Science.gov

Sample records for force posture statement

  1. Air Force Posture Statement 2002

    DTIC Science & Technology

    2002-01-01

    Ahmedabad, India. In April, a C–17 airlifted 10 cheetahs from Africa to America as part of a gift to the United States from the people of Namibia...the-sky” upgrades to include broadband data and direct broadcast service. As funds become available, remaining VIPSAM aircraft will be evaluated for...sustain air and space capabilities. In FY02, operations and maintenance (O&M) sustainment funding precluded fully maintaining Air Force facilities and

  2. Air Force Posture Statement 2008: Department of Air Force Presentation to the House Armed Services Committee, U.S. House of Representatives, Fiscal Year 2009 Air Force Posture Statement

    DTIC Science & Technology

    2008-02-27

    unclassified Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 1 DEPARTMENT OF THE AIR FORCE PRESENTATION TO THE HOUSE ARMED SERVICES...COMMITTEE UNITED STATES HOUSE OF REPRESENTATIVES FISCAL YEAR 2009 AIR FORCE POSTURE STATEMENT STATEMENT OF: THE HONORABLE MICHAEL W. WYNNE SECRETARY OF...Highest Quality of Life Standards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19 4.2.1 Housing and Military Construction

  3. The U.S. Air Force Posture Statement 2006

    DTIC Science & Technology

    2006-01-01

    Statement 2006 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7...expensive aircraft and equipment, as well as accepting a manageable level of risk in order to selectively maintain some older systems until newer systems...rise, with projections for 2004-2007 ndcatng a twofold ncrease over the number of advanced SAM system exports during the md to late 1990s

  4. U.S. Air Force Posture Statement 2000

    DTIC Science & Technology

    2000-01-01

    buyouts (incentives) for force shaping. To sustain a civilian workforce, we need the right mix of new, mid-level, and se- nior employees. In the last...generation strike fighter aircraft for the Air Force, Navy, Marine Corps, and our allies. Current program 62 emphasis is on facilitating the evolution ... price is one quarter of the cost, and its develop- ment schedule is half the time, of similar missile programs. JASSM is currently undergoing flight

  5. U.S. Air Force Posture Statement 2007

    DTIC Science & Technology

    2007-01-01

    command and control; electronic Warfare; network Warfare; and intelligence , surveillance and Reconnaissance ( isR ). Many air Force programs, while...persistent isR and—in the case of Predator—a lethal strike option. in addition to their global responsibilities, stateside airborne Warning and control...Joint sTaRs) is an airborne battle management, command and control, intelligence , surveillance, and reconnaissance platform. its primary mission

  6. Posture Statement 2006

    DTIC Science & Technology

    2006-02-01

    dispersed, comprising formal, informal, family, and cultural associations tied by varied and sometimes near- invisible links. Th ey ex- ploit the...coordination, and communication between all levels of government. USSOCOM’s leadership, vision, and initiative in prosecuting the GWOT was validated most...Rather, the new vision expresses a need for low density, high demand SOF assets to be postured with a “presence for purpose”, to be at the “right place

  7. Forced Changes of Combat Posture

    DTIC Science & Technology

    1988-09-30

    effectiveness. Adkins’s thesi-s on modeling battlefield decision-making provided additional factors. M& Quic addressed the questien of posture change directly in...the study was to gain increased knowledge of the fac- - tors associated with forced changes in combat posture, in order to develop a model of forced...posture change model for use, with appro- priate parameter values, at the divisional and regimental levels. Principles guiding the model development may

  8. United States Air Force Posture Statement 2001

    DTIC Science & Technology

    2001-12-01

    For example, our flying hours have remained relatively constant over the past five years, but their cost has increased by over 45% after inflation...30 years old by 2020. In order to level off this increasing trend, we would have to procure about 150 aircraft per year. To actually reduce the...adversely impacting training or readiness. If tasked beyond this level , we would conduct surge operations as required. Upon completion of large-scale

  9. Functional muscle synergies constrain force production during postural tasks.

    PubMed

    McKay, J Lucas; Ting, Lena H

    2008-01-01

    We recently demonstrated that a set of five functional muscle synergies were sufficient to characterize both hindlimb muscle activity and active forces during automatic postural responses in cats standing at multiple postural configurations. This characterization depended critically upon the assumption that the endpoint force vector (synergy force vector) produced by the activation of each muscle synergy rotated with the limb axis as the hindlimb posture varied in the sagittal plane. Here, we used a detailed, 3D static model of the hindlimb to confirm that this assumption is biomechanically plausible: as we varied the model posture, simulated synergy force vectors rotated monotonically with the limb axis in the parasagittal plane (r2=0.94+/-0.08). We then tested whether a neural strategy of using these five functional muscle synergies provides the same force-generating capability as controlling each of the 31 muscles individually. We compared feasible force sets (FFSs) from the model with and without a muscle synergy organization. FFS volumes were significantly reduced with the muscle synergy organization (F=1556.01, p<0.01), and as posture varied, the synergy-limited FFSs changed in shape, consistent with changes in experimentally measured active forces. In contrast, nominal FFS shapes were invariant with posture, reinforcing prior findings that postural forces cannot be predicted by hindlimb biomechanics alone. We propose that an internal model for postural force generation may coordinate functional muscle synergies that are invariant in intrinsic limb coordinates, and this reduced-dimension control scheme reduces the set of forces available for postural control.

  10. 1998 Department of the Navy Posture Statement. Forward From the Sea: Anytime, Anywhere

    DTIC Science & Technology

    1998-01-01

    Technology SVII. Efficiency #VIII. Programs # IX. Conclusion I flack 1 IÜ Each page in the online version of the Posture Statement has these three...and Commitment. This posture statement illustrates the framework adopted by the Department of the Navy to achieve our vision of 21st century...weapons combine to convince any adversary that seeking a nuclear advantage — or even nuclear parity — I would be futile. Stealth and mobility make this

  11. Effects of handle orientation, gloves, handle friction and elbow posture on maximum horizontal pull and push forces.

    PubMed

    Seo, Na Jin; Armstrong, Thomas J; Young, Justin G

    2010-01-01

    Biomechanical models were evaluated for effects of handle orientation, handle material, gloves and arm posture on maximal pull/push force. Eight healthy subjects performed maximum pull/push exertions on handles with two different orientations and two different surface materials, using bare hand and two types of glove as well as two arm postures. The empirical data supported the proposed biomechanical models: Pull/push forces for the bare hand on a rubber handle decreased 10% when the handle was parallel to the pull/push direction, compared with when perpendicular to it. For parallel handles, pull/push forces further decreased with decreasing hand-handle friction coefficient (simulated by different handle materials and gloves). Pull force exerted by the bare hand was 29% greater when the elbow was extended than when flexed. Pull force was greater than push force (with bare hand and flexed elbow). The biomechanical models suggest that friction between the hand and handle limits pull/push forces for parallel handles. Elbow strength may be responsible for decreased pull force for the flexed elbow posture and decreased force for pull compared with push in the postures examined. STATEMENT OF RELEVANCE: Biomechanical models presented in this paper provide insights for causes of upper extremity strength limitations during pull/push tasks. Findings in this paper can be used directly in the design of workstation and objects to reduce fatigue and risk of musculoskeletal disorders.

  12. Rapid acceleration in dogs: ground forces and body posture dynamics.

    PubMed

    Walter, Rebecca M; Carrier, David R

    2009-06-01

    Because the ability to accelerate rapidly is crucial to the survival and reproductive fitness of most terrestrial animals, it is important to understand how the biomechanics of rapid acceleration differs from that of steady-state locomotion. Here we compare rapid acceleration with high-speed galloping in dogs to investigate the ways in which body and limb posture and ground forces are altered to produce effective acceleration. Seven dogs were videotaped at 250 Hz as they performed ;maximum effort' accelerations, starting in a standing position on a force plate and one and two strides before it. These dogs began accelerations by rapidly flexing their ankles and knees as they dropped into a crouch. The crouched posture was maintained in the first accelerating stride such that the ankle and knee were significantly more flexed than during steady high-speed galloping. The hindlimb was also significantly more retracted over the first stance period than during high-speed galloping. Ground forces differed from steady-state locomotion in that rapidly accelerating dogs supported only 43% of their body weight with the forelimbs, compared with 56-64% in steady-state locomotion. The hindlimbs applied greater peak accelerating forces than the forelimbs, but the forelimbs contributed significantly to the dogs' acceleration by producing 43% of the total propulsive impulse. Kinematically, rapid acceleration differs from steady-state galloping in that the limbs are more flexed and more retracted, while the back undergoes greater pitching movement. Ground reaction forces also differ significantly from steady-state galloping in that almost no decelerating forces are applied while propulsive force impulses are three to six times greater.

  13. 2007 Posture Statement, Army Reserve: An Operational Force

    DTIC Science & Technology

    2007-01-01

    Officer Bob Louck is a Warrior Citizen who retired from the military in 1985. After September 11th, the former instructor pilot turned pastry truck...environments are nothing new to Bob. Whether the enemy is the Taliban or the Viet Cong, Chief Warrant Officer Louck , who last flew a Chinook in 1970...especially the young people who are recruited by the Taliban.” (Chief Warrant Officer Louck on a humanitarian mission in Pakistan

  14. National Guard Posture Statement 2010. America’s Indispensable Force

    DTIC Science & Technology

    2010-01-01

    Shane A. Cuomo Staff Sergeant Justin Goeden Staff Sergeant Jim Greenhill Technical Sergeant Erik Gudmundson Staff Sergeant Russell L. Klika Technical...W. Clemons, KY SGT Russell L. Collier, AR SFC Kurt J. Comeaux, LA SPC Anthony S. Cometa, NV SGT Brian R. Conner, MD SFC Sean M. Cooley, MS SSG Travis...Sietsema, IL SGT Alfred B. Siler, TN SGT Alfredo B. Silva, CA SGT Isiah J. Sinclair, LA SPC Roshan (Sean) R. Singh, NY SPC Channing G. Singletary, GA

  15. An investigation of rugby scrimmaging posture and individual maximum pushing force.

    PubMed

    Wu, Wen-Lan; Chang, Jyh-Jong; Wu, Jia-Hroung; Guo, Lan-Yuen

    2007-02-01

    Although rugby is a popular contact sport and the isokinetic muscle torque assessment has recently found widespread application in the field of sports medicine, little research has examined the factors associated with the performance of game-specific skills directly by using the isokinetic-type rugby scrimmaging machine. This study is designed to (a) measure and observe the differences in the maximum individual pushing forward force produced by scrimmaging in different body postures (3 body heights x 2 foot positions) with a self-developed rugby scrimmaging machine and (b) observe the variations in hip, knee, and ankle angles at different body postures and explore the relationship between these angle values and the individual maximum pushing force. Ten national rugby players were invited to participate in the examination. The experimental equipment included a self-developed rugby scrimmaging machine and a 3-dimensional motion analysis system. Our results showed that the foot positions (parallel and nonparallel foot positions) do not affect the maximum pushing force; however, the maximum pushing force was significantly lower in posture I (36% body height) than in posture II (38%) and posture III (40%). The maximum forward force in posture III (40% body height) was also slightly greater than for the scrum in posture II (38% body height). In addition, it was determined that hip, knee, and ankle angles under parallel feet positioning are factors that are closely negatively related in terms of affecting maximum pushing force in scrimmaging. In cross-feet postures, there was a positive correlation between individual forward force and hip angle of the rear leg. From our results, we can conclude that if the player stands in an appropriate starting position at the early stage of scrimmaging, it will benefit the forward force production.

  16. Normative values for a video-force plate assessment of postural control in athletic children.

    PubMed

    Howell, David R; Meehan, William P

    2016-07-01

    The objective of this study was to provide normative data for young athletes during the three stances of the modified Balance Error Scoring System (mBESS) using an objective video-force plate system. Postural control was measured in 398 athletes between 8 and 18 years of age during the three stances of the mBESS using a video-force plate rating system. Girls exhibited better postural control than boys during each stance of the mBESS. Age was not significantly associated with postural control. We provide normative data for a video-force plate assessment of postural stability in pediatric athletes during the three stances of the mBESS.

  17. Imperceptible electrical noise attenuates isometric plantar flexion force fluctuations with correlated reductions in postural sway.

    PubMed

    Magalhães, Fernando Henrique; Kohn, André Fabio

    2012-03-01

    Optimal levels of noise stimulation have been shown to enhance the detection and transmission of neural signals thereby improving the performance of sensory and motor systems. The first series of experiments in the present study aimed to investigate whether subsensory electrical noise stimulation applied over the triceps surae (TS) in seated subjects decreases torque variability during a force-matching task of isometric plantar flexion and whether the same electrical noise stimulation decreases postural sway during quiet stance. Correlation tests were applied to investigate whether the noise-induced postural sway decrease is linearly predicted by the noise-induced torque variability decrease. A second series of experiments was conducted to investigate whether there are differences in torque variability between conditions in which the subsensory electrical noise is applied only to the TS, only to the tibialis anterior (TA) and to both TS and TA, during the force-matching task with seated subjects. Noise stimulation applied over the TS muscles caused a significant reduction in force variability during the maintained isometric force paradigm and also decreased postural oscillations during quiet stance. Moreover, there was a significant correlation between the reduction in force fluctuation and the decrease in postural sway with the electrical noise stimulation. This last result indicates that changes in plantar flexion force variability in response to a given subsensory random stimulation of the TS may provide an estimate of the variations in postural sway caused by the same subsensory stimulation of the TS. We suggest that the decreases in force variability and postural sway found here are due to stochastic resonance that causes an improved transmission of proprioceptive information. In the second series of experiments, the reduction in force variability found when noise was applied to the TA muscle alone did not reach statistical significance, suggesting that TS

  18. United States Air Force Annual Financial Statements

    DTIC Science & Technology

    2002-01-01

    gains and losses NRV = Net Realizable Value O = Other Inventory, Gross Value Revaluation Allowance Inventory, Net 2002 2001 United States Air Force...losses NRV = Net Realizable Value O = Other For the most part, DMAG is using the consumption method of accounting for OM&S, since OM&S is defined in the

  19. Secretary's annual report to Congress. Volume I. Posture statement, outlook and program review

    SciTech Connect

    1981-01-01

    Activities of all elements of the Department of Energy (DOE) except those of FERC are reported. Chapter I, the Posture Statement, gives an overview of the policies, programs, and strategies of DOE. It describes the national energy policy and its effects, sets out the current state of energy supply and demand in the US and around the world, describes the present assessment of future energy availability, and outlines the strategy for 1982. Additional chapters detail the major programs in the following Offices or Assistant Secretaryships: Conservation, Fossil Fuel, Nuclear Energy, Renewable Energy Resources, Electric Energy Systems and Energy Storage, Environment, Energy Supporting Research, Energy Production and Power Marketing, Energy Information, Economic Regulation, General Science, Defense, International Programs, Nuclear Non-Proliferation, Energy Contingency Planning, and Administration. Information is included in appendices on foreign direct investment in US energy sources and supplies for 1979, exports of energy resources by foreign companies, major recipients of DOE funding, DOE actions taken regarding disclosure of energy assets by DOE employees, and financial assistance programs. (MCW)

  20. Control of grip force and vertical posture while holding an object and being perturbed.

    PubMed

    Chen, Bing; Lee, Yun-Ju; Aruin, Alexander S

    2016-11-01

    We investigated motor control perspectives of coordinating maintenance of posture and application of grip force when holding an object and being perturbed. Ten subjects stood on the force platform holding an instrumented object in their dominant hand and were exposed to an external perturbation applied to their shoulders. Task demands were manipulated by positioning a slippery cap on top of the instrumented object. Grip force applied to the object, the object acceleration and the center of pressure (COP) were recorded and analyzed during the time intervals typical for the anticipatory (APA) and compensatory (CPA) components of postural control. Onsets of grip force were seen before the onsets of the COP displacement and initiation of movements of the handheld object during the APA phase of postural control, while the onsets of maximum grip force preceded the maximum COP displacement during the CPA phase. When the task demands increased by holding a handheld object with the slippery cap, subjects tended to generate grip force earlier and of a smaller magnitude; also, the COP displacement in the APA phase was smaller as compared to holding a handheld object only. The outcome provides a foundation for future studies of maintenance of vertical posture in people with impairments of balance and grip force control when holding an object and being perturbed.

  1. Effects of Wrist Posture and Fingertip Force on Median Nerve Blood Flow Velocity

    PubMed Central

    Wilson, Katherine E.; Tat, Jimmy

    2017-01-01

    Purpose. The purpose of this study was to assess nerve hypervascularization using high resolution ultrasonography to determine the effects of wrist posture and fingertip force on median nerve blood flow at the wrist in healthy participants and those experiencing carpal tunnel syndrome (CTS) symptoms. Methods. The median nerves of nine healthy participants and nine participants experiencing symptoms of CTS were evaluated using optimized ultrasonography in five wrist postures with and without a middle digit fingertip press (0, 6 N). Results. Both wrist posture and fingertip force had significant main effects on mean peak blood flow velocity. Blood flow velocity with a neutral wrist (2.87 cm/s) was significantly lower than flexed 30° (3.37 cm/s), flexed 15° (3.27 cm/s), and extended 30° (3.29 cm/s). Similarly, median nerve blood flow velocity was lower without force (2.81 cm/s) than with force (3.56 cm/s). A significant difference was not found between groups. Discussion. Vascular changes associated with CTS may be acutely induced by nonneutral wrist postures and fingertip force. This study represents an early evaluation of intraneural blood flow as a measure of nerve hypervascularization in response to occupational risk factors and advances our understanding of the vascular phenomena associated with peripheral nerve compression. PMID:28286771

  2. Low-frequency force steadiness practice in plantar flexor muscle reduces postural sway during quiet standing.

    PubMed

    Oshita, Kazushige; Yano, Sumio

    2011-01-01

    The purpose of this study was to assess the effect of low-frequency force steadiness practice in the plantar flexor muscles on postural sway during quiet standing. Healthy young 21 men (21±1 yrs) were randomly assigned to a practice group (n=14) and a nonexercising control group (n=7). Practice groups were divided by frequency of practice: 7 participants practiced once a week, and the other 7 twice a week, for 4 weeks. Steadiness practice required practice group to 5 sets of 60-s contraction at levels corresponding to 10% and 20% maximal voluntary contraction (MVC) in the plantar flexor muscles. The 4-week-long practice period reduced the force fluctuations (assessed as the standard deviation (SD) of the outputted force during steady isometric plantar flexion) and postural sway (assessed as SD of the center of mass velocity during quiet standing). However, these practice effects were not significantly affected by the practice frequencies (1 vs. 2 sessions per week) examined in this study. Further, a linear regression analysis revealed the association between prepractice postural sway and the relative change in postural sway by the practice (r=-0.904) in the practice group. These results suggest that the steadiness practice in plantar flexor muscles improves postural stability during quiet standing, even though the practice is low-frequency (once a week) and low-intensity (within 20% MVC). These practice effects are dependent on prepractice postural stability. Further, the present results have provided the functional significance of force fluctuation in lower limb muscles.

  3. Ground Reaction Forces Generated by Twenty-eight Hatha Yoga Postures.

    PubMed

    Wilcox, Sylvia J; Hager, Ron; Lockhart, Barbara; Seeley, Matthew K

    Adherents claim many benefits from the practice of yoga, including promotion of bone health and prevention of osteoporosis. However, no known studies have investigated whether yoga enhances bone mineral density. Furthermore, none have estimated reaction forces applied by yoga practitioners. The purpose of this study was to collect ground reaction force (GRF) data on a variety of hatha yoga postures that would commonly be practiced in fitness centers or private studios. Twelve female and eight male volunteers performed a sequence of 28 hatha yoga postures while GRF data were collected with an AMTI strain-gauge force platform. The sequence was repeated six times by each study subject. Four dependent variables were studied: peak vertical GRF, mean vertical GRF, peak resultant GRF, and mean resultant GRF. Univariate analysis was used to identify mean values and standard deviations for the dependent variables. Peak vertical and resultant values of each posture were similar for all subjects, and standard deviations were small. Similarly, mean vertical and resultant values were similar for all subjects. This 28 posture yoga sequence produced low impact GRF applied to upper and lower extremities. Further research is warranted to determine whether these forces are sufficient to promote osteogenesis or maintain current bone health in yoga practitioners.

  4. Ground Reaction Forces Generated by Twenty-eight Hatha Yoga Postures

    PubMed Central

    WILCOX, SYLVIA J.; HAGER, RON; LOCKHART, BARBARA; SEELEY, MATTHEW K.

    2012-01-01

    Adherents claim many benefits from the practice of yoga, including promotion of bone health and prevention of osteoporosis. However, no known studies have investigated whether yoga enhances bone mineral density. Furthermore, none have estimated reaction forces applied by yoga practitioners. The purpose of this study was to collect ground reaction force (GRF) data on a variety of hatha yoga postures that would commonly be practiced in fitness centers or private studios. Twelve female and eight male volunteers performed a sequence of 28 hatha yoga postures while GRF data were collected with an AMTI strain-gauge force platform. The sequence was repeated six times by each study subject. Four dependent variables were studied: peak vertical GRF, mean vertical GRF, peak resultant GRF, and mean resultant GRF. Univariate analysis was used to identify mean values and standard deviations for the dependent variables. Peak vertical and resultant values of each posture were similar for all subjects, and standard deviations were small. Similarly, mean vertical and resultant values were similar for all subjects. This 28 posture yoga sequence produced low impact GRF applied to upper and lower extremities. Further research is warranted to determine whether these forces are sufficient to promote osteogenesis or maintain current bone health in yoga practitioners. PMID:27182380

  5. AFCYBER: Postured to Support Air Force and USCYBERCOM Cyber Needs?

    DTIC Science & Technology

    2013-03-01

    Garamone, “ Alexander Details U.S. Cyber Command Gains,” September 24, 2010, from American Forces Press Service. 41 Brigadier General Franz , U.S. Cyber...missions. General Alexander , Commander USCYBERCOM, first envisions a cyber profession where communications, signals intelligence, cryptography...to support both USCYBERCOM and Air Force requirements. General Alexander considers having trained and ready forces as the single most important

  6. The development and validation of equations to predict grip force in the workplace: contributions of muscle activity and posture.

    PubMed

    Keir, Peter J; Mogk, Jeremy P M

    2005-08-15

    The inherent difficulty of measuring forces on the hand in ergonomic workplace assessments has led to the need for equations to predict grip force. A family of equations was developed, and validated, for the prediction of grip force using forearm electromyography (six finger and wrist muscles) as well as posture of the wrist (flexed, neutral and extended) and forearm (pronated, neutral, supinated). Inclusion of muscle activity was necessary to explain over 85% of the grip force variance and was further improved with wrist posture but not forearm posture. Posture itself had little predictive power without muscle activity (<1%). Nominal wrist posture improved predictive power more than the measured wrist angle. Inclusion of baseline muscle activity, the activity required to simply hold the grip dynamometer, greatly improved grip force predictions, especially at low force levels. While the complete model using six muscles and posture was the most accurate, the detailed validation and error analysis revealed that equations based on fewer components often resulted in a negligible reduction in predictive strength. Error was typically less than 10% under 50% of maximal grip force and around 15% over 50% of maximal grip force. This study presents detailed error analyses to both improve upon previous studies and to allow an educated decision to be made on which muscles to monitor depending on expected force levels, costs and error deemed acceptable by the potential user.

  7. Investigation of spinal posture signatures and ground reaction forces during landing in elite female gymnasts.

    PubMed

    Wade, Melanie; Campbell, Amity; Smith, Anne; Norcott, Joanne; O'Sullivan, Peter

    2012-12-01

    The link between static and dynamic landing lumbar postures, when gymnasts are exposed to large ground reaction forces, has not been established. This investigation aimed to (a) determine if a relationship exists between sagittal static and dynamic landing lumbar spine angles at peak ground reaction force (GRF) and (b) quantify how close to end-range postures the gymnasts were at landing peak GRF. Twenty-one female gymnasts' upper and lower lumbar spine angles were recorded: statically in sitting and standing, during landing of three gymnastic skills, and during active end-range lumbar flexion. Pearson's correlations were used to investigate relationships between the angles in different postures. Significant correlations (r = .77-.89, p <.01) were found between all the static/dynamic postures in the lower lumbar spine angle, while fewer and less significant upper lumbar spine correlations were reported. Thirty percent of gymnasts landed a backsault with their lower lumbar spine flexed beyond their active end-range while experiencing GRF 6.8-13.3 times their body weight. These results inform low back pain prevention and management strategies in this population and highlight areas for future research.

  8. Self-selected duty cycle times for grip force, wrist flexion postures and three grip types.

    PubMed

    Finneran, Aoife; O'Sullivan, Leonard

    2014-01-01

    Performance and health issues are common in industry. On-the-job productivity gains related to good design, which could help justify ergonomics intervention, are often not considered. More quantitative data are needed to model the discomfort/productivity relationship for upper limb activity in simulated repetitive assembly type work. Eighteen participants completed an experiment, simulating a repetitive upper limb task with force, posture and grip type recorded as independent variables. Duty cycle time and discomfort were recorded as dependent variables. Participants performed 18 experiment combinations (block designed around force); each treatment lasted 35 min, including breaks. Analysis indicated a significant two-way interaction between posture and grip type. Results from this experiment were used to model the effect of these variables on operator discomfort and performance.

  9. Ability of Low-Cost Force-Feedback Device to Influence Postural Stability.

    PubMed

    Baud-Bovy, Gabriel; Tatti, Fabio; Borghese, Nunzio A

    2015-01-01

    Low-cost gaming technology offers promising devices for the rehabilitation of stroke patients at home. While several attempts have been made to use low-cost motion tracking devices (Kinect) or balance boards (Wii Board), the potential of low-cost haptic devices has yet to be explored in this context. The objective of this study was to investigate whether it is possible to influence postural stability with a low-cost device despite its technical limitations, and to explore the most promising modes of haptic interaction to increase and decrease postural stability. Two groups of younger subjects used a high-end (Omega.3) and a low-cost (Falcon) device respectively. A third group of older subjects used the Falcon. We show that light touch contact with the device improves stability, whereas the force tasks decrease it. The effects of the different tasks are consistent in the two age groups. Although there are differences in the participants' interaction with the two devices, the effect of the devices on postural stability is comparable. We conclude that a low-cost haptic device can be used to increase or decrease postural stability of healthy subjects with an age similar to that of typical stroke patients, in a safe and controllable way.

  10. The effect of force-controlled biting on human posture control.

    PubMed

    Hellmann, D; Stein, T; Potthast, W; Rammelsberg, P; Schindler, H J; Ringhof, S

    2015-10-01

    Several studies have confirmed the neuromuscular effects of jaw motor activity on the postural stability of humans, but the mechanisms of functional coupling of the craniomandibular system (CMS) with human posture are not yet fully understood. The purpose of our study was, therefore, to investigate whether submaximum biting affects the kinematics of the ankle, knee, and hip joints and the electromyographic (EMG) activity of the leg muscles during bipedal narrow stance and single-leg stance. Twelve healthy young subjects performed force-controlled biting (FB) and non-biting (NB) during bipedal narrow stance and single-leg stance. To investigate the effects of FB on the angles of the hip, knee, and ankle joints, a 3D motion-capture system (Vicon MX) was used. EMG activity was recorded to enable analysis of the coefficient of variation of the muscle co-contraction ratios (CVR) of six pairs of postural muscles. Between FB and NB, no significant differences were found for the mean values of the angles of the ankle, knee, and hip joints, but the standard deviations were significantly reduced during FB. The values of the ranges of motion and the mean angular velocities for the three joints studied revealed significant reduction during FB also. CVR was also significantly reduced during FB for five of the six muscle pairs studied. Although submaximum biting does not change the basic strategy of posture control, it affects neuromuscular co-contraction patterns, resulting in increased kinematic precision.

  11. Postural stability, clicker reaction time and bow draw force predict performance in elite recurve archery.

    PubMed

    Spratford, Wayne; Campbell, Rhiannon

    2017-02-14

    Recurve archery is an Olympic sport that requires extreme precision, upper body strength and endurance. The purpose of this research was to quantify how postural stability variables both pre- and post-arrow release, draw force, flight time, arrow length and clicker reaction time, collectively, impacted on the performance or scoring outcomes in elite recurve archery athletes. Thirty-nine elite-level recurve archers (23 male and 16 female; mean age = 24.7 ± 7.3 years) from four different countries volunteered to participate in this study prior to competing at a World Cup event. An AMTI force platform (1000Hz) was used to obtain centre of pressure (COP) measurements 1s prior to arrow release and 0.5s post-arrow release. High-speed footage (200Hz) allowed for calculation of arrow flight time and score. Results identified clicker reaction time, draw force and maximum sway speed as the variables that best predicted shot performance. Specifically, reduced clicker reaction time, greater bow draw force and reduced postural sway speed post-arrow release were predictors of higher scoring shots. It is suggested that future research should focus on investigating shoulder muscle tremors at full draw in relation to clicker reaction time, and the effect of upper body strength interventions (specifically targeting the musculature around the shoulder girdle) on performance in recurve archers.

  12. Haptic perception of force magnitude and its relation to postural arm dynamics in 3D

    PubMed Central

    van Beek, Femke E.; Bergmann Tiest, Wouter M.; Mugge, Winfred; Kappers, Astrid M. L.

    2015-01-01

    In a previous study, we found the perception of force magnitude to be anisotropic in the horizontal plane. In the current study, we investigated this anisotropy in three dimensional space. In addition, we tested our previous hypothesis that the perceptual anisotropy was directly related to anisotropies in arm dynamics. In experiment 1, static force magnitude perception was studied using a free magnitude estimation paradigm. This experiment revealed a significant and consistent anisotropy in force magnitude perception, with forces exerted perpendicular to the line between hand and shoulder being perceived as 50% larger than forces exerted along this line. In experiment 2, postural arm dynamics were measured using stochastic position perturbations exerted by a haptic device and quantified through system identification. By fitting a mass-damper-spring model to the data, the stiffness, damping and inertia parameters could be characterized in all the directions in which perception was also measured. These results show that none of the arm dynamics parameters were oriented either exactly perpendicular or parallel to the perceptual anisotropy. This means that endpoint stiffness, damping or inertia alone cannot explain the consistent anisotropy in force magnitude perception. PMID:26643041

  13. Haptic perception of force magnitude and its relation to postural arm dynamics in 3D.

    PubMed

    van Beek, Femke E; Bergmann Tiest, Wouter M; Mugge, Winfred; Kappers, Astrid M L

    2015-12-08

    In a previous study, we found the perception of force magnitude to be anisotropic in the horizontal plane. In the current study, we investigated this anisotropy in three dimensional space. In addition, we tested our previous hypothesis that the perceptual anisotropy was directly related to anisotropies in arm dynamics. In experiment 1, static force magnitude perception was studied using a free magnitude estimation paradigm. This experiment revealed a significant and consistent anisotropy in force magnitude perception, with forces exerted perpendicular to the line between hand and shoulder being perceived as 50% larger than forces exerted along this line. In experiment 2, postural arm dynamics were measured using stochastic position perturbations exerted by a haptic device and quantified through system identification. By fitting a mass-damper-spring model to the data, the stiffness, damping and inertia parameters could be characterized in all the directions in which perception was also measured. These results show that none of the arm dynamics parameters were oriented either exactly perpendicular or parallel to the perceptual anisotropy. This means that endpoint stiffness, damping or inertia alone cannot explain the consistent anisotropy in force magnitude perception.

  14. United States Air Force Annual Financial Statement 2011

    DTIC Science & Technology

    2011-01-01

    screen interfaces, adjustable rudder pedals, ergonomic seat , improved High Annual Financial Statement 2011 General Fund Required Supplementary...over the Budget Authority – Appropriation line of the Statement of Budgetary Resources are designed to operate effectively to prevent, detect, and...Commands are designed and operating effectively to prevent or detect and correct material misstatements. The assertion has been audited by an

  15. Association of force steadiness of plantar flexor muscles and postural sway during quiet standing by young adults.

    PubMed

    Oshita, Kazushige; Yano, Sumio

    2012-08-01

    This study was conducted to assess the relations of force fluctuations during isometric plantar-flexion and postural sway during quiet standing. Twelve healthy men (M age = 21 yr., SD = 1) performed unilateral plantar flexion measured by a strain gauge force transducer. Participants performed force-matching tasks; sustained plantar flexion for 20 sec. at levels corresponding to 10% and 20% of maximum voluntary contraction with the visual feedback. Also, participants were asked to stand quietly with their eyes open, and then the center of mass displacement and velocity in the anteroposterior were measured. In analysis, postural sway was associated with force fluctuation at only 10% of maximum voluntary contraction. The statistically significant correlation between variables was found only at corresponding contraction intensities for plantar-flexor muscles. From this one may infer neural strategies in plantar-flexor muscles during quiet standing may be characteristics similar to those controlling the plantar-flexion force in young adults.

  16. Canadian Athletic Therapists' Association Education Task Force Consensus Statements

    ERIC Educational Resources Information Center

    Lafave, Mark R.; Bergeron, Glen; Klassen, Connie; Parr, Kelly; Valdez, Dennis; Elliott, Jacqueline; Peeler, Jason; Orecchio, Elsa; McKenzie, Kirsty; Streed, Kristin; DeMont, Richard

    2016-01-01

    Context: A published commentary from 2 of the current authors acted as a catalyst for raising some key issues that have arisen in athletic therapy education in Canada over the years. Objective: The purpose of this article is to report on the process followed to establish a number of consensus statements related to postsecondary athletic therapy…

  17. Common muscle synergies for control of center of mass and force in nonstepping and stepping postural behaviors.

    PubMed

    Chvatal, Stacie A; Torres-Oviedo, Gelsy; Safavynia, Seyed A; Ting, Lena H

    2011-08-01

    We investigated muscle activity, ground reaction forces, and center of mass (CoM) acceleration in two different postural behaviors for standing balance control in humans to determine whether common neural mechanisms are used in different postural tasks. We compared nonstepping responses, where the base of support is stationary and balance is recovered by returning CoM back to its initial position, with stepping responses, where the base of support is enlarged and balance is recovered by pushing the CoM away from the initial position. In response to perturbations of the same direction, these two postural behaviors resulted in different muscle activity and ground reaction forces. We hypothesized that a common pool of muscle synergies producing consistent task-level biomechanical functions is used to generate different postural behaviors. Two sets of support-surface translations in 12 horizontal-plane directions were presented, first to evoke stepping responses and then to evoke nonstepping responses. Electromyographs in 16 lower back and leg muscles of the stance leg were measured. Initially (∼100-ms latency), electromyographs, CoM acceleration, and forces were similar in nonstepping and stepping responses, but these diverged in later time periods (∼200 ms), when stepping occurred. We identified muscle synergies using non-negative matrix factorization and functional muscle synergies that quantified correlations between muscle synergy recruitment levels and biomechanical outputs. Functional muscle synergies that produce forces to restore CoM position in nonstepping responses were also used to displace the CoM during stepping responses. These results suggest that muscle synergies represent common neural mechanisms for CoM movement control under different dynamic conditions: stepping and nonstepping postural responses.

  18. Postural Responses to a Suddenly Released Pulling Force in Older Adults with Chronic Low Back Pain: An Experimental Study

    PubMed Central

    Lee, Pei-Yun; Lin, Sang-I; Liao, Yu-Ting; Lin, Ruey-Mo; Hsu, Che-Chia; Huang, Kuo-Yuan; Chen, Yi-Ting

    2016-01-01

    Chronic low back pain (CLBP), one of the most common musculoskeletal conditions in older adults, might affect balance and functional independence. The purpose of this study was to investigate the postural responses to a suddenly released pulling force in older adults with and without CLBP. Thirty community-dwelling older adults with CLBP and 26 voluntary controls without CLBP were enrolled. Participants were required to stand on a force platform while, with one hand, they pulled a string that was fastened at the other end to a 2-kg or to a 4-kg force in the opposite direction at a random order. The number of times the participants lost their balance and motions of center of pressure (COP) when the string was suddenly released were recorded. The results demonstrated that although the loss of balance rates for each pulling force condition did not differ between groups, older adults with CLBP had poorer postural responses: delayed reaction, larger displacement, higher velocity, longer path length, and greater COP sway area compared to the older controls. Furthermore, both groups showed larger postural responses in the 4-kg pulling force condition. Although aging is generally believed to be associated with declining balance and postural control, these findings highlight the effect of CLBP on reactive balance when responding to an externally generated force in an older population. This study also suggests that, for older adults with CLBP, in addition to treating them for pain and disability, reactive balance evaluation and training, such as reaction and movement strategy training should be included in their interventions. Clinicians and older patients with CLBP need to be made aware of the significance of impaired reactive balance and the increased risk of falls when encountering unexpected perturbations. PMID:27622646

  19. USAF Posture Statement 2013

    DTIC Science & Technology

    2013-04-12

    Today’s Airmen play a pivotal role in the constant pursuit of better ways to defend the Nation. Since the airplane was employed over the battlefields of...resulting in a corresponding corrosive effect as range infrastructure deteriorated and aircrews only maintained readiness in skill sets oriented toward

  20. Army Posture Statement 2007

    DTIC Science & Technology

    2007-02-14

    and overhead. We are now well underway in deploying the Lean Six Sigma methodology as a vehicle to seek continuous process improvement, eliminate...and morale. • Implemented Lean Six Sigma methodology within all Army Commands, Direct Reporting Units, Army Service Components of Joint Commands...between 2007 and 2013. • Implemented Lean Six Sigma methodology within all Army Commands, Direct Reporting Units, Army Service Components of Joint

  1. Slowed muscle force production and sensory organization deficits contribute to altered postural control strategies in children with developmental coordination disorder.

    PubMed

    Fong, Shirley S M; Ng, Shamay S M; Yiu, Beverley P H L

    2013-09-01

    This study aimed to (1) compare the postural control strategies, sensory organization of balance control, and lower limb muscle performance of children with and without developmental coordination disorder (DCD) and (2) determine the association between postural control strategies, sensory organization parameters and knee muscle performance indices among children with DCD. Fifty-eight DCD-affected children and 46 typically developing children participated in the study. Postural control strategies and sensory organization were evaluated with the sensory organization test (SOT). Knee muscle strength and time to produce maximum muscle torque (at 180°/s) were assessed using an isokinetic machine. Analysis of variance was used to compare the outcome variables between groups, and multiple regression analysis was used to examine the relationships between postural control strategies, sensory organization parameters, and isokinetic indices in children with DCD. The DCD group had significantly lower strategy scores (SOT conditions 5 and 6), lower visual and vestibular ratios, and took a longer time to reach peak torque in the knee flexor muscles than the control group (p>0.05). After accounting for age, sex, and body mass index, the vestibular ratio explained 35.8% of the variance in the strategy score of SOT condition 5 (p<0.05). Moreover, the visual ratio, vestibular ratio, and time to peak torque of the knee flexors were all significant predictors (p<0.05) of the strategy score during SOT condition 6, accounting for 14, 19.7, and 19.8% of its variance, respectively. The children with DCD demonstrated deficits in postural control strategy, sensory organization and prolonged duration of muscle force development. Slowed knee muscle force production combined with poor visual and vestibular functioning may result in greater use of hip strategy by children with DCD in sensory challenging environments.

  2. Contribution of seat and foot reaction forces to anticipatory postural adjustments (APAs) in sitting isometric ramp pushes.

    PubMed

    Le Bozec, Serge; Bouisset, Simon

    2009-10-01

    The aim of this paper was to examine the role of the upper and lower body on the dynamic phenomena, which precede the voluntary movement (anticipatory postural adjustments: APAs), and the way in which they contribute to postural control. In this view, sitting subjects were asked to perform horizontal two-handed ramp pushes as quickly as possible. A dynamometric bar was used to provide the push force (F(x)). Local reaction forces along the antero-posterior and vertical axes, at the seat and foot-rests (R(Sx), R(Sz), and R(fx), R(fz), respectively), as well as global ones (R(x) and R(z)), were measured. Two postural conditions were considered: full (100 BP) and one-third ischio-femoral contact (30 BP). Anticipatory postural adjustments durations (dAPAs) were measured between the onset of global or local (that is, at the seat and foot level) reaction forces, and the onset of push force increase. Firstly, the dAPAs were longer at the foot than at the seat level, that is, the APA sequence starts at the foot level: it is suggested that a "posturo-focal" sequence is followed, whose progression order is precisely dependent on the postural conditions. Moreover, the APA peak amplitudes (pAPA), measured at the seat contact were significantly greater than the corresponding ones measured at the foot contact: the upper body dynamics are larger than the lower body dynamics. Secondly, a greater peak push force (pF(x)) entailed significant dAPA increases, in preference to pAPA increases. As APAs are dynamic phenomena, they can perturb balance, suggesting that, in order to avoid unnecessary perturbation, APAs are increased in terms of duration rather than amplitude. Lastly, the impulses corresponding to the push force increase ("BPI(x)") and to the APA periods ("ACPI(x)") were calculated. As ACPI(x) was very low as compared to BPI(x), it was suggested that the APA action was limited to the period of the voluntary movement onset.

  3. U.S. Air Force Annual Financial Statement 2010

    DTIC Science & Technology

    2010-01-01

    equipment. The Air Force recognizes excess, obsolete, and unserviceable OM&S at a net realizable value of $0 pending development of an effective...Latest Acquisition Cost NRV = Net Realizable Value MAC = Moving Average Cost SP = Standard Price LCM = Lower of Cost or Market AC = Actual...S. The AFWCF recognizes excess, obsolete, and unserviceable inventory and OM&S at a net realizable value of $0 pending development of an

  4. Comparative Effects of Different Balance-Training–Progression Styles on Postural Control and Ankle Force Production: A Randomized Controlled Trial

    PubMed Central

    Cuğ, Mutlu; Duncan, Ashley; Wikstrom, Erik

    2016-01-01

    Context:  Despite the effectiveness of balance training, the exact parameters needed to maximize the benefits of such programs remain unknown. One such factor is how individuals should progress to higher levels of task difficulty within a balance-training program. Yet no investigators have directly compared different balance-training–progression styles. Objective:  To compare an error-based progression (ie, advance when proficient at a task) with a repetition-based progression (ie, advance after a set amount of repetitions) style during a balance-training program in healthy individuals. Design:  Randomized controlled trial. Setting:  Research laboratory. Patients or Other Participants:  A total of 28 (16 women, 12 men) physically healthy young adults (age = 21.57 ± 3.95 years, height = 171.60 ± 11.03 cm, weight = 72.96 ± 16.18 kg, body mass index = 24.53 ± 3.7). Intervention(s):  All participants completed 12 supervised balance-training sessions over 4 weeks. Each session consisted of a combination of dynamic unstable-surface tasks that incorporated a BOSU ball and lasted about 30 minutes. Main Outcome Measure(s):  Static balance from an instrumented force plate, dynamic balance as measured via the Star Excursion Balance Test, and ankle force production in all 4 cardinal planes of motion as measured with a handheld dynamometer before and after the intervention. Results:  Selected static postural-control outcomes, dynamic postural control, and ankle force production in all planes of motion improved (P < .05). However, no differences between the progression styles were observed (P > .05) for any of the outcome measures. Conclusions:  A 4-week balance-training program consisting of dynamic unstable-surface exercises on a BOSU ball improved dynamic postural control and ankle force production in healthy young adults. These results suggest that an error-based balance-training program is comparable with but not superior to a repetition

  5. Observed differences in upper extremity forces, muscle efforts, postures, velocities and accelerations across computer activities in a field study of office workers.

    PubMed

    Bruno Garza, J L; Eijckelhof, B H W; Johnson, P W; Raina, S M; Rynell, P W; Huysmans, M A; van Dieën, J H; van der Beek, A J; Blatter, B M; Dennerlein, J T

    2012-01-01

    This study, a part of the PRedicting Occupational biomechanics in OFfice workers (PROOF) study, investigated whether there are differences in field-measured forces, muscle efforts, postures, velocities and accelerations across computer activities. These parameters were measured continuously for 120 office workers performing their own work for two hours each. There were differences in nearly all forces, muscle efforts, postures, velocities and accelerations across keyboard, mouse and idle activities. Keyboard activities showed a 50% increase in the median right trapezius muscle effort when compared to mouse activities. Median shoulder rotation changed from 25 degrees internal rotation during keyboard use to 15 degrees external rotation during mouse use. Only keyboard use was associated with median ulnar deviations greater than 5 degrees. Idle activities led to the greatest variability observed in all muscle efforts and postures measured. In future studies, measurements of computer activities could be used to provide information on the physical exposures experienced during computer use. Practitioner Summary: Computer users may develop musculoskeletal disorders due to their force, muscle effort, posture and wrist velocity and acceleration exposures during computer use. We report that many physical exposures are different across computer activities. This information may be used to estimate physical exposures based on patterns of computer activities over time.

  6. Self-Described Differences Between Legs in Ballet Dancers: Do They Relate to Postural Stability and Ground Reaction Force Measures?

    PubMed

    Mertz, Laura; Docherty, Carrie

    2012-12-01

    Ballet technique classes are designed to train dancers symmetrically, but they may actually create a lateral bias. It is unknown whether dancers in general are functionally asymmetrical, or how an individual dancer's perceived imbalance between legs might manifest itself. The purpose of this study was to examine ballet dancers' lateral preference by analyzing their postural stability and ground reaction forces in fifth position when landing from dance-specific jumps. Thirty university ballet majors volunteered to participate in this study. The subjects wore their own ballet technique shoes and performed fundamental ballet jumps out of fifth position on a force plate. The force plate recorded center of pressure (COP) and ground reaction force (GRF) data. Each subject completed a laterality questionnaire that determined his or her preferred landing leg for ballet jumps, self-identified stronger leg, and self-identified leg with better balance. All statistical comparisons were made between the leg indicated on the laterality questionnaire and the other leg (i.e., if the dancer's response to a question was "left," the comparison was made with the left leg as the "preferred" leg and the right leg as the "non-preferred leg"). No significant differences were identified between the limbs in any of the analyses conducted (all statistical comparisons produced p values > 0.05). The results of this study indicate that a dancer's preferential use of one limb over the other has no bearing on GRFs or balance ability after landing jumps in ballet. Similarly, dancers' opinions of their leg characteristics (such as one leg being stronger than the other) seem not to correlate with the dancers' actual ability to absorb GRFs or to balance when landing from ballet jumps.

  7. A Cost Analysis of the U.S. Air Force Overseas Posture: Informing Strategic Choices

    DTIC Science & Technology

    2013-01-01

    included end strength reductions of 50,000 personnel (Sustainable Defense Task Force, Debt , Deficits, and Defense: A Way Forward, Washington, D.C...estimate support costs, it is necessary to use a method that will capture the variable- versus fixed-costs dynamic effectively. The nature of these...of forward presence will have swamped the relative costs. Cost estimates for the Operation Iraqi Freedom range from about $800 billion68 to several

  8. Use of induced acceleration to quantify the (de)stabilization effect of external and internal forces on postural responses.

    PubMed

    van Asseldonk, Edwin H F; Carpenter, Mark G; van der Helm, Frans C T; van der Kooij, Herman

    2007-12-01

    Due to the mechanical coupling between the body segments, it is impossible to see with the naked eye the causes of body movements and understand the interaction between movements of different body parts. The goal of this paper is to investigate the use of induced acceleration analysis to reveal the causes of body movements. We derive the analytical equations to calculate induced accelerations and evaluate its potential to study human postural responses to support-surface translations. We measured the kinematic and kinetic responses of a subject to sudden forward and backward translations of a moving platform. The kinematic and kinetics served as input to the induced acceleration analyses. The induced accelerations showed explicitly that the platform acceleration and deceleration contributed to the destabilization and restabilization of standing balance, respectively. Furthermore, the joint torques, coriolis and centrifugal forces caused by swinging of the arms, contributed positively to stabilization of the Center of Mass. It is concluded that induced acceleration analyses is a valuable tool in understanding balance responses to different kinds of perturbations and may help to identify the causes of movement in different pathologies.

  9. Application of Machine Learning Approaches for Classifying Sitting Posture Based on Force and Acceleration Sensors

    PubMed Central

    Tanadini, Matteo; Plüss, Stefan; Schnüriger, Karin; Singh, Navrag B.

    2016-01-01

    Occupational musculoskeletal disorders, particularly chronic low back pain (LBP), are ubiquitous due to prolonged static sitting or nonergonomic sitting positions. Therefore, the aim of this study was to develop an instrumented chair with force and acceleration sensors to determine the accuracy of automatically identifying the user's sitting position by applying five different machine learning methods (Support Vector Machines, Multinomial Regression, Boosting, Neural Networks, and Random Forest). Forty-one subjects were requested to sit four times in seven different prescribed sitting positions (total 1148 samples). Sixteen force sensor values and the backrest angle were used as the explanatory variables (features) for the classification. The different classification methods were compared by means of a Leave-One-Out cross-validation approach. The best performance was achieved using the Random Forest classification algorithm, producing a mean classification accuracy of 90.9% for subjects with which the algorithm was not familiar. The classification accuracy varied between 81% and 98% for the seven different sitting positions. The present study showed the possibility of accurately classifying different sitting positions by means of the introduced instrumented office chair combined with machine learning analyses. The use of such novel approaches for the accurate assessment of chair usage could offer insights into the relationships between sitting position, sitting behaviour, and the occurrence of musculoskeletal disorders. PMID:27868066

  10. Efficacy and safety of protein supplements for U.S. Armed Forces personnel: consensus statement.

    PubMed

    Pasiakos, Stefan M; Austin, Krista G; Lieberman, Harris R; Askew, E Wayne

    2013-11-01

    To provide evidence-based guidance regarding the efficacy and safety of dietary protein supplement (PS) use by members of the U.S. Armed Forces, a panel of internationally recognized experts in the fields of protein metabolism and dietary supplement research was convened by the Department of Defense Center Alliance for Dietary Supplement Research and the U.S. Army Medical Research and Material Command. To develop a consensus statement, potential benefits, risks, and strategies to optimize military performance through PS use were considered in the context of specific warfighter populations and occupational demands. To maintain muscle mass, strength, and performance during periods of substantial metabolic demand and concomitant negative energy balance the panel recommended that warfighters consume 1.5-2.0 g · kg(-1) · d(-1) of protein. However, if metabolic demand is low, such as in garrison, protein intake should equal the current Military Dietary Reference Intake (0.8-1.5 g · kg(-1) · d(-1)). Although PS use generally appears to be safe for healthy adults, warfighters should be educated on PS quality, given quality-control and contamination concerns with commercial dietary supplements. To achieve recommended protein intakes, the panel strongly urges consumption of high-quality protein-containing whole foods. However, when impractical, the use of PSs (20-25 g per serving or 0.25-0.3 g · kg(-1) per meal), particularly after periods of strenuous physical activity (e.g., military training, combat patrols, and exercise), is acceptable. The committee acknowledges the need for further study of protein requirements for extreme, military-specific environmental conditions and whether unique metabolic stressors associated with military service alter protein requirements for aging warfighters.

  11. Sequencing sit-to-stand and upright posture for mobility limitation assessment: determination of the timing of the task phases from force platform data.

    PubMed

    Mazzà, Claudia; Zok, Mounir; Della Croce, Ugo

    2005-06-01

    The identification of quantitative tools to assess an individual's mobility limitation is a complex and challenging task. Several motor tasks have been designated as potential indicators of mobility limitation. In this study, a multiple motor task obtained by sequencing sit-to-stand and upright posture was used. Algorithms based on data obtained exclusively from a single force platform were developed to detect the timing of the motor task phases (sit-to-stand, preparation to the upright posture and upright posture). To test these algorithms, an experimental protocol inducing predictable changes in the acquired signals was designed. Twenty-two young, able-bodied subjects performed the task in four different conditions: self-selected natural and high speed with feet kept together, and self-selected natural and high speed with feet pelvis-width apart. The proposed algorithms effectively detected the timing of the task phases, the duration of which was sensitive to the four different experimental conditions. As expected, the duration of the sit-to-stand was sensitive to the speed of the task and not to the foot position, while the duration of the preparation to the upright posture was sensitive to foot position but not to speed. In addition to providing a simple and effective description of the execution of the motor task, the correct timing of the studied multiple task could facilitate the accurate determination of variables descriptive of the single isolated phases, allowing for a more thorough description of the motor task and therefore could contribute to the development of effective quantitative functional evaluation tests.

  12. Postural discomfort and perceived exertion in standardized box-holding postures.

    PubMed

    Olendorf, M R; Drury, C G

    2001-12-15

    To help in the design or redesign of workplaces it would be helpful to know in advance the postural stress consequences of a wide range of body postures. This experiment evaluated 168 postures chosen to represent those in the Ovako Working-posture Analysing System (OWAS) using Rated Perceived Exertion (RPE) and Body Part Discomfort (BPD) measures. The postures comprised all combinations of three arm postures, four back postures, seven leg postures and two forces (weights of held boxes). Twelve male subjects held each posture for a fixed duration (20 s) before providing RPE and BPD ratings. Analysis of the ratings gave highly significant main effects, with the major driver being the object weight. As each factor was varied, the largest effect was on the body region corresponding to that factor. A simple main-effects-only additive model explained 91% of the variance of RPE means for the postures.

  13. A Review of the Purpose and Scope Statements of the Task Force on Excellence, Efficiency and Competitiveness of the Arizona Board of Regents.

    ERIC Educational Resources Information Center

    Coopers & Lybrand, New York, NY.

    One of the working papers in the final report of the Arizona Board of Regents' Task Force on Excellence, Efficiency and Competitiveness, this document presents a review, designed to raise questions, of the Task Force's purpose and scope statements. The primary portion of the study was a series of interviews with 105 Arizonans (holding key…

  14. United States Air Force F-35A Operational Basing Environmental Impact Statement. Volume 2, Appendices

    DTIC Science & Technology

    2013-09-01

    Laser and Condor Scotty Military Operation Areas by the aircraft proposed for location at the Burlington, VT Air Guard Station. Portions of this...addition to the comments we are requesting that you provide GIS shape files with appropriate metadata tor the Yankee Laser and Condor Scotty airspaces...Basing Draft Environmental Impact Statement Our comments focus on the noise impacts of the use of the Yankee Laser and Condor Scotty Military

  15. United States Air Force F-35A Operational Basing Environmental Impact Statement. Appendix E: Comments

    DTIC Science & Technology

    2013-09-01

    E-314 noise on the hair cells in the ear that are responsible for sensing sounds and transfmming them into nerve impulses. Such trauma to the hair...bi-partisan reticence about the F-35, though it’s mostly Democrats who make vague statements of support without demonstrating any mastery of the...the noise issue (without mentioning health), downplays the property value issue (based on the disputed report), and spends two vague , largely

  16. United States Air Force F-35A Operational Basing Environmental Impact Statement. Appendix E: Comments

    DTIC Science & Technology

    2013-09-01

    Headquarters Air Combat Command Installations and Mission Support Directorate, Engineering Division (A7N) 129 Andrews Street Langley Air Force Base, VA...strike fighter aircraft to the Air Force, Marine Corps, and Navy, as well as international partners for the next several decades. Currently, the Air ...Force is scheduled to acquire and field over 1,700 F-35As over the next several decades; this basing action is only a part of the Air Force’s program to

  17. United States Air Force F-35A Operational Basing Environmental Impact Statement. Appendix E: Comments

    DTIC Science & Technology

    2013-09-01

    ACC/A7NS no F-35’ s at BTV Dear Sir, I lived near BTV airport for 11 years. I have a disability called cerebral palsy which makes me have an...Environmental Impact Statement Vol II Appendices A-E 5a. CONTRACT NUMBER GS-10F-0122J 5b. GRANT NUMBER N/A 5c. PROGRAM ELEMENT NUMBER N/A 6. AUTHOR( S ...7. PERFORMING ORGANIZATION NAME( S ) AND ADDRESS(ES) U.S Army Corps of Engineers Geotechnical and Environmental Engineering Branch (CESPK-ED-GI

  18. F-35 Force Development Evaluation and Weapons School Beddown Environmental Impact Statement

    DTIC Science & Technology

    2011-05-01

    aircraft missions Mirage 2000 T High performance delta - winged fighter/bomber used by foreign air forces Unmanned Aerial Systems (UAS) B* UAS...singing within 10 seconds after the boom (Higgins 1974 in Manci et al. 1988). Ravens responded by emitting protestation calls, flapping their wings ...has been initiated and evaluation of the aircraft is currently taking place. The goal of the Air Force is to field the most up -to~date aircraft with

  19. Environmental Impact Analysis Process. Environmental Impact Statement for the Closure of Mather Air Force Base

    DTIC Science & Technology

    1990-03-01

    the California Health and Safety Code). The Department would like to be informed of future activities and use plans associated with the Muther AFB...Page 2 cc: Lt. Col Richard Blank Chief, Environmental Management 323rd Flying Training Wing Mather Air Force Base, CA 95655-5000 Lt. Col. Jose Saenz

  20. Draft environmental impact statement for the disposal of K. I. Sawyer Air Force Base, Michigan

    SciTech Connect

    1995-11-01

    Pursuant to the Defense Base Closure and Realignment Act, K. I. Sawyer AFB was closed in September 1995. This Environmental Impact Statement has been prepared in accordance with the National Environmental Policy Act to analyze the potential environmental consequences of the disposal and reasonable alternatives for reuse of the base. The document includes analyses of community setting, land use and aesthetics, transportation, utilities, hazardous materials and hazardous waste management, geology and soils, water resources, air quality, noise, biological resources, and cultural resources. Four reuse alternatives were examined: a Proposed Action that features air cargo, regional aircraft maintenance, regional passenger, and general aviation uses of the runway with an industrial component being developed in the military family housing area; an International Wayport Alternative that consists of international passenger, air cargo, and aircraft maintenance uses, as well as regional passenger and general aviation uses, and a large residential area; a Commercial Aviation Alternative that proposes a regional commercial airport with an Upper Peninsula vocational/educational training facility; and a Recreation Alternative that would retain more than 80 percent of the base for public facilities recreation land uses. All alternatives include industrial, institutional, commercial, and residential uses. A No-Action Alternative, which would entail no reuse of the base property, was also evaluated.

  1. ERS task force statement: diagnosis and treatment of primary spontaneous pneumothorax.

    PubMed

    Tschopp, Jean-Marie; Bintcliffe, Oliver; Astoul, Philippe; Canalis, Emilio; Driesen, Peter; Janssen, Julius; Krasnik, Marc; Maskell, Nicholas; Van Schil, Paul; Tonia, Thomy; Waller, David A; Marquette, Charles-Hugo; Cardillo, Giuseppe

    2015-08-01

    Primary spontaneous pneumothorax (PSP) affects young healthy people with a significant recurrence rate. Recent advances in treatment have been variably implemented in clinical practice. This statement reviews the latest developments and concepts to improve clinical management and stimulate further research.The European Respiratory Society's Scientific Committee established a multidisciplinary team of pulmonologists and surgeons to produce a comprehensive review of available scientific evidence.Smoking remains the main risk factor of PSP. Routine smoking cessation is advised. More prospective data are required to better define the PSP population and incidence of recurrence. In first episodes of PSP, treatment approach is driven by symptoms rather than PSP size. The role of bullae rupture as the cause of air leakage remains unclear, implying that any treatment of PSP recurrence includes pleurodesis. Talc poudrage pleurodesis by thoracoscopy is safe, provided calibrated talc is available. Video-assisted thoracic surgery is preferred to thoracotomy as a surgical approach.In first episodes of PSP, aspiration is required only in symptomatic patients. After a persistent or recurrent PSP, definitive treatment including pleurodesis is undertaken. Future randomised controlled trials comparing different strategies are required.

  2. United States Air Force F-35A Operational Basing Environmental Impact Statement. Appendix E: Comments

    DTIC Science & Technology

    2013-09-01

    neighborhoods which are already being ruined by the F-15s. NO to the noise polution . No to the air polution . No to ruining the environment and ruining...No to the air polut ion . No to ruining the environment and rui ning people’s lives. Thank you for listening to the citizens. Ruth Drake 1...Headquarters Air Combat Command Installations and Mission Support Directorate, Engineering Division (A7N) 129 Andrews Street Langley Air Force Base, VA

  3. Final Environmental Impact Statement. Disposal and Reuse of Portions of Grissom Air Force Base, Indiana

    DTIC Science & Technology

    1994-09-01

    Mus musculus Long-tailed weasel Mustela frenata White-tailed deer Odocoileus virginianus Muskrat Ondatra zibethica White-footed mouse Peromyscus... phase ) 36 208 366 64 34 68 Direct Employment 633 3,098 6,991 454 1,622 3,709 Secondary Employment 300 2,244 5,541 234 622 1,397 Population Increase 908...uses. In February 1993, the GRA submitted to the Air Force a Concept Development Draft Phase Il-B Report (RKG Associates, Inc., 1993). This plan

  4. The association between whole body vibration exposure and musculoskeletal disorders in the Swedish work force is confounded by lifting and posture

    NASA Astrophysics Data System (ADS)

    Hagberg, Mats; Burström, Lage; Ekman, Anna; Vilhelmsson, Rebecka

    2006-12-01

    This was a cross-sectional study based on material representing the Swedish work-force from a survey conducted in 1999, 2001 and 2003 by Statistics Sweden. Exposure to whole body vibration (WBV) was prevalent among agricultural, forestry, fishery workers and among plant and machinery operators based on a sample of 40,000 employed persons. Approximately 70% responders, that are 9798 persons answered both the interview and the questionnaire for the analysis of exposure-response. Exposure to WBV at least half the working time was associated with prevalence ratios above two for musculoskeletal symptoms in the low back, neck, shoulder/arm and hand among workers. When the exposure factors lifting and frequent bending were added to a multivariate analysis, surprisingly the magnitude of association was low between low back symptoms and WBV exposure. Interestingly, the relation between WBV exposure and symptoms in the neck, shoulder/arm and hand had the same or higher magnitude of association even when the possible confounders were in the model. For the neck, low back and shoulder/arm there was a visible increase in prevalence ratio (as high as 5 times) when combined exposures of WBV, lifting, frequent bending, twisted posture and noise were included in the analysis.

  5. Exploring interactions between force, repetition and posture on intervertebral disc height loss and bulging in isolated porcine cervical functional spinal units from sub-acute-failure magnitudes of cyclic compressive loading.

    PubMed

    Gooyers, Chad E; Callaghan, Jack P

    2015-10-15

    Most in vitro studies are limited in the ability to partition intervertebral disc (IVD) height loss from total specimen height loss since the net changes in the actuator position of the materials testing system simply reflect net changes to functional spinal units (FSUs) used for testing. Three levels of peak compressive force, three cycle rates and two dynamic postural conditions were examined using a full-factorial design. Cyclic compressive force was applied using a time-varying waveform with synchronous flexion/extension for 5000 cycles. Surface scans from the anterior aspect of the IVD were recorded in a neutral and flexed posture before and after the cyclic loading protocol using a 3D laser scanner to characterise changes in IVD height loss and bulging. A significant three-way interaction (p=0.0092) between the magnitude of peak compressive force, cycle rate and degree of postural deviation was observed in cycle-varying specimen height loss data. A significant main effect of peak compressive force (p=0.0003) was also observed in IVD height loss calculated from the surface profiles of the IVD. The relative contribution of IVD height loss (measured on the anterior surface) to total specimen height loss across experimental conditions varied considerably, ranging from 19% to 58%. Postural deviation was the only factor that significantly affected the magnitude of peak AF bulge (p=0.0016). This investigation provides evidence that total specimen height loss is not an accurate depiction of cycle-varying changes in the IVD across a range of in vivo scenarios that were replicated with in vitro testing.

  6. 2012 National Guard Bureau Posture Statement

    DTIC Science & Technology

    2012-01-01

    conclusion can be drawn that the younger generation in their late teens and 20s, is less resilient and has not developed the coping skills of previous...suicide rates, alcohol and substance abuse, Post-Traumatic Stress, domestic abuse, sexual assault rates, and other behavioral health issues. The MRTC is...Guard Bureau: ÔYellow Ribbon Reintegration Ô Family Ô Employer Support Ô Sexual Assault Prevention & Response Ô Psychological Health Ô Financial

  7. Determining postural stability

    NASA Technical Reports Server (NTRS)

    Lieberman, Erez (Inventor); Forth, Katharine E. (Inventor); Paloski, William H. (Inventor)

    2011-01-01

    A method for determining postural stability of a person can include acquiring a plurality of pressure data points over a period of time from at least one pressure sensor. The method can also include the step of identifying a postural state for each pressure data point to generate a plurality of postural states. The method can include the step of determining a postural state of the person at a point in time based on at least the plurality of postural states.

  8. Posture Statement of General Douglas M. Fraser, United States Air Force Commander, United States Southern Command, Before the 112th Congress House Armed Services Committee

    DTIC Science & Technology

    2012-03-06

    contending with an asymmetric threat to national and international security: Transnational Organized Crime ( TOC ). In addition to this primary...Countering Transnational Organized Crime (C- TOC ) Within our authorities, United States Southern Command is supporting the efforts of militaries...aged American child . Operation Martillo: JIATF South planned, coordinated and synchronized the major elements of Operation Martillo. The operation

  9. Strategic Mobility, The Force Proejction Army, and the Ottawa Landmine Treaty: Can the Army Get There?

    DTIC Science & Technology

    2007-11-02

    Accessed 27 October 2000. This theme was reiterated in the fiscal year 2001 Army Posture Statement. 70 Louis Caldera and Eric K. Shinseki, A Statement on the...Operations, III-21. 87 Ibid., III-4. 88 Louis Caldera and Eric K. Shinseki, A Statement on the Posture of the United States Army Fiscal Year 2001...October 2000. 50 Caldera , Louis and Eric K. Shinseki. A Statement on the Posture of the United States Army Fiscal Year 2001, (http://www.army.mil/aps

  10. [Risks of awkward posture].

    PubMed

    Bazzini, G; Capodaglio, E; Panigazzi, M; Prestifilippo, E; Vercesi, C

    2010-01-01

    For posture we mean the position of the body in the space and the relationship with its segments. The correct posture is determined by neurophysiological, biomechanical, emotional, psychological and relation factors, enabling us to perform daily and working activities with the lowest energy expenditure. When possible we suggest during posture variation, a preventive measure where there are prolonged fixed activities.

  11. Environmental Impact Statement Supersonic Flight Operations in the Valentine Military Operations Area, Holloman Air Force Base, New Mexico

    DTIC Science & Technology

    1983-01-01

    HIGHWAYS E .EEA-IRCTOR ROBERT C. LAIER. CHAIRMAN AND PUBLIC TRANSPORTATION MARK G. GOOES ROBERT H. OEDMAN AUSTIN, TEA 711781 JOHN A. BUTLER. J...simioar statement Paso and in San Diego, Calif., I find West Teas tostumdies on the iffects of-’ prephred for Reserve, be astonishingly, blissfully...quiet mountainous West Tea r He asked why a decibel ratethTuesday, VoWgt pointed out, warning that chland that supports eatTe, wildlife and He a"we’ll be

  12. Transfer of dynamic learning across postures.

    PubMed

    Ahmed, Alaa A; Wolpert, Daniel M

    2009-11-01

    When learning a difficult motor task, we often decompose the task so that the control of individual body segments is practiced in isolation. But on re-composition, the combined movements can result in novel and possibly complex internal forces between the body segments that were not experienced (or did not need to be compensated for) during isolated practice. Here we investigate whether dynamics learned in isolation by one part of the body can be used by other parts of the body to immediately predict and compensate for novel forces between body segments. Subjects reached to targets while holding the handle of a robotic, force-generating manipulandum. One group of subjects was initially exposed to the novel robot dynamics while seated and was then tested in a standing position. A second group was tested in the reverse order: standing then sitting. Both groups adapted their arm dynamics to the novel environment, and this movement learning transferred between seated and standing postures and vice versa. Both groups also generated anticipatory postural adjustments when standing and exposed to the force field for several trials. In the group that had learned the dynamics while seated, the appropriate postural adjustments were observed on the very first reach on standing. These results suggest that the CNS can immediately anticipate the effect of learned movement dynamics on a novel whole-body posture. The results support the existence of separate mappings for posture and movement, which encode similar dynamics but can be adapted independently.

  13. Transfer of Dynamic Learning Across Postures

    PubMed Central

    Wolpert, Daniel M.

