Non-contact lateral force microscopy.
Weymouth, A J
2017-08-16
The goal of atomic force microscopy (AFM) is to measure the short-range forces that act between the tip and the surface. The signal recorded, however, includes long-range forces that are often an unwanted background. Lateral force microscopy (LFM) is a branch of AFM in which a component of force perpendicular to the surface normal is measured. If we consider the interaction between tip and sample in terms of forces, which have both direction and magnitude, then we can make a very simple yet profound observation: over a flat surface, long-range forces that do not yield topographic contrast have no lateral component. Short-range interactions, on the other hand, do. Although contact-mode is the most common LFM technique, true non-contact AFM techniques can be applied to perform LFM without the tip depressing upon the sample. Non-contact lateral force microscopy (nc-LFM) is therefore ideal to study short-range forces of interest. One of the first applications of nc-LFM was the study of non-contact friction. A similar setup is used in magnetic resonance force microscopy to detect spin flipping. More recently, nc-LFM has been used as a true microscopy technique to systems unsuitable for normal force microscopy.
Probing fibronectin–antibody interactions using AFM force spectroscopy and lateral force microscopy
Kulik, Andrzej J; Lee, Kyumin; Pyka-Fościak, Grazyna; Nowak, Wieslaw
2015-01-01
Summary The first experiment showing the effects of specific interaction forces using lateral force microscopy (LFM) was demonstrated for lectin–carbohydrate interactions some years ago. Such measurements are possible under the assumption that specific forces strongly dominate over the non-specific ones. However, obtaining quantitative results requires the complex and tedious calibration of a torsional force. Here, a new and relatively simple method for the calibration of the torsional force is presented. The proposed calibration method is validated through the measurement of the interaction forces between human fibronectin and its monoclonal antibody. The results obtained using LFM and AFM-based classical force spectroscopies showed similar unbinding forces recorded at similar loading rates. Our studies verify that the proposed lateral force calibration method can be applied to study single molecule interactions. PMID:26114080
Friction imprint effect in mechanically cleaved BaTiO{sub 3} (001)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Long, Christian J.; Maryland Nanocenter, University of Maryland, College Park, Maryland 20742; Ebeling, Daniel
2014-09-28
Adsorption, chemisorption, and reconstruction at the surfaces of ferroelectric materials can all contribute toward the pinning of ferroelectric polarization, which is called the electrical imprint effect. Here, we show that the opposite is also true: freshly cleaved, atomically flat surfaces of (001) oriented BaTiO{sub 3} exhibit a persistent change in surface chemistry that is driven by ferroelectric polarization. This surface modification is explored using lateral force microscopy (LFM), while the ferroelectric polarization is probed using piezoresponse force microscopy. We find that immediately after cleaving BaTiO{sub 3}, LFM reveals friction contrast between ferroelectric domains. We also find that this surface modificationmore » remains after the ferroelectric domain distribution is modified, resulting in an imprint of the original ferroelectric domain distribution on the sample surface. This friction imprint effect has implications for surface patterning as well as ferroelectric device operation and failure.« less
Tracing cell lineages in videos of lens-free microscopy.
Rempfler, Markus; Stierle, Valentin; Ditzel, Konstantin; Kumar, Sanjeev; Paulitschke, Philipp; Andres, Bjoern; Menze, Bjoern H
2018-06-05
In vitro experiments with cultured cells are essential for studying their growth and migration pattern and thus, for gaining a better understanding of cancer progression and its treatment. Recent progress in lens-free microscopy (LFM) has rendered it an inexpensive tool for label-free, continuous live cell imaging, yet there is only little work on analysing such time-lapse image sequences. We propose (1) a cell detector for LFM images based on fully convolutional networks and residual learning, and (2) a probabilistic model based on moral lineage tracing that explicitly handles multiple detections and temporal successor hypotheses by clustering and tracking simultaneously. (3) We benchmark our method in terms of detection and tracking scores on a dataset of three annotated sequences of several hours of LFM, where we demonstrate our method to produce high quality lineages. (4) We evaluate its performance on a somewhat more challenging problem: estimating cell lineages from the LFM sequence as would be possible from a corresponding fluorescence microscopy sequence. We present experiments on 16 LFM sequences for which we acquired fluorescence microscopy in parallel and generated annotations from them. Finally, (5) we showcase our methods effectiveness for quantifying cell dynamics in an experiment with skin cancer cells. Copyright © 2018 Elsevier B.V. All rights reserved.
Effect of Carbon Black on Elastomer Blends
NASA Astrophysics Data System (ADS)
Si, Mayu; Koga, Tadanori; Ji, Yuan; Seo, Young-Soo; Rafailovich, Miriam; Sokolov, Jonathan; Gerspacher, M.; Dias, A. J.; Karp, Kriss R.; Satija, Sushil; Lin, Min Y.
2003-03-01
The effects of untreated and heat-treated carbon black N299 on the interfacial properties of PB (Polybutadiene) and terpolymer BIMS [brominated Poly(isobutylene-co-methyl styrene)] were investigated by neutron reflectivity (NR) and lateral force microscopy (LFM). The NR results show that the addition of carbon black significantly slows down the interfacial broadening while heat-treated carbon black has less effect on slowing down the diffusion compared with untreated carbon black. These results were confirmed by the LFM data, which shows the magnitude of lateral force loop of heat-treated carbon black is bigger than that of untreated one. Ultra small and small angle neutron scattering (USANS and SANS) were used to probe the morphology and surface lateral force. Increasing volume concentration of carbon black to 5glass transition temperature of BIMS is also decreased, which was measured by Differential scanning Calorimeter (DSC). XRD analysis indicates that the heat treatment crystallizes the carbon black and strong graphitic peaks are observed. The large degree of crystallization decreases the interaction with the polymer matrix and hence minimizes the effect on the internal dynamics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marulanda, D. M.; Trujillo, O.; Devia, A.
The Plasma Assisted Physic Vapor Deposition (PAPVD) by the pulsed arc technique has been used for deposition of Titanium Zirconium Nitride (Ti,Zr)N coatings, using a segmented target of TiZr. The deposition was performed in a vacuum chamber with two faced electrodes (target and substrate) using nitrogen as working gas, and a power-controlled source used to produce the arc discharges. Films were deposited on stainless steel 304, and they were characterized using the X-Ray Photoelectron Spectroscopy (XPS), X-Ray Diffraction (XRD), Energy Dispersion Spectroscopy (EDS) and Scanning Probe Microscopy (SPM) techniques. The XRD patterns show different planes in which the film grows.more » Through SPM, using Atomic Force Microscopy (AFM) and Lateral Force Microscopy (LFM) modes, a nanotribologic study of the thin film was made, determining hardness and friction coefficient.« less
Kim, Soo In; Lee, Chang Woo
2011-02-01
Nowadays, many researchers try to measure the collapse force of fine pattern. However, most of the researches use LFM to gauge it indirectly and LFM can measure not for collapse force directly but only limited for horizontal force. Thus, nano-scratch is suggested to measure the collapse force possibly. We used poly-Si pattern on Si plate and changed the z-location of the pattern. From these experiments, the stiffness was decease as depth increase from surface and well fitted with negative exponential curve. Also, the elastic modulus was decreased. From the results, the collapse force of poly-Si nano-patterns was decreased as the depth increased over than 30% from the surface and the maximum collapse force was 26.91 microN and pattern was collapsed between poly-Si and plate.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Archer, Lynden
We have performed extensive experimental and theoretical studies of interfacial friction, relaxation dynamics, and thermodynamics of polymer chains tethered to points, planes, and particles. A key result from our tribology studies using lateral force microscopy (LFM) measurements of polydisperse brushes of linear and branched chains densely grafted to planar substrates is that there are exceedingly low friction coefficients for these systems. Specific project achievements include: (1) Synthesis of three-tiered lubricant films containing controlled amounts of free and pendent PDMS chains, and investigated the effect of their molecular weight and volume fraction on interfacial friction. (2.) Detailed studies of a familymore » of hairy particles termed nanoscale organic hybrid materials (NOHMs) and demonstration of their use as lubricants.« less
Lfm2000: Fifth NASA Langley Formal Methods Workshop
NASA Technical Reports Server (NTRS)
Holloway, C. Michael (Compiler)
2000-01-01
This is the proceedings of Lfm2000: Fifth NASA Langley Formal Methods Workshop. The workshop was held June 13-15, 2000, in Williamsburg, Virginia. See the web site
Spectroscopic Analysis of Temporal Changes in Leaf Moisture and Dry Matter Content
NASA Astrophysics Data System (ADS)
Qi, Y.; Dennison, P. E.; Brewer, S.; Jolly, W. M.; Kropp, R.
2013-12-01
Live fuel moisture (LFM), the ratio of water content to dry matter content (DMC) in live fuel, is critical for determining fire danger and behavior. Remote sensing estimation of LFM often relies on an assumption of changing water content and stable DMC over time. In order to advance understanding of temporal variation in LFM and DMC, we collected field samples and spectroscopic data for two species, lodgepole pine (Pinus contorta) and big sagebrush (Artemisia tridentata), to explore seasonal trends and spectral expression of these trends. New and old needles were measured separately for lodgepole pine. All samples were measured using a visible/NIR/SWIR spectrometer, and coincident samples were processed to provide LFM, DMC, water content and chemical components including structural and non-structural carbohydrates. New needles initially exhibited higher LFM and a smaller proportion of DMC, but differences between new and old needles converged as the new needles hardened. DMC explained more variation in LFM than water content for new pine needles and sagebrush leaves. Old pine needles transported non-structural carbohydrates to new needles to accumulate DMC during the growth season, resulting decreasing LFM in new needles. DMC and water content co-varied with vegetation chemical components and physical structure. Spectral variation in response to changing DMC is difficulty to isolate from the spectral signatures of multiple chemical components. Partial least square regression combined with hyperspectral data may increase modeling performance in LFM estimation.
Khosravi, Sanaz; Rahimnejad, Samad; Herault, Mikaël; Fournier, Vincent; Lee, Cho-Rong; Dio Bui, Hien Thi; Jeong, Jun-Bum; Lee, Kyeong-Jun
2015-08-01
This study was conducted to evaluate the supplemental effects of three different types of protein hydrolysates in a low fish meal (FM) diet on growth performance, feed utilization, intestinal morphology, innate immunity and disease resistance of juvenile red sea bream. A FM-based diet was used as a high fish meal diet (HFM) and a low fish meal (LFM) diet was prepared by replacing 50% of FM by soy protein concentrate. Three other diets were prepared by supplementing shrimp, tilapia or krill hydrolysate to the LFM diet (designated as SH, TH and KH, respectively). Triplicate groups of fish (4.9 ± 0.1 g) were fed one of the test diets to apparent satiation twice daily for 13 weeks and then challenged by Edwardsiella tarda. At the end of the feeding trial, significantly (P < 0.05) higher growth performance was obtained in fish fed HFM and hydrolysate treated groups compared to those fed the LFM diet. Significant improvements in feed conversion and protein efficiency ratios were obtained in fish fed the hydrolysates compared to those fed the LFM diet. Significant enhancement in digestibility of protein was found in fish fed SH and KH diets and dry matter digestibility was increased in the group fed SH diet in comparison to LFM group. Fish fed the LFM diet showed significantly higher glucose level than all the other treatments. Whole-body and dorsal muscle compositions were not significantly influenced by dietary treatments. Histological analysis revealed significant reductions in goblet cell numbers and enterocyte length in the proximal intestine of fish fed the LFM diet. Superoxide dismutase activity and total immunoglobulin level were significantly increased in fish fed the diets containing protein hydrolysates compared to the LFM group. Also, significantly higher lysozyme and antiprotease activities were found in fish fed the hydrolysates and HFM diets compared to those offered LFM diet. Fish fed the LFM diet exhibited the lowest disease resistance against E. tarda and dietary inclusion of the hydrolysates resulted in significant enhancement of survival rate. The results of the current study indicated that the inclusion of the tested protein hydrolysates, particularly SH, in a LFM diet can improve growth performance, feed utilization, digestibility, innate immunity and disease resistance of juvenile red sea bream. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Bruntz, R.; Lopez, R. E.; Bhattarai, S. K.; Pham, K. H.; Deng, Y.; Huang, Y.; Wiltberger, M.; Lyon, J. G.
2012-07-01
The Whole Heliosphere Interval (WHI), comprising March 20-April 16, 2008 (DOY 80-107), is a single Carrington Rotation (2068) designated for intense study through observations and simulations. We used solar wind data from the WHI to run the Coupled Magnetosphere-Ionosphere-Thermosphere (CMIT) and stand-alone Lyon-Fedder-Mobarry (LFM) models. The LFM model was also run with the WHI solar wind plasma parameters but with zero interplanetary magnetic field (IMF). With no IMF, we expect that the cross-polar cap potential (CPCP) is due entirely to the viscous interaction. Comparing the LFM runs with and without the IMF, we found that during strong driving with southward IMF Bz, the viscous potential could be a significant fraction of the total CPCP. During times of northward IMF Bz, the CPCP was generally lower than the CPCP value from the IMF=0 run. LFM tends to produce high polar cap potentials, but by using the Bruntz et al. (2012) viscous potential formula (ΦV=μn0.439V1.33, where μ=0.00431) and the IMF=0 LFM run, we calculated a scaling factor γ=1.54, which can be used to scale the LFM CPCP during the WHI down to realistic values. The Newell et al. (2008) viscous merging term can similarly be used to predict the viscous potential using the formula: ΦV=νn1/2V2, where the value ν=6.39×10-5 was also found using the zero IMF run. Both formulas were found to perform better when V (solar wind)=Vx, rather than Vtotal, yielding similar, accurate predictions of the LFM viscous potential, with R2>0.91 for both formulas. The γ factor was also used to scale down the LFM CPCP from the full solar wind run, with most of the resultant values matching the CPCP from the Weimer05 model well, even though γ was derived independent of the Weimer05 model or the full LFM data. We interpret this to be an indication that the conductivity model in LFM is producing values that are too low, thus elevating the CPCP values.
Roughness-dependent tribology effects on discontinuous shear thickening
Hsu, Chiao-Peng; Ramakrishna, Shivaprakash N.; Zanini, Michele; Spencer, Nicholas D.
2018-01-01
Surface roughness affects many properties of colloids, from depletion and capillary interactions to their dispersibility and use as emulsion stabilizers. It also impacts particle–particle frictional contacts, which have recently emerged as being responsible for the discontinuous shear thickening (DST) of dense suspensions. Tribological properties of these contacts have been rarely experimentally accessed, especially for nonspherical particles. Here, we systematically tackle the effect of nanoscale surface roughness by producing a library of all-silica, raspberry-like colloids and linking their rheology to their tribology. Rougher surfaces lead to a significant anticipation of DST onset, in terms of both shear rate and solid loading. Strikingly, they also eliminate continuous thickening. DST is here due to the interlocking of asperities, which we have identified as “stick–slip” frictional contacts by measuring the sliding of the same particles via lateral force microscopy (LFM). Direct measurements of particle–particle friction therefore highlight the value of an engineering-tribology approach to tuning the thickening of suspensions. PMID:29717043
Roughness-dependent tribology effects on discontinuous shear thickening.
Hsu, Chiao-Peng; Ramakrishna, Shivaprakash N; Zanini, Michele; Spencer, Nicholas D; Isa, Lucio
2018-05-15
Surface roughness affects many properties of colloids, from depletion and capillary interactions to their dispersibility and use as emulsion stabilizers. It also impacts particle-particle frictional contacts, which have recently emerged as being responsible for the discontinuous shear thickening (DST) of dense suspensions. Tribological properties of these contacts have been rarely experimentally accessed, especially for nonspherical particles. Here, we systematically tackle the effect of nanoscale surface roughness by producing a library of all-silica, raspberry-like colloids and linking their rheology to their tribology. Rougher surfaces lead to a significant anticipation of DST onset, in terms of both shear rate and solid loading. Strikingly, they also eliminate continuous thickening. DST is here due to the interlocking of asperities, which we have identified as "stick-slip" frictional contacts by measuring the sliding of the same particles via lateral force microscopy (LFM). Direct measurements of particle-particle friction therefore highlight the value of an engineering-tribology approach to tuning the thickening of suspensions. Copyright © 2018 the Author(s). Published by PNAS.
[Efficacy of Lactose-free Milk in Korean Adults with Lactose Intolerance].
Park, Sun Hee; Chang, Young Woon; Kim, Soo Jung; Lee, Min Hye; Nam, Ji Hyeok; Oh, Chi Hyuk; Kim, Jung-Wook; Jang, Jae-Young; Yang, Jin Oh; Yoo, Jin Ah; Chung, Jin Young
2016-01-25
Lactose-free milk (LFM) is available for nutrient supply for those with lactose intolerance (LI). However, there are no consistent results of the efficacy of LFM in LI subjects. We aimed to examine the changes of gastrointestinal (GI) symptoms and hydrogen breath test (HBT) values after ingestion of lactose contained milk (LCM) vs. LFM. From May 2015 to September 2015, thirty-five healthy adults with history of LCM-induced GI symptoms were recruited at a tertiary hospital. For the diagnosis of LI, HBT with LCM 550 mL (lactose 25 g) was performed every 20 minutes for 3 hours. The test was defined as "positive" when H2 peak exceeded 20 ppm above baseline values (ΔH2>20 ppm). When the subjects are diagnosed as LI, the second HBT using LFM 550 mL (lactose 0 g) was performed 7 days later. Subjects were asked to complete a questionnaire about the occurrence and severity of GI symptoms. Among a total of 35 subjects, 31 were diagnosed with LI at first visit, and their LCM-related symptoms were abdominal pain (98.6%), borborygmus (96.8%), diarrhea (90.3%), and flatus (87.1%). The ΔH2 value in subjects taking LCM (103.7±66.3ppm) significantly decreased to 6.3±4.9 ppm after ingesting LFM (p<0.0001). There were also significant reduction in total symptom scores and the severity of each symptom when LCM was changed to LFM (p<0.0001). This is the first report that LFM reduce LCM-related GI symptoms and H2 production in Korean adults. LFM can be an effective alternative for LCM in adults with LI.
Local fisheries management at the Swedish coast: biological and social preconditions.
Bruckmeier, Karl; Neuman, Erik
2005-03-01
Most of the Swedish coastal fisheries are not sustainable from either a social, economic or ecological point of view. We propose the introduction of local fisheries management (LFM) as a tool for restructuring the present large-scale management system in order to achieve sustainability. To implement LFM two questions need to be answered: How to distribute the resource fish among different resource user groups? How to restructure present fisheries management to meet the criteria of sustainability? Starting from these questions we describe possible forms of LFM for Swedish coastal fishery supported by recent research. The biological and social preconditions for restructuring fisheries management are derived from an analysis of the ecological and managerial situation in Swedish fishery. Three types of LFM--owner based, user based, and community based management--are analyzed with regard to the tasks to be carried outin LFM, the roles of management groups, and the definition and optimal size of management areas.
NASA Astrophysics Data System (ADS)
Jia, S.; Kim, S. H.; Nghiem, S. V.; Kafatos, M.
2017-12-01
Live fuel moisture (LFM) is the water content of live herbaceous plants expressed as a percentage of the oven-dry weight of plant. It is a critical parameter in fire ignition in Mediterranean climate and routinely measured in sites selected by fire agencies across the U.S. Vegetation growing cycle, meteorological metrics, soil type, and topography all contribute to the seasonal and inter-annual variation of LFM, and therefore, the risk of wildfire. The optical remote sensing-based vegetation indices (VIs) have been used to estimate the LFM. Comparing to the VIs, microwave remote sensing products have advantages like less saturation effect in greenness and representing the water content of the vegetation cover. In this study, we established three models to evaluate the predictability of LFM in Southern California using MODIS NDVI, vegetation temperature condition index (VTCI) from downscaled Soil Moisture Active Passive (SMAP) products, and vegetation optical depth (VOD) derived by Land Parameter Retrieval Model. Other ancillary variables, such as topographic factors (aspects and slope) and meteorological metrics (air temperature, precipitation, and relative humidity), are also considered in the models. The model results revealed an improvement of LFM estimation from SMAP products and VOD, despite the uncertainties introduced in the downscaling and parameter retrieval. The estimation of LFM using remote sensing data can provide an assessment of wildfire danger better than current methods using NDVI-based growing seasonal index. Future study will test the VOD estimation from SMAP data using the multi-temporal dual channel algorithm (MT-DCA) and extend the LFM modeling to a regional scale.
Effects of including electrojet turbulence in LFM-RCM simulations of geospace storms
NASA Astrophysics Data System (ADS)
Oppenheim, M. M.; Wiltberger, M. J.; Merkin, V. G.; Zhang, B.; Toffoletto, F.; Wang, W.; Lyon, J.; Liu, J.; Dimant, Y. S.
2016-12-01
Global geospace system simulations need to incorporate nonlinear and small-scale physical processes in order to accurately model storms and other intense events. During times of strong magnetospheric disturbances, large-amplitude electric fields penetrate from the Earth's magnetosphere to the E-region ionosphere where they drive Farley-Buneman instabilities (FBI) that create small-scale plasma density turbulence. This induces nonlinear currents and leads to anomalous electron heating. Current global Magnetosphere-Ionosphere-Thermosphere (MIT) models disregard these effects by assuming simple laminar ionospheric currents. This paper discusses the effects of incorporating accurate turbulent conductivities into MIT models. Recently, we showed in Liu et al. (2016) that during storm-time, turbulence increases the electron temperatures and conductivities more than precipitation. In this talk, we present the effect of adding these effects to the combined Lyon-Fedder-Mobarry (LFM) global MHD magnetosphere simulator and the Rice Convection Model (RCM). The LFM combines a magnetohydrodynamic (MHD) simulation of the magnetosphere with a 2D electrostatic solution of the ionosphere. The RCM uses drift physics to accurately model the inner magnetosphere, including a storm enhanced ring current. The LFM and coupled LFM-RCM simulations have previously shown unrealistically high cross-polar-cap potentials during strong solar wind driving conditions. We have recently implemented an LFM module that modifies the ionospheric conductivity to account for FBI driven anomalous electron heating and non-linear cross-field current enhancements as a function of the predicted ionospheric electric field. We have also improved the LFM-RCM code by making it capable of handling dipole tilts and asymmetric ionospheric solutions. We have tested this new LFM version by simulating the March 17, 2013 geomagnetic storm. These simulations showed a significant reduction in the cross-polar-cap potential during the strongest driving conditions, significant increases in the ionospheric conductivity in the auroral oval, and better agreement with DMSP observations of sub-auroral polarization streams. We conclude that accurate MIT simulations of geospace storms require the inclusion of turbulent conductivities.
1986-07-24
impact on tme local zommunity’s use of :hese facilities. g ) Released to the public 24, :986. FINAL ENVIRONMENTAL IMPACT STATEMENT kIR FORCE, SP.CE...LFM.*’* Alternative G 9 80 0 0 21 90 9 acres in southeast corner of WP and 21 acres at FM.** Alternative H 0 0 22 80 21 90 22 acres at BP and (Buildable...it may not be considered a permanent irreversible or irretrievable use of the land, the Proposed Action and alternatives (except Alternative G which
Nanoscale dissolution and growth on anhydrite cleavage faces
NASA Astrophysics Data System (ADS)
Pina, Carlos M.
2009-12-01
In situ atomic force microscopy (AFM) was used to study the molecular-scale reactivity of anhydrite (1 0 0), (0 1 0), and (0 0 1) faces exposed to water and CaSO 4 aqueous solutions at room temperature. In pure water, dissolution occurs by step retreat and etch pit nucleation and growth. Both the kinetics of the step retreat and the shape of the etch pits are surface-specific and crystallographically controlled. In CaSO 4 aqueous solutions with concentrations ranging from 0.030 mol/l to 0.075 mol/l, the growth kinetics on anhydrite (1 0 0) and (0 1 0) faces was studied. Growth is also strongly controlled by crystallographic constraints and occurs exclusively from pre-existing step edges by highly anisotropic spreading of monolayers (˜3.5 Å in height). The AFM observations demonstrate that monolayer growth can occur on anhydrite (0 1 0) and (1 0 0) faces even from slightly supersaturated solutions. In addition, the comparison of the step kinetics on anhydrite faces shows that the mechanisms of step dissolution and growth are essentially the same, with the direction of migration of crystal building units being reversed at the anhydrite saturation point. Moreover, the analysis of both high resolution AFM images and lateral force microscopy (LFM) images confirms that the newly-formed monolayers are anhydrite growing in structural continuity with the original (1 0 0) and (0 1 0) surfaces. However, the formation of the first monolayers is metastable and two-dimensional nucleation and further multilayer growth of anhydrite are strongly inhibited even at high supersaturations.
Rosado, Jorge L; Garcia, Olga P; Ronquillo, Dolores; Hervert-Hernández, Deisy; Caamaño, Maria Del C; Martínez, Guadalupe; Gutiérrez, Jessica; García, Sandra
2011-10-01
Micronutrient deficiencies have been associated with an increase in fat deposition and body weight; thus, adding them to low-fat milk may facilitate weight loss when accompanied by an energy-restricted diet. The objective was to evaluate the effect of the intake of low-fat milk and low-fat milk with added micronutrients on anthropometrics, body composition, blood glucose levels, lipids profile, C-reactive protein, and blood pressure of women following an energy-restricted diet. A 16-week randomized, controlled intervention study. One hundred thirty-nine obese women (aged 34±6 years) from five rural communities in Querétaro, Mexico. Women followed an energy-restricted diet (-500 kcal) and received in addition one of the following treatments: 250 mL of low-fat milk (LFM) three times/day, 250 mL of low-fat milk with micronutrients (LFM+M) three times/day, or a no milk control group (CON). Weight, height, and hip and waist circumferences were measured at baseline and every 4 weeks. Body composition measured by dual-energy x-ray absorptiometry, blood pressure, and blood analysis were done at baseline and at the end of the 16 weeks. Changes in weight and body composition. One-factor analysis of variance, adjusted by age, baseline values, and community random effects. After the 16-week intervention, participants in the LFM+M group lost significantly more weight (-5.1 kg; 95% CI: -6.2 to -4.1) compared with LFM (-3.6 kg; 95% CI: -4.7 to -2.6) and CON (-3.2 kg; 95% CI: -4.3 to -2.2) group members (P=0.035). Body mass index change in the LFM+M group (-2.3; 95% CI: -2.7 to -1.8) was significantly greater than LFM group members (-1.5; 95% CI: -2.0 to -1.1) and CON group members (-1.4; 95% CI: -1.9 to -0.9) (P=0.022). Change in percent body fat among LFM+M group members (-2.7%; 95% CI: -3.2 to -2.1) was significantly higher than LFM group members (-1.8%; 95% CI: -2.3 to -1.3) and CON group members (-1.6%; 95% CI: -2.2 to -1.0) (P=0.019). Change in bone mineral content was significantly higher in LFM group members (29 mg; 95% CI: 15 to 44) and LFM+M group members (27 mg; 95% CI: 13 to 41) compared with CON group members (-2 mg; 95% CI: -17 to -14) (P=0.007). No differences were found between groups in glucose level, blood lipid profile, C-reactive protein level, or blood pressure. Intake of LFM+M increases the effectiveness of an energy-restricted diet to treat obesity, but had no effect on blood lipid levels, glucose levels, C-reactive protein, or blood pressure. Copyright © 2011 American Dietetic Association. Published by Elsevier Inc. All rights reserved.
Damigos, Dimitris; Menegaki, Maria; Kaliampakos, Dimitris
2016-05-01
Despite the emerging global attention towards promoting waste management policies that reduce environmental impacts and conserve natural resources, landfilling still remains the dominant waste management practice in many parts of the world. Owing to this situation, environmental burdens are bequeathed to and large amounts of potentially valuable materials are lost for future generations. As a means to undo these adverse effects a process known as landfill mining (LFM) could be implemented provided that economic feasibility is ensured. So far, only a few studies have focused on the economic feasibility of LFM from a private point of view and even less studies have attempted to economically justify the need for LMF projects from a social point of view. This paper, aiming to add to the limited literature in the field, presents the results of a survey conducted in a rural district in Greece, by means of the Contingent Valuation method (CVM) in order to estimate society's willingness to pay for LFM programs. According to the empirical survey, more than 95% of the respondents recognize the need for LFM programs. Nevertheless, only one-fourth of the respondents are willing to pay through increased taxes for LFM, owing mainly to economic depression and unemployment. Those who accept the increased tax are willing to pay about €50 per household per year, on average, which results in a mean willingness to pay (WTP) for the entire population under investigation of around €12 per household per year. The findings of this research work provide useful insights about the 'dollar-based' benefits of LFM in the context of social cost-benefit analysis of LFM projects. Yet, it is evident that further research is necessary. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Yu, Z. B.; Li, Q.; Chen, X.; Guo, F. Z.; Xie, X. J.; Wu, J. H.
2003-12-01
The purpose of this paper is to investigate the stability of oscillation modes in a thermoacoustic Stirling prime mover, which is a combination of looped tube and resonator. Two modes, with oscillation frequencies of 76 and 528 Hz, have been observed, stabilities of which are widely different. The stability of the high frequency mode (HFM) is affected by low frequency mode (LFM) strongly. Once the LFM is excited when the HFM is present, the HFM will be gradually slaved and suppressed by the LFM. The details of the transition from HFM to LFM have been described. The two stability curves of the two modes have been measured. Mean pressure Pm is an important control parameter influencing the mode stability in the tested system.
Logic flowgraph methodology - A tool for modeling embedded systems
NASA Technical Reports Server (NTRS)
Muthukumar, C. T.; Guarro, S. B.; Apostolakis, G. E.
1991-01-01
The logic flowgraph methodology (LFM), a method for modeling hardware in terms of its process parameters, has been extended to form an analytical tool for the analysis of integrated (hardware/software) embedded systems. In the software part of a given embedded system model, timing and the control flow among different software components are modeled by augmenting LFM with modified Petrinet structures. The objective of the use of such an augmented LFM model is to uncover possible errors and the potential for unanticipated software/hardware interactions. This is done by backtracking through the augmented LFM mode according to established procedures which allow the semiautomated construction of fault trees for any chosen state of the embedded system (top event). These fault trees, in turn, produce the possible combinations of lower-level states (events) that may lead to the top event.
Use of the Contingent Valuation Method in the assessment of a landfill mining project.
Marella, Giuliano; Raga, Roberto
2014-07-01
A comprehensive approach for the evaluation of the economic feasibility of landfill mining (LFM) should take into account not only the direct costs and revenues for the private investor, but also the social benefits or costs (generally called externalities), in such a way that projects generating major social benefits (and no significant private revenues) are not overlooked. With a view to contributing to the development of a common framework for the evaluation of LFM projects, this paper presents the results of a case study where the issue of the assessment of social benefits from a LFM project is addressed. In particular, the Contingent Valuation Method is applied for the monetary assessment of the community-perceived benefits from the remediation of an old uncontrolled waste deposit by means of LFM and the conversion of the area into a park. Based on the results of a survey carried out on a random sample of people living near the old landfill, the economic values of the individual willingness to pay (WTP) for LFM and the subsequent creation of a public park were calculated and the correlations with the relevant variables (distance from the landfill site, age, income, sex, education level) assessed. The results were then suitably extended and the monetary value of the welfare increase of the whole population resident in the area and potentially affected both by LFM and the creation of the park was calculated. Copyright © 2014 Elsevier Ltd. All rights reserved.
The mammalian response to lunar particulates.
NASA Technical Reports Server (NTRS)
Holland, J. M.; Simmonds, R. C.
1973-01-01
The response of germfree mice to subcutaneous and intraperitoneal injection of aqueous suspensions of lunar fine material (LFM) was evaluated. Both uninjected mice and mice injected with dry heat sterilized LFM were included as controls. After injection, the majority of mice were subjected to serial sacrifice to assess the time course of the tissue response. A smaller group of animals were held for lifespan studies. The observations suggest that LFM is relatively insoluble in tissue and that, while acting as a low grade irritant, it has little tendency to evoke reactive fibrosis.
Effect of pendent chains on the interfacial properties of thin polydimethylsiloxane (PDMS) networks.
Landherr, Lucas J T; Cohen, Claude; Archer, Lynden A
2011-05-17
The interfacial properties of end-linked polydimethylsiloxane (PDMS) films on silicon are examined. Thin cross-linked PDMS films (∼10 μm thick) were synthesized over a self-assembled monolayer supported on a silicon wafer. By systematically varying the concentration of monofunctional PDMS in a mixture with telechelic precursor molecules, structures ranging from near-ideal elastic networks to poorly cross-linked networks composed of a preponderance of dangling/pendent chains were synthesized. Lateral force microscopy (LFM) employing bead probes was used to quantify the effect of network structure on the interfacial friction coefficient and residual force. Indentation measurements employing an AFM in force mode were used to characterize the elastic modulus and the pull-off force for the films as a function of pendent chain content. These measurements were complemented with conventional mechanical rheometry measurements on similar thick network films to determine their bulk rheological properties. All networks studied manifested interfacial friction coefficients substantially lower than that of bare silicon. PDMS networks with the lowest pendent chain content displayed friction coefficients close to 1 order of magnitude lower than that of bare silicon, whereas networks with the highest pendent chain content manifested friction coefficients about 3 times lower than that of bare silicon. At intermediate sliding velocities, a crossover in the interfacial friction coefficient was observed, wherein cross-linked PDMS films with the least amount of pendent chains exhibit the highest friction coefficient. These observations are discussed in terms of the structure of the films and relaxation dynamics of elastic strands and dangling chains in tethered network films.
NASA Astrophysics Data System (ADS)
Feng, Dongdong; Peng, Jinfeng; Liu, Sisi; Zheng, Xuejun; Yan, Xinyang; He, Wenyuan
2018-01-01
Distinguishing with the traditional cantilever mechanics method, we propose the extended cantilever mechanics method to calibrate the lateral calibration factor by using the normal spring constant obtained from atomic force microscopy (AFM) but not the Young’s modulus and the width of the cantilever, before the influences of thickness, scanning velocity and humidity on the frictional properties are investigated via friction measurement performed by the lateral force mode (LFM) of AFM. Tungsten disulfide (WS2) nanosheets were prepared through hydrothermal intercalation and exfoliation route, and AFM and Raman microscope were used to investigate the frictional properties, thickness and crystalline structure. The friction force and coefficient decrease monotonically with the increase of the nanosheet’s thickness, and the friction coefficient minimum value is close to 0.012 when the thickness larger than 5 nm. The friction property variation on the nanosheet’s thickness can be explained by the puckering effect of tip-sheet adhesion according thickness dependence of bending stiffness in the frame of continuum mechanics. The friction force is a constant value 1.7 nN when the scanning speed larger than the critical value 3.10 μm s-1, while it logarithmically increases for the scanning speed less than the critical value. It is easy to understand through the energy dissipation model and the thermally activated effect. The friction force and friction coefficient increase with the relative humidity at the range of 30%-60%, and the latter is at the range of 0.010-0.013. Influence of relative humidity is discussed via the increasing area of the water monolayer during the water adsorption process. The research can not only enrich nanotribology theory, but also prompt two dimensions materials for nanomechanical applications.
NASA Astrophysics Data System (ADS)
Puntambekar, Kanan Prakash
The advancement of organic electronics for applications in solar energy conversion, printed circuitry, displays, and solid-state lighting depends upon optimization of structure and properties for a variety of organic semiconductor interfaces. Organic semiconductor/insulator (O/I) and organic-metal (O/M) interfaces, in particular, are critical to the operation of organic thin film transistors (OTFTs) currently being developed for printed flexible electronics. Scanning probe microscopy (SPM) is a powerful tool to isolate and characterize the bottlenecks to charge transport at these interfaces. This thesis establishes a direct correlation between the structural disorder and electrical complexity at these interfaces, using various SPM based methods and discusses the implications of such complexity on device performance. To examine the O/M interfaces, surface potentials of operating pentacene TFTs with two different contact geometries (bottom or top) were mapped by Kelvin probe force microscopy (KFM). The surface potential distribution was used to isolate the potential drops at the source and drain contacts. Simultaneously obtained topography and surface potential maps elucidated the correlation between the morphology and contact resistance at the O/M interface; the bottom contact TFTs were observed to be contact limited at large gate voltages, while the top contact TFTs were not contact limited. A direct correlation between structural defects and electric potential variations at the pentacene and silicon dioxide, a common insulator, is demonstrated. Lateral force microscopy (LFM) generates striking images of the polycrystalline microstructure of a monolayer thick pentacene film, allowing clear visualization of the grain boundary network. Further more, surface potential wells localized at the grain boundaries were observed by KFM, suggesting that the grain boundaries may serve as charge carrier (hole) traps. Line dislocations were also revealed in the second monolayer by chemical etching and SPM and produce strong variations in the surface potential that must affect the interfacial charge conductance. Structural disorder at the O/I and O/M interfaces degrades both injection and transport of charge, and therefore needs to be minimized. Thus both visualization and correlation of structural and electrical complexity at these interfaces have important implications for understanding electrical transport in OTFTs and for defining strategies to improve device performance.
NASA Astrophysics Data System (ADS)
Qiu, Zhaoyang; Wang, Pei; Zhu, Jun; Tang, Bin
2016-12-01
Nyquist folding receiver (NYFR) is a novel ultra-wideband receiver architecture which can realize wideband receiving with a small amount of equipment. Linear frequency modulated/binary phase shift keying (LFM/BPSK) hybrid modulated signal is a novel kind of low probability interception signal with wide bandwidth. The NYFR is an effective architecture to intercept the LFM/BPSK signal and the LFM/BPSK signal intercepted by the NYFR will add the local oscillator modulation. A parameter estimation algorithm for the NYFR output signal is proposed. According to the NYFR prior information, the chirp singular value ratio spectrum is proposed to estimate the chirp rate. Then, based on the output self-characteristic, matching component function is designed to estimate Nyquist zone (NZ) index. Finally, matching code and subspace method are employed to estimate the phase change points and code length. Compared with the existing methods, the proposed algorithm has a better performance. It also has no need to construct a multi-channel structure, which means the computational complexity for the NZ index estimation is small. The simulation results demonstrate the efficacy of the proposed algorithm.
Magnetic field experiment for Voyagers 1 and 2
NASA Technical Reports Server (NTRS)
Behannon, K. W.; Aluna, M. H.; Burlaga, L. F.; Lepping, R. P.; Ness, N. F.; Neubauer, F. M.
1977-01-01
The magnetic field experiment to be carried on the Voyager 1 and 2 missions consists of dual low field (LFM) and high field magnetometer (HFM) systems. The dual systems provide greater reliability and, in the case of the LFM's, permit the separation of spacecraft magnetic fields from the ambient fields. Additional reliability is achieved through electronics redundancy. The wide dynamic ranges of plus or minus 0.5G for the LFM's and plus or minus 20G for the HFM's, low quantization uncertainty of plus or minus 0.002 gamma in the most sensitive (plus or minus 8 gamma) LFM range, low sensor RMS noise level of 0.006 gamma, and use of data compaction schemes to optimize the experiment information rate all combine to permit the study of a broad spectrum of phenomena during the mission. Planetary fields at Jupiter, Saturn, and possibly Uranus; satellites of these planets; solar wind and satellite interactions with the planetary fields; and the large-scale structure and microscale characteristics of the interplanetary magnetic field are studied. The interstellar field may also be measured.
NASA Astrophysics Data System (ADS)
Peterson, Seth Howard
Fire is an integral part of ecosystems in the western United States. Decades of fire suppression have led to (unnaturally) large accumulations of fuel in some forest communities, such as the lower elevation forests of the Sierra Nevada. Urban sprawl into fire prone chaparral vegetation in southern California has put human lives at risk and the decreased fire return intervals have put the vegetation community at risk of type conversion. This research examines the factors affecting fire risk in two of the dominant landscapes in the state of California, chaparral and inland coniferous forests. Live fuel moisture (LFM) is important for fire ignition, spread rate, and intensity in chaparral. LFM maps were generated for Los Angeles County by developing and then inverting robust cross-validated regression equations from time series field data and vegetation indices (VIs) and phenological metrics from MODIS data. Fire fuels, including understory fuels which are not visible to remote sensing instruments, were mapped in Yosemite National Park using the random forests decision tree algorithm and climatic, topographic, remotely sensed, and fire history variables. Combining the disparate data sources served to improve classification accuracies. The models were inverted to produce maps of fuel models and fuel amounts, and these showed that fire fuel amounts are highest in the low elevation forests that have been most affected by fire suppression impacting the natural fire regime. Wildland fires in chaparral commonly burn in late summer or fall when LFM is near its annual low, however, the Jesusita Fire burned in early May of 2009, when LFM was still relatively high. The HFire fire spread model was used to simulate the growth of the Jesusita Fire using LFM maps derived from imagery acquired at the time of the fire and imagery acquired in late August to determine how much different the fire would have been if it had occurred later in the year. Simulated fires were 1.5 times larger, and the fire reached the wildland urban interface three hours earlier, when using August LFM.
Betty Petersen Memorial Library - NCWCP Publications - NWS
(.PDF file) 254 1982 Smith W. 1-2 Day Comparative BWB and LFM Threat Scores and Bias 1971 - 1982 (.PDF Stackpole J. Tracton M. S. Comparative Evaluation of ECMWF and NMC Spectral Forecasts February - July 1982 file) 269 1983 Smith W. 1-2 Day Comparative BWB and LFM Threat Scores, No Precipitation Threat Scores
Cardinali-Rezende, Juliana; Alexandrino, Paulo Moises Raduan; Nahat, Rafael Augusto Theodoro Pereira de Souza; Sant’Ana, Débora Parrine Vieira; Silva, Luiziana Ferreira; Gomez, José Gregório Cabrera
2015-01-01
Pseudomonas sp. LFM046 is a medium-chain-length polyhydroxyalkanoate (PHAMCL) producer capable of using various carbon sources (carbohydrates, organic acids, and vegetable oils) and was first isolated from sugarcane cultivation soil in Brazil. The genome sequence was found to be 5.97 Mb long with a G+C content of 66%. PMID:26294616
2014-09-30
with energy source level ESL of 198.4 dB; the omnidirectional results were reduced by the effective reverberation response [EP09] of 19.7 dB. The...analysis and improved environmental inputs. Similar graphs (not shown) were obtained for the 1900–2000 Hz LFM and 2700–2800 Hz LFM, using ESLs of
Signal recognition and parameter estimation of BPSK-LFM combined modulation
NASA Astrophysics Data System (ADS)
Long, Chao; Zhang, Lin; Liu, Yu
2015-07-01
Intra-pulse analysis plays an important role in electronic warfare. Intra-pulse feature abstraction focuses on primary parameters such as instantaneous frequency, modulation, and symbol rate. In this paper, automatic modulation recognition and feature extraction for combined BPSK-LFM modulation signals based on decision theoretic approach is studied. The simulation results show good recognition effect and high estimation precision, and the system is easy to be realized.
Cardinali-Rezende, Juliana; Alexandrino, Paulo Moises Raduan; Nahat, Rafael Augusto Theodoro Pereira de Souza; Sant'Ana, Débora Parrine Vieira; Silva, Luiziana Ferreira; Gomez, José Gregório Cabrera; Taciro, Marilda Keico
2015-08-20
Pseudomonas sp. LFM046 is a medium-chain-length polyhydroxyalkanoate (PHAMCL) producer capable of using various carbon sources (carbohydrates, organic acids, and vegetable oils) and was first isolated from sugarcane cultivation soil in Brazil. The genome sequence was found to be 5.97 Mb long with a G+C content of 66%. Copyright © 2015 Cardinali-Rezende et al.
D. A. Roberts; P.E. Dennison; S. Peterson; S. Sweeney; J. Rechel
2006-01-01
Dynamic changes in live fuel moisture (LFM) and fuel condition modify fire danger in shrublands. We investigated the empirical relationship between field-measured LFM and remotely sensed greenness and moisture measures from the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) and the Moderate Resolution Imaging Spectrometer (MODIS). Key goals were to assess the...
Liquid Film Migration in Warm Formed Aluminum Brazing Sheet
NASA Astrophysics Data System (ADS)
Benoit, M. J.; Whitney, M. A.; Wells, M. A.; Jin, H.; Winkler, S.
2017-10-01
Warm forming has previously proven to be a promising manufacturing route to improve formability of Al brazing sheets used in automotive heat exchanger production; however, the impact of warm forming on subsequent brazing has not previously been studied. In particular, the interaction between liquid clad and solid core alloys during brazing through the process of liquid film migration (LFM) requires further understanding. Al brazing sheet comprised of an AA3003 core and AA4045 clad alloy, supplied in O and H24 tempers, was stretched between 0 and 12 pct strain, at room temperature and 523K (250 °C), to simulate warm forming. Brazeability was predicted through thermal and microstructure analysis. The rate of solid-liquid interactions was quantified using thermal analysis, while microstructure analysis was used to investigate the opposing processes of LFM and core alloy recrystallization during brazing. In general, liquid clad was consumed relatively rapidly and LFM occurred in forming conditions where the core alloy did not recrystallize during brazing. The results showed that warm forming could potentially impair brazeability of O temper sheet by extending the regime over which LFM occurs during brazing. No change in microstructure or thermal data was found for H24 sheet when the forming temperature was increased, and thus warm forming was not predicted to adversely affect the brazing performance of H24 sheet.
Vegetation Monitoring with Gaussian Processes and Latent Force Models
NASA Astrophysics Data System (ADS)
Camps-Valls, Gustau; Svendsen, Daniel; Martino, Luca; Campos, Manuel; Luengo, David
2017-04-01
Monitoring vegetation by biophysical parameter retrieval from Earth observation data is a challenging problem, where machine learning is currently a key player. Neural networks, kernel methods, and Gaussian Process (GP) regression have excelled in parameter retrieval tasks at both local and global scales. GP regression is based on solid Bayesian statistics, yield efficient and accurate parameter estimates, and provides interesting advantages over competing machine learning approaches such as confidence intervals. However, GP models are hampered by lack of interpretability, that prevented the widespread adoption by a larger community. In this presentation we will summarize some of our latest developments to address this issue. We will review the main characteristics of GPs and their advantages in vegetation monitoring standard applications. Then, three advanced GP models will be introduced. First, we will derive sensitivity maps for the GP predictive function that allows us to obtain feature ranking from the model and to assess the influence of examples in the solution. Second, we will introduce a Joint GP (JGP) model that combines in situ measurements and simulated radiative transfer data in a single GP model. The JGP regression provides more sensible confidence intervals for the predictions, respects the physics of the underlying processes, and allows for transferability across time and space. Finally, a latent force model (LFM) for GP modeling that encodes ordinary differential equations to blend data-driven modeling and physical models of the system is presented. The LFM performs multi-output regression, adapts to the signal characteristics, is able to cope with missing data in the time series, and provides explicit latent functions that allow system analysis and evaluation. Empirical evidence of the performance of these models will be presented through illustrative examples.
Investigation of Non-linear Chirp Coding for Improved Second Harmonic Pulse Compression.
Arif, Muhammad; Ali, Muhammad Asim; Shaikh, Muhammad Mujtaba; Freear, Steven
2017-08-01
Non-linear frequency-modulated (NLFM) chirp coding was investigated to improve the pulse compression of the second harmonic chirp signal by reducing the range side lobe level. The problem of spectral overlap between the fundamental component and second harmonic component (SHC) was also investigated. Therefore, two methods were proposed: method I for the non-overlap condition and method II with the pulse inversion technique for the overlap harmonic condition. In both methods, the performance of the NLFM chirp was compared with that of the reference LFM chirp signals. Experiments were performed using a 2.25 MHz transducer mounted coaxially at a distance of 5 cm with a 1 mm hydrophone in a water tank, and the peak negative pressure of 300 kPa was set at the receiver. Both simulations and experimental results revealed that the peak side lobe level (PSL) of the compressed SHC of the NLFM chirp was improved by at least 13 dB in method I and 5 dB in method II when compared with the PSL of LFM chirps. Similarly, the integrated side lobe level (ISL) of the compressed SHC of the NLFM chirp was improved by at least 8 dB when compared with the ISL of LFM chirps. In both methods, the axial main lobe width of the compressed NLFM chirp was comparable to that of the LFM signals. The signal-to-noise ratio of the SHC of NLFM was improved by as much as 0.8 dB, when compared with the SHC of the LFM signal having the same energy level. The results also revealed the robustness of the NLFM chirp under a frequency-dependent attenuation of 0.5 dB/cm·MHz up to a penetration depth of 5 cm and a Doppler shift up to 12 kHz. Copyright © 2017 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.
Wildfire Danger Potential in California
NASA Astrophysics Data System (ADS)
Kafatos, M.; Myoung, B.; Kim, S. H.; Fujioka, F. M.; Kim, J.
2015-12-01
Wildfires are an important concern in California (CA) which is characterized by the semi-arid to arid climate and vegetation types. Highly variable winter precipitation and extended hot and dry warm season in the region challenge an effective strategic fire management. Climatologically, the fire season which is based on live fuel moisture (LFM) of generally below 80% in Los Angeles County spans 4 months from mid-July to mid-November, but it has lasted over 7 months in the past several years. This behavior is primarily due to the ongoing drought in CA during the last decade, which is responsible for frequent outbreaks of severe wildfires in the region. Despite their importance, scientific advances for the recent changes in wildfire risk and effective assessments of wildfire risk are lacking. In the present study, we show impacts of large-scale atmospheric circulations on an early start and then extended length of fire seasons. For example, the strong relationships of North Atlantic Oscillation (NAO) with springtime temperature and precipitation in the SWUS that was recently revealed by our team members have led to an examination of the possible impact of NAO on wildfire danger in the spring. Our results show that the abnormally warm and dry spring conditions associated with positive NAO phases can cause an early start of a fire season and high fire risks throughout the summer and fall. For an effective fire danger assessment, we have tested the capability of satellite vegetation indices (VIs) in replicating in situ LFM of Southern CA chaparral ecosystems by 1) comparing seasonal/interannual characteristics of in-situ LFM with VIs and 2) developing an empirical model function of LFM. Unlike previous studies attempting a point-to-point comparison, we attempt to examine the LFM relationship with VIs averaged over different areal coverage with chamise-dominant grids (i.e., 0.5 km to 25 km radius circles). Lastly, we discuss implications of the results for fire danger assessment and prediction.
2009-01-01
promising pharmacologic target for radiation enhancement. Although LMF- A13 is clinically used as a Btk inhibitor , many groups have used LFM-A13 as a Bmx... inhibitor due to the high homology between Bmx and Btk . Because Btk is only found in bone marrow–derived cells, we felt that LFM-A13 could be used...discovered a number of selective irreversible Btk inhibitors aimed at treating rheumatoid arthritis. Moreover, CGI Pharmaceuticals, Inc. has been developing
NASA Astrophysics Data System (ADS)
Liu, Jianfei; Wei, Ying; Zeng, Xiangye; Lu, Jia; Zhang, Shuangxi; Wang, Mengjun
2018-03-01
A joint timing and frequency synchronization method has been proposed for coherent optical orthogonal frequency-division multiplexing (CO-OFDM) system in this paper. The timing offset (TO), integer frequency offset (FO) and the fractional FO can be realized by only one training symbol, which consists of two linear frequency modulation (LFM) signals with opposite chirp rates. By detecting the peak of LFM signals after Radon-Wigner transform (RWT), the TO and the integer FO can be estimated at the same time, moreover, the fractional FO can be acquired correspondingly through the self-correlation characteristic of the same training symbol. Simulation results show that the proposed method can give a more accurate TO estimation than the existing methods, especially at poor OSNR conditions; for the FO estimation, both the fractional and the integer FO can be estimated through the proposed training symbol with no extra overhead, a more accurate estimation and a large FO estimation range of [ - 5 GHz, 5GHz] can be acquired.
Simulating Sources of Superstorm Plasmas
NASA Technical Reports Server (NTRS)
Fok, Mei-Ching
2008-01-01
We evaluated the contributions to magnetospheric pressure (ring current) of the solar wind, polar wind, auroral wind, and plasmaspheric wind, with the surprising result that the main phase pressure is dominated by plasmaspheric protons. We used global simulation fields from the LFM single fluid ideal MHD model. We embedded the Comprehensive Ring Current Model within it, driven by the LFM transpolar potential, and supplied with plasmas at its boundary including solar wind protons, polar wind protons, auroral wind O+, and plasmaspheric protons. We included auroral outflows and acceleration driven by the LFM ionospheric boundary condition, including parallel ion acceleration driven by upward currents. Our plasmasphere model runs within the CRCM and is driven by it. Ionospheric sources were treated using our Global Ion Kinetics code based on full equations of motion. This treatment neglects inertial loading and pressure exerted by the ionospheric plasmas, and will be superceded by multifluid simulations that include those effects. However, these simulations provide new insights into the respective role of ionospheric sources in storm-time magnetospheric dynamics.
O'Neil, Carol E; Nicklas, Theresa A; Fulgoni, Victor L
2015-01-01
Most studies showing that children consuming breakfast have better nutrient intakes, diet quality, and lower weight than breakfast skippers have the incorrect premise that breakfast meals are homogeneous. The purpose of this study was to classify breakfast meals into patterns and determine the association of the breakfast patterns with daily and breakfast nutrient intakes, diet quality, and weight. Data from children (2-18 years of age; N = 14,200) participating in the National Health and Nutrition Examination Survey 2001-2008 were used. Intake was determined from one day 24-hour dietary recalls. Diet quality was measured using the Healthy Eating Index-2005 (HEI-2005). Body mass index (BMI) z-scores were determined. Twelve patterns (including No Breakfast [∼19% of population]), explaining 63% of the variance in energy from breakfast, were examined. Covariate adjusted general linear models were used to compare outcome variables of consumers of different patterns with breakfast skippers. The p value was Bonferroni corrected (< 0.05/12 = < 0.0042). Consumers of the Eggs/Grain/Meat, Poultry, Fish (MPF)/ Fruit Juice (FJ) and MPF/ Grain/FJ patterns showed higher daily intakes of saturated fats, solid fats, and sodium and lower daily intakes of added sugars than breakfast skippers. Consumers of most breakfast patterns showed higher daily intakes of some nutrients of public health concern (dietary fiber, vitamin D, calcium, and potassium); however, those consuming the Grain or MPF/Grain/FJ pattern did not. Consumers of the Grain/Lower Fat Milk (LFM)/Sweets/FJ, Presweetened (PS) Ready-to-eat Cereal (RTEC)/ LFM, RTEC/LFM, Cooked Cereal/Milk/FJ, and Whole Fruit patterns had higher total HEI-2005 scores than breakfast skippers; those consuming the MPF/ Grain/FJ pattern had lower diet quality than breakfast skippers. Consumption of the Grain/ LFM/Sweets/FJ, PSRTEC/whole milk, Soft Drinks/ FJ/Grain/Potatoes, RTEC/whole milk, and Cooked Cereal/ Milk/ FJ patterns was associated with lower BMI z-scores than seen in breakfast skippers. There are dietary and weight advantages of consuming breakfast, especially breakfasts that include grains, cereals, LFM, and fruit/ FJ, in contrast to the potential adverse effects of skipping breakfast.
Global MHD modeling of resonant ULF waves: Simulations with and without a plasmasphere.
Claudepierre, S G; Toffoletto, F R; Wiltberger, M
2016-01-01
We investigate the plasmaspheric influence on the resonant mode coupling of magnetospheric ultralow frequency (ULF) waves using the Lyon-Fedder-Mobarry (LFM) global magnetohydrodynamic (MHD) model. We present results from two different versions of the model, both driven by the same solar wind conditions: one version that contains a plasmasphere (the LFM coupled to the Rice Convection Model, where the Gallagher plasmasphere model is also included) and another that does not (the stand-alone LFM). We find that the inclusion of a cold, dense plasmasphere has a significant impact on the nature of the simulated ULF waves. For example, the inclusion of a plasmasphere leads to a deeper (more earthward) penetration of the compressional (azimuthal) electric field fluctuations, due to a shift in the location of the wave turning points. Consequently, the locations where the compressional electric field oscillations resonantly couple their energy into local toroidal mode field line resonances also shift earthward. We also find, in both simulations, that higher-frequency compressional (azimuthal) electric field oscillations penetrate deeper than lower frequency oscillations. In addition, the compressional wave mode structure in the simulations is consistent with a radial standing wave oscillation pattern, characteristic of a resonant waveguide. The incorporation of a plasmasphere into the LFM global MHD model represents an advance in the state of the art in regard to ULF wave modeling with such simulations. We offer a brief discussion of the implications for radiation belt modeling techniques that use the electric and magnetic field outputs from global MHD simulations to drive particle dynamics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Merkin, V. G.; Lionello, R.; Linker, J.
2016-11-01
Two well-established magnetohydrodynamic (MHD) codes are coupled to model the solar corona and the inner heliosphere. The corona is simulated using the MHD algorithm outside a sphere (MAS) model. The Lyon–Fedder–Mobarry (LFM) model is used in the heliosphere. The interface between the models is placed in a spherical shell above the critical point and allows both models to work in either a rotating or an inertial frame. Numerical tests are presented examining the coupled model solutions from 20 to 50 solar radii. The heliospheric simulations are run with both LFM and the MAS extension into the heliosphere, and use themore » same polytropic coronal MAS solutions as the inner boundary condition. The coronal simulations are performed for idealized magnetic configurations, with an out-of-equilibrium flux rope inserted into an axisymmetric background, with and without including the solar rotation. The temporal evolution at the inner boundary of the LFM and MAS solutions is shown to be nearly identical, as are the steady-state background solutions, prior to the insertion of the flux rope. However, after the coronal mass ejection has propagated through the significant portion of the simulation domain, the heliospheric solutions diverge. Additional simulations with different resolution are then performed and show that the MAS heliospheric solutions approach those of LFM when run with progressively higher resolution. Following these detailed tests, a more realistic simulation driven by the thermodynamic coronal MAS is presented, which includes solar rotation and an azimuthally asymmetric background and extends to the Earth’s orbit.« less
Role of Bruton’s tyrosine kinase in myeloma cell migration and induction of bone disease
Bam, Rakesh; Ling, Wen; Khan, Sharmin; Pennisi, Angela; Venkateshaiah, Sathisha Upparahalli; Li, Xin; van Rhee, Frits; Usmani, Saad; Barlogie, Bart; Shaughnessy, John; Epstein, Joshua; Yaccoby, Shmuel
2014-01-01
Myeloma cells typically grow in bone, recruit osteoclast precursors and induce their differentiation and activity in areas adjacent to tumor foci. Bruton’s tyrosine kinase (BTK), of the TEC family, is expressed in hematopoietic cells and is particularly involved in B-lymphocyte function and osteoclastogenesis. We demonstrated BTK expression in clinical myeloma plasma cells, interleukin (IL) –6– or stroma–dependent cell lines and osteoclasts. SDF-1 induced BTK activation in myeloma cells and BTK inhibition by small hairpin RNA or the small molecule inhibitor, LFM-A13, reduced their migration toward stromal cell-derived factor-1 (SDF-1). Pretreatment with LFM-A13 also reduced in vivo homing of myeloma cells to bone using bioluminescence imaging in the SCID-rab model. Enforced expression of BTK in myeloma cell line enhanced cell migration toward SDF-1 but had no effect on short-term growth. BTK expression was correlated with cell-surface CXCR4 expression in myeloma cells (n = 33, r = 0.81, P < 0.0001), and BTK gene and protein expression was more profound in cell-surface CXCR4-expressing myeloma cells. BTK was not upregulated by IL-6 while its inhibition had no effect on IL-6 signaling in myeloma cells. Human osteoclast precursors also expressed BTK and cell-surface CXCR4 and migrated toward SDF-1. LFM-A13 suppressed migration and differentiation of osteoclast precursors as well as bone-resorbing activity of mature osteoclasts. In primary myeloma-bearing SCID-rab mice, LFM-A13 inhibited osteoclast activity, prevented myeloma-induced bone resorption and moderately suppressed myeloma growth. These data demonstrate BTK and cell-surface CXCR4 association in myeloma cells and that BTK plays a role in myeloma cell homing to bone and myeloma-induced bone disease. PMID:23456977
O'Neil, Carol E.; Nicklas, Theresa A.; Fulgoni, Victor L.
2015-01-01
Most studies showing that children consuming breakfast have better nutrient intakes, diet quality, and lower weight than breakfast skippers have the incorrect premise that breakfast meals are homogeneous. The purpose of this study was to classify breakfast meals into patterns and determine the association of the breakfast patterns with daily and breakfast nutrient intakes, diet quality, and weight. Data from children (2–18 years of age; N = 14,200) participating in the National Health and Nutrition Examination Survey 2001–2008 were used. Intake was determined from one day 24-hour dietary recalls. Diet quality was measured using the Healthy Eating Index-2005 (HEI-2005). Body mass index (BMI) z-scores were determined. Twelve patterns (including No Breakfast [∼19% of population]), explaining 63% of the variance in energy from breakfast, were examined. Covariate adjusted general linear models were used to compare outcome variables of consumers of different patterns with breakfast skippers. The p value was Bonferroni corrected (< 0.05/12 = < 0.0042). Consumers of the Eggs/Grain/Meat, Poultry, Fish (MPF)/ Fruit Juice (FJ) and MPF/ Grain/FJ patterns showed higher daily intakes of saturated fats, solid fats, and sodium and lower daily intakes of added sugars than breakfast skippers. Consumers of most breakfast patterns showed higher daily intakes of some nutrients of public health concern (dietary fiber, vitamin D, calcium, and potassium); however, those consuming the Grain or MPF/Grain/FJ pattern did not. Consumers of the Grain/Lower Fat Milk (LFM)/Sweets/FJ, Presweetened (PS) Ready-to-eat Cereal (RTEC)/ LFM, RTEC/LFM, Cooked Cereal/Milk/FJ, and Whole Fruit patterns had higher total HEI-2005 scores than breakfast skippers; those consuming the MPF/ Grain/FJ pattern had lower diet quality than breakfast skippers. Consumption of the Grain/ LFM/Sweets/FJ, PSRTEC/whole milk, Soft Drinks/ FJ/Grain/Potatoes, RTEC/whole milk, and Cooked Cereal/ Milk/ FJ patterns was associated with lower BMI z-scores than seen in breakfast skippers. There are dietary and weight advantages of consuming breakfast, especially breakfasts that include grains, cereals, LFM, and fruit/ FJ, in contrast to the potential adverse effects of skipping breakfast. PMID:29546119
Schedl, Markus
2017-01-01
Recently, the LFM-1b dataset has been proposed to foster research and evaluation in music retrieval and music recommender systems, Schedl (Proceedings of the ACM International Conference on Multimedia Retrieval (ICMR). New York, 2016). It contains more than one billion music listening events created by more than 120,000 users of Last.fm. Each listening event is characterized by artist, album, and track name, and further includes a timestamp. Basic demographic information and a selection of more elaborate listener-specific descriptors are included as well, for anonymized users. In this article, we reveal information about LFM-1b's acquisition and content and we compare it to existing datasets. We furthermore provide an extensive statistical analysis of the dataset, including basic properties of the item sets, demographic coverage, distribution of listening events (e.g., over artists and users), and aspects related to music preference and consumption behavior (e.g., temporal features and mainstreaminess of listeners). Exploiting country information of users and genre tags of artists, we also create taste profiles for populations and determine similar and dissimilar countries in terms of their populations' music preferences. Finally, we illustrate the dataset's usage in a simple artist recommendation task, whose results are intended to serve as baseline against which more elaborate techniques can be assessed.
