and evaluation of plastic and elastic energies were also analyzed to support the hot-stage method. The prepared blend of tadalafil and excipients was compacted under a several forces from 5 to 35 kN to reveal the trend of fragmentation. The exact fragmentation of tadalafil with increased compaction pressure was revealed by the hot-stage microscopic method and it was in good agreement with plastic and elastic energies. Conversely, spectral imaging, which is being used for this analysis, was considered to be inaccurate methodology as mainly agglomerates, not individual particles, were measured. The availability of the hot-stage microscopic method equips pharmaceutical scientists with an in vitro assessment technique that will more reliably determine the fragmentation of the API in finished tablets and the behavior of the particles when compacted.

  11. Evaluation of breast tissue with confocal strip-mosaicking microscopy: a test approach emulating pathology-like examination

    PubMed Central

    Abeytunge, Sanjee; Larson, Bjorg; Peterson, Gary; Morrow, Monica; Rajadhyaksha, Milind

    2017-01-01

    Abstract. Confocal microscopy is an emerging technology for rapid imaging of freshly excised tissue without the need for frozen- or fixed-section processing. Initial studies have described imaging of breast tissue using fluorescence confocal microscopy with small regions of interest, typically 750×750  μm2. We present exploration with a microscope, termed confocal strip-mosaicking microscope (CSM microscope), which images an area of 2×2  cm2 of tissue with cellular-level resolution in 10 min of excision. Using the CSM microscope, we imaged 34 fresh, human, large breast tissue specimens from 18 patients, blindly analyzed by a board-certified pathologist and subsequently correlated with the corresponding standard fixed histopathology. Invasive tumors and benign tissue were clearly identified in CSM strip-mosaic images. Thirty specimens were concordant for image-to-histopathology correlation while four were discordant. PMID:28327961

  12. DIY: "Do Imaging Yourself" - Conventional microscopes as powerful tools for in vivo investigation.

    PubMed

    Antunes, Maísa Mota; Carvalho, Érika de; Menezes, Gustavo Batista

    2018-01-01

    Intravital imaging has been increasingly employed in cell biology studies and it is becoming one of the most powerful tools for in vivo investigation. Although some protocols can be extremely complex, most intravital imaging procedures can be performed using basic surgery and animal maintenance techniques. More importantly, regular confocal microscopes - the same that are used for imaging immunofluorescence slides - can also acquire high quality intravital images and movies after minor adaptations. Here we propose minimal adaptations in stock microscopes that allow major improvements in different fields of scientific investigation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Microscope mode secondary ion mass spectrometry imaging with a Timepix detector.

    PubMed

    Kiss, Andras; Jungmann, Julia H; Smith, Donald F; Heeren, Ron M A

    2013-01-01

    In-vacuum active pixel detectors enable high sensitivity, highly parallel time- and space-resolved detection of ions from complex surfaces. For the first time, a Timepix detector assembly was combined with a secondary ion mass spectrometer for microscope mode secondary ion mass spectrometry (SIMS) imaging. Time resolved images from various benchmark samples demonstrate the imaging capabilities of the detector system. The main advantages of the active pixel detector are the higher signal-to-noise ratio and parallel acquisition of arrival time and position. Microscope mode SIMS imaging of biomolecules is demonstrated from tissue sections with the Timepix detector.

  14. Martian Microscope

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The microscopic imager (circular device in center) is in clear view above the surface at Meridiani Planum, Mars, in this approximate true-color image taken by the panoramic camera on the Mars Exploration Rover Opportunity. The image was taken on the 9th sol of the rover's journey. The microscopic imager is located on the rover's instrument deployment device, or arm. The arrow is pointing to the lens of the instrument. Note the dust cover, which flips out to the left of the lens, is open. This approximated color image was created using the camera's violet and infrared filters as blue and red.

  15. Predictive value of magnetic resonance imaging determined tumor contact length for extracapsular extension of prostate cancer.

    PubMed

    Baco, Eduard; Rud, Erik; Vlatkovic, Ljiljana; Svindland, Aud; Eggesbø, Heidi B; Hung, Andrew J; Matsugasumi, Toru; Bernhard, Jean-Christophe; Gill, Inderbir S; Ukimura, Osamu

    2015-02-01

    Tumor contact length is defined as the amount of prostate cancer in contact with the prostatic capsule. We evaluated the ability of magnetic resonance imaging determined tumor contact length to predict microscopic extracapsular extension compared to existing predictors of extracapsular extension. We retrospectively analyzed the records of 111 consecutive patients with magnetic resonance imaging/ultrasound fusion targeted, biopsy proven prostate cancer who underwent radical prostatectomy from January 2010 to July 2013. Median patient age was 64 years and median prostate specific antigen was 8.9 ng/ml. Clinical stage was cT1 in 93 cases (84%) and cT2 in 18 (16%). Postoperative pathological analysis confirmed pT2 in 71 patients (64%) and pT3 in 40 (36%). We evaluated 1) in the radical prostatectomy specimen the correlation of microscopic extracapsular extension with pathological cancer volume, pathological tumor contact length and Gleason score, 2) the correlation between microscopic extracapsular extension and magnetic resonance imaging tumor contact length, and 3) the ability of preoperative variables to predict microscopic extracapsular extension. Logistic regression analysis revealed that pathological tumor contact length correlated better with microscopic extracapsular extension than the predictive power of pathological cancer volume (0.821 vs 0.685). The Spearman correlation between pathological and magnetic resonance imaging tumor contact length was r = 0.839 (p <0.0001). ROC AUC analysis revealed that magnetic resonance imaging tumor contact length outperformed cancer core involvement on targeted biopsy and the Partin tables to predict microscopic extracapsular extension (0.88 vs 0.70 and 0.63, respectively). At a magnetic resonance imaging tumor contact length threshold of 20 mm the accuracy for diagnosing microscopic extracapsular extension was superior to that of conventional magnetic resonance imaging criteria (82% vs 67%, p = 0.015). We developed a predicted probability plot curve of extracapsular extension according to magnetic resonance imaging tumor contact length. Magnetic resonance imaging determined tumor contact length could be a promising quantitative predictor of microscopic extracapsular extension. Copyright © 2015 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  16. A Low Temperature Scanning Force Microscope with a Vertical Cantilever and Interferometric Detection Scheme

    NASA Astrophysics Data System (ADS)

    Kim, Jeehoon; Williams, T. L.; Chu, Sang Lin; Korre, Hasan; Chalfin, Max; Hoffman, J. E.

    2008-03-01

    We have developed a fiber-optic interferometry system with a vertical cantilever for scanning force microscopy. A lens, mounted on a Pan-type walker, was used to collect the interference signal in the cavity between the cantilever and the single mode fiber. This vertical geometry has several advantages: (1) it is directly sensitive to lateral forces; (2) low spring constant vertical cantilevers may allow increased force sensitivity by solving the ``snap-in'' problem that occurs with soft horizontal cantilevers. We have sharpened vertical cantilevers by focused ion beam (FIB), achieving a tip radius of 20 nm. We will show test results of a magnetic force microscope (MFM) with this vertical cantilever system.

  17. Modeling and boundary force control of microcantilevers utilized in atomic force microscopy for cellular imaging and characterization

    NASA Astrophysics Data System (ADS)

    Eslami, Sohrab

    This dissertation undertakes the theoretical and experimental developments microcantilevers utilized in Atomic Force Microscopy (AFM) with applications to cellular imaging and characterization. The capability of revealing the inhomogeneties or interior of ultra-small materials has been of most interest to many researchers. However, the fundamental concept of signal and image formation remains unexplored and not fully understood. For his, a semi-empirical nonlinear force model is proposed to show that virtual frequency generation, regarded as the simplest synthesized subsurface probe, occurs optimally when the force is tuned to the van der Waals form. This is the first-time observation of a novel theoretical dynamic multi-frequency force microscopy that has not been already reported. Owing to the broad applications of microcantilevers in the nanoscale imaging and microscopic techniques, there is an essential feeling to study and propose a comprehensive model of such systems. Therefore, in the theoretical part of this dissertation, a distributed-parameters representation modeling of the microcantilever along with a general interaction force comprising of two attractive and repulsive components with general amplitude and power terms is studied. This model is investigated in a general 2D Cartesian coordinate to consider the motions of the probe with a tip mass. There is an excitation at the microcantilever's base such that the end of the beam is subject to the proposed general force. These forces are very sensitive to the amplitude and power terms of these parts; on the other hand, atomic intermolecular force is a function of the distance such that this distance itself is also a function of the interaction force that will result in a nonlinear implicit equation. From a parametric study in the probe-sample excitation, it is shown that the predicted behavior of the generated difference-frequency oscillation amplitude agrees well with experimental measurements. Following the proposed Euler-Bernoulli model, a more comprehensive model is developed by modeling the probe dynamics and including the effects of the rotary inertia and shear deformation under the same proposed tip-sample interaction force. An extensive comparative study between the Euler-Bernoulli and Timoshenko beam assumptions is conducted for different conditions including different base-excitation amplitudes and higher modes. The results underline that the comprehensive Timoshenko model unveils the effects of the nonlinear interaction force better than the Euler-Bernoulli beam model. In addition to extensive modeling efforts on the microcantilever and its interaction with sample, an adaptive control framework is developed in order to make the microcantilever's tip follow a desired trajectory. This trajectory can further be considered as an important path acquired by the path planning techniques to manipulate the nanoparticles. There is a base excitation considered for this model and can be considered as an input force control to excite the probe by taking advantage of flexibility of the cantilever despite its complexity and under existence of the external nonlinear interaction forces between the tip and sample's surface. When building such complicated controller on top of the proposed comprehensive model, the results could be extended to study a macro-micro hybrid rigid-flexible model of a microrobot to mimic the realistic behavior of the MM3ARTM microrobot. The MM3ARTM microrobot is equipped with a piezoresistive layer which functions as a force sensor and is capable of measuring very slight forces as small as micro to nano-Newton. Two types of controllers are investigated for the case of the tip force control. Lyapunov-based PD and robust adaptive controllers are developed for this purpose and their performances and stabilities are compared. In the experimental part, a platform for performing the automated nanomanipulation and real-time cellular imaging is developed by integrating a microrobot, digital signal processor platform (dSPACERTM), computer, and a state-of-the-art light microscope. The closed-loop boundary force control framework is additionally developed for the autonomous in-situ applications. Since the incoming and outgoing signals of the piezoresistive microrobot are in the form of the electrical voltage and the string commands (ASCII code), respectively, an intuitive programming code for interfacing the MATLAB and dSPACE RTM has been written for the online quasi-data acquisition. As a result, the height of the corneal cell has been obtained and additionally, the microcantilever's tip force has been automatically controlled by taking advantage of the proposed control framework.

  18. X ray imaging microscope for cancer research

    NASA Technical Reports Server (NTRS)

    Hoover, Richard B.; Shealy, David L.; Brinkley, B. R.; Baker, Phillip C.; Barbee, Troy W., Jr.; Walker, Arthur B. C., Jr.

    1991-01-01

    The NASA technology employed during the Stanford MSFC LLNL Rocket X Ray Spectroheliograph flight established that doubly reflecting, normal incidence multilayer optics can be designed, fabricated, and used for high resolution x ray imaging of the Sun. Technology developed as part of the MSFC X Ray Microscope program, showed that high quality, high resolution multilayer x ray imaging microscopes are feasible. Using technology developed at Stanford University and at the DOE Lawrence Livermore National Laboratory (LLNL), Troy W. Barbee, Jr. has fabricated multilayer coatings with near theoretical reflectivities and perfect bandpass matching for a new rocket borne solar observatory, the Multi-Spectral Solar Telescope Array (MSSTA). Advanced Flow Polishing has provided multilayer mirror substrates with sub-angstrom (rms) smoothnesss for the astronomical x ray telescopes and x ray microscopes. The combination of these important technological advancements has paved the way for the development of a Water Window Imaging X Ray Microscope for cancer research.

  19. Relaxometry imaging of superparamagnetic magnetite nanoparticles at ambient conditions

    NASA Astrophysics Data System (ADS)

    Finkler, Amit; Schmid-Lorch, Dominik; Häberle, Thomas; Reinhard, Friedemann; Zappe, Andrea; Slota, Michael; Bogani, Lapo; Wrachtrup, Jörg

    We present a novel technique to image superparamagnetic iron oxide nanoparticles via their fluctuating magnetic fields. The detection is based on the nitrogen-vacancy (NV) color center in diamond, which allows optically detected magnetic resonance (ODMR) measurements on its electron spin structure. In combination with an atomic-force-microscope, this atomic-sized color center maps ambient magnetic fields in a wide frequency range from DC up to several GHz, while retaining a high spatial resolution in the sub-nanometer range. We demonstrate imaging of single 10 nm sized magnetite nanoparticles using this spin noise detection technique. By fitting simulations (Ornstein-Uhlenbeck process) to the data, we are able to infer additional information on such a particle and its dynamics, like the attempt frequency and the anisotropy constant. This is of high interest to the proposed application of magnetite nanoparticles as an alternative MRI contrast agent or to the field of particle-aided tumor hyperthermia.