    2009-01-01

    When learning a difficult motor task, we often decompose the task so that the control of individual body segments is practiced in isolation. But on re-composition, the combined movements can result in novel and possibly complex internal forces between the body segments that were not experienced (or did not need to be compensated for) during isolated practice. Here we investigate whether dynamics learned in isolation by one part of the body can be used by other parts of the body to immediately predict and compensate for novel forces between body segments. Subjects reached to targets while holding the handle of a robotic, force-generating manipulandum. One group of subjects was initially exposed to the novel robot dynamics while seated and was then tested in a standing position. A second group was tested in the reverse order: standing then sitting. Both groups adapted their arm dynamics to the novel environment, and this movement learning transferred between seated and standing postures and vice versa. Both groups also generated anticipatory postural adjustments when standing and exposed to the force field for several trials. In the group that had learned the dynamics while seated, the appropriate postural adjustments were observed on the very first reach on standing. These results suggest that the CNS can immediately anticipate the effect of learned movement dynamics on a novel whole-body posture. The results support the existence of separate mappings for posture and movement, which encode similar dynamics but can be adapted independently. PMID:19710374

  14. Effect of Posture on Hip Angles and Moments during Gait

    PubMed Central

    Lewis, Cara L.; Sahrmann, Shirley A.

    2014-01-01

    Anterior hip pain is common in young, active adults. Clinically, we have noted that patients with anterior hip pain often walk in a swayback posture, and that their pain is reduced when the posture is corrected. The purpose of this study was to investigate a potential mechanism for the reduction in pain by testing the effect of posture on movement patterns and internal moments during gait in healthy subjects. Fifteen subjects were instructed to walk while maintaining three postures: 1) natural, 2) swayback, and 3) forward flexed. Kinematic and force data were collected using a motion capture system and a force plate. Walking in the swayback posture resulted in a higher peak hip extension angle, hip flexor moment and hip flexion angular impulse compared to natural posture. In contrast, walking in a forward flexed posture resulted in a decreased hip extension angle and decreased hip flexion angular impulse. Based on these results, walking in a swayback posture may result in increased forces required of the anterior hip structures, potentially contributing to anterior hip pain. This study provides a potential biomechanical mechanism for clinical observations that posture correction in patients with hip pain is beneficial. PMID:25262565

  15. Development of Human Posture Simulation Method for Assessing Posture Angles and Spinal Loads

    PubMed Central

    Lu, Ming-Lun; Waters, Thomas; Werren, Dwight

    2015-01-01

    Video-based posture analysis employing a biomechanical model is gaining a growing popularity for ergonomic assessments. A human posture simulation method of estimating multiple body postural angles and spinal loads from a video record was developed to expedite ergonomic assessments. The method was evaluated by a repeated measures study design with three trunk flexion levels, two lift asymmetry levels, three viewing angles and three trial repetitions as experimental factors. The study comprised two phases evaluating the accuracy of simulating self and other people’s lifting posture via a proxy of a computer-generated humanoid. The mean values of the accuracy of simulating self and humanoid postures were 12° and 15°, respectively. The repeatability of the method for the same lifting condition was excellent (~2°). The least simulation error was associated with side viewing angle. The estimated back compressive force and moment, calculated by a three dimensional biomechanical model, exhibited a range of 5% underestimation. The posture simulation method enables researchers to simultaneously quantify body posture angles and spinal loading variables with accuracy and precision comparable to on-screen posture matching methods. PMID:26361435

  16. Draft Environmental Impact Statement Disposal and Reuse of Carswell AFB, Texas. Disposal and Reuse of Carswell Air Force Base, Texas

    DTIC Science & Technology

    1994-03-01

    18 minutes 2.00 EPR Note: * Events were assumed to take place during daytime hours. A/B = afterburner . AF = Air Force. AFRES = Air Force Reserve. C... screech or a whine, the ear is most sensitive. The A-weighted level was developed to measure and report sound levels in a way that would more closely...major source of loss was panic induced in naive animals. Aircraft noise may have effects because it might trigger a startle response, a sequence of

  17. Disposal and reuse of Myrtle Beach Air Force Base, South Carolina final environmental impact statement. Final report

    SciTech Connect

    1993-02-01

    Pursuant to the Defense Base Closure and Realignment Act of 1990, Myrtle Beach AFB closed in March 1993. This EIS was prepared in accordance with the National Environmental Policy Act to analyze the potential environmental consequences of the disposal of the base. Although disposal will create few direct impacts, reuse by others will create indirect impacts. The EIS analyzes the effects a range of reasonable foreseeable alternative reuses may have on the local community; including land use and aesthetics, transportation, utilities, hazardous materials/wastes, geology and soils, water resources, air quality, noise, biological resources, and cultural resources. Preservation covenants within the disposal document could eliminate or reduce any negative environmental effects to a non-adverse level. Because the Air Force is disposing of the property, some of the mitigation measures are beyond Air Force control. Remediation of Installation Restoration Program sites will continue to be the responsibility of the Air Force.

  18. Army Posture Statement: A Statement on the Posture of the United States Army 2011

    DTIC Science & Technology

    2011-03-02

    to be a Professional Soldier? • After nine years of war, how are we as individual professionals and as a profession meeting these aspirations? The...individual and organizational accountability, which we seek to examine as parts of our Profession of Arms. The American Professional Soldier is an expert...16 Fiscal Stewardship Energy Security and Sustainability The Profession of

  19. Proposed Relocation of the 37th Tactical Fighter Wing and Other Tactical Force Structure Actions. Draft Environmental Impact Statement

    DTIC Science & Technology

    1991-02-05

    Secretary of the Air Force, Office of Public Affairs. Washington. D.C. 20330 86-7 1I F-4I PHANTOM 11 The F-4 Phantom 11 is a twin-engine, all...Another change is a digital intercept computer received its first Phantom 11 in June 1978. that includes launch computations for all The F-4D model has...Air Force, Office of Public Affairs, Washington, D.C. 20330-1000 1 88-14 3 I mB~j , I I U -2 I RF-4C Phantom II The RF-4C Phantom II is a long-range

  20. Fingertip contact influences human postural control

    NASA Technical Reports Server (NTRS)

    Jeka, J. J.; Lackner, J. R.

    1994-01-01

    Touch and pressure stimulation of the body surface can strongly influence apparent body orientation, as well as the maintenance of upright posture during quiet stance. In the present study, we investigated the relationship between postural sway and contact forces at the fingertip while subjects touched a rigid metal bar. Subjects were tested in the tandem Romberg stance with eyes open or closed under three conditions of fingertip contact: no contact, touch contact (< 0.98 N of force), and force contact (as much force as desired). Touch contact was as effective as force contact or sight of the surroundings in reducing postural sway when compared to the no contact, eyes closed condition. Body sway and fingertip forces were essentially in phase with force contact, suggesting that fingertip contact forces are physically counteracting body sway. Time delays between body sway and fingertip forces were much larger with light touch contact, suggesting that the fingertip is providing information that allows anticipatory innervation of musculature to reduce body sway. The results are related to observations on precision grip as well as the somatosensory, proprioceptive, and motor mechanisms involved in the reduction of body sway.

  1. Force.

    ERIC Educational Resources Information Center

    Gamble, Reed

    1989-01-01

    Discusses pupil misconceptions concerning forces. Summarizes some of Assessment of Performance Unit's findings on meaning of (1) force, (2) force and motion in one dimension and two dimensions, and (3) Newton's second law. (YP)

  2. Modifications of anticipatory postural adjustments in a rock climbing task: the effect of supporting wall inclination.

    PubMed

    Noé, F

    2006-08-01

    The aim of this study was to analyse the influence of initial postural constraint on the realisation of a leg release in a rock climbing task. Two conditions were tested: a vertical posture and an overhanging posture. The overhanging posture was characterised by a large sustentation base, which enhanced the mechanical possibilities of the system. Subjects had to release their right foot in both postural conditions. In the vertical posture, movement's effectuation was associated with anticipatory postural adjustments (APAs). In the overhanging posture, the movement was performed without APAs. The results indicated that APAs were modulated according to the possibilities of force creation of the system. Hence, the disappearance of APAs in the overhanging posture was explained by the efficiency of the system to create the impulse necessary to perform the task.

  3. [Menisci and posture].

    PubMed

    Sérgio, J S

    2000-01-01

    The first aim of this work is not only to review the localised perspective of meniscopathy, concerned with the consequences of meniscectomy, but to also view it in a broader dimension, in the behavioural aspect--related to postural activity. The second aim is to establish the relationship between these two dimensions. Meniscopathies invariably lead to degenerative alterations of the knee joint--not sufficiently explained by the local factors--that result in a situation of osteoarthritis. Some investigators established that the osteoarthritis process should not be confined only to the mechanical responsibility, due to some studies that also confirm the existence of biochemical alterations. However, others have also shown that the nervous system (NS) is likely to influence the inflammatory manifestations through the unmyelinated afferent fibers and sympathetic efferent fibers of the joints. These fibers can interact with non-neural elements, releasing some mediators, such as P substance (PS) and norepinephrine (NE), which, by themselves, or through other substances, contribute to the exacerbation of the inflammatory process. In order to relate the facts above, this longitudinal study comprised the following approaches clinical: anthropometric; biotechnical; and posturographic. It was characterised by five moments of data collection, the periodicity of which is related to the time of the surgery: the first moment is before surgery, followed by the remaining four, at six-week intervals, the sample being composed of--15 male caucasians, aged between 20 and 30 years, working for the Air Force. These Subjects were divided into two groups, according to the amount of meniscus removed in the longitudinal direction. Group A--meniscectomy < 1/2 the longitudinal body, composed of 7 subjects, with an average age of 21.4 years; and Group B, meniscectomy > 1/2 the longitudinal body, composed of: 8 subjects, with an average age of 24.1 years. The statistical analysis contained a

  4. Obesity Impact on the Attentional Cost for Controlling Posture

    PubMed Central

    Mignardot, Jean-Baptiste; Olivier, Isabelle; Promayon, Emmanuel; Nougier, Vincent

    2010-01-01

    Background This study investigated the effects of obesity on attentional resources allocated to postural control in seating and unipedal standing. Methods Ten non obese adults (BMI = 22.4±1.3, age = 42.4±15.1) and 10 obese adult patients (BMI = 35.2±2.8, age = 46.2±19.6) maintained postural stability on a force platform in two postural tasks (seated and unipedal). The two postural tasks were performed (1) alone and (2) in a dual-task paradigm in combination with an auditory reaction time task (RT). Performing the RT task together with the postural one was supposed to require some attentional resources that allowed estimating the attentional cost of postural control. 4 trials were performed in each condition for a total of 16 trials. Findings (1) Whereas seated non obese and obese patients exhibited similar centre of foot pressure oscillations (CoP), in the unipedal stance only obese patients strongly increased their CoP sway in comparison to controls. (2) Whatever the postural task, the additional RT task did not affect postural stability. (3) Seated, RT did not differ between the two groups. (4) RT strongly increased between the two postural conditions in the obese patients only, suggesting that body schema and the use of internal models was altered with obesity. Interpretation Obese patients needed more attentional resources to control postural stability during unipedal stance than non obese participants. This was not the case in a more simple posture such as seating. To reduce the risk of fall as indicated by the critical values of CoP displacement, obese patients must dedicate a strong large part of their attentional resources to postural control, to the detriment of non-postural events. Obese patients were not able to easily perform multitasking as healthy adults do, reflecting weakened psycho-motor abilities. PMID:21187914

  5. Supporting the Well-Being of the Force

    DTIC Science & Technology

    2007-11-02

    Fiscal Year 1998 , Posture Statement presented to the 105th Cong., 1st sess. (Washington, D. C.: U.S. Department of the Army, 1997). 15Louis Caldera ...www.army.mil/aps/04/index.html>; Internet. Accessed 16 October 2004. Caldera , Louis and Dennis J Reimer, GEN. A Statement on the Posture of the United

  6. Social Postural Coordination

    ERIC Educational Resources Information Center

    Varlet, Manuel; Marin, Ludovic; Lagarde, Julien; Bardy, Benoit G.

    2011-01-01

    The goal of the current study was to investigate whether a visual coupling between two people can produce spontaneous interpersonal postural coordination and change their intrapersonal postural coordination involved in the control of stance. We examined the front-to-back head displacements of participants and the angular motion of their hip and…

  7. Reduced postural differences between phobic postural vertigo patients and healthy subjects during a postural threat.

    PubMed

    Holmberg, Johan; Tjernström, Fredrik; Karlberg, Mikael; Fransson, Per Anders; Magnusson, Måns

    2009-08-01

    Phobic postural vertigo is characterized by subjective imbalance and dizziness while standing or walking, despite normal values for clinical balance tests. Patients with phobic postural vertigo exhibit an increased high-frequency sway in posturographic tests. Their postural sway, however, becomes similar to the sway of healthy subjects during difficult balance tasks. Posturographic recordings of 30 s of quiet stance was compared to recordings of 30 s of quiet stance during a postural threat, which consisted of the knowledge of forthcoming vibratory calf muscle stimulation, in 37 consecutive patients with phobic postural vertigo and 24 healthy subjects. During quiet stance without the threat of forthcoming vibratory stimulation, patients with phobic postural vertigo exhibited a postural sway containing significantly more high-frequency sway than the healthy subjects. During the quiet stance with forthcoming vibratory stimulation, i.e., anticipation of a postural threat, the significant differences between groups disappeared for all variables except sagittal high-frequency sway. During postural threat, healthy subjects seemed to adopt a postural strategy that was similar to that exhibited by phobic postural vertigo patients. The lack of additional effects facing a postural threat among phobic postural vertigo patients may be due to an already maximized postural adaptation. Deviant postural reactions among patients with phobic postural vertigo may be considered as an avoidant postural response due to a constant fear of losing postural control.

  8. Deficits in Lower Limb Muscle Reflex Contraction Latency and Peak Force Are Associated With Impairments in Postural Control and Gross Motor Skills of Children With Developmental Coordination Disorder

    PubMed Central

    Fong, Shirley S.M.; Ng, Shamay S.M.; Guo, X.; Wang, Yuling; Chung, Raymond C.K.; Stat, Grad; Ki, W.Y.; Macfarlane, Duncan J.

    2015-01-01

    Abstract This cross-sectional, exploratory study aimed to compare neuromuscular performance, balance and motor skills proficiencies of typically developing children and those with developmental coordination disorder (DCD) and to determine associations of these neuromuscular factors with balance and motor skills performances in children with DCD. One hundred thirty children with DCD and 117 typically developing children participated in the study. Medial hamstring and gastrocnemius muscle activation onset latencies in response to an unexpected posterior-to-anterior trunk perturbation were assessed by electromyography and accelerometer. Hamstring and gastrocnemius muscle peak force and time to peak force were quantified by dynamometer, and balance and motor skills performances were evaluated with the Movement Assessment Battery for Children (MABC). Independent t tests revealed that children with DCD had longer hamstring and gastrocnemius muscle activation onset latencies (P < 0.001) and lower isometric peak forces (P < 0.001), but not times to peak forces (P > 0.025), than the controls. Multiple regression analysis accounting for basic demographics showed that gastrocnemius peak force was independently associated with the MABC balance subscore and ball skills subscore, accounting for 5.7% (P = 0.003) and 8.5% (P = 0.001) of the variance, respectively. Gastrocnemius muscle activation onset latency also explained 11.4% (P < 0.001) of the variance in the MABC ball skills subscore. Children with DCD had delayed leg muscle activation onset times and lower isometric peak forces. Gastrocnemius peak force was associated with balance and ball skills performances, whereas timing of gastrocnemius muscle activation was a determinant of ball skill performance in the DCD population. PMID:26469921

  9. Efficiency of physical therapy on postural imbalance after stroke: study protocol for a systematic review and meta-analysis

    PubMed Central

    Hugues, A; Di Marco, J; Janiaud, P; Xue, Y; Pires, J; Khademi, H; Cucherat, M; Bonan, I; Gueyffier, F; Rode, G

    2017-01-01

    Introduction Stroke frequently results in balance disorders, leading to lower levels of activity and a diminution in autonomy. Current physical therapies (PT) aiming to reduce postural imbalance have shown a large variety of effects with low levels of evidence. The objectives are to determine the efficiency of PT in recovering from postural imbalance in patients after a stroke and to assess which PT is more effective. Methods and analysis We will search several databases from inception to October 2015. Only randomised controlled trials assessing PT to recover from poststroke postural imbalance in adults will be considered. Outcome measures will be the Berg Balance Scale (BBS), the Postural Assessment Scale for Stroke (PASS), the ‘weight-bearing asymmetry’ (WBA), the ‘centre of pressure’ (COP) and the ‘limit of stability’ (LOS). WBA, COP and LOS are measured by a (sitting or standing) static evaluation on force plate or another device. Two independent reviewers will screen titles, abstracts and full-text articles, evaluate the risk of bias and will perform data extraction. In addition to the outcomes, measures of independence will be analysed. This study will aim at determining the effects of PT on the function (WBA, COP, LOS), the activity (BBS, PASS) and the independence of patients. Subgroup analyses will be planned according to the location of brain lesion (hemispheric, brainstem or cerebellum), the time since stroke (early, late, chronic), the PT (type, main aim (direct effect or generalisation), overall duration), the type of approaches (top-down or bottom-up) and the methodological quality of studies. Ethics and dissemination No ethical statement will be required. The results will be published in a peer-reviewed journal. This meta-analysis aims at managing the rehabilitation after postural imbalance by PT after a stroke. Trial registration number Prospero CRD42016037966;Pre-results. PMID:28137928

  10. Transfer of postural adaptation depends on context of prior exposure.

    PubMed

    Pienciak-Siewert, Alison; Barletta, Anthony J; Ahmed, Alaa A

    2014-04-01

    Postural control is significantly affected by the postural base of support; however, the effects on postural adaptation are not well understood. Here we investigated how adaptation and transfer of anticipatory postural control are affected by stance width. Subjects made reaching movements in a novel dynamic environment while holding the handle of a force-generating robotic arm. Each subject initially adapted to the dynamics while standing in a wide stance and then switched to a narrow stance, or vice versa. Our hypothesis is that anticipatory postural control, reflected in center of pressure (COP) movement, is not affected by stance width, as long as the control remains within functional limits; therefore we predicted that subjects in either stance would show similar COP movement by the end of adaptation and immediately upon transfer to the other stance. We found that both groups showed similar adaptation of postural control, by using different muscle activation strategies to account for the differing stance widths. One group, after adapting in wide stance, transferred similar postural control to narrow stance, by modifying their muscle activity to account for the new stance. Interestingly, the other group showed an increase in postural control when transferring from narrow to wide stance, associated with no change in muscle activity. These results confirm that adaptation of anticipatory postural control is not affected by stance width, as long as the control remains within biomechanical limits. However, transfer of control between stance widths is affected by the initial context in which the task is learned.

  11. Eye Movements Affect Postural Control in Young and Older Females

    PubMed Central

    Thomas, Neil M.; Bampouras, Theodoros M.; Donovan, Tim; Dewhurst, Susan

    2016-01-01

    Visual information is used for postural stabilization in humans. However, little is known about how eye movements prevalent in everyday life interact with the postural control system in older individuals. Therefore, the present study assessed the effects of stationary gaze fixations, smooth pursuits, and saccadic eye movements, with combinations of absent, fixed and oscillating large-field visual backgrounds to generate different forms of retinal flow, on postural control in healthy young and older females. Participants were presented with computer generated visual stimuli, whilst postural sway and gaze fixations were simultaneously assessed with a force platform and eye tracking equipment, respectively. The results showed that fixed backgrounds and stationary gaze fixations attenuated postural sway. In contrast, oscillating backgrounds and smooth pursuits increased postural sway. There were no differences regarding saccades. There were also no differences in postural sway or gaze errors between age groups in any visual condition. The stabilizing effect of the fixed visual stimuli show how retinal flow and extraocular factors guide postural adjustments. The destabilizing effect of oscillating visual backgrounds and smooth pursuits may be related to more challenging conditions for determining body shifts from retinal flow, and more complex extraocular signals, respectively. Because the older participants matched the young group's performance in all conditions, decreases of posture and gaze control during stance may not be a direct consequence of healthy aging. Further research examining extraocular and retinal mechanisms of balance control and the effects of eye movements, during locomotion, is needed to better inform fall prevention interventions. PMID:27695412

  12. Eye Movements Affect Postural Control in Young and Older Females.

    PubMed

    Thomas, Neil M; Bampouras, Theodoros M; Donovan, Tim; Dewhurst, Susan

    2016-01-01

    Visual information is used for postural stabilization in humans. However, little is known about how eye movements prevalent in everyday life interact with the postural control system in older individuals. Therefore, the present study assessed the effects of stationary gaze fixations, smooth pursuits, and saccadic eye movements, with combinations of absent, fixed and oscillating large-field visual backgrounds to generate different forms of retinal flow, on postural control in healthy young and older females. Participants were presented with computer generated visual stimuli, whilst postural sway and gaze fixations were simultaneously assessed with a force platform and eye tracking equipment, respectively. The results showed that fixed backgrounds and stationary gaze fixations attenuated postural sway. In contrast, oscillating backgrounds and smooth pursuits increased postural sway. There were no differences regarding saccades. There were also no differences in postural sway or gaze errors between age groups in any visual condition. The stabilizing effect of the fixed visual stimuli show how retinal flow and extraocular factors guide postural adjustments. The destabilizing effect of oscillating visual backgrounds and smooth pursuits may be related to more challenging conditions for determining body shifts from retinal flow, and more complex extraocular signals, respectively. Because the older participants matched the young group's performance in all conditions, decreases of posture and gaze control during stance may not be a direct consequence of healthy aging. Further research examining extraocular and retinal mechanisms of balance control and the effects of eye movements, during locomotion, is needed to better inform fall prevention interventions.

  13. Postural sway following cryotherapy in healthy adults.

    PubMed

    Fukuchi, Claudiane A; Duarte, Marcos; Stefanyshyn, Darren J

    2014-01-01

    In light of the wide use of cryotherapy and its potential negative effects on postural stability, little is known about how postural sway is affected, particularly when the whole lower limb is immersed. The purpose of this study was to analyze the influence of cryotherapy on postural sway in healthy males. Twenty-six subjects were randomly assigned into two intervention groups: control (tepid water at ∼26°C) or ice (cold water at ∼11°C). Postural sway was measured through the center of pressure (COP) position while they stood on a force plate during bipedal (70 s) and unipedal (40 s) conditions before and after the subjects were immersed in a water tub up to the umbilical level for 20 min. COP standard deviation (SD) and COP velocity were analyzed in the anterior-posterior (AP) and medial-lateral (ML) directions. Statistical analysis showed that in the bipedal condition cryotherapy increased the COP SD and COP velocity in the ML direction. During the unipedal condition, a higher COP velocity in the AP and ML directions was also reported. Our findings indicate that cryotherapy by immersing the whole lower limb should be used with caution before engaging in challenging postural control activities.

  14. Integrated postural analysis in children with haemophilia.

    PubMed

    Boccalandro, E; Pasta, G; Mannucci, P M; Santagostino, E; Peyvandi, F; Seuser, A; Mancuso, M E; Solimeno, L P

    2014-03-01

    The maintenance of a correct posture in haemophilic boys might contribute to prevent joint bleeds, chronic pain and dysfunction. This single-centre study was aimed at evaluating whether or not postural alterations are more common in haemophilic than in non-haemophilic boys and whether they are related to the orthopaedic status. Posture and balance were investigated in boys with severe/moderate haemophilia (cases) and in age-matched non-haemophilic peers (controls). Thirty-five cases (89% with haemophilia A: 74% with severe disease) were included in the study and compared with 57 controls. Posture was evaluated on digital pictures of anterior, lateral and posterior views of the habitual standing position. Balance was examined with a portable force platform with eyes open and closed. The trajectory of the total body centre of force (CoF) displacement over the platform was computed by multiple planes obtaining different measures: sway area, velocity, acceleration and body loads. The joint status of cases was assessed with the Haemophilia Joint Health Score. Cases were more disharmonic than controls (52% vs. 26% in controls; P = 0.04), swayed significantly less and more slowly than controls (P < 0.05 for several parameters of CoF displacement) revealing stiffness of the musculoskeletal system. However, they were able to maintain their stance within a similar sway area. Haemophilic boys have more postural disharmonies than non-haemophilic peers, hence a global evaluation of the orthopaedic status should include also balance and posture examination to identify early dysfunction and establish a tailored physical or rehabilitation programme.

  15. Improving NATO’s Military Posture.

    DTIC Science & Technology

    2014-09-26

    AD-Hi57 370 IMPROYING NflTO’S MILITARY POSTURE(U) ARMY WAR COLL ti’ CARLISLE BARRACKS PRA 1M DIAZ 22 APR 85 UNCLASSIFIED F/G 15/7 NL I * mfll...DISTRTBU110C, STATEMENT A: Approved for public release; distribution is unlimited. * .-’A 22 APRIL 1985 1 "’r0 * -- 𔃾 . ARMY WAR COLLEGE, CARLISLE...AREA & WORK UNIT NUMBERS 11. CCONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE M~S ArmOy War College 22 April 1985 CCarlisle Barracks, PA 17013-5050

  16. Adaptation to transient postural perturbations

    NASA Technical Reports Server (NTRS)

    Andres, Robert O.

    1992-01-01

    This research was first proposed in May, 1986, to focus on some of the problems encountered in the analysis of postural responses gathered from crewmembers. The ultimate driving force behind this line of research was the desire to treat, predict, or explain 'Space Adaptation Syndrome' (SAS) and hence circumvent any adverse effects of space motion sickness on crewmember performance. The aim of this project was to develop an easily implemented analysis of the transient responses to platform translation that can be elicited with a protocol designed to force sensorimotor reorganization, utilizing statistically reliable criterion measures. This report will present: (1) a summary of the activity that took place in each of the three funded years of the project; (2) discussion of experimental results and their implications for future research; and (3) a list of presentations and publications resulting from this project.

  17. Control of posture during tasks representing common work-related postures - a reliability study.

    PubMed

    Mani, Ramakrishnan; Milosavljevic, Stephan; Sullivan, S John

    2015-01-01

    Assessment of control of posture using a task battery that represents work-related postural conditions is highly recommended for providing a comprehensive understanding of collective postural demands. However, dearth of evidence exists on the reliability of a task battery, thus precluding its use as an outcome measure in field research. This study investigated the intrasession reliability and systematic variation of force plate derived centre of pressure (COP) measures obtained during repeated performance of a task battery (lifting task, limits of stability and bipedal and unipedal stance). COP signals obtained during each task performance were processed to derive various time-domain COP measures. Statistical analyses revealed that 13 of the 19 COP measures displayed excellent relative (ICC(2,3) ≥ 0.75) and acceptable absolute reliability (SEM%: ≤ 10). Although COP measures displayed systematic variation, the differences were less or equal to the measurement error, except COP measures of unipedal stance and limits of stability. The chosen task battery is reliable and can be used for comprehensive evaluation of control of posture, in both field and laboratory research. Practitioner Summary: Repeated evaluation of multiple tasks together sequentially could introduce measurement variability. This study investigated intrasession reliability of a task battery representing common work-related postures. The chosen task battery was found to be reliable with acceptable measurement error and can be used in field research settings for evaluation of control of posture.

  18. Selection and control of limb posture for stability.

    PubMed

    Franklin, David W; Selen, Luc P J; Franklin, Sae; Wolpert, Daniel M

    2013-01-01

    Impedance control can be used to stabilize the limb against both instability and unpredictable perturbations. Limb posture influences motor noise, energy usage and limb impedance as well as their interaction. Here we examine whether subjects use limb posture as part of a mechanism to regulate limb stability. Subjects performed stabilization tasks while attached to a two dimensional robotic manipulandum which generated a virtual environment. Subjects were instructed that they could perform the stabilization task anywhere in the workspace, while the chosen postures were tracked as subjects repeated the task. In order to investigate the mechanisms behind the chosen limb postures, simulations of the neuro-mechanical system were performed. The results indicate that posture selection is performed to provide energy efficiency in the presence of force variability.

  19. Inter-Association Task Force Recommendations on Emergency Preparedness and Management of Sudden Cardiac Arrest in High School and College Athletic Programs: A Consensus Statement

    PubMed Central

    Drezner, Jonathan A; Courson, Ron W; Roberts, William O; Mosesso, Vincent N; Link, Mark S; Maron, Barry J

    2007-01-01

    Objective: To assist high school and college athletic programs prepare for and respond to a sudden cardiac arrest (SCA). This consensus statement summarizes our current understanding of SCA in young athletes, defines the necessary elements for emergency preparedness, and establishes uniform treatment protocols for the management of SCA. Background: Sudden cardiac arrest is the leading cause of death in young athletes. The increasing presence of and timely access to automated external defibrillators (AEDs) at sporting events provides a means of early defibrillation and the potential for effective secondary prevention of sudden cardiac death. An Inter-Association Task Force was sponsored by the National Athletic Trainers' Association to develop consensus recommendations on emergency preparedness and management of SCA in athletes. Recommendations: Comprehensive emergency planning is needed for high school and college athletic programs to ensure an efficient and structured response to SCA. Essential elements of an emergency action plan include establishment of an effective communication system, training of anticipated responders in cardiopulmonary resuscitation and AED use, access to an AED for early defibrillation, acquisition of necessary emergency equipment, coordination and integration of on-site responder and AED programs with the local emergency medical services system, and practice and review of the response plan. Prompt recognition of SCA, early activation of the emergency medical services system, the presence of a trained rescuer to initiate cardiopulmonary resuscitation, and access to early defibrillation are critical in the management of SCA. In any collapsed and unresponsive athlete, SCA should be suspected and an AED applied as soon as possible for rhythm analysis and defibrillation if indicated. PMID:17597956

  20. Oculomotor tasks affect differently postural control in healthy children.

    PubMed

    Bucci, Maria Pia; Ajrezo, Layla; Wiener-Vacher, Sylvette

    2015-11-01

    Eye movements affect postural stability in children. The present study focuses on the effect of different types of eye movements on postural stability in healthy children. Both eye movements and postural stability have been recorded in 51 healthy children from 6.3 to 15.5 years old. Eye movements were recorded binocularly with a video oculography (MobilEBT(®)), and postural stability was measured while child was standing on a force platform (TechnoConcept(®)). Children performed three oculomotor tasks: saccades, pursuits and reading a text silently. We measured the number of saccades made in the three oculomotor tasks, the number of words read, and the surface area, the length and mean velocity of the center of pressure (CoP). According to previous studies, postural control improves with age until 10-12 years. Saccades toward a target as well as during a reading task reduce significantly the CoP displacement and its velocity, while during pursuit eye movements all children increase postural parameters (i.e., the surface area, the length and mean velocity of the CoP). These results suggest the presence of an interaction between the oculomotor control and the postural system. Visual attention to perform saccades (to stationary targets or to words) influences postural stability more than the frequency of saccade triggering does.

  1. Autoimmune Basis for Postural Tachycardia Syndrome

    ClinicalTrials.gov

    2016-10-14

    Postural Orthostatic Tachycardia Syndrome; Postural Tachycardia Syndrome; Tachycardia; Arrhythmias, Cardiac; Autonomic Nervous System Diseases; Orthostatic Intolerance; Cardiovascular Diseases; Primary Dysautonomias

  2. Ergonomic analysis of working posture in nursing personnel: example of modified Ovako Working Analysis System application.

    PubMed

    Lee, Y H; Chiou, W K

    1995-02-01

    A postural analysis system was developed using a biomechanical approach to identify low back pain related working postures of nursing personnel. The Ovako Working Analysis System (OWAS) was modified for doing postural recording. Chaffin's biomechanical model was used to calculate the associated work stress on the L5/S1. The system was applied to examine the working postures of 64 nurses of 16 departments. The frequency distribution of the trunk showed 15.9% of the 8,629 observed postures were bending more than 15 degrees. Based on the calculated stress, 17.0% of the observed postures generated forces higher than the recommended action limit of the National Institute for Occupational Safety and Health (NIOSH). In addition to patient transfers, potentially health hazardous postures were identified in nursing tasks of inspection, nursing techniques, instrumentation, physical examination, taking inventory, and documentation.

  3. The effect of Parkinson's disease and levodopa on adaptation of anticipatory postural adjustments.

    PubMed

    Hall, L M; Brauer, S G; Horak, F; Hodges, P W

    2013-10-10

    Postural support alters anticipatory postural adjustments (APAs). Efficient adaptation to changes in postural support in reactive and centrally initiated postural synergies is impaired in Parkinson's disease (PD). This study examined whether APAs are affected differently by familiar and novel supports in people with PD, ON and OFF levodopa. The effect of PD and levodopa on the ability to immediately adapt APAs to changes in support and refine with practice was also investigated. Fourteen people with PD and 14 healthy control participants performed 20 single rapid leg lift tasks in four support conditions: unsupported, bilateral handgrip (familiar), bite plate (novel) and a combined handgrip+bite plate condition. APAs, identified from force plate data, were characterized by an increase in the vertical ground reaction force under the lifted leg as a result of a shift of weight toward the stance limb. Results showed the ability to incorporate familiar and novel external supports into the postural strategy was preserved in PD. Controls and PD patients in the OFF state further refined the postural strategy with practice as evidenced by changes in amplitude of vertical ground reaction forces and forces applied to support apparatus within conditions between the initial and final trials. In the ON state, people with PD failed to refine the use of postural supports in any condition. The results suggest that immediate postural adaptation is intact in people with PD and unaffected by levodopa administration but the ability to refine postural adaptations with task experience is compromised by dopamine therapy.

  4. Postural Orthostatic Tachycardia Syndrome

    PubMed Central

    2014-01-01

    The postural orthostatic tachycardia syndrome is a disease characterized by excessively increased heart rate during orthostatic challenge associated with symptoms of orthostatic intolerance including dizziness, exercise intolerance, headache, fatigue, memory problems, nausea, blurred vision, pallor, and sweating, which improve with recumbence. Postural orthostatic tachycardia syndrome patients may present with a multitude of additional symptoms that are attributable to vascular vasoconstriction. Observed signs and symptoms in a patient with postural orthostatic tachycardia syndrome include tachycardia at rest, exaggerated heart rate increase with upright position and exercise, crushing chest pain, tremor, syncope, loss of vision, confusion, migraines, fatigue, heat intolerance, parasthesia, dysesthesia, allodynia, altered traditional senses, and thermoregulatory abnormalities. There are a number of possible dermatological manifestations of postural orthostatic tachycardia syndrome easily explained by its recently discovered pathophysiology. The author reports the case of a 22-year-old woman with moderate-to-severe postural orthostatic tachycardia syndrome with numerous dermatological manifestations attributable to the disease process. The cutaneous manifestations observed in this patient are diverse and most noticeable during postural orthostatic tachycardia syndrome flares. The most distinct are evanescent, hyperemic, sharply demarcated, irregular patches on the chest and neck area that resolve upon diascopy. This distinct “evanescent hyperemia” disappears spontaneously after seconds to minutes and reappears unexpectedly. Other observed dermatological manifestations of this systemic disease include Raynaud’s phenomenon, koilonychia, onychodystrophy, madarosis, dysesthesia, allodynia, telogen effluvium, increased capillary refill time, and livedo reticularis. The treatment of this disease poses a great challenge. The author reports the unprecedented use of an

  5. A Statement

    ERIC Educational Resources Information Center

    Mondale, Walter F.

    1973-01-01

    Article is a statement by Senator Walter F. Mondale, a Democrat from Minnesota, on the evaluation of social programs and a serious appraisal of social policy for the nation's children and their families. (Author/RK)

  6. Enhancing digital driver models: identification of distinct postural strategies used by drivers.

    PubMed

    Kyung, Gyouhyung; Nussbaum, Maury A; Babski-Reeves, Kari L

    2010-03-01

    Driver workspace design and evaluation is, in part, based on assumed driving postures of users and determines several ergonomic aspects of a vehicle, such as reach, visibility and postural comfort. Accurately predicting and specifying standard driving postures, hence, are necessary to improve the ergonomic quality of the driver workspace. In this study, a statistical clustering approach was employed to reduce driving posture simulation/prediction errors, assuming that drivers use several distinct postural strategies when interacting with automobiles. 2-D driving postures, described by 16 joint angles, were obtained from 38 participants with diverse demographics (age, gender) and anthropometrics (stature, body mass) and in two vehicle classes (sedans and SUVs). Based on the proximity of joint angle sets, cluster analysis yielded three predominant postural strategies in each vehicle class (i.e. 'lower limb flexed', 'upper limb flexed' and 'extended'). Mean angular differences between clusters ranged from 3.8 to 52.4 degrees for the majority of joints, supporting the practical relevance of the distinct clusters. The existence of such postural strategies should be considered when utilising digital human models (DHMs) to enhance and evaluate driver workspace design ergonomically and proactively. STATEMENT OF RELEVANCE: This study identified drivers' distinct postural strategies, based on actual drivers' behaviours. Such strategies can facilitate accurate positioning of DHMs and hence help design ergonomic driver workspaces.

  7. Postural perturbations: new insights for treatment of balance disorders

    NASA Technical Reports Server (NTRS)

    Horak, F. B.; Henry, S. M.; Shumway-Cook, A.; Peterson, B. W. (Principal Investigator)

    1997-01-01

    This article reviews the neural control of posture as understood through studies of automatic responses to mechanical perturbations. Recent studies of responses to postural perturbations have provided a new view of how postural stability is controlled, and this view has profound implications for physical therapy practice. We discuss the implications for rehabilitation of balance disorders and demonstrate how an understanding of the specific systems underlying postural control can help to focus and enrich our therapeutic approaches. By understanding the basic systems underlying control of balance, such as strategy selection, rapid latencies, coordinated temporal spatial patterns, force control, and context-specific adaptations, therapists can focus their treatment on each patient's specific impairments. Research on postural responses to surface translations has shown that balance is not based on a fixed set of equilibrium reflexes but on a flexible, functional motor skill that can adapt with training and experience. More research is needed to determine the extent to which quantification of automatic postural responses has practical implications for predicting falls in patients with constraints in their postural control system.

  8. Postural ability reflects the athletic skill level of surfers.

    PubMed

    Paillard, Thierry; Margnes, Eric; Portet, Mathieu; Breucq, Arnaud

    2011-08-01

    This work analyses surfers' postural control and their use of visual information in static (stable) and dynamic (unstable) postures according to their level of competition. Two groups of healthy surfers were investigated: a group of local level surfers (LOC) (n = 8) and a group of national/international level surfers (NIN) (n = 9). Posture was assessed by measuring the centre of foot pressure with a force platform for 50 s with stable support and for 25 s with unstable support (sagittal or frontal plane). The tests were completed with the eyes open (the subjects looked at a fixed level target at a distance of 2 m) and closed (they kept their gaze in a straight-ahead direction). Results showed that the contribution of vision in postural maintenance, with unstable support was less important in the NIN surfers than in the LOC surfers and that the NIN surfers had better postural control than the LOC surfers. Firstly, the results suggest that expert surfers could shift the sensorimotor dominance from vision to proprioception for postural maintenance. Secondly, there is a relationship between the postural ability and the competition level of surfers. These observations are likely to induce new prospects of training for surfers.

  9. Management of Postural Tachycardia Syndrome, Inappropriate Sinus Tachycardia and Vasovagal Syncope

    PubMed Central

    Raj, Satish

    2016-01-01

    Postural tachycardia syndrome (POTS), inappropriate sinus tachycardia (IST) and vasovagal syncope (VVS) are relatively common clinical syndromes that are seen by physicians in several disciplines. They are often not well recognised and are poorly understood by physicians, are associated with significant morbidity and cause significant frustration for both patients and their physicians. The 2015 Heart Rhythm Society Expert Consensus Statement on the Diagnosis and Treatment of Postural Tachycardia Syndrome, Inappropriate Sinus Tachycardia and Vasovagal Syncope provides physicians with an introduction to these disorders and initial recommendations on their investigation and treatment. Here we summarise the consensus statement to help physicians in the management of patients with these frequently distressing problems. PMID:27617091

  10. Posture and Movement

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Session TP3 includes short reports on: (1) Modification of Goal-Directed Arm Movements During Inflight Adaptation to Microgravity; (2) Quantitative Analysis of Motion control in Long Term Microgravity; (3) Does the Centre of Gravity Remain the Stabilised Reference during Complex Human Postural Equilibrium Tasks in Weightlessness?; and (4) Arm End-Point Trajectories Under Normal and Microgravity Environments.

  11. Postural orthostatic tachycardia syndrome.

    PubMed

    Agarwal, A K; Garg, R; Ritch, A; Sarkar, P

    2007-07-01

    Postural orthostatic tachycardia syndrome (POTS) is an autonomic disturbance which has become better understood in recent years. It is now thought to encompass a group of disorders that have similar clinical features, such as orthostatic intolerance, but individual distinguishing parameters--for example, blood pressure and pulse rate. The clinical picture, diagnosis, and management of POTS are discussed.

  12. Gravitational Effects upon Locomotion Posture

    NASA Technical Reports Server (NTRS)

    DeWitt, John K.; Bentley, Jason R.; Edwards, W. Brent; Perusek, Gail P.; Samorezov, Sergey

    2008-01-01

    Researchers use actual microgravity (AM) during parabolic flight and simulated microgravity (SM) obtained with horizontal suspension analogs to better understand the effect of gravity upon gait. In both environments, the gravitational force is replaced by an external load (EL) that returns the subject to the treadmill. However, when compared to normal gravity (N), researchers consistently find reduced ground reaction forces (GRF) and subtle kinematic differences (Schaffner et al., 2005). On the International Space Station, the EL is applied by elastic bungees attached to a waist and shoulder harness. While bungees can provide EL approaching body weight (BW), their force-length characteristics coupled with vertical oscillations of the body during gait result in a variable load. However, during locomotion in N, the EL is consistently equal to 100% body weight. Comparisons between AM and N have shown that during running, GRF are decreased in AM (Schaffner et al, 2005). Kinematic evaluations in the past have focussed on joint range of motion rather than joint posture at specific instances of the gait cycle. The reduced GRF in microgravity may be a result of differing hip, knee, and ankle positions during contact. The purpose of this investigation was to compare joint angles of the lower extremities during walking and running in AM, SM, and N. We hypothesized that in AM and SM, joints would be more flexed at heel strike (HS), mid-stance (MS) and toe-off (TO) than in N.

  13. Measuring postural control during mini-squat posture in men with early knee osteoarthritis.

    PubMed

    Petrella, M; Gramani-Say, K; Serrão, P R M S; Lessi, G C; Barela, J A; Carvalho, R P; Mattiello, S M

    2017-02-06

    Studies have suggested a compromised postural control in individuals with knee osteoarthritis (OA) evidenced by larger and faster displacement of center of pressure (COP). However, quantification of postural control in the mini-squat posture performed by patients with early knee OA and its relation to muscle strength and self-reported symptoms have not been investigated. The main aim of this cross-sectional, observational, controlled study was to determine whether postural control in the mini-squat posture differs between individuals with early knee OA and a control group (CG) and verify the relation among knee extensor torque (KET) and self-reported physical function, stiffness and pain. Twenty four individuals with knee OA grades I and II (OAG) (mean age: 52.35±5.00) and twenty subjects without knee injuries (CG) (mean age: 51.40±8.07) participated in this study. Participants were assessed in postural control through a force plate (Bertec Mod. USA), which provided information about the anterior-posterior (AP) and medial-lateral (ML) COP displacement during the mini-squat, in isometric, concentric and eccentric knee extensor torque (KET) (90°/s) through an isokinetic dynamometer (BiodexMulti-Joint System3, Biodex Medical Incorporation, New York, NY, USA), and in self-reported symptoms through the WOMAC questionnaire. The main outcomes measured were the AP and ML COP amplitude and velocity of displacement; isometric, concentric, and eccentric KET and self-reported physical function, stiffness and pain. No significant differences were found between groups for postural control (p>0.05). Significant lower eccentric KET (p=0.01) and higher scores for the WOMAC subscales of pain (p=<0.001), stiffness (p=0.001) and physical function (p<0.001) were found for the OAG. Moderate and negative correlations were found between the AP COP amplitude of displacement and physical function (ρ=-0.40, p=0.02). Moderate and negative correlations were observed between the AP COP

  14. Postural control in women with breast hypertrophy

    PubMed Central

    Barbosa, Alessandra Ferreira; Raggi, Gabriela Cristina; dos Santos Cardoso Sá, Cristina; Costa, Márcio Paulino; de Lima, Jonas Eraldo; Tanaka, Clarice

    2012-01-01

    OBJECTIVES: The consequences of breast hypertrophy have been described based on the alteration of body mass distribution, leading to an impact on psychological and physical aspects. The principles of motor control suggest that breast hypertrophy can lead to sensorimotor alterations and the impairment of body balance due to postural misalignment. The aim of this study is to evaluate the postural control of women with breast hypertrophy under different sensory information conditions. METHOD: This cross-sectional study included 14 women with breast hypertrophy and 14 without breast hypertrophy, and the mean ages of the groups were 39±15 years and 39±16 years, respectively. A force platform was used to assess the sensory systems that contribute to postural control: somatosensory, visual and vestibular. Four postural conditions were sequentially tested: eyes open and fixed platform, eyes closed and fixed platform, eyes open and mobile platform, and eyes closed and mobile platform. The data were processed, and variables related to the center of pressure were analyzed for each condition. The Kruskal-Wallis test was used to compare the conditions between the groups for the area of center of pressure displacement and the velocity of center of pressure displacement in the anterior-posterior and medial-lateral directions. The alpha level error was set at 0.05. RESULTS: Women with breast hypertrophy presented an area that was significantly higher for three out of four conditions and a higher velocity of center of pressure displacement in the anterior-posterior direction under two conditions: eyes open and mobile platform and eyes closed and mobile platform. CONCLUSIONS: Women with breast hypertrophy have altered postural control, which was demonstrated by the higher area and velocity of center of pressure displacement. PMID:22892919

  15. Postural adjustment after an unexpected perturbation in children with haemophilia.

    PubMed

    De Souza, F M B; Pereira, R P; Minuque, N P; Do Carmo, C M; De Mello, M H M; Villaça, P; Tanaka, C

    2012-05-01

    Children with haemophilia often bleed inside joints and muscles, which may impair postural adjustments. These postural adjustments are necessary to control postural balance during daily activities. The inability to quickly recover postural balance could elevate the risk of bleeding. To determine whether children with haemophilia have impaired postural adjustment after an unexpected perturbation compared with healthy children. Twenty children with haemophilia comprised the haemophilic group (HG), and 20 healthy, age-paired children comprised the control group (CG). Subjects stood on a force plate, and 4% of the subjects' body weight was applied via a pulley system to a belt around the subjects' trunks. The centre of pressure (COP) displacement was measured after the weight was unexpectedly released to produce a controlled postural perturbation followed by postural adjustment to recover balance. The subjects' postural adjustments in eight subsequent intervals of 1 s (t1-t8), beginning with the moment of weight removal, were compared among intervals and between groups. The applied perturbation magnitudes were the same for both groups, and no difference was observed between the groups in t1. However, the COP displacement in t2 in the HG was significantly higher than in the CG. No differences were observed between the groups in the other intervals. Within-group analysis showed that the COP was higher in t2 than in t4 (P = 0.016), t5 (P = 0.001) and t8 (P = 0.050) in the HG. No differences were observed among intervals in the CG. Children with haemophilia demonstrated differences in postural adjustment while undergoing unexpected balance perturbations when compared with healthily children.

  16. Postural dependence of human locomotion during gait initiation

    PubMed Central

    Mille, Marie-Laure; Simoneau, Martin

    2014-01-01

    The initiation of human walking involves postural motor actions for body orientation and balance stabilization that must be effectively integrated with locomotion to allow safe and efficient transport. Our ability to coordinately adapt these functions to environmental or bodily changes through error-based motor learning is essential to effective performance. Predictive compensations for postural perturbations through anticipatory postural adjustments (APAs) that stabilize mediolateral (ML) standing balance normally precede and accompany stepping. The temporal sequencing between these events may involve neural processes that suppress stepping until the expected stability conditions are achieved. If so, then an unexpected perturbation that disrupts the ML APAs should delay locomotion. This study investigated how the central nervous system (CNS) adapts posture and locomotion to perturbations of ML standing balance. Healthy human adults initiated locomotion while a resistance force was applied at the pelvis to perturb posture. In experiment 1, using random perturbations, step onset timing was delayed relative to the APA onset indicating that locomotion was withheld until expected stability conditions occurred. Furthermore, stepping parameters were adapted with the APAs indicating that motor prediction of the consequences of the postural changes likely modified the step motor command. In experiment 2, repetitive postural perturbations induced sustained locomotor aftereffects in some parameters (i.e., step height), immediate but rapidly readapted aftereffects in others, or had no aftereffects. These results indicated both rapid but transient reactive adaptations in the posture and gait assembly and more durable practice-dependent changes suggesting feedforward adaptation of locomotion in response to the prevailing postural conditions. PMID:25231611

  17. Decreasing Internal Focus of Attention Improves Postural Control during Quiet Standing in Young Healthy Adults

    ERIC Educational Resources Information Center

    Nafati, Gilel; Vuillerme, Nicolas

    2011-01-01

    This experiment was designed to investigate whether and how decreasing the amount of attentional focus invested in postural control could affect bipedal postural control. Twelve participants were asked to stand upright as immobile as possible on a force platform in one control condition and one cognitive condition. In the latter condition, they…

  18. Postural Analysis in Time and Frequency Domains in Patients with Ehlers-Danlos Syndrome

    ERIC Educational Resources Information Center

    Galli, Manuela; Rigoldi, Chiara; Celletti, Claudia; Mainardi, Luca; Tenore, Nunzio; Albertini, Giorgio; Camerota, Filippo

    2011-01-01

    The goal of this work is to analyze postural control in Ehlers-Danlos syndrome (EDS) participants in time and frequency domain. This study considered a pathological group composed by 22 EDS participants performing a postural test consisting in maintaining standing position over a force platform for 30 s in two conditions: open eyes (OE) and closed…

  19. Postural development in rats.

    PubMed

    Lelard, T; Jamon, M; Gasc, J-P; Vidal, P-P

    2006-11-01

    Mammals adopt a limited number of postures during their day-to-day activities. These stereotyped skeletal configurations are functionally adequate and limit the number of degrees of freedom to be controlled by the central nervous system. The temporal pattern of emergence of these configurations in altricial mammals is unknown. We therefore carried out an X-ray study in unrestrained rats from birth (P0) until postnatal day 23 (P23). The X-rays showed that many of the skeletal configurations described in adult rodents were already present at birth. By contrast, limb placement changed abruptly at around P10. These skeletal configurations, observed in anesthetized pups, required the maintenance of precise motor control. On the other hand, motor control continued to mature, as shown by progressive changes in resting posture and head movements from P0 to P23. We suggest that a few innate skeletal configurations provide the necessary frames of reference for the gradual construction of an adult motor repertoire in altricial mammals, such as the rat. The apparent absence of a requirement for external sensorial cues in the maturation of this repertoire may account for the maturation of postural and motor control in utero in precocial mammals (Muir et al., 2000 for a review on the locomotor behavior of altricial and precocial animals).

  20. Posture modulates implicit hand maps.

    PubMed

    Longo, Matthew R

    2015-11-01

    Several forms of somatosensation require that afferent signals be informed by stored representations of body size and shape. Recent results have revealed that position sense relies on a highly distorted body representation. Changes of internal hand posture produce plastic alterations of processing in somatosensory cortex. This study therefore investigated how such postural changes affect implicit body representations underlying position sense. Participants localised the knuckles and tips of each finger in external space in two postures: the fingers splayed (Apart posture) or pressed together (Together posture). Comparison of the relative locations of the judgments of each landmark were used to construct implicit maps of represented hand structure. Spreading the fingers apart produced increases in the implicit representation of hand size, with no apparent effect on hand shape. Thus, changes of internal hand posture produce rapid modulation of how the hand itself is represented, paralleling the known effects on somatosensory cortical processing.

  1. Holding a Handle for Balance during Continuous Postural Perturbations-Immediate and Transitionary Effects on Whole Body Posture.

    PubMed

    Čamernik, Jernej; Potocanac, Zrinka; Peternel, Luka; Babič, Jan

    2016-01-01

    When balance is exposed to perturbations, hand contacts are often used to assist postural control. We investigated the immediate and the transitionary effects of supportive hand contacts during continuous anteroposterior perturbations of stance by automated waist-pulls. Ten young adults were perturbed for 5 min and required to maintain balance by holding to a stationary, shoulder-high handle and following its removal. Center of pressure (COP) displacement, hip, knee and ankle angles, leg and trunk muscle activity and handle contact forces were acquired. The analysis of results show that COP excursions are significantly smaller when the subjects utilize supportive hand contact and that the displacement of COP is strongly correlated to the perturbation force and significantly larger in the anterior than posterior direction. Regression analysis of hand forces revealed that subjects utilized the hand support significantly more during the posterior than anterior perturbations. Moreover, kinematical analysis showed that utilization of supportive hand contacts alter posture of the whole body and that postural readjustments after the release of the handle, occur at different time scales in the hip, knee and ankle joints. Overall, our findings show that supportive hand contacts are efficiently used for balance control during continuous postural perturbations and that utilization of a handle has significant immediate and transitionary effects on whole body posture.

  2. Holding a Handle for Balance during Continuous Postural Perturbations—Immediate and Transitionary Effects on Whole Body Posture

    PubMed Central

    Čamernik, Jernej; Potocanac, Zrinka; Peternel, Luka; Babič, Jan

    2016-01-01

    When balance is exposed to perturbations, hand contacts are often used to assist postural control. We investigated the immediate and the transitionary effects of supportive hand contacts during continuous anteroposterior perturbations of stance by automated waist-pulls. Ten young adults were perturbed for 5 min and required to maintain balance by holding to a stationary, shoulder-high handle and following its removal. Center of pressure (COP) displacement, hip, knee and ankle angles, leg and trunk muscle activity and handle contact forces were acquired. The analysis of results show that COP excursions are significantly smaller when the subjects utilize supportive hand contact and that the displacement of COP is strongly correlated to the perturbation force and significantly larger in the anterior than posterior direction. Regression analysis of hand forces revealed that subjects utilized the hand support significantly more during the posterior than anterior perturbations. Moreover, kinematical analysis showed that utilization of supportive hand contacts alter posture of the whole body and that postural readjustments after the release of the handle, occur at different time scales in the hip, knee and ankle joints. Overall, our findings show that supportive hand contacts are efficiently used for balance control during continuous postural perturbations and that utilization of a handle has significant immediate and transitionary effects on whole body posture. PMID:27725798

  3. Onset of dyskinesia and changes in postural task performance during the course of neuroleptic withdrawal.

    PubMed

    Newell, Karl M; Ko, Young G; Sprague, Robert L; Mahorney, Steven L; Bodfish, James W

    2002-07-01

    The effect of neuroleptic withdrawal on postural task performance of 20 adults with mental retardation was examined. Dyskinesia was measured using the DISCUS rating scale and postural stability using a force platform during a prospective longitudinal neuroleptic medication withdrawal protocol. Assessments were conducted at baseline and monthly intervals, extending to approximately one year following complete medication withdrawal, when significant changes in amount of postural motion and sequential pattern of postural movement complexity were observed. Postural task performance tended to return to near baseline levels at periods of up to 1 year following medication withdrawal, although one third of the subjects continued to display atypical postural motion profiles at follow-up. Results provide within-subject evidence that tardive dyskinesia is associated with generalized changes in motor control and not simply peripheral disturbances of movement.

  4. "Postural first" principle when balance is challenged in elderly people.

    PubMed

    Lion, Alexis; Spada, Rosario S; Bosser, Gilles; Gauchard, Gérome C; Anello, Guido; Bosco, Paolo; Calabrese, Santa; Iero, Antonella; Stella, Giuseppe; Elia, Maurizio; Perrin, Philippe P

    2014-08-01

    Human cognitive processing limits can lead to difficulties in performing two tasks simultaneously. This study aimed to evaluate the effect of cognitive load on both simple and complex postural tasks. Postural control was evaluated in 128 noninstitutionalized elderly people (mean age = 73.6 ± 5.6 years) using a force platform on a firm support in control condition (CC) and mental counting condition (MCC) with eyes open (EO) and eyes closed (EC). Then, the same tests were performed on a foam support. Sway path traveled and area covered by the center of foot pressure were recorded, low values indicating efficient balance. On firm support, sway path was higher in MCC than in CC both in EO and EC conditions (p < 0.001). On foam support, sway path was higher in CC than in MCC in EC condition (p < 0.001), area being higher in CC than in MCC both in EO (p < 0.05) and EC (p < 0.001) conditions. The results indicate that cognitive load alters balance control in a simple postural task (i.e. on firm support), which is highlighted by an increase of energetic expenditure (i.e. increase of the sway path covered) to balance. Awareness may not be increased and the attentional demand may be shared between balance and mental task. Conversely, cognitive load does not perturb the realization of a new complex postural task. This result showed that postural control is prioritized ("postural first" principle) when seriously challenged.

  5. Otolith and Vertical Canal Contributions to Dynamic Postural Control

    NASA Technical Reports Server (NTRS)

    Black, F. Owen

    1999-01-01

    The objective of this project is to determine: 1) how do normal subjects adjust postural movements in response to changing or altered otolith input, for example, due to aging? and 2) how do patients adapt postural control after altered unilateral or bilateral vestibular sensory inputs such as ablative inner ear surgery or ototoxicity, respectively? The following hypotheses are under investigation: 1) selective alteration of otolith input or abnormalities of otolith receptor function will result in distinctive spatial, frequency, and temporal patterns of head movements and body postural sway dynamics. 2) subjects with reduced, altered, or absent vertical semicircular canal receptor sensitivity but normal otolith receptor function or vice versa, should show predictable alterations of body and head movement strategies essential for the control of postural sway and movement. The effect of altered postural movement control upon compensation and/or adaptation will be determined. These experiments provide data for the development of computational models of postural control in normals, vestibular deficient subjects and normal humans exposed to unusual force environments, including orbital space flight.

  6. Postural strategy changes with fatigue of the lumbar extensor muscles.

    PubMed

    Wilson, Erin L; Madigan, Michael L; Davidson, Bradley S; Nussbaum, Maury A

    2006-04-01

    The purpose of this study was to investigate the effect of lumbar extensor fatigue on postural strategy in response to a balance perturbation. Anteriorly-directed force perturbations were applied to the upper back with a padded pendulum and attempted to challenge the postural control system without eliciting a stepping response. In three separate sessions, subjects were perturbed both before and after a fatiguing protocol that induced lumbar extensor fatigue to one of three different fatigue levels. Postural strategy was quantified using center of pressure position along with joint angles and joint torques for the ankle, knee, hip, and "low back" joints. Results showed both proactive and reactive changes in postural strategy. Proactive changes involved a slight anterior lean prior to the perturbation, and reactive changes were consistent with a shift toward more of a hip strategy with fatigue. In addition, results suggested that subjects classified as moving mostly at the hip prior to fatigue were more affected by fatigue compared to subjects classified as moving roughly equal amounts at the ankle and hip prior to fatigue. Increasing fatigue level exaggerated some, but not all, of the changes in postural strategy with fatigue. These findings illustrate that neuromuscular fatigue can influence postural strategy in response to a balance perturbation.

  7. Lighten up: Specific postural instructions affect axial rigidity and step initiation in patients with Parkinson’s disease

    PubMed Central

    Cohen, Rajal G.; Gurfinkel, Victor S.; Kwak, Elizabeth; Warden, Amelia C.; Horak, Fay B.

    2015-01-01

    Background Parkinson’s disease (PD) is associated with stooped postural alignment, increased postural sway, and reduced mobility. The Alexander Technique (AT) is a mindfulness-based approach to improving posture and mobility by reducing muscular interference while maintaining upward intentions. Evidence suggests that AT can reduce disability associated with PD, but a mechanism for this effect has not yet been established. Objective We investigated whether AT-based instructions reduce axial rigidity and increase upright postural alignment, and whether these instructions have different effects on postural alignment, axial rigidity, postural sway, and mobility than effort-based instructions regarding posture. Method Twenty subjects with PD practiced two sets of instructions and then attempted to implement both approaches (as well as a relaxed control condition) during quiet standing and step initiation. The ‘Lighten Up’ instructions relied on AT principles of reducing excess tension while encouraging length. The ‘Pull Up’ instructions relied on popular concepts of effortful posture correction. We measured kinematics, resistance to axial rotation, and ground reaction forces. Results Both sets of experimental instructions led to increases in upright postural alignment relative to the control condition. Only the Lighten Up instructions led to reduced postural sway, reduced axial postural tone, greater modifiability of tone, and a smoother center of pressure trajectory during step initiation, possibly indicating greater movement efficiency. Conclusion Mindful movement approaches such as AT may benefit balance and mobility in subjects with PD by acutely facilitating increased upright postural alignment while decreasing rigidity. PMID:25665828

  8. Tai Chi training reduced coupling between respiration and postural control

    PubMed Central

    Holmes, Matthew L; Manor, Brad; Hsieh, Wan-hsin; Hu, Kun; Lipsitz, Lewis A; Li, Li

    2015-01-01

    In order to maintain stable upright stance, the postural control system must account for the continuous perturbations to the body’s center-of-mass including those caused by spontaneous respiration. Both aging and disease increase “posturo-respiratory synchronization;” which reflects the degree to which respiration affects postural sway fluctuations over time. Tai Chi training emphasizes the coordination of respiration and bodily movements and may therefore optimize the functional interaction between these two systems. The purpose of the project was to examine the effect of Tai Chi training on the interaction between respiration and postural control in older adults. We hypothesized that Tai Chi training would improve the ability of the postural control system to compensate for respiratory perturbations and thus, reduce posturo-respiratory synchronization. Participants were recruited from supportive housing facilities and randomized to a 12-week Tai Chi intervention (n=28; 86±5yrs) or educational-control program (n=34, 85±6yrs). Standing postural sway and respiration were simultaneously recorded with a force plate and respiratory belt under eyes-open and eyes-closed conditions. Posturo-respiratory synchronization was determined by quantifying the variation of the phase relationship between the dominant oscillatory mode of respiration and corresponding oscillations within postural sway. Groups were similar in age, gender distribution, height, body mass, and intervention compliance. Neither intervention altered average sway speed, sway magnitude or respiratory rate. As compared to the education-control group, however, Tai Chi training reduced posturo-respiratory synchronization when standing with eyes open or closed (p<0.001). Tai Chi training did not affect traditional parameters of standing postural control or respiration, yet reduced the coupling between respiration and postural control. The beneficial effects of Tai Chi training may therefore stem in part

  9. Tai Chi training reduced coupling between respiration and postural control.

    PubMed

    Holmes, Matthew L; Manor, Brad; Hsieh, Wan-hsin; Hu, Kun; Lipsitz, Lewis A; Li, Li

    2016-01-01

    In order to maintain stable upright stance, the postural control system must account for the continuous perturbations to the body's center-of-mass including those caused by spontaneous respiration. Both aging and disease increase "posturo-respiratory synchronization;" which reflects the degree to which respiration affects postural sway fluctuations over time. Tai Chi training emphasizes the coordination of respiration and bodily movements and may therefore optimize the functional interaction between these two systems. The purpose of the project was to examine the effect of Tai Chi training on the interaction between respiration and postural control in older adults. We hypothesized that Tai Chi training would improve the ability of the postural control system to compensate for respiratory perturbations and thus, reduce posturo-respiratory synchronization. Participants were recruited from supportive housing facilities and randomized to a 12-week Tai Chi intervention (n=28; 86 ± 5 yrs) or educational-control program (n=34, 85 ± 6 yrs). Standing postural sway and respiration were simultaneously recorded with a force plate and respiratory belt under eyes-open and eyes-closed conditions. Posturo-respiratory synchronization was determined by quantifying the variation of the phase relationship between the dominant oscillatory mode of respiration and corresponding oscillations within postural sway. Groups were similar in age, gender distribution, height, body mass, and intervention compliance. Neither intervention altered average sway speed, sway magnitude or respiratory rate. As compared to the education-control group, however, Tai Chi training reduced posturo-respiratory synchronization when standing with eyes open or closed (p<0.001). Tai Chi training did not affect traditional parameters of standing postural control or respiration, yet reduced the coupling between respiration and postural control. The beneficial effects of Tai Chi training may therefore stem in part

  10. Lead effects on postural balance of children

    SciTech Connect

    Bhattacharya, A.; Shukla, R.; Bornschein, R.L.; Dietrich, K.N. ); Keith, R. )

    1990-11-01

    The postural sway responses of 63 children with a mean age of 5.74 years were quantified with a Force Platform technique. The average maximum (max) blood lead (PbB) of these children during the first 5 years of life was 20.7 {mu}g/dL (range 9.2 to 32.5). The backward stepwise regression analysis for sway area response during the eyes-closed, no-foam test with all the covariates and confounders and the PbB parameters showed a significant relationship with peak or max PbB during the second year of life. These results are consistent with their previous study with a smaller group of children. The data have been analyzed to provide some insight into the role of various afferents for the maintenance of postural balance. The results suggests a hypothesis that if the max PbB had caused some level of impairment in the functional capacities or interconnectivity of the vestibular and/or proprioception systems at 2 years of age, then it is reasonable to assume that the redundancy in the postural afferent systems would naturally adapt to rely more on the remaining intact afferent system (in this case, vision).

  11. Effects of disease severity and medication state on postural control asymmetry during challenging postural tasks in individuals with Parkinson's disease.

    PubMed

    Barbieri, Fabio A; Polastri, Paula F; Baptista, André M; Lirani-Silva, Ellen; Simieli, Lucas; Orcioli-Silva, Diego; Beretta, Victor S; Gobbi, Lilian T B

    2016-04-01

    The aim of this study was to investigate the effects of disease severity and medication state on postural control asymmetry during challenging tasks in individuals with Parkinson's disease (PD). Nineteen people with PD and 11 neurologically healthy individuals performed three standing task conditions: bipedal standing, tandem and unipedal adapted standing; the individuals with PD performed the tasks in ON and OFF medication state. The participants with PD were distributed into 2 groups according to disease severity: unilateral group (n=8) and bilateral group (n=11). The two PD groups performed the evaluations both under and without the medication. Two force plates were used to analyze the posture. The symmetric index was calculated for various of center of pressure. ANOVA one-way (groups) and two-way (PD groups×medication), with repeated measures for medication, were calculated. For main effects of group, the bilateral group was more asymmetric than CG. For main effects of medication, only unipedal adapted standing presented effects of PD medication. There was PD groups×medication interaction. Under the effects of medication, the unilateral group presented lower asymmetry of RMS in anterior-posterior direction and area than the bilateral group in unipedal adapted standing. In addition, the unilateral group presented lower asymmetry of mean velocity, RMS in anterior-posterior direction and area in unipedal standing and area in tandem adapted standing after a medication dose. Postural control asymmetry during challenging postural tasks was dependent on disease severity and medication state in people with PD. The bilateral group presented higher postural control asymmetry than the control and unilateral groups in challenging postural tasks. Finally, the medication dose was able to reduce postural control asymmetry in the unilateral group during challenging postural tasks.

  12. Posture Statement of the United States Army 2006

    DTIC Science & Technology

    2006-02-10

    achieve cost reductions.) To do so, we are applying the Lean Six Sigma methodology . Just as we are leveraging the lessons of war to improve fighting...wide Business Transformation initiative based on the Lean Six Sigma methodology to reduce the cost of the business side of the Army. • Identified

  13. Determining posture from physiological tremor.

    PubMed

    Albert, Mark V; Kording, Konrad P

    2011-12-01

    The measurement of body and limb posture is important to many clinical and research studies. Current approaches either directly measure posture (e.g., using optical or magnetic methods) or more indirectly measure it by integrating changes over time (e.g., using gyroscopes and/or accelerometers). Here, we introduce a way of estimating posture from movements without requiring integration over time and the resulting complications. We show how the almost imperceptible tremor of the hand is affected by posture in an intuitive way and therefore can be used to estimate the posture of the arm. We recorded postures and tremor of the arms of volunteers. By using only the minor axis in the covariance of hand tremor, we could estimate the angle of the forearm with a standard deviation of about 4° when the subject's elbow is resting on a table and about 10° when it is off the table. This technique can also be applied as a post hoc analysis on other hand-position data sets to extract posture. This new method allows the estimation of body posture from tremor, is complementary to other techniques, and so can become a useful tool for future research and clinical applications.

  14. 48 CFR 552.270-24 - Statement of Lease.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 4 2010-10-01 2010-10-01 false Statement of Lease. 552... Statement of Lease. As prescribed in 570.603, insert the following clause: Statement of Lease (SEP 1999) (a... this clause and, if such is the case, that (1) the lease is in full force and effect; and (2) the...

