Shear stress cleaning for surface departiculation
NASA Technical Reports Server (NTRS)
Musselman, R. P.; Yarbrough, T. W.
1986-01-01
A cleaning technique widely used by the nuclear utility industry for removal of radioactive surface contamination has proven effective at removing non-hazardous contaminant particles as small as 0.1 micrometer. The process employs a controlled high velocity liquid spray inside a vapor containment enclosure to remove particles from a surface. The viscous drag force generated by the cleaning fluid applies a shear stress greater than the adhesion force that holds small particles to a substrate. Fluid mechanics and field tests indicate general cleaning parameters.
Respiratory Artefact Removal in Forced Oscillation Measurements: A Machine Learning Approach.
Pham, Thuy T; Thamrin, Cindy; Robinson, Paul D; McEwan, Alistair L; Leong, Philip H W
2017-08-01
Respiratory artefact removal for the forced oscillation technique can be treated as an anomaly detection problem. Manual removal is currently considered the gold standard, but this approach is laborious and subjective. Most existing automated techniques used simple statistics and/or rejected anomalous data points. Unfortunately, simple statistics are insensitive to numerous artefacts, leading to low reproducibility of results. Furthermore, rejecting anomalous data points causes an imbalance between the inspiratory and expiratory contributions. From a machine learning perspective, such methods are unsupervised and can be considered simple feature extraction. We hypothesize that supervised techniques can be used to find improved features that are more discriminative and more highly correlated with the desired output. Features thus found are then used for anomaly detection by applying quartile thresholding, which rejects complete breaths if one of its features is out of range. The thresholds are determined by both saliency and performance metrics rather than qualitative assumptions as in previous works. Feature ranking indicates that our new landmark features are among the highest scoring candidates regardless of age across saliency criteria. F1-scores, receiver operating characteristic, and variability of the mean resistance metrics show that the proposed scheme outperforms previous simple feature extraction approaches. Our subject-independent detector, 1IQR-SU, demonstrated approval rates of 80.6% for adults and 98% for children, higher than existing methods. Our new features are more relevant. Our removal is objective and comparable to the manual method. This is a critical work to automate forced oscillation technique quality control.
Use of elevator instruments when luxating and extracting teeth in dentistry: clinical techniques
2017-01-01
In dentistry, elevator instruments are used to luxate teeth, and this technique imparts forces to tooth particles that sever the periodontal ligament around tooth roots inside the socket and expand alveolar bone around tooth particles. These effects can result in extraction of the tooth particles or facilitate systematic forceps extraction of the tooth particles. This article presents basic oral surgery techniques for applying elevators to luxate teeth. Determination of the optimal luxation technique requires understanding of the functions of the straight elevator and the Cryer elevator, the concept of purchase points, how the design elements of elevator working ends and tips influence the functionality of an elevator, application of forces to tooth particles, sectioning teeth at furcations, and bone removal to facilitate luxation. The effectiveness of tooth particle luxation is influenced by elevator tip shape and size, the magnitude and the vectors of forces applied to the tooth particle by the tip, and sectioning and bone removal within the operating field. Controlled extraction procedures are facilitated by a dental operating microscope or the magnification of binocular surgical loupes telescopes, combined with co-axial illumination. PMID:28770164
NASA Astrophysics Data System (ADS)
Walton, Otis R.
2007-04-01
This paper reviews the physical characteristics of lunar dust and the effects of various fundamental forces acting on dust particles on surfaces in a lunar environment. There are transport forces and adhesion forces after contact. Mechanical forces (i.e., from rover wheels, astronaut boots and rocket engine blast) and static electric effects (from UV photo-ionization and/or tribo-electric charging) are likely to be the major contributors to the transport of dust particles. If fine regolith particles are deposited on a surface, then surface energy-related (e.g., van der Walls) adhesion forces and static-electric-image forces are likely to be the strongest contributors to adhesion. Some measurement techniques are offered to quantify the strength of adhesion forces. And finally some dust removal techniques are discussed.
NASA Technical Reports Server (NTRS)
Walton, Otis R.