A VARI-Based Relative Greenness from MODIS Data for Computing the Fire Potential Index
NASA Technical Reports Server (NTRS)
Schneider, P.; Roberts, D. A.; Kyriakidis, P. C.
2008-01-01
The Fire Potential Index (FPI) relies on relative greenness (RG) estimates from remote sensing data. The Normalized Difference Vegetation index (NDVI), derived from NOAA Advanced Very High Resolution Radiometer (AVHRR) imagery is currently used to calculate RG operationally. Here we evaluated an alternate measure of RG using the Visible Atmospheric Resistant Index (VARI) derived from Moderate Resolution Imaging Spectrometer (MODIS) data. VARI was chosen because it has previously been shown to have the strongest relationship with Live Fuel Moisture (LFM) out of a wide selection of MODIS-derived indices in southern California shrublands. To compare MODIS-based NDVI-FPI and VARI-FPI, RG was calculated from a 6-year time series of MODIS composites and validated against in-situ observations of LFM as a surrogate for vegetation greenness. RG from both indices was then compared in terms of its performance for computing the FPI using historical wildfire data. Computed RG values were regressed against ground-sampled LFM at 14 sites within Los Angeles County. The results indicate the VARI-based RG consistently shows a stronger relationship with observed LFM than NDVI-based RG. With an average R2 of 0.727 compared to a value of only 0.622 for NDVI-RG, VARI-RG showed stronger relationships at 13 out of 14 sites. Based on these results, daily FPI maps were computed for the years 2001 through 2005 using both NDVI-RG and VARI-RG. These were then validated against 12,490 fire detections from the MODIS active fire product using logistic regression. Deviance of the logistic regression model was 408.8 for NDVI-FPI and 176.2 for VARI-FPI. The c-index was found to be 0.69 and 0.78, respectively. The results show that VARI-FP outperforms NDVI-FPI in distinguishing between fire and no-fire events for historical wildfire data in southern California for the given time period.
Hartzell, Meredith M; Neblett, Randy; Perez, Yoheli; Brede, Emily; Mayer, Tom G; Gatchel, Robert J
2014-08-01
A retrospective study of prospectively collected data. To determine whether comorbid fibromyalgia, identified in patients with chronic disabling occupational musculoskeletal disorders (CDOMDs), resolves with a functional restoration program (FRP). Fibromyalgia involves widespread bodily pain and tenderness to palpation. In recent studies, 23% to 41% of patients with CDOMDs entering an FRP had comorbid fibromyalgia, compared with population averages of 2% to 5%. Few studies have examined whether fibromyalgia diagnoses resolve with any treatment, and none have investigated diagnosis responsiveness to an FRP. A consecutive cohort of patients with CDOMDs (82% with spinal disorders and all reporting chronic spinal pain) and comorbid fibromyalgia (N = 117) completed an FRP, which included quantitatively directed exercise progression and multimodal disability management. Diagnosis responsiveness, evaluated at discharge, created 2 groups: those who retained fibromyalgia and those who did not. These groups were compared with chronic regional lumbar pain only patients (LO group, n = 87), lacking widespread pain and fibromyalgia. Of the patients with comorbid fibromyalgia, 59% (n = 69) retained the fibromyalgia diagnosis (RFM group) and 41% (n = 48) lost the fibromyalgia diagnosis (LFM group) at discharge. Although all 3 groups reported decreased pain intensity, disability, and depressive symptoms from admission to discharge, RFM patients reported higher symptom levels than the LFM and LO groups at discharge. The LFM and LO groups were statistically similar. At 1-year follow-up, LO patients demonstrated higher work retention than both fibromyalgia groups (P < 0.03). Despite a significant comorbid fibromyalgia prevalence in a cohort of patients with CDOMDs entering an FRP, 41% of patients with an initial fibromyalgia diagnosis no longer met diagnostic criteria for fibromyalgia at discharge and were indistinguishable from LO patients on pain, disability, and depression symptoms. However, both fibromyalgia groups (LFM and RFM) had lower work retention than LO patients 1 year later, suggesting that an FRP may suppress symptoms of fibromyalgia in a subset of patients, but prolonged fibromyalgia-related disability may be more difficult to overcome. 2.
Urban Sprawl and Wildfire Danger along the Wildland-Urban Interface
NASA Astrophysics Data System (ADS)
Nghiem, S. V.; Kafatos, M.; Myoung, B.
2015-12-01
Urban sprawl has created an extensive wildland-urban interface (WUI) where urban areas encroach well into the wilderness that is highly susceptible to wildfire danger. To monitor urbanization along WUI, an innovative approach based on the Dense Sampling Method with the Rosette Transform (DSM-RT) enables the use of satellite scatterometer data to obtain observations without gaps in time and in space at 1-km posting in the decade of the 2000s. To explain how the satellite signature processed with DSM-RT represents physical urban infrastructures, the case of the mega city of Los Angeles is presented with the DSM-RT satellite image overlaid on three-dimensional buildings and road network from the commercial and industrial core of the city to the residential suburb extended into the wild land. Then the rate of urban development in the 2000s in terms of physical urban infrastructure change, rather than the arbitrary boundary defined by administrative or legislative measures, for 14 cities along the San Gabriel Mountains in California are evaluated to rank the degree of urbanization along the local WUI, which may increase the probability of fire ignitions and fire impacts. Moreover, the Enhanced Vegetation Index (EVI) from the MODIS Aqua satellite is used to estimate live fuel moisture (LFM) conditions around the WUI to evaluate fire danger levels, which are consistent to the specific definition currently used by fire agencies in making real-life decisions for fire preparedness pro-actively before the fire occurrence. As an example, a map of EVI-derived LFM for the Colby Fire in 2014 showing a complex spatial pattern of LFM reduction along an extensive WUI illustrates satellite advantage in monitoring LFM over the vast wild land in Southern California. Since the method is based on global satellite data, it is applicable to regions prone to wildfires across the world.
Ancillao, Andrea; van der Krogt, Marjolein M; Buizer, Annemieke I; Witbreuk, Melinda M; Cappa, Paolo; Harlaar, Jaap
2017-10-01
Gait analysis is used for the assessment of walking ability of children with cerebral palsy (CP), to inform clinical decision making and to quantify changes after treatment. To simplify gait analysis interpretation and to quantify deviations from normality, some quantitative synthetic descriptors were developed over the years, such as the Movement Analysis Profile (MAP) and the Linear Fit Method (LFM), but their interpretation is not always straightforward. The aims of this work were to: (i) study gait changes, by means of synthetic descriptors, in children with CP that underwent Single Event Multilevel Surgery; (ii) compare the MAP and the LFM on these patients; (iii) design a new index that may overcome the limitations of the previous methods, i.e. the lack of information about the direction of deviation or its source. Gait analysis exams of 10 children with CP, pre- and post-surgery, were collected and MAP and LFM were computed. A new index was designed asa modified version of the MAP by separating out changes in offset (named OC-MAP). MAP documented an improvement in the gait pattern after surgery. The highest effect was observed for the knee flexion/extension angle. However, a worsening was observed as an increase in anterior pelvic tilt. An important source of gait deviation was recognized in the offset between observed tracks and reference. OC-MAP allowed the assessment of the offset component versus the shape component of deviation. LFM provided results similar to OC-MAP offset analysis but could not be considered reliable due to intrinsic limitations. As offset in gait features played an important role in gait deviation, OC-MAP synthetic analysis was proposed as a novel approach to a meaningful parameterisation of global deviations in gait patterns of subjects with CP and gait changes after treatment. Copyright © 2017 Elsevier B.V. All rights reserved.
Agile waveforms for joint SAR-GMTI processing
NASA Astrophysics Data System (ADS)
Jaroszewski, Steven; Corbeil, Allan; McMurray, Stephen; Majumder, Uttam; Bell, Mark R.; Corbeil, Jeffrey; Minardi, Michael
2016-05-01
Wideband radar waveforms that employ spread-spectrum techniques were investigated and experimentally tested. The waveforms combine bi-phase coding with a traditional LFM chirp and are applicable to joint SAR-GMTI processing. After de-spreading, the received signals can be processed to support simultaneous GMTI and high resolution SAR imaging missions by airborne radars. The spread spectrum coding techniques can provide nearly orthogonal waveforms and offer enhanced operations in some environments by distributing the transmitted energy over a large instantaneous bandwidth. The LFM component offers the desired Doppler tolerance. In this paper, the waveforms are formulated and a shift-register approach for de-spreading the received signals is described. Hardware loop-back testing has shown the feasibility of using these waveforms in experimental radar test bed.
Zhang, Fangzheng; Guo, Qingshui; Pan, Shilong
2017-10-23
Real-time and high-resolution target detection is highly desirable in modern radar applications. Electronic techniques have encountered grave difficulties in the development of such radars, which strictly rely on a large instantaneous bandwidth. In this article, a photonics-based real-time high-range-resolution radar is proposed with optical generation and processing of broadband linear frequency modulation (LFM) signals. A broadband LFM signal is generated in the transmitter by photonic frequency quadrupling, and the received echo is de-chirped to a low frequency signal by photonic frequency mixing. The system can operate at a high frequency and a large bandwidth while enabling real-time processing by low-speed analog-to-digital conversion and digital signal processing. A conceptual radar is established. Real-time processing of an 8-GHz LFM signal is achieved with a sampling rate of 500 MSa/s. Accurate distance measurement is implemented with a maximum error of 4 mm within a range of ~3.5 meters. Detection of two targets is demonstrated with a range-resolution as high as 1.875 cm. We believe the proposed radar architecture is a reliable solution to overcome the limitations of current radar on operation bandwidth and processing speed, and it is hopefully to be used in future radars for real-time and high-resolution target detection and imaging.
Nano-enabled paper humidity sensor for mobile based point-of-care lung function monitoring.
Bhattacharjee, Mitradip; Nemade, Harshal B; Bandyopadhyay, Dipankar
2017-08-15
The frequency of breathing and peak flow rate of exhaled air are necessary parameters to detect chronic obstructive pulmonary diseases (COPDs) such as asthma, bronchitis, or pneumonia. We developed a lung function monitoring point-of-care-testing device (LFM-POCT) consisting of mouthpiece, paper-based humidity sensor, micro-heater, and real-time monitoring unit. Fabrication of a mouthpiece of optimal length ensured that the exhaled air was focused on the humidity-sensor. The resistive relative humidity sensor was developed using a filter paper coated with nanoparticles, which could easily follow the frequency and peak flow rate of the human breathing. Adsorption followed by condensation of the water molecules of the humid air on the paper-sensor during the forced exhalation reduced the electrical resistance of the sensor, which was converted to an electrical signal for sensing. A micro-heater composed of a copper-coil embedded in a polymer matrix helped in maintaining an optimal temperature on the sensor surface. Thus, water condensed on the sensor surface only during forcible breathing and the sensor recovered rapidly after the exhalation was complete by rapid desorption of water molecules from the sensor surface. Two types of real-time monitoring units were integrated into the device based on light emitting diodes (LEDs) and smart phones. The LED based unit displayed the diseased, critical, and fit conditions of the lungs by flashing LEDs of different colors. In comparison, for the mobile based monitoring unit, an application was developed employing an open source software, which established a wireless connectivity with the LFM-POCT device to perform the tests. Copyright © 2017 Elsevier B.V. All rights reserved.
Kortner, Trond M; Penn, Michael H; Bjӧrkhem, Ingemar; Måsøval, Kjell; Krogdahl, Åshild
2016-09-07
The present study was undertaken to gain knowledge on the role of bile components and lecithin on development of aberrations in digestive functions which seemingly have increased in Atlantic salmon in parallel with the increased use of plant ingredients in fish feed. Post smolt Atlantic salmon were fed for 77 days one of three basal diets: a high fish meal diet (HFM), a low fishmeal diet (LFM), or a diet with high protein soybean meal (HPS). Five additional diets were made from the LFM diet by supplementing with: purified taurocholate (1.8 %), bovine bile salt (1.8 %), taurine (0.4 %), lecithin (1.5 %), or a mix of supplements (suppl mix) containing taurocholate (1.8 %), cholesterol (1.5 %) and lecithin (0.4 %). Two additional diets were made from the HPS diet by supplementing with: bovine bile salt (1.8 %) or the suppl mix. Body and intestinal weights were recorded, and blood, bile, intestinal tissues and digesta were sampled for evaluation of growth, nutrient metabolism and intestinal structure and function. In comparison with fish fed the HFM diet fish fed the LFM and HPS diets grew less and showed reduced plasma bile salt and cholesterol levels. Histological examination of the distal intestine showed signs of enteritis in both LFM and HPS diet groups, though more pronounced in the HPS diet group. The HPS diet reduced digesta dry matter and capacity of leucine amino peptidase in the distal intestine. None of the dietary supplements improved endpoints regarding fish performance, gut function or inflammation in the distal intestine. Some endpoints rather indicated negative effects. Dietary supplementation with bile components or lecithin in general did not improve endpoints regarding performance or gut health in Atlantic salmon, in clear contrast to what has been previously reported for rainbow trout. Follow-up studies are needed to clarify if lower levels of bile salts and cholesterol may give different and beneficial effects, or if other supplements, and other combinations of supplements might prevent or ameliorate inflammation in the distal intestine.
Wyatt, Gwen; Sikorskii, Alla; Rahbar, Mohammad Hossein; Victorson, David; You, Mei
2012-11-01
To evaluate the safety and efficacy of reflexology, a complementary therapy that applies pressure to specific areas of the feet. Longitudinal, randomized clinical trial. Thirteen community-based medical oncology clinics across the midwestern United States. A convenience sample of 385 predominantly Caucasian women with advanced-stage breast cancer receiving chemotherapy and/or hormonal therapy. Following the baseline interview, women were randomized into three primary groups: reflexology (n = 95), lay foot manipulation (LFM) (n = 95), or conventional care (n = 96). Two preliminary reflexology (n = 51) and LFM (n = 48) test groups were used to establish the protocols. Participants were interviewed again postintervention at study weeks 5 and 11. Breast cancer-specific health-related quality of life (HRQOL), physical functioning, and symptoms. No adverse events were reported. A longitudinal comparison revealed significant improvements in physical functioning for the reflexology group compared to the control group (p = 0.04). Severity of dyspnea was reduced in the reflexology group compared to the control group (p < 0.01) and the LFM group (p = 0.02). No differences were found on breast cancer-specific HRQOL, depressive symptomatology, state anxiety, pain, and nausea. Reflexology may be added to existing evidence-based supportive care to improve HRQOL for patients with advanced-stage breast cancer during chemotherapy and/or hormonal therapy. Reflexology can be recommended for safety and usefulness in relieving dyspnea and enhancing functional status among women with advanced-stage breast cancer.
Li, Jia; Janle, Elsa; Campbell, Wayne W
2017-01-04
Breakfast beverages with different nutrient compositions may affect postprandial glycemic control differently. We assessed the effects of consuming (1) common breakfast beverages (water, sugar-sweetened coffee, reduced-energy orange juice (OJ), and low-fat milk (LFM)); and (2) fat-free, low-fat, and whole milk with breakfast on postprandial plasma glucose and insulin responses in adults who were overweight/obese. Forty-six subjects (33F/13M, body mass index: 32.5 ± 0.7 kg/m², age: 50 ± 1 years, mean ± SEMs) consumed a standard sandwich with one of the six beverages on separate mornings in randomized order. The test beverages (except water) each contained 12 g digestible carbohydrate. Plasma glucose and insulin concentrations were measured from blood obtained pre- and post-meal at 30-min intervals for 4 h and incremental areas under the curve (AUC) were computed. We found (1) among different beverage types, glucose AUC was higher for coffee versus water, OJ, and LFM. Insulin AUC was higher for coffee and LFM versus OJ and water; (2) Glucose AUCs were not different among water and milks while insulin AUC was higher for milks versus water. In conclusion, consumption of water, reduced-energy OJ, or milk (irrespective of fat content) with a meal may be preferable to consuming sugar-sweetened coffee for glucose control in middle-aged adults who are overweight and obese.
Structure of high latitude currents in magnetosphere-ionosphere models
NASA Astrophysics Data System (ADS)
Wiltberger, M. J.; Lyon, J.; Merkin, V. G.; Rigler, E. J.
2016-12-01
Using three resolutions of the Lyon-Fedder-Mobarry global magnetosphere-ionosphere model (LFM) and the Weimer 2005 empirical model the structure of the high latitude field-aligned current patterns is examined. Each LFM resolution was run for the entire Whole Heliosphere Interval (WHI), which contained two high-speed solar wind streams and modest interplanetary magnetic field strengths. Average states of the field-aligned current (FAC) patterns for 8 interplanetary magnetic field clock angle directions are computed using data from these runs. Generally speaking the patterns obtained agree well with results from the Weimer 2005 computed using the solar wind and IMF conditions that correspond to each bin. As the simulation resolution increases the currents become more intense and confined. A machine learning analysis of the FAC patterns shows that the ratio of Region 1 (R1) to Region 2 (R2) currents decreases as the simulation resolution increases. This brings the simulation results into better agreement with observational predictions and the Weimer 2005 model results. The increase in R2 current strengths in the model also results in a better shielding of mid- and low-latitude ionosphere from the polar cap convection, also in agreement with observations. Current-voltage relationships between the R1 strength and the cross-polar cap potential (CPCP) are quite similar at the higher resolutions indicating the simulation is converging on a common solution. We conclude that LFM simulations are capable of reproducing the statistical features of FAC patterns.
Li, Jia; Janle, Elsa; Campbell, Wayne W.
2017-01-01
Breakfast beverages with different nutrient compositions may affect postprandial glycemic control differently. We assessed the effects of consuming (1) common breakfast beverages (water, sugar-sweetened coffee, reduced-energy orange juice (OJ), and low-fat milk (LFM)); and (2) fat-free, low-fat, and whole milk with breakfast on postprandial plasma glucose and insulin responses in adults who were overweight/obese. Forty-six subjects (33F/13M, body mass index: 32.5 ± 0.7 kg/m2, age: 50 ± 1 years, mean ± SEMs) consumed a standard sandwich with one of the six beverages on separate mornings in randomized order. The test beverages (except water) each contained 12 g digestible carbohydrate. Plasma glucose and insulin concentrations were measured from blood obtained pre- and post-meal at 30-min intervals for 4 h and incremental areas under the curve (AUC) were computed. We found (1) among different beverage types, glucose AUC was higher for coffee versus water, OJ, and LFM. Insulin AUC was higher for coffee and LFM versus OJ and water; (2) Glucose AUCs were not different among water and milks while insulin AUC was higher for milks versus water. In conclusion, consumption of water, reduced-energy OJ, or milk (irrespective of fat content) with a meal may be preferable to consuming sugar-sweetened coffee for glucose control in middle-aged adults who are overweight and obese. PMID:28054966
Wyatt, Gwen; Sikorskii, Alla; Rahbar, Mohammad Hossein; Victorson, David; You, Mei
2013-01-01
Purpose/Objectives To evaluate the safety and efficacy of reflexology, a complementary therapy that applies pressure to specific areas of the feet. Design Longitudinal, randomized clinical trial. Setting Thirteen community-based medical oncology clinics across the midwestern United States. Sample A convenience sample of 385 predominantly Caucasian women with advanced-stage breast cancer receiving chemotherapy and/or hormonal therapy. Methods Following the baseline interview, women were randomized into three primary groups: reflexology (n = 95), lay foot manipulation (LFM) (n = 95), or conventional care (n = 96). Two preliminary reflexology (n = 51) and LFM (n = 48) test groups were used to establish the protocols. Participants were interviewed again postintervention at study weeks 5 and 11. Main Research Variables Breast cancer–specific health-related quality of life (HRQOL), physical functioning, and symptoms. Findings No adverse events were reported. A longitudinal comparison revealed significant improvements in physical functioning for the reflexology group compared to the control group (p = 0.04). Severity of dyspnea was reduced in the reflexology group compared to the control group (p < 0.01) and the LFM group (p = 0.02). No differences were found on breast cancer–specific HRQOL, depressive symptomatology, state anxiety, pain, and nausea. Conclusions Reflexology may be added to existing evidence-based supportive care to improve HRQOL for patients with advanced-stage breast cancer during chemotherapy and/or hormonal therapy. Implications for Nursing Reflexology can be recommended for safety and usefulness in relieving dyspnea and enhancing functional status among women with advanced-stage breast cancer. PMID:23107851
NASA Astrophysics Data System (ADS)
Ukhorskiy, A. Y.; Sorathia, K.; Merkin, V. G.; Sitnov, M. I.; Mitchell, D. G.; Wiltberger, M. J.; Lyon, J.
2017-12-01
Much of plasma heating and transport from the magnetotail into the inner magnetosphere occurs in the form of mesoscale discrete injections associated with sharp dipolarizations of magnetic field (dipolarization fronts). In this study we investigate the mechanisms of ion acceleration at dipolarization fronts in a high-resolution global magnetospheric MHD model (LFM). We use large-scale three-dimensional test-particle simulations (CHIMP) to address the following science questions: 1) what are the characteristic scales of dipolarization regions that can stably trap ions? 2) what role does the trapping play in ion transport and acceleration? 3) how does it depend on particle energy and distance from Earth? 4) to what extent ion acceleration is adiabatic? High-resolution LFM was run using idealized solar wind conditions with fixed nominal values of density and velocity and a southward IMF component of -5 nT. To simulate ion interaction with dipolarization fronts, a large ensemble of test particles distributed in energy, pitch-angle, and gyrophase was initialized inside one of the LFM dipolarization channels in the magnetotail. Full Lorentz ion trajectories were then computed over the course of the front inward propagation from the distance of 17 to 6 Earth radii. A large fraction of ions with different initial energies stayed in phase with the front over the entire distance. The effect of magnetic trapping at different energies was elucidated with a correlation of the ion guiding center and the ExB drift velocities. The role of trapping in ion energization was quantified by comparing the partial pressure of ions that exhibit trapping to the pressure of all trapped ions.
Wattal, C; Oberoi, J K
2016-01-01
The study addresses the utility of Matrix Assisted Laser Desorption/Ionisation Time-Of-Flight mass spectrometry (MALDI-TOF MS) using VITEK MS and the VITEK 2 antimicrobial susceptibility testing (AST) system for direct identification (ID) and timely AST from positive blood culture bottles using a lysis-filtration method (LFM). Between July and December 2014, a total of 140 non-duplicate mono-microbial blood cultures were processed. An aliquot of positive blood culture broth was incubated with lysis buffer before the bacteria were filtered and washed. Micro-organisms recovered from the filter were first identified using VITEK MS and its suspension was used for direct AST by VITEK 2 once the ID was known. Direct ID and AST results were compared with classical methods using solid growth. Out of the 140 bottles tested, VITEK MS resulted in 70.7 % correct identification to the genus and/ or species level. For the 103 bottles where identification was possible, there was agreement in 97 samples (94.17 %) with classical culture. Compared to the routine method, the direct AST resulted in category agreement in 860 (96.5 %) of 891 bacteria-antimicrobial agent combinations tested. The results of direct ID and AST were available 16.1 hours before those of the standard approach on average. The combined use of VITEK MS and VITEK 2 directly on samples from positive blood culture bottles using a LFM technique can result in rapid and reliable ID and AST results in blood stream infections to result in early institution of targeted treatment. The combination of LFM and AST using VITEK 2 was found to expedite AST more reliably.
Satellite aerosol retrieval using dark target algorithm by coupling BRDF effect over AERONET site
NASA Astrophysics Data System (ADS)
Yang, Leiku; Xue, Yong; Guang, Jie; Li, Chi
2012-11-01
For most satellite aerosol retrieval algorithms even for multi-angle instrument, the simple forward model (FM) based on Lambertian surface assumption is employed to simulate top of the atmosphere (TOA) spectral reflectance, which does not fully consider the surface bi-directional reflectance functions (BRDF) effect. The approximating forward model largely simplifies the radiative transfer model, reduces the size of the look-up tables, and creates faster algorithm. At the same time, it creates systematic biases in the aerosol optical depth (AOD) retrieval. AOD product from the Moderate Resolution Imaging Spectro-radiometer (MODIS) data based on the dark target algorithm is considered as one of accurate satellite aerosol products at present. Though it performs well at a global scale, uncertainties are still found on regional in a lot of studies. The Lambertian surface assumpiton employed in the retrieving algorithm may be one of the uncertain factors. In this study, we first use radiative transfer simulations over dark target to assess the uncertainty to what extent is introduced from the Lambertian surface assumption. The result shows that the uncertainties of AOD retrieval could reach up to ±0.3. Then the Lambertian FM (L_FM) and the BRDF FM (BRDF_FM) are respectively employed in AOD retrieval using dark target algorithm from MODARNSS (MODIS/Terra and MODIS/Aqua Atmosphere Aeronet Subsetting Product) data over Beijing AERONET site. The validation shows that accuracy in AOD retrieval has been improved by employing the BRDF_FM accounting for the surface BRDF effect, the regression slope of scatter plots with retrieved AOD against AEROENET AOD increases from 0.7163 (for L_FM) to 0.7776 (for BRDF_FM) and the intercept decreases from 0.0778 (for L_FM) to 0.0627 (for BRDF_FM).
ECCM Scheme against Interrupted Sampling Repeater Jammer Based on Parameter-Adjusted Waveform Design
Wei, Zhenhua; Peng, Bo; Shen, Rui
2018-01-01
Interrupted sampling repeater jamming (ISRJ) is an effective way of deceiving coherent radar sensors, especially for linear frequency modulated (LFM) radar. In this paper, for a simplified scenario with a single jammer, we propose a dynamic electronic counter-counter measure (ECCM) scheme based on jammer parameter estimation and transmitted signal design. Firstly, the LFM waveform is transmitted to estimate the main jamming parameters by investigating the discontinuousness of the ISRJ’s time-frequency (TF) characteristics. Then, a parameter-adjusted intra-pulse frequency coded signal, whose ISRJ signal after matched filtering only forms a single false target, is designed adaptively according to the estimated parameters, i.e., sampling interval, sampling duration and repeater times. Ultimately, for typical jamming scenes with different jamming signal ratio (JSR) and duty cycle, we propose two particular ISRJ suppression approaches. Simulation results validate the effective performance of the proposed scheme for countering the ISRJ, and the trade-off relationship between the two approaches is demonstrated. PMID:29642508
NASA Technical Reports Server (NTRS)
Uccellini, L. W.; Kocin, P. J.; Walsh, C. H.
1981-01-01
The President's Day cyclone, produced record breaking snowfall along the East Coast of the United States in February 1979. Conventional radiosonde data, SMS GOES infrared imagery and LFM 2 model diagnostics were used to analyze the interaction of upper and lower tropospheric jet streaks prior to cyclogenesis. The analysis reveals that a series of complex scale interactive processes is responsible for the development of the intense cyclone. The evolution of the subsynoptic scale mass and momentum fields prior to and during the period of rapid development of the President's Day cyclone utilizing conventional data and SMS GOES imagery is documented. The interaction between upper and lower tropospheric jet streaks which occurred prior to the onset of cyclogenesis is discussed as well as the possible effects of terrain modified airflow within the precyclogenesis environment. Possible deficiencies in the LFM-2 initial wind fields that could have been responsible, in part, for the poor numerical forecast are examined.
FPGA based hardware optimized implementation of signal processing system for LFM pulsed radar
NASA Astrophysics Data System (ADS)
Azim, Noor ul; Jun, Wang
2016-11-01
Signal processing is one of the main parts of any radar system. Different signal processing algorithms are used to extract information about different parameters like range, speed, direction etc, of a target in the field of radar communication. This paper presents LFM (Linear Frequency Modulation) pulsed radar signal processing algorithms which are used to improve target detection, range resolution and to estimate the speed of a target. Firstly, these algorithms are simulated in MATLAB to verify the concept and theory. After the conceptual verification in MATLAB, the simulation is converted into implementation on hardware using Xilinx FPGA. Chosen FPGA is Xilinx Virtex-6 (XC6LVX75T). For hardware implementation pipeline optimization is adopted and also other factors are considered for resources optimization in the process of implementation. Focusing algorithms in this work for improving target detection, range resolution and speed estimation are hardware optimized fast convolution processing based pulse compression and pulse Doppler processing.
Yu, Ge; Yang, T C; Piao, Shengchun
2017-10-01
A chirp signal is a signal with linearly varying instantaneous frequency over the signal bandwidth, also known as a linear frequency modulated (LFM) signal. It is widely used in communication, radar, active sonar, and other applications due to its Doppler tolerance property in signal detection using the matched filter (MF) processing. Modern sonar uses high-gain, wideband signals to improve the signal to reverberation ratio. High gain implies a high product of the signal bandwidth and duration. However, wideband and/or long duration LFM signals are no longer Doppler tolerant. The shortcoming of the standard MF processing is loss of performance, and bias in range estimation. This paper uses the wideband ambiguity function and the fractional Fourier transform method to estimate the target velocity and restore the performance. Target velocity or Doppler provides a clue for differentiating the target from the background reverberation and clutter. The methods are applied to simulated and experimental data.
Dielectrophoretic immobilization of proteins: Quantification by atomic force microscopy.
Laux, Eva-Maria; Knigge, Xenia; Bier, Frank F; Wenger, Christian; Hölzel, Ralph
2015-09-01
The combination of alternating electric fields with nanometer-sized electrodes allows the permanent immobilization of proteins by dielectrophoretic force. Here, atomic force microscopy is introduced as a quantification method, and results are compared with fluorescence microscopy. Experimental parameters, for example the applied voltage and duration of field application, are varied systematically, and the influence on the amount of immobilized proteins is investigated. A linear correlation to the duration of field application was found by atomic force microscopy, and both microscopical methods yield a square dependence of the amount of immobilized proteins on the applied voltage. While fluorescence microscopy allows real-time imaging, atomic force microscopy reveals immobilized proteins obscured in fluorescence images due to low S/N. Furthermore, the higher spatial resolution of the atomic force microscope enables the visualization of the protein distribution on single nanoelectrodes. The electric field distribution is calculated and compared to experimental results with very good agreement to atomic force microscopy measurements. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Volumetric bioimaging based on light field microscopy with temporal focusing illumination
NASA Astrophysics Data System (ADS)
Hsu, Feng-Chun; Sie, Yong Da; Lai, Feng-Jie; Chen, Shean-Jen
2018-02-01
Light field technique at a single shot can get the whole volume image of observed sample. Therefore, the original frame rate of the optical system can be taken as the volumetric image rate. For dynamically imaging whole micron-scale biosample, a light field microscope with temporal focusing illumination has been developed. In the light field microscope, the f-number of the microlens array (MLA) is adopted to match that of the objective; hence, the subimages via adjacent lenslets do not overlay each other. A three-dimensional (3D) deconvolution algorithm is utilized to deblur the out-of-focusing part. Conventional light field microscopy (LFM) illuminates whole volume sample even noninteresting parts; nevertheless, whole volume excitation causes even more damage on bio-sample and also increase the background noise from the out of range. Therefore, temporal focusing is integrated into the light field microscope for selecting the illumination volume. Herein, a slit on the back focal plane of the objective is utilized to control the axial excitation confinement for selecting the illumination volume. As a result, the developed light field microscope with the temporal focusing multiphoton illumination (TFMPI) can reconstruct 3D images within the selected volume, and the lateral resolution approaches to the theoretical value. Furthermore, the 3D Brownian motion of two-micron fluorescent beads is observed as the criterion of dynamic sample. With superior signal-to-noise ratio and less damage to tissue, the microscope is potential to provide volumetric imaging for vivo sample.
Pilot interaction with automated airborne decision making systems
NASA Technical Reports Server (NTRS)
Rouse, W. B.
1981-01-01
The role of the pilot and crew for future aircraft is discussed. Fifteen formal experimental studies and the development of a variety of models of human behavior based on queueing history, pattern recognition methods, control theory, fuzzy set theory, and artificial intelligence concepts are presented. L.F.M.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balke, Nina; Jesse, Stephen; Yu, Pu
Detection of dynamic surface displacements associated with local changes in material strain provides access to a number of phenomena and material properties. Contact resonance-enhanced methods of atomic force microscopy (AFM) have been shown capable of detecting ~1–3 pm-level surface displacements, an approach used in techniques such as piezoresponse force microscopy, atomic force acoustic microscopy, and ultrasonic force microscopy. Here, based on an analytical model of AFM cantilever vibrations, we demonstrate a guideline to quantify surface displacements with high accuracy by taking into account the cantilever shape at the first resonant contact mode, depending on the tip–sample contact stiffness. The approachmore » has been experimentally verified and further developed for piezoresponse force microscopy (PFM) using well-defined ferroelectric materials. These results open up a way to accurate and precise measurements of surface displacement as well as piezoelectric constants at the pm-scale with nanometer spatial resolution and will allow avoiding erroneous data interpretations and measurement artifacts. Furthermore, this analysis is directly applicable to all cantilever-resonance-based scanning probe microscopy (SPM) techniques.« less
Balke, Nina; Jesse, Stephen; Yu, Pu; ...
2016-09-15
Detection of dynamic surface displacements associated with local changes in material strain provides access to a number of phenomena and material properties. Contact resonance-enhanced methods of atomic force microscopy (AFM) have been shown capable of detecting ~1–3 pm-level surface displacements, an approach used in techniques such as piezoresponse force microscopy, atomic force acoustic microscopy, and ultrasonic force microscopy. Here, based on an analytical model of AFM cantilever vibrations, we demonstrate a guideline to quantify surface displacements with high accuracy by taking into account the cantilever shape at the first resonant contact mode, depending on the tip–sample contact stiffness. The approachmore » has been experimentally verified and further developed for piezoresponse force microscopy (PFM) using well-defined ferroelectric materials. These results open up a way to accurate and precise measurements of surface displacement as well as piezoelectric constants at the pm-scale with nanometer spatial resolution and will allow avoiding erroneous data interpretations and measurement artifacts. Furthermore, this analysis is directly applicable to all cantilever-resonance-based scanning probe microscopy (SPM) techniques.« less
NASA Astrophysics Data System (ADS)
Arenas, Mónica P.; Lanzoni, Evandro M.; Pacheco, Clara J.; Costa, Carlos A. R.; Eckstein, Carlos B.; de Almeida, Luiz H.; Rebello, João M. A.; Deneke, Christoph F.; Pereira, Gabriela R.
2018-01-01
In this study, we investigate artifacts arising from electric charges present in magnetic force microscopy images. Therefore, we use two austenitic steel samples with different microstructural conditions. Furthermore, we examine the influence of the surface preparation, like etching, in magnetic force images. Using Kelvin probe force microscopy we can quantify the charges present on the surface. Our results show that electrical charges give rise to a signature in the magnetic force microscopy, which is indistinguishable from a magnetic signal. Our results on two differently aged steel samples demonstrate that the magnetic force microscopy images need to be interpreted with care and must be corrected due to the influence of electrical charges present. We discuss three approaches, how to identify these artifacts - parallel acquisition of magnetic force and electric force images on the same position, sample surface preparation to decrease the presence of charges and inversion of the magnetic polarization in two succeeding measurement.
77 FR 50185 - LoCorr Fund Management, LLC and LoCorr Investment Trust; Notice of Application
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-20
... Fund Management, LLC and LoCorr Investment Trust; Notice of Application August 14, 2012. AGENCY.... Applicants: LoCorr Fund Management, LLC (``LFM'' or the ``Adviser'') and LoCorr Investment Trust (the ``Trust... Mary Kay Frech, Branch Chief, at (202) 551-6821 (Division of Investment Management, Office of...
Standoff Acoustic Shear Wave Imaging Using LFM Chirps
2011-03-21
is typically ignored due to the large wavelengths in biological tissue. For the test material presented in this paper ( expanded polystyrene foam...inhomogeneous sound speed, 1( )c x , for a 2.5×5×7 cm steel parallelepiped embedded in a 15×23×23 cm block of expanded polystyrene foam, which
Laminar flamelet modeling of turbulent diffusion flames
NASA Technical Reports Server (NTRS)
Mell, W. E.; Kosaly, G.; Planche, O.; Poinsot, T.; Ferziger, J. H.
1990-01-01
In modeling turbulent combustion, decoupling the chemistry from the turbulence is of great practical significance. In cases in which the equilibrium chemistry model breaks down, laminar flamelet modeling (LFM) is a promising approach to decoupling. Here, the validity of this approach is investigated using direct numerical simulation of a simple chemical reaction in two-dimensional turbulence.
The War Next Door: DoD’s Role in Combating Mexican TCOs
2013-03-01
Zetas, Gulf Cartel, Juárez Cartel, Beltran Leyva Organization (BLO), La Familia Michoacan (LFM), and Tijuana Cartel.17 This has resulted in...entered the United States by way of the Southwest Border.26 In 2002, authorities arrested Salim Mucharrafille, a café owner in Tijuana , Mexico, for
Localization and tracking of moving objects in two-dimensional space by echolocation.
Matsuo, Ikuo
2013-02-01
Bats use frequency-modulated echolocation to identify and capture moving objects in real three-dimensional space. Experimental evidence indicates that bats are capable of locating static objects with a range accuracy of less than 1 μs. A previously introduced model estimates ranges of multiple, static objects using linear frequency modulation (LFM) sound and Gaussian chirplets with a carrier frequency compatible with bat emission sweep rates. The delay time for a single object was estimated with an accuracy of about 1.3 μs by measuring the echo at a low signal-to-noise ratio (SNR). The range accuracy was dependent not only on the SNR but also the Doppler shift, which was dependent on the movements. However, it was unclear whether this model could estimate the moving object range at each timepoint. In this study, echoes were measured from the rotating pole at two receiving points by intermittently emitting LFM sounds. The model was shown to localize moving objects in two-dimensional space by accurately estimating the object's range at each timepoint.
Radar wideband digital beamforming based on time delay and phase compensation
NASA Astrophysics Data System (ADS)
Fu, Wei; Jiang, Defu
2018-07-01
In conventional phased array radars, analogue time delay devices and phase shifters have been used for wideband beamforming. These methods suffer from insertion losses, gain mismatches and delay variations, and they occupy a large chip area. To solve these problems, a compact architecture of digital array antennas based on subarrays was considered. In this study, the receiving beam patterns of wideband linear frequency modulation (LFM) signals were constructed by applying analogue stretch processing via mixing with delayed reference signals at the subarray level. Subsequently, narrowband digital time delaying and phase compensation of the tone signals were implemented with reduced arithmetic complexity. Due to the differences in amplitudes, phases and time delays between channels, severe performance degradation of the beam patterns occurred without corrections. To achieve good beamforming performance, array calibration was performed in each channel to adjust the amplitude, frequency and phase of the tone signal. Using a field-programmable gate array, wideband LFM signals and finite impulse response filters with continuously adjustable time delays were implemented in a polyphase structure. Simulations and experiments verified the feasibility and effectiveness of the proposed digital beamformer.
Proceedings of the Sixth NASA Langley Formal Methods (LFM) Workshop
NASA Technical Reports Server (NTRS)
Rozier, Kristin Yvonne (Editor)
2008-01-01
Today's verification techniques are hard-pressed to scale with the ever-increasing complexity of safety critical systems. Within the field of aeronautics alone, we find the need for verification of algorithms for separation assurance, air traffic control, auto-pilot, Unmanned Aerial Vehicles (UAVs), adaptive avionics, automated decision authority, and much more. Recent advances in formal methods have made verifying more of these problems realistic. Thus we need to continually re-assess what we can solve now and identify the next barriers to overcome. Only through an exchange of ideas between theoreticians and practitioners from academia to industry can we extend formal methods for the verification of ever more challenging problem domains. This volume contains the extended abstracts of the talks presented at LFM 2008: The Sixth NASA Langley Formal Methods Workshop held on April 30 - May 2, 2008 in Newport News, Virginia, USA. The topics of interest that were listed in the call for abstracts were: advances in formal verification techniques; formal models of distributed computing; planning and scheduling; automated air traffic management; fault tolerance; hybrid systems/hybrid automata; embedded systems; safety critical applications; safety cases; accident/safety analysis.
A Dynamic Coupled Magnetosphere-Ionosphere-Ring Current Model
NASA Astrophysics Data System (ADS)
Pembroke, Asher
In this thesis we describe a coupled model of Earth's magnetosphere that consists of the Lyon-Fedder-Mobarry (LFM) global magnetohydrodynamics (MHD) simulation, the MIX ionosphere solver and the Rice Convection Model (RCM). We report some results of the coupled model using idealized inputs and model parameters. The algorithmic and physical components of the model are described, including the transfer of magnetic field information and plasma boundary conditions to the RCM and the return of ring current plasma properties to the LFM. Crucial aspects of the coupling include the restriction of RCM to regions where field-line averaged plasma-beta ¡=1, the use of a plasmasphere model, and the MIX ionosphere model. Compared to stand-alone MHD, the coupled model produces a substantial increase in ring current pressure and reduction of the magnetic field near the Earth. In the ionosphere, stronger region-1 and region-2 Birkeland currents are seen in the coupled model but with no significant change in the cross polar cap potential drop, while the region-2 currents shielded the low-latitude convection potential. In addition, oscillations in the magnetic field are produced at geosynchronous orbit with the coupled code. The diagnostics of entropy and mass content indicate that these oscillations are associated with low-entropy flow channels moving in from the tail and may be related to bursty bulk flows and bubbles seen in observations. As with most complex numerical models, there is the ongoing challenge of untangling numerical artifacts and physics, and we find that while there is still much room for improvement, the results presented here are encouraging. Finally, we introduce several new methods for magnetospheric visualization and analysis, including a fluid-spatial volume for RCM and a field-aligned analysis mesh for the LFM. The latter allows us to construct novel visualizations of flux tubes, drift surfaces, topological boundaries, and bursty-bulk flows.
GAMERA - The New Magnetospheric Code
NASA Astrophysics Data System (ADS)
Lyon, J.; Sorathia, K.; Zhang, B.; Merkin, V. G.; Wiltberger, M. J.; Daldorff, L. K. S.
2017-12-01
The Lyon-Fedder-Mobarry (LFM) code has been a main-line magnetospheric simulation code for 30 years. The code base, designed in the age of memory to memory vector ma- chines,is still in wide use for science production but needs upgrading to ensure the long term sustainability. In this presentation, we will discuss our recent efforts to update and improve that code base and also highlight some recent results. The new project GAM- ERA, Grid Agnostic MHD for Extended Research Applications, has kept the original design characteristics of the LFM and made significant improvements. The original de- sign included high order numerical differencing with very aggressive limiting, the ability to use arbitrary, but logically rectangular, grids, and maintenance of div B = 0 through the use of the Yee grid. Significant improvements include high-order upwinding and a non-clipping limiter. One other improvement with wider applicability is an im- proved averaging technique for the singularities in polar and spherical grids. The new code adopts a hybrid structure - multi-threaded OpenMP with an overarching MPI layer for large scale and coupled applications. The MPI layer uses a combination of standard MPI and the Global Array Toolkit from PNL to provide a lightweight mechanism for coupling codes together concurrently. The single processor code is highly efficient and can run magnetospheric simulations at the default CCMC resolution faster than real time on a MacBook pro. We have run the new code through the Athena suite of tests, and the results compare favorably with the codes available to the astrophysics community. LFM/GAMERA has been applied to many different situations ranging from the inner and outer heliosphere and magnetospheres of Venus, the Earth, Jupiter and Saturn. We present example results the Earth's magnetosphere including a coupled ring current (RCM), the magnetospheres of Jupiter and Saturn, and the inner heliosphere.
Magnetoelectric force microscopy based on magnetic force microscopy with modulated electric field.
Geng, Yanan; Wu, Weida
2014-05-01
We present the realization of a mesoscopic imaging technique, namely, the Magnetoelectric Force Microscopy (MeFM), for visualization of local magnetoelectric effect. The basic principle of MeFM is the lock-in detection of local magnetoelectric response, i.e., the electric field-induced magnetization, using magnetic force microscopy. We demonstrate MeFM capability by visualizing magnetoelectric domains on single crystals of multiferroic hexagonal manganites. Results of several control experiments exclude artifacts or extrinsic origins of the MeFM signal. The parameters are tuned to optimize the signal to noise ratio.
Scanning Probe Microscopy for Identifying the Component Materials of a Nanostripe Structure
NASA Astrophysics Data System (ADS)
Mizuno, Akira; Ando, Yasuhisa
2010-08-01
The authors prepared a nanostripe structure in which two types of metal are arranged alternately, and successfully identified the component materials using scanning probe microscopy (SPM) to measure the lateral force distribution image. The nanostripe structure was prepared using a new method developed by the authors and joint development members. The lateral force distribution image was measured in both friction force microscopy (FFM) and lateral modulation friction force microscopy (LM-FFM) modes. In FFM mode, the effect of slope angle appeared in the lateral force distribution image; therefore, no difference in the type of material was observed. On the other hand, in LM-FFM mode, the effect of surface curvature was observed in the lateral force distribution image. A higher friction force on chromium than on gold was identified, enabling material identification.
Optimal geometry for a quartz multipurpose SPM sensor.
Stirling, Julian
2013-01-01
We propose a geometry for a piezoelectric SPM sensor that can be used for combined AFM/LFM/STM. The sensor utilises symmetry to provide a lateral mode without the need to excite torsional modes. The symmetry allows normal and lateral motion to be completely isolated, even when introducing large tips to tune the dynamic properties to optimal values.
NASA Astrophysics Data System (ADS)
Ashby, Paul David
Investigation into the origin of forces dates to the early Greeks. Yet, only in recent decades have techniques for elucidating the molecular origin of forces been developed. Specifically, Chemical Force Microscopy uses the high precision and nanometer scale probe of Atomic Force Microscopy to measure molecular and interfacial interactions. This thesis presents the development of many novel Chemical Force Microscopy techniques for measuring equilibrium and time-dependant force profiles of molecular interactions, which led to a greater understanding of the origin of interfacial forces in solution. In chapter 2, Magnetic Feedback Chemical Force Microscopy stiffens the cantilever for measuring force profiles between self-assembled monolayer (SAM) surfaces. Hydroxyl and carboxyl terminated SAMs produce long-range interactions that extend one or three nanometers into the solvent, respectively. In chapter 3, an ultra low noise AFM is produced through multiple modifications to the optical deflection detection system and signal processing electronics. In chapter 4, Brownian Force Profile Reconstruction is developed for accurate measurement of steep attractive interactions. Molecular ordering is observed for OMCTS, 1-nonanol, and water near flat surfaces. The molecular ordering of the solvent produces structural or solvation forces, providing insight into the orientation and possible solidification of the confined solvent. Seven molecular layers of OMCTS are observed but the oil remains fluid to the last layer. 1-nonanol strongly orders near the surface and becomes quasi-crystalline with four layers. Water is oriented by the surface and symmetry requires two layers of water (3.7 A) to be removed simultaneously. In chapter 5, electronic control of the cantilever Q (Q-control) is used to obtain the highest imaging sensitivity. In chapter 6, Energy Dissipation Chemical Force Microscopy is developed to investigate the time dependence and dissipative characteristics of SAM interfacial interactions in solution. Long-range adhesive forces for hydroxyl and carboxyl terminated SAM surfaces arise from solvent, not ionic, interactions. Exclusion of the solvent and contact between the SAM surfaces leads to rearrangement of the SAM headgroups. The isolation of the chemical and physical interfacial properties from the topography by Energy Dissipation Chemical Force Microscopy produces a new quantitative high-sensitivity imaging mode.
NASA Astrophysics Data System (ADS)
Yacoot, Andrew; Koenders, Ludger
2008-05-01
The review will describe the various scanning probe microscopy tips and cantilevers used today for scanning force microscopy and magnetic force microscopy. Work undertaken to quantify the properties of cantilevers and tips, e.g. shape and radius, is reviewed together with an overview of the various tip-sample interactions that affect dimensional measurements.
Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy
Neuman, Keir C.; Nagy, Attila
2012-01-01
Single-molecule force spectroscopy has emerged as a powerful tool to investigate the forces and motions associated with biological molecules and enzymatic activity. The most common force spectroscopy techniques are optical tweezers, magnetic tweezers and atomic force microscopy. These techniques are described and illustrated with examples highlighting current capabilities and limitations. PMID:18511917
Observation of DNA Molecules Using Fluorescence Microscopy and Atomic Force Microscopy
ERIC Educational Resources Information Center
Ito, Takashi
2008-01-01
This article describes experiments for an undergraduate instrumental analysis laboratory that aim to observe individual double-stranded DNA (dsDNA) molecules using fluorescence microscopy and atomic force microscopy (AFM). dsDNA molecules are observed under several different conditions to discuss their chemical and physical properties. In…
Subpiconewton intermolecular force microscopy.
Tokunaga, M; Aoki, T; Hiroshima, M; Kitamura, K; Yanagida, T
1997-02-24
We refined scanning probe force microscopy to improve the sensitivity of force detection and control of probe position. Force sensitivity was increased by incorporating a cantilever with very low stiffness, 0.1 pN/ nm, which is over 1000-fold more flexible than is typically used in conventional atomic force microscopy. Thermal bending motions of the cantilever were reduced to less than 1 nm by exerting feed-back positioning with laser radiation pressure. The system was tested by measuring electrostatic repulsive forces or hydrophobic attractive forces in aqueous solutions. Subpiconewton intermolecular forces were resolved at controlled gaps in the nanometer range between the probe and a material surface. These levels of force and position sensitivity meet the requirements needed for future investigations of intermolecular forces between biological macromolecules such as proteins, lipids and DNA.
2011-09-01
glancing angle X - ray diffraction (GAXRD), atomic force microscopy (AFM), scanning electron microscopy (SEM), and electrochemical...Emission SEM FWHM full width at half maximum GAXRD glancing angle X - ray diffraction H3COCH2CH2OH 2-methoxyethanol LiMn2O4 lithium manganese oxide...were characterized by scanning electron microscopy (SEM), X - ray diffraction (XRD), and atomic force microscopy (AFM). In addition,
NASA Technical Reports Server (NTRS)
Cantrell, John H., Jr.; Cantrell, Sean A.
2008-01-01
A comprehensive analytical model of the interaction of the cantilever tip of the atomic force microscope (AFM) with the sample surface is developed that accounts for the nonlinearity of the tip-surface interaction force. The interaction is modeled as a nonlinear spring coupled at opposite ends to linear springs representing cantilever and sample surface oscillators. The model leads to a pair of coupled nonlinear differential equations that are solved analytically using a standard iteration procedure. Solutions are obtained for the phase and amplitude signals generated by various acoustic-atomic force microscope (A-AFM) techniques including force modulation microscopy, atomic force acoustic microscopy, ultrasonic force microscopy, heterodyne force microscopy, resonant difference-frequency atomic force ultrasonic microscopy (RDF-AFUM), and the commonly used intermittent contact mode (TappingMode) generally available on AFMs. The solutions are used to obtain a quantitative measure of image contrast resulting from variations in the Young modulus of the sample for the amplitude and phase images generated by the A-AFM techniques. Application of the model to RDF-AFUM and intermittent soft contact phase images of LaRC-cp2 polyimide polymer is discussed. The model predicts variations in the Young modulus of the material of 24 percent from the RDF-AFUM image and 18 percent from the intermittent soft contact image. Both predictions are in good agreement with the literature value of 21 percent obtained from independent, macroscopic measurements of sheet polymer material.
NASA Astrophysics Data System (ADS)
Waddell, J.; Ou, R.; Capozzi, C. J.; Gupta, S.; Parker, C. A.; Gerhardt, R. A.; Seal, K.; Kalinin, S. V.; Baddorf, A. P.
2009-12-01
Composite specimens possessing polyhedral segregated network microstructures require a very small amount of nanosize filler, <1 vol %, to reach percolation because percolation occurs by accumulation of the fillers along the edges of the deformed polymer matrix particles. In this paper, electrostatic force microscopy (EFM) and conductive atomic force microscopy (C-AFM) were used to confirm the location of the nanosize fillers and the corresponding percolating paths in polymethyl methacrylate/carbon black composites. The EFM and C-AFM images revealed that the polyhedral polymer particles were coated with filler, primarily on the edges as predicted by the geometric models provided.
ERIC Educational Resources Information Center
Ee, Mong Shan; Yeoh, William; Boo, Yee Ling; Boulter, Terry
2018-01-01
Time control plays a critical role within the online mastery learning (OML) approach. This paper examines the two commonly implemented mastery learning strategies--personalised system of instructions and learning for mastery (LFM)--by focusing on what occurs when there is an instructional time constraint. Using a large data set from a postgraduate…
Quantifying palpation techniques in relation to performance in a clinical prostate exam.
Wang, Ninghuan; Gerling, Gregory J; Childress, Reba Moyer; Martin, Marcus L
2010-07-01
This paper seeks to quantify finger palpation techniques in the prostate clinical exam, determine their relationship with performance in detecting abnormalities, and differentiate the tendencies of nurse practitioner students and resident physicians. One issue with the digital rectal examination (DRE) is that performance in detecting abnormalities varies greatly and agreement between examiners is low. The utilization of particular palpation techniques may be one way to improve clinician ability. Based on past qualitative instruction, this paper algorithmically defines a set of palpation techniques for the DRE, i.e., global finger movement (GFM), local finger movement (LFM), and average intentional finger pressure, and utilizes a custom-built simulator to analyze finger movements in an experiment with two groups: 18 nurse practitioner students and 16 resident physicians. Although technique utilization varied, some elements clearly impacted performance. For example, those utilizing the LFM of vibration were significantly better at detecting abnormalities. Also, the V GFM led to greater success, but finger pressure played a lesser role. Interestingly, while the residents were clearly the superior performers, their techniques differed only subtly from the students. In summary, the quantified palpation techniques appear to account for examination ability at some level, but not entirely for differences between groups.
NASA Astrophysics Data System (ADS)
Heinzmann, U.; Gryzia, A.; Volkmann, T.; Brechling, A.; Hoeke, V.; Glaser, T.
2014-04-01
Single molecule magnets (SMM) deposited in submonolayers and monolayers have been analyzed with respect to their structures by means of non-contact AFM (topographic as well as damping mode) and Kelvin Probe Force Microscopy with molecular resolution.
Scanning ion-conductance and atomic force microscope with specialized sphere-shaped nanopippettes
NASA Astrophysics Data System (ADS)
Zhukov, M. V.; Sapozhnikov, I. D.; Golubok, A. O.; Chubinskiy-Nadezhdin, V. I.; Komissarenko, F. E.; Lukashenko, S. Y.
2017-11-01
A scanning ion-conductance microscope was designed on the basis of scanning probe microscope NanoTutor. The optimal parameters of nanopipettes fabrication were found according to scanning electron microscopy diagnostics, current-distance I (Z) and current-voltage characteristics. A comparison of images of test objects, including biological samples, was carried out in the modes of optical microscopy, atomic force microscopy and scanning ion-conductance microscopy. Sphere-shaped nanopippettes probes were developed and tested to increase the stability of pipettes, reduce invasiveness and improve image quality of atomic force microscopy in tapping mode. The efficiency of sphere-shaped nanopippettes is shown.
Gysin, Urs; Glatzel, Thilo; Schmölzer, Thomas; Schöner, Adolf; Reshanov, Sergey; Bartolf, Holger; Meyer, Ernst
2015-01-01
The resolution in electrostatic force microscopy (EFM), a descendant of atomic force microscopy (AFM), has reached nanometre dimensions, necessary to investigate integrated circuits in modern electronic devices. However, the characterization of conducting or semiconducting power devices with EFM methods requires an accurate and reliable technique from the nanometre up to the micrometre scale. For high force sensitivity it is indispensable to operate the microscope under high to ultra-high vacuum (UHV) conditions to suppress viscous damping of the sensor. Furthermore, UHV environment allows for the analysis of clean surfaces under controlled environmental conditions. Because of these requirements we built a large area scanning probe microscope operating under UHV conditions at room temperature allowing to perform various electrical measurements, such as Kelvin probe force microscopy, scanning capacitance force microscopy, scanning spreading resistance microscopy, and also electrostatic force microscopy at higher harmonics. The instrument incorporates beside a standard beam deflection detection system a closed loop scanner with a scan range of 100 μm in lateral and 25 μm in vertical direction as well as an additional fibre optics. This enables the illumination of the tip-sample interface for optically excited measurements such as local surface photo voltage detection. We present Kelvin probe force microscopy (KPFM) measurements before and after sputtering of a copper alloy with chromium grains used as electrical contact surface in ultra-high power switches. In addition, we discuss KPFM measurements on cross sections of cleaved silicon carbide structures: a calibration layer sample and a power rectifier. To demonstrate the benefit of surface photo voltage measurements, we analysed the contact potential difference of a silicon carbide p/n-junction under illumination.
Atomic force microscopy as a tool for the investigation of living cells.
Morkvėnaitė-Vilkončienė, Inga; Ramanavičienė, Almira; Ramanavičius, Arūnas
2013-01-01
Atomic force microscopy is a valuable and useful tool for the imaging and investigation of living cells in their natural environment at high resolution. Procedures applied to living cell preparation before measurements should be adapted individually for different kinds of cells and for the desired measurement technique. Different ways of cell immobilization, such as chemical fixation on the surface, entrapment in the pores of a membrane, or growing them directly on glass cover slips or on plastic substrates, result in the distortion or appearance of artifacts in atomic force microscopy images. Cell fixation allows the multiple use of samples and storage for a prolonged period; it also increases the resolution of imaging. Different atomic force microscopy modes are used for the imaging and analysis of living cells. The contact mode is the best for cell imaging because of high resolution, but it is usually based on the following: (i) image formation at low interaction force, (ii) low scanning speed, and (iii) usage of "soft," low resolution cantilevers. The tapping mode allows a cell to behave like a very solid material, and destructive shear forces are minimized, but imaging in liquid is difficult. The force spectroscopy mode is used for measuring the mechanical properties of cells; however, obtained results strongly depend on the cell fixation method. In this paper, the application of 3 atomic force microscopy modes including (i) contact, (ii) tapping, and (iii) force spectroscopy for the investigation of cells is described. The possibilities of cell preparation for the measurements, imaging, and determination of mechanical properties of cells are provided. The applicability of atomic force microscopy to diagnostics and other biomedical purposes is discussed.
Interpretation of frequency modulation atomic force microscopy in terms of fractional calculus
NASA Astrophysics Data System (ADS)
Sader, John E.; Jarvis, Suzanne P.
2004-07-01
It is widely recognized that small amplitude frequency modulation atomic force microscopy probes the derivative of the interaction force between tip and sample. For large amplitudes, however, such a physical connection is currently lacking, although it has been observed that the frequency shift presents a quantity intermediate to the interaction force and energy for certain force laws. Here we prove that these observations are a universal property of large amplitude frequency modulation atomic force microscopy, by establishing that the frequency shift is proportional to the half-fractional integral of the force, regardless of the force law. This finding indicates that frequency modulation atomic force microscopy can be interpreted as a fractional differential operator, where the order of the derivative/integral is dictated by the oscillation amplitude. We also establish that the measured frequency shift varies systematically from a probe of the force gradient for small oscillation amplitudes, through to the measurement of a quantity intermediate to the force and energy (the half-fractional integral of the force) for large oscillation amplitudes. This has significant implications to measurement sensitivity, since integrating the force will smooth its behavior, while differentiating it will enhance variations. This highlights the importance in choice of oscillation amplitude when wishing to optimize the sensitivity of force spectroscopy measurements to short-range interactions and consequently imaging with the highest possible resolution.
2008-01-01
enhanced HUVEC radiosensitization. Furthermore, pretreatment of HUVEC with a pharmacological inhibitor of Bmx, LFM-A13, produced significant...Prostate cancer, Bmx, tyrosine kinase, kinase inhibitors , angiogenesis, tumor vasculature, radiation 16. SECURITY CLASSIFICATION OF: 17...activation and that a small molecule inhibitor of Bmx modulates the cellular viability of endothelial and prostate cancer cells, particularly with radiation
2013-03-01
intermediate frequency LFM linear frequency modulation MAP maximum a posteriori MATLAB® matrix laboratory ML maximun likelihood OFDM orthogonal frequency...spectrum, frequency hopping, and orthogonal frequency division multiplexing ( OFDM ) modulations. Feature analysis would be a good research thrust to...determine feature relevance and decide if removing any features improves performance. Also, extending the system for simulations using a MIMO receiver or
DOE Office of Scientific and Technical Information (OSTI.GOV)
Solares, Santiago D.
The final project report covering the period 7/1/14-6/30/17 provides an overview of the technical accomplishments in the areas of (i) fundamental viscoelasticity, (ii) multifrequency atomic force microscopy, and (iii) characterization of energy-relevant materials with atomic force microscopy. A list of publications supported by the project is also provided.
Nanoscale Visualization of Elastic Inhomogeneities at TiN Coatings Using Ultrasonic Force Microscopy
NASA Astrophysics Data System (ADS)
Hidalgo, J. A.; Montero-Ocampo, C.; Cuberes, M. T.
2009-12-01
Ultrasonic force microscopy has been applied to the characterization of titanium nitride coatings deposited by physical vapor deposition dc magnetron sputtering on stainless steel substrates. The titanium nitride layers exhibit a rich variety of elastic contrast in the ultrasonic force microscopy images. Nanoscale inhomogeneities in stiffness on the titanium nitride films have been attributed to softer substoichiometric titanium nitride species and/or trapped subsurface gas. The results show that increasing the sputtering power at the Ti cathode increases the elastic homogeneity of the titanium nitride layers on the nanometer scale. Ultrasonic force microscopy elastic mapping on titanium nitride layers demonstrates the capability of the technique to provide information of high value for the engineering of improved coatings.
NASA Astrophysics Data System (ADS)
Takeuchi, Osamu; Miyakoshi, Takaaki; Taninaka, Atsushi; Tanaka, Katsunori; Cho, Daichi; Fujita, Machiko; Yasuda, Satoshi; Jarvis, Suzanne P.; Shigekawa, Hidemi
2006-10-01
The accuracy of dynamic-force spectroscopy (DFS), a promising technique of analyzing the energy landscape of noncovalent molecular bonds, was reconsidered in order to justify the use of an atomic-force microscopy (AFM) cantilever as a DFS force probe. The advantages and disadvantages caused, for example, by the force-probe hardness were clarified, revealing the pivotal role of the molecular linkage between the force probe and the molecular bonds. It was shown that the feedback control of the loading rate of tensile force enables us a precise DFS measurement using an AFM cantilever as the force probe.
