Scanning Probe Microscopy for Identifying the Component Materials of a Nanostripe Structure
NASA Astrophysics Data System (ADS)
Mizuno, Akira; Ando, Yasuhisa
2010-08-01
The authors prepared a nanostripe structure in which two types of metal are arranged alternately, and successfully identified the component materials using scanning probe microscopy (SPM) to measure the lateral force distribution image. The nanostripe structure was prepared using a new method developed by the authors and joint development members. The lateral force distribution image was measured in both friction force microscopy (FFM) and lateral modulation friction force microscopy (LM-FFM) modes. In FFM mode, the effect of slope angle appeared in the lateral force distribution image; therefore, no difference in the type of material was observed. On the other hand, in LM-FFM mode, the effect of surface curvature was observed in the lateral force distribution image. A higher friction force on chromium than on gold was identified, enabling material identification.
Lateral-deflection-controlled friction force microscopy
NASA Astrophysics Data System (ADS)
Fukuzawa, Kenji; Hamaoka, Satoshi; Shikida, Mitsuhiro; Itoh, Shintaro; Zhang, Hedong
2014-08-01
Lateral-deflection-controlled dual-axis friction force microscopy (FFM) is presented. In this method, an electrostatic force generated with a probe-incorporated micro-actuator compensates for friction force in real time during probe scanning using feedback control. This equivalently large rigidity can eliminate apparent boundary width and lateral snap-in, which are caused by lateral probe deflection. The method can evolve FFM as a method for quantifying local frictional properties on the micro/nanometer-scale by overcoming essential problems to dual-axis FFM.
System analysis of force feedback microscopy
NASA Astrophysics Data System (ADS)
Rodrigues, Mario S.; Costa, Luca; Chevrier, Joël; Comin, Fabio
2014-02-01
It was shown recently that the Force Feedback Microscope (FFM) can avoid the jump-to-contact in Atomic force Microscopy even when the cantilevers used are very soft, thus increasing force resolution. In this letter, we explore theoretical aspects of the associated real time control of the tip position. We take into account lever parameters such as the lever characteristics in its environment, spring constant, mass, dissipation coefficient, and the operating conditions such as controller gains and interaction force. We show how the controller parameters are determined so that the FFM functions at its best and estimate the bandwidth of the system under these conditions.
Shen, Quan; Edler, Matthias; Griesser, Thomas; Knall, Astrid-Caroline; Trimmel, Gregor; Kern, Wolfgang; Teichert, Christian
2014-01-01
Photolithographic methods allow an easy lateral top-down patterning and tuning of surface properties with photoreactive molecules and polymers. Employing friction force microscopy (FFM), we present here different FFM-based methods that enable the characterization of several photoreactive thin organic surface layers. First, three ex situ methods have been evaluated for the identification of irradiated and non-irradiated zones on the same organosilane sample by irradiation through different types of masks. These approaches are further extended to a time dependent ex situ FFM measurement, which allows to study the irradiation time dependent evolution of the resulting friction forces by sequential irradiation through differently sized masks in crossed geometry. Finally, a newly designed in situ FFM measurement, which uses a commercial bar-shaped cantilever itself as a noncontact shadow mask, enables the determination of time dependent effects on the surface modification during the photoreaction. SCANNING 36:590–598, 2014. PMID:25183629
Li, H; Atkin, R; Page, A J
2015-06-28
The energetic origins of the variation in friction with potential at the propylammonium nitrate-graphite interface are revealed using friction force microscopy (FFM) in combination with quantum chemical simulations. For boundary layer lubrication, as the FFM tip slides energy is dissipated via (1) boundary layer ions and (2) expulsion of near-surface ion layers from the space between the surface and advancing tip. Simulations reveal how changing the surface potential changes the ion composition of the boundary and near surface layer, which controls energy dissipation through both pathways, and thus the friction.
NASA Astrophysics Data System (ADS)
Marsden, A. J.; Phillips, M.; Wilson, N. R.
2013-06-01
At a single atom thick, it is challenging to distinguish graphene from its substrate using conventional techniques. In this paper we show that friction force microscopy (FFM) is a simple and quick technique for identifying graphene on a range of samples, from growth substrates to rough insulators. We show that FFM is particularly effective for characterizing graphene grown on copper where it can correlate the graphene growth to the three-dimensional surface topography. Atomic lattice stick-slip friction is readily resolved and enables the crystallographic orientation of the graphene to be mapped nondestructively, reproducibly and at high resolution. We expect FFM to be similarly effective for studying graphene growth on other metal/locally crystalline substrates, including SiC, and for studying growth of other two-dimensional materials such as molybdenum disulfide and hexagonal boron nitride.
Large Electric Field-Enhanced-Hardness Effect in a SiO2 Film
NASA Astrophysics Data System (ADS)
Revilla, Reynier I.; Li, Xiao-Jun; Yang, Yan-Lian; Wang, Chen
2014-03-01
Silicon dioxide films are extensively used in nano and micro-electromechanical systems. Here we studied the influence of an external electric field on the mechanical properties of a SiO2 film by using nanoindentation technique of atomic force microscopy (AFM) and friction force microscopy (FFM). A giant augmentation of the relative elastic modulus was observed by increasing the localized electric field. A slight decrease in friction coefficients was also clearly observed by using FFM with the increase of applied tip voltage. The reduction of the friction coefficients is consistent with the great enhancement of sample hardness by considering the indentation-induced deformation during the friction measurements.
Large Electric Field–Enhanced–Hardness Effect in a SiO2 Film
Revilla, Reynier I.; Li, Xiao-Jun; Yang, Yan-Lian; Wang, Chen
2014-01-01
Silicon dioxide films are extensively used in nano and micro–electromechanical systems. Here we studied the influence of an external electric field on the mechanical properties of a SiO2 film by using nanoindentation technique of atomic force microscopy (AFM) and friction force microscopy (FFM). A giant augmentation of the relative elastic modulus was observed by increasing the localized electric field. A slight decrease in friction coefficients was also clearly observed by using FFM with the increase of applied tip voltage. The reduction of the friction coefficients is consistent with the great enhancement of sample hardness by considering the indentation–induced deformation during the friction measurements. PMID:24681517
Tersigni, Andrew; Sadowski, Jerzy T.; Qin, Xiao-Rong
2017-03-27
Visualizing molecular crystalline domains and influence of substrate defects are important in understanding the charge transport in organic thin film devices. Vacuum evaporated tetracene films of four monolayers on hydrogen-terminated Si(001)-2x1 substrate, as a prototypical system, have been studied with ex situ atomic force microscopy (AFM), transverse shear microscopy (TSM), friction force microscopy (FFM), and low-energy electron microscopy (LEEM). Two differently oriented in-plane lattice domains are found due to the symmetry of the substrate lattice, with no visible azimuthal twist between adjacent molecular layers in surface islands, indicating significant bulk-like crystallization in the film. Meanwhile, two types of subdomains aremore » observed inside of each in-plane lattice domain. The subdomains are anisotropic in shape, and their sizes and distribution are highly influenced by the substrate atomic steps. TSM and FFM measurements indicate that these subdomains result from molecule-tilt orderings within the bulk-like lattice domains. Lastly, TSM evidently shows a sensitivity to probe vertical molecule-tilt anisotropy for the molecular crystals, in addition to its known ability to map the lateral lattice orientations.« less
Probing atomic-scale friction on reconstructed surfaces of single-crystal semiconductors
NASA Astrophysics Data System (ADS)
Goryl, M.; Budzioch, J.; Krok, F.; Wojtaszek, M.; Kolmer, M.; Walczak, L.; Konior, J.; Gnecco, E.; Szymonski, M.
2012-02-01
Friction force microscopy (FFM) investigations have been performed on reconstructed (001) surfaces of InSb and Ge in an ultrahigh vacuum. On the c(8×2) reconstruction of InSb(001) atomic resolution is achieved under superlubric conditions, and the features observed in the lateral force images are precisely reproduced by numerical simulations, taking into account possible decorations of the probing tip. On the simultaneously acquired (1×3) reconstruction a significant disorder of the surface atoms is observed. If the loading force increases, friction becomes much larger on this reconstruction compared to the c(8×2) one. In FFM images acquired on the Ge(001)(2×1) characteristic substructures are resolved within the unit cells. In such a case, a strong dependence of the friction pattern on the scan direction is observed.
NASA Astrophysics Data System (ADS)
Carpentier, Simon; Rodrigues, Mario S.; Charlaix, Elisabeth; Chevrier, Joël
2015-07-01
In this article, we measure the viscous damping G″, and the associated stiffness G', of a liquid flow in sphere-plane geometry over a large frequency range. In this regime, the lubrication approximation is expected to dominate. We first measure the static force applied to the tip. This is made possible thanks to a force feedback method. Adding a sub-nanometer oscillation of the tip, we obtain the dynamic part of the interaction with solely the knowledge of the lever properties in the experimental context using a linear transformation of the amplitude and phase change. Using a Force Feedback Microscope (FFM), we are then able to measure simultaneously the static force, the stiffness, and the dissipative part of the interaction in a broad frequency range using a single AFM probe. Similar measurements have been performed by the Surface Force Apparatus (SFA) with a probe radius hundred times bigger. In this context, the FFM can be called nano-SFA.
NASA Astrophysics Data System (ADS)
Kwak, Musun; Chung, Hanrok; Kwon, Hyukmin; Kim, Jehyun; Han, Daekyung; Yi, Yoonseon; Lee, Sangmun; Lee, Chulgu; Cha, Sooyoul
Using frictional force microscopy (FFM), the friction surface characteristics were compared between twisted nematic (TN) mode and vertical alignment (VA) mode alignment films (AFs). The friction asymmetry was detected depending on temperature conditions on TN mode AF, but not on VA mode AF. The difference between two modes was explained by leaning intermolecular repulsion caused by the pre-tilt angle uniformity and the density of side chain. No level difference according to temperature conditions appeared when the pre-tilt angle were measured after liquid crystal (LC) injection.
Molecular Imaging of Ultrathin Pentacene Films: Evidence for Homoepitaxy
NASA Astrophysics Data System (ADS)
Wu, Yanfei; Haugstad, Greg; Frisbie, C. Daniel
2013-03-01
Ultrathin polycrystalline films of organic semiconductors have received intensive investigations due to the critical role they play in governing the performance of organic thin film transistors. In this work, a variety of scanning probe microscopy (SPM) techniques have been employed to investigate ultrathin polycrystalline films (1-3 nm) of the benchmark organic semiconductor pentacene. By using spatially resolved Friction Force Microscopy (FFM), Kelvin Probe Force Microscopy (KFM) and Electrostatic Force Microscopy (EFM), an interesting multi-domain structure is revealed within the second layer of the films, characterized as two distinct friction and surface potential domains correlating with each other. The existence of multiple homoepitaxial modes within the films is thus proposed and examined. By employing lattice-revolved imaging using contact mode SPM, direct molecular evidence for the unusual homoepitaxy is obtained.
La Torre, Carmen; Bhushan, Bharat
2006-01-01
The atomic/friction force microscope (AFM/FFM) has recently become an important tool for studying the micro/nanoscale structure and tribological properties of human hair. Of particular interest to hair and beauty care science is how common hair-care materials, such as conditioner, deposit onto and change hair's tribological properties, since these properties are closely tied to product performance. Since a conditioner is a complex network of many different ingredients (including silicones for lubrication and cationic surfactants for static control and gel network formulation), studying the effects of these individual components can give insight into the significance each has on hair properties. In this study, AFM/FFM is used to conduct nanotribological studies of surface roughness, friction force, and adhesive forces as a function of silicone type, silicone deposition level, and cationic surfactant type. Changes in the coefficient of friction as a result of soaking hair in de-ionized water are also discussed.
Hierarchy of adhesion forces in patterns of photoreactive surface layers
NASA Astrophysics Data System (ADS)
Hlawacek, Gregor; Shen, Quan; Teichert, Christian; Lex, Alexandra; Trimmel, Gregor; Kern, Wolfgang
2009-01-01
Precise control of surface properties including electrical characteristics, wettability, and friction is a prerequisite for manufacturing modern organic electronic devices. The successful combination of bottom up approaches for aligning and orienting the molecules and top down techniques to structure the substrate on the nano- and micrometer scale allows the cost efficient fabrication and integration of future organic light emitting diodes and organic thin film transistors. One possibility for the top down patterning of a surface is to utilize different surface free energies or wetting properties of a functional group. Here, we used friction force microscopy (FFM) to reveal chemical patterns inscribed by a photolithographic process into a photosensitive surface layer. FFM allowed the simultaneous visualization of at least three different chemical surface terminations. The underlying mechanism is related to changes in the chemical interaction between probe and film surface.
Determination of backbone chain direction of PDA using FFM
NASA Astrophysics Data System (ADS)
Jo, Sadaharu; Okamoto, Kentaro; Takenaga, Mitsuru
2010-01-01
The effect of backbone chains on friction force was investigated on both Langmuir-Blodgett (LB) films of 10,12-heptacosadiynoic acid and the (0 1 0) surfaces of single crystals of 2,4-hexadiene-1,6-diol using friction force microscopy (FFM). It was observed that friction force decreased when the scanning direction was parallel to the [0 0 1] direction in both samples. Moreover, friction force decreased when the scanning direction was parallel to the crystallographic [1 0 2], [1 0 1], [1 0 0] and [1 0 1¯] directions in only the single crystals. For the LB films, the [0 0 1] direction corresponds to the backbone chain direction of 10,12-heptacosadiynoic acid. For the single crystals, both the [0 0 1] and [1 0 1] directions correspond to the backbone chain direction, and the [1 0 2], [1 0 0] and [1 0 1¯] directions correspond to the low-index crystallographic direction. In both the LB films and single crystals, the friction force was minimized when the directions of scanning and the backbone chain were parallel.
Correlation between friction and thickness of vanadium-pentoxide nanowires
NASA Astrophysics Data System (ADS)
Kim, Taekyeong
2015-11-01
We investigated the correlation between friction and thickness of vanadium-pentoxide nanowires (V2O5 NWs) by using friction/atomic force microscopy (FFM/AFM). We observed that the friction signal generally increased with thickness in the FFM/AFM image of the V2O5 NWs. We constructed a two-dimensional (2D) correlation distribution of the frictional force and the thickness of the V2O5 NWs and found that they are strongly correlated; i.e., thicker NWs had higher friction. We also generated a histogram for the correlation factors obtained from each distribution and found that the most probable factor is ~0.45. Furthermore, we found that the adhesion force between the tip and the V2O5 NWs was about -3 nN, and that the friction increased with increasing applied load for different thicknesses of V2O5 NWs. Our results provide an understanding of tribological and nanomechanical studies of various one-dimensional NWs for future fundamental research.
NASA Astrophysics Data System (ADS)
Masaaki Kurihara,; Sho Hatakeyama,; Noriko Yamada,; Takeya Shimomura,; Takaharu Nagai,; Kouji Yoshida,; Tatsuya Tomita,; Morihisa Hoga,; Naoya Hayashi,; Hiroyuki Ohtani,; Masamichi Fujihira,
2010-06-01
Antisticking layers (ASLs) on UV nanoimprint lithography (UV-NIL) molds were characterized by scanning probe microscopies (SPMs) in addition to macroscopic analyses of work of adhesion and separation force. Local physical properties of the ASLs were measured by atomic force microscopy (AFM) and friction force microscopy (FFM). The behavior of local adhesive forces measured with AFM on several surfaces was consistent with that of work of adhesion obtained from contact angle. The ASLs were coated by two different processes, i.e., one is a vapor-phase process and the other a spin-coating process. The homogeneity of the ASLs prepared by the vapor-phase process was better than that of those prepared by the spin-coating process. In addition, we measured the thicknesses of ASL patterns prepared by a lift-off method to investigate the effect of the ASL thicknesses on critical dimensions of the molds with ASLs and found that this effect is not negligible.
NASA Astrophysics Data System (ADS)
Berkovich, Ronen; Klafter, Joseph; Urbakh, Michael
Free energy is one of the most fundamental thermodynamic functions, determining relative phase stability and serving as a generating function for other thermodynamic quantities. The calculation of free energies is a challenging enterprise. In equilibrium statistical mechanics, the free energy is related to the canonical partition function. The partition function itself involves integrations over all degrees of freedom in the system and, in most cases, cannot be easily calculated directly. In 1997, Jarzynski proved a remarkable equality that allows computing the equilibrium free-energy difference between two states from the probability distribution of the nonequilibrium work done on the system to switch between the two states. The Jarzynski equality provides a powerful free-energy difference estimator from a set of irreversible experiments. This method is closely related to free-energy perturbation approach, which is also a computational technique for estimating free-energy differences. The ability to map potential profiles and topologies is of major significance to areas as diverse as biological recognition and nanoscale friction. This capability has been demonstrated for frictional studies where a force between the tip of the scanning force microscope and the surface is probed. The surface free-energy corrugation produces a detectable friction forces. Thus, friction force microscopy (FFM) should be able to discriminate between energetically different areas on the probed surface. Here, we apply the Jarzynski equality for the analysis of FFM measurements and thus obtain a variation of the free energy along a surface.
Frictional Characteristics of graphene
NASA Astrophysics Data System (ADS)
Lee, Changgu; Carpick, Robert; Hone, James
2009-03-01
The frictional characteristics of graphene were characterized using friction force microscopy (FFM). The frictional force for monolayer graphene is more than twice that of bulk graphite, with 2,3, and 4 layer samples showing a monotonic decrease in friction with increasing sample thickness. Measurements on suspended graphene membranes show identical results, ruling out substrate effects as the cause of the observed variation. Likewise, the adhesion force is identical for all samples. The frictional force is independent of load within experimental uncertainty, consistent with previous measurements on graphite. We consider several possible explanations for the origin of the observed thickness dependence.
2012-10-01
in the selection literature today is the Five Factor Model ( FFM ) or “Big 5” model of personality. This model includes: 1) Openness; 2...Conscientiousness; 3) Extraversion; 4) Agreeableness; and 5) Emotional Stability. Meta-analytic studies have found the FFM of personality to be predictive...is a self-report measure of the FFM that has demonstrated reliability and validity in numerous studies [18]. Another FFM measure, the Trait Self
High-resolution imaging of (100) kyanite surfaces using friction force microscopy in water
NASA Astrophysics Data System (ADS)
Pimentel, Carlos; Gnecco, Enrico; Pina, Carlos M.
2015-05-01
In this paper, we present high-resolution friction force microscopy (FFM) images of the (100) face of kyanite (Al2SiO5) immersed in water. These images show an almost rectangular lattice presumably defined by the protruding oxygen of AlO6 polyhedra. Surface lattice parameters measured on two-dimensional fast Fourier transform (2D-FFT) plots of recorded high-resolution friction maps are in good agreement with lattice parameters calculated from the bulk mineral structure. Friction measurements performed along the [001] and [010] directions on the kyanite (100) face provide similar friction coefficients μ ≈ 0.10, even if the sequences of AlO6 polyhedra are different along the two crystallographic directions.
NASA Astrophysics Data System (ADS)
Latorre, Carmen; Bhushan, Bharat
2005-07-01
Tribological properties are useful in the study of human hair and other biological materials. Major sources of investigation for conditioner treated hair includes localization of conditioner, mechanisms related to changes in surface roughness, friction, and adhesion on the nanoscale due to conditioner agents, and how the products change the microstructure of the cuticle. The paper presents nanotribological studies investigating surface roughness, friction, and adhesion using atomic force/friction force microscopy (AFM/FFM). Test samples include virgin and chemically damaged hair, both with and without commercial conditioner treatment, as well as chemically damaged hair with experimental conditioner treatments. Friction force mapping provides insight into the localized change in friction caused by the application of hair care materials. Adhesive force maps to study adhesion on the cuticle surface provide information about localization and distribution of conditioner as well. A discussion is presented on these properties of hair as a function of relative humidity, temperature, durability, and conditioning treatments.
Correction of cell-induced optical aberrations in a fluorescence fluctuation microscope
Leroux, Charles-Edouard; Grichine, Alexei; Wang, Irène; Delon, Antoine
2013-01-01
We describe the effect of optical aberrations on fluorescence fluctuations microscopy (FFM), when focusing through a single living cell. FFM measurements are performed in an aqueous fluorescent solution, and prove to be a highly sensitive tool to assess the optical aberrations introduced by the cell. We demonstrate an adaptive optics (AO) system to remove the aberration-related bias in the FFM measurements. Our data show that AO is not only useful when imaging deep in tissues, but also when performing FFM measurements through a single cellular layer. PMID:23939061
Air Force Military Personnel Entitlement Pay in Support of Contingency Operations
2010-08-23
Report No. A-2006-0067- FFM , “Military Pay for Operation Enduring Freedom/Operation Iraqi Freedom Active Components,” April 5, 2006 U.S. Army Audit...Agency Report No. A-2006-0079- FFM , “Material Weakness Closeout on Line of Duty and Incapacitation Pay,” March 8, 2006 22B22BAir Force Air Force
Electrostatic self-assembly of polyions on charged substrates
NASA Astrophysics Data System (ADS)
Campbell, A.; Adams, W. W.; Bunning, T. J.; Visser, D.; Bliznyuk, V. N.; Tsukruk, V. V.
1997-03-01
The kinetics of formation of self-assembled monolayers is studied for polystyrene sulfonate(PSS) adsorbed on oppositely charged surfaces of amine terminated self-assembled monolayers(SAM) and polyallylamine(PAA). During the early stages of deposition in both cases, an inhomogeneous deposition is noted as measured by atomic force and friction force microscopy. Island formation of unperturbed PSS coils on defect sites is observed during the initial stage of deposition. Longer deposition times result in an equilibration of the polymer layers into highly flattened macromolecular chains. AFM and FFM measurements are combined with ellipsometer and X-ray reflectivity results to quantitate the layer thicknesses and roughness with time.
Semiannual Report to the Congress. October 1, 2010 - March 31, 2011
2011-03-01
Classified Program 03/04/2011 USAAA A-2011-0062- FFM Agreed-Upon Procedures Attestation, Investigative Support to the California Army National 02/28...Title Date USAAA A-2011-0078- FFM Arlington National Cemetery Budget Execution 03/23/2011 USAAA A-2011-0059- FFM Army CONUS Cash and Other Monetary...Commander’s Emergency Response Program, U.S. Forces - Afghanistan (FOUO) 11/16/2010 USAAA A-2011-0007- FFM Examination of Army Working Capital Fund Inventory
Molecular resolution friction microscopy of Cu phthalocyanine thin films on dolomite (104) in water
NASA Astrophysics Data System (ADS)
Nita, Paweł; Pimentel, Carlos; Luo, Feng; Milián-Medina, Begoña; Gierschner, Johannes; Pina, Carlos M.; Gnecco, Enrico
2014-06-01
The reliability of ultrathin organic layers as active components for molecular electronic devices depends ultimately on an accurate characterization of the layer morphology and ability to withstand mechanical stresses on the nanoscale. To this end, since the molecular layers need to be electrically decoupled using thick insulating substrates, the use of AFM becomes mandatory. Here, we show how friction force microscopy (FFM) in water allows us to identify the orientation of copper(ii)phthalocyanine (CuPc) molecules previously self-assembled on a dolomite (104) mineral surface in ultra-high vacuum. The molecular features observed in the friction images show that the CuPc molecules are stacked in parallel rows with no preferential orientation with respect to the dolomite lattice, while the stacking features resemble well the single CuPc crystal structure. This proves that the substrate induction is low and makes friction force microscopy in water a suitable alternative to more demanding dynamic AFM techniques in ultra-high vacuum.
Molecular resolution friction microscopy of Cu phthalocyanine thin films on dolomite (104) in water.
Nita, Paweł; Pimentel, Carlos; Luo, Feng; Milián-Medina, Begoña; Gierschner, Johannes; Pina, Carlos M; Gnecco, Enrico
2014-07-21
The reliability of ultrathin organic layers as active components for molecular electronic devices depends ultimately on an accurate characterization of the layer morphology and ability to withstand mechanical stresses on the nanoscale. To this end, since the molecular layers need to be electrically decoupled using thick insulating substrates, the use of AFM becomes mandatory. Here, we show how friction force microscopy (FFM) in water allows us to identify the orientation of copper(ii)phthalocyanine (CuPc) molecules previously self-assembled on a dolomite (104) mineral surface in ultra-high vacuum. The molecular features observed in the friction images show that the CuPc molecules are stacked in parallel rows with no preferential orientation with respect to the dolomite lattice, while the stacking features resemble well the single CuPc crystal structure. This proves that the substrate induction is low and makes friction force microscopy in water a suitable alternative to more demanding dynamic AFM techniques in ultra-high vacuum.
Decoding the Vertical Phase Separation and Its Impact on C8-BTBT/PS Transistor Properties.
Pérez-Rodríguez, Ana; Temiño, Inés; Ocal, Carmen; Mas-Torrent, Marta; Barrena, Esther
2018-02-28
Disentangling the details of the vertical distribution of small semiconductor molecules blended with polystyrene (PS) and the contact properties are issues of fundamental value for designing strategies to optimize small-molecule:polymer blend organic transistors. These questions are addressed here for ultrathin blends of 2,7-dioctyl[1]benzothieno[3,2-b][1]benzothiophene (C8-BTBT) and PS processed by a solution-shearing technique using three different blend composition ratios. We show that friction force microscopy (FFM) allows the determination of the lateral and vertical distribution of the two materials at the nanoscale. Our results demonstrate a three-layer stratification of the blend: a film of C8-BTBT of few molecular layers with crystalline order sandwiched between a PS-rich layer at the bottom (a few nm thick) acting as a passivating dielectric layer and a PS-rich skin layer on the top (∼1 nm) conferring stability to the devices. Kelvin probe force microscopy (KPFM) measurements performed in operating organic field-effect transistors (OFETs) reveal that the devices are strongly contact-limited and suggest contact doping as a route for device optimization. By excluding the effect of the contacts, field-effect mobility values in the channel as high as 10 cm 2 V -1 s -1 are obtained. Our findings, obtained via a combination of FFM and KPFM, provide a satisfactory explanation of the different electrical performances of the OFETs as a function of the blend composition ratio and by doping the contacts.
Large Crater Repair at Silver Flag Exercise Site, Tyndall Air Force Base, Florida
2015-08-01
fiberglass mat ( FFM ) survived medium-speed braking events and was deemed suitable for use on taxiways and aprons. 2. The current USAF FFM system failed...braking events due to failure of the connector bushings. After replacement with more robust connector bushings from the FFM system, the FRP system...withstood the high-speed taxi events that caused the FFM to fail. ERDC/GSL TR-15-27 2 4. AM2 aluminum matting was successfully tested as a suitable
NASA Astrophysics Data System (ADS)
Zhao, Jing; Chen, Miao; An, Yanqing; Liu, Jianxi; Yan, Fengyuan
2008-12-01
A radical chain-transfer polymerization technique has been applied to graft-polymerize brushes of polystyrene (PSt) on single-crystal silicon substrates. 3-Mercapto-propyltrimethoxysilane (MPTMS), as a chain-transfer agent for grafting, was immobilized on the silicon surface by a self-assembling process. The structure and morphology of the graft-functionalized silicon surfaces were characterized by the means of contact-angle measurement, ellipsometric thickness measurement, Fourier transformation infrared (FTIR) spectroscopy, and atomic force microscopy (AFM). The nanotribological and micromechanical properties of the as-prepared polymer brush films were investigated by frictional force microscopy (FFM), force-volume analysis and scratch test. The results indicate that the friction properties of the grafted polymer films can be improved significantly by the treatment of toluene, and the chemically bonded polystyrene film exhibits superior scratch resistance behavior compared with the spin-coated polystyrene film. The resultant polystyrene brush film is expected to develop as a potential lubrication coating for microelectromechanical systems (MEMS).
Modified energetics and growth kinetics on H-terminated GaAs (110)
NASA Astrophysics Data System (ADS)
Galiana, B.; Benedicto, M.; Díez-Merino, L.; Lorbek, S.; Hlawacek, G.; Teichert, C.; Tejedor, P.
2013-10-01
Atomic hydrogen modification of the surface energy of GaAs (110) epilayers, grown at high temperatures from molecular beams of Ga and As4, has been investigated by friction force microscopy (FFM). The reduction of the friction force observed with longer exposures to the H beam has been correlated with the lowering of the surface energy originated by the progressive de-relaxation of the GaAs (110) surface occurring upon H chemisorption. Our results indicate that the H-terminated GaAs (110) epilayers are more stable than the As-stabilized ones, with the minimum surface energy value of 31 meV/Å2 measured for the fully hydrogenated surface. A significant reduction of the Ga diffusion length on the H-terminated surface irrespective of H coverage has been calculated from the FFM data, consistent with the layer-by-layer growth mode and the greater As incorporation coefficient determined from real-time reflection high-energy electron diffraction studies. Arsenic incorporation through direct dissociative chemisorption of single As4 molecules mediated by H on the GaAs (110) surface has been proposed as the most likely explanation for the changes in surface kinetics observed.
Uhlig, Florian; Muth, Claus-Martin; Tetzlaff, Kay; Koch, Andreas; Leberle, Richard; Georgieff, Michael; Winkler, Bernd E
2014-06-01
Full-face-masks (FFM) prevent the diver's face from cold and can support nasal breathing underwater. The aim of the study was to evaluate the effect of the use of FFMs on lung function and wellbeing. Twenty-one, healthy, non-asthmatic divers performed two cold-water dives (4⁰C, 25 min, 10 metres' depth) - one with a FFM and the other with a standard scuba regulator (SSR). Spirometry was performed before and after each dive and well-being and cold sensation were assessed after the dives. Significant decreases in forced vital capacity (FVC), forced expiratory volume in one second (FEV₁) and midexpiratory flow at 75% of FVC (MEF₇₅) occurred after both FFM and SSR dives. Changes in FVC and FEV₁ did not differ significantly between FFM and SSR dives. However, the mid-expiratory flows measured at 50% and 25% of FVC (MEF₅₀ and MEF₂₅) were significantly lower 10 minutes after the FFM dive compared to 10 minutes after the SSR dive. The wellbeing and cold sensation of the divers were significantly improved with FFM dives compared to SSR dives. Cold-water dives during wintertime can be associated with airway narrowing. During cold-water dives, the use of a FFM appears to reduce the cold sensation and enhance the well-being of the divers. However, a FFM does not appear to prevent airway narrowing in healthy, non-asthmatic subjects.
2014-05-21
UTC REQUIRES PERSONNEL FROM STANDARD PRIME BEEF OR RED 4F9K4 PROVIDES FOLDED FIBERGLASS MATTING ( FFM ) FOR AIRFIELD DAMAGE REPAIR (ADR). PACKAGE...CONSISTS OF THREE FFM SETS (54’ X 60’), ONE FFM SUPPORT TOOL KIT, UPPER BUSHINGS, ANCHOR BUSHINGS, ANCHOR BOLTS, AND TWO EA MC-7 AIR COMPRESSORS. EACH...PACKAGE CONSISTS OF 7 FOLDED FIBERGLASS MAT SETS (54 FT X 60 FT), 2 FFM SUPPORT TOOL KIT, UPPER BUSHINGS, ANCHOR BUSHINGS, ANCHOR BOLTS AND 4 X
NASA Astrophysics Data System (ADS)
Raftari, Maryam; Zhang, Zhenyu; Leggett, Graham J.; Geoghegan, Mark
2011-10-01
We have studied the frictional behaviour of grafted poly[2-(dimethylamino)ethyl methacrylate] (PDMAEMA) films using friction force microscopy (FFM). The films were prepared on native oxide-terminated silicon substrates using the technique of atom transfer radical polymerization (ATRP). We show that single asperity contact mechanics (Johnson-Kendall-Roberts(JKR) and Derjaguin-Muller-Toporov(DMT)) as well as a linear (Amontons) relation between applied load and frictional load depending on the pH of the FFM probe. Measurements were made using functionalized and unfunctionalized silicon nitride triangular probes. Functionalized probes included gold-coated probes, and ones coated with a self-assembled monolayer of dodecanethiol (DDT). The frictional behaviour between PDMAEMA and all tips immersed in pH from 3 to 11 are corresponded to the DMT or JKR model and are linear in pH=1, 2, and 12. These results show that contact mechanics of polyelectrolytes in water is complex and strongly dependent on the environmental pH.
Frictional properties of the end-grafted polymer layer in presence of salt solution
NASA Astrophysics Data System (ADS)
Raftari, Maryam; Zhang, Zhenyu; Leggett, Graham J.; Geoghegan, Mark
2012-02-01
We have studied the frictional behaviour of grafted poly[2-(dimethylamino)ethyl methacrylate] (PDMAEMA) films using friction force microscopy (FFM). The films were prepared on native oxide-terminated silicon substrates using the technique of atom transfer radical polymerization (ATRP). These brushes had constant grafting density (1.18 nm2), and of a thickness of ˜66 nm, as measured by ellipsometry. We show that single asperity contact mechanics (Johnson-Kendall-Roberts (JKR) and Derjaguin-M"uller-Toporov (DMT) models) as well as a linear (Amontons) relation between applied load and frictional load all apply to these systems depending on the concentration of salt and the nature of the FFM probe. Measurements were made using gold-coating and polymer functionalized silicon nitride triangular probes. Polymer functionalized probe included growth the PDMAEMA with same method on tips. The frictional behaviour are investigated between PDMAEMA and gold coated and PDMAEMA tips immersed in different concentrations of KCl, KBr and KI.
2014-05-21
PERSONNEL FROM STANDARD PRIME BEEF OR RED 4F9K4 PROVIDES FOLDED FIBERGLASS MATTING ( FFM ) FOR AIRFIELD DAMAGE REPAIR (ADR). PACKAGE CONSISTS OF THREE FFM ...SETS (54’ X 60’), ONE FFM SUPPORT TOOL KIT, UPPER BUSHINGS, ANCHOR BUSHINGS, ANCHOR BOLTS, AND TWO EA MC-7 AIR COMPRESSORS. EACH UTC WILL BE TASKED TO...OF 7 FOLDED FIBERGLASS MAT SETS (54 FT X 60 FT), 2 FFM SUPPORT TOOL KIT, UPPER BUSHINGS, ANCHOR BUSHINGS, ANCHOR BOLTS AND 4 X MC-7 AIR COMPRESSORS
Giant and Tunable Anisotropy of Nanoscale Friction in Graphene
NASA Astrophysics Data System (ADS)
Almeida, Clara M.; Prioli, Rodrigo; Fragneaud, Benjamin; Cançado, Luiz Gustavo; Paupitz, Ricardo; Galvão, Douglas S.; de Cicco, Marcelo; Menezes, Marcos G.; Achete, Carlos A.; Capaz, Rodrigo B.
2016-08-01
The nanoscale friction between an atomic force microscopy tip and graphene is investigated using friction force microscopy (FFM). During the tip movement, friction forces are observed to increase and then saturate in a highly anisotropic manner. As a result, the friction forces in graphene are highly dependent on the scanning direction: under some conditions, the energy dissipated along the armchair direction can be 80% higher than along the zigzag direction. In comparison, for highly-oriented pyrolitic graphite (HOPG), the friction anisotropy between armchair and zigzag directions is only 15%. This giant friction anisotropy in graphene results from anisotropies in the amplitudes of flexural deformations of the graphene sheet driven by the tip movement, not present in HOPG. The effect can be seen as a novel manifestation of the classical phenomenon of Euler buckling at the nanoscale, which provides the non-linear ingredients that amplify friction anisotropy. Simulations based on a novel version of the 2D Tomlinson model (modified to include the effects of flexural deformations), as well as fully atomistic molecular dynamics simulations and first-principles density-functional theory (DFT) calculations, are able to reproduce and explain the experimental observations.
Hoischen, Christian; Monajembashi, Shamci; Weisshart, Klaus; Hemmerich, Peter
2018-01-01
The promyelocytic leukemia ( pml ) gene product PML is a tumor suppressor localized mainly in the nucleus of mammalian cells. In the cell nucleus, PML seeds the formation of macromolecular multiprotein complexes, known as PML nuclear bodies (PML NBs). While PML NBs have been implicated in many cellular functions including cell cycle regulation, survival and apoptosis their role as signaling hubs along major genome maintenance pathways emerged more clearly. However, despite extensive research over the past decades, the precise biochemical function of PML in these pathways is still elusive. It remains a big challenge to unify all the different previously suggested cellular functions of PML NBs into one mechanistic model. With the advent of genetically encoded fluorescent proteins it became possible to trace protein function in living specimens. In parallel, a variety of fluorescence fluctuation microscopy (FFM) approaches have been developed which allow precise determination of the biophysical and interaction properties of cellular factors at the single molecule level in living cells. In this report, we summarize the current knowledge on PML nuclear bodies and describe several fluorescence imaging, manipulation, FFM, and super-resolution techniques suitable to analyze PML body assembly and function. These include fluorescence redistribution after photobleaching, fluorescence resonance energy transfer, fluorescence correlation spectroscopy, raster image correlation spectroscopy, ultraviolet laser microbeam-induced DNA damage, erythrocyte-mediated force application, and super-resolution microscopy approaches. Since most if not all of the microscopic equipment to perform these techniques may be available in an institutional or nearby facility, we hope to encourage more researches to exploit sophisticated imaging tools for their research in cancer biology.
Advancing the Surveillance Capabilities of the Air Force’s Large-Aperature Telescopes
2014-03-06
frozen flow screens. Lastly, use of the FFM has the added benefit of requiring the estimation of significantly fewer parameters than a... FFM in the restoration process provides the decoding. This remains to be verified. Figure 14. Left: The mean diffraction-limited image for the
Molecular-scale shear response of the organic semiconductor β -DBDCS (100) surface
NASA Astrophysics Data System (ADS)
Álvarez-Asencio, Rubén; Moreno-Ramírez, Jorge S.; Pimentel, Carlos; Casado, Santiago; Matta, Micaela; Gierschner, Johannes; Muccioli, Luca; Yoon, Seong-Jun; Varghese, Shinto; Park, Soo Young; Gnecco, Enrico; Pina, Carlos M.
2017-09-01
In this work we present friction-force microscopy (FFM) lattice-resolved images acquired on the (100) facet of the semiconductor organic oligomer (2 Z ,2'Z )-3 , 3' -(1,4-phenylene)bis(2-(4-butoxyphenyl)acrylonitrile) (β -DBDCS) crystal in water at room temperature. Stick-slip contrast, lateral contact stiffness, and friction forces are found to depend strongly on the sliding direction due to the anisotropic packing of the molecular chains forming the crystal surface along the [010] and [001] directions. The anisotropy also causes the maximum value of the normal force applicable before wearing to increase by a factor of 3 when the scan is performed along the [001] direction on the (100) face. Altogether, our results contribute to achieving a better understanding of the molecular origin of friction anisotropy on soft crystalline surfaces, which has been often hypothesized but rarely investigated in the literature.
New Force Field Model for Propylene Glycol: Insight to Local Structure and Dynamics.
Ferreira, Elisabete S C; Voroshylova, Iuliia V; Koverga, Volodymyr A; Pereira, Carlos M; Cordeiro, M Natália D S
2017-12-07
In this work we developed a new force field model (FFM) for propylene glycol (PG) based on the OPLS all-atom potential. The OPLS potential was refined using quantum chemical calculations, taking into account the densities and self-diffusion coefficients. The validation of this new FFM was carried out based on a wide range of physicochemical properties, such as density, enthalpy of vaporization, self-diffusion coefficients, isothermal compressibility, surface tension, and shear viscosity. The molecular dynamics (MD) simulations were performed over a large range of temperatures (293.15-373.15 K). The comparison with other force field models, such as OPLS, CHARMM27, and GAFF, revealed a large improvement of the results, allowing a better agreement with experimental data. Specific structural properties (radial distribution functions, hydrogen bonding and spatial distribution functions) were then analyzed in order to support the adequacy of the proposed FFM. Pure propylene glycol forms a continuous phase, displaying no microstructures. It is shown that the developed FFM gives rise to suitable results not only for pure propylene glycol but also for mixtures by testing its behavior for a 50 mol % aqueous propylene glycol solution. Furthermore, it is demonstrated that the addition of water to the PG phase produces a homogeneous solution and that the hydration interactions prevail over the propylene glycol self-association interactions.
2014-03-01
ERTF Enlisted Retention Task Force FFM fast filling military occupational specialty FTAP first-term alignment plan FY fiscal year GT general...Planning military ( FFM ) occupational specialties that are processed through boards to ensure the retention of highly qualified Marines. Fast-filling
Giant and Tunable Anisotropy of Nanoscale Friction in Graphene
NASA Astrophysics Data System (ADS)
Capaz, Rodrigo; Menezes, Marcos; Almeida, Clara; de Cicco, Marcelo; Achete, Carlos; Fragneaud, Benjamin; Cançado, Luiz Gustavo; Paupitz, Ricardo; Galvão, Douglas; Prioli, Rodrigo
The nanoscale friction between an atomic force microscopy tip and graphene is investigated using friction force microscopy (FFM). During the tip movement, friction forces are observed to increase and then saturate in a highly anisotropic manner. As a result, the friction coefficient of graphene is highly dependent on the scanning direction: Under some conditions, the energy dissipated along the armchair direction can be 80% higher than along the zigzag direction. In comparison, for highly-oriented pyrolitic graphite (HOPG), the friction anisotropy between armchair and zigzag directions is only 15%. This giant friction anisotropy in graphene results from anisotropies in the amplitudes of flexural deformations of the graphene sheet driven by the tip movement, not present in HOPG. The effect can be seen as a novel manifestation of the classical phenomenon of Euler buckling at the nanoscale, which provides the non-linear ingredients that amplify friction anisotropy. Simulations based on a novel version of the 2D Tomlinson model (modified to include the effects of flexural deformations), as well as fully atomistic molecular dynamics simulations and first-principles density-functional theory (DFT) calculations, are able to reproduce and explain the experimental observations.
Hoischen, Christian; Monajembashi, Shamci; Weisshart, Klaus; Hemmerich, Peter
2018-01-01
The promyelocytic leukemia (pml) gene product PML is a tumor suppressor localized mainly in the nucleus of mammalian cells. In the cell nucleus, PML seeds the formation of macromolecular multiprotein complexes, known as PML nuclear bodies (PML NBs). While PML NBs have been implicated in many cellular functions including cell cycle regulation, survival and apoptosis their role as signaling hubs along major genome maintenance pathways emerged more clearly. However, despite extensive research over the past decades, the precise biochemical function of PML in these pathways is still elusive. It remains a big challenge to unify all the different previously suggested cellular functions of PML NBs into one mechanistic model. With the advent of genetically encoded fluorescent proteins it became possible to trace protein function in living specimens. In parallel, a variety of fluorescence fluctuation microscopy (FFM) approaches have been developed which allow precise determination of the biophysical and interaction properties of cellular factors at the single molecule level in living cells. In this report, we summarize the current knowledge on PML nuclear bodies and describe several fluorescence imaging, manipulation, FFM, and super-resolution techniques suitable to analyze PML body assembly and function. These include fluorescence redistribution after photobleaching, fluorescence resonance energy transfer, fluorescence correlation spectroscopy, raster image correlation spectroscopy, ultraviolet laser microbeam-induced DNA damage, erythrocyte-mediated force application, and super-resolution microscopy approaches. Since most if not all of the microscopic equipment to perform these techniques may be available in an institutional or nearby facility, we hope to encourage more researches to exploit sophisticated imaging tools for their research in cancer biology. PMID:29888200
NASA Astrophysics Data System (ADS)
Gong, Xiao-Bo; Liao, Yi; Xu, Zhao-Yi
2016-09-01
Based on the Lagrangian of the steady axisymmetric force-free magnetosphere (FFM) equation around Kerr black holes (KBHs), we find that the FFM equation can be rewritten in a new form as f,rr / (1 -μ2) +f,μμ / Δ + K (f (r , μ) , r , μ) = 0, where μ = - cos θ. With coordinate transformation, the above equation can be given as s,yy +s,zz + D (s (y , z) , y , z) = 0. Using this form, we prove that the Meissner effect is not possessed by a KBH-FFM with the condition dω / dAϕ ⩽ 0 and Hϕ (dHϕ / dAϕ) ⩾ 0, here Aϕ is the ϕ component of the vector potential A → , ω is the angular velocity of magnetic fields and Hϕ corresponds to twice the poloidal electric current.
NASA Astrophysics Data System (ADS)
Cornelissen, Frans; De Backer, Steve; Lemeire, Jan; Torfs, Berf; Nuydens, Rony; Meert, Theo; Schelkens, Peter; Scheunders, Paul
2008-08-01
Peripheral neuropathy can be caused by diabetes or AIDS or be a side-effect of chemotherapy. Fibered Fluorescence Microscopy (FFM) is a recently developed imaging modality using a fiber optic probe connected to a laser scanning unit. It allows for in-vivo scanning of small animal subjects by moving the probe along the tissue surface. In preclinical research, FFM enables non-invasive, longitudinal in vivo assessment of intra epidermal nerve fibre density in various models for peripheral neuropathies. By moving the probe, FFM allows visualization of larger surfaces, since, during the movement, images are continuously captured, allowing to acquire an area larger then the field of view of the probe. For analysis purposes, we need to obtain a single static image from the multiple overlapping frames. We introduce a mosaicing procedure for this kind of video sequence. Construction of mosaic images with sub-pixel alignment is indispensable and must be integrated into a global consistent image aligning. An additional motivation for the mosaicing is the use of overlapping redundant information to improve the signal to noise ratio of the acquisition, because the individual frames tend to have both high noise levels and intensity inhomogeneities. For longitudinal analysis, mosaics captured at different times must be aligned as well. For alignment, global correlation-based matching is compared with interest point matching. Use of algorithms working on multiple CPU's (parallel processor/cluster/grid) is imperative for use in a screening model.
NASA Astrophysics Data System (ADS)
Amanokura, Jin; Ono, Hiroshi; Hombo, Kyoko
2011-05-01
In order to obtain a high-speed copper chemical mechanical polishing (CMP) process for through silicon vias (TSV) application, we developed a new Cu CMP slurry through friction analysis of Cu reaction layer by an atomic force microscope (AFM) technique. A lateral modulation friction force microscope (LM-FFM) is able to measure the friction value properly giving a vibration to the layer. We evaluated the torsional displacement between the probe of the LM-FFM and the Cu reaction layer under a 5 nm vibration to cancel the shape effect of the Cu reaction layer. The developed Cu CMP slurry forms a frictionally easy-removable Cu reaction layer.
Agmon, Liron; Shahar, Itai; Yosufov, Danny; Pimentel, Carlos; Pina, Carlos M; Gnecco, Enrico; Berkovich, Ronen
2018-03-16
Friction force microscopy (FFM) in aqueous environments has recently proven to be a very effective method for lattice-resolution imaging of crystal surfaces. Here we demonstrate the use of ethanol for similar measurements on water-soluble materials. Lattice resolved frictional stick-slip traces of a cleaved NaCl(100) surface submerged in ethanol are compared with previous obtained FFM results in ultrahigh vacuum (UHV). We use the Prandtl-Tomlinson framework to estimate the amplitude of the corrugation potential and the contact stiffness. The surface potential amplitude scales with the applied normal loads are in good agreement with data obtained for NaCl measured under UHV conditions, but demonstrates deviations from the ideal periodic potential given by the Prandtl-Tomlinson model. An additional finding is that the use of ethanol allows us to explore higher load ranges without detectable evidence of surface wear. The contact stiffness does not vary significantly with the normal load up to 38 nN, while above it a sudden increase by almost one order of magnitude was observed. Comparing this to previous results suggests that considerable atom rearrangements may occur in the contact region, although the (100) surface structure is preserved by ethanol-assisted diffusion of Na and Cl ions.
Resting handgrip force and impaired cardiac function at rest and during exercise in COPD patients.
Cortopassi, Felipe; Divo, Miguel; Pinto-Plata, Victor; Celli, Bartolome
2011-05-01
Cardiac function measured as the oxygen pulse (O(2) pulse) is impaired during exercise (CPET) in patients with COPD. We investigated the relationship between handgrip force and O(2) pulse in COPD and controls. We measured anthropometrics, lung function, respiratory muscle force, handgrip (HG) force and fat free mass (FFM) at rest in 18 men with COPD (FEV(1)%=45±20) and 15 controls. We then performed a symptom limited cardiopulmonary exercise test (CPET) with similar load and used heart rate, and oxygen pulse (VO(2)/HR) to express cardiac function at rest and during exercise. We corrected the O(2) pulse by FFM. Patients and controls were similar in BMI and FFM. COPD patients had lower handgrip (37.8±7 vs. 55±2) kg. O(2) pulse and HG were associated (r=0.665). At rest, COPD patients had faster heart rate (76±11 vs. 61±5) and lower oxygen pulse. COPD patients had lower oxygen pulse mL/beat at exercise isotime (10.6±3.7 vs. 14.3±2.7), even adjusted by muscle mass. Handgrip is associated with impaired heart function at rest and during exercise in COPD patients even adjusting for muscle mass differences. Lower handgrip may be a marker of impaired cardiac function in COPD patients. Copyright © 2010 Elsevier Ltd. All rights reserved.
Berton, Danilo C; Silveira, Leonardo; Da Costa, Cassia C; De Souza, Rafael Machado; Winter, Claudia D; Zimermann Teixeira, Paulo José
2013-08-01
To investigate the effectiveness of pulmonary rehabilitation (PR) in exercise capacity and quality of life in patients with chronic obstructive pulmonary disease (COPD) with and without global fat-free mass (FFM) depletion. Retrospective case-control. Outpatient clinic, university center. COPD patients (N=102) that completed PR were initially evaluated. PR including whole-body and weight training for 12 weeks, 3 times per week. St. George Respiratory Questionnaire (SGRQ), 6-minute walk distance (6MWD), and FFM evaluation applied before and after PR. Patients were stratified according to their FFM status measured by bioelectric impedance. They were considered depleted if the FFM index was ≤ 15 kg/m(2) in women and ≤ 16 kg/m(2) in men. From the initial sample, all depleted patients (n=31) composed the FFM depleted group. It was composed predominantly by women (68%) with a mean age ± SD of 64.4 ± 7.3 years and a forced expiratory volume in 1 second of 33.6%=-13.2% predicted. Paired for sex and age, 31 nondepleted patients were selected from the initial sample to compose the nondepleted group. Improvement in the 6MWD was similar in these 2 groups after PR. Both groups improved SGRQ scores, although the observed power was small and did not allow adequate comparison between depleted and nondepleted patients. There was no difference between groups in weight change, whereas FFM tended to be greater in depleted patients. This increase had no correlation with the 6MWD or the SGRQ. Benefits of PR to exercise capacity were similar comparing FFM depleted and nondepleted COPD patients. Although FFM change tended to be greater in depleted patients, this increase had no definite relation with clinical outcomes. Copyright © 2013 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Force Measurement on the GLAST Delta II Flight
NASA Technical Reports Server (NTRS)
Gordon, Scott; Kaufman, Daniel
2009-01-01
This viewgraph presentation reviews the interface force measurement at spacecraft separation of GLAST Delta II. The contents include: 1) Flight Force Measurement (FFM) Background; 2) Team Members; 3) GLAST Mission Overview; 4) Methodology Development; 5) Ground Test Validation; 6) Flight Data; 7) Coupled Loads Simulation (VCLA & Reconstruction); 8) Basedrive Simulation; 9) Findings; and 10) Summary and Conclusions.
ERIC Educational Resources Information Center
Naemi, Bobby; Seybert, Jacob; Robbins, Steven; Kyllonen, Patrick
2014-01-01
This report introduces the "WorkFORCE"™ Assessment for Job Fit, a personality assessment utilizing the "FACETS"™ core capability, which is based on innovations in forced-choice assessment and computer adaptive testing. The instrument is derived from the fivefactor model (FFM) of personality and encompasses a broad spectrum of…
Oliveira, Paula Duarte de; Wehrmeister, Fernando C; Pérez-Padilla, Rogelio; Gonçalves, Helen; Assunção, Maria Cecília F; Horta, Bernardo Lessa; Gigante, Denise P; Barros, Fernando C; Menezes, Ana Maria Baptista
Overweight/obesity has been reported to worsen pulmonary function (PF). This study aimed to examine the association between PF and several body composition (BC) measures in two population-based cohorts. We performed a cross-sectional analysis of individuals aged 18 and 30 years from two Pelotas Birth Cohorts in southern Brazil. PF was assessed by spirometry. Body measures that were collected included body mass index, waist circumference, skinfold thickness, percentages of total and segmented (trunk, arms and legs) fat mass (FM) and total fat-free mass (FFM). FM and FFM were measured by air-displacement plethysmography (BODPOD) and by dual-energy x-ray absorptiometry (DXA). Associations were verified through linear regressions stratified by sex, and adjusted for weight, height, skin color, and socioeconomic, behavioral, and perinatal variables. A total of 7347 individuals were included in the analyses (3438 and 3909 at 30 and 18 years, respectively). Most BC measures showed a significant positive association between PF and FFM, and a negative association with FM. For each additional percentage point of FM, measured by BOD POD, the forced vital capacity regression coefficient adjusted by height, weight and skin color, at 18 years, was -33 mL (95% CI -38, -29) and -26 mL (95% CI -30, -22), and -30 mL (95% CI -35, -25) and -19 mL (95% CI -23, -14) at 30 years, in men and women, respectively. All the BOD POD regression coefficients for FFM were the same as for the FM coefficients, but in a positive trend (p<0.001 for all associations). All measures that distinguish FM from FFM (skinfold thickness-FM estimation-BOD POD, total and segmental DXA measures-FM and FFM proportions) showed negative trends in the association of FM with PF for both ages and sexes. On the other hand, FFM showed a positive association with PF.
Cycling peak power in obese and lean 6- to 8-year-old girls and boys.
Aucouturier, Julien; Lazaar, Nordine; Doré, Eric; Meyer, Martine; Ratel, Sebastien; Duché, Pascale
2007-06-01
The purpose of this study was to investigate the possible effect of the difference in percentage body fat (%BF) and fat-free mass (FFM) on cycling peak power (CPP) in 6- to 8-year-old obese and lean untrained girls and boys. Obese (35 girls, 35 boys) and lean (35 girls, 35 boys) children were measured for obesity, %BF, calculated from skinfold measurements. FFM was calculated as body mass (BM) minus body fat. A force-velocity test on a cycle ergometer was used to measure CPP. CPP was related to anthropometric variables using standard and allometric models. CPP in absolute terms was higher in obese children than in lean children irrespective of gender. BM-related CPP was significantly lower in obese children than in lean ones, whereas no effect of obesity appeared on FFM-related CPP. Velocity at CPP (Vopt) was significantly lower and force at CPP (Fopt) was significantly higher in girls than in boys. Muscle power production was unaffected by obesity in children. Low BM-related CPP could explain the difficulty of taking up physical activities that are body-mass related in obese children. Gender difference for Vopt and Fopt shows that girls and boys may have different maturation patterns affecting CPP.
Gorgey, Ashraf S; Dolbow, David R; Gater, David R
2012-07-01
To establish and validate prediction equations by using body weight to predict legs, trunk, and whole-body fat-free mass (FFM) in men with chronic complete spinal cord injury (SCI). Cross-sectional design. Research setting in a large medical center. Individuals with SCI (N=63) divided into prediction (n=42) and cross-validation (n=21) groups. Not applicable. Whole-body FFM and regional FFM were determined by using dual-energy x-ray absorptiometry. Body weight was measured by using a wheelchair weighing scale after subtracting the weight of the chair. Body weight predicted legs FFM (legs FFM=.09×body weight+6.1; R(2)=.25, standard error of the estimate [SEE]=3.1kg, P<.01), trunk FFM (trunk FFM=.21×body weight+8.6; R(2)=.56, SEE=3.6kg, P<.0001), and whole-body FFM (whole-body FFM=.288×body weight+26.3; R(2)=.53, SEE=5.3kg, P<.0001). The whole-body FFM(predicted) (FFM predicted from the derived equations) shared 86% of the variance in whole-body FFM(measured) (FFM measured using dual-energy x-ray absorptiometry scan) (R(2)=.86, SEE=1.8kg, P<.0001), 69% of trunk FFM(measured), and 66% of legs FFM(measured). The trunk FFM(predicted) shared 69% of the variance in trunk FFM(measured) (R(2)=.69, SEE=2.7kg, P<.0001), and legs FFM(predicted) shared 67% of the variance in legs FFM(measured) (R(2)=.67, SEE=2.8kg, P<.0001). Values of FFM did not differ between the prediction and validation groups. Body weight can be used to predict whole-body FFM and regional FFM. The predicted whole-body FFM improved the prediction of trunk FFM and legs FFM. Copyright © 2012 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Nutritional status and physical inactivity in moderated asthmatics: A pilot study.
Bruno, Andreina; Uasuf, Carina Gabriela; Insalaco, Giuseppe; Barazzoni, Rocco; Ballacchino, Antonella; Gjomarkaj, Mark; Pace, Elisabetta
2016-08-01
Preservation of nutritional status and of fat-free mass (FFM) and/or preventing of fat mass (FM) accumulation have a positive impact on well-being and prognosis in asthma patients. Physical inactivity is identified by World Health Organization as the fourth leading risk factor for global mortality. Physical activity (PA) may contribute to limit FM accumulation, but little information is available on the interactions between habitual PA and body composition and their association with disease severity in asthma severity.Associations between habitual PA, FM, FFM, and pulmonary function were investigated in 42 subjects (24 patients with mild-moderate asthma and 18 matched control subjects). Sensewear Armband was used to measure PA and metabolic equivalent of tasks (METs) continuously over 4 days, while body composition was measured by bioelectrical impedance analysis. Respiratory functions were also assessed in all study participants.FM and FFM were comparable in mild-moderate asthmatics and controls, but PA was lower in asthmatics and it was negatively correlated with FM and positively with the FFM marker body cell mass in all study subjects (P < 0.05). Among asthmatics, treated moderate asthmatics (ICS, n = 12) had higher FM and lower PA, METs, steps number/die, and forced expiratory volume in the 1st second (FEV1)/forced vital capacity (FVC) than in untreated intermittent asthmatics (UA, n = 12).This pilot study assesses that in mild-moderate asthma patients, lower PA is associated with higher FM and higher disease severity. The current results support enhancement of habitual PA as a potential tool to limit FM accumulation and potentially contribute to preserve pulmonary function in moderate asthma, considering the physical inactivity a strong risk factor for asthma worsening.
Narath, E; Skalicky, M; Viidik, A
2001-11-01
The importance of maintaining physical fitness by engaging in exercise in a life-long perspective as well as the avoidance of obesity has been emphasised in recent years by epidemiological studies on human populations as well as studies on laboratory rodents. In laboratory studies, voluntary running in wheels and forced training in a treadmill have been used with beneficial results. Restriction of the food intake of sedentary laboratory rodents can be regarded either as life prolongation or prevention of life shortening by obesity. We compared the effects of these interventions on male Sprague-Dawley rats from the age of 5 to 23 months in the following groups: (1) RW=voluntary running in wheels; (2) PW=fed to pair weight with RW animals; (3) TM=forced training in a treadmill; and (4) S1=sedentary with ad libitum access to food. Each group consisted of 32 animals, all housed individually in cages. Two RW animals died, five died in each of the PW and S1 groups and 10 in the TM group (p<0.05). The S1 and TM groups gained most weight, the TM less after the age of 21 months (p<0.05). The body weights of the RW group was lower than those of the S1 and TM groups all the time (p<0.001) and the difference increased all the time. Body composition was analysed by bioelectrical impedance analysis. There were no differences in fat free mass (FFM) neither between RW and PW at any time, nor between S1 and TM. FFM was lower for RW and PW compared to S1 and TM. TM gained FFM until the age of 17 months, while S1 gained FFM all the time. S1 gained fat all the time, but the gain for TM levelled off. It stayed constant for RW until 13 months and decreased afterwards. We conclude that voluntary running in wheels enhances survival and keeps body fat lower than in PW animals up to the age of 17 months. Body composition and survival data suggest that voluntary running is more optimal than forced. Care must, however, be taken in analyses, since RW is a heterogenous group because there is a large variation between the animals with respect to how much they run.
Correlation between Body Composition and Walking Capacity in Severe Obesity
2015-01-01
Background Obesity is associated with mobility reduction due to mechanical factors and excessive body fat. The six-minute walk test (6MWT) has been used to assess functional capacity in severe obesity. Objective To determine the association of BMI, total and segmental body composition with distance walked (6MWD) during the six-minute walk test (6MWT) according to gender and obesity grade. Setting University of São Paulo Medical School, Brazil; Public Practice. Methods Functional capacity was assessed by 6MWD and body composition (%) by bioelectrical impedance analysis in 90 patients. Results The mean 6MWD was 514.9 ± 50.3 m for both genders. The male group (M: 545.2 ± 46.9 m) showed a 6MWD higher (p = 0.002) than the female group (F: 505.6 ± 47.9 m). The morbid obese group (MO: 524.7 ± 44.0 m) also showed a 6MWD higher (p = 0.014) than the super obese group (SO: 494.2 ± 57.0 m). There was a positive relationship between 6MWD and fat free mass (FFM), FFM of upper limps (FFM_UL), trunk (FFM_TR) and lower limbs (FFM_LL). Female group presented a positive relationship between 6MWD and FFM, FFM_UL and FFM_LL and male group presented a positive relationship between 6MWD and FFM_TR. In morbid obese group there was a positive relationship between 6MWD with FFM, FFM_UL, FFM_TR and FFM_LL. The super obese group presented a positive relationship between 6MWD with FFM, FFM_TR and FFM_LL. Conclusions Total and segmental FFM is associated with a better walking capacity than BMI. PMID:26098769
Correlation between Body Composition and Walking Capacity in Severe Obesity.
Correia de Faria Santarém, G; de Cleva, R; Santo, Marco Aurélio; Bernhard, Aline Biaseto; Gadducci, Alexandre Vieira; Greve, Julia Maria D'Andrea; Silva, Paulo Roberto Santos
2015-01-01
Obesity is associated with mobility reduction due to mechanical factors and excessive body fat. The six-minute walk test (6MWT) has been used to assess functional capacity in severe obesity. To determine the association of BMI, total and segmental body composition with distance walked (6MWD) during the six-minute walk test (6MWT) according to gender and obesity grade. University of São Paulo Medical School, Brazil; Public Practice. Functional capacity was assessed by 6MWD and body composition (%) by bioelectrical impedance analysis in 90 patients. The mean 6MWD was 514.9 ± 50.3 m for both genders. The male group (M: 545.2 ± 46.9 m) showed a 6MWD higher (p = 0.002) than the female group (F: 505.6 ± 47.9 m). The morbid obese group (MO: 524.7 ± 44.0 m) also showed a 6MWD higher (p = 0.014) than the super obese group (SO: 494.2 ± 57.0 m). There was a positive relationship between 6MWD and fat free mass (FFM), FFM of upper limps (FFM_UL), trunk (FFM_TR) and lower limbs (FFM_LL). Female group presented a positive relationship between 6MWD and FFM, FFM_UL and FFM_LL and male group presented a positive relationship between 6MWD and FFM_TR. In morbid obese group there was a positive relationship between 6MWD with FFM, FFM_UL, FFM_TR and FFM_LL. The super obese group presented a positive relationship between 6MWD with FFM, FFM_TR and FFM_LL. Total and segmental FFM is associated with a better walking capacity than BMI.
Discrepancy between body surface area and body composition in cancer.
Stobäus, Nicole; Küpferling, Susanne; Lorenz, Marie-Luise; Norman, Kristina
2013-01-01
Calculation of cytostatic dose is typically based on body surface area (BSA) regardless of body composition. The aim of this study was to assess the discrepancy between BSA and low fat-free mass (FFM) by investigating the prevalence of low FFM with regard to BSA in 630 cancer patients. First, BSA was calculated according to DuBois and DuBois. Patients were divided into 6 categories with respect to their BSA. Each BSA category was further divided into 3 groups according to FFM: low (<-1 SD of mean FFM), normal (-0.99 and 0.99 SD of mean FFM) or high (>1 SD of mean FFM), which was derived through bioelectric impedance analysis. FFM was reduced in 15.7% of patients, 69% had normal and 15.2% had high FFM. In patients with low FFM (i.e., more than-1 SD lower than the mean FFM within their BSA group), body mass index and fatigue were higher whereas functional status was reduced. Moreover, in the subcohort of patients receiving chemotherapy, absolute FFM [Hazard ratio (HR) = 0.970, P = 0.026] as well as the allocation to the low FFM group (HR = 1.644, P = 0.025) emerged as predictors of increased 1-yr mortality. In conclusion, there was a large discrepancy between FFM and BSA. Particularly women were affected by low FFM.
Nikogeorgos, Nikolaos; Madsen, Jan Busk; Lee, Seunghwan
2014-10-01
Lubricating properties of bovine submaxillary mucin (BSM) on a compliant, hydrophobic surface were studied as influenced by impurities, in particular bovine serum albumin (BSA), at macro and nanoscale contacts by means of pin-on-disk tribometry and friction force microscopy (FFM), respectively. At both contact scales, the purity of BSM and the presence of BSA were quantitatively discriminated. The presence of BSA was responsible for higher frictional forces observed from BSM samples containing relatively larger amount of BSA. But, the mechanisms contributing to higher friction forces by BSA were different at different contact scales. At the macroscale contact, higher friction forces were caused by faster and dominant adsorption of BSA into the contacting area under a continuous cycle of desorption and re-adsorption of the macromolecules from tribostress. Nevertheless, all BSMs lowered the interfacial friction forces due to large contact area and a large number of BSM molecules in the contact area. At the nanoscale contact, however, no significant desorption of the macromolecules is expected in tribological contacts because of too small contact area and extremely small number of BSM molecules involved in the contact area. Instead, increasingly higher friction forces with increasing amount of BSA in BSM layer are attributed to higher viscosity caused by BSA in the layer. Comparable size of AFM probes with BSM molecules allowed them to penetrate through the BSM layers and to scratch on the underlying substrates, and thus induced higher friction forces compared to the sliding contact on bare substrates. Copyright © 2014 Elsevier B.V. All rights reserved.
Usage Patterns of a Mobile Palliative Care Application.
Zhang, Haipeng; Liu, David; Marks, Sean; Rickerson, Elizabeth M; Wright, Adam; Gordon, William J; Landman, Adam
2018-06-01
Fast Facts Mobile (FFM) was created to be a convenient way for clinicians to access the Fast Facts and Concepts database of palliative care articles on a smartphone or tablet device. We analyzed usage patterns of FFM through an integrated analytics platform on the mobile versions of the FFM application. The primary objective of this study was to evaluate the usage data from FFM as a way to better understand user behavior for FFM as a palliative care educational tool. This is an exploratory, retrospective analysis of de-identified analytics data collected through the iOS and Android versions of FFM captured from November 2015 to November 2016. FFM App download statistics from November 1, 2015, to November 1, 2016, were accessed from the Apple and Google development websites. Further FFM session data were obtained from the analytics platform built into FFM. FFM was downloaded 9409 times over the year with 201,383 articles accessed. The most searched-for terms in FFM include the following: nausea, methadone, and delirium. We compared frequent users of FFM to infrequent users of FFM and found that 13% of all users comprise 66% of all activity in the application. Demand for useful and scalable tools for both primary palliative care and specialty palliative care will likely continue to grow. Understanding the usage patterns for FFM has the potential to inform the development of future versions of Fast Facts. Further studies of mobile palliative care educational tools will be needed to further define the impact of these educational tools.
2014-01-01
personality. Their Five Factor Model ( FFM ) melds characteristics found in nearly all personality and psychological tests. The model consists of...and Costa found MBTI scales to correlate strongly with four of the five FFM traits: MBTI-Introversion correlates negatively to FFM Extraversion, MBTI...N correlates positively to FFM Openness, MBTI-Feeling correlates positively to FFM Agreeableness, and MBTI-P correlates negatively to FFM
Kono, Kenichi; Nishida, Yusuke; Moriyama, Yoshihumi; Taoka, Masahiro; Sato, Takashi
2015-06-01
The assessment of nutritional states using fat free mass (FFM) measured with near-infrared spectroscopy (NIRS) is clinically useful. This measurement should incorporate the patient's post-dialysis weight ("dry weight"), in order to exclude the effects of any change in water mass. We therefore used NIRS to investigate the regression, independent variables, and absolute reliability of FFM in dry weight. The study included 47 outpatients from the hemodialysis unit. Body weight was measured before dialysis, and FFM was measured using NIRS before and after dialysis treatment. Multiple regression analysis was used to estimate the FFM in dry weight as the dependent variable. The measured FFM before dialysis treatment (Mw-FFM), and the difference between measured and dry weight (Mw-Dw) were independent variables. We performed Bland-Altman analysis to detect errors between the statistically estimated FFM and the measured FFM after dialysis treatment. The multiple regression equation to estimate the FFM in dry weight was: Dw-FFM = 0.038 + (0.984 × Mw-FFM) + (-0.571 × [Mw-Dw]); R(2) = 0.99). There was no systematic bias between the estimated and the measured values of FFM in dry weight. Using NIRS, FFM in dry weight can be calculated by an equation including FFM in measured weight and the difference between the measured weight and the dry weight. © 2015 The Authors. Therapeutic Apheresis and Dialysis © 2015 International Society for Apheresis.
What information can frictional properties of polymer brushes tell us?
NASA Astrophysics Data System (ADS)
Zhang, Zhenyu; Moxey, Mark; Morse, Andrew; Armes, Steven; Lewis, Andrew; Geoghegan, Mark; Leggett, Graham
2013-03-01
We have used friction force microscopy (FFM) to quantitatively examine surface grown zwitterionic polymer brushes: poly(2-(methacryloyloxy)ethyl phosphorylcholine) (PMPC), and to establish the correlation between its frictional behaviour to other intrinsic properties. In a good solvent, it was found that the coefficient of friction (μ) decreased with increasing film thickness. We conclude that the amount of bound solvent increases as the brush length increases, causing the osmotic pressure to increase and yielding a reduced tendency for the brush layer to deform under applied load. When measured in a series of alcohol/water mixtures, a significant increase in μ was observed for ethanol/water mixtures at a volume fraction of 90%. This is attributed to brush collapse due to co-nonsolvency, leading to loss of hydration of the brush chains and hence substantially reduced lubrication. We show that single asperity contact mechanics is strongly dependent on solvent quality. Friction-load relationship was found linear in methanol (good solvent), but sub-linear in water and ethanol (moderate solvent).
The Future of Family Medicine version 2.0: reflections from Pisacano scholars.
Doohan, Noemi C; Duane, Marguerite; Harrison, Bridget; Lesko, Sarah; DeVoe, Jennifer E
2014-01-01
The Future of Family Medicine (FFM) project has helped shape and direct the evolution of primary care medicine over the past decade. Pisacano Scholars, a group of leaders in family medicine supported by the American Board of Family Medicine, gathered for a 2-day symposium in April 2013 to explore the history of the FFM project and outline a vision for the next phase of this work-FFM version 2.0 (v2.0). After learning about the original FFM project (FFM v1.0), the group held interactive discussions using the World Café approach to conversational leadership. This commentary summarizes the discussions and highlights major themes relevant to FFM v2.0 identified by the group. The group endorsed the FFM v1.0 recommendations as still relevant and marvelled at the progress made toward achieving many of those goals. Most elements of FFM v1.0 have moved forward, and some have been incorporated into policy blueprints for reform. Now is the time to refocus attention on facets of FFM v1.0 not yet realized and to identify key aspects missing from FFM v1.0. The Pisacano Scholars are committed to moving the FFM goals forward and hope that this expression of the group's vision will help to do so.
Lu, Hsueh-Kuan; Chiang, Li-Ming; Chen, Yu-Yawn; Chuang, Chih-Lin; Chen, Kuen-Tsann; Dwyer, Gregory B; Hsu, Ying-Lin; Chen, Chun-Hao; Hsieh, Kuen-Chang
2016-10-21
This study aimed to establish a hand-to-hand (HH) model for bioelectrical impedance analysis (BIA) fat free mass (FFM) estimation by comparing with a standing position hand-to-foot (HF) BIA model and dual energy X-ray absorptiometry (DXA); we also verified the reliability of the newly developed model. A total of 704 healthy Chinese individuals (403 men and 301 women) participated. FFM (FFM DXA ) reference variables were measured using DXA and segmental BIA. Further, regression analysis, Bland-Altman plots, and cross-validation (2/3 participants as the modeling group, 1/3 as the validation group; three turns were repeated for validation grouping) were conducted to compare tests of agreement with FFM DXA reference variables. In male participants, the hand-to-hand BIA model estimation equation was calculated as follows: FFM m HH = 0.537 h²/Z HH - 0.126 year + 0.217 weight + 18.235 ( r ² = 0.919, standard estimate of error (SEE) = 2.164 kg, n = 269). The mean validated correlation coefficients and limits of agreement (LOAs) of the Bland-Altman analysis of the calculated values for FFM m HH and FFM DXA were 0.958 and -4.369-4.343 kg, respectively, for hand-to-foot BIA model measurements for men; the FFM (FFM m HF ) and FFM DXA were 0.958 and -4.356-4.375 kg, respectively. The hand-to-hand BIA model estimating equation for female participants was FFM F HH = 0.615 h²/Z HH - 0.144 year + 0.132 weight + 16.507 ( r ² = 0.870, SEE = 1.884 kg, n = 201); the three mean validated correlation coefficient and LOA for the hand-to-foot BIA model measurements for female participants (FFM F HH and FFM DXA ) were 0.929 and -3.880-3.886 kg, respectively. The FFM HF and FFM DXA were 0.942 and -3.511-3.489 kg, respectively. The results of both hand-to-hand and hand-to-foot BIA models demonstrated similar reliability, and the hand-to-hand BIA models are practical for assessing FFM.
Fat-free mass loss generated with weight loss in overweight and obese adults: What may we expect?
Dixon, J B; Lambert, E A; Grima, M; Rice, T; Lambert, G W; Straznicky, N E
2015-01-01
There is concern that intentional weight loss may generate excessive loss of fat-free mass (FFM). Idealists target minimal loss of FFM, while others consider that FFM loss of up to 25% of weight loss is acceptable. In a cross-sectional study of 275 weight-stable, overweight or obese adults, we used whole-body dual-energy X-ray absorptiometry to measure FFM. A range of models was used to estimate the expected ΔFFM/Δweight ratio required to attain the body composition of a weight-stable individual at a lower body mass index (BMI). Higher BMI was associated linearly with higher FFM in men and women. Proportional ΔFFM/Δweight was influenced by sex, BMI and age. Direct scatter plot analysis, quadratic curve fit modelling and linear FFM-BMI modelling provided similar estimates for each model of ΔFFM/Δweight ratio, with 40% for men and 33% for women. These results show that the 25% rule is inappropriate and our estimates are higher than those generally reported after intentional weight loss indicating favourable preservation of FFM. © 2014 John Wiley & Sons Ltd.
Ræder, Hanna; Kværner, Ane Sørlie; Henriksen, Christine; Florholmen, Geir; Henriksen, Hege Berg; Bøhn, Siv Kjølsrud; Paur, Ingvild; Smeland, Sigbjørn; Blomhoff, Rune
2018-02-01
Bioelectrical impedance analysis (BIA) is an accessible and cheap method to measure fat-free mass (FFM). However, BIA estimates are subject to uncertainty in patient populations with altered body composition and hydration. The aim of the current study was to validate a whole-body and a segmental BIA device against dual-energy X-ray absorptiometry (DXA) in colorectal cancer (CRC) patients, and to investigate the ability of different empiric equations for BIA to predict DXA FFM (FFM DXA ). Forty-three non-metastatic CRC patients (aged 50-80 years) were enrolled in this study. Whole-body and segmental BIA FFM estimates (FFM whole-bodyBIA , FFM segmentalBIA ) were calculated using 14 empiric equations, including the equations from the manufacturers, before comparison to FFM DXA estimates. Strong linear relationships were observed between FFM BIA and FFM DXA estimates for all equations (R 2 = 0.94-0.98 for both devices). However, there were large discrepancies in FFM estimates depending on the equations used with mean differences in the ranges -6.5-6.8 kg and -11.0-3.4 kg for whole-body and segmental BIA, respectively. For whole-body BIA, 77% of BIA derived FFM estimates were significantly different from FFM DXA , whereas for segmental BIA, 85% were significantly different. For whole-body BIA, the Schols* equation gave the highest agreement with FFM DXA with mean difference ±SD of -0.16 ± 1.94 kg (p = 0.582). The manufacturer's equation gave a small overestimation of FFM with 1.46 ± 2.16 kg (p < 0.001) with a tendency towards proportional bias (r = 0.28, p = 0.066). For segmental BIA, the Heitmann* equation gave the highest agreement with FFM DXA (0.17 ± 1.83 kg (p = 0.546)). Using the manufacturer's equation, no difference in FFM estimates was observed (-0.34 ± 2.06 kg (p = 0.292)), however, a clear proportional bias was detected (r = 0.69, p < 0.001). Both devices demonstrated acceptable ability to detect low FFM compared to DXA using the optimal equation. In a population of non-metastatic CRC patients, mostly consisting of Caucasian adults and with a wide range of body composition measures, both the whole-body BIA and segmental BIA device provide FFM estimates that are comparable to FFM DXA on a group level when the appropriate equations are applied. At the individual level (i.e. in clinical practice) BIA may be a valuable tool to identify patients with low FFM as part of a malnutrition diagnosis. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.
Iannelli, Antonio; Martini, Francesco; Rodolphe, Anty; Schneck, Anne-Sophie; Gual, Philippe; Tran, Albert; Hébuterne, Xavier; Gugenheim, Jean
2014-02-01
Laparoscopic Roux-en-Y gastric bypass (LRYGBP) is currently the most common bariatric procedure and results in a substantial weight loss and recovery from obesity-related comorbidities, both of which are maintained in the long term. However, besides the desired loss of fat mass, LRYGBP is also followed by the loss of fat-free mass (FFM). We aimed to determine the factors associated with the loss of ≥20 % of the initial FFM 1 year after LRYGBP in a prospective series of 115 Caucasian, premenopausal women. Anthropometrics, body composition (bioelectrical impedance analysis), resting energy expenditure (REE) (indirect calorimetry), inflammation, insulin resistance, and lipid disturbances were determined before and 1 year after LRYGBP. The mean loss of initial FFM was 15.3 ± 13.8 %. 1 year after LRYGBP, 81 women lost <20 % (<20 % FFM group) and 35 lost ≥20 % (≥20 % FFM group) of the initial FFM. Before surgery, the FFM, weight, BMI, excess BMI, brachial circumference, waist circumference, and REE were significantly higher in the ≥20 % FFM group while inflammation, insulin resistance, and lipid disturbances were comparable between the two groups. 1 year after LRYGBP, the FFM, weight, BMI, excess BMI, brachial circumference, waist circumference, and REE decreased significantly and were comparable between the two groups. Inflammation, insulin resistance, and lipid disturbances improved comparably between the two groups after surgery. The only variable associated with the loss of ≥20 % of the initial FFM in the multivariable analysis was the presence of more FFM before surgery (67.0 ± 9.9 vs. 53.5 ± 6.7 kg). One year after LRYGBP the loss of ≥20 % of the initial FFM occurred mainly in women with more FFM before surgery and resulted in the same body composition of women who lost <20 % of the initial FFM.