  15. Atypical anticipatory postural adjustments during gait initiation among individuals with sub-acute stroke.

    PubMed

    Rajachandrakumar, Roshanth; Fraser, Julia E; Schinkel-Ivy, Alison; Inness, Elizabeth L; Biasin, Lou; Brunton, Karen; McIlroy, William E; Mansfield, Avril

    2017-02-01

    Anticipatory postural adjustments, executed prior to gait initiation, help preserve lateral stability when stepping. Atypical patterns of anticipatory activity prior to gait initiation may occur in individuals with unilateral impairment (e.g., stroke). This study aimed to determine the prevalence, correlates, and consequences of atypical anticipatory postural adjustment patterns prior to gait initiation in a sub-acute stroke population. Forty independently-ambulatory individuals with sub-acute stroke stood on two force plates and initiated gait at a self-selected speed. Medio-lateral centre of pressure displacement was calculated and used to define anticipatory postural adjustments (shift in medio-lateral centre of pressure >10mm from baseline). Stroke severity, motor recovery, and functional balance and mobility status were also obtained. Three patterns were identified: single (typical), absent (atypical), and multiple (atypical) anticipatory postural adjustments. Thirty-five percent of trials had atypical anticipatory postural adjustments (absent and multiple). Frequency of absent anticipatory postural adjustments was negatively correlated with walking speed. Multiple anticipatory postural adjustments were more prevalent when leading with the non-paretic than the paretic limb. Trials with multiple anticipatory postural adjustments had longer duration of anticipatory postural adjustment and time to foot-off, and shorter unloading time than trials with single anticipatory postural adjustments. A high prevalence of atypical anticipatory control prior to gait initiation was found in individuals with stroke. Temporal differences were identified with multiple anticipatory postural adjustments, indicating altered gait initiation. These findings provide insight into postural control during gait initiation in individuals with sub-acute stroke, and may inform interventions to improve ambulation in this population.

  16. The Effect of Body Posture on Brain Glymphatic Transport

    PubMed Central

    Lee, Hedok; Xie, Lulu; Yu, Mei; Kang, Hongyi; Feng, Tian; Deane, Rashid; Logan, Jean; Nedergaard, Maiken

    2015-01-01

    The glymphatic pathway expedites clearance of waste, including soluble amyloid β (Aβ) from the brain. Transport through this pathway is controlled by the brain's arousal level because, during sleep or anesthesia, the brain's interstitial space volume expands (compared with wakefulness), resulting in faster waste removal. Humans, as well as animals, exhibit different body postures during sleep, which may also affect waste removal. Therefore, not only the level of consciousness, but also body posture, might affect CSF–interstitial fluid (ISF) exchange efficiency. We used dynamic-contrast-enhanced MRI and kinetic modeling to quantify CSF-ISF exchange rates in anesthetized rodents' brains in supine, prone, or lateral positions. To validate the MRI data and to assess specifically the influence of body posture on clearance of Aβ, we used fluorescence microscopy and radioactive tracers, respectively. The analysis showed that glymphatic transport was most efficient in the lateral position compared with the supine or prone positions. In the prone position, in which the rat's head was in the most upright position (mimicking posture during the awake state), transport was characterized by “retention” of the tracer, slower clearance, and more CSF efflux along larger caliber cervical vessels. The optical imaging and radiotracer studies confirmed that glymphatic transport and Aβ clearance were superior in the lateral and supine positions. We propose that the most popular sleep posture (lateral) has evolved to optimize waste removal during sleep and that posture must be considered in diagnostic imaging procedures developed in the future to assess CSF-ISF transport in humans. SIGNIFICANCE STATEMENT The rodent brain removes waste better during sleep or anesthesia compared with the awake state. Animals exhibit different body posture during the awake and sleep states, which might affect the brain's waste removal efficiency. We investigated the influence of body posture on

  17. Ankle and hip postural strategies defined by joint torques

    NASA Technical Reports Server (NTRS)

    Runge, C. F.; Shupert, C. L.; Horak, F. B.; Zajac, F. E.; Peterson, B. W. (Principal Investigator)

    1999-01-01

    Previous studies have identified two discrete strategies for the control of posture in the sagittal plane based on EMG activations, body kinematics, and ground reaction forces. The ankle strategy was characterized by body sway resembling a single-segment-inverted pendulum and was elicited on flat support surfaces. In contrast, the hip strategy was characterized by body sway resembling a double-segment inverted pendulum divided at the hip and was elicited on short or compliant support surfaces. However, biomechanical optimization models have suggested that hip strategy should be observed in response to fast translations on a flat surface also, provided the feet are constrained to remain in contact with the floor and the knee is constrained to remain straight. The purpose of this study was to examine the experimental evidence for hip strategy in postural responses to backward translations of a flat support surface and to determine whether analyses of joint torques would provide evidence for two separate postural strategies. Normal subjects standing on a flat support surface were translated backward with a range of velocities from fast (55 cm/s) to slow (5 cm/s). EMG activations and joint kinematics showed pattern changes consistent with previous experimental descriptions of mixed hip and ankle strategy with increasing platform velocity. Joint torque analyses revealed the addition of a hip flexor torque to the ankle plantarflexor torque during fast translations. This finding indicates the addition of hip strategy to ankle strategy to produce a continuum of postural responses. Hip torque without accompanying ankle torque (pure hip strategy) was not observed. Although postural control strategies have previously been defined by how the body moves, we conclude that joint torques, which indicate how body movements are produced, are useful in defining postural control strategies. These results also illustrate how the biomechanics of the body can transform discrete control

  18. Postural control during pushing movement with risk of forward perturbation.

    PubMed

    Okai, Rika; Fujiwara, Motoko

    2013-06-01

    The purpose of this study was to investigate the effect of a forward bilateral pushing movement on postural control in a situation where known, unknown, and unpredictable perturbations may be induced. Participants stood upright and voluntarily pushed a handle with both hands. In the first task, the handle was free to be moved by the participant (perturbation; movable task) and in the second task, the handle was locked (stationary task). For each task, body displacement and observed applied force were recorded. Anticipatory postural control adjustment plays a vital role in body stability; however, in contrast to its role in maintaining stability, adjustment can generate a restricted voluntary movement because motor programming selects a postural control that gives priority to body stability over the target movement.

  19. The effect of asymmetry of posture on anticipatory postural adjustments.

    PubMed

    Aruin, Alexander S

    2006-06-19

    The study investigates the effect of body asymmetry on anticipatory postural adjustments (APAs). Subjects performed a task involving a standard load release induced by a shoulder abduction movement while standing symmetrically or in an asymmetrical stance with either their right or left leg in 45 degrees of external rotation. EMG activities of trunk and leg muscles were recorded during the postural perturbation and were quantified within the time intervals typical of APAs. Anticipatory postural adjustments were observed in all experimental conditions. It was found that asymmetrical body positioning was associated with significant asymmetrical patterns of APAs seen in the right and left distal muscles. These APA asymmetries were dependant upon the side in which the body asymmetry was induced: reduced APAs were observed in the leg muscles on the side of leg rotation, while increased APAs were seen in the muscles on the contralateral side. These findings stress the important role that body asymmetries play in the control of upright posture.

  20. Effects of emotional videos on postural control in children.

    PubMed

    Brandão, Arthur de Freitas; Palluel, Estelle; Olivier, Isabelle; Nougier, Vincent

    2016-03-01

    The link between emotions and postural control has been rather unexplored in children. The objective of the present study was to establish whether the projection of pleasant and unpleasant videos with similar arousal would lead to specific postural responses such as postural freezing, aversive or appetitive behaviours as a function of age. We hypothesized that postural sway would similarly increase with the viewing of high arousal videos in children and adults, whatever the emotional context. 40 children participated in the study and were divided into two groups of age: group 7-9 years (n=23; mean age=8 years ± 0.7) and group 10-12 years (n=17; mean age=11 years ± 0.7). 19 adults (mean age=25.8 years ± 4.4) also took part in the experiment. They viewed emotional videos while standing still on a force platform. Centre of foot pressure (CoP) displacements were analysed. Antero-posterior, medio-lateral mean speed and sway path length increased similarly with the viewing of high arousal movies in the younger, older children, and adults. Our findings suggest that the development of postural control is not influenced by the maturation of the emotional processing.

  1. Anticipatory postural adjustments in individuals with multiple sclerosis.

    PubMed

    Krishnan, Vennila; Kanekar, Neeta; Aruin, Alexander S

    2012-01-11

    Individuals with multiple sclerosis (MS) frequently exhibit difficulties in balance maintenance. It is known that anticipatory postural adjustments (APAs) play an important role in postural control. However, no information exists on how people living with MS utilize APAs for control of posture. A group of individuals with MS and a group of healthy control subjects performed rapid arm flexion and extension movements while standing on a force platform. Electromyographic (EMG) activity of six trunk and leg muscles and displacement of center of pressure (COP) were recorded and quantified within the time intervals typical of APAs. Individuals with MS demonstrated diminished ability to produce directional specific patterns of anticipatory EMGs as compared to control subjects. In addition, individuals with MS demonstrated smaller magnitudes of anticipatory muscle activation. This was associated with larger displacements of the COP during the balance restoration phase. These results suggest the importance of anticipatory postural control in maintenance of vertical posture in individuals with MS. The outcome of the study could be used while developing rehabilitation strategies focused on balance restoration in individuals with MS.

  2. Influence of gymnastics training on the development of postural control.

    PubMed

    Garcia, Claudia; Barela, José Angelo; Viana, André Rocha; Barela, Ana Maria Forti

    2011-03-29

    This study investigated the influence of gymnastics training on the postural control of children with and without the use of visual information. Two age groups, aged 5-7 and 9-11 years old, of gymnasts and nongymnasts were asked to maintain an upright and quiet stance on a force platform with eyes open (EO) and eyes closed (EC) for 30s. Area of the stabilogram (AOS) and mean velocity of the center of pressure (COP) in anterior-posterior (AP) and medial-lateral (ML) directions were calculated and used to investigate the effects of gymnastics training, age, and visual information. Younger gymnasts presented greater postural control compared to younger nongymnasts while visual information did not improve postural control in younger nongymnasts. Younger gymnasts displayed improved postural control with EO compared to EC. The mean velocity of the COP in the ML direction was: less for younger gymnasts than younger nongymnasts with EO. These results suggest that gymnastics training promotes improvements in postural control of younger children only, which results from their use of visual information when available.

  3. Examination of the relationship between mandibular position and body posture.

    PubMed

    Sakaguchi, Kiwamu; Mehta, Noshir R; Abdallah, Emad F; Forgione, Albert G; Hirayama, Hiroshi; Kawasaki, Takao; Yokoyama, Atsuro

    2007-10-01

    The purpose of this study was to evaluate the effect of changing mandibular position on body posture and reciprocally, body posture on mandibular position. Forty-five (45) asymptomatic subjects (24 males and 21 females, ages 21-53 years, mean age 30.7 years) were included in this study and randomly assigned to one of two groups, based on the table of random numbers. The only difference between group I and group II was the sequence of the testing. The MatScan (Tekscan, Inc., South Boston, MA) system was used to measure the result of changes in body posture (center of foot pressure: COP) while subjects maintained the following 5 mandibular positions: (1) rest position, (2) centric occlusion, (3) clinically midlined jaw position with the labial frena aligned, (4) a placebo wax appliance, worn around the labial surfaces of the teeth and (5) right eccentric mandibular position. The T-Scan II (Tekscan, Inc., South Boston, MA) system was used to analyze occlusal force distribution in two postural positions, with and without a heel lift under the right foot. Total trajectory length of COP in centric occlusion was shorter than in the rest position (p < 0.05). COP area in right eccentric mandibular position was larger than in centric occlusion (p < 0.05). When subjects used a heel lift under the right foot, occlusal forces shifted to the right side compared to no heel lift (p < 0.01). Based on these findings, it was concluded that changing mandibular position affected body posture. Conversely, changing body posture affected mandibular position.

  4. A Simple Postflight Measure of Postural Atania in Astronauts

    NASA Technical Reports Server (NTRS)

    Reschke, M. F.; Harm, D. I.; Kofman, I. S.; Wood, S. J.; Bloomberg, J. J.

    2011-01-01

    Astronauts returning from space flight universally present with postural ataxia. Throughout the Space Shuttle Program, measurement of ataxia has concentrated on sway in the anterior-posterior (AP) plane. The current investigation, as a part of a larger functional study, concentrated on characterizing postural instability using dynamic stabilographic sway patterns in both the AP and medial-lateral (ML) planes. To accomplish this goal, six astronauts from short-duration (Shuttle) and three from long-duration (ISS) flights were required to recover from a simulated fall. Subjects with eyes open, wearing running shoes lay prone on the floor for 2 minutes and then quickly stood up, maintained a quiet stance for 3 minutes, arms relaxed along the side of the body, and feet comfortably placed on the force plate. Crewmembers were tested twice before flight, on landing day (Shuttle only), and 1, 6, and 30 days after flight. Anterior-posterior and ML center-of-pressure (COP) coordinates were calculated from the ground reaction forces collected at 500 Hz. The 3-minute quiet stance trial was broken into three 1-minute segments for stabilogram diffusion analysis. A mean sway speed (rate of change of COP displacement) was also calculated as an additional postural stability parameter. While there was considerable variation, most of crewmembers tested exhibited increased stochastic activity evidenced by larger short-term COP diffusion coefficients postflight in both the AP and ML planes, suggesting significant changes in postural control mechanisms, particularly control of lower limb muscle function. As expected, postural instability of ISS astronauts on the first day postflight was similar to that of Shuttle crewmembers on landing day. Recoveries of stochastic activity and mean sway speed to baseline levels were typically observed by the 30th day postflight for both long-duration and short-duration crewmembers. Dynamic postural stability characteristics obtained in this low

  5. Effect of posture positions on the evaporative resistance and thermal insulation of clothing.

    PubMed

    Wu, Y S; Fan, J T; Yu, W

    2011-03-01

    Evaporative resistance and thermal insulation of clothing are important parameters in the design and engineering of thermal environments and functional clothing. Past work on the measurement of evaporative resistance of clothing was, however, limited to the standing posture with or without body motion. Information on the evaporative resistance of clothing when the wearer is in a sedentary or supine posture and how it is related to that when the wearer is in a standing posture is lacking. This paper presents original data on the effect of postures on the evaporative resistance of clothing, thermal insulation and permeability index, based on the measurements under three postures, viz. standing, sedentary and supine, using the sweating fabric manikin-Walter. Regression models are also established to relate the evaporative resistance and thermal insulation of clothing under sedentary and supine postures to those under the standing posture. The study further shows that the apparent evaporated resistances of standing and sedentary postures measured in the non-isothermal condition are much lower than those in the isothermal condition. The apparent evaporative resistances measured using the mass loss method are generally lower than those measured using the heat loss method due to moisture absorption or condensation within clothing. STATEMENT OF RELEVANCE: The thermal insulation and evaporative resistance values of clothing ensembles under different postures are essential data for the ergonomics design of thermal environments (e.g. indoors or a vehicle's interior environment) and functional clothing. They are also necessary for the prediction of thermal comfort or duration of exposure in different environmental conditions.

  6. Imaging Posture Veils Neural Signals

    PubMed Central

    Thibault, Robert T.; Raz, Amir

    2016-01-01

    Whereas modern brain imaging often demands holding body positions incongruent with everyday life, posture governs both neural activity and cognitive performance. Humans commonly perform while upright; yet, many neuroimaging methodologies require participants to remain motionless and adhere to non-ecological comportments within a confined space. This inconsistency between ecological postures and imaging constraints undermines the transferability and generalizability of many a neuroimaging assay. Here we highlight the influence of posture on brain function and behavior. Specifically, we challenge the tacit assumption that brain processes and cognitive performance are comparable across a spectrum of positions. We provide an integrative synthesis regarding the increasingly prominent influence of imaging postures on autonomic function, mental capacity, sensory thresholds, and neural activity. Arguing that neuroimagers and cognitive scientists could benefit from considering the influence posture wields on both general functioning and brain activity, we examine existing imaging technologies and the potential of portable and versatile imaging devices (e.g., functional near infrared spectroscopy). Finally, we discuss ways that accounting for posture may help unveil the complex brain processes of everyday cognition. PMID:27818629

  7. An Increase in Postural Load Facilitates an Anterior Shift of Processing Resources to Frontal Executive Function in a Postural-Suprapostural Task

    PubMed Central

    Huang, Cheng-Ya; Chang, Gwo-Ching; Tsai, Yi-Ying; Hwang, Ing-Shiou

    2016-01-01

    Increase in postural-demand resources does not necessarily degrade a concurrent motor task, according to the adaptive resource-sharing hypothesis of postural-suprapostural dual-tasking. This study investigated how brain networks are organized to optimize a suprapostural motor task when the postural load increases and shifts postural control into a less automatic process. Fourteen volunteers executed a designated force-matching task from a level surface (a relative automatic process in posture) and from a stabilometer board while maintaining balance at a target angle (a relatively controlled process in posture). Task performance of the postural and suprapostural tasks, synchronization likelihood (SL) of scalp EEG, and graph-theoretical metrics were assessed. Behavioral results showed that the accuracy and reaction time of force-matching from a stabilometer board were not affected, despite a significant increase in postural sway. However, force-matching in the stabilometer condition showed greater local and global efficiencies of the brain networks than force-matching in the level-surface condition. Force-matching from a stabilometer board was also associated with greater frontal cluster coefficients, greater mean SL of the frontal and sensorimotor areas, and smaller mean SL of the parietal-occipital cortex than force-matching from a level surface. The contrast of supra-threshold links in the upper alpha and beta bands between the two stance conditions validated load-induced facilitation of inter-regional connections between the frontal and sensorimotor areas, but that contrast also indicated connection suppression between the right frontal-temporal and the parietal-occipital areas for the stabilometer stance condition. In conclusion, an increase in stance difficulty alters the neurocognitive processes in executing a postural-suprapostural task. Suprapostural performance is not degraded by increase in postural load, due to (1) increased effectiveness of information

  8. Vertical heterophoria and postural control in nonspecific chronic low back pain.

    PubMed

    Matheron, Eric; Kapoula, Zoï

    2011-03-30

    The purpose of this study was to test postural control during quiet standing in nonspecific chronic low back pain (LBP) subjects with vertical heterophoria (VH) before and after cancellation of VH; also to compare with healthy subjects with, and without VH. Fourteen subjects with LBP took part in this study. The postural performance was measured through the center of pressure displacements with a force platform while the subjects fixated on a target placed at either 40 or 200 cm, before and after VH cancellation with an appropriate prism. Their postural performance was compared to that of 14 healthy subjects with VH and 12 without VH (i.e. vertical orthophoria) studied previously in similar conditions. For LBP subjects, cancellation of VH with a prism improved postural performance. With respect to control subjects (with or without VH), the variance of speed of the center of pressure was higher, suggesting more energy was needed to stabilize their posture in quiet upright stance. Similarly to controls, LBP subjects showed higher postural sway when they were looking at a target at a far distance than at a close distance. The most important finding is that LBP subjects with VH can improve their performance after prism-cancellation of their VH. We suggest that VH reflects mild conflict between sensory and motor inputs involved in postural control i.e. a non optimal integration of the various signals. This could affect the performance of postural control and perhaps lead to pain. Nonspecific chronic back pain may results from such prolonged conflict.

  9. Physical Demand Profiles of Hatha Yoga Postures Performed by Older Adults

    PubMed Central

    Salem, George J.; Yu, Sean S.-Y.; Samarawickrame, Sachithra; Azen, Stanley P.; Greendale, Gail A.

    2013-01-01

    Understanding the physical demands placed upon the musculoskeletal system by individual postures may allow experienced instructors and therapists to develop safe and effective yoga programs which reduce undesirable side effects. Thus, we used biomechanical methods to quantify the lower extremity joint angles, joint moments of force, and muscle activities of 21 Hatha yoga postures, commonly used in senior yoga programs. Twenty older adults, 70.7 years ± 3.8 years, participated in a 32-wk yoga class (2 d/wk) where they learned introductory and intermediate postures (asanas). They then performed the asanas in a motion analysis laboratory. Kinematic, kinetic, and electromyographic data was collected over three seconds while the participants held the poses statically. Profiles illustrating the postures and including the biomechanical data were then generated for each asana. Our findings demonstrated that Hatha yoga postures engendered a range of appreciable joint angles, JMOFs, and muscle activities about the ankle, knee, and hip, and that demands associated with some postures and posture modifications were not always intuitive. They also demonstrated that all of the postures elicited appreciable rectus abdominis activity, which was up to 70% of that induced during walking. PMID:24282431

  10. The Contribution of Pre-impact Spine Posture on Human Body Model Response in Whole-body Side Impact.

    PubMed

    Poulard, David; Subit, Damien; Donlon, John-Paul; Lessley, David J; Kim, Taewung; Park, Gwansik; Kent, Richard W

    2014-11-01

    The objective of the study was to analyze independently the contribution of pre-impact spine posture on impact response by subjecting a finite element human body model (HBM) to whole-body, lateral impacts. Seven postured models were created from the original HBM: one matching the standard driving posture and six matching pre-impact posture measured for each of six subjects tested in previously published experiments. The same measurements as those obtained during the experiments were calculated from the simulations, and biofidelity metrics based on signals correlation were established to compare the response of HBM to that of the cadavers. HBM responses showed good correlation with the subject response for the reaction forces, the rib strain (correlation score=0.8) and the overall kinematics. The pre-impact posture was found to greatly alter the reaction forces, deflections and the strain time histories mainly in terms of time delay. By modifying only the posture of HBM, the variability in the impact response was found to be equivalent to that observed in the experiments performed with cadavers with different anthropometries. The patterns observed in the responses of the postured HBM indicate that the inclination of the spine in the frontal plane plays a major role. The postured HBM sustained from 2 to 5 bone fractures, including the scapula in some cases, confirming that the pre-impact posture influences the injury outcome predicted by the simulation.

  11. Postural reorganization induced by torso cutaneous covibration.

    PubMed

    Lee, Beom-Chan; Martin, Bernard J; Ho, Allison; Sienko, Kathleen H

    2013-05-01

    Cutaneous information from joints has been attributed proprioceptive properties similar to those of muscle spindles. This study aimed to assess whether vibration-induced changes in torso cutaneous information contribute to whole-body postural reorganization in humans. Ten healthy young adults stood in normal and Romberg stances with six vibrating actuators positioned on the torso in contact with the skin over the left and right external oblique, internal oblique, and erector spinae muscle locations at the L4/L5 vertebrae level. Vibrations around the torso were randomly applied at two locations simultaneously (covibration) or at all locations simultaneously. Kinematic analysis of the body segments indicated that covibration applied to the skin over the internal oblique muscles induced shifts of both the head and torso in the anterior direction (torso flexion) while the hips shifted in the posterior direction (ankle plantar flexion). Conversely, covibration applied to the skin over the erector spinae muscle locations produced opposite effects. However, covibration applied to the skin over the left internal oblique and left erector spinae, the right internal oblique and right erector spinae, or at all locations simultaneously did not induce any significant postural changes. In addition, the center of pressure position as measured by the force plate was unaffected by all covibration conditions tested. These results were independent of stance and suggest an integrated and coordinated reorganization of posture in response to vibration-induced changes in cutaneous information. In addition, combinations of vibrotactile stimuli over multiple locations exhibit directional summation properties in contrast to the individual responses we observed in our previous work.

  12. Comparative effects of posture on pressure and shear at the body-seat interface.

    PubMed

    Hobson, D A

    1992-01-01

    This study considers the effects of seated posture and body orientation on the pressure-distribution and surface shear (tangential) forces acting at the body-seat interface. Nine postures typically assumed by wheel-chair users were studied. Comparisons were made within and between two study groups, made up of 12 subjects with spinal cord injuries (SCI) and 10 nondisabled subjects. Both interface pressure and the surface shear were measured simultaneously in each of nine reproducible, seated postures. The same seat cushion was used for all trials. The Oxford Pressure Monitor, a pneumatic cell device, was used to measure and record the interface pressures. Instrumentation for measuring and recording the surface shear force was constructed specifically for the study. Analysis consisted of statistically comparing changes in pressure values and shear forces derived from eight sitting postures with reference to values recorded in a defined neutral sitting posture. The pressure-distribution findings suggest that in the postures studied SCI subjects have maximum pressures that are higher than nondisabled subjects in all postures, ranging from 6% to 46% depending on the posture. Maximum pressures can be reduced by postural changes: forward flexion to 50 degrees, -9%; backrest recline to 120 degrees, -12%; and, full body tilt, -11%. On average, the SCI group members have peak pressure gradients (PPG) that are 1.5 to 2.5 greater than the nondisabled group. The maximum reduction in PPG occurred at backrest recline of 120 degrees, -18%. Tangential shear force acts at the body-seat interface in all nine postures studied. Extrapolation of results suggests that full-body tilt to approximately 25 degrees reduces the surface shear force to near zero. In contrast, a backrest-only recline of 20 degrees causes a 25% increase in the surface shear force. These results suggest that caution must be taken when using nondisabled subjects as surrogates for people with SCI because of the

  13. Proposed Expansion of German Air Force Operations at Holloman AFB, New Mexico, Environmental Impact Statement. Volume 2: Public Hearing Transcripts and Responses to Comments

    DTIC Science & Technology

    1998-04-01

    1998 InMMCD 4 ’ U I TABLE OF CONTENTS I 3 * PREFACE 1.0 ALPINE, TEXAS PUBLIC HEARING 1 2.0 DELL CITY, TEXAS PUBLIC HEARING 3.0 TRUTH OR CONSEQUENCES, NEW ...located in southern New Mexico, for air-to-ground training. The target complex would be comprised of a 2-by- 4 -square-mile impact area within a 12-by-15...August 4 . The document analyzes the potential environmental impacts of establishing a German Air Force Replacement Training Unit (RTU) at Holloman AFB, New

  14. Common postural defects among music students.

    PubMed

    Blanco-Piñeiro, Patricia; Díaz-Pereira, M Pino; Martínez, Aurora

    2015-07-01

    Postural quality during musical performance affects both musculoskeletal health and the quality of the performance. In this study we examined the posture of 100 students at a Higher Conservatory of Music in Spain. By analysing video tapes and photographs of the students while performing, a panel of experts extracted values of 11 variables reflecting aspects of overall postural quality or the postural quality of various parts of the body. The most common postural defects were identified, together with the situations in which they occur. It is concluded that most students incur in unphysiological postures during performance. It is hoped that use of the results of this study will help correct these errors.

  15. Lumbar spine postures in marines during simulated operational positions.

    PubMed

    Berry, David B; Rodríguez-Soto, Ana E; Su, Jeannie; Gombatto, Sara P; Shahidi, Bahar; Palombo, Laura; Chung, Christine; Jensen, Andrew; Kelly, Karen R; Ward, Samuel R

    2017-01-04

    Low back pain has a 70% higher prevalence in members of the armed forces than in the general population, possibly due to the loads and positions soldiers experience during training and combat. Although the influence of heavy load carriage on standing lumbar spine posture in this population is known, postures in other operationally relevant positions are unknown. Therefore, the purpose of this study was to characterize the effect of simulated military operational positions under relevant loading conditions on global and local lumbar spine postures in active duty male US Marines. Secondary objectives were to evaluate if intervertebral disc degeneration and low back pain affect lumbar spine postures. Magnetic resonance images were acquired on an upright scanner in the following operational positions: Natural standing with no external load, standing with body armor (11.3 kg), sitting with body armor, and prone on elbows with body armor. Custom software was used to measure global lumbar spine posture: Lumbosacral flexion, sacral slope, lordosis, local measures of intervertebral angles, and intervertebral distances. Sitting resulted in decreased lumbar lordosis at all levels of the spine except L1-L2. When subjects were prone on elbows, a significant increase in local lordosis was observed only at L5-S1 compared with all other positions. Marines with disc degeneration (77%) or history of low back pain (72%) had decreased lumbar range of motion and less lumbar extension than healthy Marines. These results indicate that a male Marine's pathology undergoes a stereotypic set of postural changes during functional tasks, which may impair performance. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 9999:XX-XX, 2017.

  16. Effects of Four Days Hiking on Postural Control

    PubMed Central

    Vieira, Marcus Fraga; de Avelar, Ivan Silveira; Silva, Maria Sebastiana; Soares, Viviane; Lobo da Costa, Paula Hentschel

    2015-01-01

    Hiking is a demanding form of exercise that may cause delayed responses of the postural muscles and a loss of somatosensory information, particularly when repeatedly performed for several days. These effects may negatively influence the postural control of hikers. Therefore, the aim of this study was to investigate the effects of a four-day hike on postural control. Twenty-six adults of both sexes travelled 262 kilometers, stopping for lunch and resting in the early evening each day. Force platforms were used to collect center of pressure (COP) data at 100 Hz for 70 seconds before hiking started and immediately after arriving at the rest station each day. The COP time course data were analyzed according to global stabilometric descriptors, spectral analysis and structural descriptors using sway density curve (SDC) and stabilometric diffusion analysis (SDA). Significant increases were found for global variables in both the anterior-posterior and medial-lateral directions (COP sway area, COP total sway path, COP mean velocity, COP root mean square value and COP range). In the spectral analysis, only the 80% power frequency (F80) in the anterior-posterior direction showed a significant increase, reflecting the increase of the sway frequencies. The SDC revealed a significant increase in the mean distance between peaks (MD) and a significant decrease in the mean peak amplitudes (MP), suggesting that a larger torque amplitude is required for stabilization and that the postural stability is reduced. The SDA revealed a decrease in the long-term slope (Hl) and increases in the short-term (Ks) and the long-term (Kl) intercepts. We considered the likelihood that the presence of local and general fatigue, pain and related neuromuscular adaptations and somatosensory deficits may have contributed to these postural responses. Together, these results demonstrated that four days of hiking increased sway frequencies and deteriorated postural control in the standing position. PMID

  17. Effects of four days hiking on postural control.

    PubMed

    Vieira, Marcus Fraga; de Avelar, Ivan Silveira; Silva, Maria Sebastiana; Soares, Viviane; Lobo da Costa, Paula Hentschel

    2015-01-01

    Hiking is a demanding form of exercise that may cause delayed responses of the postural muscles and a loss of somatosensory information, particularly when repeatedly performed for several days. These effects may negatively influence the postural control of hikers. Therefore, the aim of this study was to investigate the effects of a four-day hike on postural control. Twenty-six adults of both sexes travelled 262 kilometers, stopping for lunch and resting in the early evening each day. Force platforms were used to collect center of pressure (COP) data at 100 Hz for 70 seconds before hiking started and immediately after arriving at the rest station each day. The COP time course data were analyzed according to global stabilometric descriptors, spectral analysis and structural descriptors using sway density curve (SDC) and stabilometric diffusion analysis (SDA). Significant increases were found for global variables in both the anterior-posterior and medial-lateral directions (COP sway area, COP total sway path, COP mean velocity, COP root mean square value and COP range). In the spectral analysis, only the 80% power frequency (F80) in the anterior-posterior direction showed a significant increase, reflecting the increase of the sway frequencies. The SDC revealed a significant increase in the mean distance between peaks (MD) and a significant decrease in the mean peak amplitudes (MP), suggesting that a larger torque amplitude is required for stabilization and that the postural stability is reduced. The SDA revealed a decrease in the long-term slope (Hl) and increases in the short-term (Ks) and the long-term (Kl) intercepts. We considered the likelihood that the presence of local and general fatigue, pain and related neuromuscular adaptations and somatosensory deficits may have contributed to these postural responses. Together, these results demonstrated that four days of hiking increased sway frequencies and deteriorated postural control in the standing position.

  18. Guidelines on genetic evaluation and management of Lynch syndrome: a consensus statement by the US Multi-Society Task Force on colorectal cancer.

    PubMed

    Giardiello, Francis M; Allen, John I; Axilbund, Jennifer E; Boland, C Richard; Burke, Carol A; Burt, Randall W; Church, James M; Dominitz, Jason A; Johnson, David A; Kaltenbach, Tonya; Levin, Theodore R; Lieberman, David A; Robertson, Douglas J; Syngal, Sapna; Rex, Douglas K

    2014-08-01

    The Multi-Society Task Force, in collaboration with invited experts, developed guidelines to assist health care providers with the appropriate provision of genetic testing and management of patients at risk for and affected with Lynch syndrome as follows: Figure 1 provides a colorectal cancer risk assessment tool to screen individuals in the office or endoscopy setting; Figure 2 illustrates a strategy for universal screening for Lynch syndrome by tumor testing of patients diagnosed with colorectal cancer; Figures 3-6 provide algorithms for genetic evaluation of affected and at-risk family members of pedigrees with Lynch syndrome; Table 10 provides guidelines for screening at-risk and affected persons with Lynch syndrome; and Table 12 lists the guidelines for the management of patients with Lynch syndrome. A detailed explanation of Lynch syndrome and the methodology utilized to derive these guidelines, as well as an explanation of, and supporting literature for, these guidelines are provided.

  19. Guidelines on genetic evaluation and management of Lynch syndrome: a consensus statement by the US Multi-society Task Force on colorectal cancer.

    PubMed

    Giardiello, Francis M; Allen, John I; Axilbund, Jennifer E; Boland, C Richard; Burke, Carol A; Burt, Randall W; Church, James M; Dominitz, Jason A; Johnson, David A; Kaltenbach, Tonya; Levin, Theodore R; Lieberman, David A; Robertson, Douglas J; Syngal, Sapna; Rex, Douglas K

    2014-08-01

    The Multi-Society Task Force, in collaboration with invited experts, developed guidelines to assist health care providers with the appropriate provision of genetic testing and management of patients at risk for and affected with Lynch syndrome as follows: Figure 1 provides a colorectal cancer risk assessment tool to screen individuals in the office or endoscopy setting; Figure 2 illustrates a strategy for universal screening for Lynch syndrome by tumor testing of patients diagnosed with colorectal cancer; Figures 3,4,5,6 provide algorithms for genetic evaluation of affected and at-risk family members of pedigrees with Lynch syndrome; Table 10 provides guidelines for screening at-risk and affected persons with Lynch syndrome; and Table 12 lists the guidelines for the management of patients with Lynch syndrome. A detailed explanation of Lynch syndrome and the methodology utilized to derive these guidelines, as well as an explanation of, and supporting literature for, these guidelines are provided.

  20. Why quality of life measurement is important in dermatology clinical practice: An expert-based opinion statement by the EADV Task Force on Quality of Life.

    PubMed

    Finlay, A Y; Salek, M S; Abeni, D; Tomás-Aragonés, L; van Cranenburgh, O D; Evers, A W M; Jemec, G B E; Linder, D; Manolache, L; Marrón, S E; Prinsen, C A C; Susitaival, P; Chernyshov, P V

    2017-03-01

    The aim of this study was to describe the many ways in which quality of life (QoL) measurement may potentially be advantageous in routine clinical dermatology practice. Thirteen members of the EADV Task Force on Quality of Life, eight dermatologists, three health psychologists, one epidemiologist and one pharmacoepidemiologist, independently listed all of the ways they thought this may be advantageous. A total of 108 different ways of using QoL information in clinical practice were suggested (median per participant = 8, range = 4-15), and were classified into 20 descriptive groups. These were sorted into the following five categories: inform clinical decisions, clinician-patient communication, awareness of skin disease burden, informing the consultation and clinical service administration. The wide range of potential benefits identified may not only encourage clinicians to use these measures but also highlights many areas requiring evidence to establish the true value of routine use of QoL measures.

  1. Motor systems and postural instability.

    PubMed

    Vassar, Rachel L; Rose, Jessica

    2014-01-01

    Acute alcohol intoxication and chronic alcohol dependence alter the neurologic control of posture and motor function. Ethanol delays the conduction of electric signals from the central nervous system to the muscles controlling posture and impairs the integration of sensory inputs required for maintaining vertical stance. Consequently, alcohol intoxication delays the ability to detect postural changes and enact the appropriate response. Common signs of acute alcohol intoxication include spinocerebellar and vestibulocerebellar ataxia, oculomotor changes, and increased reliance on visuospatial clues. Chronic alcoholism results in postural tremors and excessive sway during quiet stance that can persist even after sobriety is achieved. Underlying neurologic changes due to chronic alcoholism have been found to be associated with these characteristic postural changes and include decreased volume of the anterior superior vermis of the cerebellum, decreased connectivity within the corpus callosum, and overall cortical atrophy. Severity of motor impairments and other symptoms from alcoholism relate to a variety of factors, including duration of alcoholism, age, sex, and other health determinants and comorbidities. Imaging studies highlight the potential for partial recovery from neurologic and motor deficits caused by alcoholism. Emerging evidence on the motor and neurologic changes caused by alcohol dependence may allow for improved treatment and prevention of the morbidities associated with alcoholism.

  2. Improving posture-motor dual-task with a supraposture-focus strategy in young and elderly adults.

    PubMed

    Yu, Shu-Han; Huang, Cheng-Ya

    2017-01-01

    In a postural-suprapostural task, appropriate prioritization is necessary to achieve task goals and maintain postural stability. A "posture-first" principle is typically favored by elderly people in order to secure stance stability, but this comes at the cost of reduced suprapostural performance. Using a postural-suprapostural task with a motor suprapostural goal, this study investigated differences between young and older adults in dual-task cost across varying task prioritization paradigms. Eighteen healthy young (mean age: 24.8 ± 5.2 years) and 18 older (mean age: 68.8 ± 3.7 years) adults executed a designated force-matching task from a stabilometer board using either a stabilometer stance (posture-focus strategy) or force-matching (supraposture-focus strategy) as the primary task. The dual-task effect (DTE: % change in dual-task condition; positive value: dual-task benefit, negative value: dual-task cost) of force-matching error and reaction time (RT), posture error, and approximate entropy (ApEn) of stabilometer movement were measured. When using the supraposture-focus strategy, young adults exhibited larger DTE values in each behavioral parameter than when using the posture-focus strategy. The older adults using the supraposture-focus strategy also attained larger DTE values for posture error, stabilometer movement ApEn, and force-matching error than when using the posture-focus strategy. These results suggest that the supraposture-focus strategy exerted an increased dual-task benefit for posture-motor dual-tasking in both healthy young and elderly adults. The present findings imply that the older adults should make use of the supraposture-focus strategy for fall prevention during dual-task execution.

  3. Improving posture-motor dual-task with a supraposture-focus strategy in young and elderly adults

    PubMed Central

    Yu, Shu-Han

    2017-01-01

    In a postural-suprapostural task, appropriate prioritization is necessary to achieve task goals and maintain postural stability. A “posture-first” principle is typically favored by elderly people in order to secure stance stability, but this comes at the cost of reduced suprapostural performance. Using a postural-suprapostural task with a motor suprapostural goal, this study investigated differences between young and older adults in dual-task cost across varying task prioritization paradigms. Eighteen healthy young (mean age: 24.8 ± 5.2 years) and 18 older (mean age: 68.8 ± 3.7 years) adults executed a designated force-matching task from a stabilometer board using either a stabilometer stance (posture-focus strategy) or force-matching (supraposture-focus strategy) as the primary task. The dual-task effect (DTE: % change in dual-task condition; positive value: dual-task benefit, negative value: dual-task cost) of force-matching error and reaction time (RT), posture error, and approximate entropy (ApEn) of stabilometer movement were measured. When using the supraposture-focus strategy, young adults exhibited larger DTE values in each behavioral parameter than when using the posture-focus strategy. The older adults using the supraposture-focus strategy also attained larger DTE values for posture error, stabilometer movement ApEn, and force-matching error than when using the posture-focus strategy. These results suggest that the supraposture-focus strategy exerted an increased dual-task benefit for posture-motor dual-tasking in both healthy young and elderly adults. The present findings imply that the older adults should make use of the supraposture-focus strategy for fall prevention during dual-task execution. PMID:28151943

  4. Effects of hip posture on the frontal impact tolerance of the human hip joint.

    PubMed

    Rupp, Jonathan D; Reed, Matthew P; Jeffreys, Thomas A; Schneider, Lawrence W

    2003-10-01

    The pattern of left- and right-side hip injuries to front-seat occupants involved in offset and angled frontal crashes suggests that hip posture (i.e., the orientation of the femur relative to the pelvis) affects the fracture/dislocation tolerance of the hip joint to forces transmitted along the femur during knee-to-knee-bolster loading in frontal impacts. To investigate this hypothesis, dynamic hip tolerance tests were conducted on the left and right hips of 22 unembalmed cadavers. In these tests, the knee was dynamically loaded in the direction of the long axis of the femur and the pelvis was fixed to minimize inertial effects. Thirty-five successful hip tolerance tests were conducted. Twenty-five of these tests were performed with the hip oriented in a typical posture for a seated driver, or neutral posture, to provide a baseline measure of hip tolerance. The effects of hip posture on hip tolerance were quantified using a paired-comparison experimental design. In six pairs of tests, one side of each cadaver was tested with the hip joint oriented in the neutral posture and the contralateral hip from the same cadaver was tested with the hip joint adducted 10 degrees from the neutral posture. In four pairs of tests, the hip was tested in neutral and 30 degrees flexed postures. The average fracture tolerance of the hip in the neutral posture was 6.1-/+1.5 kN. Hip tolerance decreased by an average of 34-/+4% with 30 degrees of flexion from the neutral posture (p<0.0001) and by 18-/+8% with 10 degrees of adduction from the neutral posture (p=0.008).

  5. Diabetes mellitus in older people: position statement on behalf of the International Association of Gerontology and Geriatrics (IAGG), the European Diabetes Working Party for Older People (EDWPOP), and the International Task Force of Experts in Diabetes.

    PubMed

    Sinclair, Alan; Morley, John E; Rodriguez-Mañas, Leo; Paolisso, Giuseppe; Bayer, Tony; Zeyfang, Andrej; Bourdel-Marchasson, Isabelle; Vischer, Ulrich; Woo, Jean; Chapman, Ian; Dunning, Trisha; Meneilly, Graydon; Rodriguez-Saldana, Joel; Gutierrez Robledo, Luis Miguel; Cukierman-Yaffe, Tali; Gadsby, Roger; Schernthaner, Guntram; Lorig, Kate

    2012-07-01

    Diabetes mellitus is a highly prevalent metabolic condition in ageing societies associated with high levels of morbidity, multiple therapies, and functional deterioration that challenges even the best of health care systems to deliver high-quality, individualized care. Most international clinical guidelines have ignored the often-unique issues of frailty, functional limitation, changes in mental health, and increasing dependency that characterize many aged patients with diabetes. A collaborative Expert Group of the IAGG and EDWPOP and an International Task Force have explored the key issues that affect diabetes in older people using a robust method comprising a Delphi process and an evidence-based review of the literature. Eight domains of interest were initially agreed and discussed: hypoglycemia, therapy, care home diabetes, influence of comorbidities, glucose targets, family/carer perspectives, diabetes education, and patient safety. A set of "consensus" statements was produced in each domain of interest. These form a foundation for future policy development in this area and should influence the clinical behavior and approach of all health professionals engaged in delivering diabetes care to older people.

  6. The role of haptic cues from rough and slippery surfaces in human postural control

    NASA Technical Reports Server (NTRS)

    Jeka, J. J.; Lackner, J. R.

    1995-01-01

    Haptic information is critically important in complex sensory-motor tasks such as manipulating objects. Its comparable importance in spatial orientation is only beginning to be recognized. We have shown that postural sway in humans is significantly reduced by lightly touching a stable surface with a fingertip at contact force levels far below those physically necessary to stabilize the body. To investigate further the functional relationship between contact forces at the hand and postural equilibrium, we had subjects stand in the tandem Romberg stance while being allowed physically supportive (force contact) and non-physically supportive (touch contact) amounts of index fingertip force on surfaces with different frictional characteristics. Mean sway amplitude (MSA) was reduced by over 50% with both touch and force contact of the fingertip, compared to standing without fingertip contact. No differences in MSA were observed when touching rough or slippery surfaces. The amplitude of EMG activity in the peroneal muscles and the timing relationships between fingertip forces, body sway and EMG activity suggested that with touch contact of the finger or with force contact on a slippery surface long-loop "reflexes" involving postural muscles were stabilizing sway. With force contact of the fingertip on a rough surface, MSA reduction was achieved primarily through physical support of the body. This pattern of results indicates that light touch contact cues from the fingertip in conjunction with proprioceptive signals about arm configuration are providing information about body sway that can be used to reduce MSA through postural muscle activation.

  7. Posture kinematics reconstruction and body model creation

    NASA Astrophysics Data System (ADS)

    Goffredo, M.; Schmid, M.; Conforto, S.; Carli, Marco; D'Alessio, Tommaso

    2004-05-01

    Postural ability can be evaluated through the analysis of body oscillations, by estimating the displacements of selected sets of body segments. The analysis of human movement is generally achieved through the exploitation of stereophotogrammetric systems that rely on the use of markers. Marker systems show a high cost and patient settings which can be uncomfortable. On the other hand, the use of force platform has some disadvantages: the acquisition of dynamics data permits to estimate only the body oscillations as a whole, without any information about individual body segment movements. Some of these drawbacks can be overcome by the use of video systems, applying a marker-free sub-pixel algorithm. In this paper, a novel method to evaluate balance strategies that utilises commercial available systems and applies methods for feature extraction and image processing algorithms is presented.

  8. Is there an association between variables of postural control and strength in adolescents?

    PubMed

    Granacher, Urs; Gollhofer, Albert

    2011-06-01

    Is there an association between variables of postural control and strength in adolescents? The risk of sustaining sport injuries is particularly high in adolescents. Deficits in postural control and muscle strength represent 2 important intrinsic injury risk factors. Therefore, the purpose of this study was to investigate the relationship between variables of static and dynamic postural control and isometric and dynamic muscle strength and to find out whether there is an association between measures of postural control and muscle strength. Twenty-eight adolescents participated in this study (age 16.8 ± 0.6 years; body mass index 20.5 ± 1.8 kg · m(-2)). Biomechanic tests included the measurements of maximal isometric leg extension force (MIF) and rate of force development (RFDmax) of the leg extensors on a leg press with the feet resting on a force platform, vertical jumping force, and height (countermovement jump [CMJ]) on a force plate and the assessment of static (1-legged stance on a balance platform) and dynamic (mediolateral perturbation impulse on a balance platform) postural control. The significance level was set at p < 0.05. No significant associations were observed between measures of static and dynamic postural control. Significant positive correlations were detected between variables of isometric and dynamic muscle strength with r-values ranging from 0.441 to 0.779 (p < 0.05). Based on these models, a 100-N increase in MIF of the leg extensors was associated with 3.9, 4.2, and 6.5% better maximal CMJ force, CMJ height, and RFDmax, respectively. No significant correlations were observed between variables of postural control and muscle strength. The nonsignificant correlation between static/dynamic postural control and muscle strength implies that primarily dynamic measures of postural control should be incorporated in injury risk assessment and that postural control and muscle strength are independent of each other and may have to be trained

  9. Age Related Decline in Postural Control Mechanisms.

    ERIC Educational Resources Information Center

    Stelmach, George E.; And Others

    1989-01-01

    Studied voluntary and reflexive mechanisms of postural control of young (N=8) and elderly (N=8) adults through measurement of reflexive reactions to large-fast and small-slow ankle rotation postural disturbances. Found reflexive mechanisms relatively intact for both groups although elderly appeared more disadvantaged when posture was under the…

  10. Postural Control in Children with Autism.

    ERIC Educational Resources Information Center

    Kohen-Raz, Reuven; And Others

    1992-01-01

    Postural control was evaluated in 91 autistic, 166 normal, and 18 mentally retarded children using a computerized posturographic procedure. In comparison to normal children, the autistic subjects were less likely to exhibit age-related changes in postural performance, and postures were more variable and less stable. (Author/JDD)

  11. Craniomandibular System and Postural Balance after 3-Day Dry Immersion

    PubMed Central

    Treffel, Loïc; Dmitrieva, Liubov; Gauquelin-Koch, Guillemette; Custaud, Marc-Antoine; Blanc, Stéphane; Gharib, Claude; Millet, Catherine

    2016-01-01

    The objective of the study was to determine the influence of simulated microgravity by exposure to dry immersion on the craniomandibular system. Twelve healthy male volunteers participated in a 3-day dry immersion study. Before and immediately after exposure we measured maximal bite force using piezoresistive sensors. The mechanical properties of the jaw and cervical muscles were evaluated before, during, and after dry immersion using MyotonPRO. Because recent studies reported the effects of jaw motor activity on the postural stability of humans, stabilometric measurements of center of pressure were performed before and after dry immersion in two mandibular positions: rest position without jaw clenching, and intercuspidal position during voluntary teeth clenching. Results revealed no significant changes of maximal bite force after dry immersion. All postural parameters were significantly altered by dry immersion. There were however no significant differences in stabilometric data according to mandibular position. Moreover the masseter tonicity increased immediately after the end of dry immersion period. Dry immersion could be used as a valid model for studying the effects of microgravity on human subjects. However, 3 days appear insufficient in duration to evaluate the effects of weightlessness on maximal bite force. Our research suggests a link between postural disturbance after dry immersion and masseter tonicity. PMID:26913867

  12. INFLUENCE OF INJURY ON DYNAMIC POSTURAL CONTROL IN RUNNERS

    PubMed Central

    Klusendorf, Anna; Kernozek, Thomas

    2016-01-01

    ABSTRACT Background Injury has been linked with altered postural control in active populations. The association between running injury and dynamic postural control has not been examined. Hypothesis/Purpose The purpose of this study was to examine dynamic postural control in injured and uninjured runners using the Star Excursion Balance Test (SEBT), Time to Stabilization (TTS) of ground reaction forces following a single-leg landing, and postural stability indices reflecting the fluctuations in GRFs during single-leg landing and stabilization tasks (forward and lateral hop). It was hypothesized that dynamic postural control differences would exist between runners with a history of injury that interrupted training for ≥7 days (INJ) when compared to runners without injury (CON). Design Case-control study Methods Twenty-two INJ (14 F, 8 M; 23.7 ± 2.1 y; 22.3 ± 2.8 kg/m2; 29.5 ± 16.3 mi/wk) currently running > 50% pre-injury mileage without pain were compared with twenty-two matched CON (14F, 8M; 22.7 ± 1.2 y; 22.7 ± 2.7 kg/m2; 31.2 ± 19.6 mi/wk). INJ group was stratified by site of injury into two groups (Hip/Thigh/Knee and Lower Leg/Ankle/Foot) for secondary analysis. Leg length-normalized anterior, posterolateral, and posteromedial reach distances on the SEBT, medial/lateral and anterior/posterior ground reaction force TTS, directional postural stability indices, and a composite dynamic postural stability index (DPSI), were assessed using mixed model ANOVA (α=0.05) and effect sizes (d). Results No group X direction interaction or group differences were observed for the SEBT (p=0.51, 0.71) or TTS (p=0.83, 0.72) measures. A group X direction interaction was found for postural stability indices during the forward landing task (p<0.01). Both Hip/Thigh/Knee and Lower leg/Ankle/Foot INJ groups demonstrated a greater vertical postural stability index (VPSI) (p=0.01 for both, d=0.80, 0.95) and DPSI (p=0.01, 0.02, d=0.75, 0.93) when

  13. Evaluation of postural stability in children with hemiplegic cerebral palsy

    PubMed Central

    Kenis-Coskun, Ozge; Giray, Esra; Eren, Beyhan; Ozkok, Ozlem; Karadag-Saygi, Evrim

    2016-01-01

    [Purpose] Postural stability is the ability of to maintain the position of the body within the support area. This function is affected in cerebral palsy. The aim of the present study was to compare static and dynamic postural stability between children with hemiplegic cerebral palsy and healthy controls. [Subjects and Methods] Thirty-seven children between the ages of 5 and 14 diagnosed with hemiplegic cerebral palsy (19 right, 18 left) and 23 healthy gender- and age-matched controls were included in the study. Postural stability was evaluated in both of the groups using a Neurocom Balance. Sway velocity was measured both with the eyes open and closed. Sit to stand and turning abilities were also assessed. [Results] The sway velocities with the eyes open and closed were significantly different between the groups. The weight transfer time in the Sit to Stand test was also significantly slower in children with cerebral palsy. Children with cerebral palsy also showed slower turning times and greater sway velocities during the Step and Quick Turn test on a force plate compared with their healthy counterparts. [Conclusion] Both static and dynamic postural stability parameters are affected in hemiplegic cerebral palsy. Further research is needed to define rehabilitation interventions to improve these parameters in patients. PMID:27313338

  14. Anticipatory postural adjustments in children with hemiplegia and diplegia.

    PubMed

    Girolami, Gay L; Shiratori, Takako; Aruin, Alexander S

    2011-12-01

    Anticipatory postural adjustments (APAs) play an important role in the performance of many activities requiring the maintenance of standing posture. However, little is known about if and how children with cerebral palsy (CP) generate APAs. Two groups of children with CP (hemiplegia and diplegia) and a group of children with typical motor development performed arm flexion and extension movements while standing on a force platform. Electromyographic activity of six trunk and leg muscles and displacement of center of pressure (COP) were recorded. Children with CP were able to generate anticipatory postural adjustments and produce directionally specific APAs and COP displacements similar to those described in adults and typically developing children. However, children with diplegia were unable to generate APAs of the same magnitude as children with typical development and hemiplegia and had higher baseline muscle activity prior to movement. In children with diplegia, COP was posteriorly displaced and peak acceleration was smaller during bilateral extension compared to children with hemiplegia. The outcomes of the study highlight the role of APAs in the control of posture of children with CP and point out the similarities and differences in anticipatory control in children with diplegia and hemiplegia. These differences may foster ideas for treatment strategies to enhance APAs in children with CP.

  15. Anticipatory postural adjustments in conditions of simulated reduced gravity.

    PubMed

    Li, Xiaoyan; Aruin, Alexander S

    2008-11-01

    The study investigates the role of decreased gravity on anticipatory postural adjustments (APAs). Subjects performed fast bilateral arm-raising movements and load releases while in conditions of normal and reduced gravity. Reduced gravity conditions were simulated by changing the ratio between the body weight and mass. Electromyographic (EMG) activity of dorsal and ventral trunk and leg muscles, as well as ground reaction forces, were recorded and quantified within the time intervals typical of APAs. Anticipatory postural adjustments were seen in normal gravity conditions as well as in simulated reduced gravity conditions. However, in decreased gravity conditions, the magnitudes of the anticipatory integrals of electromyography muscle activity (EMG) were smaller compared to normal gravity. Moreover, there was a linear relation between EMG and simulated decreased gravity and between the displacement of the center of pressure (COP) and simulated gravity. The study provides new data on the effect of gravity in feed-forward postural control and stresses the importance of taking into consideration its role in the control of upright posture.

  16. Improvement of anticipatory postural adjustments for balance control: effect of a single training session.

    PubMed

    Kanekar, Neeta; Aruin, Alexander S

    2015-04-01

    Humans use anticipatory and compensatory postural strategies to maintain and restore balance when perturbed. Inefficient generation and utilization of anticipatory postural adjustments (APAs) is one of the reasons for postural instability. The aim of the study was to investigate the role of training in improvement of APAs and its effect on subsequent control of posture. Thirteen healthy young adults were exposed to predictable external perturbations before and after a single training session consisting of catches of a medicine ball thrown at the shoulder level. 3-D body kinematics, EMG activity of thirteen trunk and lower limb muscles, and ground reaction forces were recorded before and immediately after a single training session. Muscle onsets, EMG integrals, center of pressure (COP), and center of mass (COM) displacements were analyzed during the anticipatory and compensatory phases of postural control. The effect of a single training session was seen as significantly early muscle onsets and larger anticipatory COP displacements. As a result, significantly smaller peak COM displacements were observed after the perturbation indicating greater postural stability. The outcome of this study provides a background for examining the role of training in improvement of APAs and its effect on postural stability in individuals in need.

  17. Dynamic postural control and associated attentional demands in contemporary dancers versus non-dancers

    PubMed Central

    Sirois-Leclerc, Geneviève; Remaud, Anthony

    2017-01-01

    Postural control is not a fully automatic process, but requires a certain level of attention, particularly as the difficulty of the postural task increases. This study aimed at testing whether experienced contemporary dancers, because of their specialized training involving the control of posture/balance, would present with a dual-task performance suggesting lesser attentional demands associated with dynamic postural control compared with non-dancers. Twenty dancers and 16 non-dancers performed a dynamic postural tracking task in both antero-posterior and side-to-side directions, while standing on a force platform. The postural task was performed, in turn, 1) as a stand-alone task, and concurrently with both 2) a simple reaction time task and 3) a choice reaction time task. Postural control performance was estimated through variables calculated from centre of pressure movements. Although no overall group difference was found in reaction time values, we found a better ability to control the side to side movements of the centre of pressure during the tracking task in dancers compared with non-dancers, which was dependent on the secondary task. This suggests that such increased ability is influenced by available attentional resources. PMID:28323843

  18. Postural disturbances resulting from unilateral and bilateral diaphragm contractions: a phrenic nerve stimulation study.

    PubMed

    Hamaoui, Alain; Hudson, Anna L; Laviolette, Louis; Nierat, Marie-Cécile; Do, Manh-Cuong; Similowski, Thomas

    2014-10-15

    Thoracoabdominal breathing movements are a complex source of postural disturbance, but there are contradictory reports in the literature with inspiration described as having either a backward or a forward disturbing effect. To elucidate the mechanisms underlying this phenomenon, the present study studied the postural disturbance caused by isolated contractions of the diaphragm. Eight male and four female healthy subjects followed an original paradigm of phrenic nerve stimulation (bilateral and unilateral) and "diaphragmatic" voluntary sniff maneuvers in the seated and standing postures. Center of gravity (CG) acceleration was calculated from force plate recordings, and respiratory kinematics were assessed with thoracic and abdominal sensor belts. CG and respiratory signals revealed that, while seated, bilateral phrenic stimulation and sniff maneuvers consistently produced expansion of the abdomen associated with a forward peak of CG acceleration. In the standing posture, the direction of the CG peak was reversed and always directed backward. Unilateral phrenic stimulation induced an additional medial-lateral acceleration of the CG, directed toward the nonactive side while seated, but in the opposite direction while standing. These results suggest that isolated diaphragmatic contractions produce a constant disturbing pattern for a given posture, but with opposite effects between standing and seated postures. This could be related to the different biomechanical configuration of the body in each posture, corresponding to distinct kinematic patterns of the osteoarticular chain. In addition, the lateral component of the CG acceleration induced by unilateral diaphragm contractions could be clinically relevant in patients with hemidiaphragm paralysis.

  19. Bioceramic fabrics improve quiet standing posture and handstand stability in expert gymnasts.

    PubMed

    Cian, C; Gianocca, V; Barraud, P A; Guerraz, M; Bresciani, J P

    2015-10-01

    Bioceramic fabrics have been claimed to improve blood circulation, thermoregulation and muscle relaxation, thereby also improving muscular activity. Here we tested whether bioceramic fabrics have an effect on postural control and contribute to improve postural stability. In Experiment 1, we tested whether bioceramic fabrics contribute to reduce body-sway when maintaining standard standing posture. In Experiment 2, we measured the effect of bioceramic fabrics on body-sway when maintaining a more instable posture, namely a handstand hold. For both experiments, postural oscillations were measured using a force platform with four strain gauges that recorded the displacements of the center of pressure (CoP) in the horizontal plane. In half of the trials, the participants wore a full-body second skin suit containing a bioceramic layer. In the other half of the trials, they wore a 'placebo' second skin suit that had the same cut, appearance and elasticity as the bioceramic suit but did not contain the bioceramic layer. In both experiments, the surface of displacement of the CoP was significantly smaller when participants were wearing the bioceramic suit than when they were wearing the placebo suit. The results suggest that bioceramic fabrics do have an effect on postural control and improve postural stability.

  20. Importance of Proprioceptive Information for Postural Control in Children with Strabismus before and after Strabismus Surgery

    PubMed Central

    Bucci, Maria P.; Soufi, Hayette; Villeneuve, Philippe; Colleville, Lucile; Bui-Quoc, Emmanuel; Lions, Cynthia

    2016-01-01

    The objective of this study is to examine the role of proprioception in postural balance in children with strabismus before and after realignment of their visual axes by eye surgery. Postural recordings were made with the TechnoConcept® force platform in 23 children. Several conditions were studied, whether the subjects had both eyes open, or either the dominant or the non-dominant eye open, without and with foam pads of 4 mm underfoot. Recordings were performed before and after strabismus surgery. The surface area, the length and the mean speed of the center of pressure (CoP) were analyzed. Before strabismus surgery, all children showed better stability with both eyes open with respect to the condition with the non-dominant eye open; furthermore postural stability improved in the presence of foam pads. After surgery, the surface area of CoP decreased significantly, especially in the non-dominant eye viewing condition. We suggest that strabismic children use mainly proprioceptive information in order to control their posture, but also visual inputs, which are important for obtaining a good postural stability. The alignment of the visual axes after surgery provides enhanced postural stability, suggesting, again the major role of visual inputs in the control of posture. Proprioceptive plasticity after strabismus surgery may allow better visual rehabilitation. PMID:27656133

  1. Deficits in Lower Limb Muscle Reflex Contraction Latency and Peak Force Are Associated With Impairments in Postural Control and Gross Motor Skills of Children With Developmental Coordination Disorder: A Cross-Sectional Study.

    PubMed

    Fong, Shirley S M; Ng, Shamay S M; Guo, X; Wang, Yuling; Chung, Raymond C K; Stat, Grad; Ki, W Y; Macfarlane, Duncan J

    2015-10-01

    This cross-sectional, exploratory study aimed to compare neuromuscular performance, balance and motor skills proficiencies of typically developing children and those with developmental coordination disorder (DCD) and to determine associations of these neuromuscular factors with balance and motor skills performances in children with DCD.One hundred thirty children with DCD and 117 typically developing children participated in the study. Medial hamstring and gastrocnemius muscle activation onset latencies in response to an unexpected posterior-to-anterior trunk perturbation were assessed by electromyography and accelerometer. Hamstring and gastrocnemius muscle peak force and time to peak force were quantified by dynamometer, and balance and motor skills performances were evaluated with the Movement Assessment Battery for Children (MABC).Independent t tests revealed that children with DCD had longer hamstring and gastrocnemius muscle activation onset latencies (P < 0.001) and lower isometric peak forces (P < 0.001), but not times to peak forces (P > 0.025), than the controls. Multiple regression analysis accounting for basic demographics showed that gastrocnemius peak force was independently associated with the MABC balance subscore and ball skills subscore, accounting for 5.7% (P = 0.003) and 8.5% (P = 0.001) of the variance, respectively. Gastrocnemius muscle activation onset latency also explained 11.4% (P < 0.001) of the variance in the MABC ball skills subscore.Children with DCD had delayed leg muscle activation onset times and lower isometric peak forces. Gastrocnemius peak force was associated with balance and ball skills performances, whereas timing of gastrocnemius muscle activation was a determinant of ball skill performance in the DCD population.

  2. Haptic cues for orientation and postural control in sighted and blind individuals

    NASA Technical Reports Server (NTRS)

    Jeka, J. J.; Easton, R. D.; Bentzen, B. L.; Lackner, J. R.

    1996-01-01

    Haptic cues from fingertip contact with a stable surface attenuate body sway in subjects even when the contact forces are too small to provide physical support of the body. We investigated how haptic cues derived from contact of a cane with a stationary surface at low force levels aids postural control in sighted and congenitally blind individuals. Five sighted (eyes closed) and five congenitally blind subjects maintained a tandem Romberg stance in five conditions: (1) no cane; (2,3) touch contact (< 2 N of applied force) while holding the cane in a vertical or slanted orientation; and (4,5) force contact (as much force as desired) in the vertical and slanted orientations. Touch contact of a cane at force levels below those necessary to provide significant physical stabilization was as effective as force contact in reducing postural sway in all subjects, compared to the no-cane condition. A slanted cane was far more effective in reducing postural sway than was a perpendicular cane. Cane use also decreased head displacement of sighted subjects far more than that of blind subjects. These results suggest that head movement control is linked to postural control through gaze stabilization reflexes in sighted subjects; such reflexes are absent in congenitally blind individuals and may account for their higher levels of head displacement.

  3. Postural analysis of nursing work.

    PubMed

    Hignett, S

    1996-06-01

    Back pain in the nursing profession is an acknowledged wide spread occupational hazard. This study used OWAS (Ovako Working posture Analysis System) to measure the severity of the working postures adopted by nurses on Care of the Elderly wards when carrying out manual handling operations for animate and inanimate loads. Twenty-six nurses were observed on 31 occasions to obtain 4299 observations, these data were collected and processed using the OWASCO and OWASAN programs, and then analysed by grouping the results into defined patient (animate) handling and non-patient (inanimate) handling tasks. A statistical comparison was made between the two groups using the percentage of action categories two, three and four, to the total number of action categories. A significant difference (p < 0.05) was found, demonstrating that the percentage of harmful postures adopted during patient handling tasks was significantly higher than during non-patient handling tasks. This high level of postural stress and the poor track record of risk management within the Health Care Industry leads to the recommendation that an attitudinal change is needed to successfully address and reduce the manual handling burden which is currently being carried by the nursing staff.

  4. Recognizing postural orthostatic tachycardia syndrome.

    PubMed

    Pavlik, Daniel; Agnew, Donna; Stiles, Lauren; Ditoro, Rachel

    2016-04-01

    This article describes the pathophysiology, clinical presentation, differential diagnosis, diagnosis, and management of postural orthostatic tachycardia syndrome (POTS), a potentially debilitating autonomic disorder that can have many causes and presentations. POTS can be mistaken for panic disorder, inappropriate sinus tachycardia, and chronic fatigue syndrome. Clinician suspicion for the syndrome is key to prompt patient diagnosis and treatment.

  5. Multijoint dynamics and postural stability of the human arm.

    PubMed

    Perreault, Eric J; Kirsch, Robert F; Crago, Patrick E

    2004-08-01

    The goal of this study was to examine how the mechanical properties of the human arm are modulated during isometric force regulation tasks. Specifically, we examined whether the dynamic stability of the limb remained nearly invariant across a range of voluntarily generated endpoint forces and limb postures. Previous single joint studies have demonstrated that dynamic joint stability, as quantified via estimates of the joint damping ratio, is nearly invariant during isometric torque regulation tasks. However, the relevance of these findings to the control of multijoint posture has not been investigated previously. A similar degree of invariance at the multijoint level could suggest a fundamental property of the motor system that could be incorporated into the planning and execution of multijoint tasks. In this work, limb mechanics were quantified using estimates of dynamic endpoint stiffness, which characterizes the relationship between imposed displacements of limb posture and the forces opposing those displacements. Endpoint stiffness was estimated using a two-link robot operating in the horizontal plane at the height of each subject's glenohumeral joint. The robot was used to apply stochastic position perturbations to the arm and to measure the resulting forces. Endpoint stiffness dynamics were estimated nonparametrically and subsequently summarized using inertial, viscous and elastic parameters. We found that in the tasks studied, there was a differential modulation of endpoint elasticity and endpoint viscosity. Elasticity increased nearly linearly with increases in voluntary force generation while viscosity increased nonlinearly. This differential regulation resulted in limb dynamics that had a remarkably consistent damping ratio across all subjects and all tested conditions. These results emphasize the importance of considering the full dynamic response of a limb when investigating multijoint stability, and suggest that a minimal degree of limb stability is

  6. Suboptimal Muscle Synergy Activation Patterns Generalize their Motor Function across Postures.

    PubMed

    Sohn, M Hongchul; Ting, Lena H

    2016-01-01

    We used a musculoskeletal model to investigate the possible biomechanical and neural bases of using consistent muscle synergy patterns to produce functional motor outputs across different biomechanical conditions, which we define as generalizability. Experimental studies in cats demonstrate that the same muscle synergies are used during reactive postural responses at widely varying configurations, producing similarly-oriented endpoint force vectors with respect to the limb axis. However, whether generalizability across postures arises due to similar biomechanical properties or to neural selection of a particular muscle activation pattern has not been explicitly tested. Here, we used a detailed cat hindlimb model to explore the set of feasible muscle activation patterns that produce experimental synergy force vectors at a target posture, and tested their generalizability by applying them to different test postures. We used three methods to select candidate muscle activation patterns: (1) randomly-selected feasible muscle activation patterns, (2) optimal muscle activation patterns minimizing muscle effort at a given posture, and (3) generalizable muscle activation patterns that explicitly minimized deviations from experimentally-identified synergy force vectors across all postures. Generalizability was measured by the deviation between the simulated force direction of the candidate muscle activation pattern and the experimental synergy force vectors at the test postures. Force angle deviations were the greatest for the randomly selected feasible muscle activation patterns (e.g., >100°), intermediate for effort-wise optimal muscle activation patterns (e.g., ~20°), and smallest for generalizable muscle activation patterns (e.g., <5°). Generalizable muscle activation patterns were suboptimal in terms of effort, often exceeding 50% of the maximum possible effort (cf. ~5% in minimum-effort muscle activation patterns). The feasible muscle activation ranges of individual

  7. Suboptimal Muscle Synergy Activation Patterns Generalize their Motor Function across Postures

    PubMed Central

    Sohn, M. Hongchul; Ting, Lena H.

