NASA Astrophysics Data System (ADS)
Waddell, J.; Ou, R.; Capozzi, C. J.; Gupta, S.; Parker, C. A.; Gerhardt, R. A.; Seal, K.; Kalinin, S. V.; Baddorf, A. P.
2009-12-01
Composite specimens possessing polyhedral segregated network microstructures require a very small amount of nanosize filler, <1 vol %, to reach percolation because percolation occurs by accumulation of the fillers along the edges of the deformed polymer matrix particles. In this paper, electrostatic force microscopy (EFM) and conductive atomic force microscopy (C-AFM) were used to confirm the location of the nanosize fillers and the corresponding percolating paths in polymethyl methacrylate/carbon black composites. The EFM and C-AFM images revealed that the polyhedral polymer particles were coated with filler, primarily on the edges as predicted by the geometric models provided.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Noh, Hanaul; Diaz, Alfredo J.; Solares, Santiago D.
Organic photovoltaic systems comprising donor polymers and acceptor fullerene derivatives are attractive for inexpensive energy harvesting. Extensive research on polymer solar cells has provided insight into the factors governing device-level efficiency and stability. However, the detailed investigation of nanoscale structures is still challenging. Here we demonstrate the analysis and modification of unidentified surface aggregates. The aggregates are characterized electrically by Kelvin probe force microscopy and conductive atomic force microscopy (C-AFM), whereby the correlation between local electrical potential and current confirms a defective charge transport. Bimodal AFM modification confirms that the aggregates exist on top of the solar cell structure, andmore » is used to remove them and to reveal the underlying active layer. The systematic analysis of the surface aggregates suggests that the structure consists of PCBM molecules.« less
Noh, Hanaul; Diaz, Alfredo J.; Solares, Santiago D.
2017-03-08
Organic photovoltaic systems comprising donor polymers and acceptor fullerene derivatives are attractive for inexpensive energy harvesting. Extensive research on polymer solar cells has provided insight into the factors governing device-level efficiency and stability. However, the detailed investigation of nanoscale structures is still challenging. Here we demonstrate the analysis and modification of unidentified surface aggregates. The aggregates are characterized electrically by Kelvin probe force microscopy and conductive atomic force microscopy (C-AFM), whereby the correlation between local electrical potential and current confirms a defective charge transport. Bimodal AFM modification confirms that the aggregates exist on top of the solar cell structure, andmore » is used to remove them and to reveal the underlying active layer. The systematic analysis of the surface aggregates suggests that the structure consists of PCBM molecules.« less
Noh, Hanaul; Diaz, Alfredo J
2017-01-01
Organic photovoltaic systems comprising donor polymers and acceptor fullerene derivatives are attractive for inexpensive energy harvesting. Extensive research on polymer solar cells has provided insight into the factors governing device-level efficiency and stability. However, the detailed investigation of nanoscale structures is still challenging. Here we demonstrate the analysis and modification of unidentified surface aggregates. The aggregates are characterized electrically by Kelvin probe force microscopy and conductive atomic force microscopy (C-AFM), whereby the correlation between local electrical potential and current confirms a defective charge transport. Bimodal AFM modification confirms that the aggregates exist on top of the solar cell structure, and is used to remove them and to reveal the underlying active layer. The systematic analysis of the surface aggregates suggests that the structure consists of PCBM molecules. PMID:28382247
Single-molecule imaging of DNA polymerase I (Klenow fragment) activity by atomic force microscopy
NASA Astrophysics Data System (ADS)
Chao, J.; Zhang, P.; Wang, Q.; Wu, N.; Zhang, F.; Hu, J.; Fan, C. H.; Li, B.
2016-03-01
We report a DNA origami-facilitated single-molecule platform that exploits atomic force microscopy to study DNA replication. We imaged several functional activities of the Klenow fragment of E. coli DNA polymerase I (KF) including binding, moving, and dissociation from the template DNA. Upon completion of these actions, a double-stranded DNA molecule was formed. Furthermore, the direction of KF activities was captured and then confirmed by shifting the KF binding sites on the template DNA.We report a DNA origami-facilitated single-molecule platform that exploits atomic force microscopy to study DNA replication. We imaged several functional activities of the Klenow fragment of E. coli DNA polymerase I (KF) including binding, moving, and dissociation from the template DNA. Upon completion of these actions, a double-stranded DNA molecule was formed. Furthermore, the direction of KF activities was captured and then confirmed by shifting the KF binding sites on the template DNA. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr06544e
Use of Kelvin probe force microscopy for identification of CVD grown graphene flakes on copper foil
NASA Astrophysics Data System (ADS)
Kumar, Rakesh; Mehta, B. R.; Kanjilal, D.
2017-05-01
Graphene flakes have been grown by chemical vapour deposition (CVD) method on Cu foils. The obtained graphene flakes have been characterized by optical microscopy, field emission scanning electron microscopy, Kelvin probe force microscopy (KPFM) and Raman spectroscopy. The graphene flakes grown on Cu foil comprise mainly single layer graphene and confirm that the nucleation for graphene growth starts very quickly. Moreover, KPFM has been found to be a valuable technique to differentiate between covered and uncovered portion of Cu foil by graphene flakes deposited for shorter duration. The results show that KPFM can be a very useful technique in understanding the mechanism of graphene growth.
Note: Spring constant calibration of nanosurface-engineered atomic force microscopy cantilevers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ergincan, O., E-mail: orcunergincan@gmail.com; Palasantzas, G.; Kooi, B. J.
2014-02-15
The determination of the dynamic spring constant (k{sub d}) of atomic force microscopy cantilevers is of crucial importance for converting cantilever deflection to accurate force data. Indeed, the non-destructive, fast, and accurate measurement method of the cantilever dynamic spring constant by Sader et al. [Rev. Sci. Instrum. 83, 103705 (2012)] is confirmed here for plane geometry but surface modified cantilevers. It is found that the measured spring constants (k{sub eff}, the dynamic one k{sub d}), and the calculated (k{sub d,1}) are in good agreement within less than 10% error.
Moving towards the magnetoelectric graphene transistor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cao, Shi; Xiao, Zhiyong; Kwan, Chun -Pui
Here, the interfacial charge transfer between mechanically exfoliated few-layer graphene and Cr 2O 3 (0001) surfaces has been investigated. Electrostatic force microscopy and Kelvin probe force microscopy studies point to hole doping of few-layer graphene, with up to a 150 meV shift in the Fermi level, an aspect that is confirmed by Raman spectroscopy. Density functional theory calculations furthermore confirm the p-type nature of the graphene/chromia interface and suggest that the chromia is able to induce a significant carrier spin polarization in the graphene layer. A large magnetoelectrically controlled magneto-resistance can therefore be anticipated in transistor structures based on thismore » system, a finding important for developing graphene-based spintronic applications.« less
Moving towards the magnetoelectric graphene transistor
Cao, Shi; Xiao, Zhiyong; Kwan, Chun -Pui; ...
2017-10-30
Here, the interfacial charge transfer between mechanically exfoliated few-layer graphene and Cr 2O 3 (0001) surfaces has been investigated. Electrostatic force microscopy and Kelvin probe force microscopy studies point to hole doping of few-layer graphene, with up to a 150 meV shift in the Fermi level, an aspect that is confirmed by Raman spectroscopy. Density functional theory calculations furthermore confirm the p-type nature of the graphene/chromia interface and suggest that the chromia is able to induce a significant carrier spin polarization in the graphene layer. A large magnetoelectrically controlled magneto-resistance can therefore be anticipated in transistor structures based on thismore » system, a finding important for developing graphene-based spintronic applications.« less
Chaos in Atomic Force Microscopy
NASA Astrophysics Data System (ADS)
Hu, Shuiqing; Raman, Arvind
2006-01-01
Chaotic oscillations of microcantilever tips in dynamic atomic force microscopy (AFM) are reported and characterized. Systematic experiments performed using a variety of microcantilevers under a wide range of operating conditions indicate that softer AFM microcantilevers bifurcate from periodic to chaotic oscillations near the transition from the noncontact to the tapping regimes. Careful Lyapunov exponent and noise titration calculations of the tip oscillation data confirm their chaotic nature. AFM images taken by scanning the chaotically oscillating tips over the sample show small, but significant metrology errors at the nanoscale due to this “deterministic” uncertainty.
Atomic force microscopy of atomic-scale ledges and etch pits formed during dissolution of quartz
NASA Technical Reports Server (NTRS)
Gratz, A. J.; Manne, S.; Hansma, P. K.
1991-01-01
The processes involved in the dissolution and growth of crystals are closely related. Atomic force microscopy (AFM) of faceted pits (called negative crystals) formed during quartz dissolution reveals subtle details of these underlying physical mechanisms for silicates. In imaging these surfaces, the AFM detected ledges less than 1 nm high that were spaced 10 to 90 nm apart. A dislocation pit, invisible to optical and scanning electron microscopy measurements and serving as a ledge source, was also imaged. These observations confirm the applicability of ledge-motion models to dissolution and growth of silicates; coupled with measurements of dissolution rate on facets, these methods provide a powerful tool for probing mineral surface kinetics.
NASA Astrophysics Data System (ADS)
Tsukamoto, Kazumi; Kuwazaki, Seigo; Yamamoto, Kimiko; Shichiri, Motoharu; Yoshino, Tomoyuki; Ohtani, Toshio; Sugiyama, Shigeru
2006-03-01
We have developed a method for dissecting chromosome fragments with a size of a few hundred nanometers by atomic force microscopy (AFM). By using this method, we demonstrated reproducible dissections of silkworm chromosomes in the pachytene phase. The dissected fragments were successfully recovered on the cantilever tips, as confirmed by fluorescent microscopy using fluorescent stained chromosomes. To recover dissected chromosome fragments from a larger chromosome, such as the human metaphase chromosome of a somatic cell, heat denaturation was found to be effective. Further improvements in this method may lead to a novel tool for isolating valuable genes and/or investigating local genome structures in the near future.
Reggente, Melania; Passeri, Daniele; Angeloni, Livia; Scaramuzzo, Francesca Anna; Barteri, Mario; De Angelis, Francesca; Persiconi, Irene; De Stefano, Maria Egle; Rossi, Marco
2017-05-04
Detecting stiff nanoparticles buried in soft biological matrices by atomic force microscopy (AFM) based techniques represents a new frontier in the field of scanning probe microscopies, originally developed as surface characterization methods. Here we report the detection of stiff (magnetic) nanoparticles (NPs) internalized in cells by using contact resonance AFM (CR-AFM) employed as a potentially non-destructive subsurface characterization tool. Magnetite (Fe 3 O 4 ) NPs were internalized in microglial cells from cerebral cortices of mouse embryos of 18 days by phagocytosis. Nanomechanical imaging of cells was performed by detecting the contact resonance frequencies (CRFs) of an AFM cantilever held in contact with the sample. Agglomerates of NPs internalized in cells were visualized on the basis of the local increase in the contact stiffness with respect to the surrounding biological matrix. A second AFM-based technique for nanomechanical imaging, i.e., HarmoniX™, as well as magnetic force microscopy and light microscopy were used to confirm the CR-AFM results. Thus, CR-AFM was demonstrated as a promising technique for subsurface imaging of nanomaterials in biological samples.
Phonon shift in chemically exfoliated WS2 nanosheet
NASA Astrophysics Data System (ADS)
Sarkar, Abdus Salam; Pal, Suman Kalyan
2018-04-01
We have synthesized few layer WS2 nanosheets in a low boiling point solvent. Few layer of WS2 sheets are characterized by various techniques such as UV-visible and Raman spectroscopy, transmission electron microscopy (TEM), atomic force microscopy (AFM) and scanning electron microscopy (SEM). UV-Vis absorption spectra confirm the well dispersed in isopropyl alcohol. SEM and TEM images indicate the sheet like morphology of WS2. Atomic force microscopy image and room temperature Raman spectroscopy confirm the exfoliation of few layer (4-5 layer) of WS2. Further, Raman spectroscopy was used as a meteorology tool to determine the temperature co-efficient. We have systematically investigated the temperature dependent Raman spectroscopic behavior of few layer WS2. Our results depict the softening of the Raman modes E12g in plane vibration and A1g out of plane vibration with increasing the temperature from 77 K to 300 K. Softening of the Raman modes could be explained in terms of the double resonance which is active in the layered materials. The observed temperature coefficients for two Raman peaks E12g and A1g, are - 0.022 cm-1 and -0.009 cm-1, respectively.
Sato, Fumiya; Asakawa, Hitoshi; Fukuma, Takeshi; Terada, Sumio
2016-08-01
Neurofilaments are intermediate filament proteins specific for neurons and characterized by formation of biochemically stable, obligate heteropolymers in vivo While purified or reassembled neurofilaments have been subjected to morphological analyses by electron microscopy and atomic force microscopy, there has been a need for direct imaging of cytoplasmic genuine intermediate filaments with minimal risk of artefactualization. In this study, we applied the modified 'cells on glass sandwich' method to exteriorize intracellular neurofilaments, reducing the risk of causing artefacts through sample preparation. SW13vim(-) cells were double transduced with neurofilament medium polypeptide (NF-M) and alpha-internexin (α-inx). Cultured cells were covered with a cationized coverslip after prestabilization with tannic acid to form a sandwich and then split into two. After confirming that neurofilaments could be deposited on ventral plasma membranes exposed via unroofing, we performed atomic force microscopy imaging semi-in situ in aqueous solution. The observed thin filaments, considered to retain native structures of the neurofilaments, exhibited an approximate periodicity of 50-60 nm along their length. Their structural property appeared to reflect the morphology formed by their constituents, i.e. NF-M and α-inx. The success of semi-in situ atomic force microscopy of exposed bona fide assembled neurofilaments through separating the sandwich suggests that it can be an effective and alternative method for investigating cytoplasmic intermediate filaments under physiological conditions by atomic force microscopy. © The Author 2016. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dantas, Noelio Oliveira; Lima Fernandes, Guilherme de; Almeida Silva, Anielle Christine
2014-09-29
In this study, we synthesized Cd{sub 1−x}Mn{sub x}Te ultrasmall quantum dots (USQDs) in SiO{sub 2}-Na{sub 2}CO{sub 3}-Al{sub 2}O{sub 3}-B{sub 2}O{sub 3} glass system using the fusion method. Growth of these Cd{sub 1−x}Mn{sub x}Te USQDs was confirmed by optical absorption, atomic force microscopy (AFM), magnetic force microscopy (MFM), scanning transmission electron microscopy (TEM), and electron paramagnetic resonance (EPR) measurements. The blueshift of absorption transition with increasing manganese concentration gives evidence of incorporation of manganese ions (Mn{sup 2+}) in CdTe USQDs. AFM, TEM, and MFM confirmed, respectively, the formation of high quality Cd{sub 1−x}Mn{sub x}Te USQDs with uniformly distributed size and magneticmore » phases. Furthermore, EPR spectra showed six lines associated to the S = 5/2 spin half-filled d-state, characteristic of Mn{sup 2+}, and confirmed that Mn{sup 2+} are located in the sites core and surface of the CdTe USQD. Therefore, synthesis of high quality Cd{sub 1−x}Mn{sub x}Te USQDs may allow the control of optical and magnetic properties.« less
NASA Astrophysics Data System (ADS)
Lamsal, B. S.; Dubey, M.; Swaminathan, V.; Huh, Y.; Galipeau, D.; Qiao, Q.; Fan, Q. H.
2014-11-01
This work studied the electronic characteristics of the grains and grain boundaries of indium tin oxide (ITO) thin films using electrostatic and Kelvin probe force microscopy. Two types of ITO films were compared, deposited using radiofrequency magnetron sputtering in pure argon or 99% argon + 1% oxygen, respectively. The average grain size and surface roughness increased with substrate temperature for the films deposited in pure argon. With the addition of 1% oxygen, the increase in the grain size was inhibited above 150°C, which was suggested to be due to passivation of the grains by the excess oxygen. Electrostatic force microscopy and Kelvin probe force microscopy (KPFM) images confirmed that the grain growth was defect mediated and occurred at defective interfaces at high temperatures. Films deposited at room temperature with 1% oxygen showed crystalline nature, while films deposited with pure argon at room temperature were amorphous as observed from KPFM images. The potential drop across the grain and grain boundary was determined by taking surface potential line profiles to evaluate the electronic properties.
Protein crystals as scanned probes for recognition atomic force microscopy.
Wickremasinghe, Nissanka S; Hafner, Jason H
2005-12-01
Lysozyme crystal growth has been localized at the tip of a conventional silicon nitride cantilever through seeded nucleation. After cross-linking with glutaraldehyde, lysozyme protein crystal tips image gold nanoparticles and grating standards with a resolution comparable to that of conventional tips. Force spectra between the lysozyme crystal tips and surfaces covered with antilysozyme reveal an adhesion force that drops significantly upon blocking with free lysozyme, thus confirming that lysozyme crystal tips can detect molecular recognition interactions.
NASA Astrophysics Data System (ADS)
Shibata, Takayuki; Iio, Naohiro; Furukawa, Hiromi; Nagai, Moeto
2017-02-01
We performed a fundamental study on the photocatalytic degradation of fluorescently labeled DNA molecules immobilized on titanium dioxide (TiO2) thin films under ultraviolet irradiation. The films were prepared by the electrochemical anodization of Ti thin films sputtered on silicon substrates. We also confirmed that the photocurrent arising from the photocatalytic oxidation of DNA molecules can be detected during this process. We then demonstrated an atomic force microscopy (AFM)-based nanofabrication technique by employing TiO2-coated AFM probes to penetrate living cell membranes under near-physiological conditions for minimally invasive intracellular delivery.
Ferroelectric size effects in multiferroic BiFeO3 thin films
NASA Astrophysics Data System (ADS)
Chu, Y. H.; Zhao, T.; Cruz, M. P.; Zhan, Q.; Yang, P. L.; Martin, L. W.; Huijben, M.; Yang, C. H.; Zavaliche, F.; Zheng, H.; Ramesh, R.
2007-06-01
Ferroelectric size effects in multiferroic BiFeO3 have been studied using a host of complementary measurements. The structure of such epitaxial films has been investigated using atomic force microscopy, transmission electron microscopy, and x-ray diffraction. The crystal structure of the films has been identified as a monoclinic phase, which suggests that the polarization direction is close to ⟨111⟩. Such behavior has also been confirmed by piezoforce microscopy measurements. That also reveals that the ferroelectricity is down to at least 2nm.
Probing the compressibility of tumor cell nuclei by combined atomic force-confocal microscopy
NASA Astrophysics Data System (ADS)
Krause, Marina; te Riet, Joost; Wolf, Katarina
2013-12-01
The cell nucleus is the largest and stiffest organelle rendering it the limiting compartment during migration of invasive tumor cells through dense connective tissue. We here describe a combined atomic force microscopy (AFM)-confocal microscopy approach for measurement of bulk nuclear stiffness together with simultaneous visualization of the cantilever-nucleus contact and the fate of the cell. Using cantilevers functionalized with either tips or beads and spring constants ranging from 0.06-10 N m-1, force-deformation curves were generated from nuclear positions of adherent HT1080 fibrosarcoma cell populations at unchallenged integrity, and a nuclear stiffness range of 0.2 to 2.5 kPa was identified depending on cantilever type and the use of extended fitting models. Chromatin-decondensating agent trichostatin A (TSA) induced nuclear softening of up to 50%, demonstrating the feasibility of our approach. Finally, using a stiff bead-functionalized cantilever pushing at maximal system-intrinsic force, the nucleus was deformed to 20% of its original height which after TSA treatment reduced further to 5% remaining height confirming chromatin organization as an important determinant of nuclear stiffness. Thus, combined AFM-confocal microscopy is a feasible approach to study nuclear compressibility to complement concepts of limiting nuclear deformation in cancer cell invasion and other biological processes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, Y.; Chen, D; Park, S
High-density arrays of highly ordered ferritin nanocages are fabricated through the guided assembly of thiol-modified ferritin on prepatterned gold nanodots, which are prepared by block copolymer micelle lithography. One and only one ferritin nanocage is anchored to each gold nanodot, as confirmed by scanning electron and scanning force microscopy.
Biomimetic novel nanoporous niobium oxide coating for orthopaedic applications
NASA Astrophysics Data System (ADS)
Pauline, S. Anne; Rajendran, N.
2014-01-01
Niobium oxide was synthesized by sol-gel methodology and a crystalline, nanoporous and adherent coating of Nb2O5 was deposited on 316L SS using the spin coating technique and heat treatment. The synthesis conditions were optimized to obtain a nanoporous morphology. The coating was characterized using attenuated total reflectance-Infrared spectroscopy (ATR-IR), X-ray diffraction analysis (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDX), atomic force microscopy (AFM) and transmission electron microscopy (TEM) and the formation of crystalline Nb2O5 coating with nanoporous morphology was confirmed. Mechanical studies confirmed that the coating has excellent adherence to the substrate and the hardness value of the coating was excellent. Contact angle analysis showed increased hydrophilicity for the coated substrate. In vitro bioactivity test confirmed that the Nb2O5 coating with nanoporous morphology facilitated the growth of hydroxyapatite (HAp). This was further confirmed by the solution analysis test where increased uptake of calcium and phosphorous ions from simulated body fluid (SBF) was observed. Electrochemical evaluation of the coating confirmed that the crystalline coating is insulative and protective in nature and offered excellent corrosion protection to 316L SS. Thus, this study confirmed that the nanoporous crystalline Nb2O5 coating conferred bioactivity and enhanced corrosion resistance on 316L SS.
Nanoscale amorphization of GeTe nanowire with conductive atomic force microscope.
Kim, JunHo
2014-10-01
We fabricated GeTe nanowires by using Au catalysis mediated vapor-liquid-solid method. The fabricated nanowires were confirmed by X-ray diffraction, scanning electron microscopy and transmission electron microscopy. For a nanowire with - 150 nm diameter, we performed amorphization experiment with conductive atomic force microscope. We examined the structural change of the nanowire with several bias voltages from 0 V to 10 V. Above bias voltage of 6-7 V, some points of the nanowire showed transition to amorphous phase. The consumed energy for the amorphization was estimated to be 4-5 nJ, which was close to the other result of nanowire tested with a four probe device.
NASA Astrophysics Data System (ADS)
Mechehoud, F.; Benaioun, N. E.; Hakiki, N. E.; Khelil, A.; Simon, L.; Bubendorff, J. L.
2018-03-01
Thermally oxidized nickel-based alloys are studied by scanning tunnelling microscopy (STM), scanning tunnelling spectroscopy (STS), atomic force microscopy (AFM), scanning kelvin probe force microscopy (SKPFM) and photoelectro-chemical techniques as a function of oxidation time at a fixed temperature of 623 K. By photoelectrochemistry measurements we identify the formation of three oxides NiO, Fe2O3, Cr2O3 and determine the corresponding gap values. We use these values as parameter for imaging the surface at high bias voltage by STM allowing the spatial localization and identification of both NiO, Fe2O3 oxide phases using STS measurements. Associated to Kelvin probe measurements we show also that STS allow to distinguished NiO from Cr2O3 and confirm that the Cr2O3 is not visible at the surface and localized at the oxide/steel interface.
Niklasch, D; Maier, H J; Karaman, I
2008-11-01
An in situ mechanical load frame has been developed for a commercially available atomic force microscope. This frame allows examining changes in topography and magnetic domain configuration under a given constant load or strain. First results obtained on Ni-Mn-Ga ferromagnetic shape memory alloy single crystals are presented. The magnetic force microscopy (MFM) measurements under different strain levels confirm the one-to-one correspondence, i.e., the magnetomicrostructural coupling between the martensite twins and the magnetic domains. Additionally, the growth of the twin variant with favorable orientation to the compression axis during martensite detwinning was observed. It will be shown that this load frame can be used for the investigation of the relationship between the microstructure and the magnetic domain structure in ferromagnetic shape memory alloys by MFM.
Tailoring the structural and magnetic properties of masked CoPt thin films using ion implantation
NASA Astrophysics Data System (ADS)
Kumar, Durgesh; Gupta, Surbhi; Jin, Tianli; Nongjai, R.; Asokan, K.; Piramanayagam, S. N.
2018-05-01
The effects of ion implantations through a mask on the structural and magnetic properties of Co80Pt20 films were investigated. The mask was patterned using the self-assembly of diblock copolymers. For implantation, high (40 keV for 14N+ and 100 keV for 40Ar+) and low (7.5 keV for 14N+ and 4.5 keV for 40Ar+) energy 14N+ and 40Ar+ ions were used to modify the structural and magnetic properties of these films. X-ray diffraction and TRIM simulations were performed for understanding the structural changes due to ion implantations. These results revealed the intermixing of Co atoms in lower layers and lattice expansion in Co80Pt20 magnetic and Ru layers. A lateral straggling of Co caused an increase in the exchange coupling in the masked region. Depletion of Co atoms in Co80Pt20 layer caused a decrease in the anisotropy constant, which were further confirmed by the alternating gradient force magnetometer and magnetic force microscopy results. The magnetic force microscopy images showed an increase in domain width and domain wall width confirming the above-mentioned effects.
Response of cells on surface-induced nanopatterns: fibroblasts and mesenchymal progenitor cells.
Khor, Hwei Ling; Kuan, Yujun; Kukula, Hildegard; Tamada, Kaoru; Knoll, Wolfgang; Moeller, Martin; Hutmacher, Dietmar W
2007-05-01
Ultrathin films of a poly(styrene)-block-poly(2-vinylpyrindine) diblock copolymer (PS-b-P2VP) and poly(styrene)-block-poly(4-vinylpyrindine) diblock copolymer (PS-b-P4VP) were used to form surface-induced nanopattern (SINPAT) on mica. Surface interaction controlled microphase separation led to the formation of chemically heterogeneous surface nanopatterns on dry ultrathin films. Two distinct nanopatterned surfaces, namely, wormlike and dotlike patterns, were used to investigate the influence of topography in the nanometer range on cell adhesion, proliferation, and migration. Atomic force microscopy was used to confirm that SINPAT was stable under cell culture conditions. Fibroblasts and mesenchymal progenitor cells were cultured on the nanopatterned surfaces. Phase contrast and confocal laser microscopy showed that fibroblasts and mesenchymal progenitor cells preferred the densely spaced wormlike patterns. Atomic force microscopy showed that the cells remodelled the extracellular matrix differently as they migrate over the two distinctly different nanopatterns.
Göhler, Daniel; Wessely, Benno; Stintz, Michael; Lazzerini, Giovanni Mattia; Yacoot, Andrew
2017-01-01
Dimensional measurements on nano-objects by atomic force microscopy (AFM) require samples of safely fixed and well individualized particles with a suitable surface-specific particle number on flat and clean substrates. Several known and proven particle preparation methods, i.e., membrane filtration, drying, rinsing, dip coating as well as electrostatic and thermal precipitation, were performed by means of scanning electron microscopy to examine their suitability for preparing samples for dimensional AFM measurements. Different suspensions of nano-objects (with varying material, size and shape) stabilized in aqueous solutions were prepared therefore on different flat substrates. The drop-drying method was found to be the most suitable one for the analysed suspensions, because it does not require expensive dedicated equipment and led to a uniform local distribution of individualized nano-objects. Traceable AFM measurements based on Si and SiO2 coated substrates confirmed the suitability of this technique. PMID:28904839
Fiala, Petra; Göhler, Daniel; Wessely, Benno; Stintz, Michael; Lazzerini, Giovanni Mattia; Yacoot, Andrew
2017-01-01
Dimensional measurements on nano-objects by atomic force microscopy (AFM) require samples of safely fixed and well individualized particles with a suitable surface-specific particle number on flat and clean substrates. Several known and proven particle preparation methods, i.e., membrane filtration, drying, rinsing, dip coating as well as electrostatic and thermal precipitation, were performed by means of scanning electron microscopy to examine their suitability for preparing samples for dimensional AFM measurements. Different suspensions of nano-objects (with varying material, size and shape) stabilized in aqueous solutions were prepared therefore on different flat substrates. The drop-drying method was found to be the most suitable one for the analysed suspensions, because it does not require expensive dedicated equipment and led to a uniform local distribution of individualized nano-objects. Traceable AFM measurements based on Si and SiO 2 coated substrates confirmed the suitability of this technique.
NASA Astrophysics Data System (ADS)
Vadukumpully, Sajini; Gupta, Jhinuk; Zhang, Yongping; Xu, Guo Qin; Valiyaveettil, Suresh
2011-01-01
A facile and simple approach for the covalent functionalization of surfactant wrapped graphene sheets is described. The approach involves functionalization of dispersible graphene sheets with various alkylazides and 11-azidoundecanoic acid proved the best azide for enhanced dispersibility. The functionalization was confirmed by infrared spectroscopy and scanning tunneling microscopy. The free carboxylic acidgroups can bind to gold nanoparticles, which were introduced as markers for the reactive sites. The interaction between gold nanoparticles and the graphene sheets was followed by UV-vis spectroscopy. The gold nanoparticle-graphene composite was characterized by transmission electron microscopy and atomic force microscopy, demonstrating the uniform distribution of gold nanoparticles all over the surface. Our results open the possibility to control the functionalization on graphene in the construction of composite nanomaterials.A facile and simple approach for the covalent functionalization of surfactant wrapped graphene sheets is described. The approach involves functionalization of dispersible graphene sheets with various alkylazides and 11-azidoundecanoic acid proved the best azide for enhanced dispersibility. The functionalization was confirmed by infrared spectroscopy and scanning tunneling microscopy. The free carboxylic acidgroups can bind to gold nanoparticles, which were introduced as markers for the reactive sites. The interaction between gold nanoparticles and the graphene sheets was followed by UV-vis spectroscopy. The gold nanoparticle-graphene composite was characterized by transmission electron microscopy and atomic force microscopy, demonstrating the uniform distribution of gold nanoparticles all over the surface. Our results open the possibility to control the functionalization on graphene in the construction of composite nanomaterials. Electronic Supplementary Information (ESI) available: Synthesis and characterization details of dodecylazide, hexylazide, 11-azidoundecanol (AUO), micrographs (SEM and TEM images) of the various azide functionalized samples and the statistical analysis of the graphene thickness. See 10.1039/c0nr00547a.
AFM study of Escherichia coli RNA polymerase σ⁷⁰ subunit aggregation.
Dubrovin, Evgeniy V; Koroleva, Olga N; Khodak, Yulia A; Kuzmina, Natalia V; Yaminsky, Igor V; Drutsa, Valeriy L
2012-01-01
The self-assembly of Escherichia coli RNA polymerase σ⁷⁰ subunit was investigated using several experimental approaches. A novel rodlike shape was reported for σ⁷⁰ subunit aggregates. Atomic force microscopy reveals that these aggregates, or σ⁷⁰ polymers, have a straight rodlike shape 5.4 nm in diameter and up to 300 nm in length. Atomic force microscopy data, Congo red binding assay, and sodium dodecyl sulfate gel electrophoresis confirm the amyloid nature of observed aggregates. The process of formation of rodlike structures proceeds spontaneously under nearly physiological conditions. E. coli RNA polymerase σ⁷⁰ subunit may be an interesting object for investigation of amyloidosis as well as for biotechnological applications that exploit self-assembled bionanostructures. Polymerization of σ⁷⁰ subunit may be a competitive process with its three-dimensional crystallization and association with core RNA polymerase. In this basic science study, the self-assembly of Escherichia coli RNA polymerase σ⁷⁰( subunit was investigated using atomic force microscopy and other complementary approaches. 2012 Elsevier Inc. All rights reserved.
Microscopic evidence of a strain-enhanced ferromagnetic state in LaCoO3 thin films
NASA Astrophysics Data System (ADS)
Park, S.; Ryan, P.; Karapetrova, E.; Kim, J. W.; Ma, J. X.; Shi, J.; Freeland, J. W.; Wu, Weida
2009-08-01
Strain-induced modification of magnetic properties of lightly hole doped epitaxial LaCoO3 thin films on different substrates were studied with variable temperature magnetic force microscopy (MFM). Real space observation at 10 K reveals the formation of the local magnetic clusters on a relaxed film grown on LaAlO3 (001). In contrast, a ferromagnetic ground state has been confirmed for tensile-strained film on SrTiO3 (001), indicating that strain is an important factor in creating the ferromagnetic state. Simultaneous atomic force microscopy and MFM measurements reveal nanoscale defect lines for the tensile-strained films, where the structural defects have a large impact on the local magnetic properties.
Nanoscale observation of organic thin film by atomic force microscopy
NASA Astrophysics Data System (ADS)
Mochizuki, Shota; Uruma, Takeshi; Satoh, Nobuo; Saravanan, Shanmugam; Soga, Tetsuo
2017-08-01
Organic photovoltaics (OPVs) fabricated using organic semiconductors and hybrid solar cells (HSCs) based on organic semiconductors/quantum dots (QDs) have been attracting significant attention owing to their potential use in low-cost solar energy-harvesting applications and flexible, light-weight, colorful, large-area devices. In this study, we observed and evaluated the surface of a photoelectric conversion layer (active layer) of the OPVs and HSCs based on phenyl-C61-butyric acid methyl ester (PCBM), poly(3-hexylthiophene) (P3HT), and zinc oxide (ZnO) nanoparticles. The experiment was performed using atomic force microscopy (AFM) combined with a frequency modulation detector (FM detector) and a contact potential difference (CPD) detection circuit. We experimentally confirmed the changes in film thickness and surface potential, as affected by the ZnO nanoparticle concentration. From the experimental results, we confirmed that ZnO nanoparticles possibly affect the structures of PCBM and P3HT. Also, we prepared an energy band diagram on the basis of the observation results, and analyzed the energy distribution inside the active layer.
Mechanical and physicochemical properties of AlN thin films obtained by pulsed laser deposition
NASA Astrophysics Data System (ADS)
Cibert, C.; Tétard, F.; Djemia, P.; Champeaux, C.; Catherinot, A.; Tétard, D.
2004-10-01
AlN thin films have been deposited on Si(100) substrates by a pulsed laser deposition method. The deposition parameters (pressure, temperature, purity of target) play an important role in the mechanical and physicochemical properties. The films have been characterized using X-ray diffraction, atomic force microscopy, Brillouin light scattering, Fourier transform infrared spectroscopy and wettability testing. With a high purity target of AlN and a temperature deposition of 750 ∘C, the measured Rayleigh wave velocity is close to the one previously determined for AlN films grown at high temperature by metal-organic chemical vapour deposition. Growth of nanocrystalline AlN at low temperature and of AlN film with good crystallinity for samples deposited at higher temperature is confirmed by infrared spectroscopy, as it was by atomic force microscopy, in agreement with X-ray diffraction results. A high hydrophobicity has been measured with zero polar contribution for the surface energy. These results confirm that films made by pulsed laser deposition of pure AlN at relatively low temperature have good prospects for microelectromechanical systems applications.
Polarization retention in ultra-thin barium titanate films on Ge(001)
NASA Astrophysics Data System (ADS)
Cho, Yujin; Ponath, Patrick; Zheng, Lu; Hatanpaa, Benjamin; Lai, Keji; Demkov, Alexander A.; Downer, Michael C.
2018-04-01
We investigate polarization retention in 10 to 19 nm thick ferroelectric BaTiO3 (BTO) grown on Ge(001) by molecular beam epitaxy. The out-of-plane direction and reversibility of electric polarization were confirmed using piezoresponse force microscopy. After reverse-poling selected regions of the BTO films to a value P with a biased atomic-force microscope tip, we monitored relaxation of their net polarization for as long as several weeks using optical second-harmonic generation microscopy. All films retained reversed polarization throughout the observation period. 10 nm-thick BTO films relaxed monotonically to a saturation value of 0.9 P after 27 days and 19 nm films to 0.75 P after 24 h. Polarization dynamics are discussed in the context of a 1D polarization relaxation/kinetics model.
Few-layer graphene growth from polystyrene as solid carbon source utilizing simple APCVD method
NASA Astrophysics Data System (ADS)
Ahmadi, Shahrokh; Afzalzadeh, Reza
2016-07-01
This research article presents development of an economical, simple, immune and environment friendly process to grow few-layer graphene by controlling evaporation rate of polystyrene on copper foil as catalyst and substrate utilizing atmospheric pressure chemical vapor deposition (APCVD) method. Evaporation rate of polystyrene depends on molecular structure, amount of used material and temperature. We have found controlling rate of evaporation of polystyrene by controlling the source temperature is easier than controlling the material weight. Atomic force microscopy (AFM) as well as Raman Spectroscopy has been used for characterization of the layers. The frequency of G‧ to G band ratio intensity in some samples varied between 0.8 and 1.6 corresponding to few-layer graphene. Topography characterization by atomic force microscopy confirmed Raman results.
NASA Astrophysics Data System (ADS)
Oyoshi, K.; Nigo, S.; Inoue, J.; Sakai, O.; Kitazawa, H.; Kido, G.
2010-11-01
Anodic porous alumina (APA) films have a honeycomb cell structure of pores and a voltage-induced bi-stable switching effect. We have applied conducting atomic force microscopy (CAFM) as a method to form and to disrupt current paths in the APA films. A bi-polar switching operation was confirmed. We have firstly observed terminals of current paths as spots or areas typically on the center of the triangle formed by three pores. In addition, though a part of the current path showed repetitive switching, most of them were not observed again at the same position after one cycle of switching operations in the present experiments. This suggests that a part of alumina structure and/or composition along the current paths is modified during the switching operations.
Advances in single-molecule magnet surface patterning through microcontact printing.
Mannini, Matteo; Bonacchi, Daniele; Zobbi, Laura; Piras, Federica M; Speets, Emiel A; Caneschi, Andrea; Cornia, Andrea; Magnani, Agnese; Ravoo, Bart Jan; Reinhoudt, David N; Sessoli, Roberta; Gatteschi, Dante
2005-07-01
We present an implementation of strategies to deposit single-molecule magnets (SMMs) using microcontact printing microCP). We describe different approaches of microCP to print stripes of a sulfur-functionalized dodecamanganese (III, IV) cluster on gold surfaces. Comparison by atomic force microscopy profile analysis of the patterned structures confirms the formation of a chemically stable single layer of SMMs. Images based on chemical contrast, obtained by time-of-flight secondary ion mass spectrometry, confirm the patterned structure.
Copper vapor-assisted growth of hexagonal graphene domains on silica islands
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Jun; Que, Yande; Jiang, Lili
2016-07-11
Silica (SiO{sub 2}) islands with a dendritic structure were prepared on polycrystalline copper foil, using silane (SiH{sub 4}) as a precursor, by annealing at high temperature. Assisted by copper vapor from bare sections of the foil, single-layer hexagonal graphene domains were grown directly on the SiO{sub 2} islands by chemical vapor deposition. Scanning electron microscopy, atomic force microscopy, Raman spectra, and X-ray photoelectron spectroscopy confirm that hexagonal graphene domains, each measuring several microns, were synthesized on the silica islands.
NASA Astrophysics Data System (ADS)
Marchetti, S.; Sbrana, F.; Toscano, A.; Fratini, E.; Carlà, M.; Vassalli, M.; Tiribilli, B.; Pacini, A.; Gambi, C. M. C.
2011-05-01
The three-dimensional structure and the mechanical properties of a β-connectin fragment from human cardiac muscle, belonging to the I band, from I27 to I34, were investigated by small-angle x-ray scattering (SAXS) and single-molecule force spectroscopy (SMFS). This molecule presents an entropic elasticity behavior, associated to globular domain unfolding, that has been widely studied in the last 10 years. In addition, atomic force microscopy based SMFS experiments suggest that this molecule has an additional elastic regime, for low forces, probably associated to tertiary structure remodeling. From a structural point of view, this behavior is a mark of the fact that the eight domains in the I27-I34 fragment are not independent and they organize in solution, assuming a well-defined three-dimensional structure. This hypothesis has been confirmed by SAXS scattering, both on a diluted and a concentrated sample. Two different models were used to fit the SAXS curves: one assuming a globular shape and one corresponding to an elongated conformation, both coupled with a Coulomb repulsion potential to take into account the protein-protein interaction. Due to the predominance of the structure factor, the effective shape of the protein in solution could not be clearly disclosed. By performing SMFS by atomic force microscopy, mechanical unfolding properties were investigated. Typical sawtooth profiles were obtained and the rupture force of each unfolding domain was estimated. By fitting a wormlike chain model to each peak of the sawtooth profile, the entropic elasticity of octamer was described.
Li, Jie; He, Yujun; Han, Yimo; Liu, Kai; Wang, Jiaping; Li, Qunqing; Fan, Shoushan; Jiang, Kaili
2012-08-08
Because of their excellent electrical and optical properties, carbon nanotubes have been regarded as extremely promising candidates for high-performance electronic and optoelectronic applications. However, effective and efficient distinction and separation of metallic and semiconducting single-walled carbon nanotubes are always challenges for their practical applications. Here we show that metallic and semiconducting single-walled carbon nanotubes on SiO(2) can have obviously different contrast in scanning electron microscopy due to their conductivity difference and thus can be effectively and efficiently identified. The correlation between conductivity and contrast difference has been confirmed by using voltage-contrast scanning electron microcopy, peak force tunneling atom force microscopy, and field effect transistor testing. This phenomenon can be understood via a proposed mechanism involving the e-beam-induced surface potential of insulators and the conductivity difference between metallic and semiconducting SWCNTs. This method demonstrates great promise to achieve rapid and large-scale distinguishing between metallic and semiconducting single-walled carbon nanotubes, adding a new function to conventional SEM.
SEM and AFM Studies of Two-Phase Magnetic Alkali Borosilicate Glasses
Tomkovich, M.; Nacke, B.; Filimonov, A.; Alekseeva, O.; Vanina, P.; Nizhankovskii, V.
2017-01-01
The morphology and composition of four types of two-phase alkali borosilicate glasses with magnetic atoms prepared by inductive melting have been studied. The results of scanning electron microscopy point to uniform distribution of Na, Si, and O atoms in these samples while magnetic iron atoms form ball-shaped agglomerates. The magnetic properties of these agglomerates have been confirmed by magnetic force microscopy. Atomic force microscopy had shown that in these samples two different morphological structures, drop-like and dendrite net, are formed. The formation of dendrite-like structure is a necessary condition for production of porous magnetic glasses. The obtained results allow us to optimize the melting and heat treatment processes leading to production of porous alkali borosilicate glasses with magnetic properties. The first results for nanocomposite materials on the basis of magnetic glasses containing the embedded ferroelectrics KH2PO4 demonstrate the effect of applied magnetic field on the ferroelectric phase transition. PMID:28428976
NASA Astrophysics Data System (ADS)
Fan, C. C.; Liu, Z. T.; Cai, S. H.; Wang, Z.; Xiang, P.; Zhang, K. L.; Liu, W. L.; Liu, J. S.; Wang, P.; Zheng, Y.; Shen, D. W.; You, L. X.
2017-08-01
High-quality (001)-oriented perovskite [(SrIrO3)m/(SrTiO3)] superlattices (m=1/2, 1, 2, 3 and ∞ ) films have been grown on SrTiO3(001) epitaxially using reactive molecular beam epitaxy. Compared to previously reported superlattices synthesized by pulsed laser deposition, our superlattices exhibit superior crystalline, interface and surface structure, which have been confirmed by high-resolution X-ray diffraction, scanning transmission electron microscopy and atomic force microscopy, respectively. The transport measurements confirm a novel insulator-metal transition with the change of dimensionality in these superlattices, and our first systematic in situ photoemission spectroscopy study indicates that the increasing strength of effective correlations induced by reducing dimensionality would be the dominating origin of this transition.
Carrier Density Modulation in Ge Heterostructure by Ferroelectric Switching
Ponath, Patrick; Fredrickson, Kurt; Posadas, Agham B.; ...
2015-01-14
The development of nonvolatile logic through direct coupling of spontaneous ferroelectric polarization with semiconductor charge carriers is nontrivial, with many issues, including epitaxial ferroelectric growth, demonstration of ferroelectric switching, and measurable semiconductor modulation. Here we report a true ferroelectric field effect carrier density modulation in an underlying Ge(001) substrate by switching of the ferroelectric polarization in the epitaxial c-axis-oriented BaTiO3 (BTO) grown by molecular beam epitaxy (MBE) on Ge. Using density functional theory, we demonstrate that switching of BTO polarization results in a large electric potential change in Ge. Aberration-corrected electron microscopy confirms the interface sharpness, and BTO tetragonality. Electron-energy-lossmore » spectroscopy (EELS) indicates the absence of any low permittivity interlayer at the interface with Ge. Using piezoelectric force microscopy (PFM), we confirm the presence of fully switchable, stable ferroelectric polarization in BTO that appears to be single domain. Using microwave impedance microscopy (MIM), we clearly demonstrate a ferroelectric field effect.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krajina, Brad A.; Kocherlakota, Lakshmi S.; Overney, René M., E-mail: roverney@u.washington.edu
The energetics involved in the bonding fluctuations between nanometer-sized silicon dioxide (SiO{sub 2}) probes and highly oriented pyrolytic graphite (HOPG) and molybdenum disulfide (MoS{sub 2}) could be quantified directly and locally on the submicron scale via a time-temperature superposition analysis of the lateral forces between scanning force microscopy silicon dioxide probes and inorganic sample surfaces. The so-called “intrinsic friction analysis” (IFA) provided direct access to the Hamaker constants for HOPG and MoS{sub 2}, as well as the control sample, calcium fluoride (CaF{sub 2}). The use of scanning probe enables nanoscopic analysis of bonding fluctuations, thereby overcoming challenges associated with largermore » scale inhomogeneity and surface roughness common to conventional techniques used to determine surface free energies and dielectric properties. A complementary numerical analysis based on optical and electron energy loss spectroscopy and the Lifshitz quantum electrodynamic theory of van der Waals interactions is provided and confirms quantitatively the IFA results.« less
NASA Astrophysics Data System (ADS)
Krajina, Brad A.; Kocherlakota, Lakshmi S.; Overney, René M.
2014-10-01
The energetics involved in the bonding fluctuations between nanometer-sized silicon dioxide (SiO2) probes and highly oriented pyrolytic graphite (HOPG) and molybdenum disulfide (MoS2) could be quantified directly and locally on the submicron scale via a time-temperature superposition analysis of the lateral forces between scanning force microscopy silicon dioxide probes and inorganic sample surfaces. The so-called "intrinsic friction analysis" (IFA) provided direct access to the Hamaker constants for HOPG and MoS2, as well as the control sample, calcium fluoride (CaF2). The use of scanning probe enables nanoscopic analysis of bonding fluctuations, thereby overcoming challenges associated with larger scale inhomogeneity and surface roughness common to conventional techniques used to determine surface free energies and dielectric properties. A complementary numerical analysis based on optical and electron energy loss spectroscopy and the Lifshitz quantum electrodynamic theory of van der Waals interactions is provided and confirms quantitatively the IFA results.
Krajina, Brad A; Kocherlakota, Lakshmi S; Overney, René M
2014-10-28
The energetics involved in the bonding fluctuations between nanometer-sized silicon dioxide (SiO2) probes and highly oriented pyrolytic graphite (HOPG) and molybdenum disulfide (MoS2) could be quantified directly and locally on the submicron scale via a time-temperature superposition analysis of the lateral forces between scanning force microscopy silicon dioxide probes and inorganic sample surfaces. The so-called "intrinsic friction analysis" (IFA) provided direct access to the Hamaker constants for HOPG and MoS2, as well as the control sample, calcium fluoride (CaF2). The use of scanning probe enables nanoscopic analysis of bonding fluctuations, thereby overcoming challenges associated with larger scale inhomogeneity and surface roughness common to conventional techniques used to determine surface free energies and dielectric properties. A complementary numerical analysis based on optical and electron energy loss spectroscopy and the Lifshitz quantum electrodynamic theory of van der Waals interactions is provided and confirms quantitatively the IFA results.
Resta, Andrea; Leoni, Thomas; Barth, Clemens; Ranguis, Alain; Becker, Conrad; Bruhn, Thomas; Vogt, Patrick; Le Lay, Guy
2013-01-01
Silicene, the considered equivalent of graphene for silicon, has been recently synthesized on Ag(111) surfaces. Following the tremendous success of graphene, silicene might further widen the horizon of two-dimensional materials with new allotropes artificially created. Due to stronger spin-orbit coupling, lower group symmetry and different chemistry compared to graphene, silicene presents many new interesting features. Here, we focus on very important aspects of silicene layers on Ag(111): First, we present scanning tunneling microscopy (STM) and non-contact Atomic Force Microscopy (nc-AFM) observations of the major structures of single layer and bi-layer silicene in epitaxy with Ag(111). For the (3 × 3) reconstructed first silicene layer nc-AFM represents the same lateral arrangement of silicene atoms as STM and therefore provides a timely experimental confirmation of the current picture of the atomic silicene structure. Furthermore, both nc-AFM and STM give a unifying interpretation of the second layer (√3 × √3)R ± 30° structure. Finally, we give support to the conjectured possible existence of less stable, ~2% stressed, (√7 × √7)R ± 19.1° rotated silicene domains in the first layer. PMID:23928998
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abdullah, M. A. R., E-mail: ameerridhwan89@gmail.com; Mamat, M. H., E-mail: hafiz-030@yahoo.com; Ismail, A. S., E-mail: kyrin-samaxi@yahoo.com
2016-07-06
Preparation of NiO thin films at different annealing temperature by sol-gel method was conducted to synthesize the quality of the surface thin films. The effects of annealing temperature on the surface topology were systematically investigated. Our studies confirmed that the surface roughness of the thin films was increased whenever annealing temperature was increase. NiO thin films morphology structure analysis was confirmed by field emission scanning electron microscope. Surface roughness of the thin films was investigated by atomic force microscopy.
Connecting quantum dots and bionanoparticles in hybrid nanoscale ultra-thin films
NASA Astrophysics Data System (ADS)
Tangirala, Ravisubhash; Hu, Yunxia; Zhang, Qingling; He, Jinbo; Russell, Thomas; Emrick, Todd
2008-03-01
Aldehyde-functionalized CdSe quantum dots and nanorods, and horse spleen ferritin bionanoparticles, were co-assembled at an oil-water interface. Reaction of the aldehydes with the surface-available amines on the ferritin particles enabled cross-linking at the interface, converting the assembled nanoparticles into robust ultra-thin films. The cross-linked capsules and sheets thus made by aldehyde-amine conjugation could be disrupted by addition of acid. Reductive amination chemistry could be performed to convert these degradable capsules and sheets into structures with irreversible cross-linking. Fluorescence confocal microscopy, scanning force microscopy and pendant drop tensiometry were used to characterize these hybrid nanoparticle-based materials, and transmission electron microscopy (TEM) confirmed the presence of both the synthetic and naturally derived nanoparticles.
NASA Astrophysics Data System (ADS)
Nakano, Haruhisa; Takahashi, Makoto; Sato, Motonobu; Kotsugi, Masato; Ohkochi, Takuo; Muro, Takayuki; Nihei, Mizuhisa; Yokoyama, Naoki
2013-11-01
The resistive switching characteristics of a TiO2/Ti structure have been investigated using a conductive atomic force microscopy (AFM) system with 5-nm-diameter carbon nanotube (CNT) probes. The resistive switching showed bipolar resistive random access memory (ReRAM) behaviors with extremely low switching currents in the order of Picoamperes when voltages were applied. From transmission electron microscopy (TEM) observation, we confirmed that filament-like nanocrystals, having a diameter of about 10 nm, existed in TiO2 films at resistive switching areas after not only set operation but also reset operation. Moreover, photoemission electron microscopy (PEEM) analysis showed that the anatase-type TiO2 structure did not change after set and reset operations. From these results, we suggested that the Picoampere resistive switching occurred at the interface between the TiO2 dielectric and conductive nanocrystal without any structural changes in the TiO2 film and nanocrystal. The resistive switching mechanism we suggested is highly promising to realize extremely low-power-consumption ReRAMs with vertically contacted CNT electrodes.
NASA Astrophysics Data System (ADS)
Schönherr, Holger; Hain, Nicole; Walczyk, Wiktoria; Wesner, Daniel; Druzhinin, Sergey I.
2016-08-01
In this review surface nanobubbles, which are presumably gas-filled enclosures found at the solid-liquid interface, are introduced and discussed together with key experimental findings that suggest that these nanoscale features indeed exist and are filled with gas. The most prominent technique used thus far has been atomic force microscopy (AFM). However, due to its potentially invasive nature, AFM data must be interpreted with great care. Owing to their curved interface, the Laplace internal pressure of surface nanobubbles exceeds substantially the outside ambient pressure, and the experimentally observed long term stability is in conflict with estimates of gas transport rates and predicted surface nanobubble lifetimes. Despite recent explanations of both the stability and the unusual nanoscopic contact angles, the development of new co-localization approaches and the adequate analysis of AFM data of surface nanobubbles are important as a means to confirm the gaseous nature and correctly estimate the interfacial curvature.
Understanding Pt-ZnO:In Schottky nanocontacts by conductive atomic force microscopy
NASA Astrophysics Data System (ADS)
Chirakkara, Saraswathi; Choudhury, Palash Roy; Nanda, K. K.; Krupanidhi, S. B.
2016-04-01
Undoped and In doped ZnO (IZO) thin films are grown on Pt coated silicon substrates Pt/Si by pulsed laser deposition to fabricate Pt/ZnO:In Schottky diodes. The Schottky diodes were investigated by conventional two-probe current-voltage (I-V) measurements and by the I-V spectroscopy tool of conductive atomic force microscopy (C-AFM). The large deviation of the ideality factor from unity and the temperature dependent Schottky barrier heights (SBHs) obtained from the conventional method imply the presence of inhomogeneous interfaces. The inhomogeneity of SBHs is confirmed by C-AFM. Interestingly, the I-V curves at different points are found to be different, and the SBHs deduced from the point diodes reveal inhomogeneity at the nanoscale at the metal-semiconductor interface. A reduction in SBH and turn-on voltage along with enhancement in forward current are observed with increasing indium concentration.
Probing local work function of electron emitting Si-nanofacets
NASA Astrophysics Data System (ADS)
Basu, Tanmoy; Som, Tapobrata
2017-10-01
Large area, Si-nanofacets are synthesized by obliquely incident low energy Ar+-ion-beam bombardment at room temperature (RT). The field emission properties of such nanofacets are studied based on current-voltage measurements and the Fowler-Nordheim equation. Low turn-on field with relatively high current density is obtained due to the shape and an overall rough morphology. We demonstrate a tunable field emission property from the silicon nanofacets by varying the ion exposure time. Atomic force microscopy (AFM) in conjunction with Kelvin probe force microscopy (KPFM) measurements provide the information on the aspect ratio and confirms the presence of native oxide layer near the apexes of the facets, respectively. The inhomogeneous oxidation leads to an increase in the local work function at the apexes of the facets, restricting the electron emission from the same. Due to its room temperature fabrication, the present method is of great significance to the low-cost vacuum field emission devices fabrication.
First order reversal curve study of the dipolar interaction in Ni three-dimensional antidot arrays
NASA Astrophysics Data System (ADS)
Li, Bingqing; Chai, Xuzhao; Moeendarbari, Sina; Hao, Yaowu; Gilbert, Dustin A.; Liu, Kai; Zhang, Di; Feng, Gang; Han, Ping; Cheng, X. M.
2014-03-01
Three-dimensional antidot arrays (3DAAs) have attracted considerable attention due to potential applications in sensors, energy storage and transducers. Magnetic 3DAAs also provide an ideal system for studying the effect of dimensionality and morphology on magnetic properties. We report study of dipolar interactions in Ni 3DAAs using the first-order reversal curve (FORC) method. Ordered Ni 3DAAs were fabricated by electrochemical deposition into colloidal crystal templates of self-assembled polystyrene spheres. The samples have the same pore size of about 500 nm but different thicknesses, ranging from 0.3 μm to 1.2 μm, confirmed by scanning electron microscopy (SEM) and atomic force microscopy (AFM). FORCs of the samples with thicknesses of 0.3 μm, 0.8 μm, and 1.2 μm were measured by a vibrating sample magnetometer. The FORC diagram analysis reveals a demagnetizing magnetic dipolar interaction, and a decrease in the interaction strength with the increasing sample thickness, evidenced by a decrease in the spread of the irreversible peak in the bias distribution, as well as a decrease in the tilting of the FORC distribution from the local coercivity axis. Work at BMC and UCD is supported by NSF DMR-1207085 and DMR-1008791, respectively.
Dubin, Sergey; Gilje, Scott; Wang, Kan; Tung, Vincent C.; Cha, Kitty; Hall, Anthony S.; Farrar, Jabari; Varshneya, Rupal; Yang, Yang; Kaner, Richard B.
2014-01-01
Refluxing graphene oxide (GO) in N-methyl-2-pyrrolidinone (NMP) results in deoxygenation and reduction to yield a stable colloidal dispersion. The solvothermal reduction is accompanied by a color change from light brown to black. Atomic force microscopy (AFM) and scanning electron microscopy (SEM) images of the product confirm the presence of single sheets of the solvothermally reduced graphene oxide (SRGO). X-ray photoelectron spectroscopy (XPS) of SRGO indicates a significant increase in intensity of the C=C bond character, while the oxygen content decreases markedly after the reduction is complete. X-ray diffraction analysis of SRGO shows a single broad peak at 26.24° 2θ (3.4 Å), confirming the presence of graphitic stacking of reduced sheets. SRGO sheets are redispersible in a variety of organic solvents, which may hold promise as an acceptor material for bulk heterojunction photovoltaic cells, or electromagnetic interference shielding applications. PMID:20586422
Effect of Aspergillus versicolor strain JASS1 on low density polyethylene degradation
NASA Astrophysics Data System (ADS)
Gajendiran, A.; Subramani, S.; Abraham, J.
2017-11-01
Low density polyethylene (LDPE) waste disposal remains one of the major environmental concerns faced by the world today. In past decades, major focus has been given to enhance the biodegradation of LDPE by microbial species. In this present study, Aspergillus versicolor with the ability to degrade LDPE was isolated from municipal landfill area using enrichment technique. Based on 18S rRNA gene sequencing confirmed its identity as Aspergillus versicolor. The biodegradation study was carried out for 90 d in M1 medium. The degradation behaviour of LDPE films by Aspergillus versicolor strain JASS1 were confirmed by weight loss, CO2 evolution, Scanning electron microscopy (SEM) analysis, Atomic force microscopy (AFM), Fourier transform infrared spectroscopy (FTIR) technique. From current investigation, it can be concluded that our isolated strain JASS1 had the potential to degrade LDPE films and it can be useful in solving the problem caused by polyethylene in the environment.
Ahmad, Shahzada; Carstens, Timo; Berger, Rüdiger; Butt, Hans-Jürgen; Endres, Frank
2011-01-01
The electropolymerization of 3,4-ethylenedioxythiophene (EDOT) to poly(3,4-ethylenedioxythiophene) (PEDOT) was investigated in the air and water-stable ionic liquids 1-hexyl-3-methylimidazolium tris(pentafluoroethyl) trifluorophosphate [HMIm]FAP and 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl) amide [EMIm]TFSA. In situ scanning tunnelling microscopy (STM) results show that the electropolymerization of EDOT in the ionic liquid can be probed on the nanoscale. In contrast to present understanding, it was observed that the EDOT can be oxidised in ionic liquids well below its oxidation potential and the under potential growth of polymer was visualized by in situ STM. These results serve as the first study to confirm the under potential growth of conducting polymers in ionic liquids. Furthermore, ex situ microscopy measurements were performed. Quite a high current of 670 nA was observed on the nanoscale by conductive scanning force microscopy (CSFM).
NASA Astrophysics Data System (ADS)
Ahmad, Shahzada; Carstens, Timo; Berger, Rüdiger; Butt, Hans-Jürgen; Endres, Frank
2011-01-01
The electropolymerization of 3,4-ethylenedioxythiophene (EDOT) to poly(3,4-ethylenedioxythiophene) (PEDOT) was investigated in the air and water-stable ionic liquids 1-hexyl-3-methylimidazolium tris(pentafluoroethyl) trifluorophosphate [HMIm]FAP and 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl) amide [EMIm]TFSA. In situscanning tunnelling microscopy (STM) results show that the electropolymerization of EDOT in the ionic liquid can be probed on the nanoscale. In contrast to present understanding, it was observed that the EDOT can be oxidised in ionic liquids well below its oxidation potential and the under potential growth of polymer was visualized by in situSTM. These results serve as the first study to confirm the under potential growth of conducting polymers in ionic liquids. Furthermore, ex situmicroscopy measurements were performed. Quite a high current of 670 nA was observed on the nanoscale by conductive scanning force microscopy (CSFM).The electropolymerization of 3,4-ethylenedioxythiophene (EDOT) to poly(3,4-ethylenedioxythiophene) (PEDOT) was investigated in the air and water-stable ionic liquids 1-hexyl-3-methylimidazolium tris(pentafluoroethyl) trifluorophosphate [HMIm]FAP and 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl) amide [EMIm]TFSA. In situscanning tunnelling microscopy (STM) results show that the electropolymerization of EDOT in the ionic liquid can be probed on the nanoscale. In contrast to present understanding, it was observed that the EDOT can be oxidised in ionic liquids well below its oxidation potential and the under potential growth of polymer was visualized by in situSTM. These results serve as the first study to confirm the under potential growth of conducting polymers in ionic liquids. Furthermore, ex situmicroscopy measurements were performed. Quite a high current of 670 nA was observed on the nanoscale by conductive scanning force microscopy (CSFM). Electronic supplementary information (ESI) available: In situ image of PEDOT in [HMIm]FAP and in situ studies of PEDOT grown in [EMIm]TFSA and redox behavior of PEDOT. See DOI: 10.1039/c0nr00579g
Non-contact lateral force microscopy.
Weymouth, A J
2017-08-16
The goal of atomic force microscopy (AFM) is to measure the short-range forces that act between the tip and the surface. The signal recorded, however, includes long-range forces that are often an unwanted background. Lateral force microscopy (LFM) is a branch of AFM in which a component of force perpendicular to the surface normal is measured. If we consider the interaction between tip and sample in terms of forces, which have both direction and magnitude, then we can make a very simple yet profound observation: over a flat surface, long-range forces that do not yield topographic contrast have no lateral component. Short-range interactions, on the other hand, do. Although contact-mode is the most common LFM technique, true non-contact AFM techniques can be applied to perform LFM without the tip depressing upon the sample. Non-contact lateral force microscopy (nc-LFM) is therefore ideal to study short-range forces of interest. One of the first applications of nc-LFM was the study of non-contact friction. A similar setup is used in magnetic resonance force microscopy to detect spin flipping. More recently, nc-LFM has been used as a true microscopy technique to systems unsuitable for normal force microscopy.
Estimation of polymer-surface interfacial interaction strength by a contact AFM technique.
Dvir, H; Jopp, J; Gottlieb, M
2006-12-01
Atomic force microscopy (AFM) measurements were employed to assess polymer-surface interfacial interaction strength. The main feature of the measurement is the use of contact-mode AFM as a tool to scratch off the polymer monolayer adsorbed on the solid surface. Tapping-mode AFM was used to determine the depth of the scraped recess. Independent determination of the layer thickness obtained from optical phase interference microscopy (OPIM) confirmed the depth of the AFM scratch. The force required for the complete removal of the polymer layer with no apparent damage to the substrate surface was determined. Polypropylene (PP), low-density polyethylene (PE), and PP-grafted-maleic anhydride (PP-g-ma) were scraped off silane-treated glass slabs, and the strength of surface interaction of the polymer layer was determined. In all cases it was determined that the magnitude of surface interaction force is of the order of van der Waals (VDW) interactions. The interaction strength is influenced either by polymer ability to wet the surface (hydrophobic or hydrophilic interactions) or by hydrogen bonding between the polymer and the surface treatment.
NASA Astrophysics Data System (ADS)
Arora, Sweety; Srivastava, Chandan
2017-02-01
A ZnO nanocrystal-graphene composite was synthesized by a two-step method involving mechanical milling and sonication-assisted exfoliation. Zn metal powder was first ball-milled with graphite powder for 30 h in water medium. This ball-milled mixture was then subjected to exfoliation by sonication in the presence of sodium lauryl sulfate surfactant to produce graphene decorated with spherical agglomerates of ultrafine nanocrystalline ZnO. The presence of a few layers of graphene was confirmed by Raman spectroscopy and atomic force microscopy measurements. The size, phase identity and composition of the ZnO nanocrystals was determined by transmission electron microscopy measurements.
Misfit dislocation gettering by substrate pit-patterning in SiGe films on Si(001)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grydlik, Martyna; Groiss, Heiko; Brehm, Moritz
2012-07-02
We show that suitable pit-patterning of a Si(001) substrate can strongly influence the nucleation and the propagation of dislocations during epitaxial deposition of Si-rich Si{sub 1-x}Ge{sub x} alloys, preferentially gettering misfit segments along pit rows. In particular, for a 250 nm layer deposited by molecular beam epitaxy at x{sub Ge} = 15%, extended film regions appear free of dislocations, by atomic force microscopy, as confirmed by transmission electron microscopy sampling. This result is quite general, as explained by dislocation dynamics simulations, which reveal the key role of the inhomogeneous distribution in stress produced by the pit-patterning.
NASA Astrophysics Data System (ADS)
Bhattacharjee, Sukla; Debnath, Gopal; Das, Aparajita Roy; Krishna Saha, Ajay; Das, Panna
2017-12-01
The aim of the present study was to test the efficacy of the extracellular mycelium extract of Penicillium oxalicum isolated from Phlogacanthus thyrsiflorus to biosynthesize silver nanoparticles. It was characterized using ultraviolet-visible absorption spectroscopy, atomic force microscopy, transmission electron microscopy and Fourier transforms infrared spectroscopy. The silver nanoparticles were evaluated for antimicrobial activity. The characterization confirms the synthesis of silver nanoparticles. Both silver nanoparticles and combination of silver nanoparticles with streptomycin showed activity against the four bacteria. The results suggested that P. oxalicum offers eco-friendly production of silver nanoparticles and the antibacterial activity may find application in biomedicine.
Synthesis of Cu-W nanocomposite by high-energy ball milling.
Venugopal, T; Rao, K Prasad; Murty, B S
2007-07-01
The Cu-W bulk nanocomposites of different compositions were successfully synthesized by high-energy ball milling of elemental powders. The nanocrystalline nature of the Cu-W composite powder is confirmed by X-ray diffraction analysis, transmission electron microscopy, and atomic force microscopy. The Cu-W nanocomposite powder could be sintered at 300-400 degrees C below the sintering temperature of the un-milled Cu-W powders. The Cu-W nanocomposites showed superior densification and hardness than that of un-milled Cu-W composites. The nanocomposites also have three times higher hardness to resistivity ratio in comparison to Oxygen free high conductivity copper.
Failure Surface Analysis of Polyimide/Titanium Notched Coating Adhesion Specimens
DOE Office of Scientific and Technical Information (OSTI.GOV)
GIUNTA,RACHEL K.; KANDER,RONALD G.
2000-12-18
Adhesively bonded joints of LaRC{trademark} PETI-5, a phenylethynyl-terminated polyimide, with chromic acid anodized titanium were fabricated and debonded interfacially. The adhesive-substrate failure surfaces were investigated using several surface analysis techniques. From Auger spectroscopy, field emission scanning electron microscopy, and atomic force microscopy studies, polymer appears to be penetrating the pores of the anodized substrate to a depth of approximately 100 nm. From x-ray photoelectron spectroscopy data, the polymer penetrating the pores appears to be in electrical contact with the titanium substrate, leading to differential charging. These analyses confirm that the polymer is becoming mechanically interlocked within the substrate surface.