Stubbs, R James; Hopkins, M; Finlayson, G S; Duarte, C; Gibbons, C; Blundell, J E
2018-05-01
Recently models have attempted to integrate the functional relationships of fat mass (FM) and fat-free mass (FFM) with the control of human energy intake (EI). Cross-sectional evidence suggests that at or close to EB, FFM is positively related to hunger and EI, whereas FM either shows a weak negative or no association with ad libitum EI. Further analysis suggests that the effects of FFM and FM on EI may be mediated by resting metabolic rate (RMR). These studies suggest that energy turnover is associated with EI and the largest determinant of energy requirements in most humans is FFM. During chronic positive EBs both FM and FFM expand (but disproportionately so), increasing energy demands. There is little evidence that an expanding FM exerts strong negative feedback on longer term EI. However, during chronic negative EBs FM, FFM and RMR all decrease but appetite increases. Some studies suggest that proportionate loss of FFM during weight loss predicts subsequent weight regain. Taken together these lines of evidence suggest that changes in the size and functional integrity of FFM may influence appetite and EI. Increases in FFM associated with either weight gain or high levels of exercise may 'pull' EI upwards but energy deficits that decrease FFM may exert a distinct drive on appetite. The current paper discusses how FM and FFM relationships influence appetite regulation, and how size, structure and functional integrity of FFM may drive EI in humans (i) at EB (ii) during positive EB and (iii) during negative EB.
The X-ray microscopy beamline UE46-PGM2 at BESSY
NASA Astrophysics Data System (ADS)
Follath, R.; Schmidt, J. S.; Weigand, M.; Fauth, K.
2010-06-01
The Max Planck Institute for Metal Physics in Stuttgart and the Helmholtz Center Berlin operate a soft X-ray microscopy beamline at the storage ring BESSY II. A collimated PGM serves as monochromator for a scanning X-ray microscope and a full field X-ray microscope at the helical undulator UE46. The selection between both instruments is accomplished via two switchable focusing mirrors. The scanning microscope (SM) is based on the ALS STXM microscope and fabricated by the ACCEL company. The full field microscope (FFM) is currently in operation at the U41-SGM beamline and will be relocated to its final location this year.
Bunout, Daniel; Backhouse, Claudia; Leiva, Laura; Barrera, Gladys; Sierralta, Walter; de la Maza, María Pía; Hirsch, Sandra
2009-01-01
A blood sample and muscle biopsies were obtained from 54 elderly subjects. Twenty-seven subjects aged 77+/-3 years, had experienced a change in fat free mass (FFM) of +194+/-282g/year (lean body mass maintainers) and 27 subjects aged 78+/-3 years, had a change in FFM of -487+/-209g/year (lean body mass losers). Muscle biopsies were also obtained from 10 healthy subjects aged 34+/-4 years. In muscle, the ratio of mitochondrial DNA (mtDNA) to nuclear DNA (nDNA) and telomere length were assessed and deposition of 4-hydroxy-2-nonenal adducts (4HNE) was visualized by electron microscopy. In FFM maintainers, losers and young controls, the ratio of mtDNA to nDNA was 2.1 (95% confidence intervals (CI), 0.1-31.7), 1.5 (95% CI, 0.2-15.7) and 18.6 (95% CI, 2.8-46.2), respectively. 4HNE deposition was 5.9 (95% CI, 1.5-28), 4.9 (95% CI, 0.9-13) and 3.4 (95% CI, 1.1-4.6) gold particles/microm(2), respectively. Telomere length, expressed as T/S ratio, was 0.06 (95% CI, 0.01-0.16), 0.06 (95% CI, 0.03-0.27) and 0.34 (95% CI, 0.1-1.34), respectively (p<0.02 or less for all comparisons between elderly and young subjects).
Validation of a portable bioelectrical impedance analyzer for the assessment of body composition.
Karelis, Antony D; Chamberland, Gabriel; Aubertin-Leheudre, Mylène; Duval, Christian
2013-01-01
One of the major challenges in field research has been the difficulty to adequately measure body composition, such as % body fat and fat-free mass (FFM). Therefore, the purpose of the present study was to investigate the convergent validity of the portable bioelectrical impedance body composition analyzer, the Inbody 230, with dual X-ray absorptiometry (DXA) (General Electric Lunar Prodigy). The study population consisted of 145 men and women (age, 44.6 ± 20 years; BMI, 24.5 ± 3.8 kg·m(-2)). We measured body composition (fat mass, % body fat, total FFM, trunk FFM, and appendicular FFM) using DXA and the Inbody 230. Results show strong significant correlations between both methods for fat mass, % body fat, total FFM, and trunk FFM (r = 0.94-0.99). Furthermore, we showed a modest significant correlation between both methods for appendicular FFM (r = 0.63). Finally, as shown by Bland-Altman analysis, no significant biases were observed between Inbody 230 and DXA for fat mass, % body fat, and total FFM. However, trunk and appendicular FFM were shown to have significant biases between the Inbody 230 and DXA. In conclusion, the present study indicated that the portable Inbody 230 may be an acceptable device to measure fat mass, % body fat, and total FFM (except for women) in healthy adults. In addition, there appears to be a systematic bias for the estimation of trunk and appendicular FFM with the Inbody 230 in men and women.
Patient SWAP-200 personality dimensions and FFM traits: Do they predict therapist responses?
Tanzilli, Annalisa; Lingiardi, Vittorio; Hilsenroth, Mark
2018-05-01
The main aim of this study was to examine the relationship between therapists' emotional responses and patients' personality evaluated by 3 dimensional diagnostic approaches empirically derived from the Shedler-Westen Assessment Procedure-200 (SWAP-200; Westen & Shedler, 1999a, 1999b): Two of these rely on the 5-factor model (FFM) domains, that were assessed with different SWAP-200 FFM versions developed by Shedler and Westen (SW-FFM scales; 2004) and McCrae, Löckenhoff, and Costa (MLC-FFM scales; 2005); the third approach is based on a multifaceted model of personality syndromes (SWAP personality dimension scales; see Shedler & Westen, 2004). A national sample of psychiatrists and psychologists (N = 166) of various theoretical orientations completed the Therapist Response Questionnaire (TRQ; Zittel Conklin & Westen, 2003) to identify patterns of therapist response, and the SWAP-200 to assess personality regarding a patient currently in their care. The findings showed good levels of construct validity between the SW-FFM and MLC-FFM scales, with the exception of the Openness trait. Moreover, specific SW-FFM and MLC-FFM scales were significantly associated with distinct SWAP personality dimension scales according in a conceptually meaningful nomological network. Although there were significant, theoretically coherent, and systematic relationships between therapists' responses and patients' personality features, overall the contribution of the SW-FFM and MLC-FFM traits in predicting therapists' responses was less sizable than the SWAP personality dimensions. These results seem to confirm the diagnostic and therapeutic value of countertransference as an essential tool in understanding psychological traits/dimensions that underlie the patients' psychopathology, both from within and outside of the FFM. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
Geisler, Corinna; Braun, Wiebke; Pourhassan, Maryam; Schweitzer, Lisa; Glüer, Claus-Christian; Bosy-Westphal, Anja; Müller, Manfred J.
2016-01-01
Age-related changes in organ and tissue masses may add to changes in the relationship between resting energy expenditure (REE) and fat free mass (FFM) in normal and overweight healthy Caucasians. Secondary analysis using cross-sectional data of 714 healthy normal and overweight Caucasian subjects (age 18–83 years) with comprehensive information on FFM, organ and tissue masses (as assessed by magnetic resonance imaging (MRI)), body density (as assessed by Air Displacement Plethysmography (ADP)) and hydration (as assessed by deuterium dilution (D2O)) and REE (as assessed by indirect calorimetry). High metabolic rate organs (HMR) summarized brain, heart, liver and kidney masses. Ratios of HMR organs and muscle mass (MM) in relation to FFM were considered. REE was calculated (REEc) using organ and tissue masses times their specific metabolic rates. REE, FFM, specific metabolic rates, the REE-FFM relationship, HOMA, CRP, and thyroid hormone levels change with age. The age-related decrease in FFM explained 59.7% of decreases in REE. Mean residuals of the REE-FFM association were positive in young adults but became negative in older subjects. When compared to young adults, proportions of MM to FFM decreased with age, whereas contributions of liver and heart did not differ between age groups. HOMA, TSH and inflammation (plasma CRP-levels) explained 4.2%, 2.0% and 1.4% of the variance in the REE-FFM residuals, but age and plasma T3-levels had no effects. HMR to FFM and MM to FFM ratios together added 11.8% on to the variance of REE-FFM residuals. Differences between REE and REEc increased with age, suggesting age-related changes in specific metabolic rates of organs and tissues. This bias was partly explained by plasmaT3-levels. Age-related changes in REE are explained by (i) decreases in fat free mass; (ii) a decrease in the contributions of organ and muscle masses to FFM; and (iii) decreases in specific organ and tissue metabolic rates. Age-dependent changes in the REE-FFMassociation are explained by composition of FFM, inflammation and thyroid hormones. PMID:27258302
Geisler, Corinna; Braun, Wiebke; Pourhassan, Maryam; Schweitzer, Lisa; Glüer, Claus-Christian; Bosy-Westphal, Anja; Müller, Manfred J
2016-06-01
Age-related changes in organ and tissue masses may add to changes in the relationship between resting energy expenditure (REE) and fat free mass (FFM) in normal and overweight healthy Caucasians. Secondary analysis using cross-sectional data of 714 healthy normal and overweight Caucasian subjects (age 18-83 years) with comprehensive information on FFM, organ and tissue masses (as assessed by magnetic resonance imaging (MRI)), body density (as assessed by Air Displacement Plethysmography (ADP)) and hydration (as assessed by deuterium dilution (D₂O)) and REE (as assessed by indirect calorimetry). High metabolic rate organs (HMR) summarized brain, heart, liver and kidney masses. Ratios of HMR organs and muscle mass (MM) in relation to FFM were considered. REE was calculated (REEc) using organ and tissue masses times their specific metabolic rates. REE, FFM, specific metabolic rates, the REE-FFM relationship, HOMA, CRP, and thyroid hormone levels change with age. The age-related decrease in FFM explained 59.7% of decreases in REE. Mean residuals of the REE-FFM association were positive in young adults but became negative in older subjects. When compared to young adults, proportions of MM to FFM decreased with age, whereas contributions of liver and heart did not differ between age groups. HOMA, TSH and inflammation (plasma CRP-levels) explained 4.2%, 2.0% and 1.4% of the variance in the REE-FFM residuals, but age and plasma T3-levels had no effects. HMR to FFM and MM to FFM ratios together added 11.8% on to the variance of REE-FFM residuals. Differences between REE and REEc increased with age, suggesting age-related changes in specific metabolic rates of organs and tissues. This bias was partly explained by plasmaT3-levels. Age-related changes in REE are explained by (i) decreases in fat free mass; (ii) a decrease in the contributions of organ and muscle masses to FFM; and (iii) decreases in specific organ and tissue metabolic rates. Age-dependent changes in the REE-FFMassociation are explained by composition of FFM, inflammation and thyroid hormones.
Estimation of Fat-free Mass at Discharge in Preterm Infants Fed With Optimized Feeding Regimen.
Larcade, Julie; Pradat, Pierre; Buffin, Rachel; Leick-Courtois, Charline; Jourdes, Emilie; Picaud, Jean-Charles
2017-01-01
The purpose of the present study was to validate a previously calculated equation (E1) that estimates infant fat-free mass (FFM) at discharge using data from a population of preterm infants receiving an optimized feeding regimen. Preterm infants born before 33 weeks of gestation between April 2014 and November 2015 in the tertiary care unit of Croix-Rousse Hospital in Lyon, France, were included in the study. At discharge, FFM was assessed by air displacement plethysmography (PEA POD) and was compared with FFM estimated by E1. FFM was estimated using a multiple linear regression model. Data on 155 preterm infants were collected. There was a strong correlation between the FFM estimated by E1 and FFM assessed by the PEA POD (r = 0.939). E1, however, underestimated the FFM (average difference: -197 g), and this underestimation increased as FFM increased. A new, more predictive equation is proposed (r = 0.950, average difference: -12 g). Although previous estimation methods were useful for estimating FFM at discharge, an equation adapted to present populations of preterm infants with "modern" neonatal care and nutritional practices is required for accuracy.
Adhesion-dependent negative friction coefficient on chemically modified graphite at the nanoscale
NASA Astrophysics Data System (ADS)
Deng, Zhao; Smolyanitsky, Alex; Li, Qunyang; Feng, Xi-Qiao; Cannara, Rachel J.
2012-12-01
From the early tribological studies of Leonardo da Vinci to Amontons’ law, friction has been shown to increase with increasing normal load. This trend continues to hold at the nanoscale, where friction can vary nonlinearly with normal load. Here we present nanoscale friction force microscopy (FFM) experiments for a nanoscale probe tip sliding on a chemically modified graphite surface in an atomic force microscope (AFM). Our results demonstrate that, when adhesion between the AFM tip and surface is enhanced relative to the exfoliation energy of graphite, friction can increase as the load decreases under tip retraction. This leads to the emergence of an effectively negative coefficient of friction in the low-load regime. We show that the magnitude of this coefficient depends on the ratio of tip-sample adhesion to the exfoliation energy of graphite. Through both atomistic- and continuum-based simulations, we attribute this unusual phenomenon to a reversible partial delamination of the topmost atomic layers, which then mimic few- to single-layer graphene. Lifting of these layers with the AFM tip leads to greater deformability of the surface with decreasing applied load. This discovery suggests that the lamellar nature of graphite yields nanoscale tribological properties outside the predictive capacity of existing continuum mechanical models.
Gang, G J; Siewerdsen, J H; Stayman, J W
2017-02-11
This work presents a task-driven joint optimization of fluence field modulation (FFM) and regularization in quadratic penalized-likelihood (PL) reconstruction. Conventional FFM strategies proposed for filtered-backprojection (FBP) are evaluated in the context of PL reconstruction for comparison. We present a task-driven framework that leverages prior knowledge of the patient anatomy and imaging task to identify FFM and regularization. We adopted a maxi-min objective that ensures a minimum level of detectability index ( d' ) across sample locations in the image volume. The FFM designs were parameterized by 2D Gaussian basis functions to reduce dimensionality of the optimization and basis function coefficients were estimated using the covariance matrix adaptation evolutionary strategy (CMA-ES) algorithm. The FFM was jointly optimized with both space-invariant and spatially-varying regularization strength ( β ) - the former via an exhaustive search through discrete values and the latter using an alternating optimization where β was exhaustively optimized locally and interpolated to form a spatially-varying map. The optimal FFM inverts as β increases, demonstrating the importance of a joint optimization. For the task and object investigated, the optimal FFM assigns more fluence through less attenuating views, counter to conventional FFM schemes proposed for FBP. The maxi-min objective homogenizes detectability throughout the image and achieves a higher minimum detectability than conventional FFM strategies. The task-driven FFM designs found in this work are counter to conventional patterns for FBP and yield better performance in terms of the maxi-min objective, suggesting opportunities for improved image quality and/or dose reduction when model-based reconstructions are applied in conjunction with FFM.
A Preliminary Model of Insider Theft of Intellectual Property
2011-06-01
insider IT sabotage [Moore 2008] [Cappelli 2006]. The primary personality model used in CWB research is the Five Factor Model ( FFM ). The FFM includes... FFM dimensions and CWBs, Salgado found 44 studies conducted between 1990 and 1999 that examine the relationship between the FFM dimensions and deviant
Heterogeneity: The key to forecasting material failure?
NASA Astrophysics Data System (ADS)
Vasseur, J.; Wadsworth, F. B.; Lavallée, Y.; Dingwell, D. B.
2014-12-01
Empirical mechanistic models have been applied to the description of the stress and strain rate upon failure for heterogeneous materials. The behaviour of porous rocks and their analogous two-phase viscoelastic suspensions are particularly well-described by such models. Nevertheless, failure cannot yet be predicted forcing a reliance on other empirical prediction tools such as the Failure Forecast Method (FFM). Measurable, accelerating rates of physical signals (e.g., seismicity and deformation) preceding failure are often used as proxies for damage accumulation in the FFM. Previous studies have already statistically assessed the applicability and performance of the FFM, but none (to the best of our knowledge) has done so in terms of intrinsic material properties. Here we use a rheological standard glass, which has been powdered and then sintered for different times (up to 32 hours) at high temperature (675°C) in order to achieve a sample suite with porosities in the range of 0.10-0.45 gas volume fraction. This sample suite was then subjected to mechanical tests in a uniaxial press at a constant strain rate of 10-3 s-1 and a temperature in the region of the glass transition. A dual acoustic emission (AE) rig has been employed to test the success of the FFM in these materials of systematically varying porosity. The pore-emanating crack model describes well the peak stress at failure in the elastic regime for these materials. We show that the FFM predicts failure within 0-15% error at porosities >0.2. However, when porosities are <0.2, the forecast error associated with predicting the failure time increases to >100%. We interpret these results as a function of the low efficiency with which strain energy can be released in the scenario where there are few or no heterogeneities from which cracks can propagate. These observations shed light on questions surrounding the variable efficacy of the FFM applied to active volcanoes. In particular, they provide a systematic demonstration of the fact that a good understanding of the material properties is required. Thus, we wish to emphasize the need for a better coupling of empirical failure forecasting models with mechanical parameters, such as failure criteria for heterogeneous materials, and point to the implications of this for a broad range of material-based disciplines.
A five-factor measure of obsessive-compulsive personality traits.
Samuel, Douglas B; Riddell, Ashley D B; Lynam, Donald R; Miller, Joshua D; Widiger, Thomas A
2012-01-01
This study provides convergent, discriminant, and incremental validity data for the Five-Factor Obsessive-Compulsive Inventory (FFOCI), a newly developed measure of traits relevant to obsessive-compulsive personality disorder (OCPD) from the perspective of the Five-factor model (FFM). Twelve scales were constructed as maladaptive variants of specific FFM facets (e.g., Perfectionism as a maladaptive variant of FFM competence). On the basis of data from 407 undergraduates (oversampled for OCPD symptoms) these 12 scales demonstrated convergent correlations with established measures of OCPD and the FFM. Further, they obtained strong discriminant validity with respect to facets from other FFM domains. Most important, the individual scales and total score of the FFOCI obtained incremental validity beyond existing measures of the FFM and OCPD for predicting a composite measure of obsessive-compulsive symptomatology. The findings support the validity of the FFOCI as a measure of obsessive-compulsive personality traits, as well as of maladaptive variants of the FFM.
Convergent and Discriminant Validity of the Five Factor Form and the Sliderbar Inventory.
Rojas, Stephanie L; Widiger, Thomas A
2018-03-01
Existing measures of the five factor model (FFM) of personality are generally, if not exclusively, unipolar in their assessment of maladaptive variants of the FFM domains. However, two recently developed measures, the Five Factor Form (FFF) and the Sliderbar Inventory (SI), include items that assess for maladaptive variants at both poles of each item. This structure is unique among existing measures of personality and personality disorder, although there is a historical, infrequently used Stone Personality Trait Schema (SPTS) that had also included this item structure. To facilitate an exploration of their convergent and discriminant validity, the SI and SPTS items were reorganized into FFM scales. The convergent and discriminant validity of the FFF, SI-FFM, and SPTS-FFM scales was considered in a sample of 450 adults with current or a history of mental health treatment. The FFF, SI-FFM, and SPTS-FFM were also compared with respect to their relationship with FFM domains. Finally, the FFF items and SI-FFM scales were tested with respect to their relationship with measures of maladaptive variants of both high and low agreeableness and conscientiousness. The implications of the results are discussed with respect to the assessment of maladaptive personality functioning, and suggestions for future research are provided.
Dulloo, A G; Jacquet, J; Miles-Chan, J L; Schutz, Y
2017-03-01
While putative feedback signals arising from adipose tissue are commonly assumed to provide the molecular links between the body's long-term energy requirements and energy intake, the available evidence suggests that the lean body or fat-free mass (FFM) also plays a role in the drive to eat. A distinction must, however, be made between a 'passive' role of FFM in driving energy intake, which is likely to be mediated by 'energy-sensing' mechanisms that translate FFM-induced energy requirements to energy intake, and a more 'active' role of FFM in the drive to eat through feedback signaling between FFM deficit and energy intake. Consequently, a loss of FFM that results from dieting or sedentarity should be viewed as a risk factor for weight regain and increased fatness not only because of the impact of the FFM deficit in lowering the maintenance energy requirement but also because of the body's attempt to restore FFM by overeating-a phenomenon referred to as 'collateral fattening'. A better understanding of these passive and active roles of FFM in the control of energy intake will necessitate the elucidation of peripheral signals and energy-sensing mechanisms that drive hunger and appetite, with implications for both obesity prevention and its management.
Joint Optimization of Fluence Field Modulation and Regularization in Task-Driven Computed Tomography
Gang, G. J.; Siewerdsen, J. H.; Stayman, J. W.
2017-01-01
Purpose This work presents a task-driven joint optimization of fluence field modulation (FFM) and regularization in quadratic penalized-likelihood (PL) reconstruction. Conventional FFM strategies proposed for filtered-backprojection (FBP) are evaluated in the context of PL reconstruction for comparison. Methods We present a task-driven framework that leverages prior knowledge of the patient anatomy and imaging task to identify FFM and regularization. We adopted a maxi-min objective that ensures a minimum level of detectability index (d′) across sample locations in the image volume. The FFM designs were parameterized by 2D Gaussian basis functions to reduce dimensionality of the optimization and basis function coefficients were estimated using the covariance matrix adaptation evolutionary strategy (CMA-ES) algorithm. The FFM was jointly optimized with both space-invariant and spatially-varying regularization strength (β) - the former via an exhaustive search through discrete values and the latter using an alternating optimization where β was exhaustively optimized locally and interpolated to form a spatially-varying map. Results The optimal FFM inverts as β increases, demonstrating the importance of a joint optimization. For the task and object investigated, the optimal FFM assigns more fluence through less attenuating views, counter to conventional FFM schemes proposed for FBP. The maxi-min objective homogenizes detectability throughout the image and achieves a higher minimum detectability than conventional FFM strategies. Conclusions The task-driven FFM designs found in this work are counter to conventional patterns for FBP and yield better performance in terms of the maxi-min objective, suggesting opportunities for improved image quality and/or dose reduction when model-based reconstructions are applied in conjunction with FFM. PMID:28626290
Joint optimization of fluence field modulation and regularization in task-driven computed tomography
NASA Astrophysics Data System (ADS)
Gang, G. J.; Siewerdsen, J. H.; Stayman, J. W.
2017-03-01
Purpose: This work presents a task-driven joint optimization of fluence field modulation (FFM) and regularization in quadratic penalized-likelihood (PL) reconstruction. Conventional FFM strategies proposed for filtered-backprojection (FBP) are evaluated in the context of PL reconstruction for comparison. Methods: We present a task-driven framework that leverages prior knowledge of the patient anatomy and imaging task to identify FFM and regularization. We adopted a maxi-min objective that ensures a minimum level of detectability index (d') across sample locations in the image volume. The FFM designs were parameterized by 2D Gaussian basis functions to reduce dimensionality of the optimization and basis function coefficients were estimated using the covariance matrix adaptation evolutionary strategy (CMA-ES) algorithm. The FFM was jointly optimized with both space-invariant and spatially-varying regularization strength (β) - the former via an exhaustive search through discrete values and the latter using an alternating optimization where β was exhaustively optimized locally and interpolated to form a spatially-varying map. Results: The optimal FFM inverts as β increases, demonstrating the importance of a joint optimization. For the task and object investigated, the optimal FFM assigns more fluence through less attenuating views, counter to conventional FFM schemes proposed for FBP. The maxi-min objective homogenizes detectability throughout the image and achieves a higher minimum detectability than conventional FFM strategies. Conclusions: The task-driven FFM designs found in this work are counter to conventional patterns for FBP and yield better performance in terms of the maxi-min objective, suggesting opportunities for improved image quality and/or dose reduction when model-based reconstructions are applied in conjunction with FFM.
Human brain mass: similar body composition associations as observed across mammals.
Heymsfield, Steven B; Müller, Manfred J; Bosy-Westphal, Anja; Thomas, Diana; Shen, Wei
2012-01-01
A classic association is the link between brain mass and body mass across mammals that has now been shown to derive from fat-free mass (FFM) and not fat mass (FM). This study aimed to establish for the first time the associations between human brain mass and body composition and to compare these relations with those established for liver as a reference organ. Subjects were 112 men and 148 women who had brain and liver mass measured by magnetic resonance imaging with FM and FFM measured by dual-energy X-ray absorptiometry. Brain mass scaled to height (H) with powers of ≤0.6 in men and women; liver mass and FFM both scaled similarly as H(~2) . The fraction of FFM as brain thus scaled inversely to height (P < 0.001) while liver mass/FFM was independent of height. After controlling for age, brain, and liver mass were associated with FFM while liver was additionally associated with FM (all models P ≤ 0.01). After controlling for age and sex, FFM accounted for ~5% of the variance in brain mass while levels were substantially higher for liver mass (~60%). Brain mass was significantly larger (P < 0.001) in men than in women, even after controlling for age and FFM. As across mammals, human brain mass associates significantly, although weakly, with FFM and not FM; the fraction of FFM as brain relates inversely to height; brain differs in these relations from liver, another small high metabolic rate organ; and the sexual dimorphism in brain mass persists even after adjusting for age and FFM. Copyright © 2012 Wiley Periodicals, Inc.
New insights into scaling of fat-free mass to height across children and adults.
Wang, Zimian; Zhang, Junyi; Ying, Zhiliang; Heymsfield, Steven B
2012-01-01
Forbes expressed fat-free mass (FFM, in kg) as the cube of height (H, in m): FFM = 10.3 × H(3). Our objective is to examine the potential influence of gender and population ancestry on the association between FFM and height. This is a cross-sectional analysis involving an existing dataset of 279 healthy subjects (155 males and 124 females) with age 5-59 years and body mass index (BMI) 14-28 kg/m(2). FFM was measured by a four-component model as the criterion. Nonlinear regression models were fitted: FFM = 10.8 × H(2.95) for the males and FFM = 10.1 × H(2.90) for the females. The 95% confidence intervals for the exponential coefficients were (2.83, 3.07) for the males and (2.72, 3.08) for the females, both containing hypothesized value 3.0. Population ancestry adjustment was considered in the H-FFM model. The coefficient of the H-FFM model for male Asians is smaller than that for male Caucasians (P = 0.006), while there is no statistically significant difference among African-Americans, Caucasians and Hispanics: 10.6 for the males (10.1 for Asians, 10.8 for African-Americans, 10.7 for Caucasians and 10.4 for Hispanics) and 9.6 for the females (9.3 for Asians, 9.8 for African-Americans, 9.6 for Caucasians and 9.5 for Hispanics). Age adjustment was unnecessary for the coefficient of the H-FFM model. Height is the most important factor contributing to the magnitude of FFM across most of the lifespan, though both gender and ancestry effects are significant in the H-FFM model. The proposed H-FFM model can be further used to develop a mechanistic model to explain why population ancestry, gender and age influence the associations between BMI and %Fat. Copyright © 2012 Wiley Periodicals, Inc.
Hofsteenge, Geesje H; Chinapaw, Mai J M; Weijs, Peter J M
2015-10-15
In clinical practice, patient friendly methods to assess body composition in obese adolescents are needed. Therefore, the bioelectrical impedance analysis (BIA) related fat-free mass (FFM) prediction equations (FFM-BIA) were evaluated in obese adolescents (age 11-18 years) compared to FFM measured by dual-energy x-ray absorptiometry (FFM-DXA) and a new population specific FFM-BIA equation is developed. After an overnight fast, the subjects attended the outpatient clinic. After measuring height and weight, a full body scan by dual-energy x-ray absorptiometry (DXA) and a BIA measurement was performed. Thirteen predictive FFM-BIA equations based on weight, height, age, resistance, reactance and/or impedance were systematically selected and compared to FFM-DXA. Accuracy of FFM-BIA equations was evaluated by the percentage adolescents predicted within 5% of FFM-DXA measured, the mean percentage difference between predicted and measured values (bias) and the Root Mean Squared prediction Error (RMSE). Multiple linear regression was conducted to develop a new BIA equation. Validation was based on 103 adolescents (60% girls), age 14.5 (sd1.7) years, weight 94.1 (sd15.6) kg and FFM-DXA of 56.1 (sd9.8) kg. The percentage accurate estimations varied between equations from 0 to 68%; bias ranged from -29.3 to +36.3% and RMSE ranged from 2.8 to 12.4 kg. An alternative prediction equation was developed: FFM = 0.527 * H(cm)(2)/Imp + 0.306 * weight - 1.862 (R(2) = 0.92, SEE = 2.85 kg). Percentage accurate prediction was 76%. Compared to DXA, the Gray equation underestimated the FFM with 0.4 kg (55.7 ± 8.3), had an RMSE of 3.2 kg, 63% accurate prediction and the smallest bias of (-0.1%). When split by sex, the Gray equation had the narrowest range in accurate predictions, bias, and RMSE. For the assessment of FFM with BIA, the Gray-FFM equation appears to be the most accurate, but 63% is still not at an acceptable accuracy level for obese adolescents. The new equation appears to be appropriate but await further validation. DXA measurement remains the method of choice for FFM in obese adolescents. Netherlands Trial Register ( ISRCTN27626398).
Leung, Y M; Cave, N J; Hodgson, B A S
2018-06-27
To develop an equation that accurately estimates fat-free mass (FFM) and the ratio of FFM to skeletal size or mass, using morphometric measurements in lean working farm dogs, and to examine the association between FFM derived from body condition score (BCS) and FFM measured using isotope dilution. Thirteen Huntaway and seven Heading working dogs from sheep and beef farms in the Waikato region of New Zealand were recruited based on BCS (BCS <3, 3-4, >4) using a nine-point scale. Bodyweight, BCS, and morphometric measurements (head length and circumference, body length, thoracic girth, and fore and hind limb length) were recorded for each dog, and body composition was measured using an isotopic dilution technique. A new variable using morphometric measurements, termed skeletal size, was created using principal component analysis. Models for predicting FFM, leanST (FFM minus skeletal mass) and ratios of FFM and leanST to skeletal size or mass were generated using multiple linear regression analysis. Mean FFM of the 20 dogs, measured by isotope dilution, was 22.1 (SD 4.4) kg and the percentage FFM of bodyweight was 87.0 (SD 5.0)%. Median BCS was 3.0 (min 1, max 6). Bodyweight, breed, age and skeletal size or mass were associated with measured FFM (p<0.001). There was a good correlation between predicted FFM and measured FFM (R 2 =0.96), and for the ratio of predicted FFM to skeletal size and measured values (R 2 =0.99). Correlation coefficients were higher for the ratio FFM and leanST to skeletal size than for ratios using skeletal mass. There was a positive correlation between BCS-derived fat mass as a percentage of bodyweight and fat mass percentage determined using isotope dilution (R 2 =0.65). As expected, the predictive equation was accurate in estimating FFM when tested on the same group of dogs used to develop the equation. The significance of breed, independent of skeletal size, in predicting FFM indicates that individual breed formulae may be required. Future studies that apply these equations on a greater population of working Huntaway and Heading dogs are needed to establish the utility of these equations on a large scale. Such studies could ascertain if there is a ratio for lean mass to skeletal size below which the risk of injury or disease increases. If these equations prove useful they would provide an objective and non-invasive measure to determine when welfare in individual dogs is compromised by underfeeding.
Oshima, Satomi; Miyauchi, Sakiho; Asaka, Meiko; Kawano, Hiroshi; Taguchi, Motoko; Torii, Suguru; Higuchi, Mitsuru
2013-01-01
We have previously shown that resting energy expenditure (REE) adjusted by fat-free mass (FFM) in male college athletes remains consistent regardless of FFM. The FFM comprises internal organs with high metabolic activity, such as liver and brain, which account for 60 to 80% of REE in adults. The purpose of the present study is to examine the contribution of internal organs to the REE of the FFM fraction among male power athletes. The study included 37 American male college football players. REE was measured by indirect calorimetry and body composition was measured by dual energy X-ray absorptiometry (DXA). Mass of brain, liver, and kidneys was measured by MRI and mass of heart was estimated by echocardiography. Normal levels of thyroid hormone (triiodothyronine: T3) were confirmed in all subjects prior to the analysis. Multiple regression analysis was used to assess the influence of FFM, fat mass (FM), T3, and mass of organs on variance of REE. Average body weight and FFM were 81.2±11.3 kg and 67.7±7.4 kg, respectively. The relative contributions of liver, kidneys, and heart to REE were consistent regardless of FFM, while the REE of brain was negatively correlated with FFM (r=-0.672, p<0.001). Only FFM and T3 were found to be independent factors influencing REE. These results suggest that a steady contribution of internal organs other than the brain is the major reason for the consistency of the REE/FFM ratio in male power athletes.
Villar, José; Puglia, Fabien A; Fenton, Tanis R; Cheikh Ismail, Leila; Staines-Urias, Eleonora; Giuliani, Francesca; Ohuma, Eric O; Victora, Cesar G; Sullivan, Peter; Barros, Fernando C; Lambert, Ann; Papageorghiou, Aris T; Ochieng, Roseline; Jaffer, Yasmin A; Altman, Douglas G; Noble, Alison J; Gravett, Michael G; Purwar, Manorama; Pang, Ruyan; Uauy, Ricardo; Kennedy, Stephen H; Bhutta, Zulfiqar A
2017-01-01
Background We aimed to describe newborn body composition and identify which anthropometric ratio (weight/length; BMI; or ponderal index, PI) best predicts fat mass (FM) and fat-free mass (FFM). Methods Air-displacement plethysmography (PEA POD) was used to estimate FM, FFM, and body fat percentage (BF%). Associations between FFM, FM, and BF% and weight/length, BMI, and PI were evaluated in 1,019 newborns using multivariate regression analysis. Charts for FM, FFM, and BF% were generated using a prescriptive subsample (n=247). Standards for the best-predicting anthropometric ratio were calculated utilizing the same population used for the INTERGROWTH-21st Newborn Size Standards (n=20,479). Results FFM and FM increased consistently during late pregnancy. Differential FM, BF%, and FFM patterns were observed for those born preterm (34+0−36+6 weeks’ gestation) and with impaired intrauterine growth. Weight/length by gestational age (GA) was a better predictor of FFM and FM (adjusted R2=0.92 and 0.71, respectively) than BMI or PI, independent of sex, GA, and timing of measurement. Results were almost identical when only preterm newborns were studied. We present sex-specific centiles for weight/length ratio for GA. Conclusions Weight/length best predicts newborn FFM and FM. There are differential FM, FFM, and BF% patterns by sex, GA, and size at birth. PMID:28445454
Hughes, J T; Maple-Brown, L J; Piers, L S; Meerkin, J; O'Dea, K; Ward, L C
2015-01-01
To describe the development of a single-frequency bioimpedance prediction equation for fat-free mass (FFM) suitable for adult Aboriginal and Torres Strait Islander peoples with and without diabetes or indicators of chronic kidney disease (CKD). FFM was measured by whole-body dual-energy X-ray absorptiometry in 147 adult Indigenous Australians. Height, weight, body circumference and resistance were also measured. Adults with and without diabetes and indicators of CKD were examined. A random split sample with internal cross-validation approach was used to predict and subsequently validate FFM using resistance, height, weight, age and gender against measured FFM. Among 147 adults with a median body mass index of 31 kg/m(2), the final model of FFM was FFM (kg)=0.432 (height, cm(2)/resistance, ohm)-0.086 (age, years)+0.269 (weight, kg)-6.422 (if female)+16.429. Adjusted R(2) was 0.94 and the root mean square error was 3.33 kg. The concordance was high (rc=0.97) between measured and predicted FFM across a wide range of FFM (31-85 kg). In the context of the high burden of diabetes and CKD among adult Indigenous Australians, this new equation for FFM was both accurate and precise and based on easily acquired variables (height, weight, age, gender and resistance) among a heterogeneous adult cohort.
Villar, José; Puglia, Fabien A; Fenton, Tanis R; Cheikh Ismail, Leila; Staines-Urias, Eleonora; Giuliani, Francesca; Ohuma, Eric O; Victora, Cesar G; Sullivan, Peter; Barros, Fernando C; Lambert, Ann; Papageorghiou, Aris T; Ochieng, Roseline; Jaffer, Yasmin A; Altman, Douglas G; Noble, Alison J; Gravett, Michael G; Purwar, Manorama; Pang, Ruyan; Uauy, Ricardo; Kennedy, Stephen H; Bhutta, Zulfiqar A
2017-08-01
BackgroundWe aimed to describe newborn body composition and identify which anthropometric ratio (weight/length; BMI; or ponderal index, PI) best predicts fat mass (FM) and fat-free mass (FFM).MethodsAir-displacement plethysmography (PEA POD) was used to estimate FM, FFM, and body fat percentage (BF%). Associations between FFM, FM, and BF% and weight/length, BMI, and PI were evaluated in 1,019 newborns using multivariate regression analysis. Charts for FM, FFM, and BF% were generated using a prescriptive subsample (n=247). Standards for the best-predicting anthropometric ratio were calculated utilizing the same population used for the INTERGROWTH-21 st Newborn Size Standards (n=20,479).ResultsFFM and FM increased consistently during late pregnancy. Differential FM, BF%, and FFM patterns were observed for those born preterm (34 +0 -36 +6 weeks' gestation) and with impaired intrauterine growth. Weight/length by gestational age (GA) was a better predictor of FFM and FM (adjusted R 2 =0.92 and 0.71, respectively) than BMI or PI, independent of sex, GA, and timing of measurement. Results were almost identical when only preterm newborns were studied. We present sex-specific centiles for weight/length ratio for GA.ConclusionsWeight/length best predicts newborn FFM and FM. There are differential FM, FFM, and BF% patterns by sex, GA, and size at birth.
Radionuclide desorption kinetics on synthetic Zn/Ni-labeled montmorillonite nanoparticles
NASA Astrophysics Data System (ADS)
Huber, F. M.; Heck, S.; Truche, L.; Bouby, M.; Brendlé, J.; Hoess, P.; Schäfer, T.
2015-01-01
Sorption/desorption kinetics for selected radionuclides (99Tc(VII), 232Th(IV), 233U(VI), 237Np(V), 242Pu and 243Am(III)) under Grimsel (Switzerland) ground water conditions (pH 9.7 and ionic strength of ∼1 mM) in the presence of synthetic Zn or Ni containing montmorillonite nanoparticles and granodiorite fracture filling material (FFM) from Grimsel were examined in batch studies. The structurally bound Zn or Ni in the octahedral sheet of the synthetic colloids rendered them suitable as colloid markers. Only a weak interaction of the montmorillonite colloids with the fracture filling material occurs over the experimental duration of 10,000 h (∼13 months). The tri- and tetravalent radionuclides are initially strongly associated with nanoparticles in contrast to 99Tc(VII), 233U(VI) and 237Np(V) which showed no sorption to the montmorillonite colloids. Radionuclide desorption of the nanoparticles followed by sorption to the fracture filling material is observed for 232Th(IV), 242Pu and 243Am(III). Based on the conceptual model that the driving force for the kinetically controlled radionuclide desorption from nanoparticles and subsequent association to the FFM is the excess in surface area offered by the FFM, the observed desorption kinetics are related to the colloid/FFM surface area ratio. The observed decrease in concentration of the redox sensitive elements 99Tc(VII), 233U(VI) and 237Np(V) may be explained by reduction to lower oxidation states in line with Eh-pH conditions prevailing in the experiments and thermodynamic considerations leading to (i) precipitation of a sparingly soluble phase, (ii) sorption to the fracture filling material, (iii) possible formation of eigencolloids and/or (iv) sorption to the montmorillonite colloids. Subsequent to the sorption/desorption kinetics study, an additional experiment was conducted investigating the potential remobilization of radionuclides/colloids attached to the FFM used in the sorption/desorption kinetic experiments by contacting this FFM with pure Grimsel groundwater for 7 days. A positive correlation of 242Pu, 232Th(IV) and 237Np was observed with the Zn and Ni concentrations in the desorption experiments indicating a remobilization of sorbed montmorillonite colloids. The results of the study in hand highlight (i) the novel use of structural labeled colloids to decrease the uncertainties in the determination of nanoparticle attachment providing more confidence in the derived radionuclide desorption rates. Moreover, the data illustrate (ii) the importance of radionuclide colloid desorption to be considered in the analysis and application of colloid facilitated transport both in laboratory or in-situ experiments and numerical model simulations and (iii) a possible remobilization of sorbed colloids and associated radionuclides by desorption from the matrix material (FFM) under non-equilibrium conditions.
Bedogni, Giorgio; Grugni, Graziano; Tringali, Gabriella; Agosti, Fiorenza; Sartorio, Alessandro
2015-01-01
Fat-free mass (FFM) is lower in obese subjects with Prader-Willi syndrome (PWS) than in obese subjects without PWS. FFM prediction equations developed in non-PWS subjects may, thus, not work in PWS subjects. To test whether the estimation of FFM from bioelectrical impedance analysis (BIA) in PWS subjects requires population-specific equations. Using dual-energy X-ray absorptiometry, this study measured FFM in 27 PWS and 56 non-PWS obese women and evaluated its association with the impedance index at 50 kHz (ZI50), i.e. the ratio between squared height and whole-body impedance at 50 kHz. At the same level of ZI50, PWS women had a lower FFM than non-PWS women. However, when PWS-specific equations were used, FFM was accurately estimated at the population level. An equation employing a dummy variable coding for PWS status was able to explain 85% of the variance of FFM with a root mean squared error of 3.3 kg in the pooled sample (n = 83). Population-specific equations are needed to estimate FFM from BIA in obese PWS women.
A Preliminary Model of Insider Theft of Intellectual Property
2011-01-01
and Trzeciak The primary personality model used in CWB research is the Five Factor Model ( FFM ). The FFM includes dimensions of openness to experience...extraversion, conscientiousness, agreeableness, and emotional stability. After reviewing the literature on the FFM dimensions and CWBs, Salgado...found 44 studies conducted between 1990 and 1999 that examine the relationship between the FFM dimen- sions and deviant behaviors (17), absenteeism (13
Comparison of skeletal muscle mass to fat-free mass ratios among different ethnic groups.
Abe, T; Bemben, M G; Kondo, M; Kawakami, Y; Fukunaga, T
2012-01-01
Asians seem to have less skeletal muscle mass (SMM) than other ethnic groups, but it is not clear whether relative SMM, i.e., SMM / height square or SMM to fat-free mass (FFM) ratio, differs among different ethnic groups at the same level of body mass index (BMI). To compare the SMM to fat-free mass (FFM) ratio as well as anthropometric variables and body composition among 3 ethnic groups. Three hundred thirty-nine Japanese, 343 Brazilian, and 183 German men and women were recruited for this cross-sectional study. Muscle thickness (MTH) and subcutaneous fat thickness (FTH) were measured by ultrasound at nine sites on the anterior and posterior aspects of the body. FTH was used to estimate the body density, from which fat mass and fat-free mass (FFM) was calculated by using Brozek equation. Total SMM was estimated from ultrasound-derived prediction equations. Percentage body fat was similar among the ethnic groups in men, while Brazilians were higher than Japanese in women. In German men and women, absolute SMM and FFM were higher than in their Japanese and Brazilians counterparts. SMM index and SMM:FFM ratios were similar among the ethnic groups in women, excluding SMM:FFM ratio in Brazilian. In men, however, these relative values (SMM index and SMM:FFM ratio) were still higher in Germans. After adjusting for age and BMI, the SMM index and SMM:FFM ratios were lower in Brazilian men and women compared with the other two ethnic groups, while the SMM index and SMM:FFM ratios were similar in Japanese and German men and women, excluding SMM:FFM ratio in women. Our results suggest that relative SMM is not lower in Asian populations compared with European populations after adjusted by age and BMI.
O'Boyle, Ernest H; Forsyth, Donelson R; Banks, George C; Story, Paul A; White, Charles D
2015-12-01
We examined the relationships between Machiavellianism, narcissism, and psychopathy-the three traits of the Dark Triad (DT)-and the Five-Factor Model (FFM) of personality. The review identified 310 independent samples drawn from 215 sources and yielded information pertaining to global trait relationships and facet-level relationships. We used meta-analysis to examine (a) the bivariate relations between the DT and the five global traits and 30 facets of the FFM, (b) the relative importance of each of the FFM global traits in predicting DT, and (c) the relationship between the DT and FFM facets identified in translational models of narcissism and psychopathy. These analyses identified consistent and theoretically meaningful associations between the DT traits and the facets of the FFM. The five traits of the FFM, in a relative importance analysis, accounted for much of the variance in Machiavellianism, narcissism, and psychopathy, respectively, and facet-level analyses identified specific facets of each FFM trait that were consistently associated with narcissism (e.g., angry/hostility, modesty) and psychopathy (e.g., straightforwardness, deliberation). The FFM explained nearly all of the variance in psychopathy (R(2) c = .88) and a substantial portion of the variance in narcissism (R(2) c = .42). © 2014 Wiley Periodicals, Inc.
Rae, L S; Vankan, D M; Rand, J S; Flickinger, E A; Ward, L C
2016-06-01
Thirty-five healthy, neutered, mixed breed dogs were used to determine the ability of multifrequency bioelectrical impedance analysis (MFBIA) to predict accurately fat-free mass (FFM) in dogs using dual energy X-ray absorptiometry (DXA)-measured FFM as reference. A second aim was to compare MFBIA predictions with morphometric predictions. MFBIA-based predictors provided an accurate measure of FFM, within 1.5% when compared to DXA-derived FFM, in normal weight dogs. FFM estimates were most highly correlated with DXA-measured FFM when the prediction equation included resistance quotient, bodyweight, and body condition score. At the population level, the inclusion of impedance as a predictor variable did not add substantially to the predictive power achieved with morphometric variables alone; in individual dogs, impedance predictors were more valuable than morphometric predictors. These results indicate that, following further validation, MFBIA could provide a useful tool in clinical practice to objectively measure FFM in canine patients and help improve compliance with prevention and treatment programs for obesity in dogs. Copyright © 2016. Published by Elsevier Ltd.
Using the FFM to conceptualize psychopathy: a test using a drug abusing sample.
Derefinko, Karen J; Lynam, Donald R
2007-12-01
The present study examined whether psychopathy can be understood as a constellation of traits from the Five Factor Model (FFM) of personality. Using a prototype matching approach, we examined the ability of the Revised NEO Personality Inventory (NEO PI-R; Costa & McCrae, 1992) to represent psychopathy in a sample of 297 male and female known crack cocaine abusers. Importantly, we examined the convergence and divergence between FFM psychopathy and other personality disorders assessed using the FFM. FFM psychopathy was correlated with self-reports of antisocial behavior, drug use, risky sex, and externalizing and internalizing disorder symptoms. As expected, there was overlap in the relations between psychopathy and several Cluster B personality disorders, but there were also important points of divergence. These results further extend the nomological network of FFM psychopathy and provide additional support for considering psychopathy a constellation of personality traits from a general model.
Maladaptive variants of conscientiousness and agreeableness.
Samuel, Douglas B; Gore, Whitney L
2012-12-01
Although reasonably strong support has been obtained for the Five-Factor Model's (FFM) ability to account for the existing personality disorder (PD) constructs, the support for obsessive-compulsive PD (OCPD) and dependent PD (DPD) has been relatively less consistent. Specifically, the expected correlation between OCPD and the FFM trait of Conscientiousness has varied in magnitude across studies while DPD has, at times, also evinced rather weak relationships with FFM Agreeableness. We determined that these inconsistencies were due primarily to the reliance on FFM measures that lack adequate fidelity to assess the maladaptive aspects of high Conscientiousness and Agreeableness. When alternative measures were utilized, the correlations were generally large and in line with expectations. We conclude that OCPD and DPD can be fruitfully conceptualized within the FFM but encourage the use of measures that provide a comprehensive assessment of both the adaptive and maladaptive aspects of the FFM traits. © 2012 The Authors. Journal of Personality © 2012, Wiley Periodicals, Inc.
McDermott, Ashley F; Rose, Maya; Norris, Troy; Gordon, Eric
2016-01-28
This study tested a novel feed-forward modeling (FFM) system as a nonpharmacological intervention for the treatment of ADHD children and the training of cognitive skills that improve academic performance. This study implemented a randomized, controlled, parallel design comparing this FFM with a nonpharmacological community care intervention. Improvements were measured on parent- and clinician-rated scales of ADHD symptomatology and on academic performance tests completed by the participant. Participants were followed for 3 months after training. Participants in the FFM training group showed significant improvements in ADHD symptomatology and academic performance, while the control group did not. Improvements from FFM were sustained 3 months later. The FFM appeared to be an effective intervention for the treatment of ADHD and improving academic performance. This FFM training intervention shows promise as a first-line treatment for ADHD while improving academic performance. © The Author(s) 2016.
Predictors of fat-free mass loss 1 year after laparoscopic sleeve gastrectomy.
Guida, B; Cataldi, M; Busetto, L; Aiello, M L; Musella, M; Capone, D; Parolisi, S; Policastro, V; Ragozini, G; Belfiore, A
2018-03-24
Laparoscopic sleeve gastrectomy (LSG) is one of the most frequently performed bariatric surgery interventions because of its safety and efficacy. Nevertheless, concerns have been raised on its detrimental effect on patient nutritional state that can ultimately lead to the loss of fat-free mass (FFM). There is interest in identifying predictors for the early identification of patients at risk of this highly unwanted adverse because they could benefit of nutritional preventive interventions. Therefore, we investigated whether anthropometric parameters, body composition or resting energy expenditure (REE) measured before surgery could predict FFM loss 1 year after LSG. Study design was retrospective observational. We retrieved data on body weight, BMI, body composition and REE before and 1 year after LSG from the medical files of 36 patients operated on by LSG at our institutions. Simple regression, the Oldham's method and multilevel analysis were used to identify predictors of FFM loss. Averaged percentage FFM loss 1 year after LSG was 17.0 ± 7.7% with significant differences between sexes (20.8 ± 6.6 in males and 12.2 ± 6.1% in females, p < 0.001). FFM loss was strongly predicted by pre-surgery FFM and this effect persisted also after correcting for the contribution of sex. High FFM values before surgery predict a more severe FFM loss after LSG. This factor could also account for the higher FFM loss in men than in women. Our finding could help in the early identification of patient requiring a nutritional support after LSG.
Wang, Lin; Hui, Stanley Sai-chuen; Wong, Stephen Heung-sang
2014-11-15
The current study aimed to examine the validity of various published bioelectrical impedance analysis (BIA) equations in estimating FFM among Chinese children and adolescents and to develop BIA equations for the estimation of fat-free mass (FFM) appropriate for Chinese children and adolescents. A total of 255 healthy Chinese children and adolescents aged 9 to 19 years old (127 males and 128 females) from Tianjin, China, participated in the BIA measurement at 50 kHz between the hand and the foot. The criterion measure of FFM was also employed using dual-energy X-ray absorptiometry (DEXA). FFM estimated from 24 published BIA equations was cross-validated against the criterion measure from DEXA. Multiple linear regression was conducted to examine alternative BIA equation for the studied population. FFM estimated from the 24 published BIA equations yielded high correlations with the directly measured FFM from DEXA. However, none of the 24 equations was statistically equivalent with the DEXA-measured FFM. Using multiple linear regression and cross-validation against DEXA measurement, an alternative prediction equation was determined as follows: FFM (kg)=1.613+0.742×height (cm)2/impedance (Ω)+0.151×body weight (kg); R2=0.95; SEE=2.45 kg; CV=6.5, 93.7% of the residuals of all the participants fell within the 95% limits of agreement. BIA was highly correlated with FFM in Chinese children and adolescents. When the new developed BIA equations are applied, BIA can provide a practical and valid measurement of body composition in Chinese children and adolescents.
Wang, Lin; Hui, Stanley Sai-chuen; Wong, Stephen Heung-sang
2014-01-01
Background The current study aimed to examine the validity of various published bioelectrical impedance analysis (BIA) equations in estimating FFM among Chinese children and adolescents and to develop BIA equations for the estimation of fat-free mass (FFM) appropriate for Chinese children and adolescents. Material/Methods A total of 255 healthy Chinese children and adolescents aged 9 to 19 years old (127 males and 128 females) from Tianjin, China, participated in the BIA measurement at 50 kHz between the hand and the foot. The criterion measure of FFM was also employed using dual-energy X-ray absorptiometry (DEXA). FFM estimated from 24 published BIA equations was cross-validated against the criterion measure from DEXA. Multiple linear regression was conducted to examine alternative BIA equation for the studied population. Results FFM estimated from the 24 published BIA equations yielded high correlations with the directly measured FFM from DEXA. However, none of the 24 equations was statistically equivalent with the DEXA-measured FFM. Using multiple linear regression and cross-validation against DEXA measurement, an alternative prediction equation was determined as follows: FFM (kg)=1.613+0.742×height (cm)2/impedance (Ω)+0.151×body weight (kg); R2=0.95; SEE=2.45kg; CV=6.5, 93.7% of the residuals of all the participants fell within the 95% limits of agreement. Conclusions BIA was highly correlated with FFM in Chinese children and adolescents. When the new developed BIA equations are applied, BIA can provide a practical and valid measurement of body composition in Chinese children and adolescents. PMID:25398209
Franssen, Frits M E; Rutten, Erica P A; Groenen, Miriam T J; Vanfleteren, Lowie E; Wouters, Emiel F M; Spruit, Martijn A
2014-06-01
Low fat-free mass (FFM) is a risk factor for morbidity and mortality in elderly and patient populations. Therefore, measurement of FFM is important in nutritional assessment. Bioelectrical impedance analysis (BIA) is a convenient method to assess FFM and FFM index (FFMI; FFM/height(2)). Although reference values have been established for individuals with normal body weight, no specific cutoff values are available for overweight and obese populations. Also, limited studies accounted for the age-related decline in FFM. To determine BMI- and age-specific reference values for abnormal low FFM(I) in white-ethnic men and women free of self-reported disease from the general population. The UK Biobank is a prospective epidemiological study of the general population from the United Kingdom. Individuals in the age category 45 to 69 years were analyzed. In addition to body weight, FFM and FFMI were measured using a Tanita BC-418MA. Also, self-reported chronic conditions and ethnic background were registered, and lung function was assessed using spirometry. After exclusion of all individuals with missing data, nonwhite ethnicity, self-reported disease, body mass index (BMI) less than 14 or 36 kg/m(2) or higher, and/or an obstructive lung function, reference values for FFM and FFMI were derived from 186,975 individuals (45.9% men; age: 56.9 ± 6.8 years; BMI: 26.5 ± 3.6 kg/m(2); FFMI 18.3 ± 2.4 kg/m(2)). FFM and FFMI were significantly associated with BMI and decreased with age. Percentiles 5, 10, 25, 50, 75, 90, and 95 were calculated for FFM, FFMI, and fat mass (index), after stratification for gender, age, and BMI. Using the UK Biobank dataset, new reference values for body composition assessed with BIA were determined in white-ethnic men and women aged 45 to 69 years. Because these reference values are BMI specific, they are of broad interest for overweight and obese populations. Copyright © 2014 American Medical Directors Association, Inc. Published by Elsevier Inc. All rights reserved.
D'Ascenzi, Flavio; Pelliccia, Antonio; Cameli, Matteo; Lisi, Matteo; Natali, Benedetta Maria; Focardi, Marta; Giorgi, Andrea; D'Urbano, Giorgio; Causarano, Andrea; Bonifazi, Marco; Mondillo, Sergio
2015-01-01
Previous cross-sectional studies have demonstrated that fat-free mass (FFM) is an important determinant of left ventricular mass (LVM) in athletes. However, cross-sectional investigations have not the ability to detect the dynamic adaptation occurring with training. We hypothesized that LVM adapts concurrently with the increase of FFM induced by exercise conditioning. We sought to study the relationship between the variations of LVM and of FFM occurring in top-level soccer players during the season. Twenty-three male top-level athletes were recruited. LVM was assessed by echocardiography and FFM by dual-energy X-ray absorptiometry. Serial measurements were performed pre-season, after 1 month, at mid- and end-season, and after 2 months of detraining. LVM significantly increased at mid-season versus pre-season values, reaching the highest value at the end of the season (p < 0.05). While body weight did not vary during the study period, FFM significantly increased (p < 0.05 for mid-/end-season vs. pre-season data). After the detraining, no significant differences were observed between pre-season and detraining echocardiographic data. The only independent predictors of LVM were left ventricular stroke volume and FFM (R = 0.36, p = 0.005; R = 0.35, p = 0.005, respectively). When ΔLVM index was set as dependent variable, the only independent predictor was ΔFFM (R = 0.87, p = 0.002). Changes in LVM occur in close association with changes in FFM, suggesting that the left ventricle adapts concurrently with the increase of the metabolically active tissue induced by training, i.e. the FFM. Therefore, the dynamic changes in FFM and LVM may reflect a physiological adaptation induced by intensive training. © The European Society of Cardiology 2013 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.
Role of Anti-Inflammatory Cytokines on Muscle Mass and Performance Changes in Elderly Men and Women.
Rossi, A P; Budui, S; Zoico, E; Caliari, C; Mazzali, G; Fantin, F; D'Urbano, M; Paganelli, R; Zamboni, M
2017-01-01
Investigate the presence of a correlation between systemic inflammatory profile of community-dwelling individuals and the loss of muscular mass and performance in old age over a 4.5y follow-up, focusing on the role of anti-inflammatory cytokines in muscular changes in elderly. Longitudinal clinical study. Subjects were randomly selected from lists of 11 general practitioners in the city of Verona, Italy. The study included 120 subjects, 92 women and 28 men aged 72.27±2.06 years and with BMI of 26.52±4.07 kg/m2 at baseline. Six minutes walking test (6MWT), appendicular and leg fat free mass (FFM) as measured with Dual Energy X-ray absorptiometry, were obtained at baseline and after 4.5 years (4.5y) of mean follow-up. Height, weight, body mass index (BMI), and circulating levels of TNFα, IL-4, IL-10, and IL-13 were evaluated at baseline. A significant reduction of appendicular FFM, leg FFM and 6MWT performance (all p<0.001) was observed after 4.5 y follow-up. In a stepwise regression model, considering appendicular FFM decline as dependent variable, lnIL-4, BMI, baseline appendicular FFM, lnTNFα and lnIL-13 were significant predictors of appendicular FFM decline explaining 30.8% of the variance. While building a stepwise multiple regression considering leg FFM as a dependent variable, lnIL-4, BMI and leg FFM were significant predictors of leg FFM decline and explained 27.4% of variance. When considering 6MWT decline as a dependent variable, baseline 6MWT, lnIL-13 and lnTNFα were significant predictors of 6MWT decline to explain 22.9% of variance. Our study suggest that higher serum levels of anti-inflammatory markers, and in particular IL-4 and IL-13, may play a protective role on FFM and performance maintenance in elderly subjects.
Mageean, Amanda L; Alexander, Ryan P; Mier, Constance M
The purpose of this study was to examine gender differences in repeated sprint exercise (RSE) performance among male and female athletes matched for VO 2 max relative to FFM (VO 2 max FFM). Thirty nine male and female college athletes performed a graded exercise test for VO 2 max and hydrostatic weighing to determine FFM. From the results, 11 pairs of males and females matched for VO 2 max FFM (mean ± SD ; 58.3 ± 4.3 and 58.9 ± 4.6 ml·kg FFM -1 ·min -1 ; men and women, respectively) were identified. On a separate day, matched participants performed a RSE protocol that consisted of five 6-sec cycle sprints with 30-sec recovery periods, followed by 5-min active recovery and a 30-sec all-out sprint. Repeated 6-sec sprint performance did not differ between men and women; both maintained power output (PO) until sprint 4. PO FFM (W·kg -1 FFM) did not differ between men and women during the five sprints. During the 30-sec sprint, men achieved a lower peak PO FFM than women (11.7 ± 1.5 vs 13.2 ± 1.2); however, the decline in PO FFM over 30 sec was greater in women. VO 2 (ml·kg FFM -1 ·min -1 ) was lower in men during recovery (24.4 ± 3.8 vs 28.7 ± 5.7) and at the beginning (29.2 ± 4.0 vs 34.7 ± 4.9) and end (49.4 ± 5.0 vs 52.3 ± 4.0). of the 30-sec sprint. These data indicate that men and women with similar aerobic capacities do not respond differently to short repeated sprints but may differ in their ability to recover and perform sprints of longer duration.
Validity of Bioelectrical Impedance Analysis to Estimation Fat-Free Mass in the Army Cadets.
Langer, Raquel D; Borges, Juliano H; Pascoa, Mauro A; Cirolini, Vagner X; Guerra-Júnior, Gil; Gonçalves, Ezequiel M
2016-03-11
Bioelectrical Impedance Analysis (BIA) is a fast, practical, non-invasive, and frequently used method for fat-free mass (FFM) estimation. The aims of this study were to validate predictive equations of BIA to FFM estimation in Army cadets and to develop and validate a specific BIA equation for this population. A total of 396 males, Brazilian Army cadets, aged 17-24 years were included. The study used eight published predictive BIA equations, a specific equation in FFM estimation, and dual-energy X-ray absorptiometry (DXA) as a reference method. Student's t-test (for paired sample), linear regression analysis, and Bland-Altman method were used to test the validity of the BIA equations. Predictive BIA equations showed significant differences in FFM compared to DXA (p < 0.05) and large limits of agreement by Bland-Altman. Predictive BIA equations explained 68% to 88% of FFM variance. Specific BIA equations showed no significant differences in FFM, compared to DXA values. Published BIA predictive equations showed poor accuracy in this sample. The specific BIA equations, developed in this study, demonstrated validity for this sample, although should be used with caution in samples with a large range of FFM.
Gurven, Michael; von Rueden, Christopher; Massenkoff, Maxim; Kaplan, Hillard; Vie, Marino Lero
2014-01-01
The five-factor model (FFM) of personality variation has been replicated across a range of human societies, suggesting the FFM is a human universal. However, most studies of the FFM have been restricted to literate, urban populations, which are uncharacteristic of the majority of human evolutionary history. We present the first test of the FFM in a largely illiterate, indigenous society. Tsimane forager–horticulturalist men and women of Bolivia (n = 632) completed a translation of the 44-item Big Five Inventory (Benet-Martínez & John, 1998), a widely used metric of the FFM. We failed to find robust support for the FFM, based on tests of (a) internal consistency of items expected to segregate into the Big Five factors, (b) response stability of the Big Five, (c) external validity of the Big Five with respect to observed behavior, (d) factor structure according to exploratory and confirmatory factor analysis, and (e) similarity with a U.S. target structure based on Procrustes rotation analysis. Replication of the FFM was not improved in a separate sample of Tsimane adults (n = 430), who evaluated their spouses on the Big Five Inventory. Removal of reverse-scored items that may have elicited response biases produced factors suggestive of Extraversion, Agreeableness, and Conscientiousness, but fit to the FFM remained poor. Response styles may covary with exposure to education, but we found no better fit to the FFM among Tsimane who speak Spanish or have attended school. We argue that Tsimane personality variation displays 2 principal factors that may reflect socioecological characteristics common to small-scale societies. We offer evolutionary perspectives on why the structure of personality variation may not be invariant across human societies. PMID:23245291
Fat-free mass is not lower 24 months postbariatric surgery than nonoperated matched controls
Strain, Gladys Witt; Ebel, Faith; Honohan, Jamie; Gagner, Michel; Dakin, Gregory F.; Pomp, Alfons; Gallagher, Dympna
2017-01-01
Objective Concerns about an excessive loss of fat-free mass (FFM) after bariatric surgery prompted this comparison of operated versus matched nonoperated controls regarding FFM. Setting University Hospital and University Research Unit in an urban medical center. Methods Body composition with bioelectric impedance (Tanita 310, Tanita Corp, Arlington Heights, IL) was measured approximately 2 years after bariatric surgery in weight stable patients and nonoperated weight stable controls matched for body mass index (BMI), gender, and age. t tests provided comparisons. Analysis of variance was used to compare FFM changes for 4 procedures. Levene’s test evaluated variance. Results Patients (n = 252; 24.7 ± 15 mo after surgery) and nonoperated controls (n = 252) were matched for gender (71.8% female), age (44.5 ± 11.0 yr), and BMI (32.8 ± 7.0 kg/m2). Patients had different surgical procedures: 107 gastric bypasses (RYGBs), 62 biliopancreatic diversions with duodenal switch (BPD/DSs), 40 adjustable gastric bands (AGBs), and 43 sleeve gastrectomies (LSGs). FFM percentage was significantly higher in the operated patients than controls, 66% versus 62%, P < .0001. For 3 procedures, the FFM was significantly higher; however, AGBs changed only 7.3 BMI units and FFM was not significantly different from their matched controls, 59.8% versus 58.2%. Across surgical groups, FFM percentage differed, P < .0001 (RYGB 66.5 ± 9.2%, BPD/DS 74.0 ± 9.3%, AGB 59.8 ± 7.0%, LSG 59.6 ± 9.3%). Variance was not different (P = .17). Conclusion Weight-reduced bariatric surgery patients have greater FFM compared with nonoperated matched controls. These findings support surgically assisted weight loss as a physiologic process and in general patients do not suffer from excessive FFM depletion after bariatric procedures. PMID:27387700
Gurven, Michael; von Rueden, Christopher; Massenkoff, Maxim; Kaplan, Hillard; Lero Vie, Marino
2013-02-01
The five-factor model (FFM) of personality variation has been replicated across a range of human societies, suggesting the FFM is a human universal. However, most studies of the FFM have been restricted to literate, urban populations, which are uncharacteristic of the majority of human evolutionary history. We present the first test of the FFM in a largely illiterate, indigenous society. Tsimane forager-horticulturalist men and women of Bolivia (n = 632) completed a translation of the 44-item Big Five Inventory (Benet-Martínez & John, 1998), a widely used metric of the FFM. We failed to find robust support for the FFM, based on tests of (a) internal consistency of items expected to segregate into the Big Five factors, (b) response stability of the Big Five, (c) external validity of the Big Five with respect to observed behavior, (d) factor structure according to exploratory and confirmatory factor analysis, and (e) similarity with a U.S. target structure based on Procrustes rotation analysis. Replication of the FFM was not improved in a separate sample of Tsimane adults (n = 430), who evaluated their spouses on the Big Five Inventory. Removal of reverse-scored items that may have elicited response biases produced factors suggestive of Extraversion, Agreeableness, and Conscientiousness, but fit to the FFM remained poor. Response styles may covary with exposure to education, but we found no better fit to the FFM among Tsimane who speak Spanish or have attended school. We argue that Tsimane personality variation displays 2 principal factors that may reflect socioecological characteristics common to small-scale societies. We offer evolutionary perspectives on why the structure of personality variation may not be invariant across human societies. (c) 2013 APA, all rights reserved.
Adverse Effects of Sporadic Dialysis on Body Composition.
Workeneh, Biruh; Shypailo, Roman; DeCastro, Iris; Shah, Maulin; Guffey, Danielle; Minard, Charles G; Mitch, William E
2015-01-01
The aim of this study is to analyze the body composition of patients receiving emergent dialysis and compare their body cell mass (BCM) and fat-free mass (FFM) with those of normal subjects. The care of patients receiving sporadic, emergent dialysis treatment is a growing public health concern and the magnitude of muscle wasting that occurs in this population is not known. We used a cross-sectional design with matching to determine differences in total body potassium--an indicator of both BCM and FFM--between emergent dialysis patients and healthy normal subjects. We studied 22 subjects using a 40K counter that measures BCM and FFM and compared them to controls after matching with sex, height and weight. In the matched comparison, BCM and FFM were significantly lower in subjects with end-stage renal disease (ESRD). Unadjusted BCM was 4.7 kg lower and FFM was 8.8 kg lower for those with ESRD compared to those without ESRD (p < 0.001, p < 0.001, respectively). Comparison with unmatched controls who underwent 40K analysis also revealed significantly lower BCM (4.1 kg) and FFM (7.7 kg) in the ESRD subjects (p = 0.004). After adjusting for age, height, weight and gender, BCM and FFM were lower by 4.2 and 7.8 kg, respectively (p < 0.001). Repeated observations were available for a subset of ESRD subjects, and the rate of FFM loss over time was significant, with the ESRD subjects demonstrating 2.2 kg per year decline (p = 0.01). We conclude that among other consequences, muscle wasting indicated by decline in BCM and FFM is a significant concern in the growing emergent dialysis population. © 2015 S. Karger AG, Basel.
Xiao, J; Purcell, S A; Prado, C M; Gonzalez, M C
2017-10-06
Low fat-free mass (FFM) or high fat mass (FM) are abnormal body composition phenotypes associated with morbidity. These conditions in combination lead to worse health outcomes, and can be identified by a high FM/FFM ratio. Here, we developed sex, age, and body mass index (BMI) stratified, population-based FM/FFM reference values using bioelectrical impedance analysis (BIA) measurements. White, non-Hispanic individuals aged 18-90 years old with data for weight, stature and BIA resistance measures from the third National Health and Nutrition Examination Survey (NHANES) III were included. Previously validated and sex-specific BIA prediction equations were used to calculate FM and FFM. FM/FFM values were generated at 5th, 50th and 95th percentiles for each sex, age (18-39.9, 40-59.9, 60-69.9 and 70-90 years), and BMI category (underweight, normal weight, overweight, class I/II and class III obesity). A total of 6372 individuals who had estimated FM and FFM values were identified (3366 females, 3006 males). Median values of FM/FFM were 0.24 and 0.40 for young (≤39.9 years) males and females with normal BMI, and 0.34 for males and 0.59 for females who were overweight. For elderly individuals aged >70 years, median FM/FFM for males and females were respectively 0.28 and 0.45 for those with normal BMI, and 0.37 and 0.61 for those in the overweight category. These FM/FFM reference values provide information on body composition characteristics that account for age, sex and BMI, which can be useful to identify individuals at risk for body composition abnormalities. Copyright © 2017 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.
van Venrooij, Lenny M W; Verberne, Hein J; de Vos, Rien; Borgmeijer-Hoelen, Mieke M M J; van Leeuwen, Paul A M; de Mol, Bas A J M
2010-12-01
To measure undernutrition in terms of fat free mass (FFM), there are several options. The aim of this study was to assess agreement in FFM between the portable, bedside bioelectrical impedance spectrometry (BIS) and relatively expensive, non-portable dual-energy X-ray absorptiometry (DXA) in patients undergoing cardiac surgery. In a prospective study, body composition measurements by BIS and DXA were performed two weeks prior and two months after cardiac surgery. Preoperative and postoperative agreement in FFM between BIS and DXA were analyzed with Bland and Altman plots. Twenty-six patients were analyzed. BIS overestimated preoperative and postoperative FFM by 2 kg compared to DXA (2.3 kg (95%CI: -3.5-8.1 kg) and 2.1 kg (95%CI: -4.5-8.7 kg), respectively). BIS underestimated FFM change by -0.5% (95%CI: -8.4-7.5%). There is a large inter-individual variation between BIS and DXA. This hinders the interchange-ability of BIS and DXA in routine clinical practice and may lead to misclassifications and thereby inappropriate nutritional treatment and possible postoperative complications. To evaluate nutritional therapy in patients undergoing cardiac surgery, we advocate the use of DXA assessed FFM in parallel to BIS assessed extracellular and intracellular water and FFM. Copyright © 2010 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.
Tahara, Yasuaki; Moji, Kazuhiko; Honda, Sumihisa; Nakao, Rieko; Tsunawake, Noriaki; Fukuda, Rika; Aoyagi, Kiyoshi; Mascie-Taylor, Nicholas
2008-05-01
The relationship between fat-free mass (FFM) and excess post-exercise oxygen consumption (EPOC) has not been well researched because of the relatively small number of subjects studied. This study investigated the effects of FFM on EPOC and EPOC/maximum oxygen consumption. 250 Japanese male athletes between 16 and 21 years old from Nagasaki prefecture had their EPOC measured up to 40 minutes after short-duration exhaustive exercise. The value was named as EPOC40 min. The proportions of EPOC up to 1, 3, 6, 10, and 25 minutes to EPOC40 min were calculated and named as P1, P3, P6, P10, and P25, respectively. Body size and composition, VO2max and resting metabolic rate (RMR) were also measured. Mean EPOC40 min was 9.04 L or 158 ml/kg FFM. EPOC40 min was related to FFM (r=0.55, p<0.001) and VO2max (r=0.37, p<0.001). The ratio of EPOC40 min to VO2max was related to FFM (r=0.28, p<0.001). P1, P3, P6, P10, and P25 were negatively related to EPOC40 min/FFM, EPOC40 min/VO2max, and FFM. Athletes who had larger FFM had larger EPOC40 40 min and EPOC40 40 min/VO2max, and smaller P1, P3, P10, and P25.
Overview of OBPR Free Flyer System Concept
NASA Technical Reports Server (NTRS)
Leung, Ronald Y.; Lieberman, Alvin S.
2003-01-01
Contents include the following:OBPR free flyer theme. OBPR free flyer technical activity last 2 years. GSFC integrated mission design center (IMDC) studies. Free flyer assumptions and goals. Free flyer total payload reference concept capabilities. FFM reference payload requirements. FFM mission. FFM medium summary. FFH block diagram FFH spacecraft configuration.concept.
Ohta, Megumi; Midorikawa, Taishi; Hikihara, Yuki; Masuo, Yoshihisa; Sakamoto, Shizuo; Torii, Suguru; Kawakami, Yasuo; Fukunaga, Tetsuo; Kanehisa, Hiroaki
2017-02-01
This study examined the validity of segmental bioelectrical impedance (BI) analysis for predicting the fat-free masses (FFMs) of whole-body and body segments in children including overweight individuals. The FFM and impedance (Z) values of arms, trunk, legs, and whole body were determined using a dual-energy X-ray absorptiometry and segmental BI analyses, respectively, in 149 boys and girls aged 6 to 12 years, who were divided into model-development (n = 74), cross-validation (n = 35), and overweight (n = 40) groups. Simple regression analysis was applied to (length) 2 /Z (BI index) for each of the whole-body and 3 segments to develop the prediction equations of the measured FFM of the related body part. In the model-development group, the BI index of each of the 3 segments and whole body was significantly correlated to the measured FFM (R 2 = 0.867-0.932, standard error of estimation = 0.18-1.44 kg (5.9%-8.7%)). There was no significant difference between the measured and predicted FFM values without systematic error. The application of each equation derived in the model-development group to the cross-validation and overweight groups did not produce significant differences between the measured and predicted FFM values and systematic errors, with an exception that the arm FFM in the overweight group was overestimated. Segmental bioelectrical impedance analysis is useful for predicting the FFM of each of whole-body and body segments in children including overweight individuals, although the application for estimating arm FFM in overweight individuals requires a certain modification.
Fat-Free Mass and Skeletal Muscle Mass Five Years After Bariatric Surgery.
Davidson, Lance E; Yu, Wen; Goodpaster, Bret H; DeLany, James P; Widen, Elizabeth; Lemos, Thaisa; Strain, Gladys W; Pomp, Alfons; Courcoulas, Anita P; Lin, Susan; Janumala, Isaiah; Thornton, John C; Gallagher, Dympna
2018-07-01
This study investigated changes in fat-free mass (FFM) and skeletal muscle 5 years after surgery in participants from the Longitudinal Assessment of Bariatric Surgery-2 trial. A three-compartment model assessed FFM, and whole-body magnetic resonance imaging (MRI) quantified skeletal muscle mass prior to surgery (T0) and 1 year (T1), 2 years (T2), and 5 years (T5) postoperatively in 93 patients (85% female; 68% Caucasian; age 44.2 ± 11.6 years) who underwent gastric bypass (RYGB), sleeve gastrectomy, or adjustable gastric band. Repeated-measures mixed models were used to analyze the data. Significant weight loss occurred across all surgical groups in females from T0 to T1. FFM loss from T0 to T1 was greater after RYGB (mean ± SE: -6.9 ± 0.6 kg) than adjustable gastric band (-3.5 ± 1.4 kg; P < 0.05). Females with RYGB continued to lose FFM (-3.3 ± 0.7 kg; P < 0.001) from T1 to T5. A subset of males and females with RYGB and MRI-measured skeletal muscle showed similar initial FFM loss while maintaining FFM and skeletal muscle from T1 to T5. Between 1 and 5 years following common bariatric procedures, FFM and skeletal muscle are maintained or decrease minimally. The changes observed in FFM and muscle during the follow-up phase may be consistent with aging. © 2018 The Obesity Society.
Determinants of body composition in preterm infants at the time of hospital discharge.
Simon, Laure; Frondas-Chauty, Anne; Senterre, Thibault; Flamant, Cyril; Darmaun, Dominique; Rozé, Jean-Christophe
2014-07-01
Preterm infants have a higher fat mass (FM) percentage and a lower fat-free mass (FFM) than do term infants at the time of hospital discharge. We determined perinatal and nutritional factors that affect the body composition of preterm infants at discharge. A total of 141 preterm infants born at <35 wk of gestation and admitted to Nantes University Hospital Neonatology Unit over a period of 2 y were enrolled. Nutritional intake and growth were monitored during hospitalization. Body composition was assessed by using air-displacement plethysmography at discharge. FFM was compared with reference data in term infants according to sex and gestational age. Linear regression produced an excellent model to predict absolute FFM from perinatal characteristics and nutrition (R(2) = 0.82) but not the FM percentage (R(2) = 0.24). Gestational and postnatal ages played an equal role in absolute FFM accretion, as did the initial growth (between birth and day 5) and growth between day 5 and discharge. Antenatal corticosteroid treatment slightly reduced FFM accretion. As concerns nutritional intake, a higher protein:energy ratio at days 10 and 21 was significantly associated with decreased risk of an FFM deficit when preterm infants were compared with reference values for term infants. Boys had higher risk of an FFM deficit than did girls. The initial growth and quality of nutrition were significantly associated with absolute FFM accretion during a hospital stay in preterm infants. This trial was registered at clinicaltrials.gov as NCT01450436. © 2014 American Society for Nutrition.
Resting energy expenditure in girls with Turner syndrome.
Binder, Gerhard; Frank, Laura; Ziegler, Julian; Blumenstock, Gunnar; Schweizer, Roland
2017-03-01
Knowledge concerning energy metabolism in Turner syndrome (TS) is lacking. We compared the resting energy expenditure per fat-free mass (REE/FFM) in TS with other girls with short stature treated with growth hormone (GH) and age-related controls. We measured prospectively REE by spirometry under fasting conditions in the morning in 85 short prepubertal girls at the start of GH treatment. Diagnoses were TS (n=20), GH deficiency (GHD) (n=38) and small for gestational age (SGA) short stature (n=27). Additionally, 20 age-related controls were studied. Mean ages were 8.3 (TS), 7.1 (GHD), 6.9 (SGA) and 8.5 years (controls). Mean heights were -2.90 (TS), -3.32 (GHD), -3.69 (SGA) and -0.03 standard deviation scores (SDS) (controls). FFM was measured by bioelectrical impedance analysis (BIA). At the start of GH girls with TS showed insignificantly higher REE per FFM (REE/FFM) (mean±SD; 65±9 kcal/kg×day) than did the other female patients (62±9 kcal/kg×day) (p>0.23). The healthy controls had significantly lower REE/FFM (35±4 kcal/kg×day) (p<0.001). Follow-up examination of the patients after 6 or 12 months revealed decreasing REE/FFM in TS (62±9 kcal/kg×day) resulting in comparable REE/FFM in all three patient groups. At baseline short girls with TS had insignificantly higher REE/FFM than short children with SGA or GHD, but in follow-up this difference was not detectable any more. Future studies are necessary to understand this observation.