    2016-01-01

    We used a musculoskeletal model to investigate the possible biomechanical and neural bases of using consistent muscle synergy patterns to produce functional motor outputs across different biomechanical conditions, which we define as generalizability. Experimental studies in cats demonstrate that the same muscle synergies are used during reactive postural responses at widely varying configurations, producing similarly-oriented endpoint force vectors with respect to the limb axis. However, whether generalizability across postures arises due to similar biomechanical properties or to neural selection of a particular muscle activation pattern has not been explicitly tested. Here, we used a detailed cat hindlimb model to explore the set of feasible muscle activation patterns that produce experimental synergy force vectors at a target posture, and tested their generalizability by applying them to different test postures. We used three methods to select candidate muscle activation patterns: (1) randomly-selected feasible muscle activation patterns, (2) optimal muscle activation patterns minimizing muscle effort at a given posture, and (3) generalizable muscle activation patterns that explicitly minimized deviations from experimentally-identified synergy force vectors across all postures. Generalizability was measured by the deviation between the simulated force direction of the candidate muscle activation pattern and the experimental synergy force vectors at the test postures. Force angle deviations were the greatest for the randomly selected feasible muscle activation patterns (e.g., >100°), intermediate for effort-wise optimal muscle activation patterns (e.g., ~20°), and smallest for generalizable muscle activation patterns (e.g., <5°). Generalizable muscle activation patterns were suboptimal in terms of effort, often exceeding 50% of the maximum possible effort (cf. ~5% in minimum-effort muscle activation patterns). The feasible muscle activation ranges of individual

  8. School Library Policy Statement.

    ERIC Educational Resources Information Center

    Manitoba Dept. of Education, Winnipeg. Instructional Resources Branch.

    The School Library Policy Statement for Manitoba schools begins with the mission statement of Manitoba Education and Training and the Goals of Learning for Manitoba. Statements of Manitoba's School Library Policy and the Philosophy of the School Library Program are also provided, together with an outline of the responsibilities of both Manitoba's…

  9. Substance Abuse. Policy Statement.

    ERIC Educational Resources Information Center

    National Collaboration for Youth, Washington, DC.

    This paper presents the policy statement on substance abuse from the National Collaboration for Youth (NCY). The policy statement section lists programs and activities supported by the NCY. A section on background includes a statement of the issue of substance abuse. Areas examined in this section include alcohol abuse and drunk driving among…

  10. Effect of masticating chewing gum on postural stability during upright standing.

    PubMed

    Kushiro, Keisuke; Goto, Fumiyuki

    2011-01-07

    The purpose of this study was to investigate the effect of masticating chewing gum on postural stability during upright standing. To address this issue, 12 healthy subjects performed quiet standing on a force platform for the posturography study. The subjects were instructed to stand as stable as possible on the force platform in order to record the trajectory of the center-of-pressure (COP). After measuring the postural sway in the initial condition (pre-condition), the subjects were asked to stand while masticating chewing gum (gum-condition). Following the gum-condition, quiet standing without mastication was evaluated (post-condition) to ensure the effect of masticating chewing gum on postural stability. The trajectory and velocity of the COP were analyzed for each condition. We found that the postural stability tended to enhance during mastication of chewing gum. The rectangle area of the COP trajectory significantly diminished in the gum-condition and significantly enlarged in the post-condition. A similar effect was observed in the maximum velocity and standard deviation (SD) of the fore-aft amplitude of the COP trajectory. The values were significantly smaller in the gum-condition compared to those in the post-condition. These findings suggest that mastication of chewing gum affects the postural control by enhancing the postural stability during upright standing.

  11. Continuous assessment of work activities and posture in long-term care nurses.

    PubMed

    Hodder, Joanne N; Holmes, Michael W R; Keir, Peter J

    2010-09-01

    The high prevalence of low back injuries in nursing has prompted the use of mechanical lift assists while overall assessment of activities and postures remains limited. The purpose of this study was to chronicle trunk posture and work tasks of long-term healthcare professionals. An inclinometer monitored trunk posture for 27 workers, 20 of whom were also observed continuously throughout their shift. Patient lifts and transfers accounted for less than 4% of the shift while patient care, unloaded standing and walking and miscellaneous tasks accounted for 85%. Manual lifts and transfers occurred twice as often as mechanically assisted lifts but took only half the time. The workers had a median trunk flexion angle of 9.2 degrees , spent 25% of their time flexed beyond 30 degrees and had peak flexion angles greater than 75 degrees in many tasks. Analysis of posture throughout the entire working shift indicates that, in addition to lifts and transfers, emphasis needs to be placed on patient care and miscellaneous activities when assessing injury risk for nurses. STATEMENT OF RELEVANCE: Patient handling has been the focus in the effort to reduce back pain and injury in nursing. In addition to the use of mechanical lifts, there is a need to examine other aspects of nursing, including patient care and other ancillary tasks, which comprise the majority of the work shift and, while often unloaded, exhibit extreme postures that may also lead to injury.

  12. Trial-to-trial adaptation in control of arm reaching and standing posture.

    PubMed

    Pienciak-Siewert, Alison; Horan, Dylan P; Ahmed, Alaa A

    2016-12-01

    Classical theories of motor learning hypothesize that adaptation is driven by sensorimotor error; this is supported by studies of arm and eye movements that have shown that trial-to-trial adaptation increases with error. Studies of postural control have shown that anticipatory postural adjustments increase with the magnitude of a perturbation. However, differences in adaptation have been observed between the two modalities, possibly due to either the inherent instability or sensory uncertainty in standing posture. Therefore, we hypothesized that trial-to-trial adaptation in posture should be driven by error, similar to what is observed in arm reaching, but the nature of the relationship between error and adaptation may differ. Here we investigated trial-to-trial adaptation of arm reaching and postural control concurrently; subjects made reaching movements in a novel dynamic environment of varying strengths, while standing and holding the handle of a force-generating robotic arm. We found that error and adaptation increased with perturbation strength in both arm and posture. Furthermore, in both modalities, adaptation showed a significant correlation with error magnitude. Our results indicate that adaptation scales proportionally with error in the arm and near proportionally in posture. In posture only, adaptation was not sensitive to small error sizes, which were similar in size to errors experienced in unperturbed baseline movements due to inherent variability. This finding may be explained as an effect of uncertainty about the source of small errors. Our findings suggest that in rehabilitation, postural error size should be considered relative to the magnitude of inherent movement variability.

  13. Postural trials: expertise in rhythmic gymnastics increases control in lateral directions.

    PubMed

    Calavalle, A R; Sisti, D; Rocchi, M B L; Panebianco, R; Del Sal, M; Stocchi, V

    2008-11-01

    The first aim of this paper was to investigate if expertise in rhythmic gymnastics influences postural performance even in an easy non-specific task such as bipedal posture. Rhythmic gymnastics is a unique female sport which encompasses aspects of both artistic gymnastics and ballet and includes the use of a small apparatus (rope, hoop, ball, clubs and ribbon). Most previous studies have shown that expertise achieved by artistic gymnasts and dancers improves postural steadiness only in the situations for which those athletes are trained. Literature has not yet compared rhythmic gymnasts to other athletes in terms of their postural strategies. Hence, the study presented herein tested a group of high level rhythmic gymnasts and a group of female university students, trained in other sports, in the bipedal posture under eyes open and closed conditions. A force platform was used to record body sway. (1) Distance from the centre of sway, (2) lateral and (3) antero-posterior displacements were analyzed in time and frequency domains. Comparing the two groups, it was found that rhythmic gymnasts had better strategies than students in simple postural tasks, especially in lateral directions and in the period from 0.05 to 2 s. The most interesting finding in this study is that rhythmic gymnastics training seems to have a direct effect on the ability to maintain bipedal posture, which may confirm the "transfer" hypothesis of rhythmic gymnastics expertise to bipedal postural sway, especially in medio-lateral displacements. This finding has never been reported in previous studies on artistic gymnasts and ballet dancers. Furthermore, the present study confirmed the visual dependence of all the athletes, irrespective of their disciplines, in their postural trials.

  14. Anticipatory postural adjustments and anticipatory synergy adjustments: preparing to a postural perturbation with predictable and unpredictable direction.

    PubMed

    Piscitelli, Daniele; Falaki, Ali; Solnik, Stanislaw; Latash, Mark L

    2017-03-01

    We explored two aspects of feed-forward postural control, anticipatory postural adjustments (APAs) and anticipatory synergy adjustments (ASAs) seen prior to self-triggered unloading with known and unknown direction of the perturbation. In particular, we tested two main hypotheses predicting contrasting changes in APAs and ASAs. The first hypothesis predicted no major changes in ASAs. The second hypothesis predicted delayed APAs with predominance of co-contraction patterns when perturbation direction was unknown. Healthy subjects stood on the force plate and held a bar with two loads acting in the forward and backward directions. They pressed a trigger that released one of the loads causing a postural perturbation. In different series, the direction of the perturbation was either known (the same load released in all trials) or unknown (the subjects did not know which of the two loads would be released). Surface electromyograms were recorded and used to quantify APAs, synergies stabilizing center of pressure coordinate (within the uncontrolled manifold hypothesis), and ASA. APAs and ASAs were seen in all conditions. APAs were delayed, and predominance of co-contraction patterns was seen under the conditions with unpredictable direction of perturbation. In contrast, no significant changes in synergies and ASAs were seen. Overall, these results show that feed-forward control of vertical posture has two distinct components, reflected in APAs and ASAs, which show qualitatively different adjustments with changes in predictability of the direction of perturbation. These results are interpreted within the recently proposed hierarchical scheme of the synergic control of motor tasks. The observations underscore the complexity of the feed-forward postural control, which involves separate changes in salient performance variables (such as coordinate of the center of pressure) and in their stability properties.

  15. Postural risk assessment of mechanised firewood processing.

    PubMed

    Spinelli, Raffaele; Aminti, Giovanni; De Francesco, Fabio

    2017-03-01

    The study assessed the postural risk of mechanised firewood processing with eight machines, representing the main technology solutions available on the market. Assessment was conducted with the Ovako Working posture Analysis System (OWAS) on 1000 still frames randomly extracted from videotaped work samples. The postural risk associated with firewood processing was variable and associated with technology type. Simple, manually operated new machines incurred a higher postural risk compared with semi- or fully automatic machines. In contrast, new semi-automatic and automatic machines were generally free from postural risk. In all cases, attention should be paid to postural risk that may occur during blockage resolution. The study did not cover the postural risk of firewood processing sites as a whole. The study provided useful information for selecting firewood processing machinery and for improving firewood machinery design, as part of a more articulate strategy aimed at enhancing the safety of firewood processing work sites. Practitioner Summary: The postural risk associated with mechanised firewood processing (eg cutting and splitting) depends on the type of equipment. Postural risk is highest (OWAS Action Category 2) with new in-line machines, designed for operation by a single worker. Fully automatic machines present minimum postural risk, except during blockage resolution.

  16. Postural sway and brain potentials evoked by visual depth stimuli.

    PubMed

    Kiyota, Takeo; Fujiwara, Katsuo

    2008-07-01

    This study measured the postural sway and brain potentials evoked by a visual depth stimulus. Thirteen subjects maintained standing posture on a force platform, and were administered two types of depth stimuli, strong and weak. The latency and amplitude of evoked potentials as well as changes in center of foot pressure (CFP) and the electromyogram (EMG) were examined. CFP displacement was found to change according to stimulus intensity. In the occipital lobe, evoked potentials exhibited a triphasic peak, with the first positive peak at approximately 120 ms (P120), the first negative peak at approximately 160 ms (N200), and the second positive peak at approximately 260 ms (P250). Brain evoked potentials correlated with CFP displacement as well as the latency of onset of EMG response. Onset of EMG response was probably related to the P120 component, whereas CFP displacement was related to the P250 component.

  17. The effects of deuterium on static posture control

    NASA Technical Reports Server (NTRS)

    Layne, Charles S.

    1990-01-01

    A significant operational problem impacting upon the Space Shuttle program involves the astronaut's ability to safely egress from the Orbiter during an emergency situation. Following space flight, astronauts display significant movement problems. One variable which may contribute to increased movement ataxia is deuterium (D2O). Deuterium is present in low levels within the Orbiter's water supply but may accumulate to significant physiological levels during lengthy missions. Deuterium was linked to a number of negative physiological responses, including motion sickness, decreased metabolism, and slowing of neural conduction velocity. The effects of D2O on static postural control in response to a range of dosage levels were investigated. Nine sugjects were divided into three groups of three subjects each. The groups were divided into a low, medium, and a high D2O dosage group. The subjects static posture was assessed with the use of the EquiTest systems, a commercially available postural control evaluation system featuring movable force plates and a visual surround that can be servoed to the subject's sway. In addition to the force plate information, data about the degree of subject sway about the hips and shoulders was obtained. Additionally, surface electromyographic (EMG) data from the selected lower limb muscles were collected along with saliva samples used to determine the amount of deuterium enrichment following D2O ingestion. Two baseline testing sessions were performed using the EquiTest testing protocol prior to ingestion of the D2O. Thirty minutes after dosing, subjects again performed the tests. Two more post-dosing tests were run with an interest interval of one hour. Preliminary data anlaysis indicates that only subjects in the igh dose group displayed any significant static postural problems. Future analyses of the sway and EMG is expected to reveal significant variations in the subject's postural control strategy following D2O dosing. While

  18. Postural support strategies of disabled drivers and the effectiveness of postural support aids.

    PubMed

    Lawton, Clare; Cook, Sharon; May, Andrew; Clemo, Keith; Brown, Susan

    2008-01-01

    The paper discusses a series of driving trials that were conducted to investigate postural stability of disabled drivers and to assess the effectiveness of a representative sample of support aids. Twenty-three disabled drivers with varying levels of physical disability and seven non disabled drivers participated in the study. The test car was equipped with transducers to measure vehicle velocity and acceleration (longitudinal and lateral), steering wheel movement and torque, and the bracing forces exerted by the driver on the steering wheel. Video cameras were installed to record postural support strategies and displacement of the driver and to record deviation of the car from the specified path. Subjective data regarding driver attitudes and acceptance were also collected through the administration of questionnaires. Findings from the study showed that support aids significantly improved driving performance and reduced physical exertion to maintain an upright driving position for disabled drivers. However, ergonomics design aspects regarding the ease of use and acceptance of the support aids by the end users were identified as obstacles to their sustained use in everyday driving.

  19. Postural instability in Parkinson Disease: to step or not to step.

    PubMed

    Kimmell, Kristopher; Pulusu, Vinay K; Bharucha, Kersi J; Ross, Elliott D

    2015-10-15

    Postural instability is a key feature of Parkinson Disease that is associated with falls and morbidity. We designed a pull apparatus to quantitatively measure the force needed to pull subjects off-balance. Thirteen Controls and eight individuals with Parkinson Disease (PD) were evaluated. All individuals with PD reported subjective symptoms of postural instability and were symptomatic for approximately 9.4years when tested. No significant differences were found between Controls and PD subjects in the magnitude of force required to pull them off-balance. None of the Controls fell and all took a step into the direction of pull to maintain their balance. 59% of the time PD subjects fell because they did not take a step in the direction of pull to maintain their center of mass (COM) over their feet, thus indicating a deficiency in postural reflexes. If they fell on the first pull, PD subjects did not show a learning effect when pulled multiple times in the same direction. The utility of the Pull Test to detect postural instability is related to the subject's behavioral response, not the force needed to pull them off balance. Our findings may also help explain certain features of the PD gait as an attempt by subjects to avoid postural instability by not placing their COM in gravitationally unstable positions.

  20. The Steps to Perfect Posture

    ERIC Educational Resources Information Center

    Chappell, Jon

    2007-01-01

    Many people have memories of being told to "stop slouching" while seated at the piano bench. But the reality is that good piano posture is not as simple as bolting upright on the bench when the teacher barks. According to Eric Sutz, a Chicago-area piano teacher and performer, one should see a natural curve in his/her lower lumbar area and should…

  1. Postural consistency in skilled archers.

    PubMed

    Stuart, J; Atha, J

    1990-01-01

    The consistency of an archer's postural set at the moment of loose (arrow release) is commonly perceived to be an important determinant of success. The coach seeks, among other things, to provide the archer with information about postural consistency, details of which he acquires by eye or occasionally by video-recordings. The gains that might be achieved from more precise information are examined here. Nine skilled archers, classified into either skilled or elite groups according to their officially computed handicap, were continuously monitored and measured with a three-dimensional co-ordinate analyser (Charnwood Dynamics Coda-3 Scanner) while shooting two ends (series) of three arrows each. Considerable variability was observed in the precision with which the positions of head, elbow and bow at the moment of loose were replicated by archers of similar levels of skill. These results are interpreted to suggest that precise postural consistency may not be the primary feature distinguishing between the performance of archers at the higher skill levels.

  2. Effect of stance width on multidirectional postural responses

    NASA Technical Reports Server (NTRS)

    Henry, S. M.; Fung, J.; Horak, F. B.; Peterson, B. W. (Principal Investigator)

    2001-01-01

    The effect of stance width on postural responses to 12 different directions of surface translations was examined. Postural responses were characterized by recording 11 lower limb and trunk muscles, body kinematics, and forces exerted under each foot of 7 healthy subjects while they were subjected to horizontal surface translations in 12 different, randomly presented directions. A quasi-static approach of force analysis was done, examining force integrals in three different epochs (background, passive, and active periods). The latency and amplitude of muscle responses were quantified for each direction, and muscle tuning curves were used to determine the spatial activation patterns for each muscle. The results demonstrate that the horizontal force constraint exerted at the ground was lessened in the wide, compared with narrow, stance for humans, a similar finding to that reported by Macpherson for cats. Despite more trunk displacement in narrow stance, there were no significant changes in body center of mass (CoM) displacement due to large changes in center of pressure (CoP), especially in response to lateral translations. Electromyographic (EMG) magnitude decreased for all directions in wide stance, particularly for the more proximal muscles, whereas latencies remained the same from narrow to wide stance. Equilibrium control in narrow stance was more of an active postural strategy that included regulating the loading/unloading of the limbs and the direction of horizontal force vectors. In wide stance, equilibrium control relied more on an increase in passive stiffness resulting from changes in limb geometry. The selective latency modulation of the proximal muscles with translation direction suggests that the trunk was being actively controlled in all directions. The similar EMG latencies for both narrow and wide stance, with modulation of only the muscle activation magnitude as stance width changed, suggest that the same postural synergy was only slightly modified

  3. Postural Stability is Altered by Blood Shift

    NASA Astrophysics Data System (ADS)

    Marais, M.; Denise, P.; Guincetre, J. Y.; Normand, H.

    2008-06-01

    Non-vestibular influences as shift in blood volume changed perception of body posture. Then, factors affecting blood shift may alter postural control. The purpose of our study was to investigate the effects of leg venous contention on postural stability. Twelve subjects were studied on a balance plate for 5 minutes with the eyes closed, in 3 conditions: with no leg venous contention or grade 1 and 3 support stockings. Standard deviation of x and y position was calculated before and after the closure of the eyes. Strong venous contention altered postural stability, after the eyes were closed, during the first 10 s of standing. As support stockings prevent blood shift induced by upright posture, this result is in line with the hypothesis that blood shifts influence the perception of body orientation and postural control among others factors as vision, vestibular inputs... This strong venous contention could induce an increase of fall.

  4. Analysis of human postural responses to recoverable falls

    NASA Technical Reports Server (NTRS)

    Bortolami, S. B.; DiZio, P.; Rabin, E.; Lackner, J. R.

    2003-01-01

    We studied the kinematics and kinetics of human postural responses to "recoverable falls." To induce brief falling we used a Hold and Release (H&R) paradigm. Standing subjects actively resisted a force applied to their sternum. When this force was quickly released they were suddenly off balance. For a brief period, approximately 125 ms, until restoring forces were generated to shift the center of foot pressure in front of the center of mass, the body was in a forward fall acted on by gravity and ground support forces. We were able to describe the whole-body postural behavior following release using a multilink inverted pendulum model in a regime of "small oscillations." A three-segment model incorporating upper body, upper leg, and lower leg, with active stiffness and damping at the joints was fully adequate to fit the kinematic data from all conditions. The significance of our findings is that in situations involving recoverable falls or loss of balance the earliest responses are likely dependent on actively-tuned, reflexive mechanisms yielding stiffness and damping modulation of the joints. We demonstrate that haptic cues from index fingertip contact with a stationary surface lead to a significantly smaller angular displacement of the torso and a more rapid recovery of balance. Our H&R paradigm and associated model provide a quantifiable approach to studying recovery from potential falling in normal and clinical subjects.

  5. Analysis of human postural responses to recoverable falls.

    PubMed

    Bortolami, S B; DiZio, P; Rabin, E; Lackner, J R

    2003-08-01

    We studied the kinematics and kinetics of human postural responses to "recoverable falls." To induce brief falling we used a Hold and Release (H&R) paradigm. Standing subjects actively resisted a force applied to their sternum. When this force was quickly released they were suddenly off balance. For a brief period, approximately 125 ms, until restoring forces were generated to shift the center of foot pressure in front of the center of mass, the body was in a forward fall acted on by gravity and ground support forces. We were able to describe the whole-body postural behavior following release using a multilink inverted pendulum model in a regime of "small oscillations." A three-segment model incorporating upper body, upper leg, and lower leg, with active stiffness and damping at the joints was fully adequate to fit the kinematic data from all conditions. The significance of our findings is that in situations involving recoverable falls or loss of balance the earliest responses are likely dependent on actively-tuned, reflexive mechanisms yielding stiffness and damping modulation of the joints. We demonstrate that haptic cues from index fingertip contact with a stationary surface lead to a significantly smaller angular displacement of the torso and a more rapid recovery of balance. Our H&R paradigm and associated model provide a quantifiable approach to studying recovery from potential falling in normal and clinical subjects.

  6. The neuropathic postural tachycardia syndrome

    NASA Technical Reports Server (NTRS)

    Jacob, G.; Costa, F.; Shannon, J. R.; Robertson, R. M.; Wathen, M.; Stein, M.; Biaggioni, I.; Ertl, A.; Black, B.; Robertson, D.

    2000-01-01

    BACKGROUND: The postural tachycardia syndrome is a common disorder that is characterized by chronic orthostatic symptoms and a dramatic increase in heart rate on standing, but that does not involve orthostatic hypotension. Several lines of evidence indicate that this disorder may result from sympathetic denervation of the legs. METHODS: We measured norepinephrine spillover (the rate of entry of norepinephrine into the venous circulation) in the arms and legs both before and in response to exposure to three stimuli (the cold pressor test, sodium nitroprusside infusion, and tyramine infusion) in 10 patients with the postural tachycardia syndrome and in 8 age- and sex-matched normal subjects. RESULTS: At base line, the mean (+/-SD) plasma norepinephrine concentration in the femoral vein was lower in the patients with the postural tachycardia syndrome than in the normal subjects (135+/-30 vs. 215+/-55 pg per milliliter [0.80+/-0.18 vs. 1.27+/-0.32 nmol per liter], P=0.001). Norepinephrine spillover in the arms increased to a similar extent in the two groups in response to each of the three stimuli, but the increases in the legs were smaller in the patients with the postural tachycardia syndrome than in the normal subjects (0.001+/-0.09 vs. 0.12+/-0.12 ng per minute per deciliter of tissue [0.006+/-0.53 vs. 0.71+/-0.71 nmol per minute per deciliter] with the cold pressor test, P=0.02; 0.02+/-0.07 vs. 0.23+/-0.17 ng per minute per deciliter [0.12+/-0.41 vs. 1.36+/-1.00 nmol per minute per deciliter] with nitroprusside infusion, P=0.01; and 0.008+/-0.09 vs. 0.19+/-0.25 ng per minute per deciliter [0.05+/-0.53 vs. 1.12+/-1.47 nmol per minute per deciliter] with tyramine infusion, P=0.04). CONCLUSIONS: The neuropathic postural tachycardia syndrome results from partial sympathetic denervation, especially in the legs.

  7. Postural behavior in children born preterm.

    PubMed

    Fallang, Bjørg; Hadders-Algra, Mijna

    2005-01-01

    The present paper presents clinical and neurophysiological data of postural behavior in preterm children without CP. Clinical follow-up studies of preterm infants until toddler and school age have reported that low-risk preterm infants may have atypical postural behavior in terms of reduced amount of rotation during crawling, delayed dynamic balance, delayed onset of and a poor quality of early walking behavior. At school age, dysfunctions such as problems in standing on one leg and poor hopping are reported. Neurophysiological data of postural control at early age indicated the presence of a dysfunction in the capacity to modulate postural activity, and the postural activity has been characterized by temporal disorganization of EMG responses. Postural responses to goal-directed reaching in supine lying have been recorded and analyzed in terms of the total body center of pressure. In this study, preterm infants show less mobile postural behavior compared with full-term infants. In infancy, the less mobile postural behavior seemed to be adequate as it was related to better goal-directed reaching quality, but the results indicated that the relatively immobile postural behavior during reaching in early age was related to less favorable neuromotor behavior in school-age.

  8. Correlation between rounded shoulder posture, neck disability indices, and degree of forward head posture

    PubMed Central

    Kim, Eun-Kyung; Kim, Jin Seop

    2016-01-01

    [Purpose] The present study aimed to examine the correlation between rounded shoulder posture, neck disability indices and the degree of forward head posture. [Subjects and Methods] Subjects aged 19–24 years were selected for this study, and the craniovertebral angle was used to measure the degree of forward head posture in the standing and seated positions. Vernier calipers were used to measure rounded shoulder posture in the supine position, and neck pain and functional disability were assessed using neck disability indices. [Results] Angle and neck disability indices in both standing and sitting posture positions exhibited a significant inverse relationship. However, no significant correlation was detected between the craniovertebral angle and rounded shoulder posture for the standing and sitting posture positions. [Conclusion] In conclusion, it was demonstrated in the present study that, depending on the degree of forward head posture, changes were detected in the neck disability indices. However, even an increase in the forward head tilt angle did not lead to rounded shoulder posture. Therefore, maintaining proper posture may prevent postural pain syndrome, functional disability, and postural deformity. PMID:27821964

  9. The effect of actual and imaginary handgrip on postural stability during different balance conditions.

    PubMed

    VanderHill, M S; Wolf, E E; Langenderfer, J E; Ustinova, K I

    2014-09-01

    The stabilizing effect of holding an object on upright posture has been demonstrated in a variety of settings. The mechanism of this effect is unknown but could be attributed to either additional sensorimotor activity triggered by a hand contact or cognitive efforts related to performance of a supra-postural task. A potential mechanism was investigated by comparing postural stability in young healthy individuals while gripping a custom instrumented wooden stick with a 5N force and while imagining holding the same stick in the hand. Twenty subjects were tested during three standing balance conditions: on a stationary surface, on a freely moving rockerboard, and with an unexpected perturbation of 10° forward rockerboard tipping. Postural stability was evaluated as velocity of the center of mass (COM) and center of pressure (COP) compared across all experimental conditions. COM and COP velocities were equally reduced when subjects gripped the stick and imagined gripping while standing stationary and on the rockerboard. When perturbed, subjects failed to show any postural stability improvements regardless of handgrip task. Results indicate a stabilizing effect of focusing attention on motor task performance. This cognitive strategy does not appear to contribute any additional stabilization when subjects are perturbed. This study adds to the current understanding of postural stabilization strategies.

  10. Design and Validation of a Low-Cost Portable Device to Quantify Postural Stability †

    PubMed Central

    Zhu, Yong

    2017-01-01

    Measurement of the displacement of the center-of-pressure (COP) is an important tool used in biomechanics to assess postural stability and human balance. The goal of this research was to design and validate a low-cost portable device that can offer a quick indication of the state of postural stability and human balance related conditions. Approximate entropy (ApEn) values reflecting the amount of irregularity hiding in COP oscillations were used to calculate the index. The prototype adopted a portable design using the measurements of the load cells located at the four corners of a low-cost force platform. The test subject was asked to stand on the device in a quiet, normal, upright stance for 30 s with eyes open and subsequently for 30 s with eyes closed. Based on the COP displacement signals, the ApEn values were calculated. The results indicated that the prototype device was capable of capturing the increase in regularity of postural control in the visual-deprivation conditions. It was also able to decipher the subtle postural control differences along anterior–posterior and medial–lateral directions. The data analysis demonstrated that the prototype would enable the quantification of postural stability and thus provide a low-cost portable device to assess many conditions related to postural stability and human balance such as aging and pathologies. PMID:28335461

  11. Aging and balance control in response to external perturbations: role of anticipatory and compensatory postural mechanisms.

    PubMed

    Kanekar, Neeta; Aruin, Alexander S

    2014-06-01

    The ability to maintain balance deteriorates with increasing age. Anticipatory and compensatory postural adjustments (APAs and CPAs, respectively), both, are known to be affected in the elderly. We examined the effect of aging on the ability of older adults to utilize APAs and its effect on subsequent control of posture (CPAs). Ten elderly individuals were exposed to external predictable and unpredictable perturbations applied to the upper body in the sagittal plane. Body kinematics, electromyographic activity of 13 muscles, and ground reaction forces were analyzed during the anticipatory and compensatory phases of postural control. The elderly were capable of recognizing an upcoming predictable perturbation and activated muscles prior to it. However, the older adults used different muscle strategies and sequence of muscle recruitment than that reported in young adults. Additionally, when the perturbations were unpredictable, no APAs were seen which resulted in large CPAs and greater peak displacements of the center of pressure (COP) and center of mass (COM) following perturbations. As opposed to this, when the perturbations were predictable, APAs were seen in older adults resulting in significantly smaller CPAs. The presence and utilization of APAs in older adults also improved postural stability following the perturbation as seen by significantly smaller COP and COM peak displacements. Using APAs in older adults significantly reduces the need for large CPAs, resulting in greater postural stability following a perturbation. The results provide a foundation for investigating the role of training in improving the interplay between anticipatory and compensatory postural control in older adults.

  12. Design and Validation of a Low-Cost Portable Device to Quantify Postural Stability.

    PubMed

    Zhu, Yong

    2017-03-18

    Measurement of the displacement of the center-of-pressure (COP) is an important tool used in biomechanics to assess postural stability and human balance. The goal of this research was to design and validate a low-cost portable device that can offer a quick indication of the state of postural stability and human balance related conditions. Approximate entropy (ApEn) values reflecting the amount of irregularity hiding in COP oscillations were used to calculate the index. The prototype adopted a portable design using the measurements of the load cells located at the four corners of a low-cost force platform. The test subject was asked to stand on the device in a quiet, normal, upright stance for 30 s with eyes open and subsequently for 30 s with eyes closed. Based on the COP displacement signals, the ApEn values were calculated. The results indicated that the prototype device was capable of capturing the increase in regularity of postural control in the visual-deprivation conditions. It was also able to decipher the subtle postural control differences along anterior-posterior and medial-lateral directions. The data analysis demonstrated that the prototype would enable the quantification of postural stability and thus provide a low-cost portable device to assess many conditions related to postural stability and human balance such as aging and pathologies.

  13. Disturbance of contralateral unipedal postural control after stimulated and voluntary contractions of the ipsilateral limb.

    PubMed

    Paillard, Thierry; Chaubet, Vincent; Maitre, Julien; Dumitrescu, Michel; Borel, Liliane

    2010-12-01

    One session of sustained unilateral voluntary muscular contractions increases central fatigue and induces a cross-over of fatigue of homologous contralateral muscles. It is not known, however, how this cross-transfer affects contralateral unipedal postural control. Moreover, contralateral neurophysiological effects differ between voluntary muscular contractions and electrically stimulated contractions. The aims of this study were thus to examine the effects of muscle fatigue on contralateral unipedal postural control and to compare the effects of stimulated and voluntary contractions. Fifteen subjects took part in the protocol. Fatigue of the ipsilateral quadriceps femoris was generated either by neuromuscular electrical stimulation (NMES) or by isometric voluntary muscular contraction (VOL). Postural control on the contralateral limb was measured before (PRE condition) and after the completion of the two fatiguing exercises (POST condition) using a force platform. We analyzed body sway area and the spectral power density given by the wavelet transform. In POST condition, postural control recorded in the unipedal stance on the contralateral limb was disturbed after NMES and VOL fatiguing exercises. In addition, postural control was similarly disturbed for both exercises. These results suggest that cross-over fatigue is able to disturb postural control after both stimulated and voluntary contractions.

  14. Dual-tasking postural control in patients with right brain damage.

    PubMed

    Bourlon, Clémence; Lehenaff, Laurent; Batifoulier, Cécile; Bordier, Aurélie; Chatenet, Aurélia; Desailly, Eric; Fouchard, Christian; Marsal, Muriel; Martinez, Marianne; Rastelli, Federica; Thierry, Anaïs; Bartolomeo, Paolo; Duret, Christophe

    2014-01-01

    The control of dual-tasking effects is a daily challenge in stroke neurorehabilitation. It maybe one of the reasons why there is poor functional prognosis after a stroke in the right hemisphere, which plays a dominant role in posture control. The purpose of this study was to explore cognitive motor interference in right brain-lesioned and healthy subjects maintaining a standing position while performing three different tasks: a control task, a simple attentional task and a complex attentional task. We measured the sway area of the subjects on a force platform, including the center of pressure and its displacements. Results showed that stroke patients presented a reduced postural sway compared to healthy subjects, who were able to maintain their posture while performing a concomitant attentional task in the same dual-tasking conditions. Moreover, in both groups, the postural sway decreased with the increase in attentional load from cognitive tasks. We also noticed that the stability of stroke patients in dual-tasking conditions increased together with the weight-bearing rightward deviation, especially when the attentional load of the cognitive tasks and lower limb motor impairments were high. These results suggest that stroke patients and healthy subjects adopt a similar postural regulation pattern aimed at maintaining stability in dual-tasking conditions involving a static standing position and different attention-related cognitive tasks. Our results indicate that attention processes might facilitate static postural control.

  15. Cortical control of anticipatory postural adjustments prior to stepping.

    PubMed

    Varghese, J P; Merino, D M; Beyer, K B; McIlroy, W E

    2016-01-28

    Human bipedal balance control is achieved either reactively or predictively by a distributed network of neural areas within the central nervous system with a potential role for cerebral cortex. While the role of the cortex in reactive balance has been widely explored, only few studies have addressed the cortical activations related to predictive balance control. The present study investigated the cortical activations related to the preparation and execution of anticipatory postural adjustment (APA) that precede a step. This study also examined whether the preparatory cortical activations related to a specific movement is dependent on the context of control (postural component vs. focal component). Ground reaction forces and electroencephalographic (EEG) data were recorded from 14 healthy adults while they performed lateral weight shift and lateral stepping with and without initially preloading their weight to the stance leg. EEG analysis revealed that there were distinct movement-related potentials (MRPs) with concurrent event-related desynchronization (ERD) of mu and beta rhythms prior to the onset of APA and also to the onset of foot-off during lateral stepping in the fronto-central cortical areas. Also, the MRPs and ERD prior to the onset of APA and onset of lateral weight shift were not significantly different suggesting the comparable cortical activations for the generation of postural and focal movements. The present study reveals the occurrence of cortical activation prior to the execution of an APA that precedes a step. Importantly, this cortical activity appears independent of the context of the movement.

  16. Hierarchical and multiple hand action representation using temporal postural synergies.

    PubMed

    Tessitore, G; Sinigaglia, C; Prevete, R

    2013-03-01

    The notion of synergy enables one to provide simplified descriptions of hand actions. It has been used in a number of different meanings ranging from kinematic and dynamic synergies to postural and temporal postural synergies. However, relatively little is known about how representing an action by synergies might take into account the possibility to have a hierarchical and multiple action representation. This is a key aspect for action representation as it has been characterized by action theorists and cognitive neuroscientists. Thus, the aim of the present paper is to investigate whether and to what extent a hierarchical and multiple action representation can be obtained by a synergy approach. To this purpose, we took advantage of representing hand action as a linear combination of temporal postural synergies (TPSs), but on the assumption that TPSs have a tree-structured organization. In a tree-structured organization, a hand action representation can involve a TPS only if the ancestors of the synergy in the tree are themselves involved in the action representation. The results showed that this organization is enough to force a multiple representation of hand actions in terms of synergies which are hierarchically organized.

  17. Classification of posture maintenance data with fuzzy clustering algorithms

    NASA Technical Reports Server (NTRS)

    Bezdek, James C.

    1991-01-01

    Sensory inputs from the visual, vestibular, and proprioreceptive systems are integrated by the central nervous system to maintain postural equilibrium. Sustained exposure to microgravity causes neurosensory adaptation during spaceflight, which results in decreased postural stability until readaptation occurs upon return to the terrestrial environment. Data which simulate sensory inputs under various conditions were collected in conjunction with JSC postural control studies using a Tilt-Translation Device (TTD). The University of West Florida proposed applying the Fuzzy C-Means Clustering (FCM) Algorithms to this data with a view towards identifying various states and stages. Data supplied by NASA/JSC were submitted to the FCM algorithms in an attempt to identify and characterize cluster substructure in a mixed ensemble of pre- and post-adaptational TTD data. Following several unsuccessful trials with FCM using a full 11 dimensional data set, a set of two channels (features) were found to enable FCM to separate pre- from post-adaptational TTD data. The main conclusions are that: (1) FCM seems able to separate pre- from post-TTD subject no. 2 on the one trial that was used, but only in certain subintervals of time; and (2) Channels 2 (right rear transducer force) and 8 (hip sway bar) contain better discrimination information than other supersets and combinations of the data that were tried so far.

  18. Aging worsens the effects of sleep deprivation on postural control.

    PubMed

    Robillard, Rébecca; Prince, François; Filipini, Daniel; Carrier, Julie

    2011-01-01

    Falls increase with age and cause significant injuries in the elderly. This study aimed to determine whether age modulates the interactions between sleep deprivation and postural control and to evaluate how attention influences these interactions in the elderly. Fifteen young (24±2.7 y.o.) and 15 older adults (64±3.2 y.o.) stood still on a force plate after a night of sleep and after total sleep deprivation. Center of pressure range and velocity were measured with eyes open and with eyes closed while participants performed an interference task, a control task, and no cognitive task. Sleep deprivation increased the antero-posterior range of center of pressure in both age groups and center of pressure speed in older participants only. In elderly participants, the destabilizing effects of sleep deprivation were more pronounced with eyes closed. The interference task did not alter postural control beyond the destabilization induced by sleep loss in older subjects. It was concluded that sleep loss has greater destabilizing effects on postural control in older than in younger participants, and may therefore increase the risk of falls in the elderly.

  19. Associations between Tactile Sensory Threshold and Postural Performance and Effects of Healthy Aging and Subthreshold Vibrotactile Stimulation on Postural Outcomes in a Simple Dual Task

    PubMed Central

    Dettmer, Marius; Pourmoghaddam, Amir; Lee, Beom-Chan; Layne, Charles S.

    2016-01-01

    Specific activities that require concurrent processing of postural and cognitive tasks may increase the risk for falls in older adults. We investigated whether peripheral receptor sensitivity was associated with postural performance in a dual-task and whether an intervention in form of subthreshold vibration could affect performance. Ten younger (age: 20–35 years) and ten older adults (70–85 years) performed repeated auditory-verbal 1-back tasks while standing quietly on a force platform. Foot sole vibration was randomly added during several trials. Several postural control and performance measures were assessed and statistically analyzed (significance set to α-levels of .05). There were moderate correlations between peripheral sensitivity and several postural performance and control measures (r = .45 to .59). Several postural performance measures differed significantly between older and younger adults (p < 0.05); addition of vibration did not affect outcome measures. Aging affects healthy older adults' performance in dual-tasks, and peripheral sensitivity may be a contributor to the observed differences. A vibration intervention may only be useful when there are more severe impairments of the sensorimotor system. Hence, future research regarding the efficacy of sensorimotor interventions in the form of vibrotactile stimulation should focus on older adults whose balance is significantly affected. PMID:27143967

  20. [Postural examination in daily occlusodontology].

    PubMed

    Serviere, F

    1989-03-01

    According to the osteopathic and chiropractic concepts, facing a TMJ problem, the practitioner has to determine if the trouble observed in the stomatognatic apparatus is the cause or the effect of the structural problems present anywhere else in the body. The postural examination allows to answer this question. Tow techniques can be used. First a static and dynamic posture test proposed by Bricot. The level of the cranium, the eyes, the shoulders, the wrists, the pelvis and the ankles is analysed, from a front view; from the side, the gravity line is inspected: vertex, auditory meatus, shoulder, hip joint, anterior side of the tibia, ankle joint. The vertical posture can be studied from the front: the arms are held straight and the antero-posterior length between the fingers is measured. From the back, one notes the recoil of the buttocks on one side. An ocular convergence test is performed. Then one uses a Romberg test (oscillation of the body when the eyes are closed), and a Fukuda stepping test. The patient is then asked to bite on a compress, and the same exams are redone. If no change occurs, we are dealing with an ascending problem: the origin of the problem is not the stomatognathic system. The second technique is the Meerssemann test that needs the practice of Applied Kinesiology muscle testing. The patient is lying supine and one tests: the dental occlusion, the two TMJs, the temporal muscles, masseters, pterygoids, sterno-cleido-mastoids, upper tapezius, left and right sacro-iliac joints, psoas muscles bilaterally.(ABSTRACT TRUNCATED AT 250 WORDS)

  1. a Review of the Biomechanics and Epidemiology of Working Postures (it Isn't always Vibration which is to BLAME!)

    NASA Astrophysics Data System (ADS)

    Magnusson, M. L.; Pope, M. H.

    1998-08-01

    Many vibrational environments also subject the worker to awkward, asymmetric and prolonged postures. This paper reviews the epidemiological, biomechanical and physiological factors involved in working postures which could lead to musculoskeletal problems. Too little or too much sitting leads to low back pain. Sedentary postures, including driving, also lead to a higher risk of a herniated disc. In sitting the pelvis rotates and higher pressures exist in the disk. A backrest inclined to 110° or more and with a lumbar support will reduce the disk pressure. Jobs involving excessive force application will be more apt to cause muscular and ligamentous damage. However, these excessive demands can occur in whole body vibration environments too. Neck, shoulder and arm problems are usually related to posture but can occur in WBV environments. Knee problems, in the standing worker, may be due to a flexed knee posture in an attempt to attenuate vibrations. Excessive postural demands on the neck, shoulder and arm will lead to higher muscle forces and higher joint forces. Recommendations are given to reduce risk of disability.

  2. The Effect of Vision on Postural Strategies in Prader-Willi Patients

    ERIC Educational Resources Information Center

    Cimolin, Veronica; Galli, Manuela; Vismara, Luca; Grugni, Graziano; Priano, Lorenzo; Capodaglio, Paolo

    2011-01-01

    The aim of this study was to quantify the role of visual contribution in patients with Prader-Willi syndrome (PWS) on balance maintenance using a force platform. We enrolled 14 individuals with PWS free from conditions associated with impaired balance, 44 obese (OG) and 20 healthy controls (CG). Postural sway was measured for 60 s while standing…

  3. Organization of Functional Postural Responses Following Perturbations in Multiple Directions in Elderly Fallers Standing Quietly

    ERIC Educational Resources Information Center

    Matjacic, Zlatko; Sok, David; Jakovljevic, Miroljub; Cikajlo, Imre

    2013-01-01

    The objective of the study was to assess functional postural responses by analyzing the center-of-pressure trajectories resulting from perturbations delivered in multiple directions to elderly fallers. Ten elderly individuals were standing quietly on two force platforms while an apparatus delivered controlled perturbations at the level of pelvis…

  4. Correcting Poor Posture without Awareness or Willpower

    ERIC Educational Resources Information Center

    Wernik, Uri

    2012-01-01

    In this article, a new technique for correcting poor posture is presented. Rather than intentionally increasing awareness or mobilizing willpower to correct posture, this approach offers a game using randomly drawn cards with easy daily assignments. A case using the technique is presented to emphasize the subjective experience of living with poor…

  5. Postural Variables in Girls Practicing Volleyball

    ERIC Educational Resources Information Center

    Grabara, Malgorzata; Hadzik, Andrzej

    2009-01-01

    Study aim: To assess body posture of young female volleyball players in relation to their untrained mates. Material and methods: A group of 42 volleyball players and another of 43 untrained girls, all aged 13-16 years were studied with respect to their body posture indices by using computer posturography. Spinal angles and curvatures were…

  6. Functional Neuroanatomy for Posture and Gait Control.

    PubMed

    Takakusaki, Kaoru

    2017-01-01

    Here we argue functional neuroanatomy for posture-gait control. Multi-sensory information such as somatosensory, visual and vestibular sensation act on various areas of the brain so that adaptable posture-gait control can be achieved. Automatic process of gait, which is steady-state stepping movements associating with postural reflexes including headeye coordination accompanied by appropriate alignment of body segments and optimal level of postural muscle tone, is mediated by the descending pathways from the brainstem to the spinal cord. Particularly, reticulospinal pathways arising from the lateral part of the mesopontine tegmentum and spinal locomotor network contribute to this process. On the other hand, walking in unfamiliar circumstance requires cognitive process of postural control, which depends on knowledges of self-body, such as body schema and body motion in space. The cognitive information is produced at the temporoparietal association cortex, and is fundamental to sustention of vertical posture and construction of motor programs. The programs in the motor cortical areas run to execute anticipatory postural adjustment that is optimal for achievement of goal-directed movements. The basal ganglia and cerebellum may affect both the automatic and cognitive processes of posturegait control through reciprocal connections with the brainstem and cerebral cortex, respectively. Consequently, impairments in cognitive function by damages in the cerebral cortex, basal ganglia and cerebellum may disturb posture-gait control, resulting in falling.

  7. Variations in Writing Posture and Cerebral Organization

    ERIC Educational Resources Information Center

    Levy, Jerre; Reid, Marylou

    1976-01-01

    Investigated the relationship between hand writing posture and cerebral dominance of 48 left handed writers and 25 right handed writers. Determined that cerebral dominance is related to handedness and to whether or not the writing hand posture is normal or inverted. (SL)

  8. Neuromechanical tuning of nonlinear postural control dynamics

    NASA Astrophysics Data System (ADS)

    Ting, Lena H.; van Antwerp, Keith W.; Scrivens, Jevin E.; McKay, J. Lucas; Welch, Torrence D. J.; Bingham, Jeffrey T.; DeWeerth, Stephen P.

    2009-06-01

    Postural control may be an ideal physiological motor task for elucidating general questions about the organization, diversity, flexibility, and variability of biological motor behaviors using nonlinear dynamical analysis techniques. Rather than presenting "problems" to the nervous system, the redundancy of biological systems and variability in their behaviors may actually be exploited to allow for the flexible achievement of multiple and concurrent task-level goals associated with movement. Such variability may reflect the constant "tuning" of neuromechanical elements and their interactions for movement control. The problem faced by researchers is that there is no one-to-one mapping between the task goal and the coordination of the underlying elements. We review recent and ongoing research in postural control with the goal of identifying common mechanisms underlying variability in postural control, coordination of multiple postural strategies, and transitions between them. We present a delayed-feedback model used to characterize the variability observed in muscle coordination patterns during postural responses to perturbation. We emphasize the significance of delays in physiological postural systems, requiring the modulation and coordination of both the instantaneous, "passive" response to perturbations as well as the delayed, "active" responses to perturbations. The challenge for future research lies in understanding the mechanisms and principles underlying neuromechanical tuning of and transitions between the diversity of postural behaviors. Here we describe some of our recent and ongoing studies aimed at understanding variability in postural control using physical robotic systems, human experiments, dimensional analysis, and computational models that could be enhanced from a nonlinear dynamics approach.

  9. Functional Neuroanatomy for Posture and Gait Control

    PubMed Central

    Takakusaki, Kaoru

    2017-01-01

    Here we argue functional neuroanatomy for posture-gait control. Multi-sensory information such as somatosensory, visual and vestibular sensation act on various areas of the brain so that adaptable posture-gait control can be achieved. Automatic process of gait, which is steady-state stepping movements associating with postural reflexes including headeye coordination accompanied by appropriate alignment of body segments and optimal level of postural muscle tone, is mediated by the descending pathways from the brainstem to the spinal cord. Particularly, reticulospinal pathways arising from the lateral part of the mesopontine tegmentum and spinal locomotor network contribute to this process. On the other hand, walking in unfamiliar circumstance requires cognitive process of postural control, which depends on knowledges of self-body, such as body schema and body motion in space. The cognitive information is produced at the temporoparietal association cortex, and is fundamental to sustention of vertical posture and construction of motor programs. The programs in the motor cortical areas run to execute anticipatory postural adjustment that is optimal for achievement of goal-directed movements. The basal ganglia and cerebellum may affect both the automatic and cognitive processes of posturegait control through reciprocal connections with the brainstem and cerebral cortex, respectively. Consequently, impairments in cognitive function by damages in the cerebral cortex, basal ganglia and cerebellum may disturb posture-gait control, resulting in falling. PMID:28122432

  10. Vestibular plasticity following orbital spaceflight: recovery from postflight postural instability

    NASA Technical Reports Server (NTRS)

    Black, F. O.; Paloski, W. H.; Doxey-Gasway, D. D.; Reschke, M. F.

    1995-01-01

    Results of previous studies suggested that the vestibular mediated postural instability observed in astronauts upon return to earth from orbital spaceflight may be exacerbated by an increased weighting of visual inputs for spatial orientation and control of movement. This study was performed to better understand the roles of visual and somatosensory contributions to recovery of normal sensori-motor postural control in returning astronauts. Preflight and postflight, 23 astronaut volunteers were presented randomly with three trials of six sensory organization test (SOT) conditions in the EquiTest system test battery. Sagittal plane center-of-gravity (COG) excursions computed from ground reaction forces were significantly higher on landing day than preflight for those test conditions presenting sway-referenced visual and/or somatosensory orientation cues. The ratio of summed peak-to-peak COG sway amplitudes on the two sway-referenced vision tests (SOTs 3 + 6) compared to the two eyes closed tests (SOTs 2 + 5) was increased on landing day, indicating an increased reliance on visual orientation cues for postural control. The ratio of peak-to-peak COG excursions on sway-referenced surfaces (SOTs 4, 5 & 6) to an earth fixed support surfaces (SOTs 1, 2 & 3) increased even more after landing suggesting primary reliance on somatosensory orientation cues for recovery of postflight postural stability. Readaptation to sway-referenced support surfaces took longer than readaptation to sway-referenced vision. The increased reliance on visual and somatosensory inputs disappeared in all astronauts 4-8 days following return to earth.

  11. Can prepared anticipatory postural adjustments be updated by proprioception?

    PubMed

    Ruget, H; Blouin, J; Teasdale, N; Mouchnino, L

    2008-08-26

    Stepping over an obstacle is preceded by a center of pressure (CoP) shift, termed anticipatory postural adjustments (APAs). It provides an acceleration of the center of mass forward and laterally prior to step initiation. The APAs are characterized in the lateral direction by a force exerted by the moving leg onto the ground, followed by an unloading of the stepping leg and completed by an adjustment corresponding to a slow CoP shift toward the supporting foot. While the importance of sensory information in the setting of the APAs is undisputed, it is currently unknown whether sensory information can also be used online to modify the feedforward command of the APAs. The purpose of this study was to investigate how the CNS modulates the APAs when a modification of proprioceptive information (Ia) occurs before or during the initiation of the stepping movement. We used the vibration of ankle muscles acting in the lateral direction to induce modification of the afferent inflow. Subjects learned to step over an obstacle, eyes closed, in synchrony to a tone signal. When vibration was applied during the initiation of the APAs, no change in the early APAs was observed except in the case of a cutaneous stimulation (low frequency vibration); it is thus possible that the CNS relies less on proprioceptive information during this early phase. Only the final adjustment of the CoP seems to take into account the biased proprioceptive information. When vibration was applied well before the APAs onset, a postural reaction toward the side of the vibration was produced. When subjects voluntarily initiated a step after the postural reaction, the thrust amplitude was set according to the direction of the postural reaction. This suggests that the planned motor command of the APAs can be updated online before they are triggered.

  12. Postural Coordination during Socio-motor Improvisation

    PubMed Central

    Gueugnon, Mathieu; Salesse, Robin N.; Coste, Alexandre; Zhao, Zhong; Bardy, Benoît G.; Marin, Ludovic

    2016-01-01

    Human interaction often relies on socio-motor improvisation. Creating unprepared movements during social interaction is not a random process but relies on rules of synchronization. These situations do not only involve people to be coordinated, but also require the adjustment of their posture in order to maintain balance and support movements. The present study investigated posture in such a context. More precisely, we first evaluated the impact of amplitude and complexity of arm movements on posture in solo situation. Then, we assessed the impact of interpersonal coordination on posture using the mirror game in which dyads performed improvised and synchronized movements (i.e., duo situation). Posture was measured through ankle-hip coordination in medio-lateral and antero-posterior directions (ML and AP respectively). Our results revealed the spontaneous emergence of in-phase pattern in ML direction and antiphase pattern in AP direction for solo and duo situations. These two patterns respectively refer to the simultaneous flexion/extension of the ankles and the hips in the same or opposite direction. It suggests different functional roles of postural coordination patterns in each direction, with in-phase supporting task performance in ML (dynamical stability) and antiphase supporting postural control in AP (mechanical stability). Although amplitude of movement did not influence posture, movement complexity disturbed postural stability in both directions. Conversely, interpersonal coordination promoted postural stability in ML but not in AP direction. These results are discussed in terms of the difference in coupling strength between ankle-hip coordination and interpersonal coordination. PMID:27547193

  13. Combination of BTrackS and Geri-Fit as a targeted approach for assessing and reducing the postural sway of older adults with high fall risk

    PubMed Central

    Goble, Daniel J; Hearn, Mason C; Baweja, Harsimran S

    2017-01-01

    Atypically high postural sway measured by a force plate is a known risk factor for falls in older adults. Further, it has been shown that small, but significant, reductions in postural sway are possible with various balance exercise interventions. In the present study, a new low-cost force-plate technology called the Balance Tracking System (BTrackS) was utilized to assess postural sway of older adults before and after 90 days of a well-established exercise program called Geri-Fit. Results showed an overall reduction in postural sway across all participants from pre- to post-intervention. However, the magnitude of effects was significantly influenced by the amount of postural sway demonstrated by individuals prior to Geri-Fit training. Specifically, more participants with atypically high postural sway pre-intervention experienced an overall postural sway reduction. These reductions experienced were typically greater than the minimum detectable change statistic for the BTrackS Balance Test. Taken together, these findings suggest that BTrackS is an effective means of identifying older adults with elevated postural sway, who are likely to benefit from Geri-Fit training to mitigate fall risk. PMID:28228655

  14. Combination of BTrackS and Geri-Fit as a targeted approach for assessing and reducing the postural sway of older adults with high fall risk.

    PubMed

    Goble, Daniel J; Hearn, Mason C; Baweja, Harsimran S

    2017-01-01

    Atypically high postural sway measured by a force plate is a known risk factor for falls in older adults. Further, it has been shown that small, but significant, reductions in postural sway are possible with various balance exercise interventions. In the present study, a new low-cost force-plate technology called the Balance Tracking System (BTrackS) was utilized to assess postural sway of older adults before and after 90 days of a well-established exercise program called Geri-Fit. Results showed an overall reduction in postural sway across all participants from pre- to post-intervention. However, the magnitude of effects was significantly influenced by the amount of postural sway demonstrated by individuals prior to Geri-Fit training. Specifically, more participants with atypically high postural sway pre-intervention experienced an overall postural sway reduction. These reductions experienced were typically greater than the minimum detectable change statistic for the BTrackS Balance Test. Taken together, these findings suggest that BTrackS is an effective means of identifying older adults with elevated postural sway, who are likely to benefit from Geri-Fit training to mitigate fall risk.

  15. Direct Speaker Gaze Promotes Trust in Truth-Ambiguous Statements

    PubMed Central

    Kessler, Luise; Schweinberger, Stefan R.

    2016-01-01

    A speaker’s gaze behaviour can provide perceivers with a multitude of cues which are relevant for communication, thus constituting an important non-verbal interaction channel. The present study investigated whether direct eye gaze of a speaker affects the likelihood of listeners believing truth-ambiguous statements. Participants were presented with videos in which a speaker produced such statements with either direct or averted gaze. The statements were selected through a rating study to ensure that participants were unlikely to know a-priori whether they were true or not (e.g., “sniffer dogs cannot smell the difference between identical twins”). Participants indicated in a forced-choice task whether or not they believed each statement. We found that participants were more likely to believe statements by a speaker looking at them directly, compared to a speaker with averted gaze. Moreover, when participants disagreed with a statement, they were slower to do so when the statement was uttered with direct (compared to averted) gaze, suggesting that the process of rejecting a statement as untrue may be inhibited when that statement is accompanied by direct gaze. PMID:27643789

  16. Human posture experiments under water: ways of applying the findings to microgravity

    NASA Astrophysics Data System (ADS)

    Dirlich, Thomas

    differences between underwater and real microgravity environment were analyzed in greater detail: external forces (buoyancy and grav-ity), required fixation, postural changes by breathing and subject orientation to gravitational vector. Goal of this analysis was to understand the respective effects of each environmental influence on subjects posture observed. Each of the different influences was then quantified and the postural change induced by it calculated. These were then combined using a specially programmed multi-body-simulation tool, making it possible to recompute 3D posture data dy-namically to the environmental influences. The simulation is based on the volumetric 3D model of each subject, specific anthropometric data, such as body-fat or muscle ratio, combined with external forces such as gravity and buoyancy. The recomputed data can then be compared independent from the environmental influences. The recomputed 3D posture data can then be re-evaluated focussing again on possible inter-personal neutral posture archetypes in the subject group. Some examples of recomputed data and inter-personal findings will be given.

  17. Recovery of postural equilibrium control following spaceflight

    NASA Technical Reports Server (NTRS)

    Paloski, W. H.; Reschke, M. F.; Black, F. O.; Doxey, D. D.; Harm, D. L.

    1992-01-01

    Decreased postural stability is observed in most astronauts immediately following spaceflight. Because ataxia may present postflight operational hazards, it is important to determine the incidence of postural instability immediately following landing and the dynamics of recovery of normal postural equilibrium control. It is postulated that postflight postural instability results from in-flight adaptive changes in central nervous system (CNS) processing of sensory information from the visual, vestibular, and proprioceptive systems. The purpose of the present investigation was to determine the magnitude and time course of postflight recovery of postural equilibrium control and, hence, readaptation of CNS processing of sensory information. Thirteen crew members from six spaceflight missions were studied pre- and postflight using a modified commercial posturography system. Postural equilibrium control was found to be seriously disrupted immediately following spaceflight in all subjects. Readaptation to the terrestrial environment began immediately upon landing, proceeded rapidly for the first 10-12 hours, and then proceeded much more slowly for the subsequent 2-4 days until preflight stability levels were reachieved. It is concluded that the overall postflight recovery of postural stability follows a predictable time course.

  18. Effect of light touch on postural sway in individuals with balance problems: a systematic review.

    PubMed

    Baldan, A M S; Alouche, S R; Araujo, I M G; Freitas, S M S F

    2014-01-01

    The aim of the present review was to examine the experimental, case-control studies that investigated the effect of light touch on postural sway in individuals with balance problems due to aging, brain lesion or other motor or sensory deficits. Articles published before the end of March of 2013 were searched in PubMed, Scielo and Lilacs databases using terms related to postural control and sensory information. Twelve studies that assessed the postural sway of individuals with balance problems during quiet standing with the light touch using a force plate were reviewed. Two reviewers rated all selected articles as having good quality. The effect of light touch on postural control was reported by all eligible studies regardless of the cause of the balance problem of the participants. Such effect was more evident when the applied vertical force was greater than 1N, but if individuals with poor balance took more advantage of the light touch than healthy ones it depended on the source of their balance problems and not the amount of the applied force. These findings suggested that the maintenance of the fingertip lightly touching an external surface could provide additional somatosensory information for individuals with poor balance and then it could be used as a strategy to improve the control of upright standing during intervention programs.

  19. Analysis of postural sway in patients with normal pressure hydrocephalus: effects of shunt implantation.

    PubMed

    Czerwosz, L; Szczepek, E; Blaszczyk, J W; Sokolowska, B; Dmitruk, K; Dudzinski, K; Jurkiewicz, J; Czernicki, Z

    2009-12-07

    Poor postural balance is one of the major risk factors for falling in normal pressure hydrocephalus (NPH). Postural instability in the clinic is commonly assessed based upon force platform posturography. In this study we focused on the identification of changes in sway characteristics while standing quiet in patients with NPH before and after shunt implantation. Postural sway area and sway radius were analyzed in a group of 9 patients and 46 controls of both genders. Subject's spontaneous sway was recorded while standing quiet on a force platform for 30-60 s, with eyes open and then closed. Both analyzed sway descriptors identified between-group differences and also an effect of shunt implantation in the NPH group. Sway radius and sway area in patients exhibited very high values compared with those in the control group. Importantly, the effect of eyesight in patients was not observed before shunt implantation and reappeared after the surgical treatment. The study documents that static force platform posturography may be a reliable measure of postural control improvement due to shunt surgery.

  20. An Intelligent Body Posture Analysis Model Using Multi-Sensors for Long-Term Physical Rehabilitation.

    PubMed

    Lai, Chin-Feng; Hwang, Ren-Hung; Lai, Ying-Hsun

    2017-04-01

    Sensors can be installed on various body parts to provide information for computer diagnosis to identify the current body state. However, as human posture is subject to gravity, the direction of the force on each limb differs. For example, the directions of gravitational force on legs and trunk differ. In addition, each person's height and structure of limbs differs, hence, the acceleration and rotation resulted from such differences on force and length of the limbs of a person in motion would be different, and be presented by cases of different postures. Thus, how to present body postures through skeleton system equations, and achieve an long-term physical rehabilitation, according to the different limb characteristics of each person, is a challenging research issue. This paper proposes a novel scheme named as "Intelligent Body Posture Analysis Model", which uses multiple acceleration sensors and gyroscopes to detect body motion patterns. The effectiveness of the proposed scheme is proved by conducting a large number of practical experiments and tests.

  1. The control of limb geometry in cat posture.

    PubMed Central

    Lacquaniti, F; Le Taillanter, M; Lopiano, L; Maioli, C

    1990-01-01

    1. The aim of this study is to address the problem of the controlled variable in quadrupedal stance. In particular, we considered whether the projection of the centre of mass of the body on the support surface or the joint torques or the geometrical configuration of the limbs are primarily controlled. 2. Cats were trained to stand freely on a platform which could be tilted in the sagittal plane by up to +/- 20 deg. The normal and tangential components of the contact forces at each paw were measured by means of load cells. The position of limb joints was recorded by means of the ELITE system. 3. The projection of the centre of body mass on the platform, as well as the orientation and length of limb axes, varied to only a limited extent with tilt angle. In particular, the limb axes were closely lined up with the vertical, as were the vectors of the contact forces at the paws. As a result, the torques at the proximal joints (scapula and hip) were close to zero and the torques at the other joints varied little with table tilt. 4. In order to test the different hypotheses on postural control, an external load (10-20% of the animal weight) was applied to the cat forequarters. The projected centre of mass consistently shifted forwards, contrary to the hypothesis that this parameter is controlled in stance. Instead, the geometry of limb posture remained unmodified after load application, even though the torques at forelimb joints were much greater than in the control. 5. This postural behaviour showed no sign of adaptation over a period of 24 h of continuous load application. 6. It is concluded that limb geometry is primarily controlled in stance. The results are discussed in the context of current notions on hierarchical control and body scheme. PMID:2231397

  2. Influence of fear of falling on anticipatory postural control of medio-lateral stability during rapid leg flexion.

    PubMed

    Yiou, E; Deroche, T; Do, M C; Woodman, T

    2011-04-01

    During leg flexion from erect posture, postural stability is organized in advance during "anticipatory postural adjustments" (APA). During these APA, inertial forces are generated that propel the centre of gravity (CoG) laterally towards stance leg side. This study examined how fear of falling (FoF) may influence this anticipatory postural control of medio-lateral (ML) stability. Ten young healthy participants performed a series of leg flexions at maximal velocity from low and high surface heights (6 and 66 cm above ground, respectively). In this latter condition with increased FoF, stance foot was placed at the lateral edge of the support surface to induce maximal postural threat. Results showed that the amplitude of ML inertial forces generated during APA decreased with FoF; this decrease was compensated by an increase in APA duration so that the CoG position at time of swing foot-off was located further towards stance leg side. With these changes in ML APA, the CoG was propelled in the same final (unipodal) position above stance foot as in condition with low FoF. These results contrast with those obtained in the literature during quiet standing which showed that FoF did not have any influence on the ML component of postural control. It is proposed that ML APA are modified with increased FoF, in such a way that the risk of a sideway fall induced by the large CoG motion is attenuated.

  3. A comparison of low back kinetic estimates obtained through posture matching, rigid link modeling and an EMG-assisted model.

    PubMed

    Parkinson, R J; Bezaire, M; Callaghan, J P

    2011-07-01

    This study examined errors introduced by a posture matching approach (3DMatch) relative to dynamic three-dimensional rigid link and EMG-assisted models. Eighty-eight lifting trials of various combinations of heights (floor, 0.67, 1.2 m), asymmetry (left, right and center) and mass (7.6 and 9.7 kg) were videotaped while spine postures, ground reaction forces, segment orientations and muscle activations were documented and used to estimate joint moments and forces (L5/S1). Posture matching over predicted peak and cumulative extension moment (p < 0.0001 for all variables). There was no difference between peak compression estimates obtained with posture matching or EMG-assisted approaches (p = 0.7987). Posture matching over predicted cumulative (p < 0.0001) compressive loading due to a bias in standing, however, individualized bias correction eliminated the differences. Therefore, posture matching provides a method to analyze industrial lifting exposures that will predict kinetic values similar to those of more sophisticated models, provided necessary corrections are applied.

  4. Aljoya Consensus Statement

    EPA Pesticide Factsheets

    A consensus statement of 100 experts meeting at the Aljoya Conference Center in Seattle, Washington in July 2000 for the First International Conference on Trans-Pacific Transport of Atmospheric Contaminants.

  5. Statement on Human Cloning

    MedlinePlus

    ... form Search American Association for the Advancement of Science Statement on Human Cloning Tweet The American Association for the Advancement of Science (AAAS) recognizes the intense debates within our society ...

  6. The effects of repetitive haemarthrosis on postural balance in children with haemophilia.

    PubMed

    Souza, F M B; McLaughlin, P; Pereira, R P; Minuque, N P; Mello, M H M; Siqueira, C; Villaça, P; Tanaka, C

    2013-07-01

    Sensory information from visual, vestibular and proprioceptive systems is necessary to control posture and balance. Impairment in proprioception due to repetitive joints bleeding may lead to a deficit in postural balance which, in turn, leads to high joint stress and risk of bleeding recurrence. Despite the increase in attention in this field during the past few years, the data concerning to how bleeds can affect postural control in children with haemophilia (CWH) remain scarce. This study aimed to evaluate the postural balance in CWH. Twenty CWH Haemophilia Group (HG) and 20 age-matched children Control Group (CG) were recruited to this study. A force plate was used to record centre of pressure (COP) displacement under four different postural conditions during quiet standing: eyes open on firm surface, eyes open on foam surface, eyes closed on firm surface and eyes closed on a foam surface. Variables of COP as sway area and mean velocity and in anterior-posterior (y) medio-lateral (x) direction were processed and for each variable sensory, quotients were calculated and compared between groups. No differences were found in visual and vestibular quotients variables between groups. A higher value was found in sway area variable on proprioception quotient in the HG when compared with CG (P = 0.042). CWH with repetitive joint bleed on lower limbs showed differences in postural balance when compared with non-haemophiliac children. The identification of early balance impairments in CWH can help us understand better the effects of bleeds inside joints on postural control and plan a more effective preventive and rehabilitative treatment.

  7. Directional postural responses induced by vibrotactile stimulations applied to the torso.

    PubMed

    Lee, Beom-Chan; Martin, Bernard J; Sienko, Kathleen H

    2012-10-01

    It has been shown that torso-based vibrotactile feedback significantly reduces postural sway in balance-compromised adults during quiet standing and in response to perturbations. This study aimed to determine whether vibrotactile stimulations applied to different torso locations induced directional postural responses and whether torso cutaneous information contributes to body representation. Eleven healthy young adults equipped with an inertial measurement unit (IMU) placed on the torso were asked to maintain an upright posture with closed eyes. Six vibrators (tactors) were placed on the torso in contact with the skin over the left and right external oblique, internal oblique, and erector spinae muscles at the L4/L5 level. Each tactor was randomly activated four times per location at a frequency of 250 Hz for a period of 5 s. The IMU results indicated that vibration applied individually over the internal oblique and erector spinae muscles induced a postural shift of about one degree oriented in the direction of the stimulation, while simultaneous activation of all tactors and activation of tactors over external oblique muscles produced insignificant postural effects. The root mean square of the sway signal was significantly higher during vibration than before or after. However, the center of pressure displacement, measured by a force plate, was uninfluenced by any vibration. These results suggest a multi-joint postural response including a torso inclination associated with vibration-induced changes in cutaneous information. The directional aspect of vibration-induced postural shifts suggests that cutaneous information from the stimulated areas contributes to proprioception and upper body spatial representation.