Distribution of GD3 in DPPC Monolayers: A Thermodynamic and Atomic Force Microscopy Combined Study
Diociaiuti, Marco; Ruspantini, Irene; Giordani, Cristiano; Bordi, Federico; Chistolini, Pietro
2004-01-01
Gangliosides are the main component of lipid rafts. These microdomains, floating in the outer leaflet of cellular membrane, play a key role in fundamental cellular functions. Little is still known about ganglioside and phospholipid interaction. We studied mixtures of dipalmitoylphosphatidylcholine and GD3 (molar fraction of 0.2, 0.4, 0.6, 0.8) using complementary techniques: 1), thermodynamic properties of the Langmuir-Blodgett films were assessed at the air-water interface (surface tension, surface potential); and 2), three-dimensional morphology of deposited films on mica substrates were imaged by atomic force microscopy. Mixture thermodynamics were consistent with data in the literature. In particular, excess free energy was negative at each molar fraction, thus ruling out GD3 segregation. Atomic force microscopy showed that the height of liquid-condensed domains in deposited films varied with GD3 molar fraction, as compatible with a lipid aggregation model proposed by Maggio. No distinct GD3-rich domain was observed inside the films, suggesting that GD3 molecules gradually mix with dipalmitoylphosphatidylcholine molecules, confirming ΔG data. Morphological analysis revealed that the shape of liquid-condensed domains is strongly influenced by the amount of GD3, and an interesting stripe-formation phenomenon was observed. These data were combined with the thermodynamic results and interpreted in the light of McConnell's model. PMID:14695273
Molecular mechanism of extreme mechanostability in a pathogen adhesin.
Milles, Lukas F; Schulten, Klaus; Gaub, Hermann E; Bernardi, Rafael C
2018-03-30
High resilience to mechanical stress is key when pathogens adhere to their target and initiate infection. Using atomic force microscopy-based single-molecule force spectroscopy, we explored the mechanical stability of the prototypical staphylococcal adhesin SdrG, which targets a short peptide from human fibrinogen β. Steered molecular dynamics simulations revealed, and single-molecule force spectroscopy experiments confirmed, the mechanism by which this complex withstands forces of over 2 nanonewtons, a regime previously associated with the strength of a covalent bond. The target peptide, confined in a screwlike manner in the binding pocket of SdrG, distributes forces mainly toward the peptide backbone through an intricate hydrogen bond network. Thus, these adhesins can attach to their target with exceptionally resilient mechanostability, virtually independent of peptide side chains. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
Dielectrophoretic immobilization of proteins: Quantification by atomic force microscopy.
Laux, Eva-Maria; Knigge, Xenia; Bier, Frank F; Wenger, Christian; Hölzel, Ralph
2015-09-01
The combination of alternating electric fields with nanometer-sized electrodes allows the permanent immobilization of proteins by dielectrophoretic force. Here, atomic force microscopy is introduced as a quantification method, and results are compared with fluorescence microscopy. Experimental parameters, for example the applied voltage and duration of field application, are varied systematically, and the influence on the amount of immobilized proteins is investigated. A linear correlation to the duration of field application was found by atomic force microscopy, and both microscopical methods yield a square dependence of the amount of immobilized proteins on the applied voltage. While fluorescence microscopy allows real-time imaging, atomic force microscopy reveals immobilized proteins obscured in fluorescence images due to low S/N. Furthermore, the higher spatial resolution of the atomic force microscope enables the visualization of the protein distribution on single nanoelectrodes. The electric field distribution is calculated and compared to experimental results with very good agreement to atomic force microscopy measurements. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Du, Cuiling; Zhao, Jie; Fei, Jinbo; Cui, Yue; Li, Junbai
2013-09-01
Doxorubicin, together with the modified polysaccharide (alginate dialdehyde), was used as a wall material to fabricate microcapsules through self-cross-linking by a template method. The microcapsules as-prepared are pH-responsive. Relevant scanning electronic microscopy, atom force microscopy and confocal laser scanning microscopy confirm the morphology of the uniform microcapsules. The spectroscopic results show that the microcapsules are assembled through electrostatic interaction and Schiff's base covalent bonding. Doxorubicin can be released sustainably from the capsules in buffer solution at a lower pH value. The cellular uptake of the microcapsules and drug release induced by acidic microenvironment are time-dependent processes. The cell cytotoxicity experiments in vitro demonstrate that the doxorubicin-based microcapsules have high efficiency to kill the cancer cells. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Orelma, Hannes; Filpponen, Ilari; Johansson, Leena-Sisko; Osterberg, Monika; Rojas, Orlando J; Laine, Janne
2012-12-01
We introduce a new method to modify films of nanofibrillated cellulose (NFC) to produce non-porous, water-resistant substrates for diagnostics. First, water resistant NFC films were prepared from mechanically disintegrated NFC hydrogel, and then their surfaces were carboxylated via TEMPO-mediated oxidation. Next, the topologically functionalized film was activated via EDS/NHS chemistry, and its reactivity verified with bovine serum albumin and antihuman IgG. The surface carboxylation, EDC/NHS activation and the protein attachment were confirmed using quartz crystal microbalance with dissipation, contact angle measurements, conductometric titrations, X-ray photoelectron spectroscopy and fluorescence microscopy. The surface morphology of the prepared films was investigated using confocal laser scanning microscopy and atomic force microscopy. Finally, we demonstrate that antihuman IgG can be immobilized on the activated NFC surface using commercial piezoelectric inkjet printing.
NASA Astrophysics Data System (ADS)
Sari, R.; Dewi, R.; Pardi; Hakim, L.; Diana, S.
2018-03-01
Palladium coated porous alumina ceramic membrane tube was obtained using a combination of sol-gel process and electroless plating technique. The thickness, structure and composition of palladium-alumina composite membrane were analyzed by transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy-dispersive X-ray (EDX), and atomic force microscopy (AFM). Palladium particle size was 6.18 to 7.64 nm. Palladium membrane with thickness of approximately 301.5 to 815.1 nm was formed at the outer surface of the alumina layer. EDX data confirmed the formation of palladium-alumina membrane containing 45% of palladium. From this research it shows the combination of sol-gel process and electroless plating technique with one-time coating can produce a homogeneous and smoother palladium nano layer film on alumina substrate.
Kreplak, Laurent; Richter, Karsten; Aebi, Ueli; Herrmann, Harald
2008-01-01
Intermediate filaments (IFs) were originally discovered and defined by electron microscopy in myoblasts. In the following it was demonstrated and confirmed that they constitute, in addition to microtubules and microfilaments, a third independent, general filament system in the cytoplasm of most metazoan cells. In contrast to the other two systems, IFs are present in cells in two principally distinct cytoskeletal forms: (i) extended and free-running filament arrays in the cytoplasm that are integrated into the cytoskeleton by associated proteins of the plakin type; and (ii) a membrane- and chromatin-bound thin 'lamina' of a more or less regular network of interconnected filaments made from nuclear IF proteins, the lamins, which differ in several important structural aspects from cytoplasmic IF proteins. In man, more than 65 genes code for distinct IF proteins that are expressed during embryogenesis in various routes of differentiation in a tightly controlled manner. IF proteins exhibit rather limited sequence identity implying that the different types of IFs have distinct biochemical properties. Hence, to characterize the structural properties of the various IFs, in vitro assembly regimes have been developed in combination with different visualization methods such as transmission electron microscopy of fixed and negatively stained samples as well as methods that do not use staining such as scanning transmission electron microscopy (STEM) and cryoelectron microscopy as well as atomic force microscopy. Moreover, with the generation of both IF-type specific antibodies and chimeras of fluorescent proteins and IF proteins, it has become possible to investigate the subcellular organization of IFs by correlative fluorescence and electron microscopic methods. The combination of these powerful methods should help to further develop our understanding of nuclear architecture, in particular how nuclear subcompartments are organized and in which way lamins are involved.
NASA Astrophysics Data System (ADS)
Özoǧul, Alper; Ipek, Semran; Durgun, Engin; Baykara, Mehmet Z.
2017-11-01
An investigation of the frictional behavior of platinum nanoparticles laterally manipulated on graphite has been conducted to answer the question of whether the recent observation of structural superlubricity under ambient conditions [E. Cihan, S. İpek, E. Durgun, and M. Z. Baykara, Nat. Commun. 7, 12055 (2016)] is exclusively limited to the gold-graphite interface. Platinum nanoparticles have been prepared by e-beam evaporation of a thin film of platinum on graphite, followed by post-deposition annealing. Morphological and structural characterization of the nanoparticles has been performed via scanning electron microscopy and transmission electron microscopy, revealing a crystalline structure with no evidence of oxidation under ambient conditions. Lateral manipulation experiments have been performed via atomic force microscopy under ambient conditions, whereby results indicate the occurrence of structural superlubricity at mesoscopic interfaces of 4000-75 000 nm2, with a noticeably higher magnitude of friction forces when compared with gold nanoparticles of similar contact areas situated on graphite. Ab initio simulations of sliding involving platinum and gold slabs on graphite confirm the experimental observations, whereby the higher magnitude of friction forces is attributed to stronger energy barriers encountered by platinum atoms sliding on graphite, when compared with gold. On the other hand, as predicted by theory, the scaling power between friction force and contact size is found to be independent of the chemical identity of the sliding atoms, but to be determined by the geometric qualities of the interface, as characterized by an average "sharpness score" assigned to the nanoparticles.
Robust graphene membranes in a silicon carbide frame.
Waldmann, Daniel; Butz, Benjamin; Bauer, Sebastian; Englert, Jan M; Jobst, Johannes; Ullmann, Konrad; Fromm, Felix; Ammon, Maximilian; Enzelberger, Michael; Hirsch, Andreas; Maier, Sabine; Schmuki, Patrik; Seyller, Thomas; Spiecker, Erdmann; Weber, Heiko B
2013-05-28
We present a fabrication process for freely suspended membranes consisting of bi- and trilayer graphene grown on silicon carbide. The procedure, involving photoelectrochemical etching, enables the simultaneous fabrication of hundreds of arbitrarily shaped membranes with an area up to 500 μm(2) and a yield of around 90%. Micro-Raman and atomic force microscopy measurements confirm that the graphene layer withstands the electrochemical etching and show that the membranes are virtually unstrained. The process delivers membranes with a cleanliness suited for high-resolution transmission electron microscopy (HRTEM) at atomic scale. The membrane, and its frame, is very robust with respect to thermal cycling above 1000 °C as well as harsh acidic or alkaline treatment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ponath, Patrick; O’Hara, Andrew; Cao, Hai-Xia
The growth of Co-substituted BaTiO 3 (BTO) films on Ge(001) substrates by molecular beam epitaxy is demonstrated in this paper. Energy-dispersive x-ray spectroscopy and transmission electron microscopy images confirm the uniform Co distribution. However, no evidence of magnetic ordering is observed in samples grown for Co concentrations between 2% and 40%. Piezoresponse force microscopy measurements show that a 5% Co-substituted BTO sample exhibits ferroelectric behavior. First-principles calculations indicate that while Co atoms couple ferromagnetically in the absence of oxygen vacancies, the occurrence of oxygen vacancies leads to locally antiferromagnetically coupled complexes with relatively strong spin coupling. Finally, the presence ofmore » a significant amount of oxygen vacancies is suggested by x-ray photoelectron spectroscopy measurements.« less
NASA Astrophysics Data System (ADS)
Hosseini, Seyyedamirhossein; Farsi, Hossein; Moghiminia, Shokufeh; Zubkov, Tykhon; Lightcap, Ian V.; Riley, Andrew; Peters, Dennis G.; Li, Zhihai
2018-05-01
Nickel tungstate/graphene composite was synthesized in various compositions with application of a hydrothermal method. Chemical composition and morphology of each sample was studied via application of x-ray diffraction and transmission electron microscopy techniques. In the continuous, a photosystem was obtained by deposition of composite sample on a fluorine-doped tin oxide electrode with application of electrophoretic method. Electrode morphology was studied by employment of atomic force microscopy and SEM techniques. Eventually, light conversion properties and involved mechanism of fabricated photosystem was studied with application of the Mott–Schottky method. Our results confirmed that the optimum ratio between graphene and nickel tungstate is in the regime of 1:1.
Controlled Synthesis of Atomically Layered Hexagonal Boron Nitride via Chemical Vapor Deposition.
Liu, Juanjuan; Kutty, R Govindan; Liu, Zheng
2016-11-29
Hexagonal boron nitrite (h-BN) is an attractive material for many applications including electronics as a complement to graphene, anti-oxidation coatings, light emitters, etc. However, the synthesis of high-quality h-BN is still a great challenge. In this work, via controlled chemical vapor deposition, we demonstrate the synthesis of h-BN films with a controlled thickness down to atomic layers. The quality of as-grown h-BN is confirmed by complementary characterizations including high-resolution transition electron microscopy, atomic force microscopy, Raman spectroscopy and X-ray photo-electron spectroscopy. This work will pave the way for production of large-scale and high-quality h-BN and its applications as well.
Improved dot size uniformity and luminescense of InAs quantum dots on InP substrate
NASA Technical Reports Server (NTRS)
Qiu, Y.; Uhl, D.
2002-01-01
InAs self-organized quantum dots have been grown in InGaAs quantum well on InP substrates by metalorganic vapor phase epitaxy. Atomic Force Microscopy confirmed of quantum dot formation with dot density of 3X10(sup 10) cm(sup -2). Improved dot size uniformity and strong room temperature photoluminescence up to 2 micron were observed after modifying the InGaAs well.
Juniper wood structure under the microscope.
Bogolitsyn, Konstantin G; Zubov, Ivan N; Gusakova, Maria A; Chukhchin, Dmitry G; Krasikova, Anna A
2015-05-01
The investigations confirm the physicochemical nature of the structure and self-assembly of wood substance and endorse its application in plant species. The characteristic morphological features, ultra-microstructure, and submolecular structure of coniferous wood matrix using junipers as the representative tree were investigated by scanning electron (SEM) and atomic-force microscopy (AFM). Novel results on the specific composition and cell wall structure features of the common juniper (Juniperus Communis L.) were obtained. These data confirm the possibility of considering the wood substance as a nanobiocomposite. The cellulose nanofibrils (20-50 nm) and globular-shaped lignin-carbohydrate structures (diameter of 5-60 nm) form the base of such a nanobiocomposite.
High flexibility of DNA on short length scales probed by atomic force microscopy.
Wiggins, Paul A; van der Heijden, Thijn; Moreno-Herrero, Fernando; Spakowitz, Andrew; Phillips, Rob; Widom, Jonathan; Dekker, Cees; Nelson, Philip C
2006-11-01
The mechanics of DNA bending on intermediate length scales (5-100 nm) plays a key role in many cellular processes, and is also important in the fabrication of artificial DNA structures, but previous experimental studies of DNA mechanics have focused on longer length scales than these. We use high-resolution atomic force microscopy on individual DNA molecules to obtain a direct measurement of the bending energy function appropriate for scales down to 5 nm. Our measurements imply that the elastic energy of highly bent DNA conformations is lower than predicted by classical elasticity models such as the worm-like chain (WLC) model. For example, we found that on short length scales, spontaneous large-angle bends are many times more prevalent than predicted by the WLC model. We test our data and model with an interlocking set of consistency checks. Our analysis also shows how our model is compatible with previous experiments, which have sometimes been viewed as confirming the WLC.
From surface to intracellular non-invasive nanoscale study of living cells impairments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ewald, Dr. Maxime; Tetard, Laurene; Elie-Caille, Dr. Cecile
Among the enduring challenges in nanoscience, subsurface characterization of live cells holds major stakes. Developments in nanometrology for soft matter thriving on the sensitivity and high resolution benefits of atomic force microscopy have enabled detection of subsurface structures at the nanoscale (1,2,3). However, measurements in liquid environments remain complex (4,5,6,7), in particular in the subsurface domain. Here we introduce liquid-Mode Synthesizing Atomic Force Microscopy (l-MSAFM) to study both the inner structures and the chemically induced intracellular impairments of living cells. Specifically, we visualize the intracellular stress effects of glyphosate on living keratinocytes skin cells. This new approach for living cellmore » nanoscale imaging, l-MSAFM, in their physiological environment or in presence of a chemical stress agent confirmed the loss of inner structures induced by glyphosate. The ability to monitor the cell's inner response to external stimuli, non-destructively and in real time, has the potential to unveil critical nanoscale mechanisms of life science.« less
Komagataeibacter rhaeticus as an alternative bacteria for cellulose production.
Machado, Rachel T A; Gutierrez, Junkal; Tercjak, Agnieszka; Trovatti, Eliane; Uahib, Fernanda G M; Moreno, Gabriela de Padua; Nascimento, Andresa P; Berreta, Andresa A; Ribeiro, Sidney J L; Barud, Hernane S
2016-11-05
A strain isolated from Kombucha tea was isolated and used as an alternative bacterium for the biosynthesis of bacterial cellulose (BC). In this study, BC generated by this novel bacterium was compared to Gluconacetobacter xylinus biosynthesized BC. Kinetic studies reveal that Komagataeibacter rhaeticus was a viable bacterium to produce BC according to yield, thickness and water holding capacity data. Physicochemical properties of BC membranes were investigated by UV-vis and Fourier transform infrared spectroscopies (FTIR), thermogravimetrical analysis (TGA) and X-ray diffraction (XRD). Additionally, scanning electron microscopy (SEM) and atomic force microscopy (AFM) were also used for morphological characterization. Mechanical properties at nano and macroscale were studied employing PeakForce quantitative nanomechanical property mapping (QNM) and dynamic mechanical analyzer (DMA), respectively. Results confirmed that BC membrane biosynthesized by Komagataeibacter rhaeticus had similar physicochemical, morphological and mechanical properties than BC membrane produced by Gluconacetobacter xylinus and can be widely used for the same applications. Copyright © 2016 Elsevier Ltd. All rights reserved.
Tatlybaeva, Elena B; Nikiyan, Hike N; Vasilchenko, Alexey S; Deryabin, Dmitri G
2013-01-01
The labelling of functional molecules on the surface of bacterial cells is one way to recognize the bacteria. In this work, we have developed a method for the selective labelling of protein A on the cell surfaces of Staphylococcus aureus by using nanosized immunogold conjugates as cell-surface markers for atomic force microscopy (AFM). The use of 30-nm size Au nanoparticles conjugated with immunoglobulin G (IgG) allowed the visualization, localization and distribution of protein A-IgG complexes on the surface of S. aureus. The selectivity of the labelling method was confirmed in mixtures of S. aureus with Bacillus licheniformis cells, which differed by size and shape and had no IgG receptors on the surface. A preferential binding of the IgG-Au conjugates to S. aureus was obtained. Thus, this novel approach allows the identification of protein A and other IgG receptor-bearing bacteria, which is useful for AFM indication of pathogenic microorganisms in poly-component associations.
Surface Modulation of Graphene Field Effect Transistors on Periodic Trench Structure.
Jin, Jun Eon; Choi, Jun Hee; Yun, Hoyeol; Jang, Ho-Kyun; Lee, Byung Chul; Choi, Ajeong; Joo, Min-Kyu; Dettlaff-Weglikowska, Urszula; Roth, Siegmar; Lee, Sang Wook; Lee, Jae Woo; Kim, Gyu Tae
2016-07-20
In this work, graphene field effect transistors (FETs) were fabricated on a trench structure made by carbonized poly(methylmethacrylate) to modify the graphene surface. The trench-structured devices showed different characteristics depending on the channel orientation and the pitch size of the trenches as well as channel area in the FETs. Periodic corrugations and barriers of suspended graphene on the trench structure were measured by atomic force microscopy and electrostatic force microscopy. Regular barriers of 160 mV were observed for the trench structure with graphene. To confirm the transfer mechanism in the FETs depending on the channel orientation, the ratio of experimental mobility (3.6-3.74) was extracted from the current-voltage characteristics using equivalent circuit simulation. It is shown that the number of barriers increases as the pitch size decreases because the number of corrugations increases from different trench pitches. The noise for the 140 nm pitch trench is 1 order of magnitude higher than that for the 200 nm pitch trench.
Defect-selective dry etching for quick and easy probing of hexagonal boron nitride domains.
Wu, Qinke; Lee, Joohyun; Park, Sangwoo; Woo, Hwi Je; Lee, Sungjoo; Song, Young Jae
2018-03-23
In this study, we demonstrate a new method to selectively etch the point defects or the boundaries of as-grown hexagonal boron nitride (hBN) films and flakes in situ on copper substrates using hydrogen and argon gases. The initial quality of the chemical vapor deposition-grown hBN films and flakes was confirmed by UV-vis absorption spectroscopy, atomic force microscopy, and transmission electron microscopy. Different gas flow ratios of Ar/H 2 were then employed to etch the same quality of samples and it was found that etching with hydrogen starts from the point defects and grows epitaxially, which helps in confirming crystalline orientations. However, etching with argon is sensitive to line defects (boundaries) and helps in visualizing the domain size. Finally, based on this defect-selective dry etching technique, it could be visualized that the domains of a polycrystalline hBN monolayer merged together with many parts, even with those that grew from a single nucleation seed.
Defect-selective dry etching for quick and easy probing of hexagonal boron nitride domains
NASA Astrophysics Data System (ADS)
Wu, Qinke; Lee, Joohyun; Park, Sangwoo; Woo, Hwi Je; Lee, Sungjoo; Song, Young Jae
2018-03-01
In this study, we demonstrate a new method to selectively etch the point defects or the boundaries of as-grown hexagonal boron nitride (hBN) films and flakes in situ on copper substrates using hydrogen and argon gases. The initial quality of the chemical vapor deposition-grown hBN films and flakes was confirmed by UV-vis absorption spectroscopy, atomic force microscopy, and transmission electron microscopy. Different gas flow ratios of Ar/H2 were then employed to etch the same quality of samples and it was found that etching with hydrogen starts from the point defects and grows epitaxially, which helps in confirming crystalline orientations. However, etching with argon is sensitive to line defects (boundaries) and helps in visualizing the domain size. Finally, based on this defect-selective dry etching technique, it could be visualized that the domains of a polycrystalline hBN monolayer merged together with many parts, even with those that grew from a single nucleation seed.
Jellyfish collagen scaffolds for cartilage tissue engineering.
Hoyer, Birgit; Bernhardt, Anne; Lode, Anja; Heinemann, Sascha; Sewing, Judith; Klinger, Matthias; Notbohm, Holger; Gelinsky, Michael
2014-02-01
Porous scaffolds were engineered from refibrillized collagen of the jellyfish Rhopilema esculentum for potential application in cartilage regeneration. The influence of collagen concentration, salinity and temperature on fibril formation was evaluated by turbidity measurements and quantification of fibrillized collagen. The formation of collagen fibrils with a typical banding pattern was confirmed by atomic force microscopy and transmission electron microscopy analysis. Porous scaffolds from jellyfish collagen, refibrillized under optimized conditions, were fabricated by freeze-drying and subsequent chemical cross-linking. Scaffolds possessed an open porosity of 98.2%. The samples were stable under cyclic compression and displayed an elastic behavior. Cytotoxicity tests with human mesenchymal stem cells (hMSCs) did not reveal any cytotoxic effects of the material. Chondrogenic markers SOX9, collagen II and aggrecan were upregulated in direct cultures of hMSCs upon chondrogenic stimulation. The formation of typical extracellular matrix components was further confirmed by quantification of sulfated glycosaminoglycans. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Marslin, Gregory; Selvakesavan, Rajendran K; Franklin, Gregory; Sarmento, Bruno; Dias, Alberto CP
2015-01-01
We report on the antimicrobial activity of a cream formulation of silver nanoparticles (AgNPs), biosynthesized using Withania somnifera extract. Aqueous extracts of leaves promoted efficient green synthesis of AgNPs compared to fruits and root extracts of W. somnifera. Biosynthesized AgNPs were characterized for their size and shape by physical-chemical techniques such as UV-visible spectroscopy, laser Doppler anemometry, transmission electron microscopy, scanning electron microscopy, atomic force microscopy, X-ray diffraction, and X-ray energy dispersive spectroscopy. After confirming the antimicrobial potential of AgNPs, they were incorporated into a cream. Cream formulations of AgNPs and AgNO3 were prepared and compared for their antimicrobial activity against human pathogens (Staphylococcus aureus, Pseudomonas aeruginosa, Proteus vulgaris, Escherichia coli, and Candida albicans) and a plant pathogen (Agrobacterium tumefaciens). Our results show that AgNP creams possess significantly higher antimicrobial activity against the tested organisms. PMID:26445537
Rieti, S; Manni, V; Lisi, A; Giuliani, L; Sacco, D; D'Emilia, E; Cricenti, A; Generosi, R; Luce, M; Grimaldi, S
2004-01-01
In this study we have employed atomic force microscopy (AFM) and scanning near-field optical microscopy (SNOM) techniques to study the effect of the interaction between human keratinocytes (HaCaT) and electromagnetic fields at low frequency. HaCaT cells were exposed to a sinusoidal magnetic field at a density of 50 Hz, 1 mT. AFM analysis revealed modification in shape and morphology in exposed cells with an increase in the areas of adhesion between cells. This latter finding was confirmed by SNOM indirect immunofluorescence analysis performed with a fluorescent antibody against the adhesion marker beta4 integrin, which revealed an increase of beta4 integrin segregation in the cell membrane of 50-Hz exposed cells, suggesting that a higher percentage of these cells shows a modified pattern of this adhesion marker.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balke, Nina; Jesse, Stephen; Yu, Pu
Detection of dynamic surface displacements associated with local changes in material strain provides access to a number of phenomena and material properties. Contact resonance-enhanced methods of atomic force microscopy (AFM) have been shown capable of detecting ~1–3 pm-level surface displacements, an approach used in techniques such as piezoresponse force microscopy, atomic force acoustic microscopy, and ultrasonic force microscopy. Here, based on an analytical model of AFM cantilever vibrations, we demonstrate a guideline to quantify surface displacements with high accuracy by taking into account the cantilever shape at the first resonant contact mode, depending on the tip–sample contact stiffness. The approachmore » has been experimentally verified and further developed for piezoresponse force microscopy (PFM) using well-defined ferroelectric materials. These results open up a way to accurate and precise measurements of surface displacement as well as piezoelectric constants at the pm-scale with nanometer spatial resolution and will allow avoiding erroneous data interpretations and measurement artifacts. Furthermore, this analysis is directly applicable to all cantilever-resonance-based scanning probe microscopy (SPM) techniques.« less
Balke, Nina; Jesse, Stephen; Yu, Pu; ...
2016-09-15
Detection of dynamic surface displacements associated with local changes in material strain provides access to a number of phenomena and material properties. Contact resonance-enhanced methods of atomic force microscopy (AFM) have been shown capable of detecting ~1–3 pm-level surface displacements, an approach used in techniques such as piezoresponse force microscopy, atomic force acoustic microscopy, and ultrasonic force microscopy. Here, based on an analytical model of AFM cantilever vibrations, we demonstrate a guideline to quantify surface displacements with high accuracy by taking into account the cantilever shape at the first resonant contact mode, depending on the tip–sample contact stiffness. The approachmore » has been experimentally verified and further developed for piezoresponse force microscopy (PFM) using well-defined ferroelectric materials. These results open up a way to accurate and precise measurements of surface displacement as well as piezoelectric constants at the pm-scale with nanometer spatial resolution and will allow avoiding erroneous data interpretations and measurement artifacts. Furthermore, this analysis is directly applicable to all cantilever-resonance-based scanning probe microscopy (SPM) techniques.« less
NASA Astrophysics Data System (ADS)
Arenas, Mónica P.; Lanzoni, Evandro M.; Pacheco, Clara J.; Costa, Carlos A. R.; Eckstein, Carlos B.; de Almeida, Luiz H.; Rebello, João M. A.; Deneke, Christoph F.; Pereira, Gabriela R.
2018-01-01
In this study, we investigate artifacts arising from electric charges present in magnetic force microscopy images. Therefore, we use two austenitic steel samples with different microstructural conditions. Furthermore, we examine the influence of the surface preparation, like etching, in magnetic force images. Using Kelvin probe force microscopy we can quantify the charges present on the surface. Our results show that electrical charges give rise to a signature in the magnetic force microscopy, which is indistinguishable from a magnetic signal. Our results on two differently aged steel samples demonstrate that the magnetic force microscopy images need to be interpreted with care and must be corrected due to the influence of electrical charges present. We discuss three approaches, how to identify these artifacts - parallel acquisition of magnetic force and electric force images on the same position, sample surface preparation to decrease the presence of charges and inversion of the magnetic polarization in two succeeding measurement.
Zhang, Ji; Sun, Wei; Zhao, Jiangtao; Sun, Lei; Li, Lei; Yan, Xue-Jun; Wang, Ke; Gu, Zheng-Bin; Luo, Zhen-Lin; Chen, Yanbin; Yuan, Guo-Liang; Lu, Ming-Hui; Zhang, Shan-Tao
2017-08-02
Thin films of 0.85BiFe 1-2x Ti x Mg x O 3 -0.15CaTiO 3 (x = 0.1 and 0.2, abbreviated to C-1 and C-2, respectively) have been fabricated on (001) SrTiO 3 substrate with and without a conductive La 0.7 Sr 0.3 MnO 3 buffer layer. The X-ray θ-2θ and ϕ scans, atomic force microscopy, and cross-sectional transmission electron microscopy confirm the (001) epitaxial nature of the thin films with very high growth quality. Both the C-1 and C-2 thin films show well-shaped magnetization-magnetic field hysteresis at room temperature, with enhanced switchable magnetization values of 145.3 and 42.5 emu/cm 3 , respectively. The polarization-electric loops and piezoresponse force microscopy measurements confirm the room-temperature ferroelectric nature of both films. However, the C-1 films illustrate a relatively weak ferroelectric behavior and the poled states are easy to relax, whereas the C-2 films show a relatively better ferroelectric behavior with stable poled states. More interestingly, the room-temperature thermal conductivity of C-1 and C-2 films are measured to be 1.10 and 0.77 W/(m·K), respectively. These self-consistent multiferroic properties and thermal conductivities are discussed by considering the composition-dependent content and migration of Fe-induced electrons and/or charged point defects. This study not only provides multifunctional materials with excellent room-temperature magnetic, ferroelectric, and thermal conductivity properties but may also stimulate further work to develop BiFeO 3 -based materials with unusual multifunctional properties.
Observation and manipulation of magnetic domains in sol gel derived thin films of spinel ferrites
NASA Astrophysics Data System (ADS)
Datar, Ashwini A.; Mathe, Vikas L.
2017-12-01
Thin films of spinel ferrites, namely zinc substituted nickel, cobalt ferrite, and manganese substituted cobalt ferrite, were synthesized using sol-gel derived spin-coating techniques. The films were characterized using x-ray diffraction, field emission scanning electron microscopy, Fourier transform infrared spectroscopy and Raman spectroscopy techniques for the analysis of structural, morphological and vibrational band transition properties, which confirm the spinel phase formation of the films. The magnetic force microscopy (MFM) technique was used to observe the magnetic domain structure present in the synthesized films. Further, the films were subjected to an external DC magnetic field of 2 kG to orient the magnetic domains and analyzed using an ex situ MFM technique.
Structural and morphological study of chemically synthesized CdSe thin films
NASA Astrophysics Data System (ADS)
Agrawal, P.; Singh, Randhir; Sharma, Jeewan; Sachdeva, M.; Singh, Anupinder; Bhargava, A.
2018-05-01
Nanocrystalline CdSe thin films were prepared by Chemical Bath Deposition (CBD) method using potassium nitrilo-triacetic acid cadmium complex and sodium selenosulphite. The as deposited films were red in color, uniform and well adherent to the glass substrate. These films were strongly dependent on the deposition parameters such as bath composition, deposition temperature and time. Films were annealed at 350 °C for four hours. The morphological, structural and optical properties were studied using X-ray diffraction (XRD), UV-VIS spectrophotometer measurements, scanning electron microscopy and atomic force microscopy. The XRD analysis confirmed that films are predominantly in hexagonal phase. Scanning electron micrograph shows that the grains are uniformly spread all over the film and each grain contains many nanocrystals with spherical shapes.
Synthesis of TiN/a-Si3N4 thin film by using a Mather type dense plasma focus system
NASA Astrophysics Data System (ADS)
Hussain, T.; R., Ahmad; Khalid, N.; A. Umar, Z.; Hussnain, A.
2013-05-01
A 2.3 kJ Mather type pulsed plasma focus device was used for the synthesis of a TiN/a-Si3N4 thin film at room temperature. The film was characterized using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), and atomic force microscopy (AFM). The XRD pattern confirms the growth of polycrystalline TiN thin film. The XPS results indicate that the synthesized film is non-stoichiometric and contains titanium nitride, silicon nitride, and a phase of silicon oxy-nitride. The SEM and AFM results reveal that the surface of the synthesized film is quite smooth with 0.59 nm roughness (root-mean-square).
NASA Astrophysics Data System (ADS)
Russell, J. J.; Zou, J.; Moon, A. R.; Cockayne, D. J. H.
2000-08-01
Threading dislocation glide relieves strain in strained-layer heterostructures by increasing the total length of interface misfit dislocations. The blocking theory proposed by Freund [J. Appl. Phys. 68, 2073 (1990)] predicts the thickness above which gliding threading dislocations are able to overcome the resistance force produced by existing orthogonal misfit dislocations. A set of wedge-shaped samples of InxGa1-xAs/GaAs (x=0.04) strained-layer heterostructures was grown using molecular-beam epitaxy in order to test the theory of dislocation blocking over a range of thicknesses within one sample. Scanning cathodoluminescence microscopy techniques were used to image the misfit dislocations. The cathodoluminescence results confirm the model proposed by Freund.
NASA Astrophysics Data System (ADS)
Friese, M. E. J.; Rubinsztein-Dunlop, H.; Heckenberg, N. R.; Dearden, E. W.
1996-12-01
A single-beam gradient trap could potentially be used to hold a stylus for scanning force microscopy. With a view to development of this technique, we modeled the optical trap as a harmonic oscillator and therefore characterized it by its force constant. We measured force constants and resonant frequencies for 1 4- m-diameter polystyrene spheres in a single-beam gradient trap using measurements of backscattered light. Force constants were determined with both Gaussian and doughnut laser modes, with powers of 3 and 1 mW, respectively. Typical values for spring constants were measured to be between 10 6 and 4 10 6 N m. The resonant frequencies of trapped particles were measured to be between 1 and 10 kHz, and the rms amplitudes of oscillations were estimated to be around 40 nm. Our results confirm that the use of the doughnut mode for single-beam trapping is more efficient in the axial direction.
Li, Yuqin; Jia, Baoxiu; Wang, Hao; Li, Nana; Chen, Gaopan; Lin, Yuejuan; Gao, Wenhua
2013-04-01
The interaction of 2-mercaptobenzimidazole (MBI) with human serum albumin (HSA) was studied in vitro by equilibrium dialysis under normal physiological conditions. This study used fluorescence, ultraviolet-visible spectroscopy (UV-vis), Fourier transform infrared (FT-IR), circular dichroism (CD) and Raman spectroscopy, atomic force microscopy (AFM) and molecular modeling techniques. Association constants, the number of binding sites and basic thermodynamic parameters were used to investigate the quenching mechanism. Based on the fluorescence resonance energy transfer, the distance between the HSA and MBI was 2.495 nm. The ΔG(0), ΔH(0), and ΔS(0) values across temperature indicated that the hydrophobic interaction was the predominant binding Force. The UV, FT-IR, CD and Raman spectra confirmed that the HSA secondary structure was altered in the presence of MBI. In addition, the molecular modeling showed that the MBI-HSA complex was stabilized by hydrophobic forces, which resulted from amino acid residues. The AFM results revealed that the individual HSA molecule dimensions were larger after interaction with MBI. Overall, this study suggested a method for characterizing the weak intermolecular interaction. In addition, this method is potentially useful for elucidating the toxigenicity of MBI when it is combined with the biomolecular function effect, transmembrane transport, toxicological testing and other experiments. Copyright © 2012 Elsevier B.V. All rights reserved.
Zeta-potential and particle size studies of silver sulphide nanoparticles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharma, Vikash, E-mail: vikash@csr.res.in; Tarachand,; Ganesan, V.
Silver sulfide (Ag{sub 2}S) nanoparticles (NPs) were prepared successfully for the first time using diethylene glycol (DEG) as a surfactant. X-ray diffraction (XRD) data revealed single phase nature of the compound and energy-dispersive X-ray (EDX) confirmed its nominal composition. Their sizes were 43 nm from XRD, 50 nm from atomic force microscopy (AFM) and 19 nm & 213 nm from dynamic light scattering (DLS); their differences have been discussed. Autotitration study of zeta potential of these NPs in deionized water by DLS at different pH values confirmed an isoelectric point at pH = 5.14 and their very unstable nature in deionized water.
Magnetoelectric force microscopy based on magnetic force microscopy with modulated electric field.
Geng, Yanan; Wu, Weida
2014-05-01
We present the realization of a mesoscopic imaging technique, namely, the Magnetoelectric Force Microscopy (MeFM), for visualization of local magnetoelectric effect. The basic principle of MeFM is the lock-in detection of local magnetoelectric response, i.e., the electric field-induced magnetization, using magnetic force microscopy. We demonstrate MeFM capability by visualizing magnetoelectric domains on single crystals of multiferroic hexagonal manganites. Results of several control experiments exclude artifacts or extrinsic origins of the MeFM signal. The parameters are tuned to optimize the signal to noise ratio.
NASA Astrophysics Data System (ADS)
Song, Shiyong; Liu, Lei; Zhang, Junyan
2011-09-01
A poly(octadecene-alt-maleic anhydride) (POMA) film was covalently immobilized on N-[3-(trimethoxylsilyl)propyl]ethylenediamine self-assembled monolayer modified silicon surface. Attenuated total reflectance Fourier transform infrared spectra were used to confirm the chemical bonding. Water contact angles and ellipsometric thicknesses were measured before and after annealing treatment. Atomic force microscopy was applied for top morphology, surface adhesion force and friction force. Anti-wear properties of the films were also evaluated on a ball-on-plate tribometer. It was found that annealing treatment which would evoke a conformation transform thermodynamically, was a critical step in the preparation of anti-wear films, especially for polymer ones. The correlation between structure and tribological property was revealed, which has profound meaning in designing excellent anti-wear nano-coatings used in microelectronic mechanical systems (MEMS).
Wang, Mengmeng; Cai, Yin; Zhao, Bo; Zhu, Peizhi
2017-01-01
In this study, scanning electron microscopy (SEM), Raman spectroscopy and high-resolution atomic force microscopy (AFM) were used to reveal the early-stage change of nanomorphology and nanomechanical properties of poly(lactic acid) (PLA) fibers in a time-resolved manner during the mineralization process. Electrospun PLA nanofibers were soaked in simulated body fluid (SBF) for different periods of time (0, 1, 3, 5, 7 and 21 days) at 10 °C, much lower than the conventional 37 °C, to simulate the slow biomineralization process. Time-resolved Raman spectroscopy analysis can confirm that apatites were deposited on PLA nanofibers after 21 days of mineralization. However, there is no significant signal change among several Raman spectra before 21 days. SEM images can reveal the mineral deposit on PLA nanofibers during the process of mineralization. In this work, for the first time, time-resolved AFM was used to monitor early-stage nanomorphology and nanomechanical changes of PLA nanofibers. The Surface Roughness and Young’s Modulus of the PLA nanofiber quantitatively increased with the time of mineralization. The electrospun PLA nanofibers with delicate porous structure could mimic the extracellular matrix (ECM) and serve as a model to study the early-stage mineralization. Tested by the mode of PLA nanofibers, we demonstrated that AFM technique could be developed as a potential diagnostic tool to monitor the early onset of pathologic mineralization of soft tissues. PMID:28817096
Scanning Probe Microscopy for Identifying the Component Materials of a Nanostripe Structure
NASA Astrophysics Data System (ADS)
Mizuno, Akira; Ando, Yasuhisa
2010-08-01
The authors prepared a nanostripe structure in which two types of metal are arranged alternately, and successfully identified the component materials using scanning probe microscopy (SPM) to measure the lateral force distribution image. The nanostripe structure was prepared using a new method developed by the authors and joint development members. The lateral force distribution image was measured in both friction force microscopy (FFM) and lateral modulation friction force microscopy (LM-FFM) modes. In FFM mode, the effect of slope angle appeared in the lateral force distribution image; therefore, no difference in the type of material was observed. On the other hand, in LM-FFM mode, the effect of surface curvature was observed in the lateral force distribution image. A higher friction force on chromium than on gold was identified, enabling material identification.
Biomechanical Characterization of Cardiomyocyte Using PDMS Pillar with Microgrooves
Oyunbaatar, Nomin-Erdene; Lee, Deok-Hyu; Patil, Swati J.; Kim, Eung-Sam; Lee, Dong-Weon
2016-01-01
This paper describes the surface-patterned polydimethylsiloxane (PDMS) pillar arrays for enhancing cell alignment and contraction force in cardiomyocytes. The PDMS micropillar (μpillar) arrays with microgrooves (μgrooves) were fabricated using a unique micro-mold made using SU-8 double layer processes. The spring constant of the μpillar arrays was experimentally confirmed using atomic force microscopy (AFM). After culturing cardiac cells on the two different types of μpillar arrays, with and without grooves on the top of μpillar, the characteristics of the cardiomyocytes were analyzed using a custom-made image analysis system. The alignment of the cardiomyocytes on the μgrooves of the μpillars was clearly observed using a DAPI staining process. The mechanical force generated by the contraction force of the cardiomyocytes was derived from the displacement of the μpillar arrays. The contraction force of the cardiomyocytes aligned on the μgrooves was 20% higher than that of the μpillar arrays without μgrooves. The experimental results prove that applied geometrical stimulus is an effective method for aligning and improving the contraction force of cardiomyocytes. PMID:27517924
Atomic force microscopy of pea starch: origins of image contrast.
Ridout, Michael J; Parker, Mary L; Hedley, Cliff L; Bogracheva, Tatiana Y; Morris, Victor J
2004-01-01
Atomic force microscopy (AFM) has been used to image the internal structure of pea starch granules. Starch granules were encased in a nonpenetrating matrix of rapid-set Araldite. Images were obtained of the internal structure of starch exposed by cutting the face of the block and of starch in sections collected on water. These images have been obtained without staining, or either chemical or enzymatic treatment of the granule. It has been demonstrated that contrast in the AFM images is due to localized absorption of water within specific regions of the exposed fragments of the starch granules. These regions swell, becoming "softer" and higher than surrounding regions. The images obtained confirm the "blocklet model" of starch granule architecture. By using topographic, error signal and force modulation imaging modes on samples of the wild-type pea starch and the high amylose r near-isogenic mutant, it has been possible to demonstrate differing structures within granules of different origin. These architectural changes provide a basis for explaining the changed appearance and functionality of the r mutant. The growth-ring structure of the granule is suggested to arise from localized "defects" in blocklet distribution within the granule. It is proposed that these defects are partially crystalline regions devoid of amylose.
NASA Astrophysics Data System (ADS)
Ashby, Paul David
Investigation into the origin of forces dates to the early Greeks. Yet, only in recent decades have techniques for elucidating the molecular origin of forces been developed. Specifically, Chemical Force Microscopy uses the high precision and nanometer scale probe of Atomic Force Microscopy to measure molecular and interfacial interactions. This thesis presents the development of many novel Chemical Force Microscopy techniques for measuring equilibrium and time-dependant force profiles of molecular interactions, which led to a greater understanding of the origin of interfacial forces in solution. In chapter 2, Magnetic Feedback Chemical Force Microscopy stiffens the cantilever for measuring force profiles between self-assembled monolayer (SAM) surfaces. Hydroxyl and carboxyl terminated SAMs produce long-range interactions that extend one or three nanometers into the solvent, respectively. In chapter 3, an ultra low noise AFM is produced through multiple modifications to the optical deflection detection system and signal processing electronics. In chapter 4, Brownian Force Profile Reconstruction is developed for accurate measurement of steep attractive interactions. Molecular ordering is observed for OMCTS, 1-nonanol, and water near flat surfaces. The molecular ordering of the solvent produces structural or solvation forces, providing insight into the orientation and possible solidification of the confined solvent. Seven molecular layers of OMCTS are observed but the oil remains fluid to the last layer. 1-nonanol strongly orders near the surface and becomes quasi-crystalline with four layers. Water is oriented by the surface and symmetry requires two layers of water (3.7 A) to be removed simultaneously. In chapter 5, electronic control of the cantilever Q (Q-control) is used to obtain the highest imaging sensitivity. In chapter 6, Energy Dissipation Chemical Force Microscopy is developed to investigate the time dependence and dissipative characteristics of SAM interfacial interactions in solution. Long-range adhesive forces for hydroxyl and carboxyl terminated SAM surfaces arise from solvent, not ionic, interactions. Exclusion of the solvent and contact between the SAM surfaces leads to rearrangement of the SAM headgroups. The isolation of the chemical and physical interfacial properties from the topography by Energy Dissipation Chemical Force Microscopy produces a new quantitative high-sensitivity imaging mode.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garfias-Mesias, L.F.; Alodan, M.; James, P.I.
1998-06-01
Scanning electrochemical microscopy (SECM) in ferrocyanide and bromide solutions was used to locate active sites (pitting precursors) on polycrystalline Ti where oxidation of Br{sup {minus}} and Fe(CN){sub 6}{sup 4{minus}} was possible. Analysis of the electrochemically active sites was done by using electron microscopy (SEM), energy dispersive X-ray analysis (EDX), atomic force microscopy (AFM), and in situ confocal laser scanning microscopy (CLSM). In most cases, the active sites were found to be associated with particles (inclusions) which contained mainly Al and Si; however, some other areas not associated with particles were also found to be active. Although the size of themore » inclusions was normally smaller than 20 {micro}m, as revealed by SEM and AFM imaging, in some cases larger particles were also found. Pitting corrosion tests in bromide solution at potentials above 1.5 V{sub SCE} followed by EDX analysis inside the pits and in situ CLSM observation, confirmed that most of the localized attack started in the areas where particles had been located.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Ruixue; Xu, Han; Yang, Bin
The crystalline phases and domain configuration in the morphotropic phase boundary composition Pb(Mg1/3Nb2/3)O3-0.34PbTiO3 (PMN-0.34PT) single crystal have been investigated by synchrotronbased X-ray 3D Reciprocal Space Mapping (3D-RSM) and Piezoresponse Force Microscopy. The coexistence of tetragonal (T) and monoclinic MC phases in this PMN-0.34PT single crystal is confirmed. The affiliation of each diffraction spot in the 3D-RSM was identified with the assistance of qualitative simulation. Most importantly, the twinning structure between different domains in such a mixed phase PMN-PT crystal is firmly clarified, and the spatial distribution of different twin domains is demonstrated. In addition, the lattice parameters of T andmore » MC phases in PMN-0.34PT single crystal as well as the tilting angles of crystal lattices caused by the interfacial lattice mismatch are determined.« less
Diameter-Dependent Modulus and Melting Behavior in Electrospun Semicrystalline Polymer Fibers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Y Liu; S Chen; E Zussman
2011-12-31
Confinement of the semicrystalline polymers, poly(ethylene-co-vinyl acetate) (PEVA) and low-density polyethylene (LDPE), produced by electrospinning has been observed to produce fibers with large protrusions, which have not been previously observed in fibers of comparable diameters produced by other methods. SAXS spectra confirmed the crystalline structure and determined that the lamellar spacing was almost unchanged from the bulk. Measurement of the mechanical properties of these fibers, by both shear modulation force microscopy (SMFM) and atomic force acoustic microscopy (AFAM), indicates that the modulii of these fibers increases with decreasing diameter, with the onset at {approx}10 {micro}m, which is an order ofmore » magnitude larger than previously reported. Melting point measurements indicate a decrease of more than 7% in T{sub m}/T{sub 0} (where T{sub m} is the melting point of semicrystalline polymer fibers and T{sub 0} is the melting point of the bulk polymer) for fibers ranging from 4 to 10 {micro}m in diameter. The functional form of the decrease followed a universal curve for PEVA, when scaled with T{sub 0}.« less
Tatlybaeva, Elena B; Vasilchenko, Alexey S; Deryabin, Dmitri G
2013-01-01
Summary The labelling of functional molecules on the surface of bacterial cells is one way to recognize the bacteria. In this work, we have developed a method for the selective labelling of protein A on the cell surfaces of Staphylococcus aureus by using nanosized immunogold conjugates as cell-surface markers for atomic force microscopy (AFM). The use of 30-nm size Au nanoparticles conjugated with immunoglobulin G (IgG) allowed the visualization, localization and distribution of protein A–IgG complexes on the surface of S. aureus. The selectivity of the labelling method was confirmed in mixtures of S. aureus with Bacillus licheniformis cells, which differed by size and shape and had no IgG receptors on the surface. A preferential binding of the IgG–Au conjugates to S. aureus was obtained. Thus, this novel approach allows the identification of protein A and other IgG receptor-bearing bacteria, which is useful for AFM indication of pathogenic microorganisms in poly-component associations. PMID:24367742
NASA Astrophysics Data System (ADS)
Fukuma, Takeshi; Mostaert, Anika S.; Serpell, Louise C.; Jarvis, Suzanne P.
2008-09-01
We have investigated the surface structure of islet amyloid polypeptide (IAPP) fibrils and α-synuclein protofibrils in liquid by means of frequency modulation atomic force microscopy (FM-AFM). Ångström-resolution FM-AFM imaging of isolated macromolecules in liquid is demonstrated for the first time. Individual β-strands aligned perpendicular to the fibril axis with a spacing of 0.5 nm are resolved in FM-AFM images, which confirms cross-β structure of IAPP fibrils in real space. FM-AFM images also reveal the existence of 4 nm periodic domains along the axis of IAPP fibrils. Stripe features with 0.5 nm spacing are also found in images of α-synuclein protofibrils. However, in contrast to the case for IAPP fibrils, the stripes are oriented 30° from the axis, suggesting the possibility of β-strand alignment in protofibrils different from that in mature fibrils or the regular arrangement of thioflavin T molecules present during the fibril preparation aligned at the surface of the protofibrils.
NASA Astrophysics Data System (ADS)
Alosmanov, R. M.; Szuwarzyński, M.; Schnelle-Kreis, J.; Matuschek, G.; Magerramov, A. M.; Azizov, A. A.; Zimmermann, R.; Zapotoczny, S.
2018-04-01
Fabrication of magnetic nanocomposites containing iron oxide nanoparticles formed in situ within a phosphorus-containing polymer matrix as well as its structural characterization and its thermal degradation is reported here. Comparative structural studies of the parent polymer and nanocomposites were performed using FTIR spectroscopy, x-ray diffraction, and atomic force microscopy. The results confirmed the presence of dispersed iron oxide magnetic nanoparticles in the polymer matrix. The formed composite combines the properties of porous polymer carriers and magnetic particles enabling easy separation and reapplication of such polymeric carriers used in, for example, catalysis or environmental remediation. Studies on thermal degradation of the composites revealed that the process proceeds in three stages while a significant influence of the embedded magnetic particles on that process was observed in the first two stages. Magnetic force microscopy studies revealed that nanocomposites and its calcinated form have strong magnetic properties. The obtained results provide a comprehensive characterization of magnetic nanocomposites and the products of their calcination that are important for their possible applications as sorbents (regeneration conditions, processing temperature, disposal, etc).
NASA Astrophysics Data System (ADS)
Yacoot, Andrew; Koenders, Ludger
2008-05-01
The review will describe the various scanning probe microscopy tips and cantilevers used today for scanning force microscopy and magnetic force microscopy. Work undertaken to quantify the properties of cantilevers and tips, e.g. shape and radius, is reviewed together with an overview of the various tip-sample interactions that affect dimensional measurements.
Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy
Neuman, Keir C.; Nagy, Attila
2012-01-01
Single-molecule force spectroscopy has emerged as a powerful tool to investigate the forces and motions associated with biological molecules and enzymatic activity. The most common force spectroscopy techniques are optical tweezers, magnetic tweezers and atomic force microscopy. These techniques are described and illustrated with examples highlighting current capabilities and limitations. PMID:18511917
Observation of DNA Molecules Using Fluorescence Microscopy and Atomic Force Microscopy
ERIC Educational Resources Information Center
Ito, Takashi
2008-01-01
This article describes experiments for an undergraduate instrumental analysis laboratory that aim to observe individual double-stranded DNA (dsDNA) molecules using fluorescence microscopy and atomic force microscopy (AFM). dsDNA molecules are observed under several different conditions to discuss their chemical and physical properties. In…
Subpiconewton intermolecular force microscopy.
Tokunaga, M; Aoki, T; Hiroshima, M; Kitamura, K; Yanagida, T
1997-02-24
We refined scanning probe force microscopy to improve the sensitivity of force detection and control of probe position. Force sensitivity was increased by incorporating a cantilever with very low stiffness, 0.1 pN/ nm, which is over 1000-fold more flexible than is typically used in conventional atomic force microscopy. Thermal bending motions of the cantilever were reduced to less than 1 nm by exerting feed-back positioning with laser radiation pressure. The system was tested by measuring electrostatic repulsive forces or hydrophobic attractive forces in aqueous solutions. Subpiconewton intermolecular forces were resolved at controlled gaps in the nanometer range between the probe and a material surface. These levels of force and position sensitivity meet the requirements needed for future investigations of intermolecular forces between biological macromolecules such as proteins, lipids and DNA.
Selective Growth of Metallic and Semiconducting Single Walled Carbon Nanotubes on Textured Silicon.
Jang, Mira; Lee, Jongtaek; Park, Teahee; Lee, Junyoung; Yang, Jonghee; Yi, Whikun
2016-03-01
We fabricated the etched Si substrate having the pyramidal pattern size from 0.5 to 4.2 μm by changing the texturing process parameters, i.e., KOH concentration, etching time, and temperature. Single walled carbon nanotubes (SWNTs) were then synthesized on the etched Si substrates with different pyramidal pattern by chemical vapor deposition. We investigated the optical and electronic properties of SWNT film grown on the etched Si substrates of different morphology by using scanning electron microscopy, Raman spectroscopy and conducting probe atomic force microscopy. We confirmed that the morphology of substrate strongly affected the selective growth of the SWNT film. Semiconducting SWNTs were formed on larger pyramidal sized Si wafer with higher ratio compared with SWNTs on smaller pyramidal sized Si.
Facile synthesis of graphene on dielectric surfaces using a two-temperature reactor CVD system
NASA Astrophysics Data System (ADS)
Zhang, C.; Man, B. Y.; Yang, C.; Jiang, S. Z.; Liu, M.; Chen, C. S.; Xu, S. C.; Sun, Z. C.; Gao, X. G.; Chen, X. J.
2013-10-01
Direct deposition of graphene on a dielectric substrate is demonstrated using a chemical vapor deposition system with a two-temperature reactor. The two-temperature reactor is utilized to offer sufficient, well-proportioned floating Cu atoms and to provide a temperature gradient for facile synthesis of graphene on dielectric surfaces. The evaporated Cu atoms catalyze the reaction in the presented method. C atoms and Cu atoms respectively act as the nuclei for forming graphene film in the low-temperature zone and the zones close to the high-temperature zones. A uniform and high-quality graphene film is formed in an atmosphere of sufficient and well-proportioned floating Cu atoms. Raman spectroscopy, scanning electron microscopy and atomic force microscopy confirm the presence of uniform and high-quality graphene.
Chitin-natural clay nanotubes hybrid hydrogel.
Liu, Mingxian; Zhang, Yun; Li, Jingjing; Zhou, Changren
2013-07-01
Novel hybrid hydrogel was synthesized from chitin NaOH/urea aqueous solution in presence of halloysite nanotubes (HNTs) via crosslinking with epichlorohydrin. Fourier transform infrared (FT-IR) spectra and atomic force microscopy (AFM) results confirmed the interfacial interactions in the chitin-HNTs hybrid hydrogel. The compressive strength and shear modulus of chitin hydrogel were significantly increased by HNTs as shown in the static compressive experiment and rheology measurement. The hybrid hydrogels showed highly porous microstructures by scanning electron microscopy (SEM). The swelling ratio of chitin hydrogel decreased because of the addition of HNTs. The malachite green's absorption experiment result showed that the hybrid hydrogel exhibited much higher absorption rate than the pure chitin hydrogel. The prepared hybrid hydrogel had potential applications in waste treatment and biomedical areas. Copyright © 2013 Elsevier B.V. All rights reserved.
Nanogrids and Beehive-Like Nanostructures Formed by Plasma Etching the Self-Organized SiGe Islands
NASA Astrophysics Data System (ADS)
Chang, Yuan-Ming; Jian, Sheng-Rui; Juang, Jenh-Yih
2010-09-01
A lithography-free method for fabricating the nanogrids and quasi-beehive nanostructures on Si substrates is developed. It combines sequential treatments of thermal annealing with reactive ion etching (RIE) on SiGe thin films grown on (100)-Si substrates. The SiGe thin films deposited by ultrahigh vacuum chemical vapor deposition form self-assembled nanoislands via the strain-induced surface roughening (Asaro-Tiller-Grinfeld instability) during thermal annealing, which, in turn, serve as patterned sacrifice regions for subsequent RIE process carried out for fabricating nanogrids and beehive-like nanostructures on Si substrates. The scanning electron microscopy and atomic force microscopy observations confirmed that the resultant pattern of the obtained structures can be manipulated by tuning the treatment conditions, suggesting an interesting alternative route of producing self-organized nanostructures.
A green synthesis method for large area silver thin film containing nanoparticles.
Shinde, N M; Lokhande, A C; Lokhande, C D
2014-07-05
The green synthesis method is inexpensive and convenient for large area deposition of thin films. For the first time, a green synthesis method for large area silver thin film containing nanoparticles is reported. Silver nanostructured films are deposited using silver nitrate solution and guava leaves extract. The study confirmed that the reaction time plays a key role in the growth and shape/size control of silver nanoparticles. The properties of silver films are studied using UV-visible spectrophotometer, scanning electron microscopy (SEM), X-ray diffraction (XRD), atomic force microscopy (AFM), contact angle, Fourier-transform Raman (FT-Raman) spectroscopy and Photoluminescence (PL) techniques. Finally, as an application, these films are used effectively in antibacterial activity study. Copyright © 2014 Elsevier B.V. All rights reserved.
Synthesis of atomically thin hexagonal boron nitride films on nickel foils by molecular beam epitaxy
NASA Astrophysics Data System (ADS)
Nakhaie, S.; Wofford, J. M.; Schumann, T.; Jahn, U.; Ramsteiner, M.; Hanke, M.; Lopes, J. M. J.; Riechert, H.
2015-05-01
Hexagonal boron nitride (h-BN) is a layered two-dimensional material with properties that make it promising as a dielectric in various applications. We report the growth of h-BN films on Ni foils from elemental B and N using molecular beam epitaxy. The presence of crystalline h-BN over the entire substrate is confirmed by Raman spectroscopy. Atomic force microscopy is used to examine the morphology and continuity of the synthesized films. A scanning electron microscopy study of films obtained using shorter depositions offers insight into the nucleation and growth behavior of h-BN on the Ni substrate. The morphology of h-BN was found to evolve from dendritic, star-shaped islands to larger, smooth triangular ones with increasing growth temperature.
Contradictory nature of Co doping in ferroelectric BaTi O 3
Ponath, Patrick; O’Hara, Andrew; Cao, Hai-Xia; ...
2016-11-11
The growth of Co-substituted BaTiO 3 (BTO) films on Ge(001) substrates by molecular beam epitaxy is demonstrated in this paper. Energy-dispersive x-ray spectroscopy and transmission electron microscopy images confirm the uniform Co distribution. However, no evidence of magnetic ordering is observed in samples grown for Co concentrations between 2% and 40%. Piezoresponse force microscopy measurements show that a 5% Co-substituted BTO sample exhibits ferroelectric behavior. First-principles calculations indicate that while Co atoms couple ferromagnetically in the absence of oxygen vacancies, the occurrence of oxygen vacancies leads to locally antiferromagnetically coupled complexes with relatively strong spin coupling. Finally, the presence ofmore » a significant amount of oxygen vacancies is suggested by x-ray photoelectron spectroscopy measurements.« less
Magneto-optical Faraday rotation of semiconductor nanoparticles embedded in dielectric matrices.
Savchuk, Andriy I; Stolyarchuk, Ihor D; Makoviy, Vitaliy V; Savchuk, Oleksandr A
2014-04-01
Faraday rotation has been studied for CdS, CdTe, and CdS:Mn semiconductor nanoparticles synthesized by colloidal chemistry methods. Additionally these materials were prepared in a form of semiconductor nanoparticles embedded in polyvinyl alcohol films. Transmission electron microscopy and atomic force microscopy analyses served as confirmation of nanocrystallinity and estimation of the average size of the nanoparticles. Spectral dependence of the Faraday rotation for the studied nanocrystals and nanocomposites is correlated with a blueshift of the absorption edge due to the confinement effect in zero-dimensional structures. Faraday rotation spectra and their temperature behavior in Mn-doped nanocrystals demonstrates peculiarities, which are associated with s, p-d exchange interaction between Mn²⁺ ions and band carriers in diluted magnetic semiconductor nanostructures.
Wang, Ji; Zhao, Xiao; Tian, Zheng; Yang, Yawei; Yang, Zhennai
2015-07-10
An exopolysaccharide (EPS)-producing strain YW11 isolated from Tibet Kefir was identified as Lactobacillus plantarum, and the strain was shown to produce 90 mgL(-1) of EPS when grown in a semi-defined medium. The molecular mass of the EPS was 1.1 × 10(5)Da. The EPS was composed of glucose and galactose in a molar ratio of 2.71:1, with possible presence of N-acetylated sugar residues in the polysaccharide as confirmed by NMR spectroscopy. Rheological studies showed that the EPS had higher viscosity in skim milk, at lower temperature, or at acidic pH. The viscous nature of the EPS was confirmed by observation with scanning electron microscopy that demonstrated a highly branched and porous structure of the polysaccharide. The atomic force microscopy of the EPS further revealed presence of many spherical lumps, facilitating binding with water in aqueous solution. The EPS had a higher degradation temperature (287.7°C), suggesting high thermal stability of the EPS. Copyright © 2015 Elsevier Ltd. All rights reserved.
Alharbi, Naiyf S; Khaled, Jamal M; Alzaharni, Khalid E; Mothana, Ramzi A; Alsaid, Mansour S; Alhoshan, Mansour; Dass, Lawrence Arockiasamy; Kadaikunnan, Shine; Alobaidi, Ahmed S
2017-01-01
The increasing prevalence of antibiotic-resistant bacteria is creating a real challenge for health care systems worldwide, making the development of novel antibiotics a necessity. In addition to the development of new antibiotics, there is an urgent need for in-depth characterization of the mechanisms of bacterial resistance toward new drugs. Here, we used essential oils extracted in our laboratory from Piper cubeba against methicillin-resistant Staphylococcus aureus ATCC 43300, one of the most prominent antibiotic-resistant bacteria. Effects of the essential oils extracted from P cubeba on bacteria were mainly evaluated using 2 powerful microscopy techniques: atomic force microscopy and transmission electron microscopy. High-resolution atomic force microscopy images of the cells were obtained close to their native environment by immobilizing the cells on porous Polyether sulfone membranes, which were prepared in our laboratory with a wide range and distribution of pore sizes and depth. Inhibition zones (mm) and minimum inhibitory concentrations were determined. Two different concentrations of the oil were used to treat the cells: 50 μg/mL minimum inhibitory concentration and 25 μg/mL. The 50 μg/mL oil solution caused severe damage to the bacterial cells at microscopic levels while the 25 μg/mL solution showed no effects compared to the control. However, at nanoscopic levels, the 25 μg/mL oil solution caused significant changes in the cell wall, which could potentially impair bacterial activities. These results were also confirmed by transmission electron microscopy micrographs. Our results indicate that the extract has a good biological activity against methicillin- and oxacillin-resistant S aureus and that it acts on the cell wall and plasma (cytoplasmic) membrane. Copyright © 2016 John Wiley & Sons, Ltd.
2011-09-01
glancing angle X - ray diffraction (GAXRD), atomic force microscopy (AFM), scanning electron microscopy (SEM), and electrochemical...Emission SEM FWHM full width at half maximum GAXRD glancing angle X - ray diffraction H3COCH2CH2OH 2-methoxyethanol LiMn2O4 lithium manganese oxide...were characterized by scanning electron microscopy (SEM), X - ray diffraction (XRD), and atomic force microscopy (AFM). In addition,
NASA Technical Reports Server (NTRS)
Cantrell, John H., Jr.; Cantrell, Sean A.
2008-01-01
A comprehensive analytical model of the interaction of the cantilever tip of the atomic force microscope (AFM) with the sample surface is developed that accounts for the nonlinearity of the tip-surface interaction force. The interaction is modeled as a nonlinear spring coupled at opposite ends to linear springs representing cantilever and sample surface oscillators. The model leads to a pair of coupled nonlinear differential equations that are solved analytically using a standard iteration procedure. Solutions are obtained for the phase and amplitude signals generated by various acoustic-atomic force microscope (A-AFM) techniques including force modulation microscopy, atomic force acoustic microscopy, ultrasonic force microscopy, heterodyne force microscopy, resonant difference-frequency atomic force ultrasonic microscopy (RDF-AFUM), and the commonly used intermittent contact mode (TappingMode) generally available on AFMs. The solutions are used to obtain a quantitative measure of image contrast resulting from variations in the Young modulus of the sample for the amplitude and phase images generated by the A-AFM techniques. Application of the model to RDF-AFUM and intermittent soft contact phase images of LaRC-cp2 polyimide polymer is discussed. The model predicts variations in the Young modulus of the material of 24 percent from the RDF-AFUM image and 18 percent from the intermittent soft contact image. Both predictions are in good agreement with the literature value of 21 percent obtained from independent, macroscopic measurements of sheet polymer material.
Martínez; Martín; Prádanos; Calvo; Palacio; Hernández
2000-01-15
The mass of gamma-globulin fouling an Anodisc alumina membrane with a nominal pore diameter of 0.1 µm has been measured at several concentrations and pHs. This fouling resulted from filtering through the membrane in a continuous recirculation device. The low-concentration fouling can be attributed mainly to adsorption. The complete concentration dependence of fouling mass has been obtained and fitted to a Freundlich heterogeneous isotherm, from which the pH dependence of active fouling sites and energies has been also obtained. Adsorption is studied as a function of the electrostatic forces between the solute and the membrane. A sharp maximum in the adsorbed mass for zero electrostatic force is observed. At high concentrations, accumulation plays a relevant role at alkaline pH, as confirmed by flux decay experiments, retention measurements, and AFM (atomic force microscopy) pictures. Copyright 2000 Academic Press.
NASA Astrophysics Data System (ADS)
Catledge, Shane A.; Spencer, Philemon T.; Vohra, Yogesh K.
2000-11-01
We have carried out mechanical property measurements on zirconium metal compressed in a diamond anvil cell to 19 GPa at room temperature with subsequent quenching to room pressure. The irreversible transformation from the ambient hexagonal-close-packed phase to the simple hexagonal ω phase (AlB2 structure) is confirmed by synchrotron energy dispersive x-ray diffraction followed by nanoindentation of the pressure-quenched sample. We document an 80% increase in hardness as a consequence of the pressure-induced transformation to the ω phase at room temperature. This is a large increase for a metallic phase transformation and can be attributed to the presence of sp2-hybrid bonds forming graphite-like nets in the (0001) plane of the AlB2 structure. Atomic force microscopy of the indents shows that a plastic deformation of 2 μm in depth was achieved with a force of 200 mN.