  20. Method for lateral force calibration in atomic force microscope using MEMS microforce sensor.

    PubMed

    Dziekoński, Cezary; Dera, Wojciech; Jarząbek, Dariusz M

    2017-11-01

    In this paper we present a simple and direct method for the lateral force calibration constant determination. Our procedure does not require any knowledge about material or geometrical parameters of an investigated cantilever. We apply a commercially available microforce sensor with advanced electronics for direct measurement of the friction force applied by the cantilever's tip to a flat surface of the microforce sensor measuring beam. Due to the third law of dynamics, the friction force of the equal value tilts the AFM cantilever. Therefore, torsional (lateral force) signal is compared with the signal from the microforce sensor and the lateral force calibration constant is determined. The method is easy to perform and could be widely used for the lateral force calibration constant determination in many types of atomic force microscopes. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Correlative imaging across microscopy platforms using the fast and accurate relocation of microscopic experimental regions (FARMER) method

    NASA Astrophysics Data System (ADS)

    Huynh, Toan; Daddysman, Matthew K.; Bao, Ying; Selewa, Alan; Kuznetsov, Andrey; Philipson, Louis H.; Scherer, Norbert F.

    2017-05-01

    Imaging specific regions of interest (ROIs) of nanomaterials or biological samples with different imaging modalities (e.g., light and electron microscopy) or at subsequent time points (e.g., before and after off-microscope procedures) requires relocating the ROIs. Unfortunately, relocation is typically difficult and very time consuming to achieve. Previously developed techniques involve the fabrication of arrays of features, the procedures for which are complex, and the added features can interfere with imaging the ROIs. We report the Fast and Accurate Relocation of Microscopic Experimental Regions (FARMER) method, which only requires determining the coordinates of 3 (or more) conspicuous reference points (REFs) and employs an algorithm based on geometric operators to relocate ROIs in subsequent imaging sessions. The 3 REFs can be quickly added to various regions of a sample using simple tools (e.g., permanent markers or conductive pens) and do not interfere with the ROIs. The coordinates of the REFs and the ROIs are obtained in the first imaging session (on a particular microscope platform) using an accurate and precise encoded motorized stage. In subsequent imaging sessions, the FARMER algorithm finds the new coordinates of the ROIs (on the same or different platforms), using the coordinates of the manually located REFs and the previously recorded coordinates. FARMER is convenient, fast (3-15 min/session, at least 10-fold faster than manual searches), accurate (4.4 μm average error on a microscope with a 100x objective), and precise (almost all errors are <8 μm), even with deliberate rotating and tilting of the sample well beyond normal repositioning accuracy. We demonstrate this versatility by imaging and re-imaging a diverse set of samples and imaging methods: live mammalian cells at different time points; fixed bacterial cells on two microscopes with different imaging modalities; and nanostructures on optical and electron microscopes. FARMER can be readily adapted to any imaging system with an encoded motorized stage and can facilitate multi-session and multi-platform imaging experiments in biology, materials science, photonics, and nanoscience.

  2. Ultrafast superresolution fluorescence imaging with spinning disk confocal microscope optics.

    PubMed

    Hayashi, Shinichi; Okada, Yasushi

    2015-05-01

    Most current superresolution (SR) microscope techniques surpass the diffraction limit at the expense of temporal resolution, compromising their applications to live-cell imaging. Here we describe a new SR fluorescence microscope based on confocal microscope optics, which we name the spinning disk superresolution microscope (SDSRM). Theoretically, the SDSRM is equivalent to a structured illumination microscope (SIM) and achieves a spatial resolution of 120 nm, double that of the diffraction limit of wide-field fluorescence microscopy. However, the SDSRM is 10 times faster than a conventional SIM because SR signals are recovered by optical demodulation through the stripe pattern of the disk. Therefore a single SR image requires only a single averaged image through the rotating disk. On the basis of this theory, we modified a commercial spinning disk confocal microscope. The improved resolution around 120 nm was confirmed with biological samples. The rapid dynamics of micro-tubules, mitochondria, lysosomes, and endosomes were observed with temporal resolutions of 30-100 frames/s. Because our method requires only small optical modifications, it will enable an easy upgrade from an existing spinning disk confocal to a SR microscope for live-cell imaging. © 2015 Hayashi and Okada. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  3. Soft x-ray imaging with incoherent sources

    NASA Astrophysics Data System (ADS)

    Wachulak, P.; Torrisi, A.; Ayele, M.; Bartnik, A.; Czwartos, J.; Wegrzyński, Ł.; Fok, T.; Parkman, T.; Vondrová, Š.; Turnová, J.; Odstrcil, M.; Fiedorowicz, H.

    2017-05-01

    In this work we present experimental, compact desk-top SXR microscope, the EUV microscope which is at this stage a technology demonstrator, and finally, the SXR contact microscope. The systems are based on laser-plasma EUV and SXR sources, employing a double stream gas puff target. The EUV and SXR full field microscopes, operating at 13.8 nm and 2.88 nm wavelengths, respectively, are capable of imaging nanostructures with a sub-50 nm spatial resolution with relatively short (seconds) exposure times. The SXR contact microscope operates in the "water-window" spectral range, to produce an imprint of the internal structure of the sample in a thin layer of SXR light sensitive photoresist. Applications of such desk-top EUV and SXR microscopes for studies of variety of different samples - test objects for resolution assessment and other objects such as carbon membranes, DNA plasmid samples, organic and inorganic thin layers, diatoms, algae and carcinoma cells, are also presented. Details about the sources, the microscopes as well as the imaging results for various objects will be presented and discussed. The development of such compact imaging systems may be important to the new research related to biological, material science and nanotechnology applications.

  4. Water window imaging x ray microscope

    NASA Technical Reports Server (NTRS)

    Hoover, Richard B. (Inventor)

    1992-01-01

    A high resolution x ray microscope for imaging microscopic structures within biological specimens has an optical system including a highly polished primary and secondary mirror coated with identical multilayer coatings, the mirrors acting at normal incidence. The coatings have a high reflectivity in the narrow wave bandpass between 23.3 and 43.7 angstroms and have low reflectivity outside of this range. The primary mirror has a spherical concave surface and the secondary mirror has a spherical convex surface. The radii of the mirrors are concentric about a common center of curvature on the optical axis of the microscope extending from the object focal plane to the image focal plane. The primary mirror has an annular configuration with a central aperture and the secondary mirror is positioned between the primary mirror and the center of curvature for reflecting radiation through the aperture to a detector. An x ray filter is mounted at the stage end of the microscope, and film sensitive to x rays in the desired band width is mounted in a camera at the image plane of the optical system. The microscope is mounted within a vacuum chamber for minimizing the absorption of x rays in air from a source through the microscope.

  5. SlideJ: An ImageJ plugin for automated processing of whole slide images.

    PubMed

    Della Mea, Vincenzo; Baroni, Giulia L; Pilutti, David; Di Loreto, Carla

    2017-01-01

    The digital slide, or Whole Slide Image, is a digital image, acquired with specific scanners, that represents a complete tissue sample or cytological specimen at microscopic level. While Whole Slide image analysis is recognized among the most interesting opportunities, the typical size of such images-up to Gpixels- can be very demanding in terms of memory requirements. Thus, while algorithms and tools for processing and analysis of single microscopic field images are available, Whole Slide images size makes the direct use of such tools prohibitive or impossible. In this work a plugin for ImageJ, named SlideJ, is proposed with the objective to seamlessly extend the application of image analysis algorithms implemented in ImageJ for single microscopic field images to a whole digital slide analysis. The plugin has been complemented by examples of macro in the ImageJ scripting language to demonstrate its use in concrete situations.

  6. Video-rate confocal microscopy for single-molecule imaging in live cells and superresolution fluorescence imaging.

    PubMed

    Lee, Jinwoo; Miyanaga, Yukihiro; Ueda, Masahiro; Hohng, Sungchul

    2012-10-17

    There is no confocal microscope optimized for single-molecule imaging in live cells and superresolution fluorescence imaging. By combining the swiftness of the line-scanning method and the high sensitivity of wide-field detection, we have developed a, to our knowledge, novel confocal fluorescence microscope with a good optical-sectioning capability (1.0 μm), fast frame rates (<33 fps), and superior fluorescence detection efficiency. Full compatibility of the microscope with conventional cell-imaging techniques allowed us to do single-molecule imaging with a great ease at arbitrary depths of live cells. With the new microscope, we monitored diffusion motion of fluorescently labeled cAMP receptors of Dictyostelium discoideum at both the basal and apical surfaces and obtained superresolution fluorescence images of microtubules of COS-7 cells at depths in the range 0-85 μm from the surface of a coverglass. Copyright © 2012 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  7. In vivo imaging of oral neoplasia using a miniaturized fiber optic confocal reflectance microscope.

    PubMed

    Maitland, Kristen C; Gillenwater, Ann M; Williams, Michelle D; El-Naggar, Adel K; Descour, Michael R; Richards-Kortum, Rebecca R

    2008-11-01

    The purpose of this study was to determine whether in vivo images of oral mucosa obtained with a fiber optic confocal reflectance microscope could be used to differentiate normal and neoplastic tissues. We imaged 20 oral sites in eight patients undergoing surgery for squamous cell carcinoma. Normal and abnormal areas within the oral cavity were identified clinically, and real-time videos of each site were obtained in vivo using a fiber optic confocal reflectance microscope. Following imaging, each site was biopsied and submitted for histopathologic examination. We identified distinct features, such as nuclear irregularity and spacing, which can be used to qualitatively differentiate between normal and abnormal tissue. Representative confocal images of normal, pre-neoplastic, and neoplastic oral tissue are presented. Previous work using much larger microscopes has demonstrated the ability of confocal reflectance microscopy to image cellular and tissue architecture in situ. New advances in technology have enabled miniaturization of imaging systems for in vivo use.

  8. Spatial-spectral blood cell classification with microscopic hyperspectral imagery

    NASA Astrophysics Data System (ADS)

    Ran, Qiong; Chang, Lan; Li, Wei; Xu, Xiaofeng

    2017-10-01

    Microscopic hyperspectral images provide a new way for blood cell examination. The hyperspectral imagery can greatly facilitate the classification of different blood cells. In this paper, the microscopic hyperspectral images are acquired by connecting the microscope and the hyperspectral imager, and then tested for blood cell classification. For combined use of the spectral and spatial information provided by hyperspectral images, a spatial-spectral classification method is improved from the classical extreme learning machine (ELM) by integrating spatial context into the image classification task with Markov random field (MRF) model. Comparisons are done among ELM, ELM-MRF, support vector machines(SVM) and SVMMRF methods. Results show the spatial-spectral classification methods(ELM-MRF, SVM-MRF) perform better than pixel-based methods(ELM, SVM), and the proposed ELM-MRF has higher precision and show more accurate location of cells.

  9. AOTF microscope for imaging with increased speed and spectral versatility.

    PubMed Central

    Wachman, E S; Niu, W; Farkas, D L

    1997-01-01

    We have developed a new fluorescence microscope that addresses the spectral and speed limitations of current light microscopy instrumentation. In the present device, interference and neutral density filters normally used for fluorescence excitation and detection are replaced by acousto-optic tunable filters (AOTFs). Improvements are described, including the use of a dispersing prism in conjunction with the imaging AOTF and an oblique-illumination excitation scheme, which together enable the AOTF microscope to produce images comparable to those obtained with conventional fluorescence instruments. The superior speed and spectral versatility of the AOTF microscope are demonstrated by a ratio image pair acquired in 3.5 ms and a micro-spectral absorbance measurement of hemoglobin through a cranial window in a living mouse. Images FIGURE 1 FIGURE 2 FIGURE 4 FIGURE 5 FIGURE 6 FIGURE 7 PMID:9284289

  10. Atomic force microscopy and scanning electron microscopy analysis of daily disposable limbal ring contact lenses.

    PubMed

    Lorenz, Kathrine Osborn; Kakkassery, Joseph; Boree, Danielle; Pinto, David

    2014-09-01

    Limbal ring (also known as 'circle') contact lenses are becoming increasingly popular, especially in Asian markets because of their eye-enhancing effects. The pigment particles that give the eye-enhancing effects of these lenses can be found on the front or back surface of the contact lens or 'enclosed' within the lens matrix. The purpose of this research was to evaluate the pigment location and surface roughness of seven types of 'circle' contact lenses. Scanning electron microscopic (SEM) analysis was performed using a variable pressure Hitachi S3400N instrument to discern the placement of lens pigments. Atomic force microscopy (Dimension Icon AFM from Bruker Nano) was used to determine the surface roughness of the pigmented regions of the contact lenses. Atomic force microscopic analysis was performed in fluid phase under contact mode using a Sharp Nitride Lever probe (SNL-10) with a spring constant of 0.06 N/m. Root mean square (RMS) roughness values were analysed using a generalised linear mixed model with a log-normal distribution. Least square means and their corresponding 95% confidence intervals were estimated for each brand, location and pigment combination. SEM cross-sectional images at 500× and 2,000× magnification showed pigment on the surface of six of the seven lens types tested. The mean depth of pigment for 1-DAY ACUVUE DEFINE (1DAD) lenses was 8.1 μm below the surface of the lens, while the remaining lens types tested had pigment particles on the front or back surface. Results of the atomic force microscopic analysis indicated that 1DAD lenses had significantly lower root mean square roughness values in the pigmented area of the lens than the other lens types tested. SEM and AFM analysis revealed pigment on the surface of the lens for all types tested with the exception of 1DAD. Further research is required to determine if the difference in pigment location influences on-eye performance. © 2014 The Authors. Clinical and Experimental Optometry © 2014 Optometrists Association Australia.