2007-01-01
This paper reviews the physical characteristics of lunar dust and the effects of various fundamental forces acting on dust particles on surfaces in a lunar environment. There are transport forces and adhesion forces after contact. Mechanical forces (i.e., from rover wheels, astronaut boots and rocket engine blast) and static electric effects (from UV photo-ionization and/or tribo-electric charging) are likely to be the major contributors to the transport of dust particles. If fine regolith particles are deposited on a surface, then surface energy-related (e.g., van der Walls) adhesion forces and static-electric-image forces are likely to be the strongest contributors to adhesion. Some measurement techniques are offered to quantify the strength of adhesion forces. And finally some dust removal techniques are discussed.
Bone preserving techniques for explanting the well-fixed cemented acetabular component.
Stevens, Jarrad; Macpherson, Gavin; Howie, Colin
2018-06-01
Removal of a well-fixed, cemented acetabular component at the time of revision hip surgery can be complex. It is essential to remove the implant and cement mantle in a timely fashion while preserving bone stock and osseous integrity. The biomechanical properties of polymethylmethacrylate cement and polyethylene can be utilised to aid with the removal of well cemented implants which are often harder than the surrounding bone. While removal of loose components may be relatively straightforward, the challenge for the revision arthroplasty surgeon often involves the removal of well-fixed implants. Here, we present three established techniques for the removal of a well-fixed cemented acetabular component and one novel modification we have described before. We collate and review four techniques for removing well-fixed cemented acetabular implants that utilise the different biomechanical properties of bone cement and polyethylene. These techniques are illustrated with a photographic series utilising saw bones. A step-by-step approach to our new technique is shown in photographs, both in the clinical setting and with a "Sawbone". This is accompanied by a clinical video that details the surgical technique in its entirety. These techniques utilise different biomechanical principles to extract the acetabular component. Each technique has advantages and disadvantages. Our new technique is a simplification of a previously published extraction manoeuvre that utilises tensile force between cement and the implant to remove the polyethylene cup. This is a safe and reproducible technique in patients with a well-fixed cemented acetabular implant. Understanding the biomechanical properties of polymethylmethacrylate bone cement and polyethylene can aid in the safe removal of a well-fixed cemented acetabular component in revision hip surgery. The optimal technique for removal of a cemented acetabular component varies depending on a number of patient and implant factors. This summary of the available techniques will be of interest to revision arthroplasty surgeons.
Unsteady steady-states: Central causes of unintentional force drift
Ambike, Satyajit; Mattos, Daniela; Zatsiorsky, Vladimir M.; Latash, Mark L.
2016-01-01
We applied the theory of synergies to analyze the processes that lead to unintentional decline in isometric fingertip force when visual feedback of the produced force is removed. We tracked the changes in hypothetical control variables involved in single fingertip force production based on the equilibrium-point hypothesis, namely, the fingertip referent coordinate (RFT) and its apparent stiffness (CFT). The system's state is defined by a point in the {RFT; CFT} space. We tested the hypothesis that, after visual feedback removal, this point (1) moves along directions leading to drop in the output fingertip force, and (2) has even greater motion along directions that leaves the force unchanged. Subjects produced a prescribed fingertip force using visual feedback, and attempted to maintain this force for 15 s after the feedback was removed. We used the “inverse piano” apparatus to apply small and smooth positional perturbations to fingers at various times after visual feedback removal. The time courses of RFT and CFT showed that force drop was mostly due to a drift in RFT towards the actual fingertip position. Three analysis techniques, namely, hyperbolic regression, surrogate data analysis, and computation of motor-equivalent and non-motor-equivalent motions, suggested strong co-variation in RFT and CFT stabilizing the force magnitude. Finally, the changes in the two hypothetical control variables {RFT; CFT} relative to their average trends also displayed covariation. On the whole the findings suggest that unintentional force drop is associated with (a) a slow drift of the referent coordinate that pulls the system towards a low-energy state, and (b) a faster synergic motion of RFT and CFT that tends to stabilize the output fingertip force about the slowly-drifting equilibrium point. PMID:27540726
Unsteady steady-states: central causes of unintentional force drift.