Quadratic electromechanical strain in silicon investigated by scanning probe microscopy
NASA Astrophysics Data System (ADS)
Yu, Junxi; Esfahani, Ehsan Nasr; Zhu, Qingfeng; Shan, Dongliang; Jia, Tingting; Xie, Shuhong; Li, Jiangyu
2018-04-01
Piezoresponse force microscopy (PFM) is a powerful tool widely used to characterize piezoelectricity and ferroelectricity at the nanoscale. However, it is necessary to distinguish microscopic mechanisms between piezoelectricity and non-piezoelectric contributions measured by PFM. In this work, we systematically investigate the first and second harmonic apparent piezoresponses of a silicon wafer in both vertical and lateral modes, and we show that it exhibits an apparent electromechanical response that is quadratic to the applied electric field, possibly arising from ionic electrochemical dipoles induced by the charged probe. As a result, the electromechanical response measured is dominated by the second harmonic response in the vertical mode, and its polarity can be switched by the DC voltage with the evolving coercive field and maximum amplitude, in sharp contrast to typical ferroelectric materials we used as control. The ionic activity in silicon is also confirmed by the scanning thermo-ionic microscopy measurement, and the work points toward a set of methods to distinguish true piezoelectricity from the apparent ones.
One-dimensional nanoferroic rods; synthesis and characterization
NASA Astrophysics Data System (ADS)
Ahmed, M. A.; Seddik, U.; Okasha, N.; Imam, N. G.
2015-11-01
One-dimensional nanoferroic rods of BaTiO3 were synthesized by improved citrate auto-combustion technology using tetrabutyl titanate. X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray (EDX), transmission electron microscopy (TEM), atomic force microscopy (AFM) and Fourier transform infrared spectroscopy (FTIR) have been used to characterize the prepared sample. The results indicated that the crystal structure of BaTiO3 is tetragonal phase with an average crystallite size of 47 nm. SEM image gives a cauliflower-like morphology of the agglomerated nanorods. The stoichiometry of the chemical composition of the BaTiO3 ceramic was confirmed by EDX. TEM micrograph exhibited that BaTiO3 nanoparticles have rod-like shape with an average length of 120 nm and width of 43 nm. AFM was used to investigate the surface topography and its roughness. The topography image in 3D showed that the BaTiO3 particles have a rod shape with an average particle size of 116 nm which in agreement with 3D TEM result.
Measurements of Elastic Moduli of Silicone Gel Substrates with a Microfluidic Device
Gutierrez, Edgar; Groisman, Alex
2011-01-01
Thin layers of gels with mechanical properties mimicking animal tissues are widely used to study the rigidity sensing of adherent animal cells and to measure forces applied by cells to their substrate with traction force microscopy. The gels are usually based on polyacrylamide and their elastic modulus is measured with an atomic force microscope (AFM). Here we present a simple microfluidic device that generates high shear stresses in a laminar flow above a gel-coated substrate and apply the device to gels with elastic moduli in a range from 0.4 to 300 kPa that are all prepared by mixing two components of a transparent commercial silicone Sylgard 184. The elastic modulus is measured by tracking beads on the gel surface under a wide-field fluorescence microscope without any other specialized equipment. The measurements have small and simple to estimate errors and their results are confirmed by conventional tensile tests. A master curve is obtained relating the mixing ratios of the two components of Sylgard 184 with the resulting elastic moduli of the gels. The rigidity of the silicone gels is less susceptible to effects from drying, swelling, and aging than polyacrylamide gels and can be easily coated with fluorescent tracer particles and with molecules promoting cellular adhesion. This work can lead to broader use of silicone gels in the cell biology laboratory and to improved repeatability and accuracy of cell traction force microscopy and rigidity sensing experiments. PMID:21980487
NASA Astrophysics Data System (ADS)
Heinzmann, U.; Gryzia, A.; Volkmann, T.; Brechling, A.; Hoeke, V.; Glaser, T.
2014-04-01
Single molecule magnets (SMM) deposited in submonolayers and monolayers have been analyzed with respect to their structures by means of non-contact AFM (topographic as well as damping mode) and Kelvin Probe Force Microscopy with molecular resolution.
Scanning ion-conductance and atomic force microscope with specialized sphere-shaped nanopippettes
NASA Astrophysics Data System (ADS)
Zhukov, M. V.; Sapozhnikov, I. D.; Golubok, A. O.; Chubinskiy-Nadezhdin, V. I.; Komissarenko, F. E.; Lukashenko, S. Y.
2017-11-01
A scanning ion-conductance microscope was designed on the basis of scanning probe microscope NanoTutor. The optimal parameters of nanopipettes fabrication were found according to scanning electron microscopy diagnostics, current-distance I (Z) and current-voltage characteristics. A comparison of images of test objects, including biological samples, was carried out in the modes of optical microscopy, atomic force microscopy and scanning ion-conductance microscopy. Sphere-shaped nanopippettes probes were developed and tested to increase the stability of pipettes, reduce invasiveness and improve image quality of atomic force microscopy in tapping mode. The efficiency of sphere-shaped nanopippettes is shown.
Gramazio, Federico; Lorenzoni, Matteo; Pérez-Murano, Francesc; Rull Trinidad, Enrique; Staufer, Urs; Fraxedas, Jordi
2017-01-01
We present a combined theoretical and experimental study of the dependence of resonant higher harmonics of rectangular cantilevers of an atomic force microscope (AFM) as a function of relevant parameters such as the cantilever force constant, tip radius and free oscillation amplitude as well as the stiffness of the sample's surface. The simulations reveal a universal functional dependence of the amplitude of the 6th harmonic (in resonance with the 2nd flexural mode) on these parameters, which can be expressed in terms of a gun-shaped function. This analytical expression can be regarded as a practical tool for extracting qualitative information from AFM measurements and it can be extended to any resonant harmonics. The experiments confirm the predicted dependence in the explored 3-45 N/m force constant range and 2-345 GPa sample's stiffness range. For force constants around 25 N/m, the amplitude of the 6th harmonic exhibits the largest sensitivity for ultrasharp tips (tip radius below 10 nm) and polymers (Young's modulus below 20 GPa).
Gysin, Urs; Glatzel, Thilo; Schmölzer, Thomas; Schöner, Adolf; Reshanov, Sergey; Bartolf, Holger; Meyer, Ernst
2015-01-01
The resolution in electrostatic force microscopy (EFM), a descendant of atomic force microscopy (AFM), has reached nanometre dimensions, necessary to investigate integrated circuits in modern electronic devices. However, the characterization of conducting or semiconducting power devices with EFM methods requires an accurate and reliable technique from the nanometre up to the micrometre scale. For high force sensitivity it is indispensable to operate the microscope under high to ultra-high vacuum (UHV) conditions to suppress viscous damping of the sensor. Furthermore, UHV environment allows for the analysis of clean surfaces under controlled environmental conditions. Because of these requirements we built a large area scanning probe microscope operating under UHV conditions at room temperature allowing to perform various electrical measurements, such as Kelvin probe force microscopy, scanning capacitance force microscopy, scanning spreading resistance microscopy, and also electrostatic force microscopy at higher harmonics. The instrument incorporates beside a standard beam deflection detection system a closed loop scanner with a scan range of 100 μm in lateral and 25 μm in vertical direction as well as an additional fibre optics. This enables the illumination of the tip-sample interface for optically excited measurements such as local surface photo voltage detection. We present Kelvin probe force microscopy (KPFM) measurements before and after sputtering of a copper alloy with chromium grains used as electrical contact surface in ultra-high power switches. In addition, we discuss KPFM measurements on cross sections of cleaved silicon carbide structures: a calibration layer sample and a power rectifier. To demonstrate the benefit of surface photo voltage measurements, we analysed the contact potential difference of a silicon carbide p/n-junction under illumination.
Atomic force microscopy as a tool for the investigation of living cells.
Morkvėnaitė-Vilkončienė, Inga; Ramanavičienė, Almira; Ramanavičius, Arūnas
2013-01-01
Atomic force microscopy is a valuable and useful tool for the imaging and investigation of living cells in their natural environment at high resolution. Procedures applied to living cell preparation before measurements should be adapted individually for different kinds of cells and for the desired measurement technique. Different ways of cell immobilization, such as chemical fixation on the surface, entrapment in the pores of a membrane, or growing them directly on glass cover slips or on plastic substrates, result in the distortion or appearance of artifacts in atomic force microscopy images. Cell fixation allows the multiple use of samples and storage for a prolonged period; it also increases the resolution of imaging. Different atomic force microscopy modes are used for the imaging and analysis of living cells. The contact mode is the best for cell imaging because of high resolution, but it is usually based on the following: (i) image formation at low interaction force, (ii) low scanning speed, and (iii) usage of "soft," low resolution cantilevers. The tapping mode allows a cell to behave like a very solid material, and destructive shear forces are minimized, but imaging in liquid is difficult. The force spectroscopy mode is used for measuring the mechanical properties of cells; however, obtained results strongly depend on the cell fixation method. In this paper, the application of 3 atomic force microscopy modes including (i) contact, (ii) tapping, and (iii) force spectroscopy for the investigation of cells is described. The possibilities of cell preparation for the measurements, imaging, and determination of mechanical properties of cells are provided. The applicability of atomic force microscopy to diagnostics and other biomedical purposes is discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bowman, Adam J.; Scherrer, Joseph R.; Reiserer, Ronald S., E-mail: ron.reiserer@vanderbilt.edu
We present a simple apparatus for improved surface modification of polydimethylsiloxane (PDMS) microfluidic devices. A single treatment chamber for plasma activation and chemical/physical vapor deposition steps minimizes the time-dependent degradation of surface activation that is inherent in multi-chamber techniques. Contamination and deposition irregularities are also minimized by conducting plasma activation and treatment phases in the same vacuum environment. An inductively coupled plasma driver allows for interchangeable treatment chambers. Atomic force microscopy confirms that silane deposition on PDMS gives much better surface quality than standard deposition methods, which yield a higher local roughness and pronounced irregularities in the surface.
Organic Photonics: Toward a New Generation of Thin Film Photovoltaics and Lasers
2011-03-07
plane. 39 Both electron and x - ray diffraction confirm the existence of crystalline domains of CuPc and C60. Crystalline domain sizes range from 5...nanocrystalline domains indicated by white curves that locate the domain boundaries. Scale bar=5 nm. b, X - ray diffraction pattern of an OVPD grown A... ray diffraction (XRD) and atomic force microscopy (AFM), as shown in Fig. 8. A cross-sectional TEM image of [CuPc(6.1nm)/C60(6.1nm)]10 is shown in
Synthesis of nanodimensional orthorhombic SnO2 thin films
NASA Astrophysics Data System (ADS)
Kondkar, V.; Rukade, D.; Kanjilal, D.; Bhattacharyya, V.
2018-04-01
Amorphous thin films of SnO2 are irradiated by swift heavy ions at two different fluences. Unirradiated as well as irradiated films are characterized by glancing angle X-ray diffraction (GAXRD), UV-Vis spectroscopy and atomic force microscopy (AFM). GAXRD study reveals formation of orthorhombic nanophases of SnO2. Nanophase formation is also confirmed by the quantum size effect manifested by blue shift in terms of increase in band gap energy. The size and shape of the irradiation induced surface structures depend on ion fluence.
Nanostructured PdO Thin Film from Langmuir-Blodgett Precursor for Room-Temperature H2 Gas Sensing.
Choudhury, Sipra; Betty, C A; Bhattacharyya, Kaustava; Saxena, Vibha; Bhattacharya, Debarati
2016-07-06
Nanoparticulate thin films of PdO were prepared using the Langmuir-Blodgett (LB) technique by thermal decomposition of a multilayer film of octadecylamine (ODA)-chloropalladate complex. The stable complex formation of ODA with chloropalladate ions (present in subphase) at the air-water interface was confirmed by the surface pressure-area isotherm and Brewster angle microscopy. The formation of nanocrystalline PdO thin film after thermal decomposition of as-deposited LB film was confirmed by X-ray diffraction and Raman spectroscopy. Nanocrystalline PdO thin films were further characterized by using UV-vis and X-ray photoelectron spectroscopic (XPS) measurements. The XPS study revealed the presence of prominent Pd(2+) with a small quantity (18%) of reduced PdO (Pd(0)) in nanocrystalline PdO thin film. From the absorption spectroscopic measurement, the band gap energy of PdO was estimated to be 2 eV, which was very close to that obtained from specular reflectance measurements. Surface morphology studies of these films using atomic force microscopy and field-emission scanning electron microscopy indicated formation of nanoparticles of size 20-30 nm. These PdO film when employed as a chemiresistive sensor showed H2 sensitivity in the range of 30-4000 ppm at room temperature. In addition, PdO films showed photosensitivity with increase in current upon shining of visible light.
Baskaran, Balraj; Muthukumarasamy, Arulmozhi; Chidambaram, Siva; Sugumaran, Abimanyu; Ramachandran, Krithikadevi; Rasu Manimuthu, Thaneswari
2017-04-01
Biosynthesis of novel therapeutic nano-scale materials for biomedical and pharmaceutical applications has been enormously developed, since last decade. Herein, the authors report an ecological way of synthesising the platinum nanoparticles (PtNPs) using Streptomyces sp. for the first time . The produced PtNPs exhibited the face centred cubic system. The fourier transform infrared spectrum revealed the existence of amino acids in proteins which serves as an essential reductant for the formation of PtNPs. The spherical morphology of the PtNPs with an average size of 20-50 nm was observed from topographical images of atomic force microscopy and field emission scanning electron microscopy. The X-ray fluorescence spectrum confirms the presence of PtNPs with higher purity. The PtNPs size was further confirmed with transmission electron microscopy analysis and the particles were found to exist in the same size regime. Additionally, PtNPs showed the characteristic surface plasmon resonance peak at 262 nm. Dynamic light scattering studies report that 97.2% of particles were <100 nm, with an average particle diameter of about 45 nm. Furthermore, 3-(4, 5-dimethyl-2-thiazolyl)-2, 5-diphenyl-tetrazolium assay based in vitro cytotoxicity analysis was conducted for the PtNPs, which showed the inhibitory concentration (IC 50 ) at 31.2 µg/ml against Michigan Cancer Foundation-7 breast cancer cells.
NASA Astrophysics Data System (ADS)
Morales-Cruz, Angel L.; Tremont, Rolando; Martínez, Ramón; Romañach, Rodolfo; Cabrera, Carlos R.
2005-03-01
Chemical and mechanical properties of different compounds can be elucidated by measuring fundamental forces such as adhesion, attraction and repulsion, between modified surfaces by means of atomic force microscopy (AFM) in force mode calibration. This work presents a combination of AFM, self-assembled monolayers (SAMs), and crystallization techniques to study the forces of interaction between excipients and active ingredients used in pharmaceutical formulations. SAMs of 16-mercaptohexadecanoate, which represent magnesium stereate, were used to modify the probe tip, whereas CH3-, OH- and CONHCH3-functional SAMs were formed on a gold-coated mica substrate, and used as examples of the surfaces of lactose and theophylline. The crystals of lactose and theophylline were characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD). The modification of gold surfaces with 16-mercaptohexadecanoate, 10-mercapto-1-decanol (OH-functional SAM), 1-decanethiol (CH3-functional) and N-methyl-11-mercaptoundecanamide (CONHCH3-functional SAM) was studied by X-ray photoelectron spectroscopy (XPS), Auger electron spectroscopy (AES) and Fourier transform-infrared spectroscopy (FT-IR) in specular reflectance mode. XPS and AES results of the modified surfaces showed the presence of sulfur binding, and kinetic energies that correspond to the presence of 10-mercapto-1-decanol, 1-decanethiol, N-methyl-11-mercaptoundecanamide and the salt of 16-mercaptohexadecanoic acid. The absorption bands in the IR spectra further confirm the modification of the gold-coated substrates with these compounds. Force versus distance measurements were performed between the modified tip and the modified gold-coated mica substrates. The mean adhesion forces between the COO-Ca2+ functionalized tip and the CH3-, OH-, and CONHCH3-modified substrates were determined to be 4.5, 8.9 and 6.3 nN, respectively. The magnitude of the adhesion force (ion-dipole) interaction between the modified tip and substrate decreases in the following order: COO-Ca2+/OH > COO-Ca2+/CONHCH3 > COO-Ca2+/CH3.
Interpretation of frequency modulation atomic force microscopy in terms of fractional calculus
NASA Astrophysics Data System (ADS)
Sader, John E.; Jarvis, Suzanne P.
2004-07-01
It is widely recognized that small amplitude frequency modulation atomic force microscopy probes the derivative of the interaction force between tip and sample. For large amplitudes, however, such a physical connection is currently lacking, although it has been observed that the frequency shift presents a quantity intermediate to the interaction force and energy for certain force laws. Here we prove that these observations are a universal property of large amplitude frequency modulation atomic force microscopy, by establishing that the frequency shift is proportional to the half-fractional integral of the force, regardless of the force law. This finding indicates that frequency modulation atomic force microscopy can be interpreted as a fractional differential operator, where the order of the derivative/integral is dictated by the oscillation amplitude. We also establish that the measured frequency shift varies systematically from a probe of the force gradient for small oscillation amplitudes, through to the measurement of a quantity intermediate to the force and energy (the half-fractional integral of the force) for large oscillation amplitudes. This has significant implications to measurement sensitivity, since integrating the force will smooth its behavior, while differentiating it will enhance variations. This highlights the importance in choice of oscillation amplitude when wishing to optimize the sensitivity of force spectroscopy measurements to short-range interactions and consequently imaging with the highest possible resolution.
Transparent sunlight conversion film based on carboxymethyl cellulose and carbon dots.
You, Yaqin; Zhang, Haoran; Liu, Yingliang; Lei, Bingfu
2016-10-20
Transparent sunlight conversion film based on carboxymethyl cellulose (CMC) and carbon dots (CDs) has been developed for the first time through dispersion of CDs in CMC aqueous solution. Due to the hydrogen bonds interaction, CMC can effectively absorb the CDs, whose surfaces are functionalized by lots of polar groups. The results from atomic force microscopy (AFM), scanning electron microscopy (SEM) confirm that the composite film possesses a homogeneous and compact structure. Besides, the CMC matrix neither competes for absorbing excitation light nor absorbs the emissions of CDs, which reserves the inherent optical properties of the individual CDs. The composite films can efficiently convert ultraviolet light to blue light. What's more, the film is transparent and possesses excellent mechanical properties, expected to apply in the field of agricultural planting for sunlight conversion. Copyright © 2016 Elsevier Ltd. All rights reserved.
Surface morphological properties of Ag-Al2O3 nanocermet layers using dip-coating technique
NASA Astrophysics Data System (ADS)
Muhammad, Nor Adhila; Suhaimi, Siti Fatimah; Zubir, Zuhana Ahmad; Daud, Sahhidan
2017-12-01
Ag-Al2O3 nanocermet layer was deposited on Cu coated glass substrate using dip-coating technique. The aim of this study was to observe the surface morphology properties of Ag-Al2O3 nanocermet layers after annealing process at 350°C in H2. The surface morphology of Ag-Al2O3 nanocermet will be characterized by Scanning Electron Microscopy (SEM), Atomic Force Microscopy (AFM) and X-Ray Diffractometer (XRD), respectively. The results show that nearly isolated Ag particles having a large and small size were present in the Al2O3 dielectric matrix after annealing process. The face centered cubic crystalline structure of Ag nanoparticles inclusion in the amorphous alumina dielectric matrix was confirmed using XRD pattern and supported by EDX spectra analysis.
Qian, Kai; Cai, Guofa; Nguyen, Viet Cuong; Chen, Tupei; Lee, Pooi See
2016-10-05
Transparent nonvolatile memory has great potential in integrated transparent electronics. Here, we present highly transparent resistive switching memory using stoichiometric WO 3 film produced by cathodic electrodeposition with indium tin oxide electrodes. The memory device demonstrates good optical transmittance, excellent operative uniformity, low operating voltages (+0.25 V/-0.42 V), and long retention time (>10 4 s). Conductive atomic force microscopy, ex situ transmission electron microscopy, and X-ray photoelectron spectroscopy experiments directly confirm that the resistive switching effects occur due to the electric field-induced formation and annihilation of the tungsten-rich conductive channel between two electrodes. Information on the physical and chemical nature of conductive filaments offers insightful design strategies for resistive switching memories with excellent performances. Moreover, we demonstrate the promising applicability of the cathodic electrodeposition method for future resistive memory devices.
Ex situ investigation of the step bunching on crystal surfaces by atomic force microscopy
NASA Astrophysics Data System (ADS)
Krasinski, Mariusz J.
1997-07-01
We are describing ex situ observation of step bunching on the surfaces of solution grown potassium dihydrogen phosphate (KDP) and sodium chlorate monocrystals. The measurements have been done with the use of atomic force microscope. The use of this equipment allowed us to see directly the structure of macrosteps. Observation confirmed the existence of step pinning which is one of the proposed mechanisms of step bunching. Despite the very high resolution of AFM it was not possible to determine the nature of pinning point. The monatomic steps on KDP and sodium chlorate crystal surfaces are mainly one unit cell high what seems to be the result of the steps pairing. The origin of observed step pattern is discussed in frames of existing theories.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Solares, Santiago D.
The final project report covering the period 7/1/14-6/30/17 provides an overview of the technical accomplishments in the areas of (i) fundamental viscoelasticity, (ii) multifrequency atomic force microscopy, and (iii) characterization of energy-relevant materials with atomic force microscopy. A list of publications supported by the project is also provided.
Nanoscale Visualization of Elastic Inhomogeneities at TiN Coatings Using Ultrasonic Force Microscopy
NASA Astrophysics Data System (ADS)
Hidalgo, J. A.; Montero-Ocampo, C.; Cuberes, M. T.
2009-12-01
Ultrasonic force microscopy has been applied to the characterization of titanium nitride coatings deposited by physical vapor deposition dc magnetron sputtering on stainless steel substrates. The titanium nitride layers exhibit a rich variety of elastic contrast in the ultrasonic force microscopy images. Nanoscale inhomogeneities in stiffness on the titanium nitride films have been attributed to softer substoichiometric titanium nitride species and/or trapped subsurface gas. The results show that increasing the sputtering power at the Ti cathode increases the elastic homogeneity of the titanium nitride layers on the nanometer scale. Ultrasonic force microscopy elastic mapping on titanium nitride layers demonstrates the capability of the technique to provide information of high value for the engineering of improved coatings.
Santos, Moliria V; Tercjak, Agnieszka; Gutierrez, Junkal; Barud, Hernane S; Napoli, Mariana; Nalin, Marcelo; Ribeiro, Sidney J L
2017-07-15
The preparation of composite materials has gained tremendous attention due to the potential synergy of the combined materials. Here we fabricate novel thermal/electrical responsive photonic composite films combining cellulose nanocrystals (CNC) with a low molecular weight nematic liquid crystal (NLC), 4'-(hexyloxy)-4-biphenylcarbonitrile (HOBC). The obtained composite material combines both intense structural coloration of photonic cellulose and thermal and conductive properties of NLC. Scanning electron microscopy (SEM) results confirmed that liquid crystals coated CNC films maintain chiral nematic structure characteristic of CNC film and simultaneously, transversal cross-section scanning electron microscopy images indicated penetration of liquid crystals through the CNC layers. Investigated composite film maintain NLC optical properties being switchable as a function of temperature during heating/cooling cycles. The relationship between the morphology and thermoresponsive in the micro/nanostructured materials was investigated by using transmission optical microscopy (TOM). Conductive response of the composite films was proved by Electrostatic force microscopy (EFM) measurement. Designed thermo- and electro-responsive materials open novel simple pathway of fabrication of CNC-based materials with tunable properties. Copyright © 2017. Published by Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Takeuchi, Osamu; Miyakoshi, Takaaki; Taninaka, Atsushi; Tanaka, Katsunori; Cho, Daichi; Fujita, Machiko; Yasuda, Satoshi; Jarvis, Suzanne P.; Shigekawa, Hidemi
2006-10-01
The accuracy of dynamic-force spectroscopy (DFS), a promising technique of analyzing the energy landscape of noncovalent molecular bonds, was reconsidered in order to justify the use of an atomic-force microscopy (AFM) cantilever as a DFS force probe. The advantages and disadvantages caused, for example, by the force-probe hardness were clarified, revealing the pivotal role of the molecular linkage between the force probe and the molecular bonds. It was shown that the feedback control of the loading rate of tensile force enables us a precise DFS measurement using an AFM cantilever as the force probe.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Ruixue; Yang, Bin, E-mail: binyang@hit.edu.cn; Sun, Enwei
The crystalline phases and domain configuration in the morphotropic phase boundary composition Pb(Mg{sub 1/3}Nb{sub 2/3})O{sub 3}-0.34PbTiO{sub 3} (PMN-0.34PT) single crystal have been investigated by synchrotron-based X-ray 3D Reciprocal Space Mapping (3D-RSM) and Piezoresponse Force Microscopy. The coexistence of tetragonal (T) and monoclinic M{sub C} phases in this PMN-0.34PT single crystal is confirmed. The affiliation of each diffraction spot in the 3D-RSM was identified with the assistance of qualitative simulation. Most importantly, the twinning structure between different domains in such a mixed phase PMN-PT crystal is firmly clarified, and the spatial distribution of different twin domains is demonstrated. In addition, themore » lattice parameters of T and M{sub C} phases in PMN-0.34PT single crystal as well as the tilting angles of crystal lattices caused by the interfacial lattice mismatch are determined.« less
Stewart, Sarah E; D'Angelo, Michael E; Paintavigna, Stefania; Tabor, Rico F; Martin, Lisandra L; Bird, Phillip I
2015-01-01
Streptolysin O (SLO) is a bacterial pore forming protein that is part of the cholesterol dependent cytolysin (CDC) family. We have used quartz crystal microbalance with dissipation monitoring (QCM-D) to examine SLO membrane binding and pore formation. In this system, SLO binds tightly to cholesterol-containing membranes, and assembles into partial and complete pores confirmed by atomic force microscopy. SLO binds to the lipid bilayer at a single rate consistent with the Langmuir isotherm model of adsorption. Changes in dissipation illustrate that SLO alters the viscoelastic properties of the bilayer during pore formation, but there is no loss of material from the bilayer as reported for small membrane-penetrating peptides. SLO mutants were used to further dissect the assembly and insertion processes by QCM-D. This shows the signature of SLO in QCM-D changes when pore formation is inhibited, and that bound and inserted SLO forms can be distinguished. Furthermore a pre-pore locked SLO mutant binds reversibly to lipid, suggesting that the partially complete wtSLO forms observed by AFM are anchored to the membrane. Copyright © 2014 Elsevier B.V. All rights reserved.
Watanabe, Satoshi; Fukuchi, Yasumasa; Fukasawa, Masako; Sassa, Takafumi; Kimoto, Atsushi; Tajima, Yusuke; Uchiyama, Masanobu; Yamashita, Takashi; Matsumoto, Mutsuyoshi; Aoyama, Tetsuya
2014-02-12
Here, we discuss the local photovoltaic characteristics of a structured bulk heterojunction, organic photovoltaic devices fabricated with a liquid carbazole, and a fullerene derivative based on analysis by scanning kelvin probe force microscopy (KPFM). Periodic photopolymerization induced by an interference pattern from two laser beams formed surface relief gratings (SRG) in the structured films. The surface potential distribution in the SRGs indicates the formation of donor and acceptor spatial distribution. Under illumination, the surface potential reversibly changed because of the generation of fullerene anions and hole transport from the films to substrates, which indicates that we successfully imaged the local photovoltaic characteristics of the structured photovoltaic devices. Using atomic force microscopy, we confirmed the formation of the SRG because of the material migration to the photopolymerized region of the films, which was induced by light exposure through photomasks. The structuring technique allows for the direct fabrication and the control of donor and acceptor spatial distribution in organic photonic and electronic devices with minimized material consumption. This in situ KPFM technique is indispensable to the fabrication of nanoscale electron donor and electron acceptor spatial distribution in the devices.
Kiro, Anamika; Bajpai, Jaya; Bajpai, A K
2017-01-01
Bionanocomposites of sericin and polyvinyl alcohol (PVA) were prepared by solution casting method and zinc oxide nanoparticles were impregnated within the polymer blend matrix through homogenous phase reaction between zinc chloride and sodium hydroxide at high temperature following an ex-situ co-precipitation method. The prepared bionanocomposites were characterized using Fourier Transform Infrared Spectroscopy, X-ray diffraction, Field Emission Scanning Electron Microscopy, Transmission Electron Microscopy and Atomic Force Microscopy techniques. The presence of characteristic groups of sericin and ZnO nanoparticles was ascertained by the FTIR spectra. XRD analysis confirmed the impregnation of ZnO nanoparticles and sericin within the PVA matrix. XRD and FESEM of the bionanocomposites provided information about their semicrystalline nature, crystallite size of the particles, and irregular rough surfaces. The TEM confirmed the size of ZnO particles to be in the nanometer range. AFM confirmed the platykurtic nature of the surface while the negative surface skewness shows the predominance of valleys over peaks suggesting for the planar nature of the surface of the bionanocomposites. UV absorption properties of bionanocomposite films were determined by UV absorption spectroscopy. UV absorption increased with increasing amount of ZnO nanoparticles in the nanocomposites. Sericin was found to absorb UV-C radiations between 200-290nm which is mainly due to aromatic amino acids like tryptophan, tyrosine and phenylalanine. The ZnO nanoparticles and sericin protein showed antimicrobial properties as evident from the inhibition zones obtained against Staphylococcus aureus and Escherichia coli. The bionanocomposite was found to be noncytotoxic which was proved by in vitro cytotoxicity test. Microhardness of bionanocomposite films increased with increase in the amount of ZnO nanoparticles in the sericin and PVA matrix. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Lin, Shi-Zeng; Bulaevskii, Lev N.
2012-07-01
The working principle of magnetic force microscopy and scanning SQUID microscopy is introducing a magnetic source near a superconductor and measuring the magnetic field distribution near the superconductor, from which one can obtain the penetration depth. We investigate the magnetic field distribution near the surface of a magnetic superconductor when a magnetic source is placed close to the superconductor, which can be used to extract both the penetration depth λL and magnetic susceptibility χ by magnetic force microscopy or scanning SQUID microscopy. When the magnetic moments are parallel to the surface, one extracts λL/1-4πχ. When the moments are perpendicular to the surface, one obtains λL. By changing the orientation of the crystal, one thus is able to extract both χ and λL.
Surface Biology of DNA by Atomic Force Microscopy
NASA Astrophysics Data System (ADS)
Hansma, Helen G.
2001-10-01
The atomic force microscope operates on surfaces. Since surfaces occupy much of the space in living organisms, surface biology is a valid and valuable form of biology that has been difficult to investigate in the past owing to a lack of good technology. Atomic force microscopy (AFM) of DNA has been used to investigate DNA condensation for gene therapy, DNA mapping and sizing, and a few applications to cancer research and to nanotechnology. Some of the most exciting new applications for atomic force microscopy of DNA involve pulling on single DNA molecules to obtain measurements of single-molecule mechanics and thermodynamics.
Controlled p-doping of black phosphorus by integration of MoS2 nanoparticles
NASA Astrophysics Data System (ADS)
Jeon, Sumin; Kim, Minwoo; Jia, Jingyuan; Park, Jin-Hong; Lee, Sungjoo; Song, Young Jae
2018-05-01
Black phosphorus (BP), a new family of two dimensional (2D) layered materials, is an attractive material for future electronic, photonic and chemical sensing devices, thanks to its high carrier density and a direct bandgap of 0.3-2.0 eV, depending on the number of layers. Controllability over the properties of BP by electrical or chemical modulations is one of the critical requirements for future various device applications. Herein, we report a new doping method of BP by integration of density-controlled monolayer MoS2 nanoparticles (NPs). MoS2 NPs with different density were synthesized by chemical vapor deposition (CVD) and transferred onto a few-layer BP channel, which induced a p-doping effect. Scanning electron microscopy (SEM) confirmed the size and distribution of MoS2 NPs with different density. Raman and X-ray photoelectron spectroscopy (XPS) were measured to confirm the oxidation on the edge of MoS2 NPs and a doping effect of MoS2 NPs on a BP channel. The doping mechanism was explained by a charge transfer by work function differences between BP and MoS2 NPs, which was confirmed by Kelvin probe force microscopy (KPFM) and electrical measurements. The hole concentration of BP was controlled with different densities of MoS2 NPs in a range of 1012-1013 cm-2.
Study of electromechanical and mechanical properties of bacteria using force microscopy
NASA Astrophysics Data System (ADS)
Reukov, Vladimir; Thompson, Gary; Nikiforov, Maxim; Guo, Senli; Ovchinnikov, Oleg; Jesse, Stephen; Kalinin, Sergei; Vertegel, Alexey
2010-03-01
The application of scanning probe microscopy (SPM) to biological systems has evolved over the past decade into a multimodal and spectroscopic instrument that provides multiple information channels at each spatial pixel acquired. Recently, functional recognition imaging based on differing electromechanical properties between Gram negative and Gram positive bacteria was achieved using artificial neural network analysis of band excitation piezoresponse force microscopy (BEPFM) data. The immediate goal of this project was to study mechanical and electromechanical properties of bacterial systems physiologically-relevant solutions using Band-width Excitation Piezoresponce Force Microscopy (BE PFM) in combination with Force Mapping. Electromechanical imaging in physiological environments will improve the versatility of functional recognition imaging and open the way for application of the rapid BEPFM line mode method to other living cell systems.
NASA Astrophysics Data System (ADS)
Trivedi, Pramanshu; gupta, Pallavi; Srivastava, Swati; Jayaganthan, R.; Chandra, Ramesh; Roy, Partha
2014-02-01
Amongst the Ti alloys used as orthopedic implant materials, Ti6Al4V is one of the widely used alloys. Magnetron sputtering was used to deposit nanocomposite coating of Ti-Si-N on the Ti6Al4V substrate at different power and then the coating structure and surface properties were characterized through contact angle measurement, X-ray diffraction (XRD), scanning electron microscopy (SEM), and atomic force microscopy (AFM). In vitro biocompatibility of the coatings was assessed by using mouse bone marrow mesenchymal stem cells (mBMMSC). Antibacterial studies were performed using Escherichia coli (E. coli) microorganisms. The osteogenic differentiation was also carried out in order to get gene expressions. The AFM results confirmed that the coatings deposited at 120 W was smoother as compared to other coatings developed at different power, along with optimum contact angle, also these coatings showed good antibacterial results. The fluorescent and viability results of 120 W sample confirmed their good biocompatibility as compared to the coatings deposited 20, 40, 60, and 100 W power. Hence, the coating deposited at 120 W exhibit desirable microstructural characteristics beneficial for surface modification of orthopedic implants.
Hussain, Muhammad Ajaz; Shah, Abdullah; Jantan, Ibrahim; Tahir, Muhammad Nawaz; Shah, Muhammad Raza; Ahmed, Riaz; Bukhari, Syed Nasir Abbas
2014-12-03
Green synthesis of nanomaterials finds the edge over chemical methods due to its environmental compatibility. Herein, we report green synthesis of silver nanoparticles (Ag NPs) mediated with dextran. Dextran was used as a stabilizer and capping agent to synthesize Ag NPs using silver nitrate (AgNO3) under diffused sunlight conditions. UV-vis spectra of as synthesized Ag nanoparticles showed characteristic surface plasmon band in the range from ~405-452 nm. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) studies showed spherical Ag NPs in the size regime of ~50-70 nm. Face centered cubic lattice of Ag NPs was confirmed by powder X-ray diffraction (PXRD). FT-IR spectroscopy confirmed that dextran not only acts as reducing agent but also functionalizes the surfaces of Ag NPs to make very stable dispersions. Moreover, on drying, the solution of dextran stabilized Ag NPs resulted in the formation of thin films which were found stable over months with no change in the plasmon band of pristine Ag NPs. The antimicrobial assay of the as synthesized Ag NPs showed remarkable activity. Being significantly active against microbes, the Ag NPs can be explored for antimicrobial medical devices.
Reduced graphene oxide growth on 316L stainless steel for medical applications
NASA Astrophysics Data System (ADS)
Cardenas, L.; MacLeod, J.; Lipton-Duffin, J.; Seifu, D. G.; Popescu, F.; Siaj, M.; Mantovani, D.; Rosei, F.
2014-07-01
We report a new method for the growth of reduced graphene oxide (rGO) on the 316L alloy of stainless steel (SS) and its relevance for biomedical applications. We demonstrate that electrochemical etching increases the concentration of metallic species on the surface and enables the growth of rGO. This result is supported through a combination of Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), scanning electron microscopy (SEM), density functional theory (DFT) calculations and static water contact angle measurements. Raman spectroscopy identifies the G and D bands for oxidized species of graphene at 1595 cm-1 and 1350 cm-1, respectively, and gives an ID/IG ratio of 1.2, indicating a moderate degree of oxidation. XPS shows -OH and -COOH groups in the rGO stoichiometry and static contact angle measurements confirm the wettability of rGO. SEM and AFM measurements were performed on different substrates before and after coronene treatment to confirm rGO growth. Cell viability studies reveal that these rGO coatings do not have toxic effects on mammalian cells, making this material suitable for biomedical and biotechnological applications.
Xu, Chun-Ping; Boks, Niels P.; de Vries, Joop; Kaper, Hans J.; Norde, Willem; Busscher, Henk J.; van der Mei, Henny C.
2008-01-01
Adhesion and residence-time-dependent desorption of two Staphylococcus aureus strains with and without fibronectin (Fn) binding proteins (FnBPs) on Fn-coated glass were compared under flow conditions. To obtain a better understanding of the role of Fn-FnBP binding, the adsorption enthalpies of Fn with staphylococcal cell surfaces were determined using isothermal titration calorimetry (ITC). Interaction forces between staphylococci and Fn coatings were measured using atomic force microscopy (AFM). The strain with FnBPs adhered faster and initially stronger to an Fn coating than the strain without FnBPs, and its Fn adsorption enthalpies were higher. The initial desorption was high for both strains but decreased substantially within 2 s. These time scales of staphylococcal bond ageing were confirmed by AFM adhesion force measurement. After exposure of either Fn coating or staphylococcal cell surfaces to bovine serum albumin (BSA), the adhesion of both strains to Fn coatings was reduced, suggesting that BSA suppresses not only nonspecific but also specific Fn-FnBP interactions. Adhesion forces and adsorption enthalpies were only slightly affected by BSA adsorption. This implies that under the mild contact conditions of convective diffusion in a flow chamber, adsorbed BSA prevents specific interactions but does allow forced Fn-FnBP binding during AFM or stirring in ITC. The bond strength energies calculated from retraction force-distance curves from AFM were orders of magnitude higher than those calculated from desorption data, confirming that a penetrating Fn-coated AFM tip probes multiple adhesins in the outermost cell surface that remain hidden during mild landing of an organism on an Fn-coated substratum, like that during convective diffusional flow. PMID:18952882
Early Adhesion of Candida albicans onto Dental Acrylic Surfaces.
Aguayo, S; Marshall, H; Pratten, J; Bradshaw, D; Brown, J S; Porter, S R; Spratt, D; Bozec, L
2017-07-01
Denture-associated stomatitis is a common candidal infection that may give rise to painful oral symptoms, as well as be a reservoir for infection at other sites of the body. As poly (methyl methacrylate) (PMMA) remains the main material employed in the fabrication of dentures, the aim of this research was to evaluate the adhesion of Candida albicans cells onto PMMA surfaces by employing an atomic force microscopy (AFM) single-cell force spectroscopy (SCFS) technique. For experiments, tipless AFM cantilevers were functionalized with PMMA microspheres and probed against C. albicans cells immobilized onto biopolymer-coated substrates. Both a laboratory strain and a clinical isolate of C. albicans were used for SCFS experiments. Scanning electron microscopy (SEM) and AFM imaging of C. albicans confirmed the polymorphic behavior of both strains, which was dependent on growth culture conditions. AFM force-spectroscopy results showed that the adhesion of C. albicans to PMMA is morphology dependent, as hyphal tubes had increased adhesion compared with yeast cells ( P < 0.05). C. albicans budding mother cells were found to be nonadherent, which contrasts with the increased adhesion observed in the tube region. Comparison between strains demonstrated increased adhesion forces for a clinical isolate compared with the lab strain. The clinical isolate also had increased survival in blood and reduced sensitivity to complement opsonization, providing additional evidence of strain-dependent differences in Candida-host interactions that may affect virulence. In conclusion, PMMA-modified AFM probes have shown to be a reliable technique to characterize the adhesion of C. albicans to acrylic surfaces.
Madhankumar, A B; Mrowczynski, Oliver D; Patel, Suhag R; Weston, Cody L; Zacharia, Brad E; Glantz, Michael J; Siedlecki, Christopher A; Xu, Li-Chong; Connor, James R
2017-08-01
Cadmium selenide (CdSe) based quantum dots modified with polyethylene glycol and chemically linked to interleukin-13 (IL13) were prepared with the aim of identifying the high affinity receptor (IL13Rα2) which is expressed in glioma stem cells and exosomes secreted by these cancer stem cells. IL13 conjugated quantum dots (IL13QD) were thoroughly characterized for their physicochemical properties including particle size and surface morphology. Furthermore, the specific binding of the IL13QD to glioma cells and to glioma stem cells (GSC) was verified using a competitive binding study. The exosomes were isolated from the GSC conditioned medium and the expression of IL13Rα2 in the GSC and exosomes was verified. The binding property of IL13QD to the tumor associated exosomes was initially confirmed by transmission electron microscopy. The force of attraction between the quantum dots and U251 glioma cells and the exosomes was investigated by atomic force microscopy, which indicated a higher force of binding interaction between the IL13QD and IL13Rα2 expressing glioma cells and exosomes secreted by glioma stem cells. Flow cytometry of the IL13QD and exosomes from the culture media and cerebrospinal fluid (CSF) of patients with glioma tumors indicated a distinctly populated complex pattern different from that of non-targeted quantum dots and bovine serum albumin (BSA) conjugated quantum dots confirming specific binding potential of the IL13QD to the tumor associated exosomes. The results of this study demonstrate that IL13QD can serve as an ex vivo marker for glioma stem cells and exosomes that can inform diagnosis and prognosis of patients harboring malignant disease. Functionalized quantum dots are flexible semiconductor nanomaterials which have an immense application in biomedical research. In particular, when they are functionalized with biomolecules like proteins or antibodies, they have the specialized ability to detect the expression of receptors and antigens in cells and tissues. In this study we designed a cytokine (interleukin-13) functionalized quantum dot to detect a cancer associated receptor expressed in cancer stem cells and the extracellular vesicles (exosomes) secreted by the cancer cells themselves. The binding pattern of these cytokine modified quantum dots to the cancer stem cells and exosomes alters the physical properties of the complex in the fixed and suspended form. This altered binding pattern can be monitored by a variety of techniques, including transmission electron microscopy, atomic force microscopy and flow cytometry, and subsequent characterization of this quantum dot binding profile provides useful data that can be utilized as a fingerprint to detect cancer disease progression. This type of functionalized quantum dot fingerprint is especially useful for invasive cancers including brain and other metastatic cancers and may allow for earlier detection of disease progression or recurrence, thus saving the lives of patients suffering from this devastating disease. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muhunthan, N.; Singh, Om Pal; Toutam, Vijaykumar, E-mail: toutamvk@nplindia.org
2015-10-15
Graphical abstract: Experimental setup for conducting AFM (C-AFM). - Highlights: • Cu{sub 2}ZnSnS{sub 4} (CZTS) thin film was grown by reactive co-sputtering. • The electronic properties were probed using conducting atomic force microscope, scanning Kelvin probe microscopy and scanning capacitance microscopy. • C-AFM current flow mainly through grain boundaries rather than grain interiors. • SKPM indicated higher potential along the GBs compared to grain interiors. • The SCM explains that charge separation takes place at the interface of grain and grain boundary. - Abstract: Electrical characterization of grain boundaries (GB) of Cu-deficient CZTS (Copper Zinc Tin Sulfide) thin films wasmore » done using atomic force microscopic (AFM) techniques like Conductive atomic force microscopy (CAFM), Kelvin probe force microscopy (KPFM) and scanning capacitance microscopy (SCM). Absorbance spectroscopy was done for optical band gap calculations and Raman, XRD and EDS for structural and compositional characterization. Hall measurements were done for estimation of carrier mobility. CAFM and KPFM measurements showed that the currents flow mainly through grain boundaries (GB) rather than grain interiors. SCM results showed that charge separation mainly occurs at the interface of grain and grain boundaries and not all along the grain boundaries.« less
Pore spanning lipid bilayers on silanised nanoporous alumina membranes
NASA Astrophysics Data System (ADS)
Md Jani, Abdul M.; Zhou, Jinwen; Nussio, Matthew R.; Losic, Dusan; Shapter, Joe G.; Voelcker, Nicolas H.
2008-12-01
The preparation of bilayer lipid membranes (BLMs) on solid surfaces is important for many studies probing various important biological phenomena including the cell barrier properties, ion-channels, biosensing, drug discovery and protein/ligand interactions. In this work we present new membrane platforms based on suspended BLMs on nanoporous anodic aluminium oxide (AAO) membranes. AAO membranes were prepared by electrochemical anodisation of aluminium foil in 0.3 M oxalic acid using a custom-built etching cell and applying voltage of 40 V, at 1oC. AAO membranes with controlled diameter of pores from 30 - 40 nm (top of membrane) and 60 -70 nm (bottom of membrane) were fabricated. Pore dimensions have been confirmed by scanning electron microscopy (SEM) and atomic force microscopy (AFM). AAO membranes were chemically functionalised with 3-aminopropyltriethoxysilane (APTES). Confirmation of the APTES attachment to the AAO membrane was achieved by means of infrared spectroscopy, X-ray photoelectron spectroscopy and contact angle measurements. The Fourier transform infrared (FTIR) spectra of functionalised membranes show several peaks from 2800 to 3000 cm-1 which were assigned to symmetric and antisymmetric CH2 bands. XPS data of the membrane showed a distinct increase in C1s (285 eV), N1s (402 eV) and Si2p (102 eV) peaks after silanisation. The water contact angle of the functionalised membrane was 80o as compared to 20o for the untreated membrane. The formation of BLMs comprising dioleoyl-phosphatidylserine (DOPS) on APTESmodified AAO membranes was carried using the vesicle spreading technique. AFM imaging and force spectroscopy was used to characterise the structural and nanomechanical properties of the suspended membrane. This technique also confirmed the stability of bilayers on the nanoporous alumina support for several days. Fabricated suspended BLMs on nanoporous AAO hold promise for the construction of biomimetic membrane architectures with embedded transmembrane proteins.
NASA Astrophysics Data System (ADS)
Delfino, I.; Bonanni, B.; Andolfi, L.; Baldacchini, C.; Bizzarri, A. R.; Cannistraro, S.
2007-06-01
Various aspects of redox protein integration with nano-electronic elements are addressed by a multi-technique investigation of different yeast cytochrome c (YCC)-based hybrid systems. Three different immobilization strategies on gold via organic linkers are explored, involving either covalent bonding or electrostatic interaction. Specifically, Au surfaces are chemically modified by self-assembled monolayers (SAMs) exposing thiol-reactive groups, or by acid-oxidized single-wall carbon nanotubes (SWNTs). Atomic force microscopy and scanning tunnelling microscopy are employed to characterize the morphology and the electronic properties of single YCC molecules adsorbed on the modified gold surfaces. In each hybrid system, the protein molecules are stably assembled, in a native configuration. A standing-up arrangement of YCC on SAMs is suggested, together with an enhancement of the molecular conduction, as compared to YCC directly assembled on gold. The electrostatic interaction with functionalized SWNTs allows several YCC adsorption geometries, with a preferential high-spin haem configuration, as outlined by Raman spectroscopy. Moreover, the conduction properties of YCC, explored in different YCC nanojunctions by conductive atomic force microscopy, indicate the effectiveness of electrical conduction through the molecule and its dependence on the electrode material. The joint employment of several techniques confirms the key role of a well-designed immobilization strategy, for optimizing biorecognition capabilities and electrical coupling with conductive substrates at the single-molecule level, as a starting point for advanced applications in nano-biotechnology.
A study approach on ferroelectric domains in BaTiO{sub 3}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rocha, L.S.R.; Cavalcanti, C.S.
Atomic Force Acoustic Microscopy (AFAM) and Piezoresponse Force Microscopy (PFM) were used to study local elastic and electromechanical response in BaTiO{sub 3} ceramics. A commercial multi-mode Scanning Probe Microscopy (SPM) and AFAM mode to image contact stiffness were employed to accomplish the aforementioned purposes. Stiffness parameters along with Young's moduli and piezo coefficients were quantitatively determined. PFM studies were based on electrostatic and electromechanical response from localized tip-surface contact. Comparison was made regarding the Young's moduli obtained by AFAM and PFM. In addition, phase and amplitude images were analyzed based on poling behavior, obtained via the application of − 10more » V to + 10 V local voltage. - Highlights: •Nanoscale behavior of piezo domains in BaTiO{sub 3} ferroelectric materials •Use of Atomic Force Acoustic Microscopy (AFAM) and Piezo Force Microscopy (PFM) •Local elastic and electromechanical response in BaTiO{sub 3} ceramics •The young's moduli obtained from AFAM and PFM.« less
Nanostructured tin oxide films: Physical synthesis, characterization, and gas sensing properties.
Ingole, S M; Navale, S T; Navale, Y H; Bandgar, D K; Stadler, F J; Mane, R S; Ramgir, N S; Gupta, S K; Aswal, D K; Patil, V B
2017-05-01
Nanostructured tin oxide (SnO 2 ) films are synthesized using physical method i.e. thermal evaporation and are further characterized with X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy, transmission electron microscopy, and atomic force microscopy measurement techniques for confirming its structure and morphology. The chemiresistive properties of SnO 2 films are studied towards different oxidizing and reducing gases where these films have demonstrated considerable selectivity towards oxidizing nitrogen dioxide (NO 2 ) gas with a maximum response of 403% to 100ppm @200°C, and fast response and recovery times of 4s and 210s, respectively, than other test gases. In addition, SnO 2 films are enabling to detect as low as 1ppm NO 2 gas concentration @200°C with 23% response enhancement. Chemiresistive performances of SnO 2 films are carried out in the range of 1-100ppm and reported. Finally, plausible adsorption and desorption reaction mechanism of NO 2 gas molecules with SnO 2 film surface has been thoroughly discussed by means of an impedance spectroscopy analysis. Copyright © 2017 Elsevier Inc. All rights reserved.
Li, Feng; Palaniswamy, Ganesan; de Jong, Menno R; Aslund, Andreas; Konradsson, Peter; Marcelis, Antonius T M; Sudhölter, Ernst J R; Stuart, Martien A Cohen; Leermakers, Frans A M
2010-06-21
Conjugated organic nanowires have been prepared by co-assembling a carboxylate containing low-molecular weight gelator (LMWG) and an amino acid substituted polythiophene derivative (PTT). Upon introducing the zwitterionic polyelectrolyte PTT to a basic molecular solution of the organogelator, the negative charges on the LMWG are compensated by the positive charges of the PTT. As a result, nanowires form through co-assembly. These nanowires are visualized by both transmission electron microscopy (TEM) and atomic force microscopy (AFM). Depending on the concentration and ratio of the components these nanowires can be micrometers long. These measurements further suggest that the aggregates adopt a helical conformation. The morphology of these nanowires are studied with fluorescent confocal laser scanning microscopy (CLSM). The interactions between LMWG and PTT are characterized by steady-state and time-resolved fluorescence spectroscopy studies. The steady-state spectra indicate that the backbone of the PTT adopts a more planar and more aggregated conformation when interacting with LMWG. The time- resolved fluorescence decay studies confirm this interpretation.
NASA Astrophysics Data System (ADS)
Cristescu, R.; Visan, A.; Socol, G.; Surdu, A. V.; Oprea, A. E.; Grumezescu, A. M.; Chifiriuc, M. C.; Boehm, R. D.; Yamaleyeva, D.; Taylor, M.; Narayan, R. J.; Chrisey, D. B.
2016-06-01
The purpose of this study was to investigate the interactions between microorganisms, including the planktonic and adherent organisms, and biopolymer (polyvinylpyrrolidone), flavonoid (quercetin dihydrate and resveratrol)-biopolymer, and silver nanoparticles-biopolymer composite thin films that were deposited using matrix assisted pulsed laser evaporation (MAPLE). A pulsed KrF* excimer laser source was used to deposit the aforementioned composite thin films, which were characterized using Fourier transform infrared spectroscopy (FT-IR), infrared microscopy (IRM), scanning electron microscopy (SEM), Grazing incidence X-ray diffraction (GIXRD) and atomic force microscopy (AFM). The antimicrobial activity of thin films was quantified using an adapted disk diffusion assay against Gram-positive and Gram-negative bacteria strains. FT-IR, AFM and SEM studies confirmed that MAPLE may be used to fabricate thin films with chemical properties corresponding to the input materials as well as surface properties that are appropriate for medical use. The silver nanoparticles and flavonoid-containing films exhibited an antimicrobial activity both against Gram-positive and Gram-negative bacterial strains demonstrating the potential use of these hybrid systems for the development of novel antimicrobial strategies.
A Novel Solubility-Enhanced Rubusoside-Based Micelles for Increased Cancer Therapy
NASA Astrophysics Data System (ADS)
Zhang, Meiying; Dai, Tongcheng; Feng, Nianping
2017-04-01
Many anti-cancer drugs have a common problem of poor solubility. Increasing the solubility of the drugs is very important for its clinical applications. In the present study, we revealed that the solubility of insoluble drugs was significantly enhanced by adding rubusoside (RUB). Further, it was demonstrated that RUB could form micelles, which was well characterized by Langmuir monolayer investigation, transmission electron microscopy, atomic-force microscopy, and cryogenic transmission electron microscopy. The RUB micelles were ellipsoid with the horizontal distance of 25 nm and vertical distance of 1.2 nm. Insoluble synergistic anti-cancer drugs including curcumin and resveratrol were loaded in RUB to form anti-cancer micelles RUB/CUR + RES. MTT assay showed that RUB/CUR + RES micelles had more significant toxicity on MCF-7 cells compared to RUB/CUR micelles + RUB/RES micelles. More importantly, it was confirmed that RUB could load other two insoluble drugs together for remarkably enhanced anti-cancer effect compared to that of RUB/one drug + RUB/another drug. Overall, we concluded that RUB-based micelles could efficiently load insoluble drugs for enhanced anti-cancer effect.
Ga metal nanoparticle-GaAs quantum molecule complexes for Terahertz generation.
Bietti, Sergio; Basso Basset, Francesco; Scarpellini, David; Fedorov, Alexey; Ballabio, Andrea; Esposito, Luca; Elborg, Martin; Kuroda, Takashi; Nemcsics, Akos; Toth, Lajos; Manzoni, Cristian; Vozzi, Caterina; Sanguinetti, Stefano
2018-06-18
A hybrid metal-semiconductor nanosystem for the generation of THz radiation, based on the fabrication of GaAs quantum molecules-Ga metal nanoparticles complexes through a self assembly approach, is proposed. The role of the growth parameters, the substrate temperature, the Ga and As flux during the quantum dot molecule fabrication and the metal nanoparticle alignment is discussed. The tuning of the relative positioning of quantum dot molecules and metal nanoparticles is obtained through the careful control of Ga droplet nucleation sites via Ga surface diffusion. The electronic structure of a typical quantum dot molecule was evaluated on the base of the morphological characterizations performed by Atomic Force Microscopy and cross sectional Scanning Electron Microscopy, and the predicted results confirmed by micro-photoluminescence experiments, showing that the Ga metal nanoparticle-GaAs quantum molecule complexes are suitable for terahertz generation from intraband transition. . © 2018 IOP Publishing Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Hao; Lunt, Barry M.; Gates, Richard J.
A novel write-once-read-many (WORM) optical stack on Mylar tape is proposed as a replacement for magnetic tape for archival data storage. This optical tape contains a cosputtered bismuth–tellurium–selenium (BTS) alloy as the write layer sandwiched between thin, protective films of reactively sputtered carbon. The composition and thickness of the BTS layer were confirmed by Rutherford Backscattering (RBS) and atomic force microscopy (AFM), respectively. The C/BTS/C stack on Mylar was written to/marked by 532 nm laser pulses. Under the same conditions, control Mylar films without the optical stack were unaffected. Marks, which showed craters/movement of the write material, were characterized bymore » optical microscopy and AFM. The threshold laser powers for making marks on C/BTS/C stacks with different thicknesses were explored. Higher quality marks were made with a 60× objective compared to a 40× objective in our marking apparatus. Finally, the laser writing process was simulated with COMSOL.« less
Yu, Xiuhong; Xue, Fanghong; Huang, Hao; Liu, Chunjing; Yu, Jieyi; Sun, Yuejun; Dong, Xinglong; Cao, Guozhong; Jung, Youngguan
2014-06-21
Two-dimensional (2D) ultrathin silicon nanosheets (Si NSs) were synthesized by DC arc discharge method and investigated as anode material for Li-ion batteries. The 2D ultrathin characteristics of Si NSs is confirmed by means of transmission electron microscopy (TEM) and atomic force microscopy (AFM). The average size of Si NSs is about 20 nm, with thickness less than 2.5 nm. The characteristic Raman peak of Si NSs is found to have an appreciable (20 nm) shift to low frequency, presumably due to the size effect. The synergistic effects of Ar(+) and H(+) lead to 2D growth of Si NSs under high temperature and energy. Electrochemical analyses reveal that Si NSs anode possesses stable cycling performance and fast diffusion of Li-ions with insertion/extraction processes. Such Si NSs might be a promising candidate for anode of Li-ion batteries.
Large-area synthesis of WSe2 from WO3 by selenium-oxygen ion exchange
NASA Astrophysics Data System (ADS)
Browning, Paul; Eichfeld, Sarah; Zhang, Kehao; Hossain, Lorraine; Lin, Yu-Chuan; Wang, Ke; Lu, Ning; Waite, A. R.; Voevodin, A. A.; Kim, Moon; Robinson, Joshua A.
2015-03-01
Few-layer tungsten diselenide (WSe2) is attractive as a next-generation electronic material as it exhibits modest carrier mobilities and energy band gap in the visible spectra, making it appealing for photovoltaic and low-powered electronic applications. Here we demonstrate the scalable synthesis of large-area, few-layer WSe2 via replacement of oxygen in hexagonally stabilized tungsten oxide films using dimethyl selenium. Cross-sectional transmission electron microscopy reveals successful control of the final WSe2 film thickness through control of initial tungsten oxide thickness, as well as development of layered films with grain sizes up to several hundred nanometers. Raman spectroscopy and atomic force microscopy confirms high crystal uniformity of the converted WSe2, and time domain thermo-reflectance provide evidence that near record low thermal conductivity is achievable in ultra-thin WSe2 using this method.
Wang, Li; Ye, Yinjian; Lu, Xingping; Wen, Zhubiao; Li, Zhuang; Hou, Haoqing; Song, Yonghai
2013-01-01
Here we reported a novel route to synthesize a hierarchical nanocomposite (PANI-frGO) of polyaniline (PANI) nanowire arrays covalently bonded on reduced graphene oxide (rGO). In this strategy, nitrophenyl groups were initially grafted on rGO via C-C bond, and then reduced to aminophenyl to act as anchor sites for the growth of PANI arrays on rGO. The functionalized process was confirmed by atomic force microscopy, scanning electron microscopy, Fourier transform infrared spectroscopy, Raman spectroscopy and thermogravimetric analysis. The electrochemical properties of the PANI-frGO as supercapacitor materials were investigated. The PANI-frGO nanocomposites showed high capacitance of 590 F g−1 at 0.1 A g−1, and had no loss of capacitance after 200 cycles at 2 A g−1. The improved electrochemical performance suggests promising application of the PANI-frGO nanocomposites in high-performance supercapacitors. PMID:24356535
Alayande, Abayomi Babatunde; Kim, Lan Hee; Kim, In S
2016-01-01
In this study, an environmentally friendly compound, hydroxypropyl-beta-cyclodextrin (HP-β-CD) was applied to clean reverse osmosis (RO) membranes fouled by microorganisms. The cleaning with HP-β-CD removed the biofilm and resulted in a flux recovery ratio (FRR) of 102%. As cleaning efficiency is sometimes difficult to determine using flux recovery data alone, attached bacterial cells and extracellular polymeric substances (EPS) were quantified after cleaning the biofouled membrane with HP-β-CD. Membrane surface characterization using scanning electron microscopy (SEM), attenuated total reflectance Fourier transform infrared (ATR-FTIR) and atomic force microscopy (AFM) confirmed the effectiveness of HP-β-CD in removal of biofilm from the RO membrane surface. Finally, a comparative study was performed to investigate the competitiveness of HP-β-CD with other known cleaning agents such as sodium dodecyl sulfate (SDS), ethylenediaminetetraacetic acid (EDTA), Tween 20, rhamnolipid, nisin, and surfactin. In all cases, HP-β-CD was superior.
Interaction of highly charged ions with carbon nano membranes
NASA Astrophysics Data System (ADS)
Gruber, Elisabeth; Wilhelm, Richard A.; Smejkal, Valerie; Heller, René; Facsko, Stefan; Aumayr, Friedrich
2015-09-01
Charge state and energy loss measurements of slow highly charged ions (HCIs) after transmission through nanometer and sub-nanometer thin membranes are presented. Direct transmission measurements through carbon nano membranes (CNMs) show an unexpected bimodal exit charge state distribution, accompanied by charge exchange dependent energy loss. The energy loss of ions in CNMs with large charge loss shows a quadratic dependency on the incident charge state, indicating charge state dependent stopping force values. Another access to the exit charge state distribution is given by irradiating stacks of CNMs and investigating each layer of the stack with high resolution imaging techniques like transmission electron microscopy (TEM) and helium ion microscopy (HIM) independently. The observation of pores created in all of the layers confirms the assumption derived from the transmission measurements that the two separated charge state distributions reflect two different impact parameter regimes, i.e. close collision with large charge exchange and distant collisions with weak ion-target interaction.
Study of structural and optical properties of ZnS zigzag nanostructured thin films
NASA Astrophysics Data System (ADS)
Rahchamani, Seyyed Zabihollah; Rezagholipour Dizaji, Hamid; Ehsani, Mohammad Hossein
2015-11-01
Zinc sulfide (ZnS) nanostructured thin films of different thicknesses with zigzag shapes have been deposited on glass substrates by glancing angle deposition (GLAD) technique. Employing a homemade accessory attached to the substrate holder enabled the authors to control the substrate temperature and substrate angle. The prepared samples were subjected to X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), atomic force microscopy (AFM) and UV-VIS. spectroscopy techniques. The structural studies revealed that the film deposited at room temperature crystallized in cubic structure. The FESEM images of the samples confirmed the formation of zigzag nano-columnar shape with mean diameter about 60-80 nm. By using the data obtained from optical studies, the real part of the refractive index (n), the absorption coefficient (α) and the band gap (Eg) of the samples were calculated. The results show that the refractive indices of the prepared films are very sensitive to deposition conditions.
Characterization of Pb-Doped GaN Thin Films Grown by Thermionic Vacuum Arc
NASA Astrophysics Data System (ADS)
Özen, Soner; Pat, Suat; Korkmaz, Şadan
2018-03-01
Undoped and lead (Pb)-doped gallium nitride (GaN) thin films have been deposited by a thermionic vacuum arc (TVA) method. Glass and polyethylene terephthalate were selected as optically transparent substrates. The structural, optical, morphological, and electrical properties of the deposited thin films were investigated. These physical properties were interpreted by comparison with related analysis methods. The crystalline structure of the deposited GaN thin films was hexagonal wurtzite. The optical bandgap energy of the GaN and Pb-doped GaN thin films was found to be 3.45 eV and 3.47 eV, respectively. The surface properties of the deposited thin films were imaged using atomic force microscopy and field-emission scanning electron microscopy, revealing a nanostructured, homogeneous, and granular surface structure. These results confirm that the TVA method is an alternative layer deposition system for Pb-doped GaN thin films.
NASA Astrophysics Data System (ADS)
Sriramulu, Mohana; Sumathi, Shanmugam
2018-06-01
In this article, we have discussed the biosynthesis of palladium nanoparticles (PdNPs) using aqueous Saccharomyces cerevisiae extract and its photocatalytic application. The biosynthesised PdNPs were characterised by UV-Vis spectroscopy (UV-Vis), Fourier transform infrared spectroscopy (FTIR), x-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDX) and Atomic force microscopy (AFM). The formation of PdNPs was confirmed from the disappearance of the peak at 405 nm in the UV-Vis spectrum. Agglomerated and hexagonal shaped PdNPs were noted by SEM. FTIR was performed to identify the biomolecules responsible for the synthesis of PdNPs. Bioactive compounds in the yeast extract acted as secondary metabolites which facilitated the formation of PdNPs. The yeast synthesised PdNPs degraded 98% of direct blue 71 dye photochemically within 60 min under UV light.
Nayak, Debasis; Ashe, Sarbani; Rauta, Pradipta Ranjan; Nayak, Bismita
2015-10-01
Green synthesis of metallic nanoparticles has lured the world from the chemical and physical approaches owing to its rapid, non-hazardous and economic aspect of production mechanism. In this study, silver nanoparticles (AgNPs) were synthesised using petal extracts of Hibiscus rosa-sinensis. The AgNPs displayed characteristic surface plasmon resonance peak at around 421 nm having a mean particle size of 76.25±0.17 nm and carried a charge of -41±0.2 mV. The X-ray diffraction patterns displayed typical peaks of face centred cubic crystalline silver. The surface morphology was characterised by scanning electron microscopy and atomic force microscopy. Fourier transform infrared spectroscopy studies confirmed the surface modifications of the functional groups for the synthesis of AgNPs. Furthermore, the synthesised AgNPs displayed proficient antimicrobial activity against pathogenic strains of Vibrio cholerae, Escherichia coli, Klebsiella pneumoniae and Staphylococcus aureus.
NASA Astrophysics Data System (ADS)
Wang, Li; Ye, Yinjian; Lu, Xingping; Wen, Zhubiao; Li, Zhuang; Hou, Haoqing; Song, Yonghai
2013-12-01
Here we reported a novel route to synthesize a hierarchical nanocomposite (PANI-frGO) of polyaniline (PANI) nanowire arrays covalently bonded on reduced graphene oxide (rGO). In this strategy, nitrophenyl groups were initially grafted on rGO via C-C bond, and then reduced to aminophenyl to act as anchor sites for the growth of PANI arrays on rGO. The functionalized process was confirmed by atomic force microscopy, scanning electron microscopy, Fourier transform infrared spectroscopy, Raman spectroscopy and thermogravimetric analysis. The electrochemical properties of the PANI-frGO as supercapacitor materials were investigated. The PANI-frGO nanocomposites showed high capacitance of 590 F g-1 at 0.1 A g-1, and had no loss of capacitance after 200 cycles at 2 A g-1. The improved electrochemical performance suggests promising application of the PANI-frGO nanocomposites in high-performance supercapacitors.
Wang, Li; Ye, Yinjian; Lu, Xingping; Wen, Zhubiao; Li, Zhuang; Hou, Haoqing; Song, Yonghai
2013-12-20
Here we reported a novel route to synthesize a hierarchical nanocomposite (PANI-frGO) of polyaniline (PANI) nanowire arrays covalently bonded on reduced graphene oxide (rGO). In this strategy, nitrophenyl groups were initially grafted on rGO via C-C bond, and then reduced to aminophenyl to act as anchor sites for the growth of PANI arrays on rGO. The functionalized process was confirmed by atomic force microscopy, scanning electron microscopy, Fourier transform infrared spectroscopy, Raman spectroscopy and thermogravimetric analysis. The electrochemical properties of the PANI-frGO as supercapacitor materials were investigated. The PANI-frGO nanocomposites showed high capacitance of 590 F g(-1) at 0.1 A g(-1), and had no loss of capacitance after 200 cycles at 2 A g(-1). The improved electrochemical performance suggests promising application of the PANI-frGO nanocomposites in high-performance supercapacitors.