NASA Astrophysics Data System (ADS)
Lin, Shi-Zeng; Bulaevskii, Lev N.
2012-07-01
The working principle of magnetic force microscopy and scanning SQUID microscopy is introducing a magnetic source near a superconductor and measuring the magnetic field distribution near the superconductor, from which one can obtain the penetration depth. We investigate the magnetic field distribution near the surface of a magnetic superconductor when a magnetic source is placed close to the superconductor, which can be used to extract both the penetration depth λL and magnetic susceptibility χ by magnetic force microscopy or scanning SQUID microscopy. When the magnetic moments are parallel to the surface, one extracts λL/1-4πχ. When the moments are perpendicular to the surface, one obtains λL. By changing the orientation of the crystal, one thus is able to extract both χ and λL.
Surface Biology of DNA by Atomic Force Microscopy
NASA Astrophysics Data System (ADS)
Hansma, Helen G.
2001-10-01
The atomic force microscope operates on surfaces. Since surfaces occupy much of the space in living organisms, surface biology is a valid and valuable form of biology that has been difficult to investigate in the past owing to a lack of good technology. Atomic force microscopy (AFM) of DNA has been used to investigate DNA condensation for gene therapy, DNA mapping and sizing, and a few applications to cancer research and to nanotechnology. Some of the most exciting new applications for atomic force microscopy of DNA involve pulling on single DNA molecules to obtain measurements of single-molecule mechanics and thermodynamics.
Study of electromechanical and mechanical properties of bacteria using force microscopy
NASA Astrophysics Data System (ADS)
Reukov, Vladimir; Thompson, Gary; Nikiforov, Maxim; Guo, Senli; Ovchinnikov, Oleg; Jesse, Stephen; Kalinin, Sergei; Vertegel, Alexey
2010-03-01
The application of scanning probe microscopy (SPM) to biological systems has evolved over the past decade into a multimodal and spectroscopic instrument that provides multiple information channels at each spatial pixel acquired. Recently, functional recognition imaging based on differing electromechanical properties between Gram negative and Gram positive bacteria was achieved using artificial neural network analysis of band excitation piezoresponse force microscopy (BEPFM) data. The immediate goal of this project was to study mechanical and electromechanical properties of bacterial systems physiologically-relevant solutions using Band-width Excitation Piezoresponce Force Microscopy (BE PFM) in combination with Force Mapping. Electromechanical imaging in physiological environments will improve the versatility of functional recognition imaging and open the way for application of the rapid BEPFM line mode method to other living cell systems.
Reliability-Centered Maintenance
1978-12-29
the pack through a flow-control valve and is cooled and dehumidified by a heat exchanger and the turbine of an air-cycle refrigeration ma- chine. The...dirt, moisture, and heat are the most susceptible to corrosion, and properly applied and maintained protective coatings are necessary to prevent...LFM’TNT i RCJL, ’A~r I ARLCA & WORK JNI- N UMUL R, United Airlines San Francisco International Airport San Francisco, Ca 94128 Office of Assistant
Mutalik, Srinivas; Salian, Sujith Raj; Avadhani, Kiran; Menon, Jyothsna; Joshi, Haritima; Hegde, Aswathi Raju; Kumar, Pratap; Kalthur, Guruprasad; Adiga, Satish Kumar
2014-06-01
Cryopreservation of spermatozoa plays a significant role in reproductive medicine and fertility preservation. Chicken egg yolk is used as an extender in cryopreservation of human spermatozoa using glycerol egg yolk citrate (GEYC) buffered medium. Even though 50% survival of spermatozoa is generally achieved with this method, the risk of high levels of endotoxins and transmission pathogens from chicken egg yolk is a matter of concern. In the present study we attempted to establish a chemically defined cryopreservation medium which can replace the chicken egg yolk without affecting sperm survival. Ejaculates from 28 men were cryopreserved with GEYC based freezing medium or liposome encapsulated soy lecithin-cholesterol based freezing medium (LFM). The semen samples were subjected to rapid thawing after 14 days of storage in liquid nitrogen. Post-thaw analysis indicated significantly higher post-thaw motility and sperm survival in spermatozoa cryopreserved with LFM compared to conventional GEYC freezing medium. The soy lecithin and cholesterol at the ratio of 80:20 with sucrose showed the highest percentage of post-thaw motility and survival compared to the other compositions. In conclusion, chemically defined cryopreservation medium with liposome encapsulated soy lecithin and cholesterol can effectively replace the chicken egg yolk from human semen cryopreservation medium without compromising post-thaw outcome.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muhunthan, N.; Singh, Om Pal; Toutam, Vijaykumar, E-mail: toutamvk@nplindia.org
2015-10-15
Graphical abstract: Experimental setup for conducting AFM (C-AFM). - Highlights: • Cu{sub 2}ZnSnS{sub 4} (CZTS) thin film was grown by reactive co-sputtering. • The electronic properties were probed using conducting atomic force microscope, scanning Kelvin probe microscopy and scanning capacitance microscopy. • C-AFM current flow mainly through grain boundaries rather than grain interiors. • SKPM indicated higher potential along the GBs compared to grain interiors. • The SCM explains that charge separation takes place at the interface of grain and grain boundary. - Abstract: Electrical characterization of grain boundaries (GB) of Cu-deficient CZTS (Copper Zinc Tin Sulfide) thin films wasmore » done using atomic force microscopic (AFM) techniques like Conductive atomic force microscopy (CAFM), Kelvin probe force microscopy (KPFM) and scanning capacitance microscopy (SCM). Absorbance spectroscopy was done for optical band gap calculations and Raman, XRD and EDS for structural and compositional characterization. Hall measurements were done for estimation of carrier mobility. CAFM and KPFM measurements showed that the currents flow mainly through grain boundaries (GB) rather than grain interiors. SCM results showed that charge separation mainly occurs at the interface of grain and grain boundaries and not all along the grain boundaries.« less
A study approach on ferroelectric domains in BaTiO{sub 3}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rocha, L.S.R.; Cavalcanti, C.S.
Atomic Force Acoustic Microscopy (AFAM) and Piezoresponse Force Microscopy (PFM) were used to study local elastic and electromechanical response in BaTiO{sub 3} ceramics. A commercial multi-mode Scanning Probe Microscopy (SPM) and AFAM mode to image contact stiffness were employed to accomplish the aforementioned purposes. Stiffness parameters along with Young's moduli and piezo coefficients were quantitatively determined. PFM studies were based on electrostatic and electromechanical response from localized tip-surface contact. Comparison was made regarding the Young's moduli obtained by AFAM and PFM. In addition, phase and amplitude images were analyzed based on poling behavior, obtained via the application of − 10more » V to + 10 V local voltage. - Highlights: •Nanoscale behavior of piezo domains in BaTiO{sub 3} ferroelectric materials •Use of Atomic Force Acoustic Microscopy (AFAM) and Piezo Force Microscopy (PFM) •Local elastic and electromechanical response in BaTiO{sub 3} ceramics •The young's moduli obtained from AFAM and PFM.« less
Model-based traction force microscopy reveals differential tension in cellular actin bundles.
Soiné, Jérôme R D; Brand, Christoph A; Stricker, Jonathan; Oakes, Patrick W; Gardel, Margaret L; Schwarz, Ulrich S
2015-03-01
Adherent cells use forces at the cell-substrate interface to sense and respond to the physical properties of their environment. These cell forces can be measured with traction force microscopy which inverts the equations of elasticity theory to calculate them from the deformations of soft polymer substrates. We introduce a new type of traction force microscopy that in contrast to traditional methods uses additional image data for cytoskeleton and adhesion structures and a biophysical model to improve the robustness of the inverse procedure and abolishes the need for regularization. We use this method to demonstrate that ventral stress fibers of U2OS-cells are typically under higher mechanical tension than dorsal stress fibers or transverse arcs.
Model-based Traction Force Microscopy Reveals Differential Tension in Cellular Actin Bundles
Soiné, Jérôme R. D.; Brand, Christoph A.; Stricker, Jonathan; Oakes, Patrick W.; Gardel, Margaret L.; Schwarz, Ulrich S.
2015-01-01
Adherent cells use forces at the cell-substrate interface to sense and respond to the physical properties of their environment. These cell forces can be measured with traction force microscopy which inverts the equations of elasticity theory to calculate them from the deformations of soft polymer substrates. We introduce a new type of traction force microscopy that in contrast to traditional methods uses additional image data for cytoskeleton and adhesion structures and a biophysical model to improve the robustness of the inverse procedure and abolishes the need for regularization. We use this method to demonstrate that ventral stress fibers of U2OS-cells are typically under higher mechanical tension than dorsal stress fibers or transverse arcs. PMID:25748431
NASA Astrophysics Data System (ADS)
Knorr, Nikolaus; Rosselli, Silvia; Miteva, Tzenka; Nelles, Gabriele
2009-06-01
Although charging of insulators by atomic force microscopy (AFM) has found widespread interest, often with data storage or nanoxerography in mind, less attention has been paid to the charging mechanism and the nature of the charge. Here we present a systematic study on charging of amorphous polymer films by voltage pulses applied to conducting AFM probes. We find a quadratic space charge limited current law of Kelvin probe force microscopy and electrostatic force microscopy peak volumes in pulse height, offset by a threshold voltage, and a power law in pulse width of positive exponents smaller than one. We interpret the results by a charging mechanism of injection and surface near accumulation of aqueous ions stemming from field induced water adsorption, with threshold voltages linked to the water affinities of the polymers.
Kumar, Bharat; Crittenden, Scott R
2013-11-01
We demonstrate the ability to measure Stern potential and Debye length in dilute ionic solution with atomic force microscopy. We develop an analytic expression for the second harmonic force component of the capacitive force in an ionic solution from the linearized Poisson-Boltzmann equation. This allows us to calibrate the AFM tip potential and, further, obtain the Stern potential of sample surfaces. In addition, the measured capacitive force is independent of van der Waals and double layer forces, thus providing a more accurate measure of Debye length.
ERIC Educational Resources Information Center
Mann, Cynthia Marie
2009-01-01
This work describes the use of polyacrylamide hydrogels as controlled elastic modulus substrates for single cell traction force microscopy studies. The first section describes the use of EDC/NHS chemistry to convalently link microbeads to the hydrogel matrix for the purpose of performing long-term traction force studies (7 days). The final study…
Measuring Roughnesses Of Optical Surfaces
NASA Technical Reports Server (NTRS)
Coulter, Daniel R.; Al-Jumaily, Gahnim A.; Raouf, Nasrat A.; Anderson, Mark S.
1994-01-01
Report discusses use of scanning tunneling microscopy and atomic force microscopy to measure roughnesses of optical surfaces. These techniques offer greater spatial resolution than other techniques. Report notes scanning tunneling microscopes and atomic force microscopes resolve down to 1 nm.
NASA Astrophysics Data System (ADS)
Gryzia, Aaron; Volkmann, Timm; Brechling, Armin; Hoeke, Veronika; Schneider, Lilli; Kuepper, Karsten; Glaser, Thorsten; Heinzmann, Ulrich
2014-02-01
Monolayers and submonolayers of [Mn III 6 Cr III ] 3+ single-molecule magnets (SMMs) adsorbed on highly oriented pyrolytic graphite (HOPG) using the droplet technique characterized by non-contact atomic force microscopy (nc-AFM) as well as by Kelvin probe force microscopy (KPFM) show island-like structures with heights resembling the height of the molecule. Furthermore, islands were found which revealed ordered 1D as well as 2D structures with periods close to the width of the SMMs. Along this, islands which show half the heights of intact SMMs were observed which are evidences for a decomposing process of the molecules during the preparation. Finally, models for the structure of the ordered SMM adsorbates are proposed to explain the observations.
NASA Astrophysics Data System (ADS)
Kageshima, Masami; Jensenius, Henriette; Dienwiebel, Martin; Nakayama, Yoshikazu; Tokumoto, Hiroshi; Jarvis, Suzanne P.; Oosterkamp, Tjerk H.
2002-03-01
A force sensor for noncontact atomic force microscopy in liquid environment was developed by combining a multiwalled carbon nanotube (MWNT) probe with a quartz tuning fork. Solvation shells of octamethylcyclotetrasiloxane on a graphite surface were detected both in the frequency shift and dissipation. Due to the high aspect ratio of the CNT probe, the long-range background force was barely detectable in the solvation region.
Sato, Fumiya; Asakawa, Hitoshi; Fukuma, Takeshi; Terada, Sumio
2016-08-01
Neurofilaments are intermediate filament proteins specific for neurons and characterized by formation of biochemically stable, obligate heteropolymers in vivo While purified or reassembled neurofilaments have been subjected to morphological analyses by electron microscopy and atomic force microscopy, there has been a need for direct imaging of cytoplasmic genuine intermediate filaments with minimal risk of artefactualization. In this study, we applied the modified 'cells on glass sandwich' method to exteriorize intracellular neurofilaments, reducing the risk of causing artefacts through sample preparation. SW13vim(-) cells were double transduced with neurofilament medium polypeptide (NF-M) and alpha-internexin (α-inx). Cultured cells were covered with a cationized coverslip after prestabilization with tannic acid to form a sandwich and then split into two. After confirming that neurofilaments could be deposited on ventral plasma membranes exposed via unroofing, we performed atomic force microscopy imaging semi-in situ in aqueous solution. The observed thin filaments, considered to retain native structures of the neurofilaments, exhibited an approximate periodicity of 50-60 nm along their length. Their structural property appeared to reflect the morphology formed by their constituents, i.e. NF-M and α-inx. The success of semi-in situ atomic force microscopy of exposed bona fide assembled neurofilaments through separating the sandwich suggests that it can be an effective and alternative method for investigating cytoplasmic intermediate filaments under physiological conditions by atomic force microscopy. © The Author 2016. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Wyatt, Gwen; Sikorskii, Alla; You, Mei
2013-01-01
According to the National Center for Complementary and Alternative Medicine (NCCAM), about one-third of American cancer patients have used complementary and alternative medicine (CAM). The objective of this secondary analysis was an assessment of the use of other CAM by women with advanced breast cancer who were undergoing chemotherapy and who participated in a randomized clinical trial (RCT) studying the safety and efficacy of reflexology. For this secondary analysis, the research team hypothesized an increased CAM use due to exposure to the reflexology trial. For this secondary analysis, the team conducted telephone interviews at baseline, wk 5, and wk 11 to assess the use of 23 common CAM therapies. The study took place at 14 medical oncology clinics across the Midwestern United States. Participants included women with advanced breast cancer who were undergoing chemotherapy and/or hormonal therapy. In the study related to this secondary analysis, the research team randomly assigned the women to one of three primary groups: (1) reflexology; (2) lay foot manipulation (LFM); and (3) control. In addition, the research team used two test groups to establish the study's protocol: (1) test reflexology and (2) test LFM. For this secondary analysis, the research team considered the two reflexology groups (test and intervention) and the two LFM groups (test and intervention) to be the active groups, comparing their use of CAM to the control group's use at the selected time points. The research team used a linear, mixed-effects model to analyze the number of therapies used at the three time points. The team performed t tests to compare therapy use at baseline for those women who completed the study vs those who dropped out. The team used the CAM-use instrument. In total, 385 women participated. The research team found no differences in CAM use for the active groups vs the control group over time or in those women who stayed in the study vs those who dropped out. The team found an increase in CAM use at wk 5 compared to baseline, followed by a decrease at wk 11; however, the time trends were the same in the active groups and the control group In women with advanced breast cancer, researchers can rely upon one assessment of CAM use during an RCT of a CAM therapy.
Taking Nanomedicine Teaching into Practice with Atomic Force Microscopy and Force Spectroscopy
ERIC Educational Resources Information Center
Carvalho, Filomena A.; Freitas, Teresa; Santos, Nuno C.
2015-01-01
Atomic force microscopy (AFM) is a useful and powerful tool to study molecular interactions applied to nanomedicine. The aim of the present study was to implement a hands-on atomic AFM course for graduated biosciences and medical students. The course comprises two distinct practical sessions, where students get in touch with the use of an atomic…
Dynamics-Enabled Nanoelectromechanical Systems (NEMS) Oscillators
2014-06-01
it becomes strongly nonlinear, and thus constitutes an archetypal candidate for nonlinear engineering • its fundamental resonant frequency...width of spectral peaks of atomic force microscopy (AFM) resonators as they are brought close to a surface. 39 Approved for public release...alternating current AD Allan Deviation AFM atomic force microscopy AFRL Air Force Research Laboratory AlN aluminum nitride APN Anomalous Phase
Oreopoulos, John; Yip, Christopher M.
2009-01-01
Determining the local structure, dynamics, and conformational requirements for protein-protein and protein-lipid interactions in membranes is critical to understanding biological processes ranging from signaling to the translocating and membranolytic action of antimicrobial peptides. We report here the application of a combined polarized total internal reflection fluorescence microscopy-in situ atomic force microscopy platform. This platform's ability to image membrane orientational order was demonstrated on DOPC/DSPC/cholesterol model membranes containing the fluorescent membrane probe, DiI-C20 or BODIPY-PC. Spatially resolved order parameters and fluorophore tilt angles extracted from the polarized total internal reflection fluorescence microscopy images were in good agreement with the topographical details resolved by in situ atomic force microscopy, portending use of this technique for high-resolution characterization of membrane domain structures and peptide-membrane interactions. PMID:19254557
Single ricin detection by atomic force microscopy chemomechanical mapping
NASA Astrophysics Data System (ADS)
Chen, Guojun; Zhou, Jianfeng; Park, Bosoon; Xu, Bingqian
2009-07-01
The authors report on a study of detecting ricin molecules immobilized on chemically modified Au (111) surface by chemomechanically mapping the molecular interactions with a chemically modified atomic force microscopy (AFM) tip. AFM images resolved the different fold-up conformations of single ricin molecule as well as their intramolecule structure of A- and B-chains. AFM force spectroscopy study of the interaction indicates that the unbinding force has a linear relation with the logarithmic force loading rate, which agrees well with calculations using one-barrier bond dissociation model.
Surface modifications with Lissajous trajectories using atomic force microscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cai, Wei; Yao, Nan, E-mail: nyao@princeton.edu
2015-09-14
In this paper, we report a method for atomic force microscopy surface modifications with single-tone and multiple-resolution Lissajous trajectories. The tip mechanical scratching experiments with two series of Lissajous trajectories were carried out on monolayer films. The scratching processes with two scan methods have been illustrated. As an application, the tip-based triboelectrification phenomenon on the silicon dioxide surface with Lissajous trajectories was investigated. The triboelectric charges generated within the tip rubbed area on the surface were characterized in-situ by scanning Kelvin force microscopy. This method would provide a promising and cost-effective approach for surface modifications and nanofabrication.
Microscopy image segmentation tool: Robust image data analysis
NASA Astrophysics Data System (ADS)
Valmianski, Ilya; Monton, Carlos; Schuller, Ivan K.
2014-03-01
We present a software package called Microscopy Image Segmentation Tool (MIST). MIST is designed for analysis of microscopy images which contain large collections of small regions of interest (ROIs). Originally developed for analysis of porous anodic alumina scanning electron images, MIST capabilities have been expanded to allow use in a large variety of problems including analysis of biological tissue, inorganic and organic film grain structure, as well as nano- and meso-scopic structures. MIST provides a robust segmentation algorithm for the ROIs, includes many useful analysis capabilities, and is highly flexible allowing incorporation of specialized user developed analysis. We describe the unique advantages MIST has over existing analysis software. In addition, we present a number of diverse applications to scanning electron microscopy, atomic force microscopy, magnetic force microscopy, scanning tunneling microscopy, and fluorescent confocal laser scanning microscopy.
Direct manipulation of metallic nanosheets by shear force microscopy.
Bi, Z; Cai, W; Wang, Y; Shang, G
2018-05-15
Micro/nanomanipulation is a rapidly growing technology and holds promising applications in various fields, including photonic/electronic devices, chemical/biosensors etc. In this work, we present that shear force microscopy (ShFM) can be exploited to manipulate metallic nanosheets besides imaging. The manipulation is realized via controlling the shear force sensor probe position and shear force magnitude based on our homemade ShFM system under an optical microscopy for in situ observation. The main feature of the ShFM system is usage of a piezoelectric bimorph sensor, which has the ability of self-excitation and detection. Moreover, the shear force magnitude as a function of the spring constant of the sensor and setpoint is obtained, which indicates that operation modes can be switched between imaging and manipulation through designing the spring constant before experiment and changing the setpoint during manipulation process, respectively. We believe that this alternative manipulation technique could be used to assemble other nanostructures with different shapes, sizes and compositions for new properties and wider applications. © 2018 The Authors Journal of Microscopy © 2018 Royal Microscopical Society.
NASA Astrophysics Data System (ADS)
Tyu, N. S.; Ekhilevsky, S. G.
1992-07-01
For the perfect molecular crystals the equations of the local field method (LFM) with the account of spatial dispersion are formulated. They are used to derive the expression for the crystal polarizability tensor. For the first time within the framework of this method the formula for the gyrotropy tensor of an arbitrary optically active molecular crystal is obtained. This formula is analog of well known relationships of Lorentz-Lorenz.
1981-01-01
iiruI. sulihrur~. arid comtiije iii-aro’ d~ namny rallier- than slin’. ’I’ll(-% nralt oilwulf-d’’I’r tip li[’ I Lahioraiorn s R&D~ I) rezar ’ I .I s...XI)- \\093) 2831. fl’/I. ide anfgle’ ifi/lifil P pIc v"isuafl s.Iovin. Xf1lfM.- TH-81-51. \\D - \\105l 50I8. Idrn ). It.. & kaii r. J. F.. Ii rffflafif
Structure of High Latitude Currents in Magnetosphere-Ionosphere Models
NASA Astrophysics Data System (ADS)
Wiltberger, M.; Rigler, E. J.; Merkin, V.; Lyon, J. G.
2017-03-01
Using three resolutions of the Lyon-Fedder-Mobarry global magnetosphere-ionosphere model (LFM) and the Weimer 2005 empirical model we examine the structure of the high latitude field-aligned current patterns. Each resolution was run for the entire Whole Heliosphere Interval which contained two high speed solar wind streams and modest interplanetary magnetic field strengths. Average states of the field-aligned current (FAC) patterns for 8 interplanetary magnetic field clock angle directions are computed using data from these runs. Generally speaking the patterns obtained agree well with results obtained from the Weimer 2005 computing using the solar wind and IMF conditions that correspond to each bin. As the simulation resolution increases the currents become more intense and narrow. A machine learning analysis of the FAC patterns shows that the ratio of Region 1 (R1) to Region 2 (R2) currents decreases as the simulation resolution increases. This brings the simulation results into better agreement with observational predictions and the Weimer 2005 model results. The increase in R2 current strengths also results in the cross polar cap potential (CPCP) pattern being concentrated in higher latitudes. Current-voltage relationships between the R1 and CPCP are quite similar at the higher resolution indicating the simulation is converging on a common solution. We conclude that LFM simulations are capable of reproducing the statistical features of FAC patterns.
Shi, Chenguang; Salous, Sana; Wang, Fei; Zhou, Jianjiang
2016-12-06
This paper investigates the joint target parameter (delay and Doppler) estimation performance of linear frequency modulation (LFM)-based radar networks in a Rice fading environment. The active radar networks are composed of multiple radar transmitters and multichannel receivers placed on moving platforms. First, the log-likelihood function of the received signal for a Rician target is derived, where the received signal scattered off the target comprises of dominant scatterer (DS) component and weak isotropic scatterers (WIS) components. Then, the analytically closed-form expressions of the Cramer-Rao lower bounds (CRLBs) on the Cartesian coordinates of target position and velocity are calculated, which can be adopted as a performance metric to access the target parameter estimation accuracy for LFM-based radar network systems in a Rice fading environment. It is found that the cumulative Fisher information matrix (FIM) is a linear combination of both DS component and WIS components, and it also demonstrates that the joint CRLB is a function of signal-to-noise ratio (SNR), target's radar cross section (RCS) and transmitted waveform parameters, as well as the relative geometry between the target and the radar network architectures. Finally, numerical results are provided to indicate that the joint target parameter estimation performance of active radar networks can be significantly improved with the exploitation of DS component.
Shi, Chenguang; Salous, Sana; Wang, Fei; Zhou, Jianjiang
2016-01-01
This paper investigates the joint target parameter (delay and Doppler) estimation performance of linear frequency modulation (LFM)-based radar networks in a Rice fading environment. The active radar networks are composed of multiple radar transmitters and multichannel receivers placed on moving platforms. First, the log-likelihood function of the received signal for a Rician target is derived, where the received signal scattered off the target comprises of dominant scatterer (DS) component and weak isotropic scatterers (WIS) components. Then, the analytically closed-form expressions of the Cramer-Rao lower bounds (CRLBs) on the Cartesian coordinates of target position and velocity are calculated, which can be adopted as a performance metric to access the target parameter estimation accuracy for LFM-based radar network systems in a Rice fading environment. It is found that the cumulative Fisher information matrix (FIM) is a linear combination of both DS component and WIS components, and it also demonstrates that the joint CRLB is a function of signal-to-noise ratio (SNR), target’s radar cross section (RCS) and transmitted waveform parameters, as well as the relative geometry between the target and the radar network architectures. Finally, numerical results are provided to indicate that the joint target parameter estimation performance of active radar networks can be significantly improved with the exploitation of DS component. PMID:27929433
NASA Astrophysics Data System (ADS)
Vainer, Yu. G.; Naumov, A. V.; Kador, L.
2008-06-01
The energy spectrum of low-frequency vibrational modes (LFMs) in three disordered organic solids—amorphous polyisobutylene (PIB), toluene and deuterated toluene glasses, weakly doped with fluorescent chromophore molecules of tetra-tert-butylterrylene (TBT) has been measured via single-molecule (SM) spectroscopy. Analysis of the individual temperature dependences of linewidths of single TBT molecules allowed us to determine the values of the vibrational mode frequencies and the SM-LFM coupling constants for vibrations in the local environment of the molecules. The measured LFM spectra were compared with the “Boson peak” as measured in pure PIB by inelastic neutron scattering, in pure toluene glass by low-frequency Raman scattering, in doped toluene glass by nuclear inelastic scattering, and with photon echo data. The comparative analysis revealed close agreement between the spectra of the local vibrations as measured in the present study and the literature data of the Boson peak in PIB and toluene. The analysis has also the important result that weak doping of the disordered matrices with nonpolar probe molecules whose chemical composition is similar to that of the matrix molecules does not influence the observed vibrational dynamics markedly. The experimental data displaying temporal stability on the time scale of a few hours of vibrational excitation parameters in local surroundings was obtained for the first time both for polymer and molecular glass.
Structure of high latitude currents in global magnetospheric-ionospheric models
Wiltberger, M; Rigler, E. J.; Merkin, V; Lyon, J. G
2016-01-01
Using three resolutions of the Lyon-Fedder-Mobarry global magnetosphere-ionosphere model (LFM) and the Weimer 2005 empirical model we examine the structure of the high latitude field-aligned current patterns. Each resolution was run for the entire Whole Heliosphere Interval which contained two high speed solar wind streams and modest interplanetary magnetic field strengths. Average states of the field-aligned current (FAC) patterns for 8 interplanetary magnetic field clock angle directions are computed using data from these runs. Generally speaking the patterns obtained agree well with results obtained from the Weimer 2005 computing using the solar wind and IMF conditions that correspond to each bin. As the simulation resolution increases the currents become more intense and narrow. A machine learning analysis of the FAC patterns shows that the ratio of Region 1 (R1) to Region 2 (R2) currents decreases as the simulation resolution increases. This brings the simulation results into better agreement with observational predictions and the Weimer 2005 model results. The increase in R2 current strengths also results in the cross polar cap potential (CPCP) pattern being concentrated in higher latitudes. Current-voltage relationships between the R1 and CPCP are quite similar at the higher resolution indicating the simulation is converging on a common solution. We conclude that LFM simulations are capable of reproducing the statistical features of FAC patterns.
Scanning probe microscopy for the analysis of composite Ti/hydrocarbon plasma polymer thin films
NASA Astrophysics Data System (ADS)
Choukourov, A.; Grinevich, A.; Slavinska, D.; Biederman, H.; Saito, N.; Takai, O.
2008-03-01
Composite Ti/hydrocarbon plasma polymer films with different Ti concentration were deposited on silicon by dc magnetron sputtering of titanium in an atmosphere of argon and hexane. As measured by Kelvin force microscopy and visco-elastic atomic force microscopy, respectively, surface potential and hardness increase with increasing Ti content. Adhesion force to silicon and to fibrinogen molecules was stronger for the Ti-rich films as evaluated from the AFM force-distance curves. Fibrinogen forms a very soft layer on these composites with part of the protein molecules embedded in the outermost region of the plasma polymer. An increase of the surface charge due to fibrinogen adsorption has been observed and attributed to positively charged αC domains of fibrinogen molecule.
Cao, Yongze; Nakayama, Shota; Kumar, Pawan; Zhao, Yue; Kinoshita, Yukinori; Yoshimura, Satoru; Saito, Hitoshi
2018-05-03
For magnetic domain imaging with a very high spatial resolution by magnetic force microscopy the tip-sample distance should be as small as possible. However, magnetic imaging near sample surface is very difficult with conventional MFM because the interactive forces between tip and sample includes van der Waals and electrostatic forces along with magnetic force. In this study, we proposed an alternating magnetic force microscopy (A-MFM) which extract only magnetic force near sample surface without any topographic and electrical crosstalk. In the present method, the magnetization of a FeCo-GdOx superparamagnetic tip is modulated by an external AC magnetic field in order to measure the magnetic domain structure without any perturbation from the other forces near the sample surface. Moreover, it is demonstrated that the proposed method can also measure the strength and identify the polarities of the second derivative of the perpendicular stray field from a thin-film permanent magnet with DC demagnetized state and remanent state. © 2018 IOP Publishing Ltd.
Phuthong, Witchukorn; Huang, Zubin; Wittkopp, Tyler M.; ...
2015-07-28
To investigate the dynamics of photosynthetic pigment-protein complexes in vascular plants at high resolution in an aqueous environment, membrane-protruding oxygen-evolving complexes (OECs) associated with photosystem II (PSII) on spinach ( Spinacia oleracea) grana membranes were examined using contact mode atomic force microscopy. This study represents, to our knowledge, the first use of atomic force microscopy to distinguish the putative large extrinsic loop of Photosystem II CP47 reaction center protein (CP47) from the putative oxygen-evolving enhancer proteins 1, 2, and 3 (PsbO, PsbP, and PsbQ) and large extrinsic loop of Photosystem II CP43 reaction center protein (CP43) in the PSII-OEC extrinsicmore » domains of grana membranes under conditions resulting in the disordered arrangement of PSII-OEC particles. Moreover, we observed uncharacterized membrane particles that, based on their physical characteristics and electrophoretic analysis of the polypeptides associated with the grana samples, are hypothesized to be a domain of photosystem I that protrudes from the stromal face of single thylakoid bilayers. Furthermore, our results are interpreted in the context of the results of others that were obtained using cryo-electron microscopy (and single particle analysis), negative staining and freeze-fracture electron microscopy, as well as previous atomic force microscopy studies.« less
Direct Writing of Graphene-based Nanoelectronics via Atomic Force Microscopy
2012-05-07
To) 07-05-2012 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Direct Writing of Graphene -based Nanoelectronics via Atomic Force Microscopy 5b. GRANT...ABSTRACT This project employs direct writing with an atomic force microscope (AFM) to fabricate simple graphene -based electronic components like resistors...and transistors at nanometer-length scales. The goal is to explore their electrical properties for graphene -based electronics. Conducting
Adhesion Forces between Lewis(X) Determinant Antigens as Measured by Atomic Force Microscopy.
Tromas, C; Rojo, J; de la Fuente, J M; Barrientos, A G; García, R; Penadés, S
2001-01-01
The adhesion forces between individual molecules of Lewis(X) trisaccharide antigen (Le(X) ) have been measured in water and in calcium solution by using atomic force microscopy (AFM, see graph). These results demonstrate the self-recognition capability of this antigen, and reinforce the hypothesis that carbohydrate-carbohydrate interaction could be considered as the first step in the cell-adhesion process in nature. Copyright © 2001 WILEY-VCH Verlag GmbH, Weinheim, Fed. Rep. of Germany.
Driving force of stacking-fault formation in SiC p-i-n diodes.
Ha, S; Skowronski, M; Sumakeris, J J; Paisley, M J; Das, M K
2004-04-30
The driving force of stacking-fault expansion in SiC p-i-n diodes was investigated using optical emission microscopy and transmission electron microscopy. The stacking-fault expansion and properties of the partial dislocations were inconsistent with any stress as the driving force. A thermodynamic free energy difference between the perfect and a faulted structure is suggested as a plausible driving force in the tested diodes, indicating that hexagonal polytypes of silicon carbide are metastable at room temperature.
Lateral-deflection-controlled friction force microscopy
NASA Astrophysics Data System (ADS)
Fukuzawa, Kenji; Hamaoka, Satoshi; Shikida, Mitsuhiro; Itoh, Shintaro; Zhang, Hedong
2014-08-01
Lateral-deflection-controlled dual-axis friction force microscopy (FFM) is presented. In this method, an electrostatic force generated with a probe-incorporated micro-actuator compensates for friction force in real time during probe scanning using feedback control. This equivalently large rigidity can eliminate apparent boundary width and lateral snap-in, which are caused by lateral probe deflection. The method can evolve FFM as a method for quantifying local frictional properties on the micro/nanometer-scale by overcoming essential problems to dual-axis FFM.
Molecular Imaging of Ultrathin Pentacene Films: Evidence for Homoepitaxy
NASA Astrophysics Data System (ADS)
Wu, Yanfei; Haugstad, Greg; Frisbie, C. Daniel
2013-03-01
Ultrathin polycrystalline films of organic semiconductors have received intensive investigations due to the critical role they play in governing the performance of organic thin film transistors. In this work, a variety of scanning probe microscopy (SPM) techniques have been employed to investigate ultrathin polycrystalline films (1-3 nm) of the benchmark organic semiconductor pentacene. By using spatially resolved Friction Force Microscopy (FFM), Kelvin Probe Force Microscopy (KFM) and Electrostatic Force Microscopy (EFM), an interesting multi-domain structure is revealed within the second layer of the films, characterized as two distinct friction and surface potential domains correlating with each other. The existence of multiple homoepitaxial modes within the films is thus proposed and examined. By employing lattice-revolved imaging using contact mode SPM, direct molecular evidence for the unusual homoepitaxy is obtained.
Li, Ying; Lu, Liyuan; Li, Juan
2016-09-01
Hereditary spherocytosis is an inherited red blood cell membrane disorder resulting from mutations of genes encoding erythrocyte membrane and cytoskeletal proteins. Few equipments can observe the structural characteristics of hereditary spherocytosis directly expect for atomic force microscopy In our study, we proved atomic force microscopy is a powerful and sensitive instrument to describe the characteristics of hereditary spherocytosis. Erythrocytes from hereditary spherocytosis patients were small spheroidal, lacking a well-organized lattice on the cell membrane, with smaller cell surface particles and had reduced valley to peak distance and average cell membrane roughness vs. those from healthy individuals. These observations indicated defects in the certain cell membrane structural proteins such as α- and β-spectrin, ankyrin, etc. Until now, splenectomy is still the most effective treatment for symptoms relief for hereditary spherocytosis. In this study, we further solved the mysteries of membrane nanostructure changes of erythrocytes before and after splenectomy in hereditary spherocytosis by atomic force microscopy. After splenectomy, the cells were larger, but still spheroidal-shaped. The membrane ultrastructure was disorganized and characterized by a reduced surface particle size and lower than normal Ra values. These observations indicated that although splenectomy can effectively relieve the symptoms of hereditary spherocytosis, it has little effect on correction of cytoskeletal membrane defects of hereditary spherocytosis. We concluded that atomic force microscopy is a powerful tool to investigate the pathophysiological mechanisms of hereditary spherocytosis and to monitor treatment efficacy in clinical practices. To the best of our knowledge, this is the first report to study hereditary spherocytosis with atomic force microscopy and offers important mechanistic insight into the underlying role of splenectomy.
The use of atomic force microscopy to evaluate warm mix asphalt.
DOT National Transportation Integrated Search
2013-01-01
The main objective of this study was to use the Atomic Force Microscopy (AFM) to examine the moisture susceptibility : and healing characteristics of Warm Mix Asphalt (WMA) and compare it with those of conventional Hot Mix Asphalt (HMA). To : this en...
Balke, Nina; Maksymovych, Petro; Jesse, Stephen; ...
2014-09-25
The implementation of contact mode Kelvin probe force microscopy (KPFM) utilizes the electrostatic interactions between tip and sample when the tip and sample are in contact with each other. Surprisingly, the electrostatic forces in contact are large enough to be measured even with tips as stiff as 4.5 N/m. As for traditional non-contact KPFM, the signal depends strongly on electrical properties of the sample, such as the dielectric constant, and the tip-properties, such as the stiffness. Since the tip is in contact with the sample, bias-induced changes in the junction potential between tip and sample can be measured with highermore » lateral and temporal resolution compared to traditional non-contact KPFM. Significant and reproducible variations of tip-surface capacitance are observed and attributed to surface electrochemical phenomena. Lastly, observations of significant surface charge states at zero bias and strong hysteretic electromechanical responses at non-ferroelectric surface have significant implications for fields such as triboelectricity and piezoresponse force microscopy.« less
NASA Astrophysics Data System (ADS)
Masaaki Kurihara,; Sho Hatakeyama,; Noriko Yamada,; Takeya Shimomura,; Takaharu Nagai,; Kouji Yoshida,; Tatsuya Tomita,; Morihisa Hoga,; Naoya Hayashi,; Hiroyuki Ohtani,; Masamichi Fujihira,
2010-06-01
Antisticking layers (ASLs) on UV nanoimprint lithography (UV-NIL) molds were characterized by scanning probe microscopies (SPMs) in addition to macroscopic analyses of work of adhesion and separation force. Local physical properties of the ASLs were measured by atomic force microscopy (AFM) and friction force microscopy (FFM). The behavior of local adhesive forces measured with AFM on several surfaces was consistent with that of work of adhesion obtained from contact angle. The ASLs were coated by two different processes, i.e., one is a vapor-phase process and the other a spin-coating process. The homogeneity of the ASLs prepared by the vapor-phase process was better than that of those prepared by the spin-coating process. In addition, we measured the thicknesses of ASL patterns prepared by a lift-off method to investigate the effect of the ASL thicknesses on critical dimensions of the molds with ASLs and found that this effect is not negligible.
Magnetic elements for switching magnetization magnetic force microscopy tips.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cambel, V.; Elias, P.; Gregusova, D.
2010-09-01
Using combination of micromagnetic calculations and magnetic force microscopy (MFM) imaging we find optimal parameters for novel magnetic tips suitable for switching magnetization MFM. Switching magnetization MFM is based on two-pass scanning atomic force microscopy with reversed tip magnetization between the scans. Within the technique the sum of the scanned data with reversed tip magnetization depicts local atomic forces, while their difference maps the local magnetic forces. Here we propose the design and calculate the magnetic properties of tips suitable for this scanning probe technique. We find that for best performance the spin-polarized tips must exhibit low magnetic moment, lowmore » switching fields, and single-domain state at remanence. The switching field of such tips is calculated and optimum shape of the Permalloy elements for the tips is found. We show excellent correspondence between calculated and experimental results for Py elements.« less
Progress in the Correlative Atomic Force Microscopy and Optical Microscopy
Zhou, Lulu; Cai, Mingjun; Tong, Ti; Wang, Hongda
2017-01-01
Atomic force microscopy (AFM) has evolved from the originally morphological imaging technique to a powerful and multifunctional technique for manipulating and detecting the interactions between molecules at nanometer resolution. However, AFM cannot provide the precise information of synchronized molecular groups and has many shortcomings in the aspects of determining the mechanism of the interactions and the elaborate structure due to the limitations of the technology, itself, such as non-specificity and low imaging speed. To overcome the technical limitations, it is necessary to combine AFM with other complementary techniques, such as fluorescence microscopy. The combination of several complementary techniques in one instrument has increasingly become a vital approach to investigate the details of the interactions among molecules and molecular dynamics. In this review, we reported the principles of AFM and optical microscopy, such as confocal microscopy and single-molecule localization microscopy, and focused on the development and use of correlative AFM and optical microscopy. PMID:28441775
Pump-probe Kelvin-probe force microscopy: Principle of operation and resolution limits
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murawski, J.; Graupner, T.; Milde, P., E-mail: peter.milde@tu-dresden.de
Knowledge on surface potential dynamics is crucial for understanding the performance of modern-type nanoscale devices. We describe an electrical pump-probe approach in Kelvin-probe force microscopy that enables a quantitative measurement of dynamic surface potentials at nanosecond-time and nanometer-length scales. Also, we investigate the performance of pump-probe Kelvin-probe force microscopy with respect to the relevant experimental parameters. We exemplify a measurement on an organic field effect transistor that verifies the undisturbed functionality of our pump-probe approach in terms of simultaneous and quantitative mapping of topographic and electronic information at a high lateral and temporal resolution.
Photoinduced force microscopy: A technique for hyperspectral nanochemical mapping
NASA Astrophysics Data System (ADS)
Murdick, Ryan A.; Morrison, William; Nowak, Derek; Albrecht, Thomas R.; Jahng, Junghoon; Park, Sung
2017-08-01
Advances in nanotechnology have intensified the need for tools that can characterize newly synthesized nanomaterials. A variety of techniques has recently been shown which combines atomic force microscopy (AFM) with optical illumination including tip-enhanced Raman spectroscopy (TERS), scattering-type scanning near-field optical microscopy (sSNOM), and photothermal induced resonance microscopy (PTIR). To varying degrees, these existing techniques enable optical spectroscopy with the nanoscale spatial resolution inherent to AFM, thereby providing nanochemical interrogation of a specimen. Here we discuss photoinduced force microscopy (PiFM), a recently developed technique for nanoscale optical spectroscopy that exploits image forces acting between an AFM tip and sample to detect wavelength-dependent polarization within the sample to generate absorption spectra. This approach enables ∼10 nm spatial resolution with spectra that show correlation with macroscopic optical absorption spectra. Unlike other techniques, PiFM achieves this high resolution with virtually no constraints on sample or substrate properties. The applicability of PiFM to a variety of archetypal systems is reported here, highlighting the potential of PiFM as a useful tool for a wide variety of industrial and academic investigations, including semiconducting nanoparticles, nanocellulose, block copolymers, and low dimensional systems, as well as chemical and morphological mixing at interfaces.
System analysis of force feedback microscopy
NASA Astrophysics Data System (ADS)
Rodrigues, Mario S.; Costa, Luca; Chevrier, Joël; Comin, Fabio
2014-02-01
It was shown recently that the Force Feedback Microscope (FFM) can avoid the jump-to-contact in Atomic force Microscopy even when the cantilevers used are very soft, thus increasing force resolution. In this letter, we explore theoretical aspects of the associated real time control of the tip position. We take into account lever parameters such as the lever characteristics in its environment, spring constant, mass, dissipation coefficient, and the operating conditions such as controller gains and interaction force. We show how the controller parameters are determined so that the FFM functions at its best and estimate the bandwidth of the system under these conditions.
NASA Astrophysics Data System (ADS)
An, Sangmin; Hong, Mun-heon; Kim, Jongwoo; Kwon, Soyoung; Lee, Kunyoung; Lee, Manhee; Jhe, Wonho
2012-11-01
We present a platform for the quartz tuning fork (QTF)-based, frequency modulation atomic force microscopy (FM-AFM) system for quantitative study of the mechanical or topographical properties of nanoscale materials, such as the nano-sized water bridge formed between the quartz tip (˜100 nm curvature) and the mica substrate. A thermally stable, all digital phase-locked loop is used to detect the small frequency shift of the QTF signal resulting from the nanomaterial-mediated interactions. The proposed and demonstrated novel FM-AFM technique provides high experimental sensitivity in the measurement of the viscoelastic forces associated with the confined nano-water meniscus, short response time, and insensitivity to amplitude noise, which are essential for precision dynamic force spectroscopy and microscopy.
An, Sangmin; Hong, Mun-heon; Kim, Jongwoo; Kwon, Soyoung; Lee, Kunyoung; Lee, Manhee; Jhe, Wonho
2012-11-01
We present a platform for the quartz tuning fork (QTF)-based, frequency modulation atomic force microscopy (FM-AFM) system for quantitative study of the mechanical or topographical properties of nanoscale materials, such as the nano-sized water bridge formed between the quartz tip (~100 nm curvature) and the mica substrate. A thermally stable, all digital phase-locked loop is used to detect the small frequency shift of the QTF signal resulting from the nanomaterial-mediated interactions. The proposed and demonstrated novel FM-AFM technique provides high experimental sensitivity in the measurement of the viscoelastic forces associated with the confined nano-water meniscus, short response time, and insensitivity to amplitude noise, which are essential for precision dynamic force spectroscopy and microscopy.
VEDA: a web-based virtual environment for dynamic atomic force microscopy.
Melcher, John; Hu, Shuiqing; Raman, Arvind
2008-06-01
We describe here the theory and applications of virtual environment dynamic atomic force microscopy (VEDA), a suite of state-of-the-art simulation tools deployed on nanoHUB (www.nanohub.org) for the accurate simulation of tip motion in dynamic atomic force microscopy (dAFM) over organic and inorganic samples. VEDA takes advantage of nanoHUB's cyberinfrastructure to run high-fidelity dAFM tip dynamics computations on local clusters and the teragrid. Consequently, these tools are freely accessible and the dAFM simulations are run using standard web-based browsers without requiring additional software. A wide range of issues in dAFM ranging from optimal probe choice, probe stability, and tip-sample interaction forces, power dissipation, to material property extraction and scanning dynamics over hetereogeneous samples can be addressed.
Invited Article: VEDA: A web-based virtual environment for dynamic atomic force microscopy
NASA Astrophysics Data System (ADS)
Melcher, John; Hu, Shuiqing; Raman, Arvind
2008-06-01
We describe here the theory and applications of virtual environment dynamic atomic force microscopy (VEDA), a suite of state-of-the-art simulation tools deployed on nanoHUB (www.nanohub.org) for the accurate simulation of tip motion in dynamic atomic force microscopy (dAFM) over organic and inorganic samples. VEDA takes advantage of nanoHUB's cyberinfrastructure to run high-fidelity dAFM tip dynamics computations on local clusters and the teragrid. Consequently, these tools are freely accessible and the dAFM simulations are run using standard web-based browsers without requiring additional software. A wide range of issues in dAFM ranging from optimal probe choice, probe stability, and tip-sample interaction forces, power dissipation, to material property extraction and scanning dynamics over hetereogeneous samples can be addressed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Söngen, Hagen, E-mail: soengen@uni-mainz.de; Graduate School Materials Science in Mainz, Staudinger Weg 9, 55128 Mainz; Nalbach, Martin
2016-06-15
We present the implementation of a three-dimensional mapping routine for probing solid-liquid interfaces using frequency modulation atomic force microscopy. Our implementation enables fast and flexible data acquisition of up to 20 channels simultaneously. The acquired data can be directly synchronized with commercial atomic force microscope controllers, making our routine easily extendable for related techniques that require additional data channels, e.g., Kelvin probe force microscopy. Moreover, the closest approach of the tip to the sample is limited by a user-defined threshold, providing the possibility to prevent potential damage to the tip. The performance of our setup is demonstrated by visualizing themore » hydration structure above the calcite (10.4) surface in water.« less
NASA Astrophysics Data System (ADS)
Shi, Shuai; Guo, Dan; Luo, Jianbin
2017-10-01
Active quality factor (Q) exhibits many promising properties in dynamic atomic force microscopy. Energy dissipation and image contrasts are investigated in the non-contact amplitude modulation atomic force microscopy (AM-AFM) with an active Q-control circuit in the ambient air environment. Dissipated power and virial were calculated to compare the highly nonlinear interaction of tip-sample and image contrasts with different Q gain values. Greater free amplitudes and lower effective Q values show better contrasts for the same setpoint ratio. Active quality factor also can be employed to change tip-sample interaction force in non-contact regime. It is meaningful that non-destructive and better contrast images can be realized in non-contact AM-AFM by applying an active Q-control to the dynamic system.
Aqeel, Yousuf; Siddiqui, Ruqaiyyah; Ateeq, Muhammad; Raza Shah, Muhammad; Kulsoom, Huma; Khan, Naveed Ahmed
2015-01-01
Light microscopy and electron microscopy have been successfully used in the study of microbes, as well as free-living protists. Unlike light microscopy, which enables us to observe living organisms or the electron microscope which provides a two-dimensional image, atomic force microscopy provides a three-dimensional surface profile. Here, we observed two free-living amoebae, Acanthamoeba castellanii and Balamuthia mandrillaris under the phase contrast inverted microscope, transmission electron microscope and atomic force microscope. Although light microscopy was of lower magnification, it revealed functional biology of live amoebae such as motility and osmoregulation using contractile vacuoles of the trophozoite stage, but it is of limited value in defining the cyst stage. In contrast, transmission electron microscopy showed significantly greater magnification and resolution to reveal the ultra-structural features of trophozoites and cysts including intracellular organelles and cyst wall characteristics but it only produced a snapshot in time of a dead amoeba cell. Atomic force microscopy produced three-dimensional images providing detailed topographic description of shape and surface, phase imaging measuring boundary stiffness, and amplitude measurements including width, height and length of A. castellanii and B. mandrillaris trophozoites and cysts. These results demonstrate the importance of the application of various microscopic methods in the biological and structural characterization of the whole cell, ultra-structural features, as well as surface components and cytoskeleton of protist pathogens. © 2014 The Author(s) Journal of Eukaryotic Microbiology © 2014 International Society of Protistologists.
Corroding of copper piping used in household drinking water plumbing may potentially impacts consumer’s health and economics. Copper corrosion studies conducted on newly corroding material with atomic force microscopy (AFM) may be particularly useful in understanding the impact ...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramírez-Salgado, J.; Domínguez-Aguilar, M.A., E-mail: madoming@imp.mx; Castro-Domínguez, B.
2013-12-15
The secondary phase transformations in a commercial super duplex stainless steel were investigated by micro-chemical analyses and high resolution scanning probe microscopy. Energy dispersive X-ray and electron probe detected ferrite and austenite as well as secondary phases in unetched aged duplex stainless steel type 25Cr-7Ni-3Mo. Volta potential indicated that nitride and sigma appeared more active than ferrite, while secondary austenite and austenite presented a nobler potential. Reversal order in nobility is thought to be attributable to the potential ranking provided by oxide nature diversity as a result of secondary phase surface compositions on steel. After eutectoid transformation, secondary austenite wasmore » detected by electron probe microanalysis, whereas atomic force microscopy distinguished this phase from former austenite by image contrast. Magnetic force microscopy revealed a “ghosted” effect on the latter microstructure probably derived from metal memory reminiscence of mechanical polishing at passivity and long range magnetic forces of ferrite phase. - Highlights: • Nobility detection of secondary phases by SKPFM in DSS particles is not a straightforward procedure. • As Volta potential and contrast are not always consistent SKPFM surface oxides is thought played an important role in detection. • AFM distinguished secondary austenite from former austenite by image contrast though SEM required EPMA.« less
Doppler Compensation for Airborne Non-Side-Looking Phased-Array Radar
2015-09-01
Box 1500 Edinburgh South Australia 5111 Australia Telephone: 1300 333 362 Fax: (08) 7389 6567 © Commonwealth of Australia 2013 AR-016...Security and ISR Division Dr Yunhan Dong received his Bachelor and Master degrees in 1980s in China and PhD in 1995 at UNSW, Australia , all in...waveform length, 0λ 0.25 m Bandwidth of LFM 5 MHz Sampling rate 10 MHz Number of array elements, N 25 Number of pulses in a CPI, M 31 Antenna
Performance of Passive and Active Sonars in the Philippine Sea
2012-09-30
demodulated to 250 Hz , so the output of the matched filter for the LFM signal is the complex envelope of the pulse compressed signal. We want to...this cross coherence matrix for the 90−180Hz band on the left and 375 −525Hz one on the right. We note that there are 150 entries in each matrix which...Laboratory (CONOPS and vector sensor processing) 4. SSTAG ( Submarine Surveillance Technical Advisory Group) for N975) 5. FCP (Future Concepts Program for
PerSEUS: Ultra-Low-Power High Performance Computing for Plasma Simulations
NASA Astrophysics Data System (ADS)
Doxas, I.; Andreou, A.; Lyon, J.; Angelopoulos, V.; Lu, S.; Pritchett, P. L.
2017-12-01
Peta-op SupErcomputing Unconventional System (PerSEUS) aims to explore the use for High Performance Scientific Computing (HPC) of ultra-low-power mixed signal unconventional computational elements developed by Johns Hopkins University (JHU), and demonstrate that capability on both fluid and particle Plasma codes. We will describe the JHU Mixed-signal Unconventional Supercomputing Elements (MUSE), and report initial results for the Lyon-Fedder-Mobarry (LFM) global magnetospheric MHD code, and a UCLA general purpose relativistic Particle-In-Cell (PIC) code.
High-Resolution Radar Waveforms Based on Randomized Latin Square Sequences
2017-04-18
familiar Costas sequence [17]. The ambiguity function first introduced by Woodward in [13] is used to evaluate the matched filter output of a Radar waveform...the zero-delay cut that the result takes the shape of a sinc function which shows, even for significant Doppler shifts, the matched filter output...bad feature as the high ridge of the LFM waveform will still result in a large matched filter response from the target, just not at the correct delay
Subatomic deformation driven by vertical piezoelectricity from CdS ultrathin films.
Wang, Xuewen; He, Xuexia; Zhu, Hongfei; Sun, Linfeng; Fu, Wei; Wang, Xingli; Hoong, Lai Chee; Wang, Hong; Zeng, Qingsheng; Zhao, Wu; Wei, Jun; Jin, Zhong; Shen, Zexiang; Liu, Jie; Zhang, Ting; Liu, Zheng
2016-07-01
Driven by the development of high-performance piezoelectric materials, actuators become an important tool for positioning objects with high accuracy down to nanometer scale, and have been used for a wide variety of equipment, such as atomic force microscopy and scanning tunneling microscopy. However, positioning at the subatomic scale is still a great challenge. Ultrathin piezoelectric materials may pave the way to positioning an object with extreme precision. Using ultrathin CdS thin films, we demonstrate vertical piezoelectricity in atomic scale (three to five space lattices). With an in situ scanning Kelvin force microscopy and single and dual ac resonance tracking piezoelectric force microscopy, the vertical piezoelectric coefficient (d 33) up to 33 pm·V(-1) was determined for the CdS ultrathin films. These findings shed light on the design of next-generation sensors and microelectromechanical devices.
Imaging TiO2 nanoparticles on GaN nanowires with electrostatic force microscopy
NASA Astrophysics Data System (ADS)
Xie, Ting; Wen, Baomei; Liu, Guannan; Guo, Shiqi; Motayed, Abhishek; Murphy, Thomas; Gomez, R. D.
Gallium nitride (GaN) nanowires that are functionalized with metal-oxides nanoparticles have been explored extensively for gas sensing applications in the past few years. These sensors have several advantages over conventional schemes, including miniature size, low-power consumption and fast response and recovery times. The morphology of the oxide functionalization layer is critical to achieve faster response and recovery times, with the optimal size distribution of nanoparticles being in the range of 10 to 30 nm. However, it is challenging to characterize these nanoparticles on GaN nanowires using common techniques such as scanning electron microscopy, transmission electron microscopy, and x-ray diffraction. Here, we demonstrate electrostatic force microscopy in combination with atomic force microscopy as a non-destructive technique for morphological characterization of the dispersed TiO2 nanoparticles on GaN nanowires. We also discuss the applicability of this method to other material systems with a proposed tip-surface capacitor model. This project was sponsored through N5 Sensors and the Maryland Industrial Partnerships (MIPS, #5418).
NASA Astrophysics Data System (ADS)
Cao, Yongze; Kumar, Pawan; Zhao, Yue; Yoshimura, Satoru; Saito, Hitoshi
2018-05-01
Understanding the dynamic magnetization process of magnetic materials is crucial to improving their fundamental properties and technological applications. Here, we propose active magnetic force microscopy for observing reversible and irreversible magnetization processes by stimulating magnetization with an AC magnetic field based on alternating magnetic force microscopy with a sensitive superparamagnetic tip. This approach simultaneously measures sample's DC and AC magnetic fields. We used this microscopy approach to an anisotropic Sr-ferrite (SrF) sintered magnet. This is a single domain type magnet where magnetization mainly changes via magnetic rotation. The proposed method can directly observe the reversible and irreversible magnetization processes of SrF and clearly reveal magnetic domain evolution of SrF (without stimulating magnetization—stimulating reversible magnetization—stimulating irreversible magnetization switching) by slowly increasing the amplitude of the external AC magnetic field. This microscopy approach can evaluate magnetic inhomogeneity and explain the local magnetic process within the permanent magnet.
Kong, Jessica; Giridharagopal, Rajiv; Harrison, Jeffrey S; Ginger, David S
2018-05-31
Correlating nanoscale chemical specificity with operational physics is a long-standing goal of functional scanning probe microscopy (SPM). We employ a data analytic approach combining multiple microscopy modes, using compositional information in infrared vibrational excitation maps acquired via photoinduced force microscopy (PiFM) with electrical information from conductive atomic force microscopy. We study a model polymer blend comprising insulating poly(methyl methacrylate) (PMMA) and semiconducting poly(3-hexylthiophene) (P3HT). We show that PiFM spectra are different from FTIR spectra, but can still be used to identify local composition. We use principal component analysis to extract statistically significant principal components and principal component regression to predict local current and identify local polymer composition. In doing so, we observe evidence of semiconducting P3HT within PMMA aggregates. These methods are generalizable to correlated SPM data and provide a meaningful technique for extracting complex compositional information that are impossible to measure from any one technique.
Quantitative force measurements in liquid using frequency modulation atomic force microscopy
NASA Astrophysics Data System (ADS)
Uchihashi, Takayuki; Higgins, Michael J.; Yasuda, Satoshi; Jarvis, Suzanne P.; Akita, Seiji; Nakayama, Yoshikazu; Sader, John E.
2004-10-01
The measurement of short-range forces with the atomic force microscope (AFM) typically requires implementation of dynamic techniques to maintain sensitivity and stability. While frequency modulation atomic force microscopy (FM-AFM) is used widely for high-resolution imaging and quantitative force measurements in vacuum, quantitative force measurements using FM-AFM in liquids have proven elusive. Here we demonstrate that the formalism derived for operation in vacuum can also be used in liquids, provided certain modifications are implemented. To facilitate comparison with previous measurements taken using surface forces apparatus, we choose a model system (octamethylcyclotetrasiloxane) that is known to exhibit short-ranged structural ordering when confined between two surfaces. Force measurements obtained are found to be in excellent agreement with previously reported results. This study therefore establishes FM-AFM as a powerful tool for the quantitative measurement of forces in liquid.
In pursuit of photo-induced magnetic and chiral microscopy
NASA Astrophysics Data System (ADS)
Zeng, Jinwei; Kamandi, Mohammad; Darvishzadeh-Varcheie, Mahsa; Albooyeh, Mohammad; Veysi, Mehdi; Guclu, Caner; Hanifeh, Mina; Rajaei, Mohsen; Potma, Eric O.; Wickramasinghe, H. Kumar; Capolino, Filippo
2018-06-01
Light-matter interactions enable the perception of specimen properties such as its shape and dimensions by measuring the subtle differences carried by an illuminating beam after interacting with the sample. However, major obstacles arise when the relevant properties of the specimen are weakly coupled to the incident beam, for example when measuring optical magnetism and chirality. To address this challenge we propose the idea of detecting such weakly-coupled properties of matter through the photo-induced force, aiming at developing photo-induced magnetic or chiral force microscopy. Here we review our pursuit consisting of the following steps: (1) Development of a theoretical blueprint of a magnetic nanoprobe to detect a magnetic dipole oscillating at an optical frequency when illuminated by an azimuthally polarized beam via the photo-induced magnetic force; (2) Conducting an experimental study using an azimuthally polarized beam to probe the near fields and axial magnetism of a Si disk magnetic nanoprobe, based on photo-induced force microscopy; (3) Extending the concept of force microscopy to probe chirality at the nanoscale, enabling enantiomeric detection of chiral molecules. Finally, we discuss difficulties and how they could be overcome, as well as our plans for future work. Invited Paper
Conductive Atomic Force Microscopy | Materials Science | NREL
electrical measurement techniques is the high spatial resolution. For example, C-AFM measurements on : High-resolution image of a sample semiconductor device; the image shows white puff-like clusters on a dark background and was obtained using atomic force microscopy. Bottom: High-resolution image of the
Luria, Justin L; Schwarz, Kathleen A; Jaquith, Michael J; Hennig, Richard G; Marohn, John A
2011-02-01
Spatial maps of topography and trapped charge are acquired for polycrystalline pentacene thin-film transistors using electric and atomic force microscopy. In regions of trapped charge, the rate of trap clearing is studied as a function of the wavelength of incident radiation.
Magnetic resonance force microscopy quantum computer with tellurium donors in silicon.
Berman, G P; Doolen, G D; Hammel, P C; Tsifrinovich, V I
2001-03-26
We propose a magnetic resonance force microscopy (MRFM)-based nuclear spin quantum computer using tellurium impurities in silicon. This approach to quantum computing combines well-developed silicon technology and expected advances in MRFM. Our proposal does not use electrostatic gates to realize quantum logic operations.
NASA Astrophysics Data System (ADS)
Golubev, Ye A.; Isaenko, S. I.
2017-10-01
We have studied different mineralogical objects: natural glasses of impact (tektites, impactites) and volcanic (obsidians) origin, using atomic force microscopy, X-ray microanalysis, infrared and Raman spectroscopy. The spectroscopy showed the difference in the structure and chemical composition of the glasses of different origin. The analysis of the dependence of nanoscale heterogeneity of the glasses, revealed by the atomic force microscopy, on their structural and chemical features was carried out.
Iverson, Brian D; Blendell, John E; Garimella, Suresh V
2010-03-01
Thermal diffusion measurements on polymethylmethacrylate-coated Si substrates using heated atomic force microscopy tips were performed to determine the contact resistance between an organic thin film and Si. The measurement methodology presented demonstrates how the thermal contrast signal obtained during a force-displacement ramp is used to quantify the resistance to heat transfer through an internal interface. The results also delineate the interrogation thickness beyond which thermal diffusion in the organic thin film is not affected appreciably by the underlying substrate.