  11. Atomic force microscopy and scanning electron microscopy analysis of daily disposable limbal ring contact lenses

    PubMed Central

    Lorenz, Kathrine Osborn; Kakkassery, Joseph; Boree, Danielle; Pinto, David

    2014-01-01

    Background Limbal ring (also known as ‘circle’) contact lenses are becoming increasingly popular, especially in Asian markets because of their eye-enhancing effects. The pigment particles that give the eye-enhancing effects of these lenses can be found on the front or back surface of the contact lens or ‘enclosed’ within the lens matrix. The purpose of this research was to evaluate the pigment location and surface roughness of seven types of ‘circle’ contact lenses. Methods Scanning electron microscopic (SEM) analysis was performed using a variable pressure Hitachi S3400N instrument to discern the placement of lens pigments. Atomic force microscopy (Dimension Icon AFM from Bruker Nano) was used to determine the surface roughness of the pigmented regions of the contact lenses. Atomic force microscopic analysis was performed in fluid phase under contact mode using a Sharp Nitride Lever probe (SNL-10) with a spring constant of 0.06 N/m. Root mean square (RMS) roughness values were analysed using a generalised linear mixed model with a log-normal distribution. Least square means and their corresponding 95% confidence intervals were estimated for each brand, location and pigment combination. Results SEM cross-sectional images at 500× and 2,000× magnification showed pigment on the surface of six of the seven lens types tested. The mean depth of pigment for 1-DAY ACUVUE DEFINE (1DAD) lenses was 8.1 μm below the surface of the lens, while the remaining lens types tested had pigment particles on the front or back surface. Results of the atomic force microscopic analysis indicated that 1DAD lenses had significantly lower root mean square roughness values in the pigmented area of the lens than the other lens types tested. Conclusions SEM and AFM analysis revealed pigment on the surface of the lens for all types tested with the exception of 1DAD. Further research is required to determine if the difference in pigment location influences on-eye performance. PMID:24689948

  12. Set-up of a high-resolution 300 mK atomic force microscope in an ultra-high vacuum compatible (3)He/10 T cryostat.

    PubMed

    von Allwörden, H; Ruschmeier, K; Köhler, A; Eelbo, T; Schwarz, A; Wiesendanger, R

    2016-07-01

    The design of an atomic force microscope with an all-fiber interferometric detection scheme capable of atomic resolution at about 500 mK is presented. The microscope body is connected to a small pumped (3)He reservoir with a base temperature of about 300 mK. The bakeable insert with the cooling stage can be moved from its measurement position inside the bore of a superconducting 10 T magnet into an ultra-high vacuum chamber, where the tip and sample can be exchanged in situ. Moreover, single atoms or molecules can be evaporated onto a cold substrate located inside the microscope. Two side chambers are equipped with standard surface preparation and surface analysis tools. The performance of the microscope at low temperatures is demonstrated by resolving single Co atoms on Mn/W(110) and by showing atomic resolution on NaCl(001).

  13. Image Montaging for Creating a Virtual Pathology Slide: An Innovative and Economical Tool to Obtain a Whole Slide Image

    PubMed Central

    Pandurangappa, Rohit; Annavajjula, Saileela; Rajashekaraiah, Premalatha Bidadi

    2016-01-01

    Background. Microscopes are omnipresent throughout the field of biological research. With microscopes one can see in detail what is going on at the cellular level in tissues. Though it is a ubiquitous tool, the limitation is that with high magnification there is a small field of view. It is often advantageous to see an entire sample at high magnification. Over the years technological advancements in optics have helped to provide solutions to this limitation of microscopes by creating the so-called dedicated “slide scanners” which can provide a “whole slide digital image.” These scanners can provide seamless, large-field-of-view, high resolution image of entire tissue section. The only disadvantage of such complete slide imaging system is its outrageous cost, thereby hindering their practical use by most laboratories, especially in developing and low resource countries. Methods. In a quest for their substitute, we tried commonly used image editing software Adobe Photoshop along with a basic image capturing device attached to a trinocular microscope to create a digital pathology slide. Results. The seamless image created using Adobe Photoshop maintained its diagnostic quality. Conclusion. With time and effort photomicrographs obtained from a basic camera-microscope set up can be combined and merged in Adobe Photoshop to create a whole slide digital image of practically usable quality at a negligible cost. PMID:27747147

  14. Image Montaging for Creating a Virtual Pathology Slide: An Innovative and Economical Tool to Obtain a Whole Slide Image.

    PubMed

    Banavar, Spoorthi Ravi; Chippagiri, Prashanthi; Pandurangappa, Rohit; Annavajjula, Saileela; Rajashekaraiah, Premalatha Bidadi

    2016-01-01

    Background . Microscopes are omnipresent throughout the field of biological research. With microscopes one can see in detail what is going on at the cellular level in tissues. Though it is a ubiquitous tool, the limitation is that with high magnification there is a small field of view. It is often advantageous to see an entire sample at high magnification. Over the years technological advancements in optics have helped to provide solutions to this limitation of microscopes by creating the so-called dedicated "slide scanners" which can provide a "whole slide digital image." These scanners can provide seamless, large-field-of-view, high resolution image of entire tissue section. The only disadvantage of such complete slide imaging system is its outrageous cost, thereby hindering their practical use by most laboratories, especially in developing and low resource countries. Methods . In a quest for their substitute, we tried commonly used image editing software Adobe Photoshop along with a basic image capturing device attached to a trinocular microscope to create a digital pathology slide. Results . The seamless image created using Adobe Photoshop maintained its diagnostic quality. Conclusion . With time and effort photomicrographs obtained from a basic camera-microscope set up can be combined and merged in Adobe Photoshop to create a whole slide digital image of practically usable quality at a negligible cost.

  15. Intelligent tuning method of PID parameters based on iterative learning control for atomic force microscopy.

    PubMed

    Liu, Hui; Li, Yingzi; Zhang, Yingxu; Chen, Yifu; Song, Zihang; Wang, Zhenyu; Zhang, Suoxin; Qian, Jianqiang

    2018-01-01

    Proportional-integral-derivative (PID) parameters play a vital role in the imaging process of an atomic force microscope (AFM). Traditional parameter tuning methods require a lot of manpower and it is difficult to set PID parameters in unattended working environments. In this manuscript, an intelligent tuning method of PID parameters based on iterative learning control is proposed to self-adjust PID parameters of the AFM according to the sample topography. This method gets enough information about the output signals of PID controller and tracking error, which will be used to calculate the proper PID parameters, by repeated line scanning until convergence before normal scanning to learn the topography. Subsequently, the appropriate PID parameters are obtained by fitting method and then applied to the normal scanning process. The feasibility of the method is demonstrated by the convergence analysis. Simulations and experimental results indicate that the proposed method can intelligently tune PID parameters of the AFM for imaging different topographies and thus achieve good tracking performance. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. SlideJ: An ImageJ plugin for automated processing of whole slide images

    PubMed Central

    Baroni, Giulia L.; Pilutti, David; Di Loreto, Carla

    2017-01-01

    The digital slide, or Whole Slide Image, is a digital image, acquired with specific scanners, that represents a complete tissue sample or cytological specimen at microscopic level. While Whole Slide image analysis is recognized among the most interesting opportunities, the typical size of such images—up to Gpixels- can be very demanding in terms of memory requirements. Thus, while algorithms and tools for processing and analysis of single microscopic field images are available, Whole Slide images size makes the direct use of such tools prohibitive or impossible. In this work a plugin for ImageJ, named SlideJ, is proposed with the objective to seamlessly extend the application of image analysis algorithms implemented in ImageJ for single microscopic field images to a whole digital slide analysis. The plugin has been complemented by examples of macro in the ImageJ scripting language to demonstrate its use in concrete situations. PMID:28683129

  17. Cryogenic immersion microscope

    DOEpatents

    Le Gros, Mark; Larabell, Carolyn A.

    2010-12-14

    A cryogenic immersion microscope whose objective lens is at least partially in contact with a liquid reservoir of a cryogenic liquid, in which reservoir a sample of interest is immersed is disclosed. When the cryogenic liquid has an index of refraction that reduces refraction at interfaces between the lens and the sample, overall resolution and image quality are improved. A combination of an immersion microscope and x-ray microscope, suitable for imaging at cryogenic temperatures is also disclosed.

  18. Microscopic Theory for the Role of Attractive Forces in the Dynamics of Supercooled Liquids.

    PubMed

    Dell, Zachary E; Schweizer, Kenneth S

    2015-11-13

    We formulate a microscopic, no adjustable parameter, theory of activated relaxation in supercooled liquids directly in terms of the repulsive and attractive forces within the framework of pair correlations. Under isochoric conditions, attractive forces can nonperturbatively modify slow dynamics, but at high enough density their influence vanishes. Under isobaric conditions, attractive forces play a minor role. High temperature apparent Arrhenius behavior and density-temperature scaling are predicted. Our results are consistent with recent isochoric simulations and isobaric experiments on a deeply supercooled molecular liquid. The approach can be generalized to treat colloidal gelation and glass melting, and other soft matter slow dynamics problems.

  19. Optimal resolution in Fresnel incoherent correlation holographic fluorescence microscopy

    PubMed Central

    Brooker, Gary; Siegel, Nisan; Wang, Victor; Rosen, Joseph

    2011-01-01

    Fresnel Incoherent Correlation Holography (FINCH) enables holograms and 3D images to be created from incoherent light with just a camera and spatial light modulator (SLM). We previously described its application to microscopic incoherent fluorescence wherein one complex hologram contains all the 3D information in the microscope field, obviating the need for scanning or serial sectioning. We now report experiments which have led to the optimal optical, electro-optic, and computational conditions necessary to produce holograms which yield high quality 3D images from fluorescent microscopic specimens. An important improvement from our previous FINCH configurations capitalizes on the polarization sensitivity of the SLM so that the same SLM pixels which create the spherical wave simulating the microscope tube lens, also pass the plane waves from the infinity corrected microscope objective, so that interference between the two wave types at the camera creates a hologram. This advance dramatically improves the resolution of the FINCH system. Results from imaging a fluorescent USAF pattern and a pollen grain slide reveal resolution which approaches the Rayleigh limit by this simple method for 3D fluorescent microscopic imaging. PMID:21445140

  20. Assessing delivery and quantifying efficacy of small interfering ribonucleic acid therapeutics in the skin using a dual-axis confocal microscope

    NASA Astrophysics Data System (ADS)

    Ra, Hyejun; Gonzalez-Gonzalez, Emilio; Smith, Bryan R.; Gambhir, Sanjiv S.; Kino, Gordon S.; Solgaard, Olav; Kaspar, Roger L.; Contag, Christopher H.

    2010-05-01

    Transgenic reporter mice and advances in imaging instrumentation are enabling real-time visualization of cellular mechanisms in living subjects and accelerating the development of novel therapies. Innovative confocal microscope designs are improving their utility for microscopic imaging of fluorescent reporters in living animals. We develop dual-axis confocal (DAC) microscopes for such in vivo studies and create mouse models where fluorescent proteins are expressed in the skin for the purpose of advancing skin therapeutics and transdermal delivery tools. Three-dimensional image volumes, through the different skin compartments of the epidermis and dermis, can be acquired in several seconds with the DAC microscope in living mice, and are comparable to histologic analyses of reporter protein expression patterns in skin sections. Intravital imaging with the DAC microscope further enables visualization of green fluorescent protein (GFP) reporter gene expression in the skin over time, and quantification of transdermal delivery of small interfering RNA (siRNA) and therapeutic efficacy. Visualization of transdermal delivery of nucleic acids will play an important role in the development of innovative strategies for treating skin pathologies.