Dai, Hailang; Cao, Zhuangqi; Wang, Yuxing; Li, Honggen; Sang, Minghuang; Yuan, Wen; Chen, Fan; Chen, Xianfeng
2016-01-01
Due to the field enhancement effect of the hollow-core metal-cladded optical waveguide chip, massive nanoparticles in a solvent are effectively trapped via exciting ultrahigh order modes. A concentric ring structure of the trapped nanoparticles is obtained since the excited modes are omnidirectional at small incident angle. During the process of solvent evaporation, the nanoparticles remain well trapped since the excitation condition of the optical modes is still valid, and a concentric circular grating consisting of deposited nanoparticles can be produced by this approach. Experiments via scanning electron microscopy, atomic force microscopy and diffraction of a probe laser confirmed the above hypothesis. This technique provides an alternative strategy to enable effective trapping of dielectric particles with low-intensity nonfocused illumination, and a better understanding of the correlation between the guided modes in an optical waveguide and the nanoparticles in a solvent. PMID:27550743
Model-based traction force microscopy reveals differential tension in cellular actin bundles.
Soiné, Jérôme R D; Brand, Christoph A; Stricker, Jonathan; Oakes, Patrick W; Gardel, Margaret L; Schwarz, Ulrich S
2015-03-01
Adherent cells use forces at the cell-substrate interface to sense and respond to the physical properties of their environment. These cell forces can be measured with traction force microscopy which inverts the equations of elasticity theory to calculate them from the deformations of soft polymer substrates. We introduce a new type of traction force microscopy that in contrast to traditional methods uses additional image data for cytoskeleton and adhesion structures and a biophysical model to improve the robustness of the inverse procedure and abolishes the need for regularization. We use this method to demonstrate that ventral stress fibers of U2OS-cells are typically under higher mechanical tension than dorsal stress fibers or transverse arcs.
Model-based Traction Force Microscopy Reveals Differential Tension in Cellular Actin Bundles
Soiné, Jérôme R. D.; Brand, Christoph A.; Stricker, Jonathan; Oakes, Patrick W.; Gardel, Margaret L.; Schwarz, Ulrich S.
2015-01-01
Adherent cells use forces at the cell-substrate interface to sense and respond to the physical properties of their environment. These cell forces can be measured with traction force microscopy which inverts the equations of elasticity theory to calculate them from the deformations of soft polymer substrates. We introduce a new type of traction force microscopy that in contrast to traditional methods uses additional image data for cytoskeleton and adhesion structures and a biophysical model to improve the robustness of the inverse procedure and abolishes the need for regularization. We use this method to demonstrate that ventral stress fibers of U2OS-cells are typically under higher mechanical tension than dorsal stress fibers or transverse arcs. PMID:25748431
NASA Astrophysics Data System (ADS)
Knorr, Nikolaus; Rosselli, Silvia; Miteva, Tzenka; Nelles, Gabriele
2009-06-01
Although charging of insulators by atomic force microscopy (AFM) has found widespread interest, often with data storage or nanoxerography in mind, less attention has been paid to the charging mechanism and the nature of the charge. Here we present a systematic study on charging of amorphous polymer films by voltage pulses applied to conducting AFM probes. We find a quadratic space charge limited current law of Kelvin probe force microscopy and electrostatic force microscopy peak volumes in pulse height, offset by a threshold voltage, and a power law in pulse width of positive exponents smaller than one. We interpret the results by a charging mechanism of injection and surface near accumulation of aqueous ions stemming from field induced water adsorption, with threshold voltages linked to the water affinities of the polymers.
Polarization induced conductive AFM on cobalt doped ZnO nanostructures
NASA Astrophysics Data System (ADS)
Sahoo, Pradosh Kumar; Mangamma, G.; Rajesh, A.; Kamruddin, M.; Dash, S.
2017-05-01
In the present work cobalt doped ZnO (CZO) nanostructures (NS) have been synthesized by of sol-gel and spin coating process. After the crystal phase confirmation by GIXRD and Raman spectroscopy, Conductive Atomic Force Microscopy (C-AFM) measurement was performed on CZO NS which shows the random distribution of electrically conducting zones on the surface of the material exhibiting current in the range 4-170 pA. We provide the possible mechanisms for variation in current distribution essential for quantitative understanding of transport properties of ZnO NS in doped and undoped forms.
Experimental verification of the rainbow trapping effect in adiabatic plasmonic gratings
Gan, Qiaoqiang; Gao, Yongkang; Wagner, Kyle; Vezenov, Dmitri; Ding, Yujie J.; Bartoli, Filbert J.
2011-01-01
We report the experimental observation of a trapped rainbow in adiabatically graded metallic gratings, designed to validate theoretical predictions for this unique plasmonic structure. One-dimensional graded nanogratings were fabricated and their surface dispersion properties tailored by varying the grating groove depth, whose dimensions were confirmed by atomic force microscopy. Tunable plasmonic bandgaps were observed experimentally, and direct optical measurements on graded grating structures show that light of different wavelengths in the 500–700-nm region is “trapped” at different positions along the grating, consistent with computer simulations, thus verifying the “rainbow” trapping effect. PMID:21402936
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jung, Min-Cherl; Zhang, Dongrong; Nikiforov, Gueorgui O.
Ultrathin (<6 nm) polycrystalline films of 6,13-bis(triisopropylsilylethynyl) pentacene (TIPS-P) are deposited with a two-step spin-coating process. The influence of spin-coating conditions on morphology of the resulting film was examined by atomic force microscopy. Film thickness and RMS surface roughness were in the range of 4.0–6.1 and 0.6–1.1 nm, respectively, except for small holes. Polycrystalline structure was confirmed by grazing incidence x-ray diffraction measurements. Near-edge x-ray absorption fine structure measurements suggested that the plane through aromatic rings of TIPS-P molecules was perpendicular to the substrate surface.
Origin of bending in uncoated microcantilever - Surface topography?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lakshmoji, K.; Prabakar, K.; Tripura Sundari, S., E-mail: sundari@igcar.gov.in
2014-01-27
We provide direct experimental evidence to show that difference in surface topography on opposite sides of an uncoated microcantilever induces bending, upon exposure to water molecules. Examination on opposite sides of the microcantilever by atomic force microscopy reveals the presence of localized surface features on one side, which renders the induced stress non-uniform. Further, the root mean square inclination angle characterizing the surface topography shows a difference of 73° between the opposite sides. The absence of deflection in another uncoated microcantilever having similar surface topography confirms that in former microcantilever bending is indeed induced by differences in surface topography.
Saboo, Sugandha; Taylor, Lynne S
2017-08-30
The aim of this study was to evaluate the utility of confocal fluorescence microscopy (CFM) to study the water-induced phase separation of miconazole-poly (vinylpyrrolidone-co-vinyl acetate) (mico-PVPVA) amorphous solid dispersions (ASDs), induced during preparation, upon storage at high relative humidity (RH) and during dissolution. Different fluorescent dyes were added to drug-polymer films and the location of the dyes was evaluated using CFM. Orthogonal techniques, in particular atomic force microscopy (AFM) coupled with nanoscale infrared spectroscopy (AFM-nanoIR), were used to provide additional analysis of the drug-polymer blends. The initial miscibility of mico-PVPVA ASDs prepared under low humidity conditions was confirmed by AFM-nanoIR. CFM enabled rapid identification of drug-rich and polymer-rich phases in phase separated films prepared under high humidity conditions. The identity of drug- and polymer-rich domains was confirmed using AFM-nanoIR imaging and localized IR spectroscopy, together with Lorentz contact resonance (LCR) measurements. The CFM technique was then utilized successfully to further investigate phase separation in mico-PVPVA films exposed to high RH storage and to visualize phase separation dynamics following film immersion in buffer. CFM is thus a promising new approach to study the phase behavior of ASDs, utilizing drug and polymer specific dyes to visualize the evolution of heterogeneity in films exposed to water. Copyright © 2017 Elsevier B.V. All rights reserved.
He, Huiwen; Chen, Si; Tong, Xiaoqian; An, Zhihang; Ma, Meng; Wang, Xiaosong; Wang, Xu
2017-11-21
Aromatic groups are introduced into the end peripherals of polyhedral oligomeric silsesquioxane (POSS) core-based organic/inorganic hybrid supramolecules to get a novel dendrimer gelator POSS-Z-Asp(OBzl) (POSS-ASP), which have eight aspartate derivative arms to make full use of strong π-π stacking forces to get strong supramolecular gels in addition to multiple hydrogen bindings and van der Waals interactions. POSS-ASP can self-assemble into three-dimensional nanoscale gel networks to provide hybrid physical gels especially with strong mechanical properties and fast-recovery behaviors. Two totally different morphologies of the connected spherical particle structures and banded ultralong fibers are observed owing to the polarity of solvents confirmed by the scanning electron microscopy, polarized optical microscopy, and transmission electron microscopy techniques, expecting the existing various self-assembly models and illustrating the peripherals of the dendrimer and the polarity of solvents having huge influences in the supramolecular self-assembly mechanism. What is more, the thermal stability, rheological properties, and network architecture information have also been investigated via tube-inversion, rotational rheometer, and powder X-ray diffraction methods, the results of which confirm the two different gel formation mechanisms that make POSS-ASP to exhibit two totally different thermal and mechanical properties. Such a study reports a new gelation system in organic or organic/aqueous mixed solvents, which can be helpful for investigating the relationship of dendritic supramolecular gelation and different polarity solvents during the supramolecular self-assembly process of gelators.
Kumar, Bharat; Crittenden, Scott R
2013-11-01
We demonstrate the ability to measure Stern potential and Debye length in dilute ionic solution with atomic force microscopy. We develop an analytic expression for the second harmonic force component of the capacitive force in an ionic solution from the linearized Poisson-Boltzmann equation. This allows us to calibrate the AFM tip potential and, further, obtain the Stern potential of sample surfaces. In addition, the measured capacitive force is independent of van der Waals and double layer forces, thus providing a more accurate measure of Debye length.
Chen, Bailin; Jiang, Huijian; Zhu, Yan; Cammers, Arthur; Selegue, John P
2005-03-30
We follow the evolution of polyoxomolybdate nanoparticles in suspensions derived from the keplerate (NH4)42[MoVI72MoV60O372(CH3CO2)30(H2O)72].ca..300H2O.ca..10CH3CO2NH4 ({Mo132}) by flow field-flow fractionation (FlFFF) to monitor the particle-size distribution in situ, atomic force and high-resolution transmission electron microscopy (AFM, SEM, and HRTEM) to confirm particle sizes, inductively coupled plasma-optical emission spectrometry (ICP-OES) to determine the Mo content of the FlFFF-separated fractions, and UV/visible spectroscopy to confirm the identity of the species in suspension. We observe the formation of 3-75-nm polyoxomolybdate particles in suspension and the dynamic growth of {Mo132} crystals.
ERIC Educational Resources Information Center
Mann, Cynthia Marie
2009-01-01
This work describes the use of polyacrylamide hydrogels as controlled elastic modulus substrates for single cell traction force microscopy studies. The first section describes the use of EDC/NHS chemistry to convalently link microbeads to the hydrogel matrix for the purpose of performing long-term traction force studies (7 days). The final study…
Measuring Roughnesses Of Optical Surfaces
NASA Technical Reports Server (NTRS)
Coulter, Daniel R.; Al-Jumaily, Gahnim A.; Raouf, Nasrat A.; Anderson, Mark S.
1994-01-01
Report discusses use of scanning tunneling microscopy and atomic force microscopy to measure roughnesses of optical surfaces. These techniques offer greater spatial resolution than other techniques. Report notes scanning tunneling microscopes and atomic force microscopes resolve down to 1 nm.
NASA Astrophysics Data System (ADS)
Gryzia, Aaron; Volkmann, Timm; Brechling, Armin; Hoeke, Veronika; Schneider, Lilli; Kuepper, Karsten; Glaser, Thorsten; Heinzmann, Ulrich
2014-02-01
Monolayers and submonolayers of [Mn III 6 Cr III ] 3+ single-molecule magnets (SMMs) adsorbed on highly oriented pyrolytic graphite (HOPG) using the droplet technique characterized by non-contact atomic force microscopy (nc-AFM) as well as by Kelvin probe force microscopy (KPFM) show island-like structures with heights resembling the height of the molecule. Furthermore, islands were found which revealed ordered 1D as well as 2D structures with periods close to the width of the SMMs. Along this, islands which show half the heights of intact SMMs were observed which are evidences for a decomposing process of the molecules during the preparation. Finally, models for the structure of the ordered SMM adsorbates are proposed to explain the observations.
Yoshino, Keisuke; Nakamura, Koji; Yamashita, Arisa; Abe, Yoshihiko; Iwasaki, Kazuhiro; Kanazawa, Yukie; Funatsu, Kaori; Yoshimoto, Tsuyoshi; Suzuki, Shigeru
2014-01-01
The functionality of a newly developed silicone oil-free (SOF) syringe system, of which the plunger stopper is coated by a novel coating technology (i-coating™), was assessed. By scanning electron microscopy observations and other analysis, it was confirmed that the plunger stopper surface was uniformly covered with the designed chemical composition. A microflow imaging analysis showed that the SOF system drastically reduced both silicone oil (SO) doplets and oil-induced aggregations in a model protein formulation, whereas a large number of subvisible particles and protein aggregations were formed when a SO system was used. Satisfactory container closure integrity (CCI) was confirmed by means of dye and microorganism penetration studies. Furthermore, no significant difference between the break loose and gliding forces was observed in the former, and stability studies revealed that the SOF system could perfectly show the aging independence in break loose force observed in the SO system. The results suggest that the introduced novel SOF system has a great potential and represents an alternative that can achieve very low subvisible particles, secure CCI, and the absence of a break loose force. In particular, no risk of SO-induced aggregation can bring additional value in the highly sensitive biotech drug market. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association J Pharm Sci 103:1520–1528, 2014 PMID:24643749
NASA Astrophysics Data System (ADS)
Kageshima, Masami; Jensenius, Henriette; Dienwiebel, Martin; Nakayama, Yoshikazu; Tokumoto, Hiroshi; Jarvis, Suzanne P.; Oosterkamp, Tjerk H.
2002-03-01
A force sensor for noncontact atomic force microscopy in liquid environment was developed by combining a multiwalled carbon nanotube (MWNT) probe with a quartz tuning fork. Solvation shells of octamethylcyclotetrasiloxane on a graphite surface were detected both in the frequency shift and dissipation. Due to the high aspect ratio of the CNT probe, the long-range background force was barely detectable in the solvation region.
Self-assembled indium arsenide quantum dots: Structure, formation dynamics, optical properties
NASA Astrophysics Data System (ADS)
Lee, Hao
1998-12-01
In this dissertation, we investigate the properties of InAs/GaAs quantum dots grown by molecular beam epitaxy. The structure and formation dynamics of InAs quantum dots are studied by a variety of structural characterization techniques. Correlations among the growth conditions, the structural characteristics, and the observed optical properties are explored. The most fundamental structural characteristic of the InAs quantum dots is their shape. Through detailed study of the reflection high energy electron diffraction patterns, we determined that self-assembled InAs islands possess a pyramidal shape with 136 bounding facets. Cross-sectional transmission electron microscopy images and atomic force microscopy images strongly support this model. The 136 model we proposed is the first model that is consistent with all reported shape features determined using different methods. The dynamics of coherent island formation is also studied with the goal of establishing the factors most important in determining the size, density, and the shape of self- organized InAs quantum dots. Our studies clearly demonstrate the roles that indium diffusion and desorption play in InAs island formation. An unexpected finding (from atomic force microscopy images) was that the island size distribution bifurcated during post- growth annealing. Photoluminescence spectra of the samples subjected to in-situ annealing prior to the growth of a capping layer show a distinctive double-peak feature. The power-dependence and temperature-dependence of the photoluminescence spectra reveals that the double- peak emission is associated with the ground-state transition of islands in two different size branches. These results confirm the island size bifurcation observed from atomic force microscopy images. The island size bifurcation provides a new approach to the control and manipulation of the island size distribution. Unexpected dependence of the photoluminescence line-shape on sample temperature and pump intensity was observed for samples grown at relatively high substrate temperatures. The behavior is modeled and explained in terms of competition between two overlapping transitions. The study underscores that the growth conditions can have a dramatic impact on the optical properties of the quantum dots. This dissertation includes both my previously published and unpublished authored materials.
Azadi, Mehdi; Nguyen, Anh V; Yakubov, Gleb E
2015-02-17
Interfacial gas enrichment of dissolved gases (IGE) has been shown to cover hydrophobic solid surfaces in water. The atomic force microscopy (AFM) data has recently been supported by molecular dynamics simulation. It was demonstrated that IGE is responsible for the unexpected stability and large contact angle of gaseous nanobubbles at the hydrophobic solid-water interface. Here we provide further evidence of the significant effect of IGE on an attractive force between hydrophobic solid surfaces in water. The force in the presence of dissolved gas, i.e., in aerated and nonaerated NaCl solutions (up to 4 M), was measured by the AFM colloidal probe technique. The effect of nanobubble bridging on the attractive force was minimized or eliminated by measuring forces on the first approach of the AFM probe toward the flat hydrophobic surface and by using high salt concentrations to reduce gas solubility. Our results confirm the presence of three types of forces, two of which are long-range attractive forces of capillary bridging origin as caused by either surface nanobubbles or gap-induced cavitation. The third type is a short-range attractive force observed in the absence of interfacial nanobubbles that is attributed to the IGE in the form of a dense gas layer (DGL) at hydrophobic surfaces. Such a force was found to increase with increasing gas saturation and to decrease with decreasing gas solubility.
Covalent immobilization of molecularly imprinted polymer nanoparticles using an epoxy silane.
Kamra, Tripta; Chaudhary, Shilpi; Xu, Changgang; Johansson, Niclas; Montelius, Lars; Schnadt, Joachim; Ye, Lei
2015-05-01
Molecularly imprinted polymers (MIPs) can be used as antibody mimics to develop robust chemical sensors. One challenging problem in using MIPs for sensor development is the lack of reliable conjugation chemistry that allows MIPs to be fixed on transducer surface. In this work, we study the use of epoxy silane to immobilize MIP nanoparticles on model transducer surfaces without impairing the function of the immobilized nanoparticles. The MIP nanoparticles with a core-shell structure have selective molecular binding sites in the core and multiple amino groups in the shell. The model transducer surface is functionalized with a self-assembled monolayer of epoxy silane, which reacts with the core-shell MIP particles to enable straightforward immobilization. The whole process is characterized by studying the treated surfaces after each preparation step using atomic force microscopy, scanning electron microscopy, fluorescence microscopy, contact angle measurements and X-ray photoelectron spectroscopy. The microscopy results show that the MIP particles are immobilized uniformly on surface. The photoelectron spectroscopy results further confirm the action of each functionalization step. The molecular selectivity of the MIP-functionalized surface is verified by radioligand binding analysis. The particle immobilization approach described here has a general applicability for constructing selective chemical sensors in different formats. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
Gurunathan, Sangiliyandi; Han, Jaewoong; Park, Jung Hyun; Kim, Jin Hoi
2014-01-01
Recently, graphene and graphene-related materials have attracted much attention due their unique properties, such as their physical, chemical, and biocompatibility properties. This study aimed to determine the cytotoxic effects of graphene oxide (GO) that is reduced biologically using Ganoderma spp. mushroom extracts in MDA-MB-231 human breast cancer cells. Herein, we describe a facile and green method for the reduction of GO using extracts of Ganoderma spp. as a reducing agent. GO was reduced without any hazardous chemicals in an aqueous solution, and the reduced GO was characterized using a range of analytical procedures. The Ganoderma extract (GE)-reduced GO (GE-rGO) was characterized by ultraviolet-visible absorption spectroscopy, X-ray diffraction, Fourier-transform infrared spectroscopy, X-ray photoelectron spectroscopy, dynamic light scattering, scanning electron microscopy, Raman spectroscopy, and atomic force microscopy. Furthermore, the toxicity of GE-rGO was evaluated using a sequence of assays such as cell viability, lactate dehydrogenase leakage, and reactive oxygen species generation in human breast cancer cells (MDA-MB-231). The preliminary characterization of reduction of GO was confirmed by the red-shifting of the absorption peak for GE-rGO to 265 nm from 230 nm. The size of GO and GE-rGO was found to be 1,880 and 3,200 nm, respectively. X-ray diffraction results confirmed that reduction processes of GO and the processes of removing intercalated water molecules and the oxide groups. The surface functionalities and chemical natures of GO and GE-rGO were confirmed using Fourier-transform infrared spectroscopy and X-ray photoelectron spectroscopy. The surface morphologies of the synthesized graphene were analyzed using high-resolution scanning electron microscopy. Raman spectroscopy revealed single- and multilayer properties of GE-rGO. Atomic force microscopy images provided evidence for the formation of graphene. Furthermore, the effect of GO and GE-rGO was examined using a series of assays, such as cell viability, membrane integrity, and reactive oxygen species generation, which are key molecules involved in apoptosis. The results obtained from cell viability and lactate dehydrogenase assay suggest that GO and GE-rGO cause dose-dependent toxicity in the cells. Interestingly, it was found that biologically derived GE-rGO is more toxic to cancer cells than GO. We describe a simple, green, nontoxic, and cost-effective approach to producing graphene using mushroom extract as a reducing and stabilizing agent. The proposed method could enable synthesis of graphene with potential biological and biomedical applications such as in cancer and angiogenic disorders. To our knowledge, this is the first report using mushroom extract as a reducing agent for the synthesis of graphene. Mushroom extract can be used as a biocatalyst for the production of graphene.
Taking Nanomedicine Teaching into Practice with Atomic Force Microscopy and Force Spectroscopy
ERIC Educational Resources Information Center
Carvalho, Filomena A.; Freitas, Teresa; Santos, Nuno C.
2015-01-01
Atomic force microscopy (AFM) is a useful and powerful tool to study molecular interactions applied to nanomedicine. The aim of the present study was to implement a hands-on atomic AFM course for graduated biosciences and medical students. The course comprises two distinct practical sessions, where students get in touch with the use of an atomic…
Dynamics-Enabled Nanoelectromechanical Systems (NEMS) Oscillators
2014-06-01
it becomes strongly nonlinear, and thus constitutes an archetypal candidate for nonlinear engineering • its fundamental resonant frequency...width of spectral peaks of atomic force microscopy (AFM) resonators as they are brought close to a surface. 39 Approved for public release...alternating current AD Allan Deviation AFM atomic force microscopy AFRL Air Force Research Laboratory AlN aluminum nitride APN Anomalous Phase
Oreopoulos, John; Yip, Christopher M.
2009-01-01
Determining the local structure, dynamics, and conformational requirements for protein-protein and protein-lipid interactions in membranes is critical to understanding biological processes ranging from signaling to the translocating and membranolytic action of antimicrobial peptides. We report here the application of a combined polarized total internal reflection fluorescence microscopy-in situ atomic force microscopy platform. This platform's ability to image membrane orientational order was demonstrated on DOPC/DSPC/cholesterol model membranes containing the fluorescent membrane probe, DiI-C20 or BODIPY-PC. Spatially resolved order parameters and fluorophore tilt angles extracted from the polarized total internal reflection fluorescence microscopy images were in good agreement with the topographical details resolved by in situ atomic force microscopy, portending use of this technique for high-resolution characterization of membrane domain structures and peptide-membrane interactions. PMID:19254557
Xu, Meng; Yi, Junyan; Feng, Decheng; Huang, Yudong; Wang, Dongsheng
2016-05-18
Asphalt binder is a very important building material in infrastructure construction; it is commonly mixed with mineral aggregate and used to produce asphalt concrete. Owing to the large differences in physical and chemical properties between asphalt and aggregate, adhesive bonds play an important role in determining the performance of asphalt concrete. Although many types of adhesive bonding mechanisms have been proposed to explain the interaction forces between asphalt binder and mineral aggregate, few have been confirmed and characterized. In comparison with chemical interactions, physical adsorption has been considered to play a more important role in adhesive bonding between asphalt and mineral aggregate. In this study, the silicon tip of an atomic force microscope was used to represent silicate minerals in aggregate, and a nanoscale analysis of the characteristics of adhesive bonding between asphalt binder and the silicon tip was conducted via an atomic force microscopy (AFM) test and molecular dynamics (MD) simulations. The results of the measurements and simulations could help in better understanding of the bonding and debonding procedures in asphalt-aggregate mixtures during hot mixing and under traffic loading. MD simulations on a single molecule of a component of asphalt and monocrystalline silicon demonstrate that molecules with a higher atomic density and planar structure, such as three types of asphaltene molecules, can provide greater adhesive strength. However, regarding the real components of asphalt binder, both the MD simulations and AFM test indicate that the colloidal structural behavior of asphalt also has a large influence on the adhesion behavior between asphalt and silicon. A schematic model of the interaction between asphalt and silicon is presented, which can explain the effect of aging on the adhesion behavior of asphalt.
Moerman, D; Sebaihi, N; Kaviyil, S E; Leclère, P; Lazzaroni, R; Douhéret, O
2014-09-21
In this work, conductive atomic force microscopy (C-AFM) is used to study the local electrical properties in thin films of self-organized fibrillate poly(3-hexylthiophene) (P3HT), as a reference polymer semiconductor. Depending on the geometrical confinement in the transport channel, the C-AFM current is shown to be governed either by the charge transport in the film or by the carrier injection at the tip-sample contact, leading to either bulk or local electrical characterization of the semiconducting polymer, respectively. Local I-V profiles allow discrimination of the different dominating electrical mechanisms, i.e., resistive in the transport regime and space charge limited current (SCLC) in the local regime. A modified Mott-Gurney law is analytically derived for the contact regime, taking into account the point-probe geometry of the contact and the radial injection of carriers. Within the SCLC regime, the probed depth is shown to remain below 12 nm with a lateral electrical resolution below 5 nm. This confirms that high resolution is reached in those C-AFM measurements, which therefore allows for the analysis of single organic semiconducting nanostructures. The carrier density and mobility in the volume probed under the tip under steady-state conditions are also determined in the SCLC regime.
Attachment of micro- and nano-particles on tipless cantilevers for colloidal probe microscopy.
D'Sa, Dexter J; Chan, Hak-Kim; Chrzanowski, Wojciech
2014-07-15
Current colloidal probe preparation techniques face several challenges in the production of functional probes using particles ⩽5 μm. Challenges include: glue encapsulated particles, glue altered particle properties, improper particle or agglomerate attachment, and lengthy procedures. We present a method to rapidly and reproducibly produce functional micro and nano-colloidal probes. Using a six-step procedure, cantilevers mounted on a custom designed 45° holder were used to approach and obtain a minimal amount of epoxy resin (viscosity of ∼14,000 cP) followed by a single micron/nano particle on the apex of a tipless cantilever. The epoxy and particles were prepared on individual glass slides and subsequently affixed to a 10× or 40× optical microscope lens using another custom designed holder. Scanning electron microscopy and comparative glue-colloidal probe measurements were used to confirm colloidal probe functionality. The method presented allowed rapid and reproducible production of functional colloidal probes (80% success). Single nano-particles were prominently affixed to the apex of the cantilever, unaffected by the epoxy. Nano-colloidal probes were used to conduct topographical, instantaneous force, and adhesive force mapping measurements in dry and liquid media conveying their versatility and functionality in studying nano-colloidal systems. Copyright © 2014 Elsevier Inc. All rights reserved.
Tian, Junlong; Zhang, Wang; Huang, Yiqiao; Liu, Qinglei; Wang, Yuhua; Zhang, Zhijian; Zhang, Di
2015-01-01
A carbon-matrix nickel composite magnetoplasmonic film with a 3D sub-micron periodic triangular roof-type antireflection structure (SPTAS) was fabricated via a simple and promising method that combines chemosynthesis with biomimetic techniques. The Troides helena (Linnaeus) forewing (T_FW) was chosen as the biomimetic template. The carbon-matrix Ni wing fabricated via electroless Ni deposition for 6 h (CNMF_6h) exhibits enhanced infrared absorption. Over a wavelength range (888–2500 nm), the enhancement of the infrared absorption of CNMF_6h is up to 1.85 times compared with the T_FW. Furthermore, infrared excitation induces a photothermal effect that results in variation in the magnetic properties of the carbon-matrix Ni wing. The magnetic properties were also confirmed using atomic force microscopy (AFM) and magnetic force microscopy (MFM). The good correlation between the AFM and MFM images demonstrates that the surface of the SPTAS of CNMF_6h exhibits strong magnetic properties. The infrared induced photothermal effect that results in magnetic variation is promising for use in the design of novel magnetoplasmonic films with potential applications in infrared information recording and heat-assisted magnetic recording. PMID:25620787
Tercjak, A; Garcia, I; Mondragon, I
2008-07-09
Novel well-defined nanostructured thermosetting systems were prepared by modification of a diglicydylether of bisphenol-A epoxy resin (DGEBA) with 10 or 15 wt% amphiphilic poly(styrene-b-ethylene oxide) block copolymer (PSEO) and 30 or 40 wt% low molecular weight liquid crystal 4'-(hexyl)-4-biphenyl-carbonitrile (HBC) using m-xylylenediamine (MXDA) as a curing agent. The competition between well-defined nanostructured materials and the ability for alignment of the liquid crystal phase in the materials obtained has been studied by atomic and electrostatic force microscopy, AFM and EFM, respectively. Based on our knowledge, this is the first time that addition of an adequate amount (10 wt%) of a block copolymer to 40 wt% HBC-(DGEBA/MXDA) leads to a well-organized nanostructured thermosetting system (between a hexagonal and worm-like ordered structure), which is also electro-responsive with high rate contrast. This behavior was confirmed using electrostatic force microscopy (EFM), by means of the response of the HBC liquid crystal phase to the voltage applied to the EFM tip. In contrast, though materials containing 15 wt% PSEO and 30 wt% HBC also form a well-defined nanostructured thermosetting system, they do not show such a high contrast between the uncharged and charged surface.
Single ricin detection by atomic force microscopy chemomechanical mapping
NASA Astrophysics Data System (ADS)
Chen, Guojun; Zhou, Jianfeng; Park, Bosoon; Xu, Bingqian
2009-07-01
The authors report on a study of detecting ricin molecules immobilized on chemically modified Au (111) surface by chemomechanically mapping the molecular interactions with a chemically modified atomic force microscopy (AFM) tip. AFM images resolved the different fold-up conformations of single ricin molecule as well as their intramolecule structure of A- and B-chains. AFM force spectroscopy study of the interaction indicates that the unbinding force has a linear relation with the logarithmic force loading rate, which agrees well with calculations using one-barrier bond dissociation model.
Surface modifications with Lissajous trajectories using atomic force microscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cai, Wei; Yao, Nan, E-mail: nyao@princeton.edu
2015-09-14
In this paper, we report a method for atomic force microscopy surface modifications with single-tone and multiple-resolution Lissajous trajectories. The tip mechanical scratching experiments with two series of Lissajous trajectories were carried out on monolayer films. The scratching processes with two scan methods have been illustrated. As an application, the tip-based triboelectrification phenomenon on the silicon dioxide surface with Lissajous trajectories was investigated. The triboelectric charges generated within the tip rubbed area on the surface were characterized in-situ by scanning Kelvin force microscopy. This method would provide a promising and cost-effective approach for surface modifications and nanofabrication.
Microscopy image segmentation tool: Robust image data analysis
NASA Astrophysics Data System (ADS)
Valmianski, Ilya; Monton, Carlos; Schuller, Ivan K.
2014-03-01
We present a software package called Microscopy Image Segmentation Tool (MIST). MIST is designed for analysis of microscopy images which contain large collections of small regions of interest (ROIs). Originally developed for analysis of porous anodic alumina scanning electron images, MIST capabilities have been expanded to allow use in a large variety of problems including analysis of biological tissue, inorganic and organic film grain structure, as well as nano- and meso-scopic structures. MIST provides a robust segmentation algorithm for the ROIs, includes many useful analysis capabilities, and is highly flexible allowing incorporation of specialized user developed analysis. We describe the unique advantages MIST has over existing analysis software. In addition, we present a number of diverse applications to scanning electron microscopy, atomic force microscopy, magnetic force microscopy, scanning tunneling microscopy, and fluorescent confocal laser scanning microscopy.
Direct manipulation of metallic nanosheets by shear force microscopy.
Bi, Z; Cai, W; Wang, Y; Shang, G
2018-05-15
Micro/nanomanipulation is a rapidly growing technology and holds promising applications in various fields, including photonic/electronic devices, chemical/biosensors etc. In this work, we present that shear force microscopy (ShFM) can be exploited to manipulate metallic nanosheets besides imaging. The manipulation is realized via controlling the shear force sensor probe position and shear force magnitude based on our homemade ShFM system under an optical microscopy for in situ observation. The main feature of the ShFM system is usage of a piezoelectric bimorph sensor, which has the ability of self-excitation and detection. Moreover, the shear force magnitude as a function of the spring constant of the sensor and setpoint is obtained, which indicates that operation modes can be switched between imaging and manipulation through designing the spring constant before experiment and changing the setpoint during manipulation process, respectively. We believe that this alternative manipulation technique could be used to assemble other nanostructures with different shapes, sizes and compositions for new properties and wider applications. © 2018 The Authors Journal of Microscopy © 2018 Royal Microscopical Society.
Scanning probe microscopy for the analysis of composite Ti/hydrocarbon plasma polymer thin films
NASA Astrophysics Data System (ADS)
Choukourov, A.; Grinevich, A.; Slavinska, D.; Biederman, H.; Saito, N.; Takai, O.
2008-03-01
Composite Ti/hydrocarbon plasma polymer films with different Ti concentration were deposited on silicon by dc magnetron sputtering of titanium in an atmosphere of argon and hexane. As measured by Kelvin force microscopy and visco-elastic atomic force microscopy, respectively, surface potential and hardness increase with increasing Ti content. Adhesion force to silicon and to fibrinogen molecules was stronger for the Ti-rich films as evaluated from the AFM force-distance curves. Fibrinogen forms a very soft layer on these composites with part of the protein molecules embedded in the outermost region of the plasma polymer. An increase of the surface charge due to fibrinogen adsorption has been observed and attributed to positively charged αC domains of fibrinogen molecule.
Cao, Yongze; Nakayama, Shota; Kumar, Pawan; Zhao, Yue; Kinoshita, Yukinori; Yoshimura, Satoru; Saito, Hitoshi
2018-05-03
For magnetic domain imaging with a very high spatial resolution by magnetic force microscopy the tip-sample distance should be as small as possible. However, magnetic imaging near sample surface is very difficult with conventional MFM because the interactive forces between tip and sample includes van der Waals and electrostatic forces along with magnetic force. In this study, we proposed an alternating magnetic force microscopy (A-MFM) which extract only magnetic force near sample surface without any topographic and electrical crosstalk. In the present method, the magnetization of a FeCo-GdOx superparamagnetic tip is modulated by an external AC magnetic field in order to measure the magnetic domain structure without any perturbation from the other forces near the sample surface. Moreover, it is demonstrated that the proposed method can also measure the strength and identify the polarities of the second derivative of the perpendicular stray field from a thin-film permanent magnet with DC demagnetized state and remanent state. © 2018 IOP Publishing Ltd.
From elasticity to capillarity in soft materials indentation
NASA Astrophysics Data System (ADS)
Pham, Jonathan T.; Schellenberger, Frank; Kappl, Michael; Butt, Hans-Jürgen
2017-06-01
For soft materials with Young's moduli below 100 kPa, quantifying mechanical and interfacial properties by small scale indentation is challenging because in addition to adhesion and elasticity, surface tension plays a critical role. Until now, microscale contact of very soft materials has only been studied by static experiments under zero external loading. Here we introduce a combination of the colloidal probe technique and confocal microscopy to characterize the force-indentation and force-contact radius relationships during microindentation of soft silicones. We confirm that the widespread Johnson-Kendall-Roberts theory must be extended to predict the mechanical contact for soft materials. Typically a liquid component is found within very soft materials. With a simple analytical model, we illustrate that accounting for this liquid surface tension can capture the contact behavior. Our results highlight the importance of considering liquid that is often associated with soft materials during small scale contact.
Adhesion of liposomes: a quartz crystal microbalance study
NASA Astrophysics Data System (ADS)
Lüthgens, Eike; Herrig, Alexander; Kastl, Katja; Steinem, Claudia; Reiss, Björn; Wegener, Joachim; Pignataro, Bruno; Janshoff, Andreas
2003-11-01
Three different systems are presented, exploring the adhesion of liposomes mediated by electrostatic and lipid-protein interactions as well as molecular recognition of ligand receptor pairs. Liposomes are frequently used to gain insight into the complicated processes involving adhesion and subsequent events such as fusion and fission mainly triggered by specific proteins. We combined liposome technology with the quartz crystal microbalance (QCM) technique as a powerful tool to study the hidden interface between the membrane and functionalized surface. Electrostatic attraction and molecular recognition were employed to bind liposomes to the functionalized quartz crystal. The QCM was used to distinguish between adsorption of vesicles and rupture due to strong adhesive forces. Intact vesicles display viscoelastic behaviour, while planar lipid bilayers as a result of vesicle rupture can be modelled by a thin rigid film. Furthermore, the adhesion of cells was modelled successfully by receptor bearing liposomes. Scanning force microscopy was used to confirm the results obtained by QCM measurements.
Phuthong, Witchukorn; Huang, Zubin; Wittkopp, Tyler M.; ...
2015-07-28
To investigate the dynamics of photosynthetic pigment-protein complexes in vascular plants at high resolution in an aqueous environment, membrane-protruding oxygen-evolving complexes (OECs) associated with photosystem II (PSII) on spinach ( Spinacia oleracea) grana membranes were examined using contact mode atomic force microscopy. This study represents, to our knowledge, the first use of atomic force microscopy to distinguish the putative large extrinsic loop of Photosystem II CP47 reaction center protein (CP47) from the putative oxygen-evolving enhancer proteins 1, 2, and 3 (PsbO, PsbP, and PsbQ) and large extrinsic loop of Photosystem II CP43 reaction center protein (CP43) in the PSII-OEC extrinsicmore » domains of grana membranes under conditions resulting in the disordered arrangement of PSII-OEC particles. Moreover, we observed uncharacterized membrane particles that, based on their physical characteristics and electrophoretic analysis of the polypeptides associated with the grana samples, are hypothesized to be a domain of photosystem I that protrudes from the stromal face of single thylakoid bilayers. Furthermore, our results are interpreted in the context of the results of others that were obtained using cryo-electron microscopy (and single particle analysis), negative staining and freeze-fracture electron microscopy, as well as previous atomic force microscopy studies.« less
Mi Li; Lianqing Liu; Xiubin Xiao; Ning Xi; Yuechao Wang
2016-07-01
Cell mechanics has been proved to be an effective biomarker for indicating cellular states. The advent of atomic force microscopy (AFM) provides an exciting instrument for measuring the mechanical properties of single cells. However, current AFM single-cell mechanical measurements are commonly performed on cell lines cultured in vitro which are quite different from the primary cells in the human body. Investigating the mechanical properties of primary cells from clinical environments can help us to better understand cell behaviors. Here, by combining AFM with magnetic beads cell isolation, the viscoelastic properties of human primary B lymphocytes were quantitatively measured. B lymphocytes were isolated from the peripheral blood of healthy volunteers by density gradient centrifugation and CD19 magnetic beads cell isolation. The activity and specificity of the isolated cells were confirmed by fluorescence microscopy. AFM imaging revealed the surface topography and geometric parameters of B lymphocytes. The instantaneous modulus and relaxation time of living B lymphocytes were measured by AFM indenting technique, showing that the instantaneous modulus of human normal B lymphocytes was 2-3 kPa and the relaxation times were 0.03-0.06 s and 0.35-0.55 s. The differences in cellular visocoelastic properties between primary B lymphocytes and cell lines cultured in vitro were analyzed. The study proves the capability of AFM in quantifying the viscoelastic properties of individual specific primary cells from the blood sample of clinical patients, which will improve our understanding of the behaviors of cells in the human body.
European Respiratory Society guidelines for the diagnosis of primary ciliary dyskinesia.
Lucas, Jane S; Barbato, Angelo; Collins, Samuel A; Goutaki, Myrofora; Behan, Laura; Caudri, Daan; Dell, Sharon; Eber, Ernst; Escudier, Estelle; Hirst, Robert A; Hogg, Claire; Jorissen, Mark; Latzin, Philipp; Legendre, Marie; Leigh, Margaret W; Midulla, Fabio; Nielsen, Kim G; Omran, Heymut; Papon, Jean-Francois; Pohunek, Petr; Redfern, Beatrice; Rigau, David; Rindlisbacher, Bernhard; Santamaria, Francesca; Shoemark, Amelia; Snijders, Deborah; Tonia, Thomy; Titieni, Andrea; Walker, Woolf T; Werner, Claudius; Bush, Andrew; Kuehni, Claudia E
2017-01-01
The diagnosis of primary ciliary dyskinesia is often confirmed with standard, albeit complex and expensive, tests. In many cases, however, the diagnosis remains difficult despite the array of sophisticated diagnostic tests. There is no "gold standard" reference test. Hence, a Task Force supported by the European Respiratory Society has developed this guideline to provide evidence-based recommendations on diagnostic testing, especially in light of new developments in such tests, and the need for robust diagnoses of patients who might enter randomised controlled trials of treatments. The guideline is based on pre-defined questions relevant for clinical care, a systematic review of the literature, and assessment of the evidence using the GRADE (Grading of Recommendations, Assessment, Development and Evaluation) approach. It focuses on clinical presentation, nasal nitric oxide, analysis of ciliary beat frequency and pattern by high-speed video-microscopy analysis, transmission electron microscopy, genotyping and immunofluorescence. It then used a modified Delphi survey to develop an algorithm for the use of diagnostic tests to definitively confirm and exclude the diagnosis of primary ciliary dyskinesia; and to provide advice when the diagnosis was not conclusive. Finally, this guideline proposes a set of quality criteria for future research on the validity of diagnostic methods for primary ciliary dyskinesia. Copyright ©ERS 2017.
NASA Astrophysics Data System (ADS)
Dhandapani, Vishnu Shankar; Subbiah, Ramesh; Thangavel, Elangovan; Arumugam, Madhankumar; Park, Kwideok; Gasem, Zuhair M.; Veeraragavan, Veeravazhuthi; Kim, Dae-Eun
2016-05-01
Amorphous carbon incorporated with titanium (a-C:Ti) was coated on 316L stainless steel (SS) by magnetron sputtering technique to attain superior tribological properties, corrosion resistance and biocompatibility. The morphology, topography and functional groups of the nanostructured a-C:Ti coatings in various concentrations were analyzed using atomic force microscopy (AFM), Raman, X-Ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM). Raman and XPS analyses confirmed the increase in sp2 bonds with increasing titanium content in the a-C matrix. TEM analysis confirmed the composite nature of the coating and the presence of nanostructured TiC for Ti content of 2.33 at.%. This coating showed superior tribological properties compared to the other a-C:Ti coatings. Furthermore, electrochemical corrosion studies were performed against stimulated body fluid medium in which all the a-C:Ti coatings showed improved corrosion resistance than the pure a-C coating. Preosteoblasts proliferation and viability on the specimens were tested and the results showed that a-C:Ti coatings with relatively high Ti (3.77 at.%) content had better biocompatibility. Based on the results of this work, highly durable coatings with good biocompatibility could be achieved by incorporation of optimum amount of Ti in a-C coatings deposited on SS by magnetron sputtering technique.
NASA Astrophysics Data System (ADS)
Ding, Hong; Sagar, Vidya; Agudelo, Marisela; Pilakka-Kanthikeel, Sudheesh; Subba Rao Atluri, Venkata; Raymond, Andrea; Samikkannu, Thangavel; Nair, Madhavan P.
2014-02-01
The blood-brain barrier (BBB) is considered as the primary impediment barrier for most drugs. Delivering therapeutic agents to the brain is still a big challenge to date. In our study, a dual mechanism, receptor mediation combined with external non-invasive magnetic force, was incorporated into ferrous magnet-based liposomes for BBB transmigration enhancement. The homogenous magnetic nanoparticles (MNPs), with a size of ˜10 nm, were synthesized and confirmed by TEM and XRD respectively. The classical magnetism assay showed the presence of the characteristic superparamagnetic property. These MNPs encapsulated in PEGylated fluorescent liposomes as magneto-liposomes (MLs) showed mono-dispersion, ˜130 ± 10 nm diameter, by dynamic laser scattering (DLS) using the lipid-extrusion technique. Remarkably, a magnetite encapsulation efficiency of nearly 60% was achieved. Moreover, the luminescence and hydrodynamic size of the MLs was stable for over two months at 4 ° C. Additionally, the integrity of the ML structure remained unaffected through 120 rounds of circulation mimicking human blood fluid. After biocompatibility confirmation by cytotoxicity evaluation, these fluorescent MLs were further embedded with transferrin and applied to an in vitro BBB transmigration study in the presence or absence of external magnetic force. Comparing with magnetic force- or transferrin receptor-mediated transportation alone, their synergy resulted in 50-100% increased transmigration without affecting the BBB integrity. Consequently, confocal microscopy and iron concentration in BBB-composed cells further confirmed the higher cellular uptake of ML particles due to the synergic effect. Thus, our multifunctional liposomal magnetic nanocarriers possess great potential in particle transmigration across the BBB and may have a bright future in drug delivery to the brain.
Ding, Hong; Sagar, Vidya; Agudelo, Marisela; Pilakka-Kanthikeel, Sudheesh; Atluri, Venkata Subba Rao; Raymond, Andrea; Samikkannu, Thangavel; Nair, Madhavan P
2014-02-07
The blood-brain barrier (BBB) is considered as the primary impediment barrier for most drugs. Delivering therapeutic agents to the brain is still a big challenge to date. In our study, a dual mechanism, receptor mediation combined with external non-invasive magnetic force, was incorporated into ferrous magnet-based liposomes for BBB transmigration enhancement. The homogenous magnetic nanoparticles (MNPs), with a size of ∼10 nm, were synthesized and confirmed by TEM and XRD respectively. The classical magnetism assay showed the presence of the characteristic superparamagnetic property. These MNPs encapsulated in PEGylated fluorescent liposomes as magneto-liposomes (MLs) showed mono-dispersion, ∼130 ± 10 nm diameter, by dynamic laser scattering (DLS) using the lipid-extrusion technique. Remarkably, a magnetite encapsulation efficiency of nearly 60% was achieved. Moreover, the luminescence and hydrodynamic size of the MLs was stable for over two months at 4 ° C. Additionally, the integrity of the ML structure remained unaffected through 120 rounds of circulation mimicking human blood fluid. After biocompatibility confirmation by cytotoxicity evaluation, these fluorescent MLs were further embedded with transferrin and applied to an in vitro BBB transmigration study in the presence or absence of external magnetic force. Comparing with magnetic force- or transferrin receptor-mediated transportation alone, their synergy resulted in 50-100% increased transmigration without affecting the BBB integrity. Consequently, confocal microscopy and iron concentration in BBB-composed cells further confirmed the higher cellular uptake of ML particles due to the synergic effect. Thus, our multifunctional liposomal magnetic nanocarriers possess great potential in particle transmigration across the BBB and may have a bright future in drug delivery to the brain.
Direct Writing of Graphene-based Nanoelectronics via Atomic Force Microscopy
2012-05-07
To) 07-05-2012 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Direct Writing of Graphene -based Nanoelectronics via Atomic Force Microscopy 5b. GRANT...ABSTRACT This project employs direct writing with an atomic force microscope (AFM) to fabricate simple graphene -based electronic components like resistors...and transistors at nanometer-length scales. The goal is to explore their electrical properties for graphene -based electronics. Conducting
Staphylococcus aureus adherence to Candida albicans hyphae is mediated by the hyphal adhesin Als3p.
Peters, Brian M; Ovchinnikova, Ekaterina S; Krom, Bastiaan P; Schlecht, Lisa Marie; Zhou, Han; Hoyer, Lois L; Busscher, Henk J; van der Mei, Henny C; Jabra-Rizk, Mary Ann; Shirtliff, Mark E
2012-12-01
The bacterium Staphylococcus (St.) aureus and the opportunistic fungus Candida albicans are currently among the leading nosocomial pathogens, often co-infecting critically ill patients, with high morbidity and mortality. Previous investigations have demonstrated preferential adherence of St. aureus to C. albicans hyphae during mixed biofilm growth. In this study, we aimed to characterize the mechanism behind this observed interaction. C. albicans adhesin-deficient mutant strains were screened by microscopy to identify the specific receptor on C. albicans hyphae recognized by St. aureus. Furthermore, an immunoassay was developed to validate and quantify staphylococcal binding to fungal biofilms. The findings from these experiments implicated the C. albicans adhesin agglutinin-like sequence 3 (Als3p) in playing a major role in the adherence process. This association was quantitatively established using atomic force microscopy, in which the adhesion force between single cells of the two species was significantly reduced for a C. albicans mutant strain lacking als3. Confocal microscopy further confirmed these observations, as St. aureus overlaid with a purified recombinant Als3 N-terminal domain fragment (rAls3p) exhibited robust binding. Importantly, a strain of Saccharomyces cerevisiae heterologously expressing Als3p was utilized to further confirm this adhesin as a receptor for St. aureus. Although the parental strain does not bind bacteria, expression of Als3p on the cell surface conferred upon the yeast the ability to strongly bind St. aureus. To elucidate the implications of these in vitro findings in a clinically relevant setting, an ex vivo murine model of co-infection was designed using murine tongue explants. Fluorescent microscopic images revealed extensive hyphal penetration of the epithelium typical of C. albicans mucosal infection. Interestingly, St. aureus bacterial cells were only seen within the epithelial tissue when associated with the invasive hyphae. This differed from tongues infected with St. aureus alone or in conjunction with the als3 mutant strain of C. albicans, where bacterial presence was limited to the outer layers of the oral tissue. Collectively, the findings generated from this study identified a key role for C. albicans Als3p in mediating this clinically relevant fungal-bacterial interaction.
Adhesion Forces between Lewis(X) Determinant Antigens as Measured by Atomic Force Microscopy.
Tromas, C; Rojo, J; de la Fuente, J M; Barrientos, A G; García, R; Penadés, S
2001-01-01
The adhesion forces between individual molecules of Lewis(X) trisaccharide antigen (Le(X) ) have been measured in water and in calcium solution by using atomic force microscopy (AFM, see graph). These results demonstrate the self-recognition capability of this antigen, and reinforce the hypothesis that carbohydrate-carbohydrate interaction could be considered as the first step in the cell-adhesion process in nature. Copyright © 2001 WILEY-VCH Verlag GmbH, Weinheim, Fed. Rep. of Germany.
Driving force of stacking-fault formation in SiC p-i-n diodes.
Ha, S; Skowronski, M; Sumakeris, J J; Paisley, M J; Das, M K
2004-04-30
The driving force of stacking-fault expansion in SiC p-i-n diodes was investigated using optical emission microscopy and transmission electron microscopy. The stacking-fault expansion and properties of the partial dislocations were inconsistent with any stress as the driving force. A thermodynamic free energy difference between the perfect and a faulted structure is suggested as a plausible driving force in the tested diodes, indicating that hexagonal polytypes of silicon carbide are metastable at room temperature.
Lateral-deflection-controlled friction force microscopy
NASA Astrophysics Data System (ADS)
Fukuzawa, Kenji; Hamaoka, Satoshi; Shikida, Mitsuhiro; Itoh, Shintaro; Zhang, Hedong
2014-08-01
Lateral-deflection-controlled dual-axis friction force microscopy (FFM) is presented. In this method, an electrostatic force generated with a probe-incorporated micro-actuator compensates for friction force in real time during probe scanning using feedback control. This equivalently large rigidity can eliminate apparent boundary width and lateral snap-in, which are caused by lateral probe deflection. The method can evolve FFM as a method for quantifying local frictional properties on the micro/nanometer-scale by overcoming essential problems to dual-axis FFM.
Molecular Imaging of Ultrathin Pentacene Films: Evidence for Homoepitaxy
NASA Astrophysics Data System (ADS)
Wu, Yanfei; Haugstad, Greg; Frisbie, C. Daniel
2013-03-01
Ultrathin polycrystalline films of organic semiconductors have received intensive investigations due to the critical role they play in governing the performance of organic thin film transistors. In this work, a variety of scanning probe microscopy (SPM) techniques have been employed to investigate ultrathin polycrystalline films (1-3 nm) of the benchmark organic semiconductor pentacene. By using spatially resolved Friction Force Microscopy (FFM), Kelvin Probe Force Microscopy (KFM) and Electrostatic Force Microscopy (EFM), an interesting multi-domain structure is revealed within the second layer of the films, characterized as two distinct friction and surface potential domains correlating with each other. The existence of multiple homoepitaxial modes within the films is thus proposed and examined. By employing lattice-revolved imaging using contact mode SPM, direct molecular evidence for the unusual homoepitaxy is obtained.
Li, Ying; Lu, Liyuan; Li, Juan
2016-09-01
Hereditary spherocytosis is an inherited red blood cell membrane disorder resulting from mutations of genes encoding erythrocyte membrane and cytoskeletal proteins. Few equipments can observe the structural characteristics of hereditary spherocytosis directly expect for atomic force microscopy In our study, we proved atomic force microscopy is a powerful and sensitive instrument to describe the characteristics of hereditary spherocytosis. Erythrocytes from hereditary spherocytosis patients were small spheroidal, lacking a well-organized lattice on the cell membrane, with smaller cell surface particles and had reduced valley to peak distance and average cell membrane roughness vs. those from healthy individuals. These observations indicated defects in the certain cell membrane structural proteins such as α- and β-spectrin, ankyrin, etc. Until now, splenectomy is still the most effective treatment for symptoms relief for hereditary spherocytosis. In this study, we further solved the mysteries of membrane nanostructure changes of erythrocytes before and after splenectomy in hereditary spherocytosis by atomic force microscopy. After splenectomy, the cells were larger, but still spheroidal-shaped. The membrane ultrastructure was disorganized and characterized by a reduced surface particle size and lower than normal Ra values. These observations indicated that although splenectomy can effectively relieve the symptoms of hereditary spherocytosis, it has little effect on correction of cytoskeletal membrane defects of hereditary spherocytosis. We concluded that atomic force microscopy is a powerful tool to investigate the pathophysiological mechanisms of hereditary spherocytosis and to monitor treatment efficacy in clinical practices. To the best of our knowledge, this is the first report to study hereditary spherocytosis with atomic force microscopy and offers important mechanistic insight into the underlying role of splenectomy.
Surface enhanced Raman scattering of aged graphene: Effects of annealing in vacuum
NASA Astrophysics Data System (ADS)
Wang, Yingying; Ni, Zhenhua; Li, Aizhi; Zafar, Zainab; Zhang, Yan; Ni, Zhonghua; Qu, Shiliang; Qiu, Teng; Yu, Ting; Xiang Shen, Ze
2011-12-01
In this paper, we report a simple method to recover the surface enhanced Raman scattering activity of aged graphene. The Raman signals of Rhodamine molecules absorbed on aged graphene are dramatically increased after vacuum annealing and comparable to those on fresh graphene. Atomic force microscopy measurements indicate that residues on aged graphene surface can efficiently be removed by vacuum annealing, which makes target molecule closely contact with graphene. We also find that the hole doping in graphene will facilitate charge transfer between graphene and molecule. These results confirm the strong Raman enhancement of target molecule absorbed on graphene is due to the charge transfer mechanism.
In situ detection of porosity initiation during aluminum thin film anodizing
NASA Astrophysics Data System (ADS)
Van Overmeere, Quentin; Nysten, Bernard; Proost, Joris
2009-02-01
High-resolution curvature measurements have been performed in situ during aluminum thin film anodizing in sulfuric acid. A well-defined transition in the rate of internal stress-induced curvature change is shown to allow for the accurate, real-time detection of porosity initiation. The validity of this in situ diagnostic tool was confirmed by a quantitative analysis of the spectral density distributions of the anodized surfaces. These were obtained by analyzing ex situ atomic force microscopy images of surfaces anodized for different times, and allowed to correlate the in situ detected transition in the rate of curvature change with the appearance of porosity.
Wang, Liying; Meng, Zhenyu; Martina, Felicia; Shao, Huilin
2017-01-01
Abstract DNA tetrahedron as the simplest 3D DNA nanostructure has been applied widely in biomedicine and biosensing. Herein, we design and fabricate a series of circular assemblies of DNA tetrahedron with high purity and decent yields. These circular nanostructures are confirmed by endonuclease digestion, gel electrophoresis and atomic force microscopy. Inspired by rotary protein motor, we demonstrate these circular architectures can serve as a stator for a rotary DNA motor to achieve the circular rotation. The DNA motor can rotate on the stators for several cycles, and the locomotion of the motor is monitored by the real-time fluorescent measurements. PMID:29126166
Hydroxyethylated graphene oxide as potential carriers for methotrexate delivery
NASA Astrophysics Data System (ADS)
Du, Libo; Suo, Siqingaowa; Luo, Dan; Jia, Hongying; Sha, Yinlin; Liu, Yang
2013-06-01
In this study, we presented a simple approach to prepare hydroxyethylated graphene oxide (HE-GO) with high water solubility and physiological stability. The successful synthesis of HE-GO was confirmed by UV-Vis spectroscopy, Fourier transform infrared spectroscopy, and atomic force microscopy. The loading of anticancer drug methotrexate (MTX) onto this nanocarrier (MTX/HE-GO) was investigated. The results of in vitro drug release experiment showed that the rate of MTX release from MTX/HE-GO was pH dependent. Moreover, cell viability assay demonstrated that HE-GO loaded with MTX exhibits higher anticancer activity against human lung adenocarcinoma epithelial cell line than non-vehicle MTX.
Unprecedented covalently attached ATRP initiator onto OH-functionalized mica surfaces.
Lego, Béatrice; Skene, W G; Giasson, Suzanne
2008-01-15
Mica substrates were activated by a plasma method leading to OH-functionalized surfaces to which an atom transfer radical polymerization (ATRP) radical initiator was covalently bound using standard siloxane protocols. The unprecedented covalently immobilized initiator underwent radical polymerization with tert-butyl acrylate, yielding for the first time end-grafted polymer brushes that are covalently linked to mica. The initiator grafting on the mica substrate was confirmed by time-of-flight secondary ion mass spectrometry (TOF-SIMS), while the change in the water contact angle of the OH-activated mica surface was used to follow the change in surface coverage of the initiator on the surface. The polymer brush and initiator film thicknesses relative to the virgin mica were confirmed by atomic force microscopy (AFM). This was done by comparing the atomic step-height difference between a protected area of freshly cleaved mica and a zone exposed to plasma activation, initiator immobilization, and then ATRP.
Shankara Narayanan, Jeyaraman; Bhuvana, Mohanlal; Dharuman, Venkataraman
2014-08-15
Cationic N-[1-(2,3-Dioleoyloxy)propyl]-N,N,N-trimethylammonium propane (DOTAP) liposome is spherically sandwiched in gold nanoparticle (abbreviated as sDOTAP-AuNP) onto a gold electrode surface. The sDOTAP-AuNP is applied for electrochemical label free DNA sensing and Escherichia coli cell transfection for the first time. Complementary target (named as hybridized), non-complementary target (un-hybridized) and single base mismatch target (named as SMM) hybridized surfaces are discriminated sensitively and selectively in presence of [Fe(CN)6](3-/4-). Double strand specific intercalator methylene blue in combination with [Fe(CN)6](3-) is used to enhance target detection limit down to femtomolar concentration. Cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), differential pulse voltammetry (DPV) techniques are used for characterizing DNA sensing. High Resolution Transmission Electron Microscopy (HRTEM), Fourier Transform Infrared Spectroscopy (FTIR), Atomic Force Microscopy (AFM) and Dynamic Light Scattering (DLS) techniques are used to confirm the spherical nature of the sDOTAP-AuNP-DNA composite in solution and on the solid surface. DNA on the sDOTAP-ssDNA is transferred by potential stripping method (+0.2V (Ag/AgCl)) into buffer solution containing E. coli cells. The transfection is confirmed by the contrast images for the transfected and non-transfected cell from Confocal Laser Scanning Microscopy (CLSM). The results demonstrate effectiveness of the electrochemical DNA transfection method developed and could be applied for other cells. Copyright © 2014 Elsevier B.V. All rights reserved.
The use of atomic force microscopy to evaluate warm mix asphalt.
DOT National Transportation Integrated Search
2013-01-01
The main objective of this study was to use the Atomic Force Microscopy (AFM) to examine the moisture susceptibility : and healing characteristics of Warm Mix Asphalt (WMA) and compare it with those of conventional Hot Mix Asphalt (HMA). To : this en...
Balke, Nina; Maksymovych, Petro; Jesse, Stephen; ...
2014-09-25
The implementation of contact mode Kelvin probe force microscopy (KPFM) utilizes the electrostatic interactions between tip and sample when the tip and sample are in contact with each other. Surprisingly, the electrostatic forces in contact are large enough to be measured even with tips as stiff as 4.5 N/m. As for traditional non-contact KPFM, the signal depends strongly on electrical properties of the sample, such as the dielectric constant, and the tip-properties, such as the stiffness. Since the tip is in contact with the sample, bias-induced changes in the junction potential between tip and sample can be measured with highermore » lateral and temporal resolution compared to traditional non-contact KPFM. Significant and reproducible variations of tip-surface capacitance are observed and attributed to surface electrochemical phenomena. Lastly, observations of significant surface charge states at zero bias and strong hysteretic electromechanical responses at non-ferroelectric surface have significant implications for fields such as triboelectricity and piezoresponse force microscopy.« less
NASA Astrophysics Data System (ADS)
Masaaki Kurihara,; Sho Hatakeyama,; Noriko Yamada,; Takeya Shimomura,; Takaharu Nagai,; Kouji Yoshida,; Tatsuya Tomita,; Morihisa Hoga,; Naoya Hayashi,; Hiroyuki Ohtani,; Masamichi Fujihira,
2010-06-01
Antisticking layers (ASLs) on UV nanoimprint lithography (UV-NIL) molds were characterized by scanning probe microscopies (SPMs) in addition to macroscopic analyses of work of adhesion and separation force. Local physical properties of the ASLs were measured by atomic force microscopy (AFM) and friction force microscopy (FFM). The behavior of local adhesive forces measured with AFM on several surfaces was consistent with that of work of adhesion obtained from contact angle. The ASLs were coated by two different processes, i.e., one is a vapor-phase process and the other a spin-coating process. The homogeneity of the ASLs prepared by the vapor-phase process was better than that of those prepared by the spin-coating process. In addition, we measured the thicknesses of ASL patterns prepared by a lift-off method to investigate the effect of the ASL thicknesses on critical dimensions of the molds with ASLs and found that this effect is not negligible.
Magnetic elements for switching magnetization magnetic force microscopy tips.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cambel, V.; Elias, P.; Gregusova, D.
2010-09-01
Using combination of micromagnetic calculations and magnetic force microscopy (MFM) imaging we find optimal parameters for novel magnetic tips suitable for switching magnetization MFM. Switching magnetization MFM is based on two-pass scanning atomic force microscopy with reversed tip magnetization between the scans. Within the technique the sum of the scanned data with reversed tip magnetization depicts local atomic forces, while their difference maps the local magnetic forces. Here we propose the design and calculate the magnetic properties of tips suitable for this scanning probe technique. We find that for best performance the spin-polarized tips must exhibit low magnetic moment, lowmore » switching fields, and single-domain state at remanence. The switching field of such tips is calculated and optimum shape of the Permalloy elements for the tips is found. We show excellent correspondence between calculated and experimental results for Py elements.« less
Progress in the Correlative Atomic Force Microscopy and Optical Microscopy
Zhou, Lulu; Cai, Mingjun; Tong, Ti; Wang, Hongda
2017-01-01
Atomic force microscopy (AFM) has evolved from the originally morphological imaging technique to a powerful and multifunctional technique for manipulating and detecting the interactions between molecules at nanometer resolution. However, AFM cannot provide the precise information of synchronized molecular groups and has many shortcomings in the aspects of determining the mechanism of the interactions and the elaborate structure due to the limitations of the technology, itself, such as non-specificity and low imaging speed. To overcome the technical limitations, it is necessary to combine AFM with other complementary techniques, such as fluorescence microscopy. The combination of several complementary techniques in one instrument has increasingly become a vital approach to investigate the details of the interactions among molecules and molecular dynamics. In this review, we reported the principles of AFM and optical microscopy, such as confocal microscopy and single-molecule localization microscopy, and focused on the development and use of correlative AFM and optical microscopy. PMID:28441775
Probing fibronectin–antibody interactions using AFM force spectroscopy and lateral force microscopy
Kulik, Andrzej J; Lee, Kyumin; Pyka-Fościak, Grazyna; Nowak, Wieslaw
2015-01-01
Summary The first experiment showing the effects of specific interaction forces using lateral force microscopy (LFM) was demonstrated for lectin–carbohydrate interactions some years ago. Such measurements are possible under the assumption that specific forces strongly dominate over the non-specific ones. However, obtaining quantitative results requires the complex and tedious calibration of a torsional force. Here, a new and relatively simple method for the calibration of the torsional force is presented. The proposed calibration method is validated through the measurement of the interaction forces between human fibronectin and its monoclonal antibody. The results obtained using LFM and AFM-based classical force spectroscopies showed similar unbinding forces recorded at similar loading rates. Our studies verify that the proposed lateral force calibration method can be applied to study single molecule interactions. PMID:26114080
Pump-probe Kelvin-probe force microscopy: Principle of operation and resolution limits
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murawski, J.; Graupner, T.; Milde, P., E-mail: peter.milde@tu-dresden.de
Knowledge on surface potential dynamics is crucial for understanding the performance of modern-type nanoscale devices. We describe an electrical pump-probe approach in Kelvin-probe force microscopy that enables a quantitative measurement of dynamic surface potentials at nanosecond-time and nanometer-length scales. Also, we investigate the performance of pump-probe Kelvin-probe force microscopy with respect to the relevant experimental parameters. We exemplify a measurement on an organic field effect transistor that verifies the undisturbed functionality of our pump-probe approach in terms of simultaneous and quantitative mapping of topographic and electronic information at a high lateral and temporal resolution.
Photoinduced force microscopy: A technique for hyperspectral nanochemical mapping
NASA Astrophysics Data System (ADS)
Murdick, Ryan A.; Morrison, William; Nowak, Derek; Albrecht, Thomas R.; Jahng, Junghoon; Park, Sung
2017-08-01
Advances in nanotechnology have intensified the need for tools that can characterize newly synthesized nanomaterials. A variety of techniques has recently been shown which combines atomic force microscopy (AFM) with optical illumination including tip-enhanced Raman spectroscopy (TERS), scattering-type scanning near-field optical microscopy (sSNOM), and photothermal induced resonance microscopy (PTIR). To varying degrees, these existing techniques enable optical spectroscopy with the nanoscale spatial resolution inherent to AFM, thereby providing nanochemical interrogation of a specimen. Here we discuss photoinduced force microscopy (PiFM), a recently developed technique for nanoscale optical spectroscopy that exploits image forces acting between an AFM tip and sample to detect wavelength-dependent polarization within the sample to generate absorption spectra. This approach enables ∼10 nm spatial resolution with spectra that show correlation with macroscopic optical absorption spectra. Unlike other techniques, PiFM achieves this high resolution with virtually no constraints on sample or substrate properties. The applicability of PiFM to a variety of archetypal systems is reported here, highlighting the potential of PiFM as a useful tool for a wide variety of industrial and academic investigations, including semiconducting nanoparticles, nanocellulose, block copolymers, and low dimensional systems, as well as chemical and morphological mixing at interfaces.