  8. Beyond deficit or compensation: new insights on postural control after long-term total visual loss.

    PubMed

    Russo, Maitê M; Lemos, Thiago; Imbiriba, Luís A; Ribeiro, Nathalia L; Vargas, Claudia D

    2017-02-01

    Loss of vision is well known to affect postural control in blind subjects. This effect has classically been framed in terms of deficit or compensation depending on whether body sway increases or decreases in comparison with that of sighted subjects with the eyes open. However, studies have shown that postural responses can be modulated by the context and that changes in postural sway may not necessarily mean a worsened or improved postural control. The goal of our study was to test whether balance is affected by the context in blind subjects. Additional to the quantification of center of pressure (COP) displacement, measurements of body motion (COG) and the correspondent net neuromuscular response (COP-COG) were evaluated in anterior-posterior and medial-lateral directions. Thirty-eight completely blind and thirty-two sighted subjects participated of this study. The volunteers were asked to stand barefoot on a force platform for 60 s in two different conditions: feet apart and feet together. Sighted participants performed the tests with both the eyes open and eyes closed. Results showed that the COP-COG displacements in the blind group were greater than those of the sighted group with eyes open in almost all conditions tested, but not in eyes closed condition. However, the COP and COG results confirmed that the postural responses were context dependent. Together these results suggest that total visual loss does not just lead to a balance deficit or compensation, but to a specific postural signature that might imply in enhancing COP, COG and/or COP-COG in specific postural conditions.

  9. The influence of wrist posture on the time and frequency EMG signal measures of forearm muscles.

    PubMed

    Roman-Liu, Danuta; Bartuzi, Paweł

    2013-03-01

    This study investigates how altering wrist posture influences the relationship between the time and frequency measures of the electromyography (EMG) signal of extensor digitorum communis (EDC) and flexor carpi ulnaris (FCU). Thirteen participants exerted handgrip force related to maximum voluntary contraction (MVC) in four tests: 20%MVC and 50%MVC in neutral wrist posture and 20%MVC in full wrist flexion and extension. EMG measurements from EDC and FCU were used to calculate normalized values of amplitude (nRMS) and mean and median frequency of the power spectrum (nMPF, nMF). During muscle shortening (wrist flexion for FCU and wrist extension for EDC) nRMS was approximately twofold higher than in neutral posture for FCU and fourfold for EDC. All measures obtained at 20%MVC in neutral posture were significantly different from 20%MVC in wrist flexion for FCU and 20%MVC in wrist extension for EDC (p<0.05). Differences between 50%MVC and 20%MVC at neutral posture (nRMS) were significant for both muscles, although in nMPF and nMF for EDC only. Muscle shortening changed the pattern of statistical significance when the time and frequency domain measures were compared, whereas muscle lengthening did not. It can be concluded that muscle shortening caused by altering wrist posture influences the relationship between the time and frequency measures in both muscles. This suggests that in studies using EMG in different wrist postures, changes in the relationship between the time and the frequency measures should be considered.

  10. Impaired H-Reflex Gain during Postural Loaded Locomotion in Individuals Post-Stroke

    PubMed Central

    Liang, Jing Nong; Brown, David A.

    2015-01-01

    Objective Successful execution of upright locomotion requires coordinated interaction between controllers for locomotion and posture. Our earlier research supported this model in the non-impaired and found impaired interaction in the post-stroke nervous system during locomotion. In this study, we sought to examine the role of the Ia afferent spinal loop, via the H-reflex response, under postural influence during a locomotor task. We tested the hypothesis that the ability to increase stretch reflex gain in response to postural loads during locomotion would be reduced post-stroke. Methods Fifteen individuals with chronic post-stroke hemiparesis and 13 non-impaired controls pedaled on a motorized cycle ergometer with specialized backboard support system under (1) seated supported, and (2) non-seated postural-loaded conditions, generating matched pedal force outputs of two levels. H-reflexes were elicited at 90°crank angle. Results We observed increased H-reflex gain with postural influence in non-impaired individuals, but a lack of increase in individuals post-stroke. Furthermore, we observed decreased H-reflex gain at higher postural loads in the stroke-impaired group. Conclusion These findings suggest an impaired Ia afferent pathway potentially underlies the defects in the interaction between postural and locomotor control post-stroke and may explain reduced ability of paretic limb support during locomotor weight-bearing in individuals post-stroke. Significance These results support the judicious use of bodyweight support training when first helping individuals post-stroke to regain locomotor pattern generation and weight-bearing capability. PMID:26629996

  11. Postural control in bipolar disorder: increased sway area and decreased dynamical complexity.

    PubMed

    Bolbecker, Amanda R; Hong, S Lee; Kent, Jerillyn S; Klaunig, Mallory J; O'Donnell, Brian F; Hetrick, William P

    2011-01-01

    Structural, neurochemical, and functional abnormalities have been identified in the brains of individuals with bipolar disorder, including in key brain structures implicated in postural control, i.e. the cerebellum, brainstem, and basal ganglia. Given these findings, we tested the hypothesis that postural control deficits are present in individuals with bipolar disorder. Sixteen participants with bipolar disorder (BD) and 16 age-matched non-psychiatric healthy controls were asked to stand as still as possible on a force platform for 2 minutes under 4 conditions: (1) eyes open-open base; (2) eyes closed-open base; (3) eyes open-closed base; and (4) eyes closed-closed base. Postural sway data were submitted to conventional quantitative analyses of the magnitude of sway area using the center of pressure measurement. In addition, data were submitted to detrended fluctuation analysis, a nonlinear dynamical systems analytic technique that measures complexity of a time-series, on both the anterior-posterior and medio-lateral directions. The bipolar disorder group had increased sway area, indicative of reduced postural control. Decreased complexity in the medio-lateral direction was also observed for the bipolar disorder group, suggesting both a reduction in dynamic range available to them for postural control, and that their postural corrections were primarily dominated by longer time-scales. On both of these measures, significant interactions between diagnostic group and visual condition were also observed, suggesting that the BD participants were impaired in their ability to make corrections to their sway pattern when no visual information was available. Greater sway magnitude and reduced complexity suggest that individuals with bipolar disorder have deficits in sensorimotor integration and a reduced range of timescales available on which to make postural corrections.

  12. Postural Control in Dual-Task Situations: Does Whole-Body Fatigue Matter?

    PubMed Central

    Beurskens, Rainer; Haeger, Matthias; Kliegl, Reinhold; Roecker, Kai; Granacher, Urs

    2016-01-01

    Postural control is important to cope with demands of everyday life. It has been shown that both attentional demand (i.e., cognitive processing) and fatigue affect postural control in young adults. However, their combined effect is still unresolved. Therefore, we investigated the effects of fatigue on single- (ST) and dual-task (DT) postural control. Twenty young subjects (age: 23.7 ± 2.7) performed an all-out incremental treadmill protocol. After each completed stage, one-legged-stance performance on a force platform under ST (i.e., one-legged-stance only) and DT conditions (i.e., one-legged-stance while subtracting serial 3s) was registered. On a second test day, subjects conducted the same balance tasks for the control condition (i.e., non-fatigued). Results showed that heart rate, lactate, and ventilation increased following fatigue (all p < 0.001; d = 4.2–21). Postural sway and sway velocity increased during DT compared to ST (all p < 0.001; d = 1.9–2.0) and fatigued compared to non-fatigued condition (all p < 0.001; d = 3.3–4.2). In addition, postural control deteriorated with each completed stage during the treadmill protocol (all p < 0.01; d = 1.9–3.3). The addition of an attention-demanding interference task did not further impede one-legged-stance performance. Although both additional attentional demand and physical fatigue affected postural control in healthy young adults, there was no evidence for an overadditive effect (i.e., fatigue-related performance decrements in postural control were similar under ST and DT conditions). Thus, attentional resources were sufficient to cope with the DT situations in the fatigue condition of this experiment. PMID:26796320

  13. Reversible postural orthostatic tachycardia syndrome.

    PubMed

    Abdulla, Aza; Rajeevan, Thirumagal

    2015-07-16

    Postural orthostatic tachycardia syndrome (POTS) is a relatively rare syndrome recognised since 1940. It is a heterogenous condition with orthostatic intolerance due to dysautonomia and is characterised by rise in heart rate above 30 bpm from base line or to more than 120 bpm within 5-10 min of standing with or without change in blood pressure which returns to base line on resuming supine position. This condition present with various disabling symptoms such as light headedness, near syncope, fatigue, nausea, vomiting, tremor, palpitations and mental clouding, etc. However there are no identifiable signs on clinical examination and patients are often diagnosed to have anxiety disorder. The condition predominantly affects young female between the ages of 15-50 but is rarely described in older people. We describe an older patient who developed POTS which recovered over 12 mo. Recognising this condition is important as there are treatment options available to alleviate the disabling symptoms.

  14. Postural orthostatic tachycardia syndrome (POTS).

    PubMed

    Sidhu, Bharat; Obiechina, Nonyelum; Rattu, Noman; Mitra, Shanta

    2013-09-16

    Postural orthostatic tachycardia syndrome (POTS) is a heterogeneous group of conditions characterised by autonomic dysfunction and an exaggerated sympathetic response to assuming an upright position. Up till recently, it was largely under-recognised as a clinical entity. There is now consensus about the definition of POTS as a greater than 30/min heart rate increase on standing from a supine position (greater than 40/min increase in 12-19-year-old patients) or an absolute heart rate of greater than 120/min within 10 min of standing from a supine position and in the absence of hypotension, arrhythmias, sympathomimetic drugs or other conditions that cause tachycardia. We present two cases of POTS, followed by a discussion of its pathogenesis, pathophysiology, epidemiology and management.

  15. Using Accelerometer and Gyroscopic Measures to Quantify Postural Stability

    PubMed Central

    Alberts, Jay L.; Hirsch, Joshua R.; Koop, Mandy Miller; Schindler, David D.; Kana, Daniel E.; Linder, Susan M.; Campbell, Scott; Thota, Anil K.

    2015-01-01

    Context Force platforms and 3-dimensional motion-capture systems provide an accurate method of quantifying postural stability. Substantial cost, space, time to administer, and need for trained personnel limit widespread use of biomechanical techniques in the assessment of postural stability in clinical or field environments. Objective To determine whether accelerometer and gyroscope data sampled from a consumer electronics device (iPad2) provide sufficient resolution of center-of-gravity (COG) movements to accurately quantify postural stability in healthy young people. Design Controlled laboratory study. Setting Research laboratory in an academic medical center. Patients or Other Participants A total of 49 healthy individuals (age = 19.5 ± 3.1 years, height = 167.7 ± 13.2 cm, mass = 68.5 ± 17.5 kg). Intervention(s) Participants completed the NeuroCom Sensory Organization Test (SOT) with an iPad2 affixed at the sacral level. Main Outcome Measure(s) Primary outcomes were equilibrium scores from both systems and the time series of the angular displacement of the anteroposterior COG sway during each trial. A Bland-Altman assessment for agreement was used to compare equilibrium scores produced by the NeuroCom and iPad2 devices. Limits of agreement was defined as the mean bias (NeuroCom − iPad) ± 2 standard deviations. Mean absolute percentage error and median difference between the NeuroCom and iPad2 measurements were used to evaluate how closely the real-time COG sway measured by the 2 systems tracked each other. Results The limits between the 2 devices ranged from −0.5° to 0.5° in SOT condition 1 to −2.9° to 1.3° in SOT condition 5. The largest absolute value of the measurement error within the 95% confidence intervals for all conditions was 2.9°. The mean absolute percentage error analysis indicated that the iPad2 tracked NeuroCom COG with an average error ranging from 5.87% to 10.42% of the NeuroCom measurement across SOT conditions. Conclusions The i

  16. Postural Control of Elderly Adults on Inclined Surfaces.

    PubMed

    da Costa Barbosa, Renata; Vieira, Marcus Fraga

    2017-03-01

    This study analyzed the postural control of older adults on inclined surfaces, and was conducted in 17 elderly adults and 18 young adults of both genders. Ground reaction forces and moments were collected using two AMTI force platforms, one of which was in a horizontal position (HOR), while the other was inclined 14° in relation to the horizontal plane. Each participant executed three 70 s-trials of bipedal standing with their eyes open and eyes closed in three inclination conditions: the HOR, the inclined position at ankle dorsi-flexion (UP), and the inclined position at ankle plantar-flexion (DOWN). Spectral analysis, global (mean velocity-Velm, ellipse area-Area and F80), and structural stabilometric descriptors (sway density curve-SDC, detrended fluctuation analysis-DFA, sample entropy-SEn) were employed to assess the center of pressure sway. Velm and F80 were greater for the elderly, whereas SDC, DFA, and SEn were smaller for this group. Global, SDC and DFA variables were sensitive to visual deprivation, however the relative difference from the EO to EC condition was higher in young than in elderly. The DOWN condition was more stable than the UP condition for both young and older adults. With regard to the UP condition, the challenge observed is essentially associated with the corresponding biomechanical constraints. In conclusion, the elderly showed significant differences compared to the young, but age per se may not necessarily result in compromised postural control.

  17. Cardio-postural interactions and short-arm centrifugation.

    NASA Astrophysics Data System (ADS)

    Blaber, Andrew; Goswami, Nandu; Xu, Da; Laurin, Alexendre

    INTRODUCTION: We are interested in mechanisms associated with orthostatic tolerance. In previous studies we have shown that postural muscles in the calf contribute to both posture and blood pressure regulation during orthostatic stress. In this study we investigated the relationship between cardiovascular and postural muscle control before, during and after short arm human centrifuge (SAHC) up to 2.2 G. METHODS: Eleven healthy young subjects (6 m, 5 f), with no history of cardiovascular disease, falls or orthostatic hypotension, participated. All were familiarized with the SAHC with 10 minutes at 1-G at the feet. Each subject was instrumented in the supine position on the SAHC for beat-to-beat ECG and blood pressure (Portapres derived SBP). Bilateral lower leg EMG was collected from four leg postural muscles: tibialis anterior, medial gastrocnemius, lateral gastrocnemius, and medial soleus. Transdermal differential recording of signals was performed using an 8-channel EMG system, (Myosystem 1200, Noraxon Inc., Arizona, USA). Postural sway data of the body COP was computed from the force and moment data collected with a force platform (Accusway, AMTI, MA, USA). Before and after SAHC, the subject stood on a force platform with their gaze fixed on a point at eye level, closed their eyes and stood quietly for 5 min. A final stand was conducted 30 min after centrifugation with supine rest in between. During clockwise centrifugation (10-min 1g and 10-min 2.2g at the foot) the subjects’ head was hooded and in the dark. The subject’s body was restrained into the rotation arm with a parachute harness and given additional body support with a foot-plate. ECG, EMG and BP data were collected throughout and centre of pressure trajectory (COP) collected during the stand test. Subjects were requested to relax and not to voluntarily contract the leg muscles; however, they were not to suppress contractions as they occurred involuntarily or by reflex. A Continuous Wavelet

  18. The effect of acute back muscle fatigue on postural control strategy in people with and without recurrent low back pain.

    PubMed

    Johanson, Ege; Brumagne, Simon; Janssens, Lotte; Pijnenburg, Madelon; Claeys, Kurt; Pääsuke, Mati

    2011-12-01

    Back muscle fatigue decreases the postural stability during quiet standing, but it is not known whether this fatigue-induced postural instability is due to an altered proprioceptive postural control strategy. Therefore, the aim of the study was to evaluate if acute back muscle fatigue may be a mechanism to induce or sustain a suboptimal proprioceptive postural control strategy in people with and without recurrent low back pain (LBP). Postural sway was evaluated on a force platform in 16 healthy subjects and 16 individuals with recurrent LBP during a control (Condition 1) and a back muscle fatigue condition (Condition 2). Back muscle fatigue was induced by performing a modified Biering-Sørensen test. Ankle and back muscle vibration, a potent stimulus for muscle spindles, was used to differentiate proprioceptive postural control strategies during standing on a stable and unstable support surface, where the latter was achieved by placing a foam pad under the feet. Ankle signals were predominantly used for postural control in all subjects although, in each condition, their influence was greater in people with LBP compared to healthy subjects (p < 0.001). The latter group adapted their postural control strategy when standing on an unstable surface so that input from back muscles increased (p < 0.001). However, such adaptation was not observed when the back muscles were fatigued. Furthermore, people with LBP continued to rely strongly on ankle proprioception regardless of the testing conditions. In conclusion, these findings suggest that impaired back muscle function, as a result of acute muscle fatigue or pain, may lead to an inability to adapt postural control strategies to the prevailing conditions.

  19. Hilbert-Huang-based tremor removal to assess postural properties from accelerometers.

    PubMed

    Mellone, Sabato; Palmerini, Luca; Cappello, Angelo; Chiari, Lorenzo

    2011-06-01

    Tremor is one of the symptoms of several disorders of the central and peripheral nervous system, such as Parkinson's disease (PD). The impairment of postural control is another symptom of PD. The conventional method of posture analysis uses force plates, but accelerometers can be a valid and reliable alternative. Both these measurement techniques are sensitive to tremor. Tremor affects postural measures and may thus lead to misleading results or interpretations. Linear low-pass filters (LPFs) are commonly employed for tremor removal. In this study, an alternative method, based on Hilbert-Huang transformation (HHT), is proposed. We examined 20 PD subjects, with and without tremor, and 20 control subjects. We compared the effectiveness of LPF and HHT-based filtering on a set of postural parameters extracted from acceleration signals. HHT has the advantage of providing a filter, which with no a priori knowledge, efficiently manages the nonlinear, nonstationary interference due to tremor, and beyond tremor, gives descriptive measures of postural function. Some of the differences found using LPF can instead be ascribed to inefficient noise/tremor suppression. Filter order and cutoff frequency are indeed critical when subjects exhibit a tremorous behavior, in which case LPF parameters should be chosen very carefully.

  20. Reliability of the good balance system(®) for postural sway measurement in poststroke patients.

    PubMed

    Ha, Hyungeun; Cho, Kihun; Lee, Wanhee

    2014-01-01

    [Purpose] The purpose of this study was to examine test-retest reliability of the Good Balance system(®) for measurement of postural sway in poststroke patients. [Subjects] Sixty chronic stroke patients (40 men and 20 women; age 63.08 years; stroke duration 16.45 months) participated in this study. [Methods] Postural sway was evaluated using a force platform system (Good Balance system, Metitur Oy, Jyvaskyla, Finland). Two examiners measured postural sway for all participants during two separate testing sessions. The second measurement was performed one week after the first measurement. Intraclass correlation coefficients [ICC(2,1)] were used for estimation of reliability. [Results] The ICC (95% CI) for intra-examiner reliability was good to very good, ranging from 0.69 to 0.93 (0.53-0.96), and the ICC for inter-examiner reliability was good to very good, ranging from 0.85 to 0.98 (0.77-0.99). [Conclusion] The results of the current study indicated that the intra- and inter-examiner reliability of the Good Balance system(®) for measurement of postural sway was good to very good. Therefore, we suggest that measurement of postural sway using the Good Balance system(®) would be useful for clinical assessment in poststroke patients.

  1. Kinematid Parameters of Corrective Postural Responses Differ between Upper and Lower Body Perturbations

    NASA Technical Reports Server (NTRS)

    Sayenko, G.

    2004-01-01

    Balance control is disrupted following prolonged microgravity exposure, and to better understand this, both upper and lower body perturbations have been used to study postural control in space flight crewmembers. However, differences between several postural response indicators observed using the two techniques suggest that different sensory systems may be involved in organizing responses to these different perturbation approaches. The present study sought to compare differences in parameters of corrective postural responses between upper body perturbations (pushes to the chest) and forward translations of the support surface. Nine subjects participated in this study. Forward translations were performed using a NeuroCom EquiTest(TM) CDP system, which was synchronized with a Northern Digital OptoTrak motion tracking system (3 subjects). Chest pushes were applied using a hand-held force transducer device and were performed using a stabilometric system (6 subjects). Analysis of EMG has shown that: i) the earliest response of the leg muscles was registered significantly later during forward translation of the support surface than during chest pushes, and ii) there was a tendency for the different order of leg muscles activation during the translation tests. Analysis of the kinematic data showed a significant difference in the subject's body segments inclinations during corrective postural responses to upper and lower body perturbations. It appears that upper body perturbations likely engage the vestibular system more rapidly, while lower body perturbations likely engage somatosensory systems more rapidly. These differences must be taken into account when choosing the type of perturbation for testing postural function.

  2. Sex differences in catalepsy: evidence for hormone-dependent postural mechanisms in haloperidol-treated rats.

    PubMed

    Field, E F; Whishaw, I Q; Pellis, S M

    2000-05-01

    Catalepsy, a symptom of Parkinson's disease and related disorders can be produced in rats and other laboratory animals by the blockade of nigrostriatal dopamine using dopaminergic antagonists such as haloperidol. When haloperidol-induced cataleptic rats are placed facing downward on an inclined plane, they will brace against the resulting downward force by pushing backwards, and if they lose postural stability, or their position on the inclined plane, they will jump forward. Females, however, jump from the inclined plane at a significantly lower angle than do males. Frame-by-frame analysis of the jumping sequences revealed that females and males use a different combination of postural adjustments to maintain their position on the inclined plane prior to jumping. Furthermore, gonadal hormone manipulations at birth and in adulthood reveal that these sex differences in postural adjustments are dependent on the organizational effects of gonadal hormones in the perinatal period. These results provide evidence for sex differences in postural support mechanisms and suggest that the sex of subjects, or their hormonal state, must be considered when studying the behavioral aspects of neurological disorders such as Parkinson's disease which include a postural component.

  3. Effects of Shift Work on the Postural and Psychomotor Performance of Night Workers.

    PubMed

    Narciso, Fernanda Veruska; Barela, José A; Aguiar, Stefane A; Carvalho, Adriana N S; Tufik, Sergio; de Mello, Marco Túlio

    2016-01-01

    The purpose of the study was to investigate the effects of shift work on the psychomotor and postural performance of night workers. The study included 20 polysomnography technicians working schedule of 12-h night shift by 36-h off. On the first day of protocol, the body mass and height were measured, and an actigraph was placed on the wrist of each participant. On the second day of protocol, sleepiness by Karolinska Sleepiness Scale, postural control by force platform (30 seconds) and psychomotor performance by Psychomotor Vigilance Task (10 minutes) were measured before and after 12-h night work. Results showed that after 12-h night work, sleepiness increased by 59% (p<0.001), postural control variables increased by 9% (p = 0.048), and 14% (p = 0.006). Mean reaction time, and the number of lapses of attention increased by 13% (p = 0.006) and 425% (p = 0.015), respectively, but the mean reciprocal reaction time decreased by 7%. In addition, there were correlations between sleepiness and postural control variables with opened eyes (r = 0.616, 95% confidence interval [CI] = 0.361-0.815; r = 0.538; 95% CI = 0.280-0.748) and closed eyes (r = 0.557; 95% CI = 0.304-0.764, r = 0497; 95% CI = 0.325-0.715) and a pronounced effect of sleepiness on postural sway (R2 = 0.393; 95% CI = 0.001-0.03). Therefore, 12-h night work system and sleepiness showed a negative impact in postural and psychomotor vigilance performance of night workers. As unexpected, the force platform was feasibility to detect sleepiness in this population, underscoring the possibility of using this method in the workplace to prevent occupational injuries and accidents.

  4. Effects of Shift Work on the Postural and Psychomotor Performance of Night Workers

    PubMed Central

    Narciso, Fernanda Veruska; Barela, José A.; Aguiar, Stefane A.; Carvalho, Adriana N. S.; Tufik, Sergio; de Mello, Marco Túlio

    2016-01-01

    The purpose of the study was to investigate the effects of shift work on the psychomotor and postural performance of night workers. The study included 20 polysomnography technicians working schedule of 12-h night shift by 36-h off. On the first day of protocol, the body mass and height were measured, and an actigraph was placed on the wrist of each participant. On the second day of protocol, sleepiness by Karolinska Sleepiness Scale, postural control by force platform (30 seconds) and psychomotor performance by Psychomotor Vigilance Task (10 minutes) were measured before and after 12-h night work. Results showed that after 12-h night work, sleepiness increased by 59% (p<0.001), postural control variables increased by 9% (p = 0.048), and 14% (p = 0.006). Mean reaction time, and the number of lapses of attention increased by 13% (p = 0.006) and 425% (p = 0.015), respectively, but the mean reciprocal reaction time decreased by 7%. In addition, there were correlations between sleepiness and postural control variables with opened eyes (r = 0.616, 95% confidence interval [CI] = 0.361–0.815; r = 0.538; 95% CI = 0.280–0.748) and closed eyes (r = 0.557; 95% CI = 0.304–0.764, r = 0497; 95% CI = 0.325–0.715) and a pronounced effect of sleepiness on postural sway (R2 = 0.393; 95% CI = 0.001–0.03). Therefore, 12-h night work system and sleepiness showed a negative impact in postural and psychomotor vigilance performance of night workers. As unexpected, the force platform was feasibility to detect sleepiness in this population, underscoring the possibility of using this method in the workplace to prevent occupational injuries and accidents. PMID:27115868

  5. Effects of postural task requirements on the speed-accuracy trade-off.

    PubMed

    Duarte, Marcos; Latash, Mark L

    2007-07-01

    We investigated the speed-accuracy trade-off in a task of pointing with the big toe of the right foot by a standing person that was designed to accentuate the importance of postural adjustments. This was done to test two hypotheses: (1) movement time during foot pointing will scale linearly with ID during target width changes, but the scaling will differ across movement distances; and (2) variations in movement time will be reflected in postural preparations to foot motion. Ten healthy adults stood on the force plate and were instructed to point with the big toe of the right foot at a target (with widths varying from 2 to 10 cm) placed on the floor in front of the subject at a distance varying from 10 to 100 cm. The instruction given to the subjects was typical for Fitts' paradigm: "be as fast and as accurate as possible in your pointing movement". The results have shown that movement time during foot pointing movements scaled with both target distance (D) and target width (W), but the two dependences could not be reduced to a single function of W/D, confirming the first hypothesis. With respect to the second hypothesis, we found that changes in task parameters led to proportional variations in movement speed and indices of variability of the postural adjustments prior to leg movement initiation, confirming the second hypothesis. Both groups of observations were valid over the whole range of distances despite the switch of the movement strategy in the middle of this range. We conclude that the speed-accuracy trade-off in a task with postural adjustments originates at the level of movement planning. The different dependences of movement time on D and W may be related to spontaneous postural sway (migration of the point of application of the resultant force acting on the body of the standing person). The results may have practical implications for posture and gait rehabilitation techniques that use modifications of stepping accuracy.

  6. Stabilization of posture by precision contact of the index finger

    NASA Technical Reports Server (NTRS)

    Holden, M.; Ventura, J.; Lackner, J. R.

    1994-01-01

    Postural sway during quiet stance increases if sight of the surroundings is denied. We studied how sensory-motor information about body displacement provided by contact of the index finger with a stationary bar can be used to stabilize balance in the absence of vision. Stabilization equivalent to the contribution conferred by vision was achieved at contact force levels less than 1 N. This value is much below that necessary to provide significant physical stabilization of the body. We interpret our findings in relation to tactile thresholds for motion detection, "precision grip," and proprioceptive and sensory-motor information about the configuration of the arm to the torso. In conditions allowing higher force levels at the fingertip (5-8 N), subjects assumed a passively stable state to stabilize their stance.

  7. Wavelet Transform Analysis of the Power Spectrum of Centre of Pressure Signals to Detect the Critical Point Interval of Postural Control

    NASA Astrophysics Data System (ADS)

    Singh, Neeraj Kumar; Snoussi, Hichem; Hewson, David; Duchêne, Jacques

    The aim of this study was to develop a method to detecting the critical point interval (CPI) when sensory feedback is used as part of a closed-loop postural control strategy. Postural balance was evaluated using centre of pressure (COP) displacements from a force plate for 17 control and 10 elderly subjects under eyes open, eyes closed, and vibration conditions. A modified local-maximum-modulus wavelet transform analysis using the power spectrum of COP signals was used to calculate CPI. Lower CPI values indicate increased closed-loop postural control with a quicker response to sensory input. Such a strategy requires greater energy expenditure due to the repeated muscular interventions to remain stable. The CPI for elderly occurred significantly quicker than for controls, indicating tighter control of posture. Similar results were observed for eyes closed and vibration conditions. The CPI parameter can be used to detect differences in postural control due to ageing.

  8. Neuromechanical tuning of nonlinear postural control dynamics

    PubMed Central

    Ting, Lena H.; van Antwerp, Keith W.; Scrivens, Jevin E.; McKay, J. Lucas; Welch, Torrence D. J.; Bingham, Jeffrey T.; DeWeerth, Stephen P.

    2009-01-01

    Postural control may be an ideal physiological motor task for elucidating general questions about the organization, diversity, flexibility, and variability of biological motor behaviors using nonlinear dynamical analysis techniques. Rather than presenting “problems” to the nervous system, the redundancy of biological systems and variability in their behaviors may actually be exploited to allow for the flexible achievement of multiple and concurrent task-level goals associated with movement. Such variability may reflect the constant “tuning” of neuromechanical elements and their interactions for movement control. The problem faced by researchers is that there is no one-to-one mapping between the task goal and the coordination of the underlying elements. We review recent and ongoing research in postural control with the goal of identifying common mechanisms underlying variability in postural control, coordination of multiple postural strategies, and transitions between them. We present a delayed-feedback model used to characterize the variability observed in muscle coordination patterns during postural responses to perturbation. We emphasize the significance of delays in physiological postural systems, requiring the modulation and coordination of both the instantaneous, “passive” response to perturbations as well as the delayed, “active” responses to perturbations. The challenge for future research lies in understanding the mechanisms and principles underlying neuromechanical tuning of and transitions between the diversity of postural behaviors. Here we describe some of our recent and ongoing studies aimed at understanding variability in postural control using physical robotic systems, human experiments, dimensional analysis, and computational models that could be enhanced from a nonlinear dynamics approach. PMID:19566271

  9. An effect of posture on anticipatory anxiety.

    PubMed

    Lipnicki, Darren M; Byrne, Don G

    2008-02-01

    This study investigated the effects of body posture on state anxiety and psychological stress. Twenty normal adults performed a demanding mental arithmetic task in both standing and supine conditions, with subjective measures of anxiety and stress obtained before, immediately, and 10 min after the task. Participants were found to experience anticipatory anxiety when standing, although not when supine. The mechanism underlying this effect remains to be determined, although it could involve a postural difference in baroreceptor load.

  10. Microgravity effects on 'postural' muscle activity patterns

    NASA Technical Reports Server (NTRS)

    Layne, Charles S.; Spooner, Brian S.

    1994-01-01

    Changes in neuromuscular activation patterns associated with movements made in microgravity can contribute to muscular atrophy. Using electromyography (EMG) to monitor 'postural' muscles, it was found that free floating arm flexions made in microgravity were not always preceded by neuromuscular activation patterns normally observed during movements made in unit gravity. Additionally, manipulation of foot sensory input during microgravity arm flexion impacted upon anticipatory postural muscle activation.

  11. Posture strategies generated by constrained optimization.

    PubMed

    Pettersson, Robert; Bartonek, Åsa; Gutierrez-Farewik, Elena M

    2012-02-02

    For people with motion disorders, posture can impact fatigue, discomfort or deformities in the long term. Orthopedic treatments such as orthoses or orthopedic surgeries which change geometric properties can improve posture in these individuals. In this study, a model has been created to study posture strategies in such situations. A 3D mechanical model consisting of eight rigid segments and 30 muscle groups is used in which varying moment arms along the ranges of motion and biarticular muscles are considered. The method is based on static optimization, both to solve the load sharing in the muscle system and to choose posture strategy. The optimization computes the specific posture with minimal required effort (level of muscle activations), while fulfilling constraints containing subject specific ranges of motion, muscle strength/weakness and external support if present. Anthropometry and strength were scaled to each individual, based on reported pediatric anthropometry and strength values, combined with each individual's physical assessment. A control group of 10 able-bodied subjects as well as three subjects with motion disorders were studied, and simulated posture was compared with experimental data. The simulation showed reasonable to good agreement and ability to predict the effect of motion disorders and of external support. An example of application in parameter studies was also presented wherein ankle orthosis angles were varied. The model allows the user to study muscle activity at the muscle group level, position of center of mass and moments at joints in various situations.

  12. Postural Control in Man: The Phylogenetic Perspective

    PubMed Central

    Gramsbergen, Albert

    2005-01-01

    Erect posture in man is a recent affordance from an evolutionary perspective. About eight million years ago, the stock from which modern humans derived split off from the ape family, and from around sixty-thousand years ago, modern man developed. Upright gait and manipulations while standing pose intricate cybernetic problems for postural control. The trunk, having an older evolutionary history than the extremities, is innervated by medially descending motor systems and extremity muscles by the more recent, laterally descending systems. Movements obviously require concerted actions from both systems. Research in rats has demonstrated the interdependencies between postural control and the development of fluent walking. Only 15 days after birth, adult-like fluent locomotion emerges and is critically dependent upon postural development. Vesttibular deprivation induces a retardation in postural development and, consequently, a retarded development of adult-like locomotion. The cerebellum obviously has an important role in mutual adjustments in postural control and extremity movements, or, in coupling the phyiogenetic older and newer structures. In the human, the cerebellum develops partly after birth and therefore is vulnerable to adverse perinatal influences. Such vulnerability seems to justify focusing our scientific research efforts onto the development of this structure. PMID:16097476

  13. Classically conditioned postural reflex in cerebellar patients.

    PubMed

    Kolb, F P; Lachauer, S; Maschke, M; Timmann, D

    2004-09-01

    The aim of the current study was to compare postural responses to repetitive platform-evoked perturbations in cerebellar patients with those of healthy subjects using a classical conditioning paradigm. The perturbations consisted of tilting of the platform (unconditioned stimulus: US) at random time intervals, preceded by an auditory signal that represented the conditioning stimulus (CS). Physiological reactions were recorded biomechanically by measuring the vertical ground forces, yielding the center of vertical pressure (CVP), and electrophysiologically by EMG measurements of the main muscle groups of both legs. The recording session consisted of a control section with US-alone trials, a testing section with paired stimuli and a brief final section with US-alone trials. Healthy control subjects were divided into those establishing conditioned responses (CR) in all muscles tested (strategy I) and those with CR in the gastrocnemius muscles only (strategy II), suggesting an associative motor-related process is involved. Patients with a diffuse, non-localized disease were almost unable to establish CR. This was also true for a patient with a focal surgical lesion with no CR on the affected side but who, simultaneously, showed an essentially normal CR incidence on the intact side. During US-alone trials healthy controls exhibited a remarkable decay of the UR amplitude due to a non-associative motor-related process such as habituation. The decay was most prominent in the paired trials section. In contrast, patients showed no significant differences in the UR amplitude throughout the entire recording session. Analysis of the CVP supported the electrophysiological findings, showing CR in the controls only. The differences between the responses of control subjects and those of the cerebellar patients imply strongly that the cerebellum is involved critically in controlling associative and non-associative motor-related processes.

  14. Investigation of the Differential Contributions of Superficial and Deep Muscles on Cervical Spinal Loads with Changing Head Postures

    PubMed Central

    Cheng, Chih-Hsiu; Chien, Andy; Hsu, Wei-Li; Chen, Carl Pai-Chu; Cheng, Hsin-Yi Kathy

    2016-01-01

    Cervical spinal loads are predominately influenced by activities of cervical muscles. However, the coordination between deep and superficial muscles and their influence on the spinal loads is not well understood. This study aims to document the changes of cervical spinal loads and the differential contributions of superficial and deep muscles with varying head postures. Electromyography (EMG) of cervical muscles from seventeen healthy adults were measured during maximal isometric exertions for lateral flexion (at 10°, 20° and terminal position) as well as flexion/extension (at 10°, 20°, 30°, and terminal position) neck postures. An EMG-assisted optimization approach was used to estimate the muscle forces and subsequent spinal loads. The results showed that compressive and anterior-posterior shear loads increased significantly with neck flexion. In particular, deep muscle forces increased significantly with increasing flexion. It was also determined that in all different static head postures, the deep muscle forces were greater than those of the superficial muscle forces, however, such pattern was reversed during peak efforts where greater superficial muscle forces were identified with increasing angle of inclination. In summary, the identification of significantly increased spinal loads associated with increased deep muscle activation during flexion postures, implies higher risks in predisposing the neck to occupationally related disorders. The results also explicitly supported that deep muscles play a greater role in maintaining stable head postures where superficial muscles are responsible for peak exertions and reinforcing the spinal stability at terminal head postures. This study provided quantitative data of normal cervical spinal loads and revealed motor control strategies in coordinating the superficial and deep muscles during physical tasks. PMID:26938773

  15. Analysis of muscle activation patterns during transitions into and out of high knee flexion postures.

    PubMed

    Tennant, Liana M; Maly, Monica R; Callaghan, Jack P; Acker, Stacey M

    2014-10-01

    Increased risk of medial tibiofemoral osteoarthritis (OA) is linked to occupations that require frequent transitions into and out of postures which require high knee flexion (>90°). Muscle forces are major contributors to joint loading, and an association between compressive forces due to muscle activations and the degeneration of joint cartilage has been suggested. The purpose of this study was to evaluate muscle activation patterns of muscles crossing the knee during transitions into and out of full-flexion kneeling and squatting, sitting in a low chair, and gait. Both net and co-activation were greater when transitioning out of high flexion postures, with maximum activation occurring at knee angles greater than 100°. Compared to gait, co-activation levels during high flexion transitions were up to approximately 3 times greater. Co-activation was significantly greater in the lateral muscle group compared to the medial group during transitions into and out of high flexion postures. These results suggest that compression due to activation of the medial musculature of the knee may not be the link between high knee flexion postures and increased medial knee OA observed in occupational settings. Further research on a larger subject group and workers with varying degrees of knee OA is necessary.

  16. Postural adjustments associated with rapid voluntary arm movements. II. Biomechanical analysis.

    PubMed Central

    Friedli, W G; Cohen, L; Hallett, M; Stanhope, S; Simon, S R

    1988-01-01

    Normal subjects performed bilaterally symmetric rapid elbow flexions or extensions ("focal movements") while standing. Specific patterns of electromyographic activity in leg and trunk muscles ("associated postural adjustments") were seen for each type of movement. The biomechanical significance of these postural adjustments was analysed by means of the ground reaction forces and motion of the various body segments. Experimental data were compared with that from a theoretical model of the body consisting of a six segment kinetic chain with rigid links. Distinct patterns of the ground reaction forces with elbow flexion were opposite in direction to those seen with elbow extension. Movements of the various body segments were small and specific for a certain focal movement. Dynamic perturbations arising from the arm movement in an anteroposterior direction were found to be compensated by postural adjustments, whereas vertical perturbations were not compensated. The muscular activity acting about different joints in the different movements was found to correlate with the predictions of activity needed to compensate for net joint reaction moments arising from the focal movement. Motion of the various body segments could be understood as resulting from the interplay of the net reaction moments and the net muscular moments at the different joints. Dynamic postural requirements are accomplished by a precise active compensation initiated before the focal movement. PMID:3346688

  17. The relationship of asymmetric weight-bearing with postural sway and visual reliance in stroke.

    PubMed

    Marigold, Daniel S; Eng, Janice J

    2006-02-01

    Due to motor and sensory deficits in individuals with stroke, we proposed that they must compensate for these impairments during standing with greater dependence on vision. In addition, we hypothesized that asymmetric weight-bearing, which occurs following stroke, is related to increased postural sway and those with greater asymmetry will have greater reliance on vision. Twenty-eight individuals with stroke and 28 healthy older adult controls stood quietly with eyes open (EO) or closed on a force platform while postural sway was quantified by centre of pressure measures and weight-bearing asymmetry was calculated from vertical ground reaction forces. To determine the influence of vision on postural sway, a visual ratio (eyes open/eyes closed (EC)) was calculated for the sway measures. The results demonstrated that individuals with stroke had greater visual dependence for the control of postural sway velocity in the medial-lateral (ML), but not anterior-posterior (AP) direction, compared to controls. Further, we found that greater asymmetry was moderately related to increased medial-lateral sway for the individuals with stroke. Contrary to predictions, those individuals with stroke with mild asymmetry had greater visual dependence than those with more severe asymmetry.

  18. The Relationship of Asymmetric Weight-bearing with Postural Sway and Visual Reliance in Stroke

    PubMed Central

    Marigold, Daniel S.; Eng, Janice J.

    2011-01-01

    Due to motor and sensory deficits in individuals with stroke, we proposed that they must compensate for these impairments during standing with greater dependence on vision. In addition, we hypothesized that asymmetric weight-bearing, which occurs following stroke, is related to increased postural sway and those with greater asymmetry will have greater reliance on vision. Twenty-eight individuals with stroke and 28 healthy older adult controls stood quietly with eyes open or closed on a force platform while postural sway was quantified by centre of pressure measures and weight-bearing asymmetry was calculated from vertical ground reaction forces. To determine the influence of vision on postural sway, a visual ratio (eyes open/eyes closed) was calculated for the sway measures. The results demonstrated that individuals with stroke had greater visual dependence for the control of postural sway velocity in the medial-lateral, but not anterior-posterior direction, compared to controls. Further, we found that greater asymmetry was moderately related to increased medial-lateral sway for the individuals with stroke. Contrary to predictions, those individuals with stroke with mild asymmetry had greater visual dependence than those with more severe asymmetry. PMID:16399522

  19. Can vibratory feedback be used to improve postural stability in persons with transtibial limb loss?

    PubMed

    Rusaw, David; Hagberg, Kerstin; Nolan, Lee; Ramstrand, Nerrolyn

    2012-01-01

    The use of vibration as a feedback modality to convey motion of the body has been shown to improve measures of postural stability in some groups of patients. Because individuals using transtibial prostheses lack sensation distal to the amputation, vibratory feedback could possibly be used to improve their postural stability. The current investigation provided transtibial prosthesis users (n = 24, mean age 48 yr) with vibratory feedback proportional to the signal received from force transducers located under the prosthetic foot. Postural stability was evaluated by measuring center of pressure (CoP) movement, limits of stability, and rhythmic weight shift while participants stood on a force platform capable of rotations in the pitch plane (toes up/toes down). The results showed that the vibratory feedback increased the mediolateral displacement amplitude of CoP in standing balance and reduced the response time to rapid voluntary movements of the center of gravity. The results suggest that the use of vibratory feedback in an experimental setting leads to improvements in fast open-loop mechanisms of postural control in transtibial prosthesis users.

  20. [Gait disorders in Parkinson disease. Clinical description, analysis of posture, initiation of stabilized gait].

    PubMed

    Kemoun, G; Defebvre, L

    2001-03-10

    A WELL INFORMED DESCRIPTION: The parkinsonian posture is generally described as a stooped one. At the beginning of the disease, the gait troubles remain moderate; gradually the gait is composed of small steps without a wide base; the patient tends to run after his centre of gravity by accelerating the step (festination phenomenon). Difficulties occurs for starting up (delay of gait initiation), for about-turn or for clearing obstacles. Kinetic jammings and standing around (freezing) can last several seconds and be responsible for falls. POSTURAL INSTABILITY, A MAJOR SYMPTOM IN PARKINSON'S DISEASE: This symptom is little improved by therapies and is responsible for serious disability. Postural instability induces a disequilibrium and is partially due to a simultaneous antagonist muscles contraction and to the impossibility of modifying postural responses to changing support conditions. The passive viscoelastic properties of muscles and tendons constitute a first line of defence against the disequilibrium and contribute to postural stability in the case of medium disturbances. Automatic and voluntary postural responses which come into play in the case of major disturbances can also be impaired (delay or defect of the responses). GAIT INITIATION FAILURE ARE FREQUENT: They result from an increase of the postural phase and a decrease of the propulsion forces, depending on a deficit of the postural anticipation mechanisms and also the sequential organization and the integration of two different motor programs, postural and locomotor. They can be controlled partially with sensory stimuli, notably visual inputs. DATA CONCERNING STABILIZED WALKING AND ITS PATHOPHYSIOLOGY REMAINS TO BE CLARIFIED: Spatial and temporal parameters are impaired: speed, step length and swing phase are reduced, while cadence increases to compensate these troubles. These modifications are the consequence of an incapacity to produce internal marks to generate regular steps. When the parkinsonian

  1. The influence of oculomotor tasks on postural control in dyslexic children.

    PubMed

    Bucci, Maria Pia; Mélithe, Damien; Ajrezo, Layla; Bui-Quoc, Emmanuel; Gérard, Christophe-Loic

    2014-01-01

    Dual task is known to affect postural stability in children. We explored the effect of visual tasks on postural control in thirty dyslexic children. A selected group of thirty chronological age-matched non-dyslexic children (mean age: 9.92 ± 0.35 years) and a group of thirty reading age-matched non-dyslexic children (mean reading age: 7.90 ± 0.25 years) were chosen for comparison. All children underwent ophthalmologic and optometric evaluation. Eye movements were recorded by a video-oculography system (EyeBrain® T2) and postural sway was recorded simultaneously by a force platform (TechnoConept®). All children performed fixations, pursuits, pro- and anti-saccades tasks. Dyslexic children showed significantly poor near fusional vergence ranges (convergence and divergence) with respect to the non-dyslexic children groups. During the postural task, quality of fixation and anti-saccade performance in dyslexic children were significantly worse compared to the two non-dyslexic children groups. In contrast, the number of catch-up saccades during pursuits and the latency of pro- and anti-saccades were similar in the three groups of children examined. Concerning postural quality, dyslexic children were more unstable than chronological age-matched non-dyslexic children group. For all three groups of children tested we also observed that executing saccades (pro- and anti-saccades) reduced postural values significantly in comparison with fixation and pursuit tasks. The impairment in convergence and divergence fusional capabilities could be due to an immaturity in cortical structures controlling the vergence system. The poor oculomotor performance reported in dyslexic children suggested a deficit in allocating visual attention and their postural instability observed is in line with the cerebellar impairment previously reported in dyslexic children. Finally, pro- or anti-saccades reduce postural values compared to fixation and pursuit tasks in all groups of children tested

  2. Impaired Synergic Control of Posture in Parkinson’s Patients without Postural Instability

    PubMed Central

    Falaki, Ali; Huang, Xuemei; Lewis, Mechelle M.; Latash, Mark L.

    2015-01-01

    Background Postural instability is one of most disabling motor symptoms in Parkinson’s disease. Indices of multi-muscle synergies are new measurements of movement and postural stability. Objectives Multi-muscle synergies stabilizing vertical posture were studied in Parkinson’s disease patients without clinical symptoms of postural instability (Hoehn-Yahr- ≤ II) and age-matched controls. We tested the hypothesis that both synergy indices during quiet standing and synergy adjustments to self-triggered postural perturbations would be reduced in patients. Methods Eleven Parkinson’s disease patients and 11 controls performed whole-body tasks while standing. Surface electromyography was used to quantify synergy indices stabilizing center of pressure shifts in the anterior-posterior direction during a load-release task. Results Parkinson’s disease patients showed a significantly lower percentage of variance in the muscle activation space accounted for by the first four principal components, significantly reduced synergy indices during steady state, and significantly reduced anticipatory synergy adjustments (a drop in the synergy index prior to the self-triggered unloading). Conclusions The study demonstrates for the first time that impaired synergic control in Parkinson’s disease can be quantified in postural tasks, even in patients without clinical manifestations of postural instability. Synergy measurements may provide a biomarker sensitive for early problems with postural stability in Parkinson’s disease. PMID:27004660

  3. Relationship between morphologic somatotypes and standing posture equilibrium.

    PubMed

    Allard, P; Nault, M L; Hinse, S; LeBlanc, R; Labelle, H

    2001-01-01

    Previous studies have identified height and weight as important factors affecting quiet standing stability but studies have not addressed body morphology as a global factor. Using anthropometric measurements, the morphologic somatotypes were defined in terms of body composition and structure. The aim of this study was to test the hypothesis that morphologic somatotypes were related to standing posture equilibrium in able-bodied girls. A total of 43 able-bodied girls having a mean age of 13.8 +/- 2.2 years participated in this study. Somatotype measurements were taken to determine their endomorphic, mesomorphic or ectomorphic components. Then, subjects were asked to stand still on a force platform for 64 s with their eyes opened, feet about 23 cm apart and arms aligned with the trunk. Afterwards, subjects were grouped based on the highest value of their somatotype component. There was no statistical difference in age, height and weight among the groups. The surface area of an ellipse delineated by the displacement of the centre of pressure (COP) was statistically larger (236.9 +/- 134.3 mm2) for the ectomorphs than for the endomorphs 137.7 +/- 71.4 mm2). The minor axis was longer (8.1 +/- 2.9 mm) for the ectomorphs than for the endomorphs (5.7 +/- 2.2 mm). The decrease in standing posture stability of the ectomorphic group was attributed to a relatively low muscle component, a high height weight ratio and an elevated position of the body centre of mass in this population of girls. Somatotypes should be considered when assessing standing posture in both able-bodied subjects and patients.

  4. The mechanical actions of muscles predict the direction of muscle activation during postural perturbations in the cat hindlimb

    PubMed Central

    Nichols, T. Richard

    2013-01-01

    Humans and cats respond to balance challenges, delivered via horizontal support surface perturbations, with directionally selective muscle recruitment and constrained ground reaction forces. It has been suggested that this postural strategy arises from an interaction of limb biomechanics and proprioceptive networks in the spinal cord. A critical experimental validation of this hypothesis is to test the prediction that the principal directions of muscular activation oppose the directions responding muscles exert their forces on the environment. Therefore, our objective was to quantify the endpoint forces of a diverse set of cat hindlimb muscles and compare them with the directionally sensitive muscle activation patterns generated in the intact and decerebrate cat. We hypothesized that muscles are activated based on their mechanical advantage. Our primary expectation was that the principal direction of muscle activation during postural perturbations will be directed oppositely (180°) from the muscle endpoint ground reaction force. We found that muscle activation during postural perturbations was indeed directed oppositely to the endpoint reaction forces of that muscle. These observations indicate that muscle recruitment during balance challenges is driven, at least in part, by limb architecture. This suggests that sensory sources that provide feedback about the mechanical environment of the limb are likely important to appropriate and effective responses during balance challenges. Finally, we extended the analysis to three dimensions and different stance widths, laying the groundwork for a more comprehensive study of postural regulation than was possible with measurements confined to the horizontal plane and a single stance configuration. PMID:24304861

  5. The mechanical actions of muscles predict the direction of muscle activation during postural perturbations in the cat hindlimb.

    PubMed

    Honeycutt, Claire F; Nichols, T Richard

    2014-03-01

    Humans and cats respond to balance challenges, delivered via horizontal support surface perturbations, with directionally selective muscle recruitment and constrained ground reaction forces. It has been suggested that this postural strategy arises from an interaction of limb biomechanics and proprioceptive networks in the spinal cord. A critical experimental validation of this hypothesis is to test the prediction that the principal directions of muscular activation oppose the directions responding muscles exert their forces on the environment. Therefore, our objective was to quantify the endpoint forces of a diverse set of cat hindlimb muscles and compare them with the directionally sensitive muscle activation patterns generated in the intact and decerebrate cat. We hypothesized that muscles are activated based on their mechanical advantage. Our primary expectation was that the principal direction of muscle activation during postural perturbations will be directed oppositely (180°) from the muscle endpoint ground reaction force. We found that muscle activation during postural perturbations was indeed directed oppositely to the endpoint reaction forces of that muscle. These observations indicate that muscle recruitment during balance challenges is driven, at least in part, by limb architecture. This suggests that sensory sources that provide feedback about the mechanical environment of the limb are likely important to appropriate and effective responses during balance challenges. Finally, we extended the analysis to three dimensions and different stance widths, laying the groundwork for a more comprehensive study of postural regulation than was possible with measurements confined to the horizontal plane and a single stance configuration.

  6. Postural tremor of Parkinson's disease.

    PubMed

    Henderson, J M; Yiannikas, C; Morris, J G; Einstein, R; Jackson, D; Byth, K

    1994-06-01

    Previous studies have reported the resting tremor (RT) of Parkinson's disease to occur at frequencies between 3-7 Hz and to be characterised by an alternating pattern of electromyographic (EMG) bursting activity between opposing muscles. A postural tremor (PT), of higher frequency (> 6 Hz) and with a synchronous pattern of EMG activity, has also been previously described in Parkinson's disease. We investigated the electrophysiological and pharmacological properties of both the RT and PT of 11 patients with Parkinson's disease and 10 patients with essential tremor in a double-blind, placebo-controlled study of L-Dopa/benserazide and propranolol. Tremor amplitude and frequency were assessed via bidirectional accelerometry, and the pattern of activation of the antagonist muscles of the forearm was determined with use of surface EMG. In the Parkinson's disease group studied, the frequency, EMG pattern of bursts, and response to L-Dopa were similar for the two tremors (median improvement of RT by 70% and PT by 61%). Despite some overlap between the Parkinson's disease and essential tremor groups in the electrophysiology of the tremor, there was no such dramatic pharmacological response in the latter group. These results suggest that the RT and PT of Parkinson's disease share a common pathophysiology and are distinct from essential tremor.

  7. A new posture-correcting system using a vector angle model for preventing forward head posture

    PubMed Central

    Yeom, Hojun; Lim, Juhun; Yoo, Sung Hak; Lee, Woocheol

    2014-01-01

    In modern society many people are afflicted with muscle pain in the neck and shoulders mainly caused by incorrect posture. The number of patients having neck pain is increasing as usage of digital devices becomes more frequent. If patients could be notified how inappropriate their postures are in real time, the number of patients could be lower. Unfortunately, there is no digitized standard way of diagnosis for forward head posture. This study applies a concept based on a vector related to two angles which are acquired from the neck and the head, so that a device can diagnose the posture by measuring and analysing the angles. To obtain the vector, integral calculations of displacement of the head are needed. As a result, with this device, patients’ faulty posture can be easily detected. PMID:26019611

  8. Impaired plantar sensitivity among the obese is associated with increased postural sway.

    PubMed

    Wu, Xuefang; Madigan, Michael L

    2014-11-07

    Impaired foot plantar sensitivity has been hypothesized among individuals who are obese, and may contribute to their impaired balanced during quiet standing. The objective of this study was to investigate the effects of obesity on plantar sensitivity, and explore the relationship between plantar sensitivity and balance during quiet standing. Thirty-nine young adults from the university population participated in the study including 19 obese and 20 non-obese adults. Plantar sensitivity was measured as the force threshold at which an increasing force applied to the plantar surface of the foot was first perceived, and the force threshold at which a decreasing force was last perceived. Measurements were obtained while standing, and at two locations on the plantar surface of the dominant foot. Postural sway during quiet standing was then measured under three different sensory conditions. Results indicated less sensitive plantar sensitivity and increased postural sway among the obese, and statistically significant correlations between plantar sensitivity and postural sway that were characterized as weak to moderate in strength. As such, impaired plantar sensitivity among individuals who are obese may be a mechanism by which obesity degrades standing balance among these individuals.

  9. Position Statements, Issue Briefs, Resolutions and Consensus Statements. Revised

    ERIC Educational Resources Information Center

    National Association of School Nurses (NJ1), 2012

    2012-01-01

    This article presents position statements, issue briefs, and resolutions and consensus statements of the National Association of School Nurses (NASN). The Position Statements include: (1) Allergy/Anaphylaxis Management in the School Setting; (2) Caseload Assignments; (3) Child Mortality in the School Setting; (4) Chronic Health Conditions, Managed…

  10. Postural stability in children with hemiplegia estimated for three postural conditions: standing, sitting and kneeling.

    PubMed

    Szopa, Andrzej; Domagalska-Szopa, Małgorzata

    2015-04-01

    Postural control deficit is one of the most important problems in children with cerebral palsy (CP). The purpose of the presented study was to compare the effects of body posture asymmetry alone (i.e., in children with mild scoliosis) with the effects of body posture impairment (i.e., in children with hemiplegia) on postural stability. Forty-five outpatients with hemiplegia and 51 children with mild scoliosis were assessed using a posturography device. The examination comprised two parts: (1) analysis of the static load distribution; and (2) a posturographic test (CoP measurements) conducted in three postural conditions: standing, sitting and kneeling. Based on the asymmetry index of the unaffected/affected body sides while standing, the children with hemiplegia were divided into two different postural patterns: a pro-gravitational postural pattern (PGPP) and an anti-gravitational postural pattern (AGPP) (Domagalska-Szopa & Szopa (2013). BioMed Research International, 2013, 462094; (2014). Therapeutics and Clinical Risk Management, 10, 113). The group of children with mild scoliosis, considered as a standard for static body weight distribution, was used as the reference group. The results of present study only partially confirmed that children with hemiplegia have increased postural instability. Strong weight distribution asymmetry was found in children with an AGPP, which induced larger lateral-medial CoP displacements compared with children with scoliosis. In children with hemiplegia, distinguishing between their postural patterns may be useful to improve the guidelines for early therapy children with an AGPP before abnormal patterns of weight-bearing asymmetry are fully established.

  11. Surgery for aortic dilatation in patients with bicuspid aortic valves: A statement of clarification from the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines.

    PubMed

    Hiratzka, Loren F; Creager, Mark A; Isselbacher, Eric M; Svensson, Lars G; Nishimura, Rick A; Bonow, Robert O; Guyton, Robert A; Sundt, Thoralf M

    2016-04-01

    Two guidelines from the American College of Cardiology (ACC), the American Heart Association (AHA), and collaborating societies address the risk of aortic dissection in patients with bicuspid aortic valves and severe aortic enlargement: The "2010 ACCF/AHA/AATS/ACR/ASA/SCA/SCAI/SIR/STS/SVM Guidelines for the Diagnosis and Management of Patients With Thoracic Aortic Disease" (J Am Coll Cardiol. 2010;55:e27-130) and the "2014 AHA/ACC Guideline for the Management of Patients With Valvular Heart Disease" (J Am Coll Cardiol. 2014;63:e57-185). However, the 2 guidelines differ with regard to the recommended threshold of aortic root or ascending aortic dilatation that would justify surgical intervention in patients with bicuspid aortic valves. The ACC and AHA therefore convened a subcommittee representing members of the 2 guideline writing committees to review the evidence, reach consensus, and draft a statement of clarification for both guidelines. This statement of clarification uses the ACC/AHA revised structure for delineating the Class of Recommendation and Level of Evidence to provide recommendations that replace those contained in Section 9.2.2.1 of the thoracic aortic disease guideline and Section 5.1.3 of the valvular heart disease guideline.

  12. Surgery for Aortic Dilatation in Patients With Bicuspid Aortic Valves: A Statement of Clarification From the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines.

    PubMed

    Hiratzka, Loren F; Creager, Mark A; Isselbacher, Eric M; Svensson, Lars G; Nishimura, Rick A; Bonow, Robert O; Guyton, Robert A; Sundt, Thoralf M; Halperin, Jonathan L; Levine, Glenn N; Anderson, Jeffrey L; Albert, Nancy M; Al-Khatib, Sana M; Birtcher, Kim K; Bozkurt, Biykem; Brindis, Ralph G; Cigarroa, Joaquin E; Curtis, Lesley H; Fleisher, Lee A; Gentile, Federico; Gidding, Samuel; Hlatky, Mark A; Ikonomidis, John; Joglar, José; Kovacs, Richard J; Ohman, E Magnus; Pressler, Susan J; Sellke, Frank W; Shen, Win-Kuang; Wijeysundera, Duminda N

    2016-02-16

    Two guidelines from the American College of Cardiology (ACC), the American Heart Association (AHA), and collaborating societies address the risk of aortic dissection in patients with bicuspid aortic valves and severe aortic enlargement: the "2010 ACCF/AHA/AATS/ACR/ASA/SCA/SCAI/SIR/STS/SVM Guidelines for the Diagnosis and Management of Patients With Thoracic Aortic Disease" (Circulation. 2010;121:e266-e369) and the "2014 AHA/ACC Guideline for the Management of Patients With Valvular Heart Disease" (Circulation. 2014;129:e521-e643). However, the 2 guidelines differ with regard to the recommended threshold of aortic root or ascending aortic dilatation that would justify surgical intervention in patients with bicuspid aortic valves. The ACC and AHA therefore convened a subcommittee representing members of the 2 guideline writing committees to review the evidence, reach consensus, and draft a statement of clarification for both guidelines. This statement of clarification uses the ACC/AHA revised structure for delineating the Class of Recommendation and Level of Evidence to provide recommendations that replace those contained in Section 9.2.2.1 of the thoracic aortic disease guideline and Section 5.1.3 of the valvular heart disease guideline.

  13. Surgery for Aortic Dilatation in Patients With Bicuspid Aortic Valves: A Statement of Clarification From the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines.

    PubMed

    Hiratzka, Loren F; Creager, Mark A; Isselbacher, Eric M; Svensson, Lars G; Nishimura, Rick A; Bonow, Robert O; Guyton, Robert A; Sundt, Thoralf M

    2016-02-16

    Two guidelines from the American College of Cardiology (ACC), the American Heart Association (AHA), and collaborating societies address the risk of aortic dissection in patients with bicuspid aortic valves and severe aortic enlargement: the "2010 ACCF/AHA/AATS/ACR/ASA/SCA/SCAI/SIR/STS/SVM Guidelines for the Diagnosis and Management of Patients With Thoracic Aortic Disease" (J Am Coll Cardiol 2010;55:e27-130) and the "2014 AHA/ACC Guideline for the Management of Patients With Valvular Heart Disease" (J Am Coll Cardiol 2014;63:e57-185). However, the 2 guidelines differ with regard to the recommended threshold of aortic root or ascending aortic dilatation that would justify surgical intervention in patients with bicuspid aortic valves. The ACC and AHA therefore convened a subcommittee representing members of the 2 guideline writing committees to review the evidence, reach consensus, and draft a statement of clarification for both guidelines. This statement of clarification uses the ACC/AHA revised structure for delineating the Class of Recommendation and Level of Evidence to provide recommendations that replace those contained in Section 9.2.2.1 of the thoracic aortic disease guideline and Section 5.1.3 of the valvular heart disease guideline.

  14. Be Vigilant on Financial Statements.

    ERIC Educational Resources Information Center

    Freed, DeBow

    2002-01-01

    Highlights areas on university's financial statements that warrant careful review by trustees and suggests ways they can check to see whether an institution's financial statements are clear and valid indicators of its financial status. (EV)

  15. Effect of visual attention on postural control in children with attention-deficit/hyperactivity disorder.

    PubMed

    Bucci, Maria Pia; Seassau, Magali; Larger, Sandrine; Bui-Quoc, Emmanuel; Gerard, Christophe-Loic

    2014-06-01

    We compared the effect of oculomotor tasks on postural sway in two groups of ADHD children with and without methylphenidate (MPH) treatment against a group of control age-matched children. Fourteen MPH-untreated ADHD children, fourteen MPH-treated ADHD children and a group of control children participated to the study. Eye movements were recorded using a video-oculography system and postural sway measured with a force platform simultaneously. Children performed fixation, pursuits, pro- and anti-saccades. We analyzed the number of saccades during fixation, the number of catch-up saccades during pursuits, the latency of pro- and anti-saccades; the occurrence of errors in the anti-saccade task and the surface and mean velocity of the center of pressure (CoP). During the postural task, the quality of fixation was significantly worse in both groups of ADHD children with respect to control children; in contrast, the number of catch-up saccades during pursuits, the latency of pro-/anti-saccades and the rate of errors in the anti-saccade task did not differ in the three groups of children. The surface of the CoP in MPH-treated children was similar to that of control children, while MPH-untreated children showed larger postural sway. When performing any saccades, the surface of the CoP improved with respect to fixation or pursuits tasks. This study provides evidence of poor postural control in ADHD children, probably due to cerebellar deficiencies. Our study is also the first to show an improvement on postural sway in ADHD children performing saccadic eye movements.

  16. Postural Responses Following Space Flight and Ground Based Analogs

    NASA Technical Reports Server (NTRS)

    Kofman, Igor S.; Reschke, Millard F.; Cerisano, Jody M.; Fisher, Elizabeth A.; Tomilovskaya, Elena V.; Kozlovskaya, Inessa B.; Bloomberg, Jacob B.

    2013-01-01

    With the transition from the Shuttle program to the International Space Station (ISS), the opportunity to fly sensorimotor experiments in a weightless environment has become increasingly more difficult to obtain. As a result, more investigations have turned to ground-based analogs as a way of evaluating an experiment's viability. The two primary analogs available to most investigators are 6deg head down bed rest (HDBR) and dry immersion (DI). For the time being, HDBR investigations have been associated with studies conducted in the United States while the Russians and several other European Union states have concentrated their efforts on using DI as the space flight analog of choice. While either model may be viable for cardiovascular, bone and other system changes, vestibular and sensorimotor investigators have retained serious reservations of either analog's potential to serve as a replacement for a true weightless environment. These reservations have merit, but it is worthwhile to consider that not all changes associated with sensorimotor function during space flight are the result of top-down modifications, but may also be due to the lack, or change, of appropriate support surfaces applying force to the bottom of the feet. To this end we have compared quiet stance postural responses between short duration Space Shuttle flights, long duration ISS flights and HDBR of varying duration. Using these three platforms, representing different modifications of support we investigated postural ataxia using a quiet stance model. Quiet stance was obtained by asking the subjects to stand upright on a force plate, eyes open, arms at the side of the body for three min. From the force plate we obtained average sway velocity in two axes as well as length of line (stabilogram). These parameters were then related to EMG activity recorded from the medial gastrocnemius and lateral tibialis. It is significant to note that postural ataxia measured as quiet stance shows analogous

  17. Coupling of postural and manual tasks in expert performers.

    PubMed

    Amado, A C; Palmer, C J; Hamill, J; van Emmerik, R E A

    2016-04-01

    The purpose of this study was to investigate the integration of bimanual rhythmic movements and posture in expert marching percussionists. Participants (N=11) performed three rhythmic manual tasks [1:1, 2:3, and 2:3-F (2:3 rhythm played faster at a self-selected tempo)] in one of three postures: sitting, standing on one foot, and standing on two feet. Discrete relative phase, postural time-to-contact, and coherence analysis were used to analyze the performance of the manual task, postural control, and the integration between postural and manual performance. Across all three rhythms, discrete relative phase mean and variability results showed no effects of posture on rhythmic performance. The complexity of the manual task (1:1 vs. 2:3) had no effect on postural time-to-contact. However, increasing the tempo of the manual task (2:3 vs. 2:3-F) did result in a decreased postural time-to-contact in the two-footed posture. Coherence analysis revealed that the coupling between the postural and manual task significantly decreased as a function of postural difficulty (going from a two-footed to a one-footed posture) and rhythmic complexity (1:1 vs. 2:3). Taken together, these results demonstrate that expert marching percussionists systematically decouple postural and manual fluctuations in order to preserve the performance of the rhythmic movement task.

  18. Air Force Research Laboratory

    DTIC Science & Technology

    2009-06-08

    Air Force Research Laboratory 8 June 2009 Mr. Leo Marple Ai F R h L b t r orce esearc a ora ory Leo.Marple@wpafb.af.mil DISTRIBUTION STATEMENT A...TITLE AND SUBTITLE Air Force Research Laboratory 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER...5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Air Force Research Laboratory ,Wright

  19. Childhood Exposure to Manganese and Postural Instability in Children living near a Ferromanganese Refinery in Southeastern Ohio

    PubMed Central

    Rugless, Fedoria; Bhattacharya, Amit; Succop, Paul; Dietrich, Kim N.; Cox, Cyndy; Alden, Jody; Kuhnell, Pierce; Barnas, Mary; Wright, Robert; Parsons, Patrick J.; Praamsma, Meredith L.; Palmer, Christopher D.; Beidler, Caroline; Wittberg, Richard; Haynes, Erin N.

    2014-01-01

    Airborne manganese (Mn) exposure can result in neurotoxicity and postural instability in occupationally exposed workers, yet few studies have explored the association ambient exposure to Mn in children and postural stability. The goal of this study was to determine the association between Mn and lead (Pb) exposure, as measured by blood Pb, blood and hair Mn and time weighted distance (TWD) from a ferromanganese refinery, and postural stability in children. A subset of children ages 7–9 years enrolled in the Marietta Community Actively Researching Exposure Study (CARES) were invited to participate. Postural balance was conducted on 55 children residing in Marietta, Ohio and the surrounding area. Samples of blood were collected and analyzed for Mn and Pb, and samples of hair were analyzed for Mn. Neuromotor performance was assessed using postural balance testing with a computer force platform system. Pearson correlations were calculated to identify key covariates. Associations between postural balance testing conditions and Mn and Pb exposure were estimated with linear regression analyses adjusting for gender, age, parent IQ, parent age. Mean blood Mn was 10 μg/L (SEM=0.36), mean blood Pb was 0.85 μg/dL (SEM=0.05), and mean hair Mn was 0.76 μg/g (SEM=0.16). Mean residential distance from the refinery was 11.5 km (SEM=0.46). All three measures of Mn exposure were significantly associated with poor postural balance. In addition, low-level blood Pb was also negatively associated with balance outcomes. We conclude that Mn exposure and low-level blood Pb are significantly associated with poor postural balance. PMID:24370548

  20. Relatives' Responsibility; Policy Statement.

    ERIC Educational Resources Information Center

    American Foundation for the Blind, New York, NY.