Coleman, Anne-Marie; Hermstad, April K.; Honeycutt, Sally; Munoz, Jennifer; Loh, Lorna; Brown, Agnes F.; Shipley, Rebecca; Kegler, Michelle C.
2016-01-01
Background Ecological models of health suggest that to effectively prevent chronic disease, community food environments must support healthy eating behaviors. However, disparities in access to healthy foods persist in the United States. Community Context The Farm Fresh Market (FFM) was a fruit and vegetable market that sold low-cost fresh produce in Cobb County, Georgia in 2014. Methods This case study describes the development of the FFM through a community engagement process and presents evaluation results from the project’s pilot implementation. Community engagement strategies included forming a community advisory board, conducting a needs assessment, and contracting with a community-based organization to implement the FFM. Outcome In the pilot year, the FFM served an average of 28.7 customers and generated an average of $140.20 in produce sales per market day. Most returning customers lived in the local community and reported a range of socioeconomic backgrounds. Most returning customers strongly agreed that the FFM made it easier (69.0%) and less expensive (79.0%) for them to buy fresh fruits and vegetables, reported that they ate more vegetables (65.0%) and fruit (55.0%) as a result of the FFM, and reported that they were very satisfied with the FFM overall (92.0%). Interpretation Results from this community case study underscore the importance of engaging communities in the development of community food environment interventions. Results also suggest that the FFM initiative was a feasible and acceptable way to respond to the community-identified public health priority of increasing access to healthy foods. PMID:26963860
Woodruff, Rebecca C; Coleman, Anne-Marie; Hermstad, April K; Honeycutt, Sally; Munoz, Jennifer; Loh, Lorna; Brown, Agnes F; Shipley, Rebecca; Kegler, Michelle C
2016-03-10
Ecological models of health suggest that to effectively prevent chronic disease, community food environments must support healthy eating behaviors. However, disparities in access to healthy foods persist in the United States. The Farm Fresh Market (FFM) was a fruit and vegetable market that sold low-cost fresh produce in Cobb County, Georgia in 2014. This case study describes the development of the FFM through a community engagement process and presents evaluation results from the project's pilot implementation. Community engagement strategies included forming a community advisory board, conducting a needs assessment, and contracting with a community-based organization to implement the FFM. In the pilot year, the FFM served an average of 28.7 customers and generated an average of $140.20 in produce sales per market day. Most returning customers lived in the local community and reported a range of socioeconomic backgrounds. Most returning customers strongly agreed that the FFM made it easier (69.0%) and less expensive (79.0%) for them to buy fresh fruits and vegetables, reported that they ate more vegetables (65.0%) and fruit (55.0%) as a result of the FFM, and reported that they were very satisfied with the FFM overall (92.0%). Results from this community case study underscore the importance of engaging communities in the development of community food environment interventions. Results also suggest that the FFM initiative was a feasible and acceptable way to respond to the community-identified public health priority of increasing access to healthy foods.
Utter, Alan C; Lambeth, Pamela G
2010-02-01
To evaluate the accuracy of multifrequency bioelectrical impedance analysis (MFBIA) in assessing fat-free mass (FFM) in comparison with hydrostatic weighing (HW) and skinfolds (SK) in high school wrestlers in a hydrated state. Body composition was determined by MFBIA, HW, and three-site SK in 72 high school wrestlers (mean +/- SD; age = 15.3 +/- 1.4 yr, height = 1.71 +/- 0.08 m, body mass = 67.3 +/- 13.4 kg). Hydration state was quantified by evaluating urine specific gravity. There were no significant differences for estimated FFM between MFBIA (57.2 +/- 9.5 kg) and HW (57.0 +/- 10.1 kg) or SK (56.4 +/- 8.8 kg). The SEE for FFM with HW as the reference method were 2.73 kg for MFBIA and 2.66 kg for SK. Correlations were found for FFM between HW and MFBIA (r = 0.96, P < 0.001) and between HW and SK (r = 0.97, P < 0.001). A systematic bias was found for MFBIA because the difference between MFBIA and HW correlated with the FFM average of the two methods (r = -0.22, P < 0.001). A bias was also seen between SK and HW and correlated with the FFM average (r = -0.47, P < 0.001). This study demonstrates that MFBIA provides similar estimates of FFM when compared with HW in a heterogeneous high school wrestling population during a hydrated state. MFBIA is an attractive assessment tool, easy to use, and may be considered as an alternative field-based method of estimating the FFM of high school wrestlers.
Portal, Shawn; Zadik, Zvi; Rabinowitz, Jonathan; Pilz-Burstein, Ruty; Adler-Portal, Dana; Meckel, Yoav; Cooper, Dan M; Eliakim, Alon; Nemet, Dan
2011-09-01
The use of ergogenic nutritional supplements is becoming inseparable from competitive sports. β-Hydroxy-β-Methylbutyric acid (HMB) has recently been suggested to promote fat-free mass (FFM) and strength gains during resistance training in adults. In this prospective randomized, double-blind, placebo-controlled study, we studied the effect of HMB (3 g/day) supplementation on body composition, muscle strength, anaerobic and aerobic capacity, anabolic/catabolic hormones and inflammatory mediators in elite, national team level adolescent volleyball players (13.5-18 years, 14 males, 14 females, Tanner stage 4-5) during the first 7 weeks of the training season. HMB led to a significant greater increase in FFM by skinfold thickness (56.4 ± 10.2 to 56.3 ± 8.6 vs. 59.3 ± 11.3 to 61.6 ± 11.3 kg in the control and HMB group, respectively, p < 0.001). HMB led to a significant greater increase in both dominant and non-dominant knee flexion isokinetic force/FFM, measured at fast (180°/sec) and slow (60°/sec) angle speeds, but had no significant effect on knee extension and elbow flexion and extension. HMB led to a significant greater increase in peak and mean anaerobic power determined by the Wingate anaerobic test (peak power: 15.5 ± 1.6 to 16.2 ± 1.2 vs. 15.4 ± 1.6 to 17.2 ± 1.2 watts/FFM, mean power: 10.6 ± 0.9 to 10.8 ± 1.1 vs. 10.7 ± 0.8 to 11.8 ± 1.0 watts/FFM in control and HMB group, respectively, p < 0.01), with no effect on fatigue index. HMB had no significant effect on aerobic fitness or on anabolic (growth hormone, IGF-I, testosterone), catabolic (cortisol) and inflammatory mediators (IL-6 and IL-1 receptor antagonist). HMB supplementation was associated with greater increases in muscle mass, muscle strength and anaerobic properties with no effect on aerobic capacity suggesting some advantage for its use in elite adolescent volleyball players during the initial phases of the training season. These effects were not accompanied by hormonal and inflammatory mediator changes.
Fluctuation Reduction in a Si Micromechanical Resonator Tuned to Nonlinear Internal Resonance
NASA Astrophysics Data System (ADS)
Strachan, B. Scott; Czaplewski, David; Chen, Changyao; Dykman, Mark; Lopez, Daniel; Shaw, Steven
2015-03-01
We describe experimental and theoretical results on an unusual behavior of fluctuations when the system exhibits internal resonance. We study the fundamental flexural mode (FFM) of a Si microbeam. The FFM is electrically actuated and detected. It is resonantly nonlinearly coupled to another mode, which is not directly accessible and has a frequency nearly three times the FFM frequency. Both the FFM and the passive mode have long lifetimes. We find that the passive mode can be a ``sink'' for fluctuations of the FFM. This explains the recently observed dramatic decrease of these fluctuations at nonlinear resonance. The re-distribution of the vibration amplitudes and the fluctuations is reminiscent of what happens at level anti-crossing in quantum mechanics. However, here it is different because of interplay of the dependence of the vibration frequency of the FFM on its amplitude due to internal nonlinearity and the nonlinear resonance with the passive mode. We study both the response of the system to external resonant driving and also the behavior of the system in the presence of a feedback loop. The experimental and theoretical results are in good agreement.
Schwartzman, Benjamin C; Wood, Jeffrey J; Kapp, Steven K
2016-01-01
The present study aimed to: determine the extent to which the five factor model of personality (FFM) accounts for variability in autism spectrum disorder (ASD) symptomatology in adults, examine differences in average FFM personality traits of adults with and without ASD and identify distinct behavioral phenotypes within ASD. Adults (N = 828; nASD = 364) completed an online survey with an autism trait questionnaire and an FFM personality questionnaire. FFM facets accounted for 70 % of variance in autism trait scores. Neuroticism positively correlated with autism symptom severity, while extraversion, openness to experience, agreeableness, and conscientiousness negatively correlated with autism symptom severity. Four FFM subtypes emerged within adults with ASD, with three subtypes characterized by high neuroticism and none characterized by lower-than-average neuroticism.
Validation of FFM PD counts for screening personality pathology and psychopathy in adolescence.
Decuyper, Mieke; De Clercq, Barbara; De Bolle, Marleen; De Fruyt, Filip
2009-12-01
Miller and colleagues (Miller, Bagby, Pilkonis, Reynolds, & Lynam, 2005) recently developed a Five-Factor Model (FFM) personality disorder (PD) count technique for describing and diagnosing PDs and psychopathy in adulthood. This technique conceptualizes PDs relying on general trait models and uses facets from the expert-generated PD prototypes to score the FFM PDs. The present study corroborates on the study of Miller and colleagues (2005) and investigates in Study 1 whether the PD count technique shows discriminant validity to describe PDs in adolescence. Study 2 extends this objective to psychopathy. Results suggest that the FFM PD count technique is equally successful in adolescence as in adulthood to describe PD symptoms, supporting the use of this descriptive method in adolescence. The normative data and accompanying PD count benchmarks enable to use FFM scores for PD screening purposes in adolescence.
Fat-free mass is not lower 24 months postbariatric surgery than nonoperated matched controls.
Strain, Gladys Witt; Ebel, Faith; Honohan, Jamie; Gagner, Michel; Dakin, Gregory F; Pomp, Alfons; Gallagher, Dympna
2017-01-01
Concerns about an excessive loss of fat-free mass (FFM) after bariatric surgery prompted this comparison of operated versus matched nonoperated controls regarding FFM. University Hospital and University Research Unit in an urban medical center. Body composition with bioelectric impedance (Tanita 310, Tanita Corp, Arlington Heights, IL) was measured approximately 2 years after bariatric surgery in weight stable patients and nonoperated weight stable controls matched for body mass index (BMI), gender, and age. t tests provided comparisons. Analysis of variance was used to compare FFM changes for 4 procedures. Levene's test evaluated variance. Patients (n = 252; 24.7±15 mo after surgery) and nonoperated controls (n = 252) were matched for gender (71.8% female), age (44.5±11.0 yr), and BMI (32.8±7.0 kg/m 2 ). Patients had different surgical procedures: 107 gastric bypasses (RYGBs), 62 biliopancreatic diversions with duodenal switch (BPD/DSs), 40 adjustable gastric bands (AGBs), and 43 sleeve gastrectomies (LSGs). FFM percentage was significantly higher in the operated patients than controls, 66% versus 62%, P<.0001. For 3 procedures, the FFM was significantly higher; however, AGBs changed only 7.3 BMI units and FFM was not significantly different from their matched controls, 59.8% versus 58.2%. Across surgical groups, FFM percentage differed, P<.0001 (RYGB 66.5±9.2%, BPD/DS 74.0±9.3%, AGB 59.8±7.0%, LSG 59.6±9.3%). Variance was not different (P = .17). Weight-reduced bariatric surgery patients have greater FFM compared with nonoperated matched controls. These findings support surgically assisted weight loss as a physiologic process and in general patients do not suffer from excessive FFM depletion after bariatric procedures. Copyright © 2017 American Society for Bariatric Surgery. Published by Elsevier Inc. All rights reserved.
Piaggi, Paolo; Thearle, Marie S; Krakoff, Jonathan; Votruba, Susanne B
2015-08-01
Body fat-free mass (FFM), energy expenditure (EE), and respiratory quotient (RQ) are known predictors of daily food intake. Because FFM largely determines EE, it is unclear whether body composition per se or the underlying metabolism drives dietary intake. The objective of the study was to test whether 24-hour measures of EE and RQ and their components influence ad libitum food intake independently of FFM. One hundred seven healthy individuals (62 males/45 females, 84 Native Americans/23 whites; age 33 ± 8 y; body mass index 33 ± 8 kg/m(2); body fat 31% ± 8%) had 24-hour measures of EE in a whole-room indirect calorimeter during energy balance, followed by 3 days of ad libitum food intake using computerized vending machine systems. Body composition was estimated by dual-energy x-ray absorptiometry. FFM, 24-hour EE, RQ, spontaneous physical activity, sleeping EE (sleeping metabolic rate), awake and fed thermogenesis, and ad libitum food intake (INTAKE) were measured. Higher 24-hour RQ (P < .001, partial R(2) = 16%) and EE (P = .01, partial R(2) = 7%), but not FFM (P = .65), were independent predictors of INTAKE. Mediation analysis demonstrated that 24-hour EE is responsible for 80% of the FFM effect on INTAKE (44.5 ± 16.9 kcal ingested per kilogram of FFM, P= .01), whereas the unique effect due to solely FFM was negligible (10.6 ± 23.2, P = .65). Spontaneous physical activity (r = 0.33, P = .001), but not sleeping metabolic rate (P = .71), positively predicted INTAKE, whereas higher awake and fed thermogenesis determined greater INTAKE only in subjects with a body mass index of 29 kg/m(2) or less (r = 0.44, P = .01). EE and RQ, rather than FFM, independently determine INTAKE, suggesting that competitive energy-sensing mechanisms driven by the preferential macronutrient oxidation and total energy demands may regulate food intake.
Donges, Cheyne E; Duffield, Rob
2012-06-01
The purpose of this study was to examine the effects of 10 weeks of aerobic endurance training (AET), resistance exercise training (RET), or a control (CON) condition on absolute and relative fat mass (FM) or fat-free mass (FFM) in the total body (TB) and regions of interest (ROIs) of sedentary overweight middle-aged males and females. Following prescreening, 102 subjects underwent anthropometric measurements, dual-energy X-ray absorptiometry, and strength and aerobic exercise testing. Randomized subjects (male RET, n = 16; female RET, n = 19; male AET, n = 16; and female AET, n = 25) completed supervised and periodized exercise programs (AET, 30-50 min cycling at 70%-75% maximal heart rate; RET, 2-4 sets × 8-10 repetitions of 5-7 exercises at 70%-75% 1 repetition maximum) or a nonexercising control condition (male CON, n = 13 and female CON, n = 13). Changes in absolute and relative TB-FM and TB-FFM and ROI-FM and ROI-FFM were determined. At baseline, and although matched for age and body mass index, males had greater strength, aerobic fitness, body mass, absolute and relative TB-FFM and ROI-FFM, but reduced absolute and relative TB-FM and ROI-FM, compared with females (p < 0.05). After training, both female exercise groups showed equivalent or greater relative improvements in strength and aerobic fitness than did the male exercise groups (p < 0.05); however, the male exercise groups increased TB-FFM and reduced TB-FM more than did the female exercise groups (p < 0.05). Male AET altered absolute FM more than male RET altered absolute FFM, thus resulting in a greater enhancement of relative FFM. Despite equivalent or greater responses to RET or AET by female subjects, the corresponding respective increases in FFM or reductions in FM were lower than those in males, indicating that a biased dose-response relationship exists between sexes following 10 weeks of exercise training.
A comparison of three methods to assess body composition.
Tewari, Nilanjana; Awad, Sherif; Macdonald, Ian A; Lobo, Dileep N
2018-03-01
The aim of this study was to compare the accuracy of measurements of body composition made using dual x-ray absorptiometry (DXA), analysis of computed tomography (CT) scans at the L3 vertebral level, and bioelectrical impedance analysis (BIA). DXA, CT, and BIA were performed in 47 patients recruited from two clinical trials investigating metabolic changes associated with major abdominal surgery or neoadjuvant chemotherapy for esophagogastric cancer. DXA was performed the week before surgery and before and after commencement of neoadjuvant chemotherapy. BIA was performed at the same time points and used with standard equations to calculate fat-free mass (FFM). Analysis of CT scans performed within 3 mo of the study was used to estimate FFM and fat mass (FM). There was good correlation between FM on DXA and CT (r 2 = 0.6632; P < 0.0001) and FFM on DXA and CT (r 2 = 0.7634; P < 0.0001), as well as FFM on DXA and BIA (r 2 = 0.6275; P < 0.0001). Correlation between FFM on CT and BIA also was significant (r 2 = 0.2742; P < 0.0001). On Bland-Altman analysis, average bias for FM on DXA and CT was 0.2564 with 95% limits of agreement (LOA) of -9.451 to 9.964. For FFM on DXA and CT, average bias was -0.1477, with LOA of -8.621 to 8.325. For FFM on DXA and BIA, average bias was -3.792, with LOA of -15.52 to 7.936. For FFM on CT and BIA, average bias was -2.661, with LOA of -22.71 to 17.39. Although a systematic error underestimating FFM was demonstrated with BIA, it may be a useful modality to quantify body composition in the clinical situation. Copyright © 2017 Elsevier Inc. All rights reserved.
Broers, Natascha J H; Martens, Remy J H; Cornelis, Tom; Diederen, Nanda M P; Wabel, Peter; van der Sande, Frank M; Leunissen, Karel M L; Kooman, Jeroen P
2015-03-01
The assessment of body composition (BC) in dialysis patients is of clinical importance given its role in the diagnosis of malnutrition and sarcopenia. Bioimpedance techniques routinely express BC as a 2-compartment (2-C) model distinguishing fat mass (FM) and fat-free mass (FFM), which may be influenced by the hydration of adipose tissue and fluid overload (OH). Recently, the BC monitor was introduced which applies a 3-compartment (3-C) model, distinguishing OH, adipose tissue mass, and lean tissue mass. The aim of this study was to compare BC between the 2-C and 3-C models and assess their relation with markers of functional performance (handgrip strength [HGS] and 4-m walking test), as well as with biochemical markers of nutrition. Forty-seven dialysis patients (30 males and 17 females) (35 hemodialysis, 12 peritoneal dialysis) with a mean age of 64.8 ± 16.5 years were studied. 3-C BC was assessed by BC monitor, whereas the obtained resistivity values were used to calculate FM and FFM according to the Xitron Hydra 4200 formulas, which are based on a 2-C model. FFM (3-C) was 0.99 kg (95% confidence interval [CI], 0.27 to 1.71, P = .008) higher than FFM (2-C). FM (3-C) was 2.43 kg (95% CI, 1.70-3.15, P < .001) lower than FM (2-C). OH was 1.4 ± 1.8 L. OH correlated significantly with ΔFFM (FFM 3-C - FFM 2-C) (r = 0.361; P < .05) and ΔFM (FM 3-C - FM 2-C) (r = 0.387; P = .009). HGS correlated significantly with FFM (2-C) (r = 0.713; P < .001), FFM (3-C) (r = 0.711; P < .001), body cell mass (2-C) (r = 0.733; P < .001), and body cell mass (3-C) (r = 0.767; P < .001). Both physical activity (r = 0.456; P = .004) and HGS (r = 0.488; P = .002), but not BC, were significantly related to walking speed. Significant differences between 2-C and 3-C models were observed, which are partly explained by the presence of OH. OH, which was related to ΔFFM and ΔFM of the 2-C and 3-C models, is therefore an important parameter for the differences in estimation of BC parameters of the 2-C and 3-C models. Both FFM (3-C) and FFM (2-C) were significantly related to HGS. Bioimpedance, HGS, and the 4-m walking test may all be valuable tools in the multidimensional nutritional assessment of both hemodialysis and peritoneal dialysis patients. Copyright © 2015 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.
Boyette, Lindy-Lou; Nederlof, Jan; Meijer, Carin; de Boer, Froukje; de Haan, Lieuwe
2015-09-30
Five-Factor Model (FFM) personality traits are related to a wide range of clinical outcome in patients with psychotic disorders. However, it is not sufficiently clear whether psychotic illness, particularly fluctuation in negative symptoms and psychotic relapse, affects personality. The current study examined the 3-year temporal stability of FFM traits in 91 patients with non-affective psychotic disorders with a maximum duration of illness of 10 years and 32 control subjects without a (family member with) a diagnosis of psychotic illness. In patients, change in negative symptoms predicted changes in Neuroticism and (inversely) in Extraversion and Openness. However, when correcting for depressive symptoms, negative symptoms no longer predicted change in any FFM trait. Clinical characteristics, such as psychotic relapse, were also not found to be related to change in FFM traits. Patients showed a slight increase in Conscientiousness levels, the other FFM traits showed mean-level stability. Rank-order stability of the FFM traits was moderate to strong, although weaker for Neuroticism in patients. Our findings indicate that psychotic symptoms exert limited effect on the stability of FFM traits in patients with psychotic disorders. Consistent with general population findings, one should guard against state-trait confusion between Neuroticism/Extraversion and depression. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Yang, Yuande; Hwang, Cheinway; E, Dongchen
2014-09-01
A new method, called the fixed full-matrix method (FFM), is used to compute height changes at crossovers of satellite altimeter ground tracks. Using the ENVISAT data in East Antarctica, FFM results in crossovers of altimeter heights that are 1.9 and 79 times more than those from the fixed half method (FHM) and the one-row method (ORM). The mean standard error of height changes is about 14 cm from ORM, which is reduced to 7 cm by FHM and to 3 cm by FFM. Unlike FHM, FFM leads to uniform errors in the first-half and second-half height-change time series. FFM has the advantage in improving the accuracy of the change of height and backscattered power over ORM and FHM. Assisted by the ICESat-derived height changes, we determine the optimal threshold correlation coefficient (TCC) for a best correction for the backscatter effect on ENVISAT height changes. The TCC value of 0.92 yields an optimal result for FFM. With this value, FFM yields ENVISAT-derived height change rates in East Antarctica mostly falling between and 3 cm/year, and matching the ICESat result to 0.94 cm/year. The ENVISAT result will provide a constraint on the current mass balance result along the Chinese expedition route CHINARE.
Guo, Bin; Hu, Li; Wu, Qiulian; Gong, Jian; Xu, Hao
This study aimed to examine the relationship between the fat-free mass (FFM) and fat mass (FM) and between the fat-free mass index (FFMI) and fat mass index (FMI) in Chinese children using the Hattori chart and to compare the changing pattern with Korean counterparts. In this study, 1541 (764 girls) children and adolescents aged 5-19 yr were recruited from southern China. The subjects' body composition was measured using dual-energy X-ray absorptiometry. The relationship between FFM and FM and between FFMI and FMI were delineated using the Hattori chart. Between 5 and 12 yr, a concurrent increase in FFM and FM and in FFMI and FMI was found in both sexes. After 12 yr, the age-related changing patterns are generally characterized by a sharp increase in FM, with a relatively small increase in FFM for girls, and a sharp increase in FFM, with a relatively little fluctuation in FM for boys. The increase in weight and BMI with age for this stage is largely due to the increase in FFM and FFMI in boys and in both the FFM and FM and FFMI and FMI components in girls. Sex differences in the patterns of body composition were found in Chinese children and adolescents. Copyright © 2016 The International Society for Clinical Densitometry. Published by Elsevier Inc. All rights reserved.
Going, S.; Nichols, J.; Loftin, M.; Stewart, D.; Lohman, T.; Tuuri, G.; Ring, K.; Pickrel, J.; Blew, R.; J.Stevens
2007-01-01
Aim Equations for estimating % fat mass (%BF) and fat-free mass (FFM) from bioelectrical impedance analysis (BIA) that work in adolescent girls from different racial/ethnic backgrounds are not available. We investigated whether race/ethnicity influences estimation of body composition in adolescent girls. Principal procedures Prediction equations were developed for estimating FFM and %BF from BIA in 166 girls, 10–15 years old, consisting of 51 Black (B), 45 non-Black Hispanic (H), 55 non-Hispanic White (W) and 15 mixed (M) race/ethnicity girls, using dual energy x-ray absorptiometry (DXA) as the criterion method. Findings Black girls had similar %BF compared to other groups, yet were heavier per unit of height according to body mass index (BMI: kg·m−2) due to significantly greater FFM. BIA resistance index, age, weight and race/ethnicity were all significant predictors of FFM (R2 = 0.92, SEE = 1.81 kg). Standardized regression coefficients showed resistance index (0.63) and weight (0.34) were the most important predictors of FFM. Errors in %BF (~2%) and FFM (~1.0 kg) were greater when race/ethnicity was not included in the equation, particularly in Black girls. We conclude the BIA-composition relationship in adolescent girls is influenced by race, and consequently have developed new BIA equations for adolescent girls for predicting FFM and %BF. PMID:17848976
Fat free mass and obesity in relation to educational level.
Seppänen-Nuijten, Elina; Lahti-Koski, Marjaana; Männistö, Satu; Knekt, Paul; Rissanen, Harri; Aromaa, Arpo; Heliövaara, Markku
2009-12-04
The aim of the study was to describe the body composition of Finnish adults, especially by education, and to investigate whether fat-free mass (FFM) can explain educational gradients relating to body mass index (BMI) and waist-to-hip ratio (WHR). Data for this cross-sectional study were based on data collected in 2000-2001 for the Health 2000 Survey. Of the nationally representative sample of 8,028 Finnish men and women aged 30 years and older, 6,300 (78.5%) were included in the study. Body composition measurements were carried out in the health examination, where FFM was assessed with eight-polar bioelectrical impedance analysis. Questions on education were included in the health interview. The mean FFM varied by education in older (>or= 65 y.) men only. In the middle-aged group (30-64 y.), highly educated men were less likely to belong to the lowest quintile of FFM (OR 0.67, 95%CI 0.48-0.93) compared with the least educated subjects. The level of education was inversely associated with the prevalence of high BMI and WHR in middle-aged men. In women, the respective associations were found both in middle-aged women and their older counterparts. Adjustment for FFM slightly strengthened the associations of education with BMI and WHR. The association between education and FFM is weak. Educational gradients of high BMI and high WHR cannot be explained by FFM.
Comparative Validity of the Shedler and Westen Assessment Procedure-200
ERIC Educational Resources Information Center
Mullins-Sweatt, Stephanie N.; Widiger, Thomas A.
2008-01-01
A predominant dimensional model of general personality structure is the five-factor model (FFM). Quite a number of alternative instruments have been developed to assess the domains of the FFM. The current study compares the validity of 2 alternative versions of the Shedler and Westen Assessment Procedure (SWAP-200) FFM scales, 1 that was developed…
Wing-Gaia, Stacie L; Gershenoff, Dana C; Drummond, Micah J; Askew, E Wayne
2014-03-01
Loss of body weight and fat-free mass (FFM) are commonly noted with prolonged exposure to hypobaric hypoxia. Recent evidence suggests protein supplementation, specifically leucine, may potentially attenuate loss of FFM in subcaloric conditions during normoxia. The purpose of this study was to determine if leucine supplementation would prevent the loss of FFM in subcaloric conditions during prolonged hypoxia. Eighteen physically active male (n = 10) and female (n = 8) trekkers completed a 13-day trek in Nepal to Everest Base Camp with a mean altitude of 4140 m (range 2810-5364 m). In this double-blind study, participants were randomized to ingest either leucine (LEU) (7 g leucine, 93 kcal, 14.5 g whey-based protein) or an isocaloric isonitrogenous control (CON) (0.3 g LEU, 93 kcal, 11.3 g collagen protein) twice daily prior to meals. Body weight, body composition, and circumferences of bicep, thigh, and calf were measured pre- and post-trek. There was a significant time effect for body weight (-2.2% ± 1.7%), FFM (-1.7% ± 1.5%), fat mass (-4.0% ± 6.9%), and circumferences (p < 0.05). However, there was no treatment effect on body weight (CON -2.3 ± 2.0%; LEU -2.2 ± 1.5%), FFM (CON -2.1 ± 1.5%; LEU -1.2 ± 1.6%), fat mass (CON -2.9% ± 5.9%; LEU -5.4% ± 8.1%), or circumferences. Although a significant loss of body weight, FFM, and fat mass was noted in 13 days of high altitude exposure, FFM loss was not attenuated by leucine. Future studies are needed to determine if leucine attenuates loss of FFM with longer duration high altitude exposure.
Hawkes, Colin P; Zemel, Babette S; Kiely, Mairead; Irvine, Alan D; Kenny, Louise C; O'B Hourihane, Jonathan; Murray, Deirdre M
2016-01-01
Although early infant growth has implications for future health, body composition reference data in infancy are limited. The aim of this study was to describe reference data for fat mass (FM) and fat-free mass (FFM) corrected for length (L) within the first 3 months and to evaluate if these measures predict the body mass index (BMI) at 2 years. Term infants had air displacement plethysmography performed at birth (n = 1,063) and approximately 2 months later (n = 922, between 49 and 86 days). Age- and sex-specific reference data were generated for FM, FFM, FM/L 3 and FFM/L 2 and compared with BMI at 2 years. FM/L 3 and FFM/L 2 were the optimal indices independent of length. In the first 3 months, mean FM/L 3 increased (males, from 2.7 to 5.9 kg/m 3 ; females, from 3.2 to 6.1 kg/m 3 ), whereas FFM/L 2 remained relatively stable (males, from 11.8 to 12.7 kg/m 2 ; females, from 12.8 to 12.1 kg/m 2 ). The odds of a BMI Z-score ≥2 at 2 years increased with increasing FM (OR 2.7, 95% CI 1.97-3.7) and weight (OR 2.27, 95% CI 1.64-3.13) Z-scores at 2 months. FM/L 3 and FFM/L 2 provide length-independent measures of FM and FFM in infancy. During the first 3 months, there is an increase in FM/L 3 , but not in FFM/L 2 . The weight Z-score at 2 months is as good at predicting BMI at 2 years as body composition parameters. © 2016 S. Karger AG, Basel.
Weise, Christopher M; Thiyyagura, Pradeep; Reiman, Eric M; Chen, Kewei; Krakoff, Jonathan
2015-06-01
Little is known on how sensing of energy needs is centrally represented, integrated, and translated into the behavioral aspects of energy homeostasis. Fat free mass (FFM) is the major determinant of energy expenditure. We investigated how interindividual variances in FFM relate to neuronal activity in humans. Healthy adults (n = 64, 21F/43M; age 31.3 ± 9.1y; percentage of body fat [PFAT] 25.6 ± 10.7%; BMI 30.4 ± 9) underwent a 36h fast and subsequent H(2) (15) O positron emission tomographic (PET) measurement of regional cerebral blood flow (rCBF). Multiple variable regression analysis revealed significant associations of FFM with rCBF within the midbrain [including parts of the periaqueductal gray (PAG), ventral tegmental area (VTA), thalamic and hypothalamic regions], the bilateral parahippocampal region, left anterior cingulate, left insular cortex, right cerebellum, and distinct regions within the temporal and occipital cortex. In contrast, no significant associations were found for fat mass (FM). We investigated the potential functional-anatomical link between FFM and central regulation of food intake by performing a conjunction analysis of FFM and the perceived hunger feelings. This showed a significant overlap within the midbrain PAG. Mediation analysis demonstrated a significant indirect effect of FFM on hunger with PAG rCBF as mediator. Most regions we found to be associated with FFM form part in ascending homeostatic pathways and cortical circuitries implicated in the regulation of basic bodily functions indicating a potential role of these central networks in the integration of FFM determined energy needs. © 2015 Wiley Periodicals, Inc.
Sex differences in the composition of weight gain and loss in overweight and obese adults.
Millward, D Joe; Truby, Helen; Fox, Kenneth R; Livingstone, M Barbara E; Macdonald, Ian A; Tothill, Peter
2014-03-14
Sex differences in the ratio of fat mass (FM):fat-free mass (FFM) during weight change should differentially affect the extent of weight change during energy imbalance in men and women. In the present study, we determined FM and FFM contents by dual-energy X-ray absorptiometry and calculated the P-ratios (protein energy/total energy) of excess weight and weight loss during a randomised controlled trial of four commercial weight loss regimens. Overweight and obese women (n 210) and men (n 77) were studied at baseline and at 2 and 6 months during weight loss on four dietary regimens: Dr Atkins' New Diet Revolution; The Slim-Fast Plan; Weight-Watchers programme; Rosemary Conley's Diet and Fitness Plan. At baseline, the percentage of FFM (%FFM) and P-ratios of excess weight were 40 % and 0·071 for men and 27 % and 0·039 for women. At 2 months, men had lost twice as much weight as women and three times more FFM than women, indicating higher FFM content and P-ratios of weight loss for men, 0·052, than for women, 0·029, with no dietary effects. Between 2 and 6 months, the rate at which weight was lost decreased and the %FFM of weight loss decreased to similar low levels in men (7 %) and women (5 %): i.e. P-ratios of 0·009 and 0·006, respectively, with no dietary effects. Thus, for men compared with women, there were greater FFM content and P-ratios of weight change, which could partly, but not completely, explain their greater weight loss at 2 months. However, protein-conserving adaptations occur with increasing weight loss and over time, more extensively in men, eventually eliminating any sex difference in the composition of weight loss.
Dhana, Klodian; Koolhaas, Chantal M; Schoufour, Josje D; Rivadeneira, Fernando; Hofman, Albert; Kavousi, Maryam; Franco, Oscar H
2016-06-01
The decrease in fat-free mass (FFM) seen in many elderly people is usually associated with an increase in fat mass (FM), a state referred to as sarcopenic obesity. It is not clear which anthropometric measures are best used to identify sarcopenic obesity. We therefore evaluated which anthropometric measures are differentially associated with FM and FFM. The anthropometric measures tested were body mass index (BMI), waist circumference (WC), and a body shape index (ABSI = WC/(BMI(2/3)*Height(1/2))). FM and FFM were estimated by dual-energy X-ray absorptiometry. An index-score was calculated for both FM (FMI) and FFM (FFMI) by dividing FM and FFM by height. Multivariable linear regression models were used to assess the associations of BMI, WC and ABSI with FMI and FFMI among 3612 participants (2092 women) from the prospective population-based Rotterdam Study. In multivariate models adjusted for confounders, BMI and WC were positively associated with both FMI and FFMI in men and women. ABSI was positively associated with FMI (β 1.01, 95% confidence interval (95%CI) 0.85, 1.17) and negatively associated with FFMI (β -0.28, 95%CI -0.38, -0.17) in men. In women, ABSI was not associated with FMI and was positively associated with FFMI (β 0.18, 95%CI 0.10, 0.26). While BMI and WC were both positively associated with FM and FFM, ABSI showed a differential association with FM and FFM in men, but not in women. Since sarcopenic obesity is associated with decreased FFM and increased FM, ABSI could be a useful tool for identifying men at higher risk of sarcopenic obesity. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Liu, A; Byrne, N M; Ma, G; Nasreddine, L; Trinidad, T P; Kijboonchoo, K; Ismail, M N; Kagawa, M; Poh, B K; Hills, A P
2011-12-01
To develop and cross-validate bioelectrical impedance analysis (BIA) prediction equations of total body water (TBW) and fat-free mass (FFM) for Asian pre-pubertal children from China, Lebanon, Malaysia, Philippines and Thailand. Height, weight, age, gender, resistance and reactance measured by BIA were collected from 948 Asian children (492 boys and 456 girls) aged 8-10 years from the five countries. The deuterium dilution technique was used as the criterion method for the estimation of TBW and FFM. The BIA equations were developed using stepwise multiple regression analysis and cross-validated using the Bland-Altman approach. The BIA prediction equation for the estimation of TBW was as follows: TBW=0.231 × height(2)/resistance+0.066 × height+0.188 × weight+0.128 × age+0.500 × sex-0.316 × Thais-4.574 (R (2)=88.0%, root mean square error (RMSE)=1.3 kg), and for the estimation of FFM was as follows: FFM=0.299 × height(2)/resistance+0.086 × height+0.245 × weight+0.260 × age+0.901 × sex-0.415 × ethnicity (Thai ethnicity =1, others = 0)-6.952 (R (2)=88.3%, RMSE=1.7 kg). No significant difference between measured and predicted values for the whole cross-validation sample was found. However, the prediction equation for estimation of TBW/FFM tended to overestimate TBW/FFM at lower levels whereas underestimate at higher levels of TBW/FFM. Accuracy of the general equation for TBW and FFM was also valid at each body mass index category. Ethnicity influences the relationship between BIA and body composition in Asian pre-pubertal children. The newly developed BIA prediction equations are valid for use in Asian pre-pubertal children.
Margolis, Lee M; Pasiakos, Stefan M; Karl, J Philip; Rood, Jennifer C; Cable, Sonya J; Williams, Kelly W; Young, Andrew J; McClung, James P
2012-12-18
Fat-free mass (FFM) adaptations to physical training may differ between sexes based on disparities in fitness level, dietary intake, and levels of plasma amino acids (AA). This investigation aimed to determine FFM and plasma AA responses to military training, examine whether adaptations differ between male and female recruits, and explore potential associations between FFM and AA responses to training. Body composition and plasma AA levels were assessed in US Army recruits (n = 209, 118 males, 91 females) before (baseline) and every three weeks during basic combat training (BCT), a 10-week military training course. Body weight decreased in men but remained stable in women during BCT (sex-by-time interaction, P < 0.05). Fifty-eight percent of recruits gained FFM during BCT, with more (P < 0.05) females (88%) gaining FFM than males (36%). Total plasma AA increased (P < 0.05) during BCT, with greater (P < 0.05) increases observed in females (17%) then in males (4%). Essential amino acids (EAA) and branched-chain amino acids (BCAA) were increased (P < 0.05) in females but did not change in males (sex-by-time interaction, P < 0.05). Independent of sex, changes in EAA (r = 0.34) and BCAA (r = 0.27) from baseline were associated with changes in FFM (P < 0.05); greater (P < 0.05) increases in AA concentrations were observed for those who gained FFM. Increases in FFM and plasma AA suggest that BCT elicits a more pronounced anabolic response in women compared to men, which may reflect sex-specific differences in the relative intensity of the combined training and physiological stimulus associated with BCT.
Margolis, Lee M.; Pasiakos, Stefan M.; Karl, J. Philip; Rood, Jennifer C.; Cable, Sonya J.; Williams, Kelly W.; Young, Andrew J.; McClung, James P.
2012-01-01
Fat-free mass (FFM) adaptations to physical training may differ between sexes based on disparities in fitness level, dietary intake, and levels of plasma amino acids (AA). This investigation aimed to determine FFM and plasma AA responses to military training, examine whether adaptations differ between male and female recruits, and explore potential associations between FFM and AA responses to training. Body composition and plasma AA levels were assessed in US Army recruits (n = 209, 118 males, 91 females) before (baseline) and every three weeks during basic combat training (BCT), a 10-week military training course. Body weight decreased in men but remained stable in women during BCT (sex-by-time interaction, P < 0.05). Fifty-eight percent of recruits gained FFM during BCT, with more (P < 0.05) females (88%) gaining FFM than males (36%). Total plasma AA increased (P < 0.05) during BCT, with greater (P < 0.05) increases observed in females (17%) then in males (4%). Essential amino acids (EAA) and branched-chain amino acids (BCAA) were increased (P < 0.05) in females but did not change in males (sex-by-time interaction, P < 0.05). Independent of sex, changes in EAA (r = 0.34) and BCAA (r = 0.27) from baseline were associated with changes in FFM (P < 0.05); greater (P < 0.05) increases in AA concentrations were observed for those who gained FFM. Increases in FFM and plasma AA suggest that BCT elicits a more pronounced anabolic response in women compared to men, which may reflect sex-specific differences in the relative intensity of the combined training and physiological stimulus associated with BCT. PMID:23250145
Samuel, Douglas B.; Widiger, Thomas A.
2012-01-01
An active line of current investigation is how the five-factor model (FFM) of personality disorder might be applied by clinicians and particularly, how clinically useful this model is in comparison to the existing nomenclature. The current study is the first to investigate the temporal consistency of clinicians’ application of the FFM and the DSM-IV-TR to their own patients. Results indicated that FFM ratings were relatively stable over six-months of treatment, supporting their use by clinicians, but also indexed potentially important clinical changes. Additionally, ratings of utility provided by the clinicians suggested that the FFM was more useful for clinical decision making than was the DSM-IV-TR model. We understand the clinical utility findings within the context of previous research indicating that the FFM is most useful among patients who are not prototypic for a personality disorder. PMID:24288580
Impact of Convection on Surface Fluxes Observed During LASP/DYNAMO 2011
2014-12-01
20 Figure 8. FFM maneuver used in the LASP/DYNAMO experiment (from Wang et al. 2013...Atmosphere Response Experiment DYNAMO Dynamics of Madden-Julian Oscillation EM electro-magnetic EO electro-optical FFM flight-level flux mapping FVS...level flux mapping ( FFM ) modules. Convection modules consisted of dropsonde cloud survey or radar convective element maneuver. Dropsonde modules
ERIC Educational Resources Information Center
Miller, Joshua D.; Bagby, R. Michael; Pilkonis, Paul A.
2005-01-01
Recent studies have demonstrated that personality disorders (PDs) can be assessed via a prototype-matching technique, which enables researchers and clinicians to match an individual's five-factor model (FFM) personality profile to an expert-generated prototype. The current study examined the relations between these prototype scores, using…
Foundational Research in Behavioral and Social Sciences: Marching Towards the Future
2014-07-01
he most widely studied and agreed upon taxonomy of personality is the Five Factor Model ( FFM ). This model includes the following personality...gathered over many decades. There is now a broad consensus that personality dimensions included in the FFM ...of the current project are to examine relationships among the FFM personality dimensions, intelligence, and military performance to identify
Fluctuation Flooding Method (FFM) for accelerating conformational transitions of proteins.
Harada, Ryuhei; Takano, Yu; Shigeta, Yasuteru
2014-03-28
A powerful conformational sampling method for accelerating structural transitions of proteins, "Fluctuation Flooding Method (FFM)," is proposed. In FFM, cycles of the following steps enhance the transitions: (i) extractions of largely fluctuating snapshots along anisotropic modes obtained from trajectories of multiple independent molecular dynamics (MD) simulations and (ii) conformational re-sampling of the snapshots via re-generations of initial velocities when re-starting MD simulations. In an application to bacteriophage T4 lysozyme, FFM successfully accelerated the open-closed transition with the 6 ns simulation starting solely from the open state, although the 1-μs canonical MD simulation failed to sample such a rare event.
Miller, Joshua D; Bagby, R Michael; Pilkonis, Paul A
2005-12-01
Recent studies have demonstrated that personality disorders (PDs) can be assessed via a prototype-matching technique, which enables researchers and clinicians to match an individual's five-factor model (FFM) personality profile to an expert-generated prototype. The current study examined the relations between these prototype scores, using interview and self-report data, and PD symptoms in an outpatient sample (N = 115). Both sets of PD prototype scores demonstrated significant convergent validity with PD symptom counts, suggesting that the FFM PD prototype scores are appropriate for use with both sources of data.
Fluctuation Flooding Method (FFM) for accelerating conformational transitions of proteins
NASA Astrophysics Data System (ADS)
Harada, Ryuhei; Takano, Yu; Shigeta, Yasuteru
2014-03-01
A powerful conformational sampling method for accelerating structural transitions of proteins, "Fluctuation Flooding Method (FFM)," is proposed. In FFM, cycles of the following steps enhance the transitions: (i) extractions of largely fluctuating snapshots along anisotropic modes obtained from trajectories of multiple independent molecular dynamics (MD) simulations and (ii) conformational re-sampling of the snapshots via re-generations of initial velocities when re-starting MD simulations. In an application to bacteriophage T4 lysozyme, FFM successfully accelerated the open-closed transition with the 6 ns simulation starting solely from the open state, although the 1-μs canonical MD simulation failed to sample such a rare event.
Comparing personality disorder models: cross-method assessment of the FFM and DSM-IV-TR.
Samuel, Douglas B; Widiger, Thomas W
2010-12-01
The current edition of the Diagnostic and Statistical Manual of Mental Disorders (DSM-IV-TR; American Psychiatric Association, 2000) defines personality disorders as categorical entities that are distinct from each other and from normal personality traits. However, many scientists now believe that personality disorders are best conceptualized using a dimensional model of traits that span normal and abnormal personality, such as the Five-Factor Model (FFM). However, if the FFM or any dimensional model is to be considered as a credible alternative to the current model, it must first demonstrate an increment in the validity of the assessment offered within a clinical setting. Thus, the current study extended previous research by comparing the convergent and discriminant validity of the current DSM-IV-TR model to the FFM across four assessment methodologies. Eighty-eight individuals receiving ongoing psychotherapy were assessed for the FFM and the DSM-IV-TR personality disorders using self-report, informant report, structured interview, and therapist ratings. The results indicated that the FFM had an appreciable advantage over the DSM-IV-TR in terms of discriminant validity and, at the domain level, convergent validity. Implications of the findings and directions for future research are discussed.
Comparing Personality Disorder Models: Cross-Method Assessment of the FFM and DSM-IV-TR
Samuel, Douglas B.; Widiger, Thomas A.
2010-01-01
The current edition of the Diagnostic and Statistical Manual of Mental Disorders (DSM-IV-TR; American Psychiatric Association, 2000) defines personality disorders as categorical entities that are distinct from each other and from normal personality traits. However, many scientists now believe that personality disorders are best conceptualized using a dimensional model of traits that span normal and abnormal personality, such as the Five-Factor Model (FFM). However, if the FFM or any dimensional model is to be considered as a credible alternative to the current model, it must first demonstrate an increment in the validity of the assessment offered within a clinical setting. Thus, the current study extended previous research by comparing the convergent and discriminant validity of the current DSM-IV-TR model to the FFM across four assessment methodologies. Eighty-eight individuals receiving ongoing psychotherapy were assessed for the FFM and the DSM-IV-TR personality disorders using self-report, informant report, structured interview, and therapist ratings. The results indicated that the FFM had an appreciable advantage over the DSM-IV-TR in terms of discriminant validity and, at the domain level, convergent validity. Implications of the findings and directions for future research are discussed. PMID:21158596
Assessment of Personality as a Requirement for Next Generation Ship Optimal Manning
2012-09-01
Department of Test and Evaluation FFG Frigate Guided Missile FFM Five Factor Model FY HRO Fiscal Year High Reliability Organization HSI Human... FFM ) to classify personality and their associated scales provided a renewed foundation for personality trait research (Digman, 1990). Costa and...McCrae’s (1992) FFM of personality traits (openness, conscientiousness, extraversion, agreeableness, and emotional stability) has developed into the
An Analysis of Factors Affecting Affiliation in the Marine Corps Reserves
2014-12-01
AR Active Reserve ASL Active Status List CC Continuance Commitment DODI Department of Defense Instruction DON Department of the Navy FFM ...turnover (Mobley, Griffeth, Hand, & Meglino, 1979). Other research on personality constructs use the five factor model ( FFM ) as a basis...Conscientiousness and emotional stability are two personality dimensions of the FFM , which are negatively correlated and useful predictors of voluntary turnover
Effects Of Local Oscillator Errors On Digital Beamforming
2016-03-01
processor EF element factor EW electronic warfare FFM flicker frequency modulation FOV field-of-view FPGA field-programmable gate array FPM flicker...frequencies and also more difficult to measure [15]. 2. Flicker frequency modulation The source for flicker frequency modulation ( FFM ) is attributed to...a physical resonance mechanism of an oscillator or issues controlling electronic components. Some oscillators might not show FFM noise, which might
Knowledge, Skills, and Abilities for Military Leader Influence
2011-03-01
tactics. The attributes vary in breadth, encompassing broad traits, such as those represented in the five-factor model of personality ( FFM ; e.g...attributes related to the application of influence strategies, together with their definitions, are shown in Table 10. The FFM includes extroversion...leadership. For example, Judge, Bono, Ilies, and Gerhardt (2002) conducted a meta-analysis investigating the relationship between FFM personality traits
Eye-Tracking: An Alternative Vigilance Detector
2011-12-01
shortened version of the Five Factor Model ( FFM ) (Costa & McCrae, 1992). Studies have found that Introversion and Extraversion results from this...to determine if the FFM is a valid tool for determining if subjects will experience the vigilance decrement. This would be a preferable method...Personality Using the responses to the FFM , we discovered two significant correlations involving the extent to which subjects experienced the
Langer, Raquel D; Matias, Catarina N; Borges, Juliano H; Cirolini, Vagner X; Páscoa, Mauro A; Guerra-Júnior, Gil; Gonçalves, Ezequiel M
2018-03-26
Bioelectrical impedance analysis (BIA) is a practical and rapid method for making a longitudinal analysis of changes in body composition. However, most BIA validation studies have been performed in a clinical population and only at one moment, or point in time (cross-sectional study). The aim of this study is to investigate the accuracy of predictive equations based on BIA with regard to the changes in fat-free mass (FFM) in Brazilian male army cadets after 7 mo of military training. The values used were determined using dual-energy X-ray absorptiometry (DXA) as a reference method. The study included 310 male Brazilian Army cadets (aged 17-24 yr). FFM was measured using eight general predictive BIA equations, with one equation specifically applied to this population sample, and the values were compared with results obtained using DXA. The student's t-test, adjusted coefficient of determination (R2), standard error of estimation (SEE), Lin's approach, and the Bland-Altman test were used to determine the accuracy of the predictive BIA equations used to estimate FFM in this population and between the two moments (pre- and post-moment). The FFM measured using the nine predictive BIA equations, and determined using DXA at the post-moment, showed a significant increase when compared with the pre-moment (p < 0.05). All nine predictive BIA equations were able to detect FFM changes in the army cadets between the two moments in a very similar way to the reference method (DXA). However, only the one BIA equation specific to this population showed no significant differences in the FFM estimation between DXA at pre- and post-moment of military routine. All predictive BIA equations showed large limits of agreement using the Bland-Altman approach. The eight general predictive BIA equations used in this study were not found to be valid for analyzing the FFM changes in the Brazilian male army cadets, after a period of approximately 7 mo of military training. Although the BIA equation specific to this population is dependent on the amount of FFM, it appears to be a good alternative to DXA for assessing FFM in Brazilian male army cadets.
Thearle, Marie S.; Krakoff, Jonathan; Votruba, Susanne B.
2015-01-01
Context: Body fat-free mass (FFM), energy expenditure (EE), and respiratory quotient (RQ) are known predictors of daily food intake. Because FFM largely determines EE, it is unclear whether body composition per se or the underlying metabolism drives dietary intake. Objective: The objective of the study was to test whether 24-hour measures of EE and RQ and their components influence ad libitum food intake independently of FFM. Design and Participants: One hundred seven healthy individuals (62 males/45 females, 84 Native Americans/23 whites; age 33 ± 8 y; body mass index 33 ± 8 kg/m2; body fat 31% ± 8%) had 24-hour measures of EE in a whole-room indirect calorimeter during energy balance, followed by 3 days of ad libitum food intake using computerized vending machine systems. Body composition was estimated by dual-energy x-ray absorptiometry. Main Outcome Measures: FFM, 24-hour EE, RQ, spontaneous physical activity, sleeping EE (sleeping metabolic rate), awake and fed thermogenesis, and ad libitum food intake (INTAKE) were measured. Results: Higher 24-hour RQ (P < .001, partial R2 = 16%) and EE (P = .01, partial R2 = 7%), but not FFM (P = .65), were independent predictors of INTAKE. Mediation analysis demonstrated that 24-hour EE is responsible for 80% of the FFM effect on INTAKE (44.5 ± 16.9 kcal ingested per kilogram of FFM, P= .01), whereas the unique effect due to solely FFM was negligible (10.6 ± 23.2, P = .65). Spontaneous physical activity (r = 0.33, P = .001), but not sleeping metabolic rate (P = .71), positively predicted INTAKE, whereas higher awake and fed thermogenesis determined greater INTAKE only in subjects with a body mass index of 29 kg/m2 or less (r = 0.44, P = .01). Conclusions: EE and RQ, rather than FFM, independently determine INTAKE, suggesting that competitive energy-sensing mechanisms driven by the preferential macronutrient oxidation and total energy demands may regulate food intake. PMID:26086330
Mercier, Manuel R; Schwartz, Sophie; Spinelli, Laurent; Michel, Christoph M; Blanke, Olaf
2017-03-01
The main model of visual processing in primates proposes an anatomo-functional distinction between the dorsal stream, specialized in spatio-temporal information, and the ventral stream, processing essentially form information. However, these two pathways also communicate to share much visual information. These dorso-ventral interactions have been studied using form-from-motion (FfM) stimuli, revealing that FfM perception first activates dorsal regions (e.g., MT+/V5), followed by successive activations of ventral regions (e.g., LOC). However, relatively little is known about the implications of focal brain damage of visual areas on these dorso-ventral interactions. In the present case report, we investigated the dynamics of dorsal and ventral activations related to FfM perception (using topographical ERP analysis and electrical source imaging) in a patient suffering from a deficit in FfM perception due to right extrastriate brain damage in the ventral stream. Despite the patient's FfM impairment, both successful (observed for the highest level of FfM signal) and absent/failed FfM perception evoked the same temporal sequence of three processing states observed previously in healthy subjects. During the first period, brain source localization revealed cortical activations along the dorsal stream, currently associated with preserved elementary motion processing. During the latter two periods, the patterns of activity differed from normal subjects: activations were observed in the ventral stream (as reported for normal subjects), but also in the dorsal pathway, with the strongest and most sustained activity localized in the parieto-occipital regions. On the other hand, absent/failed FfM perception was characterized by weaker brain activity, restricted to the more lateral regions. This study shows that in the present case report, successful FfM perception, while following the same temporal sequence of processing steps as in normal subjects, evoked different patterns of brain activity. By revealing a brain circuit involving the most rostral part of the dorsal pathway, this study provides further support for neuro-imaging studies and brain lesion investigations that have suggested the existence of different brain circuits associated with different profiles of interaction between the dorsal and the ventral streams.
Solid ground in the wetlands of personality: a reply to Block.
Costa, P T; McCrae, R R
1995-03-01
The five-factor model (FFM) of personality offers a structural organization of personality traits in terms of 5 broad factors. J. Block's (1995) critique of the FFM failed to recognize the utility of a trait taxonomy and the intent of research designed to test the 5-factor hypothesis. In a number of instances he omitted reference to empirical evidence that addresses concerns he raised; this evidence shows strong support for the FFM beyond the lexical and questionnaire traditions he reviews. Many of his suggestions for improving the quality of personality research are valuable, but are likely to be more fruitful when used in conjunction with established knowledge about the structure of personality traits: the FFM.
Samuel, Douglas B.; Widiger, Thomas A.
2008-01-01
Theory and research have suggested that the personality disorders contained within the American Psychiatric Association's Diagnostic and Statistical Manual of Mental Disorders (DSM-IV-TR) can be understood as maladaptive variants of the personality traits included within the five-factor model (FFM). The current meta-analysis of FFM personality disorder research both replicated and extended the 2004 work of Saulsman and Page (The five-factor model and personality disorder empirical literature: A meta-analytic review. Clinical Psychology Review, 23, 1055-1085) through a facet-level analysis that provides a more specific and nuanced description of each DSM-IV-TR personality disorder. The empirical FFM profiles generated for each personality disorder were generally congruent at the facet level with hypothesized FFM translations of the DSM-IV-TR personality disorders. However, notable exceptions to the hypotheses did occur and even some findings that were consistent with FFM theory could be said to be instrument specific. PMID:18708274
Development and Validation of the Faceted Inventory of the Five-Factor Model (FI-FFM).
Watson, David; Nus, Ericka; Wu, Kevin D
2017-06-01
The Faceted Inventory of the Five-Factor Model (FI-FFM) is a comprehensive hierarchical measure of personality. The FI-FFM was created across five phases of scale development. It includes five facets apiece for neuroticism, extraversion, and conscientiousness; four facets within agreeableness; and three facets for openness. We present reliability and validity data obtained from three samples. The FI-FFM scales are internally consistent and highly stable over 2 weeks (retest rs ranged from .64 to .82, median r = .77). They show strong convergent and discriminant validity vis-à-vis the NEO, the Big Five Inventory, and the Personality Inventory for DSM-5. Moreover, self-ratings on the scales show moderate to strong agreement with corresponding ratings made by informants ( rs ranged from .26 to .66, median r = .42). Finally, in joint analyses with the NEO Personality Inventory-3, the FI-FFM neuroticism facet scales display significant incremental validity in predicting indicators of internalizing psychopathology.
Ryu, Yasuhiko; Akagi, Yoshito; Yagi, Minoru; Sasatomi, Teruo; Kinugasa, Tetsushi; Yamaguchi, Keizo; Oka, Yousuke; Fukahori, Suguru; Shiratsuchi, Ichitaro; Yoshida, Takefumi; Gotanda, Yukito; Tanaka, Natsuki; Ohchi, Takafumi; Romeo, Kansakar; Shirouzu, Kazuo
2015-01-01
The aim of this study was to elucidate whether fecoflowmetry (FFM) could evaluate more detailed evacuative function than anorectal manometry by comparing between FFM or anorectal manometric findings and the clinical questionnaires and the types of surgical procedure in the patients who received anal-preserving surgery. Fifty-three patients who underwent anal-preserving surgery for low rectal cancer were enrolled. The relationships between FFM or the manometric findings and the clinical questionnaires and the types of procedure of anal-preserving surgery were evaluated. There were significant differences between FFM markers and the clinical questionnaire and the types of the surgical procedure, whereas no significant relationship was observed between the manometric findings and the clinical questionnaire and the types of the surgical procedure. FFM might be feasible and useful for the objective assessment of evacuative function and may be superior to manometry for patients undergoing anal-preserving surgery. PMID:25594637
Insider Threat Study: Illicit Cyber Activity Involving Fraud in the U.S. Financial Services Sector
2012-07-01
CWB research is the Five Factor Model ( FFM ), which includes dimensions of openness to experience, extraversion, conscientiousness, agreeableness...and emotional stability. After reviewing the literature on the FFM dimensions and CWBs, Salga- do found 44 studies conducted between 1990 and 1999 that...examine the relationships between the FFM dimensions and deviant behaviors (17), absenteeism (13), work-related accidents (9), and turnover (5
Using Emotional Intelligence to Lead the TACOM Workforce
2012-04-01
conceptual overlap with personality attributes such as those in the Five Factor Model ( FFM ) (Mishra & Mohapatra, 2009). Researchers believe that...distinct from other measures of personality such as the FFM , studies have shown that it contains several variables that overlap with conventional...2010). Similar to the EQ-I, the ESCI has some overlap with traditional personality models such as the FFM . One additional limitation to both the EQ
Body shape indices are predictors for estimating fat-free mass in male athletes
Aoki, Toru; Komori, Daisuke; Oyamada, Kazuyuki; Murata, Kensuke; Fujita, Eiji; Akamine, Takuya; Urita, Yoshihisa; Yamamoto, Masayoshi
2018-01-01
It is unknown whether body size and body shape parameters can be predictors for estimating whole body fat-free mass (FFM) in male athletes. This study aimed to investigate whether body size and shape variables can be predictors for FFM in male athletes. Using a whole-body dual-energy X-ray absorptiometry scanner, whole body fat mass (FM) and FFM were determined in 132 male athletes and 14 sedentary males. The sample was divided into two groups: validation (N = 98) and cross-validation (N = 48) groups. Body height (BH), body mass (BM), and waist circumference at immediately above the iliac crest (W) were measured. BM-to-W and W-to-BH ratios were calculated as indices of body shapes. Stepwise multiple regression analysis revealed that BM/W and W/BH were selected as explainable variables for predicting FFM. The equation developed in the validation group was FFM (kg) = 0.883 × BM/W (kg/m) + 43.674 × W/BH (cm/cm)– 41.480 [R2 = 0.900, SEE (%SEE) = 2.3 kg (3.8%)], which was validated in the cross-validation group. Thus, the current results demonstrate that an equation using BM/W and W/BH as independent variables is applicable for predicting FFM in male athletes. PMID:29346452
Heymsfield, Steven B.; Cristina Gonzalez, M. C.; Shen, Wei; Redman, Leanne; Thomas, Diana
2014-01-01
Maximizing fat loss while preserving lean tissue mass and function is a central goal of modern obesity treatments. A widely cited rule guiding expected loss of lean tissue as fat-free mass (FFM) states that approximately one-fourth of weight loss will be FFM (i.e., ΔFFM/ΔWeight = ~0.25) with the remaining three-fourths fat mass. This review examines the dynamic relations between FFM, fat mass, and weight changes that follow induction of negative energy balance with hypocaloric dieting and/or exercise. Historical developments in the field are traced with the “Quarter FFM Rule” used as a framework to examine evolving concepts on obesity tissue, excess weight, and what is often cited as “Forbes’ Rule”. Temporal effects in the fractional contribution of FFM to changes in body weight are examined as are lean tissue moderating effects such as aging, inactivity, and exercise that frequently accompany structured low-calorie diet weight loss protocols. Losses of lean tissue with dieting typically tend to be small, raising questions about study design, power, and applied measurement method reliability. Our review elicits important questions related to the fractional loss of lean tissues with dieting and provides a foundation for future research on this topic. PMID:24447775
Gang, Grace J; Siewerdsen, Jeffrey H; Stayman, J Webster
2017-12-01
This paper presents a joint optimization of dynamic fluence field modulation (FFM) and regularization in quadratic penalized-likelihood reconstruction that maximizes a task-based imaging performance metric. We adopted a task-driven imaging framework for prospective designs of the imaging parameters. A maxi-min objective function was adopted to maximize the minimum detectability index ( ) throughout the image. The optimization algorithm alternates between FFM (represented by low-dimensional basis functions) and local regularization (including the regularization strength and directional penalty weights). The task-driven approach was compared with three FFM strategies commonly proposed for FBP reconstruction (as well as a task-driven TCM strategy) for a discrimination task in an abdomen phantom. The task-driven FFM assigned more fluence to less attenuating anteroposterior views and yielded approximately constant fluence behind the object. The optimal regularization was almost uniform throughout image. Furthermore, the task-driven FFM strategy redistribute fluence across detector elements in order to prescribe more fluence to the more attenuating central region of the phantom. Compared with all strategies, the task-driven FFM strategy not only improved minimum by at least 17.8%, but yielded higher over a large area inside the object. The optimal FFM was highly dependent on the amount of regularization, indicating the importance of a joint optimization. Sample reconstructions of simulated data generally support the performance estimates based on computed . The improvements in detectability show the potential of the task-driven imaging framework to improve imaging performance at a fixed dose, or, equivalently, to provide a similar level of performance at reduced dose.
Preoperative fat-free mass: a predictive factor of weight loss after gastric bypass.
Robert, Maud; Pelascini, Elise; Disse, Emmanuel; Espalieu, Philippe; Poncet, Gilles; Laville, Martine; Gouillat, Christian
2013-04-01
Weight loss failure occurs in 8% to 40% of patients after gastric bypass (GBP). The aim of our study was to analyse the predictive factors of weight loss at 1 year so as to select the best candidates for this surgery and reduce the failures. We included 73 patients treated by laparoscopic GBP. We retrospectively analysed the predictive factors of weight loss in kilograms as well as excess weight loss in percentage (EWL%) at 1 year. The population was divided into tertiles so as to compare the sub-group with the highest weight loss with the sub-group with the least satisfactory results. The significantly predictive factors of a better weight loss in kilograms were male, higher initial weight (144 versus 118 kg, p = 0.002), a significant early weight loss and a higher preoperative percentage of fat-free mass (FFM%; p = 0.03). A higher FFM% was also associated with a better EWL% (p = 0.004). The preoperative FFM (in kilograms) was the principal factor accounting for the weight loss at 1 year regardless of age, gender, height and initial body mass index (BMI; p < 0.0001). There was a better correlation between FFM and weight loss (Spearman test, p = 0.0001) than between initial BMI and weight loss (p = 0.016). We estimated weight loss at 1 year according to initial FFM using the formula: 0.5 kg of lost weight per kilogram of initial FFM. The initial FFM appears to be a decisive factor in the success of GBP. Thus, the sarcopoenic patients would appear to be less suitable candidates for this surgery.
Evaluation of ultrasound in assessing body composition of high school wrestlers.
Utter, Alan C; Hager, Marion E
2008-05-01
To evaluate the accuracy of ultrasound (ULTRA) in assessing fat-free mass (FFM) in comparison with hydrostatic weighing (HW) and skinfolds (SK) in high school wrestlers in a hydrated state. Body composition was determined by ULTRA, HW, and three-site SK in 70 high school wrestlers (mean +/- SD: age, 15.5 +/- 1.5; height, 1.60 +/- 0.08 m; body mass, 65.8 +/- 12.7 kg). For all methods, body density (Db) was converted to percent body fat (%BF) using the Brozek equation. Hydration state was quantified by evaluating urine specific gravity. There were no significant differences for estimated FFM between ULTRA (57.2 +/- 9.7 kg) and HW (57.0 +/- 9.9 kg); however, SK (54.9 +/- 8.8 kg) were significantly different from HW. The standard errors of estimate for FFM with HW as the reference method were 2.40 kg for ULTRA and 2.74 kg for SK. Significant correlations were found for FFM between HW and ULTRA (r = 0.97, P < 0.001) and between HW and SK (r = 0.96, P < 0.001). A systematic bias was found for SK, as the difference between SK and HW significantly correlated with the FFM average of the two methods (r = -0.38, P < 0.001). This systematic bias was not found for ULTRA (r = - 0.07). This study demonstrates that ULTRA provides similar estimates of FFM when compared with HW in a heterogeneous high school wrestling population during a hydrated state. ULTRA should be considered as an alternative field-based method of estimating the FFM of high school wrestlers.
Issues in characterizing resting energy expenditure in obesity and after weight loss
Bosy-Westphal, Anja; Braun, Wiebke; Schautz, Britta; Müller, Manfred J.
2013-01-01
Limitations of current methods: Normalization of resting energy expenditure (REE) for body composition using the 2-compartment model fat mass (FM), and fat-free mass (FFM) has inherent limitations for the interpretation of REE and may lead to erroneous conclusions when comparing people with a wide range of adiposity as well as before and after substantial weight loss. Experimental objectives: We compared different methods of REE normalization: (1) for FFM and FM (2) by the inclusion of %FM as a measure of adiposity and (3) based on organ and tissue masses. Results were compared between healthy subjects with different degrees of adiposity as well as within subject before and after weight loss. Results: Normalizing REE from an “REE vs. FFM and FM equation” that (1) was derived in obese participants and applied to lean people or (2) was derived before weight loss and applied after weight loss leads to the erroneous conclusion of a lower metabolic rate (i) in lean persons and (ii) after weight loss. This is revealed by the normalization of REE for organ and tissue masses that was not significantly different between lean and obese or between baseline and after weight loss. There is evidence for an increasing specific metabolic rate of FFM with increasing %FM that could be explained by a higher contribution of liver, kidney and heart mass to FFM in obesity. Using “REE vs. FFM and FM equations” specific for different levels of adiposity (%FM) eliminated differences in REE before and after weight loss in women. Conclusion: The most established method for normalization of REE based on FFM and FM may lead to spurious conclusions about metabolic rate in obesity and the phenomenon of weight loss-associated adaptive thermogenesis. Using %FM-specific REE prediction from FFM and FM in kg may improve the normalization of REE when subjects with wide differences in %FM are investigated. PMID:23532370
Do Dynamic Fat and Fat-Free Mass Changes follow Theoretical Driven Rules in Athletes?
Silva, Analiza M; Matias, Catarina N; Santos, Diana A; Rocha, Paulo M; Minderico, Cláudia S; Thomas, Diana; Heymsfield, Steven B; Sardinha, Luís B
2017-10-01
Maximizing fat mass (FM) loss while preserving or increasing fat-free mass (FFM) is a central goal for athletic performance but the composition of body weight (BW) changes over time with training are largely unknown. We aimed to analyze FM and FFM contributions to BW changes and to test if these contributions follow established rules and predictions over one athletic season. Seventy athletes (42 men; handball, volleyball, basketball, triathlon, and swimming) were evaluated from the beginning to the competitive stage of the season and were empirically divided into those who lost (n = 20) or gained >1.5% BW (n = 50). FM and FFM were evaluated with a four-compartment model. Energy densities (ED) of 1.0 kcal·g for FFM and 9.5 kcal·g for FM were used to calculate ED/per kilogram BW change. Athletes that lost >1.5% BW decreased FM by 1.7 ± 1.6 kg (P < 0.05), whereas FFM loss was nonsignificant (-0.7 ± 2.1 kg). Those who gained >1.5% BW increased FFM by 2.3 ± 2.1 kg (P < 0.05) with nonsignificant FM gains (0.4 ± 2.2 kg). The proportion of BW change as FM for those who lost or gained BW was 90% (ED: 8678 ± 2147 kcal·kg) and 5% (ED: 1449 ± 1525 kcal·kg), respectively (P < 0.001). FFM changes from Forbes Curve were inversely related to observed changes (r = -0.64; r = -0.81, respectively for those who lost or gained BW). Athletes that lost BW used 90% of the energy from FM while in those gaining BW, 95% was directed to FFM. When BW is lost, dynamic changes in its composition do not follow established rules and predictions used for lean or overweight/obese nonathletic populations.
Blauw, Lisanne L; Boon, Mariëtte R; Rosendaal, Frits R; de Mutsert, Renée; Gast, Karin B; van Dijk, Ko Willems; Rensen, Patrick C N; Dekkers, Olaf M
2015-11-01
Animal studies and human studies in small selected populations have shown a positive association between nicotine smoking and resting energy expenditure (REE), but data in large cohorts are lacking. We aimed to investigate the association between smoking behavior and REE in a large, population-based study. Population-based cross-sectional study. In this cross-sectional analysis of baseline measurements from the Netherlands Epidemiology of Obesity (NEO) study (n=6673), we included participants with REE measurement by indirect calorimetry who were not using lipid or glucose lowering drugs (n=1189). We used linear regression analysis to examine the association of smoking status (never, former, occasional, current smoker) and smoking quantity (pack years) with REE per kilogram (kg) fat free mass (FFM) and with REE adjusted for FFM. Models were adjusted for age, sex, ethnicity, educational level, physical activity, energy intake and body mass index (BMI). Mean (standard deviation, SD) age was 55.2 (5.9) years and BMI was 26.3 (4.4) kg/m(2). 60% of the participants were women. Mean (SD) REE/FFM (kcal/day/kg FFM) was for male never smokers 25.1 (2.0), male current smokers 26.4 (2.8), female never smokers 28.9 (2.5) and female current smokers 30.1 (3.7). After adjustment, only current smokers had a higher REE/FFM (mean difference 1.28, 95% CI 0.64, 1.92), and a higher REE adjusted for FFM (mean difference 60.3 kcal/day, 95% CI 29.1, 91.5), compared with never smokers. There was no association between pack years and REE/FFM (mean difference -0.01, 95% CI -0.06, 0.04) or REE adjusted for FFM (mean difference 0.2, 95% CI -2.4, 2.8) in current smokers. Current smoking is associated with a higher resting energy expenditure compared with never smoking in a large population-based cohort. Copyright © 2015 Elsevier Inc. All rights reserved.
Marino, Diego M.; Marrara, Kamilla T.; Arcuri, Juliano F.; Candolo, Cecília; Jamami, Maurício; Lorenzo, Valéria A. Pires Di
2014-01-01
Background Chronic obstructive pulmonary disease (COPD) typically presents the characteristic clinical condition of exacerbation, with more intense symptoms associated with greater functional loss and consequently lower chances of patient survival. Objectives This study sought to determine the predictors of exacerbation, alone or in combination, in patients with chronic obstructive pulmonary disease (COPD) who received physical therapeutic treatment over 6 months. Method This was an observational, longitudinal and prospective study in which 63 COPD patients residing within the municipality of São Carlos, SP, Brazil were evaluated. These patients had COPD stages II and III and were entered into a physical therapy program, consisting of 3 periods of assessment over 6 months. We evaluated the occurrence of acute exacerbation as well as the patients' body mass index (BMI), fat-free mass (FFM), fat-free mass index, forced expiratory volume in 1 second (FEV1), dyspnea, distance walked (DW) in the 6-minute walk test (6MWT) and handgrip strength. Results When applying Cox settings with each covariate separately, the results revealed 5% significance only for the DW in the 6MWT, which demonstrated an interaction between BMI and FFM. Comparison of the 3 periods of assessment across the covariates measured showed a significant difference only for the DW between evaluations in the 3rd and 6th months. Conclusion Upon analyzing the predictors of risk over 6 months of follow-up in patients with COPD, we found that the DW in the 6MWT was associated with the risk of exacerbation, although this risk also depended on the covariates BMI and FFM. PMID:24845022
2011-06-15
Army AAA Report No. A-2009-0226- FFM , “Examination of Federal Financial Management Improvement Act Compliance - Test Validation General Fund Enterprise...Business System Release 1.2,” September 30, 2009 AAA Report No. A-2009-0231- FFM , “General Fund Enterprise Business System - Federal Financial...Management Improvement Act Compliance Examination of Release 1.3 Functionality,” September 30, 2009 AAA Report No. A-2009-0232- FFM , “General Fund
2014-09-03
Compliance Validation: Logistics Modernization Program System Third Deployment—Selected Requirements,” July 2012 AAA Report No. A-2012-0090- FFM , “Audit... FFM , “General Fund Enterprise Business System— Federal Financial Management Improvement Act Compliance: Examination of Requirements Through Test Event...1.4.0,” September 2010 AAA Report No. A-2010-0220- FFM , “Examination of Federal Financial Management Improvement Act Compliance—Requirements
Guilt by Association-Based Discovery of Botnet Footprints
2010-11-01
our fast flux database using our Fast Flux Monitor ( FFM ); a Web service application designed to detect whether a domain exhibits fast flux (FF) or...double flux (DF) behaviour. The primary technical components of FFM include: (1) sensors which perform real-time detection of FF service networks...sensors for our FFM active sensors: (1) FF Activity Index, (2) Footprint Index, and (3) Time To Live (TTL), and (4) Guilt by Association Score. In
Robust Image Restoration for Ground-Based Space Surveillance
2013-09-01
systems can be characterized by well-separated layers of frozen turbulence with different velocity vectors (the frozen flow model, FFM ) [5[. Studies...of the atmosphere at Mt. Haleakala have suggested that there are typically 2-3 such layers [6]. The FFM requires that we know the wind velocities...as a sum of independent static turbulent layers: where denotes the velocity of the ith layer. Using the FFM results in better sampling of the
The Self-Description Inventory+, Part 1: Factor Structure and Convergent Validity Analyses
2013-07-01
measures 12 scales of personality. The current report examines the possibility of replacing the EQ with a Five Factor Model ( FFM ) measure of...Checklist. Our results show that the SDI + has scales that are intercorrelated in a manner consistent with the FFM (Experiment 1), a factor structure...met the criteria showing it to be an FFM instrument, we will conduct concurrent validity research to determine if the SDI+ has greater predictive
The role of FFM accumulation and skeletal muscle architecture in powerlifting performance.
Brechue, William F; Abe, Takashi
2002-02-01
The purpose of this study was to determine the distribution and architectural characteristics of skeletal muscle in elite powerlifters, and to investigate their relationship to fat-free mat (FFM) accumulation and powerlifting performance. Twenty elite male powerlifters (including four world and three US national champions) volunteered for this study. FFM, skeletal muscle distribution (muscle thickness at 13 anatomical sites), and isolated muscle thickness and fascicle pennation angle (PAN) of the triceps long-head (TL), vastus lateralis, and gastrocnemius medialis (MG) muscles were measured with B-mode ultrasound. Fascicle length (FAL) was calculated. Best lifting performance in the bench press (BP), squat lift (SQT), and dead lift (DL) was recorded from competition performance. Significant correlations (P < or = 0.01) were observed between muscle distribution (individual muscle thickness from 13 sites) and performance of the SQT (r = 0.79 to r = 0.91), BP (r = 0.63 to r = 0.85) and DL (r = 0.70 to r = 0.90). Subscapular muscle thickness was the single best predictor of powerlifting performance in each lift. Performance of the SQT, BP, and DL was strongly correlated with FFM and FFM relative to standing height (r = 0.86 to 0.95, P < or = 0.001). FAL of the triceps long head and vastus lateralis were significantly correlated with FFM (r = 0.59, P < or = 0.01; 0.63, P < or = 0.01, respectively) and performance of the SQT (r = 0.45; r = 0.50, respectively; P < or = 0.05), BP (r = 0.52; r = 0.56, respectively; P < or = 0.05), and DL (r = 0.56; r = 0.54, respectively; P < or = 0.01). A significant positive correlation was observed between isolated muscle thickness and PAN for triceps long-head (r = 0.64, P < or = 0.01) and gastrocnemius medialis (r = 0.48, P < or = 0.05) muscles, but not for vastus lateralis (r = 0.35). PAN was negatively correlated with powerlifting performance. Our results indicate that powerlifting performance is a function of FFM and, therefore, may be limited by the ability to accumulate FFM. Additionally, muscle architecture appears to play an important role in powerlifting performance in that greater fascicle lengths are associated with greater FFM accumulation and powerlifting performance.
The Effect of Acoustic Disturbances on the Operation of the Space Shuttle Main Engine Fuel Flowmeter
NASA Technical Reports Server (NTRS)
Marcu, Bogdan; Szabo, Roland; Dorney, Dan; Zoladz, Tom
2007-01-01
The Space Shuttle Main Engine (SSME) uses a turbine fuel flowmeter (FFM) in its Low Pressure Fuel Duct (LPFD) to measure liquid hydrogen flowrates during engine operation. The flowmeter is required to provide accurate and robust measurements of flow rates ranging from 10000 to 18000 GPM in an environment contaminated by duct vibration and duct internal acoustic disturbances. Errors exceeding 0.5% can have a significant impact on engine operation and mission completion. The accuracy of each sensor is monitored during hot-fire engine tests on the ground. Flow meters which do not meet requirements are not flown. Among other parameters, the device is screened for a specific behavior in which a small shift in the flow rate reading is registered during a period in which the actual fuel flow as measured by a facility meter does not change. Such behavior has been observed over the years for specific builds of the FFM and must be avoided or limited in magnitude in flight. Various analyses of the recorded data have been made prior to this report in an effort to understand the cause of the phenomenon; however, no conclusive cause for the shift in the instrument behavior has been found. The present report proposes an explanation of the phenomenon based on interactions between acoustic pressure disturbances in the duct and the wakes produced by the FFM flow straightener. Physical insight into the effects of acoustic plane wave disturbances was obtained using a simple analytical model. Based on that model, a series of three-dimensional unsteady viscous flow computational fluid dynamics (CFD) simulations were performed using the MSFC PHANTOM turbomachinery code. The code was customized to allow the FFM rotor speed to change at every time step according to the instantaneous fluid forces on the rotor, that, in turn, are affected by acoustic plane pressure waves propagating through the device. The results of the simulations show the variation in the rotation rate of the flowmeter due to the interaction of the flow straightener wakes and the upstream propagating acoustic waves. A detailed analysis of the acoustic disturbance effects is presented along with an assessment of the impact on measurement accuracy.
Estimating fat mass in heart failure patients.