Resolving the Pinning Force of Nanobubbles with Optical Microscopy
NASA Astrophysics Data System (ADS)
Tan, Beng Hau; An, Hongjie; Ohl, Claus-Dieter
2017-02-01
Many of the remarkable properties of surface nanobubbles, such as unusually small contact angles and long lifetimes, are related to the force that pins them onto their substrates. This pinning force is yet to be quantified experimentally. Here, surface-attached nanobubbles are pulled with an atomic force microscope tip while their mechanical responses are observed with total internal reflection fluorescence microscopy. We estimate that a pinning force on the order of 0.1 μ N is required to unpin a nanobubble from its substrate. The maximum force that the tip can exert on the nanobubble is limited by the stability of the neck pulled from the bubble and is enhanced by the hydrophobicity of the tip.
NASA Astrophysics Data System (ADS)
Reichling, Michael
2004-02-01
Direct nanoscale and atomic resolution imaging is a key issue in nanoscience and nanotechnology. The invention of the dynamic force microscope in the early 1990s was an important step forward in this direction as this instrument provides a universal tool for measuring the topography and many other physical and chemical properties of surfaces at the nanoscale. Operation in the so-called non-contact mode now allows direct atomic resolution imaging of electrically insulating surfaces and nanostructures which has been an unsolved problem during the first decade of nanotechnology. Today, we face a most rapid development of the technique and an extension of its capabilities far beyond imaging; atomically resolved force spectroscopy provides information about local binding properties and researchers now develop sophisticated schemes of force controlled atomic manipulation with the tip of the force microscope. Progress in the field of non-contact force microscopy is discussed at the annually held NC-AFM conferences that are part of a series started in 1998 with a meeting in Osaka, Japan. The 6th International Conference on Non-contact Atomic Force Microscopy took place in Dingle, Ireland, from 31 August to 3 September 2003 and this special issue is a compilation of the original publications of work presented at this meeting. The papers published here well reflect recent achievements, current trends and some of the challenging new directions in non-contact force microscopy that have been discussed during the most stimulating conference days in Dingle. Fundamental aspects of forces and dissipation relevant in imaging and spectroscopy have been covered by experimental and theoretical contributions yielding a more detailed understanding of tip--surface interaction in force microscopy. Novel and improved imaging and spectroscopy techniques have been introduced that either improve the performance of force microscopy or pave the way towards new functionalities and applications. With regard to studies on the specific systems investigated, there was a strong emphasis on oxides and ionics, as well as on organic systems. Following previous pioneering work in uncovering the atomic structure of insulating oxides with force microscopy, it was shown in the meeting that this important class of materials is now accessible for a quantitative atomic scale surface characterization. Single organic molecules and ordered organic layers are building blocks for functional nanostructures currently developed in many laboratories for applications in molecular electronics and sensor technologies. The Dingle conference impressively demonstrated that dynamic force microscopy is ready for its application as an analytical tool for these promising future nanotechnologies. The meeting was a great success scientifically and participants enjoyed the beauty of the conference site. I would like to thank all members of the international steering committee, the programme committee and the co-chairs, J Pethica, A Shluger and G Thornton, for their efforts in preparing the meeting. The members of the local organising committee, J Ballentine-Armstrong, G Cross, S Dunne, S Jarvis and Ö Özer, kept the meeting running smoothly and created a very pleasant atmosphere. The generous financial support from Science Foundation Ireland (SFI), is greatly appreciated; SFI is dramatically raising the profile of Irish science. I would also like to express my sincere gratitude to N Couzin and the journal team from Institute of Physics Publishing for their editorial management and perfect co-operation in the preparation of this special issue.
Atomic force microscopy captures length phenotypes in single proteins
Carrion-Vazquez, Mariano; Marszalek, Piotr E.; Oberhauser, Andres F.; Fernandez, Julio M.
1999-01-01
We use single-protein atomic force microscopy techniques to detect length phenotypes in an Ig module. To gain amino acid resolution, we amplify the mechanical features of a single module by engineering polyproteins composed of up to 12 identical repeats. We show that on mechanical unfolding, mutant polyproteins containing five extra glycine residues added to the folded core of the module extend 20 Å per module farther than the wild-type polyproteins. By contrast, similar insertions near the N or C termini have no effect. Hence, our atomic force microscopy measurements readily discriminate the location of the insert and measure its size with a resolution similar to that of NMR and x-ray crystallography. PMID:10500169
NASA Astrophysics Data System (ADS)
Lee, Seunghyun; Kim, Hyemin; Shin, Seungjun; Doh, Junsang; Kim, Chulhong
2017-03-01
Optical microscopy (OM) and photoacoustic microscopy (PAM) have previously been used to image the optical absorption of intercellular features of biological cells. However, the optical diffraction limit ( 200 nm) makes it difficult for these modalities to image nanoscale inner cell structures and the distribution of internal cell components. Although super-resolution fluorescence microscopy, such as stimulated emission depletion microscopy (STED) and stochastic optical reconstruction microscopy (STORM), has successfully performed nanoscale biological imaging, these modalities require the use of exogenous fluorescence agents, which are unfavorable for biological samples. Our newly developed atomic force photoactivated microscopy (AFPM) can provide optical absorption images with nanoscale lateral resolution without any exogenous contrast agents. AFPM combines conventional atomic force microscopy (AFM) and an optical excitation system, and simultaneously provides multiple contrasts, such as the topography and magnitude of optical absorption. AFPM can detect the intrinsic optical absorption of samples with 8 nm lateral resolution, easily overcoming the diffraction limit. Using the label-free AFPM system, we have successfully imaged the optical absorption properties of a single melanoma cell (B16F10) and a rosette leaf epidermal cell of Arabidopsis (ecotype Columbia (Col-0)) with nanoscale lateral resolution. The remarkable images show the melanosome distribution of a melanoma cell and the biological structures of a plant cell. AFPM provides superior imaging of optical absorption with a nanoscale lateral resolution, and it promises to become widely used in biological and chemical research.
Spectroscopy and atomic force microscopy of biomass.
Tetard, L; Passian, A; Farahi, R H; Kalluri, U C; Davison, B H; Thundat, T
2010-05-01
Scanning probe microscopy has emerged as a powerful approach to a broader understanding of the molecular architecture of cell walls, which may shed light on the challenge of efficient cellulosic ethanol production. We have obtained preliminary images of both Populus and switchgrass samples using atomic force microscopy (AFM). The results show distinctive features that are shared by switchgrass and Populus. These features may be attributable to the lignocellulosic cell wall composition, as the collected images exhibit the characteristic macromolecular globule structures attributable to the lignocellulosic systems. Using both AFM and a single case of mode synthesizing atomic force microscopy (MSAFM) to characterize Populus, we obtained images that clearly show the cell wall structure. The results are of importance in providing a better understanding of the characteristic features of both mature cells as well as developing plant cells. In addition, we present spectroscopic investigation of the same samples.
Subatomic deformation driven by vertical piezoelectricity from CdS ultrathin films
Wang, Xuewen; He, Xuexia; Zhu, Hongfei; Sun, Linfeng; Fu, Wei; Wang, Xingli; Hoong, Lai Chee; Wang, Hong; Zeng, Qingsheng; Zhao, Wu; Wei, Jun; Jin, Zhong; Shen, Zexiang; Liu, Jie; Zhang, Ting; Liu, Zheng
2016-01-01
Driven by the development of high-performance piezoelectric materials, actuators become an important tool for positioning objects with high accuracy down to nanometer scale, and have been used for a wide variety of equipment, such as atomic force microscopy and scanning tunneling microscopy. However, positioning at the subatomic scale is still a great challenge. Ultrathin piezoelectric materials may pave the way to positioning an object with extreme precision. Using ultrathin CdS thin films, we demonstrate vertical piezoelectricity in atomic scale (three to five space lattices). With an in situ scanning Kelvin force microscopy and single and dual ac resonance tracking piezoelectric force microscopy, the vertical piezoelectric coefficient (d33) up to 33 pm·V−1 was determined for the CdS ultrathin films. These findings shed light on the design of next-generation sensors and microelectromechanical devices. PMID:27419234
USDA-ARS?s Scientific Manuscript database
Single molecular detection of pathogens and toxins of interest to food safety is within grasp using technology such as Atomic Force Microscopy. Using antibodies or specific aptamers connected to the AFM tip make it possible to detect a pathogen molecule on a surface. However, it also becomes necess...
Ryan Wagner; Robert J. Moon; Arvind Raman
2016-01-01
Quantification of the mechanical properties of cellulose nanomaterials is key to the development of new cellulose nanomaterial based products. Using contact resonance atomic force microscopy we measured and mapped the transverse elastic modulus of three types of cellulosic nanoparticles: tunicate cellulose nanocrystals, wood cellulose nanocrystals, and wood cellulose...
Tai, Tamin; Karácsony, Orsolya; Bocharova, Vera; ...
2016-02-18
This article describes how the use of a hybrid atomic force microscopy/infrared spectroscopy/mass spectrometry imaging platform was demonstrated for the acquisition and correlation of nanoscale sample surface topography and chemical images based on infrared spectroscopy and mass spectrometry.
Elemental Identification by Combining Atomic Force Microscopy and Kelvin Probe Force Microscopy.
Schulz, Fabian; Ritala, Juha; Krejčí, Ondrej; Seitsonen, Ari Paavo; Foster, Adam S; Liljeroth, Peter
2018-06-01
There are currently no experimental techniques that combine atomic-resolution imaging with elemental sensitivity and chemical fingerprinting on single molecules. The advent of using molecular-modified tips in noncontact atomic force microscopy (nc-AFM) has made it possible to image (planar) molecules with atomic resolution. However, the mechanisms responsible for elemental contrast with passivated tips are not fully understood. Here, we investigate elemental contrast by carrying out both nc-AFM and Kelvin probe force microscopy (KPFM) experiments on epitaxial monolayer hexagonal boron nitride (hBN) on Ir(111). The hBN overlayer is inert, and the in-plane bonds connecting nearest-neighbor boron and nitrogen atoms possess strong covalent character and a bond length of only ∼1.45 Å. Nevertheless, constant-height maps of both the frequency shift Δ f and the local contact potential difference exhibit striking sublattice asymmetry. We match the different atomic sites with the observed contrast by comparison with nc-AFM image simulations based on the density functional theory optimized hBN/Ir(111) geometry, which yields detailed information on the origin of the atomic-scale contrast.
Harnessing the damping properties of materials for high-speed atomic force microscopy.
Adams, Jonathan D; Erickson, Blake W; Grossenbacher, Jonas; Brugger, Juergen; Nievergelt, Adrian; Fantner, Georg E
2016-02-01
The success of high-speed atomic force microscopy in imaging molecular motors, enzymes and microbes in liquid environments suggests that the technique could be of significant value in a variety of areas of nanotechnology. However, the majority of atomic force microscopy experiments are performed in air, and the tapping-mode detection speed of current high-speed cantilevers is an order of magnitude lower in air than in liquids. Traditional approaches to increasing the imaging rate of atomic force microscopy have involved reducing the size of the cantilever, but further reductions in size will require a fundamental change in the detection method of the microscope. Here, we show that high-speed imaging in air can instead be achieved by changing the cantilever material. We use cantilevers fabricated from polymers, which can mimic the high damping environment of liquids. With this approach, SU-8 polymer cantilevers are developed that have an imaging-in-air detection bandwidth that is 19 times faster than those of conventional cantilevers of similar size, resonance frequency and spring constant.
NASA Astrophysics Data System (ADS)
Nguyen, Son N.; Sontag, Ryan L.; Carson, James P.; Corley, Richard A.; Ansong, Charles; Laskin, Julia
2018-02-01
Constant mode ambient mass spectrometry imaging (MSI) of tissue sections with high lateral resolution of better than 10 μm was performed by combining shear force microscopy with nanospray desorption electrospray ionization (nano-DESI). Shear force microscopy enabled precise control of the distance between the sample and nano-DESI probe during MSI experiments and provided information on sample topography. Proof-of-concept experiments were performed using lung and brain tissue sections representing spongy and dense tissues, respectively. Topography images obtained using shear force microscopy were comparable to the results obtained using contact profilometry over the same region of the tissue section. Variations in tissue height were found to be dependent on the tissue type and were in the range of 0-5 μm for lung tissue and 0-3 μm for brain tissue sections. Ion images of phospholipids obtained in this study are in good agreement with literature data. Normalization of nano-DESI MSI images to the signal of the internal standard added to the extraction solvent allowed us to construct high-resolution ion images free of matrix effects.
Kim, Il Kwang; Lee, Soo Il
2016-05-01
The modal decomposition of tapping mode atomic force microscopy microcantilevers in liquid environments was studied experimentally. Microcantilevers with different lengths and stiffnesses and two sample surfaces with different elastic moduli were used in the experiment. The response modes of the microcantilevers were extracted as proper orthogonal modes through proper orthogonal decomposition. Smooth orthogonal decomposition was used to estimate the resonance frequency directly. The effects of the tapping setpoint and the elastic modulus of the sample under test were examined in terms of their multi-mode responses with proper orthogonal modes, proper orthogonal values, smooth orthogonal modes and smooth orthogonal values. Regardless of the stiffness of the microcantilever under test, the first mode was dominant in tapping mode atomic force microscopy under normal operating conditions. However, at lower tapping setpoints, the flexible microcantilever showed modal distortion and noise near the tip when tapping on a hard sample. The stiff microcantilever had a higher mode effect on a soft sample at lower tapping setpoints. Modal decomposition for tapping mode atomic force microscopy can thus be used to estimate the characteristics of samples in liquid environments.
Zhang, Yuejin; Wei, Fuxiang; Poh, Yeh-Chuin; Jia, Qiong; Chen, Junjian; Chen, Junwei; Luo, Junyu; Yao, Wenting; Zhou, Wenwen; Huang, Wei; Yang, Fang; Zhang, Yao; Wang, Ning
2017-07-01
Cells and tissues can undergo a variety of biological and structural changes in response to mechanical forces. Only a few existing techniques are available for quantification of structural changes at high resolution in response to forces applied along different directions. 3D-magnetic twisting cytometry (3D-MTC) is a technique for applying local mechanical stresses to living cells. Here we describe a protocol for interfacing 3D-MTC with confocal fluorescence microscopy. In 3D-MTC, ferromagnetic beads are bound to the cell surface via surface receptors, followed by their magnetization in any desired direction. A magnetic twisting field in a different direction is then applied to generate rotational shear stresses in any desired direction. This protocol describes how to combine magnetic-field-induced mechanical stimulation with confocal fluorescence microscopy and provides an optional extension for super-resolution imaging using stimulated emission depletion (STED) nanoscopy. This technology allows for rapid real-time acquisition of a living cell's mechanical responses to forces via specific receptors and for quantifying structural and biochemical changes in the same cell using confocal fluorescence microscopy or STED. The integrated 3D-MTC-microscopy platform takes ∼20 d to construct, and the experimental procedures require ∼4 d when carried out by a life sciences graduate student.
Zhang, Yuejin; Wei, Fuxiang; Poh, Yeh-Chuin; Jia, Qiong; Chen, Junjian; Chen, Junwei; Luo, Junyu; Yao, Wenting; Zhou, Wenwen; Huang, Wei; Yang, Fang; Zhang, Yao; Wang, Ning
2017-01-01
Cells and tissues can undergo a variety of biological and structural changes in response to mechanical forces. Only few existing techniques are available for quantification of structural changes at high resolution in response to forces applied along different directions. Three dimensional-Magnetic Twisting Cytometry (3D-MTC) is a technique for applying local mechanical stresses on living cells. Here we describe a protocol for interfacing 3D-MTC with confocal fluorescence microscopy. In 3D-MTC, ferromagnetic beads are bound to the cell surface via surface receptors followed by their magnetization in any desired direction. A magnetic twisting field in a different direction is then applied to generate rotational shear stresses in any desired direction. This protocol describes how to combine magnetic field-induced mechanical stimulation with confocal fluorescence microscopy and provides an optional extension for super resolution imaging using stimulated emission depletion (STED) nanoscopy. This technology allows for rapid real time acquisition of a living cell’s mechanical responses to forces via specific receptors and for quantifying structural and biochemical changes in the same cell using confocal fluorescence microscopy or STED. The integrated 3D-MTC – microscopy platform takes around 20 days to construct and the experimental procedures require ~4 days when carried out by a life sciences graduate student. PMID:28686583
Advanced Analysis and Visualization of Space Weather Phenomena
NASA Astrophysics Data System (ADS)
Murphy, Joshua J.
As the world becomes more technologically reliant, the more susceptible society as a whole is to adverse interactions with the sun. This "space weather'' can produce significant effects on modern technology, from interrupting satellite service, to causing serious damage to Earth-side power grids. These concerns have, over the past several years, prompted an out-welling of research in an attempt to understand the processes governing, and to provide a means of forecasting, space weather events. The research presented in this thesis couples to current work aimed at understanding Coronal Mass Ejections (CMEs) and their influence on the evolution of Earth's magnetic field and associated Van Allen radiation belts. To aid in the analysis of how these solar wind transients affect Earth's magnetic field, a system named Geospace/Heliosphere Observation & Simulation Tool-kit (GHOSTkit), along with its python analysis tools, GHOSTpy, has been devised to calculate the adiabatic invariants of trapped particle motion within Earth's magnetic field. These invariants aid scientists in ordering observations of the radiation belts, providing a more natural presentation of data, but can be computationally expensive to calculate. The GHOSTpy system, in the phase presented here, is aimed at providing invariant calculations based on LFM magnetic field simulation data. This research first examines an ideal dipole application to gain understanding on system performance. Following this, the challenges of applying the algorithms to gridded LFM MHD data is examined. Performance profiles are then presented, followed by a real-world application of the system.
Global Response to Local Ionospheric Mass Ejection
NASA Technical Reports Server (NTRS)
Moore, T. E.; Fok, M.-C.; Delcourt, D. C.; Slinker, S. P.; Fedder, J. A.
2010-01-01
We revisit a reported "Ionospheric Mass Ejection" using prior event observations to guide a global simulation of local ionospheric outflows, global magnetospheric circulation, and plasma sheet pressurization, and comparing our results with the observed global response. Our simulation framework is based on test particle motions in the Lyon-Fedder-Mobarry (LFM) global circulation model electromagnetic fields. The inner magnetosphere is simulated with the Comprehensive Ring Current Model (CRCM) of Fok and Wolf, driven by the transpolar potential developed by the LFM magnetosphere, and includes an embedded plasmaspheric simulation. Global circulation is stimulated using the observed solar wind conditions for the period 24-25 Sept 1998. This period begins with the arrival of a Coronal Mass Ejection, initially with northward, but later with southward interplanetary magnetic field. Test particles are launched from the ionosphere with fluxes specified by local empirical relationships of outflow to electrodynamic and particle precipitation imposed by the MIlD simulation. Particles are tracked until they are lost from the system downstream or into the atmosphere, using the full equations of motion. Results are compared with the observed ring current and a simulation of polar and auroral wind outflows driven globally by solar wind dynamic pressure. We find good quantitative agreement with the observed ring current, and reasonable qualitative agreement with earlier simulation results, suggesting that the solar wind driven global simulation generates realistic energy dissipation in the ionosphere and that the Strangeway relations provide a realistic local outflow description.
Mettu, Srinivas; Ye, Qianyu; Zhou, Meifang; Dagastine, Raymond; Ashokkumar, Muthupandian
2018-04-25
Atomic Force Microscopy (AFM) is used to measure the stiffness and Young's modulus of individual microcapsules that have a chitosan cross-linked shell encapsulating tetradecane. The oil filled microcapsules were prepared using a one pot synthesis via ultrasonic emulsification of tetradecane and crosslinking of the chitosan shell in aqueous solutions of acetic acid. The concentration of acetic acid in aqueous solutions of chitosan was varied from 0.2% to 25% v/v. The effect of acetic acid concentration and size of the individual microcapsules on the strength was probed. The deformations and forces required to rupture the microcapsules were also measured. Three dimensional deformations of microcapsules under large applied loads were obtained by the combination of Laser Scanning Confocal Microscopy (LSCM) with Atomic Force Microscopy (AFM). The stiffness, and hence the modulus, of the microcapsules was found to decrease with an increase in size with the average stiffness ranging from 82 to 111 mN m-1 and average Young's modulus ranging from 0.4 to 6.5 MPa. The forces required to rupture the microcapsules varied from 150 to 250 nN with deformations of the microcapsules up to 62 to 110% relative to their radius, respectively. Three dimensional images obtained using laser scanning confocal microscopy showed that the microcapsules retained their structure and shape after being subjected to large deformations and subsequent removal of the loads. Based on the above observations, the oil filled chitosan crosslinked microcapsules are an ideal choice for use in the food and pharmaceutical industries as they would be able to withstand the process conditions encountered.
Q-controlled amplitude modulation atomic force microscopy in liquids: An analysis
NASA Astrophysics Data System (ADS)
Hölscher, H.; Schwarz, U. D.
2006-08-01
An analysis of amplitude modulation atomic force microscopy in liquids is presented with respect to the application of the Q-Control technique. The equation of motion is solved by numerical and analytic methods with and without Q-Control in the presence of a simple model interaction force adequate for many liquid environments. In addition, the authors give an explicit analytical formula for the tip-sample indentation showing that higher Q factors reduce the tip-sample force. It is found that Q-Control suppresses unwanted deformations of the sample surface, leading to the enhanced image quality reported in several experimental studies.
Yamazaki, Shiro; Maeda, Keisuke; Sugimoto, Yoshiaki; Abe, Masayuki; Zobač, Vladimír; Pou, Pablo; Rodrigo, Lucia; Mutombo, Pingo; Pérez, Ruben; Jelínek, Pavel; Morita, Seizo
2015-07-08
We assemble bistable silicon quantum dots consisting of four buckled atoms (Si4-QD) using atom manipulation. We demonstrate two competing atom switching mechanisms, downward switching induced by tunneling current of scanning tunneling microscopy (STM) and opposite upward switching induced by atomic force of atomic force microscopy (AFM). Simultaneous application of competing current and force allows us to tune switching direction continuously. Assembly of the few-atom Si-QDs and controlling their states using versatile combined AFM/STM will contribute to further miniaturization of nanodevices.
Surface diagnostics for scale analysis.
Dunn, S; Impey, S; Kimpton, C; Parsons, S A; Doyle, J; Jefferson, B
2004-01-01
Stainless steel, polymethylmethacrylate and polytetrafluoroethylene coupons were analysed for surface topographical and adhesion force characteristics using tapping mode atomic force microscopy and force-distance microscopy techniques. The two polymer materials were surface modified by polishing with silicon carbide papers of known grade. The struvite scaling rate was determined for each coupon and related to the data gained from the surface analysis. The scaling rate correlated well with adhesion force measurements indicating that lower energy materials scale at a lower rate. The techniques outlined in the paper provide a method for the rapid screening of materials in potential scaling applications.
Bacterial adhesion force quantification by fluidic force microscopy
NASA Astrophysics Data System (ADS)
Potthoff, Eva; Ossola, Dario; Zambelli, Tomaso; Vorholt, Julia A.
2015-02-01
Quantification of detachment forces between bacteria and substrates facilitates the understanding of the bacterial adhesion process that affects cell physiology and survival. Here, we present a method that allows for serial, single bacterial cell force spectroscopy by combining the force control of atomic force microscopy with microfluidics. Reversible bacterial cell immobilization under physiological conditions on the pyramidal tip of a microchanneled cantilever is achieved by underpressure. Using the fluidic force microscopy technology (FluidFM), we achieve immobilization forces greater than those of state-of-the-art cell-cantilever binding as demonstrated by the detachment of Escherichia coli from polydopamine with recorded forces between 4 and 8 nN for many cells. The contact time and setpoint dependence of the adhesion forces of E. coli and Streptococcus pyogenes, as well as the sequential detachment of bacteria out of a chain, are shown, revealing distinct force patterns in the detachment curves. This study demonstrates the potential of the FluidFM technology for quantitative bacterial adhesion measurements of cell-substrate and cell-cell interactions that are relevant in biofilms and infection biology.Quantification of detachment forces between bacteria and substrates facilitates the understanding of the bacterial adhesion process that affects cell physiology and survival. Here, we present a method that allows for serial, single bacterial cell force spectroscopy by combining the force control of atomic force microscopy with microfluidics. Reversible bacterial cell immobilization under physiological conditions on the pyramidal tip of a microchanneled cantilever is achieved by underpressure. Using the fluidic force microscopy technology (FluidFM), we achieve immobilization forces greater than those of state-of-the-art cell-cantilever binding as demonstrated by the detachment of Escherichia coli from polydopamine with recorded forces between 4 and 8 nN for many cells. The contact time and setpoint dependence of the adhesion forces of E. coli and Streptococcus pyogenes, as well as the sequential detachment of bacteria out of a chain, are shown, revealing distinct force patterns in the detachment curves. This study demonstrates the potential of the FluidFM technology for quantitative bacterial adhesion measurements of cell-substrate and cell-cell interactions that are relevant in biofilms and infection biology. Electronic supplementary information (ESI) available: Video S1. Detachment of a S. pyogenes cell chain from glass substrate. The cantilever is approached on the outermost adherent cell of a chain and four bacteria were then sequentially detached. The sequential cell detachment suddenly stopped after four bacteria. This possibly occurred because bacteria-glass interactions became too strong or the maximal probe retraction was reached. The cells spontaneously detached from the cantilever flipping back on the surface. Fig. S1. (A) Adhesion force-distance and (B) adhesion force-detaching work correlation of E.coli on PLL for setpoints of 1 and 10 nN. Circle: 1 nN setpoint, square: 10 nN. See DOI: 10.1039/c4nr06495j
Inverting dynamic force microscopy: From signals to time-resolved interaction forces
Stark, Martin; Stark, Robert W.; Heckl, Wolfgang M.; Guckenberger, Reinhard
2002-01-01
Transient forces between nanoscale objects on surfaces govern friction, viscous flow, and plastic deformation, occur during manipulation of matter, or mediate the local wetting behavior of thin films. To resolve transient forces on the (sub) microsecond time and nanometer length scale, dynamic atomic force microscopy (AFM) offers largely unexploited potential. Full spectral analysis of the AFM signal completes dynamic AFM. Inverting the signal formation process, we measure the time course of the force effective at the sensing tip. This approach yields rich insight into processes at the tip and dispenses with a priori assumptions about the interaction, as it relies solely on measured data. Force measurements on silicon under ambient conditions demonstrate the distinct signature of the interaction and reveal that peak forces exceeding 200 nN are applied to the sample in a typical imaging situation. These forces are 2 orders of magnitude higher than those in covalent bonds. PMID:12070341
Chemical bond imaging using higher eigenmodes of tuning fork sensors in atomic force microscopy
NASA Astrophysics Data System (ADS)
Ebeling, Daniel; Zhong, Qigang; Ahles, Sebastian; Chi, Lifeng; Wegner, Hermann A.; Schirmeisen, André
2017-05-01
We demonstrate the ability of resolving the chemical structure of single organic molecules using non-contact atomic force microscopy with higher normal eigenmodes of quartz tuning fork sensors. In order to achieve submolecular resolution, CO-functionalized tips at low temperatures are used. The tuning fork sensors are operated in ultrahigh vacuum in the frequency modulation mode by exciting either their first or second eigenmode. Despite the high effective spring constant of the second eigenmode (on the order of several tens of kN/m), the force sensitivity is sufficiently high to achieve atomic resolution above the organic molecules. This is observed for two different tuning fork sensors with different tip geometries (small tip vs. large tip). These results represent an important step towards resolving the chemical structure of single molecules with multifrequency atomic force microscopy techniques where two or more eigenmodes are driven simultaneously.
A review of demodulation techniques for amplitude-modulation atomic force microscopy
Harcombe, David M; Ragazzon, Michael R P; Moheimani, S O Reza; Fleming, Andrew J
2017-01-01
In this review paper, traditional and novel demodulation methods applicable to amplitude-modulation atomic force microscopy are implemented on a widely used digital processing system. As a crucial bandwidth-limiting component in the z-axis feedback loop of an atomic force microscope, the purpose of the demodulator is to obtain estimates of amplitude and phase of the cantilever deflection signal in the presence of sensor noise or additional distinct frequency components. Specifically for modern multifrequency techniques, where higher harmonic and/or higher eigenmode contributions are present in the oscillation signal, the fidelity of the estimates obtained from some demodulation techniques is not guaranteed. To enable a rigorous comparison, the performance metrics tracking bandwidth, implementation complexity and sensitivity to other frequency components are experimentally evaluated for each method. Finally, the significance of an adequate demodulator bandwidth is highlighted during high-speed tapping-mode atomic force microscopy experiments in constant-height mode. PMID:28900596
Reggente, Melania; Passeri, Daniele; Angeloni, Livia; Scaramuzzo, Francesca Anna; Barteri, Mario; De Angelis, Francesca; Persiconi, Irene; De Stefano, Maria Egle; Rossi, Marco
2017-05-04
Detecting stiff nanoparticles buried in soft biological matrices by atomic force microscopy (AFM) based techniques represents a new frontier in the field of scanning probe microscopies, originally developed as surface characterization methods. Here we report the detection of stiff (magnetic) nanoparticles (NPs) internalized in cells by using contact resonance AFM (CR-AFM) employed as a potentially non-destructive subsurface characterization tool. Magnetite (Fe 3 O 4 ) NPs were internalized in microglial cells from cerebral cortices of mouse embryos of 18 days by phagocytosis. Nanomechanical imaging of cells was performed by detecting the contact resonance frequencies (CRFs) of an AFM cantilever held in contact with the sample. Agglomerates of NPs internalized in cells were visualized on the basis of the local increase in the contact stiffness with respect to the surrounding biological matrix. A second AFM-based technique for nanomechanical imaging, i.e., HarmoniX™, as well as magnetic force microscopy and light microscopy were used to confirm the CR-AFM results. Thus, CR-AFM was demonstrated as a promising technique for subsurface imaging of nanomaterials in biological samples.
Quantum state atomic force microscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Passian, Ali; Siopsis, George
New classical modalities of atomic force microscopy continue to emerge to achieve higher spatial, spectral, and temporal resolution for nanometrology of materials. Here, we introduce the concept of a quantum mechanical modality that capitalizes on squeezed states of probe displacement. We show that such squeezing is enabled nanomechanically when the probe enters the van der Waals regime of interaction with a sample. The effect is studied in the non-contact mode, where we consider the parameter domains characterizing the attractive regime of the probe-sample interaction force.
Quantum state atomic force microscopy
Passian, Ali; Siopsis, George
2017-04-10
New classical modalities of atomic force microscopy continue to emerge to achieve higher spatial, spectral, and temporal resolution for nanometrology of materials. Here, we introduce the concept of a quantum mechanical modality that capitalizes on squeezed states of probe displacement. We show that such squeezing is enabled nanomechanically when the probe enters the van der Waals regime of interaction with a sample. The effect is studied in the non-contact mode, where we consider the parameter domains characterizing the attractive regime of the probe-sample interaction force.
ERIC Educational Resources Information Center
Gokalp, Sumeyra; Horton, William; Jónsdóttir-Lewis, Elfa B.; Foster, Michelle; Török, Marianna
2018-01-01
To facilitate learning advanced instrumental techniques, essential tools for visualizing biomaterials, a simple and versatile laboratory exercise demonstrating the use of Atomic Force Microscopy (AFM) in biomedical applications was developed. In this experiment, the morphology of heat-denatured and amyloid-type aggregates formed from a low-cost…
USDA-ARS?s Scientific Manuscript database
The specific interactions between ricin and anti-ricin aptamer were measured with atomic force microscopy (AFM) and surface plasmon resonance (SPR) spectrometry and the results were compared. In AFM, a single-molecule experiment with ricin functionalized AFM tip was used for scanning the aptamer mol...
Atomic force microscopy of torus-bearing pit membranes
Roland R. Dute; Thomas Elder
2011-01-01
Atomic force microscopy was used to compare the structures of dried, torus-bearing pit membranes from four woody species, three angiosperms and one gymnosperm. Tori of Osmanthus armatus are bipartite consisting of a pustular zone overlying parallel sets of microfibrils that form a peripheral corona. Microfibrils of the corona form radial spokes as they traverse the...
Convergent Inquiry in Science & Engineering: The Use of Atomic Force Microscopy in a Biology Class
ERIC Educational Resources Information Center
Lee, Il-Sun; Byeon, Jung-Ho; Kwon, Yong-Ju
2013-01-01
The purpose of this study was to design a teaching method suitable for science high school students using atomic force microscopy. During their scientific inquiry procedure, high school students observed a micro-nanostructure of a biological sample, which is unobservable via an optical microscope. The developed teaching method enhanced students'…
USDA-ARS?s Scientific Manuscript database
Atomic force microscopy (AFM), Raman spectroscopy and X-ray photoelectron spectroscopy (XPS) are used to investigate vitreous (hard) and non-vitreous (soft) wheat kernels and their corresponding wheat flours. AFM data reveal two different microstructures. The vitreous kernel reveals a granular text...
NASA Technical Reports Server (NTRS)
Hersam, Mark C. (Inventor); Pingree, Liam S. C. (Inventor)
2008-01-01
A conductive atomic force microscopy (cAFM) technique which can concurrently monitor topography, charge transport, and electroluminescence with nanometer spatial resolution. This cAFM approach is particularly well suited for probing the electroluminescent response characteristics of operating organic light-emitting diodes (OLEDs) over short length scales.
Intermolecular artifacts in probe microscope images of C60 assemblies
NASA Astrophysics Data System (ADS)
Jarvis, Samuel Paul; Rashid, Mohammad Abdur; Sweetman, Adam; Leaf, Jeremy; Taylor, Simon; Moriarty, Philip; Dunn, Janette
2015-12-01
Claims that dynamic force microscopy has the capability to resolve intermolecular bonds in real space continue to be vigorously debated. To date, studies have been restricted to planar molecular assemblies with small separations between neighboring molecules. Here we report the observation of intermolecular artifacts over much larger distances in 2D assemblies of C60 molecules, with compelling evidence that in our case the tip apex is terminated by a C60 molecule (rather than the CO termination typically exploited in ultrahigh resolution force microscopy). The complete absence of directional interactions such as hydrogen or halogen bonding, the nonplanar structure of C60, and the fullerene termination of the tip apex in our case highlight that intermolecular artifacts are ubiquitous in dynamic force microscopy.
Image contrast mechanisms in dynamic friction force microscopy: Antimony particles on graphite
NASA Astrophysics Data System (ADS)
Mertens, Felix; Göddenhenrich, Thomas; Dietzel, Dirk; Schirmeisen, Andre
2017-01-01
Dynamic Friction Force Microscopy (DFFM) is a technique based on Atomic Force Microscopy (AFM) where resonance oscillations of the cantilever are excited by lateral actuation of the sample. During this process, the AFM tip in contact with the sample undergoes a complex movement which consists of alternating periods of sticking and sliding. Therefore, DFFM can give access to dynamic transition effects in friction that are not accessible by alternative techniques. Using antimony nanoparticles on graphite as a model system, we analyzed how combined influences of friction and topography can effect different experimental configurations of DFFM. Based on the experimental results, for example, contrast inversion between fractional resonance and band excitation imaging strategies to extract reliable tribological information from DFFM images are devised.
NASA Astrophysics Data System (ADS)
MacDonald, Gordon A.; DelRio, Frank W.; Killgore, Jason P.
2018-03-01
Piezoresponse force microscopy (PFM) and related bias-induced strain sensing atomic force microscopy techniques provide unique characterization of material-functionality at the nanoscale. However, these techniques are prone to unwanted artifact signals that influence the vibration amplitude of the detecting cantilever. Here, we show that higher-order contact resonance eigenmodes can be readily excited in PFM. The benefits of using the higher-order eigenmodes include absolute sensitivity enhancement, electrostatic artifact reduction, and lateral versus normal strain decoupling. This approach can significantly increase the proportion of total signal arising from desired strain (as opposed to non-strain artifacts) in measurements with cantilevers exhibiting typical, few N m‑1 spring constants to cantilevers up to 1000× softer than typically used.
Combining single-molecule manipulation and single-molecule detection.
Cordova, Juan Carlos; Das, Dibyendu Kumar; Manning, Harris W; Lang, Matthew J
2014-10-01
Single molecule force manipulation combined with fluorescence techniques offers much promise in revealing mechanistic details of biomolecular machinery. Here, we review force-fluorescence microscopy, which combines the best features of manipulation and detection techniques. Three of the mainstay manipulation methods (optical traps, magnetic traps and atomic force microscopy) are discussed with respect to milestones in combination developments, in addition to highlight recent contributions to the field. An overview of additional strategies is discussed, including fluorescence based force sensors for force measurement in vivo. Armed with recent exciting demonstrations of this technology, the field of combined single-molecule manipulation and single-molecule detection is poised to provide unprecedented views of molecular machinery. Copyright © 2014 Elsevier Ltd. All rights reserved.
Concept for room temperature single-spin tunneling force microscopy with atomic spatial resolution
NASA Astrophysics Data System (ADS)
Payne, Adam
A study of a force detected single-spin magnetic resonance measurement concept with atomic spatial resolution is presented. The method is based upon electrostatic force detection of spin-selection rule controlled single electron tunneling between two electrically isolated paramagnetic states. Single-spin magnetic resonance detection is possible by measuring the force detected tunneling charge noise on and off spin resonance. Simulation results of this charge noise, based upon physical models of the tunneling and spin physics, are directly compared to measured atomic force microscopy (AFM) system noise. The results show that the approach could provide single-spin measurement of electrically isolated defect states with atomic spatial resolution at room temperature.
NASA Astrophysics Data System (ADS)
Payne, A.; Ambal, K.; Boehme, C.; Williams, C. C.
2015-05-01
A study of a force detected single-spin magnetic resonance measurement concept with atomic spatial resolution is presented. The method is based upon electrostatic force detection of spin-selection rule controlled single-electron tunneling between two electrically isolated paramagnetic states. Single-spin magnetic resonance detection is possible by measuring the force detected tunneling charge noise on and off spin resonance. Simulation results of this charge noise, based upon physical models of the tunneling and spin physics, are directly compared to measured atomic force microscopy system noise. The results show that the approach could provide single-spin measurement of electrically isolated qubit states with atomic spatial resolution at room temperature.
Liu, Yanxia; Deng, Yuanxin; Luo, Shuxiu; Deng, Yu; Guo, Linming; Xu, Weiwei; Liu, Lei; Liu, Junkang
2014-01-01
This study aimed to observe the multicellular spinning behavior of Proteus mirabilis by atomic force microscopy (AFM) and multifunctional microscopy in order to understand the mechanism underlying this spinning movement and its biological significance. Multifunctional microscopy with charge-coupled device (CCD) and real-time AFM showed changes in cell structure and shape of P. mirabilis during multicellular spinning movement. Specifically, the morphological characteristics of P. mirabilis, multicellular spinning dynamics, and unique movement were observed. Our findings indicate that the multicellular spinning behavior of P. mirabilis may be used to collect nutrients, perform colonization, and squeeze out competitors. The movement characteristics of P. mirabilis are vital to the organism's biological adaptability to the surrounding environment. Copyright © 2013 Elsevier Ltd. All rights reserved.
Application of atomic force microscopy to the study of natural and model soil particles.
Cheng, S; Bryant, R; Doerr, S H; Rhodri Williams, P; Wright, C J
2008-09-01
The structure and surface chemistry of soil particles has extensive impact on many bulk scale properties and processes of soil systems and consequently the environments that they support. There are a number of physiochemical mechanisms that operate at the nanoscale which affect the soil's capability to maintain native vegetation and crops; this includes soil hydrophobicity and the soil's capacity to hold water and nutrients. The present study used atomic force microscopy in a novel approach to provide unique insight into the nanoscale properties of natural soil particles that control the physiochemical interaction of material within the soil column. There have been few atomic force microscopy studies of soil, perhaps a reflection of the heterogeneous nature of the system. The present study adopted an imaging and force measurement research strategy that accounted for the heterogeneity and used model systems to aid interpretation. The surface roughness of natural soil particles increased with depth in the soil column a consequence of the attachment of organic material within the crevices of the soil particles. The roughness root mean square calculated from ten 25 microm(2) images for five different soil particles from a Netherlands soil was 53.0 nm, 68.0 nm, 92.2 nm and 106.4 nm for the respective soil depths of 0-10 cm, 10-20 cm, 20-30 cm and 30-40 cm. A novel analysis method of atomic force microscopy phase images based on phase angle distribution across a surface was used to interpret the nanoscale distribution of organic material attached to natural and model soil particles. Phase angle distributions obtained from phase images of model surfaces were found to be bimodal, indicating multiple layers of material, which changed with the concentration of adsorbed humic acid. Phase angle distributions obtained from phase images of natural soil particles indicated a trend of decreasing surface coverage with increasing depth in the soil column. This was consistent with previous macroscopic determination of the proportions of organic material chemically extracted from bulk samples of the soils from which specimen particles were drawn. Interaction forces were measured between atomic force microscopy cantilever tips (Si(3)N(4)) and natural soil and model surfaces. Adhesion forces at humic acid free specimen surfaces (Av. 20.0 nN), which are primarily hydrophilic and whose interactions are subject to a significant contribution from the capillary forces, were found to be larger than those of specimen surfaces with adsorbed humic acid (Av. 6.5 nN). This suggests that adsorbed humic acid increased surface hydrophobicity. The magnitude and distribution of adhesion forces between atomic force microscopy tips and the natural particle surfaces was affected by both local surface roughness and the presence of adsorbed organic material. The present study has correlated nanoscale measurements with established macroscale methods of soil study. Thus, the research demonstrates that atomic force microscopy is an important addition to soil science that permits a multiscale analysis of the multifactorial phenomena of soil hydrophobicity and wetting.
Angeloni, Livia; Reggente, Melania; Passeri, Daniele; Natali, Marco; Rossi, Marco
2018-04-17
Identification of nanoparticles and nanosystems into cells and biological matrices is a hot research topic in nanobiotechnologies. Because of their capability to map physical properties (mechanical, electric, magnetic, chemical, or optical), several scanning probe microscopy based techniques have been proposed for the subsurface detection of nanomaterials in biological systems. In particular, atomic force microscopy (AFM) can be used to reveal stiff nanoparticles in cells and other soft biomaterials by probing the sample mechanical properties through the acquisition of local indentation curves or through the combination of ultrasound-based methods, like contact resonance AFM (CR-AFM) or scanning near field ultrasound holography. Magnetic force microscopy can detect magnetic nanoparticles and other magnetic (bio)materials in nonmagnetic biological samples, while electric force microscopy, conductive AFM, and Kelvin probe force microscopy can reveal buried nanomaterials on the basis of the differences between their electric properties and those of the surrounding matrices. Finally, scanning near field optical microscopy and tip-enhanced Raman spectroscopy can visualize buried nanostructures on the basis of their optical and chemical properties. Despite at a still early stage, these methods are promising for detection of nanomaterials in biological systems as they could be truly noninvasive, would not require destructive and time-consuming specific sample preparation, could be performed in vitro, on alive samples and in water or physiological environment, and by continuously imaging the same sample could be used to dynamically monitor the diffusion paths and interaction mechanisms of nanomaterials into cells and biological systems. This article is categorized under: Diagnostic Tools > In Vivo Nanodiagnostics and Imaging Nanotechnology Approaches to Biology > Nanoscale Systems in Biology. © 2018 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Yamasue, Kohei; Cho, Yasuo
2018-06-01
We demonstrate that scanning nonlinear dielectric microscopy (SNDM) can be used for the nanoscale characterization of dominant carrier distribution on atomically thin MoS2 mechanically exfoliated on SiO2. For stable imaging without damaging microscopy tips and samples, SNDM was combined with peak-force tapping mode atomic force microscopy. The identification of dominant carriers and their spatial distribution becomes possible even for single and few-layer MoS2 on SiO2 using the proposed method allowing differential capacitance (dC/dV) imaging. We can expect that SNDM can also be applied to the evaluation of other two-dimensional semiconductors and devices.
Use of Kelvin probe force microscopy for identification of CVD grown graphene flakes on copper foil
NASA Astrophysics Data System (ADS)
Kumar, Rakesh; Mehta, B. R.; Kanjilal, D.
2017-05-01
Graphene flakes have been grown by chemical vapour deposition (CVD) method on Cu foils. The obtained graphene flakes have been characterized by optical microscopy, field emission scanning electron microscopy, Kelvin probe force microscopy (KPFM) and Raman spectroscopy. The graphene flakes grown on Cu foil comprise mainly single layer graphene and confirm that the nucleation for graphene growth starts very quickly. Moreover, KPFM has been found to be a valuable technique to differentiate between covered and uncovered portion of Cu foil by graphene flakes deposited for shorter duration. The results show that KPFM can be a very useful technique in understanding the mechanism of graphene growth.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takahashi, Ryosuke; Okajima, Takaharu, E-mail: okajima@ist.hokudai.ac.jp
We present multi-frequency force modulation atomic force microscopy (AFM) for mapping the complex shear modulus G* of living cells as a function of frequency over the range of 50–500 Hz in the same measurement time as the single-frequency force modulation measurement. The AFM technique enables us to reconstruct image maps of rheological parameters, which exhibit a frequency-dependent power-law behavior with respect to G{sup *}. These quantitative rheological measurements reveal a large spatial variation in G* in this frequency range for single cells. Moreover, we find that the reconstructed images of the power-law rheological parameters are much different from those obtained inmore » force-curve or single-frequency force modulation measurements. This indicates that the former provide information about intracellular mechanical structures of the cells that are usually not resolved with the conventional force measurement methods.« less
Force microscopy of layering and friction in an ionic liquid
NASA Astrophysics Data System (ADS)
Hoth, Judith; Hausen, Florian; Müser, Martin H.; Bennewitz, Roland
2014-07-01
The mechanical properties of the ionic liquid 1-butyl-1-methylpyrrolidinium tris(pentafluoroethyl) trifluorophosphate ([Py1,4][FAP]) in confinement between a SiOx and a Au(1 1 1) surface are investigated by means of atomic force microscopy (AFM) under electrochemical control. Up to 12 layers of ion pairs can be detected through force measurements while approaching the tip of the AFM to the surface. The particular shape of the force versus distance curve is explained by a model for the interaction between tip, gold surface and ionic liquid, which assumes an exponentially decaying oscillatory force originating from bulk liquid density correlations. Jumps in the tip-sample distance upon approach correspond to jumps of the compliant force sensor between branches of the oscillatory force curve. Frictional force between the laterally moving tip and the surface is detected only after partial penetration of the last double layer between tip and surface.
Scientific and Engineering Studies, Compiled 1989. Signal Processing Studies
1989-01-01
Version W(t,f) . . . . . .......... 25 3 W(t,f) for Real Waveform s(t) ............... 25 4 Contour of WDF (72) at l/e Relative Level . . . . . . . . . 30...spectral level , (189) B Passband of filter H, figure 8 Duration of weighting v, figure 8 LFM Linear Frequency Modulation sgn(x) 1 for x > 0, -1 for x...figure 4. the area of thl parir( Iua level ellipse is 1/2 In the t.f Vifne Wher this area i *, rlt IVe! bl ty e peak height of ?[, the product Is . *ýich
Maali, Abdelhamid; Wang, Yuliang; Bhushan, Bharat
2009-10-20
In this study we present measurements of the hydrodynamic force exerted on a glass sphere glued to an atomic force microscopy (AFM) cantilever approaching a mica surface in water. A large sphere was used to reduce the impact of the cantilever beam on the measurement. An AFM cantilever with large stiffness was used to accurately determine the actual contact position between the sphere and the sample surface. The measured hydrodynamic force with different approach velocities is in good agreement with the Taylor force calculated in the lubrication theory with the no-slip boundary conditions, which verifies that there is no boundary slip on the glass and mica surfaces. Moreover, a detailed procedure of how to subtract the electrostatic double-layer force is presented.
Microcontroller-driven fluid-injection system for atomic force microscopy.
Kasas, S; Alonso, L; Jacquet, P; Adamcik, J; Haeberli, C; Dietler, G
2010-01-01
We present a programmable microcontroller-driven injection system for the exchange of imaging medium during atomic force microscopy. Using this low-noise system, high-resolution imaging can be performed during this process of injection without disturbance. This latter circumstance was exemplified by the online imaging of conformational changes in DNA molecules during the injection of anticancer drug into the fluid chamber.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nguyen, Son N.; Sontag, Ryan L.; Carson, James P.
Constant mode ambient mass spectrometry imaging (MSI) of tissue sections with high lateral resolution of better than 10 µm was performed by combining shear force microscopy with nanospray desorption electrospray ionization (nano-DESI). Shear force microscopy enabled precise control of the distance between the sample and nano-DESI probe during MSI experiments and provided information on sample topography. Proof-of-concept experiments were performed using lung and brain tissue sections representing spongy and dense tissues, respectively. Topography images obtained using shear force microscopy were comparable to the results obtained using contact profilometry over the same region of the tissue section. Variations in tissue heightmore » were found to be dependent on the tissue type and were in the range of 0-5 µm for lung tissue and 0-3 µm for brain tissue sections. Ion images of phospholipids obtained in this study are in good agreement with literature data. Normalization of nano-DESI MSI images to the signal of the internal standard added to the extraction solvent allowed us to construct high-resolution ion images free of matrix effects.« less
Ultrasonic force microscopy: detection and imaging of ultra-thin molecular domains.
Dinelli, Franco; Albonetti, Cristiano; Kolosov, Oleg V
2011-03-01
The analysis of the formation of ultra-thin organic films is a very important issue. In fact, it is known that the properties of organic light emitting diodes and field effect transistors are strongly affected by the early growth stages. For instance, in the case of sexithiophene, the presence of domains made of molecules with the backbone parallel to the substrate surface has been indirectly evidenced by photoluminescence spectroscopy and confocal microscopy. On the contrary, conventional scanning force microscopy both in contact and intermittent contact modes have failed to detect such domains. In this paper, we show that Ultrasonic Force Microscopy (UFM), sensitive to nanomechanical properties, allows one to directly identify the structure of sub-monolayer thick films. Sexithiophene flat domains have been imaged for the first time with nanometer scale spatial resolution. A comparison with lateral force and intermittent contact modes has been carried out in order to explain the origins of the UFM contrast and its advantages. In particular, it indicates that UFM is highly suitable for investigations where high sensitivity to material properties, low specimen damage and high spatial resolution are required. Copyright © 2010 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Ditscherlein, L.; Peuker, U. A.
2017-04-01
For the application of colloidal probe atomic force microscopy at high temperatures (>500 K), stable colloidal probe cantilevers are essential. In this study, two new methods for gluing alumina particles onto temperature stable cantilevers are presented and compared with an existing method for borosilicate particles at elevated temperatures as well as with cp-cantilevers prepared with epoxy resin at room temperature. The durability of the fixing of the particle is quantified with a test method applying high shear forces. The force is calculated with a mechanical model considering both the bending as well as the torsion on the colloidal probe.
NASA Astrophysics Data System (ADS)
Farrell, Alan A.; Fukuma, Takeshi; Uchihashi, Takayuki; Kay, Euan R.; Bottari, Giovanni; Leigh, David A.; Yamada, Hirofumi; Jarvis, Suzanne P.
2005-09-01
We compare constant amplitude frequency modulation atomic force microscopy (FM-AFM) in ambient conditions to ultrahigh vacuum (UHV) experiments by analysis of thin films of rotaxane molecules. Working in ambient conditions is important for the development of real-world molecular devices. We show that the FM-AFM technique allows quantitative measurement of conservative and dissipative forces without instabilities caused by any native water layer. Molecular resolution is achieved despite the low Q-factor in the air. Furthermore, contrast in the energy dissipation is observed even at the molecular level. This should allow investigations into stimuli-induced sub-molecular motion of organic films.
ERIC Educational Resources Information Center
Fulghum, J. E.; And Others
1989-01-01
This review is divided into the following analytical methods: ion spectroscopy, electron spectroscopy, scanning tunneling microscopy, atomic force microscopy, optical spectroscopy, desorption techniques, and X-ray techniques. (MVL)
Zhang, S L; Xue, F; Wu, R; Cui, J; Jiang, Z M; Yang, X J
2009-04-01
Conductive atomic force microscopy has been employed to study the topography and conductance distribution of individual GeSi quantum dots (QDs) and quantum rings (QRs) during the transformation from QDs to QRs by depositing an Si capping layer on QDs. The current distribution changes significantly with the topographic transformation during the Si capping process. Without the capping layer, the QDs are dome-shaped and the conductance is higher at the ring region between the center and boundary than that at the center. After capping with 0.32 nm Si, the shape of the QDs changes to pyramidal and the current is higher at both the center and the arris. When the Si capping layer increases to 2 nm, QRs are formed and the current of individual QRs is higher at the rim than that at the central hole. By comparing the composition distributions obtained by scanning Auger microscopy and atomic force microscopy combined with selective chemical etching, the origin of the current distribution change is discussed.
Tang, Jilin; Krajcikova, Daniela; Zhu, Rong; Ebner, Andreas; Cutting, Simon; Gruber, Hermann J; Barak, Imrich; Hinterdorfer, Peter
2007-01-01
Coat assembly in Bacillus subtilis serves as a tractable model for the study of the self-assembly process of biological structures and has a significant potential for use in nano-biotechnological applications. In the present study, the morphology of B. subtilis spores was investigated by magnetically driven dynamic force microscopy (MAC mode atomic force microscopy) under physiological conditions. B. subtilis spores appeared as prolate structures, with a length of 0.6-3 microm and a width of about 0.5-2 microm. The spore surface was mainly covered with bump-like structures with diameters ranging from 8 to 70 nm. Besides topographical explorations, single molecule recognition force spectroscopy (SMRFS) was used to characterize the spore coat protein CotA. This protein was specifically recognized by a polyclonal antibody directed against CotA (anti-CotA), the antibody being covalently tethered to the AFM tip via a polyethylene glycol linker. The unbinding force between CotA and anti-CotA was determined as 55 +/- 2 pN. From the high-binding probability of more than 20% in force-distance cycles it is concluded that CotA locates in the outer surface of B. subtilis spores. Copyright (c) 2007 John Wiley & Sons, Ltd.
Functional Scanning Probe Imaging of Nanostructured Solar Energy Materials.
Giridharagopal, Rajiv; Cox, Phillip A; Ginger, David S
2016-09-20
From hybrid perovskites to semiconducting polymer/fullerene blends for organic photovoltaics, many new materials being explored for energy harvesting and storage exhibit performance characteristics that depend sensitively on their nanoscale morphology. At the same time, rapid advances in the capability and accessibility of scanning probe microscopy methods over the past decade have made it possible to study processing/structure/function relationships ranging from photocurrent collection to photocarrier lifetimes with resolutions on the scale of tens of nanometers or better. Importantly, such scanning probe methods offer the potential to combine measurements of local structure with local function, and they can be implemented to study materials in situ or devices in operando to better understand how materials evolve in time in response to an external stimulus or environmental perturbation. This Account highlights recent advances in the development and application of scanning probe microscopy methods that can help address such questions while filling key gaps between the capabilities of conventional electron microscopy and newer super-resolution optical methods. Focusing on semiconductor materials for solar energy applications, we highlight a range of electrical and optoelectronic scanning probe microscopy methods that exploit the local dynamics of an atomic force microscope tip to probe key properties of the solar cell material or device structure. We discuss how it is possible to extract relevant device properties using noncontact scanning probe methods as well as how these properties guide materials development. Specifically, we discuss intensity-modulated scanning Kelvin probe microscopy (IM-SKPM), time-resolved electrostatic force microscopy (trEFM), frequency-modulated electrostatic force microscopy (FM-EFM), and cantilever ringdown imaging. We explain these developments in the context of classic atomic force microscopy (AFM) methods that exploit the physics of cantilever motion and photocarrier generation to provide robust, nanoscale measurements of materials physics that are correlated with device operation. We predict that the multidimensional data sets made possible by these types of methods will become increasingly important as advances in data science expand capabilities and opportunities for image correlation and discovery.
Force-detected nuclear magnetic resonance: recent advances and future challenges.
Poggio, M; Degen, C L
2010-08-27
We review recent efforts to detect small numbers of nuclear spins using magnetic resonance force microscopy. Magnetic resonance force microscopy (MRFM) is a scanning probe technique that relies on the mechanical measurement of the weak magnetic force between a microscopic magnet and the magnetic moments in a sample. Spurred by the recent progress in fabricating ultrasensitive force detectors, MRFM has rapidly improved its capability over the last decade. Today it boasts a spin sensitivity that surpasses conventional, inductive nuclear magnetic resonance detectors by about eight orders of magnitude. In this review we touch on the origins of this technique and focus on its recent application to nanoscale nuclear spin ensembles, in particular on the imaging of nanoscale objects with a three-dimensional (3D) spatial resolution better than 10 nm. We consider the experimental advances driving this work and highlight the underlying physical principles and limitations of the method. Finally, we discuss the challenges that must be met in order to advance the technique towards single nuclear spin sensitivity-and perhaps-to 3D microscopy of molecules with atomic resolution.
Simulating contrast inversion in atomic force microscopy imaging with real-space pseudopotentials
NASA Astrophysics Data System (ADS)
Lee, Alex J.; Sakai, Yuki; Chelikowsky, James R.
2017-02-01
Atomic force microscopy (AFM) measurements have reported contrast inversions for systems such as Cu2N and graphene that can hamper image interpretation and characterization. Here, we apply a simulation method based on ab initio real-space pseudopotentials to gain an understanding of the tip-sample interactions that influence the inversion. We find that chemically reactive tips induce an attractive binding force that results in the contrast inversion. We find that the inversion is tip height dependent and not observed when using less reactive CO-functionalized tips.
Sweetman, Adam; Stannard, Andrew
2014-01-01
In principle, non-contact atomic force microscopy (NC-AFM) now readily allows for the measurement of forces with sub-nanonewton precision on the atomic scale. In practice, however, the extraction of the often desired 'short-range' force from the experimental observable (frequency shift) is often far from trivial. In most cases there is a significant contribution to the total tip-sample force due to non-site-specific van der Waals and electrostatic forces. Typically, the contribution from these forces must be removed before the results of the experiment can be successfully interpreted, often by comparison to density functional theory calculations. In this paper we compare the 'on-minus-off' method for extracting site-specific forces to a commonly used extrapolation method modelling the long-range forces using a simple power law. By examining the behaviour of the fitting method in the case of two radically different interaction potentials we show that significant uncertainties in the final extracted forces may result from use of the extrapolation method.
Dufrêne, Y F
2001-02-01
The application of atomic force microscopy (AFM) to probe the ultrastructure and physical properties of microbial cell surfaces is reviewed. The unique capabilities of AFM can be summarized as follows: imaging surface topography with (sub)nanometer lateral resolution; examining biological specimens under physiological conditions; measuring local properties and interaction forces. AFM is being used increasingly for: (i) visualizing the surface ultrastructure of microbial cell surface layers, including bacterial S-layers, purple membranes, porin OmpF crystals and fungal rodlet layers; (ii) monitoring conformational changes of individual membrane proteins; (iii) examining the morphology of bacterial biofilms, (iv) revealing the nanoscale structure of living microbial cells, including fungi, yeasts and bacteria, (v) mapping interaction forces at microbial surfaces, such as van der Waals and electrostatic forces, solvation forces, and steric/bridging forces; and (vi) probing the local mechanical properties of cell surface layers and of single cells.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Phuthong, Witchukorn; Huang, Zubin; Wittkopp, Tyler M.
To investigate the dynamics of photosynthetic pigment-protein complexes in vascular plants at high resolution in an aqueous environment, membrane-protruding oxygen-evolving complexes (OECs) associated with photosystem II (PSII) on spinach ( Spinacia oleracea) grana membranes were examined using contact mode atomic force microscopy. This study represents, to our knowledge, the first use of atomic force microscopy to distinguish the putative large extrinsic loop of Photosystem II CP47 reaction center protein (CP47) from the putative oxygen-evolving enhancer proteins 1, 2, and 3 (PsbO, PsbP, and PsbQ) and large extrinsic loop of Photosystem II CP43 reaction center protein (CP43) in the PSII-OEC extrinsicmore » domains of grana membranes under conditions resulting in the disordered arrangement of PSII-OEC particles. Moreover, we observed uncharacterized membrane particles that, based on their physical characteristics and electrophoretic analysis of the polypeptides associated with the grana samples, are hypothesized to be a domain of photosystem I that protrudes from the stromal face of single thylakoid bilayers. Furthermore, our results are interpreted in the context of the results of others that were obtained using cryo-electron microscopy (and single particle analysis), negative staining and freeze-fracture electron microscopy, as well as previous atomic force microscopy studies.« less
Nano-Electrochemistry and Nano-Electrografting with an Original Combined AFM-SECM
Ghorbal, Achraf; Grisotto, Federico; Charlier, Julienne; Palacin, Serge; Goyer, Cédric; Demaille, Christophe; Ben Brahim, Ammar
2013-01-01
This study demonstrates the advantages of the combination between atomic force microscopy and scanning electrochemical microscopy. The combined technique can perform nano-electrochemical measurements onto agarose surface and nano-electrografting of non-conducting polymers onto conducting surfaces. This work was achieved by manufacturing an original Atomic Force Microscopy-Scanning ElectroChemical Microscopy (AFM-SECM) electrode. The capabilities of the AFM-SECM-electrode were tested with the nano-electrografting of vinylic monomers initiated by aryl diazonium salts. Nano-electrochemical and technical processes were thoroughly described, so as to allow experiments reproducing. A plausible explanation of chemical and electrochemical mechanisms, leading to the nano-grafting process, was reported. This combined technique represents the first step towards improved nano-processes for the nano-electrografting. PMID:28348337
ERIC Educational Resources Information Center
Phuapaiboon, Unchada; Panijpan, Bhinyo; Osotchan, Tanakorn
2009-01-01
This study was conducted to examine the results of using a low-cost hands-on setup in combination with accompanying activities to promote understanding of the contact mode of atomic force microscopy (AFM). This contact mode setup enabled learners to study how AFM works by hand scanning using probing cantilevers with different characteristics on…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Collins, Liam; Ahmadi, Mahshid; Wu, Ting
The atomic force microscope (AFM) offers unparalleled insight into structure and material functionality across nanometer length scales. However, the spatial resolution afforded by the AFM tip is counterpoised by slow detection speeds compared to other common microscopy techniques (e.g. optical, scanning electron microscopy etc.). In this work, we develop an AFM imaging approach allowing ultrafast reconstruction of the tip-sample forces having ~2 orders of magnitude higher time resolution than standard detection methods. Fast free force recovery (F3R) overcomes the widely-viewed temporal bottleneck in AFM, i.e. the mechanical bandwidth of the cantilever, enabling time-resolved imaging at sub-bandwidth speeds. We demonstrate quantitativemore » recovery of electrostatic forces with ~10 µs temporal resolution, free from cantilever ring-down effects. We further apply the F3R method to Kelvin probe force microscopy (KPFM) measurements. F3R-KPFM is an open loop imaging approach (i.e. no bias feedback), allowing ultrafast surface potential measurements (e.g. < 20 µs) to be performed at regular KPFM scan speeds. F3R-KPFM is demonstrated for exploration of ion migration in organometallic halide perovskites materials and shown to allow spatio-temporal imaging of positively charged ion migration under applied electric field, as well as subsequent formation of accumulated charges at the perovskite/electrode interface. In this work we demonstrate quantitative F3R-KPFM measurements – however, we fully expect the F3R approach to be valid for all modes of non-contact AFM operation, including non-invasive probing of ultrafast electrical and magnetic dynamics.« less
Collins, Liam; Ahmadi, Mahshid; Wu, Ting; ...