    Presented by the American Foundation for the Blind (AFB) are background information and a policy statement on responsibility laws pertaining to relatives of applicants for public assistance. The laws are said to date to the Elizabethan Poor Laws, to vary state to state, and to mandate eligibility for public assistance on requirements of residence,…

  1. Youth Employment. Policy Statement.

    ERIC Educational Resources Information Center

    National Collaboration for Youth, Washington, DC.

    This paper presents the policy statement on youth employment from the National Collaboration for Youth (NCY). An introduction briefly explains the role of the NCY with regard to youth employment and describes the types of programs and services supported by NCY. A section on background provides statistics on teenagers and employment from the Bureau…

  2. Sustainability Statement and Policy

    ERIC Educational Resources Information Center

    Journal of Education for Sustainable Development, 2009

    2009-01-01

    This article presents nine resources that focus on environmental education and sustainability. These include: (1) "Sustainability Statement and Policy," Dalhousie University, Nova Scotia, Canada, 2009, which is available at http://office.sustainability.dal.ca/Governance; (2) "Climate Literacy: The Essential Principles of Climate…

  3. Institutional VVM Statements on Websites

    ERIC Educational Resources Information Center

    Calder, Wm. B.

    2011-01-01

    Educational leaders rely on compelling statements of institutional beliefs, strategic direction, and purpose (i.e., values, vision, and mission statements or VVM statements) as the three major pillars by which to launch new program/service initiatives, to enhance academic and administrative operations, and to chart sustainable options in building…

  4. Priorities Statements of Community Colleges.

    ERIC Educational Resources Information Center

    Illinois Community Coll. Board, Springfield.

    Each year since 1994, the 52 community colleges in Illinois prepare priority statements detailing specific college objectives for the current fiscal year (FY). This report provides the third update of the colleges' statements, covering FY 1998. Brief statements, from one to four pages, are provided for the following colleges: Belleville Area…

  5. 3 CFR - Presidential Signing Statements

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 3 The President 1 2010-01-01 2010-01-01 false Presidential Signing Statements Presidential Documents Other Presidential Documents Memorandum of March 9, 2009 Presidential Signing Statements Memorandum for the Heads of Executive Departments and Agencies For nearly two centuries, Presidents have issued statements addressing constitutional or...

  6. How does postural stability following a single leg drop jump landing task relate to postural stability during a single leg stance balance task?

    PubMed

    Fransz, Duncan P; Huurnink, Arnold; Kingma, Idsart; van Dieën, Jaap H

    2014-09-22

    We aimed to verify whether the static phase after a single leg drop jump (DJ) landing on a force plate may serve as a proxy for a single leg stance (SLS) balance task, as this would increase the application possibilities of landing tasks in the evaluation of sensorimotor function in relation to injury rehabilitation or performance assessment. Twenty-five healthy participants performed two sessions of five valid trials for both tasks in a reproducibility-agreement design. Three postural stability outcome measures ('COP speed', 'COP sway' and 'Horizontal GRF') were calculated for DJ (5-20s after landing) and for SLS (15s), and were averaged per session. Paired T-tests revealed a learning effect of SLS for postural stability (4.6-6.1%; P-values <0.03), in contrast to DJ (P-values >0.27). Only session 2 resulted in superior postural stability for SLS compared to DJ for 'COP speed' (5.0%; P=0.017) and 'Horizontal GRF' (8.2%; P=0.001). Bland and Altman methods demonstrated inter-session SD's of difference for DJ of 11-12% and for SLS of 10-12%, while inter-task SD's of difference ranged 10-17%. Precision ('SD within') was better for SLS concerning 'COP speed' (14-15% vs 13%) and 'Horizontal GRF' (18-20% vs 14-15%). In conclusion, postural stability during DJ and SLS cannot be considered interchangeable, due to a learning effect for SLS and inferior precision for DJ. However, a DJ task may be used as a proxy for static postural stability, although more than three trials are needed to achieve individual errors similar to SLS for 'COP speed' (4) and 'Horizontal GRF' (5).

  7. The Department of Defense Statement on Science in the Mission Agencies and Federal Laboratories before the Task Force on Science Policy of the Committee on Science and Technology of the United States House of Representatives, 99th Congress, First Session.

    DTIC Science & Technology

    1985-10-02

    1986 I BEFORE THE TASK FORCE ON SCIENCE POLICY OF THE COMMITTEE ON SCIENCE AND TECHNOLOGY CF THE UNITED STATES HOUSE OF REPRESENTATIVES 99th CONGRESS...RESEARCH AND ADVANCED TECHNOLOGY BEFORE THE TASR FORCE ON SCIENCE POLICY OF THE COMMITTEE ON SCIENCE AND TECHNOLOGY OF THE UNITED STATES HOUSE OF... governmental organizations. TABLE I SCIENCE AND TECHNOLOGY PROGRAM (Dollars in Millions) FY 1985 FY 198b Research 861 971 Exploratory Development 2,201 2,555

  8. Good Posture--An Aid to Learning and Health.

    ERIC Educational Resources Information Center

    Marciante, Robert E.

    1983-01-01

    Emphasizes the importance of promoting children's good health and proper posture through encouragement and the efforts of parents, physical education teachers, and classroom instructors. Outlines precise roles and responsibilities of each in improving children's posture. (DMM)

  9. Correlation between Trunk Posture and Neck Reposition Sense among Subjects with Forward Head Neck Postures

    PubMed Central

    Lee, Han Suk; Chung, Hyung Kuk; Park, Sun Wook

    2015-01-01

    Objective. To assess the correlation of abnormal trunk postures and reposition sense of subjects with forward head neck posture (FHP). Methods. In all, postures of 41 subjects were evaluated and the FHP and trunk posture including shoulder, scapular level, pelvic side, and anterior tilting degrees were analyzed. We used the head repositioning accuracy (HRA) test to evaluate neck position senses of neck flexion, neck extension, neck right and left side flexion, and neck right and left rotation and calculated the root mean square error in trials for each subject. Spearman's rank correlation coefficients and regression analysis were used to assess the degree of correlation between the trunk posture and HRA value, and a significance level of α = 0.05 was considered. Results. There were significant correlations between the HRA value of right side neck flexion and pelvic side tilt angle (p < 0.05). If pelvic side tilting angle increases by 1 degree, right side neck flexion increased by 0.76 degrees (p = 0.026). However, there were no significant correlations between other neck motions and trunk postures. Conclusion. Verifying pelvic postures should be prioritized when movement is limited due to the vitiation of the proprioceptive sense of neck caused by FHP. PMID:26583125

  10. Classification of Posture in Poststroke Upper Limb Spasticity: A Potential Decision Tool for Botulinum Toxin A Treatment?

    ERIC Educational Resources Information Center

    Hefter, Harald; Jost, Wolfgang H.; Reissig, Andrea; Zakine, Benjamin; Bakheit, Abdel Magid; Wissel, Jorg

    2012-01-01

    A significant percentage of patients suffering from a stroke involving motor-relevant central nervous system regions will develop a spastic movement disorder. Hyperactivity of different muscle combinations forces the limbs affected into abnormal postures or movement patterns. As muscular hyperactivity can effectively and safely be treated with…

  11. Feet distance and static postural balance: implication on the role of natural stance.

    PubMed

    Kim, Ji-Won; Kwon, Yuri; Jeon, Hyung-Min; Bang, Min-Jung; Jun, Jae-Hoon; Eom, Gwang-Moon; Lim, Do-Hyung

    2014-01-01

    The purpose of this study was to investigate 1) the effect of feet distance on static postural balance and 2) the location of natural feet distance and its possible role in the relationship of feet distance and postural balance. Static balance tests were performed on a force platform for 100 s with six different feet distances (0, 5, 10, 15, 20, 25 cm). Measures of postural balance included mean amplitude of horizontal ground reaction force (GRF) as well as the mean distance and velocity of the center of pressure (COP). All measures were discomposed into anterioposterior and mediolateral directions. ANOVA and post-hoc comparison were performed for all measures with feet distance as an independent factor. Also measured was the feet distance at the natural stance preferred by each subject. All measures significantly varied with feet distance (p<0.001). Mean distance of COP showed monotonic decrease with feet distance. Mean amplitude of horizontal GRF as well as mean velocity of COP showed U-shaped pattern (decrease followed by increase) with the minimum at the feet distance of 15 cm or 20 cm, near which the natural feet distance of 16.5 (SD 3.8) cm was located. COP is regarded to be an approximation of the center of mass (hence the resultant performance of postural control) in an inverted pendulum model with the horizontal GRF ignored. On the other hand, horizontal GRF is the direct cause of horizontal acceleration of a center of mass. The present result on horizontal GRF shows that the effort of postural control is minimized around the feet distance of natural standing and implies why the natural stance is preferred.

  12. A link-segment model of upright human posture for analysis of head-trunk coordination

    NASA Technical Reports Server (NTRS)

    Nicholas, S. C.; Doxey-Gasway, D. D.; Paloski, W. H.

    1998-01-01

    Sensory-motor control of upright human posture may be organized in a top-down fashion such that certain head-trunk coordination strategies are employed to optimize visual and/or vestibular sensory inputs. Previous quantitative models of the biomechanics of human posture control have examined the simple case of ankle sway strategy, in which an inverted pendulum model is used, and the somewhat more complicated case of hip sway strategy, in which multisegment, articulated models are used. While these models can be used to quantify the gross dynamics of posture control, they are not sufficiently detailed to analyze head-trunk coordination strategies that may be crucial to understanding its underlying mechanisms. In this paper, we present a biomechanical model of upright human posture that extends an existing four mass, sagittal plane, link-segment model to a five mass model including an independent head link. The new model was developed to analyze segmental body movements during dynamic posturography experiments in order to study head-trunk coordination strategies and their influence on sensory inputs to balance control. It was designed specifically to analyze data collected on the EquiTest (NeuroCom International, Clackamas, OR) computerized dynamic posturography system, where the task of maintaining postural equilibrium may be challenged under conditions in which the visual surround, support surface, or both are in motion. The performance of the model was tested by comparing its estimated ground reaction forces to those measured directly by support surface force transducers. We conclude that this model will be a valuable analytical tool in the search for mechanisms of balance control.

  13. The Influence of Very Low Illumination on the Postural Sway of Young and Elderly Adults

    PubMed Central

    Rugelj, Darja; Gomišček, Gregor; Sevšek, France

    2014-01-01

    The purpose of the present study was to evaluate the influence of very low ambient illumination and complete darkness on the postural sway of young and elderly adults. Eighteen healthy young participants aged 23.8±1.5 years and 26 community-dwelling elderly aged 69.8±5.6 years were studied. Each participant performed four tests while standing on a force platform in the following conditions: in normal light (215 lx) with open eyes and with closed eyes, in very low illumination (0.25 lx) with open eyes, and in complete darkness with open eyes. The sequences of the tests in the altered visual conditions were determined by random blocs. Postural sway was assessed by means of the force platform measurements. The centre of pressure variables: the medio-lateral and antero-posterior path lengths, mean velocities, sway areas, and fractal dimensions were analysed. Very low illumination resulted in a statistically significant increase in postural sway in both the young and elderly groups compared to normal light, although the increase was significantly smaller than those observed in the eyes closed and complete darkness condition, and no significant effects of illumination on fractal dimensions were detected. The gains of the sways in the very low or no illumination conditions relative to the normal light condition were significantly larger in the group of young participants than in the group of elderly participants (up to 50% and 25%, respectively). However, the response patterns to changes in illumination were similar in the young and elderly participants, with the exception of the short-range fractal dimension of the medio-lateral sway. In conclusion, very low illumination resulted in increased postural sway compared to normal illumination; however, in the closed eye and complete darkness conditions, postural sway was significantly higher than in the very low illumination condition regardless of the age of the participants. PMID:25084015

  14. The effects of posture and isoproterenol on the velocity of left ventricular contraction in man

    PubMed Central

    Paley, H. W.; McDonald, Ian G.; Blumenthal, Joseph; Mailhot, James; Modin, Gunnard W.

    1971-01-01

    A study was performed in five normal men in whom left ventricular volume was measured by thermodilution in the supine and 60° head-up postures, in the control state, and then during steady-state response to isoproterenol. The mean rate of circumferential shortening of the left ventricle was calculated for each of the postures in both inotropic states and was found to remain constant in the control state at 12.5 ±0.6 cm/sec in the supine posture and 13.3 ±0.5 cm/sec in the tilted posture. Similarly, mean rate of circumferential shortening remained constant in response to the positive inotropic effect of isoproterenol at 20.9 ±0.5 cm/sec in the supine position and 20.7 ±0.5 cm/sec in the tilted posture. It is concluded that the constancy of mean rate of circumferential shortening over the relatively broad physiologic range of left ventricular end-diastolic volume and mean force of ejection during a given state of myocardial contractility represents the coupled reciprocal influences of ventricular wall tension and myocardial fiber length on the velocity of ventricular wall shortening. Unlike stroke work, stroke power, and mean rate of left ventricular ejection, which are volume-dependent parameters of myocardial performance, the mean rate of circumferential shortening appears to be a reasonable index of left ventricular contractility, which in steady-state conditions is independent of left ventricular end-diastolic volume and mean ventricular wall force of ejection. In this study, changes in mean rate of circumferential shortening associated with changes of heart rate were small and variable. PMID:4938131

  15. Gain of postural responses increases in response to real and anticipated pain.

    PubMed

    Hodges, Paul W; Tsao, Henry; Sims, Kevin

    2015-09-01

    This study tested two contrasting theories of adaptation of postural control to pain. One proposes alteration to the postural strategy including inhibition of muscles that produce painful movement; another proposes amplification of the postural adjustment to recruit strategies normally reserved for higher load. This study that aimed to determine which of these alternatives best explains pain-related adaptation of the hip muscle activity associated with stepping down from steps of increasing height adaptation of postural control to increasing load was evaluated from hip muscle electromyography (fine-wire and surface electrodes) as ten males stepped from steps of increasing height (i.e. increasing load). In one set of trials, participants stepped from a low step (5 cm) and pain was induced by noxious electrical stimulation over the sacrum triggered from foot contact with a force plate or was anticipated. Changes in EMG amplitude and onset timing were compared between conditions. Hip muscle activation was earlier and larger when stepping from higher steps. Although ground reaction forces (one of the determinants of joint load) were unchanged before, during and after pain, trials with real or anticipated noxious stimulation were accompanied by muscle activity indistinguishable from that normally reserved for higher steps (EMG amplitude increased from 9 to 17 % of peak). These data support the notion that muscle activation for postural control is augmented when challenged by real/anticipated noxious stimulation. Muscle activation was earlier and greater than that required for the task and is likely to create unnecessary joint loading. This could have long-term consequences if maintained.

  16. Smart garment to help children improve posture.

    PubMed

    Lou, E; Moreau, M J; Hill, D L; Raso, V J; Mahood, J K

    2006-01-01

    Many of the aches and pains of adults are the result not of injuries, but of the long-term effects of distortions in posture or alignment. Postural kyphosis in adolescence may be one of the effects of poor standing and sitting habits. Kyphosis is an excessive rounding of the upper spine. A smart garment that can monitor and provide vibration feedback to children has been developed to investigate an alternative treatment possibility. Laboratory tests verified that the accuracy of the system was +/-2 degrees within the full 180 degrees range. A clinical trial has been conducted and it showed that the system can aid subjects to improve by 20% the proportion of time in a more balanced posture. The long term effect is still under investigation.

  17. Falls study: Proprioception, postural stability, and slips.

    PubMed

    Sohn, Jeehoon; Kim, Sukwon

    2015-01-01

    The present study evaluated effects of exercise training on the proprioception sensitivity, postural stability, and the likelihood of slip-induced falls. Eighteen older adults (6 in balance, 6 in weight, and 6 in control groups) participated in this study. Three groups met three times per week over the course of eight weeks. Ankle and knee proprioception sensitivities and postural stability were measured. Slip-induced events were introduced for all participants before and after training. The results indicated that, overall, strength and postural stability were improved only in the training group, although proprioception sensitivity was improved in all groups. Training for older adults resulted in decreased likelihood of slip-induced falls. The study suggested that proprioception can be improved by simply being active, however, the results suggested that training would aid older adults in reducing the likelihood of slip-induced falls.

  18. Balance control in aging: improvements in anticipatory postural adjustments and updating of internal models.

    PubMed

    Kubicki, Alexandre; Mourey, France; Bonnetblanc, François

    2015-12-07

    Postural stability of older subjects can be estimated during orthostatic equilibrium. However, dynamic equilibrium is also important to investigate risks of fall. It implies different interpretations of measures given by force plates. Same dependant variables (e.g. center of pressure displacement) cannot be interpreted the same ways depending of the type of equilibrium that is investigated. In particular, sways increases during dynamic equilibrium and before movement execution may reflect an improvement of feedforward control.

  19. The effects of spaceflight on open-loop and closed-loop postural control mechanisms: human neurovestibular studies on SLS-2.

    PubMed

    Collins, J J; De Luca, C J; Pavlik, A E; Roy, S H; Emley, M S

    1995-01-01

    Stabilogram-diffusion analysis was used to examine how prolonged periods in microgravity affect the open-loop and closed-loop postural control mechanisms. It was hypothesized that following spaceflight: (1) the effective stochastic activity of the open-loop postural control schemes in astronauts is increased; (2) the effective stochastic activity and uncorrelated behavior, respectively, of the closed-loop postural control mechanisms in astronauts are increased; and (3) astronauts utilized open-loop postural controls schemes for shorter time intervals and smaller displacements. Four crew members and two alternates from the 14-day Spacelab Life Sciences 2 Mission were included in the study. Each subject was tested under eyes-open, quiet-standing conditions on multiple preflight and postflight days. The subjects' center-of-pressure trajectories were measured with a force platform and analyzed according to stabilogram-diffusion analysis. It was found that the effective stochastic activity of the open-loop postural control schemes in three of the four crew members was increased following spaceflight. This result is interpreted as an indication that there may be in-flight adaptations to higher-level descending postural control pathways, e.g., a postflight increase in the tonic activation of postural muscles. This change may also be the consequence of a compensatory (e.g., "stiffening") postural control strategy that is adopted by astronauts to account for general feeling of postflight unsteadiness. The crew members, as a group, did not exhibit any consistent preflight/postflight differences in the steady-state behavior of their closed-loop postural control mechanisms or in the functional interaction of their open-loop and closed-loop postural control mechanisms. These results are interpreted as indications that although there may be in-flight adaptations to the vestibular system and/or proprioceptive system, input from the visual system can compensate for such changes

  20. The effects of spaceflight on open-loop and closed-loop postural control mechanisms: human neurovestibular studies on SLS-2

    NASA Technical Reports Server (NTRS)

    Collins, J. J.; De Luca, C. J.; Pavlik, A. E.; Roy, S. H.; Emley, M. S.; Young, L. R. (Principal Investigator)

    1995-01-01

    Stabilogram-diffusion analysis was used to examine how prolonged periods in microgravity affect the open-loop and closed-loop postural control mechanisms. It was hypothesized that following spaceflight: (1) the effective stochastic activity of the open-loop postural control schemes in astronauts is increased; (2) the effective stochastic activity and uncorrelated behavior, respectively, of the closed-loop postural control mechanisms in astronauts are increased; and (3) astronauts utilized open-loop postural controls schemes for shorter time intervals and smaller displacements. Four crew members and two alternates from the 14-day Spacelab Life Sciences 2 Mission were included in the study. Each subject was tested under eyes-open, quiet-standing conditions on multiple preflight and postflight days. The subjects' center-of-pressure trajectories were measured with a force platform and analyzed according to stabilogram-diffusion analysis. It was found that the effective stochastic activity of the open-loop postural control schemes in three of the four crew members was increased following spaceflight. This result is interpreted as an indication that there may be in-flight adaptations to higher-level descending postural control pathways, e.g., a postflight increase in the tonic activation of postural muscles. This change may also be the consequence of a compensatory (e.g., "stiffening") postural control strategy that is adopted by astronauts to account for general feeling of postflight unsteadiness. The crew members, as a group, did not exhibit any consistent preflight/postflight differences in the steady-state behavior of their closed-loop postural control mechanisms or in the functional interaction of their open-loop and closed-loop postural control mechanisms. These results are interpreted as indications that although there may be in-flight adaptations to the vestibular system and/or proprioceptive system, input from the visual system can compensate for such changes

  1. Effect of Semi-Rigid and Soft Ankle Braces on Static and Dynamic Postural Stability in Young Male Adults.

    PubMed

    Maeda, Noriaki; Urabe, Yukio; Tsutsumi, Shogo; Numano, Shuhei; Morita, Miho; Takeuchi, Takuya; Iwata, Shou; Kobayashi, Toshiki

    2016-06-01

    Ankle braces have been suggested to protect ankle joints from a sprain by restricting inversion and improving proprioception. However, the difference in effects between a semi-rigid brace and a soft brace regarding dynamic postural control after landing is not known. The aim of the present study was to compare the effect of soft (SB) and semi-rigid (SRB) ankle braces on static and dynamic postural stability in healthy young men. Altogether, 21 male adults (mean age 24.0 ± 1.5 years) were assessed for one leg while wearing non-brace (NB), SB or SRB. Balance in single-limb stance on a single-force platform with open eyes and closed eyes were assessed for the non-dominant leg under SB, SRB, and NB conditions. Locus length/second (mm/s) and the enveloped area (mm·s(-2)) surrounded by the circumference of the wave pattern during postural sway were calculated. For assessing dynamic postural stability, the participant jumped and landed on one leg on a force platform, and the Dynamic Postural Stability Index (DPSI) and the maximum vertical ground reaction force (vGRFmax) were measured. The data were compared among the three conditions with repeated-measures analysis of variance. The correlations between locus length/second, enveloped area, DPSI values (DPSI, Anterior-Posterior Stability Index, Medial-Lateral Stability Index, and Vertical Stability Index), and vGRFmax were then calculated. The results indicated that locus length/second and enveloped area with open eyes and closed eyes were not significantly different for each condition. However, a significant lower in the DPSI and Vertical Stability Index were observed with the SRB in comparison to the SB and NB. A significant improvement in vGRFmax was also observed with the SRB in comparison to NB. SRB demonstrated a positive effect on dynamic postural stability after landing on a single leg and may improve balance by increasing dynamic postural stability. Key pointsThis study examined the effect of ankle braces on

  2. Effect of Semi-Rigid and Soft Ankle Braces on Static and Dynamic Postural Stability in Young Male Adults

    PubMed Central

    Maeda, Noriaki; Urabe, Yukio; Tsutsumi, Shogo; Numano, Shuhei; Morita, Miho; Takeuchi, Takuya; Iwata, Shou; Kobayashi, Toshiki

    2016-01-01

    Ankle braces have been suggested to protect ankle joints from a sprain by restricting inversion and improving proprioception. However, the difference in effects between a semi-rigid brace and a soft brace regarding dynamic postural control after landing is not known. The aim of the present study was to compare the effect of soft (SB) and semi-rigid (SRB) ankle braces on static and dynamic postural stability in healthy young men. Altogether, 21 male adults (mean age 24.0 ± 1.5 years) were assessed for one leg while wearing non-brace (NB), SB or SRB. Balance in single-limb stance on a single-force platform with open eyes and closed eyes were assessed for the non-dominant leg under SB, SRB, and NB conditions. Locus length/second (mm/s) and the enveloped area (mm·s-2) surrounded by the circumference of the wave pattern during postural sway were calculated. For assessing dynamic postural stability, the participant jumped and landed on one leg on a force platform, and the Dynamic Postural Stability Index (DPSI) and the maximum vertical ground reaction force (vGRFmax) were measured. The data were compared among the three conditions with repeated-measures analysis of variance. The correlations between locus length/second, enveloped area, DPSI values (DPSI, Anterior-Posterior Stability Index, Medial-Lateral Stability Index, and Vertical Stability Index), and vGRFmax were then calculated. The results indicated that locus length/second and enveloped area with open eyes and closed eyes were not significantly different for each condition. However, a significant lower in the DPSI and Vertical Stability Index were observed with the SRB in comparison to the SB and NB. A significant improvement in vGRFmax was also observed with the SRB in comparison to NB. SRB demonstrated a positive effect on dynamic postural stability after landing on a single leg and may improve balance by increasing dynamic postural stability. Key points This study examined the effect of ankle braces on

  3. An OWAS-based analysis of nurses' working postures.

    PubMed

    Engels, J A; Landeweerd, J A; Kant, Y

    1994-05-01

    The working postures of Dutch nurses (n = 18) in an orthopaedic ward and a urology ward were observed using the Ovako Working posture Analysis System (OWAS). During observation, both working postures and activities were recorded. A specially developed computer program was used for data analysis. By means of this program, it was possible to calculate the working posture load for each activity and the contribution of a specific activity to the total working posture load. This study shows that some activities of the nurses in both wards were performed with poor working postures. In the orthopaedic (resp. urology) ward two (resp. one) out of 19 observed postures of parts of the body were classified as Action Category 2. Moreover, 20% (resp. 16%) of the so-called typical working postures was classified in Action Category 2. This suggests, that in both wards working postures that are slightly harmful to the musculoskeletal system, occur during a substantial part of the working day. Differences between both wards with respect to working posture load and time expenditure were determined. Activities causing the workload to fall into OWAS higher Action Categories were identified. The data show that poor working postures in the nursing profession not only occur during patient handling activities but also during tasks like 'administration'. Focusing on patient-handling (i.e., lifting patients) in order to determine the load on the musculoskeletal system would therefore lead to an underestimation of the total working posture load of nurses.

  4. Postural Control in Children: Implications for Pediatric Practice

    ERIC Educational Resources Information Center

    Westcott, Sarah L.; Burtner, Patricia

    2004-01-01

    Based on a systems theory of motor control, reactive postural control (RPA) and anticipatory postural control (APA) in children are reviewed from several perspectives in order to develop an evidence-based intervention strategy for improving postural control in children with limitations in motor function. Research on development of postural…

  5. Development of the Coordination between Posture and Manual Control

    ERIC Educational Resources Information Center

    Haddad, Jeffrey M.; Claxton, Laura J.; Keen, Rachel; Berthier, Neil E.; Riccio, Gary E.; Hamill, Joseph; Van Emmerik, Richard E. A.

    2012-01-01

    Studies have suggested that proper postural control is essential for the development of reaching. However, little research has examined the development of the coordination between posture and manual control throughout childhood. We investigated the coordination between posture and manual control in children (7- and 10-year-olds) and adults during…

  6. A passerine spreads its tail to facilitate a rapid recovery of its body posture during hovering

    PubMed Central

    Su, Jian-Yuan; Ting, Shang-Chieh; Chang, Yu-Hung; Yang, Jing-Tang

    2012-01-01

    We demonstrate experimentally that a passerine exploits tail spreading to intercept the downward flow induced by its wings to facilitate the recovery of its posture. The periodic spreading of its tail by the White-eye bird exhibits a phase correlation with both wingstroke motion and body oscillation during hovering flight. During a downstroke, a White-eye's body undergoes a remarkable pitch-down motion, with the tail undergoing an upward swing. This pitch-down motion becomes appropriately suppressed at the end of the downstroke; the bird's body posture then recovers gradually to its original status. Employing digital particle-image velocimetry, we show that the strong downward flow induced by downstroking the wings serves as an external jet flow impinging upon the tail, providing a depressing force on the tail to counteract the pitch-down motion of the bird's body. Spreading of the tail enhances a rapid recovery of the body posture because increased forces are experienced. The maximum force experienced by a spread tail is approximately 2.6 times that of a non-spread tail. PMID:22258552

  7. 38 CFR Appendix C to Part 200 - Actions Requiring Environmental Impact Statement

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Environmental Impact Statement C Appendix C to Part 200 Pensions, Bonuses, and Veterans' Relief ARMED FORCES RETIREMENT HOME COMPLIANCE WITH THE NATIONAL ENVIRONMENTAL POLICY ACT Pt. 200, App. C Appendix C to Part 200—Actions Requiring Environmental Impact Statement The following actions are considered to be major...

  8. Physiological tremor reveals how thixotropy adapts skeletal muscle for posture and movement.

    PubMed

    Vernooij, Carlijn A; Reynolds, Raymond F; Lakie, Martin

    2016-05-01

    People and animals can move freely, but they must also be able to stay still. How do skeletal muscles economically produce both movement and posture? Humans are well known to have motor units with relatively homogeneous mechanical properties. Thixotropic muscle properties can provide a solution by providing a temporary stiffening of all skeletal muscles in postural conditions. This stiffening is alleviated almost instantly when muscles start to move. In this paper, we probe this behaviour. We monitor both the neural input to a muscle, measured here as extensor muscle electromyography (EMG), and its output, measured as tremor (finger acceleration). Both signals were analysed continuously as the subject made smooth transitions between posture and movement. The results showed that there were marked changes in tremor which systematically increased in size and decreased in frequency as the subject moved faster. By contrast, the EMG changed little and reflected muscle force requirement rather than movement speed. The altered tremor reflects naturally occurring thixotropic changes in muscle behaviour. Our results suggest that physiological tremor provides useful and hitherto unrecognized insights into skeletal muscle's role in posture and movement.

  9. Evaluation of the association between osteoporosis and postural balance in postmenopausal women.

    PubMed

    Brech, Guilherme Carlos; Plapler, Pérola Grinberg; de Souza Meirelles, Eduardo; Marcolino, Flora Maria D'Andrea; Greve, Júlia Maria D'Andrea

    2013-06-01

    The incidence of osteoporosis has been increasing, as have fractures resulting from falls. Postural balance was evaluated in postmenopausal women with and without lumbar osteoporosis. One hundred and twenty-six postmenopausal women aged 55-65 years were evaluated and separated into two groups according to the bone mineral density values of their lumbar spine: the osteoporosis group and the control group, paired by age (P = 0.219) and physical activity (P = 0.611). There was no difference between the groups (P = 0.139) regarding falls reported in the previous 12 months. Functional mobility was evaluated through the Timed Up and Go Test. Postural balance was evaluated using a portable force platform in standard standing position, with eyes open and closed, for 60s. Muscle strength was evaluated through an isokinetic dynamometer. This study shows that there is no difference in knee muscle strength and functional mobility (P = 0.121), postural balance with eyes open [mediolateral displacement (P = 0.286) and mean velocity of the center of pressure (COP) (P = 0.173)] and with eyes closed [mediolateral displacement (P = 0.163), and the mean velocity of displacement of the COP (P = 0.09)] in both groups. Subjects reporting falls had greater mediolateral displacement (P = 0.028) in both groups. Postmenopausal women aged between 55 and 65 years do not present changes in postural balance irrespective of lumbar osteoporosis. Greater COP mediolateral displacement is related to the occurrence of falls in postmenopausal women in the previous year.

  10. The effects of hippotherapy on postural balance and functional ability in children with cerebral palsy

    PubMed Central

    Moraes, Andréa Gomes; Copetti, Fernando; Angelo, Vera Regina; Chiavoloni, Luana Leonardo; David, Ana Cristina

    2016-01-01

    [Purpose] This study evaluated the effects of hippotherapy on seated postural balance, dynamic balance, and functional performance in children with cerebral palsy and compared the effects of 12 and 24 sessions on seated postural balance. [Subjects and Methods] This study included 15 children with cerebral palsy aged between 5 and 10 years. Interventions: A hippotherapy protocol was performed for 30 minutes, twice a week, for 12 weeks. Postural balance in a sitting position was measured using an AMTI AccuSway Plus force platform 1 week before initiating the hippotherapy program and after 12 and 24 weeks. The Berg Balance Scale (BBS) and Pediatric Evaluation of Disability Inventory (PEDI) were used before and after 24 sessions. [Results] Significant differences were observed for center of pressure (COP) variables, including medio-lateral (COPml), anteroposterior displacement (COPap), and velocity of displacement (VelCOP), particularly after 24 sessions. There were also significant differences in BBS scores and PEDI score increases associated with functional skills (self-care, social function, and mobility), caregiver assistance (self-care), social function, and mobility. [Conclusion] Hippotherapy resulted in improvement in postural balance in the sitting position, dynamic balance, and functionality in children with cerebral palsy, an effect particularly significant after 24 hippotherapy sessions. PMID:27630401

  11. Anticipatory and compensatory postural adjustments in conditions of body asymmetry induced by holding an object.

    PubMed

    Chen, Bing; Lee, Yun-Ju; Aruin, Alexander S

    2015-11-01

    The effect of body asymmetry on anticipatory and compensatory postural adjustments was studied. Ten healthy subjects stood on the force platform and held an object in one hand which induced body asymmetry. Subjects were exposed to external perturbations applied to their shoulders while standing with either normal or narrow base of support. Bilateral electromyographic activity (EMG) of dorsal and ventral trunk and leg muscles and center-of-pressure displacements were recorded. Data was analyzed within the intervals typical for anticipatory (APA) and compensatory postural adjustments. Integrals of EMG activity and co-contraction and reciprocal activation of muscles were calculated and analyzed. Reciprocal activation of muscles on the target side and co-contraction of muscles on the contralateral side were seen when standing in asymmetrical stance and being subjected to external perturbations. Decreased magnitudes of co-contraction and reciprocal activation of muscles were seen in the APA phase while standing asymmetrically with narrow base of support. The findings highlight the importance of investigating the role of body asymmetry in maintaining control of vertical posture. The outcome of the study provides a foundation for future studies focusing on improvement in postural control in individuals with body asymmetry due to unilateral weakness.

  12. Effects of lateral perturbations and changing stance conditions on anticipatory postural adjustment.

    PubMed

    Santos, Marcio J; Aruin, Alexander S

    2009-06-01

    The study investigates the role of lateral muscles and changing stance conditions in anticipatory postural adjustments (APAs). Subjects stood laterally to an aluminum pendulum released by an experimenter and were required to stop it with their right or left hand. Stance conditions were manipulated by having the subjects stand in the following positions: on a single limb (SS), with feet together (narrow base of support, NB), and with feet shoulder width apart (regular base of support, RB). Bilateral EMG activity of dorsal, ventral, and lateral trunk and leg muscles and ground reaction forces were recorded and quantified within the time intervals typical of APAs. Anticipatory postural adjustments were seen in all experimental conditions, and their magnitudes depended on the stance and the side of perturbation. Accordingly, APAs in lateral muscles increased on the side of perturbation in SS condition, while simultaneous activation of dorsal muscles occurred on the contralateral side. Smaller APAs were seen in lateral muscles in conditions with a wider base of support (NB, RB) and APAs in dorsal muscles were smaller in NB - in comparison to RB - stance. The results of the present study provide new data on the role of lateral, ventral, and dorsal muscles in anticipatory postural control when dealing with lateral perturbations in conditions of postural instability.

  13. Effects of anticipatory anxiety and visual input on postural sway in an aversive situation.

    PubMed

    Ishida, Mitsuo; Saitoh, Junko; Wada, Maki; Nagai, Masanori

    2010-04-19

    We have previously reported that state anxiety scores were positively correlated with postural sway while standing upright and gazing at a visual target (Ohno et al., 2004 [16]). The present study examines the effect of anticipatory anxiety and visual input on postural control in healthy individuals. An unpredictable aversive sound (100dB SPL) was delivered in order to induce anticipatory anxiety. Participants were asked to stand upright on a force plate with their eyes open and closed, and their center of pressure (COP) was measured. Analysis of the postural parameters revealed that the path lengths of the COP and the enveloped areas were greater in the anticipatory situation with the aversive sound than in the silent situation. Fast Fourier transform analysis showed that the frequency component related to vestibular inputs (0.1-1.0Hz) was increased during the anticipatory situation. The lower frequency (<0.1Hz) component was decreased in the medio-lateral axis during anticipation with the eyes closed due to shifting mean power frequencies to high frequency. The results suggest that anticipatory anxiety in healthy participants amplified the sway regardless of whether the eyes were open or closed, and that the vestibular inputs greatly influenced the amplification of postural sway.

  14. Physiological tremor reveals how thixotropy adapts skeletal muscle for posture and movement

    PubMed Central

    Vernooij, Carlijn A.; Reynolds, Raymond F.; Lakie, Martin

    2016-01-01

    People and animals can move freely, but they must also be able to stay still. How do skeletal muscles economically produce both movement and posture? Humans are well known to have motor units with relatively homogeneous mechanical properties. Thixotropic muscle properties can provide a solution by providing a temporary stiffening of all skeletal muscles in postural conditions. This stiffening is alleviated almost instantly when muscles start to move. In this paper, we probe this behaviour. We monitor both the neural input to a muscle, measured here as extensor muscle electromyography (EMG), and its output, measured as tremor (finger acceleration). Both signals were analysed continuously as the subject made smooth transitions between posture and movement. The results showed that there were marked changes in tremor which systematically increased in size and decreased in frequency as the subject moved faster. By contrast, the EMG changed little and reflected muscle force requirement rather than movement speed. The altered tremor reflects naturally occurring thixotropic changes in muscle behaviour. Our results suggest that physiological tremor provides useful and hitherto unrecognized insights into skeletal muscle's role in posture and movement. PMID:27293785

  15. Regular physical activity reduces the effects of Achilles tendon vibration on postural control for older women.

    PubMed

    Maitre, J; Serres, I; Lhuisset, L; Bois, J; Gasnier, Y; Paillard, T

    2015-02-01

    The aim was to determine in what extent physical activity influences postural control when visual, vestibular, and/or proprioceptive systems are disrupted. Two groups of healthy older women: an active group (74.0 ± 3.8 years) who practiced physical activities and a sedentary group (74.7 ± 6.3 years) who did not, underwent 12 postural conditions consisted in altering information emanating from sensory systems by means of sensory manipulations (i.e., eyes closed, cervical collar, tendon vibration, electromyostimulation, galvanic vestibular stimulation, foam surface). The center of foot pressure velocity was recorded on a force platform. Results indicate that the sensory manipulations altered postural control. The sedentary group was more disturbed than the active group by the use of tendon vibration. There was no clear difference between the two groups in the other conditions. This study suggests that the practice of physical activities is beneficial as a means of limiting the effects of tendon vibration on postural control through a better use of the not manipulated sensory systems and/or a more efficient reweighting to proprioceptive information from regions unaffected by the tendon vibration.

  16. Controlling Posture and Vergence Eye Movements in Quiet Stance: Effects of Thin Plantar Inserts.

    PubMed

    Foisy, A; Gaertner, C; Matheron, E; Kapoula, Z

    2015-01-01

    The purpose of this study was to assess properties of vergence and saccade eye movements as well as posture in quiet stance, and the effects of thin plantar inserts upon postural and oculomotor control. The performances of 36 young healthy subjects were recorded by a force platform and an eye tracker in three testing conditions: without plantar stimulation, with a 3 millimetre-thick plantar insert, either a Medial or a Lateral Arch Support (MAS/LAS). The results showed a decrease of the Surface and Variance of Speed and a more posterior position of the CoP with either stimulation compared with the control condition. The fractal analysis showed a decrease with MAS. Wavelet analysis in the time-frequency domain revealed an increase in the Cancelling Time of the low frequency band with MAS. These results suggest a better stability for a lower energy cost. Concerning eye movements, the inserts influenced only vergence (not saccades): MAS caused an increase of the phasic amplitude of divergence, and conversely a decrease of the tonic amplitude. In contrast, LAS caused an increase of the tonic amplitude of convergence. Thus, MAS renders divergence less visually driven, while LAS renders convergence more visually driven. We conclude that the CNS uses the podal signal for both postural and vergence control via specific mechanisms. Plantar inserts have an influence upon posture and vergence movements in a different way according to the part of the foot sole being stimulated. These results can be useful to clinicians interested in foot or eye.

  17. Statement of Intent

    ERIC Educational Resources Information Center

    Walter, Charmian

    2008-01-01

    The purpose of writing a charter is to show adult learners that the people providing learning for them are willing to sign up publicly to a statement of their entitlement to the very best quality of information, guidance, teaching and support--and not only to sign up to it, but to be ready to be called to account if they do not live up to the…

  18. How to design nutritional intervention trials to slow cognitive decline in apparently healthy populations and apply for efficacy claims: a statement from the International Academy on Nutrition and Aging Task Force.

    PubMed

    Ferry, M; Coley, N; Andrieu, S; Bonhomme, C; Caubère, J P; Cesari, M; Gautry, J; Garcia Sanchez, I; Hugonot, L; Mansuy, L; Pahor, M; Pariente, J; Ritz, P; Salva, A; Sijben, J; Wieggers, R; Ythier-Moury, P; Zaïm, M; Zetlaoui, J; Vellas, B

    2013-07-01

    Interventions are crucial as they offer simple and inexpensive public health solutions that will be useful over the long term use. A Task Force on designing trials of nutritional interventions to slow cognitive decline in older adults was held in Toulouse in September 2012. The aim of the Task Force was to bring together leading experts from academia, the food industry and regulatory agencies to determine the best trial designs that would enable us to reach our goal of maintaining or improving cognitive function in apparently healthy aging people. An associated challenge for this Task Force was to determine the type of trials required by the Public Food Agencies for assessing the impact of nutritional compounds in comparison to well established requirements for drug trials. Although the required quality of the study design, rationale and statistical analysis remains the same, the studies designed to show reduction of cognitive decline require a long duration and the objectives of this task force was to determine best design for these trials. Two specific needs were identified to support trials of nutritional interventions: 1- Risk- reduction strategies are needed to tackle the growing burden of cognitive decline that may lead to dementia, 2- Innovative study designs are needed to improve the quality of these studies.

  19. Relation between the Sensory and Anthropometric Variables in the Quiet Standing Postural Control: Is the Inverted Pendulum Important for the Static Balance Control?

    PubMed Central

    Alonso, Angélica C.; Mochizuki, Luis; Silva Luna, Natália Mariana; Ayama, Sérgio; Canonica, Alexandra Carolina; Greve, Júlia M. D. A.

    2015-01-01

    The aim of this study was to evaluate the relation between the sensory and anthropometric variables in the quiet standing. Methods. One hundred individuals (50 men, 50 women; 20–40 years old) participated in this study. For all participants, the body composition (fat tissue, lean mass, bone mineral content, and bone mineral density) and body mass, height, trunk-head length, lower limb length, and upper limb length were measured. The center of pressure was measured during the quiet standing posture, the eyes opened and closed with a force platform. Correlation and regression analysis were run to analyze the relation among body composition, anthropometric data, and postural sway. Results. The correlation analysis showed low relation between postural sway and anthropometric variables. The multiple linear regression analyses showed that the height explained 12% of the mediolateral displacement and 11% of the center of pressure area. The length of the trunk head explained 6% of displacement in the anteroposterior postural sway. During eyes closed condition, the support basis and height explained 18% of mediolateral postural sway. Conclusion. The postural control depends on body composition and dimension. This relation is mediated by the sensory information. The height was the anthropometric variable that most influenced the postural sway. PMID:26539550

  20. A New Strategy and Fewer Forces: The Pacific Dimension

    DTIC Science & Technology

    1992-01-01

    western Pacific and Indian oceans . In this posture, major exercises were conducted with regional allies (e.g., Team Spirit with the Republic of Korea...reduced its military presence in the region, lowering its ship days in the South China Sea and Indian Ocean and removing most of its military forces...also be very important. Posture C The removal of virtually all U.S. bases from thb. ’est,,r.- ? acific has the greatest chance of provoking adverse

  1. Posture and Texting: Effect on Balance in Young Adults

    PubMed Central

    Nurwulan, Nurul Retno; Jiang, Bernard C.; Iridiastadi, Hardianto

    2015-01-01

    Using a mobile phone while doing another activity is a common dual-task activity in our daily lives. This study examined the effect of texting on the postural stability of young adults. Twenty college students were asked to perform static and dynamic postural stability tasks. Traditional COP and multivariate multiscale entropy (MMSE) were used to assess the static postural stability and the Star Excursion Balance Test (SEBT) was used to assess the dynamic postural stability. Results showed that (1) texting impaired postural stability, (2) the complexity index did not change much although the task conditions changed, and (3) performing texting is perceived to be more difficult. PMID:26230323

  2. Methods of Postural Assessment Used for Sports Persons

    PubMed Central

    Singla, Deepika

    2014-01-01

    Occurrence of postural defects has become very common now-a-days not only in general population but also in sports persons. There are various methods which can be used to assess these postural defects. These methods have evolved over a period of many years. This paper is first of its kind to summarize the methods of postural assessment which have been used and which can be used for evaluation of postural abnormalities in sports persons such as the visual observation, plumbline, goniometry, photographic, radiographic, photogrammetric, flexiruler, electromagnetic tracking device etc. We recommend more and more postural evaluation studies to be done in future based on the photogrammetric method. PMID:24959470

  3. Forearm posture and mobility in quadrupedal dinosaurs.

    PubMed

    VanBuren, Collin S; Bonnan, Matthew

    2013-01-01

    Quadrupedality evolved four independent times in dinosaurs; however, the constraints associated with these transitions in limb anatomy and function remain poorly understood, in particular the evolution of forearm posture and rotational ability (i.e., active pronation and supination). Results of previous qualitative studies are inconsistent, likely due to an inability to quantitatively assess the likelihood of their conclusions. We attempt to quantify antebrachial posture and mobility using the radius bone because its morphology is distinct between extant sprawled taxa with a limited active pronation ability and parasagittal taxa that have an enhanced ability to actively pronate the manus. We used a sliding semi-landmark, outline-based geometric morphometric approach of the proximal radial head and a measurement of the angle of curvature of the radius in a sample of 189 mammals, 49 dinosaurs, 35 squamates, 16 birds, and 5 crocodilians. Our results of radial head morphology showed that quadrupedal ceratopsians, bipedal non-hadrosaurid ornithopods, and theropods had limited pronation/supination ability, and sauropodomorphs have unique radial head morphology that likely allowed limited rotational ability. However, the curvature of the radius showed that no dinosaurian clade had the ability to cross the radius about the ulna, suggesting parallel antebrachial elements for all quadrupedal dinosaurs. We conclude that the bipedal origins of all quadrupedal dinosaur clades could have allowed for greater disparity in forelimb posture than previously appreciated, and future studies on dinosaur posture should not limit their classifications to the overly simplistic extant dichotomy.

  4. Can Smartwatches Replace Smartphones for Posture Tracking?

    PubMed Central

    Mortazavi, Bobak; Nemati, Ebrahim; VanderWall, Kristina; Flores-Rodriguez, Hector G.; Cai, Jun Yu Jacinta; Lucier, Jessica; Naeim, Arash; Sarrafzadeh, Majid

    2015-01-01

    This paper introduces a human posture tracking platform to identify the human postures of sitting, standing or lying down, based on a smartwatch. This work develops such a system as a proof-of-concept study to investigate a smartwatch’s ability to be used in future remote health monitoring systems and applications. This work validates the smartwatches’ ability to track the posture of users accurately in a laboratory setting while reducing the sampling rate to potentially improve battery life, the first steps in verifying that such a system would work in future clinical settings. The algorithm developed classifies the transitions between three posture states of sitting, standing and lying down, by identifying these transition movements, as well as other movements that might be mistaken for these transitions. The system is trained and developed on a Samsung Galaxy Gear smartwatch, and the algorithm was validated through a leave-one-subject-out cross-validation of 20 subjects. The system can identify the appropriate transitions at only 10 Hz with an F-score of 0.930, indicating its ability to effectively replace smart phones, if needed. PMID:26506354

  5. Evaluation of postural mechanisms under dynamic conditions

    NASA Technical Reports Server (NTRS)

    Anderson, D. J.

    1978-01-01

    A stimulus delivery and data acquisition system for assessment of human posture was developed based on a digital computer and a translating platform. The movement of the platform acts to displace the subject's base of support while the computer tracks the corrections which are made by the subject to maintain balance. Various stimuli are used ranging from fast transients to sine waves.

  6. Body Posture Facilitates Retrieval of Autobiographical Memories

    ERIC Educational Resources Information Center

    Dijkstra, Katinka; Kaschak, Michael P.; Zwaan, Rolf A.

    2007-01-01

    We assessed potential facilitation of congruent body posture on access to and retention of autobiographical memories in younger and older adults. Response times were shorter when body positions during prompted retrieval of autobiographical events were similar to the body positions in the original events than when body position was incongruent.…

  7. Forearm Posture and Mobility in Quadrupedal Dinosaurs

    PubMed Central

    VanBuren, Collin S.; Bonnan, Matthew

    2013-01-01

    Quadrupedality evolved four independent times in dinosaurs; however, the constraints associated with these transitions in limb anatomy and function remain poorly understood, in particular the evolution of forearm posture and rotational ability (i.e., active pronation and supination). Results of previous qualitative studies are inconsistent, likely due to an inability to quantitatively assess the likelihood of their conclusions. We attempt to quantify antebrachial posture and mobility using the radius bone because its morphology is distinct between extant sprawled taxa with a limited active pronation ability and parasagittal taxa that have an enhanced ability to actively pronate the manus. We used a sliding semi-landmark, outline-based geometric morphometric approach of the proximal radial head and a measurement of the angle of curvature of the radius in a sample of 189 mammals, 49 dinosaurs, 35 squamates, 16 birds, and 5 crocodilians. Our results of radial head morphology showed that quadrupedal ceratopsians, bipedal non-hadrosaurid ornithopods, and theropods had limited pronation/supination ability, and sauropodomorphs have unique radial head morphology that likely allowed limited rotational ability. However, the curvature of the radius showed that no dinosaurian clade had the ability to cross the radius about the ulna, suggesting parallel antebrachial elements for all quadrupedal dinosaurs. We conclude that the bipedal origins of all quadrupedal dinosaur clades could have allowed for greater disparity in forelimb posture than previously appreciated, and future studies on dinosaur posture should not limit their classifications to the overly simplistic extant dichotomy. PMID:24058633

  8. Effect of absence of vision on posture

    PubMed Central

    Alotaibi, Abdullah Z.; Alghadir, Ahmad; Iqbal, Zaheen A.; Anwer, Shahnawaz

    2016-01-01

    [Purpose] The visual system is one of the sensory systems that enables the body to assess and process information about the external environment. In the absence of vision, a blind person loses contact with the outside world and develops faulty motor patterns, which results in postural deficiencies. However, literature regarding the development of such deficiencies is limited. The aim of this study was to discuss the effect of absence of vision on posture, the possible biomechanics behind the resulting postural deficiencies, and strategies to correct and prevent them. [Subjects and Methods] Various electronic databases including PubMed, Medline, and Google scholar were examined using the words “body”, “posture”, “blind” and “absence of vision”. References in the retrieved articles were also examined for cross-references. The search was limited to articles in the English language. [Results] A total of 74 papers were shortlisted for this review, most of which dated back to the 1950s and 60s. [Conclusion] Blind people exhibit consistent musculoskeletal deformities. Absence of vision leads to numerous abnormal sensory and motor interactions that often limit blind people in isolation. Rehabilitation of the blind is a multidisciplinary task. Specialists from different fields need to diagnose and treat the deficiencies of the blind together as a team. Before restoring the normal mechanics of posture and gait, the missing link with the external world should be reestablished. PMID:27190486

  9. Postural Determinants in the Blind. Final Report.

    ERIC Educational Resources Information Center

    Siegel, Irwin M.; Murphy, Thomas J.

    The problem of malposture in the blind and its affect on orientation and travel skills was explored. A group of 45 students were enrolled in a standard 3-month mobility training program. Each student suffered a postural problem, some compounded by severe orthopedic and/or neurological deficit. All subjects were given complete orthopedic and…

  10. Posture and the circulation: the age effect.

    PubMed

    Smith, J J; Porth, C J

    1991-01-01

    The primary instigator of circulatory response to the upright posture is the rapid displacement of about 10% of blood volume from the thorax to the lower body. The resultant hemodynamic deficit induces postural intolerance, especially orthostatic hypotension, in elderly over 70 years of age and in some young subjects after exposure to weightlessness. In this review, our objectives have been: 1) to describe in the normal subject the hemodynamic consequences of the headup posture, as well as lower body negative pressure, the compensatory responses intended to cope with these stresses, and their mechanisms; 2) to outline the effect of age on the circulatory responses to these stresses; and (3) to analyze and compare the tests currently used to assess circulatory tolerance. Our ability to design effective countermeasures to orthostatic circulatory intolerance is severely handicapped by our inadequate knowledge of the basic hemodynamic events incident to normal and abnormal orthostatic tolerance. We believe that better understanding and standardization of the postural tests, better experimental design to include greater emphasis on inter and intra-individual variability, and wider application of currently available noninvasive circulatory techniques would greatly improve the prospects for success in this research area.

  11. Posture Training for Special Needs Students.

    ERIC Educational Resources Information Center

    James, Terrance N.; And Others

    1986-01-01

    Educable mentally handicapped adolescents with and without additional health problems (N=24) participated in a three-month fitness intervention program. Pre- and post-measures revealed a high incidence of poor posture in both groups. Related topics discussed include subsequent biomechanical interventions, subjective symptomatology, and the need…

  12. Can smartwatches replace smartphones for posture tracking?

    PubMed

    Mortazavi, Bobak; Nemati, Ebrahim; VanderWall, Kristina; Flores-Rodriguez, Hector G; Cai, Jun Yu Jacinta; Lucier, Jessica; Naeim, Arash; Sarrafzadeh, Majid

    2015-10-22

    This paper introduces a human posture tracking platform to identify the human postures of sitting, standing or lying down, based on a smartwatch. This work develops such a system as a proof-of-concept study to investigate a smartwatch's ability to be used in future remote health monitoring systems and applications. This work validates the smartwatches' ability to track the posture of users accurately in a laboratory setting while reducing the sampling rate to potentially improve battery life, the first steps in verifying that such a system would work in future clinical settings. The algorithm developed classifies the transitions between three posture states of sitting, standing and lying down, by identifying these transition movements, as well as other movements that might be mistaken for these transitions. The system is trained and developed on a Samsung Galaxy Gear smartwatch, and the algorithm was validated through a leave-one-subject-out cross-validation of 20 subjects. The system can identify the appropriate transitions at only 10 Hz with an F-score of 0.930, indicating its ability to effectively replace smart phones, if needed.

  13. Postural orthostatic tachycardia syndrome: a clinical review.

    PubMed

    Johnson, Jonathan N; Mack, Kenneth J; Kuntz, Nancy L; Brands, Chad K; Porter, Coburn J; Fischer, Philip R

    2010-02-01

    Postural orthostatic tachycardia syndrome was defined in adult patients as an increase >30 beats per minute in heart rate of a symptomatic patient when moving from supine to upright position. Clinical signs may include postural tachycardia, headache, abdominal discomfort, dizziness/presyncope, nausea, and fatigue. The most common adolescent presentation involves teenagers within 1-3 years of their growth spurt who, after a period of inactivity from illness or injury, cannot return to normal activity levels because of symptoms induced by upright posture. Postural orthostatic tachycardia syndrome is complex and likely has numerous, concurrent pathophysiologic etiologies, presenting along a wide spectrum of potential symptoms. Nonpharmacologic treatment includes (1) increasing aerobic exercise, (2) lower-extremity strengthening, (3) increasing fluid/salt intake, (4) psychophysiologic training for management of pain/anxiety, and (5) family education. Pharmacologic treatment is recommended on a case-by-case basis, and can include beta-blocking agents to blunt orthostatic increases in heart rate, alpha-adrenergic agents to increase peripheral vascular resistance, mineralocorticoid agents to increase blood volume, and serotonin reuptake inhibitors. An interdisciplinary research approach may determine mechanistic root causes of symptoms, and is investigating novel management plans for affected patients.

  14. Nutritional management and follow up of infants and children with food allergy: Italian Society of Pediatric Nutrition/Italian Society of Pediatric Allergy and Immunology Task Force Position Statement.

    PubMed

    Giovannini, Marcello; D'Auria, Enza; Caffarelli, Carlo; Verduci, Elvira; Barberi, Salvatore; Indinnimeo, Luciana; Iacono, Iride Dello; Martelli, Alberto; Riva, Enrica; Bernardini, Roberto

    2014-01-03

    Although the guidelines on the diagnosis and treatment of food allergy recognize the role of nutrition, there is few literature on the practical issues concerning the nutritional management of children with food allergies. This Consensus Position Statement focuses on the nutritional management and follow-up of infants and children with food allergy.It provides practical advices for the management of children on exclusion diet and it represents an evidence-based consensus on nutritional intervention and follow-up of infants and children with food allergy. Children with food allergies have poor growth compared to non-affected subjects directly proportional to the quantity of foods excluded and the duration of the diet. Nutritional intervention, if properly planned and properly monitored, has proven to be an effective mean to substantiate a recovery in growth. Nutritional intervention depends on the subject's nutritional status at the time of the diagnosis. The assessment of the nutritional status of children with food allergies should follow a diagnostic pathway that involves a series of successive steps, beginning from the collection of a detailed diet-history. It is essential that children following an exclusion diet are followed up regularly. The periodic re-evaluation of the child is needed to assess the nutritional needs, changing with the age, and the compliance to the diet. The follow- up plan should be established on the basis of the age of the child and following the growth pattern.

  15. Inclination of standing posture due to the presentation of tilted view through an immersive head-mounted display

    PubMed Central

    Ohmura, Yuji; Yano, Shiro; Katsuhira, Junji; Migita, Masato; Yozu, Arito; Kondo, Toshiyuki

    2017-01-01

    [Purpose] The purpose of the present study is to clarify whether tilted scenery presented through an immersive head-mounted display (HMD) causes the inclination of standing posture. [Subjects and Methods] Eleven healthy young adult males who provided informed consent participated in the experiment. An immersive HMD and a stereo camera were employed to develop a visual inclination system. The subjects maintained a standing posture twice for 5s each while wearing the visual inclination system. They performed this task under two conditions: normal view and 20° leftward tilted view. A three-dimensional motion analysis system was used to measure the subjects’ postures, and two force plates were used to measure the vertical component of the floor reaction force of each leg. [Results] In the 20° leftward tilted view, the head and trunk angles in the frontal plane were similarly inclined toward the left, and the vertical component of the floor reaction force increased in the left leg, whereas it decreased in the right leg. [Conclusion] When the view in the immersive HMD was tilted, the participants’ trunk side bent toward the same side as that of the view. This visual inclination system seems to be a simple intervention for changing standing posture. PMID:28265145

  16. Postural instability in Charcot-Marie-Tooth type 1A patients is strongly associated with reduced somatosensation.

    PubMed

    van der Linden, Marleen H; van der Linden, Saskia C; Hendricks, Henk T; van Engelen, Baziel G M; Geurts, Alexander C H

    2010-04-01

    In order to determine the influence of somatosensory impairments, due to the loss of large myelinated fibres, on the postural stability of Charcot-Marie-Tooth 1A (CMT) patients, a cross-sectional balance assessment was done. Nine CMT patients were compared with eight patients with a distal type of Spinal Muscular Atrophy (SMA), and 11 healthy control subjects. The balance assessment consisted of four tasks: quiet barefoot standing on a stable versus compliant surface, with eyes opened or closed. Force plate signals were used to calculate the velocity of the centre of pressure of the ground reaction forces. The patients' distal muscle force (MRC scale), vibration detection threshold (Rydel-Seiffer tuning fork) and superficial tactile sensation (Semmes-Weinstein monofilaments) were clinically assessed. Compared to the healthy subjects, postural stability of both patient groups was seriously impaired, however, increased visual dependency was only found in the CMT patients. The postural instability of the CMT patients correlated significantly with decreased vibration sense only. The strength of the correlation increased with task complexity. It is concluded that somatosensory deficits substantially contribute to impaired postural stability and increased visual dependency in CMT patients.

  17. Difference in Postural Control during Quiet Standing between Young Children and Adults: Assessment with Center of Mass Acceleration.

    PubMed

    Oba, Naoko; Sasagawa, Shun; Yamamoto, Akio; Nakazawa, Kimitaka

    2015-01-01

    The development of upright postural control has often been investigated using time series of center of foot pressure (COP), which is proportional to the ankle joint torque (i.e., the motor output of a single joint). However, the center of body mass acceleration (COMacc), which can reflect joint motions throughout the body as well as multi-joint coordination, is useful for the assessment of the postural control strategy at the whole-body level. The purpose of the present study was to investigate children's postural control during quiet standing by using the COMacc. Ten healthy children and 15 healthy young adults were instructed to stand upright quietly on a force platform with their eyes open or closed. The COMacc as well as the COP in the anterior-posterior direction was obtained from ground reaction force measurement. We found that both the COMacc and COP could clearly distinguish the difference between age groups and visual conditions. We also found that the sway frequency of COMacc in children was higher than that in adults, for which differences in biomechanical and/or neural factors between age groups may be responsible. Our results imply that the COMacc can be an alternative force platform measure for assessing developmental changes in upright postural control.

  18. Normative values for the Foot Posture Index

    PubMed Central

    Redmond, Anthony C; Crane, Yvonne Z; Menz, Hylton B

    2008-01-01

    Background The Foot Posture Index (FPI) is a validated method for quantifying standing foot posture, and is being used in a variety of clinical settings. There have however, been no normative data available to date for comparison and reference. This study aimed to establish normative FPI reference values. Methods Studies reporting FPI data were identified by searching online databases. Nine authors contributed anonymised versions of their original datasets comprising 1648 individual observations. The datasets included information relating to centre, age, gender, pathology (if relevant), FPI scores and body mass index (BMI) where available. FPI total scores were transformed to interval logit scores as per the Rasch model and normal ranges were defined. Comparisons between groups employed t-tests or ANOVA models as appropriate and data were explored descriptively and graphically. Results The main analysis based on a normal healthy population (n = 619) confirmed that a slightly pronated foot posture is the normal position at rest (mean back transformed FPI raw score = +4). A 'U' shaped relationship existed for age, with minors and older adults exhibiting significantly higher FPI scores than the general adult population (F = 51.07, p < 0.001). There was no difference between the FPI scores of males and females (2.3 versus 2.5; t = -1.44, p = 0.149). No relationship was found between the FPI and BMI. Systematic differences from the adult normals were confirmed in patients with neurogenic and idiopathic cavus (F = 216.981, p < 0.001), indicating some sensitivity of the instrument to detect a posturally pathological population. Conclusion A set of population norms for children, adults and older people have been derived from a large sample. Foot posture is related to age and the presence of pathology, but not influenced by gender or BMI. The normative values identified may assist in classifying foot type for the purpose of research and clinical decision making. PMID

  19. Consistency in Administration and Response for the Backward Push and Release Test: A Clinical Assessment of Postural Responses

    PubMed Central

    Smith, Beth A.; Carlson-Kuhta, Patricia; Horak, Fay B.

    2015-01-01

    Background and Purpose The backward push and release test (PRT) is a standardized clinical test of postural responses elicited by perturbations. Our goal was to determine reliability of administration and response. This will inform clinical administration and determine whether to develop an instrumented version. Methods One examiner administered 10 backward PRT trials to adults with Parkinson disease (12), multiple sclerosis (14) and controls (12). We used three-dimensional motion analysis, force plates and instrumented gloves to measure administration and response. Administration variables were angle of posterior trunk lean and the distance of the centre of mass (CoM) behind the ankle. Postural response variables were latency of postural response from release to step initiation and first compensatory step length. Reliability was measured using the range of variables across trials, comparison of first and later trials, intraclass correlations (ICCs) to measure consistency and correlations between administration and response. Results There was inherent variability in administration, which affected postural response characteristics. Larger trunk angle and greater CoM–ankle distance were correlated with shorter postural response latencies and larger step lengths. Participant height also had an effect; taller participants had larger trunk angles prior to release resulting in longer latencies and larger step lengths. Using ICCs, consistency of trunk angle was likely acceptable and CoM–ankle distance was high. Consistency of latency was low, while step length was likely acceptable. Discussion Despite variability in administration and inconsistency in response, different postural response characteristics were detected between patients with different disease states. Based on these results, we will create algorithms to instrument the PRT using inertial movement sensors to collect more sensitive measures of postural responses than observational clinical rating scales

  20. The Association for Behavior Analysis International Position Statement on Restraint and Seclusion

    PubMed Central

    Vollmer, Timothy R; Hagopian, Louis P; Bailey, Jon S; Dorsey, Michael F; Hanley, Gregory P; Lennox, David; Riordan, Mary M; Spreat, Scott

    2011-01-01

    A task force authorized by the Executive Council of the Association for Behavior Analysis International (ABAI) generated the statement below concerning the techniques called restraint and seclusion. Members of the task force independently reviewed the scientific literature concerning restraint and seclusion and agreed unanimously to the content of the statement. The Executive Council accepted the statement, and it was subsequently approved by a two-thirds majority vote of the general membership. It now constitutes official ABAI policy. The position statement is posted on the ABAI Web site (www.abainternational.org/ABA/statements/RestraintSeclusion.asp). The purpose of the position statement is to provide guidance to behavior analysts and other professionals interested in the position of ABAI on these controversial topics. In extreme cases, abuses of procedures erroneously used in the name of behavior analysis are not defensible. On the other hand, behavior analysts acting ethically and in good faith are provided with guidelines for sound and acceptably safe practice. To the extent that behavior-analytic positions influence public policy and law, this statement can be presented to officials and lawmakers to guide informed decision making. At the conclusion of the document, a bibliography is provided of articles and presentations considered by one or more task force members in developing the position statement. PMID:22532734

  1. Stability and Control of Constrained Three-Dimensional Robotic Systems with Application to Bipedal Postural Movements

    NASA Astrophysics Data System (ADS)

    Kallel, Hichem

    Three classes of postural adjustments are investigated with the view of a better understanding of the control mechanisms involved in human movement. The control mechanisms and responses of human or computer models to deliberately induced disturbances in postural adjustments are the focus of this dissertation. The classes of postural adjustments are automatic adjustments, (i.e. adjustments not involving voluntary deliberate movement), adjustments involving imposition of constraints for the purpose of maintaining support forces, and adjustments involving violation and imposition of constraints for the purpose of maintaining balance, (i.e. taking one or more steps). For each class, based on the physiological attributes of the control mechanisms in human movements, control strategies are developed to synthesize the desired postural response. The control strategies involve position and velocity feedback control, on line relegation control, and pre-stored trajectory control. Stability analysis for constrained and unconstrained maneuvers is carried out based on Lyapunov stability theorems. The analysis is based on multi-segment biped robots. Depending on the class of postural adjustments, different biped models are developed. An eight-segment three dimensional biped model is formulated for the study of automatic adjustments and adjustments for balance. For the study of adjustments for support, a four segment lateral biped model is considered. Muscle synergies in automatic adjustments are analyzed based on a three link six muscle system. The muscle synergies considered involve minimal muscle number and muscle co-activation. The role of active and passive feedback in these automatic adjustments is investigated based on the specified stiffness and damping of the segments. The effectiveness of the control strategies and the role of muscle synergies in automatic adjustments are demonstrated by a number of digital computer simulations.

  2. Relationship between static postural control and the level of functional abilities in children with cerebral palsy

    PubMed Central

    Pavão, Sílvia L.; Nunes, Gabriela S.; Santos, Adriana N.; Rocha, Nelci A. C. F.