Ambike, Satyajit; Mattos, Daniela; Zatsiorsky, Vladimir M; Latash, Mark L
2016-12-01
We applied the theory of synergies to analyze the processes that lead to unintentional decline in isometric fingertip force when visual feedback of the produced force is removed. We tracked the changes in hypothetical control variables involved in single fingertip force production based on the equilibrium-point hypothesis, namely the fingertip referent coordinate (R FT ) and its apparent stiffness (C FT ). The system's state is defined by a point in the {R FT ; C FT } space. We tested the hypothesis that, after visual feedback removal, this point (1) moves along directions leading to drop in the output fingertip force, and (2) has even greater motion along directions that leaves the force unchanged. Subjects produced a prescribed fingertip force using visual feedback and attempted to maintain this force for 15 s after the feedback was removed. We used the "inverse piano" apparatus to apply small and smooth positional perturbations to fingers at various times after visual feedback removal. The time courses of R FT and C FT showed that force drop was mostly due to a drift in R FT toward the actual fingertip position. Three analysis techniques, namely hyperbolic regression, surrogate data analysis, and computation of motor-equivalent and non-motor-equivalent motions, suggested strong covariation in R FT and C FT stabilizing the force magnitude. Finally, the changes in the two hypothetical control variables {R FT ; C FT } relative to their average trends also displayed covariation. On the whole, the findings suggest that unintentional force drop is associated with (a) a slow drift of the referent coordinate that pulls the system toward a low-energy state and (b) a faster synergic motion of R FT and C FT that tends to stabilize the output fingertip force about the slowly drifting equilibrium point.
Wilson, Todd D; Miller, Nathan; Brown, Nicholas; Snyder, Brad E; Wilson, Erik B
2013-05-01
In gastrointestinal surgery, specifically in bariatric surgery, there are many types of fixed bands used for restriction and there are a multitude reasons that might eventually be an impetus for the removal of those bands. Bands consisting of Marlex or non silastic materials can be extremely difficult to remove. Intraoperative complications removing fixed bands include the difficulty in locating the band, inability to remove all of the band, and damage to surrounding structures including gastrotomies. Removal of eroded bands endoscopically may pose less risk. Potentially, forced erosion may be an easier modality than surgery, allowing revision without having to deal with the actual band at the time of definitive revision surgery. A retrospective case series developed from a university single institution bariatric practice setting was utilized. Endpoints for the study include success of band removal, complications, length of time the stent was present, and the type of stent. A total of 15 consecutive cases utilizing endoscopic stenting to actively induce fixed gastric band erosion for subsequent endoscopic removal were reviewed. There was an 87 % success rate in complete band removal with partial removal of the remaining bands that resolved the patient's symptoms. A complication rate of 27 % was recorded among the 15 patients, consisting of pain and/or nausea and vomiting. The mean time period of the placement of the stent prior to removal or attempted removal was 16.3 days. Endoscopic forced erosion of fixed gastric bands is feasible, safe, and may offer an advantage over laparoscopic removal. This technique is especially applicable for gastric obstruction from fixed bands, prior to large and definitive revision surgeries, or anticipated hostile anatomy that might preclude an abdominal operation altogether.
Chen, Di; Wu, Junru
2010-01-01
It is known that there are many fine particles on the moon and Mars. Their existence may cause risk for the success of a long-term project for NASA, i.e., exploration and habitation of the moon and Mars. These dust-particles might cover the solar panels, making them fail to generate electricity, and they might also penetrate through seals on space suits, hatches, and vehicle wheels causing many incidents. The fine particles would be hazardous to human health if they were inhaled. Development of robust dust mitigation technology is urgently needed for the viable long-term exploration and habilitation of either the moon or Mars. A feasibility study to develop a dust removal technique, which may be used in space-stations or other enclosures for habitation, is reported. It is shown experimentally that the acoustic radiation force produced by a 13.8 kHz 128 dB sound-level standing wave between a 3 cm-aperture tweeter and a reflector separated by 9 cm is strong enough to overcome the van der Waals adhesive force between the dust-particles and the reflector-surface. Thus the majority of fine particles (>2 microm diameter) on a reflector-surface can be dislodged and removed by a technique combining acoustic levitation and airflow methods. The removal efficiency deteriorates for particles of less than 2 microm in size.