System analysis of force feedback microscopy
NASA Astrophysics Data System (ADS)
Rodrigues, Mario S.; Costa, Luca; Chevrier, Joël; Comin, Fabio
2014-02-01
It was shown recently that the Force Feedback Microscope (FFM) can avoid the jump-to-contact in Atomic force Microscopy even when the cantilevers used are very soft, thus increasing force resolution. In this letter, we explore theoretical aspects of the associated real time control of the tip position. We take into account lever parameters such as the lever characteristics in its environment, spring constant, mass, dissipation coefficient, and the operating conditions such as controller gains and interaction force. We show how the controller parameters are determined so that the FFM functions at its best and estimate the bandwidth of the system under these conditions.
Kwon, Uisik; Kim, Bong-Gi; Nguyen, Duc Cuong; Park, Jong-Hyeon; Ha, Na Young; Kim, Seung-Joo; Ko, Seung Hwan; Lee, Soonil; Lee, Daeho; Park, Hui Joon
2016-07-28
In this work, we report on solution-based p-i-n-type planar-structured CH3NH3PbI3 perovskite photovoltaic (PV) cells, in which precrystallized NiO nanoparticles (NPs) without post-treatment are used to form a hole transport layer (HTL). X-ray diffraction and high-resolution transmission electron microscopy showed the crystallinity of the NPs, and atomic force microscopy and scanning electron microscopy confirmed the uniform surfaces of the resultant NiO thin film and the subsequent perovskite photoactive layer. Compared to the conventional poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) ( PSS) HTL, the NiO HTL had excellent energy-level alignment with that of CH3NH3PbI3 and improved electron-blocking capability, as analyzed by photoelectron spectroscopy and diode modeling, resulting in Voc ~0.13 V higher than conventional PSS-based devices. Consequently, a power conversion efficiency (PCE) of 15.4% with a high fill factor (FF, 0.74), short-circuit current density (Jsc, 20.2 mA·cm(-2)), and open circuit voltage (Voc, 1.04 V) having negligible hysteresis and superior air stability has been achieved.
Ajibade, Peter A.; Botha, Nandipha L.
2017-01-01
We report the synthesis and structural studies of copper sulfide nanocrystals from copper (II) dithiocarbamate single molecule precursors. The precursors were thermolysed in hexadecylamine (HDA) to prepare HDA-capped CuS nanocrystals. The optical properties of the nanocrystals studied using UV–visible and photoluminescence spectroscopy showed absorption band edges at 287 nm that are blue shifted, and the photoluminescence spectra show emission curves that are red-shifted with respect to the absorption band edges. These shifts are as a result of the small crystallite sizes of the nanoparticles leading to quantum size effects. The structural studies were carried out using powder X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), and atomic force microscopy. The XRD patterns indicates that the CuS nanocrystals are in hexagonal covellite crystalline phases with estimated particles sizes of 17.3–18.6 nm. The TEM images showed particles with almost spherical or rod shapes, with average crystallite sizes of 3–9.8 nm. SEM images showed morphology with ball-like microspheres on the surfaces, and EDS spectra confirmed the presence of CuS nanoparticles. PMID:28336865
The effects of alumina nanofillers on mechanical properties of high-performance epoxy resin.
Zhang, Hui; Zhang, Hui; Tang, Longcheng; Liu, Gang; Zhang, Daijun; Zhou, Lingyun; Zhang, Zhong
2010-11-01
In the past decade extensive studies have been focused on mechanical properties of inorganic nanofiller/epoxy matrices. In this work we systematically investigated the mechanical properties of nano-alumina-filled E-54/4, 4-diaminodiphenylsulphone (DDS) epoxy resins, which were prepared via combining high-speed mixing with three-roll milling. Homogeneous dispersion of nano-alumina with small agglomerates was obtained in epoxy resin, which was confirmed using transmission electron microscopy (TEM). The static/dynamic modulus, tensile strength and fracture toughness of the nanocomposites were found to be simultaneously enhanced with addition of nano-alumina fillers. About 50% and 80% increases of K(IC) and G(IC) were achieved in nanocomposite filled with 18.4 wt% alumina nanofillers, as compared to that of the unfilled epoxy resin. Furthermore, the corresponding fracture surfaces of tensile and compact tension samples were examined by scanning electron microscopy (SEM) and atomic force microscopy (AFM) techniques in order to identify the relevant fracture mechanisms involved. Various fracture features including cavities/debonding of nanofiller, local plastic deformation as well as crack pinning/deflection were found to be operative in the presence of nano-alumina fillers.
Kwon, Uisik; Kim, Bong-Gi; Nguyen, Duc Cuong; Park, Jong-Hyeon; Ha, Na Young; Kim, Seung-Joo; Ko, Seung Hwan; Lee, Soonil; Lee, Daeho; Park, Hui Joon
2016-01-01
In this work, we report on solution-based p-i-n-type planar-structured CH3NH3PbI3 perovskite photovoltaic (PV) cells, in which precrystallized NiO nanoparticles (NPs) without post-treatment are used to form a hole transport layer (HTL). X-ray diffraction and high-resolution transmission electron microscopy showed the crystallinity of the NPs, and atomic force microscopy and scanning electron microscopy confirmed the uniform surfaces of the resultant NiO thin film and the subsequent perovskite photoactive layer. Compared to the conventional poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) HTL, the NiO HTL had excellent energy-level alignment with that of CH3NH3PbI3 and improved electron-blocking capability, as analyzed by photoelectron spectroscopy and diode modeling, resulting in Voc ~0.13 V higher than conventional PEDOT:PSS-based devices. Consequently, a power conversion efficiency (PCE) of 15.4% with a high fill factor (FF, 0.74), short-circuit current density (Jsc, 20.2 mA·cm−2), and open circuit voltage (Voc, 1.04 V) having negligible hysteresis and superior air stability has been achieved. PMID:27465263
Characterisation of nickel silicide thin films by spectroscopy and microscopy techniques.
Bhaskaran, M; Sriram, S; Holland, A S; Evans, P J
2009-01-01
This article discusses the formation and detailed materials characterisation of nickel silicide thin films. Nickel silicide thin films have been formed by thermally reacting electron beam evaporated thin films of nickel with silicon. The nickel silicide thin films have been analysed using Auger electron spectroscopy (AES) depth profiles, secondary ion mass spectrometry (SIMS), and Rutherford backscattering spectroscopy (RBS). The AES depth profile shows a uniform NiSi film, with a composition of 49-50% nickel and 51-50% silicon. No oxygen contamination either on the surface or at the silicide-silicon interface was observed. The SIMS depth profile confirms the existence of a uniform film, with no traces of oxygen contamination. RBS results indicate a nickel silicide layer of 114 nm, with the simulated spectra in close agreement with the experimental data. Atomic force microscopy and transmission electron microscopy have been used to study the morphology of the nickel silicide thin films. The average grain size and average surface roughness of these films was found to be 30-50 and 0.67 nm, respectively. The film surface has also been studied using Kikuchi patterns obtained by electron backscatter detection.
Ramírez-Aldaba, Hugo; Vázquez-Arenas, Jorge; Sosa-Rodríguez, Fabiola S; Valdez-Pérez, Donato; Ruiz-Baca, Estela; Trejo-Córdoba, Gabriel; Escobedo-Bretado, Miguel A; Lartundo-Rojas, Luis; Ponce-Peña, Patricia; Lara, René H
2018-06-01
Chemical and surface analyses are carried out using Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM-EDS), atomic force microscopy (AFM), confocal laser scanning microscopy (CLSM), glow discharge spectroscopy (GDS) and extracellular surface protein quantification to thoroughly investigate the effect of supplementary As(V) during biooxidation of arsenopyrite by Acidithiobacillus thiooxidans. It is revealed that arsenic can enhance bacterial reactions during bioleaching, which can strongly influence its mobility. Biofilms occur as compact-flattened microcolonies, being progressively covered by a significant amount of secondary compounds (S n 2- , S 0 , pyrite-like). Biooxidation mechanism is modified in the presence of supplementary As(V), as indicated by spectroscopic and microscopic studies. GDS confirms significant variations between abiotic control and biooxidized arsenopyrite in terms of surface reactivity and amount of secondary compounds with and without As(V) (i.e. 6 μm depth). CLSM and protein analyses indicate a rapid modification in biofilm from hydrophilic to hydrophobic character (i.e. 1-12 h), in spite of the decrease in extracellular surface proteins in the presence of supplementary As(V) (i.e. stressed biofilms).
NASA Astrophysics Data System (ADS)
An, Sangmin; Hong, Mun-heon; Kim, Jongwoo; Kwon, Soyoung; Lee, Kunyoung; Lee, Manhee; Jhe, Wonho
2012-11-01
We present a platform for the quartz tuning fork (QTF)-based, frequency modulation atomic force microscopy (FM-AFM) system for quantitative study of the mechanical or topographical properties of nanoscale materials, such as the nano-sized water bridge formed between the quartz tip (˜100 nm curvature) and the mica substrate. A thermally stable, all digital phase-locked loop is used to detect the small frequency shift of the QTF signal resulting from the nanomaterial-mediated interactions. The proposed and demonstrated novel FM-AFM technique provides high experimental sensitivity in the measurement of the viscoelastic forces associated with the confined nano-water meniscus, short response time, and insensitivity to amplitude noise, which are essential for precision dynamic force spectroscopy and microscopy.
An, Sangmin; Hong, Mun-heon; Kim, Jongwoo; Kwon, Soyoung; Lee, Kunyoung; Lee, Manhee; Jhe, Wonho
2012-11-01
We present a platform for the quartz tuning fork (QTF)-based, frequency modulation atomic force microscopy (FM-AFM) system for quantitative study of the mechanical or topographical properties of nanoscale materials, such as the nano-sized water bridge formed between the quartz tip (~100 nm curvature) and the mica substrate. A thermally stable, all digital phase-locked loop is used to detect the small frequency shift of the QTF signal resulting from the nanomaterial-mediated interactions. The proposed and demonstrated novel FM-AFM technique provides high experimental sensitivity in the measurement of the viscoelastic forces associated with the confined nano-water meniscus, short response time, and insensitivity to amplitude noise, which are essential for precision dynamic force spectroscopy and microscopy.
VEDA: a web-based virtual environment for dynamic atomic force microscopy.
Melcher, John; Hu, Shuiqing; Raman, Arvind
2008-06-01
We describe here the theory and applications of virtual environment dynamic atomic force microscopy (VEDA), a suite of state-of-the-art simulation tools deployed on nanoHUB (www.nanohub.org) for the accurate simulation of tip motion in dynamic atomic force microscopy (dAFM) over organic and inorganic samples. VEDA takes advantage of nanoHUB's cyberinfrastructure to run high-fidelity dAFM tip dynamics computations on local clusters and the teragrid. Consequently, these tools are freely accessible and the dAFM simulations are run using standard web-based browsers without requiring additional software. A wide range of issues in dAFM ranging from optimal probe choice, probe stability, and tip-sample interaction forces, power dissipation, to material property extraction and scanning dynamics over hetereogeneous samples can be addressed.
Invited Article: VEDA: A web-based virtual environment for dynamic atomic force microscopy
NASA Astrophysics Data System (ADS)
Melcher, John; Hu, Shuiqing; Raman, Arvind
2008-06-01
We describe here the theory and applications of virtual environment dynamic atomic force microscopy (VEDA), a suite of state-of-the-art simulation tools deployed on nanoHUB (www.nanohub.org) for the accurate simulation of tip motion in dynamic atomic force microscopy (dAFM) over organic and inorganic samples. VEDA takes advantage of nanoHUB's cyberinfrastructure to run high-fidelity dAFM tip dynamics computations on local clusters and the teragrid. Consequently, these tools are freely accessible and the dAFM simulations are run using standard web-based browsers without requiring additional software. A wide range of issues in dAFM ranging from optimal probe choice, probe stability, and tip-sample interaction forces, power dissipation, to material property extraction and scanning dynamics over hetereogeneous samples can be addressed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Söngen, Hagen, E-mail: soengen@uni-mainz.de; Graduate School Materials Science in Mainz, Staudinger Weg 9, 55128 Mainz; Nalbach, Martin
2016-06-15
We present the implementation of a three-dimensional mapping routine for probing solid-liquid interfaces using frequency modulation atomic force microscopy. Our implementation enables fast and flexible data acquisition of up to 20 channels simultaneously. The acquired data can be directly synchronized with commercial atomic force microscope controllers, making our routine easily extendable for related techniques that require additional data channels, e.g., Kelvin probe force microscopy. Moreover, the closest approach of the tip to the sample is limited by a user-defined threshold, providing the possibility to prevent potential damage to the tip. The performance of our setup is demonstrated by visualizing themore » hydration structure above the calcite (10.4) surface in water.« less
NASA Astrophysics Data System (ADS)
Shi, Shuai; Guo, Dan; Luo, Jianbin
2017-10-01
Active quality factor (Q) exhibits many promising properties in dynamic atomic force microscopy. Energy dissipation and image contrasts are investigated in the non-contact amplitude modulation atomic force microscopy (AM-AFM) with an active Q-control circuit in the ambient air environment. Dissipated power and virial were calculated to compare the highly nonlinear interaction of tip-sample and image contrasts with different Q gain values. Greater free amplitudes and lower effective Q values show better contrasts for the same setpoint ratio. Active quality factor also can be employed to change tip-sample interaction force in non-contact regime. It is meaningful that non-destructive and better contrast images can be realized in non-contact AM-AFM by applying an active Q-control to the dynamic system.
Aqeel, Yousuf; Siddiqui, Ruqaiyyah; Ateeq, Muhammad; Raza Shah, Muhammad; Kulsoom, Huma; Khan, Naveed Ahmed
2015-01-01
Light microscopy and electron microscopy have been successfully used in the study of microbes, as well as free-living protists. Unlike light microscopy, which enables us to observe living organisms or the electron microscope which provides a two-dimensional image, atomic force microscopy provides a three-dimensional surface profile. Here, we observed two free-living amoebae, Acanthamoeba castellanii and Balamuthia mandrillaris under the phase contrast inverted microscope, transmission electron microscope and atomic force microscope. Although light microscopy was of lower magnification, it revealed functional biology of live amoebae such as motility and osmoregulation using contractile vacuoles of the trophozoite stage, but it is of limited value in defining the cyst stage. In contrast, transmission electron microscopy showed significantly greater magnification and resolution to reveal the ultra-structural features of trophozoites and cysts including intracellular organelles and cyst wall characteristics but it only produced a snapshot in time of a dead amoeba cell. Atomic force microscopy produced three-dimensional images providing detailed topographic description of shape and surface, phase imaging measuring boundary stiffness, and amplitude measurements including width, height and length of A. castellanii and B. mandrillaris trophozoites and cysts. These results demonstrate the importance of the application of various microscopic methods in the biological and structural characterization of the whole cell, ultra-structural features, as well as surface components and cytoskeleton of protist pathogens. © 2014 The Author(s) Journal of Eukaryotic Microbiology © 2014 International Society of Protistologists.
Corroding of copper piping used in household drinking water plumbing may potentially impacts consumer’s health and economics. Copper corrosion studies conducted on newly corroding material with atomic force microscopy (AFM) may be particularly useful in understanding the impact ...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramírez-Salgado, J.; Domínguez-Aguilar, M.A., E-mail: madoming@imp.mx; Castro-Domínguez, B.
2013-12-15
The secondary phase transformations in a commercial super duplex stainless steel were investigated by micro-chemical analyses and high resolution scanning probe microscopy. Energy dispersive X-ray and electron probe detected ferrite and austenite as well as secondary phases in unetched aged duplex stainless steel type 25Cr-7Ni-3Mo. Volta potential indicated that nitride and sigma appeared more active than ferrite, while secondary austenite and austenite presented a nobler potential. Reversal order in nobility is thought to be attributable to the potential ranking provided by oxide nature diversity as a result of secondary phase surface compositions on steel. After eutectoid transformation, secondary austenite wasmore » detected by electron probe microanalysis, whereas atomic force microscopy distinguished this phase from former austenite by image contrast. Magnetic force microscopy revealed a “ghosted” effect on the latter microstructure probably derived from metal memory reminiscence of mechanical polishing at passivity and long range magnetic forces of ferrite phase. - Highlights: • Nobility detection of secondary phases by SKPFM in DSS particles is not a straightforward procedure. • As Volta potential and contrast are not always consistent SKPFM surface oxides is thought played an important role in detection. • AFM distinguished secondary austenite from former austenite by image contrast though SEM required EPMA.« less
Effect of Carbon Black on Elastomer Blends
NASA Astrophysics Data System (ADS)
Si, Mayu; Koga, Tadanori; Ji, Yuan; Seo, Young-Soo; Rafailovich, Miriam; Sokolov, Jonathan; Gerspacher, M.; Dias, A. J.; Karp, Kriss R.; Satija, Sushil; Lin, Min Y.
2003-03-01
The effects of untreated and heat-treated carbon black N299 on the interfacial properties of PB (Polybutadiene) and terpolymer BIMS [brominated Poly(isobutylene-co-methyl styrene)] were investigated by neutron reflectivity (NR) and lateral force microscopy (LFM). The NR results show that the addition of carbon black significantly slows down the interfacial broadening while heat-treated carbon black has less effect on slowing down the diffusion compared with untreated carbon black. These results were confirmed by the LFM data, which shows the magnitude of lateral force loop of heat-treated carbon black is bigger than that of untreated one. Ultra small and small angle neutron scattering (USANS and SANS) were used to probe the morphology and surface lateral force. Increasing volume concentration of carbon black to 5glass transition temperature of BIMS is also decreased, which was measured by Differential scanning Calorimeter (DSC). XRD analysis indicates that the heat treatment crystallizes the carbon black and strong graphitic peaks are observed. The large degree of crystallization decreases the interaction with the polymer matrix and hence minimizes the effect on the internal dynamics
Targeted binding of the M13 bacteriophage to thiamethoxam organic crystals.
Cho, Whirang; Fowler, Jeffrey D; Furst, Eric M
2012-04-10
Phage display screening with a combinatorial library was used to identify M13-type bacteriophages that express peptides with selective binding to organic crystals of thiamethoxam. The six most strongly binding phages exhibit at least 1000 times the binding affinity of wild-type M13 and express heptapeptide sequences that are rich in hydrophobic, hydrogen-bonding amino acids and proline. Among the peptide sequences identified, M13 displaying the pIII domain heptapeptide ASTLPKA exhibits the strongest binding to thiamethoxam in competitive binding assays. Electron and confocal microscopy confirm the specific binding affinity of ASTLPKA to thiamethoxam. Using atomic force microscope (AFM) probes functionalized with ASTLPKA expressing phage, we found that the average adhesion force between the bacteriophage and a thiamethoxam surface is 1.47 ± 0.80 nN whereas the adhesion force of wild-type M13KE phage is 0.18 ± 0.07 nN. Such a strongly binding bacteriophage could be used to modify the surface chemistry of thiamethoxam crystals and other organic solids with a high degree of specificity. © 2012 American Chemical Society
Subatomic deformation driven by vertical piezoelectricity from CdS ultrathin films.
Wang, Xuewen; He, Xuexia; Zhu, Hongfei; Sun, Linfeng; Fu, Wei; Wang, Xingli; Hoong, Lai Chee; Wang, Hong; Zeng, Qingsheng; Zhao, Wu; Wei, Jun; Jin, Zhong; Shen, Zexiang; Liu, Jie; Zhang, Ting; Liu, Zheng
2016-07-01
Driven by the development of high-performance piezoelectric materials, actuators become an important tool for positioning objects with high accuracy down to nanometer scale, and have been used for a wide variety of equipment, such as atomic force microscopy and scanning tunneling microscopy. However, positioning at the subatomic scale is still a great challenge. Ultrathin piezoelectric materials may pave the way to positioning an object with extreme precision. Using ultrathin CdS thin films, we demonstrate vertical piezoelectricity in atomic scale (three to five space lattices). With an in situ scanning Kelvin force microscopy and single and dual ac resonance tracking piezoelectric force microscopy, the vertical piezoelectric coefficient (d 33) up to 33 pm·V(-1) was determined for the CdS ultrathin films. These findings shed light on the design of next-generation sensors and microelectromechanical devices.
Imaging TiO2 nanoparticles on GaN nanowires with electrostatic force microscopy
NASA Astrophysics Data System (ADS)
Xie, Ting; Wen, Baomei; Liu, Guannan; Guo, Shiqi; Motayed, Abhishek; Murphy, Thomas; Gomez, R. D.
Gallium nitride (GaN) nanowires that are functionalized with metal-oxides nanoparticles have been explored extensively for gas sensing applications in the past few years. These sensors have several advantages over conventional schemes, including miniature size, low-power consumption and fast response and recovery times. The morphology of the oxide functionalization layer is critical to achieve faster response and recovery times, with the optimal size distribution of nanoparticles being in the range of 10 to 30 nm. However, it is challenging to characterize these nanoparticles on GaN nanowires using common techniques such as scanning electron microscopy, transmission electron microscopy, and x-ray diffraction. Here, we demonstrate electrostatic force microscopy in combination with atomic force microscopy as a non-destructive technique for morphological characterization of the dispersed TiO2 nanoparticles on GaN nanowires. We also discuss the applicability of this method to other material systems with a proposed tip-surface capacitor model. This project was sponsored through N5 Sensors and the Maryland Industrial Partnerships (MIPS, #5418).
NASA Astrophysics Data System (ADS)
Cao, Yongze; Kumar, Pawan; Zhao, Yue; Yoshimura, Satoru; Saito, Hitoshi
2018-05-01
Understanding the dynamic magnetization process of magnetic materials is crucial to improving their fundamental properties and technological applications. Here, we propose active magnetic force microscopy for observing reversible and irreversible magnetization processes by stimulating magnetization with an AC magnetic field based on alternating magnetic force microscopy with a sensitive superparamagnetic tip. This approach simultaneously measures sample's DC and AC magnetic fields. We used this microscopy approach to an anisotropic Sr-ferrite (SrF) sintered magnet. This is a single domain type magnet where magnetization mainly changes via magnetic rotation. The proposed method can directly observe the reversible and irreversible magnetization processes of SrF and clearly reveal magnetic domain evolution of SrF (without stimulating magnetization—stimulating reversible magnetization—stimulating irreversible magnetization switching) by slowly increasing the amplitude of the external AC magnetic field. This microscopy approach can evaluate magnetic inhomogeneity and explain the local magnetic process within the permanent magnet.
Kong, Jessica; Giridharagopal, Rajiv; Harrison, Jeffrey S; Ginger, David S
2018-05-31
Correlating nanoscale chemical specificity with operational physics is a long-standing goal of functional scanning probe microscopy (SPM). We employ a data analytic approach combining multiple microscopy modes, using compositional information in infrared vibrational excitation maps acquired via photoinduced force microscopy (PiFM) with electrical information from conductive atomic force microscopy. We study a model polymer blend comprising insulating poly(methyl methacrylate) (PMMA) and semiconducting poly(3-hexylthiophene) (P3HT). We show that PiFM spectra are different from FTIR spectra, but can still be used to identify local composition. We use principal component analysis to extract statistically significant principal components and principal component regression to predict local current and identify local polymer composition. In doing so, we observe evidence of semiconducting P3HT within PMMA aggregates. These methods are generalizable to correlated SPM data and provide a meaningful technique for extracting complex compositional information that are impossible to measure from any one technique.
Quantitative force measurements in liquid using frequency modulation atomic force microscopy
NASA Astrophysics Data System (ADS)
Uchihashi, Takayuki; Higgins, Michael J.; Yasuda, Satoshi; Jarvis, Suzanne P.; Akita, Seiji; Nakayama, Yoshikazu; Sader, John E.
2004-10-01
The measurement of short-range forces with the atomic force microscope (AFM) typically requires implementation of dynamic techniques to maintain sensitivity and stability. While frequency modulation atomic force microscopy (FM-AFM) is used widely for high-resolution imaging and quantitative force measurements in vacuum, quantitative force measurements using FM-AFM in liquids have proven elusive. Here we demonstrate that the formalism derived for operation in vacuum can also be used in liquids, provided certain modifications are implemented. To facilitate comparison with previous measurements taken using surface forces apparatus, we choose a model system (octamethylcyclotetrasiloxane) that is known to exhibit short-ranged structural ordering when confined between two surfaces. Force measurements obtained are found to be in excellent agreement with previously reported results. This study therefore establishes FM-AFM as a powerful tool for the quantitative measurement of forces in liquid.
Baltrusaitis, Jonas; Grassian, Vicki H
2012-09-13
In this study, alternating current (AC) mode atomic force microscopy (AFM) combined with phase imaging and X-ray photoelectron spectroscopy (XPS) were used to investigate the effect of nitrogen dioxide (NO2) adsorption on calcium carbonate (CaCO3) (101̅4) surfaces at 296 K in the presence of relative humidity (RH). At 70% RH, CaCO3 (101̅4) surfaces undergo rapid formation of a metastable amorphous calcium carbonate layer, which in turn serves as a substrate for recrystallization of a nonhydrated calcite phase, presumably vaterite. The adsorption of nitrogen dioxide changes the surface properties of CaCO3 (101̅4) and the mechanism for formation of new phases. In particular, the first calcite nucleation layer serves as a source of material for further island growth; when it is depleted, there is no change in total volume of nitrocalcite, Ca(NO3)2, particles formed whereas the total number of particles decreases. This indicates that these particles are mobile and coalesce. Phase imaging combined with force curve measurements reveals areas of inhomogeneous energy dissipation during the process of water adsorption in relative humidity experiments, as well as during nitrocalcite particle formation. Potential origins of the different energy dissipation modes within the sample are discussed. Finally, XPS analysis confirms that NO2 adsorbs on CaCO3 (101̅4) in the form of nitrate (NO3(-)) regardless of environmental conditions or the pretreatment of the calcite surface at different relative humidity.
In pursuit of photo-induced magnetic and chiral microscopy
NASA Astrophysics Data System (ADS)
Zeng, Jinwei; Kamandi, Mohammad; Darvishzadeh-Varcheie, Mahsa; Albooyeh, Mohammad; Veysi, Mehdi; Guclu, Caner; Hanifeh, Mina; Rajaei, Mohsen; Potma, Eric O.; Wickramasinghe, H. Kumar; Capolino, Filippo
2018-06-01
Light-matter interactions enable the perception of specimen properties such as its shape and dimensions by measuring the subtle differences carried by an illuminating beam after interacting with the sample. However, major obstacles arise when the relevant properties of the specimen are weakly coupled to the incident beam, for example when measuring optical magnetism and chirality. To address this challenge we propose the idea of detecting such weakly-coupled properties of matter through the photo-induced force, aiming at developing photo-induced magnetic or chiral force microscopy. Here we review our pursuit consisting of the following steps: (1) Development of a theoretical blueprint of a magnetic nanoprobe to detect a magnetic dipole oscillating at an optical frequency when illuminated by an azimuthally polarized beam via the photo-induced magnetic force; (2) Conducting an experimental study using an azimuthally polarized beam to probe the near fields and axial magnetism of a Si disk magnetic nanoprobe, based on photo-induced force microscopy; (3) Extending the concept of force microscopy to probe chirality at the nanoscale, enabling enantiomeric detection of chiral molecules. Finally, we discuss difficulties and how they could be overcome, as well as our plans for future work. Invited Paper
Conductive Atomic Force Microscopy | Materials Science | NREL
electrical measurement techniques is the high spatial resolution. For example, C-AFM measurements on : High-resolution image of a sample semiconductor device; the image shows white puff-like clusters on a dark background and was obtained using atomic force microscopy. Bottom: High-resolution image of the
Luria, Justin L; Schwarz, Kathleen A; Jaquith, Michael J; Hennig, Richard G; Marohn, John A
2011-02-01
Spatial maps of topography and trapped charge are acquired for polycrystalline pentacene thin-film transistors using electric and atomic force microscopy. In regions of trapped charge, the rate of trap clearing is studied as a function of the wavelength of incident radiation.
Magnetic resonance force microscopy quantum computer with tellurium donors in silicon.
Berman, G P; Doolen, G D; Hammel, P C; Tsifrinovich, V I
2001-03-26
We propose a magnetic resonance force microscopy (MRFM)-based nuclear spin quantum computer using tellurium impurities in silicon. This approach to quantum computing combines well-developed silicon technology and expected advances in MRFM. Our proposal does not use electrostatic gates to realize quantum logic operations.
NASA Astrophysics Data System (ADS)
Golubev, Ye A.; Isaenko, S. I.
2017-10-01
We have studied different mineralogical objects: natural glasses of impact (tektites, impactites) and volcanic (obsidians) origin, using atomic force microscopy, X-ray microanalysis, infrared and Raman spectroscopy. The spectroscopy showed the difference in the structure and chemical composition of the glasses of different origin. The analysis of the dependence of nanoscale heterogeneity of the glasses, revealed by the atomic force microscopy, on their structural and chemical features was carried out.
Hussain, Dilshad; Musharraf, Syed Ghulam; Najam-ul-Haq, Muhammad
2016-02-01
Development of affinity materials for the selective enrichment of phosphopeptides has attracted attention during the last decade. In this work, diamond-lanthanum oxide and diamond-samarium oxide composites have been fabricated via the hydrothermal method. The composites are characterized by scanning electron microscopy (SEM), energy dispersive X-Ray spectroscopy (EDAX), and atomic force microscopy (AFM). The analyses confirm the size and composition of the nanocomposites. They have been applied to selectively capture phosphorylated peptides from standard proteins (β-casein and BSA). Selectivity is calculated as 1:3000 and 1:1500 while sensitivity down to 1 and 20 fmol for diamond-lanthanum oxide and diamond-samarium oxide nanocomposites, respectively. Enrichment efficiency has also been evaluated for non-fat milk digest where 18 phosphopeptides are enriched. Total of 213 and 187 phosphopeptides are captured from tryptic digest of HeLa cells extracted proteins by diamond-lanthanum oxide and diamond-samarium oxide, respectively. Finally, human serum, without any pre-treatment, is applied and nanocomposites capture the endogenous serum phosphopeptides.
Fabrication of biomolecules self-assembled on Au nanodot array for bioelectronic device.
Lee, Taek; Kumar, Ajay Yagati; Yoo, Si-Youl; Jung, Mi; Min, Junhong; Choi, Jeong-Woo
2013-09-01
In the present study, an nano-platform composed of Au nanodot arrays on which biomolecules could be self-assembled was developed and investigated for a stable bioelectronic device platform. Au nanodot pattern was fabricated using a nanoporous alumina template. Two different biomolecules, a cytochrome c and a single strand DNA (ssDNA), were immobilized on the Au nanodot arrays. Cytochorme c and single stranded DNA could be immobilized on the Au nanodot using the chemical linker 11-MUA and thiol-modification by covalent bonding, respectively. The atomic structure of the fabricated nano-platform device was characterized by scanning electron microscopy (SEM) and atomic force microscopy (AFM). The electrical conductivity of biomolecules immobilized on the Au nanodot arrays was confirmed by scanning tunneling spectroscopy (STS). To investigate the activity of biomolecule-immobilized Au-nano dot array, the cyclic voltammetry was carried out. This proposed nano-platform device, which is composed of biomolecules, can be used for the construction of a novel bioelectronic device.
NASA Astrophysics Data System (ADS)
Hosseini, Somaye; Savaloni, Hadi; Gholipour-Shahraki, Mehran
2017-03-01
The wettability of solid surfaces is important from the aspects of both science and technology. The Mn nano-sculptured thin films were designed and fabricated by oblique angle deposition of Mn on glass substrates at room temperature. The obtained structure was characterized by field emission scanning electron microscopy and atomic force microscopy. The wettability of thin films samples was investigated by water contact angle (WCA). The 4-pointed helical star-shaped structure exhibits hydrophobicity with static WCAs of more than 133° for a 10-mg distilled water droplet. This sample also shows the rose petal effect with the additional property of high adhesion. The Mn nano-sculptured thin films also act as a sticky surface which is confirmed by hysteresis of the contact angle obtained from advancing and receding contact angles measurements. Physicochemical property of liquid phase could effectively change the contact angle, and polar solvents in contact with hydrophobic solid surfaces do not necessarily show high contact angle value.
Chu, Wei-Cheng; Lin, Wei-Sheng; Kuo, Shiao-Wei
2016-01-01
In this study, we used diglycidyl ether bisphenol A (DGEBA) as a matrix, the ABA block copolymer poly(ethylene oxide–b–propylene oxide–b–ethylene oxide) (Pluronic F127) as an additive, and diphenyl diaminosulfone (DDS) as a curing agent to prepare flexible epoxy resins through reaction-induced microphase separation (RIMPS). Fourier transform infrared spectroscopy confirmed the existence of hydrogen bonding between the poly(ethylene oxide) segment of F127 and the OH groups of the DGEBA resin. Small-angle X-ray scattering, atomic force microscopy, and transmission electron microscopy all revealed evidence for the microphase separation of F127 within the epoxy resin. Glass transition temperature (Tg) phenomena and mechanical properties (modulus) were determined through differential scanning calorimetry and dynamic mechanical analysis, respectively, of samples at various blend compositions. The modulus data provided evidence for the formation of wormlike micelle structures, through a RIMPS mechanism, in the flexible epoxy resin upon blending with the F127 triblock copolymer. PMID:28773571
NASA Astrophysics Data System (ADS)
Mohan Kumar, Kesarla; Sinha, Madhulika; Mandal, Badal Kumar; Ghosh, Asit Ranjan; Siva Kumar, Koppala; Sreedhara Reddy, Pamanji
2012-06-01
A green rapid biogenic synthesis of silver nanoparticles (Ag NPs) using Terminalia chebula (T. chebula) aqueous extract was demonstrated in this present study. The formation of silver nanoparticles was confirmed by Surface Plasmon Resonance (SPR) at 452 nm using UV-visible spectrophotometer. The reduction of silver ions to silver nanoparticles by T. chebula extract was completed within 20 min which was evidenced potentiometrically. Synthesised nanoparticles were characterised using UV-vis spectroscopy, Fourier transformed infrared spectroscopy (FT-IR), powder X-ray diffraction (XRD), transmission electron microscopy (TEM) and atomic force microscopy (AFM). The hydrolysable tannins such as di/tri-galloyl-glucose present in the extract were hydrolyzed to gallic acid and glucose that served as reductant while oxidised polyphenols acted as stabilizers. In addition, it showed good antimicrobial activity towards both Gram-positive bacteria (S. aureus ATCC 25923) and Gram-negative bacteria (E. coli ATCC 25922). Industrially it may be a smart option for the preparation of silver nanoparticles.
Sáfar, Gustavo A M; Malachias, Angelo; Magalhães-Paniago, Rogério; Martins, Dayse C S; Idemori, Ynara M
2013-12-21
The determination of the molecular structure of a porphyrin is achieved by using nuclear magnetic resonance (NMR) and scanning tunneling microscopy (STM) techniques. Since macroscopic crystals cannot be obtained in this system, this combination of techniques is crucial to solve the molecular structure without the need for X-ray crystallography. For this purpose, previous knowledge of the flatness of the reagent molecules (a porphyrin and its functionalizing group, a naphthalimide) and the resulting molecular structure obtained by a force-field simulation are used. The exponents of the I-V curves obtained by scanning tunneling spectroscopy (STS) allow us to check whether the thickness of the film of molecules is greater than a monolayer, even when there is no direct access to the exposed surface of the metal substrate. Photoluminescence (PL), optical absorption, infrared (IR) reflectance and solubility tests are used to confirm the results obtained here with this NMR/STM/STS combination.
Structural characterization of Papilio kotzebuea (Eschscholtz 1821) butterfly wings
NASA Astrophysics Data System (ADS)
Sackey, J.; Nuru, Z. Y.; Berthier, S.; Maaza, M.
2018-05-01
The `plain black' forewings and black with `red spot' hindwings of the Papilio kotzebuea (Eschscholtz, 1821) were characterized by Scanning Electron Microscopy (SEM), Energy-Dispersive x-ray Spectroscopy (EDS), Atomic Force Microscopy (AFM), Fourier transform Infrared spectroscopy (FT-IR), UV-Vis spectrophometer and NIRQuest spectrometer. SEM images showed that the two sections of wings have different structures. The black with `red spot' hindwings have `hair-like' structures attached to the ridges and connected to the lamellae. On the contrary, the `plain black' forewings have holes that separate the ridges. AFM analysis unveiled that the `plain black' forewings have higher average surfaces roughness values as compared with the black with `red spot' hindwing. EDS and FT-IR results confirmed the presence of naturally hydrophobic materials on the wings. The `plain black' forewing exhibited strong absorptance (97%) throughout the solar spectrum range, which is attributed to the high melanin concentration as well as to the presence of holes in the scales. Biomimicking this wing could serves as equivalent solar absorber material.
Kaparaju, Prasad; Felby, Claus
2010-05-01
The objective of the study was to characterize and map changes in lignin during hydrothermal and wet explosion pre-treatments of wheat straw and corn stover. Chemical composition, microscopic (atomic force microscopy and scanning electron microscopy) and spectroscopic (attenuated total reflectance Fourier transform infrared spectroscopy, ATR-FTIR) analyses were performed. Results showed that both pre-treatments improved the cellulose and lignin content with substantial removal of hemicellulose in the pre-treated biomasses. These values were slightly higher for hydrothermal compared to wet explosion pre-treatment. ATR-FTIR analyses also confirmed these results. Microscopic analysis showed that pre-treatments affected the biomass by partial difibration. Lignin deposition on the surface of the hydrothermally pre-treated fibre was very distinct while severe loss of fibril integrity was noticed with wet exploded fibre. The present study thus revealed that the lignin cannot be removed by the studied pre-treatments. However, both pre-treatments improved the accessibility of the biomass towards enzymatic hydrolysis. Copyright 2009 Elsevier Ltd. All rights reserved.
Feasibility study of the natural derived chitosan dialdehyde for chemical modification of collagen.
Liu, Xinhua; Dan, Nianhua; Dan, Weihua; Gong, Juxia
2016-01-01
The aim of this study is to evaluate the chemical crosslinking effects of the natural derived chitosan dialdehyde (OCS) on collagen. Fourier transform infrared (FTIR) spectroscopy, differential scanning calorimetry (DSC) and circular dichroism (CD) measurements suggest that introducing OCS might not destroy the natural triple helix conformation of collagen but enhance the thermal-stability of collagen. Meanwhile, a denser fibrous network of cross-linked collagen is observed by atomic force microscopy. Further, scanning electron microscopy (SEM) and aggregation kinetics analysis confirm that the fibrillation process of collagen advances successfully and OCS could lengthen the completion time of collagen fibrillogenesis but raise the reconstitution rate of collagen fibrils or microfibrils. Besides, the cytocompatibility analysis implies that when the dosage of OCS is less than 15%, introducing OCS into collagen might be favorable for the cell's adhesion, growth and proliferation. Taken as a whole, the present study demonstrates that OCS might be an ideal crosslinker for the chemical fixation of collagen. Copyright © 2015 Elsevier B.V. All rights reserved.
A biocompatible synthesis of gold nanoparticles by Tris(hydroxymethyl)aminomethane
NASA Astrophysics Data System (ADS)
Chen, Feng; Wang, Yanwei; Ma, Jun; Yang, Guangcan
2014-05-01
Gold nanoparticles' novel properties are widely realized in catalysis, plasmonics, electronics, and biomedical applications. For biomedical application, one challenge is to find a non-toxic chemical and/or physical method of functionalizing gold nanoparticles with biomolecular compounds that can promote efficient binding, clearance, and biocompatibility and to assess their safety to other biological systems and their long-term effects on human health and reproduction. In the present study, we describe a new method by using Tris(hydroxymethyl)aminomethane (Tris), a widely used buffer solvent of nucleic acid and proteins, as the reducing agent for synthesizing gold nanoparticles by one step. It is found that Tris carries out the reduction reactions in relatively mild conditions for biomacromolecules. Particularly, it can be used to modify the DNA during the process of preparation of gold nanoparticles. The morphology and size distribution of gold nanoparticles are consistent and were confirmed by many different approaches including dynamic light scattering (DLS), UV-visible (UV-vis) spectrophotometry, atomic force microscopy (AFM), and transmission electron microscopy (TEM).
Local viscoelastic response of direct and indirect dental restorative composites measured by AFM.
Grattarola, Laura; Derchi, Giacomo; Diaspro, Alberto; Gambaro, Carla; Salerno, Marco
2018-06-08
We investigated the viscoelastic response of direct and indirect dental restorative composites by the novel technique of AM-FM atomic force microscopy. We selected four composites for direct restorations (Adonis, Optifil, EPH, CME) and three composites for indirect restorations (Gradia, Estenia, Signum). Scanning electron microscopy with micro-analysis was also used to support the results. The mean storage modulus of all composites was in the range of 10.2-15.2 GPa. EPH was the stiffest (p<0.05 vs. all other composites but Adonis and Estenia), while no significant difference was observed between direct and indirect group (p≥0.05). For the loss tangent, Gradia had the highest value (~0.3), different (p<0.05) from Optifil (~0.01) and EPH (~0.04) despite the large coefficient of variation (24%), and the direct composites showed higher loss tangent (p<0.01) than the indirect composites. All composites exhibited minor contrast at the edge of fillers, showing that these are pre-polymerized, as confirmed by EDS.
Out-of-Plane Piezoelectricity and Ferroelectricity in Layered α-In2Se3 Nanoflakes.
Zhou, Yu; Wu, Di; Zhu, Yihan; Cho, Yujin; He, Qing; Yang, Xiao; Herrera, Kevin; Chu, Zhaodong; Han, Yu; Downer, Michael C; Peng, Hailin; Lai, Keji
2017-09-13
Piezoelectric and ferroelectric properties in the two-dimensional (2D) limit are highly desired for nanoelectronic, electromechanical, and optoelectronic applications. Here we report the first experimental evidence of out-of-plane piezoelectricity and ferroelectricity in van der Waals layered α-In 2 Se 3 nanoflakes. The noncentrosymmetric R3m symmetry of the α-In 2 Se 3 samples is confirmed by scanning transmission electron microscopy, second-harmonic generation, and Raman spectroscopy measurements. Domains with opposite polarizations are visualized by piezo-response force microscopy. Single-point poling experiments suggest that the polarization is potentially switchable for α-In 2 Se 3 nanoflakes with thicknesses down to ∼10 nm. The piezotronic effect is demonstrated in two-terminal devices, where the Schottky barrier can be modulated by the strain-induced piezopotential. Our work on polar α-In 2 Se 3 , one of the model 2D piezoelectrics and ferroelectrics with simple crystal structures, shows its great potential in electronic and photonic applications.
Enhancement of carbon-steel peel adhesion to rubber blend using atmospheric pressure plasma
NASA Astrophysics Data System (ADS)
Kršková, Jana; Skácelová, Dana; Kováčik, Dušan; Ráhel', Jozef; Pret'o, Jozef; Černák, Mirko
2016-08-01
The surface of carbon-steel plates was modified by non-equilibrium plasma of diffuse coplanar surface barrier discharge (DCSBD) in order to improve the adhesive properties to the NR (natural rubber) green rubber compound. The effect of different treatment times as well as different input power and frequency of supplied high voltage was investigated. The samples were characterized using contact angle and surface free energy measurement, measurement of adhesive properties, scanning electron microscopy (SEM) and atomic force microscopy (AFM). Surface chemical composition was studied by energy-dispersive X-ray spectroscopy (EDX). Significant increase in wettability was observed even after 2 s of plasma exposure. The surface modification was confirmed also by peel test, where the best results were obtained for 6 s of plasma treatment. In addition the ageing effect was studied to investigate the durability of modification, which is crucial for the industrial applications. Contribution to the topical issue "6th Central European Symposium on Plasma Chemistry (CESPC-6)", edited by Nicolas Gherardi, Ester Marotta and Cristina Paradisi
Chain-like structure elements in Ni40Ta60 metallic glasses observed by scanning tunneling microscopy
Pawlak, Rémy; Marot, Laurent; Sadeghi, Ali; Kawai, Shigeki; Glatzel, Thilo; Reimann, Peter; Goedecker, Stefan; Güntherodt, Hans-Joachim; Meyer, Ernst
2015-01-01
The structure of metallic glasses is a long-standing question because the lack of long-range order makes diffraction based techniques difficult to be applied. Here, we used scanning tunneling microscopy with large tunneling resistance of 6 GΩ at low temperature in order to minimize forces between probe and sample and reduce thermal fluctuations of metastable structures. Under these extremely gentle conditions, atomic structures of Ni40Ta60 metallic glasses are revealed with unprecedented lateral resolution. In agreement with previous models and experiments, icosahedral-like clusters are observed. The clusters show a high degree of mobility, which explains the need of low temperatures for stable imaging. In addition to icosahedrons, chain-like structures are resolved and comparative density functional theory (DFT) calculations confirm that these structures are meta-stable. The co-existence of icosahedral and chain-like structures might be an key ingredient for the understanding of the mechanical properties of metallic glasses. PMID:26268430
Radzinski, Scott C; Foster, Jeffrey C; Matson, John B
2016-04-01
Bottlebrush polymers are synthesized using a tandem ring-opening polymerization (ROP) and ring-opening metathesis polymerization (ROMP) strategy. For the first time, ROP and ROMP are conducted sequentially in the same pot to yield well-defined bottlebrush polymers with molecular weights in excess of 10(6) Da. The first step of this process involves the synthesis of a polylactide macromonomer (MM) via ROP of d,l-lactide initiated by an alcohol-functionalized norbornene. ROMP grafting-through is then carried out in the same pot to produce the bottlebrush polymer. The applicability of this methodology is evaluated for different MM molecular weights and bottlebrush backbone degrees of polymerization. Size-exclusion chromatographic and (1)H NMR spectroscopic analyses confirm excellent control over both polymerization steps. In addition, bottlebrush polymers are imaged using atomic force microscopy and stain-free transmission electron microscopy on graphene oxide. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Nasrin, Rahima; Hossain, Khandker S.; Bhuiyan, A. H.
2018-05-01
Plasma polymerized n-butyl methacrylate (PPnBMA) thin films of varying thicknesses were prepared at room temperature by AC plasma polymerization system using a capacitively coupled parallel plate reactor. Field-emission scanning electron microscopy (FESEM), atomic force microscopy (AFM), energy-dispersive X-ray (EDX) analysis, and ultraviolet-visible (UV-Vis) spectroscopic investigation have been performed to study the morphological, elemental, and optical properties of the PPnBMA thin films, respectively. The flat and defect-free nature of thin films were confirmed by FESEM and AFM images. With declining plasma power, average roughness and root mean square roughness increase. Allowed direct transition ( E gd) and indirect transition ( E gi) energy gaps were found to be 3.64-3.80 and 3.38-3.45 eV, respectively, for PPnBMA thin films of different thicknesses. Values of E gd as well as E gi increase with the increase of thickness. The extinction coefficient, Urbach energy, and steepness parameter were also determined for these thin films.
Hydrodynamic fractionation of finite size gold nanoparticle clusters.
Tsai, De-Hao; Cho, Tae Joon; DelRio, Frank W; Taurozzi, Julian; Zachariah, Michael R; Hackley, Vincent A
2011-06-15
We demonstrate a high-resolution in situ experimental method for performing simultaneous size classification and characterization of functional gold nanoparticle clusters (GNCs) based on asymmetric-flow field flow fractionation (AFFF). Field emission scanning electron microscopy, atomic force microscopy, multi-angle light scattering (MALS), and in situ ultraviolet-visible optical spectroscopy provide complementary data and imagery confirming the cluster state (e.g., dimer, trimer, tetramer), packing structure, and purity of fractionated populations. An orthogonal analysis of GNC size distributions is obtained using electrospray-differential mobility analysis (ES-DMA). We find a linear correlation between the normalized MALS intensity (measured during AFFF elution) and the corresponding number concentration (measured by ES-DMA), establishing the capacity for AFFF to quantify the absolute number concentration of GNCs. The results and corresponding methodology summarized here provide the proof of concept for general applications involving the formation, isolation, and in situ analysis of both functional and adventitious nanoparticle clusters of finite size. © 2011 American Chemical Society
NASA Astrophysics Data System (ADS)
Smith, Varina Campbell
The role of growth steps in inducing disequilibrium is investigated in crystals of vesuvianite from the Jeffrey mine, Asbestos, Quebec, using optical microscopy, atomic force microscopy, electron microprobe analysis, and single-crystal X-ray diffraction. The selective uptake of elements Fe and Al by asymmetric growth-steps on three crystallographic forms, {100}, {110}, and {121}, is documented. The prisms {100} and {110} show hillocks that display kinetically controlled oscillatory zoning along growth steps parallel to <010> and <11¯1>, but not on vicinal faces defined by [001] steps. Sector-specific zoning of extinction angles and 2V angles indicate different degrees of optical dissymmetrization in crystals spanning a range of growth habits. Unit-cell parameters and the presence of violating reflections confirm sectoral deviations from P4/nnc symmetry in the prismatic sectors. The partial loss of three glide planes follows the pattern expected from order of the cations Al and Fe induced by tangential selectivity at the edge of non-equivalent steps during layer-by-layer growth.
Iverson, Brian D; Blendell, John E; Garimella, Suresh V
2010-03-01
Thermal diffusion measurements on polymethylmethacrylate-coated Si substrates using heated atomic force microscopy tips were performed to determine the contact resistance between an organic thin film and Si. The measurement methodology presented demonstrates how the thermal contrast signal obtained during a force-displacement ramp is used to quantify the resistance to heat transfer through an internal interface. The results also delineate the interrogation thickness beyond which thermal diffusion in the organic thin film is not affected appreciably by the underlying substrate.
Resolving the Pinning Force of Nanobubbles with Optical Microscopy
NASA Astrophysics Data System (ADS)
Tan, Beng Hau; An, Hongjie; Ohl, Claus-Dieter
2017-02-01
Many of the remarkable properties of surface nanobubbles, such as unusually small contact angles and long lifetimes, are related to the force that pins them onto their substrates. This pinning force is yet to be quantified experimentally. Here, surface-attached nanobubbles are pulled with an atomic force microscope tip while their mechanical responses are observed with total internal reflection fluorescence microscopy. We estimate that a pinning force on the order of 0.1 μ N is required to unpin a nanobubble from its substrate. The maximum force that the tip can exert on the nanobubble is limited by the stability of the neck pulled from the bubble and is enhanced by the hydrophobicity of the tip.
Brody, Sarah; Anilkumar, Thapasimuthu; Liliensiek, Sara; Last, Julie A; Murphy, Christopher J; Pandit, Abhay
2006-02-01
A fully effective prosthetic heart valve has not yet been developed. A successful tissue-engineered valve prosthetic must contain a scaffold that fully supports valve endothelial cell function. Recently, topographic features of scaffolds have been shown to influence the behavior of a variety of cell types and should be considered in rational scaffold design and fabrication. The basement membrane of the aortic valve endothelium provides important parameters for tissue engineering scaffold design. This study presents a quantitative characterization of the topographic features of the native aortic valve endothelial basement membrane; topographical features were measured, and quantitative data were generated using scanning electron microscopy (SEM), atomic force microscopy (AFM), transmission electron microscopy (TEM), and light microscopy. Optimal conditions for basement membrane isolation were established. Histological, immunohistochemical, and TEM analyses following decellularization confirmed basement membrane integrity. SEM and AFM photomicrographs of isolated basement membrane were captured and quantitatively analyzed. The basement membrane of the aortic valve has a rich, felt-like, 3-D nanoscale topography, consisting of pores, fibers, and elevations. All features measured were in the sub-100 nm range. No statistical difference was found between the fibrosal and ventricular surfaces of the cusp. These data provide a rational starting point for the design of extracellular scaffolds with nanoscale topographic features that mimic those found in the native aortic heart valve basement membrane.
BRODY, SARAH; ANILKUMAR, THAPASIMUTHU; LILIENSIEK, SARA; LAST, JULIE A.; MURPHY, CHRISTOPHER J.; PANDIT, ABHAY
2016-01-01
A fully effective prosthetic heart valve has not yet been developed. A successful tissue-engineered valve prosthetic must contain a scaffold that fully supports valve endothelial cell function. Recently, topographic features of scaffolds have been shown to influence the behavior of a variety of cell types and should be considered in rational scaffold design and fabrication. The basement membrane of the aortic valve endothelium provides important parameters for tissue engineering scaffold design. This study presents a quantitative characterization of the topographic features of the native aortic valve endothelial basement membrane; topographical features were measured, and quantitative data were generated using scanning electron microscopy (SEM), atomic force microscopy (AFM), transmission electron microscopy (TEM), and light microscopy. Optimal conditions for basement membrane isolation were established. Histological, immunohistochemical, and TEM analyses following decellularization confirmed basement membrane integrity. SEM and AFM photomicrographs of isolated basement membrane were captured and quantitatively analyzed. The basement membrane of the aortic valve has a rich, felt-like, 3-D nanoscale topography, consisting of pores, fibers, and elevations. All features measured were in the sub-100 nm range. No statistical difference was found between the fibrosal and ventricular surfaces of the cusp. These data provide a rational starting point for the design of extracellular scaffolds with nanoscale topographic features that mimic those found in the native aortic heart valve basement membrane. PMID:16548699
Elastomeric photo-actuators and their investigation by confocal laser scanning microscopy
NASA Astrophysics Data System (ADS)
Czaniková, Klaudia; Ilčíková, Markéta; Krupa, Igor; Mičušík, Matej; Kasák, Peter; Pavlova, Ewa; Mosnáček, Jaroslav; Chorvát, Dušan, Jr.; Omastová, Mária
2013-10-01
The photo-actuation behavior of nanocomposites based on ethylene-vinylacetate copolymer (EVA) and styrene-isoprene-styrene (SIS) block copolymer filled with well-dispersed and modified multiwalled carbon nanotubes (MWCNTs) is discussed in this paper. The nanocomposites were prepared by casting from solution. To improve the dispersion of the MWCNTs in EVA, the MWCNT surface was modified with a non-covalent surfactant, cholesteryl 1-pyrenecarboxylate (PyChol). To prepare SIS nanocomposites, the MWCNT surface was covalently modified with polystyrene chains. The good dispersion of the filler was confirmed by transmission electron microscopy (TEM). Special, custom-made punch/die molds were used to create a Braille element (BE)-like shape, which under shear forces induces a uniaxial orientation of the MWCNTs within the matrix. The uniaxial orientation of MWCNTs is an essential precondition to ensure the photo-actuating behavior of MWCNTs in polymeric matrices. The orientation of the MWCNTs within the matrices was examined by scanning electron microscopy (SEM). Nanocomposite BEs were illuminated from the bottom by a red light-emitting diode (LED), and the photo-actuation was investigated by confocal laser scanning microscopy (CLSM). When the BEs were exposed to light, a temporary increase in the height of the element was detected. This process was observed to be reversible: after switching off the light, the BEs returned to their original shape and height.
NASA Astrophysics Data System (ADS)
Reichling, Michael
2004-02-01
Direct nanoscale and atomic resolution imaging is a key issue in nanoscience and nanotechnology. The invention of the dynamic force microscope in the early 1990s was an important step forward in this direction as this instrument provides a universal tool for measuring the topography and many other physical and chemical properties of surfaces at the nanoscale. Operation in the so-called non-contact mode now allows direct atomic resolution imaging of electrically insulating surfaces and nanostructures which has been an unsolved problem during the first decade of nanotechnology. Today, we face a most rapid development of the technique and an extension of its capabilities far beyond imaging; atomically resolved force spectroscopy provides information about local binding properties and researchers now develop sophisticated schemes of force controlled atomic manipulation with the tip of the force microscope. Progress in the field of non-contact force microscopy is discussed at the annually held NC-AFM conferences that are part of a series started in 1998 with a meeting in Osaka, Japan. The 6th International Conference on Non-contact Atomic Force Microscopy took place in Dingle, Ireland, from 31 August to 3 September 2003 and this special issue is a compilation of the original publications of work presented at this meeting. The papers published here well reflect recent achievements, current trends and some of the challenging new directions in non-contact force microscopy that have been discussed during the most stimulating conference days in Dingle. Fundamental aspects of forces and dissipation relevant in imaging and spectroscopy have been covered by experimental and theoretical contributions yielding a more detailed understanding of tip--surface interaction in force microscopy. Novel and improved imaging and spectroscopy techniques have been introduced that either improve the performance of force microscopy or pave the way towards new functionalities and applications. With regard to studies on the specific systems investigated, there was a strong emphasis on oxides and ionics, as well as on organic systems. Following previous pioneering work in uncovering the atomic structure of insulating oxides with force microscopy, it was shown in the meeting that this important class of materials is now accessible for a quantitative atomic scale surface characterization. Single organic molecules and ordered organic layers are building blocks for functional nanostructures currently developed in many laboratories for applications in molecular electronics and sensor technologies. The Dingle conference impressively demonstrated that dynamic force microscopy is ready for its application as an analytical tool for these promising future nanotechnologies. The meeting was a great success scientifically and participants enjoyed the beauty of the conference site. I would like to thank all members of the international steering committee, the programme committee and the co-chairs, J Pethica, A Shluger and G Thornton, for their efforts in preparing the meeting. The members of the local organising committee, J Ballentine-Armstrong, G Cross, S Dunne, S Jarvis and Ö Özer, kept the meeting running smoothly and created a very pleasant atmosphere. The generous financial support from Science Foundation Ireland (SFI), is greatly appreciated; SFI is dramatically raising the profile of Irish science. I would also like to express my sincere gratitude to N Couzin and the journal team from Institute of Physics Publishing for their editorial management and perfect co-operation in the preparation of this special issue.
Atomic force microscopy captures length phenotypes in single proteins
Carrion-Vazquez, Mariano; Marszalek, Piotr E.; Oberhauser, Andres F.; Fernandez, Julio M.
1999-01-01
We use single-protein atomic force microscopy techniques to detect length phenotypes in an Ig module. To gain amino acid resolution, we amplify the mechanical features of a single module by engineering polyproteins composed of up to 12 identical repeats. We show that on mechanical unfolding, mutant polyproteins containing five extra glycine residues added to the folded core of the module extend 20 Å per module farther than the wild-type polyproteins. By contrast, similar insertions near the N or C termini have no effect. Hence, our atomic force microscopy measurements readily discriminate the location of the insert and measure its size with a resolution similar to that of NMR and x-ray crystallography. PMID:10500169
Swamy, Mallappa Kumara; Akhtar, Mohd Sayeed; Mohanty, Sudipta Kumar; Sinniah, Uma Rani
2015-12-05
Plant mediated synthesis of nanoparticles has been considered as green route and a reliable technique for the synthesis of nanoparticles due to its eco-friendly approach. In this study, we report a simple and eco-friendly approach for the synthesis of silver nanoparticles (AgNPs) using methanolic Momordica cymbalaria fruit extract as reducing agent. The fruit extract of M. cymbalaria exposed to AgNO3 solution showed the change in color from green to light yellow at room temperature within 1h of incubation confirms the synthesis of AgNPs. UV-vis spectra analysis revealed that the synthesized AgNPs had a sharp surface plasmon resonance at around 450 nm, while, the X-ray Diffraction (XRD) patterns confirmed distinctive peaks indices to the crystalline planes of the face centered cubic silver. The Atomic Force Microscopy (AFM) and Scanning Electron Microscopy (SEM) analysis results confirmed the presence of spherical shaped AgNPs by a huge disparity in the particle size distribution with an average size of 15.5 nm. The synthesized AgNPs showed strong antibacterial activity against all the tested multidrug resistant human pathogenic bacterial strains and also exhibited highest free radical scavenging activity (74.2%) compared to fruit extract (60.4%). Moreover, both fruit extract and the synthesized AgNPs showed the cytotoxicity towards Rat L6 skeletal muscle cell line at different concentrations, but the highest inhibition percentage was recorded for AgNPs at concentration of 100 μg/ml. Copyright © 2015. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Lee, Seunghyun; Kim, Hyemin; Shin, Seungjun; Doh, Junsang; Kim, Chulhong
2017-03-01
Optical microscopy (OM) and photoacoustic microscopy (PAM) have previously been used to image the optical absorption of intercellular features of biological cells. However, the optical diffraction limit ( 200 nm) makes it difficult for these modalities to image nanoscale inner cell structures and the distribution of internal cell components. Although super-resolution fluorescence microscopy, such as stimulated emission depletion microscopy (STED) and stochastic optical reconstruction microscopy (STORM), has successfully performed nanoscale biological imaging, these modalities require the use of exogenous fluorescence agents, which are unfavorable for biological samples. Our newly developed atomic force photoactivated microscopy (AFPM) can provide optical absorption images with nanoscale lateral resolution without any exogenous contrast agents. AFPM combines conventional atomic force microscopy (AFM) and an optical excitation system, and simultaneously provides multiple contrasts, such as the topography and magnitude of optical absorption. AFPM can detect the intrinsic optical absorption of samples with 8 nm lateral resolution, easily overcoming the diffraction limit. Using the label-free AFPM system, we have successfully imaged the optical absorption properties of a single melanoma cell (B16F10) and a rosette leaf epidermal cell of Arabidopsis (ecotype Columbia (Col-0)) with nanoscale lateral resolution. The remarkable images show the melanosome distribution of a melanoma cell and the biological structures of a plant cell. AFPM provides superior imaging of optical absorption with a nanoscale lateral resolution, and it promises to become widely used in biological and chemical research.
Spectroscopy and atomic force microscopy of biomass.
Tetard, L; Passian, A; Farahi, R H; Kalluri, U C; Davison, B H; Thundat, T
2010-05-01
Scanning probe microscopy has emerged as a powerful approach to a broader understanding of the molecular architecture of cell walls, which may shed light on the challenge of efficient cellulosic ethanol production. We have obtained preliminary images of both Populus and switchgrass samples using atomic force microscopy (AFM). The results show distinctive features that are shared by switchgrass and Populus. These features may be attributable to the lignocellulosic cell wall composition, as the collected images exhibit the characteristic macromolecular globule structures attributable to the lignocellulosic systems. Using both AFM and a single case of mode synthesizing atomic force microscopy (MSAFM) to characterize Populus, we obtained images that clearly show the cell wall structure. The results are of importance in providing a better understanding of the characteristic features of both mature cells as well as developing plant cells. In addition, we present spectroscopic investigation of the same samples.
Subatomic deformation driven by vertical piezoelectricity from CdS ultrathin films
Wang, Xuewen; He, Xuexia; Zhu, Hongfei; Sun, Linfeng; Fu, Wei; Wang, Xingli; Hoong, Lai Chee; Wang, Hong; Zeng, Qingsheng; Zhao, Wu; Wei, Jun; Jin, Zhong; Shen, Zexiang; Liu, Jie; Zhang, Ting; Liu, Zheng
2016-01-01
Driven by the development of high-performance piezoelectric materials, actuators become an important tool for positioning objects with high accuracy down to nanometer scale, and have been used for a wide variety of equipment, such as atomic force microscopy and scanning tunneling microscopy. However, positioning at the subatomic scale is still a great challenge. Ultrathin piezoelectric materials may pave the way to positioning an object with extreme precision. Using ultrathin CdS thin films, we demonstrate vertical piezoelectricity in atomic scale (three to five space lattices). With an in situ scanning Kelvin force microscopy and single and dual ac resonance tracking piezoelectric force microscopy, the vertical piezoelectric coefficient (d33) up to 33 pm·V−1 was determined for the CdS ultrathin films. These findings shed light on the design of next-generation sensors and microelectromechanical devices. PMID:27419234
Detection of Giardia intestinalis infections in Polish soldiers deployed to Afghanistan.
Korzeniewski, Krzysztof; Konior, Monika; Augustynowicz, Alina; Lass, Anna; Kowalska, Ewa
2016-01-01
Members of the Polish Military Contingent (PMC) have been stationed in Afghanistan since 2002. They typically serve in areas characterised by low standards of sanitation which often leads to the development of food- and waterborne diseases. The aim of the study was to evaluate the prevalence of Giardia intestinalis infections among Polish soldiers deployed to Afghanistan. The research study was conducted as part of a programme for prevention of parasitic diseases of the gastrointestinal tract run by the Polish Armed Forces. The study was carried out in August 2011; it involved 630 asymptomatic Polish soldiers serving in the Forward Operational Base (FOB) Ghazni in eastern Afghanistan. Stool specimens obtained from members of the PMC were first tested in FOB Ghazni (detection of Giardia intestinalis by Rida Quick Giardia immunochromatographic tests and Ridascreen Giardia immunoenzymatic tests - single samples). Next, the same biological material and two other faecal specimens fixed in 10% formalin were transported to the Military Institute of Medicine in Poland, where they were tested for Giardia intestinalis under light microscopy (direct smear, decantation in distilled water). Parasitological tests performed under light microscopy showed that 2.7% (17/630) of the study group were infected with Giardia intestinalis. Some of these results were confirmed by immunochromatographic tests (6/630). In contrast, immunoenzymatic tests (ELISA) demonstrated a significantly higher detection rate reaching 18.1% (114/630). Immunoenzymatic tests confirmed all the positive results given by light microscopy and by immunochromatographic tests. The prevalence rate of Giardia intestinalis infections in Polish soldiers deployed to Afghanistan was found to be high. Microscopic methods exhibit low sensitivity and therefore may result in the underestimation of the true parasite prevalence. Immunoenzymatic tests (ELISA) showing a much higher sensitivity in comparison to light microscopy and immunochromatographic tests ought to be applied in screening for intestinal protozoan infections in areas characterised by harsh environmental conditions.
USDA-ARS?s Scientific Manuscript database
Single molecular detection of pathogens and toxins of interest to food safety is within grasp using technology such as Atomic Force Microscopy. Using antibodies or specific aptamers connected to the AFM tip make it possible to detect a pathogen molecule on a surface. However, it also becomes necess...
Ryan Wagner; Robert J. Moon; Arvind Raman
2016-01-01
Quantification of the mechanical properties of cellulose nanomaterials is key to the development of new cellulose nanomaterial based products. Using contact resonance atomic force microscopy we measured and mapped the transverse elastic modulus of three types of cellulosic nanoparticles: tunicate cellulose nanocrystals, wood cellulose nanocrystals, and wood cellulose...
Tai, Tamin; Karácsony, Orsolya; Bocharova, Vera; ...
2016-02-18
This article describes how the use of a hybrid atomic force microscopy/infrared spectroscopy/mass spectrometry imaging platform was demonstrated for the acquisition and correlation of nanoscale sample surface topography and chemical images based on infrared spectroscopy and mass spectrometry.
Elemental Identification by Combining Atomic Force Microscopy and Kelvin Probe Force Microscopy.
Schulz, Fabian; Ritala, Juha; Krejčí, Ondrej; Seitsonen, Ari Paavo; Foster, Adam S; Liljeroth, Peter
2018-06-01
There are currently no experimental techniques that combine atomic-resolution imaging with elemental sensitivity and chemical fingerprinting on single molecules. The advent of using molecular-modified tips in noncontact atomic force microscopy (nc-AFM) has made it possible to image (planar) molecules with atomic resolution. However, the mechanisms responsible for elemental contrast with passivated tips are not fully understood. Here, we investigate elemental contrast by carrying out both nc-AFM and Kelvin probe force microscopy (KPFM) experiments on epitaxial monolayer hexagonal boron nitride (hBN) on Ir(111). The hBN overlayer is inert, and the in-plane bonds connecting nearest-neighbor boron and nitrogen atoms possess strong covalent character and a bond length of only ∼1.45 Å. Nevertheless, constant-height maps of both the frequency shift Δ f and the local contact potential difference exhibit striking sublattice asymmetry. We match the different atomic sites with the observed contrast by comparison with nc-AFM image simulations based on the density functional theory optimized hBN/Ir(111) geometry, which yields detailed information on the origin of the atomic-scale contrast.