  1. Chemical Patterning by Mechanical Removal of Aqueous Polymers

    NASA Astrophysics Data System (ADS)

    Barnett, Katherine; Knoebel, Jodi; Davis, Robert C.

    2006-10-01

    We are developing a new method for micro and nanoscale patterning of lipids and proteins on solid surfaces. A layer of polyethylene glycol (PEG) teminated polyallyl amine (PAA) was initially applied to a mica surface. The PEG surface is a low adhesion surface for proteins. Following polymer deposition an Atomic Force Microscope (AFM) tip was used to remove the polymer layer in desired regions. AFM imaging of the surface after mechanical polymer removal shows squares of exposed MICA surrounded by the PEG surface. The clean mica regions are now available for specific adsorption of lipid or protein layers.

  2. How MIDAS improved our understanding of micrometre-sized cometary dust

    NASA Astrophysics Data System (ADS)

    Mannel, T.; Bentley, M. S.; Boakes, P.; Jeszenszky, H.; Levasseur-Regourd, A. C.; Schmied, R.; Torkar, K.

    2017-09-01

    The MIDAS atomic force microscope on the Rosetta orbiter was an instrument developed to investigate, for the first time, the morphology of nearly unaltered cometary dust. It acquired the 3D topography of about 1 - 50 µm sized dust particles with resolutions down to a few nanometres. These images showed the agglomerate character of the dust and confirmed that the smallest subunit sizes were less than 100 nm. MIDAS acquired the first direct proof of a fractal dust particle, opening a new approach to investigate the history of our early Solar System and of comets.

  3. Sub-nanosecond time-resolved near-field scanning magneto-optical microscope.

    PubMed

    Rudge, J; Xu, H; Kolthammer, J; Hong, Y K; Choi, B C

    2015-02-01

    We report on the development of a new magnetic microscope, time-resolved near-field scanning magneto-optical microscope, which combines a near-field scanning optical microscope and magneto-optical contrast. By taking advantage of the high temporal resolution of time-resolved Kerr microscope and the sub-wavelength spatial resolution of a near-field microscope, we achieved a temporal resolution of ∼50 ps and a spatial resolution of <100 nm. In order to demonstrate the spatiotemporal magnetic imaging capability of this microscope, the magnetic field pulse induced gyrotropic vortex dynamics occurring in 1 μm diameter, 20 nm thick CoFeB circular disks has been investigated. The microscope provides sub-wavelength resolution magnetic images of the gyrotropic motion of the vortex core at a resonance frequency of ∼240 MHz.

  4. Nano Goes to School: A Teaching Model of the Atomic Force Microscope

    ERIC Educational Resources Information Center

    Planinsic, Gorazd; Kovac, Janez

    2008-01-01

    The paper describes a teaching model of the atomic force microscope (AFM), which proved to be successful in the role of an introduction to nanoscience in high school. The model can demonstrate the two modes of operation of the AFM (contact mode and oscillating mode) as well as some basic principles that limit the resolution of the method. It can…

  5. Single-frame 3D fluorescence microscopy with ultraminiature lensless FlatScope

    PubMed Central

    Adams, Jesse K.; Boominathan, Vivek; Avants, Benjamin W.; Vercosa, Daniel G.; Ye, Fan; Baraniuk, Richard G.; Robinson, Jacob T.; Veeraraghavan, Ashok

    2017-01-01

    Modern biology increasingly relies on fluorescence microscopy, which is driving demand for smaller, lighter, and cheaper microscopes. However, traditional microscope architectures suffer from a fundamental trade-off: As lenses become smaller, they must either collect less light or image a smaller field of view. To break this fundamental trade-off between device size and performance, we present a new concept for three-dimensional (3D) fluorescence imaging that replaces lenses with an optimized amplitude mask placed a few hundred micrometers above the sensor and an efficient algorithm that can convert a single frame of captured sensor data into high-resolution 3D images. The result is FlatScope: perhaps the world’s tiniest and lightest microscope. FlatScope is a lensless microscope that is scarcely larger than an image sensor (roughly 0.2 g in weight and less than 1 mm thick) and yet able to produce micrometer-resolution, high–frame rate, 3D fluorescence movies covering a total volume of several cubic millimeters. The ability of FlatScope to reconstruct full 3D images from a single frame of captured sensor data allows us to image 3D volumes roughly 40,000 times faster than a laser scanning confocal microscope while providing comparable resolution. We envision that this new flat fluorescence microscopy paradigm will lead to implantable endoscopes that minimize tissue damage, arrays of imagers that cover large areas, and bendable, flexible microscopes that conform to complex topographies. PMID:29226243

  6. High-resolution, high-throughput imaging with a multibeam scanning electron microscope

    PubMed Central

    EBERLE, AL; MIKULA, S; SCHALEK, R; LICHTMAN, J; TATE, ML KNOTHE; ZEIDLER, D

    2015-01-01

    Electron–electron interactions and detector bandwidth limit the maximal imaging speed of single-beam scanning electron microscopes. We use multiple electron beams in a single column and detect secondary electrons in parallel to increase the imaging speed by close to two orders of magnitude and demonstrate imaging for a variety of samples ranging from biological brain tissue to semiconductor wafers. Lay Description The composition of our world and our bodies on the very small scale has always fascinated people, making them search for ways to make this visible to the human eye. Where light microscopes reach their resolution limit at a certain magnification, electron microscopes can go beyond. But their capability of visualizing extremely small features comes at the cost of a very small field of view. Some of the questions researchers seek to answer today deal with the ultrafine structure of brains, bones or computer chips. Capturing these objects with electron microscopes takes a lot of time – maybe even exceeding the time span of a human being – or new tools that do the job much faster. A new type of scanning electron microscope scans with 61 electron beams in parallel, acquiring 61 adjacent images of the sample at the same time a conventional scanning electron microscope captures one of these images. In principle, the multibeam scanning electron microscope’s field of view is 61 times larger and therefore coverage of the sample surface can be accomplished in less time. This enables researchers to think about large-scale projects, for example in the rather new field of connectomics. A very good introduction to imaging a brain at nanometre resolution can be found within course material from Harvard University on http://www.mcb80x.org/# as featured media entitled ‘connectomics’. PMID:25627873

  7. Optimizing purification process of MIM-I-BAR domain by introducing atomic force microscope and dynamics simulations.

    PubMed

    Zhang, Yue; Lou, Zhichao; Lin, Xubo; Wang, Qiwei; Cao, Meng; Gu, Ning

    2017-09-01

    MIM (missing in metastasis) is a member of I-BAR (inverse BAR) domain protein family, which functions as a putative metastasis suppressor. However, methods of gaining high purity MIM-I-BAR protein are barely reported. Here, by optimizing the purification process including changing the conditions of cell lysate and protein elution, we successfully purified MIM protein. The purity of the obtained protein was up to ∼90%. High-resolution atomic force microscope (AFM) provides more visual images, ensuring that we can observe the microenvironment around the target protein, as well as the conformations of the purification products following each purification process. MIM protein with two different sizes were observed on mica surface with AFM. Combining with molecular dynamics simulations, these molecules were revealed as MIM monomer and dimer. Furthermore, our study attaches importance to the usage of imidazole with suitable concentrations during the affinity chromatography process, as well as the removal of excessive imidazole after the affinity chromatography process. All these results indicate that the method described here was successful in purifying MIM protein and maintaining their natural properties, and is supposed to be used to purify other proteins with low solubility. Copyright © 2017. Published by Elsevier B.V.

  8. Microscopic neural image registration based on the structure of mitochondria

    NASA Astrophysics Data System (ADS)

    Cao, Huiwen; Han, Hua; Rao, Qiang; Xiao, Chi; Chen, Xi

    2017-02-01

    Microscopic image registration is a key component of the neural structure reconstruction with serial sections of neural tissue. The goal of microscopic neural image registration is to recover the 3D continuity and geometrical properties of specimen. During image registration, various distortions need to be corrected, including image rotation, translation, tissue deformation et.al, which come from the procedure of sample cutting, staining and imaging. Furthermore, there is only certain similarity between adjacent sections, and the degree of similarity depends on local structure of the tissue and the thickness of the sections. These factors make the microscopic neural image registration a challenging problem. To tackle the difficulty of corresponding landmarks extraction, we introduce a novel image registration method for Scanning Electron Microscopy (SEM) images of serial neural tissue sections based on the structure of mitochondria. The ellipsoidal shape of mitochondria ensures that the same mitochondria has similar shape between adjacent sections, and its characteristic of broad distribution in the neural tissue guarantees that landmarks based on the mitochondria distributed widely in the image. The proposed image registration method contains three parts: landmarks extraction between adjacent sections, corresponding landmarks matching and image deformation based on the correspondences. We demonstrate the performance of our method with SEM images of drosophila brain.

  9. Light field creating and imaging with different order intensity derivatives

    NASA Astrophysics Data System (ADS)

    Wang, Yu; Jiang, Huan

    2014-10-01

    Microscopic image restoration and reconstruction is a challenging topic in the image processing and computer vision, which can be widely applied to life science, biology and medicine etc. A microscopic light field creating and three dimensional (3D) reconstruction method is proposed for transparent or partially transparent microscopic samples, which is based on the Taylor expansion theorem and polynomial fitting. Firstly the image stack of the specimen is divided into several groups in an overlapping or non-overlapping way along the optical axis, and the first image of every group is regarded as reference image. Then different order intensity derivatives are calculated using all the images of every group and polynomial fitting method based on the assumption that the structure of the specimen contained by the image stack in a small range along the optical axis are possessed of smooth and linear property. Subsequently, new images located any position from which to reference image the distance is Δz along the optical axis can be generated by means of Taylor expansion theorem and the calculated different order intensity derivatives. Finally, the microscopic specimen can be reconstructed in 3D form using deconvolution technology and all the images including both the observed images and the generated images. The experimental results show the effectiveness and feasibility of our method.

  10. A high-resolution multimode digital microscope system.

    PubMed

    Salmon, Edward D; Shaw, Sidney L; Waters, Jennifer C; Waterman-Storer, Clare M; Maddox, Paul S; Yeh, Elaine; Bloom, Kerry

    2013-01-01

    This chapter describes the development of a high-resolution, multimode digital imaging system based on a wide-field epifluorescent and transmitted light microscope, and a cooled charge-coupled device (CCD) camera. The three main parts of this imaging system are Nikon FXA microscope, Hamamatsu C4880 cooled CCD camera, and MetaMorph digital imaging system. This chapter presents various design criteria for the instrument and describes the major features of the microscope components-the cooled CCD camera and the MetaMorph digital imaging system. The Nikon FXA upright microscope can produce high resolution images for both epifluorescent and transmitted light illumination without switching the objective or moving the specimen. The functional aspects of the microscope set-up can be considered in terms of the imaging optics, the epi-illumination optics, the transillumination optics, the focus control, and the vibration isolation table. This instrument is somewhat specialized for microtubule and mitosis studies, and it is also applicable to a variety of problems in cellular imaging, including tracking proteins fused to the green fluorescent protein in live cells. The instrument is also valuable for correlating the assembly dynamics of individual cytoplasmic microtubules (labeled by conjugating X-rhodamine to tubulin) with the dynamics of membranes of the endoplasmic reticulum (labeled with DiOC6) and the dynamics of the cell cortex (by differential interference contrast) in migrating vertebrate epithelial cells. This imaging system also plays an important role in the analysis of mitotic mutants in the powerful yeast genetic system Saccharomyces cerevisiae. Copyright © 1998 Elsevier Inc. All rights reserved.

  11. Compact Video Microscope Imaging System Implemented in Colloid Studies

    NASA Technical Reports Server (NTRS)

    McDowell, Mark

    2002-01-01

    Long description Photographs showing fiber-optic light source, microscope and charge-coupled discharge (CCD) camera head connected to camera body, CCD camera body feeding data to image acquisition board in PC, and Cartesian robot controlled via PC board. The Compact Microscope Imaging System (CMIS) is a diagnostic tool with intelligent controls for use in space, industrial, medical, and security applications. CMIS can be used in situ with a minimum amount of user intervention. This system can scan, find areas of interest in, focus on, and acquire images automatically. Many multiple-cell experiments require microscopy for in situ observations; this is feasible only with compact microscope systems. CMIS is a miniature machine vision system that combines intelligent image processing with remote control. The software also has a user-friendly interface, which can be used independently of the hardware for further post-experiment analysis. CMIS has been successfully developed in the SML Laboratory at the NASA Glenn Research Center and adapted for use for colloid studies and is available for telescience experiments. The main innovations this year are an improved interface, optimized algorithms, and the ability to control conventional full-sized microscopes in addition to compact microscopes. The CMIS software-hardware interface is being integrated into our SML Analysis package, which will be a robust general-purpose image-processing package that can handle over 100 space and industrial applications.