Trippel, Tobias Daniel; Lenk, Julian; Gunga, Hanns-Christian; Doehner, Wolfram; von Haehling, Stephan; Loncar, Goran; Edelmann, Frank; Pieske, Burkert; Stahn, Alexander; Duengen, Hans-Dirk
2016-01-01
Body composition (BC) assessments in heart failure (HF) patients are mainly based on body weight, body mass index and waist-to-hip ratio. The present study compares BC assessments by basic anthropometry, dual energy X-ray absorptiometry (DXA), bioelectrical impedance spectroscopy (BIS), and air displacement plethysmography (ADP) for the estimation of fat (FM) and fat-free mass (FFM) in a HF population. In this single-centre, observational pilot study we enrolled 52 patients with HF (33 HF with reduced ejection fraction (HFrEF), 19 HF with preserved ejection fraction (HFpEF); mean age was 67.7 ±9.9 years, 41 male) and 20 healthy controls. DXA was used as a reference standard for the measurement of FM and FFM. In the HF population, linear regression for DXA-FM and waist-to-hip ratio ( r = -0.05, 95% CI: (-0.32)-0.23), body mass index ( r = 0.47, 95% CI: 0.23-0.669), and body density ( r = -0.87, 95% CI: (-0.93)-(-0.87)) was obtained. In HF, Lin's concordance correlation coefficient of DXA-FM (%) with ADP-FM (%) was 0.76 (95% CI: 0.64-0.85) and DXA-FFM [kg] with DXA-ADP [kg] was 0.93 (95% CI: 0.88-0.96). DXA-FM (%) for BIS-FM (%) was 0.69 (95% CI: 0.54-0.80) and 0.73 (95% CI: 0.60-0.82) for DXA-FFM [kg] and BIS-FFM [kg]. Body density is a useful surrogate for FM. ADP was found suitable for estimating FM (%) and FFM [kg] in HF patients. BIS showed acceptable results for the estimation of FM (%) in HFrEF and for FFM [kg] in HFpEF patients. We encourage selecting a suitable method for BC assessment according to the compartment of interest in the HF population.
Developmental Changes in Isometric Strength: Longitudinal Study in Adolescent Soccer Players.
Duarte, Joao P; Valente-Dos-Santos, João; Coelho-E-Silva, Manuel J; Malina, R M; Deprez, Dieter; Philippaerts, Renaat; Lenoir, Matthieu; Vaeyens, Roel
2018-06-20
This study aimed to examine longitudinal changes in isometric strength of the knee extensors (ImKE) and knee flexors (ImKF) at 30° and 60°. The sample was composed of 67 players aged 11.0-13.9 years at baseline over five years. Stature, body mass, skinfolds, and isometric strength (ImKE30°, ImKF30°, ImKE60° and ImKF60°) were measured. Fat mass and fat-free mass (FFM) were derived from skinfolds. Skeletal age was obtained using TW2 RUS. Multilevel random effects regression analyses extracted developmental polynomial models. An annual increment on chronological age (CA) corresponded to 5.6 N (ImKE30°: ), 2.7 N (ImKF30°: ), 4.6 N (ImKE60°: ) and 1.5 N (ImKF60°). An increment of 1 kg in FFM predicted isometric strength as follows: 1.2 N (ImKE30°), 2.1 N (ImKF30°), 3.1 N (ImKE60°) and 2.0 N (ImKF60°). The following equations were obtained: ImKE30°=5.759×CA+1.163×FFM; ImKF30°=-19.369+2.691×CA+0.693×CA 2 +2.108×FFM; ImKE60°=4.553×CA+3.134×FFM; and, ImKF60°=-19.669+1.544×CA+2.033×FFM. Although skeletal maturity had a negligible effect on dependent variables, age and body size, based on FFM, were relevant longitudinal predictors. During adolescence, systematic assessment of knee extensors and knee flexors are strongly recommended to prevent impairment of knee muscle groups. © Georg Thieme Verlag KG Stuttgart · New York.
Hughes, Virginia A; Frontera, Walter R; Roubenoff, Ronenn; Evans, William J; Singh, Maria A Fiatarone
2002-08-01
Estimates of body-composition change in older adults are mostly derived from cross-sectional data. We examined the natural longitudinal patterns of change in fat-free mass (FFM) and fat mass (FM) in older adults and explored the effect of physical activity, weight change, and age on these changes. The body composition measured by hydrodensitometry and the level of sports and recreational activity (SRA) of 53 men and 78 women with a mean (+/-SD) initial age of 60.7 +/- 7.8 y were examined on 2 occasions separated by a mean (+/-SD) time of 9.4 +/- 1.4 y. FFM decreased in men (2.0% per decade) but not in women, whereas FM increased similarly in both sexes (7.5% per decade). Levels of SRA decreased more in men than in women over the follow-up period. Baseline age and level of SRA were inversely and independently associated with changes in FM in women only. Neither age nor level of SRA was associated with changes in FFM in men or women. Weight-stable subjects lost FFM. FFM accounted for 19% of body weight in those who gained weight, even in the presence of decreased levels of SRA. Loss of FFM (33% of body weight) was pronounced in those who lost weight, despite median SRA levels >4184 kJ/wk. On average, FM increased; however, the increase in women was attenuated with advancing age. The decrease in FFM over the follow-up period was small and masked the wide interindividual variation that was dependent on the magnitude of weight change. The contribution of weight stability, modest weight gains, or lifestyle changes that include regular resistance exercise in attenuating lean-tissue loss with age should be explored.
2010-08-30
the base budget.41 41 USAAA Report No. A-2009-0188- FFM . 22 Chapter 2. Actions Taken by...Report No. A-2009-0212-FFS, “Requirements for Mobilized Soldiers,” September 17, 2009 Army Audit Agency Report No. A-2009-0188- FFM , “Assessing... FFM , “Assessing Future Base Budget Requirements, Manning Program Evaluation Group (FOUO),” March 3, 2009 32 Army Audit Agency Report No. A-2009
Semiannual Report to the Congress, April 1, 2011 - September 30, 2011
2011-09-30
Reserve Component Non- Participants, U.S. Army Reserve Command 09/22/2011 USAAA A-2011-0110- FFM Followup Audit of Unused Airline Tickets 05/19/2011...Labor Billing Data With Government Installation Access Data, Camp As Sayliyah, Qatar (FOUO) 06/27/2011 USAAA A-2011-0104- FFM Agreed-Upon Procedures...Attestation for Investigative Support to Crime Prevention Survey 0024-2010-CID592 (FOUO) 05/10/2011 USAAA A-2011-0089- FFM Agreed-upon Procedures
Insufficient Governance Over Logistics Modernization Program System Development
2010-11-02
Controls Over the Prevalidation of DOD Commercial Payments,” March 2, 2007 Army USAAA Report No. A-2007-0205- FFM , “Logistics Modernization Program...0163- FFM , “FY 03–FY 05 Obligations Recorded in the Logistics Modernization Program,” July 27, 2007 USAAA Report No. A-2007-0154-ALR, “Follow up...Audit of Aged Accounts–U.S. Army Communications-Electronics Life Cycle Management Command,” July 2, 2007 USAAA Report No. A-2006-0234- FFM
Semiannual Report to the Congress, October 1, 2011 - March 31, 2012
2012-03-31
0013-ALM Follow-up Audit of Rotor Blades 11/08/2011 USAAA A-2012-0015- FFM Controls Over the Incentive Program in the Indiana Army National Guard...Financial Statements 11/02/2011 USAAA A-2012-0022- FFM Army Executive Dining Facility Fund Financial Statements, Office of the Administrative Assistant to...the Secretary of the Army 12/06/2011 USAAA A-2012-0023- FFM Army Executive Dining Facility Fund Internal Controls, Office of the Administrative
Using Clinician-Rated Five-Factor Model Data to Score the DSM–IV Personality Disorders
Miller, Joshua D.; Maples, Jessica; Few, Lauren R.; Morse, Jennifer Q.; Yaggi, Kirsten E.; Pilkonis, Paul A.
2013-01-01
Proposals suggest that many or all of the Diagnostic and Statistical Manual of Mental Disorders (4th ed. [DSM–IV]; American Psychiatric Association, 1994) personality disorders (PDs) may be omitted from the DSM (5th ed.; DSM–V ) and replaced with a dimensional trait model of personality pathology (Krueger, Skodol, Livesley, Shrout, & Huang, 2007; Skodol, 2009). Several authors have expressed concerns that this may be difficult for clinicians and researchers who are more comfortable with the extant PD diagnoses. In this study, we tested whether clinician ratings of traits from the Five-factor model (FFM; Costa & McCrae, 1990) can be used to recreate DSM–IV PDs. Using a sample of 130 clinical outpatients, we tested the convergent and discriminant validity of the FFM PD counts in relation to consensus ratings of the DSM–IV PDs. We then examined whether the FFM and DSM–IV PD scores correlate in similar ways with self-reported personality traits from the Schedule for Nonadaptive and Adaptive Personality (Clark, 1993). Finally, we tested the clinical utility of the FFM PD counts in relation to functional impairment. Overall, the FFM PD counts, scored using clinician ratings of the FFM traits, appeared to function like the DSM–IV PDs, thus suggesting that the use of a dimensional trait model of personality in the DSM–V may still allow for an assessment of the DSM–IV PD constructs. PMID:20552504
Ikedo, Aoi; Ishibashi, Aya; Matsumiya, Saori; Kaizaki, Aya; Ebi, Kumiko; Fujita, Satoshi
2016-01-01
We aimed to compare site-specific bone mineral densities (BMDs) between adolescent endurance runners and sprinters and examine the relationship of fat-free mass (FFM) and nutrient intake on BMD. In this cross-sectional study, 37 adolescent female endurance runners and sprinters (16.1 ± 0.8 years) were recruited. BMD and FFM were assessed by dual-energy X-ray absorptiometry. Nutrient intake and menstrual state were evaluated by questionnaires. After adjusting for covariates, spine and total bone less head (TBLH) BMDs were significantly higher in sprinters than endurance runners (TBLH, 1.02 ± 0.05 vs. 0.98 ± 0.06 g/cm2; spine, 0.99 ± 0.06 vs. 0.94 ± 0.06 g/cm2; p < 0.05). There was no significant difference between groups in other sites. The rate of menstrual abnormality was higher in endurance runners compared with sprinters (56.3% vs. 23.8%; p < 0.05). FFM was a significant covariate for BMD on all sites except the spine (p < 0.05). Dietary intake of vitamin D was identified as a significant covariate only for pelvic BMD (p < 0.05). The BMDs of different sites among endurance runners and sprinters were strongly related to FFM. However, the association of FFM with spine BMD cannot be explained by FFM alone. Other factors, including nutrition and/or mechanical loading, may affect the spine BMD. PMID:27916891
Khan, I.; Hawlader, Sophie Mohammad Delwer Hossain; Arifeen, Shams El; Moore, Sophie; Hills, Andrew P.; Wells, Jonathan C.; Persson, Lars-Åke; Kabir, Iqbal
2012-01-01
The aim of this study was to investigate the validity of the Tanita TBF 300A leg-to-leg bioimpedance analyzer for estimating fat-free mass (FFM) in Bangladeshi children aged 4-10 years and to develop novel prediction equations for use in this population, using deuterium dilution as the reference method. Two hundred Bangladeshi children were enrolled. The isotope dilution technique with deuterium oxide was used for estimation of total body water (TBW). FFM estimated by Tanita was compared with results of deuterium oxide dilution technique. Novel prediction equations were created for estimating FFM, using linear regression models, fitting child's height and impedance as predictors. There was a significant difference in FFM and percentage of body fat (BF%) between methods (p<0.01), Tanita underestimating TBW in boys (p=0.001) and underestimating BF% in girls (p<0.001). A basic linear regression model with height and impedance explained 83% of the variance in FFM estimated by deuterium oxide dilution technique. The best-fit equation to predict FFM from linear regression modelling was achieved by adding weight, sex, and age to the basic model, bringing the adjusted R2 to 89% (standard error=0.90, p<0.001). These data suggest Tanita analyzer may be a valid field-assessment technique in Bangladeshi children when using population-specific prediction equations, such as the ones developed here. PMID:23082630
FFMPD scales: Comparisons with the FFM, PID-5, and CAT-PD-SF.
Crego, Cristina; Oltmanns, Joshua R; Widiger, Thomas A
2018-01-01
A series of 8 Five Factor Model Personality Disorder (FFMPD) scales have been developed to assess, from the perspective of the Five Factor Model (FFM), the maladaptive traits included within DSM-5 Section II personality disorders. An extensive body of FFMPD research has accumulated. However, for the most part, each study has been confined to the scales within 1 particular FFMPD Inventory. The current study considered 36 FFMPD scales, at least 1 from each of the 8 FFMPD inventories, including 8 scales considered to be from neuroticism, 8 from extraversion, 5 from openness, 8 from agreeableness, and 7 from conscientiousness. Their convergent, discriminant, and structural relationship with the FFM was considered, and compared with the structural relationship with the FFM obtained by the Personality Inventory for DSM-5 (PID-5) and the Computerized Adaptive Test-Personality Disorder-Static Form (CAT-PD-SF). Support for an FFM structure was obtained (albeit with agreeableness defining 1 factor and antagonism a separate factor). Similarities and differences across the FFMPD, PID-5, and CAT-PD-SF scales were highlighted. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
The FFOCI and other measures and models of OCPD.
Crego, Cristina; Samuel, Douglas B; Widiger, Thomas A
2015-04-01
The Five Factor Obsessive Compulsive Inventory (FFOCI) was developed in part to facilitate a shift from the categorical classification of personality disorder to a dimensional trait model, more specifically, the five-factor model (FFM). Questions though have been raised as to whether obsessive-compulsive personality disorder (OCPD) can be understood as a maladaptive variant of FFM conscientiousness. The present study provides a further validation of the FFOCI, emphasizing in particular its association with FFM conscientiousness, as well as comparing alternative measures and models of OCPD. A total of 380 undergraduates (obtained in two samples of 274 and 106), including 146 oversampled for OCPD traits (93 for the first sample and 53 for the second), completed the FFOCI, measures of general personality, OCPD trait scales, and alternative measures of OCPD. Results supported the validity of the FFOCI as a measure of OCPD and maladaptive variants of FFM traits, as well as identifying substantive differences among the alternative measures of OCPD, particularly with respect to their relationship with FFM conscientiousness, antagonism, and introversion. © The Author(s) 2014.
Flight Force Measurements on a Spacecraft to Launch Vehicle Interface
NASA Astrophysics Data System (ADS)
Kaufman, Daniel S.; Gordon, Scott A.
2012-07-01
For several years we had wanted to measure interface forces between a launch vehicle and the Payload. Finally in July 2006 a proposal was made and funded to evaluate the use of flight force measurements (FFM) to improve the loads process of a Spacecraft in its design and test cycle. A NASA/Industry team was formed, the core Team consisted of 20 people. The proposal identified two questions that this assessment would attempt to address by obtaining the flight forces. These questions were: 1) Is flight correlation and reconstruction with acceleration methods sufficient? 2) How much can the loads and therefore the design and qualification be reduced by having force measurements? The objective was to predict the six interface driving forces between the Spacecraft and the Launch Vehicle throughout the boost phase. Then these forces would be compared with reconstructed loads analyses for evaluation in an attempt to answer them. The paper will present the development of a strain based force measurement system and also an acceleration method, actual flight results, post flight evaluations and lessons learned.
NASA Astrophysics Data System (ADS)
Shi, Ruoyu; Gao, Lei; Lu, Hongliang; Li, Qunyang; Ma, Tian-Bao; Guo, Hui; Du, Shixuan; Feng, Xi-Qiao; Zhang, Shuai; Liu, Yanmin; Cheng, Peng; Hu, Yuan-Zhong; Gao, Hong-Jun; Luo, Jianbin
2017-06-01
Two dimensional (2D) materials often exhibit novel properties due to various coupling effects with their supporting substrates. Here, using friction force microscopy (FFM), we report an unusual moiré superlattice-level stick-slip instability on monolayer graphene epitaxially grown on Ru(0 0 0 1) substrate. Instead of smooth friction modulation, a significant long-range stick-slip sawtooth modulation emerges with a period coinciding with the moiré superlattice structure, which is robust against high external loads and leads to an additional channel of energy dissipation. In contrast, the long-range stick-slip instability reduces to smooth friction modulation on graphene/Ir(1 1 1) substrate. The moiré superlattice-level slip instability could be attributed to the large sliding energy barrier, which arises from the morphological corrugation of graphene on Ru(0 0 0 1) surface as indicated by density functional theory (DFT) calculations. The locally steep humps acting as obstacles opposing the tip sliding, originates from the strong interfacial electronic interaction between graphene and Ru(0 0 0 1). This study opens an avenue for modulating friction by tuning the interfacial atomic interaction between 2D materials and their substrates.
The relationship between the FFM and personality disorders in a personnel selection sample.
Nederström, Mikael; Furnham, Adrian
2012-10-01
The relationships between the Five Factor Model (FFM) personality and personality disorders were investigated. A sample of real-life job applicants completed two personality questionnaires with different theoretical backgrounds in a psychological assessment center. The job applicants provided self-descriptions both on the FFM inventory and on a personality disorder trait inventory. A subsample of these candidates was interviewed by expert psychologists upon entrance to the assessment center. The psychologists assessed the same disorder traits of each target in job interviews. Both self-descriptions were used to predict the expert assessments. The results demonstrated considerable overlap between the FFM measures of normal and measures of abnormal personality in both samples and regardless of assessment method. © 2012 The Authors. Scandinavian Journal of Psychology © 2012 The Scandinavian Psychological Associations.
Nickerson, Brett S; Tinsley, Grant M
2018-03-21
The purpose of this study was to compare body fat estimates and fat-free mass (FFM) characteristics produced by multicompartment models when utilizing either dual energy X-ray absorptiometry (DXA) or single-frequency bioelectrical impedance analysis (SF-BIA) for bone mineral content (BMC) in a sample of physically active adults. Body fat percentage (BF%) was estimated with 5-compartment (5C), 4-compartment (4C), 3-compartment (3C), and 2-compartment (2C) models, and DXA. The 5C-Wang with DXA for BMC (i.e., 5C-Wang DXA ) was the criterion. 5C-Wang using SF-BIA for BMC (i.e., 5C-Wang BIA ), 4C-Wang DXA (DXA for BMC), 4C-Wang BIA (BIA for BMC), and 3C-Siri all produced values similar to 5C-Wang DXA (r > 0.99; total error [TE] < 0.83%; standard error of estimate < 0.67%; 95% limits of agreement [LOAs] < ±1.35%). The 2C models (2C-Pace, 2C-Siri, and 2C-Brozek) and DXA each produced similar standard error of estimate and 95% LOAs (2.13%-3.12% and ±4.15%-6.14%, respectively). Furthermore, 3C-Lohman DXA (underwater weighing for body volume and DXA for BMC) and 3C-Lohman BIA (underwater weighing for body volume and SF-BIA for BMC) produced the largest 95% LOAs (±5.94%-8.63%). The FFM characteristics (i.e., FFM density, water/FFM, mineral/FFM, and protein/FFM) for 5C-Wang DXA and 5C-Wang BIA were each compared with the "reference body" cadavers of Brozek et al. 5C-Wang BIA FFM density differed significantly from the "reference body" in women (1.103 ± 0.007 g/cm 3 ; p < 0.001), but no differences were observed for 5C-Wang DXA or either 5C model in men. Moreover, water/FFM and mineral/FFM were significantly lower in men and women when comparing 5C-Wang DXA and 5C-Wang BIA with the "reference body," whereas protein/FFM was significantly higher (all p ≤ 0.001). 3C-Lohman BIA and 3C-Lohman DXA produced error similar to 2C models and DXA and are therefore not recommended multicompartment models. Although more advanced multicompartment models (e.g., 4C-Wang and 5C-Wang) can utilize BIA-derived BMC with minimal impact on body fat estimates, the increased accuracy of these models over 3C-Siri is minimal. Copyright © 2018 The International Society for Clinical Densitometry. Published by Elsevier Inc. All rights reserved.
2013-06-01
Character in Sports Index CV Cross Validation FAS Faculty Appraisal Score FFM Five-Factor Model, also known as the “Big Five” GAM... FFM ). USMA does not allow personality testing as a selection tool. However, perhaps we may discover whether pre-admission information can predict...characteristic, and personality factors as described by the Five Factor Model ( FFM ) to determine their effect on one’s academic performance at USMA (Clark
2010-10-01
Centers 06/21/2010 USAAA A-2010-0121-ALO Real Property Sustainment, Restoration, and Modernization 06/25/2010 USAAA A-2010-0124- FFM Review of Port...Supply Enhanced System, Project Manager, 07/07/2010 Cruise Missile Defense System USAAA A-2010-0131- FFM Agreed-Upon Procedures Attestation of Audit... FFM Follow-up Audit of FY 05 Subsistence Charges 07/29/2010 USAAA A-2010-0144-ALR Follow-up Audit of Property Accountability, Oklahoma Army National
General Fund Enterprise Business System Did Not Provide Required Financial Information
2012-03-26
Management of the General Fund Enterprise Business System,” January 14, 2008 Army AAA Report No. A-2010-0187- FFM , “General Fund Enterprise Business System...A-2009-0232- FFM , “General Fund Enterprise Business System – Federal Financial Management Improvement Act Compliance, Examination of Releases...1.4.1, 1.4.2, 1.4.3, and 1.4.4 Requirements,” September 30, 2009 AAA Report No. A-2009-0231- FFM , “General Fund Enterprise Business System – Federal
2013-09-13
Event 1.4.4,” August 7, 2012 AAA Attestation Report A-2010-0187- FFM , “General Fund Enterprise Business System - Federal Financial Management...Improvement Act Compliance. Examination of Requirements Through Test Event 1.4.0,” September 14, 2010 AAA Audit Report A-2009-0232- FFM , “General Fund...September 30, 2009 AAA Audit Report A-2009-0231- FFM , “General Fund Enterprise Business System - Federal Financial Management Improvement Act
Development and Validation of a Light Weight, Energy Dense, Ready to Eat (RTE) Bar
2010-11-01
Erythropoietin SMP – Skim Milk Powder EVOH - Ethylene Vinyl Alcohol FFM – Fat Free Mass GRAS – General Recognized As Safe HFCS – High Fructose Corn Syrup...to loss in lean muscle mass, and impaired physical and cognitive performance (Marriott 1995). A loss of fat free mass ( FFM ) can also be interpreted...was reported that the soldiers lost an average of 4.02kg +/- 1.42kg in FFM during the first three months of the experiment. This portion of the
Wandrag, Liesl; Siervo, Mario; Riley, Heather L; Khosravi, Maryam; Fernandez, Bernadette O; Leckstrom, Carl A; Martin, Daniel S; Mitchell, Kay; Levett, Denny Z H; Montgomery, Hugh E; Mythen, Monty G; Stroud, Michael A; Grocott, Michael P W; Feelisch, Martin
2017-10-01
Sarcopenia refers to the involuntary loss of skeletal muscle and is a predictor of physical disability/mortality. Its pathogenesis is poorly understood, although roles for altered hypoxic signaling, oxidative stress, adipokines and inflammatory mediators have been suggested. Sarcopenia also occurs upon exposure to the hypoxia of high altitude. Using data from the Caudwell Xtreme Everest expedition we therefore sought to analyze the extent of hypoxia-induced body composition changes and identify putative pathways associated with fat-free mass (FFM) and fat mass (FM) loss. After baseline testing in London (75m), 24 investigators ascended from Kathmandu (1300m) to Everest base camp (EBC 5300m) over 13 days. Fourteen investigators climbed above EBC, eight of whom reached the summit (8848m). Assessments were conducted at baseline, during ascent and after one, six and eight week(s) of arrival at EBC. Changes in body composition (FM, FFM, total body water, intra- and extra-cellular water) were measured by bioelectrical impedance. Biomarkers of nitric oxide and oxidative stress were measured together with adipokines, inflammatory, metabolic and vascular markers. Participants lost a substantial, but variable, amount of body weight (7.3±4.9kg by expedition end; p<0.001). A progressive loss of both FM and FFM was observed, and after eight weeks, the proportion of FFM loss was 48% greater than FM loss (p<0.008). Changes in protein carbonyls (p<0.001) were associated with a decline in FM whereas 4-hydroxynonenal (p<0.001) and IL-6 (p<0.001) correlated with FFM loss. GLP-1 (r=-0.45, p<0.001) and nitrite (r=-0.29, p<0.001) concentration changes were associated with FFM loss. In a multivariate model, GLP-1, insulin and nitrite were significant predictors of FFM loss while protein carbonyls were predicted FM loss. The putative role of GLP-1 and nitrite as mediators of the effects of hypoxia on FFM is an intriguing finding. If confirmed, nutritional and pharmacological interventions targeting these pathways may offer new avenues for prevention and treatment of sarcopenia. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Admassu, Bitiya; Ritz, Christian; Wells, Jonathan C K; Girma, Tsinuel; Andersen, Gregers S; Belachew, Tefera; Owino, Victor; Michaelsen, Kim F; Abera, Mubarek; Wibaek, Rasmus; Friis, Henrik; Kæstel, Pernille
2018-04-01
We have previously shown that fat-free mass (FFM) at birth is associated with height at 2 y of age in Ethiopian children. However, to our knowledge, the relation between changes in body composition during early infancy and later linear growth has not been studied. This study examined the associations of early infancy fat mass (FM) and FFM accretion with linear growth from 1 to 5 y of age in Ethiopian children. In the infant Anthropometry and Body Composition (iABC) study, a prospective cohort study was carried out in children in Jimma, Ethiopia, followed from birth to 5 y of age. FM and FFM were measured ≤6 times from birth to 6 mo by using air-displacement plethysmography. Linear mixed-effects models were used to identify associations between standardized FM and FFM accretion rates during early infancy and linear growth from 1 to 5 y of age. Standardized accretion rates were obtained by dividing FM and FFM accretion by their respective SD. FFM accretion from 0 to 6 mo of age was positively associated with length at 1 y (β = 0.64; 95% CI: 0.19, 1.09; P = 0.005) and linear growth from 1 to 5 y (β = 0.63; 95% CI: 0.19, 1.07; P = 0.005). The strongest association with FFM accretion was observed at 1 y. The association with linear growth from 1 to 5 y was mainly engendered by the 1-y association. FM accretion from 0 to 4 mo was positively associated with linear growth from 1 to 5 y (β = 0.45; 95% CI: 0.02, 0.88; P = 0.038) in the fully adjusted model. In Ethiopian children, FFM accretion was associated with linear growth at 1 y and no clear additional longitudinal effect from 1 to 5 y was observed. FM accretion showed a weak association from 1 to 5 y. This trial was registered at www.controlled-trials.com as ISRCTN46718296.
Verreijen, Amely M; Engberink, Mariëlle F; Memelink, Robert G; van der Plas, Suzanne E; Visser, Marjolein; Weijs, Peter J M
2017-02-06
Intentional weight loss in obese older adults is a risk factor for accelerated muscle mass loss. We investigated whether a high protein diet and/or resistance exercise preserves fat free mass (FFM) during weight loss in overweight and obese older adults. We included 100 overweight and obese adults (55-80 year) in a randomized controlled trial (RCT) with a 2 × 2 factorial design and intention-to-treat analysis. During a 10-week weight loss program all subjects followed a hypocaloric diet. Subjects were randomly allocated to either a high protein (1.3 g/kg body weight) or normal protein diet (0.8 g/kg), with or without a resistance exercise program 3 times/week. FFM was assessed by air displacement plethysmography. At baseline, mean (±SD) BMI was 32 ± 4 kg/m 2 . During intervention, protein intake was 1.13 ± 0.35 g/kg in the high protein groups vs. 0.98 ± 0.29 in the normal protein groups, which reflects a 16.3 ± 5.2 g/d higher protein intake in the high protein groups. Both high protein diet and exercise did not significantly affect change in body weight, FFM and fat mass (FM). No significant protein*exercise interaction effect was observed for FFM. However, within-group analysis showed that high protein in combination with exercise significantly increased FFM (+0.6 ± 1.3 kg, p = 0.011). A high protein diet, though lower than targeted, did not significantly affect changes in FFM during modest weight loss in older overweight and obese adults. There was no significant interaction between the high protein diet and resistance exercise for change in FFM. However, only the group with the combined intervention of high protein diet and resistance exercise significantly increased in FFM. Dutch Trial Register, number NTR4556, date 05-01-2014.
Huang, Ai-Chun; Chen, Yu-Yawn; Chuang, Chih-Lin; Chiang, Li-Ming; Lu, Hsueh-Kuan; Lin, Hung-Chi; Chen, Kuen-Tsann; Hsiao, An-Chi; Hsieh, Kuen-Chang
2015-11-01
Bioelectrical impedance analysis (BIA) is commonly used to assess body composition. Cross-mode (left hand to right foot, Z(CR)) BIA presumably uses the longest current path in the human body, which may generate better results when estimating fat-free mass (FFM). We compared the cross-mode with the hand-to-foot mode (right hand to right foot, Z(HF)) using dual-energy x-ray absorptiometry (DXA) as the reference. We hypothesized that when comparing anthropometric parameters using stepwise regression analysis, the impedance value from the cross-mode analysis would have better prediction accuracy than that from the hand-to-foot mode analysis. We studied 264 men and 232 women (mean ages, 32.19 ± 14.95 and 34.51 ± 14.96 years, respectively; mean body mass indexes, 24.54 ± 3.74 and 23.44 ± 4.61 kg/m2, respectively). The DXA-measured FFMs in men and women were 58.85 ± 8.15 and 40.48 ± 5.64 kg, respectively. Multiple stepwise linear regression analyses were performed to construct sex-specific FFM equations. The correlations of FFM measured by DXA vs. FFM from hand-to-foot mode and estimated FFM by cross-mode were 0.85 and 0.86 in women, with standard errors of estimate of 2.96 and 2.92 kg, respectively. In men, they were 0.91 and 0.91, with standard errors of the estimates of 3.34 and 3.48 kg, respectively. Bland-Altman plots showed limits of agreement of -6.78 to 6.78 kg for FFM from hand-to-foot mode and -7.06 to 7.06 kg for estimated FFM by cross-mode for men, and -5.91 to 5.91 and -5.84 to 5.84 kg, respectively, for women. Paired t tests showed no significant differences between the 2 modes (P > .05). Hence, cross-mode BIA appears to represent a reasonable and practical application for assessing FFM in Chinese populations. Copyright © 2015 Elsevier Inc. All rights reserved.
Nightingale, Claire M; Rudnicka, Alicja R; Owen, Christopher G; Donin, Angela S; Newton, Sian L; Furness, Cheryl A; Howard, Emma L; Gillings, Rachel D; Wells, Jonathan C K; Cook, Derek G; Whincup, Peter H
2013-01-01
Bioelectrical impedance analysis (BIA) is a potentially valuable method for assessing lean mass and body fat levels in children from different ethnic groups. We examined the need for ethnic- and gender-specific equations for estimating fat free mass (FFM) from BIA in children from different ethnic groups and examined their effects on the assessment of ethnic differences in body fat. Cross-sectional study of children aged 8-10 years in London Primary schools including 325 South Asians, 250 black African-Caribbeans and 289 white Europeans with measurements of height, weight and arm-leg impedance (Z; Bodystat 1500). Total body water was estimated from deuterium dilution and converted to FFM. Multilevel models were used to derive three types of equation {A: FFM = linear combination(height+weight+Z); B: FFM = linear combination(height(2)/Z); C: FFM = linear combination(height(2)/Z+weight)}. Ethnicity and gender were important predictors of FFM and improved model fit in all equations. The models of best fit were ethnicity and gender specific versions of equation A, followed by equation C; these provided accurate assessments of ethnic differences in FFM and FM. In contrast, the use of generic equations led to underestimation of both the negative South Asian-white European FFM difference and the positive black African-Caribbean-white European FFM difference (by 0.53 kg and by 0.73 kg respectively for equation A). The use of generic equations underestimated the positive South Asian-white European difference in fat mass (FM) and overestimated the positive black African-Caribbean-white European difference in FM (by 4.7% and 10.1% respectively for equation A). Consistent results were observed when the equations were applied to a large external data set. Ethnic- and gender-specific equations for predicting FFM from BIA provide better estimates of ethnic differences in FFM and FM in children, while generic equations can misrepresent these ethnic differences.
Nightingale, Claire M.; Rudnicka, Alicja R.; Owen, Christopher G.; Donin, Angela S.; Newton, Sian L.; Furness, Cheryl A.; Howard, Emma L.; Gillings, Rachel D.; Wells, Jonathan C. K.; Cook, Derek G.; Whincup, Peter H.
2013-01-01
Background Bioelectrical impedance analysis (BIA) is a potentially valuable method for assessing lean mass and body fat levels in children from different ethnic groups. We examined the need for ethnic- and gender-specific equations for estimating fat free mass (FFM) from BIA in children from different ethnic groups and examined their effects on the assessment of ethnic differences in body fat. Methods Cross-sectional study of children aged 8–10 years in London Primary schools including 325 South Asians, 250 black African-Caribbeans and 289 white Europeans with measurements of height, weight and arm-leg impedance (Z; Bodystat 1500). Total body water was estimated from deuterium dilution and converted to FFM. Multilevel models were used to derive three types of equation {A: FFM = linear combination(height+weight+Z); B: FFM = linear combination(height2/Z); C: FFM = linear combination(height2/Z+weight)}. Results Ethnicity and gender were important predictors of FFM and improved model fit in all equations. The models of best fit were ethnicity and gender specific versions of equation A, followed by equation C; these provided accurate assessments of ethnic differences in FFM and FM. In contrast, the use of generic equations led to underestimation of both the negative South Asian-white European FFM difference and the positive black African-Caribbean-white European FFM difference (by 0.53 kg and by 0.73 kg respectively for equation A). The use of generic equations underestimated the positive South Asian-white European difference in fat mass (FM) and overestimated the positive black African-Caribbean-white European difference in FM (by 4.7% and 10.1% respectively for equation A). Consistent results were observed when the equations were applied to a large external data set. Conclusions Ethnic- and gender-specific equations for predicting FFM from BIA provide better estimates of ethnic differences in FFM and FM in children, while generic equations can misrepresent these ethnic differences. PMID:24204625
Grijalva-Eternod, Carlos S; Wells, Jonathan C K; Girma, Tsinuel; Kæstel, Pernille; Admassu, Bitiya; Friis, Henrik; Andersen, Gregers S
2015-09-01
A midupper arm circumference (MUAC) <115 mm and weight-for-height z score (WHZ) or weight-for-length z score (WLZ) less than -3, all of which are recommended to identify severe wasting in children, often identify different children. The reasons behind this poor agreement are not well understood. We investigated the association between these 2 anthropometric indexes and body composition to help understand why they identify different children as wasted. We analyzed weight, length, MUAC, fat-mass (FM), and fat-free mass (FFM) data from 2470 measurements from 595 healthy Ethiopian infants obtained at birth and at 1.5, 2.5, 3.5, 4.5, and 6 mo of age. We derived WLZs by using 2006 WHO growth standards. We derived length-adjusted FM and FFM values as unexplained residuals after regressing each FM and FFM against length. We used a correlation analysis to assess associations between length, FFM, and FM (adjusted and nonadjusted for length) and the MUAC and WLZ and a multivariable regression analysis to assess the independent variability of length and length-adjusted FM and FFM with either the MUAC or the WLZ as the outcome. At all ages, length showed consistently strong positive correlations with the MUAC but not with the WLZ. Adjustment for length reduced observed correlation coefficients of FM and FFM with the MUAC but increased those for the WLZ. At all ages, both length-adjusted FM and FFM showed an independent association with the WLZ and MUAC with higher regression coefficients for the WLZ. Conversely, length showed greater regression coefficients for the MUAC. At all ages, the MUAC was shown to be more influenced than was the WLZ by the FM variability relative to the FFM variability. The MUAC and WLZ have different associations with body composition, and length influences these associations differently. Our results suggest that the WLZ is a good marker of tissue masses independent of length. The MUAC acts more as a composite index of poor growth indexing jointly tissue masses and length. This trial was registered at www.controlled-trials.com as ISRCTN46718296. © 2015 American Society for Nutrition.
Prediction of Fat-Free Mass in Kidney Transplant Recipients.
Størset, Elisabet; von Düring, Marit Elizabeth; Godang, Kristin; Bergan, Stein; Midtvedt, Karsten; Åsberg, Anders
2016-08-01
Individualization of drug doses is essential in kidney transplant recipients. For many drugs, the individual dose is better predicted when using fat-free mass (FFM) as a scaling factor. Multiple equations have been developed to predict FFM based on healthy subjects. These equations have not been evaluated in kidney transplant recipients. The objectives of this study were to develop a kidney transplant specific equation for FFM prediction and to evaluate its predictive performance compared with previously published equations. Ten weeks after transplantation, FFM was measured by dual-energy X-ray absorptiometry. Data from a consecutive cohort of 369 kidney transplant recipients were randomly assigned to an equation development data set (n = 245) or an evaluation data set (n = 124). Prediction equations were developed using linear and nonlinear regression analysis. The predictive performance of the developed equation and previously published equations in the evaluation data set was assessed. The following equation was developed: FFM (kg) = {FFMmax × body weight (kg)/[81.3 + body weight (kg)]} × [1 + height (cm) × 0.052] × [1-age (years) × 0.0007], where FFMmax was estimated to be 11.4 in males and 10.2 in females. This equation provided an unbiased, precise prediction of FFM in the evaluation data set: mean error (ME) (95% CI), -0.71 kg (-1.60 to 0.19 kg) in males and -0.36 kg (-1.52 to 0.80 kg) in females, root mean squared error 4.21 kg (1.65-6.77 kg) in males and 3.49 kg (1.15-5.84 kg) in females. Using previously published equations, FFM was systematically overpredicted in kidney-transplanted males [ME +1.33 kg (0.40-2.25 kg) to +5.01 kg (4.06-5.95 kg)], but not in females [ME -2.99 kg (-4.07 to -1.90 kg) to +3.45 kg (2.29-4.61) kg]. A new equation for FFM prediction in kidney transplant recipients has been developed. The equation may be used for population pharmacokinetic modeling and clinical dose selection in kidney transplant recipients.
Tribological behavior of micro/nano-patterned surfaces in contact with AFM colloidal probe
NASA Astrophysics Data System (ADS)
Zhang, Xiaoliang; Wang, Xiu; Kong, Wen; Yi, Gewen; Jia, Junhong
2011-10-01
In effort to investigate the influence of the micro/nano-patterning or surface texturing on the nanotribological properties of patterned surfaces, the patterned polydimethylsiloxane (PDMS) surfaces with pillars were fabricated by replica molding technique. The surface morphologies of patterned PDMS surfaces with varying pillar sizes and spacing between pillars were characterized by atomic force microscope (AFM) and scanning electron microscope (SEM). The AFM/FFM was used to acquire the friction force images of micro/nano-patterned surfaces using a colloidal probe. A difference in friction force produced a contrast on the friction force images when the colloidal probe slid over different regions of the patterned polymer surfaces. The average friction force of patterned surface was related to the spacing between the pillars and their size. It decreased with the decreasing of spacing between the pillars and the increasing of pillar size. A reduction in friction force was attributed to the reduced area of contact between patterned surface and colloidal probe. Additionally, the average friction force increased with increasing applied load and sliding velocity.
Waldman, David A; Atwater, Leanne E; Davidson, Ronald A
2004-02-01
Personality has seen a resurgence in the work performance literature. The Five-Factor Model (FFM) represents a set of personality factors that has received the most attention in recent years. Despite its popularity, the FFM may not be sufficiently comprehensive to account for relevant variation across performance dimensions or tasks. Accordingly, the present study also considers how individualism may predict additional variance in performance beyond the FFM. The study involved 152 undergraduate students who experienced a leaderless group discussion (LGD) exercise. Results showed that while the FFM accounted for variance in students' LGD performance, individualism (independence) accounted for additional, unique variance. Furthermore, analyses of the group compositions revealed curvilinear relationships between the relative amount of extraversion, conscientiousness, and individualism in relation to group-level performance.
Age-related differences in limb fat-free mass and fat mass in healthy Chinese Adults.
Bai, Mei; Wang, Rui; Zhu, Linhao; Li, Guixin; Yuan, Dongya; Wang, Li; Jin, Tianbo
2018-05-22
Fat mass (FM) and fat-free mass (FFM) are important elements to evaluate nutritional status. The aims of this study were to establish reference values for FM and FFM of limbs, develop percentile distributions and assess age-related regional differences in body composition by multifrequency bioelectrical impedance analyzer (BIA) in healthy adults. A cross-sectional study was conducted on 3419 healthy subjects, 1595 men and 1824 women. Regional FM and FFM were measured by BIA. FM in men remained stable in both upper and lower limbs, with reference values (25-75th percentile) of 1-1.5 kg and 4.9-7.2 kg, respectively. Women's leg FM remained stable with aging (reference values 6.2-7.9 kg), increasing in their arms (0.9-1.5 kg for youngest, 1.3-2.3 kg oldest). The reference values of upper limbs FFM were 5.3-6.2 kg in men and 3.3-3.9 kg in women. Lower limbs FFM decreased with age in both gender: the reference values were 19.5-23.3 kg (men) and 13.8-15.4 kg (women) for 18-30 age group, and 17.3-20 kg and 11.2-13.1 kg, respectively, for 60+ age group. These data provided reference values of FM and FFM in both limbs, enabling the identification of age and gender-related changes in limb composition in healthy Chinese subjects.
Phase diagram of the chiral magnet Cr1 /3NbS2 in a magnetic field
NASA Astrophysics Data System (ADS)
Tsuruta, K.; Mito, M.; Deguchi, H.; Kishine, J.; Kousaka, Y.; Akimitsu, J.; Inoue, K.
2016-03-01
We construct the phase diagram of the chiral magnet Cr1 /3NbS2 in a dc magnetic field (Hdc) using ac magnetic susceptibility measurements. At Hdc=0 , the ac response at the transition from the helical magnetic (HM) state to the paramagnetic (PM) state consists of a giant third-order harmonic component (M3 ω) and a first-order harmonic component (M1 ω). By applying Hdc perpendicular to the c axis, the HM state is transformed to the chiral soliton lattice (CSL) state, which is a superlattice tuned by Hdc. The above giant M3 ω is markedly suppressed at small Hdc. The CSL state is found to consist of CSL-1, with dominant helical texture and a poor ferromagnetic array, and CSL-2, with a large ferromagnetic array. The transition between CSL-1 and the PM state causes a linear magnetic response, the dominant component of which is the in-phase M1 ω. With increasing temperature, CSL-2 is transformed into the forced ferromagnetic (FFM) state, and ultimately the PM state is reached. The transition between CSL-2 and the FFM state consists of a large M3 ω and large out-of-phase M1 ω as well as in-phase M1 ω. The transition between the FMM and PM states also yields a linear magnetic response, like the CSL-1-PM-state transition. Five typical magnetic dynamics in the transitions among the HM state, CSL-1, CSL-2, FFM state, and PM state were identified according to the equivalent dynamical motion equation of a nonlinear spring model.
Sharkey, Joseph R; Johnson, Cassandra M; Dean, Wesley R
2011-09-30
Trends of increasing obesity are especially pronounced among Mexican-origin women. There is little understanding of dietary patterns among U.S.- and Mexico-born Mexican-origin individuals residing in new-destination immigrant communities in the United States, especially behaviors related to obesity, such as consumption of sugar-sweetened beverages (SSB) and fast-food meals (FFM). The study used survey data of 599 adult Mexican-origin women from the 610 women who completed the 2009 Colonia Household and Community Food Resource Assessment (C-HCFRA), which was completed in person by trained promotora-researchers in 44 colonias near the Texas border towns of Progreso and La Feria. Data included demographic characteristics (age, education, nativity or country of birth, household income, household composition, and employment status), access to transportation, self-reported height and weight, food and nutrition assistance program participation, and consumption of SSB and FFM. Descriptive statistics were calculated by nativity (U.S.-born vs. Mexico-born); multivariable linear regression models were estimated for correlates of consumption of SSB and FFM. There are three major findings related to nativity. First, U.S.-born women consumed more SSB and FFM than Mexican-born counterparts in the same areas of colonias. Second, in the combined sample and controlling for other population characteristics, being born in Mexico was independently associated with FFM (fewer FFM), but not with SSB. Third, in analyses stratified by nativity, FFM and SSB were associated with each other among both nativity groups. Among Mexico-born women only, age, presence of a child, or being a lone parent was significantly associated with SSB; full-time employment, being a lone parent, and SSB consumption were each independently associated with increased frequency of FFM. Our analyses revealed differences in prevalence and correlates of SSB and FFM based on country of birth. Nativity, as a proxy for acculturation, may indicate the extent that immigrants have adopted behaviors from their new environment. However, nativity could also indicate limited accessibility to resources such as food/nutrition assistance programs, transportation, and proper documentation. Additionally, future research should focus on expanding our understanding of the meaning of nativity among individuals who share common contextual factors, but may have different life course experiences and resources needed to transition into a new place. Additional measures should be considered such as educational and occupational background, migration history, documentation status, and dietary acculturation, which may better explain heterogeneity within Hispanic subgroups.
Matters of conscience and conscientiousness: the place of ego development in the Five-factor model.
Kurtz, John E; Tiegreen, Sara B
2005-12-01
The Five-factor model (FFM; Digman, 1990; Goldberg, 1990) and Loevinger's (1994) theory of ego development are two active research traditions that are often construed as incompatible approaches to the study of personality. For example, each theory proposes a different view of the concept of conscientiousness. Loevinger argued that FFM conscientiousness, which emphasizes attributes such as order, self-discipline, and achievement striving, lacks a moral component and is more similar to the conformist stage in her theory. To investigate these claims, we administered the Revised NEO-Personality Inventory (NEO-PI-R; Costa & McCrae, 1992) and the Washington University Sentence Completion Test (WUSCT; Hy & Loevinger, 1996) to 120 university students on 2 separate occasions. Together, the five traits of the FFM significantly predicted item sum scores from the WUSCT (multiple R = .54). Unique linear relationships of Openness to Experience and Agreeableness with ego level demonstrated that the two theories proposed similar constructs. We argue that these two FFM dimensions have conceptual relevance to the cognitive and interpersonal aspects of the ego development construct. We draw further connections between these FFM dimensions, ego development, and human values.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schols, A.M.; Wouters, E.F.; Soeters, P.B.
1991-02-01
Body composition is an important measure of nutritional status in patients with chronic obstructive pulmonary disease (COPD). We generated a regression model for bioelectrical impedance (BI) by using deuterium dilution (2H2O) as a reference method in 32 COPD patients, aged 63 +/- 9 y (mean +/- SD), in stable pulmonary and cardiac condition. Height squared divided by resistance (Ht2/Res) correlated well with total body water (TBW) as measured by 2H2O (r = 0.93, P less than 0.001, SEE = 1.9 L). The best-fitting regression equation to predict TBW comprised Ht2/Res and body weight (r2 = 0.89, SEE = 1.8 L,more » P less than 0.001). BI-predicted TBW was used to estimate BI-fat-free mass (FFM) that was compared with skinfold-thickness-based FFM predictions (Anthr-FFM). Relative to BI-FFM a significant overestimation of 4.4 +/- 0.8 kg was found by Anthr-FFM. Our results suggest that BI is a useful measure of body composition in patients with severe COPD.« less
Theory of nanoscale friction on chemically modified graphene
NASA Astrophysics Data System (ADS)
Ko, Jae-Hyeon; Kim, Yong-Hyun
2013-03-01
Recently, it is known from FFM experiments that friction force on graphene is significantly increased by chemical modification such as hydrogenation, oxidization, and fluorination, whereas adhesion properties are altered marginally. A novel nanotribological theory on two-dimensional materials is proposed on the basis of experimental results and first-principles density-functional theory (DFT) calculations. The proposed theory indicates that the total lateral stiffness that is the proportional constant of friction force is mostly associated with the out-of-plane bending stiffness of two-dimensional materials. This contrasts to the case of three-dimensional materials, in which the shear strength of materials determines nanoscale friction. We will discuss details of DFT calculations and how to generalize the current theory to three dimensional materials.
Atherton, Rachel R.; Williams, Jane E.; Wells, Jonathan C. K.; Fewtrell, Mary S.
2013-01-01
Background Clinical application of body composition (BC) measurements for individual children has been limited by lack of appropriate reference data. Objectives (1) To compare fat mass (FM) and fat free mass (FFM) standard deviation scores (SDS) generated using new body composition reference data and obtained using simple measurement methods in healthy children and patients with those obtained using the reference 4-component (4-C) model; (2) To determine the extent to which scores from simple methods agree with those from the 4-C model in identification of abnormal body composition. Design FM SDS were calculated for 4-C model, dual-energy X-ray absorptiometry (DXA; GE Lunar Prodigy), BMI and skinfold thicknesses (SFT); and FFM SDS for 4CM, DXA and bioelectrical impedance analysis (BIA; height2/Z)) in 927 subjects aged 3.8–22.0 y (211 healthy, 716 patients). Results DXA was the most accurate method for both FM and FFM SDS in healthy subjects and patients (mean bias (limits of agreement) FM SDS 0.03 (±0.62); FFM SDS −0.04 (±0.72)), and provided best agreement with the 4-C model in identifying abnormal BC (SDS ≤−2 or ≥2). BMI and SFTs were reasonable predictors of abnormal FM SDS, but poor in providing an absolute value. BIA was comparable to DXA for FFM SDS and in identifying abnormal subjects. Conclusions DXA may be used both for research and clinically to determine FM and FFM SDS. BIA may be used to assess FFM SDS in place of DXA. BMI and SFTs can be used to measure adiposity for groups but not individuals. The performance of simpler techniques in monitoring longitudinal BC changes requires investigation. Ultimately, the most appropriate method should be determined by its predictive value for clinical outcome. PMID:23690932
Nascimento, Matheus A; Silva, Danilo R P; Ribeiro, Alex S; Pina, Fábio L C; Gerage, Aline M; Gobbo, Luís A; Mayhew, Jerry L; Cyrino, Edilson S
2018-05-23
Nascimento, MA, Silva, DRP, Ribeiro, AS, Pina, FLC, Gerage, AM, Gobbo, LA, Mayhew, JL, and Cyrino, ES. Agreement between bioelectrical impedance and dual-energy x-ray absorptiometry to track changes in fat-free mass after resistance training in older women. J Strength Cond Res XX(X): 000-000, 2018-The aim of our study was to compare the agreement between bioelectrical impedance (BIA) and dual-energy X-ray absorptiometry (DXA) to track changes on fat-free mass (FFM) after a resistance training (RT) program in older women. Forty-three older women (65.2 ± 4.6 years, 59.5 ± 9.2 kg, 156.4 ± 6.0 cm, 24.3 ± 3.3 kg·m) participated in a RT intervention (12 weeks, 8 exercises, 2 sets, 10-15 repetitions, 3 nonconsecutive days per week). Fat-free mass changes were determined by a single-frequency BIA device (EQ1), 6 BIA prediction equations for older women (EQ2, EQ3, EQ4, EQ5, EQ6, and EQ7), and DXA. At pretraining, 3 equations overpredicted, and 3 underpredicted DXA FFM (F = 244.63, p < 0.001), although all equations had high correlations with DXA (r = 0.78-0.83). After training, 4 equations overpredicted and one underpredicted DXA FFM (F = 176.25, p < 0.001). Dual-energy X-ray absorptiometry detected significant gains in FFM (0.65 ± 0.82 kg; p < 0.05), as did EQ3 (0.55 ± 1.69 kg; p < 0.05), and EQ4 (0.61 ± 1.88 kg; p < 0.05), whereas the remaining equations did not indicate significant changes in FFM. Low correlations between FFM and equation change values suggest that single-frequency BIA-derived equations may not provide sufficient accuracy to track changes in FFM after 12 weeks of RT in older women.
Xie, Dawei; Anderson, Amanda H.; Leonard, Mary B.; Reese, Peter P.; Delafontaine, Patrice; Horwitz, Edward; Kallem, Radhakrishna; Navaneethan, Sankar; Ojo, Akinlolu; Porter, Anna C.; Sondheimer, James H.; Sweeney, H. Lee; Townsend, Raymond R.; Feldman, Harold I.
2014-01-01
Background and objectives Previous studies in chronic disease states have demonstrated an association between lower urinary creatinine excretion (UCr) and increased mortality, a finding presumed to reflect the effect of low muscle mass on clinical outcomes. Little is known about the relationship between UCr and other measures of body composition in terms of the ability to predict outcomes of interest. Design, setting, participants, & measurements Using data from the Chronic Renal Insufficiency Cohort (CRIC), the relationship between UCr, fat free mass (FFM) as estimated by bioelectrical impedance analysis, and (in a subpopulation) whole-body dual-energy x-ray absorptiometry assessment of appendicular lean mass were characterized. The associations of UCr and FFM with mortality and ESRD were compared using Cox proportional hazards models. Results A total of 3604 CRIC participants (91% of the full CRIC cohort) with both a baseline UCr and FFM measurement were included; of these, 232 had contemporaneous dual-energy x-ray absorptiometry measurements. Participants were recruited between July 2003 and March 2007. UCr and FFM were modestly correlated (rho=0.50; P<0.001), while FFM and appendicular lean mass were highly correlated (rho=0.91; P<0.001). Higher urinary urea nitrogen, black race, younger age, and lower serum cystatin C level were all significantly associated with higher UCr. Over a median (interquartile range) of 4.2 (3.1–5.0) years of follow-up, 336 (9.3%) participants died and 510 (14.2%) reached ESRD. Lower UCr was associated with death and ESRD even after adjustment for FFM (adjusted hazard ratio for death per 1 SD higher level of UCr, 0.63 [95% confidence interval, 0.56 to 0.72]; adjusted hazard ratio for ESRD per 1 SD higher level of UCr, 0.70 [95% confidence interval, 0.63 to 0.75]). Conclusions Among a cohort of individuals with CKD, lower UCr is associated with death and ESRD independent of FFM as assessed by bioelectrical impedance analysis. PMID:25381342
Atherton, Rachel R; Williams, Jane E; Wells, Jonathan C K; Fewtrell, Mary S
2013-01-01
Clinical application of body composition (BC) measurements for individual children has been limited by lack of appropriate reference data. (1) To compare fat mass (FM) and fat free mass (FFM) standard deviation scores (SDS) generated using new body composition reference data and obtained using simple measurement methods in healthy children and patients with those obtained using the reference 4-component (4-C) model; (2) To determine the extent to which scores from simple methods agree with those from the 4-C model in identification of abnormal body composition. FM SDS were calculated for 4-C model, dual-energy X-ray absorptiometry (DXA; GE Lunar Prodigy), BMI and skinfold thicknesses (SFT); and FFM SDS for 4CM, DXA and bioelectrical impedance analysis (BIA; height(2)/Z)) in 927 subjects aged 3.8-22.0 y (211 healthy, 716 patients). DXA was the most accurate method for both FM and FFM SDS in healthy subjects and patients (mean bias (limits of agreement) FM SDS 0.03 (± 0.62); FFM SDS -0.04 (± 0.72)), and provided best agreement with the 4-C model in identifying abnormal BC (SDS ≤-2 or ≥ 2). BMI and SFTs were reasonable predictors of abnormal FM SDS, but poor in providing an absolute value. BIA was comparable to DXA for FFM SDS and in identifying abnormal subjects. DXA may be used both for research and clinically to determine FM and FFM SDS. BIA may be used to assess FFM SDS in place of DXA. BMI and SFTs can be used to measure adiposity for groups but not individuals. The performance of simpler techniques in monitoring longitudinal BC changes requires investigation. Ultimately, the most appropriate method should be determined by its predictive value for clinical outcome.
Spontaneous physical activity protects against fat mass gain
Teske, Jennifer A.; Billington, Charles J.; Kuskowski, Michael A.; Kotz, Catherine M.
2011-01-01
It is unclear whether elevated spontaneous physical activity (SPA, very low-intensity physical activity) positively influences body composition long-term. Objective We determined whether SPA and caloric intake were differentially related to the growth curve trajectories of body weight, FM and FFM between obesity resistant and Sprague-Dawley rats at specific age intervals. Design and Subjects Body composition, SPA and caloric intake were measured in selectively-bred obesity resistant and out-bred Sprague-Dawley rats from 1-18 mo. Data from development throughout maturation were analyzed by longitudinal growth curve modeling to determine the rate and acceleration of body weight, fat mass (FM) and fat-free mass (FFM) gain. Results Obesity resistant rats had a lower rate of FM gain overall, a lower acceleration in body weight early in life, significantly greater SPA and lower cumulative caloric intake. Greater SPA in obesity resistant rats was significantly associated with a lower rate of FM gain overall and lower acceleration in body weight early in life. Obesity resistant rats lost less FFM compared to Sprague-Dawley rats despite that obesity resistant rats had a lower acceleration in FFM gain early in life. Obesity resistant rats gained less FM and more FFM per gram body weight and were less energy efficient than Sprague-Dawley rats. Caloric intake was significantly and positively related to body weight, FM and FFM gain in both groups. Circadian patterns of caloric intake were group and age-dependent. Our data demonstrate that elevated and sustained SPA during development and over the lifespan are related to the reduced the rate of FM gain and may preserve FFM. Conclusion These data support the idea that SPA level is a reproducible marker that reliably predicts propensity for obesity in rats, and that elevated levels of SPA maintained during the lifespan promote a lean phenotype. PMID:21610695
Left ventricular mass in elite olympic weight lifters.
Lalande, Sophie; Baldi, James Christopher
2007-10-01
The existence of resistance training-induced left ventricular (LV) concentric hypertrophy is equivocal. Although some have described significant LV hypertrophy, others have suggested that training-induced LV hypertrophy is proportional to increased fat free mass (FFM) and thus a normal physiologic response to training. Method limitations, steroid use, and type of training may contribute to discrepant findings. Thus, LV structure and volumes are determined using magnetic resonance imaging. Body composition was determined using dual-energy x-ray absorptiometry in 9 elite Olympic weight lifters and 10 age- and weight-matched recreationally active controls. LV structure and volumes were determined by acquiring 6 short- and 3 long-axis magnetic resonance imaging scans of the left ventricle, whereas LV wall thickness was defined as the average of 6 midventricular segment thickness measurements. Weight lifters had the same age, weight, and FFM, but were shorter and had a greater body mass index than controls. LV mass was not different in weight lifters and controls, but was lower in weight lifters when indexed to FFM (2.56 +/- 0.07 vs 2.30 +/- 0.05, p = 0.01). LV mass correlated with FFM (r = 0.49, p = 0.04). However, LV mass was lower in weight lifters for a given FFM. LV wall thickness, as well as end-diastolic, end-systolic, and stroke volumes, were not different between groups. In conclusion, these results refute the hypothesis that resistance training induces LV concentric hypertrophy and suggest that Olympic weight lifting is associated with increases in FFM without a concomitant increase in LV mass.
Modeling of Longitudinal Changes in Left Ventricular Dimensions among Female Adolescent Runners
2015-01-01
Purpose Left ventricular (LV) enlargement has been linked to sudden cardiac death among young athletes. This study aimed to model the effect of long-term incessant endurance training on LV dimensions in female adolescent runners. Methods Japanese female adolescent competitive distance runners (n = 36, age: 15 years, height: 158.1 ± 4.6 cm, weight: 44.7 ± 6.1 kg, percent body fat: 17.0 ± 5.2%) underwent echocardiography and underwater weighing every 6 months for 3 years. Since the measurement occasions varied across subjects, multilevel analysis was used for curvilinear modeling of changes in running performance (velocities in 1500 m and 3000 m track race), maximal oxygen uptake (VO2max), body composition, and LV dimensions. Results Initially, LV end-diastolic dimension (LVEDd) and LV mass were 47.0 ± 3.0 mm and 122.6 ± 15.7 g, respectively. Running performance and VO2max improved along with the training duration. The trends of changes in fat-free mass (FFM) and LVEDd were similarly best described by quadratic polynomials. LVEDd did not change over time in the model including FFM as a covariate. Increases in LV wall thicknesses were minimal and independent of FFM. LV mass increased according to a quadratic polynomial trend even after adjusting for FFM. Conclusions FFM was an important factor determining changes in LVEDd and LV mass. Although running performance and VO2max were improved by continued endurance training, further LV cavity enlargement hardly occurred beyond FFM gain in these adolescent female runners, who already demonstrated a large LVEDd. PMID:26469336
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-23
...-Facilitated Marketplace (FFM). A. Develop an Affordable Care Act/IHCIA Training for the Indian Health Care... types of Marketplaces (SBM), SPM, FFM). 5. Create and disseminate additional training and technical...
Raymond, Christiana J; Dengel, Donald R; Bosch, Tyler A
2018-03-01
Raymond, CJ, Dengel, DR, and Bosch, TA. Total and segmental body composition examination in collegiate football players using multifrequency bioelectrical impedance analysis and dual X-ray absorptiometry. J Strength Cond Res 32(3): 772-782, 2018-The current study examined the influence of player position on the agreement between multifrequency bioelectrical impedance analysis (MfBIA) and dual X-ray absorptiometry (DXA) when assessing total and segmental percent body fat (BF%), fat mass (FM), and fat-free mass (FFM) in National Collegiate Athletic Association Division I collegiate football athletes. Forty-four male collegiate athletes (age = 19 ± 1 year; height = 1.9 ± 1.0 m; and body mass = 106.4 ± 18.8 kg) participated. Player positions included: offensive linemen (OL; n = 7), tight ends (TE; n = 4), wide receivers (WR; n = 9), defensive linemen (DL; n = 6), defensive backs (DB; n = 8), linebackers (LB; n = 6), and running backs (RB; n = 4). Total and segmental body composition measured using MfBIA were compared with values obtained using DXA. Compared with DXA, MfBIA underestimated BF% (3.0 ± 3.8%), total FM (2.5 ± 4.3 kg), arm FM (0.4 ± 0.8 kg), arm FFM (1.4 ± 0.9 kg), leg FM (2.8 ± 2.0 kg), and leg FFM (5.4 ± 2.4 kg) (all p < 0.001; arm FM p = 0.002) and overestimated total FFM (-2.4 ± 4.5 kg) (p < 0.001). Limits of agreement (LOAs) were: ±7.39% (BF%), ±8.50 kg (total FM), ±1.50 kg (arm FM), ±1.83 kg (arm FFM), ±3.83 kg (leg FM), ±4.62 kg (leg FFM), and ±8.83 kg (total FFM). No significant differences were observed between devices for trunk FM (-0.3 ± 3.0 kg; p = 0.565) and trunk FFM (0.4 ± 2.4 kg; p = 0.278), with LOAs of ±5.92 and ±4.69 kg, respectively. Player position significantly affected all between-device mean body composition measurement differences (adjusted p ≤ 0.05), with OL demonstrating the greatest effect on each variable. Therefore, MfBIA does not seem accurate in examining between-player body composition in college football players.
The Oxygen Consumption and Metabolic Cost of Walking and Running in Adults With Achondroplasia.
Sims, David T; Onambélé-Pearson, Gladys L; Burden, Adrian; Payton, Carl; Morse, Christopher I
2018-01-01
The disproportionate body mass and leg length of Achondroplasic individuals may affect their net oxygen consumption ([Formula: see text]O 2 ) and metabolic cost (C) when walking at running compared to those of average stature (controls). The aim of this study was to measure submaximal [Formula: see text]O 2 and C during a range of set walking speeds (SWS; 0.56 - 1.94 m⋅s -1 , increment 0.28 m⋅s -1 ), set running speeds (SRS; 1.67 - 3.33 m⋅s -1 , increment 0.28 m⋅s -1 ) and a self-selected walking speed (SSW). [Formula: see text]O 2 and C was scaled to total body mass (TBM) and fat free mass (FFM) while gait speed was scaled to leg length using Froude's number (Fr). Achondroplasic [Formula: see text]O 2TBM and [Formula: see text]O 2FFM were on average 29 and 35% greater during SWS ( P < 0.05) and 12 and 18% higher during SRS ( P < 0.05) than controls, respectively. Achondroplasic C TBM and C FFM were 29 and 33% greater during SWS ( P < 0.05) and 12 and 18% greater during SRS ( P < 0.05) than controls, respectively. There was no difference in SSW [Formula: see text]O 2TBM or [Formula: see text]O 2FFM between groups ( P > 0.05), but C TBM and C FFM at SSW were 23 and 29% higher ( P < 0.05) in the Achondroplasic group compared to controls, respectively. [Formula: see text]O 2TBM and [Formula: see text]O 2FFM correlated with Fr for both groups ( r = 0.984 - 0.999, P < 0.05). Leg length accounted for the majority of the higher [Formula: see text]O 2TBM and [Formula: see text]O 2FFM in the Achondroplasic group, but further work is required to explain the higher Achondroplasic C TBM and C FFM at all speeds compared to controls. New and Noteworthy: There is a leftward shift of oxygen consumption scaled to total body mass and fat free mass in Achondroplasic adults when walking and running. This is nullified when talking into account leg length. However, despite these scalars, Achondroplasic individuals have a higher walking and metabolic cost compared to age matched non-Achondroplasic individuals, suggesting biomechanical differences between the groups.
Assessment of the five-factor model of personality.
Widiger, T A; Trull, T J
1997-04-01
The five-factor model (FFM) of personality is obtaining construct validation, recognition, and practical consideration across a broad domain of fields, including clinical psychology, industrial-organizational psychology, and health psychology. As a result, an array of instruments have been developed and existing instruments are being modified to assess the FFM. In this article, we present an overview and critique of five such instruments (the Goldberg Big Five Markers, the revised NEO Personality Inventory, the Interpersonal Adjective Scales-Big Five, the Personality Psychopathology-Five, and the Hogan Personality Inventory), focusing in particular on their representation of the lexical FFM and their practical application.
The Effects of a Remote Atoll and Lagoon on the Marine Boundary Layer
2012-12-01
12:34 1 FVS (53),1 FFM (71), 2 LSS (229) at 10000’, 1 LSS (106) at 25000’, OH (117) 49 46/4 20111116 Large-scale Moisture variability and...D), Dropsondes near SPol 04:06 - 13:02 1 FFM (56), 1 RCE (43), 3 MP (14), 1 LSS (97) at 10000’, 3 LSS at 25000’ (114), 1 FD (16), 1 Gan...FVS (65), 1 FFM (68), 2 LSS at 10000’ (248), 2 FD (35), 1 RB (32), 1 SI (40), OH (106) 33 37/21 22 20111128 Wind and thermodynamics
2011-07-22
year old active duty male diver surfaced from a 170/30 air dive at <corr>12:11<corr> on 24AUG06 using MK 20 FFM and following the A-2 “deep stops...effort, and this episode responded immediately to pressure. AGE is unlikely due to the experience of the diver, the MK 20 FFM characteristics, and...from a 170/30 air dive at <corr>12:11<corr> on 24AUG06 using MK 20 FFM and following the A-2 “deep stops” experimental decompression profile
Surface-based morphometry reveals the neuroanatomical basis of the five-factor model of personality
Riccelli, Roberta; Toschi, Nicola; Nigro, Salvatore; Terracciano, Antonio
2017-01-01
Abstract The five-factor model (FFM) is a widely used taxonomy of human personality; yet its neuro anatomical basis remains unclear. This is partly because past associations between gray-matter volume and FFM were driven by different surface-based morphometry (SBM) indices (i.e. cortical thickness, surface area, cortical folding or any combination of them). To overcome this limitation, we used Free-Surfer to study how variability in SBM measures was related to the FFM in n = 507 participants from the Human Connectome Project. Neuroticism was associated with thicker cortex and smaller area and folding in prefrontal–temporal regions. Extraversion was linked to thicker pre-cuneus and smaller superior temporal cortex area. Openness was linked to thinner cortex and greater area and folding in prefrontal–parietal regions. Agreeableness was correlated to thinner prefrontal cortex and smaller fusiform gyrus area. Conscientiousness was associated with thicker cortex and smaller area and folding in prefrontal regions. These findings demonstrate that anatomical variability in prefrontal cortices is linked to individual differences in the socio-cognitive dispositions described by the FFM. Cortical thickness and surface area/folding were inversely related each others as a function of different FFM traits (neuroticism, extraversion and consciousness vs openness), which may reflect brain maturational effects that predispose or protect against psychiatric disorders. PMID:28122961
Kendall, Kristina L; Fukuda, David H; Hyde, Parker N; Smith-Ryan, Abbie E; Moon, Jordon R; Stout, Jeffrey R
2017-04-01
The purpose of this study was to investigate the accuracy of fat-free mass (FFM) estimates from two-compartment (2C) models including air displacement plethysmography (ADP), ultrasound (US), near-infrared interactance (NIR), and the Jackson and Pollock skinfold equation (SKF) against a criterion four-compartment (4C) model in elite male rowers. Twenty-three elite-level male rowers (mean± SD; age 24.6 ± 2.2 years; stature: 191.4 ± 7.2 cm; mass: 87.2 ± 11.2 kg) participated in this investigation. All body composition assessments were performed on the same day in random order, except for hydrostatic weighing (HW), which was measured last. FFM was evaluated using a 4C model, which included total body water from bioimpedance spectroscopy, body volume from HW, and total body bone mineral via dual-energy X-ray absorptiometry. The major findings of the study were that the 2C models evaluated overestimated FFM and should be considered with caution for the assessment of FFM in elite male rowers. Future studies should use multiple-compartment models, with measurement of TBW and bone mineral content, for the estimation of FFM.
Predicting fat-free mass in children using bioimpedance analysis.
Pietrobelli, A; Andreoli, A; Cervelli, V; Carbonelli, M G; Peroni, D G; De Lorenzo, A
2003-10-01
Body composition assessment is a useful procedure for the study of nutritional status and water distribution. In adults, it is a predictor of morbidity and mortality, since body fatness is associated with risk factors for cardiovascular disease. Bioelectric impedance analysis (BIA) is a simple, safe, and inexpensive method for assessment of body composition both in pediatric and adult subjects. The aim of our study was to validate the impedance index, ZI (H(2)/Z, height in cm(2)/impedance), as a predictor factor of fatfree mass (FFM) and fat mass (FM) in a sample ( n=75) of normal children. Dual-energy X-ray absorptiometry (DXA) was chosen as reference method. Despite some minor bias, DXAis considerably less expensive and easier to administer in pediatric subjects than other established gold standard reference methods for assessing body composition. ZI values were highly correlated with FFM measured with DXA. The following equations were obtained from the regression analysis: (a). male subjects, FFM(DXA)=0.6375 (ZI)+5.9913, r(2)=0.897, p<0.0001; (b). female subjects, FFM(DXA)=0.7597 (ZI)+ 3.5853, r(2)=0.903, p<0.0001. These data support the notion that BIA alone can be used as a surrogate to measure FFM in a pediatric sample.
Kurka, J M; Vezina, J; Brown, D D; Schumacher, J; Cullen, R W; Laurson, K R
2015-01-01
Age-related loss of muscle mass and related ailments are of concern due to associations with disabilities and morbidity as well as constituting a substantial healthcare burden. Muscle-strengthening activities and adequate protein ingestion are recommended for all-age adults in an effort to stave off age-related muscle atrophy. Muscle building abilities decline with age but most research focuses on muscle wasting in the elderly. To examine the independent and combined associations of protein intake (g∙kg-1∙day-1) and muscle-strengthening frequency (times∙week-1, MSF) on fat-free mass percentage (FFM%). This cross-sectional analysis of a population-based sample with data from the non-institutionalized persons in the United States participating in the National Health and Nutrition Examination Survey (cycles 1999-2000, 2001-2002, 2003-2004) consisted of male (n=2,499) and female (n=2,373) participants 20-49 years of age for analyses. MSF was determined by self-report and protein intake was calculated from a 24-hour recall. Differences in FFM% from bioelectrical impedance analysis was estimated using multiple linear regression models controlling for education, race-ethnicity, standing height, and total Caloric intake. One unit increase in MSF or protein intake (β-coefficient, ±E) was associated with significantly more FFM% in males (0.6±0.1%; 3.5±0.4%) and females (0.4±0.1%; 5.9±0.4%). Independent of protein intake, males and females with MSF=0 had mean ±SE FFM% of 74.4±0.4 and 60.7±0.3, respectively, while mean ±SE FFM% of males and females who met the recommendation of ≥2 times per week were 77.9±0.5 and 63.0±0.4. Independent of MSF, males and females with protein intakes below the recommended dietary allowance (RDA) of 0.8 g∙kg-1∙day-1 had mean ±SE FFM% of 74.0±0.6 and 58.2±0.6, respectively, while mean ±SE FFM% of those whose intakes exceeded the recommendation were 75.6±0.4 and 62.0±0.4. The subgroup with the highest mean ±SE FFM% (80.9 ±0.73) comprised males with MSF ≥2 times per week who also consumed >1.4 g∙kg-1∙day-1. The MSF-protein intake dose relationship with FFM% suggests that performing muscle-strengthening activities >2 times per week while consuming protein above the RDA may result in more fat-free mass and slow age-related losses of muscle mass.
Maternal fat free mass during pregnancy is associated with birth weight.
Wang, Yanxia; Mao, Jie; Wang, Wenling; Qiou, Jie; Yang, Lan; Chen, Simin
2017-03-28
The relationship between maternal body compositions and birth weight was not definite. Fat Mass (FM) and Fat Free Mass (FFM) can accurately reflect the maternal body fat compositions and have been considered as better predictors of birth weight. Despite its potential role, no studies have been described the maternal compositions during pregnancy in East Asian women previously. We investigated the correlation between birth weight and Maternal body composition including fat mass (FM) and fat free mass (FFM). To determine whether birth weight is associated with maternal body fat FM and FFM during pregnancy and, if so, which trimester and parameter is more critical in determining birth weight. A longitudinal prospective observational study performed, 348, 481 and 321 non-diabetics Han Chinese women with a singleton live birth attending a routine visit in their first, second and third trimesters were recruited. Maternal body composition was measured using segmental multi-frequency bioelectrical impedance analysis. Data of the pre-pregnancy body mass index (BMI), maternal BMI, the gestational weight gain (GWG), and placental and birth weight were collected. A significant correlation exists between maternal FFM in the process of pregnancy, placental weight, GWG at delivery, and birth weight (P < 0.05). On stepwise multiple linear regression analysis, material's FFM was the most important factor associated with the birth weight. After adjustment, there was significantly associated with 2.47-fold increase in risk for birth weight more than 4 kg when FFM ≥ 40.76 kg (Upper quartile of participants). The increased maternal age became a protective factor (OR = 0.69) while the increased pre-pregnancy BMI (OR = 1.50) remained predictors to birth weight more than 4 kg. The change of maternal FFM during pregnancy is independently affected the birth weight.
Validation of bioelectrical impedance analysis in Ethiopian adults with HIV.
Hegelund, Maria H; Wells, Jonathan C; Girma, Tsinuel; Faurholt-Jepsen, Daniel; Zerfu, Dilnesaw; Christensen, Dirk L; Friis, Henrik; Olsen, Mette F
2017-01-01
Bioelectrical impedance analysis (BIA) is an inexpensive, quick and non-invasive method to determine body composition. Equations used in BIA are typically derived in healthy individuals of European descent. BIA is specific to health status and ethnicity and may therefore provide inaccurate results in populations of different ethnic origin and health status. The aim of the present study was to test the validity of BIA in Ethiopian antiretroviral-naive HIV patients. BIA was validated against the 2 H dilution technique by comparing fat-free mass (FFM) measured by the two methods using paired t tests and Bland-Altman plots. BIA was based on single frequency (50 kHz) whole-body measurements. Data were obtained at three health facilities in Jimma Zone, Oromia Region, South-West Ethiopia. Data from 281 HIV-infected participants were available. Two-thirds were female and the mean age was 32·7 (sd 8·6) years. Also, 46 % were underweight with a BMI below 18·5 kg/m 2 . There were no differences in FFM between the methods. Overall, BIA slightly underestimated FFM by 0·1 kg (-0·1, 95 % CI -0·3, 0·2 kg). The Bland-Altman plot indicated acceptable agreement with an upper limit of agreement of 4·5 kg and a lower limit of agreement of -4·6 kg, but with a small correlation between the mean difference and the average FFM. BIA slightly overestimated FFM at low values compared with the 2 H dilution technique, while it slightly underestimated FFM at high values. In conclusion, BIA proved to be valid in this population and may therefore be useful for measuring body composition in routine practice in HIV-infected African individuals.
Measurement of body fat and hydration of the fat-free body in health and disease
DOE Office of Scientific and Technical Information (OSTI.GOV)
Streat, S.J.; Beddoe, A.H.; Hill, G.L.
1985-06-01
Body fat mass, fat-free body mass and body water are basic components of body composition which are used in nutritional and metabolic studies and in patient care. A method of measuring total body fat (TBF), fat-free mass (FFM) and its hydration (TBW/FFM) involving prompt gamma in vivo neutron activation analysis (IVNAA) and tritium dilution has been compared with the more traditional methods of densitometry and skinfold anthropometry in 36 normal volunteers, and with skinfold anthropometry in 56 patients presenting for nutritional support. While the mean values of TBF were in reasonable agreement for the three methods in normals it wasmore » founds that skinfold anthropometry underestimated TBF relative to the IVNAA/tritium method by, on average, 3.0 kg (19%) in patients. Furthermore, the ranges of values in normals of the ratio TBW/FFM for the anthropometric (0.62 to 0.80) and densitometric (0.65 to 0.80) methods were much wider than the range for the IVNAA/tritium method (0.69 to 0.76), in which TBW was measured by tritium dilution in all cases. In the patients, the ranges of this ratio were 0.52 to 0.90 for the anthropometric method and 0.67 to 0.82 for the IVNAA/tritium method; clearly anthropometry yields values of TBW/FFM which are outside accepted biological limits. On the basis of these findings, ranges of TBW/FFM are suggested for both normal adults (0.69 to 0.75) and patients requiring nutritional support (0.67 to 0.83). Finally it is concluded that the IVNAA/tritium method is a suitable method for measuring TBF and FFM and particularly so when body composition is abnormal.« less
Effect of calorie restriction on energy expenditure in overweight and obese adult women.
Jiménez Jaime, Teresa; Leiva Balich, Laura; Barrera Acevedo, Gladys; de la Maza Cave, María Pía; Hirsch Birn, Sandra; Henríquez Parada, Sandra; Rodríguez Silva, Juan; Bunout Barnett, Daniel
2015-06-01
Energy expenditure (EE) may decrease in subjects on hypocaloric diets, in amounts that exceed body mass loss, favoring weight regain. To verify if a short-term caloric restriction lowers Resting Energy Expenditure (REE) and Total Energy Expenditure (TEE) more than predicted by changes in body composition, and if this reduction of EE is related with compliance to the diet. Twenty-two women aged 23-44 years with a body mass index (BMI) of 25-32 kg/m2, underwent a three-month calorie restriction treatment (20 kcal/kg initial weight) and were encouraged to increase their physical activity. At the beginning and end of the intervention, body composition (DEXA), REE, Physical Activity Energy Expenditure (PAEE) and TEE were assessed, through a combination of indirect calorimetry and actigraphy. Participants, who lost more or equal than 5% of their initial weight were considered compliant with the diet. In the compliant group, REE decreased, when expressed in absolute numbers or when adjusted by fat free mass (FFM) [-164 ± 168 kcal/day (10,6%) and -4,3 ± 4,6 kcal/kg FFM (10,5%)]. This decline was significantly greater than that observed in the non-compliant group [-6,2 ± 1.42 Kcal/day (0.16%) and -0,5 ± 3,4/Kg FFM (0.96%)]. FFM did not change in any of the two groups. At baseline, there was a significant correlation between FFM and REE (r = 0, 56 p < 0,05), which was lost at the end of the intervention. Compliant women showed a significant reduction in both absolute and adjusted REE, which together with the loss of correlation between REE and FFM at the end of the intervention suggests a metabolic adaptation. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.
Body composition indices of a load-capacity model: gender- and BMI-specific reference curves.