2017-08-06
The atomic force microscope (AFM) offers unparalleled insight into structure and material functionality across nanometer length scales. However, the spatial resolution afforded by the AFM tip is counterpoised by slow detection speeds compared to other common microscopy techniques (e.g. optical, scanning electron microscopy etc.). In this work, we develop an AFM imaging approach allowing ultrafast reconstruction of the tip-sample forces having ~2 orders of magnitude higher time resolution than standard detection methods. Fast free force recovery (F3R) overcomes the widely-viewed temporal bottleneck in AFM, i.e. the mechanical bandwidth of the cantilever, enabling time-resolved imaging at sub-bandwidth speeds. We demonstrate quantitativemore » recovery of electrostatic forces with ~10 µs temporal resolution, free from cantilever ring-down effects. We further apply the F3R method to Kelvin probe force microscopy (KPFM) measurements. F3R-KPFM is an open loop imaging approach (i.e. no bias feedback), allowing ultrafast surface potential measurements (e.g. < 20 µs) to be performed at regular KPFM scan speeds. F3R-KPFM is demonstrated for exploration of ion migration in organometallic halide perovskites materials and shown to allow spatio-temporal imaging of positively charged ion migration under applied electric field, as well as subsequent formation of accumulated charges at the perovskite/electrode interface. In this work we demonstrate quantitative F3R-KPFM measurements – however, we fully expect the F3R approach to be valid for all modes of non-contact AFM operation, including non-invasive probing of ultrafast electrical and magnetic dynamics.« less
An observation of nanotwin lamellae in Cd 0.6Mn 0.4Te crystal by atomic force microscopy
NASA Astrophysics Data System (ADS)
George, M. A.; Azoulay, M.; Collins, W. E.; Burger, A.; Silberman, E.
1993-05-01
Atomic force microscopy (AFM) is used to examine the structure of freshly cleaved Cd 0.6Mn 0.4Te surfaces. The present report complements previous results obtained with X-ray diffraction and optical microscopy which showed the existence of microtwins. The AFM analysis was performed under ambient conditions and yielded nanometer scale resolution images of single twin lamellae that ranged between 20 and 100 nm in width. This is a first observation using AFM of such a substructure, which we interpret as evidence for the presence of nonotwins.
Zander, N.E.; Strawhecker, K.E.; Orlicki, J.A.; Rawlett, A.M.; Beebe, T.P.
2011-01-01
Poly(methylmethacrylate) (PMMA)- Polyacrylonitrile (PAN) fibers were prepared using a conventional single-nozzle electrospinning technique. The as-spun fibers exhibited core-shell morphology as verified by transmission electron microscopy (TEM) and atomic force microscopy (AFM). AFM-phase and modulus mapping images of the fiber cross-section and x-ray photoelectron spectroscopy (XPS) analysis indicated PAN formed the shell and PMMA the core material. XPS, thermal gravimetric analysis (TGA), and elemental analysis were used to determine fiber compositional information. Soaking the fibers in solvent demonstrated removal of the core material, generating hollow PAN fibers. PMID:21928836
Characterization of new drug delivery nanosystems using atomic force microscopy
NASA Astrophysics Data System (ADS)
Spyratou, Ellas; Mourelatou, Elena A.; Demetzos, C.; Makropoulou, Mersini; Serafetinides, A. A.
2015-01-01
Liposomes are the most attractive lipid vesicles for targeted drug delivery in nanomedicine, behaving also as cell models in biophotonics research. The characterization of the micro-mechanical properties of drug carriers is an important issue and many analytical techniques are employed, as, for example, optical tweezers and atomic force microscopy. In this work, polyol hyperbranched polymers (HBPs) have been employed along with liposomes for the preparation of new chimeric advanced drug delivery nanosystems (Chi-aDDnSs). Aliphatic polyester HBPs with three different pseudogenerations G2, G3 and G4 with 16, 32, and 64 peripheral hydroxyl groups, respectively, have been incorporated in liposomal formulation. The atomic force microscopy (AFM) technique was used for the comparative study of the morphology and the mechanical properties of Chi-aDDnSs and conventional DDnS. The effects of both the HBPs architecture and the polyesters pseudogeneration number in the stability and the stiffness of chi-aDDnSs were examined. From the force-distance curves of AFM spectroscopy, the Young's modulus was calculated.
NASA Astrophysics Data System (ADS)
Oh, Y. J.; Jo, W.; Kim, S.; Park, S.; Kim, Y. S.
2008-09-01
A protein patterned surface using micro-contact printing methods has been investigated by scanning force microscopy. Electrostatic force microscopy (EFM) was utilized for imaging the topography and detecting the electrical properties such as the local bound charge distribution of the patterned proteins. It was found that the patterned IgG proteins are arranged down to 1 µm, and the 90° rotation of patterned anti-IgG proteins was successfully undertaken. Through the estimation of the effective areas, it was possible to determine the local bound charges of patterned proteins which have opposite electrostatic force behaviors. Moreover, we studied the binding probability between IgG and anti-IgG in a 1 µm2 MIMIC system by topographic and electrostatic signals for applicable label-free detections. We showed that the patterned proteins can be used for immunoassay of proteins on the functional substrate, and that they can also be used for bioelectronics device application, indicating distinct advantages with regard to accuracy and a label-free detection.
Initial results from a dynamic coupled magnetosphere-ionosphere-ring current model
NASA Astrophysics Data System (ADS)
Pembroke, Asher; Toffoletto, Frank; Sazykin, Stanislav; Wiltberger, Michael; Lyon, John; Merkin, Viacheslav; Schmitt, Peter
2012-02-01
In this paper we describe a coupled model of Earth's magnetosphere that consists of the Lyon-Fedder-Mobarry (LFM) global magnetohydrodynamics (MHD) simulation, the MIX ionosphere solver and the Rice Convection Model (RCM) and report some results using idealized inputs and model parameters. The algorithmic and physical components of the model are described, including the transfer of magnetic field information and plasma boundary conditions to the RCM and the return of ring current plasma properties to the LFM. Crucial aspects of the coupling include the restriction of RCM to regions where field-line averaged plasma-β ≤ 1, the use of a plasmasphere model, and the MIX ionosphere model. Compared to stand-alone MHD, the coupled model produces a substantial increase in ring current pressure and reduction of the magnetic field near the Earth. In the ionosphere, stronger region-1 and region-2 Birkeland currents are seen in the coupled model but with no significant change in the cross polar cap potential drop, while the region-2 currents shielded the low-latitude convection potential. In addition, oscillations in the magnetic field are produced at geosynchronous orbit with the coupled code. The diagnostics of entropy and mass content indicate that these oscillations are associated with low-entropy flow channels moving in from the tail and may be related to bursty bulk flows and bubbles seen in observations. As with most complex numerical models, there is the ongoing challenge of untangling numerical artifacts and physics, and we find that while there is still much room for improvement, the results presented here are encouraging.
Black, Jennifer M.; Zhu, Mengyang; Zhang, Pengfei; Unocic, Raymond R.; Guo, Daqiang; Okatan, M. Baris; Dai, Sheng; Cummings, Peter T.; Kalinin, Sergei V.; Feng, Guang; Balke, Nina
2016-01-01
Atomic force microscopy (AFM) force-distance measurements are used to investigate the layered ion structure of Ionic Liquids (ILs) at the mica surface. The effects of various tip properties on the measured force profiles are examined and reveal that the measured ion position is independent of tip properties, while the tip radius affects the forces required to break through the ion layers as well as the adhesion force. Force data is collected for different ILs and directly compared with interfacial ion density profiles predicted by molecular dynamics. Through this comparison it is concluded that AFM force measurements are sensitive to the position of the ion with the larger volume and mass, suggesting that ion selectivity in force-distance measurements are related to excluded volume effects and not to electrostatic or chemical interactions between ions and AFM tip. The comparison also revealed that at distances greater than 1 nm the system maintains overall electroneutrality between the AFM tip and sample, while at smaller distances other forces (e.g., van der waals interactions) dominate and electroneutrality is no longer maintained. PMID:27587276
Scanning superlens microscopy for non-invasive large field-of-view visible light nanoscale imaging
NASA Astrophysics Data System (ADS)
Wang, Feifei; Liu, Lianqing; Yu, Haibo; Wen, Yangdong; Yu, Peng; Liu, Zhu; Wang, Yuechao; Li, Wen Jung
2016-12-01
Nanoscale correlation of structural information acquisition with specific-molecule identification provides new insight for studying rare subcellular events. To achieve this correlation, scanning electron microscopy has been combined with super-resolution fluorescent microscopy, despite its destructivity when acquiring biological structure information. Here we propose time-efficient non-invasive microsphere-based scanning superlens microscopy that enables the large-area observation of live-cell morphology or sub-membrane structures with sub-diffraction-limited resolution and is demonstrated by observing biological and non-biological objects. This microscopy operates in both non-invasive and contact modes with ~200 times the acquisition efficiency of atomic force microscopy, which is achieved by replacing the point of an atomic force microscope tip with an imaging area of microspheres and stitching the areas recorded during scanning, enabling sub-diffraction-limited resolution. Our method marks a possible path to non-invasive cell imaging and simultaneous tracking of specific molecules with nanoscale resolution, facilitating the study of subcellular events over a total cell period.
Computational model for noncontact atomic force microscopy: energy dissipation of cantilever.
Senda, Yasuhiro; Blomqvist, Janne; Nieminen, Risto M
2016-09-21
We propose a computational model for noncontact atomic force microscopy (AFM) in which the atomic force between the cantilever tip and the surface is calculated using a molecular dynamics method, and the macroscopic motion of the cantilever is modeled by an oscillating spring. The movement of atoms in the tip and surface is connected with the oscillating spring using a recently developed coupling method. In this computational model, the oscillation energy is dissipated, as observed in AFM experiments. We attribute this dissipation to the hysteresis and nonconservative properties of the interatomic force that acts between the atoms in the tip and sample surface. The dissipation rate strongly depends on the parameters used in the computational model.
NASA Astrophysics Data System (ADS)
Oh, Y. J.; Jo, W.; Yang, Y.; Park, S.
2007-04-01
The authors report growth media dependence of electrostatic force characteristics in Escherichia coli O157:H7 biofilm through local measurement by electrostatic force microscopy (EFM). The difference values of electrostatic interaction between the bacterial surface and the abiotic surface show an exponential decay behavior during biofilm development. In the EFM data, the biofilm in the low nutrient media shows a faster decay than the biofilm in the rich media. The surface potential in the bacterial cells was changed from 957to149mV. Local characterization of extracellular materials extracted from the bacteria reveals the progress of the biofilm formation and functional complexities.
NASA Astrophysics Data System (ADS)
Gramaccioni, Chiara; Yang, Yang; Procopio, Alessandra; Pacureanu, Alexandra; Bohic, Sylvain; Malucelli, Emil; Iotti, Stefano; Farruggia, Giovanna; Bukreeva, Inna; Notargiacomo, Andrea; Fratini, Michela; Valenti, Piera; Rosa, Luigi; Berlutti, Francesca; Cloetens, Peter; Lagomarsino, Stefano
2018-01-01
We present here a correlative X-ray microscopy approach for quantitative single cell imaging of molar concentrations. By combining the elemental content provided by X-ray fluorescence microscopy and the morphology information extracted from X-ray phase nanotomography, we determine the intracellular molarity distributions. This correlative method was demonstrated on a freeze-dried human phagocytic cell to obtain the absolute elemental concentration maps of K, P, and Fe. The cell morphology results showed a very good agreement with atomic-force microscopy measurements. This work opens the way for non-destructive single cell chemical analysis down to the sub-cellular level using exclusively synchrotron radiation techniques. It will be of high interest in the case where it is difficult to access the morphology using atomic-force microscopy, for example, on frozen-hydrated cells or tissues.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miranda, Adelaide; De Beule, Pieter A. A., E-mail: pieter.de-beule@inl.int; Martins, Marco
Combined microscopy techniques offer the life science research community a powerful tool to investigate complex biological systems and their interactions. Here, we present a new combined microscopy platform based on fluorescence optical sectioning microscopy through aperture correlation microscopy with a Differential Spinning Disk (DSD) and nanomechanical mapping with an Atomic Force Microscope (AFM). The illumination scheme of the DSD microscope unit, contrary to standard single or multi-point confocal microscopes, provides a time-independent illumination of the AFM cantilever. This enables a distortion-free simultaneous operation of fluorescence optical sectioning microscopy and atomic force microscopy with standard probes. In this context, we discussmore » sample heating due to AFM cantilever illumination with fluorescence excitation light. Integration of a DSD fluorescence optical sectioning unit with an AFM platform requires mitigation of mechanical noise transfer of the spinning disk. We identify and present two solutions to almost annul this noise in the AFM measurement process. The new combined microscopy platform is applied to the characterization of a DOPC/DOPS (4:1) lipid structures labelled with a lipophilic cationic indocarbocyanine dye deposited on a mica substrate.« less
Toward single cell traction microscopy within 3D collagen matrices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hall, Matthew S.; Long, Rong; Feng, Xinzeng
Mechanical interaction between the cell and its extracellular matrix (ECM) regulates cellular behaviors, including proliferation, differentiation, adhesion, and migration. Cells require the three-dimensional (3D) architectural support of the ECM to perform physiologically realistic functions. However, current understanding of cell–ECM and cell–cell mechanical interactions is largely derived from 2D cell traction force microscopy, in which cells are cultured on a flat substrate. 3D cell traction microscopy is emerging for mapping traction fields of single animal cells embedded in either synthetic or natively derived fibrous gels. We discuss here the development of 3D cell traction microscopy, its current limitations, and perspectives onmore » the future of this technology. Emphasis is placed on strategies for applying 3D cell traction microscopy to individual tumor cell migration within collagen gels. - Highlights: • Review of the current state of the art in 3D cell traction force microscopy. • Bulk and micro-characterization of remodelable fibrous collagen gels. • Strategies for performing 3D cell traction microscopy within collagen gels.« less
Atomic force microscopy of biological samples
DOE Office of Scientific and Technical Information (OSTI.GOV)
Doktycz, Mitchel John
2010-01-01
The ability to evaluate structural-functional relationships in real time has allowed scanning probe microscopy (SPM) to assume a prominent role in post genomic biological research. In this mini-review, we highlight the development of imaging and ancillary techniques that have allowed SPM to permeate many key areas of contemporary research. We begin by examining the invention of the scanning tunneling microscope (STM) by Binnig and Rohrer in 1982 and discuss how it served to team biologists with physicists to integrate high-resolution microscopy into biological science. We point to the problems of imaging nonconductive biological samples with the STM and relate howmore » this led to the evolution of the atomic force microscope (AFM) developed by Binnig, Quate, and Gerber, in 1986. Commercialization in the late 1980s established SPM as a powerful research tool in the biological research community. Contact mode AFM imaging was soon complemented by the development of non-contact imaging modes. These non-contact modes eventually became the primary focus for further new applications including the development of fast scanning methods. The extreme sensitivity of the AFM cantilever was recognized and has been developed into applications for measuring forces required for indenting biological surfaces and breaking bonds between biomolecules. Further functional augmentation to the cantilever tip allowed development of new and emerging techniques including scanning ion-conductance microscopy (SICM), scanning electrochemical microscope (SECM), Kelvin force microscopy (KFM) and scanning near field ultrasonic holography (SNFUH).« less
Imaging latex–carbon nanotube composites by subsurface electrostatic force microscopy
Patel, Sajan; Petty, Clayton W.; Krafcik, Karen Lee; ...
2016-09-08
Electrostatic modes of atomic force microscopy have shown to be non-destructive and relatively simple methods for imaging conductors embedded in insulating polymers. Here we use electrostatic force microscopy to image the dispersion of carbon nanotubes in a latex-based conductive composite, which brings forth features not observed in previously studied systems employing linear polymer films. A fixed-potential model of the probe-nanotube electrostatics is presented which in principle gives access to the conductive nanoparticle's depth and radius, and the polymer film dielectric constant. Comparing this model to the data results in nanotube depths that appear to be slightly above the film–air interface.more » Furthermore, this result suggests that water-mediated charge build-up at the film–air interface may be the source of electrostatic phase contrast in ambient conditions.« less
Understanding amyloid aggregation by statistical analysis of atomic force microscopy images
NASA Astrophysics Data System (ADS)
Adamcik, Jozef; Jung, Jin-Mi; Flakowski, Jérôme; de Los Rios, Paolo; Dietler, Giovanni; Mezzenga, Raffaele
2010-06-01
The aggregation of proteins is central to many aspects of daily life, including food processing, blood coagulation, eye cataract formation disease and prion-related neurodegenerative infections. However, the physical mechanisms responsible for amyloidosis-the irreversible fibril formation of various proteins that is linked to disorders such as Alzheimer's, Creutzfeldt-Jakob and Huntington's diseases-have not yet been fully elucidated. Here, we show that different stages of amyloid aggregation can be examined by performing a statistical polymer physics analysis of single-molecule atomic force microscopy images of heat-denatured β-lactoglobulin fibrils. The atomic force microscopy analysis, supported by theoretical arguments, reveals that the fibrils have a multistranded helical shape with twisted ribbon-like structures. Our results also indicate a possible general model for amyloid fibril assembly and illustrate the potential of this approach for investigating fibrillar systems.
Contact resonance atomic force microscopy imaging in air and water using photothermal excitation.
Kocun, Marta; Labuda, Aleksander; Gannepalli, Anil; Proksch, Roger
2015-08-01
Contact Resonance Force Microscopy (CR-FM) is a leading atomic force microscopy technique for measuring viscoelastic nano-mechanical properties. Conventional piezo-excited CR-FM measurements have been limited to imaging in air, since the "forest of peaks" frequency response associated with acoustic excitation methods effectively masks the true cantilever resonance. Using photothermal excitation results in clean contact, resonance spectra that closely match the ideal frequency response of the cantilever, allowing unambiguous and simple resonance frequency and quality factor measurements in air and liquids alike. This extends the capabilities of CR-FM to biologically relevant and other soft samples in liquid environments. We demonstrate CR-FM in air and water on both stiff silicon/titanium samples and softer polystyrene-polyethylene-polypropylene polymer samples with the quantitative moduli having very good agreement between expected and measured values.
NASA Astrophysics Data System (ADS)
Yurtsever, Ayhan; Sugimoto, Yoshiaki; Fukumoto, Masaki; Abe, Masayuki; Morita, Seizo
2012-08-01
We investigate thin insulating CaF2 films on a Si (111) surface using a combination of noncontact atomic force microscopy (NC-AFM) and Kelvin probe force microscopy (KPFM). Atomic-scale NC-AFM and KPFM images are obtained in different imaging modes by employing two different tip polarities. The KPFM image contrast and the distance-dependent variation of the local contact potential difference (LCPD) give rise to a tip-polarity-dependent contrast inversion. Ca2+ cations had a higher LCPD contrast than F- anions for a positively terminated tip, while the LCPD provided by a negatively charged tip gave a higher contrast for F- anions. Thus, this result implies that it is essential to determine the tip apex polarity to correctly interpret LCPD signals acquired by KPFM.
Narchi, Paul; Alvarez, Jose; Chrétien, Pascal; Picardi, Gennaro; Cariou, Romain; Foldyna, Martin; Prod'homme, Patricia; Kleider, Jean-Paul; I Cabarrocas, Pere Roca
2016-12-01
Both surface photovoltage and photocurrent enable to assess the effect of visible light illumination on the electrical behavior of a solar cell. We report on photovoltage and photocurrent measurements with nanometer scale resolution performed on the cross section of an epitaxial crystalline silicon solar cell, using respectively Kelvin probe force microscopy and conducting probe atomic force microscopy. Even though two different setups are used, the scans were performed on locations within 100-μm distance in order to compare data from the same area and provide a consistent interpretation. In both measurements, modifications under illumination are observed in accordance with the theory of PIN junctions. Moreover, an unintentional doping during the deposition of the epitaxial silicon intrinsic layer in the solar cell is suggested from the comparison between photovoltage and photocurrent measurements.
Yang, Chih-Wen; Lu, Yi-Hsien; Hwang, Ing-Shouh
2013-05-08
We have imaged nanobubbles on highly ordered pyrolytic graphite (HOPG) surfaces in pure water with different atomic force microscopy (AFM) modes, including the frequency-modulation, the tapping, and the PeakForce techniques. We have compared the performance of these modes in obtaining the surface profiles of nanobubbles. The frequency-modulation mode yields a larger height value than the other two modes and can provide more accurate measurement of the surface profiles of nanobubbles. Imaging with PeakForce mode shows that a nanobubble appears smaller and shorter with increasing peak force and disappears above a certain peak force, but the size returns to the original value when the peak force is reduced. This indicates that imaging with high peak forces does not cause gas removal from the nanobubbles. Based on the presented findings and previous AFM observations, the existing models for nanobubbles are reviewed and discussed. The model of gas aggregate inside nanobubbles provides a better explanation for the puzzles of the high stability and the contact angle of surface nanobubbles.
Frequency modulation atomic force microscopy: a dynamic measurement technique for biological systems
NASA Astrophysics Data System (ADS)
Higgins, Michael J.; Riener, Christian K.; Uchihashi, Takayuki; Sader, John E.; McKendry, Rachel; Jarvis, Suzanne P.
2005-03-01
Frequency modulation atomic force microscopy (FM-AFM) has been modified to operate in a liquid environment within an atomic force microscope specifically designed for investigating biological samples. We demonstrate the applicability of FM-AFM to biological samples using the spectroscopy mode to measure the unbinding forces of a single receptor-ligand (biotin-avidin) interaction. We show that quantitative adhesion force measurements can only be obtained provided certain modifications are made to the existing theory, which is used to convert the detected frequency shifts to an interaction force. Quantitative force measurements revealed that the unbinding forces for the biotin-avidin interaction were greater than those reported in previous studies. This finding was due to the use of high average tip velocities, which were calculated to be two orders of magnitude greater than those typically used in unbinding receptor-ligand experiments. This study therefore highlights the potential use of FM-AFM to study a range of biological systems, including living cells and/or single biomolecule interactions.
Subatomic-scale force vector mapping above a Ge(001) dimer using bimodal atomic force microscopy
NASA Astrophysics Data System (ADS)
Naitoh, Yoshitaka; Turanský, Robert; Brndiar, Ján; Li, Yan Jun; Štich, Ivan; Sugawara, Yasuhiro
2017-07-01
Probing physical quantities on the nanoscale that have directionality, such as magnetic moments, electric dipoles, or the force response of a surface, is essential for characterizing functionalized materials for nanotechnological device applications. Currently, such physical quantities are usually experimentally obtained as scalars. To investigate the physical properties of a surface on the nanoscale in depth, these properties must be measured as vectors. Here we demonstrate a three-force-component detection method, based on multi-frequency atomic force microscopy on the subatomic scale and apply it to a Ge(001)-c(4 × 2) surface. We probed the surface-normal and surface-parallel force components above the surface and their direction-dependent anisotropy and expressed them as a three-dimensional force vector distribution. Access to the atomic-scale force distribution on the surface will enable better understanding of nanoscale surface morphologies, chemical composition and reactions, probing nanostructures via atomic or molecular manipulation, and provide insights into the behaviour of nano-machines on substrates.
Spatiotemporally and Mechanically Controlled Triggering of Mast Cells using Atomic Force Microscopy
Hu, Kenneth K.; Bruce, Marc A.; Butte, Manish J.
2014-01-01
Mast cells are thought to be sensitive to mechanical forces, for example, coughing in asthma or pressure in “physical urticarias”. Conversion of mechanical forces to biochemical signals could potentially augment antigenic signaling. Studying the combined effects of mechanical and antigenic cues on mast cells and other hematopoietic cells has been elusive. Here, we present an approach using a modified atomic force microscope cantilever to deliver antigenic signals to mast cells while simultaneously applying mechanical forces. We developed a strategy to concurrently record degranulation events by fluorescence microscopy during antigenic triggering. Finally, we also measured the mechanical forces generated by mast cells while antigen receptors are ligated. We showed that mast cells respond to antigen delivered by the AFM cantilever with prompt degranulation and the generation of strong pushing and pulling forces. We did not discern any relationship between applied mechanical forces and the kinetics of degranulation. These experiments present a new method for dissecting the interactions of mechanical and biochemical cues in signaling responses of immune cells. PMID:24777418
NASA Astrophysics Data System (ADS)
Xiao, Zhiyong
In this dissertation, I present the scanning microscopy and electrical transport studies of ferroelectric thin films and ferroic/2D van der Waals heterostructures. Based on the conducting probe atomic force microscopy and piezo-response force microscopy (PFM) studies of the static and dynamic behavior of ferroelectric domain walls (DW), we found that the ferroelectric polymer poly(vinylidene-fluoride-trifluorethylene) P(VDF-TrFE) is composed of two-dimensional (2D) ferroelectric monolayers (MLs) that are weakly coupled to each other. We also observed polarization asymmetry in epitaxial thin films of ferroelectric Pb(Zr,Ti)O3, which is attributed to the screening properties of the underlying conducting oxide. PFM studies also reveal ferroelectric relaxor-type behavior in ultrathin Sr(Zr,Ti)O3 films epitaxially deposited on Ge. We exploited scanning-probe-controlled domain patterning in a P(VDF-TrFE) top layer to induce nonvolatile modulation of the conduction characteristic of ML molybdenum disulfide (MoS2) between a transistor and a junction state. In the presence of a DW, MoS2 exhibits rectified Ids-Vds (IV) characteristics that are well described by the thermionic emission model. This approach can be applied to a wide range of van der Waals materials to design various functional homojunctions and nanostructures. We also studied the interfacial charge transfer effect between graphene and magnetoelectric Cr2O3 via electrostatic force microscopy and Kelvin probe force microscopy, which reveal p-type doping with up to 150 meV shift of the Fermi level. The graphene/Cr2O3 heterostructure is promising for developing magnetoelectric graphene transistors for spintronic applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
E Nazaretski; J Thibodaux; I Vekhter
2011-12-31
We report the local measurements of the magnetic penetration depth in a superconducting Nb film using magnetic force microscopy (MFM). We developed a method for quantitative extraction of the penetration depth from single-parameter simultaneous fits to the lateral and height profiles of the MFM signal, and demonstrate that the obtained value is in excellent agreement with that obtained from the bulk magnetization measurements.
Tai, Tamin; Kertesz, Vilmos; Lin, Ming -Wei; ...
2017-05-11
As the spatial resolution of mass spectrometry imaging technologies has begun to reach into the nanometer regime, finding readily available or easily made resolution reference materials has become particularly challenging for molecular imaging purposes. This study describes the fabrication, characterization and use of vertical line array polymeric spatial resolution test patterns for nano-thermal analysis/atomic force microscopy/mass spectrometry chemical imaging.
Cheng Xing; Siqun Wang; George M. Pharr; Leslie H. Groom
2008-01-01
Refined wood fibers of a 54-year-old loblolly pine (Pinus taeda L.) mature wood were investigated by nanoindentation and atomic force microscopy (AFM). The effect of steam pressure, in the range of 2?18 bar, during thermomechanical refining was investigated and the nanomechanical properties and nano- or micro-level damages of the cell wall were...
NASA Astrophysics Data System (ADS)
Woellner, Cristiano F.; Freire, José A.; Guide, Michele; Nguyen, Thuc-Quyen
2011-08-01
We develop a simple continuum model for the current voltage characteristics of a material as measured by the conducting atomic force microscopy, including space charge effects. We address the effect of the point contact on the magnitude of the current and on the transition voltages between the different current regimes by comparing these with the corresponding expressions obtained with planar electrodes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tai, Tamin; Kertesz, Vilmos; Lin, Ming -Wei
As the spatial resolution of mass spectrometry imaging technologies has begun to reach into the nanometer regime, finding readily available or easily made resolution reference materials has become particularly challenging for molecular imaging purposes. This study describes the fabrication, characterization and use of vertical line array polymeric spatial resolution test patterns for nano-thermal analysis/atomic force microscopy/mass spectrometry chemical imaging.
Probing the compressibility of tumor cell nuclei by combined atomic force-confocal microscopy
NASA Astrophysics Data System (ADS)
Krause, Marina; te Riet, Joost; Wolf, Katarina
2013-12-01
The cell nucleus is the largest and stiffest organelle rendering it the limiting compartment during migration of invasive tumor cells through dense connective tissue. We here describe a combined atomic force microscopy (AFM)-confocal microscopy approach for measurement of bulk nuclear stiffness together with simultaneous visualization of the cantilever-nucleus contact and the fate of the cell. Using cantilevers functionalized with either tips or beads and spring constants ranging from 0.06-10 N m-1, force-deformation curves were generated from nuclear positions of adherent HT1080 fibrosarcoma cell populations at unchallenged integrity, and a nuclear stiffness range of 0.2 to 2.5 kPa was identified depending on cantilever type and the use of extended fitting models. Chromatin-decondensating agent trichostatin A (TSA) induced nuclear softening of up to 50%, demonstrating the feasibility of our approach. Finally, using a stiff bead-functionalized cantilever pushing at maximal system-intrinsic force, the nucleus was deformed to 20% of its original height which after TSA treatment reduced further to 5% remaining height confirming chromatin organization as an important determinant of nuclear stiffness. Thus, combined AFM-confocal microscopy is a feasible approach to study nuclear compressibility to complement concepts of limiting nuclear deformation in cancer cell invasion and other biological processes.
López-Jiménez, Lidia; Viñas, Miguel; Vinuesa, Teresa
2015-01-01
Aim: To visualize by Atomic Force Microscopy the alterations induced on Enterococcus. faecalis surface after treatment with 2 types of laser: Erbium chromium:yttrium-scandium-gallium-garnet (Er,Cr:YSGG) laser and Diode laser. Material and Methods: Bacterial suspensions from overnight cultures of E. faecalis were irradiated during 30 seconds with the laser-lights at 1 W and 2 W of power, leaving one untreated sample as control. Surface alterations on treated E. faecalis were visualized by Atomic Force Microscopy (AFM) and its surface roughness determined. Results: AFM imaging showed that at high potency of laser both cell morphology and surface roughness resulted altered, and that several cell lysis signs were easily visualized. Surface roughness clearly increase after the treatment with Er,Cr:YSGG at 2W of power, while the other treatments gave similar values of surface roughness. The effect of lasers on bacterial surfaces visualized by AFM revealed drastic alterations. Conclusions: AFM is a good tool to evaluate surface injuries after laser treatment; and could constitute a measure of antimicrobial effect that can complete data obtained by determination of microbial viability. Key words:Atomic force microscopy, Er,Cr:YSGG laser, diode laser, Enterococcus faecalis, surface roughness. PMID:25475770
Zhao, Guang; Dai, Caili; Zhao, Mingwei; You, Qing; Chen, Ang
2013-01-01
A dispersed particle gel (DPG) was successfully prepared from a polymer gel at room temperature. The polymer gel system, morphology, viscosity changes, size distribution, and zeta potential of DPG particles were investigated. The results showed that zirconium gel systems with different strengths can be cross-linked within 2.5 h at low temperature. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), and atomic force microscopy (AFM) results showed that the particles were polygonal particles with nano-size distribution. According to the viscosity changes, the whole preparation process can be divided into two major stages: the bulk gel cross-linking reaction period and the DPG particle preparation period. A polymer gel with a 3-dimensional network was formed in the bulk gel cross-linking reaction period whereas shearing force and frictional force were the main driving forces for the preparation of DPG particles, and thus affected the morphology of DPG particles. High shearing force and frictional force reduced the particle size distribution, and then decreased the zeta potential (absolute value). The whole preparation process could be completed within 3 h at room temperature. It could be an efficient and energy-saving technology for preparation of DPG particles. PMID:24324817
Investigating biomolecular recognition at the cell surface using atomic force microscopy.
Wang, Congzhou; Yadavalli, Vamsi K
2014-05-01
Probing the interaction forces that drive biomolecular recognition on cell surfaces is essential for understanding diverse biological processes. Force spectroscopy has been a widely used dynamic analytical technique, allowing measurement of such interactions at the molecular and cellular level. The capabilities of working under near physiological environments, combined with excellent force and lateral resolution make atomic force microscopy (AFM)-based force spectroscopy a powerful approach to measure biomolecular interaction forces not only on non-biological substrates, but also on soft, dynamic cell surfaces. Over the last few years, AFM-based force spectroscopy has provided biophysical insight into how biomolecules on cell surfaces interact with each other and induce relevant biological processes. In this review, we focus on describing the technique of force spectroscopy using the AFM, specifically in the context of probing cell surfaces. We summarize recent progress in understanding the recognition and interactions between macromolecules that may be found at cell surfaces from a force spectroscopy perspective. We further discuss the challenges and future prospects of the application of this versatile technique. Copyright © 2014 Elsevier Ltd. All rights reserved.
Lu, Yonghua; Muñoz, M; Steplecaru, C S; Hao, Cheng; Bai, Ming; Garcia, N; Schindler, K; Esquinazi, P
2006-08-18
We present measurements of the electric potential fluctuations on the surface of highly oriented pyrolytic graphite using electrostatic force and atomic force microscopy. Micrometric domainlike potential distributions are observed even when the sample is grounded. Such potential distributions are unexpected given the good metallic conductivity of graphite because the surface should be an equipotential. Our results indicate the coexistence of regions with "metalliclike" and "insulatinglike" behaviors showing large potential fluctuations of the order of 0.25 V. In lower quality graphite, this effect is not observed. Experiments are performed in Ar and air atmospheres.
Identifying passivated dynamic force microscopy tips on H:Si(100)
NASA Astrophysics Data System (ADS)
Sharp, Peter; Jarvis, Sam; Woolley, Richard; Sweetman, Adam; Kantorovich, Lev; Pakes, Chris; Moriarty, Philip
2012-06-01
The chemical reactivity of the tip plays a central role in image formation in dynamic force microscopy, but in very many cases the state of the probe is a key experimental unknown. We show here that an H-terminated and thus chemically unreactive tip can be readily identified via characteristic imaging and spectroscopic (F(z)) signatures, including, in particular, contrast inversion, on hydrogen-passivated Si(100). We determine the tip apex termination by comparing site-specific difference force curves with the results of density functional theory, providing a clear protocol for the identification of chemically unreactive tips on silicon surfaces.
Note: Spring constant calibration of nanosurface-engineered atomic force microscopy cantilevers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ergincan, O., E-mail: orcunergincan@gmail.com; Palasantzas, G.; Kooi, B. J.
2014-02-15
The determination of the dynamic spring constant (k{sub d}) of atomic force microscopy cantilevers is of crucial importance for converting cantilever deflection to accurate force data. Indeed, the non-destructive, fast, and accurate measurement method of the cantilever dynamic spring constant by Sader et al. [Rev. Sci. Instrum. 83, 103705 (2012)] is confirmed here for plane geometry but surface modified cantilevers. It is found that the measured spring constants (k{sub eff}, the dynamic one k{sub d}), and the calculated (k{sub d,1}) are in good agreement within less than 10% error.
Kannan, Ashwin; Karumanchi, Subbalakshmi Latha; Krishna, Vinatha; Thiruvengadam, Kothai; Ramalingam, Subramaniam; Gautam, Pennathur
2014-01-01
Colonization of surfaces by bacterial cells results in the formation of biofilms. There is a need to study the factors that are important for formation of biofilms since biofilms have been implicated in the failure of semiconductor devices and implants. In the present study, the adhesion force of biofilms (formed by Pseudomonas aeruginosa) on porous silicon substrates of varying surface roughness was quantified using atomic force microscopy (AFM). The experiments were carried out to quantify the effect of surface roughness on the adhesion force of biofilm. The results show that the adhesion force increased from 1.5 ± 0.5 to 13.2 ± 0.9 nN with increase in the surface roughness of silicon substrate. The results suggest that the adhesion force of biofilm is affected by surface roughness of substrate. © 2014 Wiley Periodicals, Inc.
Force determination in lateral magnetic tweezers combined with TIRF microscopy.
Madariaga-Marcos, J; Hormeño, S; Pastrana, C L; Fisher, G L M; Dillingham, M S; Moreno-Herrero, F
2018-03-01
Combining single-molecule techniques with fluorescence microscopy has attracted much interest because it allows the correlation of mechanical measurements with directly visualized DNA : protein interactions. In particular, its combination with total internal reflection fluorescence microscopy (TIRF) is advantageous because of the high signal-to-noise ratio this technique achieves. This, however, requires stretching long DNA molecules across the surface of a flow cell to maximize polymer exposure to the excitation light. In this work, we develop a module to laterally stretch DNA molecules at a constant force, which can be easily implemented in regular or combined magnetic tweezers (MT)-TIRF setups. The pulling module is further characterized in standard flow cells of different thicknesses and glass capillaries, using two types of micrometer size superparamagnetic beads, long DNA molecules, and a home-built device to rotate capillaries with mrad precision. The force range achieved by the magnetic pulling module was between 0.1 and 30 pN. A formalism for estimating forces in flow-stretched tethered beads is also proposed, and the results compared with those of lateral MT, demonstrating that lateral MT achieve higher forces with lower dispersion. Finally, we show the compatibility with TIRF microscopy and the parallelization of measurements by characterizing DNA binding by the centromere-binding protein ParB from Bacillus subtilis. Simultaneous MT pulling and fluorescence imaging demonstrate the non-specific binding of BsParB on DNA under conditions restrictive to condensation.
Electric contributions to magnetic force microscopy response from graphene and MoS{sub 2} nanosheets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Lu Hua, E-mail: luhua.li@deakin.edu.au; Chen, Ying
Magnetic force microscopy (MFM) signals have recently been detected from whole pieces of mechanically exfoliated graphene and molybdenum disulfide (MoS{sub 2}) nanosheets, and magnetism of the two nanomaterials was claimed based on these observations. However, non-magnetic interactions or artefacts are commonly associated with MFM signals, which make the interpretation of MFM signals not straightforward. A systematic investigation has been done to examine possible sources of the MFM signals from graphene and MoS{sub 2} nanosheets and whether the MFM signals can be correlated with magnetism. It is found that the MFM signals have significant non-magnetic contributions due to capacitive and electrostaticmore » interactions between the nanosheets and conductive cantilever tip, as demonstrated by electric force microscopy and scanning Kevin probe microscopy analyses. In addition, the MFM signals of graphene and MoS{sub 2} nanosheets are not responsive to reversed magnetic field of the magnetic cantilever tip. Therefore, the observed MFM response is mainly from electric artefacts and not compelling enough to correlate with magnetism of graphene and MoS{sub 2} nanosheets.« less
Nanoscale simultaneous chemical and mechanical imaging via peak force infrared microscopy
Wang, Le; Wang, Haomin; Wagner, Martin; Yan, Yong; Jakob, Devon S.; Xu, Xiaoji G.
2017-01-01
Nondestructive chemical and mechanical measurements of materials with ~10-nm spatial resolution together with topography provide rich information on the compositions and organizations of heterogeneous materials and nanoscale objects. However, multimodal nanoscale correlations are difficult to achieve because of the limitation on spatial resolution of optical microscopy and constraints from instrumental complexities. We report a novel noninvasive spectroscopic scanning probe microscopy method—peak force infrared (PFIR) microscopy—that allows chemical imaging, collection of broadband infrared spectra, and mechanical mapping at a spatial resolution of 10 nm. In our technique, chemical absorption information is directly encoded in the withdraw curve of the peak force tapping cycle after illumination with synchronized infrared laser pulses in a simple apparatus. Nanoscale phase separation in block copolymers and inhomogeneity in CH3NH3PbBr3 perovskite crystals are studied with correlative infrared/mechanical nanoimaging. Furthermore, we show that the PFIR method is sensitive to the presence of surface phonon polaritons in boron nitride nanotubes. PFIR microscopy will provide a powerful analytical tool for explorations at the nanoscale across wide disciplines. PMID:28691096
NASA Astrophysics Data System (ADS)
Lamsal, B. S.; Dubey, M.; Swaminathan, V.; Huh, Y.; Galipeau, D.; Qiao, Q.; Fan, Q. H.
2014-11-01
This work studied the electronic characteristics of the grains and grain boundaries of indium tin oxide (ITO) thin films using electrostatic and Kelvin probe force microscopy. Two types of ITO films were compared, deposited using radiofrequency magnetron sputtering in pure argon or 99% argon + 1% oxygen, respectively. The average grain size and surface roughness increased with substrate temperature for the films deposited in pure argon. With the addition of 1% oxygen, the increase in the grain size was inhibited above 150°C, which was suggested to be due to passivation of the grains by the excess oxygen. Electrostatic force microscopy and Kelvin probe force microscopy (KPFM) images confirmed that the grain growth was defect mediated and occurred at defective interfaces at high temperatures. Films deposited at room temperature with 1% oxygen showed crystalline nature, while films deposited with pure argon at room temperature were amorphous as observed from KPFM images. The potential drop across the grain and grain boundary was determined by taking surface potential line profiles to evaluate the electronic properties.
Rotor-Bearing Dynamics Technology Design Guide. Part 1. Flexible Rotor Dynamics
1980-06-01
DIMENSION TABLX(6O,122) (1254) CONMON/ BMAT /XLX(60,12O),YLX(60,120),ZLX(6O. 120), (1255) IXHALF(20,40),YHALF(20,40),ZNALF(20,40),QNALF(20,40) (1256) COMNON...ISO-1 (2969) 105 RETURN (2970) END IVK 317 - ~ --- = - 7: - (2971) SUBROUTINE IGNRL(HBEHD1 INDEXISO,DETER,IVARH) (2972) CONNON/ BMAT /XLX(60.120),YLX...8217,.SLANT’v, PHASE’lfM?;10 (3865) DIMENSION !RLAB(40),ICLAB(40) (3966) COMMON/ BMAT /XLX(60V120),YLX(60,120),ZLX(6OA 1201, (3867) +XHALF(20,40),YHALF(2O
NASA Astrophysics Data System (ADS)
Odaka, Akihiro; Satoh, Nobuo; Katori, Shigetaka
2017-08-01
We partially deposited fullerene (C60) and phenyl-C61-butyric acid methyl ester thin films that are typical n-type semiconductor materials on indium-tin oxide by mist deposition at various substrate temperatures. The topographic and surface potential images were observed via dynamic force microscopy/Kelvin probe force microscopy with the frequency modulation detection method. We proved that the area where a thin film is deposited depends on the substrate temperature during deposition from the topographic images. It was also found that the surface potential depends on the substrate temperature from the surface potential images.
Thalhammer, S; Koehler, U; Stark, R W; Heckl, W M
2001-06-01
Surface topography of human metaphase chromosomes following GTG banding was examined using high resolution atomic force microscopy (AFM). Although using a completely different imaging mechanism, which is based on the mechanical interaction of a probe tip with the chromosome, the observed banding pattern is comparable to results from light microscopy and a karyotype of the AFM imaged metaphase spread can be generated. The AFM imaging process was performed on a normal 2n = 46, XX karyotype and on a 2n = 46, XY, t(2;15)(q23;q15) karyotype as an example of a translocation of chromosomal bands.
Single-Cell Force Spectroscopy of Probiotic Bacteria
Beaussart, Audrey; El-Kirat-Chatel, Sofiane; Herman, Philippe; Alsteens, David; Mahillon, Jacques; Hols, Pascal; Dufrêne, Yves F.
2013-01-01
Single-cell force spectroscopy is a powerful atomic force microscopy modality in which a single living cell is attached to the atomic force microscopy cantilever to quantify the forces that drive cell-cell and cell-substrate interactions. Although various single-cell force spectroscopy protocols are well established for animal cells, application of the method to individual bacterial cells remains challenging, mainly owing to the lack of appropriate methods for the controlled attachment of single live cells on cantilevers. We present a nondestructive protocol for single-bacterial cell force spectroscopy, which combines the use of colloidal probe cantilevers and of a bioinspired polydopamine wet adhesive. Living cells from the probiotic species Lactobacillus plantarum are picked up with a polydopamine-coated colloidal probe, enabling us to quantify the adhesion forces between single bacteria and biotic (lectin monolayer) or abiotic (hydrophobic monolayer) surfaces. These minimally invasive single-cell experiments provide novel, to our knowledge, insight into the specific and nonspecific forces driving the adhesion of L. plantarum, and represent a generic platform for studying the molecular mechanisms of cell adhesion in probiotic and pathogenic bacteria. PMID:23663831
DOE Office of Scientific and Technical Information (OSTI.GOV)
Plomp, M; Malkin, A J
2008-06-02
Atomic force microscopy provides a unique capability to image high-resolution architecture and structural dynamics of pathogens (e.g. viruses, bacteria and bacterial spores) at near molecular resolution in native conditions. Further development of atomic force microscopy in order to enable the correlation of pathogen protein surface structures with specific gene products is essential to understand the mechanisms of the pathogen life cycle. We have applied an AFM-based immunolabeling technique for the proteomic mapping of macromolecular structures through the visualization of the binding of antibodies, conjugated with nanogold particles, to specific epitopes on Bacillus spore surfaces. This information is generated while simultaneouslymore » acquiring the surface morphology of the pathogen. The immunospecificity of this labeling method was established through the utilization of specific polyclonal and monoclonal antibodies that target spore coat and exosporium epitopes of Bacillus atrophaeus and Bacillus anthracis spores.« less
Chacko, Jenu Varghese; Zanacchi, Francesca Cella; Diaspro, Alberto
2013-01-01
In this article, we describe and show the application of some of the most advanced fluorescence superresolution techniques, STED AFM and STORM AFM microscopy towards imaging of cytoskeletal structures, such as microtubule filaments. Mechanical and structural properties can play a relevant role in the investigation of cytoskeletal structures of interest, such as microtubules, that provide support to the cell structure. In fact, the mechanical properties, such as the local stiffness and the elasticity, can be investigated by AFM force spectroscopy with tens of nanometers resolution. Force curves can be analyzed in order to obtain the local elasticity (and the Young's modulus calculation by fitting the force curves from every pixel of interest), and the combination with STED/STORM microscopy integrates the measurement with high specificity and yields superresolution structural information. This hybrid modality of superresolution-AFM working is a clear example of correlative multimodal microscopy. PMID:24027190
Contact resonance atomic force microscopy imaging in air and water using photothermal excitation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kocun, Marta; Labuda, Aleksander; Gannepalli, Anil
2015-08-15
Contact Resonance Force Microscopy (CR-FM) is a leading atomic force microscopy technique for measuring viscoelastic nano-mechanical properties. Conventional piezo-excited CR-FM measurements have been limited to imaging in air, since the “forest of peaks” frequency response associated with acoustic excitation methods effectively masks the true cantilever resonance. Using photothermal excitation results in clean contact, resonance spectra that closely match the ideal frequency response of the cantilever, allowing unambiguous and simple resonance frequency and quality factor measurements in air and liquids alike. This extends the capabilities of CR-FM to biologically relevant and other soft samples in liquid environments. We demonstrate CR-FM inmore » air and water on both stiff silicon/titanium samples and softer polystyrene-polyethylene-polypropylene polymer samples with the quantitative moduli having very good agreement between expected and measured values.« less
Evaluation of the electrical contact area in contact-mode scanning probe microscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Celano, Umberto, E-mail: celano@imec.be, E-mail: u.celano@gmail.com; Chintala, Ravi Chandra; Vandervorst, Wilfried
The tunneling current through an atomic force microscopy (AFM) tip is used to evaluate the effective electrical contact area, which exists between tip and sample in contact-AFM electrical measurements. A simple procedure for the evaluation of the effective electrical contact area is described using conductive atomic force microscopy (C-AFM) in combination with a thin dielectric. We characterize the electrical contact area for coated metal and doped-diamond tips operated at low force (<200 nN) in contact mode. In both cases, we observe that only a small fraction (<10 nm{sup 2}) of the physical contact (∼100 nm{sup 2}) is effectively contributing to the transportmore » phenomena. Assuming this reduced area is confined to the central area of the physical contact, these results explain the sub-10 nm electrical resolution observed in C-AFM measurements.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Noh, Hanaul; Diaz, Alfredo J.; Solares, Santiago D.
Organic photovoltaic systems comprising donor polymers and acceptor fullerene derivatives are attractive for inexpensive energy harvesting. Extensive research on polymer solar cells has provided insight into the factors governing device-level efficiency and stability. However, the detailed investigation of nanoscale structures is still challenging. Here we demonstrate the analysis and modification of unidentified surface aggregates. The aggregates are characterized electrically by Kelvin probe force microscopy and conductive atomic force microscopy (C-AFM), whereby the correlation between local electrical potential and current confirms a defective charge transport. Bimodal AFM modification confirms that the aggregates exist on top of the solar cell structure, andmore » is used to remove them and to reveal the underlying active layer. The systematic analysis of the surface aggregates suggests that the structure consists of PCBM molecules.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Douglas, A. M.; Kumar, A.; Gregg, J. M.
Conducting atomic force microscopy images of bulk semiconducting BaTiO{sub 3} surfaces show clear stripe domain contrast. High local conductance correlates with strong out-of-plane polarization (mapped independently using piezoresponse force microscopy), and current-voltage characteristics are consistent with dipole-induced alterations in Schottky barriers at the metallic tip-ferroelectric interface. Indeed, analyzing current-voltage data in terms of established Schottky barrier models allows relative variations in the surface polarization, and hence the local domain structure, to be determined. Fitting also reveals the signature of surface-related depolarizing fields concentrated near domain walls. Domain information obtained from mapping local conductance appears to be more surface-sensitive than thatmore » from piezoresponse force microscopy. In the right materials systems, local current mapping could therefore represent a useful complementary technique for evaluating polarization and local electric fields with nanoscale resolution.« less
Lechner, Bob-Dan; Röper, Stephanie; Messerschmidt, Jens; Blume, Alfred; Magerle, Robert
2015-09-02
Using atomic force microscopy, we monitored the nanoscale surface morphology of human teeth at the dentin-enamel junction after performing successive demineralization steps with an acidic soft drink. Subsequently, we studied the remineralization process with a paste containing calcium and phosphate ions. Repeated atomic force microscopy imaging of the same sample areas on the sample allowed us to draw detailed conclusions regarding the specific mechanism of the demineralization process and the subsequent remineralization process. The about 1-μm-deep grooves that are caused by the demineralization process were preferentially filled with deposited nanoparticles, leading to smoother enamel and dentine surfaces after 90 min exposure to the remineralizing agent. The deposited material is found to homogeneously cover the enamel and dentine surfaces in the same manner. The temporal evolution of the surface roughness indicates that the remineralization caused by the repair paste proceeds in two distinct successive phases.
Hill, Katalin; Pénzes, Csanád Botond; Schnöller, Donát; Horváti, Kata; Bosze, Szilvia; Hudecz, Ferenc; Keszthelyi, Tamás; Kiss, Eva
2010-10-07
Tensiometry, sum-frequency vibrational spectroscopy, and atomic force microscopy were employed to assess the cell penetration ability of a peptide conjugate of the antituberculotic agent isoniazide. Isoniazide was conjugated to peptide (91)SEFAYGSFVRTVSLPV(106), a functional T-cell epitope of the immunodominant 16 kDa protein of Mycobacterium tuberculosis. As a simple but versatile model of the cell membrane a phospholipid Langmuir monolayer at the liquid/air interface was used. Changes induced in the structure of the phospholipid monolayer by injection of the peptide conjugate into the subphase were followed by tensiometry and sum-frequency vibrational spectroscopy. The drug penetrated lipid films were transferred to a solid support by the Langmuir-Blodgett technique, and their structures were characterized by atomic force microscopy. Peptide conjugation was found to strongly enhance the cell penetration ability of isoniazide.
Noh, Hanaul; Diaz, Alfredo J.; Solares, Santiago D.
2017-03-08
Organic photovoltaic systems comprising donor polymers and acceptor fullerene derivatives are attractive for inexpensive energy harvesting. Extensive research on polymer solar cells has provided insight into the factors governing device-level efficiency and stability. However, the detailed investigation of nanoscale structures is still challenging. Here we demonstrate the analysis and modification of unidentified surface aggregates. The aggregates are characterized electrically by Kelvin probe force microscopy and conductive atomic force microscopy (C-AFM), whereby the correlation between local electrical potential and current confirms a defective charge transport. Bimodal AFM modification confirms that the aggregates exist on top of the solar cell structure, andmore » is used to remove them and to reveal the underlying active layer. The systematic analysis of the surface aggregates suggests that the structure consists of PCBM molecules.« less
Teschke, Omar; Soares, David Mendez
2016-03-29
Structures of crystallized deposits formed by the molecular self-assembly of aspartic acid and valine on silicon substrates were imaged by atomic force microscopy. Images of d- and l-aspartic acid crystal surfaces showing extended molecularly flat sheets or regions separated by single molecule thick steps are presented. Distinct orientation surfaces were imaged, which, combined with the single molecule step size, defines the geometry of the crystal. However, single molecule step growth also reveals the crystal chirality, i.e., growth orientations. The imaged ordered lattice of aspartic acid (asp) and valine (val) mostly revealed periodicities corresponding to bulk terminations, but a previously unreported molecular hexagonal lattice configuration was observed for both l-asp and l-val but not for d-asp or d-val. Atomic force microscopy can then be used to identify the different chiral forms of aspartic acid and valine crystals.
Noh, Hanaul; Diaz, Alfredo J
2017-01-01
Organic photovoltaic systems comprising donor polymers and acceptor fullerene derivatives are attractive for inexpensive energy harvesting. Extensive research on polymer solar cells has provided insight into the factors governing device-level efficiency and stability. However, the detailed investigation of nanoscale structures is still challenging. Here we demonstrate the analysis and modification of unidentified surface aggregates. The aggregates are characterized electrically by Kelvin probe force microscopy and conductive atomic force microscopy (C-AFM), whereby the correlation between local electrical potential and current confirms a defective charge transport. Bimodal AFM modification confirms that the aggregates exist on top of the solar cell structure, and is used to remove them and to reveal the underlying active layer. The systematic analysis of the surface aggregates suggests that the structure consists of PCBM molecules. PMID:28382247
Functional Scanning Probe Imaging of Nanostructured Solar Energy Materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Giridharagopal, Rajiv; Cox, Phillip A.; Ginger, David S.
From hybrid perovskites to semiconducting polymer/fullerene blends for organic photovoltaics, many new materials being explored for energy harvesting and storage exhibit performance characteristics that depend sensitively on their nanoscale morphology. At the same time, rapid advances in the capability and accessibility of scanning probe microscopy methods over the past decade have made it possible to study processing/structure/function relationships ranging from photocurrent collection to photocarrier lifetimes with resolutions on the scale of tens of nanometers or better. Importantly, such scanning probe methods offer the potential to combine measurements of local structure with local function, and they can be implemented to studymore » materials in situ or devices in operando to better understand how materials evolve in time in response to an external stimulus or environmental perturbation. This Account highlights recent advances in the development and application of scanning probe microscopy methods that can help address such questions while filling key gaps between the capabilities of conventional electron microscopy and newer super-resolution optical methods. Focusing on semiconductor materials for solar energy applications, we highlight a range of electrical and optoelectronic scanning probe microscopy methods that exploit the local dynamics of an atomic force microscope tip to probe key properties of the solar cell material or device structure. We discuss how it is possible to extract relevant device properties using noncontact scanning probe methods as well as how these properties guide materials development. Specifically, we discuss intensity-modulated scanning Kelvin probe microscopy (IM-SKPM), time-resolved electrostatic force microscopy (trEFM), frequency-modulated electrostatic force microscopy (FM-EFM), and cantilever ringdown imaging. We explain these developments in the context of classic atomic force microscopy (AFM) methods that exploit the physics of cantilever motion and photocarrier generation to provide robust, nanoscale measurements of materials physics that are correlated with device operation. We predict that the multidimensional data sets made possible by these types of methods will become increasingly important as advances in data science expand capabilities and opportunities for image correlation and discovery.« less
Functional Scanning Probe Imaging of Nanostructured Solar Energy Materials
Giridharagopal, Rajiv; Cox, Phillip A.; Ginger, David S.
2016-08-30
From hybrid perovskites to semiconducting polymer/fullerene blends for organic photovoltaics, many new materials being explored for energy harvesting and storage exhibit performance characteristics that depend sensitively on their nanoscale morphology. At the same time, rapid advances in the capability and accessibility of scanning probe microscopy methods over the past decade have made it possible to study processing/structure/function relationships ranging from photocurrent collection to photocarrier lifetimes with resolutions on the scale of tens of nanometers or better. Importantly, such scanning probe methods offer the potential to combine measurements of local structure with local function, and they can be implemented to studymore » materials in situ or devices in operando to better understand how materials evolve in time in response to an external stimulus or environmental perturbation. This Account highlights recent advances in the development and application of scanning probe microscopy methods that can help address such questions while filling key gaps between the capabilities of conventional electron microscopy and newer super-resolution optical methods. Focusing on semiconductor materials for solar energy applications, we highlight a range of electrical and optoelectronic scanning probe microscopy methods that exploit the local dynamics of an atomic force microscope tip to probe key properties of the solar cell material or device structure. We discuss how it is possible to extract relevant device properties using noncontact scanning probe methods as well as how these properties guide materials development. Specifically, we discuss intensity-modulated scanning Kelvin probe microscopy (IM-SKPM), time-resolved electrostatic force microscopy (trEFM), frequency-modulated electrostatic force microscopy (FM-EFM), and cantilever ringdown imaging. We explain these developments in the context of classic atomic force microscopy (AFM) methods that exploit the physics of cantilever motion and photocarrier generation to provide robust, nanoscale measurements of materials physics that are correlated with device operation. We predict that the multidimensional data sets made possible by these types of methods will become increasingly important as advances in data science expand capabilities and opportunities for image correlation and discovery.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sukhanova, T. E., E-mail: tat-sukhanova@mail.ru; Vylegzhanina, M. E.; Valueva, S. V.
The morphology and electrical properties of biogenic selenium-containing nanosystems based on polyelectrolyte complexes (PECs) were examined using AFM, Kelvin Probe Force and electron microscopy methods. It has been found, that prepared nanostructures significantly differed in their morphological types and parameters. In particular, multilayers capsules can be produced via varying synthesis conditions, especially, the selenium–PEC mass ratio ν. At the “special point” (ν = 0.1), filled and hollow nano- and microcapsules are formed in the system. The multilayer character of the capsules walls is visible in the phase images. Kelvin Probe Force images showed the inhomogeneity of potential distribution in capsulesmore » and outside them.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhukov, Mikhail, E-mail: cloudjyk@yandex.ru; Golubok, Alexander; Institute for Analytical Instrumentation, Russian Academy of Sciences
The new specialized AFM-probes with hydroxyapatite structures for atomic force microscopy of heart tissues calcification were created and studied. A process of probe fabrication is demonstrated. The adhesive forces between specialized hydroxyapatite probe and endothelium/subendothelial layers were investigated. It was found that the adhesion forces are significantly higher for the subendothelial layers. We consider that it is connected with the formation and localization of hydroxyapatite in the area of subendothelial layers of heart tissues. In addition, the roughness analysis and structure visualization of the endothelial surface of the heart tissue were carried out. The results show high efficiency of createdmore » specialized probes at study a calcinations process of the aortic heart tissues.« less
Yan, Chao; Yersin, Alexandre; Afrin, Rehana; Sekiguchi, Hiroshi; Ikai, Atsushi
2009-09-01
Glycophorin A (GpA) is one of the most abundant transmembrane proteins in human erythrocytes and its interaction with lectins has been studied as model systems for erythrocyte related biological processes. We performed a force measurement study using the force mode of atomic force microscopy (AFM) to investigate the single molecular level biophysical mechanisms involved in GpA-lectin interactions. GpA was mounted on a mica surface or natively presented on the erythrocyte membrane and probed with an AFM tip coated with the monomeric but multivalent Psathyrella velutina lectin (PVL) through covalent crosslinkers. A dynamic force spectroscopy study revealed similar interaction properties in both cases, with the unbinding force centering around 60 pN with a weak loading rate dependence. Hence we identified the presence of one energy barrier in the unbinding process. Force profile analysis showed that more than 70% of GpAs are free of cytoskeletal associations in agreement with previous reports.
Probing the stochastic, motor-driven properties of the cytoplasm using force spectrum microscopy
Guo, Ming; Ehrlicher, Allen J.; Jensen, Mikkel H.; Renz, Malte; Moore, Jeffrey R.; Goldman, Robert D.; Lippincott-Schwartz, Jennifer; Mackintosh, Frederick C.; Weitz, David A.
2014-01-01
SUMMARY Molecular motors in cells typically produce highly directed motion; however, the aggregate, incoherent effect of all active processes also creates randomly fluctuating forces, which drive diffusive-like, non-thermal motion. Here we introduce force-spectrum-microscopy (FSM) to directly quantify random forces within the cytoplasm of cells and thereby probe stochastic motor activity. This technique combines measurements of the random motion of probe particles with independent micromechanical measurements of the cytoplasm to quantify the spectrum of force fluctuations. Using FSM, we show that force fluctuations substantially enhance intracellular movement of small and large components. The fluctuations are three times larger in malignant cells than in their benign counterparts. We further demonstrate that vimentin acts globally to anchor organelles against randomly fluctuating forces in the cytoplasm, with no effect on their magnitude. Thus, FSM has broad applications for understanding the cytoplasm and its intracellular processes in relation to cell physiology in healthy and diseased states. PMID:25126787
Nonlinear Dynamics of Cantilever-Sample Interactions in Atomic Force Microscopy
NASA Technical Reports Server (NTRS)
Cantrell, John H.; Cantrell, Sean A.