  12. Single-channel stereoscopic ophthalmology microscope based on TRD

    NASA Astrophysics Data System (ADS)

    Radfar, Edalat; Park, Jihoon; Lee, Sangyeob; Ha, Myungjin; Yu, Sungkon; Jang, Seulki; Jung, Byungjo

    2016-03-01

    A stereoscopic imaging modality was developed for the application of ophthalmology surgical microscopes. A previous study has already introduced a single-channel stereoscopic video imaging modality based on a transparent rotating deflector (SSVIM-TRD), in which two different view angles, image disparity, are generated by imaging through a transparent rotating deflector (TRD) mounted on a stepping motor and is placed in a lens system. In this case, the image disparity is a function of the refractive index and the rotation angle of TRD. Real-time single-channel stereoscopic ophthalmology microscope (SSOM) based on the TRD is improved by real-time controlling and programming, imaging speed, and illumination method. Image quality assessments were performed to investigate images quality and stability during the TRD operation. Results presented little significant difference in image quality in terms of stability of structural similarity (SSIM). A subjective analysis was performed with 15 blinded observers to evaluate the depth perception improvement and presented significant improvement in the depth perception capability. Along with all evaluation results, preliminary results of rabbit eye imaging presented that the SSOM could be utilized as an ophthalmic operating microscopes to overcome some of the limitations of conventional ones.

  13. Anomalous domain inversion in LiNbO3 single crystals investigated by scanning probe microscopy

    NASA Astrophysics Data System (ADS)

    Lilienblum, M.; Soergel, E.

    2011-09-01

    Ferroelectric domains were written in lithium niobate (LiNbO3) single crystals by applying voltage pulses to the tip of a scanning force microscope. The generated domains are subsequently imaged by piezoresponse force microscopy. As it has been previously observed not only full domains but also doughnut-shaped ones arise from tip-based domain formation. In this contribution, we present our experiments which were carried out with 10-20 μm thin LiNbO3 single crystals. We show that by choosing appropriate writing parameters, domains of predetermined shape (full or doughnut) can be reliably generated. In addition to the duration and the amplitude of the voltage pulse the moment of the retraction of the tip from the sample surface was found to be a crucial parameter for reproducible domain formation.

  14. Development of an adaptable coherent x-ray diffraction microscope with the emphasis on imaging hydrated specimens.

    PubMed

    Nam, Daewoong; Park, Jaehyun; Gallagher-Jones, Marcus; Shimada, Hiroki; Kim, Sangsoo; Kim, Sunam; Kohmura, Yoshiki; Ishikawa, Tetsuya; Song, Changyong

    2013-11-01

    This paper describes the development of a versatile coherent x-ray diffraction microscope capable of imaging biological specimens in solution. The microscope is a flexible platform accommodating various conditions, from low vacuum (10(-2) Pa) to helium gas filled ambient pressure. This flexibility greatly expands the application area, from in situ materials science to biology systems in their native state, by significantly relaxing restrictions to the sample environment. The coherent diffraction microscope has been used successfully to image a yeast cell immersed in buffer solution. We believe that the design of this coherent diffraction microscope can be directly adapted to various platforms such as table top soft x-ray laser, synchrotron x-ray sources, and x-ray free electron laser with minor relevant adjustments.

  15. Development of an adaptable coherent x-ray diffraction microscope with the emphasis on imaging hydrated specimens

    NASA Astrophysics Data System (ADS)

    Nam, Daewoong; Park, Jaehyun; Gallagher-Jones, Marcus; Shimada, Hiroki; Kim, Sangsoo; Kim, Sunam; Kohmura, Yoshiki; Ishikawa, Tetsuya; Song, Changyong

    2013-11-01

    This paper describes the development of a versatile coherent x-ray diffraction microscope capable of imaging biological specimens in solution. The microscope is a flexible platform accommodating various conditions, from low vacuum (10-2 Pa) to helium gas filled ambient pressure. This flexibility greatly expands the application area, from in situ materials science to biology systems in their native state, by significantly relaxing restrictions to the sample environment. The coherent diffraction microscope has been used successfully to image a yeast cell immersed in buffer solution. We believe that the design of this coherent diffraction microscope can be directly adapted to various platforms such as table top soft x-ray laser, synchrotron x-ray sources, and x-ray free electron laser with minor relevant adjustments.

  16. Programmable Colored Illumination Microscopy (PCIM): A practical and flexible optical staining approach for microscopic contrast enhancement

    NASA Astrophysics Data System (ADS)

    Zuo, Chao; Sun, Jiasong; Feng, Shijie; Hu, Yan; Chen, Qian

    2016-03-01

    Programmable colored illumination microscopy (PCIM) has been proposed as a flexible optical staining technique for microscopic contrast enhancement. In this method, we replace the condenser diaphragm of a conventional microscope with a programmable thin film transistor-liquid crystal display (TFT-LCD). By displaying different patterns on the LCD, numerous established imaging modalities can be realized, such as bright field, dark field, phase contrast, oblique illumination, and Rheinberg illuminations, which conventionally rely on intricate alterations in the respective microscope setups. Furthermore, the ease of modulating both the color and the intensity distribution at the aperture of the condenser opens the possibility to combine multiple microscopic techniques, or even realize completely new methods for optical color contrast staining, such as iridescent dark-field and iridescent phase-contrast imaging. The versatility and effectiveness of PCIM is demonstrated by imaging of several transparent colorless specimens, such as unstained lung cancer cells, diatom, textile fibers, and a cryosection of mouse kidney. Finally, the potentialities of PCIM for RGB-splitting imaging with stained samples are also explored by imaging stained red blood cells and a histological section.

  17. A portable confocal hyperspectral microscope without any scan or tube lens and its application in fluorescence and Raman spectral imaging

    NASA Astrophysics Data System (ADS)

    Li, Jingwei; Cai, Fuhong; Dong, Yongjiang; Zhu, Zhenfeng; Sun, Xianhe; Zhang, Hequn; He, Sailing

    2017-06-01

    In this study, a portable confocal hyperspectral microscope is developed. In traditional confocal laser scanning microscopes, scan lens and tube lens are utilized to achieve a conjugate relationship between the galvanometer and the back focal plane of the objective, in order to achieve a better resolution. However, these lenses make it difficult to scale down the volume of the system. In our portable confocal hyperspectral microscope (PCHM), the objective is placed directly next to the galvomirror. Thus, scan lens and tube lens are not included in our system and the size of this system is greatly reduced. Furthermore, the resolution is also acceptable in many biomedical and food-safety applications. Through reducing the optical length of the system, the signal detection efficiency is enhanced. This is conducive to realizing both the fluorescence and Raman hyperspectral imaging. With a multimode fiber as a pinhole, an improved image contrast is also achieved. Fluorescent spectral images for HeLa cells/fingers and Raman spectral images of kumquat pericarp are present. The spectral resolution and spatial resolutions are about 0.4 nm and 2.19 μm, respectively. These results demonstrate that this portable hyperspectral microscope can be used in in-vivo fluorescence imaging and in situ Raman spectral imaging.

  18. Laser interferometry force-feedback sensor for an interfacial force microscope

    DOEpatents

    Houston, Jack E.; Smith, William L.

    2004-04-13

    A scanning force microscope is provided with a force-feedback sensor to increase sensitivity and stability in determining interfacial forces between a probe and a sample. The sensor utilizes an interferometry technique that uses a collimated light beam directed onto a deflecting member, comprising a common plate suspended above capacitor electrodes situated on a substrate forming an interference cavity with a probe on the side of the common plate opposite the side suspended above capacitor electrodes. The probe interacts with the surface of the sample and the intensity of the reflected beam is measured and used to determine the change in displacement of the probe to the sample and to control the probe distance relative to the surface of the sample.

  19. Design and analysis of multilayer x ray/XUV microscope

    NASA Technical Reports Server (NTRS)

    Shealy, David L.

    1990-01-01

    The design and analysis of a large number of normal incidence multilayer x ray microscopes based on the spherical mirror Schwarzschild configuration is examined. Design equations for the spherical mirror Schwarzschild microscopes are summarized and used to evaluate mirror parameters for microscopes with magnifications ranging from 2 to 50x. Ray tracing and diffraction analyses are carried out for many microscope configurations to determine image resolution as a function of system parameters. The results are summarized in three publication included herein. A preliminary study of advanced reflecting microscope configurations, where aspherics are used in place of the spherical microscope mirror elements, has indicated that the aspherical elements will improve off-axis image resolution and increase the effective field of view.

  20. Comparisons between conventional optical imaging and parametric indirect microscopic imaging on human skin detection

    NASA Astrophysics Data System (ADS)

    Liu, Guoyan; Gao, Kun; Liu, Xuefeng; Ni, Guoqiang

    2016-10-01

    We report a new method, polarization parameters indirect microscopic imaging with a high transmission infrared light source, to detect the morphology and component of human skin. A conventional reflection microscopic system is used as the basic optical system, into which a polarization-modulation mechanics is inserted and a high transmission infrared light source is utilized. The near-field structural characteristics of human skin can be delivered by infrared waves and material coupling. According to coupling and conduction physics, changes of the optical wave parameters can be calculated and curves of the intensity of the image can be obtained. By analyzing the near-field polarization parameters in nanoscale, we can finally get the inversion images of human skin. Compared with the conventional direct optical microscope, this method can break diffraction limit and achieve a super resolution of sub-100nm. Besides, the method is more sensitive to the edges, wrinkles, boundaries and impurity particles.

  1. An integrated single- and two-photon non-diffracting light-sheet microscope

    NASA Astrophysics Data System (ADS)

    Lau, Sze Cheung; Chiu, Hoi Chun; Zhao, Luwei; Zhao, Teng; Loy, M. M. T.; Du, Shengwang

    2018-04-01

    We describe a fluorescence optical microscope with both single-photon and two-photon non-diffracting light-sheet excitations for large volume imaging. With a special design to accommodate two different wavelength ranges (visible: 400-700 nm and near infrared: 800-1200 nm), we combine the line-Bessel sheet (LBS, for single-photon excitation) and the scanning Bessel beam (SBB, for two-photon excitation) light sheet together in a single microscope setup. For a transparent thin sample where the scattering can be ignored, the LBS single-photon excitation is the optimal imaging solution. When the light scattering becomes significant for a deep-cell or deep-tissue imaging, we use SBB light-sheet two-photon excitation with a longer wavelength. We achieved nearly identical lateral/axial resolution of about 350/270 nm for both imagings. This integrated light-sheet microscope may have a wide application for live-cell and live-tissue three-dimensional high-speed imaging.

  2. Dissolution Processes at Step Edges of Calcite in Water Investigated by High-Speed Frequency Modulation Atomic Force Microscopy and Simulation.

    PubMed

    Miyata, Kazuki; Tracey, John; Miyazawa, Keisuke; Haapasilta, Ville; Spijker, Peter; Kawagoe, Yuta; Foster, Adam S; Tsukamoto, Katsuo; Fukuma, Takeshi

    2017-07-12

    The microscopic understanding of the crystal growth and dissolution processes have been greatly advanced by the direct imaging of nanoscale step flows by atomic force microscopy (AFM), optical interferometry, and X-ray microscopy. However, one of the most fundamental events that govern their kinetics, namely, atomistic events at the step edges, have not been well understood. In this study, we have developed high-speed frequency modulation AFM (FM-AFM) and enabled true atomic-resolution imaging in liquid at ∼1 s/frame, which is ∼50 times faster than the conventional FM-AFM. With the developed AFM, we have directly imaged subnanometer-scale surface structures around the moving step edges of calcite during its dissolution in water. The obtained images reveal that the transition region with typical width of a few nanometers is formed along the step edges. Building upon insight in previous studies, our simulations suggest that the transition region is most likely to be a Ca(OH) 2 monolayer formed as an intermediate state in the dissolution process. On the basis of this finding, we improve our understanding of the atomistic dissolution model of calcite in water. These results open up a wide range of future applications of the high-speed FM-AFM to the studies on various dynamic processes at solid-liquid interfaces with true atomic resolution.

  3. Atomic-Scale Characterization and Manipulation of Freestanding Graphene Using Adapted Capabilities of a Scanning Tunneling Microscope

    NASA Astrophysics Data System (ADS)

    Barber, Steven

    Graphene was the first two-dimensional material ever discovered, and it exhibits many unusual phenomena important to both pure and applied physics. To ensure the purest electronic structure, or to study graphene's elastic properties, it is often suspended over holes or trenches in a substrate. The aim of the research presented in this dissertation was to develop methods for characterizing and manipulating freestanding graphene on the atomic scale using a scanning tunneling microscope (STM). Conventional microscopy and spectroscopy techniques must be carefully reconsidered to account for movement of the extremely flexible sample. First, the acquisition of atomic-scale images of freestanding graphene using the STM and the ability to pull the graphene perpendicular to its plane by applying an electrostatic force with the STM tip are demonstrated. The atomic-scale images contained surprisingly large corrugations due to the electrostatic attractive force varying in registry with the local density of states. Meanwhile, a large range of control over the graphene height at a point was obtained by varying the tip bias voltage, and the application to strain engineering of graphene's so-called pseudomagnetic field is examined. Next, the effect of the tunneling current was investigated. With increasing current, the graphene sample moves away from the tip rather than toward it. It was determined that this must be due to local heating by the electric current, causing the graphene to contract because it has a negative coefficient of thermal expansion. Finally, by imaging a very small area, the STM can monitor the height of one location over long time intervals. Results sometimes exhibit periodic behavior, with a frequency and amplitude that depend on the tunneling current. These fluctuations are interpreted as low-frequency flexural phonon modes within elasticity theory. All of these findings set the foundation for employing a STM in the study of freestanding graphene.