Siervo, Mario; Prado, Carla M; Mire, Emily; Broyles, Stephanie; Wells, Jonathan C K; Heymsfield, Steven; Katzmarzyk, Peter T
2015-05-01
Fat mass (FM) and fat-free mass (FFM) are frequently measured to define body composition phenotypes. The load-capacity model integrates the effects of both FM and FFM to improve disease-risk prediction. We aimed to derive age-, gender- and BMI-specific reference curves of load-capacity model indices in an adult population (≥18 years). Cross-sectional study. Dual-energy X-ray absorptiometry was used to measure FM, FFM, appendicular skeletal muscle mass (ASM) and truncal fat mass (TrFM). Two metabolic load-capacity indices were calculated: ratio of FM (kg) to FFM (kg) and ratio of TrFM (kg) to ASM (kg). Age-standardised reference curves, stratified by gender and BMI (<25.0 kg/m2, 25.0-29.9 kg/m2, ≥30.0 kg/m2), were constructed using an LMS approach. Percentiles of the reference curves were 5th, 15th, 25th, 50th, 75th, 85th and 95th. Secondary analysis of data from the 1999-2004 National Health and Nutrition Examination Survey (NHANES). The population included 6580 females and 6656 males. The unweighted proportions of obesity in males and females were 25.5 % and 34.7 %, respectively. The average values of both FM:FFM and TrFM:ASM were greater in female and obese subjects. Gender and BMI influenced the shape of the association of age with FM:FFM and TrFM:ASM, as a curvilinear relationship was observed in female and obese subjects. Menopause appeared to modify the steepness of the reference curves of both indices. This is a novel risk-stratification approach integrating the effects of high adiposity and low muscle mass which may be particularly useful to identify cases of sarcopenic obesity and improve disease-risk prediction.
Luo, Huan; Wang, Yadong; Poeppel, David; Simon, Jonathan Z
2007-12-01
Complex natural sounds (e.g., animal vocalizations or speech) can be characterized by specific spectrotemporal patterns the components of which change in both frequency (FM) and amplitude (AM). The neural coding of AM and FM has been widely studied in humans and animals but typically with either pure AM or pure FM stimuli. The neural mechanisms employed to perceptually unify AM and FM acoustic features remain unclear. Using stimuli with simultaneous sinusoidal AM (at rate f(AM) = 37 Hz) and FM (with varying rates f(FM)), magnetoencephalography (MEG) is used to investigate the elicited auditory steady-state response (aSSR) at relevant frequencies (f(AM), f(FM), f(AM) + f(FM)). Previous work demonstrated that for sounds with slower FM dynamics (f(FM) < 5 Hz), the phase of the aSSR at f(AM) tracked the FM; in other words, AM and FM features were co-tracked and co-represented by "phase modulation" encoding. This study explores the neural coding mechanism for stimuli with faster FM dynamics (< or =30 Hz), demonstrating that at faster rates (f(FM) > 5 Hz), there is a transition from pure phase modulation encoding to a single-upper-sideband (SSB) response (at frequency f(AM) + f(FM)) pattern. We propose that this unexpected SSB response can be explained by the additional involvement of subsidiary AM encoding responses simultaneously to, and in quadrature with, the ongoing phase modulation. These results, using MEG to reveal a possible neural encoding of specific acoustic properties, demonstrate more generally that physiological tests of encoding hypotheses can be performed noninvasively on human subjects, complementing invasive, single-unit recordings in animals.
NASA Astrophysics Data System (ADS)
Tanaka, M.; Katsuya, Y.; Matsushita, Y.
2013-03-01
The focused-beam flat-sample method (FFM), which is a method for high-resolution and rapid synchrotron X-ray powder diffraction measurements by combination of beam focusing optics, a flat shape sample and an area detector, was applied for diffraction experiments with anomalous scattering effect. The advantages of FFM for anomalous diffraction were absorption correction without approximation, rapid data collection by an area detector and good signal-to-noise ratio data by focusing optics. In the X-ray diffraction experiments of CoFe2O4 and Fe3O4 (By FFM) using X-rays near the Fe K absorption edge, the anomalous scattering effect between Fe/Co or Fe2+/Fe3+ can be clearly detected, due to the change of diffraction intensity. The change of observed diffraction intensity as the incident X-ray energy was consistent with the calculation. The FFM is expected to be a method for anomalous powder diffraction.
Saltzman, Evan; Eibner, Christine
2015-07-15
In this study, RAND Corporation researchers assess the expected change in enrollment and premiums in the Patient Protection and Affordable Care Act (ACA)-compliant individual market in federally facilitated marketplace (FFM) states if the U.S. Supreme Court decides to eliminate subsidies in FFM states. The analysis used the Comprehensive Assessment of Reform Efforts (COMPARE) microsimulation model, an economic model developed by RAND researchers, to assess the impact of proposed health reforms. The authors found that enrollment in the ACA-compliant individual market, including plans sold in the marketplaces and those sold outside of the marketplaces that comply with ACA regulations, would decline by 9.6 million, or 70 percent, in FFM states if subsidies were eliminated. They also found that unsubsidized premiums in the ACA-compliant individual market would increase 47 percent in FFM states. This corresponds to a $1,610 annual increase for a 40-year-old nonsmoker purchasing a silver plan.
Construction and characterization of the fringe field monochromator for a field emission gun
Mook; Kruit
2000-04-01
Although some microscopes have shown stabilities sufficient to attain below 0.1 eV spectral resolution in high-resolution electron energy loss spectroscopy, the intrinsic energy width of the high brightness source (0.3-0.6 eV) has been limiting the resolution. To lower the energy width of the source to 50 meV without unnecessary loss of brightness, a monochromator has been designed consisting of a short (4 mm) fringe field Wien filter and a 150 nm energy selection slit (nanoslit) both to be incorporated in the gun area of the microscope. A prototype has been built and tested in an ultra-high-vacuum setup (10(-9) mbar). The monochromator, operating on a Schottky field emission gun, showed stable and reproducible operation. The nanoslits did not contaminate and the structure remained stable. By measuring the current through the slit structure a direct image of the beam in the monochromator could be attained and the monochromator could be aligned without the use of a microscope. Good dispersed imaging conditions were found indicating an ultimate resolution of 55 meV. A Mark II fringe field monochromator (FFM) was designed and constructed compatible with the cold tungsten field emitter of the VG scanning transmission microscope. The monochromator was incorporated in the gun area of the microscope at IBM T.J. Watson research center, New York. The monochromator was aligned on 100 kV and the energy distribution measured using the monochromator displayed a below 50 meV filtering capability. The retarding Wien filter spectrometer was used to show a 61 meV EELS system resolution. The FFM is shown to be a monochromator which can be aligned without the use of the electron microscope. This makes it directly applicable for scanning transmission microscopy and low-voltage scanning electron microscopy, where it can lower the resolution loss which is caused by chromatic blur of the spot.
Materials Testing and Cost Modeling for Composite Parts Through Additive Manufacturing
2016-04-30
FDM include plastic jet printing (PJP), fused filament modeling ( FFM ), and fused filament fabrication (FFF). FFF was coined by the RepRap project to...additive manufacturing processes? • Fused deposition modeling (FDM) trademarked by Stratasys • Fused filament modeling ( FFM ) and fused filament
Armed Conflict in Syria: Overview and U.S. Response
2016-09-28
100 See U.N. Mission, Final Report, December 12, 2013; and, OPCW Fact-Finding Mission ( FFM ) in Syria, Final Report, December... FFM determines or has determined that a specific incident in the Syrian Arab Republic involved or likely involved the use of chemicals as weapons
DeGeest, David Scott; Schmidt, Frank
2015-01-01
Our objective was to apply the rigorous test developed by Browne (1992) to determine whether the circumplex model fits Big Five personality data. This test has yet to be applied to personality data. Another objective was to determine whether blended items explained correlations among the Big Five traits. We used two working adult samples, the Eugene-Springfield Community Sample and the Professional Worker Career Experience Survey. Fit to the circumplex was tested via Browne's (1992) procedure. Circumplexes were graphed to identify items with loadings on multiple traits (blended items), and to determine whether removing these items changed five-factor model (FFM) trait intercorrelations. In both samples, the circumplex structure fit the FFM traits well. Each sample had items with dual-factor loadings (8 items in the first sample, 21 in the second). Removing blended items had little effect on construct-level intercorrelations among FFM traits. We conclude that rigorous tests show that the fit of personality data to the circumplex model is good. This finding means the circumplex model is competitive with the factor model in understanding the organization of personality traits. The circumplex structure also provides a theoretically and empirically sound rationale for evaluating intercorrelations among FFM traits. Even after eliminating blended items, FFM personality traits remained correlated.
Crist, D M; Hill, J M
1990-06-01
To assess the potential influence of diet and endogenous peptide anabolic hormone secretion on exercise-related differences in body composition, we compared levels of macronutrient intake, insulinlike growth factor I (IGF-I), and fat-free mass (FFM) and fat mass (FM) in matched groups of exercising women with and without secondary hypothalamic amenorrhea. Women were tightly matched according to somatotype and grouped into those with exercise amenorrhea (EXam, n = 6), exercise eumennorhea (EXeu, n = 5), and sedentary eumennorheic controls (SED, n = 5). Although no between-group difference was observed in FFM, the EXeu subjects had a significantly lower fat fraction and a significantly elevated FFM/FM ratio. Kilocaloric and protein intakes did not differ between groups, but dietary fat intake was lowest and carbohydrate intake highest in the EXam subjects. Dietary macronutrients were not correlated with the FFM/FM ratio. However, levels of insulinlike growth factor I were significantly correlated to the FFM/FM ratio and there was a clear trend for the hormone to be highest in the EXeu subjects. We conclude that differences in body composition between exercising women with and without exercise-induced hypothalamic-pituitary dysfunction were related to an alteration in IGF-I secretion, although differences in macronutrient intake might also be a factor. Further studies are warranted to elaborate upon the dietary and hormonal factors regulating the body composition response to exercise.
Bader, Peter; Kuçi, Zyrafete; Bakhtiar, Shahrzad; Basu, Oliver; Bug, Gesine; Dennis, Michael; Greil, Johann; Barta, Aniko; Kállay, Krisztián M; Lang, Peter; Lucchini, Giovanna; Pol, Raj; Schulz, Ansgar; Sykora, Karl-Walter; von Luettichau, Irene; Herter-Sprie, Grit; Uddin, Mohammad Ashab; Jenkin, Phil; Alsultan, Abdulrahman; Buechner, Jochen; Stein, Jerry; Kelemen, Agnes; Jarisch, Andrea; Soerensen, Jan; Salzmann-Manrique, Emilia; Hutter, Martin; Schäfer, Richard; Seifried, Erhard; Klingebiel, Thomas; Bonig, Halvard; Kuçi, Selim
2018-01-29
The inability to generate mesenchymal stromal cells (MSCs) of consistent potency likely is responsible for inconsistent clinical outcomes of patients with aGvHD receiving MSC products. We developed a novel MSC manufacturing protocol characterized by high in vitro potency and near-identity of individual doses, referred to as "MSC-Frankfurt am Main (MSC-FFM)". Herein, we report outcomes of the 69 patients who have received MSC-FFM. These were 51 children and 18 adults with refractory aGvHD grade II (4%), III (36%) or IV (59%). Patients were refractory either to frontline therapy (steroids) (29%) or to steroids and 1-5 additional lines of immunosuppressants (71%) were given infusions in four weekly intervals. The day 28 overall response rate was 83%; at the last follow-up, 61% and 25% of patients were in complete or partial remission. The median follow-up was 8.1 months. Six-month estimate for cumulative incidence of non-relapse mortality was 27% (range, 16-38); leukemia relapse mortality was 2% (range, 0-5). This was associated with a superior six-month overall survival (OS) probability rate of 71% (range, 61-83), compared to the outcome of patients not treated with MSC-FFM. This novel product was effective in children and adults, suggesting that MSC-FFM represents a promising therapy for steroid refractory aGvHD.
Miller, Joshua D; Few, Lauren R; Wilson, Lauren; Gentile, Brittany; Widiger, Thomas A; Mackillop, James; Keith Campbell, W
2013-09-01
The five-factor narcissism inventory (FFNI) is a new self-report measure that was developed to assess traits associated with narcissistic personality disorder (NPD), as well as grandiose and vulnerable narcissism from a five-factor model (FFM) perspective. In the current study, the FFNI was examined in relation to Diagnostic and Statistical Manual of Mental Disorders (4th ed., text rev.; DSM-IV; American Psychiatric Association, 2000) NPD, DSM-5 (http://www.dsm5.org) NPD traits, grandiose narcissism, and vulnerable narcissism in both community (N = 287) and clinical samples (N = 98). Across the samples, the FFNI scales manifested good convergent and discriminant validity such that FFNI scales derived from FFM neuroticism were primarily related to vulnerable narcissism scores, scales derived from FFM extraversion were primarily related to grandiose scores, and FFNI scales derived from FFM agreeableness were related to both narcissism dimensions, as well as the DSM-IV and DSM-5 NPD scores. The FFNI grandiose and vulnerable narcissism composites also demonstrated incremental validity in the statistical prediction of these scores, above and beyond existing measures of DSM NPD, grandiose narcissism, and vulnerable narcissism, respectively. The FFNI is a promising measure that provides a comprehensive assessment of narcissistic pathology while maintaining ties to the significant general personality literature on the FFM.
Fjeld, C R; Schoeller, D A; Brown, K H
1989-05-01
Energy partitioned to maintenance plus activity, tissue synthesis, and storage was measured in 41 children in early recovery [W/L (wt/length) less than 5th percentile] from severe protein-energy malnutrition and in late recovery (W/L = 25th percentile) to determine energy requirements during catch-up growth. Metabolizable energy intake was measured by bomb calorimetry and metabolic collections. Energy expended (means +/- SD) for maintenance and activity estimated by the doubly labeled water method was 97 +/- 12 kcal/kg FFM (fat-free mass) in early recovery and 98 +/- 12 kcal/kg FFM in late recovery (p greater than 0.5). Energy stored was 5-6 kcal/g of wt gain. Tissue synthesis increased energy expenditure by 1 +/- 0.7 kcal/g gain in both early and late recovery. From these data a mathematical model was developed to predict energy requirements for children during catch-up growth as a function of initial body composition and rate and composition of wt gain. The model for predicting metabolizable energy requirements is [(98 x FFM + A (11.1 B + 2.2 C)], kcal/kg.d, where FFM is fat-free mass expressed as a percentage of body wt, A is wt gain (g/kg.d), B and C are percentage of wt gain/100 as fat and FFM, respectively. The model was tested retrospectively in separate studies of malnourished children.
Schirmbeck, Frederike; Boyette, Lindy-Lou; van der Valk, Renate; Meijer, Carin; Dingemans, Peter; Van, Rien; de Haan, Lieuwe; Kahn, René S; de Haan, Lieuwe; van Os, Jim; Wiersma, Durk; Bruggeman, Richard; Cahn, Wiepke; Meijer, Carin; Myin-Germeys, Inez
2015-02-28
High rates of obsessive-compulsive symptoms (OCS) in schizophrenia require pathogenic explanations. Personality traits may represent risk and resiliency factors for the development of mental disorders and their comorbidities. The aim of the present study was to explore the associations between Five-Factor Model (FFM) personality traits and the liability for OCS in patients with psychotic disorders and in their un-affected siblings. FFM traits, occurrence and severity of OCS and (subclinical) psychotic symptoms were assessed in 208 patients and in 281 siblings. Differences in FFM traits between participants with vs. without comorbid OCS were examined and the predictive value of FFM traits on group categorization was evaluated. Associations between FFM traits and OCS severity were investigated. Patients and siblings with OCS showed significantly higher Neuroticism compared to their counterparts without OCS. Neuroticism was positively associated with higher OCS severity and significantly predicted group assignment in both patients and in siblings. Patients with comorbid OCS presented with lower scores on Extraversion and Conscientiousness. Higher Neuroticism, and to a lesser degree lower Extraversion and Conscientiousness might add to the vulnerability of patients with a psychotic disorder to also develop OCS. Future prospective studies are needed to elucidate proposed personality-psychopathology interrelations and possible mediating factors. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
2015-06-23
T. Bates, S. Brocklebank, S. Pauls, and D.Rockmore, A spectral clustering approach to the structure of personality: contrasting the FFM and...A spectral clustering approach to the structure of personality: contrasting the FFM and HEXACO models, Journal of Research in Personality, Volume 57
Armed Conflict in Syria: Overview and U.S. Response
2015-10-09
Finding Mission ( FFM ) in Syria, Third Report, December 18, 2014. 43 Government Assessment of the Syrian Government’s Use of Chemical Weapons on August...Republic where the OPCW FFM determines or has determined that a specific incident in the Syrian Arab Republic involved or likely involved the use of
Five-Factor Model of Personality and Career Exploration
ERIC Educational Resources Information Center
Reed, Mary Beth; Bruch, Monroe A.; Haase, Richard F.
2004-01-01
This study investigates whether the dimensions of the five-factor model (FFM) of personality are related to specific career exploration variables. Based on the FFM, predictions were made about the relevance of particular traits to career exploration variables. Results from a canonical correlation analysis showed that variable loadings on three…
Armed Conflict in Syria: Overview and U.S. Response
2017-01-06
Finding Mission ( FFM ) in Syria, Final Report, December 2015 attached to “Letter dated 27 January 2016 from the Secretary-General addressed to the...otherwise involved in the use of chemicals as weapons, including chlorine or any other toxic chemical, in the Syrian Arab Republic where the OPCW FFM
Integrating normal and abnormal personality structure: a proposal for DSM-V.
Widiger, Thomas A
2011-06-01
The personality disorders section of the American Psychiatric Association's fifth edition of the Diagnostic and Statistical Manual of Mental Disorders (DSM-V) is currently being developed. The purpose of the current paper is to encourage the authors of DSM-V to integrate normal and abnormal personality structure within a common, integrative model, and to suggest that the optimal choice for such an integration would be the five-factor model (FFM) of general personality structure. A proposal for the classification of personality disorder from the perspective of the FFM is provided. Discussed as well are implications and issues associated with an FFM of personality disorder, including validity, coverage, feasibility, clinical utility, and treatment implications.
Clinical application of the five-factor model.
Widiger, Thomas A; Presnall, Jennifer Ruth
2013-12-01
The Five-Factor Model (FFM) has become the predominant dimensional model of general personality structure. The purpose of this paper is to suggest a clinical application. A substantial body of research indicates that the personality disorders included within the American Psychiatric Association's (APA) Diagnostic and Statistical Manual of Mental Disorders (DSM) can be understood as extreme and/or maladaptive variants of the FFM (the acronym "DSM" refers to any particular edition of the APA DSM). In addition, the current proposal for the forthcoming fifth edition of the DSM (i.e., DSM-5) is shifting closely toward an FFM dimensional trait model of personality disorder. Advantages of this shifting conceptualization are discussed, including treatment planning. © 2012 Wiley Periodicals, Inc.
A 3D coupled hydro-mechanical granular model for the prediction of hot tearing formation
NASA Astrophysics Data System (ADS)
Sistaninia, M.; Phillion, A. B.; Drezet, J.-M.; Rappaz, M.
2012-07-01
A new 3D coupled hydro-mechanical granular model that simulates hot tearing formation in metallic alloys is presented. The hydro-mechanical model consists of four separate 3D modules. (I) The Solidification Module (SM) is used for generating the initial solid-liquid geometry. Based on a Voronoi tessellation of randomly distributed nucleation centers, this module computes solidification within each polyhedron using a finite element based solute diffusion calculation for each element within the tessellation. (II) The Fluid Flow Module (FFM) calculates the solidification shrinkage and deformation-induced pressure drop within the intergranular liquid. (III) The Semi-solid Deformation Module (SDM) is used to simulate deformation of the granular structure via a combined finite element / discrete element method. In this module, deformation of the solid grains is modeled using an elasto-viscoplastic constitutive law. (IV) The Failure Module (FM) is used to simulate crack initiation and propagation with the fracture criterion estimated from the overpressure required to overcome the capillary forces at the liquid-gas interface. The FFM, SDM, and FM are coupled processes since solid deformation, intergranular flow, and crack initiation are deeply linked together. The granular model predictions have been validated against bulk data measured experimentally and calculated with averaging techniques.
A Five-Factor Measure of Schizotypal Personality Traits
ERIC Educational Resources Information Center
Edmundson, Maryanne; Lynam, Donald R.; Miller, Joshua D.; Gore, Whitney L.; Widiger, Thomas A.
2011-01-01
The current study provides convergent, discriminant, and incremental validity data for a new measure of schizotypy from the perspective of the five-factor model (FFM) of general personality structure. Nine schizotypy scales were constructed as maladaptive variants of respective facets of the FFM (e.g., Aberrant Ideas as a maladaptive variant of…
Roy, Tracey Ann; Blackman, Marc R; Harman, S Mitchell; Tobin, Jordan D; Schrager, Matthew; Metter, E Jeffery
2002-08-01
Muscle mass and strength losses during aging may be associated with declining levels of serum testosterone (T) in men. Few studies have shown a direct relationship between T and muscle mass and strength. Subjects were 262 men, aged 24-90 yr, from the Baltimore Longitudinal Study of Aging, who had T and sex hormone-binding globulin sex hormone-binding globulin (SHBG) measurements, from which the free T index (FTI) was calculated (T/SHBG) from serum samples collected longitudinally since 1963, total body fat mass and arm and leg fat-free mass (FFM) by dual-energy X-ray absorptiometry and arm and leg strength by dynanomometry. Mixed-effects models estimated T and FTI at the time of mass and strength measurements. Age, total body fat, arm and leg FFM, T, and FTI were significantly associated with concentric and eccentric strength. FTI, not T, was modestly, but directly, related to arm and leg strength after fat, arm and leg FFM, height, and age were accounted for and indirectly through body mass. FTI is a better predictor of arm and leg strength than T in aging men.
Rapid Large Earthquake and Run-up Characterization in Quasi Real Time
NASA Astrophysics Data System (ADS)
Bravo, F. J.; Riquelme, S.; Koch, P.; Cararo, S.
2017-12-01
Several test in quasi real time have been conducted by the rapid response group at CSN (National Seismological Center) to characterize earthquakes in Real Time. These methods are known for its robustness and realibility to create Finite Fault Models. The W-phase FFM Inversion, The Wavelet Domain FFM and The Body Wave and FFM have been implemented in real time at CSN, all these algorithms are running automatically and triggered by the W-phase Point Source Inversion. Dimensions (Large and Width ) are predefined by adopting scaling laws for earthquakes in subduction zones. We tested the last four major earthquakes occurred in Chile using this scheme: The 2010 Mw 8.8 Maule Earthquake, The 2014 Mw 8.2 Iquique Earthquake, The 2015 Mw 8.3 Illapel Earthquake and The 7.6 Melinka Earthquake. We obtain many solutions as time elapses, for each one of those we calculate the run-up using an analytical formula. Our results are in agreements with some FFM already accepted by the sicentific comunnity aswell as run-up observations in the field.
Negative emotionality across diagnostic models: RDoC, DSM-5 Section III, and FFM.
Gore, Whitney L; Widiger, Thomas A
2018-03-01
The research domain criteria (RDoC) were established in an effort to explore underlying dimensions that cut across many existing disorders and to provide an alternative to the Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition (DSM-5). One purpose of the present study was to suggest a potential alignment of RDoC negative valence with 2 other dimensional models of negative emotionality: five-factor model (FFM) neuroticism and the DSM-5 Section III negative affectivity. A second purpose of the study, though, was to compare their coverage of negative emotionality, more specifically with respect to affective instability. Participants were adult community residents (N = 90) currently in mental health treatment. Participants received self-report measures of RDoC negative valence, FFM neuroticism, and DSM-5 Section III negative affectivity, along with measures of affective instability, borderline personality disorder, and impairment. Findings suggested that RDoC negative valence is commensurate with FFM neuroticism and DSM-5 Section III negative affectivity, and it would be beneficial if it was expanded to include affective instability. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
Helle, Ashley C; Mullins-Sweatt, Stephanie N
2017-05-01
Eight measures have been developed to assess maladaptive variants of the five-factor model (FFM) facets specific to personality disorders (e.g., Five-Factor Borderline Inventory [FFBI]). These measures can be used in their entirety or as facet-based scales (e.g., FFBI Affective Dysregulation) to improve the comprehensiveness of assessment of pathological personality. There are a limited number of studies examining these scales with other measures of similar traits (e.g., DSM-5 alternative model). The current study examined the FFM maladaptive scales in relation to the respective general personality traits of the NEO Personality Inventory-Revised and the pathological personality traits of the DSM-5 alternative model using the Personality Inventory for DSM-5. The results indicated the FFM maladaptive trait scales predominantly converged with corresponding NEO Personality Inventory-Revised, and Personality Inventory for DSM-5 traits, providing further validity for these measures as extensions of general personality traits and evidence for their relation to the pathological trait model. Benefits and applications of the FFM maladaptive scales in clinical and research settings are discussed.
Binder, Ellen F; Yarasheski, Kevin E; Steger-May, Karen; Sinacore, David R; Brown, Marybeth; Schechtman, Kenneth B; Holloszy, John O
2005-11-01
Progressive resistance exercise training (PRT) has been shown to increase muscle strength and fat-free mass (FFM) in elderly persons. Limited information is available regarding the effects of PRT on lean and fat mass in frail elderly persons. Ninety-one community-dwelling sedentary men and women, 78 years and older with physical frailty (defined using standardized objective criteria) were enrolled in a 9-month trial of exercise training (ET). Physical frailty was defined as having 2 of the 3 following criteria: modified Physical Performance Test score between 18 and 32, peak aerobic power between 10 and 18 ml/kg/min, or self-report of difficulty or assistance with two instrumental activities of daily living or one basic activity of daily living. Participants were randomly assigned to either a control (CTL) group that performed a low intensity home exercise program or a supervised ET group that performed 3 months of low intensity exercise and 3 months of PRT. After completion of PRT, ET participants had greater improvements than did CTL participants in maximal voluntary force production for knee extension (mean Delta +5.3 +/- 13 ft/lb vs +1.1 +/- 11 ft/lb, p =.05), measured using isokinetic dynamometry. Total body FFM (measured using dual energy x-ray absorptiometry) increased in the ET group, but not in the CTL group (mean Delta +0.84 +/- 1.4 kg vs +0.01 +/- 1.5 kg, p =.005). Total, trunk, intra-abdominal, and subcutaneous fat mass (measured using dual energy x-ray absorptiometry and (1)H-magnetic resonance imaging) did not change in response to PRT. Three months of supervised PRT induced improvements in maximal voluntary thigh muscle strength and whole body FFM in frail, community-dwelling elderly women and men. This supervised exercise program may not be sufficient to reduce whole-body or intra-abdominal fat area in this population.
Hepp, Johanna; Carpenter, Ryan W.; Lane, Sean P.
2016-01-01
Past studies identify Five Factor Model (FFM) domains that are characteristic of Borderline Personality Disorder (BPD), including those associated with specific BPD symptoms, at a between-person level. The present study replicated these between-person associations and extended past research by assessing whether the FFM explains within-person variance in the manifestation of momentary BPD symptoms in the presence or absence of close social contact (CSC). We measured CSC and the BPD core symptoms negative affectivity, impulsivity, and interpersonal problems in 74 BPD patients and in a clinical control group of 40 depressed patients over the course of 28 days, six times a day. The FFM domains showed specificity in predicting momentary BPD symptoms and interacted with CSC in doing so. In particular, for BPD individuals only, momentary impulsivity and interpersonal problems were associated with higher Neuroticism and Extraversion and lower Agreeableness, and these associations were especially strong in situations involving CSC. Negative affectivity was predicted by Neuroticism for both groups of individuals, and this association was generally unaffected by CSC. Overall, experiencing CSC was positively associated with momentary BPD symptoms. Thus, both the FFM and CSC were associated with BPD patients’ experience of symptoms in everyday life. Furthermore, specific FFM trait domains were particularly impactful in contexts where BPD symptoms are more likely to be manifested, providing further evidence that person-by-situation interactions are important for understanding BPD symptoms in the moment. PMID:26901455
A higher alkaline dietary load is associated with greater indexes of skeletal muscle mass in women.
Welch, A A; MacGregor, A J; Skinner, J; Spector, T D; Moayyeri, A; Cassidy, A
2013-06-01
Conservation of muscle mass is important for fall and fracture prevention but further understanding of the causes of age-related muscle loss is required. This study found a more alkaline diet was positively associated with muscle mass in women suggesting a role for dietary acid-base load in muscle loss. Conservation of skeletal muscle is important for preventing falls and fractures but age-related loss of muscle mass occurs even in healthy individuals. However, the mild metabolic acidosis associated with an acidogenic dietary acid-base load could influence loss of muscle mass. We investigated the association between fat-free mass (FFM), percentage FFM (FFM%) and fat-free mass index (FFMI, weight/height²), measured using dual-energy X-ray absorptiometry in 2,689 women aged 18-79 years from the TwinsUK Study, and dietary acid-base load. Body composition was calculated according to quartile of potential renal acid load and adjusted for age, physical activity, misreporting and smoking habit (FFM, FFMI also for fat mass) and additionally with percentage protein. Fat-free mass was positively associated with a more alkalinogenic dietary load (comparing quartile 1 vs 4: FFM 0.79 kg P < 0.001, FFM% 1.06 % <0.001, FFMI 0.24 kg/m² P = 0.002), and with the ratio of fruits and vegetables to potential acidogenic foods. We observed a small but significant positive association between a more alkaline diet and muscle mass indexes in healthy women that was independent of age, physical activity and protein intake equating to a scale of effect between a fifth and one half of the observed relationship with 10 years of age. Although protein is important for maintenance of muscle mass, eating fruits and vegetables that supply adequate amounts of potassium and magnesium are also relevant. The results suggest a potential role for diet in the prevention of muscle loss.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gang, G; Siewerdsen, J; Stayman, J
Purpose: There has been increasing interest in integrating fluence field modulation (FFM) devices with diagnostic CT scanners for dose reduction purposes. Conventional FFM strategies, however, are often either based on heuristics or the analysis of filtered-backprojection (FBP) performance. This work investigates a prospective task-driven optimization of FFM for model-based iterative reconstruction (MBIR) in order to improve imaging performance at the same total dose as conventional strategies. Methods: The task-driven optimization framework utilizes an ultra-low dose 3D scout as a patient-specific anatomical model and a mathematical formation of the imaging task. The MBIR method investigated is quadratically penalized-likelihood reconstruction. The FFMmore » objective function uses detectability index, d’, computed as a function of the predicted spatial resolution and noise in the image. To optimize performance throughout the object, a maxi-min objective was adopted where the minimum d’ over multiple locations is maximized. To reduce the dimensionality of the problem, FFM is parameterized as a linear combination of 2D Gaussian basis functions over horizontal detector pixels and projection angles. The coefficients of these bases are found using the covariance matrix adaptation evolution strategy (CMA-ES) algorithm. The task-driven design was compared with three other strategies proposed for FBP reconstruction for a calcification cluster discrimination task in an abdomen phantom. Results: The task-driven optimization yielded FFM that was significantly different from those designed for FBP. Comparing all four strategies, the task-based design achieved the highest minimum d’ with an 8–48% improvement, consistent with the maxi-min objective. In addition, d’ was improved to a greater extent over a larger area within the entire phantom. Conclusion: Results from this investigation suggests the need to re-evaluate conventional FFM strategies for MBIR. The task-based optimization framework provides a promising approach that maximizes imaging performance under the same total dose constraint.« less
Ayar Karakoç, Gamze; Ernam, Dilek; Aka Aktürk, Ülkü; Öztaş, Selahattin; Oğur, Erhan; Kabadayı, Feyyaz
2016-06-01
Malnutrition is a comorbidity oftenly seen in COPD patients who have progressive chronic inflammation and severity. In this prospective study, we aimed to determine the nutritional status of stable COPD patients and to investigate the impact of nutritional status on perception of dyspnoea, exercise capacity, body composition, hospitalisation and life quality. COPD patients were assessed using previous smoking story, physical examination and irreversible airway obstruction. This study was done with 50 COPD patients older than 65 years of age and 30 control subjects. Exclusion criteria were also the co-existance of malignancies, malabsorbtion, DM, neurological diseases, renal failure and unstable cardiac diseases known to influence the nutritional state. The obstruction degree was evaluated by spirometry, nutritional status was classified by the MNA questionnaire, perception of dyspnoea was assessed by the MMRC scale, exercise capacity was assessed by the 6MWT, life quality was assessed by the CAT scale. Body composition parameters FM, FFM and FMI were analyzed and hospitalisations during 6 months after discharge were recorded. The COPD patients were divided into three groups as without malnutrition (n= 25,%50), under risk of malnutrition (n= 19,%38) and malnourished (n= 6,%12). The COPD severity, MMRC dyspnoea score, CAT score and hospitalisations during 6 months following were higher among the malnourished patients. On the other hand, body mass index, 6MWT results, FM and FFM were lower in malnourished patients. A positive correlation between FFM and 6MWT and a negative correlation between FFM and hospitalisation were observed. MNA is a well-developed questionnaire which evaluates malnutrition in COPD patients. We determined that malnourished COPD patients have higher airway obstruction degree, perception of dyspnoea, CAT score and lower exercise capacity and FFM. FFM is an independent predictor of exercise capacity and rehospitalisation during 6 months.
2013-01-01
Background This study aims to improve accuracy of Bioelectrical Impedance Analysis (BIA) prediction equations for estimating fat free mass (FFM) of the elderly by using non-linear Back Propagation Artificial Neural Network (BP-ANN) model and to compare the predictive accuracy with the linear regression model by using energy dual X-ray absorptiometry (DXA) as reference method. Methods A total of 88 Taiwanese elderly adults were recruited in this study as subjects. Linear regression equations and BP-ANN prediction equation were developed using impedances and other anthropometrics for predicting the reference FFM measured by DXA (FFMDXA) in 36 male and 26 female Taiwanese elderly adults. The FFM estimated by BIA prediction equations using traditional linear regression model (FFMLR) and BP-ANN model (FFMANN) were compared to the FFMDXA. The measuring results of an additional 26 elderly adults were used to validate than accuracy of the predictive models. Results The results showed the significant predictors were impedance, gender, age, height and weight in developed FFMLR linear model (LR) for predicting FFM (coefficient of determination, r2 = 0.940; standard error of estimate (SEE) = 2.729 kg; root mean square error (RMSE) = 2.571kg, P < 0.001). The above predictors were set as the variables of the input layer by using five neurons in the BP-ANN model (r2 = 0.987 with a SD = 1.192 kg and relatively lower RMSE = 1.183 kg), which had greater (improved) accuracy for estimating FFM when compared with linear model. The results showed a better agreement existed between FFMANN and FFMDXA than that between FFMLR and FFMDXA. Conclusion When compared the performance of developed prediction equations for estimating reference FFMDXA, the linear model has lower r2 with a larger SD in predictive results than that of BP-ANN model, which indicated ANN model is more suitable for estimating FFM. PMID:23388042
Stanfield, Kristina M; Wells, Jonathan C; Fewtrell, Mary S; Frost, Chris; Leon, David A
2012-10-01
South Asian children and adults have a more adipose body composition compared with those of European ancestry. This is thought to be related to their increased risk of metabolic disorders. However, little is known about how early in life such differences are manifest. To determine whether there are differences in fat mass (FM) and fat-free mass (FFM) between UK-born South Asians and White Europeans in infancy. Design A cross-sectional study of 30 South Asian and 30 White European infants aged 6-12 weeks. Mothers were recruited from clinics in London, and infants' FM and FFM were determined using air-displacement plethysmography (PeaPod(®)). In early infancy South Asians had less FFM than White Europeans [0.34 kg less, 95% confidence interval (CI): 0.15, 0.52], with a considerably weaker indication of them also having more FM (0.02 kg more, 95% CI: -0.14, 0.18). These differences persisted when the overall smaller body size of South Asian infants was taken into account. For a given total infant weight, the balance of body composition of South Asians was shifted by 0.16 kg (95% CI: 0.06, 0.25) from FFM to FM. The ethnic differences in the amount of FFM were almost completely accounted for by ethnic differences in the rate of growth in utero and length of gestation. The characteristic differences in body composition observed between adult South Asians and White Europeans are apparent in early infancy. Of particular note is that this is the first study to demonstrate that South Asians compared with White Europeans have reduced FFM in infancy. The early manifestation of this phenotype suggests that it is either genetic and/or determined through exposure to maternal physiology, rather than a consequence of behaviours or diet in childhood or at older ages.
Stanfield, Kristina M; Wells, Jonathan C; Fewtrell, Mary S; Frost, Chris; Leon, David A
2012-01-01
Background South Asian children and adults have a more adipose body composition compared with those of European ancestry. This is thought to be related to their increased risk of metabolic disorders. However, little is known about how early in life such differences are manifest. Objective To determine whether there are differences in fat mass (FM) and fat-free mass (FFM) between UK-born South Asians and White Europeans in infancy. Design A cross-sectional study of 30 South Asian and 30 White European infants aged 6–12 weeks. Mothers were recruited from clinics in London, and infants’ FM and FFM were determined using air-displacement plethysmography (PeaPod®). Results In early infancy South Asians had less FFM than White Europeans [0.34 kg less, 95% confidence interval (CI): 0.15, 0.52], with a considerably weaker indication of them also having more FM (0.02 kg more, 95% CI: −0.14, 0.18). These differences persisted when the overall smaller body size of South Asian infants was taken into account. For a given total infant weight, the balance of body composition of South Asians was shifted by 0.16 kg (95% CI: 0.06, 0.25) from FFM to FM. The ethnic differences in the amount of FFM were almost completely accounted for by ethnic differences in the rate of growth in utero and length of gestation. Conclusions The characteristic differences in body composition observed between adult South Asians and White Europeans are apparent in early infancy. Of particular note is that this is the first study to demonstrate that South Asians compared with White Europeans have reduced FFM in infancy. The early manifestation of this phenotype suggests that it is either genetic and/or determined through exposure to maternal physiology, rather than a consequence of behaviours or diet in childhood or at older ages. PMID:22984147
Wu, Y T; Nielsen, D H; Cassady, S L; Cook, J S; Janz, K F; Hansen, J R
1993-05-01
The reliability and validity of measurements obtained with two bioelectrical impedance analyzers (BIAs), an RJL Systems model BIA-103 and a Berkeley Medical Research BMR-2000, were investigated using the manufacturers' prediction equations for the assessment of fat-free mass (FFM) (in kilograms) in children and adolescents. Forty-seven healthy children and adolescents (23 male, 24 female), ranging in age from 8 to 20 years (mean = 12.1, SD = 2.3), participated. In the context of a repeated-measures design, the data were analyzed according to gender and maturation (Tanner staging). Hydrostatic weighing (HYDRO) and Lohman's Siri age-adjusted body density prediction equation served as the criteria for validating the BIA-obtained measurements. High intraclass correlation coefficients (ICC > or = .987) demonstrated good test-retest (between-week) measurement reliability for HYDRO and both BIA methods. Between-method (HYDRO versus BIA) correlation coefficients were high for both boys and girls (r > or = .97). The standard errors of estimate (SEEs) for FFM were slightly larger for boys than for girls and were consistently smaller for the RJL system than for the BMR system (RJL SEE = 1.8 kg for boys, 1.3 kg for girls; BMR SEE = 2.4 kg for boys, 1.9 kg for girls). The coefficients of determination were high for both BIA methods (r2 > or = .929). Total prediction errors (TEs) for FFM showed similar between-method trends (RJL TE = 2.1 kg for boys, 1.5 kg for girls; BMR TE = 4.4 kg for boys, 1.9 kg for girls). This study demonstrated that the RJL BIA with the manufacturer's prediction equations can be used to reliably and accurately assess FFM in 8- to 20-year-old children and adolescents. The prediction of FFM by the BMR system was acceptable for girls, but significant overprediction of FFM for boys was noted.
Palle, Stine S; Møllehave, Line T; Taheri-Kadkhoda, Zahra; Johansen, Susanne; Larsen, Lisbeth; Hansen, Janne W; Jensen, Nikolaj K G; Elingaard, Anette O; Møller, Alice H; Larsen, Karen; Andersen, Jens R
2016-12-01
Changes in body composition in cancer patients during chemotherapy are associated with treatment related toxicities or mortalities. Thus, it is relevant to identify accessible, relatively inexpensive, portable and reliable tools for evaluation of body composition in cancer patients during the course of their treatments. To examine relationships between single cross-sectional thighs magnetic resonance imaging (MRI), skeletal muscle mass (SM) as reference and multi-frequency bioelectrical impedance analysis (BIA) fat free mass (FFM) in patients with colorectal cancer undergoing chemotherapy. In an observational, prospective study we examine the relationships between single cross-sectional thighs MRI (T1-weighted (1.5 T) SM compared to FFM BIA (8-electrodes multi-frequency Tanita MC780MA)) and FFM skin-fold thickness (ST) (4-points (Harpenden, Skinfold Caliper)) and SM equation for non-obese persons from Lee et al. 2000 (L2000) (based on age, height, weight, sex and race). FFM and SM (kg) were calculated based on either area (MRI) or weight. 18 CRC patients (10 males and 8 females) with mean (SD) age 67 yr (6) were measured at baseline, and 13 were available for follow-up. BIA overestimated FFM kg for all 31 measurements with mean (SD) 18.0 kg (6.0) compared to the MRI. ST overestimated FFM kg with mean 12.4 kg (6.2) and L2000 underestimated SM kg in 18 measurements and overestimated in 13 with a total mean of -4.3 kg (6.8). BIA and ST were the best alternatives to MRI as they showed constant and thereby correctable errors. The equation, L2000, carried the smallest average measurement error but it was non-constant. Copyright © 2016 European Society for Clinical Nutrition and Metabolism. Published by Elsevier Ltd. All rights reserved.
Komura, Keisuke; Nakae, Satoshi; Hirakawa, Kazufumi; Ebine, Naoyuki; Suzuki, Kazuhiro; Ozawa, Haruo; Yamada, Yosuke; Kimura, Misaka; Ishii, Kojiro
2017-01-01
To establish Japanese children's estimated energy requirements, total energy expenditure (TEE) data measured using the doubly labeled water (DLW) method is needed. This study aimed to 1) obtain basic TEE data from Japanese children measured using DLW (TEE DLW ), 2) compare TEE DLW with TEE estimated by various estimation formulas to calculate their accuracy, and 3) develop a new equation to estimate TEE using body composition and pedometers. TEE was measured using DLW in 56 10- to 12-year-old Japanese children (33 boys, 23 girls). Physical activity level (PAL) was calculated by dividing TEE DLW by estimated resting energy expenditure. To assess their physical activity, participants wore pedometers during the 7-d DLW period. Total body water was calculated from 2 H and 18 O; fat-free mass (FFM) and fat mass (FM) were then determined. In boys and girls of normal weight, TEE DLW was 2067 ± 230 kcal/d and 1830 ± 262 kcal/d, respectively. Average PAL was 1.58 ± 0.17. FFM was strongly related to TEE ( r = 0.702, p < 0.01). After adjusting for FFM and FM, step count was significantly associated with TEE ( r = 0.707, p < 0.01). The TEE estimation formula used in the Dietary Reference Intakes (DRI) for the United States and Canada estimated TEE DLW with high accuracy (bias: 2.0%) in both sexes. We developed new equations for TEE consisting of FFM and step count, which accounted for 68% and 65% of TEE variance in boys and girls, respectively: boys, 47.1 × FFM (kg) + 0.0568 × step count (steps/d) - 122, and girls, 55.5 × FFM (kg) + 0.0315 × step count (steps/d) - 117. The TEE in 10- to 12-year-old Japanese children measured using DLW was approximately 7% lower for boys and 12% lower for girls compared to the current Japanese DRI. If PAL can be accurately determined, the equation in the DRI for the United States and Canada may be applicable to Japanese children. In addition, TEE could be predicted using FFM and step count.
Das, Sai Krupa; Roberts, Susan B; Bhapkar, Manjushri V; Villareal, Dennis T; Fontana, Luigi; Martin, Corby K; Racette, Susan B; Fuss, Paul J; Kraus, William E; Wong, William W; Saltzman, Edward; Pieper, Carl F; Fielding, Roger A; Schwartz, Ann V; Ravussin, Eric; Redman, Leanne M
2017-04-01
Background: Calorie restriction (CR) retards aging and increases longevity in many animal models. However, it is unclear whether CR can be implemented in humans without adverse effects on body composition. Objective: We evaluated the effect of a 2-y CR regimen on body composition including the influence of sex and body mass index (BMI; in kg/m 2 ) among participants enrolled in CALERIE-2 (Comprehensive Assessment of Long-term Effects of Reducing Intake of Energy), a multicenter, randomized controlled trial. Design: Participants were 218 nonobese (BMI: 21.9-28.0) adults aged 21-51 y who were randomly assigned to 25% CR (CR, n = 143) or ad libitum control (AL, n = 75) in a 2:1 ratio. Measures at baseline and 12 and 24 mo included body weight, waist circumference, fat mass (FM), fat-free mass (FFM), and appendicular mass by dual-energy X-ray absorptiometry; activity-related energy expenditure (AREE) by doubly labeled water; and dietary protein intake by self-report. Values are expressed as means ± SDs. Results: The CR group achieved 11.9% ± 0.7% CR over 2-y and had significant decreases in weight (-7.6 ± 0.3 compared with 0.4 ± 0.5 kg), waist circumference (-6.2 ± 0.4 compared with 0.9 ± 0.5 cm), FM (-5.4 ± 0.3 compared with 0.5 ± 0.4 kg), and FFM (-2.0 ± 0.2 compared with -0.0 ± 0.2 kg) at 24 mo relative to the AL group (all between-group P < 0.001). Moreover, FFM as a percentage of body weight at 24 mo was higher, and percentage of FM was lower in the CR group than in the AL. AREE, but not protein intake, predicted preservation of FFM during CR ( P < 0.01). Men in the CR group lost significantly more trunk fat ( P = 0.03) and FFM expressed as a percentage of weight loss ( P < 0.001) than women in the CR group. Conclusions: Two years of CR had broadly favorable effects on both whole-body and regional adiposity that could facilitate health span in humans. The decrements in FFM were commensurate with the reduced body mass; although men in the CR group lost more FFM than the women did, the percentage of FFM in the men in the CR group was higher than at baseline. CALERIE was registered at clinicaltrials.gov as NCT00427193. © 2017 American Society for Nutrition.
Roberts, Susan B
2017-01-01
Background: Calorie restriction (CR) retards aging and increases longevity in many animal models. However, it is unclear whether CR can be implemented in humans without adverse effects on body composition. Objective: We evaluated the effect of a 2-y CR regimen on body composition including the influence of sex and body mass index (BMI; in kg/m2) among participants enrolled in CALERIE-2 (Comprehensive Assessment of Long-term Effects of Reducing Intake of Energy), a multicenter, randomized controlled trial. Design: Participants were 218 nonobese (BMI: 21.9–28.0) adults aged 21–51 y who were randomly assigned to 25% CR (CR, n = 143) or ad libitum control (AL, n = 75) in a 2:1 ratio. Measures at baseline and 12 and 24 mo included body weight, waist circumference, fat mass (FM), fat-free mass (FFM), and appendicular mass by dual-energy X-ray absorptiometry; activity-related energy expenditure (AREE) by doubly labeled water; and dietary protein intake by self-report. Values are expressed as means ± SDs. Results: The CR group achieved 11.9% ± 0.7% CR over 2-y and had significant decreases in weight (−7.6 ± 0.3 compared with 0.4 ± 0.5 kg), waist circumference (−6.2 ± 0.4 compared with 0.9 ± 0.5 cm), FM (−5.4 ± 0.3 compared with 0.5 ± 0.4 kg), and FFM (−2.0 ± 0.2 compared with −0.0 ± 0.2 kg) at 24 mo relative to the AL group (all between-group P < 0.001). Moreover, FFM as a percentage of body weight at 24 mo was higher, and percentage of FM was lower in the CR group than in the AL. AREE, but not protein intake, predicted preservation of FFM during CR (P < 0.01). Men in the CR group lost significantly more trunk fat (P = 0.03) and FFM expressed as a percentage of weight loss (P < 0.001) than women in the CR group. Conclusions: Two years of CR had broadly favorable effects on both whole-body and regional adiposity that could facilitate health span in humans. The decrements in FFM were commensurate with the reduced body mass; although men in the CR group lost more FFM than the women did, the percentage of FFM in the men in the CR group was higher than at baseline. CALERIE was registered at clinicaltrials.gov as NCT00427193. PMID:28228420
MAHON, A.K.; FLYNN, M.G.; IGLAY, H.B.; STEWART, L.K.; JOHNSON, C.A.; MCFARLIN, B.K.; CAMPBELL, W.W.
2008-01-01
Background The accurate measurement of body composition changes is important when evaluating the efficacy of medical nutrition therapy and weight management programs, yet is not well documented in older women. Objective We compared methods of estimating energy-restriction-induced body composition changes in postmenopausal women. Design: 27 women (59 ± 8 y; BMI 29.0 ± 2.9 kg/m2; mean ± SD) completed a 9-wk energy restriction period (5233 kJ/d, (1250 kcal/d)). Changes in % body fat (Δ%BF), fat mass (ΔFM), and fat-free mass (ΔFFM) were measured by hydrostatic weighing (HW), air-displacement plethysmography (ADP), dual-energy x-ray absorptiometry (DXA), and deuterium oxide dilution (D2O). The Baumgartner et al. (Am J Clin Nutr 53:1345−1353, 1991) four-compartment (4C) model with body volume from HW was the criterion method. The 4C model with body volume from ADP was also compared. Regression equations were developed based on 4CHW (dependent variable) utilizing results of change (POST-PRE) for each method. Results The women lost 6.8 ± 3.2 kg; 9% of baseline weight. Based on 4CHW, the body composition changes were −2.4 ± 4.5 Δ%BF, −4.7 ± 3.3 kg ΔFM, and −2.6 ± 4.4 kg ΔFFM. No differences were detected by ANOVA for Δ%BF, ΔFM, and ΔFFM among 4CHW, HW, ADP, DXA, D2O, and 4CADP. Bland-Altman limits of agreement showed differences between methods that ranged from 14.5 to −14.1 Δ%BF, 7.8 to −8.1 kg ΔFM, and 7.5 to −8.4 kg ΔFFM for individuals. A bias was shown with 4CADP overestimating Δ%BF (1.4 %) and FM (0.6 kg) and underestimating ΔFFM (−1.2 kg) compared to 4CHW. The regression model was acceptable for %BF (4CADP, 2CHW, and 2CD2O); FM and FFM (4CADP, 3CDXA, 2CHW, and 2CD2O), but not for other estimates of %BF, FM, FFM. Conclusions These body composition assessment methods may be used interchangeably to quantify changes in % body fat, fat mass, and fat-free mass with weight loss in groups of postmenopausal women. 4CADP overestimates Δ%BF and underestimates ΔFFM. When utilizing one of these comparison methods (4CADP, 3CDXA, 2CHW, 2CD2O) to quantify changes in fat mass and fat-free mass for an individual postmenopausal woman, regression equations may be used to relate the data to 4CHW. PMID:17508096
2010-06-22
of the Army, U.S. Army Audit Agency, Budgeting for the Military Personnel, Army Appropriation, Report No. A-2010-0028- FFM (Jan. 6, 2010); Department...of the Army, U.S. Army Audit Agency, Military Personnel, Army FY 05 Subsistence Charges, Report No. A-2008-0037- FFM (Feb. 12, 2008); Department of
Nano-Optoelectronic Integration on Silicon
2012-12-14
hole recombination, a material gain spectrum can be derived as dE EE ffM mcn e g ing in vcr r 22 0 2 2 00 2... ffM mhc en r ing in vcr r sp (4.3) 48 Figure 4.12 Fitting spontaneous emission spectrum. The experimental
ERIC Educational Resources Information Center
Ansell, Emily B.; Pincus, Aaron L.
2004-01-01
Research investigating the structural convergence of the Interpersonal Circumplex (IPC; Wiggins, 1979, 1995) with the Five Factor Model (FFM; Costa & McCrae, 1992) of personality has predominantly focused on the traits of Agreeableness and Extraversion. The characteristics of the other three FFM traits: Neuroticism, Openness, and Conscientiousness…
ERIC Educational Resources Information Center
Lindsay, William R.; Steptoe, Lesley; McVicker, Ronnie; Haut, Fabian; Robertson, Colette
2018-01-01
In "DSM-5" there has been a move to dimensional personality disorder (PD) diagnosis, incorporating personality theory in the form of the five-factor model (FFM). It proposes an alternative assessment system based on diagnostic indicators and the FFM, while retaining "DSM-IV" categorical criteria. Four individuals with…
A Simplified Technique for Scoring DSM-IV Personality Disorders with the Five-Factor Model
ERIC Educational Resources Information Center
Miller, Joshua D.; Bagby, R. Michael; Pilkonis, Paul A.; Reynolds, Sarah K.; Lynam, Donald R.
2005-01-01
The current study compares the use of two alternative methodologies for using the Five-Factor Model (FFM) to assess personality disorders (PDs). Across two clinical samples, a technique using the simple sum of selected FFM facets is compared with a previously used prototype matching technique. The results demonstrate that the more easily…
ERIC Educational Resources Information Center
Miller, Joshua D.; Lynam, Donald R.
2008-01-01
Assessment of the "Diagnostic and Statistical Manual of Mental Disorders" (4th Ed.; "DSM-IV") personality disorders (PDs) using five-factor model (FFM) prototypes and counts has shown substantial promise, with a few exceptions. Miller, Reynolds, and Pilkonis suggested that the expert-generated FFM dependent prototype might be misspecified in…
Preparing for Combat Readiness for the Fight: Physical Performance Profile of Female US Marines
2016-03-01
22.6 6 1.9 22.6 6 1.9 0.76 0.02 FFM , kg 45.5 6 4.2 44.9 6 4.3 0.05 0.14 3-mile run, min:sec 24:11 6 1:58 24:30 6 2:10 0.07 20.15 Sit-ups, reps 98.5 6...0.01 20.36 MTC, min:sec 3:28 6 0:18 3:31 6 0:22 0.04 20.14 *BMI = body mass index; FFM = fat-free mass; FAH = flexed-arm hang; AL = ammunition can...fat was calculated using the Gallagher equation (5). Fat-free mass ( FFM ) was then calculated for each individual. Owing to the testing environ- ment
The Effect of Smoking on Muscle Adaptation to Exercise
2010-12-01
FFM `R6aEbOER6_"FS5! R5! I’%L1*!GgW!e1-$!dW!=@LA’&9!I[W!]’->-1!,]5!3...5!" FFM `"REaEFbOE"SB_MT5! EE5! <*(+%-$!YW!f’%%’$8!gW!g*+L).2-!dIW!-&!*+5!I*K’A*+!-@@-$&1’@!-K-1@’%-!’$2(@-%!*!1*4! *@@(A(+*&’)$!)C!%A*++!L-*&!%L...8217&L!G7I=O!*$!(+&1*%&1(@&(1*+!*$2!’AA($)-+-@&1)$! A’@1)%@)4’@!%&(2H5!D#<%&$?4:(E4..(F#&.5!" FFM `E"EaSbO"ER_ඉ! E65!
Miller, Joshua D
2012-12-01
In this article, the development of Five-Factor Model (FFM) personality disorder (PD) prototypes for the assessment of DSM-IV PDs are reviewed, as well as subsequent procedures for scoring individuals' FFM data with regard to these PD prototypes, including similarity scores and simple additive counts that are based on a quantitative prototype matching methodology. Both techniques, which result in very strongly correlated scores, demonstrate convergent and discriminant validity, and provide clinically useful information with regard to various forms of functioning. The techniques described here for use with FFM data are quite different from the prototype matching methods used elsewhere. © 2012 The Author. Journal of Personality © 2012, Wiley Periodicals, Inc.
Non-contact lateral force microscopy.
Weymouth, A J
2017-08-16
The goal of atomic force microscopy (AFM) is to measure the short-range forces that act between the tip and the surface. The signal recorded, however, includes long-range forces that are often an unwanted background. Lateral force microscopy (LFM) is a branch of AFM in which a component of force perpendicular to the surface normal is measured. If we consider the interaction between tip and sample in terms of forces, which have both direction and magnitude, then we can make a very simple yet profound observation: over a flat surface, long-range forces that do not yield topographic contrast have no lateral component. Short-range interactions, on the other hand, do. Although contact-mode is the most common LFM technique, true non-contact AFM techniques can be applied to perform LFM without the tip depressing upon the sample. Non-contact lateral force microscopy (nc-LFM) is therefore ideal to study short-range forces of interest. One of the first applications of nc-LFM was the study of non-contact friction. A similar setup is used in magnetic resonance force microscopy to detect spin flipping. More recently, nc-LFM has been used as a true microscopy technique to systems unsuitable for normal force microscopy.
Regular and reverse nanoscale stick-slip behavior: Modeling and experiments
NASA Astrophysics Data System (ADS)
Landolsi, Fakhreddine; Sun, Yuekai; Lu, Hao; Ghorbel, Fathi H.; Lou, Jun
2010-02-01
We recently proposed a new nanoscale friction model based on the bristle interpretation of single asperity contacts. The model is mathematically continuous and dynamic which makes it suitable for implementation in nanomanipulation and nanorobotic modeling. In the present paper, friction force microscope (FFM) scans of muscovite mica samples and vertically aligned multi-wall carbon nanotubes (VAMWCNTs) arrays are conducted. The choice of these materials is motivated by the fact that they exibit different stick-slip behaviors. The corresponding experimental and simulation results are compared. Our nanoscale friction model is shown to represent both the regular and reverse frictional sawtooth characteristics of the muscovite mica and the VAMWCNTs, respectively.
Abera, M; Tesfaye, M; Girma, T; Hanlon, C; Andersen, G S; Wells, J C; Admassu, B; Wibaek, R; Friis, H; Kæstel, P
2017-12-01
Birth weight (BW), independent of socioeconomic status, has been identified as a predictor for childhood cognitive development. However, it is not known whether this relation is related to low BW per se or particularly related to a deficit in fat mass (FM) or fat-free mass (FFM) at birth. This study therefore aimed at investigating the relation between body composition at birth and child development at 2 years of age. An Ethiopian birth cohort was followed up at 2 years. Body composition was measured within 48 h of birth using infant air-displacement plethysmography. Child development was assessed at 2 years of age using Denver developmental screening test. Associations between body composition at birth and development at 2 years of age were tested using linear regression analysis. FFM but not FM at birth was positively associated with higher global developmental score at 2 years of age (β=2.48, 95% confidence interval (CI) 0.17; 4.79) adjusted for neonatal, postnatal and parental characteristics. This association was attributable to the association with the language developmental domain (β=1.61, 95 CI 0.33; 2.90). Among Ethiopian children, FFM at birth but not FM predicted better global and language development at 2 years of age. Higher FFM at birth might have exerted a positive effect on the growth and differentiation of the brain and neuronal circuits for better development. This study therefore highlights the need to improve mother's nutritional status during pregnancy in ways that stimulate fetal FFM growth.
Tyrrell, V J; Richards, G; Hofman, P; Gillies, G F; Robinson, E; Cutfield, W S
2001-02-01
To determine the accuracy of foot-to-foot bioelectrical impedance analysis (BIA) and anthropometric indices as measures of body composition in children. Comparison of foot-to-foot BIA and anthropometry to dual-energy X-ray absorptiometry (DEXA)-derived body composition in a multi-ethnic group of children. : Eighty-two European, NZ Maori and Pacific Island children aged 4.9-10.9 y. DEXA body composition, foot-to-foot bioelectrical impedance, height, weight, hip and waist measurements. Using a BIA prediction equation derived from our study population we found a high correlation between DEXA and BIA in the estimation of fat-free mass (FFM), fat mass (FM) and percentage body fat (PBF) (r=0.98, 0.98 and 0.94, respectively). BIA-FFM underestimated DEXA-FFM by a mean of 0.75 kg, BIA-FM overestimated DEXA-FM by a mean of 1.02 kg and BIA-PBF overestimated DEXA-PBF by a mean of 2.53%. The correlation between six anthropometric indices (body mass index (BMI), ponderal index, Chinn's weight-for-height index, BMI standard deviation score, weight-for-length index and Cole's weight-for-height index) and DEXA were also examined. The correlation of these indices with PBF was remarkably similar (r=0.85-0.87), more variable with FM (r=0.77-0.94) and poor with FFM (r=0.41-0.75). BIA correlated better than anthropometric indices in the estimation of FFM, FM and PBF. Foot-to-foot BIA is an accurate technique in the measurement of body composition.
Van den Broeck, Joke; Rossi, Gina; De Clercq, Barbara; Dierckx, Eva; Bastiaansen, Leen
2013-01-01
Research on the applicability of the five factor model (FFM) to capture personality pathology coincided with the development of a FFM personality disorder (PD) count technique, which has been validated in adolescent, young, and middle-aged samples. This study extends the literature by validating this technique in an older sample. Five alternative FFM PD counts based upon the Revised NEO Personality Inventory (NEO PI-R) are computed and evaluated in terms of both convergent and divergent validity with the Assessment of DSM-IV Personality Disorders Questionnaire (shortly ADP-IV; DSM-IV, Diagnostic and Statistical Manual of Mental Disorders - Fourth edition). For the best working count for each PD normative data are presented, from which cut-off scores are derived. The validity of these cut-offs and their usefulness as a screening tool is tested against both a categorical (i.e., the DSM-IV - Text Revision), and a dimensional (i.e., the Dimensional Assessment of Personality Pathology; DAPP) measure of personality pathology. All but the Antisocial and Obsessive-Compulsive counts exhibited adequate convergent and divergent validity, supporting the use of this method in older adults. Using the ADP-IV and the DAPP - Short Form as validation criteria, results corroborate the use of the FFM PD count technique to screen for PDs in older adults, in particular for the Paranoid, Borderline, Histrionic, Avoidant, and Dependent PDs. Given the age-neutrality of the NEO PI-R and the considerable lack of valid personality assessment tools, current findings appear to be promising for the assessment of pathology in older adults.
Skeletal muscle mass in human athletes: What is the upper limit?
Abe, Takashi; Buckner, Samuel L; Dankel, Scott J; Jessee, Matthew B; Mattocks, Kevin T; Mouser, J Grant; Loenneke, Jeremy P
2018-01-22
To examine the amount of absolute and relative skeletal muscle mass (SM) in large sized athletes to investigate the potential upper limit of whole body muscle mass accumulation in the human body. Ninety-five large-sized male athletes and 48 recreationally active males (control) had muscle thickness measured by ultrasound at nine sites on the anterior and posterior aspects of the body. SM was estimated from an ultrasound-derived prediction equation. Body density was estimated by hydrostatic weighing technique, and then body fat percentage and fat-free mass (FFM) were calculated. We used the SM index and FFM index to adjust for the influence of standing height (ie, divided by height squared). Ten of the athletes had more than 100 kg of FFM, including the largest who had 120.2 kg, while seven of the athletes had more than 50 kg of SM, including the largest who had 59.3 kg. FFM index and SM index were higher in athletes compared to controls and the percentage differences between the two groups were 44% and 56%, respectively. The FFM index increased linearly up to 90 kg of body mass, and then the values leveled off in those of increasing body mass. Similarly, the SM index increased in a parabolic fashion reaching a plateau (approximately 17 kg/m 2 ) beyond 120 kg body mass. SM index may be a valuable indicator for determining skeletal muscle mass in athletes. A SM index of approximately 17 kg/m 2 may serve as the potential upper limit in humans. © 2018 Wiley Periodicals, Inc.
Psychometric Properties of an Abbreviated Instrument of the Five-Factor Model
ERIC Educational Resources Information Center
Mullins-Sweatt, Stephanie N.; Jamerson, Janetta E.; Samuel, Douglas B.; Olson, David R.; Widiger, Thomas A.
2006-01-01
Brief measures of the five-factor model (FFM) have been developed but none include an assessment of facets within each domain. The purpose of this study was to examine the validity of a simple, one-page, facet-level description of the FFM. Five data collections were completed to assess the reliability and the convergent and discriminant validity…
Logistics Modernization Program System Procure-to-Pay Process Did Not Correct Material Weaknesses
2012-05-29
Prevalidation of DOD Commercial Payments,” March 2, 2007 Army U.S. Army Audit Agency Report No. A-2007-0205- FFM , “Logistics Modernization Program...Report No. A-2007-0163- FFM , “FY 03–FY 05 Obligations Recorded in the Logistics Modernization Program,” July 27, 2007 U.S. Army Audit Agency Report No
ERIC Educational Resources Information Center
Lynam, Donald R.; Gaughan, Eric T.; Miller, Joshua D.; Miller, Drew J.; Mullins-Sweatt, Stephanie; Widiger, Thomas A.
2011-01-01
A new self-report assessment of the basic traits of psychopathy was developed with a general trait model of personality (five-factor model [FFM]) as a framework. Scales were written to assess maladaptive variants of the 18 FFM traits that are robustly related to psychopathy across a variety of perspectives including empirical correlations, expert…
ERIC Educational Resources Information Center
Trobst, Krista K.; Ayearst, Lindsay E.; Salekin, Randall T.
2004-01-01
The present research examined the amount and kind of personality measured within four sets of personality disorder (PD) scales. Three samples of undergraduate students (Ns = 326, 537, and 617) completed at least one PD measure and a combined interpersonal circumplex model (ICM) and five-factor model (FFM) measure. The FFM dimensions were found to…
Fluence-field modulated x-ray CT using multiple aperture devices
NASA Astrophysics Data System (ADS)
Stayman, J. Webster; Mathews, Aswin; Zbijewski, Wojciech; Gang, Grace; Siewerdsen, Jeffrey; Kawamoto, Satomi; Blevis, Ira; Levinson, Reuven
2016-03-01
We introduce a novel strategy for fluence field modulation (FFM) in x-ray CT using multiple aperture devices (MADs). MAD filters permit FFM by blocking or transmitting the x-ray beam on a fine (0.1-1 mm) scale. The filters have a number of potential advantages over other beam modulation strategies including the potential for a highly compact design, modest actuation speed and acceleration requirements, and spectrally neutral filtration due to their essentially binary action. In this work, we present the underlying MAD filtration concept including a design process to achieve a specific class of FFM patterns. A set of MAD filters is fabricated using a tungsten laser sintering process and integrated into an x-ray CT test bench. A characterization of the MAD filters is conducted and compared to traditional attenuating bowtie filters and the ability to flatten the fluence profile for a 32 cm acrylic phantom is demonstrated. MAD-filtered tomographic data was acquired on the CT test bench and reconstructed without artifacts associated with the MAD filter. These initial studies suggest that MAD-based FFM is appropriate for integration in clinical CT system to create patient-specific fluence field profile and reduce radiation exposures.
Bagby, R Michael; Widiger, Thomas A
2018-01-01
The Five-Factor Model (FFM) is a dimensional model of general personality structure, consisting of the domains of neuroticism (or emotional instability), extraversion versus introversion, openness (or unconventionality), agreeableness versus antagonism, and conscientiousness (or constraint). The FFM is arguably the most commonly researched dimensional model of general personality structure. However, a notable limitation of existing measures of the FFM has been a lack of coverage of its maladaptive variants. A series of self-report inventories has been developed to assess for the maladaptive personality traits that define Diagnostic and Statistical Manual of Mental Disorders (fifth edition; DSM-5) Section II personality disorders (American Psychiatric Association [APA], 2013) from the perspective of the FFM. In this paper, we provide an introduction to this Special Section, presenting the rationale and empirical support for these measures and placing them in the historical context of the recent revision to the APA diagnostic manual. This introduction is followed by 5 papers that provide further empirical support for these measures and address current issues within the personality assessment literature. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
Unusual Configurations of Personality Traits Indicate Multiple Patterns of Their Coalescence
Allik, Jüri; Hřebíčková, Martina; Realo, Anu
2018-01-01
It is widely accepted that the Five Factor Model (FFM) is a satisfactory description of the pattern of covariations among personality traits, which supposedly fits, more or less adequately, every individual. As an amendment to the FFM, we propose that the customary five-factor structure is only a near-universal, because it does not fit all individuals but only a large majority of them. Evidences reveal a small minority of participants who have an unusual configuration of personality traits, which is clearly recognizable, both in self- and observer-ratings. We identified three types of atypical configurations of personality traits, characterized mainly by a scatter of subscale scores within each of the FFM factors. How different configurations of personality traits are formed, persist, and function needs further investigation. PMID:29515499
2012-11-30
U.S. Army Audit Agency Report No. A-2010-0143- FFM , “Follow-up Audit of FY 05 Subsistence Charges,” July 29, 2010 U.S. Army Audit Agency Report...2009 U.S. Army Audit Agency Report No. A-2008-0108- FFM , “Miscellaneous Credits for Reserve Component Pay,” April 29, 2008 Navy Naval Audit Service
Sherf Dagan, Shiri; Tovim, Tali Ben; Keidar, Andrei; Raziel, Asnat; Shibolet, Oren; Zelber-Sagi, Shira
2017-01-01
Low postoperative protein intake may represent a modifiable risk factor that leads to fat free mass (FFM) loss postlaparoscopic sleeve gastrectomy (LSG), but data concerning this phenomenon is scarce. To evaluate the association between daily protein intake and relative FFM loss at 6 (M6) and 12 (M12) months after LSG surgery. Private hospital and university hospital. A prospective cohort study with 12 months follow-up of 77 patients who underwent LSG surgery. Anthropometrics including body composition analysis measured by multifrequency bioelectrical impedance analysis, 3-day food diaries, food intolerance, and habitual physical activity were evaluated at baseline and at M3, M6, and M12. Repeated body composition measurements and food diary were available for 77 patients (45 women) at M6 and for 68 patients at M12. Mean age was 42.7±9.4 years and mean preoperative body mass index was 42.2±4.8 kg/m 2 . A protein intake of≥60 g/d was achieved in 13.3%, 32.5% and 39.7% of the study participants at M3, M6 and M12, respectively. FFM significantly decreased at M6 and stabilized at M12. Protein intake of≥60 g/d was associated with a significantly lower relative FFM loss at M6 among women (8.9±6.5% versus 12.4±4.1%; P = .039) and this trend was also reported among men (9.5±5.5% versus 13.4±6.0%; P = .068). A logistic regression for the prediction of FFM loss of≥10% at M6, indicated that protein intake≥60 g/d is a strong protective factor (odds ratio = 0.29, 95% confidence interval .09-.96, P = .043). Our study supports the currently recommended protein intake goal of≥60 g/d as an efficient strategy for better preservation of FFM post-LSG. Copyright © 2017 American Society for Bariatric Surgery. Published by Elsevier Inc. All rights reserved.
Song, L L T; Venkataraman, K; Gluckman, P; Chong, Y S; Chee, M-W L; Khoo, C M; Leow, M-Ks; Lee, Y S; Tai, E S; Khoo, E Y H
2016-04-01
In Singapore, the obesity prevalence is disproportionately higher in the Asian-Indians and Malays than the Chinese. Lower resting energy expenditure (REE) may be a contributory factor. We explored the association between ethnicity and REE in Chinese, Asian-Indian and Malay men living in Singapore and determined the influence of body composition, mass/volume of high metabolic rate organs, represented by brain volume and trunk fat-free mass (FFM), and physical activity on ethnic differences. Two hundred and forty-four men from Singapore (n=100 Chinese, 70 Asian-Indians and 74 Malays), aged 21-40 years and body mass index of 18.5-30.0 kg m(-2), were recruited in this cross-sectional study. REE was assessed by indirect calorimetry and body composition by dual-energy X-ray absorptiometry. Brain volume was measured by magnetic resonance imaging. Physical activity was assessed by the Singapore Prospective Study Program Physical Activity Questionnaire. REE was significantly lower in Asian-Indians compared with that in Chinese after adjusting for body weight. FFM (total, trunk and limb) and total fat mass were important predictors of REE across all ethnic groups. Brain volume was positively associated with REE only in Malays. Moderate and vigorous physical activity was positively associated with REE only in Asian-Indians and Malays. The difference in REE between Asian-Indians and Chinese was attenuated but remained statistically significant after adjustment for total FFM (59±20 kcal per day), fat mass (67±20 kcal per day) and brain volume (54±22 kcal per day). The association between REE and ethnicity was no longer statistically significant after total FFM was replaced by trunk FFM (which includes heart, liver, kidney and spleen) but not when it was replaced by limb FFM (skeletal muscle). We have demonstrated a lower REE in Asian-Indians compared with Chinese who may contribute to the higher rates of obesity in the former. This difference could be accounted for by differences in metabolically active organs.
Beasley, J M; Deierlein, A L; Morland, K B; Granieri, E C; Spark, A
2016-01-01
Studies suggest protein intake may be associated with lower body weight, but protein has also been associated with preservation of lean body mass. Understanding the role of protein in maintaining health for older adults is important for disease prevention among this population. Cross-sectional study of the relationship of dietary protein on body composition. New York City community centers. 1,011 Black, White, and Latino urban men and women 60-99 years of age. Protein intake was assessed using two interviewer-administered 24-hour recalls, and body composition was assessed using bioelectrical impedance analysis (BIA) of fat mass (kg) (FM), fat free mass (kg) (FFM), and impedance resistance (Ohms). Indices of FM and FFM were calculated by dividing BIA measurements by height squared (m2), and percent FFM was calculated by dividing FFM by the sum of FM and FFM. Log linear models adjusting for age (continuous), race/ethnicity, education, physical activity (dichotomized at the median), hypertension, diabetes, and total calories (continuous). Just 33% of women and 50% of men reported meeting the RDA for protein. Both fat free mass index (FFMI) and fat mass index (FMI) were negatively associated with meeting the RDA for protein (Women: FFMI -1.78 95%CI [-2.24, -1.33], FMI -4.12 95% CI [-4.82, -3.42]; Men: FFMI -1.62 95% CI [-2.32, -0.93] FMI -1.80 95% CI [-2.70, -0.89]). After accounting for confounders, women and men consuming at least 0.8 g/kg/day had a 6.2% (95% CI: 5.0%, 7.4%) and a 3.2% (95% CI 1.1%, 5.3%) higher percent fat free mass, respectively. FFM, FFMI, FM, and FMI were inversely related to meeting the RDA for protein. Meeting the RDA for protein of at least 0.8g/kg/day was associated with a higher percentage of fat free mass among older adults. These results suggest meeting the protein recommendations of at least 0.8 g/kg/day may help to promote lower overall body mass, primarily through loss of fat mass rather than lean mass.
Dielectrophoretic immobilization of proteins: Quantification by atomic force microscopy.
Laux, Eva-Maria; Knigge, Xenia; Bier, Frank F; Wenger, Christian; Hölzel, Ralph
2015-09-01
The combination of alternating electric fields with nanometer-sized electrodes allows the permanent immobilization of proteins by dielectrophoretic force. Here, atomic force microscopy is introduced as a quantification method, and results are compared with fluorescence microscopy. Experimental parameters, for example the applied voltage and duration of field application, are varied systematically, and the influence on the amount of immobilized proteins is investigated. A linear correlation to the duration of field application was found by atomic force microscopy, and both microscopical methods yield a square dependence of the amount of immobilized proteins on the applied voltage. While fluorescence microscopy allows real-time imaging, atomic force microscopy reveals immobilized proteins obscured in fluorescence images due to low S/N. Furthermore, the higher spatial resolution of the atomic force microscope enables the visualization of the protein distribution on single nanoelectrodes. The electric field distribution is calculated and compared to experimental results with very good agreement to atomic force microscopy measurements. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
ten Haaf, Twan; Weijs, Peter J M
2014-01-01
Resting energy expenditure (REE) is expected to be higher in athletes because of their relatively high fat free mass (FFM). Therefore, REE predictive equation for recreational athletes may be required. The aim of this study was to validate existing REE predictive equations and to develop a new recreational athlete specific equation. 90 (53 M, 37 F) adult athletes, exercising on average 9.1 ± 5.0 hours a week and 5.0 ± 1.8 times a week, were included. REE was measured using indirect calorimetry (Vmax Encore n29), FFM and FM were measured using air displacement plethysmography. Multiple linear regression analysis was used to develop a new FFM-based and weight-based REE predictive equation. The percentage accurate predictions (within 10% of measured REE), percentage bias, root mean square error and limits of agreement were calculated. Results: The Cunningham equation and the new weight-based equation REE(kJ / d) = 49.940* weight(kg) + 2459.053* height(m) - 34.014* age(y) + 799.257* sex(M = 1,F = 0) + 122.502 and the new FFM-based equation REE(kJ / d) = 95.272*FFM(kg) + 2026.161 performed equally well. De Lorenzo's equation predicted REE less accurate, but better than the other generally used REE predictive equations. Harris-Benedict, WHO, Schofield, Mifflin and Owen all showed less than 50% accuracy. For a population of (Dutch) recreational athletes, the REE can accurately be predicted with the existing Cunningham equation. Since body composition measurement is not always possible, and other generally used equations fail, the new weight-based equation is advised for use in sports nutrition.
Hattori, K; Tahara, Y; Moji, K; Aoyagi, K; Furusawa, T
2004-04-01
To examine the effect of age on the relationship between fat-free mass (FFM) and fat mass (FM), and fat-free mass index (FFMI) and fat mass index (FMI) by applying body composition chart analysis on pre- and postadolescent Japanese subjects. A sample of 516 children (244 boys and 272 girls) ranging in age from 11 to 17 y and 840 adults (288 male and 552 female subjects) ranging in age from 18 to 59 y were studied to determine a body composition by an underwater weighing method. FMI and FM were put on an x- and y-axis in body composition chart 1, and FFMI (FFM/ height(2)) and FMI (FM/height(2)) were taken on an x- and y-axis in body composition chart 2. In body composition chart 1, the plots for male subjects stayed flat from 11 to 14 y and after that a steady growth of FFM concurring with the FM growth was observed. During the adult stage, steady increments of FM and gradual decreases of FFM were observed. In body composition chart 2, steady increases of FFMI and gradual decreases of FMI were indicated in the male preadolescent period. In the adult stage, FFMI decreased year by year, although the FMI continued to increase. In female subjects, a conspicuous increase of FMI was observed throughout all periods of the present subjects. After middle age, the decline of FFMI was characteristically demonstrated in the chart. The relationships between FFM and FM are characteristically delineated on the body composition charts demonstrating clear gender differences. The change of body mass index was not reflecting the change of adiposity level in male subjects, although it was occurring along with the changes of the adiposity level in female subjects.
Abera, Mubarek; Tesfaye, Markos; Admassu, Bitiya; Hanlon, Charlotte; Ritz, Christian; Wibaek, Rasmus; Michaelsen, Kim F; Friis, Henrik; Wells, Jonathan C; Andersen, Gregers S; Girma, Tsinuel; Kæstel, Pernille
2018-06-01
Early nutrition and growth have been found to be important early exposures for later development. Studies of crude growth in terms of weight and length/height, however, cannot elucidate how body composition (BC) might mediate associations between nutrition and later development. In this study, we aimed to examine the relation between fat mass (FM) or fat-free mass (FFM) tissues at birth and their accretion during early infancy, and later developmental progression. In a birth cohort from Ethiopia, 455 children who have BC measurement at birth and 416 who have standardised rate of BC growth during infancy were followed up for outcome variable, and were included in the statistical analysis. The study sample was restricted to mothers living in Jimma town who gave birth to a term baby with a birth weight ≥1500 g and no evident congenital anomalies. The relationship between the exposure and outcome variables was examined using linear-mixed regression model. The finding revealed that FFM at birth was positively associated with global developmental progression from 1 to 5 years (β=1·75; 95 % CI 0·11, 3·39) and from 4 to 5 years (β=1·34; 95 % CI 0·23, 2·44) in the adjusted model. Furthermore, the rate of postnatal FFM tissue accretion was positively associated with development at 1 year of age (β=0·50; 95 % CI 0·01, 0·99). Neither fetal nor postnatal FM showed a significant association. In conclusion, fetal, rather than postnatal, FFM tissue accretion was associated with developmental progression. Intervention studies are needed to assess whether nutrition interventions increasing FFM also increase cognitive development.