Harnessing the damping properties of materials for high-speed atomic force microscopy.
Adams, Jonathan D; Erickson, Blake W; Grossenbacher, Jonas; Brugger, Juergen; Nievergelt, Adrian; Fantner, Georg E
2016-02-01
The success of high-speed atomic force microscopy in imaging molecular motors, enzymes and microbes in liquid environments suggests that the technique could be of significant value in a variety of areas of nanotechnology. However, the majority of atomic force microscopy experiments are performed in air, and the tapping-mode detection speed of current high-speed cantilevers is an order of magnitude lower in air than in liquids. Traditional approaches to increasing the imaging rate of atomic force microscopy have involved reducing the size of the cantilever, but further reductions in size will require a fundamental change in the detection method of the microscope. Here, we show that high-speed imaging in air can instead be achieved by changing the cantilever material. We use cantilevers fabricated from polymers, which can mimic the high damping environment of liquids. With this approach, SU-8 polymer cantilevers are developed that have an imaging-in-air detection bandwidth that is 19 times faster than those of conventional cantilevers of similar size, resonance frequency and spring constant.
NASA Astrophysics Data System (ADS)
Nguyen, Son N.; Sontag, Ryan L.; Carson, James P.; Corley, Richard A.; Ansong, Charles; Laskin, Julia
2018-02-01
Constant mode ambient mass spectrometry imaging (MSI) of tissue sections with high lateral resolution of better than 10 μm was performed by combining shear force microscopy with nanospray desorption electrospray ionization (nano-DESI). Shear force microscopy enabled precise control of the distance between the sample and nano-DESI probe during MSI experiments and provided information on sample topography. Proof-of-concept experiments were performed using lung and brain tissue sections representing spongy and dense tissues, respectively. Topography images obtained using shear force microscopy were comparable to the results obtained using contact profilometry over the same region of the tissue section. Variations in tissue height were found to be dependent on the tissue type and were in the range of 0-5 μm for lung tissue and 0-3 μm for brain tissue sections. Ion images of phospholipids obtained in this study are in good agreement with literature data. Normalization of nano-DESI MSI images to the signal of the internal standard added to the extraction solvent allowed us to construct high-resolution ion images free of matrix effects.
Kim, Il Kwang; Lee, Soo Il
2016-05-01
The modal decomposition of tapping mode atomic force microscopy microcantilevers in liquid environments was studied experimentally. Microcantilevers with different lengths and stiffnesses and two sample surfaces with different elastic moduli were used in the experiment. The response modes of the microcantilevers were extracted as proper orthogonal modes through proper orthogonal decomposition. Smooth orthogonal decomposition was used to estimate the resonance frequency directly. The effects of the tapping setpoint and the elastic modulus of the sample under test were examined in terms of their multi-mode responses with proper orthogonal modes, proper orthogonal values, smooth orthogonal modes and smooth orthogonal values. Regardless of the stiffness of the microcantilever under test, the first mode was dominant in tapping mode atomic force microscopy under normal operating conditions. However, at lower tapping setpoints, the flexible microcantilever showed modal distortion and noise near the tip when tapping on a hard sample. The stiff microcantilever had a higher mode effect on a soft sample at lower tapping setpoints. Modal decomposition for tapping mode atomic force microscopy can thus be used to estimate the characteristics of samples in liquid environments.
Zhang, Yuejin; Wei, Fuxiang; Poh, Yeh-Chuin; Jia, Qiong; Chen, Junjian; Chen, Junwei; Luo, Junyu; Yao, Wenting; Zhou, Wenwen; Huang, Wei; Yang, Fang; Zhang, Yao; Wang, Ning
2017-07-01
Cells and tissues can undergo a variety of biological and structural changes in response to mechanical forces. Only a few existing techniques are available for quantification of structural changes at high resolution in response to forces applied along different directions. 3D-magnetic twisting cytometry (3D-MTC) is a technique for applying local mechanical stresses to living cells. Here we describe a protocol for interfacing 3D-MTC with confocal fluorescence microscopy. In 3D-MTC, ferromagnetic beads are bound to the cell surface via surface receptors, followed by their magnetization in any desired direction. A magnetic twisting field in a different direction is then applied to generate rotational shear stresses in any desired direction. This protocol describes how to combine magnetic-field-induced mechanical stimulation with confocal fluorescence microscopy and provides an optional extension for super-resolution imaging using stimulated emission depletion (STED) nanoscopy. This technology allows for rapid real-time acquisition of a living cell's mechanical responses to forces via specific receptors and for quantifying structural and biochemical changes in the same cell using confocal fluorescence microscopy or STED. The integrated 3D-MTC-microscopy platform takes ∼20 d to construct, and the experimental procedures require ∼4 d when carried out by a life sciences graduate student.
Zhang, Yuejin; Wei, Fuxiang; Poh, Yeh-Chuin; Jia, Qiong; Chen, Junjian; Chen, Junwei; Luo, Junyu; Yao, Wenting; Zhou, Wenwen; Huang, Wei; Yang, Fang; Zhang, Yao; Wang, Ning
2017-01-01
Cells and tissues can undergo a variety of biological and structural changes in response to mechanical forces. Only few existing techniques are available for quantification of structural changes at high resolution in response to forces applied along different directions. Three dimensional-Magnetic Twisting Cytometry (3D-MTC) is a technique for applying local mechanical stresses on living cells. Here we describe a protocol for interfacing 3D-MTC with confocal fluorescence microscopy. In 3D-MTC, ferromagnetic beads are bound to the cell surface via surface receptors followed by their magnetization in any desired direction. A magnetic twisting field in a different direction is then applied to generate rotational shear stresses in any desired direction. This protocol describes how to combine magnetic field-induced mechanical stimulation with confocal fluorescence microscopy and provides an optional extension for super resolution imaging using stimulated emission depletion (STED) nanoscopy. This technology allows for rapid real time acquisition of a living cell’s mechanical responses to forces via specific receptors and for quantifying structural and biochemical changes in the same cell using confocal fluorescence microscopy or STED. The integrated 3D-MTC – microscopy platform takes around 20 days to construct and the experimental procedures require ~4 days when carried out by a life sciences graduate student. PMID:28686583
Strontium eluting graphene hybrid nanoparticles augment osteogenesis in a 3D tissue scaffold
NASA Astrophysics Data System (ADS)
Kumar, Sachin; Chatterjee, Kaushik
2015-01-01
The objective of this work was to prepare hybrid nanoparticles of graphene sheets decorated with strontium metallic nanoparticles and demonstrate their advantages in bone tissue engineering. Strontium-decorated reduced graphene oxide (RGO_Sr) hybrid nanoparticles were synthesized by the facile reduction of graphene oxide and strontium nitrate. X-ray diffraction, transmission electron microscopy, and atomic force microscopy revealed that the hybrid particles were composed of RGO sheets decorated with 200-300 nm metallic strontium particles. Thermal gravimetric analysis further confirmed the composition of the hybrid particles as 22 wt% of strontium. Macroporous tissue scaffolds were prepared by incorporating RGO_Sr particles in poly(ε-caprolactone) (PCL). The PCL/RGO_Sr scaffolds were found to elute strontium ions in aqueous medium. Osteoblast proliferation and differentiation was significantly higher in the PCL scaffolds containing the RGO_Sr particles in contrast to neat PCL and PCL/RGO scaffolds. The increased biological activity can be attributed to the release of strontium ions from the hybrid nanoparticles. This study demonstrates that composites prepared using hybrid nanoparticles that elute strontium ions can be used to prepare multifunctional scaffolds with good mechanical and osteoinductive properties. These findings have important implications for designing the next generation of biomaterials for use in tissue regeneration.The objective of this work was to prepare hybrid nanoparticles of graphene sheets decorated with strontium metallic nanoparticles and demonstrate their advantages in bone tissue engineering. Strontium-decorated reduced graphene oxide (RGO_Sr) hybrid nanoparticles were synthesized by the facile reduction of graphene oxide and strontium nitrate. X-ray diffraction, transmission electron microscopy, and atomic force microscopy revealed that the hybrid particles were composed of RGO sheets decorated with 200-300 nm metallic strontium particles. Thermal gravimetric analysis further confirmed the composition of the hybrid particles as 22 wt% of strontium. Macroporous tissue scaffolds were prepared by incorporating RGO_Sr particles in poly(ε-caprolactone) (PCL). The PCL/RGO_Sr scaffolds were found to elute strontium ions in aqueous medium. Osteoblast proliferation and differentiation was significantly higher in the PCL scaffolds containing the RGO_Sr particles in contrast to neat PCL and PCL/RGO scaffolds. The increased biological activity can be attributed to the release of strontium ions from the hybrid nanoparticles. This study demonstrates that composites prepared using hybrid nanoparticles that elute strontium ions can be used to prepare multifunctional scaffolds with good mechanical and osteoinductive properties. These findings have important implications for designing the next generation of biomaterials for use in tissue regeneration. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr05060f
Gurunathan, Sangiliyandi; Han, JaeWoong; Park, Jung Hyun; Kim, Jin Hoi
2014-01-01
Background Recently, graphene and graphene-related materials have attracted much attention due their unique properties, such as their physical, chemical, and biocompatibility properties. This study aimed to determine the cytotoxic effects of graphene oxide (GO) that is reduced biologically using Ganoderma spp. mushroom extracts in MDA-MB-231 human breast cancer cells. Methods Herein, we describe a facile and green method for the reduction of GO using extracts of Ganoderma spp. as a reducing agent. GO was reduced without any hazardous chemicals in an aqueous solution, and the reduced GO was characterized using a range of analytical procedures. The Ganoderma extract (GE)-reduced GO (GE-rGO) was characterized by ultraviolet-visible absorption spectroscopy, X-ray diffraction, Fourier-transform infrared spectroscopy, X-ray photoelectron spectroscopy, dynamic light scattering, scanning electron microscopy, Raman spectroscopy, and atomic force microscopy. Furthermore, the toxicity of GE-rGO was evaluated using a sequence of assays such as cell viability, lactate dehydrogenase leakage, and reactive oxygen species generation in human breast cancer cells (MDA-MB-231). Results The preliminary characterization of reduction of GO was confirmed by the red-shifting of the absorption peak for GE-rGO to 265 nm from 230 nm. The size of GO and GE-rGO was found to be 1,880 and 3,200 nm, respectively. X-ray diffraction results confirmed that reduction processes of GO and the processes of removing intercalated water molecules and the oxide groups. The surface functionalities and chemical natures of GO and GE-rGO were confirmed using Fourier-transform infrared spectroscopy and X-ray photoelectron spectroscopy. The surface morphologies of the synthesized graphene were analyzed using high-resolution scanning electron microscopy. Raman spectroscopy revealed single- and multilayer properties of GE-rGO. Atomic force microscopy images provided evidence for the formation of graphene. Furthermore, the effect of GO and GE-rGO was examined using a series of assays, such as cell viability, membrane integrity, and reactive oxygen species generation, which are key molecules involved in apoptosis. The results obtained from cell viability and lactate dehydrogenase assay suggest that GO and GE-rGO cause dose-dependent toxicity in the cells. Interestingly, it was found that biologically derived GE-rGO is more toxic to cancer cells than GO. Conclusion We describe a simple, green, nontoxic, and cost-effective approach to producing graphene using mushroom extract as a reducing and stabilizing agent. The proposed method could enable synthesis of graphene with potential biological and biomedical applications such as in cancer and angiogenic disorders. To our knowledge, this is the first report using mushroom extract as a reducing agent for the synthesis of graphene. Mushroom extract can be used as a biocatalyst for the production of graphene. PMID:24741313
Mettu, Srinivas; Ye, Qianyu; Zhou, Meifang; Dagastine, Raymond; Ashokkumar, Muthupandian
2018-04-25
Atomic Force Microscopy (AFM) is used to measure the stiffness and Young's modulus of individual microcapsules that have a chitosan cross-linked shell encapsulating tetradecane. The oil filled microcapsules were prepared using a one pot synthesis via ultrasonic emulsification of tetradecane and crosslinking of the chitosan shell in aqueous solutions of acetic acid. The concentration of acetic acid in aqueous solutions of chitosan was varied from 0.2% to 25% v/v. The effect of acetic acid concentration and size of the individual microcapsules on the strength was probed. The deformations and forces required to rupture the microcapsules were also measured. Three dimensional deformations of microcapsules under large applied loads were obtained by the combination of Laser Scanning Confocal Microscopy (LSCM) with Atomic Force Microscopy (AFM). The stiffness, and hence the modulus, of the microcapsules was found to decrease with an increase in size with the average stiffness ranging from 82 to 111 mN m-1 and average Young's modulus ranging from 0.4 to 6.5 MPa. The forces required to rupture the microcapsules varied from 150 to 250 nN with deformations of the microcapsules up to 62 to 110% relative to their radius, respectively. Three dimensional images obtained using laser scanning confocal microscopy showed that the microcapsules retained their structure and shape after being subjected to large deformations and subsequent removal of the loads. Based on the above observations, the oil filled chitosan crosslinked microcapsules are an ideal choice for use in the food and pharmaceutical industries as they would be able to withstand the process conditions encountered.
Orsini, Francesco; Santacroce, Massimo; Cremona, Andrea; Gosvami, Nitya N; Lascialfari, Alessandro; Hoogenboom, Bart W
2014-11-01
Atomic force microscopy (AFM) is a unique tool for imaging membrane proteins in near-native environment (embedded in a membrane and in buffer solution) at ~1 nm spatial resolution. It has been most successful on membrane proteins reconstituted in 2D crystals and on some specialized and densely packed native membranes. Here, we report on AFM imaging of purified plasma membranes from Xenopus laevis oocytes, a commonly used system for the heterologous expression of membrane proteins. Isoform M23 of human aquaporin 4 (AQP4-M23) was expressed in the X. laevis oocytes following their injection with AQP4-M23 cRNA. AQP4-M23 expression and incorporation in the plasma membrane were confirmed by the changes in oocyte volume in response to applied osmotic gradients. Oocyte plasma membranes were then purified by ultracentrifugation on a discontinuous sucrose gradient, and the presence of AQP4-M23 proteins in the purified membranes was established by Western blotting analysis. Compared with membranes without over-expressed AQP4-M23, the membranes from AQP4-M23 cRNA injected oocytes showed clusters of structures with lateral size of about 10 nm in the AFM topography images, with a tendency to a fourfold symmetry as may be expected for higher-order arrays of AQP4-M23. In addition, but only infrequently, AQP4-M23 tetramers could be resolved in 2D arrays on top of the plasma membrane, in good quantitative agreement with transmission electron microscopy analysis and the current model of AQP4. Our results show the potential and the difficulties of AFM studies on cloned membrane proteins in native eukaryotic membranes. Copyright © 2014 John Wiley & Sons, Ltd.
Fabrication of lateral lattice-polarity-inverted GaN heterostructure
NASA Astrophysics Data System (ADS)
Katayama, Ryuji; Kuge, Yoshihiro; Kondo, Takashi; Onabe, Kentaro
2007-04-01
Fabrication of the lateral polarity-inverted GaN heterostructure on sapphire (0 0 0 1) using a radio-frequency plasma enhanced molecular beam epitaxy is demonstrated. Its microscopic properties, which are closely related to the local polarity distribution, such as surface potentials, piezoelectric polarizations and residual carrier concentrations were investigated by Kelvin force microscopy and micro-Raman scattering. The successful inversion from Ga-polarity to N-polarity of GaN in a specific domain and its higher crystal perfection had been confirmed clearly by these microscopic analyses. The results were also fairly consistent with that of KOH etching experiments, which suggest the applicability of these processes to the fabrication of photonic nanostructures composed of nitride semiconductors.
Direct observation of local magnetic properties in strain engineered lanthanum cobaltate thin films
NASA Astrophysics Data System (ADS)
Park, S.; Wu, Weida; Freeland, J. W.; Ma, J. X.; Shi, J.
2009-03-01
Strain engineered thin film devices with emergent properties have significant impacts on both technical application and material science. We studied strain-induced modification of magnetic properties (Co spin state) in epitaxially grown lanthanum cobaltate (LaCoO3) thin films with a variable temperature magnetic force microscopy (VT-MFM). The real space observation confirms long range magnetic ordering on a tensile-strained film and non-magnetic low-spin configuration on a low-strained film at low temperature. Detailed study of local magnetic properties of these films under various external magnetic fields will be discussed. Our results also demonstrate that VT-MFM is a very sensitive tool to detect the nanoscale strain induced magnetic defects.
Dewetting of thin polymer films: an X-ray scattering study
NASA Astrophysics Data System (ADS)
Müller-Buschbaum, P.; Stamm, M.
1998-06-01
The surface morphology of different dewetting states of thin polymer films (polystyrene) on top of silicon substrates was investigated. With diffuse X-ray scattering in the region of total external reflection a high in-plane resolution was achieved. We observe a new nano-dewetting structure which coexists with the well known mesoscopic dewetting structures of holes, cellular pattern and drops. This nano-dewetting structure consists of small dimples with a diameter in the nanometer range. It results from the dewetting of a remaining ultra-thin polymer layer and can be explained with theoretical predictions of spinodal decomposition. The experimental results of the scattering study are confirmed with scanning-force microscopy measurements.
NASA Astrophysics Data System (ADS)
Vasudevan, R. K.; Bogle, K. A.; Kumar, A.; Jesse, S.; Magaraggia, R.; Stamps, R.; Ogale, S. B.; Potdar, H. S.; Nagarajan, V.
2011-12-01
Ferroelectric BiFeO3 (BFO) nanoparticles deposited on epitaxial substrates of SrRuO3 (SRO) and La1-xSrxMnO3 (LSMO) were studied using band excitation piezoresponse spectroscopy (BEPS), piezoresponse force microscopy (PFM), and ferromagnetic resonance (FMR). BEPS confirms that the nanoparticles are ferroelectric in nature. Switching behavior of nanoparticle clusters were studied and showed evidence for inhomogeneous switching. The dimensionality of domains within nanoparticles was found to be fractal in nature, with a dimensionality constant of ˜1.4, on par with ferroelectric BFO thin-films under 100 nm in thickness. Ferromagnetic resonance studies indicate BFO nanoparticles only weakly affect the magnetic response of LSMO.
Magnetic response of brickwork artificial spin ice
NASA Astrophysics Data System (ADS)
Park, Jungsik; Le, Brian L.; Sklenar, Joseph; Chern, Gia-Wei; Watts, Justin D.; Schiffer, Peter
2017-07-01
We have investigated the response of brickwork artificial spin ice to an applied in-plane magnetic field through magnetic force microscopy, magnetotransport measurements, and micromagnetic simulations. We find that, by sweeping an in-plane applied field from saturation to zero in a narrow range of angles near one of the principal axes of the lattice, the moments of the system fall into an antiferromagnetic ground state in both connected and disconnected structures. Magnetotransport measurements of the connected lattice exhibit unique signatures of this ground state. Also, modeling of the magnetotransport demonstrates that the signal arises at vertex regions in the structure, confirming behavior that was previously seen in transport studies of kagome artificial spin ice.
NASA Astrophysics Data System (ADS)
Saito, Jo; Akiyama, Tsuyoshi; Suzuki, Atsushi; Oku, Takeo
2017-01-01
Insoluble fullerene-diamine adduct thin-films consisting of C60 and 1,2-diaminoethane were easily fabricated on an electrode by an alternate immersion process. Formation of the C60-diamine adduct films were confirmed using transmission absorption spectroscopy and atomic force microscopy. An inverted-type organic solar cells were fabricated by using the C60-diamine adduct film as the electron transport layer. The resultant photoelectric conversation performance of the solar cells suggested that photocurrent is generated via the photoexcitation of polythiophene. The result suggests that the present insoluble fullerene-diamine adduct films worked as buffer layer for organic thin-film solar cells.
Q-controlled amplitude modulation atomic force microscopy in liquids: An analysis
NASA Astrophysics Data System (ADS)
Hölscher, H.; Schwarz, U. D.
2006-08-01
An analysis of amplitude modulation atomic force microscopy in liquids is presented with respect to the application of the Q-Control technique. The equation of motion is solved by numerical and analytic methods with and without Q-Control in the presence of a simple model interaction force adequate for many liquid environments. In addition, the authors give an explicit analytical formula for the tip-sample indentation showing that higher Q factors reduce the tip-sample force. It is found that Q-Control suppresses unwanted deformations of the sample surface, leading to the enhanced image quality reported in several experimental studies.
Yamazaki, Shiro; Maeda, Keisuke; Sugimoto, Yoshiaki; Abe, Masayuki; Zobač, Vladimír; Pou, Pablo; Rodrigo, Lucia; Mutombo, Pingo; Pérez, Ruben; Jelínek, Pavel; Morita, Seizo
2015-07-08
We assemble bistable silicon quantum dots consisting of four buckled atoms (Si4-QD) using atom manipulation. We demonstrate two competing atom switching mechanisms, downward switching induced by tunneling current of scanning tunneling microscopy (STM) and opposite upward switching induced by atomic force of atomic force microscopy (AFM). Simultaneous application of competing current and force allows us to tune switching direction continuously. Assembly of the few-atom Si-QDs and controlling their states using versatile combined AFM/STM will contribute to further miniaturization of nanodevices.
Surface diagnostics for scale analysis.
Dunn, S; Impey, S; Kimpton, C; Parsons, S A; Doyle, J; Jefferson, B
2004-01-01
Stainless steel, polymethylmethacrylate and polytetrafluoroethylene coupons were analysed for surface topographical and adhesion force characteristics using tapping mode atomic force microscopy and force-distance microscopy techniques. The two polymer materials were surface modified by polishing with silicon carbide papers of known grade. The struvite scaling rate was determined for each coupon and related to the data gained from the surface analysis. The scaling rate correlated well with adhesion force measurements indicating that lower energy materials scale at a lower rate. The techniques outlined in the paper provide a method for the rapid screening of materials in potential scaling applications.
Bacterial adhesion force quantification by fluidic force microscopy
NASA Astrophysics Data System (ADS)
Potthoff, Eva; Ossola, Dario; Zambelli, Tomaso; Vorholt, Julia A.
2015-02-01
Quantification of detachment forces between bacteria and substrates facilitates the understanding of the bacterial adhesion process that affects cell physiology and survival. Here, we present a method that allows for serial, single bacterial cell force spectroscopy by combining the force control of atomic force microscopy with microfluidics. Reversible bacterial cell immobilization under physiological conditions on the pyramidal tip of a microchanneled cantilever is achieved by underpressure. Using the fluidic force microscopy technology (FluidFM), we achieve immobilization forces greater than those of state-of-the-art cell-cantilever binding as demonstrated by the detachment of Escherichia coli from polydopamine with recorded forces between 4 and 8 nN for many cells. The contact time and setpoint dependence of the adhesion forces of E. coli and Streptococcus pyogenes, as well as the sequential detachment of bacteria out of a chain, are shown, revealing distinct force patterns in the detachment curves. This study demonstrates the potential of the FluidFM technology for quantitative bacterial adhesion measurements of cell-substrate and cell-cell interactions that are relevant in biofilms and infection biology.Quantification of detachment forces between bacteria and substrates facilitates the understanding of the bacterial adhesion process that affects cell physiology and survival. Here, we present a method that allows for serial, single bacterial cell force spectroscopy by combining the force control of atomic force microscopy with microfluidics. Reversible bacterial cell immobilization under physiological conditions on the pyramidal tip of a microchanneled cantilever is achieved by underpressure. Using the fluidic force microscopy technology (FluidFM), we achieve immobilization forces greater than those of state-of-the-art cell-cantilever binding as demonstrated by the detachment of Escherichia coli from polydopamine with recorded forces between 4 and 8 nN for many cells. The contact time and setpoint dependence of the adhesion forces of E. coli and Streptococcus pyogenes, as well as the sequential detachment of bacteria out of a chain, are shown, revealing distinct force patterns in the detachment curves. This study demonstrates the potential of the FluidFM technology for quantitative bacterial adhesion measurements of cell-substrate and cell-cell interactions that are relevant in biofilms and infection biology. Electronic supplementary information (ESI) available: Video S1. Detachment of a S. pyogenes cell chain from glass substrate. The cantilever is approached on the outermost adherent cell of a chain and four bacteria were then sequentially detached. The sequential cell detachment suddenly stopped after four bacteria. This possibly occurred because bacteria-glass interactions became too strong or the maximal probe retraction was reached. The cells spontaneously detached from the cantilever flipping back on the surface. Fig. S1. (A) Adhesion force-distance and (B) adhesion force-detaching work correlation of E.coli on PLL for setpoints of 1 and 10 nN. Circle: 1 nN setpoint, square: 10 nN. See DOI: 10.1039/c4nr06495j
Inverting dynamic force microscopy: From signals to time-resolved interaction forces
Stark, Martin; Stark, Robert W.; Heckl, Wolfgang M.; Guckenberger, Reinhard
2002-01-01
Transient forces between nanoscale objects on surfaces govern friction, viscous flow, and plastic deformation, occur during manipulation of matter, or mediate the local wetting behavior of thin films. To resolve transient forces on the (sub) microsecond time and nanometer length scale, dynamic atomic force microscopy (AFM) offers largely unexploited potential. Full spectral analysis of the AFM signal completes dynamic AFM. Inverting the signal formation process, we measure the time course of the force effective at the sensing tip. This approach yields rich insight into processes at the tip and dispenses with a priori assumptions about the interaction, as it relies solely on measured data. Force measurements on silicon under ambient conditions demonstrate the distinct signature of the interaction and reveal that peak forces exceeding 200 nN are applied to the sample in a typical imaging situation. These forces are 2 orders of magnitude higher than those in covalent bonds. PMID:12070341
Chemical bond imaging using higher eigenmodes of tuning fork sensors in atomic force microscopy
NASA Astrophysics Data System (ADS)
Ebeling, Daniel; Zhong, Qigang; Ahles, Sebastian; Chi, Lifeng; Wegner, Hermann A.; Schirmeisen, André
2017-05-01
We demonstrate the ability of resolving the chemical structure of single organic molecules using non-contact atomic force microscopy with higher normal eigenmodes of quartz tuning fork sensors. In order to achieve submolecular resolution, CO-functionalized tips at low temperatures are used. The tuning fork sensors are operated in ultrahigh vacuum in the frequency modulation mode by exciting either their first or second eigenmode. Despite the high effective spring constant of the second eigenmode (on the order of several tens of kN/m), the force sensitivity is sufficiently high to achieve atomic resolution above the organic molecules. This is observed for two different tuning fork sensors with different tip geometries (small tip vs. large tip). These results represent an important step towards resolving the chemical structure of single molecules with multifrequency atomic force microscopy techniques where two or more eigenmodes are driven simultaneously.
A review of demodulation techniques for amplitude-modulation atomic force microscopy
Harcombe, David M; Ragazzon, Michael R P; Moheimani, S O Reza; Fleming, Andrew J
2017-01-01
In this review paper, traditional and novel demodulation methods applicable to amplitude-modulation atomic force microscopy are implemented on a widely used digital processing system. As a crucial bandwidth-limiting component in the z-axis feedback loop of an atomic force microscope, the purpose of the demodulator is to obtain estimates of amplitude and phase of the cantilever deflection signal in the presence of sensor noise or additional distinct frequency components. Specifically for modern multifrequency techniques, where higher harmonic and/or higher eigenmode contributions are present in the oscillation signal, the fidelity of the estimates obtained from some demodulation techniques is not guaranteed. To enable a rigorous comparison, the performance metrics tracking bandwidth, implementation complexity and sensitivity to other frequency components are experimentally evaluated for each method. Finally, the significance of an adequate demodulator bandwidth is highlighted during high-speed tapping-mode atomic force microscopy experiments in constant-height mode. PMID:28900596
Modified Filamentous Bacteriophage as a Scaffold for Carbon Nanofiber.
Szot-Karpińska, Katarzyna; Golec, Piotr; Leśniewski, Adam; Pałys, Barbara; Marken, Frank; Niedziółka-Jönsson, Joanna; Węgrzyn, Grzegorz; Łoś, Marcin
2016-12-21
With the advent of nanotechnology, carbon nanomaterials such as carbon nanofibers (CNF) have aroused substantial interest in various research fields, including energy storage and sensing. Further improvement of their properties might be achieved via the application of viral particles such as bacteriophages. In this report, we present a filamentous M13 bacteriophage with a point mutation in gene VII (pVII-mutant-M13) that selectively binds to the carbon nanofibers to form 3D structures. The phage-display technique was utilized for the selection of the pVII-mutant-M13 phage from the phage display peptide library. The properties of this phage make it a prospective candidate for a scaffold material for CNFs. The results for binding of CNF by mutant phage were compared with those for maternal bacteriophage (pVII-M13). The efficiency of binding between pVII-mutant-M13 and CNF is about 2 orders of magnitude higher compared to that of the pVII-M13. Binding affinity between pVII-mutant-M13 and CNF was also characterized using atomic force microscopy, scanning electron microscopy, and transmission electron microscopy, which confirmed the specificity of the interaction of the phage pVII-mutant-M13 and the CNF; the binding occurs via the phage's ending, where the mutated pVII protein is located. No similar behavior has been observed for other carbon nanomaterials such as graphite, reduced graphene oxide, single-walled carbon nanotubes, and multiwalled carbon nanotubes. Infrared spectra confirmed differences in the interaction with CNF between the pVII-mutant-M13 and the pVII-M13. Basing on conducted research, we hypothesize that the interactions are noncovalent in nature, with π-π interactions playing the dominant role. Herein, the new bioconjugate material is introduced.
In Vitro Spoilation of Silicone-Hydrogel Soft Contact Lenses in a Model-Blink Cell.
Peng, Cheng-Chun; Fajardo, Neil P; Razunguzwa, Trust; Radke, Clayton J
2015-07-01
We developed an in vitro model-blink cell that reproduces the mechanism of in vivo fouling of soft contact lenses. In the model-blink cell, model tear lipid directly contacts the lens surface after forced aqueous rupture, mirroring the pre-lens tear-film breakup during interblink. Soft contact lenses are attached to a Teflon holder and immersed in artificial tear solution with protein, salts, and mucins. Artificial tear-lipid solution is spread over the air/tear interface as a duplex lipid layer. The aqueous tear film is periodically ruptured and reformed by withdrawing and reinjecting tear solution into the cell, mimicking the blink-rupture process. Fouled deposits appear on the lenses after cycling, and their compositions and spatial distributions are subsequently analyzed by optical microscopy, laser ablation electrospray ionization mass spectrometry, and two-photon fluorescence confocal scanning laser microscopy. Discrete deposit (white) spots with an average size of 20 to 300 μm are observed on the studied lenses, confirming what is seen in vivo and validating the in vitro model-blink cell. Targeted lipids (cholesterol) and proteins (albumin from bovine serum) are identified in the discrete surface deposits. Both lipid and protein occur simultaneously in the surface deposits and overlap with the white spots observed by optical microscopy. Additionally, lipid and protein penetrate into the bulk of tested silicone-hydrogel lenses, likely attributed to the bicontinuous microstructure of oleophilic silicone and hydrophilic polymer phases of the lens. In vitro spoilation of soft contact lenses is successfully achieved by the model-blink cell confirming the tear rupture/deposition mechanism of lens fouling. The model-blink cell provides a reliable laboratory tool for screening new antifouling lens materials, surface coatings, and care solutions.
Obrosov, Aleksei; Gulyaev, Roman; Zak, Andrzej; Ratzke, Markus; Naveed, Muhammad; Dudzinski, Wlodzimierz; Weiß, Sabine
2017-01-01
MAX phases (M = transition metal, A = A-group element, and X = C/N) are of special interest because they possess a unique combination of the advantages of both metals and ceramics. Most attention is attracted to the ternary carbide Cr2AlC because of its excellent high-temperature oxidation, as well as hot corrosion resistance. Despite lots of publications, up to now the influence of bias voltage on the chemical bonding structure, surface morphology, and mechanical properties of the film is still not well understood. In the current study, Cr-Al-C films were deposited on silicon wafers (100) and Inconel 718 super alloy by dc magnetron sputtering with different substrate bias voltages and investigated using Scanning Electron Microscopy (SEM), X-ray Photoelectron Spectroscopy (XPS), X-ray Diffraction (XRD), Atomic Force Microscopy (AFM), and nanoindentation. Transmission Electron Microscopy (TEM) was used to analyze the correlation between the growth of the films and the coating microstructure. The XPS results confirm the presence of Cr2AlC MAX phase due to a negative shift of 0.6–0.9 eV of the Al2p to pure aluminum carbide peak. The XRD results reveal the presence of Cr2AlC MAX Phase and carbide phases, as well as intermetallic AlCr2. The film thickness decreases from 8.95 to 6.98 µm with increasing bias voltage. The coatings deposited at 90 V exhibit the lowest roughness (33 nm) and granular size (76 nm) combined with the highest hardness (15.9 GPa). The ratio of Al carbide to carbide-like carbon state changes from 0.12 to 0.22 and correlates with the mechanical properties of the coatings. TEM confirms the columnar structure, with a nanocrystalline substructure, of the films. PMID:28772516
NASA Astrophysics Data System (ADS)
Kim, Seung Il; Lim, Jin Ik; Jung, Youngmee; Mun, Cho Hay; Kim, Ji Heung; Kim, Soo Hyun
2013-07-01
Hydrophobicity-enhanced poly(L-lactide-co-ɛ-caprolactone) (PLCL) (50:50) films were cast by using the solvent-nonsolvent casting method. PLCL (50:50) was synthesized by the well-known random copolymerization process and confirmed by 1H NMR analysis. The molecular weight of the synthesized PLCL was measured by gel permeation chromatography (GPC). Number-average (Mn), weight-average (Mw) molecular weights and polydispersity (Mw/Mn) were 7 × 104, 1.2 × 105, and 1.7, respectively. PLCL films were cast in vacuum condition with various nonsolvents and nonsolvent ratios. Tetrahydrofuran (THF) was used as the solvent and three different alcohols were used as the nonsolvent: methanol, ethanol, and isopropyl alcohol (IPA). Surface hydrophobicity was confirmed by water contact angle. The water contact angle was increased from 81° ± 2° to 107° ± 2°. Water contact angle was influenced by surface porosity and topography. The prepared film surfaces were characterized by scanning electron microscopy (SEM) and atomic force microscopy (AFM). The change of crystalline property was characterized by X-ray diffraction (XRD). Platelet adhesion tests on the modified PLCL film surfaces were evaluated by platelet-rich plasma (PRP). The modified film surface exhibited enhanced hydrophobicity and reduced platelet adhesion ratio depending on the surface topography. One of the candidate products proposed as a potential blood compatible material showed a markedly reduced platelet adhesion property.
Influence of HF acid catalyst concentration on properties of aerogel low-k thin films
NASA Astrophysics Data System (ADS)
Gaikwad, A. S.; Gupta, S. A.; Mahajan, A. M.
2016-08-01
The effect of hydrofluoric acid (HF) catalyst concentration in coating solution on chemical, physical and structural properties of silica aerogel thin films was investigated. The aerogel films were synthesized by using a sol-gel spin coating method followed by aging in ethanol and CO2 supercritical drying. The refractive index (RI) is observed to be reduced from 1.32 to 1.13 and porosity percentage increased from 30.21% to 71.64% in accordance with increasing HF concentration. Deposition of silica aerogel was confirmed from Fourier transform infrared spectroscopy measurement. The nanoporous nature of deposited films was confirmed from field effect scanning electron microscopy and observed pore diameter is in the range of 3.33 to 6.69 nm. The nanoporous nature of the film was also validated from atomic force microscopy and root mean square roughness was observed to be increased from 2.31 nm to 3.2 nm with increasing acid catalyst concentration in the coating solution. The calculated dielectric constant from CV measurement of fabricated metal-insulator-semiconductor structure for the silica aerogel formed at 0.8 ml HF concentration is observed to be 1.73. These deposited nanoporous silica aerogel low-k films with lower k value and smaller pore size have application as interlayer dielectric materials to minimize the disadvantages of porous materials.
Electrical conductivity measurements of bacterial nanowires from Pseudomonas aeruginosa
NASA Astrophysics Data System (ADS)
Maruthupandy, Muthusamy; Anand, Muthusamy; Maduraiveeran, Govindhan; Sait Hameedha Beevi, Akbar; Jeeva Priya, Radhakrishnan
2015-12-01
The extracellular appendages of bacteria (flagella) that transfer electrons to electrodes are called bacterial nanowires. This study focuses on the isolation and separation of nanowires that are attached via Pseudomonas aeruginosa bacterial culture. The size and roughness of separated nanowires were measured using transmission electron microscopy (TEM) and atomic force microscopy (AFM), respectively. The obtained bacterial nanowires indicated a clear image of bacterial nanowires measuring 16 nm in diameter. The formation of bacterial nanowires was confirmed by microscopic studies (AFM and TEM) and the conductivity nature of bacterial nanowire was investigated by electrochemical techniques. Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS), which are nondestructive voltammetry techniques, suggest that bacterial nanowires could be the source of electrons—which may be used in various applications, for example, microbial fuel cells, biosensors, organic solar cells, and bioelectronic devices. Routine analysis of electron transfer between bacterial nanowires and the electrode was performed, providing insight into the extracellular electron transfer (EET) to the electrode. CV revealed the catalytic electron transferability of bacterial nanowires and electrodes and showed excellent redox activities. CV and EIS studies showed that bacterial nanowires can charge the surface by producing and storing sufficient electrons, behave as a capacitor, and have features consistent with EET. Finally, electrochemical studies confirmed the development of bacterial nanowires with EET. This study suggests that bacterial nanowires can be used to fabricate biomolecular sensors and nanoelectronic devices.
Au nanoparticle monolayers covered with sol-gel oxide thin films: optical and morphological study.
Della Gaspera, Enrico; Karg, Matthias; Baldauf, Julia; Jasieniak, Jacek; Maggioni, Gianluigi; Martucci, Alessandro
2011-11-15
In this work, we provide a detailed study of the influence of thermal annealing on submonolayer Au nanoparticle deposited on functionalized surfaces as standalone films and those that are coated with sol-gel NiO and TiO(2) thin films. The systems are characterized through the use of UV-vis absorption, X-ray diffraction (XRD), atomic force microscopy (AFM), scanning electron microscopy (SEM), and spectroscopic ellipsometry. The surface plasmon resonance peak of the Au nanoparticles was found to red-shift and increase in intensity with increasing surface coverage, an observation that is directly correlated to the complex refractive index properties of Au nanoparticle layers. The standalone Au nanoparticles sinter at 200 °C, and a relationship between the optical properties and the annealing temperature is presented. When overcoated with sol-gel metal oxide films (NiO, TiO(2)), the optical properties of the Au nanoparticles are strongly affected by the metal oxide, resulting in an intense red shift and broadening of the plasmon band; moreover, the temperature-driven sintering is strongly limited by the metal oxide layer. Optical sensing tests for ethanol vapor are presented as one possible application, showing reversible sensing dynamics and confirming the effect of Au nanoparticles in increasing the sensitivity and in providing a wavelength dependent response, thus confirming the potential use of such materials as optical probes.
Deposition of Size-Selected Cu Nanoparticles by Inert Gas Condensation
2010-01-01
Nanometer size-selected Cu clusters in the size range of 1–5 nm have been produced by a plasma-gas-condensation-type cluster deposition apparatus, which combines a grow-discharge sputtering with an inert gas condensation technique. With this method, by controlling the experimental conditions, it was possible to produce nanoparticles with a strict control in size. The structure and size of Cu nanoparticles were determined by mass spectroscopy and confirmed by atomic force microscopy (AFM) and scanning electron transmission microscopy (STEM) measurements. In order to preserve the structural and morphological properties, the energy of cluster impact was controlled; the energy of acceleration of the nanoparticles was in near values at 0.1 ev/atom for being in soft landing regime. From SEM measurements developed in STEM-HAADF mode, we found that nanoparticles are near sized to those values fixed experimentally also confirmed by AFM observations. The results are relevant, since it demonstrates that proper optimization of operation conditions can lead to desired cluster sizes as well as desired cluster size distributions. It was also demonstrated the efficiency of the method to obtain size-selected Cu clusters films, as a random stacking of nanometer-size crystallites assembly. The deposition of size-selected metal clusters represents a novel method of preparing Cu nanostructures, with high potential in optical and catalytic applications. PMID:20652132
Quantum state atomic force microscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Passian, Ali; Siopsis, George
New classical modalities of atomic force microscopy continue to emerge to achieve higher spatial, spectral, and temporal resolution for nanometrology of materials. Here, we introduce the concept of a quantum mechanical modality that capitalizes on squeezed states of probe displacement. We show that such squeezing is enabled nanomechanically when the probe enters the van der Waals regime of interaction with a sample. The effect is studied in the non-contact mode, where we consider the parameter domains characterizing the attractive regime of the probe-sample interaction force.
Quantum state atomic force microscopy
Passian, Ali; Siopsis, George
2017-04-10
New classical modalities of atomic force microscopy continue to emerge to achieve higher spatial, spectral, and temporal resolution for nanometrology of materials. Here, we introduce the concept of a quantum mechanical modality that capitalizes on squeezed states of probe displacement. We show that such squeezing is enabled nanomechanically when the probe enters the van der Waals regime of interaction with a sample. The effect is studied in the non-contact mode, where we consider the parameter domains characterizing the attractive regime of the probe-sample interaction force.
ERIC Educational Resources Information Center
Gokalp, Sumeyra; Horton, William; Jónsdóttir-Lewis, Elfa B.; Foster, Michelle; Török, Marianna
2018-01-01
To facilitate learning advanced instrumental techniques, essential tools for visualizing biomaterials, a simple and versatile laboratory exercise demonstrating the use of Atomic Force Microscopy (AFM) in biomedical applications was developed. In this experiment, the morphology of heat-denatured and amyloid-type aggregates formed from a low-cost…
USDA-ARS?s Scientific Manuscript database
The specific interactions between ricin and anti-ricin aptamer were measured with atomic force microscopy (AFM) and surface plasmon resonance (SPR) spectrometry and the results were compared. In AFM, a single-molecule experiment with ricin functionalized AFM tip was used for scanning the aptamer mol...
Atomic force microscopy of torus-bearing pit membranes
Roland R. Dute; Thomas Elder
2011-01-01
Atomic force microscopy was used to compare the structures of dried, torus-bearing pit membranes from four woody species, three angiosperms and one gymnosperm. Tori of Osmanthus armatus are bipartite consisting of a pustular zone overlying parallel sets of microfibrils that form a peripheral corona. Microfibrils of the corona form radial spokes as they traverse the...
Convergent Inquiry in Science & Engineering: The Use of Atomic Force Microscopy in a Biology Class
ERIC Educational Resources Information Center
Lee, Il-Sun; Byeon, Jung-Ho; Kwon, Yong-Ju
2013-01-01
The purpose of this study was to design a teaching method suitable for science high school students using atomic force microscopy. During their scientific inquiry procedure, high school students observed a micro-nanostructure of a biological sample, which is unobservable via an optical microscope. The developed teaching method enhanced students'…
USDA-ARS?s Scientific Manuscript database
Atomic force microscopy (AFM), Raman spectroscopy and X-ray photoelectron spectroscopy (XPS) are used to investigate vitreous (hard) and non-vitreous (soft) wheat kernels and their corresponding wheat flours. AFM data reveal two different microstructures. The vitreous kernel reveals a granular text...
NASA Technical Reports Server (NTRS)
Hersam, Mark C. (Inventor); Pingree, Liam S. C. (Inventor)
2008-01-01
A conductive atomic force microscopy (cAFM) technique which can concurrently monitor topography, charge transport, and electroluminescence with nanometer spatial resolution. This cAFM approach is particularly well suited for probing the electroluminescent response characteristics of operating organic light-emitting diodes (OLEDs) over short length scales.
Intermolecular artifacts in probe microscope images of C60 assemblies
NASA Astrophysics Data System (ADS)
Jarvis, Samuel Paul; Rashid, Mohammad Abdur; Sweetman, Adam; Leaf, Jeremy; Taylor, Simon; Moriarty, Philip; Dunn, Janette
2015-12-01
Claims that dynamic force microscopy has the capability to resolve intermolecular bonds in real space continue to be vigorously debated. To date, studies have been restricted to planar molecular assemblies with small separations between neighboring molecules. Here we report the observation of intermolecular artifacts over much larger distances in 2D assemblies of C60 molecules, with compelling evidence that in our case the tip apex is terminated by a C60 molecule (rather than the CO termination typically exploited in ultrahigh resolution force microscopy). The complete absence of directional interactions such as hydrogen or halogen bonding, the nonplanar structure of C60, and the fullerene termination of the tip apex in our case highlight that intermolecular artifacts are ubiquitous in dynamic force microscopy.
Image contrast mechanisms in dynamic friction force microscopy: Antimony particles on graphite
NASA Astrophysics Data System (ADS)
Mertens, Felix; Göddenhenrich, Thomas; Dietzel, Dirk; Schirmeisen, Andre
2017-01-01
Dynamic Friction Force Microscopy (DFFM) is a technique based on Atomic Force Microscopy (AFM) where resonance oscillations of the cantilever are excited by lateral actuation of the sample. During this process, the AFM tip in contact with the sample undergoes a complex movement which consists of alternating periods of sticking and sliding. Therefore, DFFM can give access to dynamic transition effects in friction that are not accessible by alternative techniques. Using antimony nanoparticles on graphite as a model system, we analyzed how combined influences of friction and topography can effect different experimental configurations of DFFM. Based on the experimental results, for example, contrast inversion between fractional resonance and band excitation imaging strategies to extract reliable tribological information from DFFM images are devised.
NASA Astrophysics Data System (ADS)
MacDonald, Gordon A.; DelRio, Frank W.; Killgore, Jason P.
2018-03-01
Piezoresponse force microscopy (PFM) and related bias-induced strain sensing atomic force microscopy techniques provide unique characterization of material-functionality at the nanoscale. However, these techniques are prone to unwanted artifact signals that influence the vibration amplitude of the detecting cantilever. Here, we show that higher-order contact resonance eigenmodes can be readily excited in PFM. The benefits of using the higher-order eigenmodes include absolute sensitivity enhancement, electrostatic artifact reduction, and lateral versus normal strain decoupling. This approach can significantly increase the proportion of total signal arising from desired strain (as opposed to non-strain artifacts) in measurements with cantilevers exhibiting typical, few N m‑1 spring constants to cantilevers up to 1000× softer than typically used.
Combining single-molecule manipulation and single-molecule detection.
Cordova, Juan Carlos; Das, Dibyendu Kumar; Manning, Harris W; Lang, Matthew J
2014-10-01
Single molecule force manipulation combined with fluorescence techniques offers much promise in revealing mechanistic details of biomolecular machinery. Here, we review force-fluorescence microscopy, which combines the best features of manipulation and detection techniques. Three of the mainstay manipulation methods (optical traps, magnetic traps and atomic force microscopy) are discussed with respect to milestones in combination developments, in addition to highlight recent contributions to the field. An overview of additional strategies is discussed, including fluorescence based force sensors for force measurement in vivo. Armed with recent exciting demonstrations of this technology, the field of combined single-molecule manipulation and single-molecule detection is poised to provide unprecedented views of molecular machinery. Copyright © 2014 Elsevier Ltd. All rights reserved.
Concept for room temperature single-spin tunneling force microscopy with atomic spatial resolution
NASA Astrophysics Data System (ADS)
Payne, Adam
A study of a force detected single-spin magnetic resonance measurement concept with atomic spatial resolution is presented. The method is based upon electrostatic force detection of spin-selection rule controlled single electron tunneling between two electrically isolated paramagnetic states. Single-spin magnetic resonance detection is possible by measuring the force detected tunneling charge noise on and off spin resonance. Simulation results of this charge noise, based upon physical models of the tunneling and spin physics, are directly compared to measured atomic force microscopy (AFM) system noise. The results show that the approach could provide single-spin measurement of electrically isolated defect states with atomic spatial resolution at room temperature.
NASA Astrophysics Data System (ADS)
Payne, A.; Ambal, K.; Boehme, C.; Williams, C. C.
2015-05-01
A study of a force detected single-spin magnetic resonance measurement concept with atomic spatial resolution is presented. The method is based upon electrostatic force detection of spin-selection rule controlled single-electron tunneling between two electrically isolated paramagnetic states. Single-spin magnetic resonance detection is possible by measuring the force detected tunneling charge noise on and off spin resonance. Simulation results of this charge noise, based upon physical models of the tunneling and spin physics, are directly compared to measured atomic force microscopy system noise. The results show that the approach could provide single-spin measurement of electrically isolated qubit states with atomic spatial resolution at room temperature.
Liu, Yanxia; Deng, Yuanxin; Luo, Shuxiu; Deng, Yu; Guo, Linming; Xu, Weiwei; Liu, Lei; Liu, Junkang
2014-01-01
This study aimed to observe the multicellular spinning behavior of Proteus mirabilis by atomic force microscopy (AFM) and multifunctional microscopy in order to understand the mechanism underlying this spinning movement and its biological significance. Multifunctional microscopy with charge-coupled device (CCD) and real-time AFM showed changes in cell structure and shape of P. mirabilis during multicellular spinning movement. Specifically, the morphological characteristics of P. mirabilis, multicellular spinning dynamics, and unique movement were observed. Our findings indicate that the multicellular spinning behavior of P. mirabilis may be used to collect nutrients, perform colonization, and squeeze out competitors. The movement characteristics of P. mirabilis are vital to the organism's biological adaptability to the surrounding environment. Copyright © 2013 Elsevier Ltd. All rights reserved.
Rosenberger, Matthew R; Chen, Sihan; Prater, Craig B; King, William P
2017-01-27
This paper reports the design, fabrication, and characterization of micromechanical devices that can present an engineered contact stiffness to an atomic force microscope (AFM) cantilever tip. These devices allow the contact stiffness between the AFM tip and a substrate to be easily and accurately measured, and can be used to calibrate the cantilever for subsequent mechanical property measurements. The contact stiffness devices are rigid copper disks of diameters 2-18 μm integrated onto a soft silicone substrate. Analytical modeling and finite element simulations predict the elastic response of the devices. Measurements of tip-sample interactions during quasi-static force measurements compare well with modeling simulation, confirming the expected elastic response of the devices, which are shown to have contact stiffness 32-156 N m -1 . To demonstrate one application, we use the disk sample to calibrate three resonant modes of a U-shaped AFM cantilever actuated via Lorentz force, at approximately 220, 450, and 1200 kHz. We then use the calibrated cantilever to determine the contact stiffness and elastic modulus of three polymer samples at these modes. The overall approach allows cantilever calibration without prior knowledge of the cantilever geometry or its resonance modes, and could be broadly applied to both static and dynamic measurements that require AFM calibration against a known contact stiffness.
NASA Astrophysics Data System (ADS)
Rosenberger, Matthew R.; Chen, Sihan; Prater, Craig B.; King, William P.
2017-01-01
This paper reports the design, fabrication, and characterization of micromechanical devices that can present an engineered contact stiffness to an atomic force microscope (AFM) cantilever tip. These devices allow the contact stiffness between the AFM tip and a substrate to be easily and accurately measured, and can be used to calibrate the cantilever for subsequent mechanical property measurements. The contact stiffness devices are rigid copper disks of diameters 2-18 μm integrated onto a soft silicone substrate. Analytical modeling and finite element simulations predict the elastic response of the devices. Measurements of tip-sample interactions during quasi-static force measurements compare well with modeling simulation, confirming the expected elastic response of the devices, which are shown to have contact stiffness 32-156 N m-1. To demonstrate one application, we use the disk sample to calibrate three resonant modes of a U-shaped AFM cantilever actuated via Lorentz force, at approximately 220, 450, and 1200 kHz. We then use the calibrated cantilever to determine the contact stiffness and elastic modulus of three polymer samples at these modes. The overall approach allows cantilever calibration without prior knowledge of the cantilever geometry or its resonance modes, and could be broadly applied to both static and dynamic measurements that require AFM calibration against a known contact stiffness.
Detection of metal residues on bone using SEM-EDS. Part I: Blunt force injury.
Pechníková, Markéta; Porta, Davide; Mazzarelli, Debora; Rizzi, Agostino; Drozdová, Eva; Gibelli, Daniele; Cattaneo, Cristina
2012-11-30
Previous studies have indicated that metal particles remain on bone after sharp force injury or gunshot and that their detection by scanning electron microscopy with energy dispersive X-ray spectrometry (SEM-EDS) could greatly help in tool identification. However, the presence of metal particles on bone surfaces in the context of blunt force trauma has never been assessed experimentally. For this reason the present paper represents an experimental study of the behaviour of metal residues on bone following blunt force injury. Ten fresh sub-adult bovine metatarsal bones were manually cleaned of soft tissues. They were then struck by metal bars (copper, iron or aluminium) on the external surface of the mid-diaphysis. All blunt metal instruments used in this study left a sign in the form of single particles, a smear or a powder-like deposit on the bone surface. The residues of all three metal implements were detected on the bone surface, 0.3-10 mm from the fracture border. The presence of metal particles was confirmed in all samples struck with iron and copper and in two of six aluminium samples; no particles were detected on the negative control. Chemical composition of residues highly corresponded with the composition of applied bars. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Application of atomic force microscopy to the study of natural and model soil particles.
Cheng, S; Bryant, R; Doerr, S H; Rhodri Williams, P; Wright, C J
2008-09-01
The structure and surface chemistry of soil particles has extensive impact on many bulk scale properties and processes of soil systems and consequently the environments that they support. There are a number of physiochemical mechanisms that operate at the nanoscale which affect the soil's capability to maintain native vegetation and crops; this includes soil hydrophobicity and the soil's capacity to hold water and nutrients. The present study used atomic force microscopy in a novel approach to provide unique insight into the nanoscale properties of natural soil particles that control the physiochemical interaction of material within the soil column. There have been few atomic force microscopy studies of soil, perhaps a reflection of the heterogeneous nature of the system. The present study adopted an imaging and force measurement research strategy that accounted for the heterogeneity and used model systems to aid interpretation. The surface roughness of natural soil particles increased with depth in the soil column a consequence of the attachment of organic material within the crevices of the soil particles. The roughness root mean square calculated from ten 25 microm(2) images for five different soil particles from a Netherlands soil was 53.0 nm, 68.0 nm, 92.2 nm and 106.4 nm for the respective soil depths of 0-10 cm, 10-20 cm, 20-30 cm and 30-40 cm. A novel analysis method of atomic force microscopy phase images based on phase angle distribution across a surface was used to interpret the nanoscale distribution of organic material attached to natural and model soil particles. Phase angle distributions obtained from phase images of model surfaces were found to be bimodal, indicating multiple layers of material, which changed with the concentration of adsorbed humic acid. Phase angle distributions obtained from phase images of natural soil particles indicated a trend of decreasing surface coverage with increasing depth in the soil column. This was consistent with previous macroscopic determination of the proportions of organic material chemically extracted from bulk samples of the soils from which specimen particles were drawn. Interaction forces were measured between atomic force microscopy cantilever tips (Si(3)N(4)) and natural soil and model surfaces. Adhesion forces at humic acid free specimen surfaces (Av. 20.0 nN), which are primarily hydrophilic and whose interactions are subject to a significant contribution from the capillary forces, were found to be larger than those of specimen surfaces with adsorbed humic acid (Av. 6.5 nN). This suggests that adsorbed humic acid increased surface hydrophobicity. The magnitude and distribution of adhesion forces between atomic force microscopy tips and the natural particle surfaces was affected by both local surface roughness and the presence of adsorbed organic material. The present study has correlated nanoscale measurements with established macroscale methods of soil study. Thus, the research demonstrates that atomic force microscopy is an important addition to soil science that permits a multiscale analysis of the multifactorial phenomena of soil hydrophobicity and wetting.
Angeloni, Livia; Reggente, Melania; Passeri, Daniele; Natali, Marco; Rossi, Marco
2018-04-17
Identification of nanoparticles and nanosystems into cells and biological matrices is a hot research topic in nanobiotechnologies. Because of their capability to map physical properties (mechanical, electric, magnetic, chemical, or optical), several scanning probe microscopy based techniques have been proposed for the subsurface detection of nanomaterials in biological systems. In particular, atomic force microscopy (AFM) can be used to reveal stiff nanoparticles in cells and other soft biomaterials by probing the sample mechanical properties through the acquisition of local indentation curves or through the combination of ultrasound-based methods, like contact resonance AFM (CR-AFM) or scanning near field ultrasound holography. Magnetic force microscopy can detect magnetic nanoparticles and other magnetic (bio)materials in nonmagnetic biological samples, while electric force microscopy, conductive AFM, and Kelvin probe force microscopy can reveal buried nanomaterials on the basis of the differences between their electric properties and those of the surrounding matrices. Finally, scanning near field optical microscopy and tip-enhanced Raman spectroscopy can visualize buried nanostructures on the basis of their optical and chemical properties. Despite at a still early stage, these methods are promising for detection of nanomaterials in biological systems as they could be truly noninvasive, would not require destructive and time-consuming specific sample preparation, could be performed in vitro, on alive samples and in water or physiological environment, and by continuously imaging the same sample could be used to dynamically monitor the diffusion paths and interaction mechanisms of nanomaterials into cells and biological systems. This article is categorized under: Diagnostic Tools > In Vivo Nanodiagnostics and Imaging Nanotechnology Approaches to Biology > Nanoscale Systems in Biology. © 2018 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Yamasue, Kohei; Cho, Yasuo
2018-06-01
We demonstrate that scanning nonlinear dielectric microscopy (SNDM) can be used for the nanoscale characterization of dominant carrier distribution on atomically thin MoS2 mechanically exfoliated on SiO2. For stable imaging without damaging microscopy tips and samples, SNDM was combined with peak-force tapping mode atomic force microscopy. The identification of dominant carriers and their spatial distribution becomes possible even for single and few-layer MoS2 on SiO2 using the proposed method allowing differential capacitance (dC/dV) imaging. We can expect that SNDM can also be applied to the evaluation of other two-dimensional semiconductors and devices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takahashi, Ryosuke; Okajima, Takaharu, E-mail: okajima@ist.hokudai.ac.jp
We present multi-frequency force modulation atomic force microscopy (AFM) for mapping the complex shear modulus G* of living cells as a function of frequency over the range of 50–500 Hz in the same measurement time as the single-frequency force modulation measurement. The AFM technique enables us to reconstruct image maps of rheological parameters, which exhibit a frequency-dependent power-law behavior with respect to G{sup *}. These quantitative rheological measurements reveal a large spatial variation in G* in this frequency range for single cells. Moreover, we find that the reconstructed images of the power-law rheological parameters are much different from those obtained inmore » force-curve or single-frequency force modulation measurements. This indicates that the former provide information about intracellular mechanical structures of the cells that are usually not resolved with the conventional force measurement methods.« less
Force microscopy of layering and friction in an ionic liquid
NASA Astrophysics Data System (ADS)
Hoth, Judith; Hausen, Florian; Müser, Martin H.; Bennewitz, Roland
2014-07-01
The mechanical properties of the ionic liquid 1-butyl-1-methylpyrrolidinium tris(pentafluoroethyl) trifluorophosphate ([Py1,4][FAP]) in confinement between a SiOx and a Au(1 1 1) surface are investigated by means of atomic force microscopy (AFM) under electrochemical control. Up to 12 layers of ion pairs can be detected through force measurements while approaching the tip of the AFM to the surface. The particular shape of the force versus distance curve is explained by a model for the interaction between tip, gold surface and ionic liquid, which assumes an exponentially decaying oscillatory force originating from bulk liquid density correlations. Jumps in the tip-sample distance upon approach correspond to jumps of the compliant force sensor between branches of the oscillatory force curve. Frictional force between the laterally moving tip and the surface is detected only after partial penetration of the last double layer between tip and surface.
Single functional group interactions with individual carbon nanotubes
NASA Astrophysics Data System (ADS)
Friddle, Raymond W.; Lemieux, Melburne C.; Cicero, Giancarlo; Artyukhin, Alexander B.; Tsukruk, Vladimir V.; Grossman, Jeffrey C.; Galli, Giulia; Noy, Aleksandr
2007-11-01
Carbon nanotubes display a consummate blend of materials properties that affect applications ranging from nanoelectronic circuits and biosensors to field emitters and membranes. These applications use the non-covalent interactions between the nanotubes and chemical functionalities, often involving a few molecules at a time. Despite their wide use, we still lack a fundamental understanding and molecular-level control of these interactions. We have used chemical force microscopy to measure the strength of the interactions of single chemical functional groups with the sidewalls of vapour-grown individual single-walled carbon nanotubes. Surprisingly, the interaction strength does not follow conventional trends of increasing polarity or hydrophobicity, and instead reflects the complex electronic interactions between the nanotube and the functional group. Ab initio calculations confirm the observed trends and predict binding force distributions for a single molecular contact that match the experimental results. Our analysis also reveals the important role of molecular linkage dynamics in determining interaction strength at the single functional group level.
Elasto-capillarity in insect fibrillar adhesion.
Gernay, Sophie; Federle, Walter; Lambert, Pierre; Gilet, Tristan
2016-08-01
The manipulation of microscopic objects is challenging because of high adhesion forces, which render macroscopic gripping strategies unsuitable. Adhesive footpads of climbing insects could reveal principles relevant for micro-grippers, as they are able to attach and detach rapidly during locomotion. However, the underlying mechanisms are still not fully understood. In this work, we characterize the geometry and contact formation of the adhesive setae of dock beetles (Gastrophysa viridula) by interference reflection microscopy. We compare our experimental results to the model of an elastic beam loaded with capillary forces. Fitting the model to experimental data yielded not only estimates for seta adhesion and compliance in agreement with previous direct measurements, but also previously unknown parameters such as the volume of the fluid meniscus and the bending stiffness of the tip. In addition to confirming the primary role of surface tension for insect adhesion, our investigation reveals marked differences in geometry and compliance between the three main kinds of seta tips in leaf beetles. © 2016 The Author(s).
NASA Astrophysics Data System (ADS)
Arai, Toyoko; Inamura, Ryo; Kura, Daiki; Tomitori, Masahiko
2018-03-01
The kinetic energy of the oscillating cantilever of noncontact atomic force microscopy (nc-AFM) at room temperature was considerably dissipated over regions between a Si adatom and its neighboring rest atom for Si(111 )-(7 ×7 ) in close proximity to a Si tip on the cantilever. However, nc-AFM topographic images showed no atomic features over those regions, which were the hollow sites of the (7 ×7 ). This energy dissipation likely originated from displacement of Si adatoms with respect to the tip over the hollow sites, leading to a lateral shift of the adatoms toward the rest atom. This interaction led to hysteresis over each cantilever oscillation cycle; when the tip was retracted, the Si adatom likely returned to its original position. To confirm the atomic processes involved in the force interactions through Si dangling bonds, the Si(111 )-(7 ×7 ) surface was partly terminated with atomic hydrogen (H) and examined by nc-AFM. When the Si adatoms and/or the rest atoms were terminated with H, the hollow sites were not bright (less dissipation) in images of the energy dissipation channels by nc-AFM. The hollow sites acted as metastable sites for Si adatoms in surface diffusion and atom manipulation; thus, the dissipation energy which is saturated on the tip likely corresponds to the difference in the potential energy between the hollow site and the Si adatom site. In this study, we demonstrated the ability of dissipation channels of nc-AFM to enable visualization of the dynamics of atoms and molecules on surfaces, which cannot be revealed by nc-AFM topographic images alone.
di Felice, D; Dappe, Y J; González, C
2018-06-01
A theoretical study of a graphene-like tip used in atomic force microscopy (AFM) is presented. Based on first principles simulations, we proved the low reactivity of this kind of tip, using a MoS 2 monolayer as the testing sample. Our simulations show that the tip-MoS 2 interaction is mediated through weak van der Waals forces. Even on the defective monolayer, the interaction is reduced by one order of magnitude with respect to the values obtained using a highly reactive metallic tip. On the pristine monolayer, the S atoms were imaged for large distances together with the substitutional defects which should be observed as brighter spots in non-contact AFM measurements. This result is in contradiction with previous simulations performed with Cu or Si tips where the metallic defects were imaged for much larger distances than the S atoms. For shorter distances, the Mo sites will be brighter even though a vacancy is formed. On the other hand, the largest conductance value is obtained over the defect formed by two Mo atoms occupying a S divacancy when the half-occupied p y -states of the graphene-like tip find a better coupling with d-orbitals of the highest substitutional atom. Due to the weak interaction, no conductance plateau is formed in any of the sites. A great advantage of this tip lies in the absence of atomic transfer between the tip and the sample leading to a more stable AFM measurement. Finally, and as previously shown, we confirm the atomic resolution in a scanning tunneling microscopy simulation using this graphene-based tip.
NASA Astrophysics Data System (ADS)
di Felice, D.; Dappe, Y. J.; González, C.
2018-06-01
A theoretical study of a graphene-like tip used in atomic force microscopy (AFM) is presented. Based on first principles simulations, we proved the low reactivity of this kind of tip, using a MoS2 monolayer as the testing sample. Our simulations show that the tip–MoS2 interaction is mediated through weak van der Waals forces. Even on the defective monolayer, the interaction is reduced by one order of magnitude with respect to the values obtained using a highly reactive metallic tip. On the pristine monolayer, the S atoms were imaged for large distances together with the substitutional defects which should be observed as brighter spots in non-contact AFM measurements. This result is in contradiction with previous simulations performed with Cu or Si tips where the metallic defects were imaged for much larger distances than the S atoms. For shorter distances, the Mo sites will be brighter even though a vacancy is formed. On the other hand, the largest conductance value is obtained over the defect formed by two Mo atoms occupying a S divacancy when the half-occupied p y -states of the graphene-like tip find a better coupling with d-orbitals of the highest substitutional atom. Due to the weak interaction, no conductance plateau is formed in any of the sites. A great advantage of this tip lies in the absence of atomic transfer between the tip and the sample leading to a more stable AFM measurement. Finally, and as previously shown, we confirm the atomic resolution in a scanning tunneling microscopy simulation using this graphene-based tip.
Maali, Abdelhamid; Wang, Yuliang; Bhushan, Bharat
2009-10-20
In this study we present measurements of the hydrodynamic force exerted on a glass sphere glued to an atomic force microscopy (AFM) cantilever approaching a mica surface in water. A large sphere was used to reduce the impact of the cantilever beam on the measurement. An AFM cantilever with large stiffness was used to accurately determine the actual contact position between the sphere and the sample surface. The measured hydrodynamic force with different approach velocities is in good agreement with the Taylor force calculated in the lubrication theory with the no-slip boundary conditions, which verifies that there is no boundary slip on the glass and mica surfaces. Moreover, a detailed procedure of how to subtract the electrostatic double-layer force is presented.
NASA Astrophysics Data System (ADS)
Yao, Bingjian; Zhu, Qingzeng; Yao, Linli; Hao, Jingcheng
2015-03-01
A series of poly(ethylene glycol)-block-poly(lactic acid) (PEG-PLA) copolymers with a hydrophobic PLA block of different molecular weights and a fixed length hydrophilic PEG were synthesized successfully and characterized. These amphiphilic block copolymers were used to fabricate honeycomb-structured porous films using the breath figure (BF) templating technique. The surface topology and composition of the highly ordered pattern film were further characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS) and fluorescence microscopy. The results indicated that the PEG-to-PLA block molecular weight ratio influenced the BF film surface topology. The film with the best ordered pores was obtained with a PEG-to-PLA ratio of 2.0 × 103:3.0 × 104. The self-organization of the hydrophilic PEG chains within the pores was confirmed by XPS and fluorescence labeled PEG. A model is proposed to elucidate the stabilization process of the amphiphilic PEG-PLA aggregated architecture on the water droplet-based templates. In addition, GFP-U87 cell viability has been investigated by MTS test and the cell morphology on the honeycomb-structured PEG-PLA porous film has been evaluated using phase-contrast microscope. This porous film is shown to be suitable as a matrix for cell growth.