    2014-01-01

    Background: Postural control deficits can impair functional performance in children with cerebral palsy (CP) in daily living activities. Objective: To verify the relationship between standing static postural control and the functional ability level in children with CP. Method: The postural control of 10 children with CP (gross motor function levels I and II) was evaluated during static standing on a force platform for 30 seconds. The analyzed variables were the anteroposterior (AP) and mediolateral (ML) displacement of the center of pressure (CoP) and the area and velocity of the CoP oscillation. The functional abilities were evaluated using the mean Pediatric Evaluation of Disability Inventory (PEDI) scores, which evaluated self-care, mobility and social function in the domains of functional abilities and caregiver assistance. Results: Spearman's correlation test found a relationship between postural control and functional abilities. The results showed a strong negative correlation between the variables of ML displacement of CoP, the area and velocity of the CoP oscillation and the PEDI scores in the self-care and caregiver assistance domains. Additionally, a moderate negative correlation was found between the area of the CoP oscillation and the mobility scores in the caregiver assistance domain. We used a significance level of 5% (p <0.05). Conclusions: We observed that children with cerebral palsy with high CoP oscillation values had lower caregiver assistance scores for activities of daily living (ADL) and consequently higher levels of caregiver dependence. These results demonstrate the repercussions of impairments to the body structure and function in terms of the activity levels of children with CP such that postural control impairments in these children lead to higher requirements for caregiver assistance. PMID:25054383

  3. Evaluation of ergonomic factors and postures that cause muscle pains in dentistry students’ bodies

    PubMed Central

    Shirzaei, Masoumeh; Khaje-Alizade, Ali; Mohammadi, Mahdi

    2015-01-01

    Background Work-related musculoskeletal disorders commonly experienced by dental professionals are one of the main occupational health problem affecting their health and well-being.This study was conducted to evaluate ergonomic factors and profession-related postures and also investigate relationship between demographic factors and work condition with pain in dental students. Material and Methods 60 freshman and sophomore dentistry students were randomly chosen as the subjects of control group, and 60 of 5th and 6th-year students were selected as the members of exposure group. Data related to the subjects such as sex, doing exercise, severity of musculoskeletal pain were obtained through questionnaire. Students’ postures were directly observed while treating patients and they were scored by REBA method. Data were analyzed by SPSS software using Man-Whitney, Kruskal-Wallis, Spearman and Kendall correlation tests. Results 80.8% of the subjects were not aware of the correct ergonomic postures for dental procedures. Severity of musculoskeletal pain in the exposure group (15.9± 4.2) was significantly higher than the control group (10.5 ±3.2), (p <0.001). Risk of the most subjects (84%) was at the medium level. Students who were more involved in clinical activities experienced more muscular pains. Conclusions The musculoskeletal disorders are probable prolonged in working hours in static positions, incorrect work postures, implying more force and even tools and instruments. Therefore, students who are aware of ergonomic principals of their own profession would be able to maintain their health through activities and lifelong. Key words:Posture, dentistry, students, musculoskeletal pain. PMID:26330941

  4. Thermal sensation during mild hyperthermia is modulated by acute postural change in humans

    NASA Astrophysics Data System (ADS)

    Takeda, Ryosuke; Imai, Daiki; Suzuki, Akina; Ota, Akemi; Naghavi, Nooshin; Yamashina, Yoshihiro; Hirasawa, Yoshikazu; Yokoyama, Hisayo; Miyagawa, Toshiaki; Okazaki, Kazunobu

    2016-12-01

    Thermal sensation represents the primary stimulus for behavioral and autonomic thermoregulation. We assessed whether the sensation of skin and core temperatures for the driving force of behavioral thermoregulation was modified by postural change from the supine (Sup) to sitting (Sit) during mild hyperthermia. Seventeen healthy young men underwent measurements of noticeable increase and decrease (±0.1 °C/s) of skin temperature (thresholds of warm and cold sensation on the skin, 6.25 cm2 of area) at the forearm and chest and of the whole-body warm sensation in the Sup and Sit during normothermia (NT; esophageal temperature (Tes), ˜36.6 °C) and mild hyperthermia (HT; Tes, ˜37.2 °C; lower legs immersion in 42 °C of water). The threshold for cold sensation on the skin at chest was lower during HT than NT in the Sit ( P < 0.05) but not in Sup, and at the forearm was lower during HT than NT in the Sup and further in Sit (both, P < 0.05), with interactive effects of temperature (NT vs. HT) × posture (Sup vs. Sit) (chest, P = 0.08; forearm, P < 0.05). The threshold for warm sensation on the skin at both sites remained unchanged with changes in body posture or temperature. The whole-body warm sensation was higher during HT than NT in both postures and higher in the Sit than Sup during both NT and HT (all, P < 0.05). Thus, thermal sensation during mild hyperthermia is modulated by postural change from supine to sitting to sense lesser cold on the skin and more whole-body warmth.

  5. Does postural sway change in association with manual therapeutic interventions? A review of the literature

    PubMed Central

    2013-01-01

    Study design Literature Review Objectives The objective of this literature review was to determine if postural sway changes in association with manual therapeutic interventions and to investigate whether any changes occur in healthy individuals or in association with pain intensity. Summary of Background data Improving postural stability has been proposed as a goal of manual therapeutic interventions. So far, no literature review has addressed whether there is supportive evidence for this and if so, what factors may be associated or causative for observed sway alterations. Search methods Seven online databases (PubMed, MEDLINE, EMBASE, CINAHL, Web of Science, ScienceDirect and the Cochrane library) were systematically searched followed by a manual search of the retrieved papers. Selection criteria Studies comparing postural sway derived from bipedal force plate measurements in association with a manual therapeutic intervention, ideally compared to a control group. Data collection and analysis Two reviewers independently screened titles and abstracts for relevance, conducted the data extraction and the risk of bias assessment which was conducted using the RTI item bank. A descriptive analysis was conducted as the heterogeneous study designs prevented pooling of data. Results Nine studies of varying methodological quality met the inclusion criteria. No direct comparison of data across the studies was possible. There was no evidence that manual interventions lead to a change in postural sway in healthy individuals regardless of the body regions addressed by the intervention. There was some indication that postural sway may change at follow-up measurements in pain sufferers; however, this may be due to variations in pain intensity rather than resulting from the intervention itself. Conclusions There is no conclusive scientific evidence that manual therapeutic interventions may exhibit any immediate or long-term effect on COP excursions. Any changes in sway may be

  6. Gravitational Force and the Cardiovascular System

    NASA Technical Reports Server (NTRS)

    Pendergast, D. R.; Olszowka, A. J.; Rokitka, M. A.; Farhi, L. E.

    1991-01-01

    Cardiovascular responses to changes in gravitational force are considered. Man is ideally suited to his 1-g environment. Although cardiovascular adjustments are required to accommodate to postural changes and exercise, these are fully accomplished for short periods (min). More challenging stresses are those of short-term microgravity (h) and long-term microgravity (days) and of gravitational forces greater than that of Earth. The latter can be simulated in the laboratory and quantitative studies can be conducted.

  7. Effect of the kinetic variables and postural stability between bilateral in lower limbs by the Oreum trekking exercise: asymmetric index

    PubMed Central

    Ryew, Che-Cheong; Hyun, Seung-Hyun

    2016-01-01

    This study aimed to analyze an effect of the kinetic variables and postural stability between bilateral in lower limbs by participation of Oreum trekking exercise program and subjects participated were composed of adult male and female subjects (n=14) of 20s. Experiment was performed with the drop landing which can evaluate postural stability and kinetic variables between bilateral in lower limbs. peak vertical force (PVF) value showed significant difference with the less in case of post than before participation of Oreum trekking exercise. Also PVF of bilateral in lower limbs did not showed significant difference, and too the effect of interaction. vertical stability index (VSI) and dynamic postural stability index (DPSI) showed significant difference with improvement of postural stability by Oreum trekking, but did not between bilateral in the limbs. Particularly the result of one-way analysis of variance due to VSI’s effect of interaction, showed the more influence on the improvement of postural stability in left leg after participation of Oreum trekking exercise. When consideration the above, the analysis result on asymmetric index of bilateral in lower limbs showed more symmetric pattern in post than before participation of Oreum trekking exercise program. PMID:27656636

  8. Biomechanical and Electromyographic Comparisons of Isometric Trunk Flexor Endurance Test Postures: Prone Plank Versus V-Sit.

    PubMed

    Musalem, Lindsay L; Stankovic, Tatjana; Glisic, Drazen; Cook, Gillian E; Beach, Tyson A

    2015-12-01

    The objective of this study was to investigate why holding times on 2 different tests of isometric trunk flexor endurance capacity (prone plank and v-sit) are weakly correlated. Body position and ground reaction force data from 10 men and 10 women were used to conduct static biomechanical analyses of both test postures, and bilateral activations of the rectus abdominis, internal and external obliques, latissimus dorsi, and lumbar and thoracic erector spinae were measured in a second sample of 15 men and 15 women while holding the test postures. No between-posture differences in net low back flexor moments were found (P = .111), but the lumbar spine was 28° more flexed in the v-sit than in the plank (P < .001). No between-posture differences were detected in the rectus abdominis (P = .397), external obliques (P = .204), internal obliques (P = .226), or lumbar erector spinae (P = .116) activation levels, but those of the thoracic erector spinae (P = .0253) and latissimus dorsi (P < .001) were greater in the plank than in the v-sit. Altogether, the findings suggest that differences between plank and v-sit holding times are most likely related to between-test differences in lumbar spine postures and shoulder demands.

  9. Enhancement of anticipatory postural adjustments in older adults as a result of a single session of ball throwing exercise.

    PubMed

    Aruin, Alexander S; Kanekar, Neeta; Lee, Yun-Ju; Ganesan, Mohan

    2015-02-01

    The aim of the study was to investigate the role of short-term training in improvement of anticipatory postural adjustments (APAs) and its effect on subsequent control of posture in older adults. Nine healthy older adults were exposed to self-initiated and predictable external perturbations before and after a single training session consisting of throwing a medicine ball. EMG activity of eight trunk and leg muscles and ground reaction forces were recorded before and immediately after the training session. Muscle onsets and center of pressure displacements were analyzed during the anticipatory and compensatory phases of postural control. The training involving throwing of a medicine ball resulted in enhancement of the generation of APAs seen as significantly early onsets of leg and trunk muscle activity prior to the bilateral arm flexion task. Significantly early activation of postural muscles observed prior to the predictable external perturbation, the task that was not a part of training, indicates the transfer of the effect of the single training session. The observed training-related improvements of APAs suggest that APA-focused rehabilitation could be effective in improving postural control, functional balance, mobility, and quality of life in the elderly.

  10. Time course analysis of influence of food hardness on head posture and pitching of head during masticatory movement.

    PubMed

    Shinya, Akimasa; Sato, Toru; Hisanaga, Ryuichi; Miho, Otoaki; Nomoto, Syuntaro

    2013-01-01

    The purpose of the present study was to investigate the relationship between mastication and head posture using foods with different degrees of hardness. A total of 12 healthy, dentulous volunteers participated in the study. Each participant was required to chew two types of gummy candy with two levels of hardness while sitting upright. Measurements were conducted using an optoelectric jaw-tracking system with 6 degrees of freedom (Gnatho-Hexagraph II JM-2000®). The horizontal plane perpendicular to the direction of gravitational force served as the reference plane. Analysis of the gradient of the Frankfurt plane (head posture) and pitching of the head during masticatory movement was conducted. The influence of the type of test food on these parameters was evaluated during mastication. During stable mastication, the gradient of the Frankfurt plane was 4.66 degrees on average, close to the horizontal plane. The time course of the Frankfurt plane gradient revealed a tendency toward dorsal flexion during the first to middle phases of mastication, and a tendency toward ventral flexion during the middle to last phases, regardless of the hardness of the test food. The participants were divided into two groups based on change in head posture during chewing. The results showed while there was no change in head posture in the group with marked pitching of the head, head posture did change in the group with little pitching.

  11. Position statement on cannabis.

    PubMed

    Stein For The Executive Committee Of The Central Drug Authority, Dan Joseph

    2016-05-16

    There is an ongoing national debate around cannabis policy. This brief position statement by the Executive Committee of the Central Drug Authorityoutlines some of the factors that have contributed to this debate, delineates reduction strategies, summarises the harms and benefits ofmarijuana, and provides recommendations. These recommendations emphasise an integrated and evidence-based approach, the need forresources to implement harm reduction strategies against continued and chronic use of alcohol and cannabis, and the potential value of afocus on decriminalisation rather than the legalisation of cannabis.

  12. Aerodynamics of cyclist posture, bicycle and helmet characteristics in time trial stage.

    PubMed

    Chabroux, Vincent; Barelle, Caroline; Favier, Daniel

    2012-07-01

    The present work is focused on the aerodynamic study of different parameters, including both the posture of a cyclist's upper limbs and the saddle position, in time trial (TT) stages. The aerodynamic influence of a TT helmet large visor is also quantified as a function of the helmet inclination. Experiments conducted in a wind tunnel on nine professional cyclists provided drag force and frontal area measurements to determine the drag force coefficient. Data statistical analysis clearly shows that the hands positioning on shifters and the elbows joined together are significantly reducing the cyclist drag force. Concerning the saddle position, the drag force is shown to be significantly increased (about 3%) when the saddle is raised. The usual helmet inclination appears to be the inclination value minimizing the drag force. Moreover, the addition of a large visor on the helmet is shown to provide a drag coefficient reduction as a function of the helmet inclination. Present results indicate that variations in the TT cyclist posture, the saddle position and the helmet visor can produce a significant gain in time (up to 2.2%) during stages.

  13. Influence of pelvic asymmetry and idiopathic scoliosis in adolescents on postural balance during sitting.

    PubMed

    Jung, Ji-Yong; Cha, Eun-Jong; Kim, Kyung-Ah; Won, Yonggwan; Bok, Soo-Kyung; Kim, Bong-Ok; Kim, Jung-Ja

    2015-01-01

    The effects of pelvic asymmetry and idiopathic scoliosis on postural balance during sitting were studied by measuring inclination angles, pressure distribution, and electromyography. Participants were classified into a control group, pelvic asymmetry group, scoliosis group, and scoliosis with pelvic asymmetry and then performed anterior, posterior, left, and right pelvic tilting while sitting on the unstable board for 5 seconds to assess their postural balance. Inclination and obliquity angles between the groups were measured by an accelerometer located on the unstable board. Pressure distribution (maximum force and peak pressure) was analyzed using a capacitive seat sensor. In addition, surface electrodes were attached to the abdominal and erector spinae muscles of each participant. Inclination and obliquity angles increased more asymmetrically in participants with both pelvic asymmetry and scoliosis than with pelvic asymmetry or scoliosis alone. Maximum forces and peak pressures of each group showed an asymmetrical pressure distribution caused by the difference in height between the left and right pelvis and curve type of the patients' spines when performing anterior, posterior, left, and right pelvic tilting while sitting. Muscle contraction patterns of external oblique, thoracic erector spinae, lumbar erector spinae, and lumbar multifidus muscles may be influenced by spine curve type and region of idiopathic scoliosis. Asymmetrical muscle activities were observed on the convex side of scoliotic patients and these muscle activity patterns were changed by the pelvic asymmetry. From these results, it was confirmed that pelvic asymmetry and idiopathic scoliosis cause postural asymmetry, unequal weight distribution, and muscular imbalance during sitting.

  14. Postural Control of Healthy Elderly Individuals Compared to Elderly Individuals with Stroke Sequelae

    PubMed Central

    Alfieri, Fábio Marcon; Riberto, Marcelo; Lopes, José Augusto Fernandes; Filippo, Thais Raquel; Imamura, Marta; Battistella, Linamara Rizzo

    2016-01-01

    A stroke and aging process can modify the postural control. We aimed to compare the postural control of health elderly individuals to that of individuals with stroke sequelae. This cross-sectional transversal study was made with individuals capable of walking without any assistance and that were considered clinically stable. The study had 18 individuals in the group with stroke sequelae (SG) and 34 in the healthy elderly control group (CG). The participants were evaluated for the timed up and go test (TUG) and force platform. The SG showed the worst results in relation to the time of execution of the TUG and the force platform evaluation. The displacement of center of pressure was worse for both groups in the eyes-closed situation, especially in the anteroposterior direction for the CG. The GS showed worse results in the static and dynamic postural control. The healthy elderly showed more dependence on sight to maintain their static balance and there was no difference in the balance tests in relation to the side affected by the stroke. PMID:27053967

  15. Seat surface inclination may affect postural stability during Boccia ball throwing in children with cerebral palsy.

    PubMed

    Tsai, Yung-Shen; Yu, Yi-Chen; Huang, Po-Chang; Cheng, Hsin-Yi Kathy

    2014-12-01

    The aim of the study was to examine how seat surface inclination affects Boccia ball throwing movement and postural stability among children with cerebral palsy (CP). Twelve children with bilateral spastic CP (3 with gross motor function classification system Level I, 5 with Level II, and 4 with Level III) participated in this study. All participants underwent pediatric reach tests and ball throwing performance analyses while seated on 15° anterior- or posterior-inclined, and horizontal surfaces. An electromagnetic motion analysis system was synchronized with a force plate to assess throwing motion and postural stability. The results of the pediatric reach test (p = 0.026), the amplitude of elbow movement (p = 0.036), peak vertical ground reaction force (PVGRF) (p < 0.001), and movement range of the center of pressure (COP) (p < 0.020) were significantly affected by seat inclination during throwing. Post hoc comparisons showed that anterior inclination allowed greater amplitude of elbow movement and PVGRF, and less COP movement range compared with the other inclines. Posterior inclination yielded less reaching distance and PVGRF, and greater COP movement range compared with the other inclines. The anterior-inclined seat yielded superior postural stability for throwing Boccia balls among children with bilateral spastic CP, whereas the posterior-inclined seat caused difficulty.

  16. Anticipatory control of center of mass and joint stability during voluntary arm movement from a standing posture: interplay between active and passive control.

    PubMed

    Patla, Aftab E; Ishac, Milad G; Winter, David A

    2002-04-01

    Anticipatory control of upright posture is the focus of this study that combines experimental and modeling work. Individuals were asked to raise or lower their arms from two initial postures such that the final posture of the arm was at 90 degrees with respect to the body. Holding different weights in the hand varied the magnitude of perturbation to postural stability generated by the arm movement. Whole body kinematics and ground reaction forces were measured. Inverse dynamic analysis was used to determine the internal joint moments at the shoulder, hip, knee and ankle, and reaction forces at the shoulder. Center of mass (COM) of the arm, posture (rest of the body without the arms) and whole body (net COM) were also determined. Changes in joint moment at the hip, knee and ankle revealed a significant effect of the direction of movement. The polarities of the joint moment response were appropriate for joint stabilization. Net COM change showed a systematic effect of the direction of movement even though the arm COM was displaced by the same amount and in the same direction for both arm raising and lowering conditions. In order to determine the effects of the passive forces and moments on the posture COM, the body was modeled as an inverted pendulum. The model was customized for each participant; the relevant model parameters were estimated from data obtained from each trial. The ankle joint stiffness and viscosity were adjusted to ensure postural equilibrium prior to arm movement. Joint reactive forces and moments generated by the arm movements were applied at the shoulder level of this inverted pendulum; these were the only inputs and no active control was included. The posture COM profile from the model simulation was calculated. Results show that simulated posture COM profile and measured posture COM profile are identical for about 200 ms following the onset of arm movement and then they deviate. Therefore, the initial control of COM is passive in nature and the

  17. Identification of awkward postures that cause discomfort to Liquid Petroleum Gas workers in Mumbai, India

    PubMed Central

    Chowdhury, Salian Shivani; Boricha, Jinal; Yardi, Sujata

    2012-01-01

    Background: Awkward, extreme and repetitive postures have been associated with work related musculoskeletal discomfort and injury to the lower back. Liquid Petroleum Gas (LPG) workers in India; that is the delivery men carry heavy cylinders on their shoulders and back. The cylinders come in commercial and residential form which range in weight from 14.2kgs, 16.2kgs, 19.2kgs, 32kgs, 40 kgs etc. They have a tedious schedule of 8 h/day and mostly associated with loading and unloading of the cylinders. Their job demands a high intensity of strength and power. They are exposed to high level of physical demands and relatively lesser amount of rest which makes them vulnerable to various injuries over a period of time. Materials and Methods: 100 LPG workers (delivery men) were interviewed using the Ovako work assessment system OWAS posture code and action category system developed by ISMAIL et al.[10] was used. A battery of questions with specific stress was constructed and validated in the Department of Physiotherapy, Padmashree Dr D.Y Patil University, Nerul, Navi Mumbai, India. Results: This study presented an ergonomic assessment of LPG workers. The results show that the workers work in awkward postures. They transfer the cylinders in poor postures with high velocity and motion repetitiveness thus subjecting their spine to greater amounts of compressive forces. Regarding to work discomfort survey questionnaire, the postures cause ill effects on their various body segments. Among them 90% fall in category 4 while loading the cylinder, that is the load by those postures have a very harmful effect on musculoskeletal, system-corrective action for improvement required immediately. And while unloading 70% fall in category 3, which are postures that have harmful effect on musculoskeletal system. Corrective actions should be done as soon as possible. Majority of workers also complained of severe injury to back-34%, shoulder-20%, knee-20%, neck-16%, and toes-10%. Conclusion

  18. Relationship between Postural Sway and Dynamic Balance in Stroke Patients.

    PubMed

    Cho, Kihun; Lee, Kyoungsuk; Lee, Byungjoon; Lee, Hwangjae; Lee, Wanhee

    2014-12-01

    [Purpose] The purpose of the current study was to investigate the relationship between postural sway and dynamic balance in post stroke patients. [Subjects] Thirty-one stroke patients (20 men and 11 women; age 64.25 years; stroke duration 12.70 months; MMSE-K score 26.35) participated in this study. [Methods] This study applied a cross-sectional design. A Good Balance system was used for measurement of the postural sway velocity (anteroposterior and mediolateral) and velocity moment of subjects under the eyes open and eyes closed conditions in a standing posture. The postural sway of subjects was measured under two surface conditions (stable and unstable surfaces). [Results] On the unstable surface (foam), no significant correlation was observed between postural sway and dynamic balance except for the berg balance scale (BBS) score and anteroposterior postural sway velocity under the eyes open condition, anteroposterior postural sway velocity under the eyes closed condition, and postural sway velocity moment. In addition, in the stable condition, no significant correlation was observed between postural sway and dynamic balance. [Conclusion] Our results indicate that a decrease in postural sway does not necessarily reflect improvement of dynamic balance ability. We believe that this finding may be useful in balance rehabilitation for prevention of falls after a stroke.

  19. Position and velocity coupling of postural sway to somatosensory drive.

    PubMed

    Jeka, J; Oie, K; Schöner, G; Dijkstra, T; Henson, E

    1998-04-01

    Light touch contact of a fingertip to a stationary surface provides orientation information that enhances control of upright stance. Slight changes in contact force at the fingertip lead to sensory cues about the direction of body sway, allowing attenuation of sway. In the present study, the coupling of postural sway to a moving contact surface was investigated in detail. Head, center of mass, and center of pressure displacement were measured as the contact surface moved rhythmically at 0.1, 0.2, 0.4, 0.6, and 0.8 Hz. Stimulus amplitude decreased with frequency to maintain peak velocity constant across frequency. Head and body sway were highly coherent with contact surface motion at all frequencies except 0.8 Hz, where a drop-off in coherence was observed. Mean frequency of head and body sway matched the driving frequency postural control parameters are not fixed but adapt to the moving frame of reference. Moreover, coupling to both position and velocity suggest that a spatial reference frame is defined by the somatosensory system.

  20. Operationality Improvement Control of Electric Power Assisted Wheelchair by Fuzzy Algorithm Considering Posture Angle

    NASA Astrophysics Data System (ADS)

    Murakami, Hiroki; Seki, Hirokazu; Minakata, Hideaki; Tadakuma, Susumu

    This paper describes a novel operationality improvement control for electric power assisted wheelchairs. “Electric power assisted wheelchair” which assists the driving force by electric motors is expected to be widely used as a mobility support system for elderly people and disabled people, however, the performance of the straight and circular road driving must be further improved because the two wheels drive independently. This paper proposes a novel operationality improvement control by fuzzy algorithm to realize the stable driving on straight and circular roads. The suitable assisted torque of the right and left wheels is determined by fuzzy algorithm based on the posture angular velocity, the posture angle of the wheelchair, the human input torque proportion and the total human torque of the right and left wheels. Some experiments on the practical roads show the effectiveness of the proposed control system.

  1. The effects of vestibular stimulation and fatigue on postural control in classical ballet dancers.

    PubMed

    Hopper, Diana M; Grisbrook, Tiffany L; Newnham, Prudence J; Edwards, Dylan J

    2014-01-01

    This study aimed to investigate the effects of ballet-specific vestibular stimulation and fatigue on static postural control in ballet dancers and to establish whether these effects differ across varying levels of ballet training. Dancers were divided into three groups: professional, pre-professional, and recreational. Static postural control of 23 dancers was measured on a force platform at baseline and then immediately, 30 seconds, and 60 seconds after vestibular stimulation (pirouettes) and induction of fatigue (repetitive jumps). The professional dancers' balance was unaffected by both the vestibular stimulation and the fatigue task. The pre-professional and recreational dancers' static sway increased following both perturbations. It is concluded that professional dancers are able to compensate for vestibular and fatiguing perturbations due to a higher level of skill-specific motor training.

  2. Three-Dimensional Numerical Analysis for Posture Stability of Laser Propulsion Vehicle

    NASA Astrophysics Data System (ADS)

    Takahashi, Masayuki; Ohnishi, Naofumi

    2011-11-01

    We have developed a three-dimensional hydrodynamics code coupling equation of motion of a rigid body for analyzing posture stability of laser propulsion vehicle through numerical simulations of flowfield interacting with unsteady motion of the vehicle. Asymmetric energy distribution is initially added around the focal spot (ring) in order to examine posture stability against an asymmetric blast wave resulting from a laser offset for a lightcraft-type vehicle. The vehicle moves to cancel out the offset from initial offset. However, the Euler angle grows and never returns to zero in a time scale of laser pulse. Also, we found that the vehicle moves to cancel tipping angle when the laser is irradiated to the vehicle with initial tipping angle over the wide angle range, through the vehicle cannot get sufficient restoring force in particular angle, and the tipping angle does not decrease from the initial value for that case.

  3. Postural development in school children: a cross-sectional study

    PubMed Central

    Lafond, Danik; Descarreaux, Martin; Normand, Martin C; Harrison, Deed E

    2007-01-01

    Background Little information on quantitative sagittal plane postural alignment and evolution in children exists. The objectives of this study are to document the evolution of upright, static, sagittal posture in children and to identify possible critical phases of postural evolution (maturation). Methods A total of 1084 children (aged 4–12 years) received a sagittal postural evaluation with the Biotonix postural analysis system. Data were retrieved from the Biotonix internet database. Children were stratified and analyzed by years of age with n = 36 in the youngest age group (4 years) and n = 184 in the oldest age group (12 years). Children were analyzed in the neutral upright posture. Variables measured were sagittal translation distances in millimeters of: the knee relative to the tarsal joint, pelvis relative to the tarsal joint, shoulder relative to the tarsal joint, and head relative to the tarsal joint. A two-way factorial ANOVA was used to test for age and gender effects on posture, while polynomial trend analyses were used to test for increased postural displacements with years of age. Results Two-way ANOVA yielded a significant main effect of age for all 4 sagittal postural variables and gender for all variables except head translation. No age × gender interaction was found. Polynomial trend analyses showed a significant linear association between child age and all four postural variables: anterior head translation (p < 0.001), anterior shoulder translation (p < 0.001), anterior pelvic translation (p < 0.001), anterior knee translation (p < 0.001). Between the ages of 11 and 12 years, for anterior knee translation, T-test post hoc analysis revealed only one significant rough break in the continuity of the age related trend. Conclusion A significant linear trend for increasing sagittal plane postural translations of the head, thorax, pelvis, and knee was found as children age from 4 years to 12 years. These postural translations provide preliminary

  4. Statement on virginity testing.

    PubMed

    2015-07-01

    Virginity testing (virginity examination) is a gynecological examination that is intended to correlate the status and appearance of the hymen with previous sexual contact to determine whether a female has had or is habituated to sexual intercourse. Virginity examinations are practiced in many countries, often forcibly, including in detention places; on women who allege rape or are accused of prostitution; and as part of public or social policies to control sexuality. The Independent Forensic Expert Group (IFEG) - thirty-five preeminent independent forensic experts from eighteen countries specialized in evaluating and documenting the physical and psychological effects of torture and ill-treatment - released a statement on the practice in December 2014. In its statement, the IFEG outlines the physical and psychological effects of forcibly conducting virginity examinations on females based on its collective experience. The Group assesses whether, based on the effects, forcibly conducted virginity examinations constitute cruel, inhuman, or degrading treatment or torture. Finally, the IFEG addresses the medical interpretation, relevance, and ethical implications of such examinations. The IFEG concludes that virginity examinations are medically unreliable and have no clinical or scientific value. These examinations are inherently discriminatory and, in almost all instances, when conducted forcibly, result in significant physical and mental pain and suffering, thereby constituting cruel, inhuman and degrading treatment or torture. When virginity examinations are forcibly conducted and involve vaginal penetration, the examination should be considered as sexual assault and rape. Involvement of health professionals in these examinations violates the basic standards and ethics of the professions.

  5. Pediatrician workforce policy statement.

    PubMed

    Basco, William T; Rimsza, Mary E

    2013-08-01

    This policy statement reviews important trends and other factors that affect the pediatrician workforce and the provision of pediatric health care, including changes in the pediatric patient population, pediatrician workforce, and nature of pediatric practice. The effect of these changes on pediatricians and the demand for pediatric care are discussed. The American Academy of Pediatrics (AAP) concludes that there is currently a shortage of pediatric medical subspecialists in many fields, as well as a shortage of pediatric surgical specialists. In addition, the AAP believes that the current distribution of primary care pediatricians is inadequate to meet the needs of children living in rural and other underserved areas, and more primary care pediatricians will be needed in the future because of the increasing number of children who have significant chronic health problems, changes in physician work hours, and implementation of current health reform efforts that seek to improve access to comprehensive patient- and family-centered care for all children in a medical home. The AAP is committed to being an active participant in physician workforce policy development with both professional organizations and governmental bodies to ensure a pediatric perspective on health care workforce issues. The overall purpose of this statement is to summarize policy recommendations and serve as a resource for the AAP and other stakeholders as they address pediatrician workforce issues that ultimately influence the quality of pediatric health care provided to children in the United States.

  6. Time-of-day effects on postural control and attentional capacities in children.

    PubMed

    Baccouch, Rym; Zarrouk, Nidhal; Chtourou, Hamdi; Rebai, Haithem; Sahli, Sonia

    2015-04-01

    The present study aimed to examine the effect of time-of-day on postural control, body temperature, and attentional capacities in 5-6 year old children. Twelve male children (5-6-year-old) were asked to maintain an upright bipedal stance on a force platform with eyes open (EO) and eyes closed (EC) at 07:00, 10:00, 14:00, and 18:00 h. Postural control was evaluated by center of pressure (CoP) surface area (CoPArea), CoP mean velocity (CoPVm), length of the CoP displacement as a function of the surface (LFS) ratio and Romberg's index (RI). Oral temperature and the simple reaction time were also recorded at the beginning of each test session. The one way ANOVA (4 time-of-day) showed significant time-of-day effects on CoPArea (p<0.001), CoPVm (p<0.01), LFS ratio (p<0.001) and RI (p<0.01). Children's postural control was lower at 07:00 h and at 14:00 h in comparison with 10:00 h and 18:00 h. Likewise, the reaction time was significantly (p<0.001) better at 10:00 h and 18:00 h in comparison with 07:00 h and 14:00 h. Oral temperature was higher at 14:00 h and 18:00 h than 08:00 h and 10:00 h (p<0.001). In conclusion, the children's postural control fluctuates during the daytime (i.e., better postural control at 10:00 h and at 18:00 h) with a diurnal rhythm close to that of body temperature and attentional capacities. Therefore, the evaluation of changes in postural control of 5-6-year-old children using force plate measures is recommended in the middle morning or the late afternoon to avoid the post-awakening and the post-prandial phases.

  7. The role of anticipatory postural adjustments in compensatory control of posture: 1. Electromyographic analysis.

    PubMed

    Santos, Marcio J; Kanekar, Neeta; Aruin, Alexander S

    2010-06-01

    Anticipatory (APAs) and compensatory (CPAs) postural adjustments are the two principal mechanisms that the central nervous system uses to maintain equilibrium while standing. We studied the role of APAs in compensatory postural adjustments. Eight subjects were exposed to external predictable and unpredictable perturbations induced at the shoulder level, while standing with eyes open and closed. Electrical activity of leg and trunk muscles was recorded and analyzed during four epochs representing the time duration typical for anticipatory and compensatory postural control. No anticipatory activity of the trunk and leg muscles was seen in the case of unpredictable perturbations; instead, significant compensatory activation of muscles was observed. When the perturbations were predictable, strong anticipatory activation was seen in all the muscles: such APAs were associated with significantly smaller compensatory activity of muscles and COP displacements after the perturbations. The outcome of the study highlights the importance of APAs in control of posture and points out the existence of a relationship between the anticipatory and the compensatory components of postural control. It also suggests a possibility to enhance balance control by improving the APAs responses during external perturbations.

  8. Smart Rehabilitation Garment for posture monitoring.

    PubMed

    Wang, Q; Chen, W; Timmermans, A A A; Karachristos, C; Martens, J B; Markopoulos, P

    2015-08-01

    Posture monitoring and correction technologies can support prevention and treatment of spinal pain or can help detect and avoid compensatory movements during the neurological rehabilitation of upper extremities, which can be very important to ensure their effectiveness. We describe the design and development of Smart Rehabilitation Garment (SRG) a wearable system designed to support posture correction. The SRG combines a number of inertial measurement units (IMUs), controlled by an Arduino processor. It provides feedback with vibration on the garment, audible alarm signals and visual instruction through a Bluetooth connected smartphone. We discuss the placement of sensing modules, the garment design, the feedback design and the integration of smart textiles and wearable electronics which aimed at achieving wearability and ease of use. We report on the system's accuracy as compared to optical tracker method.

  9. Neuromuscular electrical stimulation leads to physiological gains enhancing postural balance in the pre-frail elderly.

    PubMed

    Mignardot, Jean-Baptiste; Deschamps, Thibault; Le Goff, Camille G; Roumier, François-Xavier; Duclay, Julien; Martin, Alain; Sixt, Marc; Pousson, Michel; Cornu, Christophe

    2015-07-01

    Physiological aging leads to a progressive weakening of muscles and tendons, thereby disturbing the ability to control postural balance and consequently increasing exposure to the risks of falls. Here, we introduce a simple and easy-to-use neuromuscular electrical stimulation (NMES) training paradigm designed to alleviate the postural control deficit in the elderly, the first hallmarks of which present as functional impairment. Nine pre-frail older women living in a long-term care facility performed 4 weeks of NMES training on their plantarflexor muscles, and seven nontrained, non-frail older women living at home participated in this study as controls. Participants were asked to perform maximal voluntary contractions (MVC) during isometric plantarflexion in a lying position. Musculo-tendinous (MT) stiffness was assessed before and after the NMES training by measuring the displacement of the MT junction and related tendon force during MVC. In a standing position, the limit of stability (LoS) performance was determined through the maximal forward displacement of the center of foot pressure, and related postural sway parameters were computed around the LoS time gap, a high force requiring task. The NMES training induced an increase in MVC, MT stiffness, and LoS. It significantly changed the dynamics of postural balance as a function of the tendon property changes. The study outcomes, together with a multivariate analysis of investigated variables, highlighted the benefits of NMES as a potential tool in combating neuromuscular weakening in the elderly. The presented training-based strategy is valuable in alleviating some of the adverse functional consequences of aging by directly acting on intrinsic biomechanical and muscular properties whose improvements are immediately transferable into a functional context.

  10. Neuromuscular electrical stimulation leads to physiological gains enhancing postural balance in the pre-frail elderly

    PubMed Central

    Mignardot, Jean-Baptiste; Deschamps, Thibault; Le Goff, Camille G; Roumier, François-Xavier; Duclay, Julien; Martin, Alain; Sixt, Marc; Pousson, Michel; Cornu, Christophe

    2015-01-01

    Physiological aging leads to a progressive weakening of muscles and tendons, thereby disturbing the ability to control postural balance and consequently increasing exposure to the risks of falls. Here, we introduce a simple and easy-to-use neuromuscular electrical stimulation (NMES) training paradigm designed to alleviate the postural control deficit in the elderly, the first hallmarks of which present as functional impairment. Nine pre-frail older women living in a long-term care facility performed 4 weeks of NMES training on their plantarflexor muscles, and seven nontrained, non-frail older women living at home participated in this study as controls. Participants were asked to perform maximal voluntary contractions (MVC) during isometric plantarflexion in a lying position. Musculo-tendinous (MT) stiffness was assessed before and after the NMES training by measuring the displacement of the MT junction and related tendon force during MVC. In a standing position, the limit of stability (LoS) performance was determined through the maximal forward displacement of the center of foot pressure, and related postural sway parameters were computed around the LoS time gap, a high force requiring task. The NMES training induced an increase in MVC, MT stiffness, and LoS. It significantly changed the dynamics of postural balance as a function of the tendon property changes. The study outcomes, together with a multivariate analysis of investigated variables, highlighted the benefits of NMES as a potential tool in combating neuromuscular weakening in the elderly. The presented training-based strategy is valuable in alleviating some of the adverse functional consequences of aging by directly acting on intrinsic biomechanical and muscular properties whose improvements are immediately transferable into a functional context. PMID:26229006

  11. Aerospace Education. NSTA Position Statement

    ERIC Educational Resources Information Center

    National Science Teachers Association (NJ1), 2008

    2008-01-01

    National Science Teachers Association (NSTA) has developed a new position statement, "Aerospace Education." NSTA believes that aerospace education is an important component of comprehensive preK-12 science education programs. This statement highlights key considerations that should be addressed when implementing a high quality aerospace education…

  12. Commentary on Causal Prescriptive Statements

    ERIC Educational Resources Information Center

    Graesser, Arthur C.; Hu, Xiangen

    2011-01-01

    Causal prescriptive statements are valued in the social sciences when there is the goal of helping people through interventions. The articles in this special issue cover different methods for testing causal prescriptive statements. This commentary identifies both virtues and liabilities of these different approaches. We argue that it is extremely…

  13. Priorities Statements of Community Colleges.

    ERIC Educational Resources Information Center

    Illinois Community Coll. Board, Springfield.

    In response to recommendations in the Illinois Board of Higher Education's Priorities, Quality, and Productivity report of November 1994, the 52 community colleges in the state prepared priority statements detailing specific college objectives for the current fiscal year (FY). This report provides the second update of the colleges' statements,…

  14. Effects of caffeine on postural stability.

    PubMed

    Enriquez, Ashlee; Sklaar, Jessica; Viirre, Erik; Chase, Bradley

    2009-01-01

    The purpose of this study was to investigate the effects of a caffeine-containing "energy drink" on postural stability. Twenty-three young adult participants stood on a balance-measuring platform for two intervals of 30 seconds each, once with eyes open and once with eyes closed. Subjects performed the tasks before and 1 hour after consumption. Results showed no significant effect, either with eyes open or eyes closed, on movement of the body's center of pressure.

  15. [Primary neurogenic and myogenic disorders of posture].

    PubMed

    Schranz, C; Meinck, H-M

    2004-05-01

    Disturbance of posture may occur in a variety of neurological disorders and occasionally is the presenting or even the only sign. In the majority of cases, the head or the trunk or both are bent forward (bent spine syndrome, dropped head syndrome). A feature of these primary neurogenic or myogenic postural disturbances that is in contrast to antalgic contraction or ankylosis is that they are not fixed, but the trunk or head are easily erected by the examiner and show a characteristic sagging. Neuromuscular disorders are a frequent cause. They may be confined to the paraspinal muscles. Axial computed tomography of the spine, electromyography of the involved muscles, and muscle biopsy help to make the diagnosis. However, also central movement disorders may lead to a sagging of the head or trunk or of both due to a lessened tone of the head and trunk extensors. This is frequently seen in the various parkinsonian syndromes which may, however, occur in association with a focal myopathy of the paraspinal muscles. Occasionally, sagging of the trunk is seen as a side effect of neuropharmacologic medication. Sagging of the trunk or head should be differentiated from a pathologically increased innervation of the ventral muscles in dystonic movement disorders such as antecollis or camptocormia. Pathologic reclination of the head or trunk or both is a rare disturbance of posture. It may occur in dystonia (retrocollis) or, occasionally, as a consequence of musculotendinous contractures secondary to certain neuromuscular disorders such as the rigid spine syndrome.

  16. Ice skating promotes postural control in children.

    PubMed

    Keller, M; Röttger, K; Taube, W

    2014-12-01

    High fall rates causing injury and enormous financial costs are reported for children. However, only few studies investigated the effects of balance training in children and these studies did not find enhanced balance performance in postural (transfer) tests. Consequently, it was previously speculated that classical balance training might not be stimulating enough for children to adequately perform these exercises. Therefore, the aim of this study is to evaluate the influence of ice skating as an alternative form of balance training. Volunteers of an intervention (n = 17; INT: 13.1 ± 0.4 years) and a control group (n = 13; CON: 13.2 ± 0.3 years) were tested before and after training in static and dynamic postural transfer tests. INT participated in eight sessions of ice skating during education lessons, whereas CON participated in normal physical education. Enhanced balance performance was observed in INT but not in CON when tested on an unstable free-swinging platform (P < 0.05) or when performing a functional reach test (P < 0.001). This is the first study showing significantly enhanced balance performance after ice skating in children. More importantly, participating children improved static and dynamic balance control in postural tasks that were not part of the training.

  17. Postural dynamics and habituation to seasickness.

    PubMed

    Tal, Dror; Bar, Ronen; Nachum, Zohar; Gil, Amnon; Shupak, Avi

    2010-07-26

    The computerized dynamic posturography (CDP) test examines the response pattern to simultaneous, multimodal sensory stimulation. The purpose of this prospective, controlled study was to investigate whether postural dynamics evaluated by CDP are related to seasickness severity and the process of habituation to sea conditions. Subjects included 74 naval personnel assigned to service aboard ship and 29 controls designated for shore-based positions. Study participants performed a baseline CDP test, and subsequent follow-up examinations 6 and 12 months after completion of their training. On those occasions they also completed a seasickness severity questionnaire. Longitudinal changes in postural parameters were examined, as well as a possible correlation between baseline CDP results and final seasickness severity scores. The results indicated longitudinal habituation to seasickness. Reduced scores were found for sensory organization sub-tests 3 and 5 in the first follow-up examination, reflecting increased weighting of visual and somatosensory input in the maintenance of balance. Scores in the second follow-up examination were above baseline values, indicating increased reliance on vestibular cues. These significant bimodal changes were found only in study subjects having the highest degree of habituation to seasickness. A significant decrease in motor response strength was found in parallel with increased habituation to seasickness. Baseline CDP results and postural control dynamics were not correlated with subjects' final seasickness severity score. These results suggest a potential role for CDP in monitoring the process of habituation to unusual motion conditions.

  18. Humanlike agents with posture planning ability

    NASA Astrophysics Data System (ADS)

    Jung, Moon R.; Badler, Norman I.

    1992-11-01

    Human body models are geometric structures which may be ultimately controlled by kinematically manipulating their joints, but for animation, it is desirable to control them in terms of task-level goals. We address a fundamental problem in achieving task-level postural goals: controlling massively redundant degrees of freedom. We reduce the degrees of freedom by introducing significant control points and vectors, e.g., pelvis forward vector, palm up vector, and torso up vector, etc. This reduced set of parameters are used to enumerate primitive motions and motion dependencies among them, and thus to select from a small set of alternative postures (e.g., bend versus squat to lower shoulder height). A plan for a given goal is found by incrementally constructing a goal/constraint set based on the given goal, motion dependencies, collision avoidance requirements, and discovered failures. Global postures satisfying a given goal/constraint set are determined with the help of incremental mental simulation which uses a robust inverse kinematics algorithm. The contributions of the present work are: (1) There is no need to specify beforehand the final goal configuration, which is unrealistic for the human body, and (2) the degrees of freedom problem becomes easier by representing body configurations in terms of `lumped' control parameters, that is, control points and vectors.

  19. U.S. Coast Guard Posture Statement With 2009 Budget in Brief

    DTIC Science & Technology

    2008-02-01

    LORAN -C operations to Enhanced LORAN (eLORAN). NPPD will oversee the development of eLORAN to provide national backup capabilities for position...Operating Assets and Sustaining Aging Infrastructure Enhancing Marine Safety Improving Command and Control Capabilities Polar Presence and Capabilities...Operating Assets and Sustaining Aging Infrastructure; • Enhancing our Marine Safety Program; • Improving Command and Control Capabilities; and

  20. Posture Statement. A Campaign Quality Army with Joint and Expeditionary Capabilities

    DTIC Science & Technology

    2006-02-10

    the Lean Six Sigma methodology . Just as we are leveraging the lessons of war to improve fighting effectiveness, we are applying relevant corporate...the Lean Six Sigma methodology to reduce the cost of the business side of the Army. • Identified and began initial implementation of

  1. A Statement on the Posture of the United States Army 2007

    DTIC Science & Technology

    2007-01-01

    decision making, and reducing organizational redundancy and overhead. We are now well underway in deploying the Lean Six Sigma methodology as a...of doing business –and to increase quality, productivity, and morale. • Implemented Lean Six Sigma methodology within all Army Commands, Direct...billion in Military Construction and related projects between 2007 and 2013. • Implemented Lean Six Sigma methodology within all Army Commands

  2. United States Coast Guard 2010 Posture Statement: With 2011 Budget in Brief

    DTIC Science & Technology

    2010-02-01

    regularly with its port partners throughout the Port of New York/New Jersey. Photo by PA3 Barbara Patton Joint Partners: A Coast Guard HH-60 helicopter...Coast Guard Hero Petty Offi cer 1st Class Michael C. Curran (MST1) Petty Offi cer 1st Class Michael Curran, a marine science technician (MST), currently...investigations that included responding to three vessel collisions and a vessel fi re. Photo by Angela Daniel Photo by BM2 Jeff Quinn Strategic Priorities

  3. Functionality level and its relation to postural control during sitting-to-stand movement in children with cerebral palsy.

    PubMed

    Pavão, Silvia Leticia; Dos Santos, Adriana Neves; de Oliveira, Ana Beatriz; Rocha, Nelci Adriana Cicuto Ferreira

    2014-02-01

    In this study we studied functional performance and functional balance in children with cerebral palsy (CP) and typically developing (TD) children. The relationship between these components and postural control during sit-to-stand movement (STS) was also investigated. Ten children with CP (GMFCS I and II) and 27 TD children, ages 5-12 years, were included in the study. The Pediatric Evaluation of Disability Inventory (PEDI) and the Pediatric Balance Scale (PBS) were used to measure functional performance and functional balance, respectively. Postural control during STS was assessed by means of a force plate. Participants were asked to stand from a chair with feet over a force plate. Children with CP exhibited lower scores than TD children in the PBS and in the mobility Functional Skills and Caregiver Assistance domains of the PEDI (p≤0.05). In both groups postural control during STS movement was correlated with mobility Caregiver Assistance scores of the PEDI. The results demonstrate that although the participants had mild to moderate motor impairment, they exhibit deficits in their level of functional performance and functional balance compared to typical children. Moreover, it was observed that impairments in postural control during the STS movement are related to functional performance in both groups. This result demonstrates the importance of the structure and function components to the level of activity in children.

  4. Postural control and perceptive configuration: influence of expertise in gymnastics.

    PubMed

    Gautier, Geoffroy; Thouvarecq, Régis; Vuillerme, Nicolas

    2008-07-01

    The purpose of the present experiment was to investigate how postural adaptations to the perceptive configuration are modified by specific gymnastics experience. Two groups, one expert in gymnastics and the other non-expert, had to maintain the erected posture while optical flow was imposed as follows: 20s motionless, 30s approaching motion, and 20s motionless. The centre of pressure and head displacements were analysed. The postural adaptations were characterised by the variability of movements for the flow conditions and by the postural latencies for the flow transitions. The results showed that the gymnasts tended to minimise their body movements and were more stationary (head) but not more stable (COP) than the non-gymnasts. These results suggest that gymnastics experience develops a specific postural adaptability relative to the perceptive configuration. We conclude that a specific postural experience could be considered as an intrinsic constraint, which leads to modification in the patterns of functional adaptation in the perceptive motor space.

  5. The School of Posture as a postural training method for Paraíba Telecommunications Operators.

    PubMed

    Cardia, M C; Soares Màsculo, F

    2001-01-01

    This work proposes to show the experience of posture training accomplished in the Paraíba State Telecommunication Company, using the knowledge of the Back School. The sample was composed of 12 operators, employees of the company, representing 31% of this population. The model applied in TELPA (Paraíba Telecommunication Company, Brazil) was based on the models of Sherbrooke, Canada, and of the School of Posture of Paraìba Federal University. Fifty-eight point four percent of participants showed a reduction of column pain, 25% improved the quality of the rest and the received training was considered enough for the learning of correct postures at work in 75% of the cases. The whole population approved of the training, and 83.3% of the cases considered that this training influenced their lives very positively.

  6. Anticipatory Postural Control of Stability during Gait Initiation Over Obstacles of Different Height and Distance Made Under Reaction-Time and Self-Initiated Instructions

    PubMed Central

    Yiou, Eric; Artico, Romain; Teyssedre, Claudine A.; Labaune, Ombeline; Fourcade, Paul

    2016-01-01

    Despite the abundant literature on obstacle crossing in humans, the question of how the central nervous system (CNS) controls postural stability during gait initiation with the goal to clear an obstacle remains unclear. Stabilizing features of gait initiation include anticipatory postural adjustments (APAs) and lateral swing foot placement. To answer the above question, 14 participants initiated gait as fast as possible in three conditions of obstacle height, three conditions of obstacle distance and one obstacle-free (control) condition. Each of these conditions was performed with two levels of temporal pressure: reaction-time (high-pressure) and self-initiated (low-pressure) movements. A mechanical model of the body falling laterally under the influence of gravity and submitted to an elastic restoring force is proposed to assess the effect of initial (foot-off) center-of-mass position and velocity (or “initial center-of-mass set”) on the stability at foot-contact. Results showed that the anticipatory peak of mediolateral (ML) center-of-pressure shift, the initial ML center-of-mass velocity and the duration of the swing phase, of gait initiation increased with obstacle height, but not with obstacle distance. These results suggest that ML APAs are scaled with swing duration in order to maintain an equivalent stability across experimental conditions. This statement is strengthened by the results obtained with the mechanical model, which showed how stability would be degraded if there was no adaptation of the initial center-of-mass set to swing duration. The anteroposterior (AP) component of APAs varied also according to obstacle height and distance, but in an opposite way to the ML component. Indeed, results showed that the anticipatory peak of backward center-of-pressure shift and the initial forward center-of-mass set decreased with obstacle height, probably in order to limit the risk to trip over the obstacle, while the forward center-of-mass velocity at foot

  7. Anticipatory Postural Control of Stability during Gait Initiation Over Obstacles of Different Height and Distance Made Under Reaction-Time and Self-Initiated Instructions.

    PubMed

    Yiou, Eric; Artico, Romain; Teyssedre, Claudine A; Labaune, Ombeline; Fourcade, Paul

    2016-01-01

    Despite the abundant literature on obstacle crossing in humans, the question of how the central nervous system (CNS) controls postural stability during gait initiation with the goal to clear an obstacle remains unclear. Stabilizing features of gait initiation include anticipatory postural adjustments (APAs) and lateral swing foot placement. To answer the above question, 14 participants initiated gait as fast as possible in three conditions of obstacle height, three conditions of obstacle distance and one obstacle-free (control) condition. Each of these conditions was performed with two levels of temporal pressure: reaction-time (high-pressure) and self-initiated (low-pressure) movements. A mechanical model of the body falling laterally under the influence of gravity and submitted to an elastic restoring force is proposed to assess the effect of initial (foot-off) center-of-mass position and velocity (or "initial center-of-mass set") on the stability at foot-contact. Results showed that the anticipatory peak of mediolateral (ML) center-of-pressure shift, the initial ML center-of-mass velocity and the duration of the swing phase, of gait initiation increased with obstacle height, but not with obstacle distance. These results suggest that ML APAs are scaled with swing duration in order to maintain an equivalent stability across experimental conditions. This statement is strengthened by the results obtained with the mechanical model, which showed how stability would be degraded if there was no adaptation of the initial center-of-mass set to swing duration. The anteroposterior (AP) component of APAs varied also according to obstacle height and distance, but in an opposite way to the ML component. Indeed, results showed that the anticipatory peak of backward center-of-pressure shift and the initial forward center-of-mass set decreased with obstacle height, probably in order to limit the risk to trip over the obstacle, while the forward center-of-mass velocity at foot

  8. Postural responses explored through classical conditioning.

    PubMed

    Campbell, A D; Dakin, C J; Carpenter, M G

    2009-12-15

    The purpose of the study was to determine whether the central nervous system (CNS) requires the sensory feedback generated by balance perturbations in order to trigger postural responses (PRs). In Experiment 1, twenty-one participants experienced toes-up support-surface tilts in two blocks. Control blocks involved unexpected balance perturbations whereas an auditory tone cued the onset of balance perturbations in Conditioning blocks. A single Cue-Only trial followed each block (Cue-Only(Control) and Cue-Only(Conditioning) trials) in the absence of balance perturbations. Cue-Only(Conditioning) trials were used to determine whether postural perturbations were required in order to trigger PRs. Counter-balancing the order of Control and Conditioning blocks allowed Cue-Only(Control) trials to examine both the audio-spinal/acoustic startle effects of the auditory cue and the carryover effects of the initial conditioning procedure. In Experiment 2, six participants first experienced five consecutive Tone-Only trials that were followed by twenty-five conditioning trials. After conditioning, five Tone-Only trials were again presented consecutively to first elicit and then extinguish the conditioned PRs. Surface electromyography (EMG) recorded muscle activity in soleus (SOL), tibialis anterior (TA) and rectus femoris (RF). EMG onset latencies and amplitudes were calculated together with the onset latency, peak and time-to-peak of shank angular accelerations. Results indicated that an auditory cue could be conditioned to initiate PRs in multiple muscles without balance-relevant sensory triggers generated by balance perturbations. Postural synergies involving excitation of TA and RF and inhibition of SOL were observed following the Cue-Only(Conditioning) trials that resulted in shank angular accelerations in the direction required to counter the expected toes-up tilt. Postural synergies were triggered in response to the auditory cue even 15 min post-conditioning. Furthermore

  9. Effect of different insoles on postural balance: a systematic review.

    PubMed

    Christovão, Thaluanna Calil Lourenço; Neto, Hugo Pasini; Grecco, Luanda André Collange; Ferreira, Luiz Alfredo Braun; Franco de Moura, Renata Calhes; Eliege de Souza, Maria; Franco de Oliveira, Luis Vicente; Oliveira, Claudia Santos

    2013-10-01

    [Purpose] The aim of the present study was to perform a systematic review of the literature on the effect of different insoles on postural balance. [Subjects and Methods] A systematic review was conducted of four databases. The papers retrieved were evaluated based on the following inclusion criteria: 1) design: controlled clinical trial; 2) intervention: insole; 3) outcome: change in static postural balance; and 4) year of publication: 2005 to 2012. [Results] Twelve controlled trials were found comparing the effects of different insoles on postural balance. The papers had methodological quality scores of 3 or 4 on the PEDro scale. [Conclusion] Insoles have benefits that favor better postural balance and control.

  10. The Effect of Training on Postural Control in Dyslexic Children.

    PubMed

    Goulème, Nathalie; Gérard, Christophe-Loïc; Bucci, Maria Pia

    2015-01-01

    The aim of this study was to explore whether a short postural training period could affect postural stability in dyslexic children. Postural performances were evaluated using Multitest Equilibre from Framiral. Posture was recorded in three different viewing conditions (eyes open fixating a target, eyes closed and eyes open with perturbed vision) and in two different postural conditions (on stable and unstable support). Two groups of dyslexic children participated in the study, i.e. G1: 16 dyslexic participants (mean age 9.9 ± 0.3 years) who performed short postural training and G2: 16 dyslexic participants of similar ages (mean age 9.1 ± 0.3 years) who did not perform any short postural training. Findings showed that short postural training improved postural stability on unstable support surfaces with perturbed vision: indeed the surface, the mean velocity of CoP and the spectral power indices in both directions decreased significantly, and the cancelling time in the antero-posterior direction improved significantly. Such improvement could be due to brain plasticity, which allows better performance in sensory process and cerebellar integration.

  11. Physical Workload Analysis Among Small Industry Activities Using Postural Data.

    PubMed

    Rabiul Ahasan, M; Väyrynen, Seppo; Kirvesoja, Heli

    1996-01-01

    Small industry workers are often involved in manual handling operations that require awkward body postures, therefore, musculoskeletal disorders and occupational injuries are a major problem. In this study, various types of tasks were recorded with a video camera to chart and analyze different postures by computerized OWAS (Ovako Working Posture Analysing System). Collected data showed that poor postures were adopted not only for lifting or hammering operation but also for other tasks; mostly with bent and twisted back. The main aim was to determine the physical workload by identifying harmful postures and to develop recommendations for improving the existing situation. Forty-eight male workers from eight different units (M age = 37 years) participated. The performed activities were then divided into 26 subtasks. Altogether, 1,534 postures were selected for analysis and then classified into different OAC (OWAS Action Categories). From all observations, unhealthy postures, for which corrective measures had to be considered immediately (i.e., 10.6% classified as OAC III, and 3.3% as OAC IV), were found. The applied method was useful in determining the physical workload by locating potential activities due to harmful postures, providing a detailed description with analysis, and suggesting successful means to reduce postural load.

  12. Repair of congenital heart disease with associated pulmonary hypertension in children: what are the minimal investigative procedures? Consensus statement from the Congenital Heart Disease and Pediatric Task Forces, Pulmonary Vascular Research Institute (PVRI)

    PubMed Central

    2014-01-01

    Abstract Standardization of the diagnostic routine for children with congenital heart disease associated with pulmonary arterial hypertension (PAH-CHD) is crucial, in particular since inappropriate assignment to repair of the cardiac lesions (e.g., surgical repair in patients with elevated pulmonary vascular resistance) may be detrimental and associated with poor outcomes. Thus, members of the Congenital Heart Disease and Pediatric Task Forces of the Pulmonary Vascular Research Institute decided to conduct a survey aimed at collecting expert opinion from different institutions in several countries, covering many aspects of the management of PAH-CHD, from clinical recognition to noninvasive and invasive diagnostic procedures and immediate postoperative support. In privileged communities, the vast majority of children with congenital cardiac shunts are now treated early in life, on the basis of noninvasive diagnostic evaluation, and have an uneventful postoperative course, with no residual PAH. However, a small percentage of patients (older at presentation, with extracardiac syndromes or absence of clinical features of increased pulmonary blood flow, thus suggesting elevated pulmonary vascular resistance) remain at a higher risk of complications and unfavorable outcomes. These patients need a more sophisticated diagnostic approach, including invasive procedures. The authors emphasize that decision making regarding operability is based not only on cardiac catheterization data but also on the complete diagnostic picture, which includes the clinical history, physical examination, and all aspects of noninvasive evaluation. PMID:25006452

  13. The effect of foot posture on capacity to apply free moments to the ground: implications for fighting performance in great apes

    PubMed Central

    Cunningham, Christopher

    2017-01-01

    ABSTRACT In contrast to most other primates, great apes have feet in which the heel supports body weight during standing, walking and running. One possible advantage of this plantigrade foot posture is that it may enhance fighting performance by increasing the ability to apply free moments (i.e. force couples) to the ground. We tested this possibility by measuring performance of human subjects when performing from plantigrade and digitigrade (standing on the ball of the foot and toes) postures. We found that plantigrade posture substantially increased the capacity to apply free moments to the ground and to perform a variety of behaviors that are likely to be important to fighting performance in great apes. As predicted, performance in maximal effort lateral striking and pushing was strongly correlated with free moment magnitude. All else being equal, these results suggest species that can adopt plantigrade posture will be able to apply larger free moments to the ground than species restricted to digitigrade or unguligrade foot posture. Additionally, these results are consistent with the suggestion that selection for physical competition may have been one of the factors that led to the evolution of the derived plantigrade foot posture of great apes. PMID:28202470

  14. Adaptation of reflexive feedback during arm posture to different environments.

    PubMed

    de Vlugt, Erwin; Schouten, Alfred C; van der Helm, Frans C T

    2002-07-01

    In this study we have examined the ability of the central nervous system (CNS) to use spinal reflexes to minimize displacements during postural control while continuous force perturbations were applied at the hand. The subjects were instructed to minimize the displacements of the hand from a reference position that resulted from the force perturbations. The perturbations were imposed in one direction by means of a hydraulic manipulator of which the virtual mass and damping were varied. Resistance to the perturbations came from intrinsic and reflexive stiffness, and from the virtual environment. It is hypothesized that reflexive feedback during posture maintenance is optimally adjusted such that position deviations are minimal for a given virtual environment. Frequency response functions were estimated, capturing all mechanical properties of the arm at the end point (hand) level. Intrinsic and reflexive parameters were quantified by fitting a linear neuromuscular model to the frequency responses. The reflexive length feedback gain increased strongly with damping and little with the eigenfrequency of the total combined system (i.e. arm plus environment). The reflexive velocity feedback gain decreased slightly with relative damping at the largest eigenfrequency and more markedly at smaller eigenfrequencies. In the case of highest reflex gains, the total system remained stable and sufficiently damped while the responses of only the arm were severely underdamped and sometimes even unstable. To further analyse these results, a model optimization was performed. Intrinsic and reflexive parameters were optimized such that two criterion functions were minimized. The first concerns performance and penalized hand displacements from a reference point. The second one weights afferent control effort to avoid inefficient feedback. The simulations showed good similarities with the estimated values. Length feedback was adequately predicted by the model for all conditions. The

  15. Attentional focus influences postural control and reaction time performances only during challenging dual-task conditions in healthy young adults.

    PubMed

    Remaud, Anthony; Boyas, Sébastien; Lajoie, Yves; Bilodeau, Martin

    2013-11-01

    The dual-task paradigm has previously been used to investigate the attentional demands associated with postural control. Previous studies have identified both the focus of attention and the difficulty of a postural task as potential factors influencing dual-task performance. The aim of this study was to examine how the instructed focus of attention influences dual-task performance during quiet standing tasks of various levels of difficulty. Thirteen young adults participated in two testing sessions consisting of standing as still as possible on a force platform in different postural conditions, while simultaneously performing a simple reaction time (RT) task. Postural task difficulty was manipulated by various combinations of three bases of support (feet together, tandem and single leg) and two visual conditions (eyes opened and closed). Participants were instructed to focus on either their balance or their RT performance, depending on the testing session. When comparing postural control with respect to session focus, anterior-posterior sway velocity decreased with the addition of the simple RT task when the focus was on balance, but only during the more difficult dual-task conditions. In contrast, sway area and medial-lateral sway velocity did not change between the two instructed focus sessions. Participants responded faster in all dual-task conditions when focusing on RT performance than on balance. The modified attention allocation index indicated that participants' ability to modulate their allocation of attentional resources to respond positively to instruction was more pronounced in the most challenging postural condition. The present findings could have important implications for the interpretation of dual-task performance in both clinical and research settings.

  16. Observations of working postures in garages using the Ovako Working posture Analysing System (OWAS) and consequent workload reduction recommendations.

    PubMed

    Kant, I; Notermans, J H; Borm, P J

    1990-02-01

    The working postures of mechanics (n = 84) in 42 garages were observed using the Ovako Working posture Analysis System (OWAS). During observation, both working postures and work activities were recorded. A computer program was developed for the data analyses. Using this program it is possible to calculate the working posture load for each work activity and the contribution of a specific activity to the total working posture load. This is a substantial extension of the original OWAS method. Five out of 19 observed postures of the body members were classified as Action Category 2, which suggests they were slightly harmful to the musculoskeletal system and likely to cause discomfort. Of the so-called typical working postures, 31.9% was classified in Action Category 2, suggesting that during a substantial part of the working day typical working postures occur which are at least slightly harmful to the musculoskeletal system. Moreover, those work activities principally causing the workload to fall in OWAS' higher Action Categories were identified. For each of these three work activities an alternative work method was observed. The data show that in all three work activities the use of a vehicle lift reduces the number of poor working postures thereby reducing the load on the musculoskeletal system.

  17. Influence of vision and posture on grip-lift task parameters in healthy adults.

    PubMed

    Dispa, Delphine; Tourbach, Catherine; Thonnard, Jean-Louis; Lejeune, Thierry

    2014-12-01

    The grip-lift task enables a quantitative assessment of grasping ability. Patients are regularly assessed in a supine position, which offers a different view of the grasped object from that in the sitting position. To our knowledge, no data are currently available on the influence of posture and vision on grip-lift task parameters. We therefore aimed to determine the effects of posture and vision on these parameters. Twenty-six healthy right-handed adults performed grip-lift tasks with a manipulandum that measured different temporal and dynamic parameters in four conditions: sitting eyes open, sitting blindfolded, lying down eyes open and lying down blindfolded. A repeated-measures analysis of variance with two factors (vision and position) showed that the absence of vision affected all the parameters measured. The lying down position increased the time between the first contact with the object and the modification of the vertical force as well as the delay between the first increase of the horizontal force and the increase of the vertical force. In addition, there was a lower adaption of the horizontal force, required to squeeze the object, to the vertical force. Finally, the interaction of position and vision was associated with significant differences in the delay between the contact of each digit with the object, the maximum horizontal force and the ratio between the horizontal and vertical force during a static holding period. Both position and vision appear to affect the grip-lift task. Consequently, sequential assessments should be performed in the same condition to obtain reliable data.

  18. Do rocker-sole shoes influence postural stability in chronic low back pain? A randomised trial

    PubMed Central

    Morrissey, Matthew; Shortland, Adam; Lewis, Jeremy S

    2016-01-01

    Background People with chronic low back pain (CLBP) demonstrate greater postural instability compared with asymptomatic individuals. Rocker-sole shoes are inherently unstable and may serve as an effective balance training device. This study hypothesised that wearing rocker-sole shoes would result in long-term improvement in barefoot postural stability in people with CLBP. Methods 20 participants with CLBP were randomised to wear rocker-sole or flat-sole shoes for a minimum of 2 hours each day. Participants were assessed barefoot and shod, over three 40 s trials, under 4 posture challenging standing conditions. The primary outcome was postural stability assessed by root mean squared error of centre of pressure (CoP) displacement (CoPRMSE AP) and mean CoP velocity (CoPVELAP), both in the anteroposterior direction, using force plates. Participants' were assessed without knowledge of group allocation at baseline, 6 weeks and 6 months (main outcome point). Analyses were by intention-to-treat. Results At 6 months, data from 11 of 13 (84.6%) of the rocker-sole and 5 of 7 (71.4%) of the flat-sole group were available for analysis. At baseline, there was a mean increase in CoPRMSE AP (6.41 (2.97) mm, p<0.01) and CoPVELAP (4.10 (2.97) mm, p<0.01) in the rocker-sole group when shod compared with barefoot; there was no difference in the flat-sole group. There were no within-group or between-group differences in change in CoP parameters at any time point compared with baseline (1) for any barefoot standing condition (2) when assessed shod eyes-open on firm ground. Conclusions Although wearing rocker-sole shoes results in greater postural instability than flat-sole shoes, long-term use of rocker-sole shoes did not appear to influence postural stability in people with CLBP. PMID:27900198

  19. Effect of different types of exercise on postural balance in elderly women: a randomized controlled trial.

    PubMed

    de Oliveira, Marcio R; da Silva, Rubens A; Dascal, Juliana B; Teixeira, Denilson C

    2014-01-01

    Different types of exercise are indicated for the elderly to prevent functional capacity limitations due to aging and reduce the risk of falls. This study aimed to evaluate the effect of three different exercises (mini-trampoline, MT; aquatic gymnastics, AG and general floor gymnastics, GG) on postural balance in elderly women. Seventy-four physically independent elderly women, mean age 69±4 years, were randomly assigned to three intervention groups: (1) MT (n=23), (2) AG (n=28), and (3) GG (n=23). Each group performed physical training, including cardiorespiratory, muscular strength and endurance, flexibility and sensory-motor exercises for 12 weeks. To determine the effects on each intervention group, five postural balance tasks were performed on a force platform (BIOMEC 400): the two-legged stand with eyes open (TLEO) and two-legged stand with eyes closed (TLEC); the semi-tandem stand with eyes open (STEO) and semi-tandem stand with eyes closed (STEC) and the one-legged stand. Three trials were performed for each task (with 30s of rest between them) and the mean was used to compute balance parameters such as center of pressure (COP) sway movements. All modalities investigated such as the MT, AG and GG were significantly (P<0.05) efficient in improving the postural balance of elderly women after 12 weeks of training. These results provide further evidence concerning exercise and balance for promoting health in elderly women.

  20. Study on an advanced early rehabilitation training system for postural control using a tilting bed

    NASA Astrophysics Data System (ADS)

    Yu, Chang-Ho; Kim, Kyong; Kwon, Tae-Kyu; Hong, Chul-Un; Kim, Nam-Gyun

    2005-12-01

    It proposed a new early rehabilitation training system for postural control using a tilting bed, a visual display and a force plate. The conventional rehabilitation systems for postural control can't be applied to the patients lying in bed because the rehabilitation training using those systems is only possible when the patient can stand up by himself or herself. Moreover, there did not exist any device that could provide the sense of balance or the sensation of walking to the patients in bed. The software for the system consists of the training program and the analysis program. The training program was designed to improve the ability of postural control of the subjects by repeated training of moving the center of pressure (COP) applied to the forceplate. The training program consists of the COP maintaining training and the COP movement training in horizontal, vertical, 45° and -45° directions. The analysis program consists of the COP moving time analysis modules, the COP maintaining time analysis module. Through the experiments with real people, it verified the effectiveness of the new early rehabilitation training system. The results showe that this system is an effective system for early rehabilitation training and that our system might be useful as clinical equipment.