2010-01-01
The interaction of the cantilever tip of an atomic force microscope (AFM) with the sample surface is obtained by treating the cantilever and sample as independent systems coupled by a nonlinear force acting between the cantilever tip and a volume element of the sample surface. The volume element is subjected to a restoring force from the remainder of the sample that provides dynamical equilibrium for the combined systems. The model accounts for the positions on the cantilever of the cantilever tip, laser probe, and excitation force (if any) via a basis set of set of orthogonal functions that may be generalized to account for arbitrary cantilever shapes. The basis set is extended to include nonlinear cantilever modes. The model leads to a pair of coupled nonlinear differential equations that are solved analytically using a matrix iteration procedure. The effects of oscillatory excitation forces applied either to the cantilever or to the sample surface (or to both) are obtained from the solution set and applied to the to the assessment of phase and amplitude signals generated by various acoustic-atomic force microscope (A-AFM) modalities. The influence of bistable cantilever modes of on AFM signal generation is discussed. The effects on the cantilever-sample surface dynamics of subsurface features embedded in the sample that are perturbed by surface-generated oscillatory excitation forces and carried to the cantilever via wave propagation are accounted by the Bolef-Miller propagating wave model. Expressions pertaining to signal generation and image contrast in A-AFM are obtained and applied to amplitude modulation (intermittent contact) atomic force microscopy and resonant difference-frequency atomic force ultrasonic microscopy (RDF-AFUM). The influence of phase accumulation in A-AFM on image contrast is discussed, as is the effect of hard contact and maximum nonlinearity regimes of A-AFM operation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Black, Jennifer M.; Zhu, Mengyang; Zhang, Pengfei
In this paper, atomic force microscopy (AFM) force-distance measurements are used to investigate the layered ion structure of Ionic Liquids (ILs) at the mica surface. The effects of various tip properties on the measured force profiles are examined and reveal that the measured ion position is independent of tip properties, while the tip radius affects the forces required to break through the ion layers as well as the adhesion force. Force data is collected for different ILs and directly compared with interfacial ion density profiles predicted by molecular dynamics. Through this comparison it is concluded that AFM force measurements aremore » sensitive to the position of the ion with the larger volume and mass, suggesting that ion selectivity in force-distance measurements are related to excluded volume effects and not to electrostatic or chemical interactions between ions and AFM tip. Finally, the comparison also revealed that at distances greater than 1 nm the system maintains overall electroneutrality between the AFM tip and sample, while at smaller distances other forces (e.g., van der waals interactions) dominate and electroneutrality is no longer maintained.« less
Black, Jennifer M.; Zhu, Mengyang; Zhang, Pengfei; ...
2016-09-02
In this paper, atomic force microscopy (AFM) force-distance measurements are used to investigate the layered ion structure of Ionic Liquids (ILs) at the mica surface. The effects of various tip properties on the measured force profiles are examined and reveal that the measured ion position is independent of tip properties, while the tip radius affects the forces required to break through the ion layers as well as the adhesion force. Force data is collected for different ILs and directly compared with interfacial ion density profiles predicted by molecular dynamics. Through this comparison it is concluded that AFM force measurements aremore » sensitive to the position of the ion with the larger volume and mass, suggesting that ion selectivity in force-distance measurements are related to excluded volume effects and not to electrostatic or chemical interactions between ions and AFM tip. Finally, the comparison also revealed that at distances greater than 1 nm the system maintains overall electroneutrality between the AFM tip and sample, while at smaller distances other forces (e.g., van der waals interactions) dominate and electroneutrality is no longer maintained.« less
Cellular Force Microscopy for in Vivo Measurements of Plant Tissue Mechanics1[W][OA
Routier-Kierzkowska, Anne-Lise; Weber, Alain; Kochova, Petra; Felekis, Dimitris; Nelson, Bradley J.; Kuhlemeier, Cris; Smith, Richard S.
2012-01-01
Although growth and morphogenesis are controlled by genetics, physical shape change in plant tissue results from a balance between cell wall loosening and intracellular pressure. Despite recent work demonstrating a role for mechanical signals in morphogenesis, precise measurement of mechanical properties at the individual cell level remains a technical challenge. To address this challenge, we have developed cellular force microscopy (CFM), which combines the versatility of classical microindentation techniques with the high automation and resolution approaching that of atomic force microscopy. CFM’s large range of forces provides the possibility to map the apparent stiffness of both plasmolyzed and turgid tissue as well as to perform micropuncture of cells using very high stresses. CFM experiments reveal that, within a tissue, local stiffness measurements can vary with the level of turgor pressure in an unexpected way. Altogether, our results highlight the importance of detailed physically based simulations for the interpretation of microindentation results. CFM’s ability to be used both to assess and manipulate tissue mechanics makes it a method of choice to unravel the feedbacks between mechanics, genetics, and morphogenesis. PMID:22353572
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schmutz, P.; Frankel, G.S.
1998-07-01
The localized corrosion of AA2024-T3, and the behavior of intermetallic particles in particular, were studied using different capabilities of the atomic force microscope (AFM). The role of intermetallic particles in determining the locations and rates of localized corrosion was determined using scanning Kelvin probe force microscopy in air after exposure to chloride solutions. Al-Cu-Mg particles, which have a noble Volta potential in air because of an altered surface film, are actively dissolved in chloride solution after a certain induction time. Al-Cu(Fe, Mn) particles are heterogeneous in nature and exhibit nonuniform dissolution in chloride solution as well as trenching of themore » matrix around the particles. Light scratching of the surface by rastering with the AFM tip in contact mode in chloride solution results in accelerated dissolution of both pure Al and alloy 2024-T3. The abrasion associated with contact AFM in situ resulted in the immediate dissolution of the Al-Cu-Mg particles because of a destabilization of the surface film.« less
Birukova, Anna A; Arce, Fernando T; Moldobaeva, Nurgul; Dudek, Steven M; Garcia, Joe G N; Lal, Ratnesh; Birukov, Konstantin G
2009-03-01
Actomyosin contraction directly regulates endothelial cell (EC) permeability, but intracellular redistribution of cytoskeletal tension associated with EC permeability is poorly understood. We used atomic force microscopy (AFM), EC permeability assays, and fluorescence microscopy to link barrier regulation, cell remodeling, and cytoskeletal mechanical properties in EC treated with barrier-protective as well as barrier-disruptive agonists. Thrombin, vascular endothelial growth factor, and hydrogen peroxide increased EC permeability, disrupted cell junctions, and induced stress fiber formation. Oxidized 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine, hepatocyte growth factor, and iloprost tightened EC barriers, enhanced peripheral actin cytoskeleton and adherens junctions, and abolished thrombin-induced permeability and EC remodeling. AFM force mapping and imaging showed differential distribution of cell stiffness: barrier-disruptive agonists increased stiffness in the central region, and barrier-protective agents decreased stiffness in the center and increased it at the periphery. Attenuation of thrombin-induced permeability correlates well with stiffness changes from the cell center to periphery. These results directly link for the first time the patterns of cell stiffness with specific EC permeability responses.
NASA Astrophysics Data System (ADS)
Bayburt, Timothy H.; Sligar, Stephen G.
2002-05-01
The architecture of membrane proteins in their native environment of the phospholipid bilayer is critical for understanding physiological function, but has been difficult to realize experimentally. In this communication we describe the incorporation of a membrane-anchored protein into a supported phospholipid bilayer. Cytochrome P450 2B4 solubilized and purified from the hepatic endoplasmic reticulum was incorporated into phospholipid bilayer nanostructures and oriented on a surface for visualization by atomic force microscopy. Individual P450 molecules were observed protruding from the bilayer surface. Problems associated with deformation of the protein by the atomic force microscopy probe were avoided by analyzing force-dependent height measurements to quantitate the height of the protein above the bilayer surface. Measurements of the atomic force microscopy cantilever deflection as a function of probe-sample separation reveal that the top of the P450 opposite the N-terminal membrane anchor region sits 3.5 nanometers above the phospholipid-water boundary. Models of the orientation of the enzyme are presented and discussed in relation to membrane interactions and interaction with cytochrome P450 reductase.
Atomic force microscopy imaging of fragments from the Martian meteorite ALH84001
NASA Technical Reports Server (NTRS)
Steele, A.; Goddard, D.; Beech, I. B.; Tapper, R. C.; Stapleton, D.; Smith, J. R.
1998-01-01
A combination of scanning electron microscopy (SEM) and environmental scanning electron microscopy (ESEM) techniques, as well as atomic force microscopy (AFM) methods has been used to study fragments of the Martian meteorite ALH84001. Images of the same areas on the meteorite were obtained prior to and following gold/palladium coating by mapping the surface of the fragment using ESEM coupled with energy-dispersive X-ray analysis. Viewing of the fragments demonstrated the presence of structures, previously described as nanofossils by McKay et al. (Search for past life on Mars--possible relic biogenic activity in martian meteorite ALH84001. Science, 1996, pp. 924-930) of NASA who used SEM imaging of gold-coated meteorite samples. Careful imaging of the fragments revealed that the observed structures were not an artefact introduced by the coating procedure.
Organic nanofibers from squarylium dyes: local morphology, optical, and electrical properties
NASA Astrophysics Data System (ADS)
Balzer, Frank; Schiek, Manuela; Osadnik, Andreas; Lützen, Arne; Rubahn, Horst-Günter
2012-02-01
Environmentally stable, non-toxic squarylium dyes with strong absorption maxima in the red and near infrared spectral region are known for almost fifty years. Despite the fact that their optoelectronic properties distinguish them as promising materials for organics based photovoltaic cells, they have regained attention only very recently. For their application in heterojunction solar cells knowledge of their nanoscopic morphology as well as nanoscopic electrical properties is paramount. In this paper thin films from two different squarylium dyes, from squarylium (SQ) and from hydroxy-squarylium (SQOH) are investigated. The thin films are either solution casted or vacuum sublimed onto substrates such as muscovite mica, which are known to promote self-assembly into oriented, crystalline nanostructures such as nanofibers. Local characterization is performed via (polarized) optical microscopy, scanning electron microscopy (SEM), atomic force microscopy (AFM), and Kelvin probe force microscopy (KPFM).
Hentschel, Carsten; Wagner, Hendrik; Smiatek, Jens; Heuer, Andreas; Fuchs, Harald; Zhang, Xi; Studer, Armido; Chi, Lifeng
2013-02-12
Herein we present a study on nonspecific binding of proteins at highly dense packed hydrophobic polystyrene brushes. In this context, an atomic force microscopy tip was functionalized with concanavalin A to perform single-molecule force spectroscopy measurements on polystyrene brushes with thicknesses of 10 and 60 nm, respectively. Polystyrene brushes with thickness of 10 nm show an almost two times stronger protein adsorption than brushes with a thickness of 60 nm: 72 pN for the thinner and 38 pN for the thicker layer, which is in qualitative agreement with protein adsorption studies conducted macroscopically by fluorescence microscopy.
Electrochemical force microscopy
Kalinin, Sergei V.; Jesse, Stephen; Collins, Liam F.; Rodriguez, Brian J.
2017-01-10
A system and method for electrochemical force microscopy are provided. The system and method are based on a multidimensional detection scheme that is sensitive to forces experienced by a biased electrode in a solution. The multidimensional approach allows separation of fast processes, such as double layer charging, and charge relaxation, and slow processes, such as diffusion and faradaic reactions, as well as capturing the bias dependence of the response. The time-resolved and bias measurements can also allow probing both linear (small bias range) and non-linear (large bias range) electrochemical regimes and potentially the de-convolution of charge dynamics and diffusion processes from steric effects and electrochemical reactivity.
NASA Astrophysics Data System (ADS)
Kaggwa, G. B.; Kilpatrick, J. I.; Sader, J. E.; Jarvis, S. P.
2008-07-01
We present definitive interaction measurements of a simple confined liquid (octamethylcyclotetrasiloxane) using artifact-free frequency modulation atomic force microscopy. We use existing theory to decouple the conservative and dissipative components of the interaction, for a known phase offset from resonance (90° phase shift), that has been deliberately introduced into the experiment. Further we show the qualitative influence on the conservative and dissipative components of the interaction of a phase error deliberately introduced into the measurement, highlighting that artifacts, such as oscillatory dissipation, can be readily observed when the phase error is not compensated for in the force analysis.
NASA Astrophysics Data System (ADS)
Kageshima, Masami; Takeda, Seiji; Ptak, Arkadiusz; Nakamura, Chikashi; Jarvis, Suzanne P.; Tokumoto, Hiroshi; Miyake, Jun
2004-12-01
A method for measuring intramolecular energy dissipation as well as stiffness variation in a single biomolecule in situ by atomic force microscopy (AFM) is presented. An AFM cantilever is magnetically modulated at an off-resonance frequency while it elongates a single peptide molecule in buffer solution. The molecular stiffness and the energy dissipation are measured via the amplitude and phase lag in the response signal. Data showing a peculiar feature in both profiles of stiffness and dissipation is presented. This suggests that the present method is more sensitive to the state of the molecule than the conventional force-elongation measurement is.
Beyer, Hannes; Wagner, Tino; Stemmer, Andreas
2016-01-01
Frequency-modulation atomic force microscopy has turned into a well-established method to obtain atomic resolution on flat surfaces, but is often limited to ultra-high vacuum conditions and cryogenic temperatures. Measurements under ambient conditions are influenced by variations of the dew point and thin water layers present on practically every surface, complicating stable imaging with high resolution. We demonstrate high-resolution imaging in air using a length-extension resonator operating at small amplitudes. An additional slow feedback compensates for changes in the free resonance frequency, allowing stable imaging over a long period of time with changing environmental conditions.
NASA Astrophysics Data System (ADS)
Kaysheva, A. L.; Pleshakova, T. O.; Kopylov, A. T.; Shumov, I. D.; Iourov, I. Y.; Vorsanova, S. G.; Yurov, Y. B.; Ziborov, V. S.; Archakov, A. I.; Ivanov, Y. D.
2017-10-01
Possibility of detection of target proteins associated with development of autistic disorders in children with use of combined atomic force microscopy and mass spectrometry (AFM/MS) method is demonstrated. The proposed method is based on the combination of affine enrichment of proteins from biological samples and visualization of these proteins by AFM and MS analysis with quantitative detection of target proteins.
Li, Yang; Bechhoefer, John
2009-01-01
We introduce an algorithm for calculating, offline or in real time and with no explicit system characterization, the feedforward input required for repetitive motions of a system. The algorithm is based on the secant method of numerical analysis and gives accurate motion at frequencies limited only by the signal-to-noise ratio and the actuator power and range. We illustrate the secant-solver algorithm on a stage used for atomic force microscopy.
Hu, Mingqian; Wang, Jiongkun; Cai, Jiye; Wu, Yangzhe; Wang, Xiaoping
2008-09-12
To date, nanoscale imaging of the morphological changes and adhesion force of CD4(+) T cells during in vitro activation remains largely unreported. In this study, we used atomic force microscopy (AFM) to study the morphological changes and specific binding forces in resting and activated human peripheral blood CD4(+) T cells. The AFM images revealed that the volume of activated CD4(+) T cells increased and the ultrastructure of these cells also became complex. Using a functionalized AFM tip, the strength of the specific binding force of the CD4 antigen-antibody interaction was found to be approximately three times that of the unspecific force. The adhesion forces were not randomly distributed over the surface of a single activated CD4(+) T cell, indicated that the CD4 molecules concentrated into nanodomains. The magnitude of the adhesion force of the CD4 antigen-antibody interaction did not change markedly with the activation time. Multiple bonds involved in the CD4 antigen-antibody interaction were measured at different activation times. These results suggest that the adhesion force involved in the CD4 antigen-antibody interaction is highly selective and of high affinity.
Modeling the superstorm in November 2003
NASA Astrophysics Data System (ADS)
Fok, Mei-Ching; Moore, Thomas E.; Slinker, Steve P.; Fedder, Joel A.; Delcourt, Dominique C.; Nosé, Masahito; Chen, Sheng-Hsien
2011-01-01
The superstorm on 20-21 November 2003 was the largest geomagnetic storm in solar cycle 23 as measured by Dst, which attained a minimum value of -422 nT. We have simulated this storm to understand how particles originating from the solar wind and ionosphere get access to the magnetosphere and how the subsequent transport and energization processes contribute to the buildup of the ring current. The global electromagnetic configuration and the solar wind H+ distribution are specified by the Lyon-Fedder-Mobarry (LFM) magnetohydrodynamics model. The outflow of H+ and O+ ions from the ionosphere are also considered. Their trajectories in the magnetosphere are followed by a test-particle code. The particle distributions at the inner plasma sheet established by the LFM model and test-particle calculations are then used as boundary conditions for a ring current model. Our simulations reproduce the rapid decrease of Dst during the storm main phase and the fast initial phase of recovery. Shielding in the inner magnetosphere is established at early main phase. This shielding field lasts several hours and then breaks down at late main phase. At the peak of the storm, strong penetration of ions earthward to L shell of 1.5 is revealed in the simulation. It is surprising that O+ is significant but not the dominant species in the ring current in our calculation for this major storm. It is very likely that substorm effects are not well represented in the models and O+ energization is underestimated. Ring current simulation with O+ energy density at the boundary set comparable to Geotail observations produces excellent agreement with the observed symH. As expected in superstorms, ring current O+ is the dominant species over H+ during the main to midrecovery phase of the storm.
NASA Astrophysics Data System (ADS)
Eshetu, W. W.; Lyon, J.; Wiltberger, M. J.; Hudson, M. K.
2017-12-01
Test particle simulations of electron injection by the bursty bulk flows (BBFs) have been done using a test particle tracer code [1], and the output fields of the Lyon-Feddor-Mobarry global magnetohydro- dynamics (MHD) code[2]. The MHD code was run with high resolu- tion (oct resolution), and with specified solar wind conditions so as to reproduce the observed qualitative picture of the BBFs [3]. Test par- ticles were injected so that they interact with earthward propagating BBFs. The result of the simulation shows that electrons are pushed ahead of the BBFs and accelerated into the inner magnetosphere. Once electrons are in the inner magnetosphere they are further energized by drift resonance with the azimuthal electric field. In addition pitch angle scattering of electrons resulting in the violation conservation of the first adiabatic invariant has been observed. The violation of the first adiabatic invariant occurs as electrons cross a weak magnetic field region with a strong gradient of the field perturbed by the BBFs. References 1. Kress, B. T., Hudson,M. K., Looper, M. D. , Albert, J., Lyon, J. G., and Goodrich, C. C. (2007), Global MHD test particle simulations of ¿ 10 MeV radiation belt electrons during storm sudden commencement, J. Geophys. Res., 112, A09215, doi:10.1029/2006JA012218. Lyon,J. G., Fedder, J. A., and Mobarry, C.M., The Lyon- Fedder-Mobarry (LFM) Global MHD Magnetospheric Simulation Code (2004), J. Atm. And Solar-Terrestrial Phys., 66, Issue 15-16, 1333- 1350,doi:10.1016/j.jastp. Wiltberger, Merkin, M., Lyon, J. G., and Ohtani, S. (2015), High-resolution global magnetohydrodynamic simulation of bursty bulk flows, J. Geophys. Res. Space Physics, 120, 45554566, doi:10.1002/2015JA021080.
Interaction of the geomagnetic field with northward interplanetary magnetic field
NASA Astrophysics Data System (ADS)
Bhattarai, Shree Krishna
The interaction of the solar wind with Earth's magnetic field causes the transfer of momentum and energy from the solar wind to geospace. The study of this interaction is gaining significance as our society is becoming more and more space based, due to which, predicting space weather has become more important. The solar wind interacts with the geomagnetic field primarily via two processes: viscous interaction and the magnetic reconnection. Both of these interactions result in the generation of an electric field in Earth's ionosphere. The overall topology and dynamics of the magnetosphere, as well as the electric field imposed on the ionosphere, vary with speed, density, and magnetic field orientation of the solar wind as well as the conductivity of the ionosphere. In this dissertation, I will examine the role of northward interplanetary magnetic field (IMF) and discuss the global topology of the magnetosphere and the interaction with the ionosphere using results obtained from the Lyon-Fedder-Mobarry (LFM) simulation. The electric potentials imposed on the ionosphere due to viscous interaction and magnetic reconnection are called the viscous and the reconnection potentials, respectively. A proxy to measure the overall effect of these potentials is to measure the cross polar potential (CPP). The CPP is defined as the difference between the maximum and the minimum of the potential in a given polar ionosphere. I will show results from the LFM simulation showing saturation of the CPP during periods with purely northward IMF of sufficiently large magnitude. I will further show that the viscous potential, which was assumed to be independent of IMF orientation until this work, is reduced during periods of northward IMF. Furthermore, I will also discuss the implications of these results for a simulation of an entire solar rotation.
NASA Astrophysics Data System (ADS)
Mulligan, Jeffrey A.; Adie, Steven G.
2017-02-01
Mechanobiology is an emerging field which seeks to link mechanical forces and properties to the behaviors of cells and tissues in cancer, stem cell growth, and other processes. Traction force microscopy (TFM) is an imaging technique that enables the study of traction forces exerted by cells on their environment to migrate as well as sense and manipulate their surroundings. To date, TFM research has been performed using incoherent imaging modalities and, until recently, has been largely confined to the study of cell-induced tractions within two-dimensions using highly artificial and controlled environments. As the field of mechanobiology advances, and demand grows for research in physiologically relevant 3D culture and in vivo models, TFM will require imaging modalities that support such settings. Optical coherence microscopy (OCM) is an interferometric imaging modality which enables 3D cellular resolution imaging in highly scattering environments. Moreover, optical coherence elastography (OCE) enables the measurement of tissue mechanical properties. OCE relies on the principle of measuring material deformations in response to artificially applied stress. By extension, similar techniques can enable the measurement of cell-induced deformations, imaged with OCM. We propose traction force optical coherence microscopy (TF-OCM) as a natural extension and partner to existing OCM and OCE methods. We report the first use of OCM data and digital image correlation to track temporally varying displacement fields exhibited within a 3D culture setting. These results mark the first steps toward the realization of TF-OCM in 2D and 3D settings, bolstering OCM as a platform for advancing research in mechanobiology.
Atomic force microscopy of atomic-scale ledges and etch pits formed during dissolution of quartz
NASA Technical Reports Server (NTRS)
Gratz, A. J.; Manne, S.; Hansma, P. K.
1991-01-01
The processes involved in the dissolution and growth of crystals are closely related. Atomic force microscopy (AFM) of faceted pits (called negative crystals) formed during quartz dissolution reveals subtle details of these underlying physical mechanisms for silicates. In imaging these surfaces, the AFM detected ledges less than 1 nm high that were spaced 10 to 90 nm apart. A dislocation pit, invisible to optical and scanning electron microscopy measurements and serving as a ledge source, was also imaged. These observations confirm the applicability of ledge-motion models to dissolution and growth of silicates; coupled with measurements of dissolution rate on facets, these methods provide a powerful tool for probing mineral surface kinetics.
NASA Astrophysics Data System (ADS)
Tsukamoto, Kazumi; Kuwazaki, Seigo; Yamamoto, Kimiko; Shichiri, Motoharu; Yoshino, Tomoyuki; Ohtani, Toshio; Sugiyama, Shigeru
2006-03-01
We have developed a method for dissecting chromosome fragments with a size of a few hundred nanometers by atomic force microscopy (AFM). By using this method, we demonstrated reproducible dissections of silkworm chromosomes in the pachytene phase. The dissected fragments were successfully recovered on the cantilever tips, as confirmed by fluorescent microscopy using fluorescent stained chromosomes. To recover dissected chromosome fragments from a larger chromosome, such as the human metaphase chromosome of a somatic cell, heat denaturation was found to be effective. Further improvements in this method may lead to a novel tool for isolating valuable genes and/or investigating local genome structures in the near future.
Langewisch, Gernot; Falter, Jens; Schirmeisen, André; Fuchs, Harald
2014-01-01
Perylene-3,4,9,10-tetracarboxylic dianhydride (PTCDA) adsorbed on a metal surface is a prototypical organic-anorganic interface. In the past, scanning tunneling microscopy and scanning tunneling spectroscopy studies of PTCDA adsorbed on Ag(111) have revealed differences in the electronic structure of the molecules depending on their adsorption geometry. In the work presented here, high-resolution 3D force spectroscopy measurements at cryogenic temperatures were performed on a surface area that contained a complete PTCDA unit cell with the two possible geometries. At small tip-molecule separations, deviations in the tip-sample forces were found between the two molecule orientations. These deviations can be explained by a different electron density in both cases. This result demonstrates the capability of 3D force spectroscopy to detect even small effects in the electronic properties of organic adsorbates.
Probing microbubble targeting with atomic force microscopy.
Sboros, V; Glynos, E; Ross, J A; Moran, C M; Pye, S D; Butler, M; McDicken, W N; Brown, S B; Koutsos, V
2010-10-01
Microbubble science is expanding beyond ultrasound imaging applications to biological targeting and drug/gene delivery. The characteristics of molecular targeting should be tested by a measurement system that can assess targeting efficacy and strength. Atomic force microscopy (AFM) is capable of piconewton force resolution, and is reported to measure the strength of single hydrogen bonds. An in-house targeted microbubble modified using the biotin-avidin chemistry and the CD31 antibody was used to probe cultures of Sk-Hep1 hepatic endothelial cells. We report that the targeted microbubbles provide a single distribution of adhesion forces with a median of 93pN. This interaction is assigned to the CD31 antibody-antigen unbinding event. Information on the distances between the interaction forces was obtained and could be important for future microbubble fabrication. In conclusion, the capability of single microbubbles to target cell lines was shown to be feasible with AFM.
Force-controlled manipulation of single cells: from AFM to FluidFM.
Guillaume-Gentil, Orane; Potthoff, Eva; Ossola, Dario; Franz, Clemens M; Zambelli, Tomaso; Vorholt, Julia A
2014-07-01
The ability to perturb individual cells and to obtain information at the single-cell level is of central importance for addressing numerous biological questions. Atomic force microscopy (AFM) offers great potential for this prospering field. Traditionally used as an imaging tool, more recent developments have extended the variety of cell-manipulation protocols. Fluidic force microscopy (FluidFM) combines AFM with microfluidics via microchanneled cantilevers with nano-sized apertures. The crucial element of the technology is the connection of the hollow cantilevers to a pressure controller, allowing their operation in liquid as force-controlled nanopipettes under optical control. Proof-of-concept studies demonstrated a broad spectrum of single-cell applications including isolation, deposition, adhesion and injection in a range of biological systems. Copyright © 2014 Elsevier Ltd. All rights reserved.
2011-01-01
We report on the use of three different atomic force spectroscopy modalities to determine the nanomechanical properties of amyloid fibrils of the human α-synuclein protein. α-Synuclein forms fibrillar nanostructures of approximately 10 nm diameter and lengths ranging from 100 nm to several microns, which have been associated with Parkinson's disease. Atomic force microscopy (AFM) has been used to image the morphology of these protein fibrils deposited on a flat surface. For nanomechanical measurements, we used single-point nanoindentation, in which the AFM tip as the indenter is moved vertically to the fibril surface and back while the force is being recorded. We also used two recently developed AFM surface property mapping techniques: Harmonic force microscopy (HarmoniX) and Peakforce QNM. These modalities allow extraction of mechanical parameters of the surface with a lateral resolution and speed comparable to tapping-mode AFM imaging. Based on this phenomenological study, the elastic moduli of the α-synuclein fibrils determined using these three different modalities are within the range 1.3-2.1 GPa. We discuss the relative merits of these three methods for the determination of the elastic properties of protein fibrils, particularly considering the differences and difficulties of each method. PMID:21711775
Analysis of leaf surfaces using scanning ion conductance microscopy.
Walker, Shaun C; Allen, Stephanie; Bell, Gordon; Roberts, Clive J
2015-05-01
Leaf surfaces are highly complex functional systems with well defined chemistry and structure dictating the barrier and transport properties of the leaf cuticle. It is a significant imaging challenge to analyse the very thin and often complex wax-like leaf cuticle morphology in their natural state. Scanning electron microscopy (SEM) and to a lesser extent Atomic force microscopy are techniques that have been used to study the leaf surface but their remains information that is difficult to obtain via these approaches. SEM is able to produce highly detailed and high-resolution images needed to study leaf structures at the submicron level. It typically operates in a vacuum or low pressure environment and as a consequence is generally unable to deal with the in situ analysis of dynamic surface events at submicron scales. Atomic force microscopy also possess the high-resolution imaging required and can follow dynamic events in ambient and liquid environments, but can over exaggerate small features and cannot image most leaf surfaces due to their inherent roughness at the micron scale. Scanning ion conductance microscopy (SICM), which operates in a liquid environment, provides a potential complementary analytical approach able to address these issues and which is yet to be explored for studying leaf surfaces. Here we illustrate the potential of SICM on various leaf surfaces and compare the data to SEM and atomic force microscopy images on the same samples. In achieving successful imaging we also show that SICM can be used to study the wetting of hydrophobic surfaces in situ. This has potentially wider implications than the study of leaves alone as surface wetting phenomena are important in a range of fundamental and applied studies. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, I. K.; Jeong, Y. H., E-mail: yhj@postech.ac.kr; Kim, Jeehoon
2015-04-13
LuFe{sub 2}O{sub 4} is a multiferroic system which exhibits charge order, ferroelectricity, and ferrimagnetism simultaneously below ∼230 K. The ferroelectric/charge order domains of LuFe{sub 2}O{sub 4} are imaged with both piezoresponse force microscopy (PFM) and electrostatic force microscopy (EFM), while the magnetic domains are characterized by magnetic force microscopy (MFM). Comparison of PFM and EFM results suggests that the proposed ferroelectricity in LuFe{sub 2}O{sub 4} is not of usual displacive type but of electronic origin. Simultaneous characterization of ferroelectric/charge order and magnetic domains by EFM and MFM, respectively, on the same surface of LuFe{sub 2}O{sub 4} reveals that both domains havemore » irregular patterns of similar shape, but the length scales are quite different. The domain size is approximately 100 nm for the ferroelectric domains, while the magnetic domain size is much larger and gets as large as 1 μm. We also demonstrate that the origin of the formation of irregular domains in LuFe{sub 2}O{sub 4} is not extrinsic but intrinsic.« less
NASA Technical Reports Server (NTRS)
Lin, Yuh-Lang; Kaplan, Michael L.
1992-01-01
Work performed during the report period is summarized. The first numerical experiment which was performed on the North Carolina Supercomputer Center's CRAY-YMP machine during the second half of FY92 involved a 36 hour simulation of the CCOPE case study. This first coarse-mesh simulation employed the GMASS model with a 178 x 108 x 32 matrix of grid points spaced approximately 24 km apart. The initial data was comprised of the global 2.5 x 2.5 degree analyses as well as all available North American rawinsonde data valid at 0000 UTC 11 July 1981. Highly-smoothed LFM-derived terrain data were utilized so as to determine the mesoscale response of the three-dimensional atmosphere to weak terrain forcing prior to including the observed highly complex terrain of the northern Rocky Mountain region. It was felt that the model should be run with a spectrum of terrain geometries, ranging from observed complex terrain to no terrain at all, to determine how crucial the terrain was in forcing the mesoscale phenomena. Both convection and stratiform (stable) precipitation were not allowed in this simulation so that their relative importance could be determined by inclusion in forth-coming simulations. A full suite of planetary boundary layer forcing was allowed in the simulation, including surface sensible and latent heat fluxes employing the Blakadar PBL formulation. The details of this simulation, which in many ways could be considered the control simulation, including the important synoptic-scale, meso-alpha scale, and meso-beta scale circulations is described. These results are compared to the observations diagnosed by Koch and his colleagues as well as hypotheses set forth in the project proposal for terrain-influences upon the jet stream and their role in the generation of mesoscale wave phenomenon. The fundamental goal of the analyses being the discrimination among background geostrophic adjustment, terrain influences, and shearing instability in the initiation and maintainance of mesoscale internal wave phenomena. Based upon these findings, FY93 plans are discussed. A review of linear theory and theoretical modeling of a geostrophic zonal wind anomaly is included.
NASA Astrophysics Data System (ADS)
Rodriguez, Brian Joseph
Nanoscale characterization of the piezoelectric and polarization related properties of III-Nitrides by piezoresponse force microscopy (PFM), electrostatic force microscopy (EFM) and scanning Kelvin probe microscopy (SKPM) resulted in the measurement of piezoelectric constants, surface charge and surface potential. Photo-electron emission microscopy (PEEM) was used to determine the local electronic band structure of a GaN-based lateral polarity heterostructure (GaN-LPH). Nanoscale characterization of the imprint and switching behavior of ferroelectric thin films by PFM resulted in the observation of domain pinning, while nanoscale characterization of the spatial variations in the imprint and switching behavior of integrated (111)-oriented PZT-based ferroelectric random access memory (FRAM) capacitors by PFM have revealed a significant difference in imprint and switching behavior between the inner and outer parts of capacitors. The inner regions of the capacitors are typically negatively imprinted and consequently tend to switch back after being poled by a positive bias, while regions at the edge of the capacitors tend to exhibit more symmetric hysteresis behavior. Evidence was obtained indicating that mechanical stress conditions in the central regions of the capacitors can lead to incomplete switching. A combination of vertical and lateral piezoresponse force microscopy (VPFM and LPFM, respectively) has been used to map the out-of-plane and in-plane polarization distribution, respectively, of integrated (111)-oriented PZT-based capacitors, which revealed poled capacitors are in a polydomain state.
Zuo, Yi Y.; Keating, Eleonora; Zhao, Lin; Tadayyon, Seyed M.; Veldhuizen, Ruud A. W.; Petersen, Nils O.; Possmayer, Fred
2008-01-01
Monolayers of a functional pulmonary surfactant (PS) can reach very low surface tensions well below their equilibrium value. The mechanism by which PS monolayers reach such low surface tensions and maintain film stability remains unknown. As shown previously by fluorescence microscopy, phospholipid phase transition and separation seem to be important for the normal biophysical properties of PS. This work studied phospholipid phase transitions and separations in monolayers of bovine lipid extract surfactant using atomic force microscopy. Atomic force microscopy showed phospholipid phase separation on film compression and a monolayer-to-multilayer transition at surface pressure 40–50 mN/m. The tilted-condensed phase consisted of domains not only on the micrometer scale, as detected previously by fluorescence microscopy, but also on the nanometer scale, which is below the resolution limits of conventional optical methods. The nanodomains were embedded uniformly within the liquid-expanded phase. On compression, the microdomains broke up into nanodomains, thereby appearing to contribute to tilted-condensed and liquid-expanded phase remixing. Addition of surfactant protein A altered primarily the nanodomains and promoted the formation of multilayers. We conclude that the nanodomains play a predominant role in affecting the biophysical properties of PS monolayers and the monolayer-to-multilayer transition. PMID:18212010
NASA Astrophysics Data System (ADS)
Rominu, Roxana O.; Rominu, Mihai; Negrutiu, Meda Lavinia; Sinescu, Cosmin; Pop, Daniela; Petrescu, Emanuela
2010-12-01
PURPOSE: The goal of our study was to investigate the changes in enamel surface roughess induced by the application of different chemical substances by atomic force microscopy and scanning electron microscopy. METHOD: Five sound human first upper premolar teeth were chosen for the study. The buccal surface of each tooth was treated with a different chemical agent as follows: Sample 1 - 38% phosphoric acid etching (30s) , sample 2 - no surface treatment (control sample), 3 - bleaching with 37.5 % hydrogen peroxide (according to the manufacturer's instructions), 4 - conditioning with a self-etching primer (15 s), 5 - 9.6 % hydrofluoric acid etching (30s). All samples were investigated by atomic force microscopy in a non-contact mode and by scanning electron microscopy. Several images were obtained for each sample, showing evident differences regarding enamel surface morphology. The mean surface roughness and the mean square roughness were calculated and compared. RESULTS: All chemical substances led to an increased surface roughness. Phosphoric acid led to the highest roughness while the control sample showed the lowest. Hydrofluoric acid also led to an increase in surface roughness but its effects have yet to be investigated due to its potential toxicity. CONCLUSIONS: By treating the human enamel with the above mentioned chemical compounds a negative microretentive surface is obtained, with a morphology depending on the applied substance.
Distinguishing ferritin from apoferritin using magnetic force microscopy
NASA Astrophysics Data System (ADS)
Nocera, Tanya M.; Zeng, Yuzhi; Agarwal, Gunjan
2014-11-01
Estimating the amount of iron-replete ferritin versus iron-deficient apoferritin proteins is important in biomedical and nanotechnology applications. This work introduces a simple and novel approach to quantify ferritin by using magnetic force microscopy (MFM). We demonstrate how high magnetic moment probes enhance the magnitude of MFM signal, thus enabling accurate quantitative estimation of ferritin content in ferritin/apoferritin mixtures in vitro. We envisage MFM could be adapted to accurately determine ferritin content in protein mixtures or in small aliquots of clinical samples.
Phase control of austenitic chrome-nickel steel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Korkh, M. K., E-mail: KorkhMK@imp.uran.ru; Davidov, D. I., E-mail: davidov@imp.uran.ru; Korkh, J. V., E-mail: Korkh@imp.uran.ru
2015-10-27
The paper presents the results of the comparative study of the possibilities of different structural and magnetic methods for detection and visualization of the strain-induced martensitic phase in low carbon austenitic chromium-nickel steel. Results of TEM, SEM, optical microscopy, atomic and magnetic force microscopy, and magnetic measurements are presented. Amount of the magnetic strain-induced martensite was estimated. We pioneered magnetic force microscopic images of the single domain cluster distribution of the strain-induced martensite in austenite-ferrite materials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weis, Tanja; Engel, Dieter; Ehresmann, Arno
2008-12-15
A quantitative analysis of magnetic force microscopy (MFM) images taken in external in-plane magnetic fields is difficult because of the influence of the magnetic field on the magnetization state of the magnetic probe tip. We prepared calibration samples by ion bombardment induced magnetic patterning with a topographically flat magnetic pattern magnetically stable in a certain external magnetic field range for a quantitative characterization of the MFM probe tip magnetization in point-dipole approximation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eren, B.; Material Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720; Gysin, U.
2016-01-25
Few layer graphene and graphite are simultaneously grown on a ∼100 nm thick polycrystalline nickel film. The work function of few layer graphene/Ni is found to be 4.15 eV with a variation of 50 meV by local measurements with Kelvin probe force microscopy. This value is lower than the work function of free standing graphene due to peculiar electronic structure resulting from metal 3d-carbon 2p(π) hybridization.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Campbell, A.N.; Cole, E.I. Jr.; Dodd, B.A.
This invited paper describes recently reported work on the application of magnetic force microscopy (MFM) to image currents in IC conductors [1]. A computer model for MFM imaging of IC currents and experimental results demonstrating the ability to determine current direction and magnitude with a resolution of {approximately} 1 mA dc and {approximately} 1 {mu}A ac are presented. The physics of MFM signal generation and applications to current imaging and measurement are described.
NASA Astrophysics Data System (ADS)
Prasanth, R.; Nair, Greshma; Girish, C. M.
2011-10-01
Recent studies in drug development have shown that curcumin can be a good competent due to its improved anticancer, antioxidant, anti-proliferative, and anti-inflammatory activities. A detailed real time characterization of drug (curcumin)-cell interaction is carried out in human nasopharyngeal cancer cells using atomic force microscopy. Nanocurcumin shows an enhanced uptake over micron sized drugs attributed to the receptor mediated route. Cell membrane stiffness plays a critical role in the drug endocytosis in nasopharyngeal cancer cells.
The effects of viscoelastic polymer substrates on adult stem cell differentiation
NASA Astrophysics Data System (ADS)
Chang, Chungchueh; Fields, Adam; Ramek, Alex; Jurukovski, Vladimir; Simon, Marcia; Rafailovich, Miriam
2009-03-01
Dental Pulp Stem Cells (DPSCs) are known to differentiate in either bone, dentine, or nerve tissue by different environment signals. In this study, we have determined whether differentiation could only through modification of the substrate mechanics. Atomic Force Microscopy (AFM) on Shear Modulation Force Microscopy (SMFM) mode indicated that the spun-cast polybutadiene (PB) thin films could be used to provide different stiffness substrates by changing the thicknesses of thin films. DPSCs were then plated on these substrates and cultured in standard media. After 28 days incubation, Lasar Scanning Confocal Microscopy (LSCM) with mercury lamp indicated that the crystals were observed only on hard surfaces. The Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray analysis (EDX analysis) indicated that the crystals are calcium phosphates. The Glancing Incidence Diffraction (GID) was also used to determine the structure of crystals. These results indicate that DPSCs could be differentiated into osteoblasts by mechanical stimuli from substrate mechanics.
Suzuki, Yuki; Sakai, Nobuaki; Yoshida, Aiko; Uekusa, Yoshitsugu; Yagi, Akira; Imaoka, Yuka; Ito, Shuichi; Karaki, Koichi; Takeyasu, Kunio
2013-01-01
A hybrid atomic force microscopy (AFM)-optical fluorescence microscopy is a powerful tool for investigating cellular morphologies and events. However, the slow data acquisition rates of the conventional AFM unit of the hybrid system limit the visualization of structural changes during cellular events. Therefore, high-speed AFM units equipped with an optical/fluorescence detection device have been a long-standing wish. Here we describe the implementation of high-speed AFM coupled with an optical fluorescence microscope. This was accomplished by developing a tip-scanning system, instead of a sample-scanning system, which operates on an inverted optical microscope. This novel device enabled the acquisition of high-speed AFM images of morphological changes in individual cells. Using this instrument, we conducted structural studies of living HeLa and 3T3 fibroblast cell surfaces. The improved time resolution allowed us to image dynamic cellular events. PMID:23823461
Suzuki, Yuki; Sakai, Nobuaki; Yoshida, Aiko; Uekusa, Yoshitsugu; Yagi, Akira; Imaoka, Yuka; Ito, Shuichi; Karaki, Koichi; Takeyasu, Kunio
2013-01-01
A hybrid atomic force microscopy (AFM)-optical fluorescence microscopy is a powerful tool for investigating cellular morphologies and events. However, the slow data acquisition rates of the conventional AFM unit of the hybrid system limit the visualization of structural changes during cellular events. Therefore, high-speed AFM units equipped with an optical/fluorescence detection device have been a long-standing wish. Here we describe the implementation of high-speed AFM coupled with an optical fluorescence microscope. This was accomplished by developing a tip-scanning system, instead of a sample-scanning system, which operates on an inverted optical microscope. This novel device enabled the acquisition of high-speed AFM images of morphological changes in individual cells. Using this instrument, we conducted structural studies of living HeLa and 3T3 fibroblast cell surfaces. The improved time resolution allowed us to image dynamic cellular events.
Matteini, Paolo; Sbrana, Francesca; Tiribilli, Bruno; Pini, Roberto
2009-07-01
Low-temperature laser welding of the cornea is a technique used to facilitate the closure of corneal cuts. The procedure consists of staining the wound with a chromophore (indocyanine green), followed by continuous wave irradiation with an 810 nm diode laser operated at low power densities (12-16 W/cm(2)), which induces local heating in the 55-65 degrees C range. In this study, we aimed to investigate the ultrastructural modifications in the extracellular matrix following laser welding of corneal wounds by means of atomic force microscopy and transmission electron microscopy. The results evidenced marked disorganization of the normal fibrillar assembly, although collagen appeared not to be denatured under the operating conditions we employed. The mechanism of low-temperature laser welding may be related to some structural modifications of the nonfibrillar extracellular components of the corneal stroma.
NASA Astrophysics Data System (ADS)
Ossola, Dario; Dorwling-Carter, Livie; Dermutz, Harald; Behr, Pascal; Vörös, János; Zambelli, Tomaso
2015-12-01
We combined scanning ion conductance microscopy (SICM) and atomic force microscopy (AFM) into a single tool using AFM cantilevers with an embedded microchannel flowing into the nanosized aperture at the apex of the hollow pyramid. An electrode was positioned in the AFM fluidic circuit connected to a second electrode in the bath. We could thus simultaneously measure the ionic current and the cantilever bending (in optical beam deflection mode). First, we quantitatively compared the SICM and AFM contact points on the approach curves. Second, we estimated where the probe in SICM mode touches the sample during scanning on a calibration grid and applied the finding to image a network of neurites on a Petri dish. Finally, we assessed the feasibility of a double controller using both the ionic current and the deflection as input signals of the piezofeedback. The experimental data were rationalized in the framework of finite elements simulations.
NASA Astrophysics Data System (ADS)
Morton, Kirstin Claire
Carbon is one of the most remarkable elements due to its wide abundance on Earth and its many allotropes, which include diamond and graphite. Many carbon allotropes are conductive and in recent decades scientists have discovered and synthesized many new forms of carbon, including graphene and carbon nanotubes. The work in this thesis specifically focuses on the fabrication and characterization of pyrolyzed parylene C (PPC), a conductive pyrocarbon, as an electrode material for diodes, as a conductive coating for atomic force microscopy (AFM) probes and as an ultramicroelectrode (UME) for the electrochemical interrogation of cellular systems in vitro. Herein, planar and three-dimensional (3D) PPC electrodes were microscopically, spectroscopically and electrochemically characterized. First, planar PPC films and PPC-coated nanopipettes were utilized to detect a model redox species, Ru(NH3) 6Cl3. Then, free-standing PPC thin films were chemically doped, with hydrazine and concentrated nitric acid, to yield p- and n-type carbon films. Doped PPC thin films were positioned in conjunction with doped silicon to create Schottky and p-n junction diodes for use in an alternating current half-wave rectifier circuit. Pyrolyzed parylene C has found particular merit as a 3D electrode coating of AFM probes. Current sensing-atomic force microscopy imaging in air of nanoscale metallic features was undertaken to demonstrate the electronic imaging applicability of PPC AFM probes. Upon further insulation with parylene C and modification with a focused ion beam, a PPC UME was microfabricated near the AFM probe apex and utilized for electrochemical imaging. Subsequently, scanning electrochemical microscopy-atomic force microscopy imaging was undertaken to electrochemically quantify and image the spatial location of dopamine exocytotic release, elicited mechanically via the AFM probe itself, from differentiated pheochromocytoma 12 cells in vitro.
Churnside, Allison B; Sullan, Ruby May A; Nguyen, Duc M; Case, Sara O; Bull, Matthew S; King, Gavin M; Perkins, Thomas T
2012-07-11
Force drift is a significant, yet unresolved, problem in atomic force microscopy (AFM). We show that the primary source of force drift for a popular class of cantilevers is their gold coating, even though they are coated on both sides to minimize drift. Drift of the zero-force position of the cantilever was reduced from 900 nm for gold-coated cantilevers to 70 nm (N = 10; rms) for uncoated cantilevers over the first 2 h after wetting the tip; a majority of these uncoated cantilevers (60%) showed significantly less drift (12 nm, rms). Removing the gold also led to ∼10-fold reduction in reflected light, yet short-term (0.1-10 s) force precision improved. Moreover, improved force precision did not require extended settling; most of the cantilevers tested (9 out of 15) achieved sub-pN force precision (0.54 ± 0.02 pN) over a broad bandwidth (0.01-10 Hz) just 30 min after loading. Finally, this precision was maintained while stretching DNA. Hence, removing gold enables both routine and timely access to sub-pN force precision in liquid over extended periods (100 s). We expect that many current and future applications of AFM can immediately benefit from these improvements in force stability and precision.
Keratocytes Generate Traction Forces in Two PhasesV⃞
Burton, Kevin; Park, Jung H.; Taylor, D. Lansing
1999-01-01
Forces generated by goldfish keratocytes and Swiss 3T3 fibroblasts have been measured with nanonewton precision and submicrometer spatial resolution. Differential interference contrast microscopy was used to visualize deformations produced by traction forces in elastic substrata, and interference reflection microscopy revealed sites of cell-substratum adhesions. Force ranged from a few nanonewtons at submicrometer spots under the lamellipodium to several hundred nanonewtons under the cell body. As cells moved forward, centripetal forces were applied by lamellipodia at sites that remained stationary on the substratum. Force increased and abruptly became lateral at the boundary of the lamellipodium and the cell body. When the cell retracted at its posterior margin, cell-substratum contact area decreased more rapidly than force, so that stress (force divided by area) increased as the cell pulled away. An increase in lateral force was associated with widening of the cell body. These mechanical data suggest an integrated, two-phase mechanism of cell motility: (1) low forces in the lamellipodium are applied in the direction of cortical flow and cause the cell body to be pulled forward; and (2) a component of force at the flanks pulls the rear margins forward toward the advancing cell body, whereas a large lateral component contributes to detachment of adhesions without greatly perturbing forward movement. PMID:10564269
Keratocytes generate traction forces in two phases.
Burton, K; Park, J H; Taylor, D L
1999-11-01
Forces generated by goldfish keratocytes and Swiss 3T3 fibroblasts have been measured with nanonewton precision and submicrometer spatial resolution. Differential interference contrast microscopy was used to visualize deformations produced by traction forces in elastic substrata, and interference reflection microscopy revealed sites of cell-substratum adhesions. Force ranged from a few nanonewtons at submicrometer spots under the lamellipodium to several hundred nanonewtons under the cell body. As cells moved forward, centripetal forces were applied by lamellipodia at sites that remained stationary on the substratum. Force increased and abruptly became lateral at the boundary of the lamellipodium and the cell body. When the cell retracted at its posterior margin, cell-substratum contact area decreased more rapidly than force, so that stress (force divided by area) increased as the cell pulled away. An increase in lateral force was associated with widening of the cell body. These mechanical data suggest an integrated, two-phase mechanism of cell motility: (1) low forces in the lamellipodium are applied in the direction of cortical flow and cause the cell body to be pulled forward; and (2) a component of force at the flanks pulls the rear margins forward toward the advancing cell body, whereas a large lateral component contributes to detachment of adhesions without greatly perturbing forward movement.
The application of atomic force microscopy in mineral flotation.
Xing, Yaowen; Xu, Mengdi; Gui, Xiahui; Cao, Yijun; Babel, Bent; Rudolph, Martin; Weber, Stefan; Kappl, Michael; Butt, Hans-Jürgen
2018-06-01
During the past years, atomic force microscopy (AFM) has matured to an indispensable tool to characterize nanomaterials in colloid and interface science. For imaging, a sharp probe mounted near to the end of a cantilever scans over the sample surface providing a high resolution three-dimensional topographic image. In addition, the AFM tip can be used as a force sensor to detect local properties like adhesion, stiffness, charge etc. After the invention of the colloidal probe technique it has also become a major method to measure surface forces. In this review, we highlight the advances in the application of AFM in the field of mineral flotation, such as mineral morphology imaging, water at mineral surface, reagent adsorption, inter-particle force, and bubble-particle interaction. In the coming years, the complementary characterization of chemical composition such as using infrared spectroscopy and Raman spectroscopy for AFM topography imaging and the synchronous measurement of the force and distance involving deformable bubble as a force sensor will further assist the fundamental understanding of flotation mechanism. Copyright © 2018 Elsevier B.V. All rights reserved.
Atomic Force Microscopy of Biological Membranes
Frederix, Patrick L.T.M.; Bosshart, Patrick D.; Engel, Andreas
2009-01-01
Abstract Atomic force microscopy (AFM) is an ideal method to study the surface topography of biological membranes. It allows membranes that are adsorbed to flat solid supports to be raster-scanned in physiological solutions with an atomically sharp tip. Therefore, AFM is capable of observing biological molecular machines at work. In addition, the tip can be tethered to the end of a single membrane protein, and forces acting on the tip upon its retraction indicate barriers that occur during the process of protein unfolding. Here we discuss the fundamental limitations of AFM determined by the properties of cantilevers, present aspects of sample preparation, and review results achieved on reconstituted and native biological membranes. PMID:19167286
NASA Astrophysics Data System (ADS)
Santos, Sergio; Barcons, Victor; Christenson, Hugo K.; Billingsley, Daniel J.; Bonass, William A.; Font, Josep; Thomson, Neil H.
2013-08-01
A way to operate fundamental mode amplitude modulation atomic force microscopy is introduced which optimizes stability and resolution for a given tip size and shows negligible tip wear over extended time periods (˜24 h). In small amplitude small set-point (SASS) imaging, the cantilever oscillates with sub-nanometer amplitudes in the proximity of the sample, without the requirement of using large drive forces, as the dynamics smoothly lead the tip to the surface through the water layer. SASS is demonstrated on single molecules of double-stranded DNA in ambient conditions where sharp silicon tips (R ˜ 2-5 nm) can resolve the right-handed double helix.
NASA Astrophysics Data System (ADS)
Sweetman, A.; Jarvis, S.; Danza, R.; Bamidele, J.; Kantorovich, L.; Moriarty, P.
2011-08-01
We use small-amplitude qPlus frequency modulated atomic force microscopy (FM-AFM), at 5 K, to investigate the atomic-scale mechanical stability of the Si(100) surface. By operating at zero applied bias the effect of tunneling electrons is eliminated, demonstrating that surface manipulation can be performed by solely mechanical means. Striking differences in surface response are observed between different regions of the surface, most likely due to variations in strain associated with the presence of surface defects. We investigate the variation in local energy surface by ab initio simulation, and comment on the dynamics observed during force spectroscopy.
Preparation and atomic force microscopy of CTAB stabilized polythiophene nanoparticles thin film
DOE Office of Scientific and Technical Information (OSTI.GOV)
Graak, Pinki; Devi, Ranjna; Kumar, Dinesh
2016-05-06
Polythiophene nanoparticles were synthesized by iron catalyzed oxidative polymerization method. Polythiophene formation was detected by UV-Visible spectroscopy with λmax 375nm. Thin films of CTAB stabilized polythiophene nanoparticles was deposited on n-type silicon wafer by spin coating technique at 3000rpm in three cycles. Thickness of the thin films was computed as 300-350nm by ellipsometry. Atomic force micrscopyrevealws the particle size of polymeric nanoparticles in the range of 30nm to 100nm. Roughness of thinfilm was also analyzed from the atomic force microscopy data by Picoimage software. The observed RMS value lies in the range of 6 nm to 12 nm.
Simulating contrast inversion in atomic force microscopy imaging with real-space pseudopotentials
NASA Astrophysics Data System (ADS)
Lee, Alex; Sakai, Yuki; Chelikowsky, James
Atomic force microscopy measurements have reported contrast inversions for systems such as Cu2N and graphene that can hamper image interpretation and characterization. Here, we apply a simulation method based on ab initio real-space pseudopotentials to gain an understanding of the tip-sample interactions that influence the inversion. We find that chemically reactive tips induce an attractive binding force that results in the contrast inversion. The inversion is tip height dependent and not observed when using less reactive CO-functionalized tips. Work is supported by the DOE under DOE/DE-FG02-06ER46286 and by the Welch Foundation under Grant F-1837. Computational resources were provided by NERSC and XSEDE.
On the origin of amplitude reduction mechanism in tapping mode atomic force microscopy
NASA Astrophysics Data System (ADS)
Keyvani, Aliasghar; Sadeghian, Hamed; Goosen, Hans; van Keulen, Fred
2018-04-01
The origin of amplitude reduction in Tapping Mode Atomic Force Microscopy (TM-AFM) is typically attributed to the shift in resonance frequency of the cantilever due to the nonlinear tip-sample interactions. In this paper, we present a different insight into the same problem which, besides explaining the amplitude reduction mechanism, provides a simple reasoning for the relationship between tip-sample interactions and operation parameters (amplitude and frequency). The proposed formulation, which attributes the amplitude reduction to an interference between the tip-sample and dither force, only deals with the linear part of the system; however, it fully agrees with experimental results and numerical solutions of the full nonlinear model of TM-AFM.
Xiao, Chuanxiao; Jiang, Chun-Sheng; Johnston, Steve; ...
2017-10-18
Reliability has become an increasingly important issue as photovoltaic technologies mature. However, researching reliability at the nanometer scale is in its infancy; in particular, in-situ studies have not been reported to date. Here, to investigate potential-induced degradation (PID) of solar cell modules, we have developed an in-situ stressing capability with applied high voltage (HV) and high temperature (HT) on an atomic force microscopy (AFM) platform. We designed a sample holder to simultaneously accommodate 1000-V HV and 200 degrees C HT stressing. Three technical challenges have been overcome along with the development: thermal drift at HT, HV interference with measurement, andmore » arc discharge caused by HV. We demonstrated no observable measurement artifact under the stress conditions. Based on our in-situ stressing AFM, Kelvin probe force microscopy potential imaging revealed the evolution of electrical potential across the junction along with the PID stressing time, which provides vital information to further study the PID mechanism.« less
Single-molecule imaging of DNA polymerase I (Klenow fragment) activity by atomic force microscopy
NASA Astrophysics Data System (ADS)
Chao, J.; Zhang, P.; Wang, Q.; Wu, N.; Zhang, F.; Hu, J.; Fan, C. H.; Li, B.
2016-03-01
We report a DNA origami-facilitated single-molecule platform that exploits atomic force microscopy to study DNA replication. We imaged several functional activities of the Klenow fragment of E. coli DNA polymerase I (KF) including binding, moving, and dissociation from the template DNA. Upon completion of these actions, a double-stranded DNA molecule was formed. Furthermore, the direction of KF activities was captured and then confirmed by shifting the KF binding sites on the template DNA.We report a DNA origami-facilitated single-molecule platform that exploits atomic force microscopy to study DNA replication. We imaged several functional activities of the Klenow fragment of E. coli DNA polymerase I (KF) including binding, moving, and dissociation from the template DNA. Upon completion of these actions, a double-stranded DNA molecule was formed. Furthermore, the direction of KF activities was captured and then confirmed by shifting the KF binding sites on the template DNA. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr06544e
Force modulation and electrochemical gating of conductance in a cytochrome
NASA Astrophysics Data System (ADS)
Davis, Jason J.; Peters, Ben; Xi, Wang
2008-09-01
Scanning probe methods have been used to measure the effect of electrochemical potential and applied force on the tunnelling conductance of the redox metalloprotein yeast iso-1-cytochrome c (YCC) at a molecular level. The interaction of a proximal probe with any sample under test will, at this scale, be inherently perturbative. This is demonstrated with conductive probe atomic force microscopy (CP-AFM) current-voltage spectroscopy in which YCC, chemically adsorbed onto pristine Au(111) via its surface cysteine residue, is observed to become increasingly compressed as applied load is increased, with concomitant decrease in junction resistance. Electrical contact at minimal perturbation, where probe-molecule coupling is comparable to that in scanning tunnelling microscopy, brings with it the observation of negative differential resistance, assigned to redox-assisted probe-substrate tunnelling. The role of the redox centre in conductance is also resolved in electrochemical scanning tunnelling microscopy assays where molecular conductance is electrochemically gateable through more than an order of magnitude.
NASA Astrophysics Data System (ADS)
Stolz, Martin; Gottardi, Riccardo; Raiteri, Roberto; Miot, Sylvie; Martin, Ivan; Imer, Raphaël; Staufer, Urs; Raducanu, Aurelia; Düggelin, Marcel; Baschong, Werner; Daniels, A. U.; Friederich, Niklaus F.; Aszodi, Attila; Aebi, Ueli
2009-03-01
The pathological changes in osteoarthritis-a degenerative joint disease prevalent among older people-start at the molecular scale and spread to the higher levels of the architecture of articular cartilage to cause progressive and irreversible structural and functional damage. At present, there are no treatments to cure or attenuate the degradation of cartilage. Early detection and the ability to monitor the progression of osteoarthritis are therefore important for developing effective therapies. Here, we show that indentation-type atomic force microscopy can monitor age-related morphological and biomechanical changes in the hips of normal and osteoarthritic mice. Early damage in the cartilage of osteoarthritic patients undergoing hip or knee replacements could similarly be detected using this method. Changes due to aging and osteoarthritis are clearly depicted at the nanometre scale well before morphological changes can be observed using current diagnostic methods. Indentation-type atomic force microscopy may potentially be developed into a minimally invasive arthroscopic tool to diagnose the early onset of osteoarthritis in situ.
NASA Astrophysics Data System (ADS)
Rahe, Philipp; Smith, Emily F.; Wollschläger, Joachim; Moriarty, Philip J.
2018-03-01
We investigate the CaF1/Si (111 ) interface using a combination of high-resolution scanning tunneling and noncontact atomic force microscopy operated at cryogenic temperature as well as x-ray photoelectron spectroscopy. Submonolayer CaF1 films grown at substrate temperatures between 550 and 600 ∘C on Si (111 ) surfaces reveal the existence of two island types that are distinguished by their edge topology, nucleation position, measured height, and inner defect structure. Our data suggest a growth model where the two island types are the result of two reaction pathways during CaF1 interface formation. A key difference between these two pathways is identified to arise from the excess species during the growth process, which can be either fluorine or silicon. Structural details as a result of this difference are identified by means of high-resolution noncontact atomic force microscopy and add insights into the growth mode of this heteroepitaxial insulator-on-semiconductor system.
Magnetic force microscopy with frequency-modulated capacitive tip-sample distance control
NASA Astrophysics Data System (ADS)
Zhao, X.; Schwenk, J.; Mandru, A. O.; Penedo, M.; Baćani, M.; Marioni, M. A.; Hug, H. J.
2018-01-01
In a step towards routinely achieving 10 nm spatial resolution with magnetic force microscopy, we have developed a robust method for active tip-sample distance control based on frequency modulation of the cantilever oscillation. It allows us to keep a well-defined tip-sample distance of the order of 10 nm within better than +/- 0.4 nm precision throughout the measurement even in the presence of energy dissipative processes, and is adequate for single-passage non-contact operation in vacuum. The cantilever is excited mechanically in a phase-locked loop to oscillate at constant amplitude on its first flexural resonance mode. This frequency is modulated by an electrostatic force gradient generated by tip-sample bias oscillating from a few hundred Hz up to a few kHz. The sum of the side bands’ amplitudes is a proxy for the tip-sample distance and can be used for tip-sample distance control. This method can also be extended to other scanning probe microscopy techniques.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiao, Chuanxiao; Jiang, Chun-Sheng; Johnston, Steve
Reliability has become an increasingly important issue as photovoltaic technologies mature. However, researching reliability at the nanometer scale is in its infancy; in particular, in-situ studies have not been reported to date. Here, to investigate potential-induced degradation (PID) of solar cell modules, we have developed an in-situ stressing capability with applied high voltage (HV) and high temperature (HT) on an atomic force microscopy (AFM) platform. We designed a sample holder to simultaneously accommodate 1000-V HV and 200 degrees C HT stressing. Three technical challenges have been overcome along with the development: thermal drift at HT, HV interference with measurement, andmore » arc discharge caused by HV. We demonstrated no observable measurement artifact under the stress conditions. Based on our in-situ stressing AFM, Kelvin probe force microscopy potential imaging revealed the evolution of electrical potential across the junction along with the PID stressing time, which provides vital information to further study the PID mechanism.« less
NASA Astrophysics Data System (ADS)
Marchetti, S.; Sbrana, F.; Toscano, A.; Fratini, E.; Carlà, M.; Vassalli, M.; Tiribilli, B.; Pacini, A.; Gambi, C. M. C.