Harness, Eric T.; Witzke, Kara A.
2015-01-01
Spinal cord injury (SCI) induces dramatic changes in body composition including reductions in fat-free mass (FFM) and increases in fat mass (FM). Objective To examine changes in body composition in response to chronic activity-based therapy (ABT) in persons with SCI. Design Longitudinal exercise intervention. Methods Seventeen men and women with SCI (mean age = 36.1 ± 11.5 years) completed 6 months of supervised ABT consisting of load bearing, resistance training, locomotor training, and functional electrical stimulation. At baseline and after 3 and 6 months of ABT, body weight, body fat, and FFM were assessed using dual-energy X-ray absorptiometry, and fasting blood samples were obtained to assess changes in insulin-like growth factor-I (IGF-I), adiponectin, and myostatin. Results Across all subjects, there was no change (P > 0.05) in body weight, percent body fat, or FFM of the leg, arm, or trunk, whereas whole-body FFM declined (P = 0.02, 50.4 ± 8.4 to 49.2 ± 7.4 kg). No changes (P = 0.21–0.41) were demonstrated in IGF-I, adiponectin, or myostatin during the study. Conclusions Chronic ABT focusing on the lower extremity does not slow muscle atrophy or alter body fat, body mass, or regional depots of FFM in persons with SCI. Further, it does not induce beneficial changes in adiponectin, myostatin, or IGF-I. Alternative exercise-based therapies are needed in SCI to reverse muscle atrophy and minimize the onset of related health risks. PMID:25130192
Estimation of fat-free mass in Asian neonates using bioelectrical impedance analysis
Tint, Mya-Thway; Ward, Leigh C; Soh, Shu E; Aris, Izzuddin M; Chinnadurai, Amutha; Saw, Seang Mei; Gluckman, Peter D; Godfrey, Keith M; Chong, Yap-Seng; Kramer, Michael S; Yap, Fabian; Lingwood, Barbara; Lee, Yung Seng
2016-01-01
The aims of this study were to develop and validate a prediction equation of fat-free mass (FFM) based on bioelectrical impedance analysis (BIA) and anthropometry using air displacement plethysmography (ADP) as a reference in Asian neonates and to test the applicability of the prediction equations in independent Western cohort. A total of 173 neonates at birth and 140 at week-2 of age were included. Multiple linear regression analysis was performed to develop the prediction equations in a two-third randomly selected subset and validated on the remaining one-third subset at each time point and in an independent Queensland cohort. FFM measured by ADP was the dependent variable and anthropometric measures, sex and impedance quotient (L2/R50) were independent variables in the model. Accuracy of prediction equations were assessed using intra-class correlation and Bland-Altman analyses. L2/R50 was the significant predictor of FFM at week-2 but not at birth. Compared to the model using weight, sex and length, including L2/R50 slightly improved the prediction with a bias of 0.01kg with 2SD limits of agreement (LOA) (0.18, −0.20). Prediction explained 88.9% of variation but not beyond that of anthropometry. Applying these equations to Queensland cohort provided similar performance at the appropriate age. However, when the Queensland equations were applied to our cohort, the bias increased slightly but with similar LOA. BIA appears to have limited use in predicting FFM in the first few weeks of life compared to simple anthropometry in Asian populations. There is a need for population and age appropriate FFM prediction equations. PMID:26856420
Functional Fault Model Development Process to Support Design Analysis and Operational Assessment
NASA Technical Reports Server (NTRS)
Melcher, Kevin J.; Maul, William A.; Hemminger, Joseph A.
2016-01-01
A functional fault model (FFM) is an abstract representation of the failure space of a given system. As such, it simulates the propagation of failure effects along paths between the origin of the system failure modes and points within the system capable of observing the failure effects. As a result, FFMs may be used to diagnose the presence of failures in the modeled system. FFMs necessarily contain a significant amount of information about the design, operations, and failure modes and effects. One of the important benefits of FFMs is that they may be qualitative, rather than quantitative and, as a result, may be implemented early in the design process when there is more potential to positively impact the system design. FFMs may therefore be developed and matured throughout the monitored system's design process and may subsequently be used to provide real-time diagnostic assessments that support system operations. This paper provides an overview of a generalized NASA process that is being used to develop and apply FFMs. FFM technology has been evolving for more than 25 years. The FFM development process presented in this paper was refined during NASA's Ares I, Space Launch System, and Ground Systems Development and Operations programs (i.e., from about 2007 to the present). Process refinement took place as new modeling, analysis, and verification tools were created to enhance FFM capabilities. In this paper, standard elements of a model development process (i.e., knowledge acquisition, conceptual design, implementation & verification, and application) are described within the context of FFMs. Further, newer tools and analytical capabilities that may benefit the broader systems engineering process are identified and briefly described. The discussion is intended as a high-level guide for future FFM modelers.
High protein diets do not attenuate decrements in testosterone and IGF-I during energy deficit.
Henning, Paul C; Margolis, Lee M; McClung, James P; Young, Andrew J; Pasiakos, Stefan M
2014-05-01
Energy deficit (ED) diminishes fat-free mass (FFM) with concomitant reductions in anabolic hormone secretion. A modest increase in protein to recommended dietary allowance (RDA) levels during ED minimally attenuates decrements in insulin-like growth factor-I (IGF-I). The impact of dietary protein above the RDA on circulating anabolic hormones and their relationships with FFM in response to ED are not well described. Thirty-three adults were assigned diets providing protein at 0.8 (RDA), 1.6 (2×-RDA), and 2.4 (3×-RDA) g/kg/d for 31days. Testosterone, sex-hormone binding globulin (SHBG) and IGF-I system components were assessed after a 10-day period of weight-maintenance (WM) and after a 21-day period of ED (40%) achieved by an increase in energy expenditure and decreased energy intake. Associations between the change in FFM and anabolic hormone levels were determined. As compared to WM and regardless of dietary protein intake, total and free testosterone, total IGF-I, and acid-labile subunit decreased (P<0.05), whereas SHBG and IGF binding proteins-1, -2, and -3 increased (P<0.05) during ED. There were no energy-by-protein interactions on any hormones or IGF-I system components measured. Changes in FFM in response to ED were negatively associated with acid-labile subunit (ALS) (r=-0.62, P<0.05) in 2×-RDA; however, no other relationships were observed. Consuming a high protein diet does not impact the androgenic and IGF-I system response to ED. These data suggest that the protective effects of high protein diets on FFM during ED are likely not influenced by anabolic hormone concentrations. Published by Elsevier Inc.
Perceived Exertion during Exercise is Associated with Children's Energy Intake
Fearnbach, S. Nicole; Masterson, Travis D.; Schlechter, Haley A.; Loken, Eric; Downs, Danielle S.; Thivel, David; Keller, Kathleen L.
2016-01-01
PURPOSE To examine the individual-level factors that predict energy intake (EI) following imposed exercise (EX) and sedentary time (SED) in children. METHODS Healthy-weight children ages 9-12 years (n = 20) reported to the laboratory for 1 baseline and 2 experimental visits (EX and SED) each separated by 1 week in a randomized crossover design. Percent body fat, weight (kg), and height (m) were used to calculate fat-mass index (FM index) and fat-free mass index (FFM index; kg/m2). On the EX day, children exercised at 70% estimated VO2peak for 30 minutes on a cycle ergometer while cardiovascular responses and ratings of perceived exertion (RPE) were measured. Objective EI (kcal) was measured at identical meals (breakfast, lunch, snack, and dinner) on the EX and SED days. RESULTS Total EI was not statistically different between the EX and SED days (t = 1.8, p = 0.09). FFM index was positively associated with EI on the EX day (r = 0.54, p < 0.05). RPE was also positively associated with EI on the EX day (r = 0.82, p < 0.001). Together, FFM index and RPE explained 77% of the variability in EX day EI (F(2,17) = 26.4, p < 0.001). For each unit increase in RPE, children consumed ~270 more calories on the EX day. A similar pattern of associations was observed on the SED day. CONCLUSION FFM index was positively associated with EI on the EX day. Despite experiencing the same 70% relative exercise intensity, increased perceived difficulty predicted greater EI on both the EX and SED day. These findings demonstrate a role for both FFM and RPE in explaining EI variability in children. PMID:27902529
Nichols, J.; Going, S.; Loftin, M.; Stewart, D.; Nowicki, E.; Pickrel, J.
2007-01-01
The purpose of this study was to compare fat-free mass (FFM) and percent body fat determined by two bio-electrical impedance analysis (BIA) instruments against criterion estimates determined by dual-energy x-ray absorptiometry (DXA) in a multi-racial/ethnic sample of adolescent girls. BIA was assessed in 151 girls (n=51 African-American; n=45 Hispanic; n=55 Caucasian; age 12.2 ± 1.2 yr) using the RJL Quantum II and the American Weights and Measures Body-Comp Scale (BCS). Percent body fat determined by BIA was significantly related to that determined by DXA (R2=0.87, SEE=2.8% for RJL vs DXA, P<0.0001; R2=0.71, SEE=4.4% for BCS vs DXA, P<0.0001). The agreement between DXA and BIA for FFM was also significant (R2=0.91, SEE=0.03 kg for RJL, P <0.0001; R2=0.79, SEE=0.04 kg for BCS, P <0.0001). The BCS overestimated FFM by 2.7 kg (P<0.0001) and underestimated percent body fat by over 4% (P<0.001). There were no differences in percent body fat between DXA and the RJL, and although the RJL significantly overestimated FFM, the absolute difference was <1 kg. Within each ethnic group, the RJL instrument more closely estimated FFM and percent body fat than did the BCS. Although both BIA instruments compared favorably with DXA, the RJL had better stability and accuracy than the BCS, for both the total sample and for the three ethnic groups. Considering its relatively low cost and minimal time required for technical training, BIA is a useful and appropriate technique for assessing body composition in adolescent girls. PMID:17607326
Zemski, Adam J; Keating, Shelley E; Broad, Elizabeth M; Slater, Gary J
2018-05-14
Rugby union athletes have divergent body composition based on the demands of their on-field playing position and ethnicity. With an established association between physique traits and positional requirements, body composition assessment is routinely undertaken. Surface anthropometry and dual-energy X-ray absorptiometry (DXA) are the most common assessment techniques utilised, often undertaken synchronously. This study aims to investigate the association between DXA and surface anthropometry when assessing longitudinal changes in fat free mass (FFM) and fat mass (FM) in rugby union athletes. Thirty-nine elite male rugby union athletes (age 25.7 ± 3.1 years; stature 187.6 ± 7.7 cm; mass 104.1 ± 12.2 kg) underwent assessment via DXA and surface anthropometry multiple times over three consecutive international seasons. Changes in the lean mass index (LMI), an empirical measure to assess proportional variation in FFM, showed large agreement with changes in DXA FFM (r=0.54, SEE=1.5%, P<0.001); the strength of association stronger amongst forwards (r=0.63) compared with backs (r=0.38). Changes in the sum of 7 skinfolds (S7SF) showed very large agreement with changes in DXA FM (r=0.73, SEE=5.8%, P<0.001), with meaningful differences observed regardless of ethnicity (Caucasians r=0.75; Polynesians r=0.62). The LMI and S7SF were able to predict the direction of change in FFM and FM, respectively, 86% and 91% of the time when DXA change was >1kg. Surface anthropometry measures provide a robust indication of the direction of change in FFM and FM, although caution may need to be applied when interpreting magnitude of change, particularly with FM.
Estimation of fat-free mass in Asian neonates using bioelectrical impedance analysis.
Tint, Mya-Thway; Ward, Leigh C; Soh, Shu E; Aris, Izzuddin M; Chinnadurai, Amutha; Saw, Seang Mei; Gluckman, Peter D; Godfrey, Keith M; Chong, Yap-Seng; Kramer, Michael S; Yap, Fabian; Lingwood, Barbara; Lee, Yung Seng
2016-03-28
The aims of this study were to develop and validate a prediction equation of fat-free mass (FFM) based on bioelectrical impedance analysis (BIA) and anthropometry using air-displacement plethysmography (ADP) as a reference in Asian neonates and to test the applicability of the prediction equations in an independent Western cohort. A total of 173 neonates at birth and 140 at two weeks of age were included. Multiple linear regression analysis was performed to develop the prediction equations in a two-third randomly selected subset and validated on the remaining one-third subset at each time point and in an independent Queensland cohort. FFM measured by ADP was the dependent variable, and anthropometric measures, sex and impedance quotient (L2/R50) were independent variables in the model. Accuracy of prediction equations was assessed using intra-class correlation and Bland-Altman analyses. L2/R50 was the significant predictor of FFM at week two but not at birth. Compared with the model using weight, sex and length, including L2/R50 slightly improved the prediction with a bias of 0·01 kg with 2 sd limits of agreement (LOA) (0·18, -0·20). Prediction explained 88·9 % of variation but not beyond that of anthropometry. Applying these equations to the Queensland cohort provided similar performance at the appropriate age. However, when the Queensland equations were applied to our cohort, the bias increased slightly but with similar LOA. BIA appears to have limited use in predicting FFM in the first few weeks of life compared with simple anthropometry in Asian populations. There is a need for population- and age-appropriate FFM prediction equations.
Influence of performance level on anaerobic power and body composition in elite male judoists.
Kim, Jongkyu; Cho, Hyun-Chul; Jung, Han-Sang; Yoon, Jong-Dae
2011-05-01
This study examined the relationship between 30-second anaerobic power and body composition by performance level in elite Judoists. During a 3-month period, 10 male Korean Judo national team athletes (NT), 26 male university varsity team athletes (VT), and 28 male junior varsity team athletes (JT) were assessed for 30-second anaerobic power and body composition at the Youngin University. Anaerobic power was measured using a 30-second Wingate test. Body composition was assessed via bioelectric impedance analysis in standardized conditions using BioSpace (Korean)-specific prediction formulas. All testing occurred at the beginning of the winter nonseason period but excluded a brief weight-loss period before the competition phase. Anaerobic power measures were significantly greater (p < 0.05) in NT and VT than in JT. Fat-free mass (FFM), muscle mass (MM), and total body water in JT were also greater than in VT and JT (p < 0.05). Muscle mass in VT was significantly lower than in NT (p < 0.05). Fat-free mass in NT was strongly correlated to mean and peak anaerobic power (r = 0.77, p = 0.009; r = 0.87, p < 0.001, respectively). Varsity team athletes also indicated a moderate association between FFM and peak and mean anaerobic power (r = 0.63, p < 0.001; r = 0.48, p = 0.013, respectively). However, relationship between FFM and anaerobic power was not statistically significantly correlated in JT (r = 0.14, p = 0.470; r = 0.23, p = 0.232, separately). In conclusion, our data indicated that anaerobic power is closely correlated with increase in FFM and MM and was different dependent among performance levels. Further research in the field is warranted to elucidate the Judo-specific relationship between FFM and performance.
ERIC Educational Resources Information Center
Schwartzman, Benjamin C.; Wood, Jeffrey J.; Kapp, Steven K.
2016-01-01
The present study aimed to: determine the extent to which the five factor model of personality (FFM) accounts for variability in autism spectrum disorder (ASD) symptomatology in adults, examine differences in average FFM personality traits of adults with and without ASD and identify distinct behavioral phenotypes within ASD. Adults (N = 828;…
ERIC Educational Resources Information Center
Michel, Jesse S.; Clark, Malissa A.; Jaramillo, David
2011-01-01
The present meta-analysis examines the relationships between the Five Factor Model (FFM) of personality and negative and positive forms of work-nonwork spillover (e.g., work-family conflict and facilitation). Results, based on aggregated correlations drawn from 66 studies and 72 independent samples (Total N = 28,127), reveal that the FFM is…
Bucher, Meredith A; Samuel, Douglas B
2018-02-01
Although there has been widespread consensus on the use of the Five-Factor Model (FFM) of general personality functioning in personality research, there are various, diverse models of the lower order traits of the FFM domains. Given the usefulness of these finer grained traits, it is imperative to integrate facets proposed across a variety of models and eventually reach consensus on the lower level traits of the FFM. Due to its depth and coverage, the Abridged Big Five-Dimensional Circumplex (AB5C) model potentially provides a useful framework for organizing various faceted models due to its conceptual organization and inclusiveness. The only measure of this model-the IPIP-AB5C-has shown promise, but is limited by its length (i.e., 485 items). This study developed an abbreviated version of the IPIP-AB5C using an iterative process including item response theory methods. The shorter version maintained key features of the long form including a factor structure that matched the full form as well as facets that correlated in expected ways with other FFM measures. Building on this support, the short form was used to contextualize and organize the facets from 2 commonly used measures.
Helle, Ashley C; Trull, Timothy J; Widiger, Thomas A; Mullins-Sweatt, Stephanie N
2017-07-01
An alternative model for personality disorders is included in Section III (Emerging Models and Measures) of Diagnostic and Statistical Manual of Mental Disorders, (5th ed.; DSM-5). The DSM-5 dimensional trait model is an extension of the Five-Factor Model (FFM; American Psychiatric Association, 2013). The Personality Inventory for DSM-5 (PID-5) assesses the 5 domains and 25 traits in the alternative model. The current study expands on recent research to examine the relationship of the PID-5 with an interview measure of the FFM. The Structured Interview for the Five Factor Model of Personality (SIFFM) assesses the 5 bipolar domains and 30 facets of the FFM. Research has indicated that the SIFFM captures maladaptive aspects of personality (as well as adaptive). The SIFFM, NEO PI-R, and PID-5 were administered to participants to examine their respective convergent and discriminant validity. Results provide evidence for the convergence of the 2 models using self-report and interview measures of the FFM. Clinical implications and future directions are discussed, particularly a call for the development of a structured interview for the assessment of the DSM-5 dimensional trait model. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Miller, Joshua D; Lynam, Donald R; Rolland, Jean-Pierre; De Fruyt, Filip; Reynolds, Sarah K; Pham-Scottez, Alexandra; Baker, Spencer R; Bagby, R Michael
2008-10-01
Five-Factor Model (FFM) personality disorder (PD) counts have demonstrated significant convergent and discriminant validity with DSM-IV PD symptoms. However, these FFM PD counts are of limited clinical use without normative data because it is difficult to determine what a specific score means with regard to the relative level of elevation. The current study presents data from three large normative samples that can be used as norms for the FFM PD counts in the respective countries: United States (N = 1,000), France (N = 801), and Belgium-Netherlands (N = 549). The present study also examines the performance, with regard to diagnostic efficiency, of statistically-defined cut-offs at 1.5 standard deviations above the mean (T > or = 65) versus previously identified cut-offs using receiver-operator characteristics (ROC) analyses. These cut-offs are tested in three clinical samples-one from each of the aforementioned countries. In general, the T > or = 65 cut-offs performed similarly to those identified using ROC analyses and manifested properties relevant to a screening instrument. These normative data allow FFM data to be used in a flexible and comprehensive manner, which may include scoring this type of personality data in order to screen for DSM-IV PD constructs.
Comparison of total body water estimates from O-18 and bioelectrical response prediction equations
NASA Technical Reports Server (NTRS)
Barrows, Linda H.; Inners, L. Daniel; Stricklin, Marcella D.; Klein, Peter D.; Wong, William W.; Siconolfi, Steven F.
1993-01-01
Identification of an indirect, rapid means to measure total body water (TBW) during space flight may aid in quantifying hydration status and assist in countermeasure development. Bioelectrical response testing and hydrostatic weighing were performed on 27 subjects who ingested O-18, a naturally occurring isotope of oxygen, to measure true TBW. TBW estimates from three bioelectrical response prediction equations and fat-free mass (FFM) were compared to TBW measured from O-18. A repeated measures MANOVA with post-hoc Dunnett's Test indicated a significant (p less than 0.05) difference between TBW estimates from two of the three bioelectrical response prediction equations and O-18. TBW estimates from FFM and the Kushner & Schoeller (1986) equation yielded results that were similar to those given by O-18. Strong correlations existed between each prediction method and O-18; however, standard errors, identified through regression analyses, were higher for the bioelectrical response prediction equations compared to those derived from FFM. These findings suggest (1) the Kushner & Schoeller (1986) equation may provide a valid measure of TBW, (2) other TBW prediction equations need to be identified that have variability similar to that of FFM, and (3) bioelectrical estimates of TBW may prove valuable in quantifying hydration status during space flight.
NASA Astrophysics Data System (ADS)
Saw, S. H.; Damideh, V.; Chong, P. L.; Lee, P.; Rawat, R. S.; Lee, S.
2014-08-01
This paper summarizes PF-160 Dual Plasma Focus (DuPF) numerical experiments using the Lee Model code and preliminary 3D design drawings using SolidWorks software. This DuPF consists of two interchangeable electrodes enabling it to be optimized for both Slow Pinch Mode (SFM) and Fast Pinch Mode (FFM); the latter using a speed factor (SF) of 90 kA cm-1 Torr-0.5 for FFM in deuterium [S Lee et al, IEEE Trans Plasma Science 24, 1101-1105 (1996)]; and the former with SF of less than half that value for SFM. Starting with available 6 × 450 µF capacitors rated at 11kV (10% reversal), numerical experiments indicate safe operation at 9 kV, 6 Torr deuterium with FFM anode of 5 cm radius; producing intense ion beam and streaming plasma pulses which would be useful for studies of potential fusion reactor wall materials. On the other hand operating at 5 kV, 10 Torr deuterium with SFM anode of 10 cm radius leads to long-duration, uniform large-area flow which could be more suitable for synthesis of nano-materials. The dual plasma focus design is illustrated here with two figures showing FFM and SFM electrodes.
NASA Astrophysics Data System (ADS)
Anggraeni, Novia Antika
2015-04-01
The test of eruption time prediction is an effort to prepare volcanic disaster mitigation, especially in the volcano's inhabited slope area, such as Merapi Volcano. The test can be conducted by observing the increase of volcanic activity, such as seismicity degree, deformation and SO2 gas emission. One of methods that can be used to predict the time of eruption is Materials Failure Forecast Method (FFM). Materials Failure Forecast Method (FFM) is a predictive method to determine the time of volcanic eruption which was introduced by Voight (1988). This method requires an increase in the rate of change, or acceleration of the observed volcanic activity parameters. The parameter used in this study is the seismic energy value of Merapi Volcano from 1990 - 2012. The data was plotted in form of graphs of seismic energy rate inverse versus time with FFM graphical technique approach uses simple linear regression. The data quality control used to increase the time precision employs the data correlation coefficient value of the seismic energy rate inverse versus time. From the results of graph analysis, the precision of prediction time toward the real time of eruption vary between -2.86 up to 5.49 days.
The personality context of relational aggression: A Five-Factor Model profile analysis.
Reardon, Kathleen W; Tackett, Jennifer L; Lynam, Don
2018-05-01
Relational aggression (RAgg) is a form of behavior intended to damage the victim's social status or interpersonal relationships through the use of purposeful interpersonal manipulation or social exclusion (Archer & Coyne, 2005). RAgg is impairing, stable, and largely defined by dysfunctional patterns of interpersonal interactions-all of which invokes comparisons to personality and, more specifically, personality pathology. Leveraging research using the Five Factor Model (FFM) in personality disorder (PD) work, the present study aims to understand the personality context of RAgg by applying this FFM profile approach in 2 ways: (a) by compiling a personality profile of RAgg based on a thorough review of the relevant literature and (b) by compiling a personality profile of RAgg based on expert ratings (N = 19). We then compared these profiles to each other and to existing personality profiles of Cluster B PDs to examine how RAgg fits into the personality space represented by Cluster B PDs. These analyses indicate that both FFM profiles of RAgg show substantial overlap with the FFM profile of narcissistic PD. The present study has important implications for bridging disjointed domains of research on personality pathology and RAgg and underscores the relevance of RAgg for early emergence of PD characteristics. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anggraeni, Novia Antika, E-mail: novia.antika.a@gmail.com
The test of eruption time prediction is an effort to prepare volcanic disaster mitigation, especially in the volcano’s inhabited slope area, such as Merapi Volcano. The test can be conducted by observing the increase of volcanic activity, such as seismicity degree, deformation and SO2 gas emission. One of methods that can be used to predict the time of eruption is Materials Failure Forecast Method (FFM). Materials Failure Forecast Method (FFM) is a predictive method to determine the time of volcanic eruption which was introduced by Voight (1988). This method requires an increase in the rate of change, or acceleration ofmore » the observed volcanic activity parameters. The parameter used in this study is the seismic energy value of Merapi Volcano from 1990 – 2012. The data was plotted in form of graphs of seismic energy rate inverse versus time with FFM graphical technique approach uses simple linear regression. The data quality control used to increase the time precision employs the data correlation coefficient value of the seismic energy rate inverse versus time. From the results of graph analysis, the precision of prediction time toward the real time of eruption vary between −2.86 up to 5.49 days.« less
Scaling left ventricular mass in adolescent boys aged 11-15 years.
Valente-Dos-Santos, João; Coelho-E-Silva, Manuel J; Ferraz, António; Castanheira, Joaquim; Ronque, Enio R; Sherar, Lauren B; Elferink-Gemser, Marije T; Malina, Robert M
2014-01-01
Normalizing left ventricular mass (LVM) for inter-individual variation in body size is a central issue in human biology. During the adolescent growth spurt, variability in body size descriptors needs to be interpreted in combination with biological maturation. To examine the contribution of biological maturation, stature, sitting height, body mass, fat-free mass (FFM) and fat mass (FM) to inter-individual variability in LVM in boys, using proportional allometric modelling. The cross-sectional sample included 110 boys of 11-15 years (12.9-1.0 years). Stature, sitting height, body mass, cardiac chamber dimensions and LVM were measured. Age at peak height velocity (APHV) was predicted and used as an indicator of biological maturation. Percentage fat was estimated from triceps and subscapular skinfolds; FM and FFM were derived. Exponents for body size descriptors were k = 2.33 for stature, k = 2.18 for sitting height, k = 0.68 for body mass, k = 0.17 for FM and k = 0.80 for FFM (adjusted R(2 )= 19-62%). The combination of body descriptors and APHV increased the explained variance in LVM (adjusted R(2)( )= 56-69%). Stature, FM and FFM are the best combination for normalizing LVM in adolescent boys; when body composition is not available, an indicator of biological maturity should be included with stature.
NASA Technical Reports Server (NTRS)
Schwarzenberg, M.; Pippia, P.; Meloni, M. A.; Cossu, G.; Cogoli-Greuter, M.; Cogoli, A.
1998-01-01
The purpose of this paper is to present the results obtained in our laboratory with both instruments, the FFM [free fall machine] and the RPM [random positioning machine], to compare them with the data from earlier experiments with human lymphocytes conducted in the FRC [fast rotating clinostat] and in space. Furthermore, the suitability of the FFM and RPM for research in gravitational cell biology is discussed.
Does Size Really Matter? How Quality Should be Analyzed for the Acquisition Workforce
2012-12-20
Five Factor Model ( FFM ) of personality. Five traits, also known as = = ^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã= do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v...13 - k^s^i=mlpqdo^ar^qb=p`elli= the Big 5, comprise the FFM : emotional stability, extraversion, openness to experience, agreeableness, and
Estimation of coupling efficiency of optical fiber by far-field method
NASA Astrophysics Data System (ADS)
Kataoka, Keiji
2010-09-01
Coupling efficiency to a single-mode optical fiber can be estimated with the field amplitudes at far-field of an incident beam and optical fiber mode. We call it the calculation by far-field method (FFM) in this paper. The coupling efficiency by FFM is formulated including effects of optical aberrations, vignetting of the incident beam, and misalignments of the optical fiber such as defocus, lateral displacements, and angle deviation in arrangement of the fiber. As the results, it is shown the coupling efficiency is proportional to the central intensity of the focused spot, i.e., Strehl intensity of a virtual beam determined by the incident beam and mode of the optical fiber. Using the FFM, a typical optics in which a laser beam is coupled to an optical fiber with a lens of finite numerical aperture (NA) is analyzed for several cases of amplitude distributions of the incident light.
Maladaptively high and low openness: the case for experiential permeability.
Piedmont, Ralph L; Sherman, Martin F; Sherman, Nancy C
2012-12-01
The domain of Openness within the Five-Factor Model (FFM) has received inconsistent support as a source for maladaptive personality functioning, at least when the latter is confined to the disorders of personality included within the American Psychiatric Association's (APA) Diagnostic and Statistical Manual of Mental Disorders (DSM-IV-TR; APA, ). However, an advantage of the FFM relative to the DSM-IV-TR is that the former was developed to provide a reasonably comprehensive description of general personality structure. Rather than suggest that the FFM is inadequate because the DSM-IV-TR lacks much representation of Openness, it might be just as reasonable to suggest that the DSM-IV-TR is inadequate because it lacks an adequate representation of maladaptive variants of both high and low Openness. This article discusses the development and validation of a measure of these maladaptive variants, the Experiential Permeability Inventory. © 2012 The Authors. Journal of Personality © 2012, Wiley Periodicals, Inc.
Choi, Daejeong; Oh, In-Sue; Colbert, Amy E
2015-09-01
We examined the relationships between the Five-Factor Model (FFM) of personality traits and three forms of organizational commitment (affective, normative, and continuance commitment) and their variability across individualistic and collectivistic cultures. Meta-analytic results based on 55 independent samples from 50 studies (N = 18,262) revealed that (a) all FFM traits had positive relationships with affective commitment; (b) all FFM traits had positive relationships with normative commitment; and (c) Emotional Stability, Extraversion, and Openness to Experience had negative relationships with continuance commitment. In particular, Agreeableness was found to be the trait most strongly related to both affective and normative commitment. The results also showed that Agreeableness had stronger relationships with affective and normative commitment in collectivistic cultures than in individualistic cultures. We provide theoretical and practical implications of these findings for personality, job attitudes, and employee selection and retention. (c) 2015 APA, all rights reserved).
Fletcher, Gareth; Eves, Frank F; Glover, Elisa I; Robinson, Scott L; Vernooij, Carlijn A; Thompson, Janice L; Wallis, Gareth A
2017-04-01
Background: Substantial interindividual variability exists in the maximal rate of fat oxidation (MFO) during exercise with potential implications for metabolic health. Although the diet can affect the metabolic response to exercise, the contribution of a self-selected diet to the interindividual variability in the MFO requires further clarification. Objective: We sought to identify whether recent, self-selected dietary intake independently predicts the MFO in healthy men and women. Design: The MFO and maximal oxygen uptake ([Formula: see text]O 2 max) were determined with the use of indirect calorimetry in 305 healthy volunteers [150 men and 155 women; mean ± SD age: 25 ± 6 y; body mass index (BMI; in kg/m 2 ): 23 ± 2]. Dual-energy X-ray absorptiometry was used to assess body composition with the self-reported physical activity level (SRPAL) and dietary intake determined in the 4 d before exercise testing. To minimize potential confounding with typically observed sex-related differences (e.g., body composition), predictor variables were mean-centered by sex. In the analyses, hierarchical multiple linear regressions were used to quantify each variable's influence on the MFO. Results: The mean absolute MFO was 0.55 ± 0.19 g/min (range: 0.19-1.13 g/min). A total of 44.4% of the interindividual variability in the MFO was explained by the [Formula: see text]O 2 max, sex, and SRPAL with dietary carbohydrate (carbohydrate; negative association with the MFO) and fat intake (positive association) associated with an additional 3.2% of the variance. When expressed relative to fat-free mass (FFM), the MFO was 10.8 ± 3.2 mg · kg FFM -1 · min -1 (range: 3.5-20.7 mg · kg FFM -1 · min -1 ) with 16.6% of the variability explained by the [Formula: see text]O 2 max, sex, and SRPAL; dietary carbohydrate and fat intakes together explained an additional 2.6% of the variability. Biological sex was an independent determinant of the MFO with women showing a higher MFO [men: 10.3 ± 3.1 mg · kg FFM -1 · min -1 (3.5-19.9 mg · kg FFM -1 · min -1 ); women: 11.2 ± 3.3 mg · kg FFM -1 · min -1 (4.6-20.7 mg · kg FFM -1 · min -1 ); P < 0.05]. Conclusion: Considered alongside other robust determinants, dietary carbohydrate and fat intake make modest but independent contributions to the interindividual variability in the capacity to oxidize fat during exercise. This trial was registered at clinicaltrials.gov as NCT02070055.
Wu, Chun-Shien; Chen, Yu-Yawn; Chuang, Chih-Lin; Chiang, Li-Ming; Dwyer, Gregory B; Hsu, Ying-Lin; Huang, Ai-Chun; Lai, Chung-Liang; Hsieh, Kuen-Chang
2015-05-19
The objectives of this study were to develop a regression model for predicting fat-free mass (FFM) in a population of healthy Taiwanese individuals using standing foot-to-foot bioelectrical impedance analysis (BIA) and to test the model's performance in predicting FFM with different body fat percentages (BF%). We used dual-energy X-ray absorptiometry (DXA) to measure the FFM of 554 healthy Asian subjects (age, 16-75 y; body mass index, 15.8-43.1 kg/m(2)). We also evaluated the validity of the developed multivariate model using a double cross-validation technique and assessed the accuracy of the model in an all-subjects sample and subgroup samples with different body fat levels. Predictors in the all-subjects multivariate model included height(2)/impedance, weight, year, and sex (FFM = 13.055 + 0.204 weight + 0.394 height(2)/Impedance - 0.136 age + 8.125 sex (sex: Female = 0, Male = 1), r(2) = 0.92, standard error of the estimate = 3.17 kg). The correlation coefficients between predictive FFM by BIA (FFMBIA) and DXA-measured FFM (FFMDXA) in female subjects with a total-subjects BF%DXA of <20 %, 20 %-30 %, 30 %-40 % and >40 % were r = 0.87, 0.90, 0.91, 0.89, and 0.94, respectively, with bias ± 2SD of 0.0 ± 3.0 kg, -2.6 ± 1.7 kg, -1.5 ± 2.8 kg, 0.5 ± 2.7 kg, and 2.0 ± 2.9 kg, respectively. The correlation coefficients between FFMBIA and FFMDXA in male subjects with a total-subjects BF%DXA of <10 %, 10 %-20 %, 20 %-30 %, and >30 % were r = 0.89, 0.89, 0.90, 0.93, and 0.91, respectively, with bias ± 2SD of 0.0 ± 3.2 kg, -2.3 ± 2.5 kg, -0.5 ± 3.2 kg, 0.4 ± 3.1 kg, and 2.1 ± 3.2 kg, respectively. The standing foot-to-foot BIA method developed in this study can accurately predict FFM in healthy Asian individuals with different levels of body fat.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balke, Nina; Jesse, Stephen; Yu, Pu
Detection of dynamic surface displacements associated with local changes in material strain provides access to a number of phenomena and material properties. Contact resonance-enhanced methods of atomic force microscopy (AFM) have been shown capable of detecting ~1–3 pm-level surface displacements, an approach used in techniques such as piezoresponse force microscopy, atomic force acoustic microscopy, and ultrasonic force microscopy. Here, based on an analytical model of AFM cantilever vibrations, we demonstrate a guideline to quantify surface displacements with high accuracy by taking into account the cantilever shape at the first resonant contact mode, depending on the tip–sample contact stiffness. The approachmore » has been experimentally verified and further developed for piezoresponse force microscopy (PFM) using well-defined ferroelectric materials. These results open up a way to accurate and precise measurements of surface displacement as well as piezoelectric constants at the pm-scale with nanometer spatial resolution and will allow avoiding erroneous data interpretations and measurement artifacts. Furthermore, this analysis is directly applicable to all cantilever-resonance-based scanning probe microscopy (SPM) techniques.« less
Balke, Nina; Jesse, Stephen; Yu, Pu; ...
2016-09-15
Detection of dynamic surface displacements associated with local changes in material strain provides access to a number of phenomena and material properties. Contact resonance-enhanced methods of atomic force microscopy (AFM) have been shown capable of detecting ~1–3 pm-level surface displacements, an approach used in techniques such as piezoresponse force microscopy, atomic force acoustic microscopy, and ultrasonic force microscopy. Here, based on an analytical model of AFM cantilever vibrations, we demonstrate a guideline to quantify surface displacements with high accuracy by taking into account the cantilever shape at the first resonant contact mode, depending on the tip–sample contact stiffness. The approachmore » has been experimentally verified and further developed for piezoresponse force microscopy (PFM) using well-defined ferroelectric materials. These results open up a way to accurate and precise measurements of surface displacement as well as piezoelectric constants at the pm-scale with nanometer spatial resolution and will allow avoiding erroneous data interpretations and measurement artifacts. Furthermore, this analysis is directly applicable to all cantilever-resonance-based scanning probe microscopy (SPM) techniques.« less
NASA Astrophysics Data System (ADS)
Arenas, Mónica P.; Lanzoni, Evandro M.; Pacheco, Clara J.; Costa, Carlos A. R.; Eckstein, Carlos B.; de Almeida, Luiz H.; Rebello, João M. A.; Deneke, Christoph F.; Pereira, Gabriela R.
2018-01-01
In this study, we investigate artifacts arising from electric charges present in magnetic force microscopy images. Therefore, we use two austenitic steel samples with different microstructural conditions. Furthermore, we examine the influence of the surface preparation, like etching, in magnetic force images. Using Kelvin probe force microscopy we can quantify the charges present on the surface. Our results show that electrical charges give rise to a signature in the magnetic force microscopy, which is indistinguishable from a magnetic signal. Our results on two differently aged steel samples demonstrate that the magnetic force microscopy images need to be interpreted with care and must be corrected due to the influence of electrical charges present. We discuss three approaches, how to identify these artifacts - parallel acquisition of magnetic force and electric force images on the same position, sample surface preparation to decrease the presence of charges and inversion of the magnetic polarization in two succeeding measurement.
Suzuki, Takakuni; Griffin, Sarah A; Samuel, Douglas B
2017-04-01
Several studies have shown structural and statistical similarities between the Diagnostic and Statistical Manual of Mental Disorders (5th ed.; DSM-5) alternative personality disorder model and the Five-Factor Model (FFM). However, no study to date has evaluated the nomological network similarities between the two models. The relations of the Revised NEO Personality Inventory (NEO PI-R) and the Personality Inventory for DSM-5 (PID-5) with relevant criterion variables were examined in a sample of 336 undergraduate students (M age = 19.4; 59.8% female). The resulting profiles for each instrument were statistically compared for similarity. Four of the five domains of the two models have highly similar nomological networks, with the exception being FFM Openness to Experience and PID-5 Psychoticism. Further probing of that pair suggested that the NEO PI-R domain scores obscured meaningful similarity between PID-5 Psychoticism and specific aspects and lower-order facets of Openness. The results support the notion that the DSM-5 alternative personality disorder model trait domains represent variants of the FFM domains. Similarities of Openness and Psychoticism domains were supported when the lower-order aspects and facets of Openness domain were considered. The findings support the view that the DSM-5 trait model represents an instantiation of the FFM. © 2015 Wiley Periodicals, Inc.
Increasing maternal percentage body fat in early second trimester: a risk factor for preeclampsia.
Wang, Yanxia; Qiu, Jie; Zhou, Min; Wang, Youjie; Du, Yukai
2015-02-01
To determine if maternal percentage body fat (PBF) or fat free mass (FFM) in the early second trimester of pregnancy influenced the development of preeclampsia. A matched nested case-control study was conducted from a cohort study of 1668 women at Gansu provincial maternal and child care hospital from July 2007 to August 2011 in China. Maternal PBF and FFM were assessed by bioelectrical impedance analysis during 12th-16th gestational week. The demographic characteristics were all chart abstracted. After childbirth, 70 cases of preeclampsia were matched by race/age with 140 uncomplicated pregnancies women. Multivariate logistic regression analysis was performed to determine the associated risk factors. Pre-pregnancy body mass index were higher in women who subsequently developed preeclampsia compared with controls (p < 0.001). During 12th-16th gestational week, there were nearly 7-fold increase in the odds of preeclampsia (adjusted OR: 6.84, 95% CI: 4.15-41.60) among women with PBF ≥ 40% versus women with PBF < 40%. But FFM were not at further increased risk of the development of preeclampsia (adjusted OR, 1.02; 95% CI, 0.6-3.6). Maternal PBF but not FFM is a predictor of preeclampsia in the early second trimester. Excessive adipose tissue possibly played an important role in developing of preeclampsia.
Gender- and Age-Specific REE and REE/FFM Distributions in Healthy Chinese Adults
Cheng, Yu; Yang, Xue; Na, Li-Xin; Li, Ying; Sun, Chang-Hao
2016-01-01
Basic data on the resting energy expenditure (REE) of healthy populations are currently rare, especially for developing countries. The aims of the present study were to describe gender- and age-specific REE distributions and to evaluate the relationships among glycolipid metabolism, eating behaviors, and REE in healthy Chinese adults. This cross-sectional survey included 540 subjects (343 women and 197 men, 20–79 years old). REE was measured by indirect calorimetry and expressed as kcal/day/kg total body weight. The data were presented as the means and percentiles for REE and the REE to fat-free mass (FFM) ratio; differences were described by gender and age. Partial correlation analysis was used to analyze the correlations between REE, tertiles of REE/FFM, and glycolipid metabolism and eating behaviors. In this study, we confirmed a decline in REE with age in women (p = 0.000) and men (p = 0.000), and we found that men have a higher REE (p = 0.000) and lower REE/FFM (p = 0.021) than women. Furthermore, we observed no associations among glycolipid metabolism, eating behaviors, and REE in healthy Chinese adults. In conclusion, the results presented here may be useful to clinicians and nutritionists for comparing healthy and ill subjects and identifying changes in REE that are related to aging, malnutrition, and chronic diseases. PMID:27598192
Gender- and Age-Specific REE and REE/FFM Distributions in Healthy Chinese Adults.
Cheng, Yu; Yang, Xue; Na, Li-Xin; Li, Ying; Sun, Chang-Hao
2016-09-01
Basic data on the resting energy expenditure (REE) of healthy populations are currently rare, especially for developing countries. The aims of the present study were to describe gender- and age-specific REE distributions and to evaluate the relationships among glycolipid metabolism, eating behaviors, and REE in healthy Chinese adults. This cross-sectional survey included 540 subjects (343 women and 197 men, 20-79 years old). REE was measured by indirect calorimetry and expressed as kcal/day/kg total body weight. The data were presented as the means and percentiles for REE and the REE to fat-free mass (FFM) ratio; differences were described by gender and age. Partial correlation analysis was used to analyze the correlations between REE, tertiles of REE/FFM, and glycolipid metabolism and eating behaviors. In this study, we confirmed a decline in REE with age in women (p = 0.000) and men (p = 0.000), and we found that men have a higher REE (p = 0.000) and lower REE/FFM (p = 0.021) than women. Furthermore, we observed no associations among glycolipid metabolism, eating behaviors, and REE in healthy Chinese adults. In conclusion, the results presented here may be useful to clinicians and nutritionists for comparing healthy and ill subjects and identifying changes in REE that are related to aging, malnutrition, and chronic diseases.
Fowler, L. Adele; Dennis, Lacey N.; Barry, R. Jeff; Powell, Mickie L.; Watts, Stephen A.
2016-01-01
Abstract Zebrafish (Danio rerio) as a model research organism continues to expand its relevance and role in multiple research disciplines, with recent work directed toward models of metabolism, nutrition, and energetics. Multiple technologies exist to assess body composition in animal research models at various levels of detail (tissues/organs, body regions, and whole organism). The development and/or validation of body composition assessment tools can open new areas of research questions for a given organism. Using fish from a comparative nutrition study, quantitative magnetic resonance (QMR) assessment of whole body fat and fat-free mass (FFM) in live fish was performed. QMR measures from two cohorts (n = 26 and n = 27) were compared with chemical carcass analysis (CCA) of FM and FFM. QMR was significantly correlated with chemical carcass values (fat, p < 0.001; lean, p = 0.002), although QMR significantly overestimated fat mass (FM) (0.011 g; p < 0.0001) and underestimated FFM (−0.024 g; p < 0.0001) relative to CCA. In a separate cross-validation group of fish, prediction equations corrected carcass values for FM (p = 0.121) and FFM (p = 0.753). These results support the utilization of QMR—a nonlethal nondestructive method—for cross-sectional or longitudinal body composition assessment outcomes in zebrafish. PMID:26974510
Obesity paradox and the heart: which indicator of obesity best describes this complex relationship?
De Schutter, Alban; Lavie, Carl J; Patel, Dharmendrakumar A; Milani, Richard V
2013-09-01
Despite the detrimental effects of obesity on coronary heart disease (CHD) and heart failure, obesity is found to be paradoxically associated with improved survival in secondary care of CHD and heart failure. This 'obesity paradox' is an area of active research, and it might be the result of an inaccurate working definition of obesity, which is traditionally defined in terms of BMI. We reviewed the recent literature on the paradox and examined different anthropomorphic measurements and their association with prognosis in cardiovascular diseases. In CHD, obesity is associated with improved prognosis when defined by high BMI and body fat, independent of fat-free mass (FFM). High waist circumference seems to be associated with worse prognosis in some studies, but is associated with protection and an obesity paradox in those with poor cardiorespiratory fitness (CRF). In patients with heart failure, BMI, body fat and waist circumference, and possibly FFM, have been associated with improved survival. Despite these findings, intentional weight loss remains protective. In both CHD and heart failure, CRF seems to significantly impact the relationship between adiposity and subsequent prognosis, and an obesity paradox is only present with low CRF. Body composition, including waist circumference, body fat and FFM have a role in clinical practice. Emphasis should be placed on improving CRF, regardless of weight status. Intentional weight loss, particularly while maintaining FFM, should be encouraged in obese individuals.
Free-Flying Magnetometer Data System
NASA Technical Reports Server (NTRS)
Blaes, B.; Javadi, H.; Spencer, H.
2000-01-01
The Free-Flying Magnetometer (FFM) is an autonomous "sensorcraft" developed at the Jet Propulsion Laboratory (JPL) for the Enstrophy sounding rocket mission. This mission was a collaborative project between the University of New Hampshire, Cornell University and JPL. The science goal of the mission was the study of current filamentation phenomena in the northern auroral region through multipoint measurements of magnetic field. The technical objective of the mission was the proof of concept of the JPL FFM design and the demonstration of an in-situ multipoint measurement technique employing many free-flying spacecraft. Four FFMs were successfully deployed from a sounding rocket launched from Poker Flats, Alaska on February 11, 1999. These hockey-puck-sized (80 mm diameter, 38 mm. height, 250 gram mass) free flyers each carry a miniature 3-axis flux-gate magnetometer that output +/- 2 V signals corresponding to a +/- 60,000 nT measurement range for each axis. The FFM uses a synchronized four-channel Sigma(Delta) Analog-to-Digital Converter (ADC) having a dynamic range of +/- 2.5V and converting at a rate of 279 samples/second/channel. Three channels are used to digitize the magnetometer signals to 17-bit (1.144 nT/bit) resolution. The fourth ADC channel is multiplexed for system monitoring of four temperature sensors and two battery voltages. The FFM also contains two sun sensors, a laser diode which emits a fan-shaped beam, a miniature S-band transmitter for direct communication to the ground station antennas, an ultra-stable Temperature Compensated Crystal Oscillator (TCXO) clock, an integrated data subsystem implemented in a Field-Programmable Gate Array (FPGA), a 4 Mbit Static Random Access Memory (SRAM) for data storage and Lithium Thionyl Chloride batteries for power. Communicating commands to the FFM prior to deployment is achieved with an infrared (IR) link. The FFM IR receiver responds to 9-bit pulse coded signals that are generated by an IR Light Emitting Diode (LED) in the payload for turning FFM power on or off and placing the FFM in a test mode or flight mode. The IR links are also used to synchronize (zero) the clocks onboard all the FFMs through a reset pulse originating from the payload GPS receiver that is issued when the FFMs are in flight mode. The FPGA based data subsystem manages continuous data collection from the four ADC channels and sun sensors, formatting and storing the data to SRAM, and controlling downlink transmission. The transmitter is powered only after a 2547 frame SRAM buffer has been filled (approx. 5 minutes of data). The data is Viterbi encoded and sent to the S-band transmitter via a First-In-First-Out (FIFO) buffer who's output is clocked at 100 bits/second. After the 26-second transmission, the transmitter is turned off to reduce noise coupling to the sensitive magnetometer. The data subsystem control consists of a master state machine that performs data flow management and is interfaced through a prioritized interrupt scheme to state machines that service the ADC, sun sensors and transmitter FIFO. Continuous data collection prevents the missing of data during transmission and provides implicit time tagging of the data acquired by the ADC because of synchronization with the TCXO clock.
Davis, Kenneth L; Panksepp, Jaak
2011-10-01
Six of the primary-process subcortical brain emotion systems - SEEKING, RAGE, FEAR, CARE, GRIEF and PLAY - are presented as foundational for human personality development, and hence as a potentially novel template for personality assessment as in the Affective Neurosciences Personality Scales (ANPS), described here. The ANPS was conceptualized as a potential clinical research tool, which would help experimentalists and clinicians situate subjects and clients in primary-process affective space. These emotion systems are reviewed in the context of a multi-tiered framing of consciousness spanning from primary affect, which encodes biological valences, to higher level tertiary (thought mediated) processing. Supporting neuroscience research is presented along with comparisons to Cloninger's Temperament and Character Inventory and the Five Factor Model (FFM). Suggestions are made for grounding the internal structure of the FFM on the primal emotional systems recognized in affective neuroscience, which may promote substantive dialog between human and animal research traditions. Personality is viewed in the context of Darwinian "continuity" with the inherited subcortical brain emotion systems being foundational, providing major forces for personality development in both humans and animals, and providing an affective infrastructure for an expanded five factor descriptive model applying to normal and clinical human populations as well as mammals generally. Links with ontogenetic and epigenetic models of personality development are also presented. Potential novel clinical applications of the CARE maternal-nurturance system and the PLAY system are also discussed. Copyright © 2011 Elsevier Ltd. All rights reserved.
Comparison of muscle cross-sectional areas between weight lifters and wrestlers.
Kanehisa, H; Ikegawa, S; Fukunaga, T
1998-05-01
The purpose of this study was to investigate the difference in the magnitude of muscular development between Olympic weight lifters and wrestlers through the measurements of fat-free mass (FFM) and limb muscle cross-sectional area (CSA). Subjects were college Olympic weight lifters (N = 34, age = 20.0 +/- 1.3 years, stature = 1.67 +/- 0.07 m, body mass = 70.1 +/- 10.2 kg, X +/- SD) and wrestlers (N = 33,20.3 +/- 1.2 years, 1.69 +/- 0.06 m, 71.0 +/- 1.8 kg) who had identical range of body mass. Body density and the CSAs of reciprocal muscle groups in the forearm, upper arm, lower leg and thigh were measured by underwater weighing and B-mode ultrasound methods, respectively. No significant difference was found in body density between the weight lifters (1.077 +/- 0.007 g x ml(-3)) and wrestlers (1.076 +/- 0.008 g x ml(-3)). Moreover, FFM and the CSA values of all muscle groups tested were similar in the two groups of weight-classified athletes, with an exception that the wrist flexor CSA was significantly larger in wrestlers than in weight lifters, and the knee extensor and thigh (extensors + flexors) CSAs were larger in weight lifters than in wrestlers. The total muscle CSA of every site was significantly correlated to FFM2/3 in the separate groups; r = 0.714 to 0.815 (p < 0.05) in weight lifters and r = 0.769 to 0.919 (p < 0.05) in wrestlers. While the CSA-to-FFM2/3 ratios of the upper arm and wrist flexor muscles were significantly higher in wrestlers than in weight lifters, those of the thigh and knee extensor muscles were higher in weight lifters than in wrestlers. Thus, the present results suggest that an event-related difference exists in the magnitude of limb muscle CSA between competitive weight lifters and wrestlers of similar FFM.
Association Between Sarcopenia-Related Phenotypes and Aerobic Capacity Indexes of Older Women
de Oliveira, Ricardo Jacó; Bottaro, Martim; Motta, Antonio Marco; Pitanga, Francisco; Guido, Marcelo; Leite, Tailce Kaley Moura; Bezerra, Lídia Mara Aguiar; Lima, Ricardo Moreno
2009-01-01
The purpose of the present study was to examine the association between fat-free mass (FFM), quadriceps strength and sarcopenia with aerobic fitness indexes of elderly women. A total of 189 volunteers (66.7 ± 5.46 years) underwent aerobic capacity measurement through a symptom-limited cardiopulmonary exercise test to determine their individual ventilatory thresholds (VT) and peak oxygen uptake (VO2 peak). Quadriceps muscle strength was assessed using an isokinetic dynamometer. Also, dual energy X-ray absorptiometry was used to assess FFM and cutoff values were used to classify subjects as sarcopenic or nonsarcopenic. Correlations, student t-test and analysis of variance were used to examine the data. Both FFM and quadriceps strength variables were positively and significantly correlated with the measured aerobic capacity indexes. These results were observed for peak exercise as well as for ventilatory thresholds. Individuals classified as sarcopenic presented significantly lower muscle strength and (VO2 peak) when compared to nonsarcopenic. It can be concluded that FFM and quadriceps strength are significantly related to aerobic capacity indexes in older women, and that besides presenting lower quadriceps strength, women classified as sarcopenic have lower peak oxygen consumption. Taken together, the present results indicate that both FFM and strength play a role in the age-related decline of aerobic capacity. Key points Maximal aerobic capacity, generally expressed as peak oxygen consumption (VO2 peak), declines with advancing age and this process is associated with an increased risk for cardiovascular diseases. Also, the aging process is associated with a progressive loss of muscle mass and strength and this phenomenon has been referred to as Sarcopenia. Sarcopenia has been described in both elderly men and women and has been linked to multiple negative clinical outcomes. The present study provide evidence that muscle-related phenotypes are associated with aerobic capacity of older individuals, thus suggesting that sarcopenia explains in part the decline in aerobic fitness observed with advancing age. PMID:24149995
Maximal Fat Oxidation Rates in an Athletic Population.
Randell, Rebecca K; Rollo, Ian; Roberts, Timothy J; Dalrymple, Kortney J; Jeukendrup, Asker E; Carter, James M
2017-01-01
The aim of this study was to describe maximal fat oxidation (MFO) rates in an athletic population. In total, 1121 athletes (933 males and 188 females), from a variety of sports and competitive level, undertook a graded exercise test on a treadmill in a fasted state (≥5 h fasted). Rates of fat oxidation were determined using indirect calorimetry. The average MFO was 0.59 ± 0.18 g·min, ranging from 0.17 to 1.27 g·min. Maximal rates occurred at an average exercise intensity of 49.3% ± 14.8% V˙O2max, ranging from 22.6% to 88.8% V˙O2max. In absolute terms, male athletes had significantly higher MFO compared with females (0.61 and 0.50 g·min, respectively, P < 0.001). Expressed relative to fat-free mass (FFM), MFO were higher in the females compared with males (MFO/FFM: 11.0 and 10.0 mg·kg·FFM·min, respectively, P < 0.001). Soccer players had the highest MFO/FFM (10.8 mg·kg·FFM·min), ranging from 4.1 to 20.5 mg·kg·FFM·min, whereas American Football players displayed the lowest rates of MFO/FFM (9.2 mg·kg·FFM·min). In all athletes, and when separated by sport, large individual variations in MFO rates were observed. Significant positive correlations were found between MFO (g·min) and the following variables: FFM, V˙O2max, FATMAX (the exercise intensity at which the MFO was observed), percent body fat, and duration of fasting. When taken together these variables account for 47% of the variation in MFO. MFO and FATMAX vary significantly between athletes participating in different sports but also in the same sport. Although variance in MFO can be explained to some extent by body composition and fitness status, more than 50% of the variance is not explained by these variables and remains unaccounted for.
Morton, Robert W; Murphy, Kevin T; McKellar, Sean R; Schoenfeld, Brad J; Henselmans, Menno; Helms, Eric; Aragon, Alan A; Devries, Michaela C; Banfield, Laura; Krieger, James W
2018-01-01
Objective We performed a systematic review, meta-analysis and meta-regression to determine if dietary protein supplementation augments resistance exercise training (RET)-induced gains in muscle mass and strength. Data sources A systematic search of Medline, Embase, CINAHL and SportDiscus. Eligibility criteria Only randomised controlled trials with RET ≥6 weeks in duration and dietary protein supplementation. Design Random-effects meta-analyses and meta-regressions with four a priori determined covariates. Two-phase break point analysis was used to determine the relationship between total protein intake and changes in fat-free mass (FFM). Results Data from 49 studies with 1863 participants showed that dietary protein supplementation significantly (all p<0.05) increased changes (means (95% CI)) in: strength—one-repetition-maximum (2.49 kg (0.64, 4.33)), FFM (0.30 kg (0.09, 0.52)) and muscle size—muscle fibre cross-sectional area (CSA; 310 µm2 (51, 570)) and mid-femur CSA (7.2 mm2 (0.20, 14.30)) during periods of prolonged RET. The impact of protein supplementation on gains in FFM was reduced with increasing age (−0.01 kg (−0.02,–0.00), p=0.002) and was more effective in resistance-trained individuals (0.75 kg (0.09, 1.40), p=0.03). Protein supplementation beyond total protein intakes of 1.62 g/kg/day resulted in no further RET-induced gains in FFM. Summary/conclusion Dietary protein supplementation significantly enhanced changes in muscle strength and size during prolonged RET in healthy adults. Increasing age reduces and training experience increases the efficacy of protein supplementation during RET. With protein supplementation, protein intakes at amounts greater than ~1.6 g/kg/day do not further contribute RET-induced gains in FFM. PMID:28698222
Spanjer, Moon J; Bultink, Irene E M; de van der Schueren, Marian A E; Voskuyl, Alexandre E
2017-06-01
The aims were to assess the prevalence of malnutrition and to validate bioelectrical impedance analysis (BIA) against whole-body DXA for the assessment of body composition in patients with SSc. Malnutrition was defined as BMI <18.5 kg/m 2 or unintentional weight loss >10% in combination with a fat-free mass index (FFMI) <15 kg/m 2 for women or <17 kg/m 2 for men or BMI <20.0 kg/m 2 (age <70 years) or <22 kg/m 2 (age >70 years). Body composition was assessed in 72 patients with whole-body DXA (Hologic, Discovery A) and BIA (Bodystat Quadscan 400). The manufacturer's equation and the Geneva equation were used to estimate FFM and fat mass. The agreement between BIA and whole-body DXA was assessed with Bland-Altman analysis and intraclass correlation coefficient. Malnutrition was found in 8.3% (n = 6) and low FFMI in 20.8% (n = 15) of patients. The mean difference in FFM between BIA and DXA applying the Geneva equation was 0.02 ( s . d . 2.4) kg, intraclass correlation coefficient 0.97 (95% CI: 0.95, 0.98). Limits of agreement were ±4.6 kg. The manufacturer's equation was less adequate to predict FFM. This study shows a relatively low prevalence of malnutrition in comparison with other studies, but a high prevalence of low FFMI, underlining the necessity of measuring body composition in SSc patients with a standardized and validated method. A good validity of BIA in determining FFM was found at a group level, while at an individual level the FFM may vary by 4.6 kg. © The Author 2017. Published by Oxford University Press on behalf of the British Society for Rheumatology. All rights reserved. For Permissions, please email: journals.permissions@oup.com
Oftedal, Stina; Davies, Peter Sw; Boyd, Roslyn N; Stevenson, Richard D; Ware, Robert S; Keawutan, Piyapa; Benfer, Katherine A; Bell, Kristie L
2017-02-01
Altered body composition in children with cerebral palsy (CP) could be due to differences in energy intake, habitual physical activity (HPA), and sedentary time. We investigated the longitudinal relation between the weight-for-age z score (WZ), fat-free mass (FFM), percentage of body fat (%BF), and modifiable lifestyle factors for all Gross Motor Function Classification System (GMFCS) levels (I-V). The study was a longitudinal population-based cohort study of children with CP who were aged 18-60 mo (364 assessments in 161 children; boys: 61%; mean ± SD recruitment age: 2.8 ± 0.9 y; GMFCS: I, 48%; II, 11%; III, 15%; IV, 11%; and V, 15%). A deuterium dilution technique or bioelectrical impedance analysis was used to estimate FFM, and the %BF was calculated. Energy intake, HPA, and sedentary time were measured with the use of a 3-d weighed food diary and accelerometer wear. Data were analyzed with the use of a mixed-model analysis. Children in GMFCS group I did not differ from age- and sex-specific reference children with typical development for weight. Children in GMFCS group IV were lighter-for-age, and children in GMFCS group V had a lower FFM-for-height than those in GMFCS group I. Children in GMFCS groups II-V had a higher %BF than that of children in GMFCS group I, with the exception of orally fed children in GMFCS group V. The mean %BF of children with CP classified them as overfat or obese. There was a positive association between energy intake and FFM and also between HPA level and FFM for children in GMFCS group I. Altered body composition was evident in preschool-age children with CP across functional capacities. Gross motor function, feeding method, energy intake, and HPA level in GMFCS I individuals are the strongest predictors of body composition in children with CP between the ages of 18 and 60 mo. © 2017 American Society for Nutrition.
Activity energy expenditure and change in body composition in late life123
Everhart, James E; Anton, Stephen D; Schoeller, Dale A; Cummings, Steve R; Mackey, Dawn C; Delmonico, Matthew J; Bauer, Douglas C; Simonsick, Eleanor M; Colbert, Lisa H; Visser, Marjolein; Tylavsky, Frances; Newman, Anne B; Harris, Tamara B
2009-01-01
Background: Change in body composition, specifically loss of fat-free mass and gain in fat mass, in older adults is a major pathway leading to the onset of functional decline and physical disability. Objective: The objective was to determine the association of activity-related energy expenditure with change in body mass and composition among older men and women. Design: Total energy expenditure (TEE) was assessed over 2 wk by using the doubly labeled water method in 302 community-dwelling older adults aged 70–82 y. Resting metabolic rate (RMR) was measured by using indirect calorimetry, and the thermic effect of meals was estimated at 10% of TEE. Activity energy expenditure (AEE) was calculated as [TEE(0.9) − RMR]. Total body mass, fat-free mass (FFM), and fat mass (FM) were assessed by dual-energy X-ray absorptiometry annually over a mean (±SD) of 4.9 ± 1.3 y. Results: In multivariate models adjusted for baseline age, smoking status, and race, men and women had a decline (in kg/y) in body mass (men: −0.34, 95% CI: −0.71, 0.02; women: −0.45, 95% CI: −0.71, −0.19) and FFM (men: −0.48, 95% CI: −0.67, −0.29; women: −0.14, 95% CI: −0.026, −0.03). No changes (in kg/y) were observed in FM (men: 0.14, 95% CI: −0.10, 0.38; women: −0.28, 95% CI: −0.49, −0.07). In men and women, higher AEE at baseline was associated with greater FFM. The average change in these outcomes (ie, slope), however, was similar across tertiles of AEE. Conclusions: These data suggest that accumulated energy expenditure from all physical activities is associated with greater FFM, but the effect does not alter the trajectory of FFM change in late life. PMID:19740971
MAGEEAN, AMANDA L.; ALEXANDER, RYAN P.; MIER, CONSTANCE M.
2011-01-01
The purpose of this study was to examine gender differences in repeated sprint exercise (RSE) performance among male and female athletes matched for VO2max relative to FFM (VO2max FFM). Thirty nine male and female college athletes performed a graded exercise test for VO2max and hydrostatic weighing to determine FFM. From the results, 11 pairs of males and females matched for VO2max FFM (mean ± SD; 58.3 ± 4.3 and 58.9 ± 4.6 ml·kg FFM−1·min−1; men and women, respectively) were identified. On a separate day, matched participants performed a RSE protocol that consisted of five 6-sec cycle sprints with 30-sec recovery periods, followed by 5-min active recovery and a 30-sec all-out sprint. Repeated 6-sec sprint performance did not differ between men and women; both maintained power output (PO) until sprint 4. POFFM (W·kg−1 FFM) did not differ between men and women during the five sprints. During the 30-sec sprint, men achieved a lower peak POFFM than women (11.7 ± 1.5 vs 13.2 ± 1.2); however, the decline in POFFM over 30 sec was greater in women. VO2 (ml·kg FFM−1·min−1) was lower in men during recovery (24.4 ± 3.8 vs 28.7 ± 5.7) and at the beginning (29.2 ± 4.0 vs 34.7 ± 4.9) and end (49.4 ± 5.0 vs 52.3 ± 4.0). of the 30-sec sprint. These data indicate that men and women with similar aerobic capacities do not respond differently to short repeated sprints but may differ in their ability to recover and perform sprints of longer duration. PMID:27182366
Energy availability and the female athlete triad in elite endurance athletes.
Melin, A; Tornberg, Å B; Skouby, S; Møller, S S; Sundgot-Borgen, J; Faber, J; Sidelmann, J J; Aziz, M; Sjödin, A
2015-10-01
The female athlete triad (Triad), links low energy availability (EA), with menstrual dysfunction (MD), and impaired bone health. The aims of this study were to examine associations between EA/MD and energy metabolism and the prevalence of Triad-associated conditions in endurance athletes. Forty women [26.2 ± 5.5 years, body mass index (BMI) 20.6 ± 2.0 kg/m(2), body fat 20.0 ± 3.0%], exercising 11.4 ± 4.5 h/week, were recruited from national teams and competitive clubs. Protocol included gynecological examination; assessment of bone health; indirect respiratory calorimetry; diet and exercise measured 7 days to assess EA; eating disorder (ED) examination; blood analysis. Subjects with low/reduced EA (< 45 kcal/kg FFM/day), had lower resting metabolic rate (RMR) compared with those with optimal EA [28.4 ± 2.0 kcal/kg fat-free mass (FFM)/day vs 30.5 ± 2.2 kcal/kg FFM/day, P < 0.01], as did subjects with MD compared with eumenorrheic subjects (28.6 ± 2.4 kcal/kg FFM/day vs 30.2 ± 1.8 kcal/kg FFM/day, P < 0.05). 63% had low/reduced EA, 25% ED, 60% MD, 45% impaired bone health, and 23% had all three Triad conditions. 53% had low RMR, 25% hypercholesterolemia, and 38% hypoglycemia. Conclusively, athletes with low/reduced EA and/or MD had lowered RMR. Triad-associated conditions were common in this group of athletes, despite a normal BMI range. The high prevalence of ED, MD, and impaired bone health emphasizes the importance of prevention, early detection, and treatment of energy deficiency. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Maddocks, Matthew; Kon, Samantha S C; Jones, Sarah E; Canavan, Jane L; Nolan, Claire M; Higginson, Irene J; Gao, Wei; Polkey, Michael I; Man, William D-C
2015-12-01
Bioelectrical impedance analysis (BIA) provides a simple method to assess changes in body composition. Raw BIA variables such as phase angle provide direct information on cellular mass and integrity, without the assumptions inherent in estimating body compartments, e.g. fat-free mass (FFM). Phase angle is a strong functional and prognostic marker in many disease states, but data in COPD are lacking. Our aims were to describe the measurement of phase angle in patients with stable COPD and determine the construct and discriminate validity of phase angle by assessing its relationship with established markers of function, disease severity and prognosis. 502 outpatients with stable COPD were studied. Phase angle and FFM by BIA, quadriceps strength (QMVC), 4-m gait speed (4MGS), 5 sit-to-stand time (5STS), incremental shuttle walk (ISW), and composite prognostic indices (ADO, iBODE) were measured. Patients were stratified into normal and low phase angle and FFM index. Phase angle correlated positively with FFM and functional outcomes (r = 0.35-0.66, p < 0.001) and negatively with prognostic indices (r = -0.35 to -0.48, p < 0.001). In regression models, phase angle was independently associated with ISW, ADO and iBODE whereas FFM was removed. One hundred and seventy patients (33.9% [95% CI, 29.9-38.1]) had a low phase angle. Phenotypic characteristics included lower QMVC, ISW, and 4MGS, higher 5STS, ADO and iBODE scores, and more exacerbations and hospital days in past year. The proportion of patients to have died was significantly higher in patients with low phase angle compared to those with normal phase angle (8.2% versus 3.6%, p = 0.02). Phase angle relates to markers of function, disease severity and prognosis in patients with COPD. As a directly measured variable, phase angle offers more useful information than fat-free mass indices. Copyright © 2015 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.
Magnetoelectric force microscopy based on magnetic force microscopy with modulated electric field.
Geng, Yanan; Wu, Weida
2014-05-01
We present the realization of a mesoscopic imaging technique, namely, the Magnetoelectric Force Microscopy (MeFM), for visualization of local magnetoelectric effect. The basic principle of MeFM is the lock-in detection of local magnetoelectric response, i.e., the electric field-induced magnetization, using magnetic force microscopy. We demonstrate MeFM capability by visualizing magnetoelectric domains on single crystals of multiferroic hexagonal manganites. Results of several control experiments exclude artifacts or extrinsic origins of the MeFM signal. The parameters are tuned to optimize the signal to noise ratio.
NASA Astrophysics Data System (ADS)
Zhang, Hao; Koper, Keith D.; Pankow, Kristine; Ge, Zengxi
2017-05-01
The 13 November 2016 Mw 7.8 Kaikoura, New Zealand, earthquake was investigated using teleseismic P waves. Backprojection of high-frequency P waves from two regional arrays shows unilateral rupture of at least two southwest-northeast striking faults with an average rupture speed of 1.4-1.6 km/s and total duration of 100 s. Guided by these backprojection results, 33 globally distributed low-frequency P waves were inverted for a finite fault model (FFM) of slip. The FFM showed evidence of several subevents; however, it lacked significant moment release near the epicenter, where a large burst of high-frequency energy was observed. A local strong-motion network recorded strong shaking near the epicenter; hence, for this earthquake the distribution of backprojection energy is superior to the FFM as a guide of strong shaking. For future large earthquakes that occur in regions without strong-motion networks, initial shaking estimates could benefit from backprojection constraints.
Functional Fault Modeling Conventions and Practices for Real-Time Fault Isolation
NASA Technical Reports Server (NTRS)
Ferrell, Bob; Lewis, Mark; Perotti, Jose; Oostdyk, Rebecca; Brown, Barbara
2010-01-01
The purpose of this paper is to present the conventions, best practices, and processes that were established based on the prototype development of a Functional Fault Model (FFM) for a Cryogenic System that would be used for real-time Fault Isolation in a Fault Detection, Isolation, and Recovery (FDIR) system. The FDIR system is envisioned to perform health management functions for both a launch vehicle and the ground systems that support the vehicle during checkout and launch countdown by using a suite of complimentary software tools that alert operators to anomalies and failures in real-time. The FFMs were created offline but would eventually be used by a real-time reasoner to isolate faults in a Cryogenic System. Through their development and review, a set of modeling conventions and best practices were established. The prototype FFM development also provided a pathfinder for future FFM development processes. This paper documents the rationale and considerations for robust FFMs that can easily be transitioned to a real-time operating environment.
NASA Astrophysics Data System (ADS)
Bell, Andrew F.; Naylor, Mark; Heap, Michael J.; Main, Ian G.
2011-08-01
Power-law accelerations in the mean rate of strain, earthquakes and other precursors have been widely reported prior to material failure phenomena, including volcanic eruptions, landslides and laboratory deformation experiments, as predicted by several theoretical models. The Failure Forecast Method (FFM), which linearizes the power-law trend, has been routinely used to forecast the failure time in retrospective analyses; however, its performance has never been formally evaluated. Here we use synthetic and real data, recorded in laboratory brittle creep experiments and at volcanoes, to show that the assumptions of the FFM are inconsistent with the error structure of the data, leading to biased and imprecise forecasts. We show that a Generalized Linear Model method provides higher-quality forecasts that converge more accurately to the eventual failure time, accounting for the appropriate error distributions. This approach should be employed in place of the FFM to provide reliable quantitative forecasts and estimate their associated uncertainties.
A residency clinic chronic condition management quality improvement project.
Halverson, Larry W; Sontheimer, Dan; Duvall, Sharon
2007-02-01
Quality improvement in chronic disease management is a major agenda for improving health and reducing health care costs. A six-component chronic disease management model can help guide this effort. Several characteristics of the "new model" of family medicine described by the Future of Family Medicine (FFM) Project Leadership Committee are promulgated to foster practice changes that improve quality. Our objective was to implement and assess a quality improvement project guided by the components of a chronic disease management model and FFM new model characteristics. Diabetes was selected as a model chronic disease focus. Multiple practice changes were implemented. A mature electronic medical record facilitated data collection and measurement of quality improvement progress. Data from the diabetes registry demonstrates that our efforts have been effective. Significant improvement occurred in five out of six quality indicators. Multidisciplinary teamwork in a model residency practice guided by chronic disease management principles and the FFM new model characteristics can produce significant management improvements in one important chronic disease.
Body composition in elderly people: effect of criterion estimates on predictive equations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baumgartner, R.N.; Heymsfield, S.B.; Lichtman, S.
1991-06-01
The purposes of this study were to determine whether there are significant differences between two- and four-compartment model estimates of body composition, whether these differences are associated with aqueous and mineral fractions of the fat-free mass (FFM); and whether the differences are retained in equations for predicting body composition from anthropometry and bioelectric resistance. Body composition was estimated in 98 men and women aged 65-94 y by using a four-compartment model based on hydrodensitometry, {sup 3}H{sub 2}O dilution, and dual-photon absorptiometry. These estimates were significantly different from those obtained by using Siri's two-compartment model. The differences were associated significantly (Pmore » less than 0.0001) with variation in the aqueous fraction of FFM. Equations for predicting body composition from anthropometry and resistance, when calibrated against two-compartment model estimates, retained these systematic errors. Equations predicting body composition in elderly people should be calibrated against estimates from multicompartment models that consider variability in FFM composition.« less
Ejlerskov, Katrine T.; Jensen, Signe M.; Christensen, Line B.; Ritz, Christian; Michaelsen, Kim F.; Mølgaard, Christian
2014-01-01
For 3-year-old children suitable methods to estimate body composition are sparse. We aimed to develop predictive equations for estimating fat-free mass (FFM) from bioelectrical impedance (BIA) and anthropometry using dual-energy X-ray absorptiometry (DXA) as reference method using data from 99 healthy 3-year-old Danish children. Predictive equations were derived from two multiple linear regression models, a comprehensive model (height2/resistance (RI), six anthropometric measurements) and a simple model (RI, height, weight). Their uncertainty was quantified by means of 10-fold cross-validation approach. Prediction error of FFM was 3.0% for both equations (root mean square error: 360 and 356 g, respectively). The derived equations produced BIA-based prediction of FFM and FM near DXA scan results. We suggest that the predictive equations can be applied in similar population samples aged 2–4 years. The derived equations may prove useful for studies linking body composition to early risk factors and early onset of obesity. PMID:24463487
Ejlerskov, Katrine T; Jensen, Signe M; Christensen, Line B; Ritz, Christian; Michaelsen, Kim F; Mølgaard, Christian
2014-01-27
For 3-year-old children suitable methods to estimate body composition are sparse. We aimed to develop predictive equations for estimating fat-free mass (FFM) from bioelectrical impedance (BIA) and anthropometry using dual-energy X-ray absorptiometry (DXA) as reference method using data from 99 healthy 3-year-old Danish children. Predictive equations were derived from two multiple linear regression models, a comprehensive model (height(2)/resistance (RI), six anthropometric measurements) and a simple model (RI, height, weight). Their uncertainty was quantified by means of 10-fold cross-validation approach. Prediction error of FFM was 3.0% for both equations (root mean square error: 360 and 356 g, respectively). The derived equations produced BIA-based prediction of FFM and FM near DXA scan results. We suggest that the predictive equations can be applied in similar population samples aged 2-4 years. The derived equations may prove useful for studies linking body composition to early risk factors and early onset of obesity.
Forsum, Elisabet; Henriksson, Pontus; Löf, Marie
2014-01-01
A possibility to assess body composition during pregnancy is often important. Estimating body density (DB) and use the two-component model (2CM) to calculate total body fat (TBF) represents an option. However, this approach has been insufficiently evaluated during pregnancy. We evaluated the 2CM, and estimated fat-free mass (FFM) density and variability in 17 healthy women before pregnancy, in gestational weeks 14 and 32, and 2 weeks postpartum based on DB (underwater weighing), total body water (deuterium dilution) and body weight, assessed on these four occasions. TBF, calculated using the 2CM and published FFM density (TBF2CM), was compared to reference estimates obtained using the three-component model (TBF3CM). TBF2CM minus TBF3CM (mean ± 2SD) was −1.63 ± 5.67 (p = 0.031), −1.39 ± 7.75 (p = 0.16), −0.38 ± 4.44 (p = 0.49) and −1.39 ± 5.22 (p = 0.043) % before pregnancy, in gestational weeks 14 and 32 and 2 weeks postpartum, respectively. The effect of pregnancy on the variability of FFM density was larger in gestational week 14 than in gestational week 32. The 2CM, based on DB and published FFM density, assessed body composition as accurately in gestational week 32 as in non-pregnant adults. Corresponding values in gestational week 14 were slightly less accurate than those obtained before pregnancy. PMID:25526240
Bodybuilders' body composition: effect of nandrolone decanoate.
van Marken Lichtenbelt, Wouter D; Hartgens, Fred; Vollaard, Niels B J; Ebbing, Spike; Kuipers, Harm
2004-03-01
The use of androgenic-anabolic steroids (AAS) among bodybuilders to increase muscle mass is widespread. Nandrolone decanoate (ND) is one of the most popular misused AAS, although the effects on body composition are equivocal. Therefore, the purpose of this study was to determine the effect of ND on body composition in male bodybuilders, with special reference to muscle mass alterations. Using a randomized "double-blind" "placebo-controlled" design, 16 experienced male bodybuilders (age: 19-44 yr) either received ND (200 mg.wk(-1), intramuscularly) or placebo for 8 wk. Body composition was assessed using the four-component model, combining results from underwater weighing, dual-energy x-ray absorptiometry (DXA), and deuterium dilution. Total bone mineral content and density were measured using DXA. Water compartments (extracellular water [ECW] and intracellular water [ICW]) were determined using deuterium dilution and bromide dilution. ND administration resulted in significant increments of body mass (+2.2 kg), fat-free mass (FFM: +2.6 kg), and total body water (+1.4 kg). No significant changes in fat mass, percentage fat, ECW, ICW, ECW/ICW ratio, hydration of the FFM, and on bone mineral measurements were observed. The results show that the administration of 200 mg.wk(-1) of ND (intramuscularly) for 8 wk significantly increased body mass and FFM, whereas fat mass, bone mineral content, bone mineral density, and the hydration of the FFM remained unaffected. These data indicate that the changes can be attributed to an increase of muscle mass.