  1. Age-gender differences in the postural sway during squat and stand-up movement.

    PubMed

    Kim, Ji-Won; Kwon, Yuri; Ho, Yeji; Jeon, Hyeong-Min; Bang, Min-Jung; Jun, Jae-Hoon; Eom, Gwang-Moon; Park, Byung Kyu; Cho, Yeong Bin

    2014-01-01

    Incidence of falling among elderly female has been reported to be much higher than that of elderly male. Although the gender differences in the elderly were reported for the static postural sway, there has been no investigation of the gender difference for the dynamic postural sway. This study investigates how age and gender affect the postural sway during dynamic squat and stand-up movement. 124 subjects (62 subjects for each of young and elderly) performed consecutive squat and stand-up movement, 2 times in one session, and 2 sessions per subject. Center of pressure (COP) was measured using force platform during the test. Outcome measures included peak-to-peak sways of the COP (COP sway) in the sagittal plane (anteroposterior) and frontal plane (mediolateral) and also those normalized by body height. Two-way ANOVA and post-hoc comparisons were performed for the outcome measures with the independent factors of age and gender. All outcome measures, excluding mediolateral COP sway, showed significant interaction of age and gender (p<0.05). Post-hoc test revealed that only female showed increase in COP sway with age. When normalized by height, increase in COP sways (both directions) with age significant only in women resulted in greater sways in elderly female than elderly male. This may be related to the greater fall rate of elderly female than that of elderly men while performing dynamic activities.

  2. Static Postural Stability in Women during and after Pregnancy: A Prospective Longitudinal Study

    PubMed Central

    Opala-Berdzik, Agnieszka; Błaszczyk, Janusz W.; Bacik, Bogdan; Cieślińska-Świder, Joanna; Świder, Dariusz; Sobota, Grzegorz; Markiewicz, Andrzej

    2015-01-01

    This longitudinal study aimed to compare static postural stability in women between early pregnancy, advanced pregnancy, and at 2 and 6 months postpartum. Forty-five pregnant women were enrolled and 31 completed the protocol. Data were collected at 7–16 and 34–39 weeks gestation, and at 6–10 and 26–30 weeks postpartum. For each subject, the center of foot pressure path length and mean velocity (with directional subcomponents) were computed from 30-s long quiet-standing trials on a stationary force plate with eyes open or closed. The body mass, stance width, and sleep duration within 24 h before testing were also recorded. Static postural stability was not different between pregnancy and postpartum, except for the anterior posterior sway tested in the eyes-closed condition, which was significantly increased in late pregnancy compared to that at 2 and 6 months postpartum. Pregnant/postpartum women’s body mass weakly positively correlated with anterior-posterior sway in the eyes-closed condition and their stance width weakly positively correlated with the anterior-posterior sway in the eyes-open condition. No effect of sleep duration on postural sway was found. Our findings indicate that under visual deprivation conditions women in advanced pregnancy may have decreased static stability compared to their non-pregnant state. PMID:26053046

  3. Both anticipatory and compensatory postural adjustments are adapted while catching a ball in unstable standing posture.

    PubMed

    Scariot, Vanessa; Rios, Jaqueline L; Claudino, Renato; dos Santos, Eloá C; Angulski, Hanna B B; dos Santos, Marcio J

    2016-01-01

    The main objective of this study was to analyze the role of balance exercises on anticipatory (APA) and compensatory (CPA) postural adjustments in different conditions of postural stability. Sixteen subjects were required to catch a ball while standing on rigid floor, trampoline and foam cushion surfaces. Electromyographic activities (EMG) of postural muscles were analyzed during time windows typical for APAs and CPAs. Overall there were a reciprocal activation of the muscles around the ankle and co-activations between ventral and dorsal muscles of the thigh and trunk during the catching a ball task. Compared to the rigid floor, the tibialis anterior activation was greater during the trampoline condition (CPA: p = 0.006) and the soleus muscle inhibition was higher during foam cushion condition (APA: p = 0.001; CPA: p = 0.007). Thigh and trunk muscle activities were similar across the conditions. These results advance the knowledge in postural control during body perturbations standing on unstable surfaces.

  4. The role of central vision in posture: Postural sway adaptations in Stargardt patients.

    PubMed

    Agostini, Valentina; Sbrollini, Agnese; Cavallini, Chanda; Busso, Alessandra; Pignata, Giulia; Knaflitz, Marco

    2016-01-01

    The role of central and peripheral vision in the maintenance of upright stance is debated in literature. Stargardt disease causes visual deficits affecting the central field, but leaving unaltered a patient's peripheral vision. Hence, the study of this rare pathology gives the opportunity to selectively investigate the role of central vision in posture. Postural sway in quiet stance was analyzed in 10 Stargardt patients and 10 control subjects, in three different conditions: (1) eyes closed, (2) eyes open, gazing at a fixed target, and (3) eyes open, tracking a moving target. Stargardt patients outperformed controls in the condition with eyes closed, showing a reduced root mean square (RMS) of the medio-lateral COP displacement, while their performance was not significantly different from controls in the antero-posterior direction. There were no significant differences between patients and controls in open eyes conditions. These results suggest that Stargardt patients adapted to a different visual-somatosensory integration, relying less on vision, especially in the medio-lateral direction. Hence, the central vision seems to affect mostly the medio-lateral direction of postural sway. This finding supports the plausibility of the "functional sensitivity hypothesis", that assigns complementary roles to central and peripheral vision in the control of posture.

  5. 7 CFR 4279.137 - Financial statements.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... § 4279.137 Financial statements. (a) The lender will determine the type and frequency of submission of financial statements by the borrower. At a minimum, annual financial statements prepared by an accountant in... 7 Agriculture 15 2010-01-01 2010-01-01 false Financial statements. 4279.137 Section...

  6. It's Time to Implement GASB Statement 54

    ERIC Educational Resources Information Center

    Heinfeld, Gary; Nuehring, Bert

    2012-01-01

    In February 2009, the Governmental Accounting Standards Board (GASB) issued Statement No. 54, "Find Balance Reporting and Governmental Fund Type Definitions." This statement changes how a fund balance is classified on the face of the government fund financial statements and refines the definitions for government fund types. The statement's…

  7. 7 CFR 1218.51 - Financial statements.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 10 2010-01-01 2010-01-01 false Financial statements. 1218.51 Section 1218.51... § 1218.51 Financial statements. (a) As requested by the Secretary, the Council shall prepare and submit financial statements to the Secretary on a periodic basis. Each such financial statement shall include,...

  8. 29 CFR 99.310 - Financial statements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 1 2012-07-01 2012-07-01 false Financial statements. 99.310 Section 99.310 Labor Office of....310 Financial statements. (a) Financial statements. The auditee shall prepare financial statements that reflect its financial position, results of operations or changes in net assets, and,...

  9. 38 CFR 41.310 - Financial statements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 2 2012-07-01 2012-07-01 false Financial statements. 41...) AUDITS OF STATES, LOCAL GOVERNMENTS, AND NON-PROFIT ORGANIZATIONS Auditees § 41.310 Financial statements. (a) Financial statements. The auditee shall prepare financial statements that reflect its...

  10. 7 CFR 4279.137 - Financial statements.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 15 2014-01-01 2014-01-01 false Financial statements. 4279.137 Section 4279.137... § 4279.137 Financial statements. (a) The lender will determine the type and frequency of submission of financial statements by the borrower. At a minimum, annual financial statements prepared by an accountant...

  11. 38 CFR 41.310 - Financial statements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 2 2014-07-01 2014-07-01 false Financial statements. 41...) AUDITS OF STATES, LOCAL GOVERNMENTS, AND NON-PROFIT ORGANIZATIONS Auditees § 41.310 Financial statements. (a) Financial statements. The auditee shall prepare financial statements that reflect its...

  12. 7 CFR 1206.41 - Financial statements.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 10 2010-01-01 2010-01-01 false Financial statements. 1206.41 Section 1206.41... Financial statements. (a) As requested by the Department, the Board shall prepare and submit financial statements to the Department on a periodic basis. Each such financial statement shall include, but not...

  13. 7 CFR 1206.41 - Financial statements.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 10 2012-01-01 2012-01-01 false Financial statements. 1206.41 Section 1206.41... Financial statements. (a) As requested by the Department, the Board shall prepare and submit financial statements to the Department on a periodic basis. Each such financial statement shall include, but not...

  14. 29 CFR 99.310 - Financial statements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 1 2014-07-01 2013-07-01 true Financial statements. 99.310 Section 99.310 Labor Office of....310 Financial statements. (a) Financial statements. The auditee shall prepare financial statements that reflect its financial position, results of operations or changes in net assets, and,...

  15. 7 CFR 1218.51 - Financial statements.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 10 2012-01-01 2012-01-01 false Financial statements. 1218.51 Section 1218.51... § 1218.51 Financial statements. (a) As requested by the Secretary, the Council shall prepare and submit financial statements to the Secretary on a periodic basis. Each such financial statement shall include,...

  16. 38 CFR 41.310 - Financial statements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 2 2011-07-01 2011-07-01 false Financial statements. 41...) AUDITS OF STATES, LOCAL GOVERNMENTS, AND NON-PROFIT ORGANIZATIONS Auditees § 41.310 Financial statements. (a) Financial statements. The auditee shall prepare financial statements that reflect its...

  17. 7 CFR 1206.41 - Financial statements.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 10 2011-01-01 2011-01-01 false Financial statements. 1206.41 Section 1206.41... Financial statements. (a) As requested by the Department, the Board shall prepare and submit financial statements to the Department on a periodic basis. Each such financial statement shall include, but not...

  18. 7 CFR 4279.137 - Financial statements.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 15 2011-01-01 2011-01-01 false Financial statements. 4279.137 Section 4279.137... § 4279.137 Financial statements. (a) The lender will determine the type and frequency of submission of financial statements by the borrower. At a minimum, annual financial statements prepared by an accountant...

  19. 7 CFR 1218.51 - Financial statements.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 10 2011-01-01 2011-01-01 false Financial statements. 1218.51 Section 1218.51... § 1218.51 Financial statements. (a) As requested by the Secretary, the Council shall prepare and submit financial statements to the Secretary on a periodic basis. Each such financial statement shall include,...

  20. Postural Compensation for Unilateral Vestibular Loss

    PubMed Central

    Peterka, Robert J.; Statler, Kennyn D.; Wrisley, Diane M.; Horak, Fay B.

    2011-01-01

    Postural control of upright stance was investigated in well-compensated, unilateral vestibular loss (UVL) subjects compared to age-matched control subjects. The goal was to determine how sensory weighting for postural control in UVL subjects differed from control subjects, and how sensory weighting related to UVL subjects’ functional compensation, as assessed by standardized balance and dizziness questionnaires. Postural control mechanisms were identified using a model-based interpretation of medial–lateral center-of-mass body-sway evoked by support-surface rotational stimuli during eyes-closed stance. The surface-tilt stimuli consisted of continuous pseudorandom rotations presented at four different amplitudes. Parameters of a feedback control model were obtained that accounted for each subject’s sway response to the surface-tilt stimuli. Sensory weighting factors quantified the relative contributions to stance control of vestibular sensory information, signaling body-sway relative to earth-vertical, and proprioceptive information, signaling body-sway relative to the surface. Results showed that UVL subjects made significantly greater use of proprioceptive, and therefore less use of vestibular, orientation information on all tests. There was relatively little overlap in the distributions of sensory weights measured in UVL and control subjects, although UVL subjects varied widely in the amount they could use their remaining vestibular function. Increased reliance on proprioceptive information by UVL subjects was associated with their balance being more disturbed by the surface-tilt perturbations than control subjects, thus indicating a deficiency of balance control even in well-compensated UVL subjects. Furthermore, there was some tendency for UVL subjects who were less able to utilize remaining vestibular information to also indicate worse functional compensation on questionnaires. PMID:21922014

  1. Posture support improves object individuation in infants.

    PubMed

    Woods, Rebecca J; Wilcox, Teresa

    2013-08-01

    A hierarchical progression in infants' ability to use surface features, such as color, as a basis for object individuation in the first year has been well established (Tremoulet, Leslie, & Hall, 2000; Wilcox, 1999). There is evidence, however, that infants' sensitivity to surface features can be increased through multisensory (i.e., visuohaptic) exploration of objects (Wilcox, Woods, Chapa, & McCurry, 2007). Three studies were conducted to investigate the effect of multisensory experience on infants' sensitivity to pattern information. Experiments 1 and 2 confirmed that 5.5- and 6.5-month-olds do not spontaneously use pattern differences to individuate objects and revealed that 6.5- but not 5.5-month-olds can be primed to attend to pattern differences if allowed multisensory experience with the objects prior to the individuation task. However, the 5.5-month-olds also had greater difficulty maintaining a self-sitting posture during the multisensory priming experience. In Experiment 3, 4.5- and 5.5-month-olds were given full postural support during the multisensory exploration period. In this situation, the 5.5-month-olds successfully individuated the objects, but even with full postural support, 4.5-month-old infants did not use the pattern differences to individuate the objects. These results demonstrate that multisensory priming is effective with infants as young as 5.5 months and extends multisensory priming to another surface feature, pattern. Furthermore, these results indicate that constraints are placed on the multisensory experience by the physical and motor development of the infant.

  2. Posture Support Improves Object Individuation in Infants

    PubMed Central

    Woods, Rebecca J.; Wilcox, Teresa

    2013-01-01

    A hierarchical progression in infants’ ability to use surface features, such as color, as a basis for object individuation in the first year has been well established (Tremoulet, Leslie, & Hall, 2001; Wilcox, 1999). There is evidence, however, that infants’ sensitivity to surface features can be increased through multisensory (i.e., visuo-haptic) exploration of objects (Wilcox, Woods, Chapa, & McCurry, 2007). Three studies were conducted to investigate the effect of multisensory experience on infants’ sensitivity to pattern information. Experiments 1 and 2 confirmed that 5.5- and 6.5-month-olds do not spontaneously use pattern differences to individuate objects and revealed that 6.5- but not 5.5-month-olds can be primed to attend to pattern differences if allowed multisensory experience with the objects prior to the individuation task. However, the 5.5-month-olds also had greater difficulty maintaining a self-sitting posture during the multisensory priming experience. In Experiment 3, 4.5- and 5.5-month-olds were given full postural support during the multisensory exploration period. In this situation, the 5.5-month-olds successfully individuated the objects, but even with full postural support, 4.5-month-old infants did not use the pattern differences to individuate the objects. These results demonstrate that multisensory priming is effective with infants as young as 5.5 months and extends multisensory priming to another surface feature, pattern. Furthermore, these results indicate that constraints are placed on the multisensory experience by the physical and motor development of the infant. PMID:23046431

  3. Consolidated Health Economic Evaluation Reporting Standards (CHEERS) statement.

    PubMed

    Husereau, Don; Drummond, Michael; Petrou, Stavros; Carswell, Chris; Moher, David; Greenberg, Dan; Augustovski, Federico; Briggs, Andrew H; Mauskopf, Josephine; Loder, Elizabeth

    2013-03-25

    Economic evaluations of health interventions pose a particular challenge for reporting. There is also a need to consolidate and update existing guidelines and promote their use in a user friendly manner. The Consolidated Health Economic Evaluation Reporting Standards (CHEERS) statement is an attempt to consolidate and update previous health economic evaluation guidelines efforts into one current, useful reporting guidance. The primary audiences for the CHEERS statement are researchers reporting economic evaluations and the editors and peer reviewers assessing them for publication. The need for new reporting guidance was identified by a survey of medical editors. A list of possible items based on a systematic review was created. A two round, modified Delphi panel consisting of representatives from academia, clinical practice, industry, government, and the editorial community was conducted. Out of 44 candidate items, 24 items and accompanying recommendations were developed. The recommendations are contained in a user friendly, 24 item checklist. A copy of the statement, accompanying checklist, and this report can be found on the ISPOR Health Economic Evaluations Publication Guidelines Task Force website (www.ispor.org/TaskForces/EconomicPubGuidelines.asp). We hope CHEERS will lead to better reporting, and ultimately, better health decisions. To facilitate dissemination and uptake, the CHEERS statement is being co-published across 10 health economics and medical journals. We encourage other journals and groups, to endorse CHEERS. The author team plans to review the checklist for an update in five years.

  4. Consolidated Health Economic Evaluation Reporting Standards (CHEERS) statement.

    PubMed

    Husereau, Don; Drummond, Michael; Petrou, Stavros; Carswell, Chris; Moher, David; Greenberg, Dan; Augustovski, Federico; Briggs, Andrew H; Mauskopf, Josephine; Loder, Elizabeth

    2013-01-01

    Economic evaluations of health interventions pose a particular challenge for reporting. There is also a need to consolidate and update existing guidelines and promote their use in a user friendly manner. The Consolidated Health Economic Evaluation Reporting Standards (CHEERS) statement is an attempt to consolidate and update previous health economic evaluation guidelines efforts into one current, useful reporting guidance. The primary audiences for the CHEERS statement are researchers reporting economic evaluations and the editors and peer reviewers assessing them for publication. The need for new reporting guidance was identified by a survey of medical editors. A list of possible items based on a systematic review was created. A two round, modified Delphi panel consisting of representatives from academia, clinical practice, industry, government, and the editorial community was conducted. Out of 44 candidate items, 24 items and accompanying recommendations were developed. The recommendations are contained in a user friendly, 24 item checklist. A copy of the statement, accompanying checklist, and this report can be found on the ISPOR Health Economic Evaluations Publication Guidelines Task Force website: (www.ispor.org/TaskForces/EconomicPubGuidelines.asp). We hope CHEERS will lead to better reporting, and ultimately, better health decisions. To facilitate dissemination and uptake, the CHEERS statement is being co-published across 10 health economics and medical journals. We encourage other journals and groups, to endorse CHEERS. The author team plans to review the checklist for an update in five years.

  5. The Association for Behavior Analysis International Position Statement on Restraint and Seclusion

    ERIC Educational Resources Information Center

    Vollmer, Timothy R.; Hagopian, Louis P.; Bailey, Jon S.; Dorsey, Michael F.; Hanley, Gregory P.; Lennox, David; Riordan, Mary M.; Spreat, Scott

    2011-01-01

    A task force authorized by the Executive Council of the Association for Behavior Analysis International (ABAI) generated the statement below concerning the techniques called "restraint" and "seclusion." Members of the task force independently reviewed the scientific literature concerning restraint and seclusion and agreed unanimously to the…

  6. The Use of Group Procedures in Higher Education: A Position Statement by ACPA

    ERIC Educational Resources Information Center

    Caple, Richard B.

    1976-01-01

    This statement represents the work of a task force for the American College Personnel Association. The task force for group procedures was established to consider problems and concerns about the use of group experiences on college campuses. This document gives direction to student-affairs professionals and to professionals facilitating group…

  7. Haptic stabilization of posture: changes in arm proprioception and cutaneous feedback for different arm orientations

    NASA Technical Reports Server (NTRS)

    Rabin, E.; Bortolami, S. B.; DiZio, P.; Lackner, J. R.

    1999-01-01

    Postural sway during quiet stance is attenuated by actively maintained contact of the index finger with a stationary surface, even if the level of applied force (<1 N) cannot provide mechanical stabilization. In this situation, changes in force level at the fingertip lead changes in center of foot pressure by approximately 250 ms. These and related findings indicate that stimulation of the fingertip combined with proprioceptive information about the hand and arm can serve as an active sensor of body position relative to the point of contact. A geometric analysis of the relationship between hand and torso displacement during body sway led to the prediction that arm and hand proprioceptive and finger somatosensory information about body sway would be maximized with finger contact in the plane of body sway. Therefore, the most postural stabilization should be possible with such contact. To test this analysis, subjects touched a laterally versus anteriorly placed surface while in each of two stances: the heel-to-toe tandem Romberg stance that reduces medial-lateral stability and the heel-to-heel, toes-outward, knees-bent, "duck stance" that reduces fore-aft stability. Postural sway was always least with finger contact in the unstable plane: for the tandem stance, lateral fingertip contact was significantly more effective than frontal contact, and, for the duck stance, frontal contact was more effective than lateral fingertip contact. Force changes at the fingertip led changes in center of pressure of the feet by approximately 250 ms for both fingertip contact locations for both test stances. These results support the geometric analysis, which showed that 1) arm joint angles change by the largest amount when fingertip contact is maintained in the plane of greatest sway, and 2) the somatosensory cues at the fingertip provide both direction and amplitude information about sway when the finger is contacting a surface in the unstable plane.

  8. Environmental Impact Statement Filing Guidance

    EPA Pesticide Factsheets

    Describes how to submit an environmental impact statement through the e-NEPA electronic submission system. Describes how EPA submits a notice of availability in to the Federal Register and how the comment time period if set forth.

  9. Pajaro Dunes Conference Draft Statement.

    ERIC Educational Resources Information Center

    Journal of College and University Law, 1982

    1982-01-01

    A statement of concerns and needs in the relationship between universities and industry for biomedical research addresses the issues of research agreements and their terms, patent licensing, university and faculty roles, and establishment of policy and procedures. (MSE)

  10. Artificial Intelligence Software for Assessing Postural Stability

    NASA Technical Reports Server (NTRS)

    Lieberman, Erez; Forth, Katharine; Paloski, William

    2013-01-01

    A software package reads and analyzes pressure distributions from sensors mounted under a person's feet. Pressure data from sensors mounted in shoes, or in a platform, can be used to provide a description of postural stability (assessing competence to deficiency) and enables the determination of the person's present activity (running, walking, squatting, falling). This package has three parts: a preprocessing algorithm for reading input from pressure sensors; a Hidden Markov Model (HMM), which is used to determine the person's present activity and level of sensing-motor competence; and a suite of graphical algorithms, which allows visual representation of the person's activity and vestibular function over time.

  11. Postural deformities in congenital nephrotic syndrome.

    PubMed Central

    Morgan, G; Postlethwaite, R J; Lendon, M; Houston, I B; Savage, J M

    1981-01-01

    Six successive cases of congenital nephrotic syndrome are described. Each one showed flexion deformities of the knees and hips, widely open anterior and posterior fontanelles, and wide separation of the skull sutures. These abnormalities were present not only in cases in which the renal histology was of the microcystic Finnish type of congenital nephrotic syndrome, but also in those in which the histological picture was one of the variants associated with congenital nephrotic syndrome. It is suggested that such abnormalities are postural deformities, possibly produced by the large placenta. Images Fig. 1 Fig. 2 PMID:7332344

  12. Statement on intrauterine devices.

    PubMed

    1981-12-01

    These policy statements and guidelines from the International Planned Parenthood Federation's (IPPF) International Medical Advisory Panel (IMAP) concern IUDs. The following contraindications to IUD use are recognized: 1) pelvic inflaminatory disease, 2) known or suspected pregnancy, 3) history of previous ectopic pregnancy, 4) gynecological bleeding disorders, 5) suspected malignancy of the genital tract, 6) congenital uterine abnormalities or fibroids distorting the cavity, and 7) anemia, blood coagulation, severe cervical stenosis, copper allergy, Wilson's disease, and others. Generalities regarding appropriate IUDs are: 1) non-medicated devices (e.g. Lippes Loop) are studied for women who may not return for regular check-ups, 2) smaller medicated devices usually cause less menstrual blood loss than the non-medicated devices, 3) smaller devices are better for a smaller uterus and larger devices for the larger uterus, and 4) when a smaller device is expelled it is advisable to try a larger one and vice versa. Dalkon Shields should not be used by the IPPF system and all women using them should have the device removed. Correct insertion of IUDs is important and should be done by properly trained personnel. The timing of insertion is best during the menstrual period. Withdrawal of the applicator while leaving the device in place is the recommended insertion technique. Sterilization of IUDs should follow instructions on bulk-packaged IUDs. Complications include perforation, bleeding and pain, infection, and ectopic pregnancy. IUD removal should be done during menstruation. Good clinical management and follow-up care are recommended.

  13. Effects of Dyslexia on Postural Control in Adults

    ERIC Educational Resources Information Center

    Patel, M.; Magnusson, M.; Lush, D.; Gomez, S.; Fransson, P. A.

    2010-01-01

    Dyslexia has been shown to affect postural control. The aim of the present study was to investigate the difference in postural stability measured as torque variance in an adult dyslexic group (n=14, determined using the Adult Dyslexia Checklist (ADCL) and nonsense word repetition test) and an adult non-dyslexic group (n=39) on a firm surface and…

  14. Predictors of Postural Stability in Children with ADHD

    ERIC Educational Resources Information Center

    Ghanizadeh, Ahmad

    2011-01-01

    Objective: As children with ADHD who have more inattention problems are more frequently with fine motor problems, it is not clear whether postural balance problems are associated with different subtypes of ADHD. This study investigates the predictors of postural stability in children with ADHD considering the covariant factors of age, gender, and…

  15. Postural Strategies in Prader-Willi and Down Syndrome Patients

    ERIC Educational Resources Information Center

    Cimolin, Veronica; Galli, Manuela; Grugni, Graziano; Vismara, Luca; Precilios, Helmer; Albertini, Giorgio; Rigoldi, Chiara; Capodaglio, Paolo

    2011-01-01

    Patients affected by Down (DS) and Prader-Willi syndrome (PWS) are characterised by some common clinical and functional features including gait disorders and reduced postural control. The aim of our study was to quantitatively compare postural control in adult PWS and DS. We studied 12 PWS and 19 DS adult patients matched for age, height, weight…

  16. Group Rapport: Posture Sharing as a Nonverbal Indicator

    ERIC Educational Resources Information Center

    LaFrance, Marianne; Broadbent, Maida

    1976-01-01

    Systematic observation and a questionnaire format were used to investigate the relationship between posture sharing and self-report indications of rapport in a group situation--college seminar classrooms. The greater the amount of mirroring and congruent postures evidenced by students vis-a-vis the teacher, the higher the ratings of involvement.…

  17. Prevalence of Common Postural Disorders Among Academic Dental Staff

    PubMed Central

    Vakili, Leila; Halabchi, Farzin; Mansournia, Mohammad Ali; Khami, Mohammad Reza; Irandoost, Shahla; Alizadeh, Zahra

    2016-01-01

    Background Musculoskeletal disorders are common problems among dentists. These conditions may lead to inappropriate postures and impairment in physical and psychological function. On the other hand, poor postures and inappropriate ergonomic may result in a wide variety of musculoskeletal disorders. Objectives The aim of this study was to investigate the prevalence of common postural disorders of the spine and shoulder girdle among the dentists and possible correlations between demographic, anthropometric and occupational characteristics with these abnormal postures. Patients and Methods In a cross-sectional study, 96 dental staff including academic staff, residents and senior students of Tehran University of Medical Sciences was enrolled. Data were collected using a questionnaire and posture assessment tools such as plumb-line, checkerboard and flexible ruler. Data analysis was done with SPSS version 17. Results The prevalence of the forward head posture (FHP), rounded shoulder posture (RSP), scoliosis and hyperlordosis were reported in 85.5%, 68.8%, 18.8% and 17.3% of the participants, respectively. A significant correlation was found between gender and FHP (P = 0.04) and also scoliosis (P = 0.009). On the other hand, a significant correlation was seen between weight and hyperlordosis (P = 0.007). Conclusions Our study revealed a high prevalence of postural disorders especially FHP, RSP and scoliosis among Iranian dental staff. The female dentists were less susceptible to FHP and scoliosis. PMID:27625751

  18. Turning Configural Processing Upside Down: Part and Whole Body Postures

    ERIC Educational Resources Information Center

    Reed, Catherine L.; Stone, Valerie E.; Grubb, Jefferson D.; McGoldrick, John E.

    2006-01-01

    Like faces, body postures are susceptible to an inversion effect in untrained viewers. The inversion effect may be indicative of configural processing, but what kind of configural processing is used for the recognition of body postures must be specified. The information available in the body stimulus was manipulated. The presence and magnitude of…

  19. Disruption of postural readaptation by inertial stimuli following space flight

    NASA Technical Reports Server (NTRS)

    Black, F. O.; Paloski, W. H.; Reschke, M. F.; Igarashi, M.; Guedry, F.; Anderson, D. J.

    1999-01-01

    Postural instability (relative to pre-flight) has been observed in all shuttle astronauts studied upon return from orbital missions. Postural stability was more closely examined in four shuttle astronaut subjects before and after an 8 day orbital mission. Results of the pre- and post-flight postural stability studies were compared with a larger (n = 34) study of astronauts returning from shuttle missions of similar duration. Results from both studies indicated that inadequate vestibular feedback was the most significant sensory deficit contributing to the postural instability observed post flight. For two of the four IML-1 astronauts, post-flight postural instability and rate of recovery toward their earth-normal performance matched the performance of the larger sample. However, post-flight postural control in one returning astronaut was substantially below mean performance. This individual, who was within normal limits with respect to postural control before the mission, indicated that recovery to pre-flight postural stability was also interrupted by a post-flight pitch plane rotation test. A similar, though less extreme departure from the mean recovery trajectory was present in another astronaut following the same post-flight rotation test. The pitch plane rotation stimuli included otolith stimuli in the form of both transient tangential and constant centripetal linear acceleration components. We inferred from these findings that adaptation on orbit and re-adaptation on earth involved a change in sensorimotor integration of vestibular signals most likely from the otolith organs.

  20. THE ELEMENTARY SCHOOL CHILD AND HIS POSTURE PATTERNS.

    ERIC Educational Resources Information Center

    DAVIES, EVELYN A.

    A CHILD'S POSTURE PATTERNS MAY LEAD TO AN ADULT'S PHYSICAL HANDICAP. THE MAIN THEME OF THIS BOOK IS TO SERVE AS A GUIDE FOR THE ELEMENTARY TEACHER OR PARENT IN THE DETECTION AND UNDERSTANDING OF DEVIATIONS FROM THE NORMAL POSTURE PATTERNS WHILE THE CHILD IS SITTING, STANDING, OR MOVING ABOUT SO AS TO PREVENT FUTURE HANDICAPPING CONDITIONS.…

  1. Disruption of postural readaptation by inertial stimuli following space flight.

    PubMed

    Black, F O; Paloski, W H; Reschke, M F; Igarashi, M; Guedry, F; Anderson, D J

    1999-01-01

    Postural instability (relative to pre-flight) has been observed in all shuttle astronauts studied upon return from orbital missions. Postural stability was more closely examined in four shuttle astronaut subjects before and after an 8 day orbital mission. Results of the pre- and post-flight postural stability studies were compared with a larger (n = 34) study of astronauts returning from shuttle missions of similar duration. Results from both studies indicated that inadequate vestibular feedback was the most significant sensory deficit contributing to the postural instability observed post flight. For two of the four IML-1 astronauts, post-flight postural instability and rate of recovery toward their earth-normal performance matched the performance of the larger sample. However, post-flight postural control in one returning astronaut was substantially below mean performance. This individual, who was within normal limits with respect to postural control before the mission, indicated that recovery to pre-flight postural stability was also interrupted by a post-flight pitch plane rotation test. A similar, though less extreme departure from the mean recovery trajectory was present in another astronaut following the same post-flight rotation test. The pitch plane rotation stimuli included otolith stimuli in the form of both transient tangential and constant centripetal linear acceleration components. We inferred from these findings that adaptation on orbit and re-adaptation on earth involved a change in sensorimotor integration of vestibular signals most likely from the otolith organs.

  2. Static Postural Stability Is Normal in Dyslexic Children.

    ERIC Educational Resources Information Center

    Brown, Brian; And Others

    1985-01-01

    An experiment on 15 dyslexic and 23 carefully matched control subjects (10- to 12-year-old males), examining their ability to maintain standing posture with eyes open and closed and with standard and tandem foot placement, revealed no differences under any condition tested and no differences in use of visual information to maintain their posture.…

  3. Postural responses to unexpected perturbations of balance during reaching

    PubMed Central

    Trivedi, Hari; Leonard, Julia A.; Ting, Lena H.; Stapley, Paul J.

    2014-01-01

    To study the interaction between feedforward and feedback modes of postural control, we investigated postural responses during unexpected perturbations of the support surface that occurred during forward reaching in a standing position. We examined postural responses in lower limb muscles of 9 human subjects. Baseline measures were obtained when subjects executed reaching movements to a target placed in front of them (R condition) and during postural responses to forward and backward support-surface perturbations (no reaching, P condition) during quiet stance. Perturbations were also given at different delays after the onset of reaching movements (RP conditions) as well as with the arm extended in the direction of the target, but not reaching (P/AE condition). Results showed that during perturbations to reaching (RP), the initial automatic postural response, occurring around 100 ms after the onset of perturbations, was relatively unchanged in latency or amplitude compared to control conditions (P and P/AE). However, longer latency postural responses were modulated to aid in the reaching movements during forward perturbations but not during backward perturbations. Our results suggest that the nervous system prioritizes the maintenance of a stable postural base during reaching, and that later components of the postural responses can be modulated to ensure the performance of the voluntary task. PMID:20035321

  4. Assessment of postural stability using inertial measurement unit on inclined surfaces in healthy adults - biomed 2013.

    PubMed

    Frames, Chris; Soangra, Rahul; Lockhart, Thurmon E

    2013-01-01

    Fatal and nonfatal falls in the construction domain remain a significant issue in today’s workforce. The roofing industry in particular, annually ranks amongst the highest in all industries. Exposure to an inclined surface, such as an inclined roof surface, has been reported to have adverse effects on postural stability. The purpose of this preliminary study was to investigate the intra-individual differences in stability parameters on both inclined and level surfaces. Postural Stability (PS) and Limit of Stability (LOS) were assessed in seven healthy subjects (aged 25-35 years) on inclined and level surfaces using embedded force plates and an Inertial Measurement Unit (IMU). Four 90-second trials were collected on the inclined surface in distinctive positions: (1) Toes raised 20o above heel; (2) Heels raised 20o above toes (3); Transverse direction with dominant foot inverted at a lower height; (4) Transverse direction with non-dominant foot inverted at a lower height. Limit of Stability was evaluated by the two measurement devices in all four directions and margin of safety was quantified for each individual on both surfaces. The results reveal significant differences in postural stability between the flat surface condition and the inclined surface condition when subject was positioned perpendicular to the surface slope with one foot descended below the other; specifically, a significant increase was identified when visual support was interrupted. The findings lend support to the literature and will assist in future research regarding early detection of postural imbalance and preventative measures to reduce fall risks in professions where workers are consistently exposed to inclined surfaces.

  5. Neuromechanical interference of posture on movement: evidence from Alexander technique teachers rising from a chair

    PubMed Central

    Cacciatore, Timothy W.; Mian, Omar S.; Peters, Amy

    2014-01-01

    While Alexander technique (AT) teachers have been reported to stand up by shifting weight gradually as they incline the trunk forward, healthy untrained (HU) adults appear unable to rise in this way. This study examines the hypothesis that HU have difficulty rising smoothly, and that this difficulty relates to reported differences in postural stiffness between groups. A wide range of movement durations (1–8 s) and anteroposterior foot placements were studied under the instruction to rise at a uniform rate. Before seat-off (SO) there were clear and profound performance differences between groups, particularly for slower movements, that could not be explained by strength differences. For each movement duration, HU used approximately twice the forward center-of-mass (CoM) velocity and vertical feet-loading rate as AT. For slow movements, HU violated task instruction by abruptly speeding up and rapidly shifting weight just before SO. In contrast, AT shifted weight gradually while smoothly advancing the CoM, achieving a more anterior CoM at SO. A neuromechanical model revealed a mechanism whereby stiffness affects standing up by exacerbating a conflict between postural and balance constraints. Thus activating leg extensors to take body weight hinders forward CoM progression toward the feet. HU's abrupt weight shift can be explained by reliance on momentum to stretch stiff leg extensors. AT's smooth rises can be explained by heightened dynamic tone control that reduces leg extensor resistance and improves force transmission across the trunk. Our results suggest postural control shapes movement coordination through a dynamic “postural frame” that affects the resistive behavior of the body. PMID:25085609

  6. Carpal tunnel and transverse carpal ligament stiffness with changes in wrist posture and indenter size.

    PubMed

    Holmes, Michael W R; Howarth, Samuel J; Callaghan, Jack P; Keir, Peter J

    2011-11-01

    This study investigated the effects of loading and posture on mechanical properties of the transverse carpal ligament (TCL). Ten fresh-frozen cadaver arms were dissected to expose the TCL and positioned in the load frame of a servo-hydraulic testing machine, equipped with a load cell and custom made indenters. Four cylindrical indenters (5, 10, 20, and 35 mm) loaded the TCL in three wrist postures (30° extension, neutral and 30° flexion). Three loading cycles with a peak force of 50 N were applied at 5 N/s for each condition. The flexed wrist posture had significantly greater TCL stiffness (40.0 ± 3.3 N/mm) than the neutral (35.9 ± 3.5 N/mm, p = 0.045) and extended postures (34.9 ± 2.8 N/mm, p = 0.025). TCL stiffness using the 10 and 20 mm indenters was larger than the 5 mm indenter. Stiffness was greatest with the 20 mm indenter, which had the greatest indenter contact area on the TCL. The 35 mm indenter covered the carpal bones, compressed the carpal tunnel and produced the lowest stiffness. The complexity of the TCL makes it an important part of the carpal tunnel and the mechanical properties found are essential to understanding mechanisms of carpal tunnel syndrome. 

  7. Controlling Posture and Vergence Eye Movements in Quiet Stance: Effects of Thin Plantar Inserts

    PubMed Central

    Foisy, A.; Gaertner, C.; Matheron, E.; Kapoula, Z.

    2015-01-01

    The purpose of this study was to assess properties of vergence and saccade eye movements as well as posture in quiet stance, and the effects of thin plantar inserts upon postural and oculomotor control. The performances of 36 young healthy subjects were recorded by a force platform and an eye tracker in three testing conditions: without plantar stimulation, with a 3 millimetre-thick plantar insert, either a Medial or a Lateral Arch Support (MAS / LAS). The results showed a decrease of the Surface and Variance of Speed and a more posterior position of the CoP with either stimulation compared with the control condition. The fractal analysis showed a decrease with MAS. Wavelet analysis in the time-frequency domain revealed an increase in the Cancelling Time of the low frequency band with MAS. These results suggest a better stability for a lower energy cost. Concerning eye movements, the inserts influenced only vergence (not saccades): MAS caused an increase of the phasic amplitude of divergence, and conversely a decrease of the tonic amplitude. In contrast, LAS caused an increase of the tonic amplitude of convergence. Thus, MAS renders divergence less visually driven, while LAS renders convergence more visually driven. We conclude that the CNS uses the podal signal for both postural and vergence control via specific mechanisms. Plantar inserts have an influence upon posture and vergence movements in a different way according to the part of the foot sole being stimulated. These results can be useful to clinicians interested in foot or eye. PMID:26637132

  8. 76 FR 41770 - Notice of Intent (NOI) To Prepare An Environmental Impact Statement (EIS) for Proposed Conversion...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-15

    ..., Air Force Federal Register Liaison Officer. BILLING CODE 5001-10-P ... Department of the Air Force Notice of Intent (NOI) To Prepare An Environmental Impact Statement (EIS) for... Provisions of NEPA (40 CFR parts 1500-1508), and Air Force policy and procedures (32 CFR part 989),...

  9. Ergonomic intervention for improving work postures during notebook computer operation.

    PubMed

    Jamjumrus, Nuchrawee; Nanthavanij, Suebsak

    2008-06-01

    This paper discusses the application of analytical algorithms to determine necessary adjustments for operating notebook computers (NBCs) and workstations so that NBC users can assume correct work postures during NBC operation. Twenty-two NBC users (eleven males and eleven females) were asked to operate their NBCs according to their normal work practice. Photographs of their work postures were taken and analyzed using the Rapid Upper Limb Assessment (RULA) technique. The algorithms were then employed to determine recommended adjustments for their NBCs and workstations. After implementing the necessary adjustments, the NBC users were then re-seated at their workstations, and photographs of their work postures were re-taken, to perform the posture analysis. The results show that the NBC users' work postures are improved when their NBCs and workstations are adjusted according to the recommendations. The effectiveness of ergonomic intervention is verified both visually and objectively.

  10. Posture and performance: sitting vs. standing for security screening.

    PubMed

    Drury, C G; Hsiao, Y L; Joseph, C; Joshi, S; Lapp, J; Pennathur, P R

    2008-03-01

    A classification of the literature on the effects of workplace posture on performance of different mental tasks showed few consistent patterns. A parallel classification of the complementary effect of performance on postural variables gave similar results. Because of a lack of data for signal detection tasks, an experiment was performed using 12 experienced security operators performing an X-ray baggage-screening task with three different workplace arrangements. The current workplace, sitting on a high chair viewing a screen placed on top of the X-ray machine, was compared to a standing workplace and a conventional desk-sitting workplace. No performance effects of workplace posture were found, although the experiment was able to measure performance effects of learning and body part discomfort effects of workplace posture. There are implications for the classification of posture and performance and for the justification of ergonomics improvements based on performance increases.

  11. Barnacle geese achieve significant energetic savings by changing posture.

    PubMed

    Tickle, Peter G; Nudds, Robert L; Codd, Jonathan R

    2012-01-01

    Here we report the resting metabolic rate in barnacle geese (Branta leucopsis) and provide evidence for the significant energetic effect of posture. Under laboratory conditions flow-through respirometry together with synchronous recording of behaviour enabled a calculation of how metabolic rate varies with posture. Our principal finding is that standing bipedally incurs a 25% increase in metabolic rate compared to birds sitting on the ground. In addition to the expected decrease in energy consumption of hindlimb postural muscles when sitting, we hypothesise that a change in breathing mechanics represents one potential mechanism for at least part of the observed difference in energetic cost. Due to the significant effect of posture, future studies of resting metabolic rates need to take into account and/or report differences in posture.

  12. Individuals with post-stroke hemiparesis are able to use additional sensory information to reduce postural sway.

    PubMed

    Cunha, B P; Alouche, S R; Araujo, I M G; Freitas, S M S F

    2012-03-28

    The present study aimed to investigate whether stroke survivals are able to use the additional somatosensory information provided by the light touch to reduce their postural sway during the upright stance. Eight individuals, naturally right-handed pre-stroke, and eight healthy age-matched adults stood as quiet as possible on a force plate during 35s. Participants performed two trials for each visual condition (eyes open and closed) and somatosensory condition (with and without the right or left index fingertip touching an instrumented rigid and fixed bar). When participants touched the bar, they were asked to apply less than 1N of vertical force. The postural sway was assessed by the center of pressure (COP) displacement area, mean amplitude and velocity. In addition, the mean and standard deviation of the force vertically applied on the bar during the trials with touch were assessed. The averaged values of COP area, amplitude and velocity were greater for stroke individuals compared to healthy adults during all visual and somatosensory conditions. For both groups, the values of all variables increased when participants stood with eyes closed and reduced when they touched the bar regardless of the side of the touch. Overall, the results suggested that, as healthy individuals, persons with post-stroke hemiparesis are able to use the additional somatosensory information provided by the light touch to reduce the postural sway.

  13. Robust hopping based on virtual pendulum posture control.

    PubMed

    Sharbafi, Maziar A; Maufroy, Christophe; Ahmadabadi, Majid Nili; Yazdanpanah, Mohammad J; Seyfarth, Andre

    2013-09-01

    A new control approach to achieve robust hopping against perturbations in the sagittal plane is presented in this paper. In perturbed hopping, vertical body alignment has a significant role for stability. Our approach is based on the virtual pendulum concept, recently proposed, based on experimental findings in human and animal locomotion. In this concept, the ground reaction forces are pointed to a virtual support point, named virtual pivot point (VPP), during motion. This concept is employed in designing the controller to balance the trunk during the stance phase. New strategies for leg angle and length adjustment besides the virtual pendulum posture control are proposed as a unified controller. This method is investigated by applying it on an extension of the spring loaded inverted pendulum (SLIP) model. Trunk, leg mass and damping are added to the SLIP model in order to make the model more realistic. The stability is analyzed by Poincaré map analysis. With fixed VPP position, stability, disturbance rejection and moderate robustness are achieved, but with a low convergence speed. To improve the performance and attain higher robustness, an event-based control of the VPP position is introduced, using feedback of the system states at apexes. Discrete linear quartic regulator is used to design the feedback controller. Considerable enhancements with respect to stability, convergence speed and robustness against perturbations and parameter changes are achieved.

  14. Prediction accuracy in estimating joint angle trajectories using a video posture coding method for sagittal lifting tasks.

    PubMed

    Chang, Chien-Chi; McGorry, Raymond W; Lin, Jia-Hua; Xu, Xu; Hsiang, Simon M

    2010-08-01

    This study investigated prediction accuracy of a video posture coding method for lifting joint trajectory estimation. From three filming angles, the coder selected four key snapshots, identified joint angles and then a prediction program estimated the joint trajectories over the course of a lift. Results revealed a limited range of differences of joint angles (elbow, shoulder, hip, knee, ankle) between the manual coding method and the electromagnetic motion tracking system approach. Lifting range significantly affected estimate accuracy for all joints and camcorder filming angle had a significant effect on all joints but the hip. Joint trajectory predictions were more accurate for knuckle-to-shoulder lifts than for floor-to-shoulder or floor-to-knuckle lifts with average root mean square errors (RMSE) of 8.65 degrees , 11.15 degrees and 11.93 degrees , respectively. Accuracy was also greater for the filming angles orthogonal to the participant's sagittal plane (RMSE = 9.97 degrees ) as compared to filming angles of 45 degrees (RMSE = 11.01 degrees ) or 135 degrees (10.71 degrees ). The effects of lifting speed and loading conditions were minimal. To further increase prediction accuracy, improved prediction algorithms and/or better posture matching methods should be investigated. STATEMENT OF RELEVANCE: Observation and classification of postures are common steps in risk assessment of manual materials handling tasks. The ability to accurately predict lifting patterns through video coding can provide ergonomists with greater resolution in characterising or assessing the lifting tasks than evaluation based solely on sampling with a single lifting posture event.

  15. [Orthostatic postural tachycardia: study of 8 patients].

    PubMed

    Santiago Pérez, S; Ferrer Gila, T

    1998-02-07

    The occurrence of syncopal episodes is a very frequent event. In the absence of a structural systemic or cardiac disease, syncope is resulting of an anomalous cardiovascular response neurally mediated by the autonomic nervous system. It is the final common manifestation of different abnormal mechanisms and is frequently precipitated by orthostatism. Orthostatic intolerance syndrome refers to the development of symptoms during the upright posture that disappear in supine position. Tachycardia may be one of the clinical features of the syndrome. During orthostatic stress a hyperadrenergic response, with maintained increment of heart rate and associated symptoms, is developed. Changes in blood pressure may be diverse and in some cases hypotension and syncope occurs. Eight patients with symptoms of orthostatic intolerance who underwent autonomic evaluation and were diagnosed from postural tachycardia are presented. In all the cases an abnormal increment of heart rate during tilting was found and it was associated to hyperadrenergic symptoms. Evidence of restricted sympathetic impairment was observed in six cases with distal reduction of sudomotor function and abnormal adrenergic response during Valsalva manoeuvre. Symptoms disappeared or mostly subsided with pharmacological (amitriptyline in one case, phenobarbital in another one and non-cardioselective beta-blockers in six patients) and non-pharmacological treatment. In further examinations heart rate and blood pressure were normal.

  16. Emotion expression in body action and posture.

    PubMed

    Dael, Nele; Mortillaro, Marcello; Scherer, Klaus R

    2012-10-01

    Emotion communication research strongly focuses on the face and voice as expressive modalities, leaving the rest of the body relatively understudied. Contrary to the early assumption that body movement only indicates emotional intensity, recent studies have shown that body movement and posture also conveys emotion specific information. However, a deeper understanding of the underlying mechanisms is hampered by a lack of production studies informed by a theoretical framework. In this research we adopted the Body Action and Posture (BAP) coding system to examine the types and patterns of body movement that are employed by 10 professional actors to portray a set of 12 emotions. We investigated to what extent these expression patterns support explicit or implicit predictions from basic emotion theory, bidimensional theory, and componential appraisal theory. The overall results showed partial support for the different theoretical approaches. They revealed that several patterns of body movement systematically occur in portrayals of specific emotions, allowing emotion differentiation. Although a few emotions were prototypically expressed by one particular pattern, most emotions were variably expressed by multiple patterns, many of which can be explained as reflecting functional components of emotion such as modes of appraisal and action readiness. It is concluded that further work in this largely underdeveloped area should be guided by an appropriate theoretical framework to allow a more systematic design of experiments and clear hypothesis testing.

  17. Artificial balancer - supporting device for postural reflex.

    PubMed

    Wojtara, Tytus; Sasaki, Makoto; Konosu, Hitoshi; Yamashita, Masashi; Shimoda, Shingo; Alnajjar, Fady; Kimura, Hidenori

    2012-02-01

    The evolutionarily novel ability to keep ones body upright while standing or walking, the human balance, deteriorates in old age or can be compromised after accidents or brain surgeries. With the aged society, age related balance problems are on the rise. Persons with balance problems are more likely to fall during their everyday life routines. Especially in elderly, falls can lead to bone fractures making the patient bedridden, weakening the body and making it more prone to other diseases. Health care expenses for a fall patient are often very high. There is a great deal of research being done on exoskeletons and power assists. However, these technologies concentrate mainly on the amplifications of human muscle power while balance has to be provided by the human themself. Our research has been focused on supporting human balance in harmony with the human's own posture control mechanisms such as postural reflexes. This paper proposes an artificial balancer that supports human balance through acceleration of a flywheel attached to the body. Appropriate correcting torques are generated through our device based on the measurements of body deflections. We have carried out experiments with test persons standing on a platform subject to lateral perturbations and ambulatory experiments while walking on a balance beam. These experiments have demonstrated the effectiveness of our device in supporting balance and the possibility of enhancing balance-keeping capability in human beings through the application of external torque.

  18. Automated assessment of postural stability system.

    PubMed

    Napoli, Alessandro; Ward, Christian R; Glass, Stephen M; Tucker, Carole; Obeid, Iyad

    2016-08-01

    The Balance Error Scoring System (BESS) is one of the most commonly used clinical tests to evaluate static postural stability deficits resulting from traumatic brain events and musculoskeletal injury. This test requires a trained operator to visually assess balance and give the subject a performance score based on the number of balance "errors" they committed. Despite being regularly used in several real-world situations, the BESS test is scored by clinician observation and is therefore (a) potentially susceptible to biased and inaccurate test scores and (b) cannot be administered in the absence of a trained provider. The purpose of this research is to develop, calibrate and field test a computerized version of the BESS test using low-cost commodity motion tracking technology. This `Automated Assessment of Postural Stability' (AAPS) system will quantify balance control in field conditions. This research goal is to overcome the main limitations of both the commercially available motion capture systems and the standard BESS test. The AAPS system has been designed to be operated by a minimally trained user and it requires little set-up time with no sensor calibration necessary. These features make the proposed automated system a valuable balance assessment tool to be utilized in the field.

  19. Viscoelastic properties of laryngeal posturing muscles

    NASA Astrophysics Data System (ADS)

    Alipour, Fariborz; Hunter, Eric; Titze, Ingo

    2003-10-01

    Viscoelastic properties of canine laryngeal muscles were measured in a series of in vitro experiments. Laryngeal posturing that controls vocal fold length and adduction/abduction is an essential component of the voice production. The dynamics of posturing depends on the viscoelastic and physiological properties of the laryngeal muscles. The time-dependent and nonlinear behaviors of these tissues are also crucial in the voice production and pitch control theories. The lack of information on some of these muscles such as posterior cricoarytenoid muscle (PCA), lateral cricoarytenoid muscle (LCA), and intraarytenoid muscle (IA) was the major incentive for this study. Samples of PCA and LCA muscles were made from canine larynges and mounted on a dual-servo system (Ergometer) as described in our previous works. Two sets of experiments were conducted on each muscle, a 1-Hz stretch and release experiment that provides stress-strain data and a stress relaxation test. Data from these muscles were fitted to viscoelastic models and Young's modulus and viscoelastic constants are obtained for each muscle. Preliminary data indicates that elastics properties of these muscles are similar to those of thyroarytenoid and cricothyroid muscles. The relaxation response of these muscles also shows some similarity to other laryngeal muscles in terms of time constants.

  20. Head posture in obstructive sleep apnoea.

    PubMed

    Solow, B; Ovesen, J; Nielsen, P W; Wildschiødtz, G; Tallgren, A

    1993-04-01

    In growing subjects, obstruction of the upper airway may lead to excessive vertical facial development. According to the soft-tissue stretching hypothesis (Solow and Kreiborg, 1977) this could be due to an increased cranio-cervical angulation triggered by the airway obstruction. The present study aimed to examine the effect of airway obstruction on cranio-cervical posture in a sample of adult patients with severe obstructive sleep apnoea (OSA). Lateral cephalometric radiographs taken in the natural head position (mirror position) were obtained from 50 male patients aged 28-70 with polysomnographic diagnosis of obstructive sleep apnoea. The Apnoea Index ranged from 21 to 98 episodes per hour with a mean of 54.6. Control samples were available from previous cephalometric studies of head posture in five samples of healthy subjects and one sample of congenitally blind subjects. The average cranio-cervical angle, NSL/OPT, was found to be extremely large (mean 104.1, SD 9.1) exceeding the average values in the control samples by 1-2 standard deviations (P < 0.001). It is suggested that the large cranio-cervical angle in OSA patients is a physiological adaptation aiming to maintain airway adequacy while the head, and thus the visual axis, is kept in its natural relationship to the true vertical. The findings thus provide evidence for the hypothesis that upper airway obstruction may trigger an increase in the cranio-cervical angulation.

  1. Postural Tachycardia Syndrome: Beyond Orthostatic Intolerance.

    PubMed

    Garland, Emily M; Celedonio, Jorge E; Raj, Satish R

    2015-09-01

    Postural tachycardia syndrome (POTS) is a form of chronic orthostatic intolerance for which the hallmark physiological trait is an excessive increase in heart rate with assumption of upright posture. The orthostatic tachycardia occurs in the absence of orthostatic hypotension and is associated with a >6-month history of symptoms that are relieved by recumbence. The heart rate abnormality and orthostatic symptoms should not be caused by medications that impair autonomic regulation or by debilitating disorders that can cause tachycardia. POTS is a "final common pathway" for a number of overlapping pathophysiologies, including an autonomic neuropathy in the lower body, hypovolemia, elevated sympathetic tone, mast cell activation, deconditioning, and autoantibodies. Not only may patients be affected by more than one of these pathophysiologies but also the phenotype of POTS has similarities to a number of other disorders, e.g., chronic fatigue syndrome, Ehlers-Danlos syndrome, vasovagal syncope, and inappropriate sinus tachycardia. POTS can be treated with a combination of non-pharmacological approaches, a structured exercise training program, and often some pharmacological support.

  2. The effect of aging on vertical postural control during the forward and backward shift of the center of pressure.

    PubMed

    Kasahara, Satoshi; Saito, Hiroshi; Anjiki, Tsubasa; Osanai, Hitomi

    2015-10-01

    Preventing fall-related injuries is becoming a priority as the world population ages. This study's purpose was to examine the effect of aging on vertical postural control in the community-dwelling elderly. Thirty-six elderly individuals and twenty-two healthy young adults were asked to shift their centers of pressure (COPs) as far as possible while standing. The COP position, angle of each lower leg joint, and postural muscle activities were measured using a force plate, three-dimensional motion analyzer, and electromyogram, respectively. The vertical position of the center of mass (COM) was also measured to assess the change in vertical postural control. The backward COP shift in the elderly group was significantly smaller than that in the young group, and both the forward and backward COM shifts were significantly smaller in elders relative to those in youths. The COM position in the elderly group during the backward COP shift was also significantly lower than that in the young group. Knee and ankle joint movements differed between the two groups during the backward COP shift. Factor analysis indicated that dorsal and ventral muscle groups were involved in the COP shift. Specifically, the relationship between the biceps femoris muscle and the voluntary COP shift was reinforced in the elderly group. These findings suggest that the vertical postural strategy changes in the elderly during the backward COP shift.

  3. Effect of Seated Trunk Posture on Eye Blink Startle and Subjective Experience: Comparing Flexion, Neutral Upright Posture, and Extension of Spine

    PubMed Central

    Ceunen, Erik; Zaman, Jonas; Vlaeyen, Johan W. S.; Dankaerts, Wim; Van Diest, Ilse

    2014-01-01

    Postures are known to be able to affect emotion and motivation. Much less is known about whether (affective) modulation of eye blink startle occurs following specific postures. The objective of the current study was to explore this. Participants in the present study were requested to assume three different sitting postures: with the spine flexed (slouched), neutral upright, and extended. Each posture was assumed for four minutes, and was followed by the administration of brief self-report questionnaires before proceeding to the next posture. The same series of postures and measures were repeated prior to ending the experiment. Results indicate that, relative to the other postures, the extended sitting posture was associated with an increased startle, was more unpleasant, arousing, had smaller levels of dominance, induced more discomfort, and was perceived as more difficult. The upright and flexed sitting postures differed in the level of self-reported positive affect, but not in eye blink startle amplitudes. PMID:24516664

  4. Cultural Themes in Messages from Top Air Force Leaders, 2005-2008

    DTIC Science & Technology

    2010-01-01

    or monuments; or overall contributions of the Air Force to wars. Exclusion Criteria : 3. random history dates for the Air Force. Only history or...fly and fight in Air, Space, and Cyberspace. Exclusion Criteria :3. any statement citing the Air Force Vision (discussed later), statements focused... Exclusion Criteria :3. Air Force mission coding, context focusing on achieving a goal as opposed to plans for achieving future goals, current operations

  5. Recovery of postural equilibrium control following space flight

    NASA Technical Reports Server (NTRS)

    Paloski, William H.; Reschke, Millard F.; Black, F. Owen; Dow, R. S.

    1999-01-01

    DSO 605 represents the first large study of balance control following spaceflight. Data collected during DSO 605 confirm the theory that postural ataxia following short duration spaceflight is of vestibular origin. We used the computerized dynamic posturography technique developed by Nashner et al. to study the role of the vestibular system in balance control in astronauts during quiet stance before and after spaceflight. Our results demonstrate unequivocally that balance control is disrupted in all astronauts immediately after return from space. The most severely affected returning crew members performed in the same way as vestibular deficient patients exposed to this test battery. We conclude that otolith mediated spatial reference provided by the terrestrial gravitational force vector is not used by the astronauts balance control systems immediately after spaceflight. Because the postflight ataxia appears to be mediated primarily by CNS adaptation to the altered vestibular inputs caused by loss of gravitational stimulation, we believe that intermittent periods of exposure to artificial gravity may provide an effective in-flight countermeasure. Specifically, we propose that in-flight centrifugation will allow crew members to retain their terrestrial sensory-motor adapted states while simultaneously developing microgravity adapted states. The dual-adapted astronaut should be able to make the transition from microgravity to unit gravity with minimal sensory-motor effects. We have begun a ground based program aimed at developing short arm centrifuge prescriptions designed to optimize adaptation to altered gravitational environments. Results from these experiments are expected to lead directly to in-flight evaluation of the proposed centrifuge countermeasure. Because our computerized dynamic posturography system was able to (1) quantify the postflight postural ataxia reported by crew members and observed by flight surgeons and scientists, (2) track the recovery of

  6. Myoelectric Response of Back Muscles to Vertical Random Whole-Body Vibration with Different Magnitudes at Different Postures

    NASA Astrophysics Data System (ADS)

    BLÜTHNER, R.; SEIDEL, H.; HINZ, B.

    2002-05-01

    Back muscle forces contribute essentially to the whole-body vibration-induced spinal load. The electromyogram (EMG) can help to estimate these forces during whole-body vibration (WBV). Thirty-eight subjects were exposed to identical random low-frequency WBV (0·7, 1·0 and 1·4 m/s-2 r.m.s. weighted acceleration) at a relaxed, erect and bent forward postures. The acceleration of the seat and the force between the seat and the buttocks were measured. Six EMGs were derived from the right side of the m. trapezius pars descendens, m. ileocostalis lumborum pars thoracis, m. ileocostalis lumborum pars lumborum; m. longissimus thoracis pars thoracis, m. longissimus thoracis pars lumborum, and lumbar multifidus muscle. All data were filtered for anti-aliasing and sampled with 1000 Hz. Artefacts caused by the ECG in the EMG were identified and eliminated in the time domain using wavelets. The individually rectified and normalized EMGs were averaged across subjects. The EMGs without WBV exhibited characteristic patterns for the three postures examined. The coherence and transfer functions indicated characteristic myoelectric responses to random WBV with several effects of posture and WBV magnitude. A comprehensive set of transfer functions from the seat acceleration or the mean normalized input force to the mean processed EMG was presented.The results can be used for the development of more sophisticated models with a separate control of various back muscle groups. However, the EMG-force relationship under dynamic conditions needs to be examined in more detail before the results can be implemented. Since different reflex mechanisms depending on the frequency of WBV are linked with different types of active muscle fibres, various time delays between the EMG and muscle force may be necessary.

  7. Particular adaptations to potentially slippery surfaces: the effects of friction on consecutive postural adjustments (CPA).

    PubMed

    Memari, Sahel; Le Bozec, Serge; Bouisset, Simon

    2014-02-21

    This research deals with the postural adjustments that occur after the end of voluntary movement ("consecutive postural adjustments": CPAs). The influence of a potentially slippery surface on CPA characteristics was considered, with the aim of exploring more deeply the postural component of the task-movement. Seven male adults were asked to perform a single step, as quickly as possible, to their own footprint marked on the ground. A force plate measured the resultant reaction forces along the antero-posterior axis (R(x)) and the centre of pressure (COP) displacements along the antero-posterior and lateral axes (Xp and Yp). The velocity of the centre of gravity (COG) along the antero-posterior axis and the corresponding impulse (∫R(x)dt) were calculated; the peak velocity (termed "progression velocity": V(xG)) was measured. The required coefficient of friction (RCOF) along the progression axis (pμ(x)) was determined. Two materials, differing by their COF, were laid at foot contact (FC), providing a rough foot contact (RoFC), and a smooth foot contact (SmFC) considered to be potentially slippery. Two step lengths were also performed: a short step (SS) and a long step (LS). Finally, the subjects completed four series of ten steps each. These were preceded by preliminary trials, to allow them to acquire the necessary adaptation to experimental conditions. The antero-posterior force time course presented a positive phase, that included APAs ("anticipatory postural adjustments") and step execution (STEP), followed by a negative one, corresponding to CPAs. The backward impulse (CPI) was equal to the forward one (BPI), independently of friction and progression velocity. Moreover, V(xG) did not differ according to friction, but was faster when the step length was greater. Last CPA peak amplitudes (pCPA) were significantly greater and CPA durations (dCPA) shorter for RoFC and conversely for SmFC, contrary to APA. Finally, the results show a particular adaptation to the

  8. Trunk postures and peak and cumulative low back kinetics during upright posture sheep shearing.

    PubMed

    Gregory, Diane E; Laughton, Carla; Carman, Allan; Milosavljevic, Stephan; Callaghan, Jack P

    2009-12-01

    Sheep shearing is the most demanding occupation in the wool harvesting industry and is known to have a high prevalence of low back pain. While use of a commercially available trunk harness reduces load on the low back, the extreme trunk flexion associated with shearing still remains. A novel, upright posture shearing technique has been designed to allow a more neutral spine posture. This study assessed this upright technique and found significant reductions in both trunk flexion and cumulative low back loading when compared to either the traditional method or the use of the trunk harness. Moments about the shoulder tended to be higher while using the upright shearing technique and further investigation of shoulder kinetics will be required to assess whether this creates injury risk to the upper extremity. Despite increased shoulder moments, the reduction in flexion and cumulative loading with the use of the upright technique has the potential to reduce risk of low back pain among shearers.

  9. Hemodynamic response to the upright posture.

    PubMed

    Smith, J J; Porth, C M; Erickson, M

    1994-05-01

    The authors' objective was to review previous studies of immediate (first 30 seconds) and stabilized (30 seconds to 20 minutes) hemodynamic responses of healthy adults to the head-up posture, with particular reference to alteration of such responses in the elderly and the usefulness of such data in the diagnosis of orthostatic hypotension. The immediate response in healthy young adults is characterized by a prompt rise in heart rate, which peaks at about 8 to 15 seconds and then tapers; the arterial pressure and total vascular resistance decrease sharply at 5 to 10 seconds, followed by a rapid rebound and overshoot. Over the first 30 seconds there is a steady parallel decline of thoracic blood volume and stroke volume; there is also an initial surge of cardiac output followed by a steady decrease. During the stabilized response (30 seconds to 20 minutes), the hemodynamic variables are relatively steady, showing average increases in heart rate of about 15 to 30%, in diastolic pressure of 10 to 15%, and in total vascular resistance of 30 to 40%; during the 5th to 20th minutes there are also decreases in thoracic blood volume averaging about 25 to 30%, in cardiac output 15 to 30%, and in pulse pressure about 5 to 10%. It is evident that in normal human subjects, assumption of the upright posture results in profound hemodynamic changes, most of them occurring during the first 30 seconds. In elderly subjects (aged 60-69 years), there are, in the upright posture, lesser increments of heart rate and diastolic pressure, but no significant differences from younger age groups in the response of thoracic blood volume, cardiac output or total vascular resistance. However, beginning at about age 75, there is an increasing incidence of orthostatic hypotension, which averages about 14 to 20% at age 75 and older. The tendency toward orthostatic hypotension in the elderly is due (1) to the structural and functional changes in the circulation itself, (2) to a decline in autonomic

  10. Sensorimotor integration in human postural control

    NASA Technical Reports Server (NTRS)

    Peterka, R. J.

    2002-01-01

    It is generally accepted that human bipedal upright stance is achieved by feedback mechanisms that generate an appropriate corrective torque based on body-sway motion detected primarily by visual, vestibular, and proprioceptive sensory systems. Because orientation information from the various senses is not always available (eyes closed) or accurate (compliant support surface), the postural control system must somehow adjust to maintain stance in a wide variety of environmental conditions. This is the sensorimotor integration problem that we investigated by evoking anterior-posterior (AP) body sway using pseudorandom rotation of the visual surround and/or support surface (amplitudes 0.5-8 degrees ) in both normal subjects and subjects with severe bilateral vestibular loss (VL). AP rotation of body center-of-mass (COM) was measured in response to six conditions offering different combinations of available sensory information. Stimulus-response data were analyzed using spectral analysis to compute transfer functions and coherence functions over a frequency range from 0.017 to 2.23 Hz. Stimulus-response data were quite linear for any given condition and amplitude. However, overall behavior in normal subjects was nonlinear because gain decreased and phase functions sometimes changed with increasing stimulus amplitude. "Sensory channel reweighting" could account for this nonlinear behavior with subjects showing increasing reliance on vestibular cues as stimulus amplitudes increased. VL subjects could not perform this reweighting, and their stimulus-response behavior remained quite linear. Transfer function curve fits based on a simple feedback control model provided estimates of postural stiffness, damping, and feedback time delay. There were only small changes in these parameters with increasing visual stimulus amplitude. However, stiffness increased as much as 60% with increasing support surface amplitude. To maintain postural stability and avoid resonant behavior, an

  11. Sensorimotor integration in human postural control.

    PubMed

    Peterka, R J

    2002-09-01

    It is generally accepted that human bipedal upright stance is achieved by feedback mechanisms that generate an appropriate corrective torque based on body-sway motion detected primarily by visual, vestibular, and proprioceptive sensory systems. Because orientation information from the various senses is not always available (eyes closed) or accurate (compliant support surface), the postural control system must somehow adjust to maintain stance in a wide variety of environmental conditions. This is the sensorimotor integration problem that we investigated by evoking anterior-posterior (AP) body sway using pseudorandom rotation of the visual surround and/or support surface (amplitudes 0.5-8 degrees ) in both normal subjects and subjects with severe bilateral vestibular loss (VL). AP rotation of body center-of-mass (COM) was measured in response to six conditions offering different combinations of available sensory information. Stimulus-response data were analyzed using spectral analysis to compute transfer functions and coherence functions over a frequency range from 0.017 to 2.23 Hz. Stimulus-response data were quite linear for any given condition and amplitude. However, overall behavior in normal subjects was nonlinear because gain decreased and phase functions sometimes changed with increasing stimulus amplitude. "Sensory channel reweighting" could account for this nonlinear behavior with subjects showing increasing reliance on vestibular cues as stimulus amplitudes increased. VL subjects could not perform this reweighting, and their stimulus-response behavior remained quite linear. Transfer function curve fits based on a simple feedback control model provided estimates of postural stiffness, damping, and feedback time delay. There were only small changes in these parameters with increasing visual stimulus amplitude. However, stiffness increased as much as 60% with increasing support surface amplitude. To maintain postural stability and avoid resonant behavior, an

  12. Chronic Low Quality Sleep Impai