2011-05-01
The three-dimensional structure and the mechanical properties of a β-connectin fragment from human cardiac muscle, belonging to the I band, from I27 to I34, were investigated by small-angle x-ray scattering (SAXS) and single-molecule force spectroscopy (SMFS). This molecule presents an entropic elasticity behavior, associated to globular domain unfolding, that has been widely studied in the last 10 years. In addition, atomic force microscopy based SMFS experiments suggest that this molecule has an additional elastic regime, for low forces, probably associated to tertiary structure remodeling. From a structural point of view, this behavior is a mark of the fact that the eight domains in the I27-I34 fragment are not independent and they organize in solution, assuming a well-defined three-dimensional structure. This hypothesis has been confirmed by SAXS scattering, both on a diluted and a concentrated sample. Two different models were used to fit the SAXS curves: one assuming a globular shape and one corresponding to an elongated conformation, both coupled with a Coulomb repulsion potential to take into account the protein-protein interaction. Due to the predominance of the structure factor, the effective shape of the protein in solution could not be clearly disclosed. By performing SMFS by atomic force microscopy, mechanical unfolding properties were investigated. Typical sawtooth profiles were obtained and the rupture force of each unfolding domain was estimated. By fitting a wormlike chain model to each peak of the sawtooth profile, the entropic elasticity of octamer was described.
Jarvis, Sam; Danza, Rosanna; Moriarty, Philip
2012-01-01
Summary Background: Noncontact atomic force microscopy (NC-AFM) now regularly produces atomic-resolution images on a wide range of surfaces, and has demonstrated the capability for atomic manipulation solely using chemical forces. Nonetheless, the role of the tip apex in both imaging and manipulation remains poorly understood and is an active area of research both experimentally and theoretically. Recent work employing specially functionalised tips has provided additional impetus to elucidating the role of the tip apex in the observed contrast. Results: We present an analysis of the influence of the tip apex during imaging of the Si(100) substrate in ultra-high vacuum (UHV) at 5 K using a qPlus sensor for noncontact atomic force microscopy (NC-AFM). Data demonstrating stable imaging with a range of tip apexes, each with a characteristic imaging signature, have been acquired. By imaging at close to zero applied bias we eliminate the influence of tunnel current on the force between tip and surface, and also the tunnel-current-induced excitation of silicon dimers, which is a key issue in scanning probe studies of Si(100). Conclusion: A wide range of novel imaging mechanisms are demonstrated on the Si(100) surface, which can only be explained by variations in the precise structural configuration at the apex of the tip. Such images provide a valuable resource for theoreticians working on the development of realistic tip structures for NC-AFM simulations. Force spectroscopy measurements show that the tip termination critically affects both the short-range force and dissipated energy. PMID:22428093
2001-06-06
Atomic force microscopy uses laser technology to reveal a defect, a double-screw dislocation, on the surface of this crystal of canavalin, a major source of dietary protein for humans and domestic animals. When a crystal grows, attachment kinetics and transport kinetics are competing for control of the molecules. As a molecule gets close to the crystal surface, it has to attach properly for the crystal to be usable. NASA has funded investigators to look at those attachment kinetics from a theoretical standpoint and an experimental standpoint. Dr. Alex McPherson of the University of California, Irvine, is one of those investigators. He uses X-ray diffraction and atomic force microscopy in his laboratory to answer some of the many questions about how protein crystals grow. Atomic force microscopy provides a means of looking at how individual molecules are added to the surface of growing protein crystals. This helps McPherson understand the kinetics of protein crystal growth. McPherson asks, How fast do crystals grow? What are the forces involved? Investigators funded by NASA have clearly shown that such factors as the level of supersaturation and the rate of growth all affect the habit [characteristic arrangement of facets] of the crystal and the defects that occur in the crystal.
NASA Technical Reports Server (NTRS)
2001-01-01
Atomic force microscopy uses laser technology to reveal a defect, a double-screw dislocation, on the surface of this crystal of canavalin, a major source of dietary protein for humans and domestic animals. When a crystal grows, attachment kinetics and transport kinetics are competing for control of the molecules. As a molecule gets close to the crystal surface, it has to attach properly for the crystal to be usable. NASA has funded investigators to look at those attachment kinetics from a theoretical standpoint and an experimental standpoint. Dr. Alex McPherson of the University of California, Irvine, is one of those investigators. He uses X-ray diffraction and atomic force microscopy in his laboratory to answer some of the many questions about how protein crystals grow. Atomic force microscopy provides a means of looking at how individual molecules are added to the surface of growing protein crystals. This helps McPherson understand the kinetics of protein crystal growth. McPherson asks, How fast do crystals grow? What are the forces involved? Investigators funded by NASA have clearly shown that such factors as the level of supersaturation and the rate of growth all affect the habit [characteristic arrangement of facets] of the crystal and the defects that occur in the crystal.
Characterization of virus-like particles by atomic force microscopy in ambient conditions
NASA Astrophysics Data System (ADS)
Oropesa, Reinier; Ramos, Jorge R.; Falcón, Viviana; Felipe, Ariel
2013-06-01
Recombinant virus-like particles (VLPs) are attractive candidates for vaccine design since they resemble native viroids in size and morphology, but they are non-infectious due to the absence of a viral genome. The visualization of surface morphologies and structures can be used to deepen the understanding of physical, chemical, and biological phenomena. Atomic force microscopy (AFM) is a useful tool for the visualization of soft biological samples in a nanoscale resolution. In this work we have investigated the morphology of recombinant surface antigens of hepatitis B (rHBsAg) VLPs from Cuban vaccine against hepatitis B. The rHBsAg VLPs sizes estimated by AFM between 15 and 30 nm are similar to those reported on previous transmission electron microscopy (TEM) studies.
Formation of pentacene wetting layer on the SiO2 surface and charge trap in the wetting layer.
Kim, Chaeho; Jeon, D
2008-09-01
We studied the early-stage growth of vacuum-evaporated pentacene film on a native SiO(2) surface using atomic force microscopy and in-situ spectroscopic ellipsometry. Pentacene deposition prompted an immediate change in the ellipsometry spectra, but atomic force microscopy images of the early stage films did not show a pentacene-related morphology other than the decrease in the surface roughness. This suggested that a thin pentacene wetting layer was formed by pentacene molecules lying on the surface before the crystalline islands nucleated. Growth simulation based on the in situ spectroscopic ellipsometry spectra supported this conclusion. Scanning capacitance microscopy measurement indicated the existence of trapped charges in the SiO(2) and pentacene wetting layer.
Kelvin Probe Force Microscopy in liquid using Electrochemical Force Microscopy
Collins, Liam; Jesse, Stephen; Kilpatrick, J.; ...
2015-01-19
Conventional closed loop-Kelvin probe force microscopy (KPFM) has emerged as a powerful technique for probing electric and transport phenomena at the solid-gas interface. The extension of KPFM capabilities to probe electrostatic and electrochemical phenomena at the solid–liquid interface is of interest for a broad range of applications from energy storage to biological systems. However, the operation of KPFM implicitly relies on the presence of a linear lossless dielectric in the probe-sample gap, a condition which is violated for ionically-active liquids (e.g., when diffuse charge dynamics are present). Here, electrostatic and electrochemical measurements are demonstrated in ionically-active (polar isopropanol, milli-Q watermore » and aqueous NaCl) and ionically-inactive (non-polar decane) liquids by electrochemical force microscopy (EcFM), a multidimensional (i.e., bias- and time-resolved) spectroscopy method. In the absence of mobile charges (ambient and non-polar liquids), KPFM and EcFM are both feasible, yielding comparable contact potential difference (CPD) values. In ionically-active liquids, KPFM is not possible and EcFM can be used to measure the dynamic CPD and a rich spectrum of information pertaining to charge screening, ion diffusion, and electrochemical processes (e.g., Faradaic reactions). EcFM measurements conducted in isopropanol and milli-Q water over Au and highly ordered pyrolytic graphite electrodes demonstrate both sample- and solvent-dependent features. Finally, the feasibility of using EcFM as a local force-based mapping technique of material-dependent electrostatic and electrochemical response is investigated. The resultant high dimensional dataset is visualized using a purely statistical approach that does not require a priori physical models, allowing for qualitative mapping of electrostatic and electrochemical material properties at the solid–liquid interface.« less
Shan, Yuping; Wang, Hongda
2015-06-07
The cell membrane is one of the most complicated biological complexes, and long-term fierce debates regarding the cell membrane persist because of technical hurdles. With the rapid development of nanotechnology and single-molecule techniques, our understanding of cell membranes has substantially increased. Atomic force microscopy (AFM) has provided several unprecedented advances (e.g., high resolution, three-dimensional and in situ measurements) in the study of cell membranes and has been used to systematically dissect the membrane structure in situ from both sides of membranes; as a result, novel models of cell membranes have recently been proposed. This review summarizes the new progress regarding membrane structure using in situ AFM and single-molecule force spectroscopy (SMFS), which may shed light on the study of the structure and functions of cell membranes.
Drive-amplitude-modulation atomic force microscopy: From vacuum to liquids
Jaafar, Miriam; Cuenca, Mariano; Melcher, John; Raman, Arvind
2012-01-01
Summary We introduce drive-amplitude-modulation atomic force microscopy as a dynamic mode with outstanding performance in all environments from vacuum to liquids. As with frequency modulation, the new mode follows a feedback scheme with two nested loops: The first keeps the cantilever oscillation amplitude constant by regulating the driving force, and the second uses the driving force as the feedback variable for topography. Additionally, a phase-locked loop can be used as a parallel feedback allowing separation of the conservative and nonconservative interactions. We describe the basis of this mode and present some examples of its performance in three different environments. Drive-amplutide modulation is a very stable, intuitive and easy to use mode that is free of the feedback instability associated with the noncontact-to-contact transition that occurs in the frequency-modulation mode. PMID:22563531
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu Mingqian; Wang Jiongkun; Cai Jiye
2008-09-12
To date, nanoscale imaging of the morphological changes and adhesion force of CD4{sup +} T cells during in vitro activation remains largely unreported. In this study, we used atomic force microscopy (AFM) to study the morphological changes and specific binding forces in resting and activated human peripheral blood CD4{sup +} T cells. The AFM images revealed that the volume of activated CD4{sup +} T cells increased and the ultrastructure of these cells also became complex. Using a functionalized AFM tip, the strength of the specific binding force of the CD4 antigen-antibody interaction was found to be approximately three times thatmore » of the unspecific force. The adhesion forces were not randomly distributed over the surface of a single activated CD4{sup +} T cell, indicated that the CD4 molecules concentrated into nanodomains. The magnitude of the adhesion force of the CD4 antigen-antibody interaction did not change markedly with the activation time. Multiple bonds involved in the CD4 antigen-antibody interaction were measured at different activation times. These results suggest that the adhesion force involved in the CD4 antigen-antibody interaction is highly selective and of high affinity.« less
Miyazawa, Keisuke; Kobayashi, Naritaka; Watkins, Matthew; Shluger, Alexander L; Amano, Ken-ichi; Fukuma, Takeshi
2016-04-07
Hydration plays important roles in various solid-liquid interfacial phenomena. Very recently, three-dimensional scanning force microscopy (3D-SFM) has been proposed as a tool to visualise solvated surfaces and their hydration structures with lateral and vertical (sub) molecular resolution. However, the relationship between the 3D force map obtained and the equilibrium water density, ρ(r), distribution above the surface remains an open question. Here, we investigate this relationship at an interface of an inorganic mineral, fluorite, and water. The force maps measured in pure water are directly compared to force maps generated using the solvent tip approximation (STA) model and from explicit molecular dynamics simulations. The results show that the simulated STA force map describes the major features of the experimentally obtained force image. The agreement between the STA data and the experiment establishes the correspondence between the water density used as an input to the STA model and the experimental hydration structure and thus provides a tool to bridge the experimental force data and atomistic solvation structures. Further applications of this method should improve the accuracy and reliability of both interpretation of 3D-SFM force maps and atomistic simulations in a wide range of solid-liquid interfacial phenomena.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morawski, Ireneusz; Institute of Experimental Physics, University of Wrocław, pl. M. Borna 9, 50-204 Wrocław; Spiegelberg, Richard
A method which allows scanning tunneling microscopy (STM) tip biasing independent of the sample bias during frequency modulated atomic force microscopy (AFM) operation is presented. The AFM sensor is supplied by an electronic circuit combining both a frequency shift signal and a tunneling current signal by means of an inductive coupling. This solution enables a control of the tip potential independent of the sample potential. Individual tip biasing is specifically important in order to implement multi-tip STM/AFM applications. An extensional quartz sensor (needle sensor) with a conductive tip is applied to record simultaneously topography and conductivity of the sample. Themore » high resonance frequency of the needle sensor (1 MHz) allows scanning of a large area of the surface being investigated in a reasonably short time. A recipe for the amplitude calibration which is based only on the frequency shift signal and does not require the tip being in contact is presented. Additionally, we show spectral measurements of the mechanical vibration noise of the scanning system used in the investigations.« less
Maji, Debashis; Das, Soumen
2018-03-01
Crack free electrically continuous metal thin films over soft elastomeric substrates play an integral part in realization of modern day flexible bioelectronics and biosensors. Under nonoptimized deposition conditions, delamination, and/or cracking of the top film as well as the underlying soft substrate hinders optimal performance of these devices. Hence it is very important to understand and control not only the various deposition factors like power, time, or deposition pressure but also investigate the various interfacial physics playing a critical role in assuring thin film adhesion and substrate compliancy. In the present study, various nanomechanical information of the underlying substrate, namely, crack profile, average roughness, Young's modulus, and adhesion force were studied for uncracked and cracked polydimethylsiloxane (PDMS) surfaces along with pristine and conventional plasma treated PDMS samples as control. Quantification of the above parameters were done using three-dimensional surface profiler, scanning electron microscopy, nanoindentation, and atomic force microscopy techniques to elucidate the modulus range, average roughness, and adhesion force. Comparative analysis with control revealed remarkable similarity between increased modulus values, increased surface roughness, and reduced adhesion force accounting for reduced substrate compliancy and resulting in film cracking or buckling which are critical for development of various bioflexible devices. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 725-737, 2018. © 2017 Wiley Periodicals, Inc.
Atomic Force Microscopy: A Powerful Tool to Address Scaffold Design in Tissue Engineering.
Marrese, Marica; Guarino, Vincenzo; Ambrosio, Luigi
2017-02-13
Functional polymers currently represent a basic component of a large range of biological and biomedical applications including molecular release, tissue engineering, bio-sensing and medical imaging. Advancements in these fields are driven by the use of a wide set of biodegradable polymers with controlled physical and bio-interactive properties. In this context, microscopy techniques such as Atomic Force Microscopy (AFM) are emerging as fundamental tools to deeply investigate morphology and structural properties at micro and sub-micrometric scale, in order to evaluate the in time relationship between physicochemical properties of biomaterials and biological response. In particular, AFM is not only a mere tool for screening surface topography, but may offer a significant contribution to understand surface and interface properties, thus concurring to the optimization of biomaterials performance, processes, physical and chemical properties at the micro and nanoscale. This is possible by capitalizing the recent discoveries in nanotechnologies applied to soft matter such as atomic force spectroscopy to measure surface forces through force curves. By tip-sample local interactions, several information can be collected such as elasticity, viscoelasticity, surface charge densities and wettability. This paper overviews recent developments in AFM technology and imaging techniques by remarking differences in operational modes, the implementation of advanced tools and their current application in biomaterials science, in terms of characterization of polymeric devices in different forms (i.e., fibres, films or particles).
Microscopy basics and the study of actin-actin-binding protein interactions.
Thomasson, Maggie S; Macnaughtan, Megan A
2013-12-15
Actin is a multifunctional eukaryotic protein with a globular monomer form that polymerizes into a thin, linear microfilament in cells. Through interactions with various actin-binding proteins (ABPs), actin plays an active role in many cellular processes, such as cell motility and structure. Microscopy techniques are powerful tools for determining the role and mechanism of actin-ABP interactions in these processes. In this article, we describe the basic concepts of fluorescent speckle microscopy, total internal reflection fluorescence microscopy, atomic force microscopy, and cryoelectron microscopy and review recent studies that utilize these techniques to visualize the binding of actin with ABPs. Copyright © 2013 Elsevier Inc. All rights reserved.
Chaos in Atomic Force Microscopy
NASA Astrophysics Data System (ADS)
Hu, Shuiqing; Raman, Arvind
2006-01-01
Chaotic oscillations of microcantilever tips in dynamic atomic force microscopy (AFM) are reported and characterized. Systematic experiments performed using a variety of microcantilevers under a wide range of operating conditions indicate that softer AFM microcantilevers bifurcate from periodic to chaotic oscillations near the transition from the noncontact to the tapping regimes. Careful Lyapunov exponent and noise titration calculations of the tip oscillation data confirm their chaotic nature. AFM images taken by scanning the chaotically oscillating tips over the sample show small, but significant metrology errors at the nanoscale due to this “deterministic” uncertainty.
NASA Astrophysics Data System (ADS)
Kwak, Musun; Chung, Hanrok; Kwon, Hyukmin; Kim, Jehyun; Han, Daekyung; Yi, Yoonseon; Lee, Sangmun; Lee, Chulgu; Cha, Sooyoul
Using frictional force microscopy (FFM), the friction surface characteristics were compared between twisted nematic (TN) mode and vertical alignment (VA) mode alignment films (AFs). The friction asymmetry was detected depending on temperature conditions on TN mode AF, but not on VA mode AF. The difference between two modes was explained by leaning intermolecular repulsion caused by the pre-tilt angle uniformity and the density of side chain. No level difference according to temperature conditions appeared when the pre-tilt angle were measured after liquid crystal (LC) injection.
High-speed atomic force microscopy coming of age
NASA Astrophysics Data System (ADS)
Ando, Toshio
2012-02-01
High-speed atomic force microscopy (HS-AFM) is now materialized. It allows direct visualization of dynamic structural changes and dynamic processes of functioning biological molecules in physiological solutions, at high spatiotemporal resolution. Dynamic molecular events unselectively appear in detail in an AFM movie, facilitating our understanding of how biological molecules operate to function. This review describes a historical overview of technical development towards HS-AFM, summarizes elementary devices and techniques used in the current HS-AFM, and then highlights recent imaging studies. Finally, future challenges of HS-AFM studies are briefly discussed.
Multimode resistive switching in nanoscale hafnium oxide stack as studied by atomic force microscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hou, Y., E-mail: houyi@pku.edu.cn, E-mail: lfliu@pku.edu.cn; IMEC, Kapeldreef 75, B-3001 Heverlee; Department of Physics and Astronomy, KU Leuven, Celestijnenlaan 200D, B-3001 Heverlee
2016-07-11
The nanoscale resistive switching in hafnium oxide stack is investigated by the conductive atomic force microscopy (C-AFM). The initial oxide stack is insulating and electrical stress from the C-AFM tip induces nanometric conductive filaments. Multimode resistive switching can be observed in consecutive operation cycles at one spot. The different modes are interpreted in the framework of a low defect quantum point contact theory. The model implies that the optimization of the conductive filament active region is crucial for the future application of nanoscale resistive switching devices.
NASA Astrophysics Data System (ADS)
Fukuma, Takeshi; Higgins, Michael J.; Jarvis, Suzanne P.
2007-03-01
Various metal cations in physiological solutions interact with lipid headgroups in biological membranes, having an impact on their structure and stability, yet little is known about the molecular-scale dynamics of the lipid-ion interactions. Here we directly investigate the extensive lipid-ion interaction networks and their transient formation between headgroups in a dipalmitoylphosphatidylcholine bilayer under physiological conditions. The spatial distribution of ion occupancy is imaged in real space by frequency modulation atomic force microscopy with sub-Ångstrom resolution.
Electrochemical atomic force microscopy: In situ monitoring of electrochemical processes
NASA Astrophysics Data System (ADS)
Reggente, Melania; Passeri, Daniele; Rossi, Marco; Tamburri, Emanuela; Terranova, Maria Letizia
2017-08-01
The in-situ electrodeposition of polyaniline (PANI), one of the most attractive conducting polymers (CP), has been monitored performing electrochemical atomic force microscopy (EC-AFM) experiments. The electropolymerization of PANI on a Pt working electrode has been observed performing cyclic voltammetry experiments and controlling the evolution of current flowing through the electrode surface, together with a standard AFM image. The working principle and the potentialities of this emerging technique are briefly reviewed and factors limiting the studying of the in-situ electrosynthesis of organic compounds discussed.
Atomic force microscope-assisted scanning tunneling spectroscopy under ambient conditions.
Vakhshouri, Amin; Hashimoto, Katsushi; Hirayama, Yoshiro
2014-12-01
We have developed a method of atomic force microscopy (AFM)-assisted scanning tunneling spectroscopy (STS) under ambient conditions. An AFM function is used for rapid access to a selected position prior to performing STS. The AFM feedback is further used to suppress vertical thermal drift of the tip-sample distance during spectroscopy, enabling flexible and stable spectroscopy measurements at room temperature. © The Author 2014. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Photoassisted Kelvin probe force microscopy at GaN surfaces: The role of polarity
NASA Astrophysics Data System (ADS)
Wei, J. D.; Li, S. F.; Atamuratov, A.; Wehmann, H.-H.; Waag, A.
2010-10-01
The behavior of GaN surfaces during photoassisted Kelvin probe force microscopy is demonstrated to be strongly dependant on surface polarity. The surface photovoltage of GaN surfaces illuminated with above-band gap light is analyzed as a function of time and light intensity. Distinct differences between Ga-polar and N-polar surfaces could be identified, attributed to photoinduced chemisorption of oxygen during illumination. These differences can be used for a contactless, nondestructive, and easy-performable analysis of the polarity of GaN surfaces.
NASA Astrophysics Data System (ADS)
Latorre, Carmen; Bhushan, Bharat
2005-07-01
Tribological properties are useful in the study of human hair and other biological materials. Major sources of investigation for conditioner treated hair includes localization of conditioner, mechanisms related to changes in surface roughness, friction, and adhesion on the nanoscale due to conditioner agents, and how the products change the microstructure of the cuticle. The paper presents nanotribological studies investigating surface roughness, friction, and adhesion using atomic force/friction force microscopy (AFM/FFM). Test samples include virgin and chemically damaged hair, both with and without commercial conditioner treatment, as well as chemically damaged hair with experimental conditioner treatments. Friction force mapping provides insight into the localized change in friction caused by the application of hair care materials. Adhesive force maps to study adhesion on the cuticle surface provide information about localization and distribution of conditioner as well. A discussion is presented on these properties of hair as a function of relative humidity, temperature, durability, and conditioning treatments.
Three dimensional force balance of asymmetric droplets
NASA Astrophysics Data System (ADS)
Kim, Yeseul; Lim, Su Jin; Cho, Kun; Weon, Byung Mook
2016-11-01
An equilibrium contact angle of a droplet is determined by a horizontal force balance among vapor, liquid, and solid, which is known as Young's law. Conventional wetting law is valid only for axis-symmetric droplets, whereas real droplets are often asymmetric. Here we show that three-dimensional geometry must be considered for a force balance for asymmetric droplets. By visualizing asymmetric droplets placed on a free-standing membrane in air with X-ray microscopy, we are able to identify that force balances in one side and in other side control pinning behaviors during evaporation of droplets. We find that X-ray microscopy is powerful for realizing the three-dimensional force balance, which would be essential in interpretation and manipulation of wetting, spreading, and drying dynamics for asymmetric droplets. This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2016R1D1A1B01007133).
Schein, Perry; Kang, Pilgyu; O'Dell, Dakota; Erickson, David
2015-02-11
Direct measurements of particle-surface interactions are important for characterizing the stability and behavior of colloidal and nanoparticle suspensions. Current techniques are limited in their ability to measure pico-Newton scale interaction forces on submicrometer particles due to signal detection limits and thermal noise. Here we present a new technique for making measurements in this regime, which we refer to as nanophotonic force microscopy. Using a photonic crystal resonator, we generate a strongly localized region of exponentially decaying, near-field light that allows us to confine small particles close to a surface. From the statistical distribution of the light intensity scattered by the particle we are able to map out the potential well of the trap and directly quantify the repulsive force between the nanoparticle and the surface. As shown in this Letter, our technique is not limited by thermal noise, and therefore, we are able to resolve interaction forces smaller than 1 pN on dielectric particles as small as 100 nm in diameter.
NASA Astrophysics Data System (ADS)
Hoof, Sebastian; Nand Gosvami, Nitya; Hoogenboom, Bart W.
2012-12-01
Dynamic-mode atomic force microscopy (AFM) in liquid remains complicated due to the strong viscous damping of the cantilever resonance. Here, we show that a high-quality resonance (Q >20) can be achieved in aqueous solution by attaching a microgram-bead at the end of the nanogram-cantilever. The resulting increase in cantilever mass causes the resonance frequency to drop significantly. However, the force sensitivity—as expressed via the minimum detectable force gradient—is hardly affected, because of the enhanced quality factor. Through the enhancement of the quality factor, the attached bead also reduces the relative importance of noise in the deflection detector. It can thus yield an improved signal-to-noise ratio when this detector noise is significant. We describe and analyze these effects for a set-up that includes magnetic actuation of the cantilevers and that can be easily implemented in any AFM system that is compatible with an inverted optical microscope.
Anselmetti, Dario; Bartels, Frank Wilco; Becker, Anke; Decker, Björn; Eckel, Rainer; McIntosh, Matthew; Mattay, Jochen; Plattner, Patrik; Ros, Robert; Schäfer, Christian; Sewald, Norbert
2008-02-19
Tunable and switchable interaction between molecules is a key for regulation and control of cellular processes. The translation of the underlying physicochemical principles to synthetic and switchable functional entities and molecules that can mimic the corresponding molecular functions is called reverse molecular engineering. We quantitatively investigated autoinducer-regulated DNA-protein interaction in bacterial gene regulation processes with single atomic force microscopy (AFM) molecule force spectroscopy in vitro, and developed an artificial bistable molecular host-guest system that can be controlled and regulated by external signals (UV light exposure and thermal energy). The intermolecular binding functionality (affinity) and its reproducible and reversible switching has been proven by AFM force spectroscopy at the single-molecule level. This affinity-tunable optomechanical switch will allow novel applications with respect to molecular manipulation, nanoscale rewritable molecular memories, and/or artificial ion channels, which will serve for the controlled transport and release of ions and neutral compounds in the future.
Phase modulation atomic force microscope with true atomic resolution
NASA Astrophysics Data System (ADS)
Fukuma, Takeshi; Kilpatrick, Jason I.; Jarvis, Suzanne P.
2006-12-01
We have developed a dynamic force microscope (DFM) working in a novel operation mode which is referred to as phase modulation atomic force microscopy (PM-AFM). PM-AFM utilizes a fixed-frequency excitation signal to drive a cantilever, which ensures stable imaging even with occasional tip crash and adhesion to the surface. The tip-sample interaction force is detected as a change of the phase difference between the cantilever deflection and excitation signals and hence the time response is not influenced by the Q factor of the cantilever. These features make PM-AFM more suitable for high-speed imaging than existing DFM techniques such as amplitude modulation and frequency modulation atomic force microscopies. Here we present the basic principle of PM-AFM and the theoretical limit of its performance. The design of the developed PM-AFM is described and its theoretically limited noise performance is demonstrated. Finally, we demonstrate the true atomic resolution imaging capability of the developed PM-AFM by imaging atomic-scale features of mica in water.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lomboy, Gilson; Sundararajan, Sriram, E-mail: srirams@iastate.edu; Wang Kejin
2011-11-15
A method for determining Hamaker constant of cementitious materials is presented. The method involved sample preparation, measurement of adhesion force between the tested material and a silicon nitride probe using atomic force microscopy in dry air and in water, and calculating the Hamaker constant using appropriate contact mechanics models. The work of adhesion and Hamaker constant were computed from the pull-off forces using the Johnson-Kendall-Roberts and Derjagin-Muller-Toropov models. Reference materials with known Hamaker constants (mica, silica, calcite) and commercially available cementitious materials (Portland cement (PC), ground granulated blast furnace slag (GGBFS)) were studied. The Hamaker constants of the reference materialsmore » obtained are consistent with those published by previous researchers. The results indicate that PC has a higher Hamaker constant than GGBFS. The Hamaker constant of PC in water is close to the previously predicted value C{sub 3}S, which is attributed to short hydration time ({<=} 45 min) used in this study.« less
Conductive atomic force microscopy measurements of nanopillar magnetic tunnel junctions
NASA Astrophysics Data System (ADS)
Evarts, E. R.; Hogg, C.; Bain, J. A.; Majetich, S. A.
2009-03-01
Magnetic tunnel junctions have been studied extensively for their magnetoresistance and potential uses in magnetic logic and data storage devices, but little is known about how their performance will scale with size. Here we examined the electronic behavior of 12 nm diameter magnetic tunnel junctions fabricated by a novel nanomasking process. Scanning electron microscopy images indicated feature diameter of 12 nm, and atomic force microscopy showed a height of 5 nm suggesting that unmasked regions have been milled on average to the oxide barrier layer, and areas should have the remnants of the free layer exposed with no remaining nanoparticle. Electrical contact was made to individual nanopillars using a doped-diamond-coated atomic force microscopy probe with a 40 nm radius of curvature at the tip. Off pillar we observed a resistance of 8.1 x 10^5 φ, while on pillar we found a resistance of 2.85 x 10^6 φ. Based on the RA product for this film, 120 φ-μm^2, a 12 nm diameter cylinder with perfect contact would have a resistance of 1.06 x 10^6 φ. The larger experimental value is consistent with a smaller contact area due to damaging the pillar during the ion milling process. The magnetoresistance characteristics of these magnetic tunnel junctions will be discussed.
Bhat, Supriya V; Sultana, Taranum; Körnig, André; McGrath, Seamus; Shahina, Zinnat; Dahms, Tanya E S
2018-05-29
There is an urgent need to assess the effect of anthropogenic chemicals on model cells prior to their release, helping to predict their potential impact on the environment and human health. Laser scanning confocal microscopy (LSCM) and atomic force microscopy (AFM) have each provided an abundance of information on cell physiology. In addition to determining surface architecture, AFM in quantitative imaging (QI) mode probes surface biochemistry and cellular mechanics using minimal applied force, while LSCM offers a window into the cell for imaging fluorescently tagged macromolecules. Correlative AFM-LSCM produces complimentary information on different cellular characteristics for a comprehensive picture of cellular behaviour. We present a correlative AFM-QI-LSCM assay for the simultaneous real-time imaging of living cells in situ, producing multiplexed data on cell morphology and mechanics, surface adhesion and ultrastructure, and real-time localization of multiple fluorescently tagged macromolecules. To demonstrate the broad applicability of this method for disparate cell types, we show altered surface properties, internal molecular arrangement and oxidative stress in model bacterial, fungal and human cells exposed to 2,4-dichlorophenoxyacetic acid. AFM-QI-LSCM is broadly applicable to a variety of cell types and can be used to assess the impact of any multitude of contaminants, alone or in combination.
WEATHERING DEGRADATION OF A POLYURETHANE COATING. (R828081E01)
The degradation of polyurethane topcoat over a chromate pigmented epoxy primer was examined by atomic force microscopy (AFM), scanning electronic microscopy (SEM), X-ray photo-electron spectroscopy (XPS) and Fourier transform infra-red spectroscopy (FTIR) after the coated pane...
Preparation of isolated biomolecules for SFM observations: T4 bacteriophage as a test sample.
Droz, E; Taborelli, M; Wells, T N; Descouts, P
1993-01-01
The T4 bacteriophage has been used to investigate protocols for the preparation of samples for scanning force microscopy in air, in order to obtaining reproducible images. The resolution of images and the distribution of bacteriophages on the substrate depends on the buffer type, its concentration, the surface treatment of substrate, and the method of deposition. The best imaging conditions for the phages require dilution in a volatile buffer at low ionic strength and adsorption onto hydrophilic surfaces. When imaging with the scanning force microscopy the quality of the images is influenced by the vertical and lateral forces applied on the sample and by the tip geometry. Images FIGURE 1 FIGURE 2 FIGURE 4 FIGURE 5 FIGURE 6 PMID:8241398
DOE Office of Scientific and Technical Information (OSTI.GOV)
Babic, Bakir, E-mail: bakir.babic@measurement.gov.au; Lawn, Malcolm A.; Coleman, Victoria A.
The results of systematic height measurements of polystyrene (PS) nanoparticles using intermittent contact amplitude modulation atomic force microscopy (IC-AM-AFM) are presented. The experimental findings demonstrate that PS nanoparticles deform during AFM imaging, as indicated by a reduction in the measured particle height. This deformation depends on the IC-AM-AFM imaging parameters, material composition, and dimensional properties of the nanoparticles. A model for nanoparticle deformation occurring during IC-AM-AFM imaging is developed as a function of the peak force which can be calculated for a particular set of experimental conditions. The undeformed nanoparticle height can be estimated from the model by extrapolation tomore » zero peak force. A procedure is proposed to quantify and minimise nanoparticle deformation during IC-AM-AFM imaging, based on appropriate adjustments of the experimental control parameters.« less
Let's push things forward: disruptive technologies and the mechanics of tissue assembly.
Varner, Victor D; Nelson, Celeste M
2013-09-01
Although many of the molecular mechanisms that regulate tissue assembly in the embryo have been delineated, the physical forces that couple these mechanisms to actual changes in tissue form remain unclear. Qualitative studies suggest that mechanical loads play a regulatory role in development, but clear quantitative evidence has been lacking. This is partly owing to the complex nature of these problems - embryonic tissues typically undergo large deformations and exhibit evolving, highly viscoelastic material properties. Still, despite these challenges, new disruptive technologies are enabling study of the mechanics of tissue assembly in unprecedented detail. Here, we present novel experimental techniques that enable the study of each component of these physical problems: kinematics, forces, and constitutive properties. Specifically, we detail advances in light sheet microscopy, optical coherence tomography, traction force microscopy, fluorescence force spectroscopy, microrheology and micropatterning. Taken together, these technologies are helping elucidate a more quantitative understanding of the mechanics of tissue assembly.
Hedayati, Mohammadhasan; Kipper, Matt J
2018-06-15
Blood vessels present a dense, non-uniform, polysaccharide-rich layer, called the endothelial glycocalyx. The polysaccharides in the glycocalyx include polyanionic glycosaminoglycans (GAGs). This polysaccharide-rich surface has excellent and unique blood compatibility. We report new methods for preparing and characterizing dense GAG surfaces that can serve as models of the vascular endothelial glycocalyx. The GAG-rich surfaces are prepared by adsorbing heparin or chondroitin sulfate-containing polyelectrolyte complex nanoparticles (PCNs) to chitosan-hyaluronan polyelectrolyte multilayers (PEMs). The surfaces are characterized by PeakForce tapping atomic force microscopy, both in air and in aqueous pH 7.4 buffer, and by PeakForce quantitative nanomechanics (PF-QNM) mode with high spatial resolution. These new surfaces provide access to heparin-rich or chondroitin sulfate-rich coatings that mimic both composition and nanoscale structural features of the vascular endothelial glycocalyx. Copyright © 2018. Published by Elsevier Ltd.
Pelling, Andrew E.; Li, Yinuo; Shi, Wenyuan; Gimzewski, James K.
2005-01-01
Multicellular microbial communities are the predominant form of existence for microorganisms in nature. As one of the most primitive social organisms, Myxococcus xanthus has been an ideal model bacterium for studying intercellular interaction and multicellular organization. Through previous genetic and EM studies, various extracellular appendages and matrix components have been found to be involved in the social behavior of M. xanthus, but none of them was directly visualized and analyzed under native conditions. Here, we used atomic force microscopy (AFM) imaging and in vivo force spectroscopy to characterize these cellular structures under native conditions. AFM imaging revealed morphological details on the extracellular ultrastructures at an unprecedented resolution, and in vivo force spectroscopy of live cells in fluid allowed us to nanomechanically characterize extracellular polymeric substances. The findings provide the basis for AFM as a useful tool for investigating microbial-surface ultrastructures and nanomechanical properties under native conditions. PMID:15840722
Gan, Tiansheng; Gong, Xiangjun; Schönherr, Holger; Zhang, Guangzhao
2016-12-01
Microrheology of growing biofilms provides insightful information about its structural evolution and properties. In this study, the authors have investigated the microrheology of Escherichia coli (strain HCB1) biofilms at different indentation depth (δ) by using magnetic force modulation atomic force microscopy as a function of disturbing frequency (f). As δ increases, the dynamic stiffness (k s ) for the biofilms in the early stage significantly increases. However, it levels off when the biofilms are matured. The facts indicate that the biofilms change from inhomogeneous to homogeneous in structure. Moreover, k s is scaled to f, which coincides with the rheology of soft glasses. The exponent increases with the incubation time, indicating the fluidization of biofilms. In contrast, the upper layer of the matured biofilms is solidlike in that the storage modulus is always larger than the loss modulus, and its viscoelasticity is slightly influenced by the shear stress.
Let's push things forward: disruptive technologies and the mechanics of tissue assembly
Varner, Victor D.; Nelson, Celeste M.
2013-01-01
Although many of the molecular mechanisms that regulate tissue assembly in the embryo have been delineated, the physical forces that couple these mechanisms to actual changes in tissue form remain unclear. Qualitative studies suggest that mechanical loads play a regulatory role in development, but clear quantitative evidence has been lacking. This is partly owing to the complex nature of these problems – embryonic tissues typically undergo large deformations and exhibit evolving, highly viscoelastic material properties. Still, despite these challenges, new disruptive technologies are enabling study of the mechanics of tissue assembly in unprecedented detail. Here, we present novel experimental techniques that enable the study of each component of these physical problems: kinematics, forces, and constitutive properties. Specifically, we detail advances in light sheet microscopy, optical coherence tomography, traction force microscopy, fluorescence force spectroscopy, microrheology and micropatterning. Taken together, these technologies are helping elucidate a more quantitative understanding of the mechanics of tissue assembly. PMID:23907401
Application of Advanced Atomic Force Microscopy Techniques to Study Quantum Dots and Bio-materials
NASA Astrophysics Data System (ADS)
Guz, Nataliia
In recent years, there has been an increase in research towards micro- and nanoscale devices as they have proliferated into diverse areas of scientific exploration. Many of the general fields of study that have greatly affected the advancement of these devices includes the investigation of their properties. The sensitivity of Atomic Force Microscopy (AFM) allows detecting charges up to the single electron value in quantum dots in ambient conditions, the measurement of steric forces on the surface of the human cell brush, determination of cell mechanics, magnetic forces, and other important properties. Utilizing AFM methods, the fast screening of quantum dot efficiency and the differences between cancer, normal (healthy) and precancer (immortalized) human cells has been investigated. The current research using AFM techniques can help to identify biophysical differences of cancer cells to advance our understanding of the resistance of the cells against the existing medicine.
High-Speed Atomic Force Microscopy
NASA Astrophysics Data System (ADS)
Ando, Toshio; Uchihashi, Takayuki; Kodera, Noriyuki
2012-08-01
The technology of high-speed atomic force microscopy (HS-AFM) has reached maturity. HS-AFM enables us to directly visualize the structure and dynamics of biological molecules in physiological solutions at subsecond to sub-100 ms temporal resolution. By this microscopy, dynamically acting molecules such as myosin V walking on an actin filament and bacteriorhodopsin in response to light are successfully visualized. High-resolution molecular movies reveal the dynamic behavior of molecules in action in great detail. Inferences no longer have to be made from static snapshots of molecular structures and from the dynamic behavior of optical markers attached to biomolecules. In this review, we first describe theoretical considerations for the highest possible imaging rate, then summarize techniques involved in HS-AFM and highlight recent imaging studies. Finally, we briefly discuss future challenges to explore.
NASA Astrophysics Data System (ADS)
Ueda, Shigenori; Iwasaki, Yoh; Ushioda, Sukekatsu
2003-10-01
The magnetic domain structures of Fe thin films on two-dimensionally arranged land-and-groove structures have been studied by spin-polarized secondary electron microscopy (SP-SEM) under an applied dc field. The coercive force on the land area was found to be higher than that on the groove area under magnetization reversal. The surface roughness measured by atomic force microscopy (AFM) was greater on the land area than on the groove area. The roughness-induced high-coercivity on the land prevented the reversed magnetic domain on the groove from spreading over the land in the initial magnetization reversal. This result indicates that surface roughness is an important factor in domain size control of thin magnetic films.
Atomic Force Microscopy Study of the Interactions of Indolicidin with Model Membranes and DNA.
Fojan, Peter; Gurevich, Leonid
2017-01-01
The cell membrane is the first barrier and quite often the primary target that antimicrobial peptides (AMPs) have to destroy or penetrate to fulfill their mission. Upon penetrating through the membrane, the peptides can further attack intracellular targets, in particular DNA. Studying the interaction of an antimicrobial peptide with a cell membrane and DNA holds keys to understanding its killing mechanisms. Commonly, these interactions are studied by using optical or scanning electron microscopy and appropriately labeled peptides. However, labeling can significantly affect the hydrophobicity, conformation, and size of the peptide, hence altering the interaction significantly. Here, we describe the use of atomic force microscopy (AFM) for a label-free study of the interactions of peptides with model membranes under physiological conditions and DNA as a possible intracellular target.
NASA Astrophysics Data System (ADS)
Nony, Laurent; Bocquet, Franck; Para, Franck; Loppacher, Christian
2016-09-01
A combined experimental and theoretical approach to the coupling between frequency-shift (Δ f ) , damping, and tunneling current (It) in combined noncontact atomic force microscopy/scanning tunneling microscopy using quartz tuning forks (QTF)-based probes is reported. When brought into oscillating tunneling conditions, the tip located at the QTF prong's end radiates an electromagnetic field which couples to the QTF prong motion via its piezoelectric tensor and loads its electrodes by induction. Our approach explains how those It-related effects ultimately modify the Δ f and the damping measurements. This paradigm to the origin of the coupling between It and the nc-AFM regular signals relies on both the intrinsic piezoelectric nature of the quartz constituting the QTF and its electrodes design.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Madhuri, K. Priya; Bramhaiah, K.; John, Neena S., E-mail: jsneena@cnsms.res.in
Free-standing films of ZnO nanoparticles (NPs) and reduced graphene oxide (rGO)-ZnO NPs hybrid are prepared at a liquid/liquid interface. The films are characterized by UV-visible spectroscopy, X-ray diffraction, scanning electron microscopy and atomic force microscopy. ZnO film consists of spherical aggregated NPs while the hybrid film contains folded sheets of rGO with embedded ZnO NPs. Electrical properties of the films and its photoresponse in presence of UV radiation are investigated using current sensing atomic force microscopy (CSAFM) at nanoscale and bulk measurements using two probe methods. Enhancement in photocurrent is observed in both cases and the current imaging reveals anmore » inhomogeneous contribution by different ZnO grains in the film.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Campbell, A.N.; Cole, E.I. Jr.; Tangyunyong, Paiboon
This report describes the first practical, non-invasive technique for detecting and imaging currents internal to operating integrated circuits (ICs). This technique is based on magnetic force microscopy and was developed under Sandia National Laboratories` LDRD (Laboratory Directed Research and Development) program during FY 93 and FY 94. LDRD funds were also used to explore a related technique, charge force microscopy, for voltage probing of ICs. This report describes the technical work performed under this LDRD as well as the outcomes of the project in terms of publications and awards, intellectual property and licensing, synergistic work, potential future work, hiring ofmore » additional permanent staff, and benefits to DOE`s defense programs (DP).« less
Recent Progress in Nanoelectrical Characterizations of CdTe and Cu(In,Ga)Se2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, Chun-Sheng; To, Bobby; Glynn, Stephen
2016-11-21
We report two recent nanoelectrical characterizations of CdTe and Cu(In, Ga)Se2 (CIGS) thin-film solar cells by developing atomic force microscopy-based nanoelectrical probes. Charges trapped at defects at the CdS/CdTe interface were probed by Kelvin probe force microscopy (KPFM) potential mapping and by ion-milling the CdTe superstrate device in a bevel glancing angle of ~0.5 degrees. The results show randomly distributed donor-like defects at the interface. The effect of K post-deposition treatment on the near-surface region of the CIGS film was studied by KPFM potential and scanning spreading resistance microscopy (SSRM) resistivity mapping, which shows passivation of grain-boundary potential and improvementmore » of resistivity uniformity by the K treatment.« less
Analysis of dynamic cantilever behavior in tapping mode atomic force microscopy.
Deng, Wenqi; Zhang, Guang-Ming; Murphy, Mark F; Lilley, Francis; Harvey, David M; Burton, David R
2015-10-01
Tapping mode atomic force microscopy (AFM) provides phase images in addition to height and amplitude images. Although the behavior of tapping mode AFM has been investigated using mathematical modeling, comprehensive understanding of the behavior of tapping mode AFM still poses a significant challenge to the AFM community, involving issues such as the correct interpretation of the phase images. In this paper, the cantilever's dynamic behavior in tapping mode AFM is studied through a three dimensional finite element method. The cantilever's dynamic displacement responses are firstly obtained via simulation under different tip-sample separations, and for different tip-sample interaction forces, such as elastic force, adhesion force, viscosity force, and the van der Waals force, which correspond to the cantilever's action upon various different representative computer-generated test samples. Simulated results show that the dynamic cantilever displacement response can be divided into three zones: a free vibration zone, a transition zone, and a contact vibration zone. Phase trajectory, phase shift, transition time, pseudo stable amplitude, and frequency changes are then analyzed from the dynamic displacement responses that are obtained. Finally, experiments are carried out on a real AFM system to support the findings of the simulations. © 2015 Wiley Periodicals, Inc.
Electromechanical response of amorphous LaAlO{sub 3} thin film probed by scanning probe microscopies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Borowiak, Alexis S.; Baboux, Nicolas; Albertini, David
The electromechanical response of a 3 nm thick amorphous LaAlO{sub 3} layer obtained by molecular beam epitaxy has been studied using scanning probe microscopies. Although this kind of sample is not ferroelectric due to its amorphous nature, the resulting images are identical to what is generally obtained on truly ferroelectric samples probed by piezoresponse force microscopy: domains of apparently opposite polarisation are detected, and perfect, square shaped hysteresis loops are recorded. Moreover, written patterns are stable within 72 h. We discuss in the general case the possible origins of this behaviour in terms of charge injection, ionic conduction and motion ofmore » oxygen vacancies. In the case presented in this paper, since the writing process has been conducted with applied voltages lower than the injection threshold measured by conductive atomic force Microscopy, allowing to withdraw the hypothesis of charge injection in the sample, we propose that a bistable distribution of oxygen vacancies is responsible for this contrast.« less
Cardoso Dos Santos, Marcelina; Vézy, Cyrille; Jaffiol, Rodolphe
2016-06-01
We recently proposed a straightforward fluorescence microscopy technique to study adhesion of Giant Unilamellar Vesicles. This technique is based on dual observations which combine epi-fluorescence microscopy and total internal reflection fluorescence (TIRF) microscopy: TIRF images are normalized by epi-fluorescence ones. By this way, it is possible to map the membrane/substrate separation distance with a nanometric resolution, typically ~20 nm, with a maximal working range of 300-400 nm. The purpose of this paper is to demonstrate that this technique is useful to quantify vesicle adhesion from ultra-weak to strong membrane-surface interactions. Thus, we have examined unspecific and specific adhesion conditions. Concerning unspecific adhesion, we have controlled the strength of electrostatic forces between negatively charged vesicles and various functionalized surfaces which exhibit a positive or a negative effective charge. Specific adhesion was highlighted with lock-and-key forces mediated by the well defined biotin/streptavidin recognition. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Mechehoud, F.; Benaioun, N. E.; Hakiki, N. E.; Khelil, A.; Simon, L.; Bubendorff, J. L.
2018-03-01
Thermally oxidized nickel-based alloys are studied by scanning tunnelling microscopy (STM), scanning tunnelling spectroscopy (STS), atomic force microscopy (AFM), scanning kelvin probe force microscopy (SKPFM) and photoelectro-chemical techniques as a function of oxidation time at a fixed temperature of 623 K. By photoelectrochemistry measurements we identify the formation of three oxides NiO, Fe2O3, Cr2O3 and determine the corresponding gap values. We use these values as parameter for imaging the surface at high bias voltage by STM allowing the spatial localization and identification of both NiO, Fe2O3 oxide phases using STS measurements. Associated to Kelvin probe measurements we show also that STS allow to distinguished NiO from Cr2O3 and confirm that the Cr2O3 is not visible at the surface and localized at the oxide/steel interface.
Wheeler, Richard; Mesnage, Stéphane; Boneca, Ivo G; Hobbs, Jamie K; Foster, Simon J
2011-12-01
Cell morphology and viability in Eubacteria is dictated by the architecture of peptidoglycan, the major and essential structural component of the cell wall. Although the biochemical composition of peptidoglycan is well understood, how the peptidoglycan architecture can accommodate the dynamics of growth and division while maintaining cell shape remains largely unknown. Here, we elucidate the peptidoglycan architecture and dynamics of bacteria with ovoid cell shape (ovococci), which includes a number of important pathogens, by combining biochemical analyses with atomic force and super-resolution microscopies. Atomic force microscopy analysis showed preferential orientation of the peptidoglycan network parallel to the short axis of the cell, with distinct architectural features associated with septal and peripheral wall synthesis. Super-resolution three-dimensional structured illumination fluorescence microscopy was applied for the first time in bacteria to unravel the dynamics of peptidoglycan assembly in ovococci. The ovococci have a unique peptidoglycan architecture and growth mode not observed in other model organisms. © 2011 Blackwell Publishing Ltd.
Electromechanical response of amorphous LaAlO3 thin film probed by scanning probe microscopies
NASA Astrophysics Data System (ADS)
Borowiak, Alexis S.; Baboux, Nicolas; Albertini, David; Vilquin, Bertrand; Saint Girons, Guillaume; Pelloquin, Sylvain; Gautier, Brice
2014-07-01
The electromechanical response of a 3 nm thick amorphous LaAlO3 layer obtained by molecular beam epitaxy has been studied using scanning probe microscopies. Although this kind of sample is not ferroelectric due to its amorphous nature, the resulting images are identical to what is generally obtained on truly ferroelectric samples probed by piezoresponse force microscopy: domains of apparently opposite polarisation are detected, and perfect, square shaped hysteresis loops are recorded. Moreover, written patterns are stable within 72 h. We discuss in the general case the possible origins of this behaviour in terms of charge injection, ionic conduction and motion of oxygen vacancies. In the case presented in this paper, since the writing process has been conducted with applied voltages lower than the injection threshold measured by conductive atomic force Microscopy, allowing to withdraw the hypothesis of charge injection in the sample, we propose that a bistable distribution of oxygen vacancies is responsible for this contrast.
Marinković, Aleksandar; Mih, Justin D.; Park, Jin-Ah; Liu, Fei
2012-01-01
Lung fibroblast functions such as matrix remodeling and activation of latent transforming growth factor-β1 (TGF-β1) are associated with expression of the myofibroblast phenotype and are directly linked to fibroblast capacity to generate force and deform the extracellular matrix. However, the study of fibroblast force-generating capacities through methods such as traction force microscopy is hindered by low throughput and time-consuming procedures. In this study, we improved at the detail level methods for higher-throughput traction measurements on polyacrylamide hydrogels using gel-surface-bound fluorescent beads to permit autofocusing and automated displacement mapping, and transduction of fibroblasts with a fluorescent label to streamline cell boundary identification. Together these advances substantially improve the throughput of traction microscopy and allow us to efficiently compute the forces exerted by lung fibroblasts on substrates spanning the stiffness range present in normal and fibrotic lung tissue. Our results reveal that lung fibroblasts dramatically alter the forces they transmit to the extracellular matrix as its stiffness changes, with very low forces generated on matrices as compliant as normal lung tissue. Moreover, exogenous TGF-β1 selectively accentuates tractions on stiff matrices, mimicking fibrotic lung, but not on physiological stiffness matrices, despite equivalent changes in Smad2/3 activation. Taken together, these results demonstrate a pivotal role for matrix mechanical properties in regulating baseline and TGF-β1-stimulated contraction of lung fibroblasts and suggest that stiff fibrotic lung tissue may promote myofibroblast activation through contractility-driven events, whereas normal lung tissue compliance may protect against such feedback amplification of fibroblast activation. PMID:22659883
NASA Astrophysics Data System (ADS)
Korayem, M. H.; Habibi Sooha, Y.; Rastegar, Z.
2018-05-01
Manipulation of the biological particles by atomic force microscopy is used to transfer these particles inside body's cells, diagnosis and destruction of the cancer cells and drug delivery to damaged cells. According to the impossibility of simultaneous observation of this process, the importance of modeling and simulation can be realized. The contact of the tip with biological particle is important during manipulation, therefore, the first step of the modeling is choosing appropriate contact model. Most of the studies about contact between atomic force microscopy and biological particles, consider the biological particle as an elastic material. This is not an appropriate assumption because biological cells are basically soft and this assumption ignores loading history. In this paper, elastic and viscoelastic JKR theories were used in modeling and simulation of the 3D manipulation for three modes of tip-particle sliding, particle-substrate sliding and particle-substrate rolling. Results showed that critical force and time in motion modes (sliding and rolling) for two elastic and viscoelastic states are very close but these magnitudes were lower in the viscoelastic state. Then, three friction models, Coulomb, LuGre and HK, were used for tip-particle sliding mode in the first phase of manipulation to make results closer to reality. In both Coulomb and LuGre models, critical force and time are very close for elastic and viscoelastic states but in general critical force and time prediction of HK model was higher than LuGre and the LuGre model itself had higher prediction than Coulomb.
Guo, H X; Heinämäki, J; Yliruusi, J
1999-09-20
Direct compression of riboflavin sodium phosphate tablets was studied by confocal laser scanning microscopy (CLSM). The technique is non-invasive and generates three-dimensional (3D) images. Tablets of 1% riboflavin sodium phosphate with two grades of microcrystalline cellulose (MCC) were individually compressed at compression forces of 1.0 and 26.8 kN. The behaviour and deformation of drug particles on the upper and lower surfaces of the tablets were studied under compression forces. Even at the lower compression force, distinct recrystallized areas in the riboflavin sodium phosphate particles were observed in both Avicel PH-101 and Avicel PH-102 tablets. At the higher compression force, the recrystallization of riboflavin sodium phosphate was more extensive on the upper surface of the Avicel PH-102 tablet than the Avicel PH-101 tablet. The plastic deformation properties of both MCC grades reduced the fragmentation of riboflavin sodium phosphate particles. When compressed with MCC, riboflavin sodium phosphate behaved as a plastic material. The riboflavin sodium phosphate particles were more tightly bound on the upper surface of the tablet than on the lower surface, and this could also be clearly distinguished by CLSM. Drug deformation could not be visualized by other techniques. Confocal laser scanning microscopy provides valuable information on the internal mechanisms of direct compression of tablets.
Characterisation of adhesional properties of lactose carriers using atomic force microscopy.
Louey, M D; Mulvaney, P; Stewart, P J
2001-06-01
The atomic force microscopy (AFM) colloid probe technique was investigated as a method for the characterisation of adhesional properties of pharmaceutical powder surfaces. Lactose carriers used in dry powder inhaler (DPI) formulations were chosen for investigation since adhesion between the carrier surface and drug particles has been proposed to affect the dispersion of drug particles. Individual adhesion forces were determined by measuring the detachment forces in air between the colloid probe and the lactose particle surface. The colloid probe consisted of a silica sphere (10 microm diameter) attached to a V-shaped silicon nitride cantilever (spring constant, k=0.42 N/m). Adhesion forces were calculated from individual force-distance curves using Hooke's Law. Individual forces measured at various adhesion sites were observed to be reproducible and stable over 10 min (coefficient of variation, CV below 5%). The adhesion force distribution determined from measurements at multiple sites (n>50) on each sample followed a log-normal relationship (regression coefficient, r(2) ranged between 0.95 and 0.99). This enabled characterisation in terms of the geometric mean adhesion force and a geometric standard deviation (GSD). Significant differences (P<0.001) in adhesion force were observed between samples, ranging from 37.47+/-1.95 to 117.48+/-2.20 nN. This study demonstrates the suitability of AFM as sensitive technique for the characterisation of adhesional properties of pharmaceutical particles.
Direct measurements of intermolecular forces by chemical force microscopy
NASA Astrophysics Data System (ADS)
Vezenov, Dmitri Vitalievich
1999-12-01
Detailed description of intermolecular forces is key to understanding a wide range of phenomena from molecular recognition to materials failure. The unique features of atomic force microscopy (AFM) to make point contact force measurements with ultra high sensitivity and to generate spatial maps of surface topography and forces have been extended to include measurements between well-defined organic molecular groups. Chemical modification of AFM probes with self-assembled monolayers (SAMs) was used to make them sensitive to specific molecular interactions. This novel chemical force microscopy (CFM) technique was used to probe forces between different molecular groups in a range of environments (vacuum, organic liquids and aqueous solutions); measure surface energetics on a nanometer scale; determine pK values of the surface acid and base groups; measure forces to stretch and unbind a short synthetic DNA duplex and map the spatial distribution of specific functional groups and their ionization state. Studies of adhesion forces demonstrated the important contribution of hydrogen bonding to interactions between simple organic functionalities. The chemical identity of the tip and substrate surfaces as well as the medium had a dramatic effect on adhesion between model monolayers. A direct correlation between surface free energy and adhesion forces was established. The adhesion between epoxy polymer and model mixed SAMs varied with the amount of hydrogen bonding component in the monolayers. A consistent interpretation of CFM measurements in polar solvents was provided by contact mechanics models and intermolecular force components theory. Forces between tips and surfaces functionalized with SAMs terminating in acid or base groups depended on their ionization state. A novel method of force titration was introduced for highly local characterization of the pK's of surface functional groups. The pH-dependent changes in friction forces were exploited to map spatially the changes in ionization state on SAM surfaces. The phase contrast in tapping mode AFM between chemically distinct monolayer regions and corresponding adhesion forces were found to be directly correlated. Thus, both friction and intermittent contact CFM images could be interpreted in terms of the strength of intermolecular interactions. CFM was also used to probe biomolecular interactions. Separation forces between complementary oligonucleotide strands were significantly larger than the forces measured between noncomplementary strands and were consistent with the unbinding of a single DNA duplex. CFM data provided a direct measure of the forces required to elastically deform, structurally-transform and separate well-defined, synthetic duplexes into single strand oligonucleotides.
Lv, Y; Cui, J; Jiang, Z M; Yang, X J
2013-02-15
Atomic force microscopy imaging combined with selective chemical etching is employed to quantitatively investigate three-dimensional (3D) composition distributions of single GeSi quantum rings (QRs). In addition, the 3D quantitative composition distributions and the corresponding conductance distributions are simultaneously obtained on the same single GeSi QRs by conductive atomic force microscopy combined with selective chemical etching, allowing us to investigate the correlations between the conductance and composition distributions of single QRs. The results show that the QRs' central holes have higher Ge content, but exhibit lower conductance, indicating that the QRs' conductance distribution is not consistent with their composition distribution. By comparing the topography, composition and conductance profiles of the same single QRs before and after different etching processes, it is found that the conductance distributions of GeSi QRs do not vary with the change of composition distribution. Instead, the QRs' conductance distributions are found to be consistent with their topographic shapes, which can be supposed to be due to the shape determined electronic structures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, Mohit; Basu, Tanmoy; Som, Tapobrata, E-mail: tsom@iopb.res.in
2016-01-07
In this paper, based on piezoforce measurements, we show the presence of opposite polarization at grains and grain boundaries of Al-doped ZnO (AZO). The polarization can be flipped by 180° in phase by switching the polarity of the applied electric field, revealing the existence of nanoscale pseudoferroelectricity in AZO grown on Pt/TiO{sub 2}/SiO{sub 2}/Si substrate. We also demonstrate an experimental evidence on local band bending at grain boundaries of AZO films using conductive atomic force microscopy and Kelvin probe force microscopy. The presence of an opposite polarization at grains and grain boundaries gives rise to a polarization-driven barrier formation atmore » grain boundaries. With the help of conductive atomic force microscopy, we show that the polarization-driven barrier along with the defect-induced electrostatic potential barrier account for the measured local band bending at grain boundaries. The present study opens a new avenue to understand the charge transport in light of both polarization and electrostatic effects.« less
Self-assembled monolayers of alkyl-thiols on InAs: A Kelvin probe force microscopy study
NASA Astrophysics Data System (ADS)
Szwajca, A.; Wei, J.; Schukfeh, M. I.; Tornow, M.
2015-03-01
We report on the preparation and characterization of self-assembled monolayers from aliphatic thiols with different chain length and termination on InAs (100) planar surfaces. This included as first step the development and investigation of a thorough chemical InAs surface preparation step using a dedicated bromine/NH4OH-based etching process. Ellipsometry, contact angle measurements and atomic force microscopy (AFM) indicated the formation of smooth, surface conforming monolayers. The molecular tilt angles were obtained as 30 ± 10° with respect to the surface normal. Kelvin probe force microscopy (KPFM) measurements in hand with Parameterized Model number 5 (PM5) calculations of the involved molecular dipoles allowed for an estimation of the molecular packing densities on the surface. We obtained values of up to n = 1014 cm- 2 for the SAMs under study. These are close to what is predicted from a simple geometrical model that would calculate a maximum density of about n = 2.7 × 1014 cm- 2. We take this as additional conformation of the substrate smoothness and quality of our InAs-SAM hybrid layer systems.
Exploratory Study of RNA Polymerase II Using Dynamic Atomic Force Microscopy
NASA Astrophysics Data System (ADS)
Rhodin, Thor; Umemura, Kazuo; Gad, Mohammed; Jarvis, Suzanne; Ishikawa, Mitsuru; Fu, Jianhua
2002-03-01
An exploratory study of the microtopological dimensions and shape features of yeast RNA polymerase II (y-poly II) on freshly cleaved mica was made in phosphate aqueous buffer solution at room temperature following previous work by Hansma and others. The molecules were imaged by stabilization on freshly cleaved mica at a limiting resolution of 10 Å and scanned using dynamical atomic force microscopy with a 10 nm multi-wall carbon nanotube in the resonance frequency modulation mode. They indicated microtopological shape and dimensional features similar to those predicted by electron density plots derived from the X-ray crystallographic model. It is concluded that this is considered primarily a feasibility study with definitive conclusions subject to more detailed systematic measurements of the 3D microtopology. These measurements appear to establish validity of the noncontact atomic force microscopy (nc-AFM) approach into defining the primary microtopology and biochemical functionality of RNA polymerase II. Further nc-AFM studies at higher resolution using dynamical nc-AFM will be required to clearly define the detailed 3D microtopology of RNA polymerase II in anaerobic aqueous environments for both static and dynamic conditions.
AFM study of Escherichia coli RNA polymerase σ⁷⁰ subunit aggregation.