NASA Astrophysics Data System (ADS)
Tessarolo, Francesco; Ferrari, Paolo; Silvia, Bortoluzzi; Motta, Antonella; Migliaresi, Claudio; Zennaro, Lucio; Rigo, Adelio; Guarrera, Giovanni Maria; Nollo, Giandomenico
2004-11-01
The increasing demand in interventional cardiology urges for reprocessing of single-use-labelled medical devices. To fulfil this aim, accurate and validated regeneration protocols are mandatory to guarantee sterility, functionality and safeness. The reprocessing protocol was realized by decontamination with chloro-donors, cleaning with enzymatic solutions and hydrogen peroxide gas plasma sterilization. Reprocessing effects on ablation and electrophysiology catheters were evaluated by assessing physical-chemical changes on surfaces and bulks, as a function of the reprocessing cycles number. Conventional optical microscopy and environmental scanning electron microscopy (ESEM) underlined the presence of micro-scratches on the polyurethane shaft surface. A clear correlation was found between surface damages and number of reprocessing cycles. Atomic force microscopy (AFM) confirmed the occurrence of physical-chemical etching of the polyurethane shaft caused by the hydrogen peroxide plasma sterilization, with increasing of nano-roughness at increasing number of the reprocessing cycles. UV-Vis spectra performed on the incubation solution of polymeric shaft sample, showed an absorbance increase at about 208 nm. This fact could be attributed to the water elution from the polymer of low molecular weight oligomers. The presence of hydrolysis products of the polymeric shaft after incubation demands both the characterization of the products released in the solution and the chemical characterization of the water exposed surface.
Desmet, Tim; Billiet, T; Berneel, Elke; Cornelissen, Ria; Schaubroeck, David; Schacht, Etienne; Dubruel, Peter
2010-12-08
In the last decade, substantial research in the field of post-plasma grafting surface modification has focussed on the introduction of carboxylic acids on surfaces by grafting acrylic acid (AAc). In the present work, we report on an alternative approach for biomaterial surface functionalisation. Thin poly-ε-caprolactone (PCL) films were subjected to a dielectric barrier discharge Ar-plasma followed by the grafting of 2-aminoethyl methacrylate (AEMA) under UV-irradiation. X-ray photoelectron spectroscopy (XPS) confirmed the presence of nitrogen. The ninhydrin assay demonstrated, both quantitatively and qualitatively, the presence of free amines on the surface. Confocal fluorescence microscopy (CFM), atomic force microscopy (AFM) and scanning electron microscopy (SEM) were used to visualise the grafted surfaces, indicating the presence of pAEMA. Static contact angle (SCA) measurements indicated a permanent increase in hydrophilicity. Furthermore, the AEMA grafted surfaces were applied for comparing the physisorption and covalent immobilisation of gelatin. CFM demonstrated that only the covalent immobilisation lead to a complete coverage of the surface. Those gelatin-coated surfaces obtained were further coated using fibronectin. Osteosarcoma cells demonstrated better cell-adhesion and cell-viability on the modified surfaces, compared to the pure PCL films. Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Ding, Jiheng; Rahman, Obaid ur; Peng, Wanjun; Dou, Huimin; Yu, Haibin
2018-01-01
Herein, we report the synthesis of a novel hydroxyl epoxy phosphate monomer (PGHEP) as an efficient dispersant for graphene to enhance the compatibility of the graphene in epoxy resin. Raman spectroscopy, Ultraviolet-visible spectroscopy (UV-vis) and X-ray photoelectron spectroscopy (XPS) studies were confirmed the π-π interactions between PGHEP and graphene. Well-dispersed states of PGHEP functionalized graphene (G) sheets in water were analyzed by transmission electron microscopy (TEM), atomic force microscopy (AFM) and scanning electron microscopy (SEM). Further, microstructure of prepared G/waterborne epoxy coatings containing 0.5-1.0 wt.% of PGHEP functionalized G sheets were also observed with the help of SEM and TEM. The PGHEP functionalized G sheets dispersed composite coatings displayed enhanced corrosion resistance compared with pure epoxy resin, these coatings have higher contact angle, lower water absorption as evident from the results of electrochemical impedance spectroscopy (EIS) and salt spray tests. The superior corrosion protection performances of G/epoxy coatings were mainly attributed to the formed passive film from uniformly dispersed PGHEP functionalized G sheets which act as physical barrier on the steel surface. Therefore, this work provides a novel bio-based efficient dispersant for G sheets and an important method for preparing G/waterborne epoxy coatings with superior corrosion resistance properties.
Synthesis of graphene oxide and reduced graphene oxide by needle platy natural vein graphite
NASA Astrophysics Data System (ADS)
Rathnayake, R. M. N. M.; Wijayasinghe, H. W. M. A. C.; Pitawala, H. M. T. G. A.; Yoshimura, Masamichi; Huang, Hsin-Hui
2017-01-01
Among natural graphite varieties, needle platy vein graphite (NPG) has very high purity. Therefore, it is readily used to prepare graphene oxide (GO) and reduced graphene oxide (rGO). In this study, GO and rGO were prepared using chemical oxidation and reduction process, respectively. The synthesized materials were characterized by X-ray diffraction (XRD), atomic force microscopy (AFM), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), and Fourier transform infrared (FTIR) spectroscopy. XRD studies confirmed the increase of the interlayer spacing of GO and rGO in between 3.35 to 8.66 A°. AFM studies showed the layer height of rGO to be 1.05 nm after the reduction process. TEM micrographs clearly illustrated that the prepared GO has more than 25 layers, while the rGO has only less than 15 layers. Furthermore, the effect of chemical oxidation and reduction processes on surface morphology of graphite were clearly observed in FESEM micrographs. The calculated RO/C of GO and rGO using XPS analysis are 5.37% and 1.77%, respectively. The present study revealed the successful and cost effective nature of the chemical oxidation, and the reduction processes for the production of GO and rGO out of natural vein graphite.
Pt decorated MoS2 nanoflakes for ultrasensitive resistive humidity sensor
NASA Astrophysics Data System (ADS)
Burman, Debasree; Santra, Sumita; Pramanik, Panchanan; Guha, Prasanta Kumar
2018-03-01
In this work, we report the fabrication of a low power, humidity sensor where platinum nanoparticles (NPs) decorated few-layered molybdenum disulphide (MoS2) nanoflakes have been used as the sensing layer. A mixed solvent was used to exfoliate the nanoflakes from the bulk powder. Then the Pt/MoS2 composites were prepared by reducing Pt NPs from chloroplatinic acid hexahydrate using a novel reduction technique using sulphide salt. The successful reduction and composite preparation were confirmed using various material characterization tools like scanning electron microscopy, atomic force microscopy, transmission electron microscopy, x-ray diffraction, x-ray photoelectron spectroscopy, Raman spectroscopy and UV-visible spectroscopy. The humidity sensors were prepared by drop-coating the Pt-decorated MoS2 on gold interdigitated electrodes and then exposed to various levels of relative humidity (RH). Composites with different weight ratios of Pt were tested and the best response was shown by the Pt/MoS2 (0.25:1) sample with a record high response of ˜4000 times at 85% RH. The response and recovery times were ˜92 s and ˜154 s respectively with repeatable behaviour. The sensor performance was found to be stable when tested over a few months. The underlying sensing mechanisms along with detailed characterization of the various composites have been discussed.
Polarization Control via He-Ion Beam Induced Nanofabrication in Layered Ferroelectric Semiconductors
Belianinov, Alex; Iberi, Vighter; Tselev, Alexander; ...
2016-02-23
Rapid advanced in nanoscience rely on continuous improvements of matter manipulation at near atomic scales. Currently, well characterized, robust, resist-based lithography carries the brunt of the nanofabrication process. However, use of local electron, ion and physical probe methods is also expanding, driven largely by their ability to fabricate without the multi-step preparation processes that can result in contamination from resists and solvents. Furthermore, probe based methods extend beyond nanofabrication to nanomanipulation and imaging, vital ingredients to rapid transition to prototyping and testing of layered 2D heterostructured devices. In this work we demonstrate that helium ion interaction, in a Helium Ionmore » Microscope (HIM), with the surface of bulk copper indium thiophosphate CuM IIIP 2X 6 (M = Cr, In; X= S, Se), (CITP) results in the control of ferroelectric domains, and growth of cylindrical nanostructures with enhanced conductivity; with material volumes scaling with the dosage of the beam. The nanostructures are oxygen rich, sulfur poor, and with the copper concentration virtually unchanged as confirmed by Energy Dispersive X-ray (EDX). Scanning Electron Microscopy (SEM) imaging contrast as well as Scanning Microwave Microscopy (SMM) measurements suggest enhanced conductivity in the formed particle, whereas Atomic Force Microscopy (AFM) measurements indicate that the produced structures have lower dissipation and a lower Young s modulus.« less
Microcontroller-driven fluid-injection system for atomic force microscopy.
Kasas, S; Alonso, L; Jacquet, P; Adamcik, J; Haeberli, C; Dietler, G
2010-01-01
We present a programmable microcontroller-driven injection system for the exchange of imaging medium during atomic force microscopy. Using this low-noise system, high-resolution imaging can be performed during this process of injection without disturbance. This latter circumstance was exemplified by the online imaging of conformational changes in DNA molecules during the injection of anticancer drug into the fluid chamber.
Adineh, Vahid Reza; Liu, Boyin; Rajan, Ramesh; Yan, Wenyi; Fu, Jing
2015-07-01
Understanding the heterogeneity of biological structures, particularly at the micro/nano scale can offer insights valuable for multidisciplinary research in tissue engineering and biomimicry designs. Here we propose to combine nanocharacterisation tools, particularly Focused Ion Beam (FIB) and Atomic Force Microscopy (AFM) for three dimensional mapping of mechanical modulus and chemical signatures. The prototype platform is applied to image and investigate the fundamental mechanics of the rat face whiskers, a high-acuity sensor used to gain detailed information about the world. Grazing angle FIB milling was first applied to expose the interior cross section of the rat whisker sample, followed by a "lift-out" method to retrieve and position the target sample for further analyses. AFM force spectroscopy measurements revealed a non-uniform pattern of elastic modulus across the cross section, with a range from 0.8GPa to 13.5GPa. The highest elastic modulus was found at the outer cuticle region of the whisker, and values gradually decreased towards the interior cortex and medulla regions. Elemental mapping with EDS confirmed that the interior of the rat whisker is dominated by C, O, N, S, Cl and K, with a significant change of elemental distribution close to the exterior cuticle region. Based on these data, a novel comprehensive three dimensional (3D) elastic modulus model was constructed, and stress distributions under realistic conditions were investigated with Finite Element Analysis (FEA). The simulations could well account for the passive whisker deflections, with calculated resonant frequency as well as force-deflection for the whiskers being in good agreement with reported experimental data. Limitations and further applications are discussed for the proposed FIB/AFM approach, which holds good promise as a unique platform to gain insights on various heterogeneous biomaterials and biomechanical systems. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nguyen, Son N.; Sontag, Ryan L.; Carson, James P.
Constant mode ambient mass spectrometry imaging (MSI) of tissue sections with high lateral resolution of better than 10 µm was performed by combining shear force microscopy with nanospray desorption electrospray ionization (nano-DESI). Shear force microscopy enabled precise control of the distance between the sample and nano-DESI probe during MSI experiments and provided information on sample topography. Proof-of-concept experiments were performed using lung and brain tissue sections representing spongy and dense tissues, respectively. Topography images obtained using shear force microscopy were comparable to the results obtained using contact profilometry over the same region of the tissue section. Variations in tissue heightmore » were found to be dependent on the tissue type and were in the range of 0-5 µm for lung tissue and 0-3 µm for brain tissue sections. Ion images of phospholipids obtained in this study are in good agreement with literature data. Normalization of nano-DESI MSI images to the signal of the internal standard added to the extraction solvent allowed us to construct high-resolution ion images free of matrix effects.« less
Ultrasonic force microscopy: detection and imaging of ultra-thin molecular domains.
Dinelli, Franco; Albonetti, Cristiano; Kolosov, Oleg V
2011-03-01
The analysis of the formation of ultra-thin organic films is a very important issue. In fact, it is known that the properties of organic light emitting diodes and field effect transistors are strongly affected by the early growth stages. For instance, in the case of sexithiophene, the presence of domains made of molecules with the backbone parallel to the substrate surface has been indirectly evidenced by photoluminescence spectroscopy and confocal microscopy. On the contrary, conventional scanning force microscopy both in contact and intermittent contact modes have failed to detect such domains. In this paper, we show that Ultrasonic Force Microscopy (UFM), sensitive to nanomechanical properties, allows one to directly identify the structure of sub-monolayer thick films. Sexithiophene flat domains have been imaged for the first time with nanometer scale spatial resolution. A comparison with lateral force and intermittent contact modes has been carried out in order to explain the origins of the UFM contrast and its advantages. In particular, it indicates that UFM is highly suitable for investigations where high sensitivity to material properties, low specimen damage and high spatial resolution are required. Copyright © 2010 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Ditscherlein, L.; Peuker, U. A.
2017-04-01
For the application of colloidal probe atomic force microscopy at high temperatures (>500 K), stable colloidal probe cantilevers are essential. In this study, two new methods for gluing alumina particles onto temperature stable cantilevers are presented and compared with an existing method for borosilicate particles at elevated temperatures as well as with cp-cantilevers prepared with epoxy resin at room temperature. The durability of the fixing of the particle is quantified with a test method applying high shear forces. The force is calculated with a mechanical model considering both the bending as well as the torsion on the colloidal probe.
NASA Astrophysics Data System (ADS)
Farrell, Alan A.; Fukuma, Takeshi; Uchihashi, Takayuki; Kay, Euan R.; Bottari, Giovanni; Leigh, David A.; Yamada, Hirofumi; Jarvis, Suzanne P.
2005-09-01
We compare constant amplitude frequency modulation atomic force microscopy (FM-AFM) in ambient conditions to ultrahigh vacuum (UHV) experiments by analysis of thin films of rotaxane molecules. Working in ambient conditions is important for the development of real-world molecular devices. We show that the FM-AFM technique allows quantitative measurement of conservative and dissipative forces without instabilities caused by any native water layer. Molecular resolution is achieved despite the low Q-factor in the air. Furthermore, contrast in the energy dissipation is observed even at the molecular level. This should allow investigations into stimuli-induced sub-molecular motion of organic films.
Ardigò, M; Agozzino, M; Amorosi, B; Moscarella, E; Cota, C; de Abreu, L; Berardesca, E
2014-05-01
Bullous pemphigoid is an autoimmune disease affecting prevalently the elder. In vivo reflectance confocal microscopy is a non-invasive technique for real-time imaging of the skin with cellular-level resolution. No previous data has been reported about confocal microscopy of bullous pemphigoid. Aim of this preliminary study is the evaluation of the potential of in vivo reflectance confocal microscopy for real-time, microscopical confirmation of clinical bullous pemphigoid diagnosis. A total of nine lesions from patients affected by pemphigoid underwent in vivo reflectance confocal microscopy before histological examination. In our preliminary study, confocal microscopy showed high grade of correspondence to histopathology. In particular, presence of sub-epidermal cleft and variable amount of oedema of the upper dermis associated with inflammatory cells infiltration were seen as prevalent confocal features in the bullous lesions considered. Differently, in urticarial lesions, no specific features could be appreciated at confocal analysis beside the presence of signs of spongiosis and perivascular inflammation. Confocal microscopy seems to be useful for in vivo, microscopical confirmation of the clinical suspect of bullous pemphigoid and for biopsy site selection in urticarial lesions to obtain a more significant specimen for histopathological examination. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
ERIC Educational Resources Information Center
Fulghum, J. E.; And Others
1989-01-01
This review is divided into the following analytical methods: ion spectroscopy, electron spectroscopy, scanning tunneling microscopy, atomic force microscopy, optical spectroscopy, desorption techniques, and X-ray techniques. (MVL)
Zhang, S L; Xue, F; Wu, R; Cui, J; Jiang, Z M; Yang, X J
2009-04-01
Conductive atomic force microscopy has been employed to study the topography and conductance distribution of individual GeSi quantum dots (QDs) and quantum rings (QRs) during the transformation from QDs to QRs by depositing an Si capping layer on QDs. The current distribution changes significantly with the topographic transformation during the Si capping process. Without the capping layer, the QDs are dome-shaped and the conductance is higher at the ring region between the center and boundary than that at the center. After capping with 0.32 nm Si, the shape of the QDs changes to pyramidal and the current is higher at both the center and the arris. When the Si capping layer increases to 2 nm, QRs are formed and the current of individual QRs is higher at the rim than that at the central hole. By comparing the composition distributions obtained by scanning Auger microscopy and atomic force microscopy combined with selective chemical etching, the origin of the current distribution change is discussed.
Tang, Jilin; Krajcikova, Daniela; Zhu, Rong; Ebner, Andreas; Cutting, Simon; Gruber, Hermann J; Barak, Imrich; Hinterdorfer, Peter
2007-01-01
Coat assembly in Bacillus subtilis serves as a tractable model for the study of the self-assembly process of biological structures and has a significant potential for use in nano-biotechnological applications. In the present study, the morphology of B. subtilis spores was investigated by magnetically driven dynamic force microscopy (MAC mode atomic force microscopy) under physiological conditions. B. subtilis spores appeared as prolate structures, with a length of 0.6-3 microm and a width of about 0.5-2 microm. The spore surface was mainly covered with bump-like structures with diameters ranging from 8 to 70 nm. Besides topographical explorations, single molecule recognition force spectroscopy (SMRFS) was used to characterize the spore coat protein CotA. This protein was specifically recognized by a polyclonal antibody directed against CotA (anti-CotA), the antibody being covalently tethered to the AFM tip via a polyethylene glycol linker. The unbinding force between CotA and anti-CotA was determined as 55 +/- 2 pN. From the high-binding probability of more than 20% in force-distance cycles it is concluded that CotA locates in the outer surface of B. subtilis spores. Copyright (c) 2007 John Wiley & Sons, Ltd.
Functional Scanning Probe Imaging of Nanostructured Solar Energy Materials.
Giridharagopal, Rajiv; Cox, Phillip A; Ginger, David S
2016-09-20
From hybrid perovskites to semiconducting polymer/fullerene blends for organic photovoltaics, many new materials being explored for energy harvesting and storage exhibit performance characteristics that depend sensitively on their nanoscale morphology. At the same time, rapid advances in the capability and accessibility of scanning probe microscopy methods over the past decade have made it possible to study processing/structure/function relationships ranging from photocurrent collection to photocarrier lifetimes with resolutions on the scale of tens of nanometers or better. Importantly, such scanning probe methods offer the potential to combine measurements of local structure with local function, and they can be implemented to study materials in situ or devices in operando to better understand how materials evolve in time in response to an external stimulus or environmental perturbation. This Account highlights recent advances in the development and application of scanning probe microscopy methods that can help address such questions while filling key gaps between the capabilities of conventional electron microscopy and newer super-resolution optical methods. Focusing on semiconductor materials for solar energy applications, we highlight a range of electrical and optoelectronic scanning probe microscopy methods that exploit the local dynamics of an atomic force microscope tip to probe key properties of the solar cell material or device structure. We discuss how it is possible to extract relevant device properties using noncontact scanning probe methods as well as how these properties guide materials development. Specifically, we discuss intensity-modulated scanning Kelvin probe microscopy (IM-SKPM), time-resolved electrostatic force microscopy (trEFM), frequency-modulated electrostatic force microscopy (FM-EFM), and cantilever ringdown imaging. We explain these developments in the context of classic atomic force microscopy (AFM) methods that exploit the physics of cantilever motion and photocarrier generation to provide robust, nanoscale measurements of materials physics that are correlated with device operation. We predict that the multidimensional data sets made possible by these types of methods will become increasingly important as advances in data science expand capabilities and opportunities for image correlation and discovery.
NASA Astrophysics Data System (ADS)
Thiruvenkadam, S.; Sakthi, P.; Prabhakaran, S.; Chakravarty, Sujay; Ganesan, V.; Rajesh, A. Leo
2018-06-01
Thin film of ternary Cu2SnS3 (CTS), a potential absorber layer for solar cells was successfully deposited by chemical spray pyrolysis technique. The GIXRD pattern revealed that the film having tetragonal Cu2SnS3 phase with the preferential orientation along (112), (200), (220) and (312) plane and it is further confirmed using Raman spectroscopy by the existence of Raman peak at 320 cm-1. Atomic Force Microscopy (AFM) was used to estimate the surface roughness of 28.8 nm. The absorption coefficient was found to be greater than the order of 105 cm-1 and bandgap of 1.70 eV. Hall effect measurement indicates the p type nature of the film with a hole concentration of 1.03 × 1016cm-3 and a hall mobility of 404 cm2/V. The properties of CTS thin film confirmed suitable to be a potential absorber layer material for photovoltaic applications.
Upconversion-Triggered Charge Separation in Polymer Semiconductors.
Jang, Yu Jin; Kim, Eunah; Ahn, Seonghyeon; Chung, Kyungwha; Kim, Jihyeon; Kim, Heejun; Wang, Huan; Lee, Jiseok; Kim, Dong-Wook; Kim, Dong Ha
2017-01-19
Upconversion is a unique optical property that is driven by a sequential photon pumping and generation of higher energy photons in a consecutive manner. The efficiency improvement in photovoltaic devices can be achieved when upconverters are integrated since upconverters contribute to the generation of extra photons. Despite numerous experimental studies confirming the relationship, fundamental explanations for a real contribution of upconversion to photovoltaic efficiency are still in demand. In this respect, we suggest a new approach to visualize the upconversion event in terms of surface photovoltage (SPV) by virtue of Kelvin probe force microscopy (KPFM). One of the most conventional polymer semiconductors, poly(3-hexyl thiophene) (P3HT), is employed as a sensitizer to generate charge carriers by upconverted light. KPFM measurements reveal that the light upconversion enabled the formation of charge carriers in P3HT, resulting in large SPV of -54.9 mV. It confirms that the energy transfer from upconverters to P3HT can positively impact the device performance in organic solar cells (OSCs).
Dhiman, Saurabh Sudha; Haw, Jung-Rim; Kalyani, Dayanand; Kalia, Vipin C; Kang, Yun Chan; Lee, Jung-Kul
2015-03-01
Two different biomasses were subjected to simultaneous pretreatment and saccharification (SPS) using a cocktail of hydrolytic and oxidizing enzymes. Application of a novel laccase as a detoxifying agent caused the removal of 49.8% and 32.6% of phenolic contents from the soaked rice straw and willow, respectively. Hydrolysis of soaked substrates using a newly developed fungal consortium resulted in saccharification yield of up to 74.2% and 63.6% for rice straw and willow, respectively. A high saccharification yield was obtained with soaked rice straw and willow without using any hazardous chemicals. The efficiency of each step related to SPS was confirmed by atomic force microscopy. The suitability of the developed SPS process was further confirmed by converting the hydrolysate from the process into bioethanol with 72.4% sugar conversion efficiency. To the best of our knowledge, this is the first report on the development of a less tedious, single-pot, and eco-friendly SPS methodology. Copyright © 2014 Elsevier Ltd. All rights reserved.
SRF Cavity Surface Topography Characterization Using Replica Techniques
DOE Office of Scientific and Technical Information (OSTI.GOV)
C. Xu, M.J. Kelley, C.E. Reece
2012-07-01
To better understand the roll of topography on SRF cavity performance, we seek to obtain detailed topographic information from the curved practical cavity surfaces. Replicas taken from a cavity interior surface provide internal surface molds for fine Atomic Force Microscopy (AFM) and stylus profilometry. In this study, we confirm the replica resolution both on surface local defects such as grain boundary and etching pits and compare the surface uniform roughness with the aid of Power Spectral Density (PSD) where we can statistically obtain roughness parameters at different scales. A series of sampling locations are at the same magnetic field chosenmore » at the same latitude on a single cell cavity to confirm the uniformity. Another series of sampling locations at different magnetic field amplitudes are chosen for this replica on the same cavity for later power loss calculation. We also show that application of the replica followed by rinsing does not adversely affect the cavity performance.« less
Force-detected nuclear magnetic resonance: recent advances and future challenges.
Poggio, M; Degen, C L
2010-08-27
We review recent efforts to detect small numbers of nuclear spins using magnetic resonance force microscopy. Magnetic resonance force microscopy (MRFM) is a scanning probe technique that relies on the mechanical measurement of the weak magnetic force between a microscopic magnet and the magnetic moments in a sample. Spurred by the recent progress in fabricating ultrasensitive force detectors, MRFM has rapidly improved its capability over the last decade. Today it boasts a spin sensitivity that surpasses conventional, inductive nuclear magnetic resonance detectors by about eight orders of magnitude. In this review we touch on the origins of this technique and focus on its recent application to nanoscale nuclear spin ensembles, in particular on the imaging of nanoscale objects with a three-dimensional (3D) spatial resolution better than 10 nm. We consider the experimental advances driving this work and highlight the underlying physical principles and limitations of the method. Finally, we discuss the challenges that must be met in order to advance the technique towards single nuclear spin sensitivity-and perhaps-to 3D microscopy of molecules with atomic resolution.
A Facile All-Solution-Processed Surface with High Water Contact Angle and High Water Adhesive Force.
Chen, Mei; Hu, Wei; Liang, Xiao; Zou, Cheng; Li, Fasheng; Zhang, Lanying; Chen, Feiwu; Yang, Huai
2017-07-12
A series of sticky superhydrophobicity surfaces with high water contact angle and high water adhesive force is facilely prepared via an all-solution-processed method based on polymerization-induced phase separation between liquid crystals (LCs) and epoxy resin, which produces layers of epoxy microspheres (EMSs) with nanofolds on the surface of a substrate. The morphologies and size distributions of EMSs are confirmed by scanning electron microscopy. Results reveal that the obtained EMS coated-surface exhibits high apparent contact angle of 152.0° and high water adhesive force up to 117.6 μN. By varying the composition of the sample or preparing conditions, the sizes of the produced EMSs can be artificially regulated and, thus, control the wetting properties and water adhesive behaviors. Also, the sticky superhydrophobic surface exhibits excellent chemical stability, as well as long-term durability. Water droplet transportation experiments further prove that the as-made surface can be effectively used as a mechanical hand for water transportation applications. Based on this, it is believed that the simple method proposed in this paper will pave a new way for producing a sticky superhydrophobic surface and obtain a wide range of use.
2013-01-01
Background In areas co-endemic for multiple Plasmodium species, correct diagnosis is crucial for appropriate treatment and surveillance. Species misidentification by microscopy has been reported in areas co-endemic for vivax and falciparum malaria, and may be more frequent in regions where Plasmodium knowlesi also commonly occurs. Methods This prospective study in Sabah, Malaysia, evaluated the accuracy of routine district and referral hospital-based microscopy, and microscopy performed by an experienced research microscopist, for the diagnosis of PCR-confirmed Plasmodium falciparum, P. knowlesi, and Plasmodium vivax malaria. Results A total of 304 patients with PCR-confirmed Plasmodium infection were enrolled, including 130 with P. knowlesi, 122 with P. falciparum, 43 with P. vivax, one with Plasmodium malariae and eight with mixed species infections. Among patients with P. knowlesi mono-infection, routine and cross-check microscopy both identified 94 (72%) patients as “P. malariae/P. knowlesi”; 17 (13%) and 28 (22%) respectively were identified as P. falciparum, and 13 (10%) and two (1.5%) as P. vivax. Among patients with PCR-confirmed P. falciparum, routine and cross-check microscopy identified 110/122 (90%) and 112/118 (95%) patients respectively as P. falciparum, and 8/122 (6.6%) and 5/118 (4.2%) as “P. malariae/P. knowlesi”. Among those with P. vivax, 23/43 (53%) and 34/40 (85%) were correctly diagnosed by routine and cross-check microscopy respectively, while 13/43 (30%) and 3/40 (7.5%) patients were diagnosed as “P. malariae/P. knowlesi”. Four of 13 patients with PCR-confirmed P. vivax and misdiagnosed by routine microscopy as “P. malariae/P. knowlesi” were subsequently re-admitted with P. vivax malaria. Conclusions Microscopy does not reliably distinguish between P. falciparum, P. vivax and P. knowlesi in a region where all three species frequently occur. Misdiagnosis of P. knowlesi as both P. vivax and P. falciparum, and vice versa, is common, potentially leading to inappropriate treatment, including chloroquine therapy for P. falciparum and a lack of anti-relapse therapy for P. vivax. The limitations of microscopy in P. knowlesi-endemic areas supports the use of unified blood-stage treatment strategies for all Plasmodium species, the development of accurate rapid diagnostic tests suitable for all species, and the use of PCR-confirmation for accurate surveillance. PMID:23294844
Simulating contrast inversion in atomic force microscopy imaging with real-space pseudopotentials
NASA Astrophysics Data System (ADS)
Lee, Alex J.; Sakai, Yuki; Chelikowsky, James R.
2017-02-01
Atomic force microscopy (AFM) measurements have reported contrast inversions for systems such as Cu2N and graphene that can hamper image interpretation and characterization. Here, we apply a simulation method based on ab initio real-space pseudopotentials to gain an understanding of the tip-sample interactions that influence the inversion. We find that chemically reactive tips induce an attractive binding force that results in the contrast inversion. We find that the inversion is tip height dependent and not observed when using less reactive CO-functionalized tips.
Thermal-induced SPR tuning of Ag-ZnO nanocomposite thin film for plasmonic applications
NASA Astrophysics Data System (ADS)
Singh, S. K.; Singhal, R.
2018-05-01
The formation of silver (Ag) nanoparticles in a ZnO matrix were successfully synthesized by RF-magnetron sputtering at room temperature. As prepared Ag-ZnO nanocomposite (NCs) thin films were annealed in vacuum at three different temperatures of 300 °C, 400 °C and 500 °C, respectively. The structural modifications for as-deposited and annealed films were estimated by X-ray diffraction and TEM techniques. The crystalline behavior preferably along the c-axis of the hexagonal wurtzite structure was observed in as-deposited Ag-ZnO film and improved significantly with increasing the annealing temperature. The crystallite size of as-deposited film was measured to be 13.6 nm, and increases up to 28.5 nm at higher temperatures. The chemical composition and surface structure of the as-deposited films were estimated by X-ray photoelectron spectroscopy. The presence of Ag nanoparticles with average size of 8.2 ± 0.2 nm, was confirmed by transmission electron microscopy. The strong surface plasmon resonance (SPR) band was observed at the wavelength of ∼565 nm for as-deposited film and a remarkable red shift of ∼22 nm was recorded after the annealing treatment as confirmed by UV-visible spectroscopy. Atomic force microscopy confirmed the grain growth from 60.38 nm to 79.42 nm for as-deposited and higher temperature annealed film respectively, with no significant change in the surface roughness. Thermal induced modifications such as disordering and lattice defects in Ag-ZnO NCs thin films were carried out by Raman spectroscopy. High quality Ag-ZnO NCs thin films with minimum strain and tunable optical properties could be useful in various plasmonic applications.
Pérez-Peinado, Clara; Dias, Susana Almeida; Domingues, Marco M; Benfield, Aurélie H; Freire, João Miguel; Rádis-Baptista, Gandhi; Gaspar, Diana; Castanho, Miguel A R B; Craik, David J; Henriques, Sónia Troeira; Veiga, Ana Salomé; Andreu, David
2018-02-02
Crotalicidin (Ctn), a cathelicidin-related peptide from the venom of a South American rattlesnake, possesses potent antimicrobial, antitumor, and antifungal properties. Previously, we have shown that its C-terminal fragment, Ctn(15-34), retains the antimicrobial and antitumor activities but is less toxic to healthy cells and has improved serum stability. Here, we investigated the mechanisms of action of Ctn and Ctn(15-34) against Gram-negative bacteria. Both peptides were bactericidal, killing ∼90% of Escherichia coli and Pseudomonas aeruginosa cells within 90-120 and 5-30 min, respectively. Studies of ζ potential at the bacterial cell membrane suggested that both peptides accumulate at and neutralize negative charges on the bacterial surface. Flow cytometry experiments confirmed that both peptides permeabilize the bacterial cell membrane but suggested slightly different mechanisms of action. Ctn(15-34) permeabilized the membrane immediately upon addition to the cells, whereas Ctn had a lag phase before inducing membrane damage and exhibited more complex cell-killing activity, probably because of two different modes of membrane permeabilization. Using surface plasmon resonance and leakage assays with model vesicles, we confirmed that Ctn(15-34) binds to and disrupts lipid membranes and also observed that Ctn(15-34) has a preference for vesicles that mimic bacterial or tumor cell membranes. Atomic force microscopy visualized the effect of these peptides on bacterial cells, and confocal microscopy confirmed their localization on the bacterial surface. Our studies shed light onto the antimicrobial mechanisms of Ctn and Ctn(15-34), suggesting Ctn(15-34) as a promising lead for development as an antibacterial/antitumor agent. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.
Sweetman, Adam; Stannard, Andrew
2014-01-01
In principle, non-contact atomic force microscopy (NC-AFM) now readily allows for the measurement of forces with sub-nanonewton precision on the atomic scale. In practice, however, the extraction of the often desired 'short-range' force from the experimental observable (frequency shift) is often far from trivial. In most cases there is a significant contribution to the total tip-sample force due to non-site-specific van der Waals and electrostatic forces. Typically, the contribution from these forces must be removed before the results of the experiment can be successfully interpreted, often by comparison to density functional theory calculations. In this paper we compare the 'on-minus-off' method for extracting site-specific forces to a commonly used extrapolation method modelling the long-range forces using a simple power law. By examining the behaviour of the fitting method in the case of two radically different interaction potentials we show that significant uncertainties in the final extracted forces may result from use of the extrapolation method.
Dufrêne, Y F
2001-02-01
The application of atomic force microscopy (AFM) to probe the ultrastructure and physical properties of microbial cell surfaces is reviewed. The unique capabilities of AFM can be summarized as follows: imaging surface topography with (sub)nanometer lateral resolution; examining biological specimens under physiological conditions; measuring local properties and interaction forces. AFM is being used increasingly for: (i) visualizing the surface ultrastructure of microbial cell surface layers, including bacterial S-layers, purple membranes, porin OmpF crystals and fungal rodlet layers; (ii) monitoring conformational changes of individual membrane proteins; (iii) examining the morphology of bacterial biofilms, (iv) revealing the nanoscale structure of living microbial cells, including fungi, yeasts and bacteria, (v) mapping interaction forces at microbial surfaces, such as van der Waals and electrostatic forces, solvation forces, and steric/bridging forces; and (vi) probing the local mechanical properties of cell surface layers and of single cells.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Phuthong, Witchukorn; Huang, Zubin; Wittkopp, Tyler M.
To investigate the dynamics of photosynthetic pigment-protein complexes in vascular plants at high resolution in an aqueous environment, membrane-protruding oxygen-evolving complexes (OECs) associated with photosystem II (PSII) on spinach ( Spinacia oleracea) grana membranes were examined using contact mode atomic force microscopy. This study represents, to our knowledge, the first use of atomic force microscopy to distinguish the putative large extrinsic loop of Photosystem II CP47 reaction center protein (CP47) from the putative oxygen-evolving enhancer proteins 1, 2, and 3 (PsbO, PsbP, and PsbQ) and large extrinsic loop of Photosystem II CP43 reaction center protein (CP43) in the PSII-OEC extrinsicmore » domains of grana membranes under conditions resulting in the disordered arrangement of PSII-OEC particles. Moreover, we observed uncharacterized membrane particles that, based on their physical characteristics and electrophoretic analysis of the polypeptides associated with the grana samples, are hypothesized to be a domain of photosystem I that protrudes from the stromal face of single thylakoid bilayers. Furthermore, our results are interpreted in the context of the results of others that were obtained using cryo-electron microscopy (and single particle analysis), negative staining and freeze-fracture electron microscopy, as well as previous atomic force microscopy studies.« less
Nano-Electrochemistry and Nano-Electrografting with an Original Combined AFM-SECM
Ghorbal, Achraf; Grisotto, Federico; Charlier, Julienne; Palacin, Serge; Goyer, Cédric; Demaille, Christophe; Ben Brahim, Ammar
2013-01-01
This study demonstrates the advantages of the combination between atomic force microscopy and scanning electrochemical microscopy. The combined technique can perform nano-electrochemical measurements onto agarose surface and nano-electrografting of non-conducting polymers onto conducting surfaces. This work was achieved by manufacturing an original Atomic Force Microscopy-Scanning ElectroChemical Microscopy (AFM-SECM) electrode. The capabilities of the AFM-SECM-electrode were tested with the nano-electrografting of vinylic monomers initiated by aryl diazonium salts. Nano-electrochemical and technical processes were thoroughly described, so as to allow experiments reproducing. A plausible explanation of chemical and electrochemical mechanisms, leading to the nano-grafting process, was reported. This combined technique represents the first step towards improved nano-processes for the nano-electrografting. PMID:28348337
ERIC Educational Resources Information Center
Phuapaiboon, Unchada; Panijpan, Bhinyo; Osotchan, Tanakorn
2009-01-01
This study was conducted to examine the results of using a low-cost hands-on setup in combination with accompanying activities to promote understanding of the contact mode of atomic force microscopy (AFM). This contact mode setup enabled learners to study how AFM works by hand scanning using probing cantilevers with different characteristics on…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Collins, Liam; Ahmadi, Mahshid; Wu, Ting
The atomic force microscope (AFM) offers unparalleled insight into structure and material functionality across nanometer length scales. However, the spatial resolution afforded by the AFM tip is counterpoised by slow detection speeds compared to other common microscopy techniques (e.g. optical, scanning electron microscopy etc.). In this work, we develop an AFM imaging approach allowing ultrafast reconstruction of the tip-sample forces having ~2 orders of magnitude higher time resolution than standard detection methods. Fast free force recovery (F3R) overcomes the widely-viewed temporal bottleneck in AFM, i.e. the mechanical bandwidth of the cantilever, enabling time-resolved imaging at sub-bandwidth speeds. We demonstrate quantitativemore » recovery of electrostatic forces with ~10 µs temporal resolution, free from cantilever ring-down effects. We further apply the F3R method to Kelvin probe force microscopy (KPFM) measurements. F3R-KPFM is an open loop imaging approach (i.e. no bias feedback), allowing ultrafast surface potential measurements (e.g. < 20 µs) to be performed at regular KPFM scan speeds. F3R-KPFM is demonstrated for exploration of ion migration in organometallic halide perovskites materials and shown to allow spatio-temporal imaging of positively charged ion migration under applied electric field, as well as subsequent formation of accumulated charges at the perovskite/electrode interface. In this work we demonstrate quantitative F3R-KPFM measurements – however, we fully expect the F3R approach to be valid for all modes of non-contact AFM operation, including non-invasive probing of ultrafast electrical and magnetic dynamics.« less
Collins, Liam; Ahmadi, Mahshid; Wu, Ting; ...
2017-08-06
The atomic force microscope (AFM) offers unparalleled insight into structure and material functionality across nanometer length scales. However, the spatial resolution afforded by the AFM tip is counterpoised by slow detection speeds compared to other common microscopy techniques (e.g. optical, scanning electron microscopy etc.). In this work, we develop an AFM imaging approach allowing ultrafast reconstruction of the tip-sample forces having ~2 orders of magnitude higher time resolution than standard detection methods. Fast free force recovery (F3R) overcomes the widely-viewed temporal bottleneck in AFM, i.e. the mechanical bandwidth of the cantilever, enabling time-resolved imaging at sub-bandwidth speeds. We demonstrate quantitativemore » recovery of electrostatic forces with ~10 µs temporal resolution, free from cantilever ring-down effects. We further apply the F3R method to Kelvin probe force microscopy (KPFM) measurements. F3R-KPFM is an open loop imaging approach (i.e. no bias feedback), allowing ultrafast surface potential measurements (e.g. < 20 µs) to be performed at regular KPFM scan speeds. F3R-KPFM is demonstrated for exploration of ion migration in organometallic halide perovskites materials and shown to allow spatio-temporal imaging of positively charged ion migration under applied electric field, as well as subsequent formation of accumulated charges at the perovskite/electrode interface. In this work we demonstrate quantitative F3R-KPFM measurements – however, we fully expect the F3R approach to be valid for all modes of non-contact AFM operation, including non-invasive probing of ultrafast electrical and magnetic dynamics.« less
An observation of nanotwin lamellae in Cd 0.6Mn 0.4Te crystal by atomic force microscopy
NASA Astrophysics Data System (ADS)
George, M. A.; Azoulay, M.; Collins, W. E.; Burger, A.; Silberman, E.
1993-05-01
Atomic force microscopy (AFM) is used to examine the structure of freshly cleaved Cd 0.6Mn 0.4Te surfaces. The present report complements previous results obtained with X-ray diffraction and optical microscopy which showed the existence of microtwins. The AFM analysis was performed under ambient conditions and yielded nanometer scale resolution images of single twin lamellae that ranged between 20 and 100 nm in width. This is a first observation using AFM of such a substructure, which we interpret as evidence for the presence of nonotwins.
Zander, N.E.; Strawhecker, K.E.; Orlicki, J.A.; Rawlett, A.M.; Beebe, T.P.
2011-01-01
Poly(methylmethacrylate) (PMMA)- Polyacrylonitrile (PAN) fibers were prepared using a conventional single-nozzle electrospinning technique. The as-spun fibers exhibited core-shell morphology as verified by transmission electron microscopy (TEM) and atomic force microscopy (AFM). AFM-phase and modulus mapping images of the fiber cross-section and x-ray photoelectron spectroscopy (XPS) analysis indicated PAN formed the shell and PMMA the core material. XPS, thermal gravimetric analysis (TGA), and elemental analysis were used to determine fiber compositional information. Soaking the fibers in solvent demonstrated removal of the core material, generating hollow PAN fibers. PMID:21928836
Characterization of new drug delivery nanosystems using atomic force microscopy
NASA Astrophysics Data System (ADS)
Spyratou, Ellas; Mourelatou, Elena A.; Demetzos, C.; Makropoulou, Mersini; Serafetinides, A. A.
2015-01-01
Liposomes are the most attractive lipid vesicles for targeted drug delivery in nanomedicine, behaving also as cell models in biophotonics research. The characterization of the micro-mechanical properties of drug carriers is an important issue and many analytical techniques are employed, as, for example, optical tweezers and atomic force microscopy. In this work, polyol hyperbranched polymers (HBPs) have been employed along with liposomes for the preparation of new chimeric advanced drug delivery nanosystems (Chi-aDDnSs). Aliphatic polyester HBPs with three different pseudogenerations G2, G3 and G4 with 16, 32, and 64 peripheral hydroxyl groups, respectively, have been incorporated in liposomal formulation. The atomic force microscopy (AFM) technique was used for the comparative study of the morphology and the mechanical properties of Chi-aDDnSs and conventional DDnS. The effects of both the HBPs architecture and the polyesters pseudogeneration number in the stability and the stiffness of chi-aDDnSs were examined. From the force-distance curves of AFM spectroscopy, the Young's modulus was calculated.
NASA Astrophysics Data System (ADS)
Oh, Y. J.; Jo, W.; Kim, S.; Park, S.; Kim, Y. S.
2008-09-01
A protein patterned surface using micro-contact printing methods has been investigated by scanning force microscopy. Electrostatic force microscopy (EFM) was utilized for imaging the topography and detecting the electrical properties such as the local bound charge distribution of the patterned proteins. It was found that the patterned IgG proteins are arranged down to 1 µm, and the 90° rotation of patterned anti-IgG proteins was successfully undertaken. Through the estimation of the effective areas, it was possible to determine the local bound charges of patterned proteins which have opposite electrostatic force behaviors. Moreover, we studied the binding probability between IgG and anti-IgG in a 1 µm2 MIMIC system by topographic and electrostatic signals for applicable label-free detections. We showed that the patterned proteins can be used for immunoassay of proteins on the functional substrate, and that they can also be used for bioelectronics device application, indicating distinct advantages with regard to accuracy and a label-free detection.
2014-01-01
A facile synthesis of a styrylpyridinium salt (SbQ)/montmorillonite (MMT) via cationic exchange interactions between styrylpyridinium species (specifically SbQ) and MMT platelets is reported in this work. The SbQ-MMT solutions were irradiated under ultraviolet (UV) light for a specific time to obtain the cross-linked SbQ-MMT materials. Scanning electron microscopy and atomic force microscopy analyses revealed the structures and morphologies of MMT and modified MMT. X-ray diffraction and transmission electron microscope analyses indicated that the basal spacing increased from 1.24 to 1.53 nm compared with the pristine MMT, which proved that SbQ had interacted with MMT. Thermal gravimetric analysis curves showed that the amount of SbQ in the MMT interlayers was 35.71 meq/100 g. Fourier transform infrared spectroscopy also confirmed the intercalation of SbQ species into MMT interlayers, and UV spectroscopy was used to follow up the cross-linking of SbQ-MMT. This novel material has potential applications in drug delivery, and it can also be used as an additive to improve the mechanical properties of polymers. PMID:25170328
Sohbatzadeh, F; Eshghabadi, M; Mohsenpour, T
2018-06-29
The surface modification of cotton samples was carried out using a liquid (ethanol) electrospray-assisted atmospheric pressure plasma jet. X-ray photoelectron spectroscopy (XPS) and Raman analysis confirmed the successful deposition of diamond like carbon (DLC) nano structures on the cotton surface. The super hydrophobic state of the samples was probed by contact angle measurements. The water repellency of the layers was tuned by controlling the voltage applied to the electrospray electrode. An investigation of the morphological and chemical structures of the samples by field emission scanning microscopy, atomic force microscopy (AFM) and XPS indicated that the physical shape, distribution and amorphization of the DLC structures were successfully adjusted and improved by applying a voltage to the electrospray electrode. Finally wash durability of the best sample was tested for 35 cycles. In this work, the use of a well-developed atmospheric pressure plasma jet for DLC nano structures deposition can enable a promising environmentally friendly and low-cost approach for modifying cotton fabrics for super water-repellent fabric applications.
NASA Astrophysics Data System (ADS)
Córdoba, Rosa; Lorenzoni, Matteo; Pablo-Navarro, Javier; Magén, César; Pérez-Murano, Francesc; María De Teresa, José
2017-11-01
The implementation of three-dimensional (3D) nano-objects as building blocks for the next generation of electro-mechanical, memory and sensing nano-devices is at the forefront of technology. The direct writing of functional 3D nanostructures is made feasible by using a method based on focused ion beam induced deposition (FIBID). We use this technique to grow horizontally suspended tungsten nanowires and then study their nano-mechanical properties by three-point bending method with atomic force microscopy. These measurements reveal that these nanowires exhibit a yield strength up to 12 times higher than that of the bulk tungsten, and near the theoretical value of 0.1 times the Young’s modulus (E). We find a size dependence of E that is adequately described by a core-shell model, which has been confirmed by transmission electron microscopy and compositional analysis at the nanoscale. Additionally, we show that experimental resonance frequencies of suspended nanowires (in the MHz range) are in good agreement with theoretical values. These extraordinary mechanical properties are key to designing electro-mechanically robust nanodevices based on FIBID tungsten nanowires.
Rambabu, A; Senthilkumar, B; Sada, K; Krupanidhi, S B; Barpanda, P
2018-03-15
Sodium-ion thin-film micro-batteries form a niche sector of energy storage devices. Sodium titanate, Na 2 Ti 6 O 13 (NTO) thin films were deposited by pulsed laser deposition (PLD) using solid-state synthesized polycrystalline Na 2 Ti 6 O 13 compound. The phase-purity and crystallinity of NTO in bulk and thin-film forms were confirmed by Rietveld refinement. Electron microscopy and atomic force microscopy revealed the formation of uniform ∼100 nm thin film with roughness of ∼4 nm consisting of homogeneous nanoscale grains. These PLD-deposited NTO thin-films, when tested in Na-half cell architecture, delivered a near theoretical reversible capacity close to 42 mA h g -1 involving Ti 4+ /Ti 3+ redox activity along with good cycling stability and rate kinetics. Na 2 Ti 6 O 13 can work as an efficient and safe anode in designing sodium-ion thin-film micro-batteries. Copyright © 2017 Elsevier Inc. All rights reserved.
Carbon decorative coatings by dip-, spin-, and spray-assisted layer-by-layer assembly deposition.
Hong, Jinkee; Kang, Sang Wook
2011-09-01
We performed a comparative surface analysis of all-carbon nano-objects (multiwall carbon nanotubes (MWNT) or graphene oxide (GO) sheets) based multilayer coatings prepared using three widely used nanofilm fabrication methods: dip-, spin-, and spray-assisted layer-by-layer (LbL) deposition. The resultant films showed a marked difference in their growth mechanisms and surface morphologies. Various carbon decorative coatings were synthesized with different surface roughness values, despite identical preparation conditions. In particular, smooth to highly rough all-carbon surfaces, as determined by atomic force microscopy (AFM) and scanning electron microscopy (SEM), were readily obtained by manipulating the LbL deposition methods. As was confirmed by the AFM and SEM analyses, this finding indicated the fundamental morphological evolution of one-dimensional nano-objects (MWNT) and two-dimensional nano-objects (GO) by control of the surface roughness through the deposition method. Therefore, an analysis of the three LbL-assembly methods presented herein may offer useful information about the industrial use of carbon decorative coatings and provide an insight into ways to control the structures of multilayer coatings by tuning the morphologies of carbon nano-objects.
El-Said, Waleed Ahmed; Yea, Cheol-Heon; Jung, Mi; Kim, Hyuncheol; Choi, Jeong-Woo
2010-05-01
In this study, in situ electrochemical synthesis of polypyrrole nanowires with nanoporous alumina template was described. The formation of highly ordered porous alumina substrate was demonstrated with Atomic Force Microscopy (AFM) and Scanning Electron Microscopy (SEM). In addition, Fourier transform infrared analysis confirmed that polypyrrole (PP) nanowires were synthesized by direct electrochemical oxidation of pyrrole. HeLa cancer cells and HMCF normal cells were immobilized on the polypyrrole nanowires/nanoporous alumina substrates to determine the effects of the substrate on the cell morphology, adhesion and proliferation as well as the biocompatibility of the substrate. Cell adhesion and proliferation were characterized using a standard MTT assay. The effects of the polypyrrole nanowires/nanoporous alumina substrate on the cell morphology were studied by AFM. The nanoporous alumina coated with polypyrrole nanowires was found to exhibit better cell adhesion and proliferation than polystyrene petridish, aluminum foil, 1st anodized and uncoated 2nd anodized alumina substrate. This study showed the potential of the polypyrrole nanowires/nanoporous alumina substrate as biocompatibility electroactive polymer substrate for both healthy and cancer cell cultures applications.
Broadband near-field infrared spectromicroscopy using photothermal probes and synchrotron radiation.
Donaldson, Paul M; Kelley, Chris S; Frogley, Mark D; Filik, Jacob; Wehbe, Katia; Cinque, Gianfelice
2016-02-08
In this paper, we experimentally demonstrate the use of infrared synchrotron radiation (IR-SR) as a broadband source for photothermal near-field infrared spectroscopy. We assess two methods of signal transduction; cantilever resonant thermal expansion and scanning thermal microscopy. By means of rapid mechanical chopping (50-150 kHz), we modulate the IR-SR at rates matching the contact resonance frequencies of atomic force microscope (AFM) cantilevers, allowing us to record interferograms yielding Fourier transform infrared (FT-IR) photothermal absorption spectra of polystyrene and cyanoacrylate films. Complementary offline measurements using a mechanically chopped CW IR laser confirmed that the resonant thermal expansion IR-SR measurements were below the diffraction limit, with a spatial resolution better than 500 nm achieved at a wavelength of 6 μm, i.e. λ/12 for the samples studied. Despite achieving the highest signal to noise so far for a scanning thermal microscopy measurement under conditions approaching near-field (dictated by thermal diffusion), the IR-SR resonant photothermal expansion FT-IR spectra measured were significantly higher in signal to noise in comparison with the scanning thermal data.
InSe monolayer: synthesis, structure and ultra-high second-harmonic generation
NASA Astrophysics Data System (ADS)
Zhou, Jiadong; Shi, Jia; Zeng, Qingsheng; Chen, Yu; Niu, Lin; Liu, Fucai; Yu, Ting; Suenaga, Kazu; Liu, Xinfeng; Lin, Junhao; Liu, Zheng
2018-04-01
III–IV layered materials such as indium selenide have excellent photoelectronic properties. However, synthesis of materials in such group, especially with a controlled thickness down to monolayer, still remains challenging. Herein, we demonstrate the successful synthesis of monolayer InSe by physical vapor deposition (PVD) method. The high quality of the sample was confirmed by complementary characterization techniques such as Raman spectroscopy, atomic force microscopy (AFM) and high resolution annular dark field scanning transmission electron microscopy (ADF-STEM). We found the co-existence of different stacking sequence (β- and γ-InSe) in the same flake with a sharp grain boundary in few-layered InSe. Edge reconstruction is also observed in monolayer InSe, which has a distinct atomic structure from the bulk lattice. Moreover, we discovered that the second-harmonic generation (SHG) signal from monolayer InSe shows large optical second-order susceptibility that is 1–2 orders of magnitude higher than MoS2, and even 3 times of the largest value reported in monolayer GaSe. These results make atom-thin InSe a promising candidate for optoelectronic and photosensitive device applications.
Son, Suhyun; Shin, Eeseul; Kim, Byeong-Su
2014-02-10
Light-responsive polymeric micelles have emerged as site-specific and time-controlled systems for advanced drug delivery. Spiropyran (SP), a well-known photochromic molecule, was used to initiate the ring-opening multibranching polymerization of glycidol to afford a series of hyperbranched polyglycerols (SP-hb-PG). The micelle assembly and disassembly were induced by an external light source owing to the reversible photoisomerization of hydrophobic SP to hydrophilic merocyanine (MC). Transmission electron microscopy, atomic force microscopy, UV/vis spectroscopy, and dynamic light scattering demonstrated the successful assembly and disassembly of SP-hb-PG micelles. In addition, the critical micelle concentration (CMC) was determined through the fluorescence analysis of pyrene to confirm the amphiphilicity of respective SP-hb-PGn (n = 15, 29, and 36) micelles, with CMC values ranging from 13 to 20 mg/L, which is correlated to the length of the polar polyglycerol backbone. Moreover, the superior biocompatibility of the prepared SP-hb-PG was evaluated using WI-38 cells and HeLa cells, suggesting the prospective applicability of the micelles in smart drug delivery systems.
Preparation and performance evaluation of novel alkaline stable anion exchange membranes
NASA Astrophysics Data System (ADS)
Irfan, Muhammad; Bakangura, Erigene; Afsar, Noor Ul; Hossain, Md. Masem; Ran, Jin; Xu, Tongwen
2017-07-01
Novel alkaline stable anion exchange membranes are prepared from various amounts of N-methyl dipicolylamine (MDPA) and brominated poly (2,6-dimethyl-1,4-phenylene oxide) (BPPO). The dipicolylamine and MDPA are synthesized through condensation reaction and confirmed by 1H NMR spectroscopy. The morphologies of prepared membranes are investigated by atomic force microscopy (AFM), fourier transform infrared spectroscopy (FTIR), 1H NMR spectroscopy and scanning electron microscopy (SEM). The electrochemical and physical properties of AEMs are tested comprising water uptake (WU), ion exchange capacity (IEC), alkaline stability, linear expansion ratio (LER), thermal stability and mechanical stability. The obtained hydroxide conductivity of MDPA-4 is 66.5 mS/cm at 80 °C. The MDPA-4 membrane shows good alkaline stability, high hydroxide conductivity, low methanol permeability (3.43 × 10-7 cm2/s), higher selectivity (8.26 × 107 mS s/cm3), less water uptake (41.1%) and lower linear expansion (11.1%) despite of high IEC value (1.62 mmol/g). The results prove that MDPA membranes have great potential application in anion exchange membrane fuel cell.
Barbosa, Camila Gouveia; Caseli, Luciano; Péres, Laura Oliveira
2016-08-15
The search for new molecular architectures to improve the efficiency of enzymes entrapped in ultrathin films is useful to enhance the effectiveness of biosensors. In this present work, conjugated polymers, based on thiophene and fluorine, were investigated to verify their suitability as matrices for the immobilization of urease. The copolymer poly[(9,9-dioctylfluorene)-co-thiophene], PDOF-co-Th was spread on the air-water interface forming stable Langmuir monolayers as determined by surface pressure-area isotherms, polarization-modulation reflection-absorption infrared spectroscopy (PM-IRRAS), and Brewster angle microscopy (BAM). Urease was incorporated in the floating monolayers being further transferred to solid supports as mixed Langmuir-Blodgett (LB) films. These films were then characterized with transfer ratio, fluorescence spectroscopy, PM-IRRAS and atomic force microscopy, confirming the co-transfer of the enzyme as well as its structuring in β-sheets. The catalytic activity was detected for urease, with a lower reaction rate than that encountered for the homogeneous environment. This was attributed to conformational constraints imposed to the biomacromolecule entrapped in the polymeric matrix. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Bassil, Joelle; Alem, Halima; Henrion, Gérard; Roizard, Denis
2016-04-01
Completely homogenous films formed via the layer-by-layer assembly of poly(diallyldimethylammonium chloride) (PDADMAC) and the poly(styrene sulfonate) were successfully obtained on plasma-treated poly(dimethylsiloxane) (PDMS) substrates. To modify the hydrophobicity of the PDMS surface, a cold plasma treatment was previously applied to the membrane, which led to the creation of hydrophilic groups on the surface of the membrane. PDMS wettability and surface morphology were successfully correlated with the plasma parameters. A combination of contact angle measurements, scanning electron microscopy (SEM) and atomic force microscopy (AFM) analysis was used to demonstrate that homogeneous and hydrophilic surfaces could be achieved on PDMS cold-plasma-treated membranes. The stability of the assembled PEL layer on the PDMS was evaluated using a combination of pull-off testing and X-ray photoelectron spectroscopy (XPS), which confirmed the relevance of a plasma pre-treatment as the adhesion of the polyelectrolyte multilayers was greatly enhanced when the deposition was completed on an activated PDMS surface at 80 W for 5 min.
Torres, F G; Troncoso, O P; Rivas, E R; Gomez, C G; Lopez, D
2014-04-01
Dosidicus gigas is the largest and one of the most abundant jumbo squids in the eastern Pacific Ocean. In this paper we have studied the muscle of the mantle of D. gigas (DGM). Morphological, thermal and rheological properties were assessed by means of atomic force microscopy, scanning electron microscopy, energy-dispersive X-ray spectroscopy, differential scanning calorimetry, thermogravimetry and oscillatory rheometry. This study allowed us to assess the morphological and rheological properties of a collagen based network occurring in nature. The results showed that the DGM network displays a nonlinear effect called reversible stress softening (RSS) that has been previously described for other types of biological structures such as naturally occurring cellulose networks and actin networks. We propose that the RSS could play a key role on the way jumbo squids withstand hydrostatic pressure. The results presented here confirm that this phenomenon occurs in a wider number of materials than previously thought, all of them exhibiting different size scales as well as physical conformation. Copyright © 2013 Elsevier B.V. All rights reserved.
Lee, Kisu; Ryu, Jaehoon; Yu, Haejun; Yun, Juyoung; Lee, Jungsup; Jang, Jyongsik
2017-11-02
We modified phenyl-C61-butyric acid methyl ester (PCBM) for use as a stable, efficient electron transport layer (ETL) in inverted perovskite solar cells (PSCs). PCBM containing a surfactant Triton X-100 acts as the ETL and NiO X nanocrystals act as a hole transport layer (HTL). Atomic force microscopy and scanning electron microscopy images showed that surfactant-modified PCBM (s-PCBM) forms a high-quality, uniform, and dense ETL on the rough perovskite layer. This layer effectively blocks holes and reduces interfacial recombination. Steady-state photoluminescence and electrochemical impedance spectroscopy analyses confirmed that Triton X-100 improved the electron extraction performance of PCBM. When the s-PCBM ETL was used, the average power conversion efficiency increased from 10.76% to 15.68%. This improvement was primarily caused by the increases in the open-circuit voltage and fill factor. s-PCBM-based PSCs also showed good air-stability, retaining 83.8% of their initial performance after 800 h under ambient conditions.
Nazeer, Muhammad Anwaar; Yilgör, Emel; Yilgör, Iskender
2017-11-01
Preparation and characterization of chitosan/hydroxyapatite (CS/HA) nanocomposites displaying an intercalated structure is reported. Hydroxyapatite was synthesized through sol-gel process. Formic acid was introduced as a new solvent to obtain stable dispersions of nano-sized HA particles in polymer solution. CS/HA dispersions with HA contents of 5, 10 and 20% by weight were prepared. Self-assembling of HA nanoparticles during the drying of the solvent cast films led to the formation of homogeneous CS/HA nanocomposites. Composite films were analyzed by scanning electron microscopy (SEM), atomic force microscopy (AFM), energy dispersive X-rays (EDX) analysis, Fourier transform infrared (FTIR) spectroscopy, X-rays diffraction (XRD) analysis and thermogravimetric analysis (TGA). SEM and AFM confirmed the presence of uniformly distributed HA nanoparticles on the chitosan matrix surface. XRD patterns and cross-sectional SEM images showed the formation of layered nanocomposites. Complete degradation of chitosan matrix in TGA experiments, led to the formation of nanoporous 3D scaffolds containing hydroxyapatite, β-tricalcium phosphate and calcium pyrophosphate. CS/HA composites can be considered as promising materials for bone tissue engineering applications. Copyright © 2017 Elsevier Ltd. All rights reserved.
Complete Prevention of Dendrite Formation in Zn Metal Anodes by Means of Pulsed Charging Protocols.
Garcia, Grecia; Ventosa, Edgar; Schuhmann, Wolfgang
2017-06-07
Zn metal as anode in rechargeable batteries, such as Zn/air or Zn/Ni, suffers from poor cyclability. The formation of Zn dendrites upon cycling is the key limiting step. We report a systematic study of the influence of pulsed electroplating protocols on the formation of Zn dendrites and in turn on strategies to completely prevent Zn dendrite formation. Because of the large number of variables in electroplating protocols, a scanning droplet cell technique was adapted as a high-throughput methodology in which a descriptor of the surface roughness can be in situ derived by means of electrochemical impedance spectroscopy. Upon optimizing the electroplating protocol by controlling nucleation, zincate ion depletion, and zincate ion diffusion, scanning electron microscopy and atomic force microscopy confirmed the growth of uniform and homogenous Zn deposits with a complete prevention of dendrite growth. The implementation of pulsed electroplating as the charging protocol for commercially available Ni-Zn batteries leads to substantially prolonged cyclability demonstrating the benefits of pulsed charging in Zn metal-based batteries.
NASA Astrophysics Data System (ADS)
Malek Hosseini, S. M. B.; Baizaee, S. M.; Naderi, Hamid Reza; Dare Kordi, Ali
2018-01-01
Excimer laser was used for reduction and exfoliation of graphite oxide (GO) at room temperature under air ambient. The prepared excimer laser reduced graphite oxide (XLRGO) is characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM), nitrogen adsorption/desorption (BET method), X-ray diffraction (XRD), X-ray photoemission spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR) and UV-vis absorption techniques for surface, structural functional groups and band gap analysis. Electrochemical properties are investigated using cyclic voltammetry, galvanostatic charge-discharge, electrochemical impedance spectroscopy (EIS) and continues cyclic voltammetry (CCV) in 0.5 M Na2SO4 as electrolyte. Electrochemical investigations revealed that XLRGO electrode has enhanced supercapacitive performance including specific capacitance of 299 F/g at a scan rate of 2 mV/s. Furthermore, CCV measurement showed that XLRGO electrode kept 97.8% of its initial capacitance/capacity after 4000 cycles. The obtained results from electrochemical investigations confirm that the reduction of GO by using an excimer laser produces high-quality graphene for supercapacitor applications without the need for additional operations.
Janus monolayers of transition metal dichalcogenides.
Lu, Ang-Yu; Zhu, Hanyu; Xiao, Jun; Chuu, Chih-Piao; Han, Yimo; Chiu, Ming-Hui; Cheng, Chia-Chin; Yang, Chih-Wen; Wei, Kung-Hwa; Yang, Yiming; Wang, Yuan; Sokaras, Dimosthenis; Nordlund, Dennis; Yang, Peidong; Muller, David A; Chou, Mei-Yin; Zhang, Xiang; Li, Lain-Jong
2017-08-01
Structural symmetry-breaking plays a crucial role in determining the electronic band structures of two-dimensional materials. Tremendous efforts have been devoted to breaking the in-plane symmetry of graphene with electric fields on AB-stacked bilayers or stacked van der Waals heterostructures. In contrast, transition metal dichalcogenide monolayers are semiconductors with intrinsic in-plane asymmetry, leading to direct electronic bandgaps, distinctive optical properties and great potential in optoelectronics. Apart from their in-plane inversion asymmetry, an additional degree of freedom allowing spin manipulation can be induced by breaking the out-of-plane mirror symmetry with external electric fields or, as theoretically proposed, with an asymmetric out-of-plane structural configuration. Here, we report a synthetic strategy to grow Janus monolayers of transition metal dichalcogenides breaking the out-of-plane structural symmetry. In particular, based on a MoS 2 monolayer, we fully replace the top-layer S with Se atoms. We confirm the Janus structure of MoSSe directly by means of scanning transmission electron microscopy and energy-dependent X-ray photoelectron spectroscopy, and prove the existence of vertical dipoles by second harmonic generation and piezoresponse force microscopy measurements.
Rhombic organization of microvilli domains found in a cell model of the human intestine
Grünebaum, Jonas; Schäfer, Marcus; Mulac, Dennis; Rehfeldt, Florian; Langer, Klaus; Kramer, Armin; Riethmüller, Christoph
2018-01-01
Symmetry is rarely found on cellular surfaces. An exception is the brush border of microvilli, which are essential for the proper function of transport epithelia. In a healthy intestine, they appear densely packed as a 2D-hexagonal lattice. For in vitro testing of intestinal transport the cell line Caco-2 has been established. As reported by electron microscopy, their microvilli arrange primarily in clusters developing secondly into a 2D-hexagonal lattice. Here, atomic force microscopy (AFM) was employed under aqueous buffer conditions on Caco-2 cells, which were cultivated on permeable filter membranes for optimum differentiation. For analysis, the exact position of each microvillus was detected by computer vision; subsequent Fourier transformation yielded the type of 2D-lattice. It was confirmed, that Caco-2 cells can build a hexagonal lattice of microvilli and form clusters. Moreover, a second type of arrangement was discovered, namely a rhombic lattice, which appeared at sub-maximal densities of microvilli with (29 ± 4) microvilli / μm2. Altogether, the findings indicate the existence of a yet undescribed pattern in cellular organization. PMID:29320535
NASA Astrophysics Data System (ADS)
Uto, Koichiro; Yamamoto, Kazuya; Kishimoto, Naoko; Muraoka, Masahiro; Aoyagi, Takao; Yamashita, Ichiro
2013-04-01
We have fabricated electroactive multilayer thin films containing ferritin protein cages. The multilayer thin films were prepared on a solid substrate by the alternate electrostatic adsorption of (apo)ferritin and poly( N-isopropylacrylamide- co-2-carboxyisopropylacrylamide) (NIPAAm- co-CIPAAm) in pH 3.5 acetate buffer solution. The assembly process was monitored using a quartz crystal microbalance. The (apo)ferritin/poly(NIPAAm- co-CIPAAm) multilayer thin films were then cross-linked using a water-soluble carbodiimide, 1-[3-(dimethylamino)propyl]-3-ethylcarbodiimide. The cross-linked films were stable under a variety of conditions. The surface morphology and thickness of the multilayer thin films were characterized by atomic force microscopy, and the ferritin iron cores were observed by scanning electron microscopy to confirm the assembly mechanism. Cyclic voltammetry measurements showed different electrochemical properties for the cross-linked ferritin and apoferritin multilayer thin films, and the effect of stability of the multilayer film on its electrochemical properties was also examined. Our method for constructing multilayer films containing protein cages is expected to be useful in building more complex functional inorganic nanostructures.