  4. Tracking of Cells with a Compact Microscope Imaging System with Intelligent Controls

    NASA Technical Reports Server (NTRS)

    McDowell, Mark (Inventor)

    2007-01-01

    A Microscope Imaging System (CMIS) with intelligent controls is disclosed that provides techniques for scanning, identifying, detecting and tracking microscopic changes in selected characteristics or features of various surfaces including, but not limited to, cells, spheres, and manufactured products subject to difficult-to-see imperfections. The practice of the present invention provides applications that include colloidal hard spheres experiments, biological cell detection for patch clamping, cell movement and tracking, as well as defect identification in products, such as semiconductor devices, where surface damage can be significant, but difficult to detect. The CMIS system is a machine vision system, which combines intelligent image processing with remote control capabilities and provides the ability to autofocus on a microscope sample, automatically scan an image, and perform machine vision analysis on multiple samples simultaneously

  5. Tracking of cells with a compact microscope imaging system with intelligent controls

    NASA Technical Reports Server (NTRS)

    McDowell, Mark (Inventor)

    2007-01-01

    A Microscope Imaging System (CMIS) with intelligent controls is disclosed that provides techniques for scanning, identifying, detecting and tracking microscopic changes in selected characteristics or features of various surfaces including, but not limited to, cells, spheres, and manufactured products subject to difficult-to-see imperfections. The practice of the present invention provides applications that include colloidal hard spheres experiments, biological cell detection for patch clamping, cell movement and tracking, as well as defect identification in products, such as semiconductor devices, where surface damage can be significant, but difficult to detect. The CMIS system is a machine vision system, which combines intelligent image processing with remote control capabilities and provides the ability to auto-focus on a microscope sample, automatically scan an image, and perform machine vision analysis on multiple samples simultaneously.

  6. Laser speckle contrast imaging using light field microscope approach

    NASA Astrophysics Data System (ADS)

    Ma, Xiaohui; Wang, Anting; Ma, Fenghua; Wang, Zi; Ming, Hai

    2018-01-01

    In this paper, a laser speckle contrast imaging (LSCI) system using light field (LF) microscope approach is proposed. As far as we known, it is first time to combine LSCI with LF. To verify this idea, a prototype consists of a modified LF microscope imaging system and an experimental device was built. A commercially used Lytro camera was modified for microscope imaging. Hollow glass tubes with different depth fixed in glass dish were used to simulate the vessels in brain and test the performance of the system. Compared with conventional LSCI, three new functions can be realized by using our system, which include refocusing, extending the depth of field (DOF) and gathering 3D information. Experiments show that the principle is feasible and the proposed system works well.

  7. A multi-modal stereo microscope based on a spatial light modulator.

    PubMed

    Lee, M P; Gibson, G M; Bowman, R; Bernet, S; Ritsch-Marte, M; Phillips, D B; Padgett, M J

    2013-07-15

    Spatial Light Modulators (SLMs) can emulate the classic microscopy techniques, including differential interference (DIC) contrast and (spiral) phase contrast. Their programmability entails the benefit of flexibility or the option to multiplex images, for single-shot quantitative imaging or for simultaneous multi-plane imaging (depth-of-field multiplexing). We report the development of a microscope sharing many of the previously demonstrated capabilities, within a holographic implementation of a stereo microscope. Furthermore, we use the SLM to combine stereo microscopy with a refocusing filter and with a darkfield filter. The instrument is built around a custom inverted microscope and equipped with an SLM which gives various imaging modes laterally displaced on the same camera chip. In addition, there is a wide angle camera for visualisation of a larger region of the sample.

  8. Scanning laser microscope for imaging nanostructured superconductors

    NASA Astrophysics Data System (ADS)

    Ishida, Takekazu; Arai, Kohei; Akita, Yukio; Miyanari, Mitsunori; Minami, Yusuke; Yotsuya, Tsutomu; Kato, Masaru; Satoh, Kazuo; Uno, Mayumi; Shimakage, Hisashi; Miki, Shigehito; Wang, Zhen

    2010-10-01

    The nanofabrication of superconductors yields various interesting features in superconducting properties. A variety of different imaging techniques have been developed for probing the local superconducting profiles. A scanning pulsed laser microscope has been developed by the combination of the XYZ piezo-driven stages and an optical fiber with an aspheric focusing lens. The scanning laser microscope is used to understand the position-dependent properties of a superconducting MgB 2 stripline of length 100 μm and width of 3 μm under constant bias current. Our results show that the superconducting stripline can clearly be seen in the contour image of the scanning laser microscope on the signal voltage. It is suggested from the observed image that the inhomogeneity is relevant in specifying the operating conditions such as detection efficiency of the sensor.

  9. Microscope on Mars

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This image taken at Meridiani Planum, Mars by the panoramic camera on the Mars Exploration Rover Opportunity shows the rover's microscopic imager (circular device in center), located on its instrument deployment device, or 'arm.' The image was acquired on the ninth martian day or sol of the rover's mission.

  10. Super-resolution imaging of ciliary microdomains in isolated olfactory sensory neurons using a custom two-color stimulated emission depletion microscope

    NASA Astrophysics Data System (ADS)

    Meyer, Stephanie A.; Ozbay, Baris N.; Potcoava, Mariana; Salcedo, Ernesto; Restrepo, Diego; Gibson, Emily A.

    2016-06-01

    We performed stimulated emission depletion (STED) imaging of isolated olfactory sensory neurons (OSNs) using a custom-built microscope. The STED microscope uses a single pulsed laser to excite two separate fluorophores, Atto 590 and Atto 647N. A gated timing circuit combined with temporal interleaving of the different color excitation/STED laser pulses filters the two channel detection and greatly minimizes crosstalk. We quantified the instrument resolution to be ˜81 and ˜44 nm, for the Atto 590 and Atto 647N channels. The spatial separation between the two channels was measured to be under 10 nm, well below the resolution limit. The custom-STED microscope is incorporated onto a commercial research microscope allowing brightfield, differential interference contrast, and epifluorescence imaging on the same field of view. We performed immunolabeling of OSNs in mice to image localization of ciliary membrane proteins involved in olfactory transduction. We imaged Ca2+-permeable cyclic nucleotide gated (CNG) channel (Atto 594) and adenylyl cyclase type III (ACIII) (Atto 647N) in distinct cilia. STED imaging resolved well-separated subdiffraction limited clusters for each protein. We quantified the size of each cluster to have a mean value of 88±48 nm and 124±43 nm, for CNG and ACIII, respectively. STED imaging showed separated clusters that were not resolvable in confocal images.

  11. Multiresolution multiscale active mask segmentation of fluorescence microscope images

    NASA Astrophysics Data System (ADS)

    Srinivasa, Gowri; Fickus, Matthew; Kovačević, Jelena

    2009-08-01

    We propose an active mask segmentation framework that combines the advantages of statistical modeling, smoothing, speed and flexibility offered by the traditional methods of region-growing, multiscale, multiresolution and active contours respectively. At the crux of this framework is a paradigm shift from evolving contours in the continuous domain to evolving multiple masks in the discrete domain. Thus, the active mask framework is particularly suited to segment digital images. We demonstrate the use of the framework in practice through the segmentation of punctate patterns in fluorescence microscope images. Experiments reveal that statistical modeling helps the multiple masks converge from a random initial configuration to a meaningful one. This obviates the need for an involved initialization procedure germane to most of the traditional methods used to segment fluorescence microscope images. While we provide the mathematical details of the functions used to segment fluorescence microscope images, this is only an instantiation of the active mask framework. We suggest some other instantiations of the framework to segment different types of images.

  12. Designed Er(3+)-singly doped NaYF4 with double excitation bands for simultaneous deep macroscopic and microscopic upconverting bioimaging.

    PubMed

    Wen, Xuanyuan; Wang, Baoju; Wu, Ruitao; Li, Nana; He, Sailing; Zhan, Qiuqiang

    2016-06-01

    Simultaneous deep macroscopic imaging and microscopic imaging is in urgent demand, but is challenging to achieve experimentally due to the lack of proper fluorescent probes. Herein, we have designed and successfully synthesized simplex Er(3+)-doped upconversion nanoparticles (UCNPs) with double excitation bands for simultaneous deep macroscopic and microscopic imaging. The material structure and the excitation wavelength of Er(3+)-singly doped UCNPs were further optimized to enhance the upconversion emission efficiency. After optimization, we found that NaYF4:30%Er(3+)@NaYF4:2%Er(3+) could simultaneously achieve efficient two-photon excitation (2PE) macroscopic tissue imaging and three-photon excitation (3PE) deep microscopic when excited by 808 nm continuous wave (CW) and 1480 nm CW lasers, respectively. In vitro cell imaging and in vivo imaging have also been implemented to demonstrate the feasibility and potential of the proposed simplex Er(3+)-doped UCNPs as bioprobe.

  13. Atomic Force Microscope (AFM) measurements and analysis on Sagem 05R0025 secondary substrate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soufli, R; Baker, S L; Robinson, J C

    2006-02-22

    The summary of Atomic Force Microscope (AFM) on Sagem 05R0025 secondary substrate: (1) 2 x 2 {micro}m{sup 2} and 10 x 10 {micro}m{sup 2} AFM measurements and analysis on Sagem 05R0025 secondary substrate at LLNL indicate rather uniform and extremely isotropic finish across the surface, with high-spatial frequency roughness {sigma} in the range 5.1-5.5 {angstrom} rms; (2) the marked absence of pronounced long-range polishing marks in any direction, combined with increased roughness in the very high spatial frequencies, are consistent with ion-beam polishing treatment on the surface. These observations are consistent with all earlier mirrors they measured from the samemore » vendor; and (3) all data were obtained with a Digital Instruments Dimension 5000{trademark} atomic force microscope.« less

  14. Evidence from Opportunity's Microscopic Imager for water on Meridiani Planum.

    PubMed

    Herkenhoff, K E; Squyres, S W; Arvidson, R; Bass, D S; Bell, J F; Bertelsen, P; Ehlmann, B L; Farrand, W; Gaddis, L; Greeley, R; Grotzinger, J; Hayes, A G; Hviid, S F; Johnson, J R; Jolliff, B; Kinch, K M; Knoll, A H; Madsen, M B; Maki, J N; McLennan, S M; McSween, H Y; Ming, D W; Rice, J W; Richter, L; Sims, M; Smith, P H; Soderblom, L A; Spanovich, N; Sullivan, R; Thompson, S; Wdowiak, T; Weitz, C; Whelley, P

    2004-12-03

    The Microscopic Imager on the Opportunity rover analyzed textures of soils and rocks at Meridiani Planum at a scale of 31 micrometers per pixel. The uppermost millimeter of some soils is weakly cemented, whereas other soils show little evidence of cohesion. Rock outcrops are laminated on a millimeter scale; image mosaics of cross-stratification suggest that some sediments were deposited by flowing water. Vugs in some outcrop faces are probably molds formed by dissolution of relatively soluble minerals during diagenesis. Microscopic images support the hypothesis that hematite-rich spherules observed in outcrops and soils also formed diagenetically as concretions.

  15. Microscopic Materials on a Magnet

    NASA Technical Reports Server (NTRS)

    2008-01-01

    These images show a comparison of the weak magnet OM7 from the Optical Microscope on NASA's Phoenix Mars Lander before (left) and after (right) soil deposition.

    The microscope took the left image during Phoenix's Sol 15 (June 10, 2008) and the right image during Sol 21 (Jun 16, 2008).

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  16. Development of HiLo Microscope and its use in In-Vivo Applications

    NASA Astrophysics Data System (ADS)

    Patel, Shreyas J.