Dubrovin, Evgeniy V; Koroleva, Olga N; Khodak, Yulia A; Kuzmina, Natalia V; Yaminsky, Igor V; Drutsa, Valeriy L
2012-01-01
The self-assembly of Escherichia coli RNA polymerase σ⁷⁰ subunit was investigated using several experimental approaches. A novel rodlike shape was reported for σ⁷⁰ subunit aggregates. Atomic force microscopy reveals that these aggregates, or σ⁷⁰ polymers, have a straight rodlike shape 5.4 nm in diameter and up to 300 nm in length. Atomic force microscopy data, Congo red binding assay, and sodium dodecyl sulfate gel electrophoresis confirm the amyloid nature of observed aggregates. The process of formation of rodlike structures proceeds spontaneously under nearly physiological conditions. E. coli RNA polymerase σ⁷⁰ subunit may be an interesting object for investigation of amyloidosis as well as for biotechnological applications that exploit self-assembled bionanostructures. Polymerization of σ⁷⁰ subunit may be a competitive process with its three-dimensional crystallization and association with core RNA polymerase. In this basic science study, the self-assembly of Escherichia coli RNA polymerase σ⁷⁰( subunit was investigated using atomic force microscopy and other complementary approaches. 2012 Elsevier Inc. All rights reserved.
Surface potential extraction from electrostatic and Kelvin-probe force microscopy images
NASA Astrophysics Data System (ADS)
Xu, Jie; Chen, Deyuan; Li, Wei; Xu, Jun
2018-05-01
A comprehensive comparison study of electrostatic force microscopy (EFM) and Kelvin probe force microscopy (KPFM) is conducted in this manuscript. First, it is theoretically demonstrated that for metallic or semiconductor samples, both the EFM and KPFM signals are a convolution of the sample surface potential with their respective transfer functions. Then, an equivalent point-mass model describing cantilever deflection under distributed loads is developed to reevaluate the cantilever influence on detection signals, and it is shown that the cantilever has no influence on the EFM signal, while it will affect the KPFM signal intensity but not change the resolution. Finally, EFM and KPFM experiments are carried out, and the surface potential is extracted from the EFM and KPFM images by deconvolution processing, respectively. The extracted potential intensity is well consistent with each other and the detection resolution also complies with the theoretical analysis. Our work is helpful to perform a quantitative analysis of EFM and KPFM signals, and the developed point-mass model can also be used for other cantilever beam deflection problems.
Fast time-resolved electrostatic force microscopy: Achieving sub-cycle time resolution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karatay, Durmus U.; Harrison, Jeffrey S.; Glaz, Micah S.
The ability to measure microsecond- and nanosecond-scale local dynamics below the diffraction limit with widely available atomic force microscopy hardware would enable new scientific studies in fields ranging from biology to semiconductor physics. However, commercially available scanning-probe instruments typically offer the ability to measure dynamics only on time scales of milliseconds to seconds. Here, we describe in detail the implementation of fast time-resolved electrostatic force microscopy using an oscillating cantilever as a means to measure fast local dynamics following a perturbation to a sample. We show how the phase of the oscillating cantilever relative to the perturbation event is criticalmore » to achieving reliable sub-cycle time resolution. We explore how noise affects the achievable time resolution and present empirical guidelines for reducing noise and optimizing experimental parameters. Specifically, we show that reducing the noise on the cantilever by using photothermal excitation instead of piezoacoustic excitation further improves time resolution. We demonstrate the discrimination of signal rise times with time constants as fast as 10 ns, and simultaneous data acquisition and analysis for dramatically improved image acquisition times.« less
Nonmonotonic velocity dependence of atomic friction.
Reimann, Peter; Evstigneev, Mykhaylo
2004-12-03
We propose a theoretical model for friction force microscopy experiments with special emphasis on the realistic description of dissipation and inertia effects. Its main prediction is a nonmonotonic dependence of the friction force upon the sliding velocity of the atomic force microscope tip relative to an atomically flat surface. The region around the force maximum can be approximately described by a universal scaling law and should be observable under experimentally realistic conditions.
NASA Astrophysics Data System (ADS)
Wang, Kesheng; Cheng, Jia; Yao, Shiji; Lu, Yijia; Ji, Linhong; Xu, Dengfeng
2016-12-01
Electrostatic force measurement at the micro/nano scale is of great significance in science and engineering. In this paper, a reasonable way of applying voltage is put forward by taking an electrostatic chuck in a real integrated circuit manufacturing process as a sample, applying voltage in the probe and the sample electrode, respectively, and comparing the measurement effect of the probe oscillation phase difference by amplitude modulation atomic force microscopy. Based on the phase difference obtained from the experiment, the quantitative dependence of the absolute magnitude of the electrostatic force on the tip-sample distance and applied voltage is established by means of theoretical analysis and numerical simulation. The results show that the varying characteristics of the electrostatic force with the distance and voltage at the micro/nano scale are similar to those at the macroscopic scale. Electrostatic force gradually decays with increasing distance. Electrostatic force is basically proportional to the square of applied voltage. Meanwhile, the applicable conditions of the above laws are discussed. In addition, a comparison of the results in this paper with the results of the energy dissipation method shows the two are consistent in general. The error decreases with increasing distance, and the effect of voltage on the error is small.
MORPHOLOGICAL CHANGES IN POLYURETHANE COATINGS ON EXPOSURE TO WATER. (R828081E01)
When a polyurethane self-priming coating on a sol-gel treated aluminum panel was immersed in dilute Harrison's solution, subsequent change of the polyurethane coating surface was inspected with atomic force microscopy (AFM) and scanning electron microscopy (SEM). After immersi...
Scanning Probe Microscopy of Organic Solar Cells
NASA Astrophysics Data System (ADS)
Reid, Obadiah G.
Nanostructured composites of organic semiconductors are a promising class of materials for the manufacture of low-cost solar cells. Understanding how the nanoscale morphology of these materials affects their efficiency as solar energy harvesters is crucial to their eventual potential for large-scale deployment for primary power generation. In this thesis we describe the use of optoelectronic scanning-probe based microscopy methods to study this efficiency-structure relationship with nanoscale resolution. In particular, our objective is to make spatially resolved measurements of each step in the power conversion process from photons to an electric current, including charge generation, transport, and recombination processes, and correlate them with local device structure. We have achieved two aims in this work: first, to develop and apply novel electrically sensitive scanning probe microscopy experiments to study the optoelectronic materials and processes discussed above; and second, to deepen our understanding of the physics underpinning our experimental techniques. In the first case, we have applied conductive-, and photoconductive atomic force (cAFM & pcAFM) microscopy to measure both local photocurrent collection and dark charge transport properties in a variety of model and novel organic solar cell composites, including polymer/fullerene blends, and polymer-nanowire/fullerene blends, finding that local heterogeneity is the rule, and that improvements in the uniformity of specific beneficial nanostructures could lead to large increases in efficiency. We have used scanning Kelvin probe microscopy (SKPM) and time resolved-electrostatic force microscopy (trEFM) to characterize all-polymer blends, quantifying their sensitivity to photochemical degradation and the subsequent formation of local charge traps. We find that while trEFM provides a sensitive measure of local quantum efficiency, SKPM is generally unsuited to measurements of efficiency, less sensitive than trEFM, and of greater utility in identifying local changes in steady-state charge density that can be associated with charge trapping. In the second case, we have developed a new understanding of charge transport between a sharp AFM tip and planar substrates applicable to conductive and photoconductive atomic force microscopy, and shown that hole-only transport characteristics can be easily obtained including quantitative values of the charge carrier mobility. Finally, we have shown that intensity-dependent photoconductive atomic force microscopy measurements can be used to infer the 3D structure of organic photovoltaic materials, and gained new insight into the influence vertical composition of the these devices can have on their open-circuit voltage and its intensity dependence.
NASA Astrophysics Data System (ADS)
Jiang, Kaili; Zhu, Jun; Tang, Bin
2017-12-01
Periodic nonuniform sampling occurs in many applications, and the Nyquist folding receiver (NYFR) is an efficient, low complexity, and broadband spectrum sensing architecture. In this paper, we first derive that the radio frequency (RF) sample clock function of NYFR is periodic nonuniform. Then, the classical results of periodic nonuniform sampling are applied to NYFR. We extend the spectral reconstruction algorithm of time series decomposed model to the subsampling case by using the spectrum characteristics of NYFR. The subsampling case is common for broadband spectrum surveillance. Finally, we take example for a LFM signal under large bandwidth to verify the proposed algorithm and compare the spectral reconstruction algorithm with orthogonal matching pursuit (OMP) algorithm.
1994-04-01
1 lfm ýA a I - @0 38Ud U 0 E loll I0 F4J O 3Uv ~:~3 Igaas .1c % jWC (9 Um IDP. 0 di d0 1.00 00 .d .d d V d d~ di dI C-14 rM D0209- II dUmW o iNc cl...5C15-1 (In River) I FIGURE E-6. MEASUREMENT POINT AT TRANSMISSION UNE; 5C15-1. E-9 IITRI D06209-1 I I 0CS I C .00o tD I I- U, I S IcEoE 0 E0 a-0
NASA Technical Reports Server (NTRS)
Groce, J. L.; Izumi, K. H.; Markham, C. H.; Schwab, R. W.; Thompson, J. L.
1986-01-01
The Local Flow Management/Profile Descent (LFM/PD) algorithm designed for the NASA Transport System Research Vehicle program is described. The algorithm provides fuel-efficient altitude and airspeed profiles consistent with ATC restrictions in a time-based metering environment over a fixed ground track. The model design constraints include accommodation of both published profile descent procedures and unpublished profile descents, incorporation of fuel efficiency as a flight profile criterion, operation within the performance capabilities of the Boeing 737-100 airplane with JT8D-7 engines, and conformity to standard air traffic navigation and control procedures. Holding and path stretching capabilities are included for long delay situations.
Nalladega, V; Sathish, S; Jata, K V; Blodgett, M P
2008-07-01
We present a high resolution electrical conductivity imaging technique based on the principles of eddy current and atomic force microscopy (AFM). An electromagnetic coil is used to generate eddy currents in an electrically conducting material. The eddy currents generated in the conducting sample are detected and measured with a magnetic tip attached to a flexible cantilever of an AFM. The eddy current generation and its interaction with the magnetic tip cantilever are theoretically modeled using monopole approximation. The model is used to estimate the eddy current force between the magnetic tip and the electrically conducting sample. The theoretical model is also used to choose a magnetic tip-cantilever system with appropriate magnetic field and spring constant to facilitate the design of a high resolution electrical conductivity imaging system. The force between the tip and the sample due to eddy currents is measured as a function of the separation distance and compared to the model in a single crystal copper. Images of electrical conductivity variations in a polycrystalline dual phase titanium alloy (Ti-6Al-4V) sample are obtained by scanning the magnetic tip-cantilever held at a standoff distance from the sample surface. The contrast in the image is explained based on the electrical conductivity and eddy current force between the magnetic tip and the sample. The spatial resolution of the eddy current imaging system is determined by imaging carbon nanofibers in a polymer matrix. The advantages, limitations, and applications of the technique are discussed.
Looking at cell mechanics with atomic force microscopy: experiment and theory.
Benitez, Rafael; Toca-Herrera, José L
2014-11-01
This review reports on the use of the atomic force microscopy in the investigation of the mechanical properties of cells. It is shown that the technique is able to deliver information about the cell surface properties (e.g., topography), the Young modulus, the viscosity, and the cell the relaxation times. Another aspect that this short review points out is the utilization of the atomic force microscope to investigate basic questions related to materials physics, biology, and medicine. The review is written in a chronological way to offer an overview of phenomenological facts and quantitative results to the reader. The final section discusses in detail the advantages and disadvantages of the Hertz and JKR models. A new implementation of the JKR model derived by Dufresne is presented. © 2014 Wiley Periodicals, Inc.
Hiesgen, Renate; Helmly, Stefan; Galm, Ines; Morawietz, Tobias; Handl, Michael; Friedrich, K. Andreas
2012-01-01
The conductivity of fuel cell membranes as well as their mechanical properties at the nanometer scale were characterized using advanced tapping mode atomic force microscopy (AFM) techniques. AFM produces high-resolution images under continuous current flow of the conductive structure at the membrane surface and provides some insight into the bulk conducting network in Nafion membranes. The correlation of conductivity with other mechanical properties, such as adhesion force, deformation and stiffness, were simultaneously measured with the current and provided an indication of subsurface phase separations and phase distribution at the surface of the membrane. The distribution of conductive pores at the surface was identified by the formation of water droplets. A comparison of nanostructure models with high-resolution current images is discussed in detail. PMID:24958429
Emmerich, F; Thielemann, C
2016-05-20
Multilayers of silicon oxide/silicon nitride/silicon oxide (ONO) are known for their good electret properties due to deep energy traps near the material interfaces, facilitating charge storage. However, measurement of the space charge distribution in such multilayers is a challenge for conventional methods if layer thickness dimensions shrink below 1 μm. In this paper, we propose an atomic force microscope based method to determine charge distributions in ONO layers with spatial resolution below 100 nm. By applying Kelvin probe force microscopy (KPFM) on freshly cleaved, corona-charged multilayers, the surface potential is measured directly along the z-axis and across the interfaces. This new method gives insights into charge distribution and charge movement in inorganic electrets with a high spatial resolution.
Dual Optical Levers for Atomic Force Microscopy
NASA Astrophysics Data System (ADS)
Kawakatsu, Hideki; Bleuler, Hannes; Saito, Takashi; Hiroshi, Kougami
1995-06-01
Development of micro machined cantilever and optical lever detection system has greatly facilitated the operation of atomic force microscopy. However, since the detection system measures only the deflection of the cantilever at one set point where the laser beam is focused, care must be taken in implementing force control or in interpreting the acquired data. In this paper, a dual optical lever detection system is introduced, which has the potential to resolve the deformation of the cantilever with multidegree of freedom and thus detect the position of the tip end point with resolution in the 10 pm order. The detection system proved to be effective in real-time monitoring of the behavior of the tip end point while scanning, and in explaining the scanning direction dependence of the acquired images.
DC thermal microscopy: study of the thermal exchange between a probe and a sample
NASA Astrophysics Data System (ADS)
Gomès, Séverine; Trannoy, Nathalie; Grossel, Philippe
1999-09-01
The Scanning Thermal Microscopic (SThM) probe, a thin Pt resistance wire, is used in the constant force mode of an Atomic Force Microscope (AFM). Thermal signal-distance curves for differing degrees of relative humidity and different surrounding gases demonstrate how heat is transferred from the heated probe to the sample. It is known that water affects atomic force microscopy and thermal measurements; we report here on the variation of the water interaction on the thermal coupling versus the probe temperature. Measurements were taken for several solid materials and show that the predominant heat transfer mechanisms taking part in thermal coupling are dependent on the thermal conductivity of the sample. The results have important implications for any quantitative interpretation of thermal images made in air.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martinez-Torres, C.; Streppa, L.; Arneodo, A.
2016-01-18
Compared to active microrheology where a known force or modulation is periodically imposed to a soft material, passive microrheology relies on the spectral analysis of the spontaneous motion of tracers inherent or external to the material. Passive microrheology studies of soft or living materials with atomic force microscopy (AFM) cantilever tips are rather rare because, in the spectral densities, the rheological response of the materials is hardly distinguishable from other sources of random or periodic perturbations. To circumvent this difficulty, we propose here a wavelet-based decomposition of AFM cantilever tip fluctuations and we show that when applying this multi-scale methodmore » to soft polymer layers and to living myoblasts, the structural damping exponents of these soft materials can be retrieved.« less
NASA Astrophysics Data System (ADS)
Khalisov, M. M.; Penniyaynen, V. A.; Esikova, N. A.; Ankudinov, A. V.; Krylov, B. V.
2017-01-01
The mechanical properties of sensory neurons upon activation of intracellular cascade processes by comenic acid binding to a membrane opioid-like receptor (receptor-coupled), as well as a very low (endogenous) concentration of ouabain (transducer-coupled), have been investigated. Using atomic force microscopy, it is established that exposure to ouabain, in contrast to the impact of comenic acid, leads to a hardening of the neuron soma. This suggests that the receptor-coupled signal transmission to the cell genome is carried out through mechanisms that are different from the transducer-coupled signal pathways.
NASA Astrophysics Data System (ADS)
Asaka, Koji; Kato, Ryoei; Miyazawa, Kun'ichi; Kizuka, Tokushi
2006-08-01
The authors demonstrated the mechanics of materials for crystalline whiskers composed of C60 molecules; compressive deformation of the whiskers was observed by in situ transmission electron microscopy with simultaneous force measurement by means of an optical cantilever method, as used in atomic force microscopy. In response to compression along the long axis, the whiskers bent first elastically, then buckled. A whisker with 160nm diameter fractured brittlely at a strain of 0.08. According to Euler's formula, Young's modulus of the whisker was estimated to be 32-54GPa, which is 160%-650% of that of C60 bulk crystals.
Atomic Force Microscopy Studies on DNA Structural Changes Induced by Vincristine Sulfate and Aspirin
NASA Astrophysics Data System (ADS)
Zhu, Yi; Zeng, Hu; Xie, Jianming; Ba, Long; Gao, Xiang; Lu, Zuhong
2004-04-01
We report that atomic force microscopy (AFM) studies on structural variations of a linear plasmid DNA interact with various concentrations of vincristine sulfate and aspirin. The different binding images show that vincrinstine sulfate binding DNA chains caused some loops and cleavages of the DNA fragments, whereas aspirin interaction caused the width changes and conformational transition of the DNA fragments. Two different DNA structural alternations could be explained by the different mechanisms of the interactions with these two components. Our work indicates that the AFM is a powerful tool in studying the interaction between DNA and small molecules.
Magnetic resonance force microscopy with a paramagnetic probe
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berman, G. P.; Gorshkov, V. N.; Tsifrinovich, V. I.
Here, we consider theoretically extension of magnetic resonance force microscopy (MRFM) replacing a ferromagnetic probe on a cantilever tip (CT) with a paramagnetic one (PMRFM). The dynamics of the interaction between the paramagnetic probe and a local magnetic moment in a sample is analyzed, using a quasi-classical approach. We show that the application of a proper sequence of electromagnetic pulses provides a significant deflection of the CT from the initial equilibrium position. Periodic application of these sequences of pulses results in quasi-periodic CT deflections from the equilibrium, which can be used for detection of the magnetic moment in a sample.
Interface morphology studies of liquid phase epitaxy grown HgCdTe films by atomic force microscopy
NASA Astrophysics Data System (ADS)
Azoulay, M.; George, M. A.; Burger, A.; Collins, W. E.; Silberman, E.
1994-04-01
In this paper we report an investigation of the morphology of the interfaces of liquid phase epitaxy (LPE) grown HgCdTe thin films on CdTe and CdZnTe substrates by atomic force microscopy (AFM) on freshly cleaved (110) crystallographic planes. An empirical observation which may be linked to lattice mismatch was indicated by an angle between the cleavage steps of the substrate to those of the film. The precipitates with size ranging from 5 nm to 20 nm were found to be most apparent near the interface.
Magnetic force microscopy method and apparatus to detect and image currents in integrated circuits
Campbell, Ann. N.; Anderson, Richard E.; Cole, Jr., Edward I.
1995-01-01
A magnetic force microscopy method and improved magnetic tip for detecting and quantifying internal magnetic fields resulting from current of integrated circuits. Detection of the current is used for failure analysis, design verification, and model validation. The interaction of the current on the integrated chip with a magnetic field can be detected using a cantilevered magnetic tip. Enhanced sensitivity for both ac and dc current and voltage detection is achieved with voltage by an ac coupling or a heterodyne technique. The techniques can be used to extract information from analog circuits.
Magnetic force microscopy method and apparatus to detect and image currents in integrated circuits
Campbell, A.N.; Anderson, R.E.; Cole, E.I. Jr.
1995-11-07
A magnetic force microscopy method and improved magnetic tip for detecting and quantifying internal magnetic fields resulting from current of integrated circuits are disclosed. Detection of the current is used for failure analysis, design verification, and model validation. The interaction of the current on the integrated chip with a magnetic field can be detected using a cantilevered magnetic tip. Enhanced sensitivity for both ac and dc current and voltage detection is achieved with voltage by an ac coupling or a heterodyne technique. The techniques can be used to extract information from analog circuits. 17 figs.
Magnetic resonance force microscopy with a paramagnetic probe
NASA Astrophysics Data System (ADS)
Berman, G. P.; Gorshkov, V. N.; Tsifrinovich, V. I.
2017-04-01
We consider theoretically extension of magnetic resonance force microscopy (MRFM) replacing a ferromagnetic probe on a cantilever tip (CT) with a paramagnetic one (PMRFM). The dynamics of the interaction between the paramagnetic probe and a local magnetic moment in a sample is analyzed, using a quasi-classical approach. We show that the application of a proper sequence of electromagnetic pulses provides a significant deflection of the CT from the initial equilibrium position. Periodic application of these sequences of pulses results in quasi-periodic CT deflections from the equilibrium, which can be used for detection of the magnetic moment in a sample.
Time-resolved electric force microscopy of charge trapping in polycrystalline pentacene.
Jaquith, Michael; Muller, Erik M; Marohn, John A
2007-07-12
Here we introduce time-resolved electric force microscopy measurements to directly and locally probe the kinetics of charge trap formation in a polycrystalline pentacene thin-film transistor. We find that the trapping rate depends strongly on the initial concentration of free holes and that trapped charge is highly localized. The observed dependence of trapping rate on the hole chemical potential suggests that the trapping process should not be viewed as a filling of midgap energy levels, but instead as a process in which the very creation of trapped states requires the presence of free holes.
Magnetic resonance force microscopy with a paramagnetic probe
Berman, G. P.; Gorshkov, V. N.; Tsifrinovich, V. I.
2017-04-01
Here, we consider theoretically extension of magnetic resonance force microscopy (MRFM) replacing a ferromagnetic probe on a cantilever tip (CT) with a paramagnetic one (PMRFM). The dynamics of the interaction between the paramagnetic probe and a local magnetic moment in a sample is analyzed, using a quasi-classical approach. We show that the application of a proper sequence of electromagnetic pulses provides a significant deflection of the CT from the initial equilibrium position. Periodic application of these sequences of pulses results in quasi-periodic CT deflections from the equilibrium, which can be used for detection of the magnetic moment in a sample.
Technology for fabrication of a micromagnet on a tip of a MFM/MRFM probe
Pelekhov, Denis V.; Hammel, P. Chris; Nunes, Jr., Geoffrey; Midzor, Melissa M.; Roukes, Michael
2004-01-13
A method for coating the tip of a mechanical resonator for use in magnetic force microscopy and magnetic resonance force microscopy in which the tip is coated with a ferromagnetic material and the cantilever is not, and the product resulting from the method. A cantilever and incorporated tip are coated with a photoresist, except that surface tension keeps photoresist off the tip. The cantilever and tip are then coated with a magnetic material. Next, acetone is used to lift off the magnetic material from the cantilever but not from the tip.
Li, H; Atkin, R; Page, A J
2015-06-28
The energetic origins of the variation in friction with potential at the propylammonium nitrate-graphite interface are revealed using friction force microscopy (FFM) in combination with quantum chemical simulations. For boundary layer lubrication, as the FFM tip slides energy is dissipated via (1) boundary layer ions and (2) expulsion of near-surface ion layers from the space between the surface and advancing tip. Simulations reveal how changing the surface potential changes the ion composition of the boundary and near surface layer, which controls energy dissipation through both pathways, and thus the friction.
Nanoindentation of Pseudomonas aeruginosa bacterial biofilm using atomic force microscopy
NASA Astrophysics Data System (ADS)
Baniasadi, Mahmoud; Xu, Zhe; Gandee, Leah; Du, Yingjie; Lu, Hongbing; Zimmern, Philippe; Minary-Jolandan, Majid
2014-12-01
Bacterial biofilms are a source of many chronic infections. Biofilms and their inherent resistance to antibiotics are attributable to a range of health issues including affecting prosthetic implants, hospital-acquired infections, and wound infection. Mechanical properties of biofilm, in particular, at micro- and nano-scales, are governed by microstructures and porosity of the biofilm, which in turn may contribute to their inherent antibiotic resistance. We utilize atomic force microscopy (AFM)-based nanoindentation and finite element simulation to investigate the nanoscale mechanical properties of Pseudomonas aeruginosa bacterial biofilm. This biofilm was derived from human samples and represents a medically relevant model.
NASA Astrophysics Data System (ADS)
Durda, E.; Jaglarz, J.; Kąc, S.; Przybylski, K.; El Kouari, Y.
2016-06-01
The perovskite La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF48) film was deposited on Crofer 22 APU ferritic stainless steel by pulsed laser deposition (PLD). Morphological studies of the sample were performed using scanning electron microscopy (SEM) and atomic force microscopy (AFM). Information about film thickness and surface topography of the film and the steel substrate were obtained using following optical methods: spectroscopic ellipsometry (SE), bidirectional reflection distribution function (BRDF) and total integrated reflectometry (TIS). In particular, the BRDF study, being complementary to atomic force microscopy, yielded information about surface topography. Using the previously mentioned methods, the following statistic surface parameters were determined: root-mean square (rms) roughness and autocorrelation length by determining the power spectral density (PSD) function of surface irregularities.
Optical and electrical properties of Cu-based all oxide semi-transparent photodetector
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Hong-Sik; Patel, Malkeshkumar; Yadav, Pankaj
2016-09-05
Zero-bias operating Cu oxide-based photodetector was achieved by using large-scale available sputtering method. Cu oxide (Cu{sub 2}O or CuO) was used as p-type transparent layer to form a heterojunction by contacting n-type ZnO layer. All metal-oxide materials were employed to realize transparent device at room temperature and showed a high transparency (>75% at 600 nm) with excellent photoresponses. The structural, morphological, optical, and electrical properties of Cu oxides of CuO and Cu{sub 2}O are evaluated in depth by UV-visible spectrometer, X-ray diffraction, scanning electron microscopy, atomic force microscopy, Kelvin probe force microscopy, and Hall measurements. We may suggest a route ofmore » high-functional Cu oxide-based photoelectric devices for the applications in flexible and transparent electronics.« less
Single- and multi-frequency detection of surface displacements via scanning probe microscopy.
Romanyuk, Konstantin; Luchkin, Sergey Yu; Ivanov, Maxim; Kalinin, Arseny; Kholkin, Andrei L
2015-02-01
Piezoresponse force microscopy (PFM) provides a novel opportunity to detect picometer-level displacements induced by an electric field applied through a conducting tip of an atomic force microscope (AFM). Recently, it was discovered that superb vertical sensitivity provided by PFM is high enough to monitor electric-field-induced ionic displacements in solids, the technique being referred to as electrochemical strain microscopy (ESM). ESM has been implemented only in multi-frequency detection modes such as dual AC resonance tracking (DART) and band excitation, where the response is recorded within a finite frequency range, typically around the first contact resonance. In this paper, we analyze and compare signal-to-noise ratios of the conventional single-frequency method with multi-frequency regimes of measuring surface displacements. Single-frequency detection ESM is demonstrated using a commercial AFM.
Transfer doping of single isolated nanodiamonds, studied by scanning probe microscopy techniques.
Bolker, Asaf; Saguy, Cecile; Kalish, Rafi
2014-09-26
The transfer doping of diamond surfaces has been applied in various novel two-dimensional electronic devices. Its extension to nanodiamonds (ND) is essential for ND-based applications in many fields. In particular, understanding the influence of the crystallite size on transfer doping is desirable. Here, we report the results of a detailed study of the electronic energetic band structure of single, isolated transfer-doped nanodiamonds with nanometric resolution using a combination of scanning tunneling spectroscopy and Kelvin force microscopy measurements. The results show how the band gap, the valence band maximum, the electron affinity and the work function all depend on the ND's size and nanoparticle surface properties. The present analysis, which combines information from both scanning tunneling spectroscopy and Kelvin force microscopy, should be applicable to any nanoparticle or surface that can be measured with scanning probe techniques.
Lv, Yi; Cui, Jian; Jiang, Zuimin M; Yang, Xinju
2012-11-29
The nanoscale electrical properties of individual self-assembled GeSi quantum rings (QRs) were studied by scanning probe microscopy-based techniques. The surface potential distributions of individual GeSi QRs are obtained by scanning Kelvin microscopy (SKM). Ring-shaped work function distributions are observed, presenting that the QRs' rim has a larger work function than the QRs' central hole. By combining the SKM results with those obtained by conductive atomic force microscopy and scanning capacitance microscopy, the correlations between the surface potential, conductance, and carrier density distributions are revealed, and a possible interpretation for the QRs' conductance distributions is suggested.
Automated force controller for amplitude modulation atomic force microscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miyagi, Atsushi, E-mail: atsushi.miyagi@inserm.fr, E-mail: simon.scheuring@inserm.fr; Scheuring, Simon, E-mail: atsushi.miyagi@inserm.fr, E-mail: simon.scheuring@inserm.fr
Atomic Force Microscopy (AFM) is widely used in physics, chemistry, and biology to analyze the topography of a sample at nanometer resolution. Controlling precisely the force applied by the AFM tip to the sample is a prerequisite for faithful and reproducible imaging. In amplitude modulation (oscillating) mode AFM, the applied force depends on the free and the setpoint amplitudes of the cantilever oscillation. Therefore, for keeping the applied force constant, not only the setpoint amplitude but also the free amplitude must be kept constant. While the AFM user defines the setpoint amplitude, the free amplitude is typically subject to uncontrollablemore » drift, and hence, unfortunately, the real applied force is permanently drifting during an experiment. This is particularly harmful in biological sciences where increased force destroys the soft biological matter. Here, we have developed a strategy and an electronic circuit that analyzes permanently the free amplitude of oscillation and readjusts the excitation to maintain the free amplitude constant. As a consequence, the real applied force is permanently and automatically controlled with picoNewton precision. With this circuit associated to a high-speed AFM, we illustrate the power of the development through imaging over long-duration and at various forces. The development is applicable for all AFMs and will widen the applicability of AFM to a larger range of samples and to a larger range of (non-specialist) users. Furthermore, from controlled force imaging experiments, the interaction strength between biomolecules can be analyzed.« less
An Undergraduate Nanotechnology Engineering Laboratory Course on Atomic Force Microscopy
ERIC Educational Resources Information Center
Russo, D.; Fagan, R. D.; Hesjedal, T.
2011-01-01
The University of Waterloo, Waterloo, ON, Canada, is home to North America's first undergraduate program in nanotechnology. As part of the Nanotechnology Engineering degree program, a scanning probe microscopy (SPM)-based laboratory has been developed for students in their fourth year. The one-term laboratory course "Nanoprobing and…
Curcumin Inhibits Tau Aggregation and Disintegrates Preformed Tau Filaments in vitro.
Rane, Jitendra Subhash; Bhaumik, Prasenjit; Panda, Dulal
2017-01-01
The pathological aggregation of tau is a common feature of most of the neuronal disorders including frontotemporal dementia, Parkinson's disease, and Alzheimer's disease. The inhibition of tau aggregation is considered to be one of the important strategies for treating these neurodegenerative diseases. Curcumin, a natural polyphenolic molecule, has been reported to have neuroprotective ability. In this work, curcumin was found to bind to adult tau and fetal tau with a dissociation constant of 3.3±0.4 and 8±1 μM, respectively. Molecular docking studies indicated a putative binding site of curcumin in the microtubule-binding region of tau. Using several complementary techniques, including dynamic light scattering, thioflavin S fluorescence, 90° light scattering, electron microscopy, and atomic force microscopy, curcumin was found to inhibit the aggregation of tau. The dynamic light scattering analysis and atomic force microscopic images revealed that curcumin inhibits the oligomerization of tau. Curcumin also disintegrated preformed tau oligomers. Using Far-UV circular dichroism, curcumin was found to inhibit the β-sheets formation in tau indicating that curcumin inhibits an initial step of tau aggregation. In addition, curcumin inhibited tau fibril formation. Furthermore, the effect of curcumin on the preformed tau filaments was analyzed by atomic force microscopy, transmission electron microscopy, and 90° light scattering. Curcumin treatment disintegrated preformed tau filaments. The results indicated that curcumin inhibited the oligomerization of tau and could disaggregate tau filaments.
NASA Astrophysics Data System (ADS)
Sader, John E.; Uchihashi, Takayuki; Higgins, Michael J.; Farrell, Alan; Nakayama, Yoshikazu; Jarvis, Suzanne P.
2005-03-01
Use of the atomic force microscope (AFM) in quantitative force measurements inherently requires a theoretical framework enabling conversion of the observed deflection properties of the cantilever to an interaction force. In this paper, the theoretical foundations of using frequency modulation atomic force microscopy (FM-AFM) in quantitative force measurements are examined and rigorously elucidated, with consideration being given to both 'conservative' and 'dissipative' interactions. This includes a detailed discussion of the underlying assumptions involved in such quantitative force measurements, the presentation of globally valid explicit formulae for evaluation of so-called 'conservative' and 'dissipative' forces, discussion of the origin of these forces, and analysis of the applicability of FM-AFM to quantitative force measurements in liquid.
Method for imaging liquid and dielectric materials with scanning polarization force microscopy
Hu, Jun; Ogletree, D. Frank; Salmeron, Miguel; Xiao, Xudong
1999-01-01
The invention images dielectric polarization forces on surfaces induced by a charged scanning force microscope (SFM) probe tip. On insulators, the major contribution to the surface polarizability at low frequencies is from surface ions. The mobility of these ions depends strongly on the humidity. Using the inventive SFM, liquid films, droplets, and other weakly adsorbed materials have been imaged.
Apparatus for imaging liquid and dielectric materials with scanning polarization force microscopy
Hu, Jun; Ogletree, D. Frank; Salmeron, Miguel; Xiao, Xudong
1998-01-01
The invention images dielectric polarization forces on surfaces induced by a charged scanning force microscope (SFM) probe tip. On insulators, the major contribution to the surface polarizability at low frequencies is from surface ions. The mobility of these ions depends strongly on the humidity. Using the inventive SFM, liquid films, droplets, and other weakly adsorbed materials have been imaged.
Electron beam detection of a Nanotube Scanning Force Microscope.
Siria, Alessandro; Niguès, Antoine
2017-09-14
Atomic Force Microscopy (AFM) allows to probe matter at atomic scale by measuring the perturbation of a nanomechanical oscillator induced by near-field interaction forces. The quest to improve sensitivity and resolution of AFM forced the introduction of a new class of resonators with dimensions at the nanometer scale. In this context, nanotubes are the ultimate mechanical oscillators because of their one dimensional nature, small mass and almost perfect crystallinity. Coupled to the possibility of functionalisation, these properties make them the perfect candidates as ultra sensitive, on-demand force sensors. However their dimensions make the measurement of the mechanical properties a challenging task in particular when working in cavity free geometry at ambient temperature. By using a focused electron beam, we show that the mechanical response of nanotubes can be quantitatively measured while approaching to a surface sample. By coupling electron beam detection of individual nanotubes with a custom AFM we image the surface topography of a sample by continuously measuring the mechanical properties of the nanoresonators. The combination of very small size and mass together with the high resolution of the electron beam detection method offers unprecedented opportunities for the development of a new class of nanotube-based scanning force microscopy.
NASA Astrophysics Data System (ADS)
Moreno-Herrero, F.; Colchero, J.; Gómez-Herrero, J.; Baró, A. M.
2004-03-01
The capabilities of the atomic force microscope for imaging biomolecules under physiological conditions has been systematically investigated. Contact, dynamic, and jumping modes have been applied to four different biological systems: DNA, purple membrane, Alzheimer paired helical filaments, and the bacteriophage φ29. These samples have been selected to cover a wide variety of biological systems in terms of sizes and substrate contact area, which make them very appropriate for the type of comparative studies carried out in the present work. Although dynamic mode atomic force microscopy is clearly the best choice for imaging soft samples in air, in liquids there is not a leading technique. In liquids, the most appropriate imaging mode depends on the sample characteristics and preparation methods. Contact or dynamic modes are the best choices for imaging molecular assemblies arranged as crystals such as the purple membrane. In this case, the advantage of image acquisition speed predominates over the disadvantage of high lateral or normal force. For imaging individual macromolecules, which are weakly bonded to the substrate, lateral and normal forces are the relevant factors, and hence the jumping mode, an imaging mode which minimizes lateral and normal forces, is preferable to other imaging modes.
NASA Astrophysics Data System (ADS)
Harrell, Lee; Moore, Eric; Lee, Sanggap; Hickman, Steven; Marohn, John
2011-03-01
We present data and theoretical signal and noise calculations for a protocol using parametric amplification to evade the inherent tradeoff between signal and detector frequency noise in force-gradient magnetic resonance force microscopy signals, which are manifested as a modulated frequency shift of a high- Q microcantilever. Substrate-induced frequency noise has a 1 / f frequency dependence, while detector noise exhibits an f2 dependence on modulation frequency f . Modulation of sample spins at a frequency that minimizes these two contributions typically results in a surface frequency noise power an order of magnitude or more above the thermal limit and may prove incompatible with sample spin relaxation times as well. We show that the frequency modulated force-gradient signal can be used to excite the fundamental resonant mode of the cantilever, resulting in an audio frequency amplitude signal that is readily detected with a low-noise fiber optic interferometer. This technique allows us to modulate the force-gradient signal at a sufficiently high frequency so that substrate-induced frequency noise is evaded without subjecting the signal to the normal f2 detector noise of conventional demodulation.
Roy, Rajarshi; Desai, Jaydev P.
2016-01-01
This paper outlines a comprehensive parametric approach for quantifying mechanical properties of spatially heterogeneous thin biological specimens such as human breast tissue using contact-mode Atomic Force Microscopy. Using inverse finite element (FE) analysis of spherical nanoindentation, the force response from hyperelastic material models is compared with the predicted force response from existing analytical contact models, and a sensitivity study is carried out to assess uniqueness of the inverse FE solution. Furthermore, an automation strategy is proposed to analyze AFM force curves with varying levels of material nonlinearity with minimal user intervention. Implementation of our approach on an elastic map acquired from raster AFM indentation of breast tissue specimens indicates that a judicious combination of analytical and numerical techniques allow more accurate interpretation of AFM indentation data compared to relying on purely analytical contact models, while keeping the computational cost associated an inverse FE solution with reasonable limits. The results reported in this study have several implications in performing unsupervised data analysis on AFM indentation measurements on a wide variety of heterogeneous biomaterials. PMID:25015130
Schein, Perry; Kang, Pilgyu; O’Dell, Dakota; ...
2015-01-27
Direct measurements of particle–surface interactions are important for characterizing the stability and behavior of colloidal and nanoparticle suspensions. Current techniques are limited in their ability to measure pico-Newton scale interaction forces on submicrometer particles due to signal detection limits and thermal noise. In this paper, we present a new technique for making measurements in this regime, which we refer to as nanophotonic force microscopy. Using a photonic crystal resonator, we generate a strongly localized region of exponentially decaying, near-field light that allows us to confine small particles close to a surface. From the statistical distribution of the light intensity scatteredmore » by the particle we are able to map out the potential well of the trap and directly quantify the repulsive force between the nanoparticle and the surface. Finally, as shown in this Letter, our technique is not limited by thermal noise, and therefore, we are able to resolve interaction forces smaller than 1 pN on dielectric particles as small as 100 nm in diameter.« less
Influence of irrigation regimens on the adherence of Enterococcus faecalis to root canal dentin.
Kishen, Anil; Sum, Chee-Peng; Mathew, Shibi; Lim, Chwee-Teck
2008-07-01
Enterococcus faecalis is frequently associated with post-treatment endodontic infections. Because adherence of bacteria to a substrate is the earliest stage in biofilm formation, eliciting the factors that links adherence of this bacterium to dentin would help in understanding its association with treatment-failed root canals. This investigation aimed to study the effects of endodontic irrigants on the adherence of E. faecalis to dentin. The bacteria adherence assay was conducted by using fluorescence microscopy, and the adhesion force was measured by using atomic force microscopy. There were significant increases in adherence and adhesion force after irrigation of dentin with ethylenediaminetetraacetic acid (EDTA), whereas sodium hypochlorite (NaOCl) reduced it. With the use of chlorhexidine (CHX), the force of adhesion increased, but the adherence assay showed a reduction in the number of adhering bacteria. The irrigation regimen of EDTA, NaOCl, and CHX resulted in the least number of adhering E. faecalis cells. This study highlighted that chemicals that alter the physicochemical properties of dentin will influence the nature of adherence, adhesion force, and subsequent biofilm formation of E. faecalis to dentin.
Material properties of viral nanocages explored by atomic force microscopy.
van Rosmalen, Mariska G M; Roos, Wouter H; Wuite, Gijs J L
2015-01-01
Single-particle nanoindentation by atomic force microscopy (AFM) is an emergent technique to characterize the material properties of nano-sized proteinaceous systems. AFM uses a very small tip attached to a cantilever to scan the surface of the substrate. As a result of the sensitive feedback loop of AFM, the force applied by the tip on the substrate during scanning can be controlled and monitored. By accurately controlling this scanning force, topographical maps of fragile substrates can be acquired to study the morphology of the substrate. In addition, mechanical properties of the substrate like stiffness and breaking point can be determined by using the force spectroscopy capability of AFM. Here we discuss basics of AFM operation and how this technique is used to determine the structure and mechanical properties of protein nanocages, in particular viral particles. Knowledge of morphology as well as mechanical properties is essential for understanding viral life cycles, including genome packaging, capsid maturation, and uncoating, but also contributes to the development of diagnostics, vaccines, imaging modalities, and targeted therapeutic devices based on viruslike particles.
NASA Astrophysics Data System (ADS)
Coceano, G.; Yousafzai, M. S.; Ma, W.; Ndoye, F.; Venturelli, L.; Hussain, I.; Bonin, S.; Niemela, J.; Scoles, G.; Cojoc, D.; Ferrari, E.
2016-02-01
Investigating the mechanical properties of cells could reveal a potential source of label-free markers of cancer progression, based on measurable viscoelastic parameters. The Young’s modulus has proved to be the most thoroughly studied so far, however, even for the same cell type, the elastic modulus reported in different studies spans a wide range of values, mainly due to the application of different experimental conditions. This complicates the reliable use of elasticity for the mechanical phenotyping of cells. Here we combine two complementary techniques, atomic force microscopy (AFM) and optical tweezer microscopy (OTM), providing a comprehensive mechanical comparison of three human breast cell lines: normal myoepithelial (HBL-100), luminal breast cancer (MCF-7) and basal breast cancer (MDA-MB-231) cells. The elastic modulus was measured locally by AFM and OTM on single cells, using similar indentation approaches but different measurement parameters. Peak force tapping AFM was employed at nanonewton forces and high loading rates to draw a viscoelastic map of each cell and the results indicated that the region on top of the nucleus provided the most meaningful results. OTM was employed at those locations at piconewton forces and low loading rates, to measure the elastic modulus in a real elastic regime and rule out the contribution of viscous forces typical of AFM. When measured by either AFM or OTM, the cell lines’ elasticity trend was similar for the aggressive MDA-MB-231 cells, which were found to be significantly softer than the other two cell types in both measurements. However, when comparing HBL-100 and MCF-7 cells, we found significant differences only when using OTM.
Grebíková, Lucie; Whittington, Stuart G; Vancso, Julius G
2018-05-23
The adsorption-desorption behavior of polymer chains is at the heart of macromolecular surface science and technology. With the current developments in atomic force microscopy (AFM), it has now become possible to address the desorption problem from the perspective of a single macromolecule. Here, we report on desorption of single polymer chains on planar surfaces by AFM-based single molecule force spectroscopy (SMFS) as a function of the pulling angle with respect to the surface-normal direction. SMFS experiments were performed in water with various substrates using different polymers covalently attached to the AFM probe tip. End-grafting at the AFM tip was achieved by surface-initiated polymerization using initiator functionalized tips. We found that the desorption force increases with a decreasing pulling angle, i.e., an enhanced adhesion of the polymer chain was observed. The magnitude of the desorption force shows a weak angular dependence at pulling angles close to the surface normal. A significant increase of the force is observed at shallower pulling from a certain pulling angle. This behavior carries the signature of an adsorption-desorption transition. The angular dependence of the normalized desorption force exhibits a universal behavior. We compared and interpreted our results using theoretical predictions for single-chain adsorption-desorption transitions.
2018-01-01
The adsorption–desorption behavior of polymer chains is at the heart of macromolecular surface science and technology. With the current developments in atomic force microscopy (AFM), it has now become possible to address the desorption problem from the perspective of a single macromolecule. Here, we report on desorption of single polymer chains on planar surfaces by AFM-based single molecule force spectroscopy (SMFS) as a function of the pulling angle with respect to the surface-normal direction. SMFS experiments were performed in water with various substrates using different polymers covalently attached to the AFM probe tip. End-grafting at the AFM tip was achieved by surface-initiated polymerization using initiator functionalized tips. We found that the desorption force increases with a decreasing pulling angle, i.e., an enhanced adhesion of the polymer chain was observed. The magnitude of the desorption force shows a weak angular dependence at pulling angles close to the surface normal. A significant increase of the force is observed at shallower pulling from a certain pulling angle. This behavior carries the signature of an adsorption–desorption transition. The angular dependence of the normalized desorption force exhibits a universal behavior. We compared and interpreted our results using theoretical predictions for single-chain adsorption–desorption transitions. PMID:29712430
Nanosecond pulsed electric field induced changes in cell surface charge density.
Dutta, Diganta; Palmer, Xavier-Lewis; Asmar, Anthony; Stacey, Michael; Qian, Shizhi
2017-09-01
This study reports that the surface charge density changes in Jurkat cells with the application of single 60 nanosecond pulse electric fields, using atomic force microscopy. Using an atomic force microscope tip and Jurkat cells on silica in a 0.01M KCl ionic concentration, we were able to measure the interfacial forces, while also predicting surface charge densities of both Jurkat cell and silica surfaces. The most important finding is that the pulsing conditions varyingly reduced the cells' surface charge density. This offers a novel way in which to examine cellular effects of pulsed electric fields that may lead to the identification of unique mechanical responses. Compared to a single low field strength NsPEF (15kV/cm) application, exposure of Jurkat cells to a single high field strength NsPEF (60kV/cm) resulted in a further reduction in charge density and major morphological changes. The structural, physical, and chemical properties of biological cells immensely influence their electrostatic force; we were able to investigate this through the use of atomic force microscopy by measuring the surface forces between the AFM's tip and the Jurkat cells under different pulsing conditions as well as the interfacial forces in ionic concentrations. Copyright © 2017 Elsevier Ltd. All rights reserved.
Waveform Retrieval and Phase Identification for Seismic Data from the CASS Experiment
NASA Astrophysics Data System (ADS)
Li, Zhiwei; You, Qingyu; Ni, Sidao; Hao, Tianyao; Wang, Hongti; Zhuang, Cantao
2013-05-01
The little destruction to the deployment site and high repeatability of the Controlled Accurate Seismic Source (CASS) shows its potential for investigating seismic wave velocities in the Earth's crust. However, the difficulty in retrieving impulsive seismic waveforms from the CASS data and identifying the seismic phases substantially prevents its wide applications. For example, identification of the seismic phases and accurate measurement of travel times are essential for resolving the spatial distribution of seismic velocities in the crust. Until now, it still remains a challenging task to estimate the accurate travel times of different seismic phases from the CASS data which features extended wave trains, unlike processing of the waveforms from impulsive events such as earthquakes or explosive sources. In this study, we introduce a time-frequency analysis method to process the CASS data, and try to retrieve the seismic waveforms and identify the major seismic phases traveling through the crust. We adopt the Wigner-Ville Distribution (WVD) approach which has been used in signal detection and parameter estimation for linear frequency modulation (LFM) signals, and proves to feature the best time-frequency convergence capability. The Wigner-Hough transform (WHT) is applied to retrieve the impulsive waveforms from multi-component LFM signals, which comprise seismic phases with different arrival times. We processed the seismic data of the 40-ton CASS in the field experiment around the Xinfengjiang reservoir with the WVD and WHT methods. The results demonstrate that these methods are effective in waveform retrieval and phase identification, especially for high frequency seismic phases such as PmP and SmS with strong amplitudes in large epicenter distance of 80-120 km. Further studies are still needed to improve the accuracy on travel time estimation, so as to further promote applicability of the CASS for and imaging the seismic velocity structure.
Multi-fluid simulations of the coupled solar wind-magnetosphere-ionsphere system
NASA Astrophysics Data System (ADS)
Lyon, J.
2011-12-01
This paper will review recent work done with the multi-fluid version of the Lyon-Fedder-Mobarry (MF-LFM) global MHD simulation code. We will concentrate on O+ outflow from the ionosphere and its importance for magnetosphere-ionosphere (MI) coupling and also the importance of ionospheric conditions in determining the outflow. While the predominant method of coupling between the magnetosphere and ionosphere is electrodynamic, it has become apparent the mass flows from the ionosphere into the magnetosphere can have profound effects on both systems. The earliest models to attempt to incorporate this effect used very crude clouds of plasma near the Earth. The earliest MF-LFM results showed that depending on the details of the outflow - where, how much, how fast - very different magnetospheric responses could be found. Two approaches to causally driven models for the outflow have been developed for use in global simulations, the Polar Wind Outflow Model (PWOM), started at the Univ. of Michigan, and the model used by Bill Lotko and co-workers at Dartmouth. We will give a quick review of this model which is based on the empirical relation between outflow fluence and Poynting flux discovered by Strangeway. An additional factor used in this model is the precipitating flux of electrons, which is presumed to correlate with the scale height of the upwelling ions. parameters such as outflow speed and density are constrained by the total fluence. The effects of the outflow depend on the speed. Slower outflow tends to land in the inner magnetosphere increasing the strength of the ring current. Higher speed flow out in the tail. Using this model, simulations have shown that solar wind dynamic pressure has a profound effect on the amount of fluence. The most striking result has been the simulation of magnetospheric sawtooth events. We will discuss future directions for this research, emphasizing the need for better physical models for the outflow process and its coupling to the ionosphere.
NASA Astrophysics Data System (ADS)
Merkin, V. G.; Wiltberger, M. J.; Zhang, B.; Liu, J.; Wang, W.; Dimant, Y. S.; Oppenheim, M. M.; Lyon, J.
2017-12-01
During geomagnetic storms the magnetosphere-ionosphere-thermosphere system becomes activated in ways that are unique to disturbed conditions. This leads to emergence of physical feedback loops that provide tighter coupling between the system elements, often operating across disparate spatial and temporal scales. One such process that has recently received renewed interest is the generation of microscopic ionospheric turbulence in the electrojet regions (electrojet turbulence, ET) that results from strong convective electric fields imposed by the solar wind-magnetosphere interaction. ET leads to anomalous electron heating and generation of non-linear Pedersen current - both of which result in significant increases in effective ionospheric conductances. This, in turn, provides strong non-linear feedback on the magnetosphere. Recently, our group has published two studies aiming at a comprehensive analysis of the global effects of this microscopic process on the magnetosphere-ionosphere-thermosphere system. In one study, ET physics was incorporated in the TIEGCM model of the ionosphere-thermosphere. In the other study, ad hoc corrections to the ionospheric conductances based on ET theory were incorporated in the conductance module of the Lyon-Fedder-Mobarry (LFM) global magnetosphere model. In this presentation, we make the final step toward the full coupling of the microscopic ET physics within our global coupled model including LFM, the Rice Convection Model (RCM) and TIEGCM. To this end, ET effects are incorporated in the TIEGCM model and propagate throughout the system via thus modified TIEGCM conductances. The March 17, 2013 geomagnetic storm is used as a testbed for these fully coupled simulations, and the results of the model are compared with various ionospheric and magnetospheric observatories, including DMSP, AMPERE, and Van Allen Probes. Via these comparisons, we investigate, in particular, the ET effects on the global magnetosphere indicators such as the strength of the ionospheric convection, field-aligned current densities and ring current pressure amplitude and distribution.
Leite, Fabio L.; Bueno, Carolina C.; Da Róz, Alessandra L.; Ziemath, Ervino C.; Oliveira, Osvaldo N.
2012-01-01
The increasing importance of studies on soft matter and their impact on new technologies, including those associated with nanotechnology, has brought intermolecular and surface forces to the forefront of physics and materials science, for these are the prevailing forces in micro and nanosystems. With experimental methods such as the atomic force spectroscopy (AFS), it is now possible to measure these forces accurately, in addition to providing information on local material properties such as elasticity, hardness and adhesion. This review provides the theoretical and experimental background of AFS, adhesion forces, intermolecular interactions and surface forces in air, vacuum and in solution. PMID:23202925
Scanning Tunneling Microscopy, Atomic Force Microscopy, and Related Techniques
1992-02-26
92. (B47) Fujui, T.; Suzuki, MA.; Miyashita, MA.; Yamaguchi, M.; Onuki , T.; Nakamura, H .; Matsubara, T.; Yamada, H .; Nakayamia, K. J. Vac. Sd...and seven deflection detection systems (A 15). (Al) Binnig, G.; Rohrer, H .; Gerber, Ch.; Weibel, E. Phys. Rev. Lett. 1982, 49, 57. (A2) Ray, M.A...J. J. Vac Sci. Technol. A 1ඣ, 9, 44-50. (AS) Scanning Tunneling Microscopy and Related Methods; Behm, RJ., Garcia, N., Rohrer, H ., Eds.; NATO ASI
Quantitative measurement of solvation shells using frequency modulated atomic force microscopy
NASA Astrophysics Data System (ADS)
Uchihashi, T.; Higgins, M.; Nakayama, Y.; Sader, J. E.; Jarvis, S. P.
2005-03-01
The nanoscale specificity of interaction measurements and additional imaging capability of the atomic force microscope make it an ideal technique for measuring solvation shells in a variety of liquids next to a range of materials. Unfortunately, the widespread use of atomic force microscopy for the measurement of solvation shells has been limited by uncertainties over the dimensions, composition and durability of the tip during the measurements, and problems associated with quantitative force calibration of the most sensitive dynamic measurement techniques. We address both these issues by the combined use of carbon nanotube high aspect ratio probes and quantifying the highly sensitive frequency modulation (FM) detection technique using a recently developed analytical method. Due to the excellent reproducibility of the measurement technique, additional information regarding solvation shell size as a function of proximity to the surface has been obtained for two very different liquids. Further, it has been possible to identify differences between chemical and geometrical effects in the chosen systems.
Imaging and Force Recognition of Single Molecular Behaviors Using Atomic Force Microscopy
Li, Mi; Dang, Dan; Liu, Lianqing; Xi, Ning; Wang, Yuechao
2017-01-01
The advent of atomic force microscopy (AFM) has provided a powerful tool for investigating the behaviors of single native biological molecules under physiological conditions. AFM can not only image the conformational changes of single biological molecules at work with sub-nanometer resolution, but also sense the specific interactions of individual molecular pair with piconewton force sensitivity. In the past decade, the performance of AFM has been greatly improved, which makes it widely used in biology to address diverse biomedical issues. Characterizing the behaviors of single molecules by AFM provides considerable novel insights into the underlying mechanisms guiding life activities, contributing much to cell and molecular biology. In this article, we review the recent developments of AFM studies in single-molecule assay. The related techniques involved in AFM single-molecule assay were firstly presented, and then the progress in several aspects (including molecular imaging, molecular mechanics, molecular recognition, and molecular activities on cell surface) was summarized. The challenges and future directions were also discussed. PMID:28117741
Nikfarjam, Miead; López-Guerra, Enrique A; Solares, Santiago D; Eslami, Babak
2018-01-01
In this short paper we explore the use of higher eigenmodes in single-eigenmode amplitude-modulation atomic force microscopy (AFM) for the small-indentation imaging of soft viscoelastic materials. In viscoelastic materials, whose response depends on the deformation rate, the tip-sample forces generated as a result of sample deformation increase as the tip velocity increases. Since the eigenfrequencies in a cantilever increase with eigenmode order, and since higher oscillation frequencies lead to higher tip velocities for a given amplitude (in viscoelastic materials), the sample indentation can in some cases be reduced by using higher eigenmodes of the cantilever. This effect competes with the lower sensitivity of higher eigenmodes, due to their larger force constant, which for elastic materials leads to greater indentation for similar amplitudes, compared with lower eigenmodes. We offer a short theoretical discussion of the key underlying concepts, along with numerical simulations and experiments to illustrate a simple recipe for imaging soft viscoelastic matter with reduced indentation.
Serial sectioning methods for 3D investigations in materials science.
Zankel, Armin; Wagner, Julian; Poelt, Peter
2014-07-01
A variety of methods for the investigation and 3D representation of the inner structure of materials has been developed. In this paper, techniques based on slice and view using scanning microscopy for imaging are presented and compared. Three different methods of serial sectioning combined with either scanning electron or scanning ion microscopy or atomic force microscopy (AFM) were placed under scrutiny: serial block-face scanning electron microscopy, which facilitates an ultramicrotome built into the chamber of a variable pressure scanning electron microscope; three-dimensional (3D) AFM, which combines an (cryo-) ultramicrotome with an atomic force microscope, and 3D FIB, which delivers results by slicing with a focused ion beam. These three methods complement one another in many respects, e.g., in the type of materials that can be investigated, the resolution that can be obtained and the information that can be extracted from 3D reconstructions. A detailed review is given about preparation, the slice and view process itself, and the limitations of the methods and possible artifacts. Applications for each technique are also provided. Copyright © 2014 Elsevier Ltd. All rights reserved.
Raspanti, M; Congiu, T; Alessandrini, A; Gobbi, P; Ruggeri, A
2000-01-01
The extracellular matrix of unfixed, unstained rat corneal stroma, visualized with high-resolution scanning electron microscopy and atomic force microscopy after minimal preliminary treatment, appears composed of straight, parallel, uniform collagen fibrils regularly spaced by a three-dimensional, irregular network of thin, delicate proteoglycan filaments. Rat tail tendon, observed under identical conditions, appears instead made of heterogeneous, closely packed fibrils interwoven with orthogonal proteoglycan filaments. Pre-treatment with cupromeronic blue just thickens the filaments without affecting their spatial layout. Digestion with chondroitinase ABC rids the tendon matrix of all its interconnecting filaments while the corneal stroma architecture remains virtually unaffected, its fibrils always being separated by an evident interfibrillar spacing which is never observed in tendon. Our observations indicate that matrix proteoglycans are responsible for both the highly regular interfibrillar spacing which is distinctive of corneal stroma, and the strong interfibrillar binding observed in tendon. These opposite interaction patterns appear to be distinctive of different proteoglycan species. The molecular details of proteoglycan interactions are still incompletely understood and are the subject of ongoing research.
NASA Astrophysics Data System (ADS)
Smith, Steve; Hor, Amy; Luu, Anh; Kang, Lin; Scott, Brandon; Bailey, Elizabeth; Hoppe, Adam
Clathrin-mediated endocytosis is one of the central pathways for cargo transport into cells, and plays a major role in the maintenance of cellular functions, such as intercellular signaling, nutrient intake, and turnover of plasma membrane in cells. The clathrin-mediated endocytosis process involves invagination and formation of clathrin-coated vesicles. However, the biophysical mechanisms of vesicle formation are still debated. We investigate clathrin vesicle formation mechanisms through the utilization of tapping-mode atomic force microscopy for high resolution topographical imaging in neutral buffer solution of unroofed cells exposing the inner membrane, combined with fluorescence imaging to definitively label intracellular constituents with specific fluorescent fusion proteins (actin filaments labeled with green phalloidin-antibody and clathrin coated vesicles with the fusion protein Tq2) in SKMEL (Human Melanoma) cells. Results from our work are compared against dynamical polarized total internal fluorescence (TIRF), super-resolution photo-activated localization microscopy (PALM) and transmission electron microscopy (TEM) to draw conclusions regarding the prominent model of vesicle formation in clathrin-mediated endocytosis. Funding provided by NSF MPS/DMR/BMAT award # 1206908.
NASA Astrophysics Data System (ADS)
Wijeratne, Sitara; Botello, Eric; Yeh, Hui-Chun; Zhou, Zhou; Bergeron, Angela; Frey, Eric; Moake, Joel; Dong, Jing-Fei; Kiang, Ching-Hwa
2011-10-01
Single-molecule manipulation allows us to study the real-time kinetics of complex cellular processes. The mechanochemistry of different forms of von Willebrand factor (VWF) and their receptor-ligand binding kinetics can be probed by atomic force microscopy (AFM). Since plasma VWF can be activated upon shear, the structural and functional properties of VWF that are critical in mediating thrombus formation become important. Here we characterized the mechanical resistance to domain unfolding of VWF to determine its conformational states. We found the shear-induced conformational changes, hence the mechanical property, can be detected by the change in unfolding forces. The relaxation rate of such effect is much longer than expected. Our results offer an insight in establishing strategies for regulating VWF adhesion activity, increasing our understanding of surface-induced thrombosis as mediated by VWF.
Single molecule imaging of RNA polymerase II using atomic force microscopy
NASA Astrophysics Data System (ADS)
Rhodin, Thor; Fu, Jianhua; Umemura, Kazuo; Gad, Mohammed; Jarvis, Suzi; Ishikawa, Mitsuru
2003-03-01
An atomic force microscopy (AFM) study of the shape, orientation and surface topology of RNA polymerase II supported on silanized freshly cleaved mica was made. The overall aim is to define the molecular topology of RNA polymerase II in appropriate fluids to help clarify the relationship of conformational features to biofunctionality. A Nanoscope III atomic force microscope was used in the tapping mode with oxide-sharpened (8-10 nm) Si 3N 4 probes in aqueous zinc chloride buffer. The main structural features observed by AFM were compared to those derived from electron-density plots based on X-ray crystallographic studies. The conformational features included a bilobal silhouette with an inverted umbrella-shaped crater connected to a reaction site. These studies provide a starting point for constructing a 3D-AFM profiling analysis of proteins such as RNA polymerase complexes.
Gold nanoparticles for cancer detection and treatment: The role of adhesion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oni, Y.; Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey 08544; Hao, K.
2014-02-28
This paper presents the results of an experimental study of the effects of adhesion between gold nanoparticles and surfaces that are relevant to the potential applications in cancer detection and treatment. Adhesion is measured using a dip coating/atomic force microscopy (DC/AFM) technique. The adhesion forces are obtained for dip-coated gold nanoparticles that interact with peptide or antibody-based molecular recognition units (MRUs) that attach specifically to breast cancer cells. They include MRUs that attach specifically to receptors on breast cancer cells. Adhesion forces between anti-cancer drugs such as paclitaxel, and the constituents of MRU-conjugated Au nanoparticle clusters, are measured using forcemore » microscopy techniques. The implications of the results are then discussed for the design of robust gold nanoparticle clusters and for potential applications in localized drug delivery and hyperthermia.« less