Distel, Marijn A; Trull, Timothy J; Willemsen, Gonneke; Vink, Jacqueline M; Derom, Catherine A; Lynskey, Michael; Martin, Nicholas G; Boomsma, Dorret I
2009-12-15
Recently, the nature of personality disorders and their relationship with normal personality traits has received extensive attention. The five-factor model (FFM) of personality, consisting of the personality traits neuroticism, extraversion, openness to experience, agreeableness, and conscientiousness, is one of the proposed models to conceptualize personality disorders as maladaptive variants of continuously distributed personality traits. The present study examined the phenotypic and genetic association between borderline personality and FFM personality traits. Data were available for 4403 monozygotic twins, 4425 dizygotic twins, and 1661 siblings from 6140 Dutch, Belgian, and Australian families. Broad-sense heritability estimates for neuroticism, agreeableness, conscientiousness, extraversion, openness to experience, and borderline personality were 43%, 36%, 43%, 47%, 54%, and 45%, respectively. Phenotypic correlations between borderline personality and the FFM personality traits ranged from .06 for openness to experience to .68 for neuroticism. Multiple regression analyses showed that a combination of high neuroticism and low agreeableness best predicted borderline personality. Multivariate genetic analyses showed the genetic factors that influence individual differences in neuroticism, agreeableness, conscientiousness, and extraversion account for all genetic liability to borderline personality. Unique environmental effects on borderline personality, however, were not completely shared with those for the FFM traits (33% is unique to borderline personality). Borderline personality shares all genetic variation with neuroticism, agreeableness, conscientiousness, and extraversion. The unique environmental influences specific to borderline personality may cause individuals with a specific pattern of personality traits to cross a threshold and develop borderline personality.
ten Haaf, Twan; Weijs, Peter J. M.
2014-01-01
Introduction Resting energy expenditure (REE) is expected to be higher in athletes because of their relatively high fat free mass (FFM). Therefore, REE predictive equation for recreational athletes may be required. The aim of this study was to validate existing REE predictive equations and to develop a new recreational athlete specific equation. Methods 90 (53M, 37F) adult athletes, exercising on average 9.1±5.0 hours a week and 5.0±1.8 times a week, were included. REE was measured using indirect calorimetry (Vmax Encore n29), FFM and FM were measured using air displacement plethysmography. Multiple linear regression analysis was used to develop a new FFM-based and weight-based REE predictive equation. The percentage accurate predictions (within 10% of measured REE), percentage bias, root mean square error and limits of agreement were calculated. Results The Cunningham equation and the new weight-based equation and the new FFM-based equation performed equally well. De Lorenzo's equation predicted REE less accurate, but better than the other generally used REE predictive equations. Harris-Benedict, WHO, Schofield, Mifflin and Owen all showed less than 50% accuracy. Conclusion For a population of (Dutch) recreational athletes, the REE can accurately be predicted with the existing Cunningham equation. Since body composition measurement is not always possible, and other generally used equations fail, the new weight-based equation is advised for use in sports nutrition. PMID:25275434
Considerations for protein intake in managing weight loss in athletes.
Murphy, Caoileann H; Hector, Amy J; Phillips, Stuart M
2015-01-01
A large body of evidence now shows that higher protein intakes (2-3 times the protein Recommended Dietary Allowance (RDA) of 0.8 g/kg/d) during periods of energy restriction can enhance fat-free mass (FFM) preservation, particularly when combined with exercise. The mechanisms underpinning the FFM-sparing effect of higher protein diets remain to be fully elucidated but may relate to the maintenance of the anabolic sensitivity of skeletal muscle to protein ingestion. From a practical point of view, athletes aiming to reduce fat mass and preserve FFM should be advised to consume protein intakes in the range of ∼1.8-2.7 g kg(-1) d(-1) (or ∼2.3-3.1 g kg(-1) FFM) in combination with a moderate energy deficit (-500 kcal) and the performance of some form of resistance exercise. The target level of protein intake within this recommended range requires consideration of a number of case-specific factors including the athlete's body composition, habitual protein intake and broader nutrition goals. Athletes should focus on consuming high-quality protein sources, aiming to consume protein feedings evenly spaced throughout the day. Post-exercise consumption of 0.25-0.3 g protein meal(-1) from protein sources with high leucine content and rapid digestion kinetics (i.e. whey protein) is recommended to optimise exercise-induced muscle protein synthesis. When protein is consumed as part of a mixed macronutrient meal and/or before bed slightly higher protein doses may be optimal.
NASA Astrophysics Data System (ADS)
Ashby, Paul David
Investigation into the origin of forces dates to the early Greeks. Yet, only in recent decades have techniques for elucidating the molecular origin of forces been developed. Specifically, Chemical Force Microscopy uses the high precision and nanometer scale probe of Atomic Force Microscopy to measure molecular and interfacial interactions. This thesis presents the development of many novel Chemical Force Microscopy techniques for measuring equilibrium and time-dependant force profiles of molecular interactions, which led to a greater understanding of the origin of interfacial forces in solution. In chapter 2, Magnetic Feedback Chemical Force Microscopy stiffens the cantilever for measuring force profiles between self-assembled monolayer (SAM) surfaces. Hydroxyl and carboxyl terminated SAMs produce long-range interactions that extend one or three nanometers into the solvent, respectively. In chapter 3, an ultra low noise AFM is produced through multiple modifications to the optical deflection detection system and signal processing electronics. In chapter 4, Brownian Force Profile Reconstruction is developed for accurate measurement of steep attractive interactions. Molecular ordering is observed for OMCTS, 1-nonanol, and water near flat surfaces. The molecular ordering of the solvent produces structural or solvation forces, providing insight into the orientation and possible solidification of the confined solvent. Seven molecular layers of OMCTS are observed but the oil remains fluid to the last layer. 1-nonanol strongly orders near the surface and becomes quasi-crystalline with four layers. Water is oriented by the surface and symmetry requires two layers of water (3.7 A) to be removed simultaneously. In chapter 5, electronic control of the cantilever Q (Q-control) is used to obtain the highest imaging sensitivity. In chapter 6, Energy Dissipation Chemical Force Microscopy is developed to investigate the time dependence and dissipative characteristics of SAM interfacial interactions in solution. Long-range adhesive forces for hydroxyl and carboxyl terminated SAM surfaces arise from solvent, not ionic, interactions. Exclusion of the solvent and contact between the SAM surfaces leads to rearrangement of the SAM headgroups. The isolation of the chemical and physical interfacial properties from the topography by Energy Dissipation Chemical Force Microscopy produces a new quantitative high-sensitivity imaging mode.
NASA Astrophysics Data System (ADS)
Yacoot, Andrew; Koenders, Ludger
2008-05-01
The review will describe the various scanning probe microscopy tips and cantilevers used today for scanning force microscopy and magnetic force microscopy. Work undertaken to quantify the properties of cantilevers and tips, e.g. shape and radius, is reviewed together with an overview of the various tip-sample interactions that affect dimensional measurements.
Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy
Neuman, Keir C.; Nagy, Attila
2012-01-01
Single-molecule force spectroscopy has emerged as a powerful tool to investigate the forces and motions associated with biological molecules and enzymatic activity. The most common force spectroscopy techniques are optical tweezers, magnetic tweezers and atomic force microscopy. These techniques are described and illustrated with examples highlighting current capabilities and limitations. PMID:18511917
Observation of DNA Molecules Using Fluorescence Microscopy and Atomic Force Microscopy
ERIC Educational Resources Information Center
Ito, Takashi
2008-01-01
This article describes experiments for an undergraduate instrumental analysis laboratory that aim to observe individual double-stranded DNA (dsDNA) molecules using fluorescence microscopy and atomic force microscopy (AFM). dsDNA molecules are observed under several different conditions to discuss their chemical and physical properties. In…
Subpiconewton intermolecular force microscopy.
Tokunaga, M; Aoki, T; Hiroshima, M; Kitamura, K; Yanagida, T
1997-02-24
We refined scanning probe force microscopy to improve the sensitivity of force detection and control of probe position. Force sensitivity was increased by incorporating a cantilever with very low stiffness, 0.1 pN/ nm, which is over 1000-fold more flexible than is typically used in conventional atomic force microscopy. Thermal bending motions of the cantilever were reduced to less than 1 nm by exerting feed-back positioning with laser radiation pressure. The system was tested by measuring electrostatic repulsive forces or hydrophobic attractive forces in aqueous solutions. Subpiconewton intermolecular forces were resolved at controlled gaps in the nanometer range between the probe and a material surface. These levels of force and position sensitivity meet the requirements needed for future investigations of intermolecular forces between biological macromolecules such as proteins, lipids and DNA.
Dimensional models of personality: the five-factor model and the DSM-5
Trull, Timothy J.; Widiger, Thomas A.
2013-01-01
It is evident that the classification of personality disorder is shifting toward a dimensional trait model and, more specifically, the five-factor model (FFM). The purpose of this paper is to provide an overview of the FFM of personality disorder. It will begin with a description of this dimensional model of normal and abnormal personality functioning, followed by a comparison with a proposal for future revisions to DSM-5 and a discussion of its potential advantages as an integrative hierarchical model of normal and abnormal personality structure. PMID:24174888
2011-09-01
glancing angle X - ray diffraction (GAXRD), atomic force microscopy (AFM), scanning electron microscopy (SEM), and electrochemical...Emission SEM FWHM full width at half maximum GAXRD glancing angle X - ray diffraction H3COCH2CH2OH 2-methoxyethanol LiMn2O4 lithium manganese oxide...were characterized by scanning electron microscopy (SEM), X - ray diffraction (XRD), and atomic force microscopy (AFM). In addition,
NASA Technical Reports Server (NTRS)
Cantrell, John H., Jr.; Cantrell, Sean A.
2008-01-01
A comprehensive analytical model of the interaction of the cantilever tip of the atomic force microscope (AFM) with the sample surface is developed that accounts for the nonlinearity of the tip-surface interaction force. The interaction is modeled as a nonlinear spring coupled at opposite ends to linear springs representing cantilever and sample surface oscillators. The model leads to a pair of coupled nonlinear differential equations that are solved analytically using a standard iteration procedure. Solutions are obtained for the phase and amplitude signals generated by various acoustic-atomic force microscope (A-AFM) techniques including force modulation microscopy, atomic force acoustic microscopy, ultrasonic force microscopy, heterodyne force microscopy, resonant difference-frequency atomic force ultrasonic microscopy (RDF-AFUM), and the commonly used intermittent contact mode (TappingMode) generally available on AFMs. The solutions are used to obtain a quantitative measure of image contrast resulting from variations in the Young modulus of the sample for the amplitude and phase images generated by the A-AFM techniques. Application of the model to RDF-AFUM and intermittent soft contact phase images of LaRC-cp2 polyimide polymer is discussed. The model predicts variations in the Young modulus of the material of 24 percent from the RDF-AFUM image and 18 percent from the intermittent soft contact image. Both predictions are in good agreement with the literature value of 21 percent obtained from independent, macroscopic measurements of sheet polymer material.
NASA Astrophysics Data System (ADS)
Waddell, J.; Ou, R.; Capozzi, C. J.; Gupta, S.; Parker, C. A.; Gerhardt, R. A.; Seal, K.; Kalinin, S. V.; Baddorf, A. P.
2009-12-01
Composite specimens possessing polyhedral segregated network microstructures require a very small amount of nanosize filler, <1 vol %, to reach percolation because percolation occurs by accumulation of the fillers along the edges of the deformed polymer matrix particles. In this paper, electrostatic force microscopy (EFM) and conductive atomic force microscopy (C-AFM) were used to confirm the location of the nanosize fillers and the corresponding percolating paths in polymethyl methacrylate/carbon black composites. The EFM and C-AFM images revealed that the polyhedral polymer particles were coated with filler, primarily on the edges as predicted by the geometric models provided.
Ndagire, Catherine T; Muyonga, John H; Isabirye, Dan; Odur, Benard; Somda, Serge M A; Bukenya, Richard; Andrade, Juan E; Nakimbugwe, Dorothy
2018-06-04
Accurate measurement of body composition in children and adolescents is important as the quantities of fat and fat-free mass have implications for health risk. The objectives of the present study were: to determine the reliability of Fourier Transform Infrared spectroscopy (FTIR) measurements and; compare the Fat Mass (FM), Fat Free Mass (FFM) and body fat percentage (%BF) values determined by bioelectrical impedance analysis (BIA) to those determined by deuterium dilution method (DDM) to identify correlations and agreement between the two methods. A cross-sectional study was conducted among 203 children and adolescents aged 8-19 years attending schools in Kampala city, Uganda. Pearson product-moment correlation at 5% significance level was considered for assessing correlations. Bland Altman analysis was used to examine the agreement between of FTIR measurements and between estimates by DDM and BIA.. Reliability of measurements was determined by Cronbach's alpha. There was good agreement between the in vivo D 2 O saliva enrichment measurements at 3 and 4 h among the studied age groups based on Bland-Altman plots. Cronbach's alpha revealed that measurements of D 2 O saliva enrichment had very good reliability. For children and young adolescents, DDM and BIA gave similar estimates of FFM, FM, and %BF. Among older adolescents, BIA significantly over-estimated FFM and significantly under-estimated FM and %BF compared to estimates by DDM. The correlation between FFM, FM and %BF estimates by DDM and BIA was high and significant among young and older adolescents and for FFM among children. Reliability of the FTIR spectroscopy measurements was very good among the studied population. BIA is suitable for assessing body composition among children (8-9 years) and young adolescents (10-14 years) but not among older adolescents (15-19 years) in Uganda. The body composition measurements of older adolescents determined by DDM can be predicted using those provided by BIA using population-specific regression equations.
The Oxygen Consumption and Metabolic Cost of Walking and Running in Adults With Achondroplasia
Sims, David T.; Onambélé-Pearson, Gladys L.; Burden, Adrian; Payton, Carl; Morse, Christopher I.
2018-01-01
The disproportionate body mass and leg length of Achondroplasic individuals may affect their net oxygen consumption (V͘O2) and metabolic cost (C) when walking at running compared to those of average stature (controls). The aim of this study was to measure submaximal V͘O2 and C during a range of set walking speeds (SWS; 0.56 – 1.94 m⋅s-1, increment 0.28 m⋅s-1), set running speeds (SRS; 1.67 – 3.33 m⋅s-1, increment 0.28 m⋅s-1) and a self-selected walking speed (SSW). V͘O2 and C was scaled to total body mass (TBM) and fat free mass (FFM) while gait speed was scaled to leg length using Froude’s number (Fr). Achondroplasic V͘O2TBM and V͘O2FFM were on average 29 and 35% greater during SWS (P < 0.05) and 12 and 18% higher during SRS (P < 0.05) than controls, respectively. Achondroplasic CTBM and CFFM were 29 and 33% greater during SWS (P < 0.05) and 12 and 18% greater during SRS (P < 0.05) than controls, respectively. There was no difference in SSW V͘O2TBM or V͘O2FFM between groups (P > 0.05), but CTBM and CFFM at SSW were 23 and 29% higher (P < 0.05) in the Achondroplasic group compared to controls, respectively. V͘O2TBM and V͘O2FFM correlated with Fr for both groups (r = 0.984 – 0.999, P < 0.05). Leg length accounted for the majority of the higher V͘O2TBM and V͘O2FFM in the Achondroplasic group, but further work is required to explain the higher Achondroplasic CTBM and CFFM at all speeds compared to controls. New and Noteworthy: There is a leftward shift of oxygen consumption scaled to total body mass and fat free mass in Achondroplasic adults when walking and running. This is nullified when talking into account leg length. However, despite these scalars, Achondroplasic individuals have a higher walking and metabolic cost compared to age matched non-Achondroplasic individuals, suggesting biomechanical differences between the groups. PMID:29720948
Profiles of musculoskeletal development in limbs of college Olympic weightlifters and wrestlers.
Kanehisa, H; Fukunaga, T
1999-04-01
To investigate the event-related profiles of musculoskeletal development in weight-categorized athletes, we measured the cross-sectional areas (CSA) of bone and muscle in the forearm, upper arm, lower leg and thigh, using a B-mode ultrasound apparatus, in college Olympic weightlifters (OWL, n = 19) and wrestlers (WR, n = 17) and untrained men (UM, n = 24), whose body masses were within the range from 55 kg to 78 kg. Both bone and muscle CSA at all sites were significantly correlated to the two-thirds power of fat-free mass (FFM(2/3)) with correlation coefficients of 0.430-40.741 (P < 0.05) and 0.608-0.718 (P < 0.05), respectively. Moreover, there were significant correlations between bone and muscle CSA at all sites (r = 0.664-0.829, P < 0.05). Even when bone and muscle CSA were expressed relative value to FFM(2/3), both OWL and WR showed significantly greater values than UM at all sites except for the lower leg. Furthermore, the comparison of the lean (bone + muscle) CSA ratio from site to site indicated a higher distribution of lean tissues in the upper extremities in OWL and WR compared to UM. While there was no significant difference between the two athlete groups in FFM(2/3), OWL showed significantly larger values than WR in the bone CSA of the upper arm and thigh and in the muscle CSA of the lower leg and thigh. However, lean CSA ratios of the upper extremities to the lower ones were significantly higher in WR than in OWL. Thus, the present results indicated that, compared to UM, OWL and WR had a greater lean tissue CSA in limbs, especially in the upper extremities, even when the difference in FFM was normalized. Moreover, the relative distribution of lean tissues in limbs differed between the two weight-categorized athletes in spite of there being no difference in FFM, which may be attributable to their own training regimens and/or competition style.
Predictors of body composition and body energy changes in response to chronic overfeeding.
Bouchard, C; Tchernof, A; Tremblay, A
2014-02-01
We have previously shown that 24 young lean men (12 pairs of identical twins) subjected to a standardized 353 MJ (84 000 kcal) overfeeding protocol over 100 days exhibited individual differences in body weight and composition gains. The mean (+s.d.) gains in fat mass (FM) and fat-free mass (FFM) were 5.4+1.9 kg and 2.7+1.5 kg for a total body energy (BE) gain of 221+75 MJ, representing 63% of the energy surplus consumed. We report here on the most important baseline correlates of these overfeeding-induced changes with the aim of identifying biomarkers of the response. Baseline maximal oxygen uptake per kg body mass was negatively correlated with gains in weight, FM and BE (all P<0.05). Enzyme activities indicative of skeletal muscle oxidative potential correlated with gains in FM and BE (all P<0.05). Baseline thyroid-stimulating hormone levels in response to thyrotropin-releasing hormone stimulation correlated positively with changes in FM-to-FFM ratio (P<0.05). Plasma concentrations of androstenediol sulfate, dehydroepiandrosterone and 17-hydroxy pregnenolone were negatively correlated with gains in FM and BE (0.01
NASA Astrophysics Data System (ADS)
Salvage, R. O.; Neuberg, J. W.
2016-09-01
Prior to many volcanic eruptions, an acceleration in seismicity has been observed, suggesting the potential for this as a forecasting tool. The Failure Forecast Method (FFM) relates an accelerating precursor to the timing of failure by an empirical power law, with failure being defined in this context as the onset of an eruption. Previous applications of the FFM have used a wide variety of accelerating time series, often generating questionable forecasts with large misfits between data and the forecast, as well as the generation of a number of different forecasts from the same data series. Here, we show an alternative approach applying the FFM in combination with a cross correlation technique which identifies seismicity from a single active source mechanism and location at depth. Isolating a single system at depth avoids additional uncertainties introduced by averaging data over a number of different accelerating phenomena, and consequently reduces the misfit between the data and the forecast. Similar seismic waveforms were identified in the precursory accelerating seismicity to dome collapses at Soufrière Hills volcano, Montserrat in June 1997, July 2003 and February 2010. These events were specifically chosen since they represent a spectrum of collapse scenarios at this volcano. The cross correlation technique generates a five-fold increase in the number of seismic events which could be identified from continuous seismic data rather than using triggered data, thus providing a more holistic understanding of the ongoing seismicity at the time. The use of similar seismicity as a forecasting tool for collapses in 1997 and 2003 greatly improved the forecasted timing of the dome collapse, as well as improving the confidence in the forecast, thereby outperforming the classical application of the FFM. We suggest that focusing on a single active seismic system at depth allows a more accurate forecast of some of the major dome collapses from the ongoing eruption at Soufrière Hills volcano, and provides a simple addition to the well-used methodology of the FFM.
Morton, Robert W; Murphy, Kevin T; McKellar, Sean R; Schoenfeld, Brad J; Henselmans, Menno; Helms, Eric; Aragon, Alan A; Devries, Michaela C; Banfield, Laura; Krieger, James W; Phillips, Stuart M
2018-03-01
We performed a systematic review, meta-analysis and meta-regression to determine if dietary protein supplementation augments resistance exercise training (RET)-induced gains in muscle mass and strength. A systematic search of Medline, Embase, CINAHL and SportDiscus. Only randomised controlled trials with RET ≥6 weeks in duration and dietary protein supplementation. Random-effects meta-analyses and meta-regressions with four a priori determined covariates. Two-phase break point analysis was used to determine the relationship between total protein intake and changes in fat-free mass (FFM). Data from 49 studies with 1863 participants showed that dietary protein supplementation significantly (all p<0.05) increased changes (means (95% CI)) in: strength-one-repetition-maximum (2.49 kg (0.64, 4.33)), FFM (0.30 kg (0.09, 0.52)) and muscle size-muscle fibre cross-sectional area (CSA; 310 µm 2 (51, 570)) and mid-femur CSA (7.2 mm 2 (0.20, 14.30)) during periods of prolonged RET. The impact of protein supplementation on gains in FFM was reduced with increasing age (-0.01 kg (-0.02,-0.00), p=0.002) and was more effective in resistance-trained individuals (0.75 kg (0.09, 1.40), p=0.03). Protein supplementation beyond total protein intakes of 1.62 g/kg/day resulted in no further RET-induced gains in FFM. Dietary protein supplementation significantly enhanced changes in muscle strength and size during prolonged RET in healthy adults. Increasing age reduces and training experience increases the efficacy of protein supplementation during RET. With protein supplementation, protein intakes at amounts greater than ~1.6 g/kg/day do not further contribute RET-induced gains in FFM. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Glew, R H; Kassam, H; Vander Voort, J; Agaba, P A; Harkins, M; VanderJagt, D J
2004-08-01
Children in northern Nigeria and elsewhere in the hot, arid western Sahel, are at risk of having their lung function compromised by a variety of factors, including undernutrition, environmental factors (e.g. airborne pollutants such as dust and smoke from wood fires), chronic upper-respiratory tract infections, and low socioeconomic class. We were interested in using spirometry to compare the pulmonary function of Nigerian children and adolescents aged 6-18 years who were living in urban and rural settings with the corresponding standards for African-American children. A total of 183 boys and girls in the rural village of Sabon Fobur on the Jos Plateau and another 128 boys and girls in the city of Jos were tested to determine their forced vital capacity (FVC), FVC at 1 s (FVC1), and peak expiratory flow (PEF). The nutritional status of the subjects was determined by measuring the body mass index (BMI), triceps skin-fold thickness, and mid-arm circumference, and fat-free mass (FFM) and fat mass (FM) by bioelectrical impedance analysis. According to the results of anthropometry, the subjects in Sabon Fobur and Jos were lean but generally adequately nourished. The mean FVC, FVC1 and PEF values for the rural males were 1.851,1.761, and 3.521, and for the urban males they were 1.971,1.791, and 3.471, respectively. The corresponding values for the rural females were 1.791,1.701, and 3.371, and for the urban females they were 1.761,1.671, and 3.091. These values were approximately 100 per cent of the corresponding values for African-American children. In general, strong correlations were found between each of the three lung function parameters and age, weight, height (only for the males), BMI, MAC, and FFM. These results show that: (1) the lung function of Nigerian children and adolescents living in either rural or urban areas were similar and compared favorably with African-American standards, and (2) weight was as important as height in determining pulmonary function. The inclusion of FFM as an explanatory variable did notfurther increase the accuracy of the prediction, even in a population where malnutrition may be prevalent. Therefore, we conclude that measurements of height and weight are all that are required for the assessment of lung function using spirometry in Nigerian children.
Anaerobic cycling performance characteristics in prepubescent, adolescent and young adult females.
Doré, E; Bedu, M; França, N M; Van Praagh, E
2001-05-01
The purpose of this study was to determine whether the relationships between short-term power and body dimensions in young females were similar whatever the age of the individuals. A cohort of 189 prepubescent (mean age 9.5 years), adolescent (mean age 14.4 years) and young adult (mean age 18.2 years) females performed three all-out sprints on a friction-loaded cycle ergometer against three braking forces corresponding to applied loads of 25, 50 and 75 g.kg-1 body mass (BM). For each sprint, peak power including flywheel inertia was calculated. Results showed that a braking load of 75 g.kg-1 BM was too high for prepubescent and adolescent girls. Therefore, when measuring short-term cycling performance in heterogeneous female populations, a braking load of 50 g.kg-1 BM (0.495 N.kg-1 BM) is recommended. During growth, cycling peak power (CPP; defined as the highest peak power obtained during the three sprints) increased, as did total BM, fat-free mass (FFM) and lean leg volume (LLV) (P < 0.001). Analysis of covariance revealed that the slopes of the linear relationships between CPP and biometric characteristics were similar in the three groups (P > 0.7 for the CPP/BM and CPP/FFM relationships, and P > 0.2 for the CPP/LLV relationship). However, the adjusted means were always significantly higher in young women (P < 0.001) compared with both of the other groups. Although differences in performance during anaerobic cycling in growing females are primarily dependent upon body dimensions, other as yet undetermined factors may be involved during late adolescence.
NASA Astrophysics Data System (ADS)
Heinzmann, U.; Gryzia, A.; Volkmann, T.; Brechling, A.; Hoeke, V.; Glaser, T.
2014-04-01
Single molecule magnets (SMM) deposited in submonolayers and monolayers have been analyzed with respect to their structures by means of non-contact AFM (topographic as well as damping mode) and Kelvin Probe Force Microscopy with molecular resolution.
Negative Consequences of Low Energy Availability in Natural Male Bodybuilding: A Review.
Fagerberg, Petter
2018-05-03
Energy availability (EA) is a scientific concept describing how much energy is available for basic metabolic functions such as reproduction, immunity, and skeletal homeostasis. Carefully controlled studies on women have shown pathological effects of EA < 30 kcal/kg fat-free mass (FFM), and this state has been labeled low EA (LEA). Bodybuilding is a sport in which athletes compete to show muscular definition, symmetry, and low body fat (BF). The process of contest preparation in bodybuilding includes months of underfeeding, thus increasing the risk of LEA and its negative health consequences. As no well-controlled studies have been conducted in natural male bodybuilders on effects of LEA, the aim of this review was to summarize what can be extrapolated from previous relevant research findings in which EA can be calculated. The reviewed literature indicates that a prolonged EA < 25 kcal/kg FFM results in muscle loss, hormonal imbalances, psychological problems, and negatively affects the cardiovascular system when approaching the lower limits of BF (∼4%-5%) among males. Case studies on natural male bodybuilders who prepare for contest show muscle loss (>40% of total weight loss) with EA < 20 kcal/kg FFM, and in the study with the lowest observed BF (∼4 kg), major mood disturbance and hormonal imbalances co-occurred. Studies also underline the problem of BF overshoot during refeeding after extremes of LEA among males. A more tempered approach (EA > 25 kcal/kg FFM) might result in less muscle loss among natural male bodybuilders who prepare for contest, but more research is needed.
Deuterium oxide dilution and body composition in overweight and obese schoolchildren aged 6-9 years.
Bila, Wendell Costa; Freitas, André Everton de; Galdino, Alexsandro Sobreira; Ferriolli, Eduardo; Pfrimer, Karina; Lamounier, Joel Alves
2016-01-01
To correlate different methods of body composition assessment in overweight or obese schoolchildren, using deuterium oxide (D2O) dilution as a reference. Percentage of total body water (%TBW), fat free mass (%FFM), and body fat (%BF) were assessed by D2O and tetrapolar electrical bioimpedance analysis (BIA) in 54 obese and overweight students aged 6-9 years. Skinfold thickness (ST), body mass index (BMI), conicity index (CI), waist circumference (WC), waist-to-height ratio (WHtR), and waist-to-hip (WHR) ratio were also used. Mean values for body composition were 38.4%±8.4% BF, 44.9%±6.1% TBW and 61.6%±8.4% FFM. There was no significant difference in body weight, body fat mass (FM), TBW, and FFM between genders. Regarding D2O, ST underestimated %BF, and overestimated %FFM in both genders (p<0.05). BIA overestimated %TBW in the group as a whole and in males (p<0.05). The only positive and strong correlations occurred in females regarding the WC (σ=0.679), CI (r=0.634), and WHtR (r=0.666). In this sample of obese and overweight children, there were strong correlations between body composition measured by D2O and some indices and anthropometric indicators in females, but there was no positive and strong correlation of fat tissue with the indices/indicators at all ages and in both genders. Copyright © 2015 Sociedade Brasileira de Pediatria. Published by Elsevier Editora Ltda. All rights reserved.
Bosy-Westphal, Anja; Danielzik, Sandra; Becker, Christine; Geisler, Corinna; Onur, Simone; Korth, Oliver; Bührens, Frederike; Müller, Manfred J
2005-09-01
Air-displacement plethysmography (ADP) is now widely used for body composition measurement in pediatric populations. However, the manufacturer's software developed for adults leaves a potential bias for application in children and adolescents, and recent publications do not consistently use child-specific corrections. Therefore we analyzed child-specific ADP corrections with respect to quantity and etiology of bias compared with adult formulas. An optimal correction protocol is provided giving step-by-step instructions for calculations. In this study, 258 children and adolescents (143 girls and 115 boys ranging from 5 to 18 y) with a high prevalence of overweight or obesity (28.0% in girls and 22.6% in boys) were examined by ADP applying the manufacturer's software as well as published equations for child-specific corrections for surface area artifact (SAA), thoracic gas volume (TGV), and density of fat-free mass (FFM). Compared with child-specific equations for SAA, TGV, and density of FFM, the mean overestimation of the percentage of fat mass using the manufacturer's software was 10% in children and adolescents. Half of the bias derived from the use of Siri's equation not corrected for age-dependent differences in FFM density. An additional 3 and 2% of bias resulted from the application of adult equations for prediction of SAA and TGV, respectively. Different child-specific equations used to predict TGV did not differ in the percentage of fat mass. We conclude that there is a need for child-specific equations in ADP raw data analysis considering SAA, TGV, and density of FFM.
Browning, Matthew G; Bean, Melanie K; Wickham, Edmond P; Stern, Marilyn; Evans, Ronald K
2015-06-01
To evaluate the quality of weight change (change in fat mass vs fat-free mass [FFM]), changes in cardiorespiratory fitness (CRF), and frequencies of metabolic risk factors in adolescent females with obesity who either lost or gained weight following lifestyle treatment. Fifty-eight girls (mean age = 13.0 ± 1.6 years; 77% black; mean body mass index = 36.5 ± 4.5 kg/m(2)) completed a 6-month lifestyle intervention combining dietary and behavioral counseling with aerobic and resistance exercise training. We examined baseline to 6-month differences in weight (kg), body composition, CRF, and frequencies of metabolic risk factors between weight loss and weight gain groups. In the weight loss group, body weight (-4.50 ± 3.53 kg, P < .001), fat mass (-4.50 ± 2.20 kg, P < .001), and body fat percentage (-2.97% ± 1.45%, P < .001) decreased, and FFM was unchanged at 6 months. In the weight gain group, body weight (4.50 ± 2.20 kg, P < .001), fat mass (1.52 ± 3.16 kg, P < .024), and FFM (2.99 ± 2.45 kg, P < .001) increased, and body fat percentage was unchanged. Both groups improved CRF (P < .05). Frequencies of metabolic risk factors were reduced across all participants after the 6-month treatment. Participation in a weight management program might elicit health improvements in obese adolescent females who increase weight and fat mass, provided that FFM gains are sufficient to negate increases in body fat percentage. ClinicalTrials.gov: NCT00167830. Copyright © 2015 Elsevier Inc. All rights reserved.
Strength changes induced by extreme dieting and exercise in severely obese females.
Pronk, N P; Donnelly, J E; Pronk, S J
1992-04-01
Strength changes, induced by very low-calorie diet (VLCD, 520 kcal/day) alone and in combination with exercise, were determined in 109 severely obese females (46.8 +/- 4.69% fat). Experimental treatments included VLCD alone (LC, n = 40), VLCD with endurance exercise (EE, n = 23), VLCD with endurance exercise and resistance strength training (EERST, n = 23), and VLCD with resistance strength training (RST, n = 23). All subjects participated in the study for 90 days while EE, EERST, and RST exercised four times/week according to specified schedules. Results indicated significant differences for the change scores (baseline to 90 days) for bench press, knee flexion, upper body and lower body composite strength scores between RST and all other groups. RST was the only treatment that increased upper and lower body strength. No differences between groups were found for body mass losses, decrease in percent fat and fat mass. In contrast, these variables showed significant change scores for all groups. Decreases in fat-free mass (FFM) were 5.18 +/- 3.40 kg, 4.79 +/- 4.15 kg (p = 0.001), 4.64 +/- 4.23 kg, and 3.26 +/- 2.67 kg for EE, LC, RST, and EERST, respectively. These data suggest that the combination of resistance strength training and VLCD increases strength despite a loss of FFM. However, endurance exercise and VLCD do not seem to affect body mass loss or FFM loss per se. Moreover, it seems that these increases in strength may represent a training effect which might imply improved central neuromuscular function rather than muscular hypertrophy since FFM decreased in all groups.
Helms, Eric R; Zinn, Caryn; Rowlands, David S; Brown, Scott R
2014-04-01
Caloric restriction occurs when athletes attempt to reduce body fat or make weight. There is evidence that protein needs increase when athletes restrict calories or have low body fat. The aims of this review were to evaluate the effects of dietary protein on body composition in energy-restricted resistance-trained athletes and to provide protein recommendations for these athletes. Database searches were performed from earliest record to July 2013 using the terms protein, and intake, or diet, and weight, or train, or restrict, or energy, or strength, and athlete. Studies (N = 6) needed to use adult (≥ 18 yrs), energy-restricted, resistance-trained (> 6 months) humans of lower body fat (males ≤ 23% and females ≤ 35%) performing resistance training. Protein intake, fat free mass (FFM) and body fat had to be reported. Body fat percentage decreased (0.5-6.6%) in all study groups (N = 13) and FFM decreased (0.3-2.7kg) in nine of 13. Six groups gained, did not lose, or lost nonsignificant amounts of FFM. Five out of these six groups were among the highest in body fat, lowest in caloric restriction, or underwent novel resistance training stimuli. However, the one group that was not high in body fat that underwent substantial caloric restriction, without novel training stimuli, consumed the highest protein intake out of all the groups in this review (2.5-2.6g/kg). Protein needs for energy-restricted resistance-trained athletes are likely 2.3-3.1g/kg of FFM scaled upwards with severity of caloric restriction and leanness.
Scanning ion-conductance and atomic force microscope with specialized sphere-shaped nanopippettes
NASA Astrophysics Data System (ADS)
Zhukov, M. V.; Sapozhnikov, I. D.; Golubok, A. O.; Chubinskiy-Nadezhdin, V. I.; Komissarenko, F. E.; Lukashenko, S. Y.
2017-11-01
A scanning ion-conductance microscope was designed on the basis of scanning probe microscope NanoTutor. The optimal parameters of nanopipettes fabrication were found according to scanning electron microscopy diagnostics, current-distance I (Z) and current-voltage characteristics. A comparison of images of test objects, including biological samples, was carried out in the modes of optical microscopy, atomic force microscopy and scanning ion-conductance microscopy. Sphere-shaped nanopippettes probes were developed and tested to increase the stability of pipettes, reduce invasiveness and improve image quality of atomic force microscopy in tapping mode. The efficiency of sphere-shaped nanopippettes is shown.
Samuel, Douglas B; Carroll, Kathleen M; Rounsaville, Bruce J; Ball, Samuel A
2013-10-01
Although the current diagnostic manual conceptualizes personality disorders (PDs) as categorical entities, an alternative perspective is that PDs represent maladaptive extreme versions of the same traits that describe normal personality. Existing evidence indicates that normal personality traits, such as those assessed by the five-factor model (FFM), share a common structure and obtain reasonably predictable correlations with the PDs. However, very little research has investigated whether PDs are more extreme than normal personality traits. Utilizing item-response theory analyses, the authors of the current study extend previous research to demonstrate that the diagnostic criterion for borderline personality disorder and FFM neuroticism could be fit along a single latent dimension. Furthermore, the authors' findings indicate that the borderline criteria assessed the shared latent trait at a level that was more extreme (d = 1.11) than FFM neuroticism. This finding provides further evidence for dimensional understanding of personality pathology and suggests that a trait model in DSM-5 should span normal and abnormal personality functioning, but focus on the extremes of these common traits.
Eades, Allison; Segal, Daniel L; Coolidge, Frederick L
2018-01-01
The objective of this study was to explore the role of personality and self-esteem in later life within two established risk factors for suicidal ideation (SI)-Thwarted Belongingness (TB) and Perceived Burdensomeness (PB). The data about personality (i.e., Five Factor Model [FFM] and Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition Personality Disorders [PD]), self-esteem, TB, PB, and SI were collected from 102 community-dwelling older adults and analyzed using bivariate and multivariate techniques. All FFM domains and most PD traits were significantly correlated with SI, TB, and PB. Furthermore, FFM and PD traits explained a significant and meaningful amount of variance of SI, TB, and PB. Self-esteem demonstrated strong negative relationships with SI, TB, and PB. Personality features and self-esteem are important associated features for SI, TB, and PB. Clinicians should consider this information when assessing and evaluating for suicidal risk among older adults. The findings also highlight the need to consider personality traits in developing prevention strategies.
Van Dijk, Fiona E; Mostert, Jeannette; Glennon, Jeffrey; Onnink, Marten; Dammers, Janneke; Vasquez, Alejandro Arias; Kan, Cornelis; Verkes, Robbert Jan; Hoogman, Martine; Franke, Barbara; Buitelaar, Jan K
2017-12-01
Deficits in multiple neuropsychological domains and specific personality profiles have been observed in attention-deficit/hyperactivity disorder (ADHD). In this study we investigated whether personality traits are related to neurocognitive profiles in adults with ADHD. Neuropsychological performance and Five Factor Model (FFM) personality traits were measured in adults with ADHD (n = 133) and healthy controls (n = 132). Three neuropsychological profiles, derived from previous community detection analyses, were investigated for personality trait differences. Irrespective of cognitive profile, participants with ADHD showed significantly higher Neuroticism and lower Extraversion, Agreeableness, and Conscientiousness than healthy controls. Only the FFM personality factor Openness differed significantly between the three profiles. Higher Openness was more common in those with aberrant attention and inhibition than those with increased delay discounting and atypical working memory / verbal fluency. The results suggest that the personality trait Openness, but not any other FFM factor, is linked to neurocognitive profiles in ADHD. ADHD symptoms rather than profiles of cognitive impairment have associations with personality traits. Copyright © 2017 Elsevier B.V. All rights reserved.
FFM description of the triarchic conceptualization of psychopathy in men and women.
Poy, Rosario; Segarra, Pilar; Esteller, Àngels; López, Raúl; Moltó, Javier
2014-03-01
This study examined differential associations between phenotypic domains of the triarchic conceptualization of psychopathy (boldness, meanness, and disinhibition; Patrick, Fowles, & Krueger, 2009), as assessed by the Triarchic Psychopathy Measure (Patrick, 2010b), and the five-factor model (FFM) of normal personality, as indexed by the Revised NEO Personality Inventory (Costa & McCrae, 1992; Spanish version, Costa & McCrae, 1999), in 349 undergraduates (96 men). Distinctive patterns of correlations for psychopathy components did not differ significantly across gender, although relations between Meanness and Agreeableness were stronger for men than for women. Our findings are largely consistent with the conceptualization of psychopathy in terms of FFM constructs and provide discriminant evidence in support of all 3 triarchic domains. Thus, meanness is marked by low Agreeableness and some degree of low Conscientiousness, whereas disinhibition is characterized both by low Conscientiousness and low Agreeableness along with high Neuroticism and Extraversion. Notably, the constellation of low Neuroticism, high Extraversion, and high Openness, with facets of low Agreeableness, supports the idea that boldness encompasses some adaptive features of psychological adjustment while depicting the interpersonal features of psychopathy. 2014 APA
Universal Representation of the H-like Spectral Line Shapes
NASA Astrophysics Data System (ADS)
Bureyeva, L.
2009-05-01
A universal approach for the calculation of Rydberg atom line shapes in plasmas is developed. It is based on analytical formulas for the intensity distribution in radiation transitions n→n' between highly excited atomic states with large values of principal quantum numbers n, n'≫1, with Δ n = n-n'≪n, and on the Frequency Fluctuation Model (FFM) to account of electron and ion thermal motion effects. The theory allows to describe a transition from the static to the impact broadening domains for every hydrogen spectral line. A new approach to extremely fast line shape calculations with account of charged particle dynamic effect was proposed. The approach is based on the close analogy between the static-impact broadening transition in the spectral line shape theory and the Doppler-Lorentz broadening in the Dicke narrowing effect theory. The precision of the new approach was tested by the comparison of hydrogen-alpha and beta line shapes calculations with the FFM results. The excellent agreement was discovered, the computer time decreased two orders of magnitudes as compared with the FFM.
Rollock, David; Lui, P Priscilla
2016-10-01
This study examined measurement invariance of the NEO Five-Factor Inventory (NEO-FFI), assessing the five-factor model (FFM) of personality among Euro American (N = 290) and Asian international (N = 301) students (47.8% women, Mage = 19.69 years). The full 60-item NEO-FFI data fit the expected five-factor structure for both groups using exploratory structural equation modeling, and achieved configural invariance. Only 37 items significantly loaded onto the FFM-theorized factors for both groups and demonstrated metric invariance. Threshold invariance was not supported with this reduced item set. Groups differed the most in the item-factor relationships for Extraversion and Agreeableness, as well as in response styles. Asian internationals were more likely to use midpoint responses than Euro Americans. While the FFM can characterize broad nomothetic patterns of personality traits, metric invariance with only the subset of NEO-FFI items identified limits direct group comparisons of correlation coefficients among personality domains and with other constructs, and of mean differences on personality domains. © The Author(s) 2015.
Gysin, Urs; Glatzel, Thilo; Schmölzer, Thomas; Schöner, Adolf; Reshanov, Sergey; Bartolf, Holger; Meyer, Ernst
2015-01-01
The resolution in electrostatic force microscopy (EFM), a descendant of atomic force microscopy (AFM), has reached nanometre dimensions, necessary to investigate integrated circuits in modern electronic devices. However, the characterization of conducting or semiconducting power devices with EFM methods requires an accurate and reliable technique from the nanometre up to the micrometre scale. For high force sensitivity it is indispensable to operate the microscope under high to ultra-high vacuum (UHV) conditions to suppress viscous damping of the sensor. Furthermore, UHV environment allows for the analysis of clean surfaces under controlled environmental conditions. Because of these requirements we built a large area scanning probe microscope operating under UHV conditions at room temperature allowing to perform various electrical measurements, such as Kelvin probe force microscopy, scanning capacitance force microscopy, scanning spreading resistance microscopy, and also electrostatic force microscopy at higher harmonics. The instrument incorporates beside a standard beam deflection detection system a closed loop scanner with a scan range of 100 μm in lateral and 25 μm in vertical direction as well as an additional fibre optics. This enables the illumination of the tip-sample interface for optically excited measurements such as local surface photo voltage detection. We present Kelvin probe force microscopy (KPFM) measurements before and after sputtering of a copper alloy with chromium grains used as electrical contact surface in ultra-high power switches. In addition, we discuss KPFM measurements on cross sections of cleaved silicon carbide structures: a calibration layer sample and a power rectifier. To demonstrate the benefit of surface photo voltage measurements, we analysed the contact potential difference of a silicon carbide p/n-junction under illumination.
Atomic force microscopy as a tool for the investigation of living cells.
Morkvėnaitė-Vilkončienė, Inga; Ramanavičienė, Almira; Ramanavičius, Arūnas
2013-01-01
Atomic force microscopy is a valuable and useful tool for the imaging and investigation of living cells in their natural environment at high resolution. Procedures applied to living cell preparation before measurements should be adapted individually for different kinds of cells and for the desired measurement technique. Different ways of cell immobilization, such as chemical fixation on the surface, entrapment in the pores of a membrane, or growing them directly on glass cover slips or on plastic substrates, result in the distortion or appearance of artifacts in atomic force microscopy images. Cell fixation allows the multiple use of samples and storage for a prolonged period; it also increases the resolution of imaging. Different atomic force microscopy modes are used for the imaging and analysis of living cells. The contact mode is the best for cell imaging because of high resolution, but it is usually based on the following: (i) image formation at low interaction force, (ii) low scanning speed, and (iii) usage of "soft," low resolution cantilevers. The tapping mode allows a cell to behave like a very solid material, and destructive shear forces are minimized, but imaging in liquid is difficult. The force spectroscopy mode is used for measuring the mechanical properties of cells; however, obtained results strongly depend on the cell fixation method. In this paper, the application of 3 atomic force microscopy modes including (i) contact, (ii) tapping, and (iii) force spectroscopy for the investigation of cells is described. The possibilities of cell preparation for the measurements, imaging, and determination of mechanical properties of cells are provided. The applicability of atomic force microscopy to diagnostics and other biomedical purposes is discussed.
2016-07-07
engineering (CCE) methods, such as aggregate crater fill and laying replacement concrete. [RAND] • Level 2: CCE plus the use of folded fiberglass ( FFM ...or aluminum mats (e.g., AM-2). [RAND] • Level 3: CCE, FFMs , and Critical Runway Assessment and Repair (CRATR) teams. [RAND] Recovery. In air...CSG carrier strike group CTA central terminal area DCA defensive counterair DoD U.S. Department of Defense FFM folded fiber mats FOB forward
Interpretation of frequency modulation atomic force microscopy in terms of fractional calculus
NASA Astrophysics Data System (ADS)
Sader, John E.; Jarvis, Suzanne P.
2004-07-01
It is widely recognized that small amplitude frequency modulation atomic force microscopy probes the derivative of the interaction force between tip and sample. For large amplitudes, however, such a physical connection is currently lacking, although it has been observed that the frequency shift presents a quantity intermediate to the interaction force and energy for certain force laws. Here we prove that these observations are a universal property of large amplitude frequency modulation atomic force microscopy, by establishing that the frequency shift is proportional to the half-fractional integral of the force, regardless of the force law. This finding indicates that frequency modulation atomic force microscopy can be interpreted as a fractional differential operator, where the order of the derivative/integral is dictated by the oscillation amplitude. We also establish that the measured frequency shift varies systematically from a probe of the force gradient for small oscillation amplitudes, through to the measurement of a quantity intermediate to the force and energy (the half-fractional integral of the force) for large oscillation amplitudes. This has significant implications to measurement sensitivity, since integrating the force will smooth its behavior, while differentiating it will enhance variations. This highlights the importance in choice of oscillation amplitude when wishing to optimize the sensitivity of force spectroscopy measurements to short-range interactions and consequently imaging with the highest possible resolution.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Solares, Santiago D.
The final project report covering the period 7/1/14-6/30/17 provides an overview of the technical accomplishments in the areas of (i) fundamental viscoelasticity, (ii) multifrequency atomic force microscopy, and (iii) characterization of energy-relevant materials with atomic force microscopy. A list of publications supported by the project is also provided.
Nanoscale Visualization of Elastic Inhomogeneities at TiN Coatings Using Ultrasonic Force Microscopy
NASA Astrophysics Data System (ADS)
Hidalgo, J. A.; Montero-Ocampo, C.; Cuberes, M. T.
2009-12-01
Ultrasonic force microscopy has been applied to the characterization of titanium nitride coatings deposited by physical vapor deposition dc magnetron sputtering on stainless steel substrates. The titanium nitride layers exhibit a rich variety of elastic contrast in the ultrasonic force microscopy images. Nanoscale inhomogeneities in stiffness on the titanium nitride films have been attributed to softer substoichiometric titanium nitride species and/or trapped subsurface gas. The results show that increasing the sputtering power at the Ti cathode increases the elastic homogeneity of the titanium nitride layers on the nanometer scale. Ultrasonic force microscopy elastic mapping on titanium nitride layers demonstrates the capability of the technique to provide information of high value for the engineering of improved coatings.
Skinner, Jared W; Otzel, Dana M; Bowser, Andrew; Nargi, Daniel; Agarwal, Sanjay; Peterson, Mark D; Zou, Baiming; Borst, Stephen E; Yarrow, Joshua F
2018-06-01
Inconsistent fat-free mass (FFM) and muscle strength responses have been reported in randomized clinical trials (RCTs) administering testosterone replacement therapy (TRT) to middle-aged and older men. Our objective was to conduct a meta-analysis to determine whether TRT improves FFM and muscle strength in middle-aged and older men and whether the muscular responses vary by TRT administration route. Systematic literature searches of MEDLINE/PubMed and the Cochrane Library were conducted from inception through 31 March 2017 to identify double-blind RCTs that compared intramuscular or transdermal TRT vs. placebo and that reported assessments of FFM or upper-extremity or lower-extremity strength. Studies were identified, and data were extracted and validated by three investigators, with disagreement resolved by consensus. Using a random effects model, individual effect sizes (ESs) were determined from 31 RCTs reporting FFM (sample size: n = 1213 TRT, n = 1168 placebo) and 17 reporting upper-extremity or lower-extremity strength (n = 2572 TRT, n = 2523 placebo). Heterogeneity was examined, and sensitivity analyses were performed. When administration routes were collectively assessed, TRT was associated with increases in FFM [ES = 1.20 ± 0.15 (95% CI: 0.91, 1.49)], total body strength [ES = 0.90 ± 0.12 (0.67, 1.14)], lower-extremity strength [ES = 0.77 ± 0.16 (0.45, 1.08)], and upper-extremity strength [ES = 1.13 ± 0.18 (0.78, 1.47)] (P < 0.001 for all). When administration routes were evaluated separately, the ES magnitudes were larger and the per cent changes were 3-5 times greater for intramuscular TRT than for transdermal formulations vs. respective placebos, for all outcomes evaluated. Specifically, intramuscular TRT was associated with a 5.7% increase in FFM [ES = 1.49 ± 0.18 (1.13, 1.84)] and 10-13% increases in total body strength [ES = 1.39 ± 0.12 (1.15, 1.63)], lower-extremity strength [ES = 1.39 ± 0.17 (1.07, 1.72)], and upper-extremity strength [ES = 1.37 ± 0.17 (1.03, 1.70)] (P < 0.001 for all). In comparison, transdermal TRT was associated with only a 1.7% increase in FFM [ES = 0.98 ± 0.21 (0.58, 1.39)] and only 2-5% increases in total body [ES = 0.55 ± 0.17 (0.22, 0.88)] and upper-extremity strength [ES = 0.97 ± 0.24 (0.50, 1.45)] (P < 0.001). Interestingly, transdermal TRT produced no change in lower-extremity strength vs. placebo [ES = 0.26 ± 0.23 (-0.19, 0.70), P = 0.26]. Subanalyses of RCTs limiting enrolment to men ≥60 years of age produced similar results. Intramuscular TRT is more effective than transdermal formulations at increasing LBM and improving muscle strength in middle-aged and older men, particularly in the lower extremities. © 2018 The Authors. Journal of Cachexia, Sarcopenia and Muscle published by John Wiley & Sons Ltd on behalf of the Society on Sarcopenia, Cachexia and Wasting Disorders.
Skinner, Jared W.; Otzel, Dana M.; Bowser, Andrew; Nargi, Daniel; Agarwal, Sanjay; Peterson, Mark D.; Zou, Baiming; Borst, Stephen E.
2018-01-01
Abstract Background Inconsistent fat‐free mass (FFM) and muscle strength responses have been reported in randomized clinical trials (RCTs) administering testosterone replacement therapy (TRT) to middle‐aged and older men. Our objective was to conduct a meta‐analysis to determine whether TRT improves FFM and muscle strength in middle‐aged and older men and whether the muscular responses vary by TRT administration route. Methods Systematic literature searches of MEDLINE/PubMed and the Cochrane Library were conducted from inception through 31 March 2017 to identify double‐blind RCTs that compared intramuscular or transdermal TRT vs. placebo and that reported assessments of FFM or upper‐extremity or lower‐extremity strength. Studies were identified, and data were extracted and validated by three investigators, with disagreement resolved by consensus. Using a random effects model, individual effect sizes (ESs) were determined from 31 RCTs reporting FFM (sample size: n = 1213 TRT, n = 1168 placebo) and 17 reporting upper‐extremity or lower‐extremity strength (n = 2572 TRT, n = 2523 placebo). Heterogeneity was examined, and sensitivity analyses were performed. Results When administration routes were collectively assessed, TRT was associated with increases in FFM [ES = 1.20 ± 0.15 (95% CI: 0.91, 1.49)], total body strength [ES = 0.90 ± 0.12 (0.67, 1.14)], lower‐extremity strength [ES = 0.77 ± 0.16 (0.45, 1.08)], and upper‐extremity strength [ES = 1.13 ± 0.18 (0.78, 1.47)] (P < 0.001 for all). When administration routes were evaluated separately, the ES magnitudes were larger and the per cent changes were 3–5 times greater for intramuscular TRT than for transdermal formulations vs. respective placebos, for all outcomes evaluated. Specifically, intramuscular TRT was associated with a 5.7% increase in FFM [ES = 1.49 ± 0.18 (1.13, 1.84)] and 10–13% increases in total body strength [ES = 1.39 ± 0.12 (1.15, 1.63)], lower‐extremity strength [ES = 1.39 ± 0.17 (1.07, 1.72)], and upper‐extremity strength [ES = 1.37 ± 0.17 (1.03, 1.70)] (P < 0.001 for all). In comparison, transdermal TRT was associated with only a 1.7% increase in FFM [ES = 0.98 ± 0.21 (0.58, 1.39)] and only 2–5% increases in total body [ES = 0.55 ± 0.17 (0.22, 0.88)] and upper‐extremity strength [ES = 0.97 ± 0.24 (0.50, 1.45)] (P < 0.001). Interestingly, transdermal TRT produced no change in lower‐extremity strength vs. placebo [ES = 0.26 ± 0.23 (−0.19, 0.70), P = 0.26]. Subanalyses of RCTs limiting enrolment to men ≥60 years of age produced similar results. Conclusions Intramuscular TRT is more effective than transdermal formulations at increasing LBM and improving muscle strength in middle‐aged and older men, particularly in the lower extremities. PMID:29542875
Wang, Ji-Guang; Zhang, Yi; Chen, Han-E; Li, Yan; Cheng, Xiao-Guang; Xu, Li; Guo, Zhe; Zhao, Xing-Shan; Sato, Tetsuya; Cao, Qi-Yun; Chen, Ke-Min; Li, Biao
2013-01-01
We compared a 4-limb bioelectrical impedance analysis (BIA) system, HBF 359 (Omron), and a 2-limb foot-to-foot device, BC 532 (Tanita), with the standard dual energy X-ray absorptiometry (DXA) and magnetic resonance imaging (MRI) methods for the measurement of body fat percentage (BF), skeletal muscle mass percentage (SMM, or fat-free mass [FFM] for BC 532), and visceral fat level (VF). Body composition was measured in 200 healthy volunteers (100 men and 100 women, mean age 48 years) by HBF 359 and BC 532 and by DXA and MRI. The agreement was assessed by correlation analysis and paired t-test. The correlation coefficients between BIA and DXA or MRI ranged from 0.71 to 0.89 for BF, SMM, and VF by HBF 359 and from 0.77 to 0.90 for BF, FFM, and VF by BC 532 in all subjects and in men and women separately (p < 0.001 for all). Compared with DXA, HBF 359 significantly (p < 0.001) underestimated BF by -5.8% in men and -9.6% in women. Compared with MRI, the corresponding underestimatons (negative) or overestimations (positive) by HBF 359 in men and women were, respectively, +1.9% (p = 0.02) and +1.7% (p = 0.10) for SMM, and +13.3% (p < 0.001) and -8.5% (p = 0.006), for VF. The corresponding values by BC 532 in men and women were -10.7 and -6.2% for BF, -1.4 and -2.5% for FFM, and +20.4 and -18.0% for VF. The BIA devices are accurate in the estimation of body composition, especially skeletal muscle mass or FFM.
Escribano, J; Luque, V; Ferre, N; Mendez-Riera, G; Koletzko, B; Grote, V; Demmelmair, H; Bluck, L; Wright, A; Closa-Monasterolo, R
2012-04-01
Higher protein intake during the first year of life is associated with increased weight gain velocity and body mass index (BMI). However, the relationship of protein intake and weight gain velocity with body composition is unclear. To assess if the increases in weight gain velocity and BMI induced by protein intake early in life are related to an increase in fat or fat-free mass. In all, 41 infants randomized at birth to a higher or lower protein content formula (HP=17 and LP=24, respectively) and 25 breastfed infants were included. Anthropometric measures were assessed at baseline, 6, 12 and 24 months, and fat-free mass (FFM) and fat mass (FM) were assessed by isotope dilution at 6 months. Weight gain velocity (g per month) during the first 6 months of life was significantly higher among HP infants (807.8 (±93.8) vs 724.2 (±110.0) (P=0.015)). Weight gain velocity strongly correlated with FM z-score (r=0.564, P<0.001) but showed no association with FFM z-scores. FFM showed no association with BMI. Nevertheless, FM strongly correlated with BMI at 6, 12 and 24 months (r=0.475, P<0.001; r=0.332, P=0.007 and r=0.247, P=0.051, respectively). FFM and FM z-scores did not differ significantly between HP and LP infants (0.32±1.75 vs -0.31±1.17 and 0.54±2.81 vs -0.02±1.65, respectively). Our findings support the hypothesis that higher protein intakes early in life are associated with faster weight gain and in turn to higher adiposity. This mechanism could be a determinant factor for later obesity risk.
Physical activity and body composition changes during military service.
Mikkola, Ilona; Jokelainen, Jari J; Timonen, Markku J; Härkönen, Pirjo K; Saastamoinen, Eero; Laakso, Mauri A; Peitso, Ari J; Juuti, Anna-Kaisa; Keinänen-Kiukaanniemi, Sirkka M; Mäkinen, Tiina M
2009-09-01
To examine how body composition changes in different body mass index (BMI) categories among young Finnish men during military service, which is associated with marked changes in diet and physical activity. In addition, this study examined how reported previous physical activity affected the body composition changes. Altogether 1003 men (19 yr) were followed throughout their military service (6-12 months). Height, weight, BMI, waist circumference, and waist-to-hip ratio (WHR) were recorded. Previous physical activity was assessed at the beginning of the service by a questionnaire. Body composition was measured by bioelectrical impedance assessments (BIA) at the beginning and at the end of the service. The measured parameters were fat mass (FM), fat percentage (fat %), fat-free mass (FFM), visceral fat area (VFA), lean body mass (LBM), and skeletal muscle mass (SMM). On average, military training decreased weight by 0.7%, FM by 9.7%, fat % by 6.6%, and VFA by 43.4%. FFM increased by 1.3%, LBM by 1.2%, and SMM by 1.7%. The group of underweight and normal-weight men gained weight, FM, and FFM, whereas overweight and obese men lost weight and FM and gained FFM. FM was most reduced in the groups of overweight (20.8%) and obese (24.9%) men. The amount of VFA was reduced in all BMI groups (38%-44%). Among overweight men who reported being inactive previous to the military service, more beneficial changes in body composition were observed compared with those who reported being physically active. The lifestyle changes associated with military service markedly reduce fat tissue and increase the amount of lean tissue. These beneficial changes are prominent among previously inactive subjects with high BMI.
Zhu, F; Kuhlmann, M K; Kaysen, G A; Sarkar, S; Kaitwatcharachai, C; Khilnani, R; Stevens, L; Leonard, E F; Wang, J; Heymsfield, S; Levin, N W
2006-02-01
Discrepancies in body fluid estimates between segmental bioimpedance spectroscopy (SBIS) and gold-standard methods may be due to the use of a uniform value of tissue resistivity to compute extracellular fluid volume (ECV) and intracellular fluid volume (ICV). Discrepancies may also arise from the exclusion of fluid volumes of hands, feet, neck, and head from measurements due to electrode positions. The aim of this study was to define the specific resistivity of various body segments and to use those values for computation of ECV and ICV along with a correction for unmeasured fluid volumes. Twenty-nine maintenance hemodialysis patients (16 men) underwent body composition analysis including whole body MRI, whole body potassium (40K) content, deuterium, and sodium bromide dilution, and segmental and wrist-to-ankle bioimpedance spectroscopy, all performed on the same day before a hemodialysis. Segment-specific resistivity was determined from segmental fat-free mass (FFM; by MRI), hydration status of FFM (by deuterium and sodium bromide), tissue resistance (by SBIS), and segment length. Segmental FFM was higher and extracellular hydration of FFM was lower in men compared with women. Segment-specific resistivity values for arm, trunk, and leg all differed from the uniform resistivity used in traditional SBIS algorithms. Estimates for whole body ECV, ICV, and total body water from SBIS using segmental instead of uniform resistivity values and after adjustment for unmeasured fluid volumes of the body did not differ significantly from gold-standard measures. The uniform tissue resistivity values used in traditional SBIS algorithms result in underestimation of ECV, ICV, and total body water. Use of segmental resistivity values combined with adjustment for body volumes that are neglected by traditional SBIS technique significantly improves estimations of body fluid volume in hemodialysis patients.
The Eysenckian personality factors and their correlations with academic performance.
Poropat, Arthur E
2011-03-01
BACKGROUND. The relationship between personality and academic performance has long been explored, and a recent meta-analysis established that measures of the five-factor model (FFM) dimension of Conscientiousness have similar validity to intelligence measures. Although currently dominant, the FFM is only one of the currently accepted models of personality, and has limited theoretical support. In contrast, the Eysenckian personality model was developed to assess a specific theoretical model and is still commonly used in educational settings and research. AIMS. This meta-analysis assessed the validity of the Eysenckian personality measures for predicting academic performance. SAMPLE. Statistics were obtained for correlations with Psychoticism, Extraversion, and Neuroticism (20-23 samples; N from 8,013 to 9,191), with smaller aggregates for the Lie scale (7 samples; N= 3,910). METHODS. The Hunter-Schmidt random effects method was used to estimate population correlations between the Eysenckian personality measures and academic performance. Moderating effects were tested using weighted least squares regression. RESULTS. Significant but modest validities were reported for each scale. Neuroticism and Extraversion had relationships with academic performance that were consistent with previous findings, while Psychoticism appears to be linked to academic performance because of its association with FFM Conscientiousness. Age and educational level moderated correlations with Neuroticism and Extraversion, and gender had no moderating effect. Correlations varied significantly based on the measurement instrument used. CONCLUSIONS. The Eysenckian scales do not add to the prediction of academic performance beyond that provided by FFM scales. Several measurement problems afflict the Eysenckian scales, including low to poor internal reliability and complex factor structures. In particular, the measurement and validity problems of Psychoticism mean its continued use in academic settings is unjustified. © 2010 The Author. British Journal of Educational Psychology. © 2010 The British Psychological Society.
Mok, Elise; Eléouet-Da Violante, Catherine; Daubrosse, Christel; Gottrand, Frédéric; Rigal, Odile; Fontan, Jean-Eudes; Cuisset, Jean-Marie; Guilhot, Joëlle; Hankard, Régis
2006-04-01
Glutamine has been shown to acutely decrease whole-body protein degradation in Duchenne muscular dystrophy (DMD). To improve nutritional support in DMD, we tested whether oral supplementation with glutamine for 10 d decreased whole-body protein degradation significantly more than did an isonitrogenous amino acid control mixture. Twenty-six boys with DMD were included in this randomized, double-blind parallel study; they received an oral supplement of either glutamine (0.5 g . kg(-1) . d(-1)) or an isonitrogenous, nonspecific amino acid mixture (0.8 g . kg(-1) . d(-1)) for 10 d. The subjects in each group were not clinically different at entry. Leucine and glutamine metabolisms were estimated in the postabsorptive state by using a primed continuous intravenous infusion of [1-(13)C]leucine and [2-(15)N]glutamine before and 10 d after supplementation. A significant effect of time was observed on estimates of whole-body protein degradation. A significant (P < 0.05) decrease in the rate of leucine appearance (an index of whole-body protein degradation) was observed after both glutamine and isonitrogenous amino acid supplementation [x +/-SEM: 136 +/- 9 to 124 +/- 6 micromol . kg fat-free mass (FFM)(-1) . h(-1) for glutamine and 136 +/- 6 to 131 +/- 8 micromol . kg FFM(-1) . h(-1) for amino acids]. A significant (P < 0.05) decrease in endogenous glutamine due to protein breakdown was also observed (91 +/- 6 to 83 +/- 4 micromol . kg FFM(-1) . h(-1) for glutamine and 91 +/- 4 to 88 +/- 5 micromol . kg FFM(-1) . h(-1) for amino acids). The decrease in the estimates of whole-body protein degradation did not differ significantly between the 2 supplemental groups. Oral glutamine or amino acid supplementation over 10 d equally inhibits whole-body protein degradation in DMD.
Amaral, Josária F.; Alvim, Felipe C.; Castro, Eliane A.; Doimo, Leonice A.; Silva, Marcus V.; Novo, José M.
2014-01-01
Background Aging is a multifactorial process that leads to changes in the quantity and quality of skeletal muscle and contributes to decreased levels of muscle strength. Objective This study sought to investigate whether the isometric muscle strength, fat-free mass (FFM) and power of the electromyographic (EMG) signal of the upper and lower limbs of women are similarly affected by aging. Method The sample consisted of 63 women, who were subdivided into three groups (young (YO) n=33, 24.7±3.5 years; middle age (MA) n=15, 58.6±4.2 years; and older adults (OA). n=15, 72.0±4.2 years). Isometric strength was recorded simultaneously with the capture of the electrical activity of the flexor muscles of the fingers and the vastus lateralis during handgrip and knee extension tests, respectively. FFM was assessed using dual-energy X-ray absorptiometry. Results The handgrip strength measurements were similar among groups (p=0.523), whereas the FFM of the upper limbs was lower in group OA compared to group YO (p=0.108). The RMSn values of the hand flexors were similar among groups (p=0.754). However, the strength of the knee extensors, the FFM of the lower limbs and the RMSn values of the vastus lateralis were lower in groups MA (p=0.014, p=0.006 and p=0.013, respectively) and OA (p=0.000, p=0.000 and p<0.000, respectively) compared to group YO. Conclusions The results of this study demonstrate that changes in isometric muscle strength in MLG and electromyographic activity of the lower limbs are more pronounced with the aging process of the upper limb. PMID:24676705
Suzuki, Takakuni; Samuel, Douglas B; Pahlen, Shandell; Krueger, Robert F
2015-05-01
Over the past two decades, evidence has suggested that personality disorders (PDs) can be conceptualized as extreme, maladaptive variants of general personality dimensions, rather than discrete categorical entities. Recognizing this literature, the Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition (DSM-5) alternative PD model in Section III defines PDs partially through 25 maladaptive traits that fall within 5 domains. Empirical evidence based on the self-report measure of these traits, the Personality Inventory for DSM-5 (PID-5), suggests that these five higher-order domains share a structure and correlate in meaningful ways with the five-factor model (FFM) of general personality. In the current study, item response theory was used to compare the DSM-5 alternative PD model traits to those from a normative FFM inventory (the International Personality Item Pool-NEO [IPIP-NEO]) in terms of their measurement precision along the latent dimensions. Within a combined sample of 3,517 participants, results strongly supported the conclusion that the DSM-5 alternative PD model traits and IPIP-NEO traits are complimentary measures of 4 of the 5 FFM domains (with perhaps the exception of openness to experience vs. psychoticism). Importantly, the two measures yield largely overlapping information curves on these four domains. Differences that did emerge suggested that the PID-5 scales generally have higher thresholds and provide more information at the upper levels, whereas the IPIP-NEO generally had an advantage at the lower levels. These results support the general conceptualization that 4 domains of the DSM-5 alternative PD model traits are maladaptive, extreme versions of the FFM. (PsycINFO Database Record (c) 2015 APA, all rights reserved).
Patel, Harnish P; Syddall, Holly Emma; Jameson, Karen; Robinson, Sian; Denison, Hayley; Roberts, Helen C; Edwards, Mark; Dennison, Elaine; Cooper, Cyrus; Aihie Sayer, Avan
2013-05-01
sarcopenia is associated with adverse health outcomes. The aim of this study was to describe the prevalence of sarcopenia in community-dwelling older people in the UK using the European Working Group on Sarcopenia in Older People (EWGSOP) consensus definition. we applied the EWGSOP definition to 103 community-dwelling men participating in the Hertfordshire Sarcopenia Study (HSS) using both the lowest third of dual-energy X-ray absorptiometry (DXA) lean mass (LM) and the lowest third of skin-fold-based fat-free mass (FFM) as markers of low muscle mass. We also used the FFM approach among 765 male and 1,022 female participants in the Hertfordshire Cohort Study (HCS). Body size, physical performance and self-reported health were compared in participants with and without sarcopenia. the prevalence of sarcopenia in HSS men (mean age 73 years) was 6.8% and 7.8% when using the lowest third of DXA LM and FFM, respectively. DXA LM and FFM were highly correlated (0.91, P < 0.001). The prevalence of sarcopenia among the HCS men and women (mean age 67 years) was 4.6% and 7.9%, respectively. HSS and HCS participants with sarcopenia were shorter, weighed less and had worse physical performance. HCS men and women with sarcopenia had poorer self-reported general health and physical functioning scores. this is one of the first studies to describe the prevalence of sarcopenia in UK community-dwelling older people. The EWGSOP consensus definition was of practical use for sarcopenia case finding. The next step is to use this consensus definition in other ageing cohorts and among older people in a range of health-care settings.
The Relationship Between Body Composition and Anaerobic Performance of Elite Young Wrestlers
Vardar, Selma Arzu; Tezel, Selin; Öztürk, Levent; Kaya, Oktay
2007-01-01
The purpose of the present study was to investigate the relationship between body composition and anaerobic performance in young elite wrestlers. Method: Eight female (age = 16.2 ± 1.1 yrs) and 8 male (age = 17.3 ± 0.9 yrs) wrestlers from the Turkish cadet and junior national team participated in this study. Fat free mass (FFM) and percent fat mass (%FM) were carried out through electric bioimpedance. Anaerobic performance was assessed by the Wingate test (load was calculated as 0.090 kg x.kg-1 body mass). FFM was greater in male wrestlers [65.4 ± 12.3 (kg)] than female wrestlers (45.1 ± 4.6 (kg) p < 0.01). %FM was lower in male wrestlers (9.7 ± 6.3) than female wrestlers (18.5 ± 2.8; p < 0.01). Peak power was significantly higher in male wrestlers than female wrestlers (8.5 ± 1.0 W·kg-1 vs. 6.8 ± 0.6 W·kg-1; p < 0.01). Mean power was significantly correlated with FFM in both genders (r = 0.73 p < 0.05 in female; r= 0.90 p < 0.05 in male). No relationship was obtained between anaerobic parameters and %FM. In conclusion, our result demonstrated no association between anaerobic parameters and %FM. Wrestlers and their coaches should take into account FFM rather than %FM for higher anaerobic performance. Key points Mean power and fat free mass association was obtained from both genders. Anaerobic performance parameters obtained from Wingate Test were positively associated with fat free mass but not % fat mass in elite young wrestlers. % FM values were 18.5 in young female wrestlers, and it was 9.7 in male wrestlers. PMID:24198701
Effect of very low calorie diet on body composition and exercise response in sedentary women.
Eston, R G; Shephard, S; Kreitzman, S; Coxon, A; Brodie, D A; Lamb, K L; Baltzopoulos, V
1992-01-01
The effect of very low calorie diet (VLCD) on fat-free mass (FFM) and physiological response to exercise is a topic of current interest. Ten moderately obese women (aged 23-57 years) received VLCD (1695 kJ.day-1) for 6 weeks. FFM, estimated by four conventional techniques, and heart rate (fc), blood lactate (la(b)), mean arterial pressure (MAP), respiratory exchange ratio (R) and rating of perceived exertion (RPE) were measured during a submaximal cycle ergometry test 1 week before, in the 2nd and 6th week, and 1 week after VLCD treatment. Strength and muscular endurance of the quadriceps and hamstrings were tested by isokinetic dynamometry. The 11.5-kg reduction in body mass was approximately 63% fat and 37% FFM. The latter was attributed largely to the loss of water associated with glycogen. Whilst exercise fc increased by 9-14 beats.min-1 (P < 0.01), there were substantial decreases (P < 0.01) in submaximal MAP (1.07-1.73 kPa), la(b) (0.75-1.00 mmol.l-1 and R (0.07-0.09) during VLCD. R and fc returned to normal levels after VLCD. Gross strength decreased (P < 0.01) by 9 and 13% at 1.05 rad.s-1 and 3.14 rad.s-1, respectively. Strength expressed relative to body mass (Nm.kg-1) increased (P < 0.01) at the lower contraction velocity, but there was no change at the faster velocity. Muscular endurance also decreased (P < 0.01) by 62 and 82% for the hamstrings and quadriceps, respectively. We concluded that the strength decrease was a natural adaptation to the reduction in body mass as the ratio of strength to FFM was maintained.(ABSTRACT TRUNCATED AT 250 WORDS)
Koda, M; Ando, F; Niino, N; Tsuzuku, S; Shimokata, H
2000-04-01
Air displacement plethysmography (ADP) is a method for the determining percent body fat (%BF) using the two-compartment model, in which the body is partitioned into body-fat mass and fat-free mass (FFM). Although this model assumes a constant density of FFM as 1.10 g/ml, its density may depend upon the bone mineral content (BMC) and total body water (TBW) which vary with age, gender, and race/ethnicity. This study compared %BF determined from ADP (ADP%BF) with %BF obtained by dual-energy x-ray absorptiometry (DXA%BF), and also investigated the effects of BMC, TBW, and other factors on its value. The subjects were 721 female and male Japanese aged 40 to 79 years. Body density was measured by ADP and %BF was calculated using Brozek et al's equation. BMC and body-fat volume were measured using DXA, and TBW was measured by multifrequency bioelectrical impedance. A series of anthropometric measurements was taken. Although ADP%BF was highly correlated with DXA%BF (female: r = 0.89, male: r = 0.90) (p < 0.001), ADP%BF differed significantly from DXA%BF (female: -1.30 +/- 0.14% (mean +/- s.e.m.), male: 1.22 +/- 0.13%) (p < 0.001). The difference in %BF (ADP%BF-DXA%BF) was negatively associated with BMC/FFM but not with TBW/FFM in both genders. The difference in %BF was also positively correlated with waist circumference. Considering previous studies, this result may be explained by the underestimation of DXA%BF, rather than by the overestimation of ADP%BF. In conclusion, ADP may be a useful method to measure %BF. However, BMC should be taken into consideration. Furthermore, DXA%BF may be underestimated in people with large waists.
Pediatric resident resuscitation skills improve after "rapid cycle deliberate practice" training.
Hunt, Elizabeth A; Duval-Arnould, Jordan M; Nelson-McMillan, Kristen L; Bradshaw, Jamie Haggerty; Diener-West, Marie; Perretta, Julianne S; Shilkofski, Nicole A
2014-07-01
Previous studies reveal pediatric resident resuscitation skills are inadequate, with little improvement during residency. The Accreditation Council for Graduate Medical Education highlights the need for documenting incremental acquisition of skills, i.e., "Milestones". We developed a simulation-based teaching approach "Rapid Cycle Deliberate Practice" (RCDP) focused on rapid acquisition of procedural and teamwork skills (i.e., "first-five minutes" (FFM) resuscitation skills). This novel method utilizes direct feedback and prioritizes opportunities for learners to "try again" over lengthy debriefing. Pediatric residents from an academic medical center. Prospective pre-post interventional study of residents managing a simulated cardiopulmonary arrest. Main outcome measures include: (1) interval between onset of pulseless ventricular tachycardia to initiation of compressions and (2) defibrillation. Seventy pediatric residents participated in the pre-intervention and fifty-one in the post-intervention period. Baseline characteristics were similar. The RCDP-FFM intervention was associated with a decrease in: no-flow fraction: [pre: 74% (5-100%) vs. post: 34% (26-53%); p<0.001)], no-blow fraction: [pre: 39% (22-64%) median (IQR) vs. post: 30% (22-41%); p=0.01], and pre-shock pause: [pre: 84 s (26-162) vs. post: 8s (4-18); p<0.001]. Survival analysis revealed RCDP-FFM was associated with starting compressions within 1 min of loss of pulse: [Adjusted Hazard Ratio (HR): 3.8 (95% CI: 2.0-7.2)] and defibrillating within 2 min: [HR: 1.7 (95% CI: 1.03-2.65)]. Third year residents were significantly more likely than first years to defibrillate within 2 min: [HR: 2.8 (95% CI: 1.5-5.1)]. Implementation of the RCDP-FFM was associated with improvement in performance of key measures of quality life support and progressive acquisition of resuscitation skills during pediatric residency. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Takeuchi, Osamu; Miyakoshi, Takaaki; Taninaka, Atsushi; Tanaka, Katsunori; Cho, Daichi; Fujita, Machiko; Yasuda, Satoshi; Jarvis, Suzanne P.; Shigekawa, Hidemi
2006-10-01
The accuracy of dynamic-force spectroscopy (DFS), a promising technique of analyzing the energy landscape of noncovalent molecular bonds, was reconsidered in order to justify the use of an atomic-force microscopy (AFM) cantilever as a DFS force probe. The advantages and disadvantages caused, for example, by the force-probe hardness were clarified, revealing the pivotal role of the molecular linkage between the force probe and the molecular bonds. It was shown that the feedback control of the loading rate of tensile force enables us a precise DFS measurement using an AFM cantilever as the force probe.
NASA Astrophysics Data System (ADS)
Lin, Shi-Zeng; Bulaevskii, Lev N.
2012-07-01
The working principle of magnetic force microscopy and scanning SQUID microscopy is introducing a magnetic source near a superconductor and measuring the magnetic field distribution near the superconductor, from which one can obtain the penetration depth. We investigate the magnetic field distribution near the surface of a magnetic superconductor when a magnetic source is placed close to the superconductor, which can be used to extract both the penetration depth λL and magnetic susceptibility χ by magnetic force microscopy or scanning SQUID microscopy. When the magnetic moments are parallel to the surface, one extracts λL/1-4πχ. When the moments are perpendicular to the surface, one obtains λL. By changing the orientation of the crystal, one thus is able to extract both χ and λL.
Surface Biology of DNA by Atomic Force Microscopy
NASA Astrophysics Data System (ADS)
Hansma, Helen G.
2001-10-01
The atomic force microscope operates on surfaces. Since surfaces occupy much of the space in living organisms, surface biology is a valid and valuable form of biology that has been difficult to investigate in the past owing to a lack of good technology. Atomic force microscopy (AFM) of DNA has been used to investigate DNA condensation for gene therapy, DNA mapping and sizing, and a few applications to cancer research and to nanotechnology. Some of the most exciting new applications for atomic force microscopy of DNA involve pulling on single DNA molecules to obtain measurements of single-molecule mechanics and thermodynamics.
Study of electromechanical and mechanical properties of bacteria using force microscopy
NASA Astrophysics Data System (ADS)
Reukov, Vladimir; Thompson, Gary; Nikiforov, Maxim; Guo, Senli; Ovchinnikov, Oleg; Jesse, Stephen; Kalinin, Sergei; Vertegel, Alexey
2010-03-01
The application of scanning probe microscopy (SPM) to biological systems has evolved over the past decade into a multimodal and spectroscopic instrument that provides multiple information channels at each spatial pixel acquired. Recently, functional recognition imaging based on differing electromechanical properties between Gram negative and Gram positive bacteria was achieved using artificial neural network analysis of band excitation piezoresponse force microscopy (BEPFM) data. The immediate goal of this project was to study mechanical and electromechanical properties of bacterial systems physiologically-relevant solutions using Band-width Excitation Piezoresponce Force Microscopy (BE PFM) in combination with Force Mapping. Electromechanical imaging in physiological environments will improve the versatility of functional recognition imaging and open the way for application of the rapid BEPFM line mode method to other living cell systems.