    The functionality of achieving optical sectioning in biomedical research is invaluable as it allows for visualization of a biological sample at different depths while being free of background scattering. Most current microscopy techniques that offer optical sectioning, unfortunately, require complex instrumentation and thus are generally costly. HiLo microscopy, on the other hand, offers the same functionality and advantage at a relatively low cost. Hence, the work described in this thesis involves the design, build, and application of a HiLo microscope. More specifically, a standalone HiLo microscope was built in addition to implementing HiLo microscopy on a standard fluorescence microscope. In HiLo microscopy, optical sectioning is achieved by acquiring two different types of images per focal plane. One image is acquired under uniform illumination and the other is acquired under speckle illumination. These images are processed using an algorithm that extracts in-focus information and removes features and glare that occur as a result of background fluorescence. To show the benefits of the HiLo microscopy, several imaging experiments on various samples were performed under a HiLo microscope and compared against a traditional fluorescence microscope and a confocal microscope, which is considered the gold standard in optical imaging. In-vitro and ex-vivo imaging was performed on a set of pollen grains, and optically cleared mouse brain and heart slices. Each of these experiments showed great reduction in background scattering at different depths under HiLo microscopy. More importantly, HiLo imaging of optically cleared heart slice demonstrated emergence of different vasculature at different depths. Reduction of out-of-focus light increased the spatial resolution and allowed better visualization of capillary vessels. Furthermore, HiLo imaging was tested in an in-vivo model of a rodent dorsal window chamber model. When imaging the same sample under confocal microscope, the results were comparable between the two modalities. Additionally, a method of achieving blood flow maps at different depth using a combination of HiLo and LSI imaging is also discussed. The significance of this combined technique could help categorize blood flow to particular depths; this can help improve outcomes of medical treatments such pulse dye laser and photodynamic therapy treatments.

  17. Optical second harmonic images of 90 deg domain structure in BaTiO3 and periodically inverted antiparallel domains in LiTaO3

    NASA Astrophysics Data System (ADS)

    Uesu, Y.; Kurimura, S.; Yamamoto, Y.

    1995-04-01

    Applied is a microscope to observations of 90 deg ferroelectric domain structure in BaTiO3 and inverted periodically are ferroelectric domains in LiTaO3. It is founded that the second harmonic generation microscope gives information which cannot be obtained by ordinary optical microscopes. The developed nonlinear optical microscope builds two dimensional second harmonic image of a specimen with inhomogenous distribution of d(sub ijk) and applied the microscope to observations of inhomogeneity in some nonlinear-optical organic microcrystals.

  18. ultraLM and miniLM: Locator tools for smart tracking of fluorescent cells in correlative light and electron microscopy.

    PubMed

    Brama, Elisabeth; Peddie, Christopher J; Wilkes, Gary; Gu, Yan; Collinson, Lucy M; Jones, Martin L

    2016-12-13

    In-resin fluorescence (IRF) protocols preserve fluorescent proteins in resin-embedded cells and tissues for correlative light and electron microscopy, aiding interpretation of macromolecular function within the complex cellular landscape. Dual-contrast IRF samples can be imaged in separate fluorescence and electron microscopes, or in dual-modality integrated microscopes for high resolution correlation of fluorophore to organelle. IRF samples also offer a unique opportunity to automate correlative imaging workflows. Here we present two new locator tools for finding and following fluorescent cells in IRF blocks, enabling future automation of correlative imaging. The ultraLM is a fluorescence microscope that integrates with an ultramicrotome, which enables 'smart collection' of ultrathin sections containing fluorescent cells or tissues for subsequent transmission electron microscopy or array tomography. The miniLM is a fluorescence microscope that integrates with serial block face scanning electron microscopes, which enables 'smart tracking' of fluorescent structures during automated serial electron image acquisition from large cell and tissue volumes.

  19. ScanImage: flexible software for operating laser scanning microscopes.

    PubMed

    Pologruto, Thomas A; Sabatini, Bernardo L; Svoboda, Karel

    2003-05-17

    Laser scanning microscopy is a powerful tool for analyzing the structure and function of biological specimens. Although numerous commercial laser scanning microscopes exist, some of the more interesting and challenging applications demand custom design. A major impediment to custom design is the difficulty of building custom data acquisition hardware and writing the complex software required to run the laser scanning microscope. We describe a simple, software-based approach to operating a laser scanning microscope without the need for custom data acquisition hardware. Data acquisition and control of laser scanning are achieved through standard data acquisition boards. The entire burden of signal integration and image processing is placed on the CPU of the computer. We quantitate the effectiveness of our data acquisition and signal conditioning algorithm under a variety of conditions. We implement our approach in an open source software package (ScanImage) and describe its functionality. We present ScanImage, software to run a flexible laser scanning microscope that allows easy custom design.

  20. Algorithms for differentiating between images of heterogeneous tissue across fluorescence microscopes.

    PubMed

    Chitalia, Rhea; Mueller, Jenna; Fu, Henry L; Whitley, Melodi Javid; Kirsch, David G; Brown, J Quincy; Willett, Rebecca; Ramanujam, Nimmi

    2016-09-01

    Fluorescence microscopy can be used to acquire real-time images of tissue morphology and with appropriate algorithms can rapidly quantify features associated with disease. The objective of this study was to assess the ability of various segmentation algorithms to isolate fluorescent positive features (FPFs) in heterogeneous images and identify an approach that can be used across multiple fluorescence microscopes with minimal tuning between systems. Specifically, we show a variety of image segmentation algorithms applied to images of stained tumor and muscle tissue acquired with 3 different fluorescence microscopes. Results indicate that a technique called maximally stable extremal regions followed by thresholding (MSER + Binary) yielded the greatest contrast in FPF density between tumor and muscle images across multiple microscopy systems.

  1. LIPS database with LIPService: a microscopic image database of intracellular structures in Arabidopsis guard cells.

    PubMed

    Higaki, Takumi; Kutsuna, Natsumaro; Hasezawa, Seiichiro

    2013-05-16

    Intracellular configuration is an important feature of cell status. Recent advances in microscopic imaging techniques allow us to easily obtain a large number of microscopic images of intracellular structures. In this circumstance, automated microscopic image recognition techniques are of extreme importance to future phenomics/visible screening approaches. However, there was no benchmark microscopic image dataset for intracellular organelles in a specified plant cell type. We previously established the Live Images of Plant Stomata (LIPS) database, a publicly available collection of optical-section images of various intracellular structures of plant guard cells, as a model system of environmental signal perception and transduction. Here we report recent updates to the LIPS database and the establishment of a database table, LIPService. We updated the LIPS dataset and established a new interface named LIPService to promote efficient inspection of intracellular structure configurations. Cell nuclei, microtubules, actin microfilaments, mitochondria, chloroplasts, endoplasmic reticulum, peroxisomes, endosomes, Golgi bodies, and vacuoles can be filtered using probe names or morphometric parameters such as stomatal aperture. In addition to the serial optical sectional images of the original LIPS database, new volume-rendering data for easy web browsing of three-dimensional intracellular structures have been released to allow easy inspection of their configurations or relationships with cell status/morphology. We also demonstrated the utility of the new LIPS image database for automated organelle recognition of images from another plant cell image database with image clustering analyses. The updated LIPS database provides a benchmark image dataset for representative intracellular structures in Arabidopsis guard cells. The newly released LIPService allows users to inspect the relationship between organellar three-dimensional configurations and morphometrical parameters.

  2. In vivo cellular imaging with microscopes enabled by MEMS scanners

    NASA Astrophysics Data System (ADS)

    Ra, Hyejun

    High-resolution optical imaging plays an important role in medical diagnosis and biomedical research. Confocal microscopy is a widely used imaging method for obtaining cellular and sub-cellular images of biological tissue in reflectance and fluorescence modes. Its characteristic optical sectioning capability also enables three-dimensional (3-D) image reconstruction. However, its use has mostly been limited to excised tissues due to the requirement of high numerical aperture (NA) lenses for cellular resolution. Microscope miniaturization can enable in vivo imaging to make possible early cancer diagnosis and biological studies in the innate environment. In this dissertation, microscope miniaturization for in vivo cellular imaging is presented. The dual-axes confocal (DAC) architecture overcomes limitations of the conventional single-axis confocal (SAC) architecture to allow for miniaturization with high resolution. A microelectromechanical systems (MEMS) scanner is the central imaging component that is key in miniaturization of the DAC architecture. The design, fabrication, and characterization of the two-dimensional (2-D) MEMS scanner are presented. The gimbaled MEMS scanner is fabricated on a double silicon-on-insulator (SOI) wafer and is actuated by self-aligned vertical electrostatic combdrives. The imaging performance of the MEMS scanner in a DAC configuration is shown in a breadboard microscope setup, where reflectance and fluorescence imaging is demonstrated. Then, the MEMS scanner is integrated into a miniature DAC microscope. The whole imaging system is integrated into a portable unit for research in small animal models of human biology and disease. In vivo 3-D imaging is demonstrated on mouse skin models showing gene transfer and siRNA silencing. The siRNA silencing process is sequentially imaged in one mouse over time.

  3. Reversible electrochemical modification of the surface of a semiconductor by an atomic-force microscope probe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kozhukhov, A. S., E-mail: antonkozhukhov@yandex.ru; Sheglov, D. V.; Latyshev, A. V.

    A technique for reversible surface modification with an atomic-force-microscope (AFM) probe is suggested. In this method, no significant mechanical or topographic changes occur upon a local variation in the surface potential of a sample under the AFM probe. The method allows a controlled relative change in the ohmic resistance of a channel in a Hall bridge within the range 20–25%.

  4. Optical Interferometric Micrometrology

    NASA Technical Reports Server (NTRS)

    Abel, Phillip B.; Lauer, James R.

    1989-01-01

    Resolutions in angstrom and subangstrom range sought for atomic-scale surface probes. Experimental optical micrometrological system built to demonstrate calibration of piezoelectric transducer to displacement sensitivity of few angstroms. Objective to develop relatively simple system producing and measuring translation, across surface of specimen, of stylus in atomic-force or scanning tunneling microscope. Laser interferometer used to calibrate piezoelectric transducer used in atomic-force microscope. Electronic portion of calibration system made of commercially available components.

  5. Thrombus segmentation by texture dynamics from microscopic image sequences

    NASA Astrophysics Data System (ADS)

    Brieu, Nicolas; Serbanovic-Canic, Jovana; Cvejic, Ana; Stemple, Derek; Ouwehand, Willem; Navab, Nassir; Groher, Martin

    2010-03-01

    The genetic factors of thrombosis are commonly explored by microscopically imaging the coagulation of blood cells induced by injuring a vessel of mice or of zebrafish mutants. The latter species is particularly interesting since skin transparency permits to non-invasively acquire microscopic images of the scene with a CCD camera and to estimate the parameters characterizing the thrombus development. These parameters are currently determined by manual outlining, which is both error prone and extremely time consuming. Even though a technique for automatic thrombus extraction would be highly valuable for gene analysts, little work can be found, which is mainly due to very low image contrast and spurious structures. In this work, we propose to semi-automatically segment the thrombus over time from microscopic image sequences of wild-type zebrafish larvae. To compensate the lack of valuable spatial information, our main idea consists of exploiting the temporal information by modeling the variations of the pixel intensities over successive temporal windows with a linear Markov-based dynamic texture formalization. We then derive an image from the estimated model parameters, which represents the probability of a pixel to belong to the thrombus. We employ this probability image to accurately estimate the thrombus position via an active contour segmentation incorporating also prior and spatial information of the underlying intensity images. The performance of our approach is tested on three microscopic image sequences. We show that the thrombus is accurately tracked over time in each sequence if the respective parameters controlling prior influence and contour stiffness are correctly chosen.

  6. Multidirectional Image Sensing for Microscopy Based on a Rotatable Robot.

    PubMed

    Shen, Yajing; Wan, Wenfeng; Zhang, Lijun; Yong, Li; Lu, Haojian; Ding, Weili

    2015-12-15

    Image sensing at a small scale is essentially important in many fields, including microsample observation, defect inspection, material characterization and so on. However, nowadays, multi-directional micro object imaging is still very challenging due to the limited field of view (FOV) of microscopes. This paper reports a novel approach for multi-directional image sensing in microscopes by developing a rotatable robot. First, a robot with endless rotation ability is designed and integrated with the microscope. Then, the micro object is aligned to the rotation axis of the robot automatically based on the proposed forward-backward alignment strategy. After that, multi-directional images of the sample can be obtained by rotating the robot within one revolution under the microscope. To demonstrate the versatility of this approach, we view various types of micro samples from multiple directions in both optical microscopy and scanning electron microscopy, and panoramic images of the samples are processed as well. The proposed method paves a new way for the microscopy image sensing, and we believe it could have significant impact in many fields, especially for sample detection, manipulation and characterization at a small scale.