Microstructural Evolution of Secondary Phases in the Cast Duplex Stainless Steels CD3MN and CD3MWCuN
NASA Astrophysics Data System (ADS)
Kim, Yoon-Jun; Ugurlu, Ozan; Jiang, Chao; Gleeson, Brian; Chumbley, L. Scott
2007-02-01
The isothermal formation behavior of secondary phases in two types of duplex stainless steels (DSS), CD3MN and CD3MWCuN, was characterized. Samples were heat treated from 1 minute to 30 days at temperatures from 700°C to 900°C. Small carbide (M23C6) and nitride (Cr2N) precipitates, together with the intermetallic phases sigma and chi, were observed using scanning electron microscopy (SEM) and confirmed by transmission electron microscopy (TEM) analyses. Based on SEM analysis, time-temperature-transformation (TTT) curves for the sigma and chi phases were determined by measuring their volume fractions from backscattered electron micrographs of heat-treated and quenched sample cross sections. Resulting TTT curves showed that the maximum formation temperature for chi is lower than that for sigma, while the time to reach 1 vol pct formation is much less for sigma than it is for chi. The thermodynamic driving forces associated with the sigma and chi formation were assessed using Thermo-Calc.
Parchine, Mikhail; McGrath, Joe; Bardosova, Maria; Pemble, Martyn E
2016-06-14
We present our results on the fabrication of large area colloidal photonic crystals on flexible poly(ethylene terephthalate) (PET) film using a roll-to-roll Langmuir-Blodgett technique. Two-dimensional (2D) and three-dimensional (3D) colloidal photonic crystals from silica nanospheres (250 and 550 nm diameter) with a total area of up to 340 cm(2) have been fabricated in a continuous manner compatible with high volume manufacturing. In addition, the antireflective properties and structural integrity of the films have been enhanced via the use of a second roll-to-roll process, employing a slot-die coating of an optical adhesive over the photonic crystal films. Scanning electron microscopy images, atomic force microscopy images, and UV-vis optical transmission and reflection spectra of the fabricated photonic crystals are analyzed. This analysis confirms the high quality of the 2D and 3D photonic crystals fabricated by the roll-to-roll LB technique. Potential device applications of the large area 2D and 3D colloidal photonic crystals on flexible PET film are briefly reviewed.
NASA Astrophysics Data System (ADS)
Sohbatzadeh, F.; Eshghabadi, M.; Mohsenpour, T.
2018-06-01
The surface modification of cotton samples was carried out using a liquid (ethanol) electrospray-assisted atmospheric pressure plasma jet. X-ray photoelectron spectroscopy (XPS) and Raman analysis confirmed the successful deposition of diamond like carbon (DLC) nano structures on the cotton surface. The super hydrophobic state of the samples was probed by contact angle measurements. The water repellency of the layers was tuned by controlling the voltage applied to the electrospray electrode. An investigation of the morphological and chemical structures of the samples by field emission scanning microscopy, atomic force microscopy (AFM) and XPS indicated that the physical shape, distribution and amorphization of the DLC structures were successfully adjusted and improved by applying a voltage to the electrospray electrode. Finally wash durability of the best sample was tested for 35 cycles. In this work, the use of a well-developed atmospheric pressure plasma jet for DLC nano structures deposition can enable a promising environmentally friendly and low-cost approach for modifying cotton fabrics for super water-repellent fabric applications.
Prebiotic organic microstructures.
Bassez, Marie-Paule; Takano, Yoshinori; Kobayashi, Kensei
2012-08-01
Micro- and sub-micrometer spheres, tubules and fiber-filament soft structures have been synthesized in our experiments conducted with 3 MeV proton irradiations of a mixture of simple inorganic constituents, CO, N(2) and H(2)O. We analysed the irradiation products, with scanning electron microscopy (SEM) and atomic force microscopy (AFM). These laboratory organic structures produced a wide variety of proteinaceous and non-proteinaceous amino acids after HCl hydrolysis. The enantiomer analysis for D,L-alanine confirmed that the amino acids were abiotically synthesized during the laboratory experiment. We discuss the presence of CO(2) and the production of H(2) during exothermic processes of serpentinization and consequently we discuss the production of hydrothermal CO in a ferromagnesian silicate mineral environment. We also discuss the low intensity of the Earth's magnetic field during the Paleoarchaean Era and consequently we conclude that excitation sources arising from cosmic radiation were much more abundant during this Era. We then show that our laboratory prebiotic microstructures might be synthesized during the Archaean Eon, as a product of the serpentinization process of the rocks and of their mineral contents.
Molecularly imprinted titania nanoparticles for selective recognition and assay of uric acid
NASA Astrophysics Data System (ADS)
Mujahid, Adnan; Khan, Aimen Idrees; Afzal, Adeel; Hussain, Tajamal; Raza, Muhammad Hamid; Shah, Asma Tufail; uz Zaman, Waheed
2015-06-01
Molecularly imprinted titania nanoparticles are su ccessfully synthesized by sol-gel method for the selective recognition of uric acid. Atomic force microscopy is used to study the morphology of uric acid imprinted titania nanoparticles with diameter in the range of 100-150 nm. Scanning electron microscopy images of thick titania layer indicate the formation of fine network of titania nanoparticles with uniform distribution. Molecular imprinting of uric acid as well as its subsequent washing is confirmed by Fourier transformation infrared spectroscopy measurements. Uric acid rebinding studies reveal the recognition capability of imprinted particles in the range of 0.01-0.095 mmol, which is applicable in monitoring normal to elevated levels of uric acid in human blood. The optical shift (signal) of imprinted particles is six times higher in comparison with non-imprinted particles for the same concentration of uric acid. Imprinted titania particles have shown substantially reduced binding affinity toward interfering and structurally related substances, e.g. ascorbic acid and guanine. These results suggest the possible application of titania nanoparticles in uric acid recognition and quantification in blood serum.
Calvo, E J; Danilowicz, C; Lagier, C M; Manrique, J; Otero, M
2004-05-15
Multilayer immobilization of antibody and redox polymer molecules on a gold electrode was achieved, as a strategy for the potential development of an amperometric immunosensor. The step-by-step assembly of antibiotin IgG on Os(bpy)(2)ClPyCH(2)NH poly(allylamine) redox polymer (PAH-Os) adsorbed on thiolated gold electrodes was proved by quartz crystal microbalance (QCM) and atomic force microscopy (AFM) experiments, confirming the electrochemical evidence. The increase of redox charge during the layer-by-layer deposition demonstrated that charge propagation within the layers is feasible. The multilayer structure proved to be effective for the molecular recognition of horseradish peroxidase-biotin conjugate (HRP-biotin), as confirmed by the QCM measurements and the electrocatalytic reduction current obtained upon H(2)O(2) addition. The catalytic current resulting from PAH-Os mediation was shown to increase with the number of assembled layers. Furthermore, the inventory of IgG molecules on the supramolecular self-assembled structure and the specific and non-specific binding of HRP-biotin conjugate were confirmed by the QCM transient studies, giving information on the kinetics of IgG deposition and HRP-biotin conjugate binding to the IgG.
Black, Jennifer M.; Zhu, Mengyang; Zhang, Pengfei; Unocic, Raymond R.; Guo, Daqiang; Okatan, M. Baris; Dai, Sheng; Cummings, Peter T.; Kalinin, Sergei V.; Feng, Guang; Balke, Nina
2016-01-01
Atomic force microscopy (AFM) force-distance measurements are used to investigate the layered ion structure of Ionic Liquids (ILs) at the mica surface. The effects of various tip properties on the measured force profiles are examined and reveal that the measured ion position is independent of tip properties, while the tip radius affects the forces required to break through the ion layers as well as the adhesion force. Force data is collected for different ILs and directly compared with interfacial ion density profiles predicted by molecular dynamics. Through this comparison it is concluded that AFM force measurements are sensitive to the position of the ion with the larger volume and mass, suggesting that ion selectivity in force-distance measurements are related to excluded volume effects and not to electrostatic or chemical interactions between ions and AFM tip. The comparison also revealed that at distances greater than 1 nm the system maintains overall electroneutrality between the AFM tip and sample, while at smaller distances other forces (e.g., van der waals interactions) dominate and electroneutrality is no longer maintained. PMID:27587276
Biomechanical and proteomic analysis of INF- β-treated astrocytes
NASA Astrophysics Data System (ADS)
Vergara, Daniele; Martignago, Roberta; Leporatti, Stefano; Bonsegna, Stefania; Maruccio, Giuseppe; De Nuccio, Franco; Santino, Angelo; Cingolani, Roberto; Nicolardi, Giuseppe; Maffia, Michele; Rinaldi, Ross
2009-11-01
Astrocytes have a key role in the pathogenesis of several diseases including multiple sclerosis and were proposed as the designed target for immunotherapy. In this study we used atomic force microscopy (AFM) and proteomics methods to analyse and correlate the modifications induced in the viscoleastic properties of astrocytes to the changes induced in protein expression after interferon- β (IFN-β) treatment. Our results indicated that IFN-β treatment resulted in a significant decrease in the Young's modulus, a measure of cell elasticity, in comparison with control cells. The molecular mechanisms that trigger these changes were investigated by 2DE (two-dimensional electrophoresis) and confocal analyses and confirmed by western blotting. Altered proteins were found to be involved in cytoskeleton organization and other important physiological processes.
Ahmed, Adam S.; Wen, Hua; Ohta, Taisuke; ...
2016-04-27
Here, we report the successful growth of high-quality SrO films on highly-ordered pyrolytic graphite (HOPG) and single-layer graphene by molecular beam epitaxy. The SrO layers have (001) orientation as confirmed by X-ray diffraction (XRD) while atomic force microscopy measurements show continuous pinhole-free films having rms surface roughness of <1.5 Å. Moreover, transport measurements of exfoliated graphene, after SrO deposition, show a strong dependence between the Dirac point and Sr oxidation. As a result, the SrO is leveraged as a buffer layer for more complex oxide integration via the demonstration of (001) oriented SrTiO3 grown atop a SrO/HOPG stack.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahmed, Adam S.; Wen, Hua; Ohta, Taisuke
Here, we report the successful growth of high-quality SrO films on highly-ordered pyrolytic graphite (HOPG) and single-layer graphene by molecular beam epitaxy. The SrO layers have (001) orientation as confirmed by X-ray diffraction (XRD) while atomic force microscopy measurements show continuous pinhole-free films having rms surface roughness of <1.5 Å. Moreover, transport measurements of exfoliated graphene, after SrO deposition, show a strong dependence between the Dirac point and Sr oxidation. As a result, the SrO is leveraged as a buffer layer for more complex oxide integration via the demonstration of (001) oriented SrTiO3 grown atop a SrO/HOPG stack.
NASA Astrophysics Data System (ADS)
Qi, Xiaoding; Tsai, Po-Chou; Chen, Yi-Chun; Ko, Cheng-Hung; Huang, Jung-Chun-Andrew; Chen, In-Gann
2008-12-01
Multiferroic BiFeO3 films have been grown on LaNiO3-x/SrTiO3 and Pt/Si substrates by RF magnetron sputtering. The films showed fully saturated ferroelectric hysteresis loops with large remanent polarization of 64 µC cm-2, suitable for most device applications. Piezoresponse force microscopy confirmed that the films were electrically writable. In addition to the high-frequency intrinsic dielectric loss of epitaxial films, the Argand diagram also revealed low-frequency contributions from both dc conductivity and interfacial polarization at electrodes. For polycrystalline films on Pt/Si, the dominant contribution to dielectric loss was space charge polarization at grain boundaries.
Corrosion inhibition of aminated hydroxyl ethyl cellulose on mild steel in acidic condition.
Sangeetha, Y; Meenakshi, S; Sairam Sundaram, C
2016-10-05
Aminated hydroxyethyl cellulose (AHEC) was synthesized, characterized using Fourier Transform Infrared spectroscopy (FTIR) and the corrosion inhibition of AHEC on mild steel in 1M HCl was studied using chemical and electrochemical studies. Results obtained in weight loss method showed that inhibition efficiency increased with increase in concentration of AHEC. The adsorption of the inhibitor on metal surface followed Frumkin isotherm. Polarization studies revealed that the AHEC inhibits through mixed mode. Thermodynamic parameters and activation energy were calculated and discussed. FTIR and X-ray diffraction studies (XRD) confirmed the adsorption of the inhibitor. The surface morphology was studied using Scanning Electron Microscope (SEM) and Atomic Force Microscopy (AFM). Copyright © 2016 Elsevier Ltd. All rights reserved.
Wang, Liying; Meng, Zhenyu; Martina, Felicia; Shao, Huilin; Shao, Fangwei
2017-12-01
DNA tetrahedron as the simplest 3D DNA nanostructure has been applied widely in biomedicine and biosensing. Herein, we design and fabricate a series of circular assemblies of DNA tetrahedron with high purity and decent yields. These circular nanostructures are confirmed by endonuclease digestion, gel electrophoresis and atomic force microscopy. Inspired by rotary protein motor, we demonstrate these circular architectures can serve as a stator for a rotary DNA motor to achieve the circular rotation. The DNA motor can rotate on the stators for several cycles, and the locomotion of the motor is monitored by the real-time fluorescent measurements. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.
Scanning superlens microscopy for non-invasive large field-of-view visible light nanoscale imaging
NASA Astrophysics Data System (ADS)
Wang, Feifei; Liu, Lianqing; Yu, Haibo; Wen, Yangdong; Yu, Peng; Liu, Zhu; Wang, Yuechao; Li, Wen Jung
2016-12-01
Nanoscale correlation of structural information acquisition with specific-molecule identification provides new insight for studying rare subcellular events. To achieve this correlation, scanning electron microscopy has been combined with super-resolution fluorescent microscopy, despite its destructivity when acquiring biological structure information. Here we propose time-efficient non-invasive microsphere-based scanning superlens microscopy that enables the large-area observation of live-cell morphology or sub-membrane structures with sub-diffraction-limited resolution and is demonstrated by observing biological and non-biological objects. This microscopy operates in both non-invasive and contact modes with ~200 times the acquisition efficiency of atomic force microscopy, which is achieved by replacing the point of an atomic force microscope tip with an imaging area of microspheres and stitching the areas recorded during scanning, enabling sub-diffraction-limited resolution. Our method marks a possible path to non-invasive cell imaging and simultaneous tracking of specific molecules with nanoscale resolution, facilitating the study of subcellular events over a total cell period.
Computational model for noncontact atomic force microscopy: energy dissipation of cantilever.
Senda, Yasuhiro; Blomqvist, Janne; Nieminen, Risto M
2016-09-21
We propose a computational model for noncontact atomic force microscopy (AFM) in which the atomic force between the cantilever tip and the surface is calculated using a molecular dynamics method, and the macroscopic motion of the cantilever is modeled by an oscillating spring. The movement of atoms in the tip and surface is connected with the oscillating spring using a recently developed coupling method. In this computational model, the oscillation energy is dissipated, as observed in AFM experiments. We attribute this dissipation to the hysteresis and nonconservative properties of the interatomic force that acts between the atoms in the tip and sample surface. The dissipation rate strongly depends on the parameters used in the computational model.
NASA Astrophysics Data System (ADS)
Oh, Y. J.; Jo, W.; Yang, Y.; Park, S.
2007-04-01
The authors report growth media dependence of electrostatic force characteristics in Escherichia coli O157:H7 biofilm through local measurement by electrostatic force microscopy (EFM). The difference values of electrostatic interaction between the bacterial surface and the abiotic surface show an exponential decay behavior during biofilm development. In the EFM data, the biofilm in the low nutrient media shows a faster decay than the biofilm in the rich media. The surface potential in the bacterial cells was changed from 957to149mV. Local characterization of extracellular materials extracted from the bacteria reveals the progress of the biofilm formation and functional complexities.
NASA Astrophysics Data System (ADS)
Gramaccioni, Chiara; Yang, Yang; Procopio, Alessandra; Pacureanu, Alexandra; Bohic, Sylvain; Malucelli, Emil; Iotti, Stefano; Farruggia, Giovanna; Bukreeva, Inna; Notargiacomo, Andrea; Fratini, Michela; Valenti, Piera; Rosa, Luigi; Berlutti, Francesca; Cloetens, Peter; Lagomarsino, Stefano
2018-01-01
We present here a correlative X-ray microscopy approach for quantitative single cell imaging of molar concentrations. By combining the elemental content provided by X-ray fluorescence microscopy and the morphology information extracted from X-ray phase nanotomography, we determine the intracellular molarity distributions. This correlative method was demonstrated on a freeze-dried human phagocytic cell to obtain the absolute elemental concentration maps of K, P, and Fe. The cell morphology results showed a very good agreement with atomic-force microscopy measurements. This work opens the way for non-destructive single cell chemical analysis down to the sub-cellular level using exclusively synchrotron radiation techniques. It will be of high interest in the case where it is difficult to access the morphology using atomic-force microscopy, for example, on frozen-hydrated cells or tissues.
Rouster, Paul; Pavlovic, Marko; Horváth, Endre; Forró, László; Dey, Sandwip K; Szilagyi, Istvan
2017-09-26
The colloidal stability of titanium oxide nanosheets (TNS) and nanowires (TiONW) was studied in the presence of protamine (natural polyelectrolyte) in aqueous dispersions, where the nanostructures possessed negative net charge, and the protamine was positively charged. Regardless of their shape, similar charging and aggregation behaviors were observed for both TNS and TiONW. Electrophoretic experiments performed at different protamine loadings revealed that the adsorption of protamine led to charge neutralization and charge inversion depending on the polyelectrolyte dose applied. Light scattering measurements indicated unstable dispersions once the surface charge was close to zero or slow aggregation below and above the charge neutralization point with negatively or positively charged nanostructures, respectively. These stability regimes were confirmed by the electron microscopy images taken at different polyelectrolyte loadings. The protamine dose and salt-dependent colloidal stability confirmed the presence of DLVO-type interparticle forces, and no experimental evidence was found for additional interactions (e.g., patch-charge, hydrophobic, or steric forces), which are usually present in similar polyelectrolyte-particle systems. These findings indicate that the polyelectrolyte adsorbs on the TNS and TiONW surfaces in a flat and extended conformation giving rise to the absence of surface heterogeneities. Therefore, protamine is an excellent biocompatible candidate to form smooth surfaces, for instance in multilayers composed of polyelectrolytes and particles to be used in biomedical applications.
Yamasaki, Ryota; Takatsuji, Yoshiyuki; Asakawa, Hitoshi; Fukuma, Takeshi; Haruyama, Tetsuya
2016-01-26
The Trichoderma reesei hydrophobin, HFBI, is a unique structural protein. This protein forms membranes by self-organization at air/water or water/solid interfaces. When HFBI forms a membrane at an air/water interface, the top of the water droplet is flattened. The mechanism underlying this phenomenon has not been explored. In this study, this unique phenomenon has been investigated. Self-organized HFBI membranes form a hexagonal structured membrane on the surface of water droplets; the structure was confirmed by atomic force microscopy (AFM) measurement. Assembled hexagons can form a planar sheet or a tube. Self-organized HFBI membranes on water droplets form a sheet with an array of hexagonal structures or a honeycomb structure. This membrane, with its arrayed hexagonal structures, has very high buckling strength. We hypothesized that the high buckling strength is the reason that water droplets containing HFBI form flattened domes. To test this hypothesis, the strength of the self-organized HFBI membranes was analyzed using AFM. The buckling strength of HFBI membranes was measured to be 66.9 mN/m. In contrast, the surface tension of water droplets containing dissolved HFBI is 42 mN/m. Thus, the buckling strength of a self-organized HFBI membrane is higher than the surface tension of water containing dissolved HFBI. This mechanistic study clarifies why the water droplets formed by self-organized HFBI membranes have a flattened top.
Meng, Fanyong; Mambetsariev, Isa; Tian, Yufeng; Beckham, Yvonne; Meliton, Angelo; Leff, Alan; Gardel, Margaret L.; Allen, Michael J.; Birukov, Konstantin G.
2015-01-01
Reversible changes in lung microstructure accompany lung inflammation, although alterations in tissue micromechanics and their impact on inflammation remain unknown. This study investigated changes in extracellular matrix (ECM) remodeling and tissue stiffness in a model of LPS-induced inflammation and examined the role of lipoxin analog 15-epi-lipoxin A4 (eLXA4) in the reduction of stiffness-dependent exacerbation of the inflammatory process. Atomic force microscopy measurements of live lung slices were used to directly measure local tissue stiffness changes induced by intratracheal injection of LPS. Effects of LPS on ECM properties and inflammatory response were evaluated in an animal model of LPS-induced lung injury, live lung tissue slices, and pulmonary endothelial cell (EC) culture. In vivo, LPS increased perivascular stiffness in lung slices monitored by atomic force microscopy and stimulated expression of ECM proteins fibronectin, collagen I, and ECM crosslinker enzyme, lysyl oxidase. Increased stiffness and ECM remodeling escalated LPS-induced VCAM1 and ICAM1 expression and IL-8 production by lung ECs. Stiffness-dependent exacerbation of inflammatory signaling was confirmed in pulmonary ECs grown on substrates with high and low stiffness. eLXA4 inhibited LPS-increased stiffness in lung cross sections, attenuated stiffness-dependent enhancement of EC inflammatory activation, and restored lung compliance in vivo. This study shows that increased local vascular stiffness exacerbates lung inflammation. Attenuation of local stiffening of lung vasculature represents a novel mechanism of lipoxin antiinflammatory action. PMID:24992633
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miranda, Adelaide; De Beule, Pieter A. A., E-mail: pieter.de-beule@inl.int; Martins, Marco
Combined microscopy techniques offer the life science research community a powerful tool to investigate complex biological systems and their interactions. Here, we present a new combined microscopy platform based on fluorescence optical sectioning microscopy through aperture correlation microscopy with a Differential Spinning Disk (DSD) and nanomechanical mapping with an Atomic Force Microscope (AFM). The illumination scheme of the DSD microscope unit, contrary to standard single or multi-point confocal microscopes, provides a time-independent illumination of the AFM cantilever. This enables a distortion-free simultaneous operation of fluorescence optical sectioning microscopy and atomic force microscopy with standard probes. In this context, we discussmore » sample heating due to AFM cantilever illumination with fluorescence excitation light. Integration of a DSD fluorescence optical sectioning unit with an AFM platform requires mitigation of mechanical noise transfer of the spinning disk. We identify and present two solutions to almost annul this noise in the AFM measurement process. The new combined microscopy platform is applied to the characterization of a DOPC/DOPS (4:1) lipid structures labelled with a lipophilic cationic indocarbocyanine dye deposited on a mica substrate.« less
Toward single cell traction microscopy within 3D collagen matrices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hall, Matthew S.; Long, Rong; Feng, Xinzeng
Mechanical interaction between the cell and its extracellular matrix (ECM) regulates cellular behaviors, including proliferation, differentiation, adhesion, and migration. Cells require the three-dimensional (3D) architectural support of the ECM to perform physiologically realistic functions. However, current understanding of cell–ECM and cell–cell mechanical interactions is largely derived from 2D cell traction force microscopy, in which cells are cultured on a flat substrate. 3D cell traction microscopy is emerging for mapping traction fields of single animal cells embedded in either synthetic or natively derived fibrous gels. We discuss here the development of 3D cell traction microscopy, its current limitations, and perspectives onmore » the future of this technology. Emphasis is placed on strategies for applying 3D cell traction microscopy to individual tumor cell migration within collagen gels. - Highlights: • Review of the current state of the art in 3D cell traction force microscopy. • Bulk and micro-characterization of remodelable fibrous collagen gels. • Strategies for performing 3D cell traction microscopy within collagen gels.« less
Atomic force microscopy of biological samples
DOE Office of Scientific and Technical Information (OSTI.GOV)
Doktycz, Mitchel John
2010-01-01
The ability to evaluate structural-functional relationships in real time has allowed scanning probe microscopy (SPM) to assume a prominent role in post genomic biological research. In this mini-review, we highlight the development of imaging and ancillary techniques that have allowed SPM to permeate many key areas of contemporary research. We begin by examining the invention of the scanning tunneling microscope (STM) by Binnig and Rohrer in 1982 and discuss how it served to team biologists with physicists to integrate high-resolution microscopy into biological science. We point to the problems of imaging nonconductive biological samples with the STM and relate howmore » this led to the evolution of the atomic force microscope (AFM) developed by Binnig, Quate, and Gerber, in 1986. Commercialization in the late 1980s established SPM as a powerful research tool in the biological research community. Contact mode AFM imaging was soon complemented by the development of non-contact imaging modes. These non-contact modes eventually became the primary focus for further new applications including the development of fast scanning methods. The extreme sensitivity of the AFM cantilever was recognized and has been developed into applications for measuring forces required for indenting biological surfaces and breaking bonds between biomolecules. Further functional augmentation to the cantilever tip allowed development of new and emerging techniques including scanning ion-conductance microscopy (SICM), scanning electrochemical microscope (SECM), Kelvin force microscopy (KFM) and scanning near field ultrasonic holography (SNFUH).« less
Imaging latex–carbon nanotube composites by subsurface electrostatic force microscopy
Patel, Sajan; Petty, Clayton W.; Krafcik, Karen Lee; ...
2016-09-08
Electrostatic modes of atomic force microscopy have shown to be non-destructive and relatively simple methods for imaging conductors embedded in insulating polymers. Here we use electrostatic force microscopy to image the dispersion of carbon nanotubes in a latex-based conductive composite, which brings forth features not observed in previously studied systems employing linear polymer films. A fixed-potential model of the probe-nanotube electrostatics is presented which in principle gives access to the conductive nanoparticle's depth and radius, and the polymer film dielectric constant. Comparing this model to the data results in nanotube depths that appear to be slightly above the film–air interface.more » Furthermore, this result suggests that water-mediated charge build-up at the film–air interface may be the source of electrostatic phase contrast in ambient conditions.« less
Understanding amyloid aggregation by statistical analysis of atomic force microscopy images
NASA Astrophysics Data System (ADS)
Adamcik, Jozef; Jung, Jin-Mi; Flakowski, Jérôme; de Los Rios, Paolo; Dietler, Giovanni; Mezzenga, Raffaele
2010-06-01
The aggregation of proteins is central to many aspects of daily life, including food processing, blood coagulation, eye cataract formation disease and prion-related neurodegenerative infections. However, the physical mechanisms responsible for amyloidosis-the irreversible fibril formation of various proteins that is linked to disorders such as Alzheimer's, Creutzfeldt-Jakob and Huntington's diseases-have not yet been fully elucidated. Here, we show that different stages of amyloid aggregation can be examined by performing a statistical polymer physics analysis of single-molecule atomic force microscopy images of heat-denatured β-lactoglobulin fibrils. The atomic force microscopy analysis, supported by theoretical arguments, reveals that the fibrils have a multistranded helical shape with twisted ribbon-like structures. Our results also indicate a possible general model for amyloid fibril assembly and illustrate the potential of this approach for investigating fibrillar systems.
Contact resonance atomic force microscopy imaging in air and water using photothermal excitation.
Kocun, Marta; Labuda, Aleksander; Gannepalli, Anil; Proksch, Roger
2015-08-01
Contact Resonance Force Microscopy (CR-FM) is a leading atomic force microscopy technique for measuring viscoelastic nano-mechanical properties. Conventional piezo-excited CR-FM measurements have been limited to imaging in air, since the "forest of peaks" frequency response associated with acoustic excitation methods effectively masks the true cantilever resonance. Using photothermal excitation results in clean contact, resonance spectra that closely match the ideal frequency response of the cantilever, allowing unambiguous and simple resonance frequency and quality factor measurements in air and liquids alike. This extends the capabilities of CR-FM to biologically relevant and other soft samples in liquid environments. We demonstrate CR-FM in air and water on both stiff silicon/titanium samples and softer polystyrene-polyethylene-polypropylene polymer samples with the quantitative moduli having very good agreement between expected and measured values.
NASA Astrophysics Data System (ADS)
Yurtsever, Ayhan; Sugimoto, Yoshiaki; Fukumoto, Masaki; Abe, Masayuki; Morita, Seizo
2012-08-01
We investigate thin insulating CaF2 films on a Si (111) surface using a combination of noncontact atomic force microscopy (NC-AFM) and Kelvin probe force microscopy (KPFM). Atomic-scale NC-AFM and KPFM images are obtained in different imaging modes by employing two different tip polarities. The KPFM image contrast and the distance-dependent variation of the local contact potential difference (LCPD) give rise to a tip-polarity-dependent contrast inversion. Ca2+ cations had a higher LCPD contrast than F- anions for a positively terminated tip, while the LCPD provided by a negatively charged tip gave a higher contrast for F- anions. Thus, this result implies that it is essential to determine the tip apex polarity to correctly interpret LCPD signals acquired by KPFM.
Narchi, Paul; Alvarez, Jose; Chrétien, Pascal; Picardi, Gennaro; Cariou, Romain; Foldyna, Martin; Prod'homme, Patricia; Kleider, Jean-Paul; I Cabarrocas, Pere Roca
2016-12-01
Both surface photovoltage and photocurrent enable to assess the effect of visible light illumination on the electrical behavior of a solar cell. We report on photovoltage and photocurrent measurements with nanometer scale resolution performed on the cross section of an epitaxial crystalline silicon solar cell, using respectively Kelvin probe force microscopy and conducting probe atomic force microscopy. Even though two different setups are used, the scans were performed on locations within 100-μm distance in order to compare data from the same area and provide a consistent interpretation. In both measurements, modifications under illumination are observed in accordance with the theory of PIN junctions. Moreover, an unintentional doping during the deposition of the epitaxial silicon intrinsic layer in the solar cell is suggested from the comparison between photovoltage and photocurrent measurements.
Yang, Chih-Wen; Lu, Yi-Hsien; Hwang, Ing-Shouh
2013-05-08
We have imaged nanobubbles on highly ordered pyrolytic graphite (HOPG) surfaces in pure water with different atomic force microscopy (AFM) modes, including the frequency-modulation, the tapping, and the PeakForce techniques. We have compared the performance of these modes in obtaining the surface profiles of nanobubbles. The frequency-modulation mode yields a larger height value than the other two modes and can provide more accurate measurement of the surface profiles of nanobubbles. Imaging with PeakForce mode shows that a nanobubble appears smaller and shorter with increasing peak force and disappears above a certain peak force, but the size returns to the original value when the peak force is reduced. This indicates that imaging with high peak forces does not cause gas removal from the nanobubbles. Based on the presented findings and previous AFM observations, the existing models for nanobubbles are reviewed and discussed. The model of gas aggregate inside nanobubbles provides a better explanation for the puzzles of the high stability and the contact angle of surface nanobubbles.
Frequency modulation atomic force microscopy: a dynamic measurement technique for biological systems
NASA Astrophysics Data System (ADS)
Higgins, Michael J.; Riener, Christian K.; Uchihashi, Takayuki; Sader, John E.; McKendry, Rachel; Jarvis, Suzanne P.
2005-03-01
Frequency modulation atomic force microscopy (FM-AFM) has been modified to operate in a liquid environment within an atomic force microscope specifically designed for investigating biological samples. We demonstrate the applicability of FM-AFM to biological samples using the spectroscopy mode to measure the unbinding forces of a single receptor-ligand (biotin-avidin) interaction. We show that quantitative adhesion force measurements can only be obtained provided certain modifications are made to the existing theory, which is used to convert the detected frequency shifts to an interaction force. Quantitative force measurements revealed that the unbinding forces for the biotin-avidin interaction were greater than those reported in previous studies. This finding was due to the use of high average tip velocities, which were calculated to be two orders of magnitude greater than those typically used in unbinding receptor-ligand experiments. This study therefore highlights the potential use of FM-AFM to study a range of biological systems, including living cells and/or single biomolecule interactions.
Subatomic-scale force vector mapping above a Ge(001) dimer using bimodal atomic force microscopy
NASA Astrophysics Data System (ADS)
Naitoh, Yoshitaka; Turanský, Robert; Brndiar, Ján; Li, Yan Jun; Štich, Ivan; Sugawara, Yasuhiro
2017-07-01
Probing physical quantities on the nanoscale that have directionality, such as magnetic moments, electric dipoles, or the force response of a surface, is essential for characterizing functionalized materials for nanotechnological device applications. Currently, such physical quantities are usually experimentally obtained as scalars. To investigate the physical properties of a surface on the nanoscale in depth, these properties must be measured as vectors. Here we demonstrate a three-force-component detection method, based on multi-frequency atomic force microscopy on the subatomic scale and apply it to a Ge(001)-c(4 × 2) surface. We probed the surface-normal and surface-parallel force components above the surface and their direction-dependent anisotropy and expressed them as a three-dimensional force vector distribution. Access to the atomic-scale force distribution on the surface will enable better understanding of nanoscale surface morphologies, chemical composition and reactions, probing nanostructures via atomic or molecular manipulation, and provide insights into the behaviour of nano-machines on substrates.
Spatiotemporally and Mechanically Controlled Triggering of Mast Cells using Atomic Force Microscopy
Hu, Kenneth K.; Bruce, Marc A.; Butte, Manish J.
2014-01-01
Mast cells are thought to be sensitive to mechanical forces, for example, coughing in asthma or pressure in “physical urticarias”. Conversion of mechanical forces to biochemical signals could potentially augment antigenic signaling. Studying the combined effects of mechanical and antigenic cues on mast cells and other hematopoietic cells has been elusive. Here, we present an approach using a modified atomic force microscope cantilever to deliver antigenic signals to mast cells while simultaneously applying mechanical forces. We developed a strategy to concurrently record degranulation events by fluorescence microscopy during antigenic triggering. Finally, we also measured the mechanical forces generated by mast cells while antigen receptors are ligated. We showed that mast cells respond to antigen delivered by the AFM cantilever with prompt degranulation and the generation of strong pushing and pulling forces. We did not discern any relationship between applied mechanical forces and the kinetics of degranulation. These experiments present a new method for dissecting the interactions of mechanical and biochemical cues in signaling responses of immune cells. PMID:24777418
NASA Astrophysics Data System (ADS)
Xiao, Zhiyong
In this dissertation, I present the scanning microscopy and electrical transport studies of ferroelectric thin films and ferroic/2D van der Waals heterostructures. Based on the conducting probe atomic force microscopy and piezo-response force microscopy (PFM) studies of the static and dynamic behavior of ferroelectric domain walls (DW), we found that the ferroelectric polymer poly(vinylidene-fluoride-trifluorethylene) P(VDF-TrFE) is composed of two-dimensional (2D) ferroelectric monolayers (MLs) that are weakly coupled to each other. We also observed polarization asymmetry in epitaxial thin films of ferroelectric Pb(Zr,Ti)O3, which is attributed to the screening properties of the underlying conducting oxide. PFM studies also reveal ferroelectric relaxor-type behavior in ultrathin Sr(Zr,Ti)O3 films epitaxially deposited on Ge. We exploited scanning-probe-controlled domain patterning in a P(VDF-TrFE) top layer to induce nonvolatile modulation of the conduction characteristic of ML molybdenum disulfide (MoS2) between a transistor and a junction state. In the presence of a DW, MoS2 exhibits rectified Ids-Vds (IV) characteristics that are well described by the thermionic emission model. This approach can be applied to a wide range of van der Waals materials to design various functional homojunctions and nanostructures. We also studied the interfacial charge transfer effect between graphene and magnetoelectric Cr2O3 via electrostatic force microscopy and Kelvin probe force microscopy, which reveal p-type doping with up to 150 meV shift of the Fermi level. The graphene/Cr2O3 heterostructure is promising for developing magnetoelectric graphene transistors for spintronic applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
E Nazaretski; J Thibodaux; I Vekhter
2011-12-31
We report the local measurements of the magnetic penetration depth in a superconducting Nb film using magnetic force microscopy (MFM). We developed a method for quantitative extraction of the penetration depth from single-parameter simultaneous fits to the lateral and height profiles of the MFM signal, and demonstrate that the obtained value is in excellent agreement with that obtained from the bulk magnetization measurements.
Tai, Tamin; Kertesz, Vilmos; Lin, Ming -Wei; ...
2017-05-11
As the spatial resolution of mass spectrometry imaging technologies has begun to reach into the nanometer regime, finding readily available or easily made resolution reference materials has become particularly challenging for molecular imaging purposes. This study describes the fabrication, characterization and use of vertical line array polymeric spatial resolution test patterns for nano-thermal analysis/atomic force microscopy/mass spectrometry chemical imaging.
Cheng Xing; Siqun Wang; George M. Pharr; Leslie H. Groom
2008-01-01
Refined wood fibers of a 54-year-old loblolly pine (Pinus taeda L.) mature wood were investigated by nanoindentation and atomic force microscopy (AFM). The effect of steam pressure, in the range of 2?18 bar, during thermomechanical refining was investigated and the nanomechanical properties and nano- or micro-level damages of the cell wall were...
NASA Astrophysics Data System (ADS)
Woellner, Cristiano F.; Freire, José A.; Guide, Michele; Nguyen, Thuc-Quyen
2011-08-01
We develop a simple continuum model for the current voltage characteristics of a material as measured by the conducting atomic force microscopy, including space charge effects. We address the effect of the point contact on the magnitude of the current and on the transition voltages between the different current regimes by comparing these with the corresponding expressions obtained with planar electrodes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tai, Tamin; Kertesz, Vilmos; Lin, Ming -Wei
As the spatial resolution of mass spectrometry imaging technologies has begun to reach into the nanometer regime, finding readily available or easily made resolution reference materials has become particularly challenging for molecular imaging purposes. This study describes the fabrication, characterization and use of vertical line array polymeric spatial resolution test patterns for nano-thermal analysis/atomic force microscopy/mass spectrometry chemical imaging.
López-Jiménez, Lidia; Viñas, Miguel; Vinuesa, Teresa
2015-01-01
Aim: To visualize by Atomic Force Microscopy the alterations induced on Enterococcus. faecalis surface after treatment with 2 types of laser: Erbium chromium:yttrium-scandium-gallium-garnet (Er,Cr:YSGG) laser and Diode laser. Material and Methods: Bacterial suspensions from overnight cultures of E. faecalis were irradiated during 30 seconds with the laser-lights at 1 W and 2 W of power, leaving one untreated sample as control. Surface alterations on treated E. faecalis were visualized by Atomic Force Microscopy (AFM) and its surface roughness determined. Results: AFM imaging showed that at high potency of laser both cell morphology and surface roughness resulted altered, and that several cell lysis signs were easily visualized. Surface roughness clearly increase after the treatment with Er,Cr:YSGG at 2W of power, while the other treatments gave similar values of surface roughness. The effect of lasers on bacterial surfaces visualized by AFM revealed drastic alterations. Conclusions: AFM is a good tool to evaluate surface injuries after laser treatment; and could constitute a measure of antimicrobial effect that can complete data obtained by determination of microbial viability. Key words:Atomic force microscopy, Er,Cr:YSGG laser, diode laser, Enterococcus faecalis, surface roughness. PMID:25475770
Zhao, Guang; Dai, Caili; Zhao, Mingwei; You, Qing; Chen, Ang
2013-01-01
A dispersed particle gel (DPG) was successfully prepared from a polymer gel at room temperature. The polymer gel system, morphology, viscosity changes, size distribution, and zeta potential of DPG particles were investigated. The results showed that zirconium gel systems with different strengths can be cross-linked within 2.5 h at low temperature. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), and atomic force microscopy (AFM) results showed that the particles were polygonal particles with nano-size distribution. According to the viscosity changes, the whole preparation process can be divided into two major stages: the bulk gel cross-linking reaction period and the DPG particle preparation period. A polymer gel with a 3-dimensional network was formed in the bulk gel cross-linking reaction period whereas shearing force and frictional force were the main driving forces for the preparation of DPG particles, and thus affected the morphology of DPG particles. High shearing force and frictional force reduced the particle size distribution, and then decreased the zeta potential (absolute value). The whole preparation process could be completed within 3 h at room temperature. It could be an efficient and energy-saving technology for preparation of DPG particles. PMID:24324817
Investigating biomolecular recognition at the cell surface using atomic force microscopy.
Wang, Congzhou; Yadavalli, Vamsi K
2014-05-01
Probing the interaction forces that drive biomolecular recognition on cell surfaces is essential for understanding diverse biological processes. Force spectroscopy has been a widely used dynamic analytical technique, allowing measurement of such interactions at the molecular and cellular level. The capabilities of working under near physiological environments, combined with excellent force and lateral resolution make atomic force microscopy (AFM)-based force spectroscopy a powerful approach to measure biomolecular interaction forces not only on non-biological substrates, but also on soft, dynamic cell surfaces. Over the last few years, AFM-based force spectroscopy has provided biophysical insight into how biomolecules on cell surfaces interact with each other and induce relevant biological processes. In this review, we focus on describing the technique of force spectroscopy using the AFM, specifically in the context of probing cell surfaces. We summarize recent progress in understanding the recognition and interactions between macromolecules that may be found at cell surfaces from a force spectroscopy perspective. We further discuss the challenges and future prospects of the application of this versatile technique. Copyright © 2014 Elsevier Ltd. All rights reserved.
Growth of highly strained CeO 2 ultrathin films
Shi, Yezhou; Lee, Sang Chul; Monti, Matteo; ...
2016-11-07
Large biaxial strain is a promising route to tune the functionalities of oxide thin films. However, large strain is often not fully realized due to the formation of misfit dislocations at the film/substrate interface. In this work, we examine the growth of strained ceria (CeO 2) thin films on (001)-oriented single crystal yttria-stabilized zirconia (YSZ) via pulsed-laser deposition. By varying the film thickness systematically between 1 and 430 nm, we demonstrate that ultrathin ceria films are coherently strained to the YSZ substrate for thicknesses up to 2.7 nm, despite the large lattice mismatch (~5%). The coherency is confirmed by bothmore » X-ray diffraction and high-resolution transmission electron microscopy. This thickness is several times greater than the predicted equilibrium critical thickness. Partial strain relaxation is achieved by forming semirelaxed surface islands rather than by directly nucleating dislocations. In situ reflective high-energy electron diffraction during growth confirms the transition from 2-D (layer-by-layer) to 3-D (island) at a film thickness of ~1 nm, which is further supported by atomic force microscopy. We propose that dislocations likely nucleate near the surface islands and glide to the film/substrate interface, as evidenced by the presence of 60° dislocations. Finally, an improved understanding of growing oxide thin films with a large misfit lays the foundation to systematically explore the impact of strain and dislocations on properties such as ionic transport and redox chemistry.« less
Verma, Vivek; Balasubramanian, K
2014-08-01
Porous composite membrane of polyacrylonitrile (PAN) and Lantana camara essential oil was synthesized by solvent casting method. Stability of oil in PAN solution was measured by XiGo nano tool indicating constant relaxation time of 1487 time/s. Pore size of few microns confirmed by electron microscopy was supported by atomic force microscopy indicating roughness factor of 0.9 nm. Contact angle of 2° inveterates superhydrophilicity of the composite membrane. Membrane showed excellent antibacterial activity against both Gram-positive Bacillus subtilis and Gram-negative Escherichia coli with a 7-10mm zone of inhibition. In vitro release of Lantana oil from the composite membrane was carried out in isotonic phosphate buffer solution (pH=7.4). Lantana oil was released for 9h, lag time of 3h with constant 33% release confirmed PAN membranes as potential system for pulsatile drug delivery applications. Diffusion of E-caryophyllene (antibacterial component of oil) which was studied through molecular simulation using Material Studio software ensued diffusion coefficient value of 1.11∗10(-9) m(2)/s. Biocompatibility of the composite membrane was assessed by mouse embryonic fibroblast cell line (NIH 3T3) through MTT assay indicating more than 91% viable cell even at 200 μg/mL concentration. Such membranes can be efficiently used in biomedical applications as antibacterial and antifungal agent. Copyright © 2014 Elsevier B.V. All rights reserved.
A multifunctional magneto-fluorescent nanocomposite for visual recognition of targeted cancer cells
NASA Astrophysics Data System (ADS)
Acharya, Amitabha; Rawat, Kiran; Bhat, Kaisar Ahmad; Patial, Vikram; Padwad, Yogendra S.
2015-11-01
A multifunctional hybrid nanocomposite material of iron oxide nanoparticles and CdS quantum dots was synthesized by a direct amide coupling reaction. The prepared nanoparticles were characterized by transmission electron microscopy (TEM), atomic force microscopy (AFM), dynamic light scattering (DLS) and zeta potential studies. The TEM studies suggested that the sizes of the particles were in the range of 13.5 ± 1 nm. The energy dispersive x-ray (EDX) analysis confirmed the presence of Fe, Cd and S in the nanocomposites. To check the utility of this nanocomposite as a molecular imaging probe, these nanoparticles were further conjugated with folic acid. The folic acid conjugated nanocomposites were treated with rat glioma cells (C6, folic acid receptor over-expressing cell lines), human lung adenocarcinoma epithelial cells (A549, folic acid receptor negative cell lines) and normal mouse splenocytes for cell uptake and cytotoxicity studies. The nanoparticle internalization to C6 cells was confirmed by green fluorescence emission from these cells. Prussian blue staining studies suggested the intracellular presence of iron oxide. Further it was found that folic acid conjugated nanocomposites were significantly toxic to C6 cells only after 48 h but not to A549 cells or splenocytes. These studies indicated that the prepared nanocomposites have the potential to be used as delivery agent for magnetic and fluorescent materials towards folic acid receptor over-expressing cells and thus can find their application in the field of in vitro imaging diagnosis.
Lu, Yonghua; Muñoz, M; Steplecaru, C S; Hao, Cheng; Bai, Ming; Garcia, N; Schindler, K; Esquinazi, P
2006-08-18
We present measurements of the electric potential fluctuations on the surface of highly oriented pyrolytic graphite using electrostatic force and atomic force microscopy. Micrometric domainlike potential distributions are observed even when the sample is grounded. Such potential distributions are unexpected given the good metallic conductivity of graphite because the surface should be an equipotential. Our results indicate the coexistence of regions with "metalliclike" and "insulatinglike" behaviors showing large potential fluctuations of the order of 0.25 V. In lower quality graphite, this effect is not observed. Experiments are performed in Ar and air atmospheres.
Identifying passivated dynamic force microscopy tips on H:Si(100)
NASA Astrophysics Data System (ADS)
Sharp, Peter; Jarvis, Sam; Woolley, Richard; Sweetman, Adam; Kantorovich, Lev; Pakes, Chris; Moriarty, Philip
2012-06-01
The chemical reactivity of the tip plays a central role in image formation in dynamic force microscopy, but in very many cases the state of the probe is a key experimental unknown. We show here that an H-terminated and thus chemically unreactive tip can be readily identified via characteristic imaging and spectroscopic (F(z)) signatures, including, in particular, contrast inversion, on hydrogen-passivated Si(100). We determine the tip apex termination by comparing site-specific difference force curves with the results of density functional theory, providing a clear protocol for the identification of chemically unreactive tips on silicon surfaces.
Kannan, Ashwin; Karumanchi, Subbalakshmi Latha; Krishna, Vinatha; Thiruvengadam, Kothai; Ramalingam, Subramaniam; Gautam, Pennathur
2014-01-01
Colonization of surfaces by bacterial cells results in the formation of biofilms. There is a need to study the factors that are important for formation of biofilms since biofilms have been implicated in the failure of semiconductor devices and implants. In the present study, the adhesion force of biofilms (formed by Pseudomonas aeruginosa) on porous silicon substrates of varying surface roughness was quantified using atomic force microscopy (AFM). The experiments were carried out to quantify the effect of surface roughness on the adhesion force of biofilm. The results show that the adhesion force increased from 1.5 ± 0.5 to 13.2 ± 0.9 nN with increase in the surface roughness of silicon substrate. The results suggest that the adhesion force of biofilm is affected by surface roughness of substrate. © 2014 Wiley Periodicals, Inc.
Force determination in lateral magnetic tweezers combined with TIRF microscopy.
Madariaga-Marcos, J; Hormeño, S; Pastrana, C L; Fisher, G L M; Dillingham, M S; Moreno-Herrero, F
2018-03-01
Combining single-molecule techniques with fluorescence microscopy has attracted much interest because it allows the correlation of mechanical measurements with directly visualized DNA : protein interactions. In particular, its combination with total internal reflection fluorescence microscopy (TIRF) is advantageous because of the high signal-to-noise ratio this technique achieves. This, however, requires stretching long DNA molecules across the surface of a flow cell to maximize polymer exposure to the excitation light. In this work, we develop a module to laterally stretch DNA molecules at a constant force, which can be easily implemented in regular or combined magnetic tweezers (MT)-TIRF setups. The pulling module is further characterized in standard flow cells of different thicknesses and glass capillaries, using two types of micrometer size superparamagnetic beads, long DNA molecules, and a home-built device to rotate capillaries with mrad precision. The force range achieved by the magnetic pulling module was between 0.1 and 30 pN. A formalism for estimating forces in flow-stretched tethered beads is also proposed, and the results compared with those of lateral MT, demonstrating that lateral MT achieve higher forces with lower dispersion. Finally, we show the compatibility with TIRF microscopy and the parallelization of measurements by characterizing DNA binding by the centromere-binding protein ParB from Bacillus subtilis. Simultaneous MT pulling and fluorescence imaging demonstrate the non-specific binding of BsParB on DNA under conditions restrictive to condensation.
Mutation-Specific Effects on Thin Filament Length in Thin Filament Myopathy
de Winter, Josine M.; Joureau, Barbara; Lee, Eun-Jeong; Kiss, Balázs; Yuen, Michaela; Gupta, Vandana A.; Pappas, Christopher T.; Gregorio, Carol C.; Stienen, Ger J. M.; Edvardson, Simon; Wallgren-Pettersson, Carina; Lehtokari, Vilma-Lotta; Pelin, Katarina; Malfatti, Edoardo; Romero, Norma B.; van Engelen, Baziel G.; Voermans, Nicol C.; Donkervoort, Sandra; Bönnemann, C. G.; Clarke, Nigel F.; Beggs, Alan H.; Granzier, Henk; Ottenheijm, Coen A. C.
2016-01-01
Objective Thin filament myopathies are among the most common nondystrophic congenital muscular disorders, and are caused by mutations in genes encoding proteins that are associated with the skeletal muscle thin filament. Mechanisms underlying muscle weakness are poorly understood, but might involve the length of the thin filament, an important determinant of force generation. Methods We investigated the sarcomere length-dependence of force, a functional assay that provides insights into the contractile strength of muscle fibers as well as the length of the thin filaments, in muscle fibers from 51 patients with thin filament myopathy caused by mutations in NEB, ACTA1, TPM2, TPM3, TNNT1, KBTBD13, KLHL40, and KLHL41. Results Lower force generation was observed in muscle fibers from patients of all genotypes. In a subset of patients who harbor mutations in NEB and ACTA1, the lower force was associated with downward shifted force–sarcomere length relations, indicative of shorter thin filaments. Confocal microscopy confirmed shorter thin filaments in muscle fibers of these patients. A conditional Neb knockout mouse model, which recapitulates thin filament myopathy, revealed a compensatory mechanism; the lower force generation that was associated with shorter thin filaments was compensated for by increasing the number of sarcomeres in series. This allowed muscle fibers to operate at a shorter sarcomere length and maintain optimal thin–thick filament overlap. Interpretation These findings might provide a novel direction for the development of therapeutic strategies for thin filament myopathy patients with shortened thin filament lengths. PMID:27074222
Electric contributions to magnetic force microscopy response from graphene and MoS{sub 2} nanosheets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Lu Hua, E-mail: luhua.li@deakin.edu.au; Chen, Ying
Magnetic force microscopy (MFM) signals have recently been detected from whole pieces of mechanically exfoliated graphene and molybdenum disulfide (MoS{sub 2}) nanosheets, and magnetism of the two nanomaterials was claimed based on these observations. However, non-magnetic interactions or artefacts are commonly associated with MFM signals, which make the interpretation of MFM signals not straightforward. A systematic investigation has been done to examine possible sources of the MFM signals from graphene and MoS{sub 2} nanosheets and whether the MFM signals can be correlated with magnetism. It is found that the MFM signals have significant non-magnetic contributions due to capacitive and electrostaticmore » interactions between the nanosheets and conductive cantilever tip, as demonstrated by electric force microscopy and scanning Kevin probe microscopy analyses. In addition, the MFM signals of graphene and MoS{sub 2} nanosheets are not responsive to reversed magnetic field of the magnetic cantilever tip. Therefore, the observed MFM response is mainly from electric artefacts and not compelling enough to correlate with magnetism of graphene and MoS{sub 2} nanosheets.« less
Nanoscale simultaneous chemical and mechanical imaging via peak force infrared microscopy
Wang, Le; Wang, Haomin; Wagner, Martin; Yan, Yong; Jakob, Devon S.; Xu, Xiaoji G.
2017-01-01
Nondestructive chemical and mechanical measurements of materials with ~10-nm spatial resolution together with topography provide rich information on the compositions and organizations of heterogeneous materials and nanoscale objects. However, multimodal nanoscale correlations are difficult to achieve because of the limitation on spatial resolution of optical microscopy and constraints from instrumental complexities. We report a novel noninvasive spectroscopic scanning probe microscopy method—peak force infrared (PFIR) microscopy—that allows chemical imaging, collection of broadband infrared spectra, and mechanical mapping at a spatial resolution of 10 nm. In our technique, chemical absorption information is directly encoded in the withdraw curve of the peak force tapping cycle after illumination with synchronized infrared laser pulses in a simple apparatus. Nanoscale phase separation in block copolymers and inhomogeneity in CH3NH3PbBr3 perovskite crystals are studied with correlative infrared/mechanical nanoimaging. Furthermore, we show that the PFIR method is sensitive to the presence of surface phonon polaritons in boron nitride nanotubes. PFIR microscopy will provide a powerful analytical tool for explorations at the nanoscale across wide disciplines. PMID:28691096
NASA Astrophysics Data System (ADS)
Odaka, Akihiro; Satoh, Nobuo; Katori, Shigetaka
2017-08-01
We partially deposited fullerene (C60) and phenyl-C61-butyric acid methyl ester thin films that are typical n-type semiconductor materials on indium-tin oxide by mist deposition at various substrate temperatures. The topographic and surface potential images were observed via dynamic force microscopy/Kelvin probe force microscopy with the frequency modulation detection method. We proved that the area where a thin film is deposited depends on the substrate temperature during deposition from the topographic images. It was also found that the surface potential depends on the substrate temperature from the surface potential images.
Thalhammer, S; Koehler, U; Stark, R W; Heckl, W M
2001-06-01
Surface topography of human metaphase chromosomes following GTG banding was examined using high resolution atomic force microscopy (AFM). Although using a completely different imaging mechanism, which is based on the mechanical interaction of a probe tip with the chromosome, the observed banding pattern is comparable to results from light microscopy and a karyotype of the AFM imaged metaphase spread can be generated. The AFM imaging process was performed on a normal 2n = 46, XX karyotype and on a 2n = 46, XY, t(2;15)(q23;q15) karyotype as an example of a translocation of chromosomal bands.
Mutation-specific effects on thin filament length in thin filament myopathy.
Winter, Josine M de; Joureau, Barbara; Lee, Eun-Jeong; Kiss, Balázs; Yuen, Michaela; Gupta, Vandana A; Pappas, Christopher T; Gregorio, Carol C; Stienen, Ger J M; Edvardson, Simon; Wallgren-Pettersson, Carina; Lehtokari, Vilma-Lotta; Pelin, Katarina; Malfatti, Edoardo; Romero, Norma B; Engelen, Baziel G van; Voermans, Nicol C; Donkervoort, Sandra; Bönnemann, C G; Clarke, Nigel F; Beggs, Alan H; Granzier, Henk; Ottenheijm, Coen A C
2016-06-01
Thin filament myopathies are among the most common nondystrophic congenital muscular disorders, and are caused by mutations in genes encoding proteins that are associated with the skeletal muscle thin filament. Mechanisms underlying muscle weakness are poorly understood, but might involve the length of the thin filament, an important determinant of force generation. We investigated the sarcomere length-dependence of force, a functional assay that provides insights into the contractile strength of muscle fibers as well as the length of the thin filaments, in muscle fibers from 51 patients with thin filament myopathy caused by mutations in NEB, ACTA1, TPM2, TPM3, TNNT1, KBTBD13, KLHL40, and KLHL41. Lower force generation was observed in muscle fibers from patients of all genotypes. In a subset of patients who harbor mutations in NEB and ACTA1, the lower force was associated with downward shifted force-sarcomere length relations, indicative of shorter thin filaments. Confocal microscopy confirmed shorter thin filaments in muscle fibers of these patients. A conditional Neb knockout mouse model, which recapitulates thin filament myopathy, revealed a compensatory mechanism; the lower force generation that was associated with shorter thin filaments was compensated for by increasing the number of sarcomeres in series. This allowed muscle fibers to operate at a shorter sarcomere length and maintain optimal thin-thick filament overlap. These findings might provide a novel direction for the development of therapeutic strategies for thin filament myopathy patients with shortened thin filament lengths. Ann Neurol 2016;79:959-969. © 2016 American Neurological Association.
Combining PCR with Microscopy to Reduce Costs of Laboratory Diagnosis of Buruli Ulcer
Yeboah-Manu, Dorothy; Asante-Poku, Adwoa; Asan-Ampah, Kobina; Ampadu, Emelia Danso Edwin; Pluschke, Gerd
2011-01-01
The introduction of antibiotic therapy as first-line treatment of Buruli ulcer underlines the importance of laboratory confirmation of clinical diagnosis. Because smear microscopy has very limited sensitivity, the technically demanding and more expensive IS2404 diagnostic polymerase chain reaction (PCR) has become the main method for confirmation. By optimization of the release of mycobacteria from swab specimen and concentration of bacterial suspensions before smearing, we were able to improve the detection rate of acid-fast bacilli by microscopy after Ziehl–Neelsen staining. Compared with IS2404 PCR, which is the gold standard diagnostic method, the sensitivity and specificity of microscopy with 100 concentrated specimens were 58.4% and 95.7%, respectively. We subsequently evaluated a stepwise laboratory confirmation algorithm with detection of AFB as first-line method and IS2404 PCR performed only with those samples that were negative in microscopic analysis. This stepwise approach reduced unit cost by more than 50% to $5.41, and the total costs were reduced from $917 to $433. PMID:22049046
Single-Cell Force Spectroscopy of Probiotic Bacteria
Beaussart, Audrey; El-Kirat-Chatel, Sofiane; Herman, Philippe; Alsteens, David; Mahillon, Jacques; Hols, Pascal; Dufrêne, Yves F.
2013-01-01
Single-cell force spectroscopy is a powerful atomic force microscopy modality in which a single living cell is attached to the atomic force microscopy cantilever to quantify the forces that drive cell-cell and cell-substrate interactions. Although various single-cell force spectroscopy protocols are well established for animal cells, application of the method to individual bacterial cells remains challenging, mainly owing to the lack of appropriate methods for the controlled attachment of single live cells on cantilevers. We present a nondestructive protocol for single-bacterial cell force spectroscopy, which combines the use of colloidal probe cantilevers and of a bioinspired polydopamine wet adhesive. Living cells from the probiotic species Lactobacillus plantarum are picked up with a polydopamine-coated colloidal probe, enabling us to quantify the adhesion forces between single bacteria and biotic (lectin monolayer) or abiotic (hydrophobic monolayer) surfaces. These minimally invasive single-cell experiments provide novel, to our knowledge, insight into the specific and nonspecific forces driving the adhesion of L. plantarum, and represent a generic platform for studying the molecular mechanisms of cell adhesion in probiotic and pathogenic bacteria. PMID:23663831
DOE Office of Scientific and Technical Information (OSTI.GOV)
Plomp, M; Malkin, A J
2008-06-02
Atomic force microscopy provides a unique capability to image high-resolution architecture and structural dynamics of pathogens (e.g. viruses, bacteria and bacterial spores) at near molecular resolution in native conditions. Further development of atomic force microscopy in order to enable the correlation of pathogen protein surface structures with specific gene products is essential to understand the mechanisms of the pathogen life cycle. We have applied an AFM-based immunolabeling technique for the proteomic mapping of macromolecular structures through the visualization of the binding of antibodies, conjugated with nanogold particles, to specific epitopes on Bacillus spore surfaces. This information is generated while simultaneouslymore » acquiring the surface morphology of the pathogen. The immunospecificity of this labeling method was established through the utilization of specific polyclonal and monoclonal antibodies that target spore coat and exosporium epitopes of Bacillus atrophaeus and Bacillus anthracis spores.« less
Chacko, Jenu Varghese; Zanacchi, Francesca Cella; Diaspro, Alberto
2013-01-01
In this article, we describe and show the application of some of the most advanced fluorescence superresolution techniques, STED AFM and STORM AFM microscopy towards imaging of cytoskeletal structures, such as microtubule filaments. Mechanical and structural properties can play a relevant role in the investigation of cytoskeletal structures of interest, such as microtubules, that provide support to the cell structure. In fact, the mechanical properties, such as the local stiffness and the elasticity, can be investigated by AFM force spectroscopy with tens of nanometers resolution. Force curves can be analyzed in order to obtain the local elasticity (and the Young's modulus calculation by fitting the force curves from every pixel of interest), and the combination with STED/STORM microscopy integrates the measurement with high specificity and yields superresolution structural information. This hybrid modality of superresolution-AFM working is a clear example of correlative multimodal microscopy. PMID:24027190
Contact resonance atomic force microscopy imaging in air and water using photothermal excitation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kocun, Marta; Labuda, Aleksander; Gannepalli, Anil
2015-08-15
Contact Resonance Force Microscopy (CR-FM) is a leading atomic force microscopy technique for measuring viscoelastic nano-mechanical properties. Conventional piezo-excited CR-FM measurements have been limited to imaging in air, since the “forest of peaks” frequency response associated with acoustic excitation methods effectively masks the true cantilever resonance. Using photothermal excitation results in clean contact, resonance spectra that closely match the ideal frequency response of the cantilever, allowing unambiguous and simple resonance frequency and quality factor measurements in air and liquids alike. This extends the capabilities of CR-FM to biologically relevant and other soft samples in liquid environments. We demonstrate CR-FM inmore » air and water on both stiff silicon/titanium samples and softer polystyrene-polyethylene-polypropylene polymer samples with the quantitative moduli having very good agreement between expected and measured values.« less
Evaluation of the electrical contact area in contact-mode scanning probe microscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Celano, Umberto, E-mail: celano@imec.be, E-mail: u.celano@gmail.com; Chintala, Ravi Chandra; Vandervorst, Wilfried
The tunneling current through an atomic force microscopy (AFM) tip is used to evaluate the effective electrical contact area, which exists between tip and sample in contact-AFM electrical measurements. A simple procedure for the evaluation of the effective electrical contact area is described using conductive atomic force microscopy (C-AFM) in combination with a thin dielectric. We characterize the electrical contact area for coated metal and doped-diamond tips operated at low force (<200 nN) in contact mode. In both cases, we observe that only a small fraction (<10 nm{sup 2}) of the physical contact (∼100 nm{sup 2}) is effectively contributing to the transportmore » phenomena. Assuming this reduced area is confined to the central area of the physical contact, these results explain the sub-10 nm electrical resolution observed in C-AFM measurements.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Douglas, A. M.; Kumar, A.; Gregg, J. M.
Conducting atomic force microscopy images of bulk semiconducting BaTiO{sub 3} surfaces show clear stripe domain contrast. High local conductance correlates with strong out-of-plane polarization (mapped independently using piezoresponse force microscopy), and current-voltage characteristics are consistent with dipole-induced alterations in Schottky barriers at the metallic tip-ferroelectric interface. Indeed, analyzing current-voltage data in terms of established Schottky barrier models allows relative variations in the surface polarization, and hence the local domain structure, to be determined. Fitting also reveals the signature of surface-related depolarizing fields concentrated near domain walls. Domain information obtained from mapping local conductance appears to be more surface-sensitive than thatmore » from piezoresponse force microscopy. In the right materials systems, local current mapping could therefore represent a useful complementary technique for evaluating polarization and local electric fields with nanoscale resolution.« less
Lechner, Bob-Dan; Röper, Stephanie; Messerschmidt, Jens; Blume, Alfred; Magerle, Robert
2015-09-02
Using atomic force microscopy, we monitored the nanoscale surface morphology of human teeth at the dentin-enamel junction after performing successive demineralization steps with an acidic soft drink. Subsequently, we studied the remineralization process with a paste containing calcium and phosphate ions. Repeated atomic force microscopy imaging of the same sample areas on the sample allowed us to draw detailed conclusions regarding the specific mechanism of the demineralization process and the subsequent remineralization process. The about 1-μm-deep grooves that are caused by the demineralization process were preferentially filled with deposited nanoparticles, leading to smoother enamel and dentine surfaces after 90 min exposure to the remineralizing agent. The deposited material is found to homogeneously cover the enamel and dentine surfaces in the same manner. The temporal evolution of the surface roughness indicates that the remineralization caused by the repair paste proceeds in two distinct successive phases.
Hill, Katalin; Pénzes, Csanád Botond; Schnöller, Donát; Horváti, Kata; Bosze, Szilvia; Hudecz, Ferenc; Keszthelyi, Tamás; Kiss, Eva
2010-10-07
Tensiometry, sum-frequency vibrational spectroscopy, and atomic force microscopy were employed to assess the cell penetration ability of a peptide conjugate of the antituberculotic agent isoniazide. Isoniazide was conjugated to peptide (91)SEFAYGSFVRTVSLPV(106), a functional T-cell epitope of the immunodominant 16 kDa protein of Mycobacterium tuberculosis. As a simple but versatile model of the cell membrane a phospholipid Langmuir monolayer at the liquid/air interface was used. Changes induced in the structure of the phospholipid monolayer by injection of the peptide conjugate into the subphase were followed by tensiometry and sum-frequency vibrational spectroscopy. The drug penetrated lipid films were transferred to a solid support by the Langmuir-Blodgett technique, and their structures were characterized by atomic force microscopy. Peptide conjugation was found to strongly enhance the cell penetration ability of isoniazide.
Teschke, Omar; Soares, David Mendez
2016-03-29
Structures of crystallized deposits formed by the molecular self-assembly of aspartic acid and valine on silicon substrates were imaged by atomic force microscopy. Images of d- and l-aspartic acid crystal surfaces showing extended molecularly flat sheets or regions separated by single molecule thick steps are presented. Distinct orientation surfaces were imaged, which, combined with the single molecule step size, defines the geometry of the crystal. However, single molecule step growth also reveals the crystal chirality, i.e., growth orientations. The imaged ordered lattice of aspartic acid (asp) and valine (val) mostly revealed periodicities corresponding to bulk terminations, but a previously unreported molecular hexagonal lattice configuration was observed for both l-asp and l-val but not for d-asp or d-val. Atomic force microscopy can then be used to identify the different chiral forms of aspartic acid and valine crystals.