Rogers, Mary E; Glendon, A Ian
2018-01-01
This research reports on the 4-phase development of the 25-item Five-Factor Model Adolescent Personality Questionnaire (FFM-APQ). The purpose was to develop and determine initial evidence for validity of a brief adolescent personality inventory using a vocabulary that could be understood by adolescents up to 18 years old. Phase 1 (N = 48) consisted of item generation and expert (N = 5) review of items; Phase 2 (N = 179) involved item analyses; in Phase 3 (N = 496) exploratory factor analysis assessed the underlying structure; in Phase 4 (N = 405) confirmatory factor analyses resulted in a 25-item inventory with 5 subscales.
Colloid-Facilitated Transport of 137Cs in Fracture-Fill Material. Experiments and Modeling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dittrich, Timothy M.; Reimus, Paul William
2015-10-29
In this study, we demonstrate how a combination of batch sorption/desorption experiments and column transport experiments were used to effectively parameterize a model describing the colloid-facilitated transport of Cs in the Grimsel granodiorite/FFM system. Cs partition coefficient estimates onto both the colloids and the stationary media obtained from the batch experiments were used as initial estimates of partition coefficients in the column experiments, and then the column experiment results were used to obtain refined estimates of the number of different sorption sites and the adsorption and desorption rate constants of the sites. The desorption portion of the column breakthrough curvesmore » highlighted the importance of accounting for adsorption-desorption hysteresis (or a very nonlinear adsorption isotherm) of the Cs on the FFM in the model, and this portion of the breakthrough curves also dictated that there be at least two different types of sorption sites on the FFM. In the end, the two-site model parameters estimated from the column experiments provided excellent matches to the batch adsorption/desorption data, which provided a measure of assurance in the validity of the model.« less
Heterogeneity: The key to failure forecasting
Vasseur, Jérémie; Wadsworth, Fabian B.; Lavallée, Yan; Bell, Andrew F.; Main, Ian G.; Dingwell, Donald B.
2015-01-01
Elastic waves are generated when brittle materials are subjected to increasing strain. Their number and energy increase non-linearly, ending in a system-sized catastrophic failure event. Accelerating rates of geophysical signals (e.g., seismicity and deformation) preceding large-scale dynamic failure can serve as proxies for damage accumulation in the Failure Forecast Method (FFM). Here we test the hypothesis that the style and mechanisms of deformation, and the accuracy of the FFM, are both tightly controlled by the degree of microstructural heterogeneity of the material under stress. We generate a suite of synthetic samples with variable heterogeneity, controlled by the gas volume fraction. We experimentally demonstrate that the accuracy of failure prediction increases drastically with the degree of material heterogeneity. These results have significant implications in a broad range of material-based disciplines for which failure forecasting is of central importance. In particular, the FFM has been used with only variable success to forecast failure scenarios both in the field (volcanic eruptions and landslides) and in the laboratory (rock and magma failure). Our results show that this variability may be explained, and the reliability and accuracy of forecast quantified significantly improved, by accounting for material heterogeneity as a first-order control on forecasting power. PMID:26307196
Noh, Ji-Woong; Kim, Mee-Young; Lee, Lim-Kyu; Park, Byoung-Sun; Yang, Seung-Min; Jeon, Hye-Joo; Lee, Won-Deok; Kim, Ju-Hyun; Lee, Jeong-Uk; Kwak, Taek-Yong; Lee, Tae-Hyun; Kim, Ju-Young; Kim, Junghwan
2015-01-01
[Purpose] The purpose of this study was to investigate the somatotype and physical characteristic differences among elite youth soccer players. [Subjects and Methods] In the present study, we evaluated twenty-two Korean youth soccer players in different playing positions. The playing positions were divided into forward (FW), midfielder (MF), defender (DF), and goalkeeper (GK). The participants’ lean body mass (LBM), fat free mass (FFM), fat mass (FM), and basal metabolic rate (BMR) were measured and their somatotype determined according to the Heath-Carter method. [Results] The youth soccer players had twelve ectomorphic, eight mesomorphic, and two central predominant types. The DFs were taller than, but otherwise similar in physical characteristics to the FWs and MFs. The GKs were taller and heavier than the other players; however, their somatotype components were not significantly different. LBM, FFM, and BMR were significantly higher in GKs than in FWs and MFs. Although LBM, FFM, and BMR values between GKs and DFs showed large differences, they were not statistically significant. [Conclusion] The present study may contribute to our understanding of the differences in somatotype and body composition of Korean youth soccer players involved in sports physiotherapy research. PMID:25995545
Noh, Ji-Woong; Kim, Mee-Young; Lee, Lim-Kyu; Park, Byoung-Sun; Yang, Seung-Min; Jeon, Hye-Joo; Lee, Won-Deok; Kim, Ju-Hyun; Lee, Jeong-Uk; Kwak, Taek-Yong; Lee, Tae-Hyun; Kim, Ju-Young; Kim, Junghwan
2015-04-01
[Purpose] The purpose of this study was to investigate the somatotype and physical characteristic differences among elite youth soccer players. [Subjects and Methods] In the present study, we evaluated twenty-two Korean youth soccer players in different playing positions. The playing positions were divided into forward (FW), midfielder (MF), defender (DF), and goalkeeper (GK). The participants' lean body mass (LBM), fat free mass (FFM), fat mass (FM), and basal metabolic rate (BMR) were measured and their somatotype determined according to the Heath-Carter method. [Results] The youth soccer players had twelve ectomorphic, eight mesomorphic, and two central predominant types. The DFs were taller than, but otherwise similar in physical characteristics to the FWs and MFs. The GKs were taller and heavier than the other players; however, their somatotype components were not significantly different. LBM, FFM, and BMR were significantly higher in GKs than in FWs and MFs. Although LBM, FFM, and BMR values between GKs and DFs showed large differences, they were not statistically significant. [Conclusion] The present study may contribute to our understanding of the differences in somatotype and body composition of Korean youth soccer players involved in sports physiotherapy research.
Heterogeneity: The key to failure forecasting.
Vasseur, Jérémie; Wadsworth, Fabian B; Lavallée, Yan; Bell, Andrew F; Main, Ian G; Dingwell, Donald B
2015-08-26
Elastic waves are generated when brittle materials are subjected to increasing strain. Their number and energy increase non-linearly, ending in a system-sized catastrophic failure event. Accelerating rates of geophysical signals (e.g., seismicity and deformation) preceding large-scale dynamic failure can serve as proxies for damage accumulation in the Failure Forecast Method (FFM). Here we test the hypothesis that the style and mechanisms of deformation, and the accuracy of the FFM, are both tightly controlled by the degree of microstructural heterogeneity of the material under stress. We generate a suite of synthetic samples with variable heterogeneity, controlled by the gas volume fraction. We experimentally demonstrate that the accuracy of failure prediction increases drastically with the degree of material heterogeneity. These results have significant implications in a broad range of material-based disciplines for which failure forecasting is of central importance. In particular, the FFM has been used with only variable success to forecast failure scenarios both in the field (volcanic eruptions and landslides) and in the laboratory (rock and magma failure). Our results show that this variability may be explained, and the reliability and accuracy of forecast quantified significantly improved, by accounting for material heterogeneity as a first-order control on forecasting power.
Heterogeneity: The key to failure forecasting
NASA Astrophysics Data System (ADS)
Vasseur, Jérémie; Wadsworth, Fabian B.; Lavallée, Yan; Bell, Andrew F.; Main, Ian G.; Dingwell, Donald B.
2015-08-01
Elastic waves are generated when brittle materials are subjected to increasing strain. Their number and energy increase non-linearly, ending in a system-sized catastrophic failure event. Accelerating rates of geophysical signals (e.g., seismicity and deformation) preceding large-scale dynamic failure can serve as proxies for damage accumulation in the Failure Forecast Method (FFM). Here we test the hypothesis that the style and mechanisms of deformation, and the accuracy of the FFM, are both tightly controlled by the degree of microstructural heterogeneity of the material under stress. We generate a suite of synthetic samples with variable heterogeneity, controlled by the gas volume fraction. We experimentally demonstrate that the accuracy of failure prediction increases drastically with the degree of material heterogeneity. These results have significant implications in a broad range of material-based disciplines for which failure forecasting is of central importance. In particular, the FFM has been used with only variable success to forecast failure scenarios both in the field (volcanic eruptions and landslides) and in the laboratory (rock and magma failure). Our results show that this variability may be explained, and the reliability and accuracy of forecast quantified significantly improved, by accounting for material heterogeneity as a first-order control on forecasting power.
Griffin, Sarah A; Samuel, Douglas B
2014-10-01
The Personality Inventory for DSM-5 (PID-5) was developed as a measure of the maladaptive personality trait model included within Section III of the DSM-5. Although preliminary findings have suggested the PID-5 has a five-factor structure that overlaps considerably with the Five-Factor Model (FFM) at the higher order level, there has been much less attention on the specific locations of the 25 lower-order traits. Joint exploratory factor analysis of the PID-5 traits and the 30 facets of the NEO-PI-R were used to determine the lower-order structure of the PID-5. Results indicated the PID-5's domain-level structure closely resembled the FFM. We also explored the placement of several lower-order facets that have not loaded consistently in previous studies. Overall, these results indicate that the PID-5 shares a common structure with the FFM and clarify the placement of some interstitial facets. More research investigating the lower-order facets is needed to determine how they fit into the hierarchical structure and explicate their relationships to existing measures of pathological traits. (PsycINFO Database Record (c) 2014 APA, all rights reserved).
Determinants of 24-hour energy expenditure in man. Methods and results using a respiratory chamber.
Ravussin, E; Lillioja, S; Anderson, T E; Christin, L; Bogardus, C
1986-01-01
Daily human energy requirements calculated from separate components of energy expenditure are inaccurate and usually in poor agreement with measured energy intakes. Measurement of energy expenditure over periods of 24 h or longer is needed to determine more accurately rates of daily energy expenditure in humans. We provide a detailed description of a human respiratory chamber and methods used to determine rates of energy expenditure over 24-h periods in 177 subjects. The results show that: fat-free mass (FFM) as estimated by densitometry is the best available determinant of 24-h energy expenditures (24EE) and explains 81% of the variance observed between individuals (24EE [kcal/d] = 597 + 26.5 FFM); 24EE in an individual is very reproducible (coefficient of variation = 2.4%); and even when adjusted for differences in FFM, there is still considerable interperson variability of the daily energy expenditure. A large portion of the variability of 24EE among individuals, independent of differences in body size, was due to variability in the degree of spontaneous physical activity, i.e., "fidgeting," which accounted for 100-800 kcal/d in these subjects. Images PMID:3782471
Increased gluconeogenesis in youth with newly diagnosed type 2 diabetes.
Chung, Stephanie T; Hsia, Daniel S; Chacko, Shaji K; Rodriguez, Luisa M; Haymond, Morey W
2015-03-01
The role of increased gluconeogenesis as an important contributor to fasting hyperglycaemia at diabetes onset is not known. We evaluated the contribution of gluconeogenesis and glycogenolysis to fasting hyperglycaemia in newly diagnosed youths with type 2 diabetes following an overnight fast. Basal rates (μmol kg(FFM) (-1) min(-1)) of gluconeogenesis ((2)H2O), glycogenolysis and glycerol production ([(2)H5] glycerol) were measured in 18 adolescents (nine treatment naive diabetic and nine normal-glucose-tolerant obese adolescents). Type 2 diabetes was associated with higher gluconeogenesis (9.2 ± 0.6 vs 7.0 ± 0.3 μmol kg(FFM) (-1) min(-1), p < 0.01), plasma fasting glucose (7.0 ± 0.6 vs 5.0 ± 0.2 mmol/l, p = 0.004) and insulin (300 ± 30 vs 126 ± 31 pmol/l, p = 0.001). Glucose production and glycogenolysis were similar between the groups (15.4 ± 0.3 vs 12.4 ± 1.4 μmol kg(FFM) (-1) min(-1), p = 0.06; and 6.2 ± 0.8 vs 5.3 ± 0.7 μmol kg(FFM) (-1) min(-1), p = 0.5, respectively). After controlling for differences in adiposity, gluconeogenesis, glycogenolysis and glucose production were higher in diabetic youth (p ≤ 0.02). Glycerol concentration (84 ± 6 vs 57 ± 6 μmol/l, p = 0.01) and glycerol production (5.0 ± 0.3 vs 3.6 ± 0.5 μmol kg(FFM) (-1) min(-1), p = 0.03) were 40% higher in youth with diabetes. The increased glycerol production could account for only ~1/3 of substrate needed for the increased gluconeogenesis in diabetic youth. Increased gluconeogenesis was a major contributor to fasting hyperglycaemia and hepatic insulin resistance in newly diagnosed untreated adolescents and was an early pathological feature of type 2 diabetes. Increased glycerol availability may represent a significant source of new carbon substrates for increased gluconeogenesis but would not account for all the carbons required to sustain the increased rates.
Calbet, Jose A L; Ponce-González, Jesús G; Calle-Herrero, Jaime de La; Perez-Suarez, Ismael; Martin-Rincon, Marcos; Santana, Alfredo; Morales-Alamo, David; Holmberg, Hans-Christer
2017-01-01
The loss of fat-free mass (FFM) caused by very-low-calorie diets (VLCD) can be attenuated by exercise. The aim of this study was to determine the role played by exercise and dietary protein content in preserving the lean mass and performance of exercised and non-exercised muscles, during a short period of extreme energy deficit (~23 MJ deficit/day). Fifteen overweight men underwent three consecutive experimental phases: baseline assessment (PRE), followed by 4 days of caloric restriction and exercise (CRE) and then 3 days on a control diet combined with reduced exercise (CD). During CRE, the participants ingested a VLCD and performed 45 min of one-arm cranking followed by 8 h walking each day. The VLCD consisted of 0.8 g/kg body weight/day of either whey protein (PRO, n = 8) or sucrose (SU, n = 7). FFM was reduced after CRE ( P < 0.001), with the legs and the exercised arm losing proportionally less FFM than the control arm [57% ( P < 0.05) and 29% ( P = 0.05), respectively]. Performance during leg pedaling, as reflected by the peak oxygen uptake and power output (Wpeak), was reduced after CRE by 15 and 12%, respectively ( P < 0.05), and recovered only partially after CD. The deterioration of cycling performance was more pronounced in the whey protein than sucrose group ( P < 0.05). Wpeak during arm cranking was unchanged in the control arm, but improved in the contralateral arm by arm cranking. There was a linear relationship between the reduction in whole-body FFM between PRE and CRE and the changes in the cortisol/free testosterone ratio (C/FT), serum isoleucine, leucine, tryptophan, valine, BCAA, and EAA ( r = -0.54 to -0.71, respectively, P < 0.05). C/FT tended to be higher in the PRO than the SU group following CRE ( P = 0.06). In conclusion, concomitant low-intensity exercise such as walking or arm cranking even during an extreme energy deficit results in remarkable preservation of lean mass. The intake of proteins alone may be associated with greater cortisol/free testosterone ratio and is not better than the ingestion of only carbohydrates for preserving FFM and muscle performance in interventions of short duration.
Calbet, Jose A. L.; Ponce-González, Jesús G.; Calle-Herrero, Jaime de La; Perez-Suarez, Ismael; Martin-Rincon, Marcos; Santana, Alfredo; Morales-Alamo, David; Holmberg, Hans-Christer
2017-01-01
The loss of fat-free mass (FFM) caused by very-low-calorie diets (VLCD) can be attenuated by exercise. The aim of this study was to determine the role played by exercise and dietary protein content in preserving the lean mass and performance of exercised and non-exercised muscles, during a short period of extreme energy deficit (~23 MJ deficit/day). Fifteen overweight men underwent three consecutive experimental phases: baseline assessment (PRE), followed by 4 days of caloric restriction and exercise (CRE) and then 3 days on a control diet combined with reduced exercise (CD). During CRE, the participants ingested a VLCD and performed 45 min of one-arm cranking followed by 8 h walking each day. The VLCD consisted of 0.8 g/kg body weight/day of either whey protein (PRO, n = 8) or sucrose (SU, n = 7). FFM was reduced after CRE (P < 0.001), with the legs and the exercised arm losing proportionally less FFM than the control arm [57% (P < 0.05) and 29% (P = 0.05), respectively]. Performance during leg pedaling, as reflected by the peak oxygen uptake and power output (Wpeak), was reduced after CRE by 15 and 12%, respectively (P < 0.05), and recovered only partially after CD. The deterioration of cycling performance was more pronounced in the whey protein than sucrose group (P < 0.05). Wpeak during arm cranking was unchanged in the control arm, but improved in the contralateral arm by arm cranking. There was a linear relationship between the reduction in whole-body FFM between PRE and CRE and the changes in the cortisol/free testosterone ratio (C/FT), serum isoleucine, leucine, tryptophan, valine, BCAA, and EAA (r = −0.54 to −0.71, respectively, P < 0.05). C/FT tended to be higher in the PRO than the SU group following CRE (P = 0.06). In conclusion, concomitant low-intensity exercise such as walking or arm cranking even during an extreme energy deficit results in remarkable preservation of lean mass. The intake of proteins alone may be associated with greater cortisol/free testosterone ratio and is not better than the ingestion of only carbohydrates for preserving FFM and muscle performance in interventions of short duration. PMID:28790922
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muhunthan, N.; Singh, Om Pal; Toutam, Vijaykumar, E-mail: toutamvk@nplindia.org
2015-10-15
Graphical abstract: Experimental setup for conducting AFM (C-AFM). - Highlights: • Cu{sub 2}ZnSnS{sub 4} (CZTS) thin film was grown by reactive co-sputtering. • The electronic properties were probed using conducting atomic force microscope, scanning Kelvin probe microscopy and scanning capacitance microscopy. • C-AFM current flow mainly through grain boundaries rather than grain interiors. • SKPM indicated higher potential along the GBs compared to grain interiors. • The SCM explains that charge separation takes place at the interface of grain and grain boundary. - Abstract: Electrical characterization of grain boundaries (GB) of Cu-deficient CZTS (Copper Zinc Tin Sulfide) thin films wasmore » done using atomic force microscopic (AFM) techniques like Conductive atomic force microscopy (CAFM), Kelvin probe force microscopy (KPFM) and scanning capacitance microscopy (SCM). Absorbance spectroscopy was done for optical band gap calculations and Raman, XRD and EDS for structural and compositional characterization. Hall measurements were done for estimation of carrier mobility. CAFM and KPFM measurements showed that the currents flow mainly through grain boundaries (GB) rather than grain interiors. SCM results showed that charge separation mainly occurs at the interface of grain and grain boundaries and not all along the grain boundaries.« less
A study approach on ferroelectric domains in BaTiO{sub 3}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rocha, L.S.R.; Cavalcanti, C.S.
Atomic Force Acoustic Microscopy (AFAM) and Piezoresponse Force Microscopy (PFM) were used to study local elastic and electromechanical response in BaTiO{sub 3} ceramics. A commercial multi-mode Scanning Probe Microscopy (SPM) and AFAM mode to image contact stiffness were employed to accomplish the aforementioned purposes. Stiffness parameters along with Young's moduli and piezo coefficients were quantitatively determined. PFM studies were based on electrostatic and electromechanical response from localized tip-surface contact. Comparison was made regarding the Young's moduli obtained by AFAM and PFM. In addition, phase and amplitude images were analyzed based on poling behavior, obtained via the application of − 10more » V to + 10 V local voltage. - Highlights: •Nanoscale behavior of piezo domains in BaTiO{sub 3} ferroelectric materials •Use of Atomic Force Acoustic Microscopy (AFAM) and Piezo Force Microscopy (PFM) •Local elastic and electromechanical response in BaTiO{sub 3} ceramics •The young's moduli obtained from AFAM and PFM.« less
Model-based traction force microscopy reveals differential tension in cellular actin bundles.
Soiné, Jérôme R D; Brand, Christoph A; Stricker, Jonathan; Oakes, Patrick W; Gardel, Margaret L; Schwarz, Ulrich S
2015-03-01
Adherent cells use forces at the cell-substrate interface to sense and respond to the physical properties of their environment. These cell forces can be measured with traction force microscopy which inverts the equations of elasticity theory to calculate them from the deformations of soft polymer substrates. We introduce a new type of traction force microscopy that in contrast to traditional methods uses additional image data for cytoskeleton and adhesion structures and a biophysical model to improve the robustness of the inverse procedure and abolishes the need for regularization. We use this method to demonstrate that ventral stress fibers of U2OS-cells are typically under higher mechanical tension than dorsal stress fibers or transverse arcs.
Model-based Traction Force Microscopy Reveals Differential Tension in Cellular Actin Bundles
Soiné, Jérôme R. D.; Brand, Christoph A.; Stricker, Jonathan; Oakes, Patrick W.; Gardel, Margaret L.; Schwarz, Ulrich S.
2015-01-01
Adherent cells use forces at the cell-substrate interface to sense and respond to the physical properties of their environment. These cell forces can be measured with traction force microscopy which inverts the equations of elasticity theory to calculate them from the deformations of soft polymer substrates. We introduce a new type of traction force microscopy that in contrast to traditional methods uses additional image data for cytoskeleton and adhesion structures and a biophysical model to improve the robustness of the inverse procedure and abolishes the need for regularization. We use this method to demonstrate that ventral stress fibers of U2OS-cells are typically under higher mechanical tension than dorsal stress fibers or transverse arcs. PMID:25748431
Chromiak, Joseph A; Smedley, Brianne; Carpenter, William; Brown, Robert; Koh, Yun S; Lamberth, John G; Joe, Lee Ann; Abadie, Ben R; Altorfer, Greg
2004-05-01
We investigated whether postexercise consumption of a supplement containing whey protein, amino acids, creatine, and carbohydrate combined with a strength training program promotes greater gains in fat-free mass (FFM), muscle strength and endurance, and anaerobic performance compared with an isocaloric, carbohydrate-only control drink combined with strength training. The study was double blind and randomized, and the experimental supplement was compared with a carbohydrate-only control. Forty-one males (n = 20 in control group, n = 21 in the supplement group; mean age, 22.2 y) participated in a 4 d/wk, 10-wk periodized strength training program. Subjects had to complete at least 70% of the workouts. Before and after 10 wk of strength training, subjects were tested for body composition by using hydrostatic weighing and skinfold thicknesses, one repetition maximum strength and muscular endurance for the bench press and 45-degree leg press, and anaerobic performance using a 30-s Wingate test. Thirty-three subjects (80.5%) completed the training program (n = 15 in control group, n = 18 in the supplement); these 33 subjects also completed all post-training test procedures. Data were analyzed with two-way analysis of variance with repeated measures on time. P <== 0.05 was set as statistically significant. All statistical analyses, including calculation of effect size and power, were completed with SPSS 11.0. Across groups, FFM increased during 10 wk of strength training. Although there was no statistically significant time x group interaction for FFM, there was a trend toward a greater increase in FFM for the supplement group (+3.4 kg) compared with the control group (+1.5 kg; P = 0.077). The effect size (eta(2) = 0.100) was moderately large. Percentage of body fat declined and fat mass was unchanged; there were no differences between groups. One repetition maximum strength for the bench press and 45-degree leg press increased, but there were no differences between groups. Muscular endurance expressed as the number of repetitions completed with 85% of the one repetition maximum was unchanged; external work, which was estimated as repetitions completed x resistance used, increased for the 45-degree leg press but not for the bench press over the 10-wk training period; there were no time x group interactions for either measurement. Anaerobic power and capacity improved, but there were no differences between groups for these variables or for fatigue rate. Consumption of a recovery drink after strength training workouts did not promote greater gains in FFM compared with consumption of a carbohydrate-only drink; however, a trend toward a greater increase in FFM in the supplement group suggests the need for longer-term studies. Performance variables such as muscle strength and endurance and anaerobic performance were not improved when compared with the carbohydrate-only group.
NASA Astrophysics Data System (ADS)
Knorr, Nikolaus; Rosselli, Silvia; Miteva, Tzenka; Nelles, Gabriele
2009-06-01
Although charging of insulators by atomic force microscopy (AFM) has found widespread interest, often with data storage or nanoxerography in mind, less attention has been paid to the charging mechanism and the nature of the charge. Here we present a systematic study on charging of amorphous polymer films by voltage pulses applied to conducting AFM probes. We find a quadratic space charge limited current law of Kelvin probe force microscopy and electrostatic force microscopy peak volumes in pulse height, offset by a threshold voltage, and a power law in pulse width of positive exponents smaller than one. We interpret the results by a charging mechanism of injection and surface near accumulation of aqueous ions stemming from field induced water adsorption, with threshold voltages linked to the water affinities of the polymers.
Kumar, Bharat; Crittenden, Scott R
2013-11-01
We demonstrate the ability to measure Stern potential and Debye length in dilute ionic solution with atomic force microscopy. We develop an analytic expression for the second harmonic force component of the capacitive force in an ionic solution from the linearized Poisson-Boltzmann equation. This allows us to calibrate the AFM tip potential and, further, obtain the Stern potential of sample surfaces. In addition, the measured capacitive force is independent of van der Waals and double layer forces, thus providing a more accurate measure of Debye length.
ERIC Educational Resources Information Center
Mann, Cynthia Marie
2009-01-01
This work describes the use of polyacrylamide hydrogels as controlled elastic modulus substrates for single cell traction force microscopy studies. The first section describes the use of EDC/NHS chemistry to convalently link microbeads to the hydrogel matrix for the purpose of performing long-term traction force studies (7 days). The final study…
Measuring Roughnesses Of Optical Surfaces
NASA Technical Reports Server (NTRS)
Coulter, Daniel R.; Al-Jumaily, Gahnim A.; Raouf, Nasrat A.; Anderson, Mark S.
1994-01-01
Report discusses use of scanning tunneling microscopy and atomic force microscopy to measure roughnesses of optical surfaces. These techniques offer greater spatial resolution than other techniques. Report notes scanning tunneling microscopes and atomic force microscopes resolve down to 1 nm.
NASA Astrophysics Data System (ADS)
Gryzia, Aaron; Volkmann, Timm; Brechling, Armin; Hoeke, Veronika; Schneider, Lilli; Kuepper, Karsten; Glaser, Thorsten; Heinzmann, Ulrich
2014-02-01
Monolayers and submonolayers of [Mn III 6 Cr III ] 3+ single-molecule magnets (SMMs) adsorbed on highly oriented pyrolytic graphite (HOPG) using the droplet technique characterized by non-contact atomic force microscopy (nc-AFM) as well as by Kelvin probe force microscopy (KPFM) show island-like structures with heights resembling the height of the molecule. Furthermore, islands were found which revealed ordered 1D as well as 2D structures with periods close to the width of the SMMs. Along this, islands which show half the heights of intact SMMs were observed which are evidences for a decomposing process of the molecules during the preparation. Finally, models for the structure of the ordered SMM adsorbates are proposed to explain the observations.
NASA Astrophysics Data System (ADS)
Kageshima, Masami; Jensenius, Henriette; Dienwiebel, Martin; Nakayama, Yoshikazu; Tokumoto, Hiroshi; Jarvis, Suzanne P.; Oosterkamp, Tjerk H.
2002-03-01
A force sensor for noncontact atomic force microscopy in liquid environment was developed by combining a multiwalled carbon nanotube (MWNT) probe with a quartz tuning fork. Solvation shells of octamethylcyclotetrasiloxane on a graphite surface were detected both in the frequency shift and dissipation. Due to the high aspect ratio of the CNT probe, the long-range background force was barely detectable in the solvation region.
Sato, Fumiya; Asakawa, Hitoshi; Fukuma, Takeshi; Terada, Sumio
2016-08-01
Neurofilaments are intermediate filament proteins specific for neurons and characterized by formation of biochemically stable, obligate heteropolymers in vivo While purified or reassembled neurofilaments have been subjected to morphological analyses by electron microscopy and atomic force microscopy, there has been a need for direct imaging of cytoplasmic genuine intermediate filaments with minimal risk of artefactualization. In this study, we applied the modified 'cells on glass sandwich' method to exteriorize intracellular neurofilaments, reducing the risk of causing artefacts through sample preparation. SW13vim(-) cells were double transduced with neurofilament medium polypeptide (NF-M) and alpha-internexin (α-inx). Cultured cells were covered with a cationized coverslip after prestabilization with tannic acid to form a sandwich and then split into two. After confirming that neurofilaments could be deposited on ventral plasma membranes exposed via unroofing, we performed atomic force microscopy imaging semi-in situ in aqueous solution. The observed thin filaments, considered to retain native structures of the neurofilaments, exhibited an approximate periodicity of 50-60 nm along their length. Their structural property appeared to reflect the morphology formed by their constituents, i.e. NF-M and α-inx. The success of semi-in situ atomic force microscopy of exposed bona fide assembled neurofilaments through separating the sandwich suggests that it can be an effective and alternative method for investigating cytoplasmic intermediate filaments under physiological conditions by atomic force microscopy. © The Author 2016. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Dermody, Sarah S.; Wright, Aidan G.C.; Cheong, JeeWon; Miller, Karissa G.; Muldoon, Matthew F.; Flory, Janine D.; Gianaros, Peter J.; Marsland, Anna L.; Manuck, Stephen B.
2015-01-01
Objective Varying associations are reported between Five Factor Model (FFM) personality traits and cardiovascular diseaabolic risk within a hierarchical model of personality that posits higherse risk. Here, we further examine dispositional correlates of cardiomet -order traits of Stability (shared variance of Agreeableness, Conscientiousness, inverse Neuroticism) and Plasticity (Extraversion, Openness), and test hypothesized mediation via biological and behavioral factors. Method In an observational study of 856 community volunteers aged 30–54 years (46% male, 86% Caucasian), latent variable FFM traits (using multiple-informant reports) and aggregated cardiometabolic risk (indicators: insulin resistance, dyslipidemia, blood pressure, adiposity) were estimated using confirmatory factor analysis (CFA). The cardiometabolic factor was regressed on each personality factor or higher-order trait. Cross-sectional indirect effects via systemic inflammation, cardiac autonomic control, and physical activity were tested. Results CFA models confirmed the Stability “meta-trait,” but not Plasticity. Lower Stability was associated with heightened cardiometabolic risk. This association was accounted for by inflammation, autonomic function, and physical activity. Among FFM traits, only Openness was associated with risk over and above Stability and, unlike Stablity, this relationship was unexplained by the intervening variables. Conclusions A Stability meta-trait covaries with midlife cardiometabolic risk, and this association is accounted for by three candidate biological and behavioral factors. PMID:26249259
Kinnamon, Daniel D; Lipsitz, Stuart R; Ludwig, David A; Lipshultz, Steven E; Miller, Tracie L
2010-04-01
The hydration of fat-free mass, or hydration fraction (HF), is often defined as a constant body composition parameter in a two-compartment model and then estimated from in vivo measurements. We showed that the widely used estimator for the HF parameter in this model, the mean of the ratios of measured total body water (TBW) to fat-free mass (FFM) in individual subjects, can be inaccurate in the presence of additive technical errors. We then proposed a new instrumental variables estimator that accurately estimates the HF parameter in the presence of such errors. In Monte Carlo simulations, the mean of the ratios of TBW to FFM was an inaccurate estimator of the HF parameter, and inferences based on it had actual type I error rates more than 13 times the nominal 0.05 level under certain conditions. The instrumental variables estimator was accurate and maintained an actual type I error rate close to the nominal level in all simulations. When estimating and performing inference on the HF parameter, the proposed instrumental variables estimator should yield accurate estimates and correct inferences in the presence of additive technical errors, but the mean of the ratios of TBW to FFM in individual subjects may not.
Abrahamsen, B; Hansen, T B; Høgsberg, I M; Pedersen, F B; Beck-Nielsen, H
1996-01-01
Dual X-ray absorptiometry (DXA) performs noninvasive assessment of bone and soft tissue with high precision. However, soft tissue algorithms assume that 73.2% of the lean body mass is water, a potential source of error in fluid retention. We evaluated DXA (model QDR-2000; Hologic Inc, Waltham, MA), bioelectrical impedance analysis (BIA), and simple anthropometry in 19 patients (9 women and 10 men, mean age 46 y) before and after hemodialysis, removing 0.9-4.3 L (x: 2.8L) of ultrafiltrate. The reduction in fat-free mass (FFM) measured by DXA was highly correlated with the ultrafiltrate, as determined by the reduction in gravimetric weight (r = 0.975, P < 0.0001; SEE: 233 g), whereas BIA was considerably less accurate in assessing FFM reductions (r = 0.66, P < 0.01; SEE: 757 g). Lumbar bone mineral density (BMD) was unaffected by dialysis, as were whole-body fat and BMD. Whole-body bone mineral content, however, was estimated to be 0.6% lower after dialysis. None of the simple anthropometric measurements correlated significantly with the reduction in FFM. In an unmodified clinical setting, DXA appears to be superior to other simple noninvasive methods for determining body composition, particularly when the emphasis is on repeated measurements.
Boyette, Lindy-Lou; Korver-Nieberg, Nikie; Verweij, Kim; Meijer, Carin; Dingemans, Peter; Cahn, Wiepke; de Haan, Lieuwe
2013-12-15
Earlier studies indicated that personality characteristics contribute to symptomatic outcome in patients with psychotic disorders. The aim of the present study was to further explore this connection by examining the relationship between the Five-Factor Model (FFM) personality traits and a dimensional liability for psychosis. FFM traits according to the NEO-FFI and levels of subclinical psychotic symptoms according to the CAPE were assessed in 217 patients with psychotic disorders, 281 of their siblings and 176 healthy controls. Psychotic symptoms according to the PANSS were assessed in the patient group. Patients differed from siblings and controls on four of the five FFM traits, all but Openness. Siblings reported higher levels of Neuroticism than controls, but lower levels than patients. Particularly lower Agreeableness, and to a lesser degree, higher Neuroticism and lower Extraversion were associated with more severe symptoms in patients. Furthermore, higher Neuroticism and higher Openness were associated with higher levels of subclinical psychotic experiences in all three groups. Associations were strongest in patients. Our findings suggest that levels of Neuroticism increase with the level of familial risk for psychosis. Levels of Openness may reflect levels of impairment that distinguish clinical from subclinical symptomatology. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Lewis, Gary J; Bates, Timothy C; Posthuma, Danielle; Polderman, Tinca J C
2014-08-01
Specific personality traits and poor social support are risk factors for anxiety and depression. Little work, however, has considered the effects of social support and personality on these aspects of psychopathology simultaneously. We examined whether perceived social support mediates the effects of core personality domains on symptoms of anxiety and depression. Measures of personality (based on the Five-Factor Model [FFM]), perceived social support, and symptoms of depression and anxiety were collected in a large Dutch adult population-based sample (n = 555), and, except for depression symptoms, in an independent U.S. adult population-based sample (n = 511). Path modeling was used to test the effects of FFM traits on symptoms of depression and anxiety, with and without the mediation of perceived social support. Social support showed no link to symptoms of anxiety and only modest links to symptoms of depression when controlling for the FFM traits. Neuroticism had the strongest effect on symptoms of both depression and anxiety, with Extraversion also showing links to symptoms of depression. Social support has limited influence on symptoms of depression, and no effects on anxiety, over and above the effects of personality. Links between social support and anxiety/depression may largely reflect influences of Neuroticism and Extraversion. © 2013 Wiley Periodicals, Inc.
Velocity Dependence of the Kinetic Friction of Nanoparticles
NASA Astrophysics Data System (ADS)
Dietzel, Dirk; Feldmann, Michael; Schirmeisen, Andre
2010-03-01
The velocity dependence of interfacial friction is of high interest to unveil the fundamental processes in nanoscopic friction. So far, different forms of velocity dependence have been observed for contacts between friction force microscope (FFM) tips and a substrate surface. In this work we present velocity-dependent friction measurements performed by nanoparticle manipulation of antimony nanoparticles on atomically flat HOPG substrates under UHV conditions. This allows to analyze interfacial friction for very well defined and clean surface contacts. A novel approach to nanoparticle manipulation, the so called 'tip-on-top' technique [1], made it possible to manipulate the same particle many times while varying the velocity. The antimony particles exhibit a qualitatively different velocity dependence on friction in comparison to direct tip-HOPG contacts. A characteristic change in velocity dependence was observed when comparing freshly prepared particles to contaminated specimen, which were exposed to air before the manipulation experiments. [1] Dietzel et al., Appl. Phys. Lett. 95, 53104 (2009)
Taking Nanomedicine Teaching into Practice with Atomic Force Microscopy and Force Spectroscopy
ERIC Educational Resources Information Center
Carvalho, Filomena A.; Freitas, Teresa; Santos, Nuno C.
2015-01-01
Atomic force microscopy (AFM) is a useful and powerful tool to study molecular interactions applied to nanomedicine. The aim of the present study was to implement a hands-on atomic AFM course for graduated biosciences and medical students. The course comprises two distinct practical sessions, where students get in touch with the use of an atomic…
Dynamics-Enabled Nanoelectromechanical Systems (NEMS) Oscillators
2014-06-01
it becomes strongly nonlinear, and thus constitutes an archetypal candidate for nonlinear engineering • its fundamental resonant frequency...width of spectral peaks of atomic force microscopy (AFM) resonators as they are brought close to a surface. 39 Approved for public release...alternating current AD Allan Deviation AFM atomic force microscopy AFRL Air Force Research Laboratory AlN aluminum nitride APN Anomalous Phase
Oreopoulos, John; Yip, Christopher M.
2009-01-01
Determining the local structure, dynamics, and conformational requirements for protein-protein and protein-lipid interactions in membranes is critical to understanding biological processes ranging from signaling to the translocating and membranolytic action of antimicrobial peptides. We report here the application of a combined polarized total internal reflection fluorescence microscopy-in situ atomic force microscopy platform. This platform's ability to image membrane orientational order was demonstrated on DOPC/DSPC/cholesterol model membranes containing the fluorescent membrane probe, DiI-C20 or BODIPY-PC. Spatially resolved order parameters and fluorophore tilt angles extracted from the polarized total internal reflection fluorescence microscopy images were in good agreement with the topographical details resolved by in situ atomic force microscopy, portending use of this technique for high-resolution characterization of membrane domain structures and peptide-membrane interactions. PMID:19254557
Nugent, Stephen D; Kaats, Gilbert R; Preuss, Harry G
2018-01-01
A general assumption is that the body mass index (BMI) reflects changes in fat mass (FM). However, it fails to distinguish the type of weight that is lost or gained-fat mass (FM) or fat-free mass (FFM). The BMI treats both changes the same although they have opposite health consequences. The objective of this study was to propose a more precise measure, a body composition change index (BCCI), which distinguishes between changes in FM and FFM, and this study compares it with using the BMI as an outcome measure. Data were obtained from 3,870 subjects who had completed dual-energy x-ray absorptiometry (DEXA) total body scans at baseline and end-of-study when participating in a variety of weight-loss interventions. Since height remained constant in this adult cohort, changes in the BMI corresponded with scale weight changes (r = 0.994), allowing BMI changes to be converted to "lbs." to match the statistic used for calculation of the BCCI. The BCCI is calculated by scoring increases in FFM (lbs.) and decreases in FM (lbs.) as positive outcomes and scoring decreases in FFM and increases in FM as negative outcomes. The BCCI is the net sum of these calculations. Differences between scale weight changes and BCCI values were subsequently compared to obtain "discordance scores." Discordance scores ranged from 0.0 lbs. to >30.0 lbs. with a mean absolute value of between the two measures of 7.79 lbs. (99% confidence interval: 7.49-8.10, p <0.00001), SD = 7.4 lbs. Similar discordance scores were also found in subgroups of self-reported gender, ethnicity, and age. A significant difference of 7.79 lbs. was found between the BCCI and the BMI to evaluate the efficacy of weight loss interventions. If assessing changes in body composition is a treatment goal, use of the BMI could result in significantly erroneous conclusions.
The effect of puberty on fat oxidation rates during exercise in overweight and normal-weight girls.
Chu, L; Riddell, M C; Schneiderman, J E; McCrindle, B W; Hamilton, J K
2014-01-01
Excess weight is often associated with insulin resistance (IR) and may disrupt fat oxidation during exercise. This effect is further modified by puberty. While studies have shown that maximal fat oxidation rates (FOR) during exercise decrease with puberty in normal-weight (NW) and overweight (OW) boys, the effect of puberty in NW and OW girls is unclear. Thirty-three NW and OW girls ages 8-18 yr old completed a peak aerobic capacity test on a cycle ergometer. FOR were calculated during progressive submaximal exercise. Body composition and Tanner stage were determined. For each participant, a best-fit polynomial curve was constructed using fat oxidation vs. exercise intensity to estimate max FOR. In a subset of the girls, IR derived from an oral glucose tolerance test (n = 20), and leptin and adiponectin levels (n = 11) were assessed in relation to FOR. NW pre-early pubertal girls had higher max FOR [6.9 ± 1.4 mg·kg fat free mass (FFM)(-1)·min(-1)] than NW mid-late pubertal girls (2.2 ± 0.9 mg·kg FFM(-1)·min(-1)) (P = 0.002), OW pre-early pubertal girls (3.8 ± 2.1 mg·kg FFM(-1)·min(-1)), and OW mid-late pubertal girls (3.3 ± 0.9 mg·kg FFM(-1)·min(-1)) (P < 0.05). Bivariable analyses showed positive associations between FOR with homeostatic model assessment of IR (P = 0.001), leptin (P < 0.001), and leptin-to-adiponectin ratio (P = 0.001), independent of percent body fat. Max FOR decreased in NW girls during mid-late puberty; however, this decrease associated with puberty was blunted in OW girls due to lower FOR in pre-early puberty. The presence of IR due to obesity potentially masks the effect of puberty on FOR during exercise in girls.
Energy expenditure and intake during puberty in healthy nonobese adolescents: a systematic review.
Cheng, Hoi Lun; Amatoury, Mazen; Steinbeck, Katharine
2016-10-01
Puberty is a time of rapid growth and changing energy requirements and is a risk period for obesity. There is little high-quality evidence on the pubertal alterations of energy expenditure and intake, and this has limited our understanding of energy balance during this important life stage. The purpose of this study was to summarize existing evidence on pubertal energy expenditure and intake in healthy nonobese adolescents. Studies were identified through CINAHL, the Cochrane Library, Embase, MEDLINE, and Web of Science databases up to August 2015. Articles presenting objectively measured data for basal or resting metabolic rate (BMR/RMR), total daily energy expenditure (TDEE), and/or energy intake (EI) for ≥2 categories of puberty were included. Relevant data adjusted for fat-free mass (FFM) also were extracted. Data were dichotomized into prepubertal and pubertal groups and compared through the use of standardized mean differences (SMDs). Heterogeneous study methodologies precluded meta-analysis. The search netted 6770 articles, with 12 included for review. From these, 6 of 9 studies supported significantly higher absolute BMR/RMR during puberty (SMD: 1.10-5.93), and all of the studies favored significantly higher absolute TDEE during puberty (SMD: 0.46-9.55). These corresponded to a 12% difference and an 18% difference in absolute BMR/RMR and TDEE, respectively. Results adjusted for FFM were equivocal, with 3 studies favoring higher (1 significantly) and 3 favoring significantly lower adjusted BMR/RMR during puberty. Only 1 study reported EI, showing 41% and 25% greater absolute intakes in pubertal males and females, respectively. These differences were not significant after adjustment for FFM. Reasonably consistent evidence exists to support higher absolute BMR/RMR and TDEE in pubertal than in prepubertal adolescents. Differences are largely accounted for by FFM, among other potential factors such as growth- and puberty-related hormones. This review argues for further research into hormonal influences on pubertal energy balance and subsequent effects on obesity risk. © 2016 American Society for Nutrition.
Sabino, Pollyane Galinari; Silva, Bruno Moreira; Brunetto, Antonio Fernando
2010-06-01
Being overweight or obese is associated with a higher rate of survival in patients with advanced chronic obstructive pulmonary disease (COPD). This paradoxical relationship indicates that the influence of nutritional status on functional parameters should be further investigated. To investigate the impact of nutritional status on body composition, exercise capacity and respiratory muscle strength in severe chronic obstructive pulmonary disease patients. Thirty-two patients (nine women) were divided into three groups according to their body mass indices (BMI): overweight/obese (25 < or = BMI < or = 34.9 kg/m(2), n=8), normal weight (18.5 < or = BMI < or = 24.9 kg/m(2), n=17) and underweight (BMI <18.5 kg/m(2), n=7). Spirometry, bioelectrical impedance, a six-minute walking distance test and maximal inspiratory and expiratory pressures were assessed. Airway obstruction was similar among the groups (p=0.30); however, overweight/obese patients had a higher fat-free mass (FFM) index [FFMI=FFM/body weight(2) (mean+/-SEM: 17+/-0.3 vs. 15+/-0.3 vs. 14+/-0.5 m/kg(2), p<0.01)], exercise capacity (90+/-8 vs. 79+/-6 vs. 57+/-8 m, p=0.02) and maximal inspiratory pressure (63+/-7 vs. 57+/-5 vs. 35+/-8 % predicted, p=0.03) in comparison to normal weight and underweight patients, respectively. In addition, on backward multiple regression analysis, FFMI was the unique independent predictor of exercise capacity (partial r=0.52, p<0.01). Severe chronic obstructive pulmonary disease (COPD) patients who were overweight or obese had a greater FFM, exercise capacity and inspiratory muscle strength than patients with the same degree of airflow obstruction who were of normal weight or underweight, and higher FFM was independently associated with higher exercise capacity. These characteristics of overweight or obese patients might counteract the drawbacks of excess weight and lead to an improved prognosis in COPD.
Surface and Subsurface Fault Displacements from the September 2010 Darfield (Canterbury) Earthquake
NASA Astrophysics Data System (ADS)
Meyers, B.; Furlong, K. P.; Hayes, G. P.; Herman, M. W.; Quigley, M.
2012-12-01
On September 3, 2010 a Magnitude 7.1 earthquake struck near Darfield, New Zealand. This was to be the first earthquake in an ongoing, damaging sequence near the city of Christchurch. The earthquake produced a surface rupture with measurable offsets of up to 5.3m along a 30km surface fault system. The spatial pattern of slip during this rupture has been determined by various groups using a range of approaches and several independent data sets. Surface fault rupture was measured in the field and fault slip at depth has been inferred from a seismologic finite fault model (FFM) and various geodetic observations including GPS and InSAR. Here we compare the observed segmented surface displacements with fault slip inferred from the other data. Measurements of the surface rupture show segmented faulting consistent with subsurface slip in the FFM. In the FFM, the main slip patch near the hypocenter can be directly correlated to the region of maximum surface displacement. The FFM and some evidence in the InSAR data also indicate that the Greendale fault system, the structure responsible for the bulk of the rupture, continues at depth closer towards Christchurch than is seen in surface rupture patterns. There is an additional 20km long patch with up to 3m of modeled slip seen in the eastern end of the inverted fault, offset to the south from the Greendale fault trace. This additional fault segment is consistent with a zone of aftershock activity of the main Darfield event, and with local patterns of strong motion. It thus appears that slip recorded at the surface does not describe the entire fault system. This eastward extension of the September rupture means that there is only a short segment of unruptured crust remaining along the entire fault system involved in the Canterbury earthquake sequence.
Schoenfeld, Brad J; Nickerson, Brett S; Wilborn, Colin D; Urbina, Stacie L; Hayward, Sara B; Krieger, James; Aragon, Alan A; Tinsley, Grant M
2018-06-20
Schoenfeld, BJ, Nickerson, BS, Wilborn, CD, Urbina, SL, Hayward, SB, Krieger, J, Aragon, AA, and Tinsley, G. Comparison of multifrequency bioelectrical impedance vs. dual-energy x-ray absorptiometry for assessing body composition changes after participation in a 10-week resistance training program. J Strength Cond Res XX(X): 000-000, 2018-The purpose of this study was to assess the ability of multifrequency bioelectrical impedance analysis (MF-BIA) to determine alterations in total and segmental body composition across a 10-week resistance training (RT) program in comparison with the criterion reference dual-energy X-ray absorptiometry (DXA). Twenty-one young male volunteers (mean ± SD; age = 22.9 ± 3.0 years; height = 175.5 ± 5.9 cm; body mass = 82.9 ± 13.6 kg; body mass index = 26.9 ± 3.6) performed an RT program that included exercises for all major muscle groups. Body composition was assessed using both methods before and after the intervention; change scores were determined by subtracting pre-test values from post-test values for percent body fat ([INCREMENT]%BF), fat mass ([INCREMENT]FM), and fat-free mass ([INCREMENT]FFM). Mean changes were not significantly different when comparing MF-BIA with DXA for [INCREMENT]%BF (-1.05 vs. -1.28%), [INCREMENT]FM (-1.13 vs. -1.19 kg), and FFM (0.10 vs. 0.37 kg, respectively). Both methods showed strong agreement for [INCREMENT]%BF (r = 0.75; standard error of the estimate [SEE] = 1.15%), [INCREMENT]FM (r = 0.84; SEE 1.0 kg), and [INCREMENT]FFM (r = 0.71; SEE of 1.5 kg). The 2 methods were poor predictors of each other in regards to changes in segmental measurements. Our data indicate that MF-BIA is an acceptable alternative for tracking changes in FM and FFM during a combined diet and exercise program in young, athletic men, but segmental lean mass measurements must be interpreted with circumspection.
Effect of intense military training on body composition.
Malavolti, Marcella; Battistini, Nino C; Dugoni, Manfredo; Bagni, Bruno; Bagni, Ilaria; Pietrobelli, Angelo
2008-03-01
Individuals in a structural physical training program can show beneficial changes in body composition, such as body fat reduction and muscle mass increase. This study measured body composition changes by using 3 different techniques-skinfold thickness (SF) measurements, air displacement plethysmography (BOD-POD), and dual-energy x-ray absorptiometry (DXA)-during 9 months of intense training in healthy young men engaged in military training. Twenty-seven young men were recruited from a special faction of the Italian Navy. The program previewed three phases: ground combat, sea combat, and amphibious combat. Body composition was estimated at the beginning, in the middle, and at the end of the training. After the subjects performed the ground combat phase, body composition variables significantly decreased: body weight (P < 0.05), fat-free mass (FFM) (P < 0.001), and fat mass (FM) (P < 0.03). During the amphibious combat phase, body weight increased significantly (P < 0.01), mainly because of an increase in FFM (P < 0.001) and a smaller mean decrease in FM. There was a significant difference (P < 0.05) in circumferences and SF at various sites after starting the training course. Bland-Altman analysis did not show any systematic difference between FM and FFM measured with the 3 different techniques on any occasion. On any visit, FFM and FM correlation measured by BOD-POD (P = 0.90) and DXA was significantly greater than measured by SF. A significant difference was found in body mass index (BMI) measured during the study. BOD-POD and SF, compared with DXA, provide valid and reliable measurement of changes in body composition in healthy young men engaged in military training. In conclusion, the findings suggest that for young men of normal weight, changes in body weight alone and in BMI are not a good measure to assess the effectiveness of intense physical training programs, because lean mass gain can masquerade fat weight loss.
PPARA intron polymorphism associated with power performance in 30-s anaerobic Wingate Test.
Petr, Miroslav; Stastny, Petr; Št'astný, Petr; Pecha, Ondřej; Šteffl, Michal; Šeda, Ondřej; Kohlíková, Eva
2014-01-01
To date, polymorphisms in several genes have been associated with a strength/power performance including alpha 3 actinin, ciliary neurotrophic factor, vitamin D receptor, or angiotensin I converting enzyme, underlining the importance of genetic component of the multifactorial strength/power-related phenotypes. The single nucleotide variation in peroxisome proliferator-activated receptor alpha gene (PPARA) intron 7 G/C (rs4253778; g.46630634G>C) has been repeatedly found to play a significant role in response to different types of physical activity. We investigated the effect of PPARA intron 7 G/C polymorphism specifically on anaerobic power output in a group of 77 elite male Czech ice hockey players (18-36 y). We determined the relative peak power per body weight (Pmax.kg(-1)) and relative peak power per fat free mass (W.kg(-1)FFM) during the 30-second Wingate Test (WT30) on bicycle ergometer (Monark 894E Peak bike, MONARK, Sweden). All WT30s were performed during the hockey season. Overall genotype frequencies were 50.6% GG homozygotes, 40.3% CG heterozygotes, and 9.1% CC homozygotes. We found statistically significant differences in Pmax.kg(-1) and marginally significant differences in Pmax.kg(-1)FFM values in WT30 between carriers and non-carriers for C allele (14.6 ± 0.2 vs. 13.9 ± 0.3 W.kg(-1) and 15.8 ± 0.2 vs. 15.2 ± 0.3 W.kg(-1)FFM, P = 0.036 and 0.12, respectively). Furthermore, Pmax.kg(-1)FFM strongly positively correlated with the body weight only in individuals with GG genotypes (R = 0.55; p<0.001). Our results indicate that PPARA 7C carriers exhibited higher speed strength measures in WT30. We hypothesize that C allele carriers within the cohort of trained individuals may possess a metabolic advantage towards anaerobic metabolism.
Batterham, M J; Garsia, R
2001-08-01
This randomized, prospective study compared three treatments, nandrolone decanoate (ND), megestrol acetate (MA) or dietary counselling, for managing human immunodeficiency syndrome (HIV) associated weight loss. It was centred on a Tertiary referral hospital, Sydney, Australia. Fifteen patients were randomized to receive ND (100 mg/fortnight), or MA (400 mg/day) or dietary counselling for 12 weeks. Those patients randomized to dietary counselling were further randomized to receive nandrolone or megestrol after completing the dietary counselling arm. Weight, fat free mass (FFM), percentage body fat mass (FM), dietary intake and appetite were assessed before commencing and at the completion of each treatment arm. Weight increased significantly in all treatment arms (dietary counselling 1.13 kg +/- 0.36, nandrolone 4.01 kg +/- 1.68, megestrol 10.20 kg +/- 4.51, p < 0.05 paired t-test). FFM increased significantly in patients receiving ND (3.54 +/- 1.98 kg, p=0.001) and those receiving MA (2.76 +/- 0.55 kg, p=0.002), whereas the change in those receiving dietary counselling alone was not significant. Percentage body fat mass increased significantly only in those receiving MA (7.77 +/- 4.85%, p=0.049). The change in weight and percentage body fat mass was significantly greater in those receiving MA than the other two treatment arms. The increase in FFM was significantly greater in both the nandrolone and megestrol arms than the dietary counselling arm. It was concluded that ND and MA both resulted in an increase in FFM greater than dietary counselling alone. Megestrol produced a significantly greater increase in weight, percentage fat mass, intake and appetite than did the other two treatment arms, suggesting it may be the preferred agent, particularly in a palliative care setting in which weight, appetite and intake increase are desirable without regard to the composition of the body. The long-term use of these agents in people with HIV should be reviewed in the context of improved survival on highly active antiretroviral therapy regimens.
Measurement of Body Composition: is there a Gold Standard?
Branski, Ludwik K; Norbury, William B; Herndon, David N; Chinkes, David L; Cochran, Amalia; Suman, Oscar; Benjamin, Deb; Jeschke, Marc G
2015-01-01
Background Maintaining lean body mass (LBM) after a severe burn is an essential goal of modern burn treatment. An accurate determination of LBM is necessary for short- and longterm therapeutic decisions. The aim of this study was to compare 2 measurement methods for body composition, wholebody potassium counting (K count) and dual x-ray absorptiometry (DEXA), in a large prospective clinical trial in severely burned pediatric patients. Methods Two-hundred seventy-nine patients admitted with burns covering 40% of total body surface area (TBSA) were enrolled in the study. Patients enrolled were controls or received long-term treatment with recombinant human growth hormone (rhGH). Near-simultaneous measurements of LBM with DEXA and fat-free mass (FFM) with K count were performed at hospital discharge and at 6, 9, 12, 18, and 24 months post injury. Results were correlated using Pearson’s regression analysis. Agreement between the 2 methods was analyzed with the Bland-Altman method. Results Age, gender distribution, weight, burn size, and admission time from injury were not significantly different between control and treatment groups. rhGH and control patients at all time points postburn showed a good correlation between LBM and FFM measurements (R2 between 0.9 and 0.95). Bland-Altman revealed that the mean bias and 95% limits of agreement depended only on patient weight and not on treatment or time postburn. The 95% limits ranged from 0.1 ± 2.9 kg for LBM or FFM in 7- to 18-kg patients to 16.3 ± 17.8 kg for LBM or FFM in patients >60 kg. Conclusions DEXA can provide a sufficiently accurate determination of LBM and changes in body composition, but a correction factor must be included for older children and adolescents with more LBM. DEXA scans are easier, cheaper, and less stressful for the patient, and this method should be used rather than the K count. PMID:19884353
Single ricin detection by atomic force microscopy chemomechanical mapping
NASA Astrophysics Data System (ADS)
Chen, Guojun; Zhou, Jianfeng; Park, Bosoon; Xu, Bingqian
2009-07-01
The authors report on a study of detecting ricin molecules immobilized on chemically modified Au (111) surface by chemomechanically mapping the molecular interactions with a chemically modified atomic force microscopy (AFM) tip. AFM images resolved the different fold-up conformations of single ricin molecule as well as their intramolecule structure of A- and B-chains. AFM force spectroscopy study of the interaction indicates that the unbinding force has a linear relation with the logarithmic force loading rate, which agrees well with calculations using one-barrier bond dissociation model.
Surface modifications with Lissajous trajectories using atomic force microscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cai, Wei; Yao, Nan, E-mail: nyao@princeton.edu
2015-09-14
In this paper, we report a method for atomic force microscopy surface modifications with single-tone and multiple-resolution Lissajous trajectories. The tip mechanical scratching experiments with two series of Lissajous trajectories were carried out on monolayer films. The scratching processes with two scan methods have been illustrated. As an application, the tip-based triboelectrification phenomenon on the silicon dioxide surface with Lissajous trajectories was investigated. The triboelectric charges generated within the tip rubbed area on the surface were characterized in-situ by scanning Kelvin force microscopy. This method would provide a promising and cost-effective approach for surface modifications and nanofabrication.
Short-Term Effects of a Ready-to-Drink Pre-Workout Beverage on Exercise Performance and Recovery.
Collins, Patrick B; Earnest, Conrad P; Dalton, Ryan L; Sowinski, Ryan J; Grubic, Tyler J; Favot, Christopher J; Coletta, Adriana M; Rasmussen, Christopher; Greenwood, Mike; Kreider, Richard B
2017-08-01
In a double-blind, randomized and crossover manner, 25 resistance-trained participants ingested a placebo (PLA) beverage containing 12 g of dextrose and a beverage (RTD) containing caffeine (200 mg), β-alanine (2.1 g), arginine nitrate (1.3 g), niacin (65 mg), folic acid (325 mcg), and Vitamin B12 (45 mcg) for 7-days, separated by a 7-10-day. On day 1 and 6, participants donated a fasting blood sample and completed a side-effects questionnaire (SEQ), hemodynamic challenge test, 1-RM and muscular endurance tests (3 × 10 repetitions at 70% of 1-RM with the last set to failure on the bench press (BP) and leg press (LP)) followed by ingesting the assigned beverage. After 15 min, participants repeated the hemodynamic test, 1-RM tests, and performed a repetition to fatigue (RtF) test at 70% of 1-RM, followed by completing the SEQ. On day 2 and 7, participants donated a fasting blood sample, completed the SEQ, ingested the assigned beverage, rested 30 min, and performed a 4 km cycling time-trial (TT). Data were analyzed by univariate, multivariate, and repeated measures general linear models (GLM), adjusted for gender and relative caffeine intake. Data are presented as mean change (95% CI). An overall multivariate time × treatment interaction was observed on strength performance variables ( p = 0.01). Acute RTD ingestion better maintained LP 1-RM (PLA: -0.285 (-0.49, -0.08); RTD: 0.23 (-0.50, 0.18) kg/kg FFM , p = 0.30); increased LP RtF (PLA: -2.60 (-6.8, 1.6); RTD: 4.00 (-0.2, 8.2) repetitions, p = 0.031); increased BP lifting volume (PLA: 0.001 (-0.13, 0.16); RTD: 0.03 (0.02, 0.04) kg/kg FFM , p = 0.007); and, increased total lifting volume (PLA: -13.12 (-36.9, 10.5); RTD: 21.06 (-2.7, 44.8) kg/kg FFM , p = 0.046). Short-term RTD ingestion maintained baseline LP 1-RM (PLA: -0.412 (-0.08, -0.07); RTD: 0.16 (-0.50, 0.18) kg/kg FFM , p = 0.30); LP RtF (PLA: 0.12 (-3.0, 3.2); RTD: 3.6 (0.5, 6.7) repetitions, p = 0.116); and, LP lifting volume (PLA: 3.64 (-8.8, 16.1); RTD: 16.25 (3.8, 28.7) kg/kg FFM , p = 0.157) to a greater degree than PLA. No significant differences were observed between treatments in cycling TT performance, hemodynamic assessment, fasting blood panels, or self-reported side effects.
Microscopy image segmentation tool: Robust image data analysis
NASA Astrophysics Data System (ADS)
Valmianski, Ilya; Monton, Carlos; Schuller, Ivan K.
2014-03-01
We present a software package called Microscopy Image Segmentation Tool (MIST). MIST is designed for analysis of microscopy images which contain large collections of small regions of interest (ROIs). Originally developed for analysis of porous anodic alumina scanning electron images, MIST capabilities have been expanded to allow use in a large variety of problems including analysis of biological tissue, inorganic and organic film grain structure, as well as nano- and meso-scopic structures. MIST provides a robust segmentation algorithm for the ROIs, includes many useful analysis capabilities, and is highly flexible allowing incorporation of specialized user developed analysis. We describe the unique advantages MIST has over existing analysis software. In addition, we present a number of diverse applications to scanning electron microscopy, atomic force microscopy, magnetic force microscopy, scanning tunneling microscopy, and fluorescent confocal laser scanning microscopy.
Direct manipulation of metallic nanosheets by shear force microscopy.
Bi, Z; Cai, W; Wang, Y; Shang, G
2018-05-15
Micro/nanomanipulation is a rapidly growing technology and holds promising applications in various fields, including photonic/electronic devices, chemical/biosensors etc. In this work, we present that shear force microscopy (ShFM) can be exploited to manipulate metallic nanosheets besides imaging. The manipulation is realized via controlling the shear force sensor probe position and shear force magnitude based on our homemade ShFM system under an optical microscopy for in situ observation. The main feature of the ShFM system is usage of a piezoelectric bimorph sensor, which has the ability of self-excitation and detection. Moreover, the shear force magnitude as a function of the spring constant of the sensor and setpoint is obtained, which indicates that operation modes can be switched between imaging and manipulation through designing the spring constant before experiment and changing the setpoint during manipulation process, respectively. We believe that this alternative manipulation technique could be used to assemble other nanostructures with different shapes, sizes and compositions for new properties and wider applications. © 2018 The Authors Journal of Microscopy © 2018 Royal Microscopical Society.
Scanning probe microscopy for the analysis of composite Ti/hydrocarbon plasma polymer thin films
NASA Astrophysics Data System (ADS)
Choukourov, A.; Grinevich, A.; Slavinska, D.; Biederman, H.; Saito, N.; Takai, O.
2008-03-01
Composite Ti/hydrocarbon plasma polymer films with different Ti concentration were deposited on silicon by dc magnetron sputtering of titanium in an atmosphere of argon and hexane. As measured by Kelvin force microscopy and visco-elastic atomic force microscopy, respectively, surface potential and hardness increase with increasing Ti content. Adhesion force to silicon and to fibrinogen molecules was stronger for the Ti-rich films as evaluated from the AFM force-distance curves. Fibrinogen forms a very soft layer on these composites with part of the protein molecules embedded in the outermost region of the plasma polymer. An increase of the surface charge due to fibrinogen adsorption has been observed and attributed to positively charged αC domains of fibrinogen molecule.
Bridging Nano- and Microtribology in Mechanical and Biomolecular Layers
NASA Astrophysics Data System (ADS)
Tomala, Agnieszka; Göçerler, Hakan; Gebeshuber, Ille C.
The physical and chemical composition of surfaces determine various important properties of solids such as corrosion rates, adhesive properties, frictional properties, catalytic activity, wettability, contact potential and - finally and most importantly - failure mechanisms. Very thin, weak layers (of man-made and biological origin) on much harder substrates that reduce friction are the focus of the micro- and nanotribological investigations presented in this chapter.Biomolecular layers fulfil various functions in organs of the human body. Examples comprise the skin that provides a protective physical barrier between the body and the environment, preventing unwanted inward and outward passage of water and electrolytes, reducing penetration by destructive chemicals, arresting the penetration of microorganisms and external antigens and absorbing radiation from the sun, or the epithelium of the cornea that blocks the passage of foreign material, such as dust, water and bacteria, into the eye and that contributes to the lubrication layer that ensures smooth movement of the eyelids over the eyeballs.Monomolecular thin films, additive-derived reaction layers and hard coatings are widely used to tailor tribological properties of surfaces. Nanotribological investigations on these substrates can reveal novel properties regarding the orientation of chemisorbed additive layers, development of rubbing films with time and the relation of frictional properties to surface characteristics in diamond coatings.Depending on the questions to be answered with the tribological research, various micro- and nanotribological measurement methods are applied, including scanning probe microscopy (AFM, FFM), scanning electron microscopy, microtribometer investigations, angle-resolved photoelectron spectroscopy and optical microscopy. Thoughts on the feasibility of a unified approach to energy-dissipating systems and how it might be reached (touching upon new ways of scientific publishing, dealing with over-information regarding the literature and the importance of specialists as well as generalists in tribology) conclude this chapter.
Cao, Yongze; Nakayama, Shota; Kumar, Pawan; Zhao, Yue; Kinoshita, Yukinori; Yoshimura, Satoru; Saito, Hitoshi
2018-05-03
For magnetic domain imaging with a very high spatial resolution by magnetic force microscopy the tip-sample distance should be as small as possible. However, magnetic imaging near sample surface is very difficult with conventional MFM because the interactive forces between tip and sample includes van der Waals and electrostatic forces along with magnetic force. In this study, we proposed an alternating magnetic force microscopy (A-MFM) which extract only magnetic force near sample surface without any topographic and electrical crosstalk. In the present method, the magnetization of a FeCo-GdOx superparamagnetic tip is modulated by an external AC magnetic field in order to measure the magnetic domain structure without any perturbation from the other forces near the sample surface. Moreover, it is demonstrated that the proposed method can also measure the strength and identify the polarities of the second derivative of the perpendicular stray field from a thin-film permanent magnet with DC demagnetized state and remanent state. © 2018 IOP Publishing Ltd.
Phuthong, Witchukorn; Huang, Zubin; Wittkopp, Tyler M.; ...
2015-07-28
To investigate the dynamics of photosynthetic pigment-protein complexes in vascular plants at high resolution in an aqueous environment, membrane-protruding oxygen-evolving complexes (OECs) associated with photosystem II (PSII) on spinach ( Spinacia oleracea) grana membranes were examined using contact mode atomic force microscopy. This study represents, to our knowledge, the first use of atomic force microscopy to distinguish the putative large extrinsic loop of Photosystem II CP47 reaction center protein (CP47) from the putative oxygen-evolving enhancer proteins 1, 2, and 3 (PsbO, PsbP, and PsbQ) and large extrinsic loop of Photosystem II CP43 reaction center protein (CP43) in the PSII-OEC extrinsicmore » domains of grana membranes under conditions resulting in the disordered arrangement of PSII-OEC particles. Moreover, we observed uncharacterized membrane particles that, based on their physical characteristics and electrophoretic analysis of the polypeptides associated with the grana samples, are hypothesized to be a domain of photosystem I that protrudes from the stromal face of single thylakoid bilayers. Furthermore, our results are interpreted in the context of the results of others that were obtained using cryo-electron microscopy (and single particle analysis), negative staining and freeze-fracture electron microscopy, as well as previous atomic force microscopy studies.« less
Direct Writing of Graphene-based Nanoelectronics via Atomic Force Microscopy
2012-05-07
To) 07-05-2012 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Direct Writing of Graphene -based Nanoelectronics via Atomic Force Microscopy 5b. GRANT...ABSTRACT This project employs direct writing with an atomic force microscope (AFM) to fabricate simple graphene -based electronic components like resistors...and transistors at nanometer-length scales. The goal is to explore their electrical properties for graphene -based electronics. Conducting
Adhesion Forces between Lewis(X) Determinant Antigens as Measured by Atomic Force Microscopy.
Tromas, C; Rojo, J; de la Fuente, J M; Barrientos, A G; García, R; Penadés, S
2001-01-01
The adhesion forces between individual molecules of Lewis(X) trisaccharide antigen (Le(X) ) have been measured in water and in calcium solution by using atomic force microscopy (AFM, see graph). These results demonstrate the self-recognition capability of this antigen, and reinforce the hypothesis that carbohydrate-carbohydrate interaction could be considered as the first step in the cell-adhesion process in nature. Copyright © 2001 WILEY-VCH Verlag GmbH, Weinheim, Fed. Rep. of Germany.
Driving force of stacking-fault formation in SiC p-i-n diodes.
Ha, S; Skowronski, M; Sumakeris, J J; Paisley, M J; Das, M K
2004-04-30
The driving force of stacking-fault expansion in SiC p-i-n diodes was investigated using optical emission microscopy and transmission electron microscopy. The stacking-fault expansion and properties of the partial dislocations were inconsistent with any stress as the driving force. A thermodynamic free energy difference between the perfect and a faulted structure is suggested as a plausible driving force in the tested diodes, indicating that hexagonal polytypes of silicon carbide are metastable at room temperature.
Li, Ying; Lu, Liyuan; Li, Juan
2016-09-01
Hereditary spherocytosis is an inherited red blood cell membrane disorder resulting from mutations of genes encoding erythrocyte membrane and cytoskeletal proteins. Few equipments can observe the structural characteristics of hereditary spherocytosis directly expect for atomic force microscopy In our study, we proved atomic force microscopy is a powerful and sensitive instrument to describe the characteristics of hereditary spherocytosis. Erythrocytes from hereditary spherocytosis patients were small spheroidal, lacking a well-organized lattice on the cell membrane, with smaller cell surface particles and had reduced valley to peak distance and average cell membrane roughness vs. those from healthy individuals. These observations indicated defects in the certain cell membrane structural proteins such as α- and β-spectrin, ankyrin, etc. Until now, splenectomy is still the most effective treatment for symptoms relief for hereditary spherocytosis. In this study, we further solved the mysteries of membrane nanostructure changes of erythrocytes before and after splenectomy in hereditary spherocytosis by atomic force microscopy. After splenectomy, the cells were larger, but still spheroidal-shaped. The membrane ultrastructure was disorganized and characterized by a reduced surface particle size and lower than normal Ra values. These observations indicated that although splenectomy can effectively relieve the symptoms of hereditary spherocytosis, it has little effect on correction of cytoskeletal membrane defects of hereditary spherocytosis. We concluded that atomic force microscopy is a powerful tool to investigate the pathophysiological mechanisms of hereditary spherocytosis and to monitor treatment efficacy in clinical practices. To the best of our knowledge, this is the first report to study hereditary spherocytosis with atomic force microscopy and offers important mechanistic insight into the underlying role of splenectomy.
The use of atomic force microscopy to evaluate warm mix asphalt.
DOT National Transportation Integrated Search
2013-01-01
The main objective of this study was to use the Atomic Force Microscopy (AFM) to examine the moisture susceptibility : and healing characteristics of Warm Mix Asphalt (WMA) and compare it with those of conventional Hot Mix Asphalt (HMA). To : this en...
Balke, Nina; Maksymovych, Petro; Jesse, Stephen; ...
2014-09-25
The implementation of contact mode Kelvin probe force microscopy (KPFM) utilizes the electrostatic interactions between tip and sample when the tip and sample are in contact with each other. Surprisingly, the electrostatic forces in contact are large enough to be measured even with tips as stiff as 4.5 N/m. As for traditional non-contact KPFM, the signal depends strongly on electrical properties of the sample, such as the dielectric constant, and the tip-properties, such as the stiffness. Since the tip is in contact with the sample, bias-induced changes in the junction potential between tip and sample can be measured with highermore » lateral and temporal resolution compared to traditional non-contact KPFM. Significant and reproducible variations of tip-surface capacitance are observed and attributed to surface electrochemical phenomena. Lastly, observations of significant surface charge states at zero bias and strong hysteretic electromechanical responses at non-ferroelectric surface have significant implications for fields such as triboelectricity and piezoresponse force microscopy.« less
Magnetic elements for switching magnetization magnetic force microscopy tips.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cambel, V.; Elias, P.; Gregusova, D.
2010-09-01
Using combination of micromagnetic calculations and magnetic force microscopy (MFM) imaging we find optimal parameters for novel magnetic tips suitable for switching magnetization MFM. Switching magnetization MFM is based on two-pass scanning atomic force microscopy with reversed tip magnetization between the scans. Within the technique the sum of the scanned data with reversed tip magnetization depicts local atomic forces, while their difference maps the local magnetic forces. Here we propose the design and calculate the magnetic properties of tips suitable for this scanning probe technique. We find that for best performance the spin-polarized tips must exhibit low magnetic moment, lowmore » switching fields, and single-domain state at remanence. The switching field of such tips is calculated and optimum shape of the Permalloy elements for the tips is found. We show excellent correspondence between calculated and experimental results for Py elements.« less
Progress in the Correlative Atomic Force Microscopy and Optical Microscopy
Zhou, Lulu; Cai, Mingjun; Tong, Ti; Wang, Hongda
2017-01-01
Atomic force microscopy (AFM) has evolved from the originally morphological imaging technique to a powerful and multifunctional technique for manipulating and detecting the interactions between molecules at nanometer resolution. However, AFM cannot provide the precise information of synchronized molecular groups and has many shortcomings in the aspects of determining the mechanism of the interactions and the elaborate structure due to the limitations of the technology, itself, such as non-specificity and low imaging speed. To overcome the technical limitations, it is necessary to combine AFM with other complementary techniques, such as fluorescence microscopy. The combination of several complementary techniques in one instrument has increasingly become a vital approach to investigate the details of the interactions among molecules and molecular dynamics. In this review, we reported the principles of AFM and optical microscopy, such as confocal microscopy and single-molecule localization microscopy, and focused on the development and use of correlative AFM and optical microscopy. PMID:28441775
Probing fibronectin–antibody interactions using AFM force spectroscopy and lateral force microscopy
Kulik, Andrzej J; Lee, Kyumin; Pyka-Fościak, Grazyna; Nowak, Wieslaw
2015-01-01
Summary The first experiment showing the effects of specific interaction forces using lateral force microscopy (LFM) was demonstrated for lectin–carbohydrate interactions some years ago. Such measurements are possible under the assumption that specific forces strongly dominate over the non-specific ones. However, obtaining quantitative results requires the complex and tedious calibration of a torsional force. Here, a new and relatively simple method for the calibration of the torsional force is presented. The proposed calibration method is validated through the measurement of the interaction forces between human fibronectin and its monoclonal antibody. The results obtained using LFM and AFM-based classical force spectroscopies showed similar unbinding forces recorded at similar loading rates. Our studies verify that the proposed lateral force calibration method can be applied to study single molecule interactions. PMID:26114080
Pump-probe Kelvin-probe force microscopy: Principle of operation and resolution limits
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murawski, J.; Graupner, T.; Milde, P., E-mail: peter.milde@tu-dresden.de
Knowledge on surface potential dynamics is crucial for understanding the performance of modern-type nanoscale devices. We describe an electrical pump-probe approach in Kelvin-probe force microscopy that enables a quantitative measurement of dynamic surface potentials at nanosecond-time and nanometer-length scales. Also, we investigate the performance of pump-probe Kelvin-probe force microscopy with respect to the relevant experimental parameters. We exemplify a measurement on an organic field effect transistor that verifies the undisturbed functionality of our pump-probe approach in terms of simultaneous and quantitative mapping of topographic and electronic information at a high lateral and temporal resolution.
Photoinduced force microscopy: A technique for hyperspectral nanochemical mapping
NASA Astrophysics Data System (ADS)
Murdick, Ryan A.; Morrison, William; Nowak, Derek; Albrecht, Thomas R.; Jahng, Junghoon; Park, Sung
2017-08-01
Advances in nanotechnology have intensified the need for tools that can characterize newly synthesized nanomaterials. A variety of techniques has recently been shown which combines atomic force microscopy (AFM) with optical illumination including tip-enhanced Raman spectroscopy (TERS), scattering-type scanning near-field optical microscopy (sSNOM), and photothermal induced resonance microscopy (PTIR). To varying degrees, these existing techniques enable optical spectroscopy with the nanoscale spatial resolution inherent to AFM, thereby providing nanochemical interrogation of a specimen. Here we discuss photoinduced force microscopy (PiFM), a recently developed technique for nanoscale optical spectroscopy that exploits image forces acting between an AFM tip and sample to detect wavelength-dependent polarization within the sample to generate absorption spectra. This approach enables ∼10 nm spatial resolution with spectra that show correlation with macroscopic optical absorption spectra. Unlike other techniques, PiFM achieves this high resolution with virtually no constraints on sample or substrate properties. The applicability of PiFM to a variety of archetypal systems is reported here, highlighting the potential of PiFM as a useful tool for a wide variety of industrial and academic investigations, including semiconducting nanoparticles, nanocellulose, block copolymers, and low dimensional systems, as well as chemical and morphological mixing at interfaces.
NASA Astrophysics Data System (ADS)
An, Sangmin; Hong, Mun-heon; Kim, Jongwoo; Kwon, Soyoung; Lee, Kunyoung; Lee, Manhee; Jhe, Wonho
2012-11-01
We present a platform for the quartz tuning fork (QTF)-based, frequency modulation atomic force microscopy (FM-AFM) system for quantitative study of the mechanical or topographical properties of nanoscale materials, such as the nano-sized water bridge formed between the quartz tip (˜100 nm curvature) and the mica substrate. A thermally stable, all digital phase-locked loop is used to detect the small frequency shift of the QTF signal resulting from the nanomaterial-mediated interactions. The proposed and demonstrated novel FM-AFM technique provides high experimental sensitivity in the measurement of the viscoelastic forces associated with the confined nano-water meniscus, short response time, and insensitivity to amplitude noise, which are essential for precision dynamic force spectroscopy and microscopy.
An, Sangmin; Hong, Mun-heon; Kim, Jongwoo; Kwon, Soyoung; Lee, Kunyoung; Lee, Manhee; Jhe, Wonho
2012-11-01
We present a platform for the quartz tuning fork (QTF)-based, frequency modulation atomic force microscopy (FM-AFM) system for quantitative study of the mechanical or topographical properties of nanoscale materials, such as the nano-sized water bridge formed between the quartz tip (~100 nm curvature) and the mica substrate. A thermally stable, all digital phase-locked loop is used to detect the small frequency shift of the QTF signal resulting from the nanomaterial-mediated interactions. The proposed and demonstrated novel FM-AFM technique provides high experimental sensitivity in the measurement of the viscoelastic forces associated with the confined nano-water meniscus, short response time, and insensitivity to amplitude noise, which are essential for precision dynamic force spectroscopy and microscopy.