  7. Multiparallel Three-Dimensional Optical Microscopy

    NASA Technical Reports Server (NTRS)

    Nguyen, Lam K.; Price, Jeffrey H.; Kellner, Albert L.; Bravo-Zanoquera, Miguel

    2010-01-01

    Multiparallel three-dimensional optical microscopy is a method of forming an approximate three-dimensional image of a microscope sample as a collection of images from different depths through the sample. The imaging apparatus includes a single microscope plus an assembly of beam splitters and mirrors that divide the output of the microscope into multiple channels. An imaging array of photodetectors in each channel is located at a different distance along the optical path from the microscope, corresponding to a focal plane at a different depth within the sample. The optical path leading to each photodetector array also includes lenses to compensate for the variation of magnification with distance so that the images ultimately formed on all the photodetector arrays are of the same magnification. The use of optical components common to multiple channels in a simple geometry makes it possible to obtain high light-transmission efficiency with an optically and mechanically simple assembly. In addition, because images can be read out simultaneously from all the photodetector arrays, the apparatus can support three-dimensional imaging at a high scanning rate.

  8. Self-assembly of polysaccharides gives rise to distinct mechanical signatures in marine gels.

    PubMed

    Pletikapić, G; Lannon, H; Murvai, Ü; Kellermayer, M S Z; Svetličić, V; Brujic, J

    2014-07-15

    Marine-gel biopolymers were recently visualized at the molecular level using atomic force microscopy (AFM) to reveal fine fibril-forming networks with low to high degrees of cross-linking. In this work, we use force spectroscopy to quantify the intra- and intermolecular forces within the marine-gel network. Combining force measurements, AFM imaging, and the known chemical composition of marine gels allows us to identify the microscopic origins of distinct mechanical responses. At the single-fibril level, we uncover force-extension curves that resemble those of individual polysaccharide fibrils. They exhibit entropic elasticity followed by extensions associated with chair-to-boat transitions specific to the type of polysaccharide at high forces. Surprisingly, a low degree of cross-linking leads to sawtooth patterns that we attribute to the unraveling of polysaccharide entanglements. At a high degree of cross-linking, we observe force plateaus that arise from unzipping, as well as unwinding, of helical bundles. Finally, the complex 3D network structure gives rise to force staircases of increasing height that correspond to the hierarchical peeling of fibrils away from the junction zones. In addition, we show that these diverse mechanical responses also arise in reconstituted polysaccharide gels, which highlights their dominant role in the mechanical architecture of marine gels. Copyright © 2014 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  9. Microscopy imaging device with advanced imaging properties

    DOEpatents

    Ghosh, Kunal; Burns, Laurie; El Gamal, Abbas; Schnitzer, Mark J.; Cocker, Eric; Ho, Tatt Wei

    2015-11-24

    Systems, methods and devices are implemented for microscope imaging solutions. One embodiment of the present disclosure is directed toward an epifluorescence microscope. The microscope includes an image capture circuit including an array of optical sensor. An optical arrangement is configured to direct excitation light of less than about 1 mW to a target object in a field of view of that is at least 0.5 mm.sup.2 and to direct epi-fluorescence emission caused by the excitation light to the array of optical sensors. The optical arrangement and array of optical sensors are each sufficiently close to the target object to provide at least 2.5 .mu.m resolution for an image of the field of view.

  10. Microdose fluorescence imaging of ABY-029 on an operating microscope adapted by custom illumination and imaging modules.

    PubMed

    Elliott, Jonathan T; Dsouza, Alisha V; Marra, Kayla; Pogue, Brian W; Roberts, David W; Paulsen, Keith D

    2016-09-01

    Fluorescence guided surgery has the potential to positively impact surgical oncology; current operating microscopes and stand-alone imaging systems are too insensitive or too cumbersome to maximally take advantage of new tumor-specific agents developed through the microdose pathway. To this end, a custom-built illumination and imaging module enabling picomolar-sensitive near-infrared fluorescence imaging on a commercial operating microscope is described. The limits of detection and system specifications are characterized, and in vivo efficacy of the system in detecting ABY-029 is evaluated in a rat orthotopic glioma model following microdose injections, showing the suitability of the device for microdose phase 0 clinical trials.

  11. Microdose fluorescence imaging of ABY-029 on an operating microscope adapted by custom illumination and imaging modules

    PubMed Central

    Dsouza, Alisha V.; Marra, Kayla; Pogue, Brian W.; Roberts, David W.; Paulsen, Keith D.

    2016-01-01

    Fluorescence guided surgery has the potential to positively impact surgical oncology; current operating microscopes and stand-alone imaging systems are too insensitive or too cumbersome to maximally take advantage of new tumor-specific agents developed through the microdose pathway. To this end, a custom-built illumination and imaging module enabling picomolar-sensitive near-infrared fluorescence imaging on a commercial operating microscope is described. The limits of detection and system specifications are characterized, and in vivo efficacy of the system in detecting ABY-029 is evaluated in a rat orthotopic glioma model following microdose injections, showing the suitability of the device for microdose phase 0 clinical trials. PMID:27699098

  12. Microscopy imaging device with advanced imaging properties

    DOEpatents

    Ghosh, Kunal; Burns, Laurie; El Gamal, Abbas; Schnitzer, Mark J.; Cocker, Eric; Ho, Tatt Wei

    2016-10-25

    Systems, methods and devices are implemented for microscope imaging solutions. One embodiment of the present disclosure is directed toward an epifluorescence microscope. The microscope includes an image capture circuit including an array of optical sensor. An optical arrangement is configured to direct excitation light of less than about 1 mW to a target object in a field of view of that is at least 0.5 mm.sup.2 and to direct epi-fluorescence emission caused by the excitation light to the array of optical sensors. The optical arrangement and array of optical sensors are each sufficiently close to the target object to provide at least 2.5 .mu.m resolution for an image of the field of view.

  13. Microscopy imaging device with advanced imaging properties

    DOEpatents

    Ghosh, Kunal; Burns, Laurie; El Gamal, Abbas; Schnitzer, Mark J.; Cocker, Eric; Ho, Tatt Wei

    2016-11-22

    Systems, methods and devices are implemented for microscope imaging solutions. One embodiment of the present disclosure is directed toward an epifluorescence microscope. The microscope includes an image capture circuit including an array of optical sensor. An optical arrangement is configured to direct excitation light of less than about 1 mW to a target object in a field of view of that is at least 0.5 mm.sup.2 and to direct epi-fluorescence emission caused by the excitation light to the array of optical sensors. The optical arrangement and array of optical sensors are each sufficiently close to the target object to provide at least 2.5 .mu.m resolution for an image of the field of view.

  14. Microscopy imaging device with advanced imaging properties

    DOEpatents

    Ghosh, Kunal; Burns, Laurie; El Gamal, Abbas; Schnitzer, Mark J.; Cocker, Eric; Ho, Tatt Wei

    2017-04-25

    Systems, methods and devices are implemented for microscope imaging solutions. One embodiment of the present disclosure is directed toward an epifluorescence microscope. The microscope includes an image capture circuit including an array of optical sensor. An optical arrangement is configured to direct excitation light of less than about 1 mW to a target object in a field of view of that is at least 0.5 mm.sup.2 and to direct epi-fluorescence emission caused by the excitation light to the array of optical sensors. The optical arrangement and array of optical sensors are each sufficiently close to the target object to provide at least 2.5 .mu.m resolution for an image of the field of view.

  15. The deflection of carbon composite carbon nanotube / graphene using molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Kolesnikova, A. S.; Kirillova, I. V.; Kossovich, L. U.

    2018-02-01

    For the first time, the dependence of the bending force on the transverse displacement of atoms in the center of the composite material consisting of graphene and parallel oriented zigzag nanotubes was studied. Mathematical modeling of the action of the needle of the atomic force microscope was carried out using the single-layer armchair carbon nanotube. Armchair nanotubes are convenient for using them as a needle of an atomic force microscope, because their edges are not sharpened (unlike zigzag tubes). Consequently, armchair nanotubes will cause minimal damage upon contact with the investigation object. The geometric parameters of the composite was revealed under the action of the bending force of 6μN.

  16. The different ways to obtain digital images of urine microscopy findings: Their advantages and limitations.

    PubMed

    Fogazzi, G B; Garigali, G

    2017-03-01

    We describe three ways to take digital images of urine sediment findings. Way 1 encompasses a digital camera permanently mounted on the microscope and connected with a computer equipped with a proprietary software to acquire, process and store the images. Way 2 is based on the use of inexpensive compact digital cameras, held by hands - or mounted on a tripod - close to one eyepiece of the microscope. Way 3 is based on the use of smartphones, held by hands close to one eyepiece of the microscope or connected to the microscope by an adapter. The procedures, advantages and limitations of each way are reported. Copyright © 2017. Published by Elsevier B.V.

  17. Handy Microscopic Close-Range Videogrammetry

    NASA Astrophysics Data System (ADS)

    Esmaeili, F.; Ebadi, H.

    2017-09-01

    The modeling of small-scale objects is used in different applications such as medicine, industry, and cultural heritage. The capability of modeling small-scale objects using imaging with the help of hand USB digital microscopes and use of videogrammetry techniques has been implemented and evaluated in this paper. Use of this equipment and convergent imaging of the environment for modeling, provides an appropriate set of images for generation of three-dimensional models. The results of the measurements made with the help of a microscope micrometer calibration ruler have demonstrated that self-calibration of a hand camera-microscope set can help obtain a three-dimensional detail extraction precision of about 0.1 millimeters on small-scale environments.

  18. Evaluation of carbon nanotube probes in critical dimension atomic force microscopes.

    PubMed

    Choi, Jinho; Park, Byong Chon; Ahn, Sang Jung; Kim, Dal-Hyun; Lyou, Joon; Dixson, Ronald G; Orji, Ndubuisi G; Fu, Joseph; Vorburger, Theodore V

    2016-07-01

    The decreasing size of semiconductor features and the increasing structural complexity of advanced devices have placed continuously greater demands on manufacturing metrology, arising both from the measurement challenges of smaller feature sizes and the growing requirement to characterize structures in more than just a single critical dimension. For scanning electron microscopy, this has resulted in increasing sophistication of imaging models. For critical dimension atomic force microscopes (CD-AFMs), this has resulted in the need for smaller and more complex tips. Carbon nanotube (CNT) tips have thus been the focus of much interest and effort by a number of researchers. However, there have been significant issues surrounding both the manufacture and use of CNT tips. Specifically, the growth or attachment of CNTs to AFM cantilevers has been a challenge to the fabrication of CNT tips, and the flexibility and resultant bending artifacts have presented challenges to using CNT tips. The Korea Research Institute for Standards and Science (KRISS) has invested considerable effort in the controlled fabrication of CNT tips and is collaborating with the National Institute of Standards and Technology on the application of CNT tips for CD-AFM. Progress by KRISS on the precise control of CNT orientation, length, and end modification, using manipulation and focused ion beam processes, has allowed us to implement ball-capped CNT tips and bent CNT tips for CD-AFM. Using two different generations of CD-AFM instruments, we have evaluated these tip types by imaging a line/space grating and a programmed line edge roughness specimen. We concluded that these CNTs are capable of scanning the profiles of these structures, including re-entrant sidewalls, but there remain important challenges to address. These challenges include tighter control of tip geometry and careful optimization of scan parameters and algorithms for using CNT tips.

  19. Image Analysis, Microscopic, and Spectrochemical Study of the PVC Dry Blending Process,

    DTIC Science & Technology

    The dry blending process used in the production of electrical grade pvc formulations has been studies using a combination of image analysis , microscopic...by image analysis techniques. Optical and scanning electron microscopy were used to assess morphological differences. Spectrochemical techniques were used to indicate chemical changes.

  20. Multiscale Imaging of the Mouse Cortex Using Two-Photon Microscopy and Wide-Field Illumination

    NASA Astrophysics Data System (ADS)

    Bumstead, Jonathan R.

    The mouse brain can be studied over vast spatial scales ranging from microscopic imaging of single neurons to macroscopic measurements of hemodynamics acquired over the majority of the mouse cortex. However, most neuroimaging modalities are limited by a fundamental trade-off between the spatial resolution and the field-of-view (FOV) over which the brain can be imaged, making it difficult to fully understand the functional and structural architecture of the healthy mouse brain and its disruption in disease. My dissertation has focused on developing multiscale optical systems capable of imaging the mouse brain at both microscopic and mesoscopic spatial scales, specifically addressing the difference in spatial scales imaged with two-photon microscopy (TPM) and optical intrinsic signal imaging (OISI). Central to this work has been the formulation of a principled design strategy for extending the FOV of the two-photon microscope. Using this design approach, we constructed a TPM system with subcellular resolution and a FOV area 100 times greater than a conventional two-photon microscope. To image the ellipsoidal shape of the mouse cortex, we also developed the microscope to image arbitrary surfaces within a single frame using an electrically tunable lens. Finally, to address the speed limitations of the TPM systems developed during my dissertation, I also conducted research in large-scale neural phenomena occurring in the mouse brain imaged with high-speed OISI. The work conducted during my dissertation addresses some of the fundamental principles in designing and applying optical systems for multiscale imaging of the mouse brain.

Top