Laser Cutting of Thin Nickel Bellows
NASA Technical Reports Server (NTRS)
Butler, C. L.
1986-01-01
Laser cutting technique produces narrow, precise, fast, and repeatable cuts in thin nickel-allow bellows material. Laser cutting operation uses intense focused beam to melt material and assisting gas to force melted material through part thickness, creating void. When part rotated or moved longitudinally, melting and material removal continuous and creates narrow, fast, precise, and repeatable cut. Technique used to produce cuts of specified depths less than material thickness. Avoids distortion, dents, and nicks produced in delicate materials during lathe trimming operations, which require high cutting-tool pressure and holding-fixture forces.
Structured Water Layers Adjacent to Biological Membranes
Higgins, Michael J.; Polcik, Martin; Fukuma, Takeshi; Sader, John E.; Nakayama, Yoshikazu; Jarvis, Suzanne P.
2006-01-01
Water amid the restricted space of crowded biological macromolecules and at membrane interfaces is essential for cell function, though the structure and function of this “biological water” itself remains poorly defined. The force required to remove strongly bound water is referred to as the hydration force and due to its widespread importance, it has been studied in numerous systems. Here, by using a highly sensitive dynamic atomic force microscope technique in conjunction with a carbon nanotube probe, we reveal a hydration force with an oscillatory profile that reflects the removal of up to five structured water layers from between the probe and biological membrane surface. Further, we find that the hydration force can be modified by changing the membrane fluidity. For 1,2-dipalmitoyl-sn-glycero-3-phosphocholine gel (Lβ) phase bilayers, each oscillation in the force profile indicates the force required to displace a single layer of water molecules from between the probe and bilayer. In contrast, 1,2-dipalmitoyl-sn-glycero-3-phosphocholine fluid (Lα) phase bilayers at 60°C and 1,2-dioleoyl-sn-glycero-3-phosphocholine fluid (Lα) phase bilayers at 24°C seriously disrupt the molecular ordering of the water and result predominantly in a monotonic force profile. PMID:16798815
A micropatterning and image processing approach to simplify measurement of cellular traction forces
Polio, Samuel R.; Rothenberg, Katheryn E.; Stamenović, Dimitrije; Smith, Michael L.
2012-01-01
Quantification of the traction forces that cells apply to their surroundings has been critical to the advancement of our understanding of cancer, development and basic cell biology. This field was made possible through the development of engineered cell culture systems that permit optical measurement of cell-mediated displacements and computational algorithms that allow conversion of these displacements into stresses and forces. Here, we present a novel advancement of traction force microscopy on polyacrylamide (PAA) gels that addresses limitations of existing technologies. Through an indirect patterning technique, we generated PAA gels with fluorescent 1 μm dot markers in a regularized array. This improves existing traction measurements since (i) multiple fields of view can be measured in one experiment without the need for cell removal; (ii) traction vectors are modeled as discrete point forces, and not as a continuous field, using an extremely simple computational algorithm that we have made available online; and (iii) the pattern transfer technique is amenable to any of the published techniques for producing patterns on glass. In the future, this technique will be used for measuring traction forces on complex patterns with multiple, spatially distinct ligands in systems for applying strain to the substrate, and in sandwich cultures that generate quasi-three-dimensional environments for cells. PMID:21884832
Removal of floating dust in glow discharge using plasma jet
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ticos, C. M.; Jepu, I.; Lungu, C. P.
2010-07-05
Dust can be an inconvenient source of impurities in plasma processing reactors and in many cases it can cause damage to the plasma-treated surfaces. A technique for dust expulsion out of the trapping region in plasma is presented here, based on the wind force exerted on dust particles by a pulsed plasma jet. Its applicability is demonstrated by removing floating dust in the sheath of parallel-plate capacitive radio-frequency plasma.
NASA Astrophysics Data System (ADS)
Dai, Houfu; Li, Shaobo; Chen, Genyu
2018-01-01
Molecular dynamics is employed to compare nanoscale traditional machining (TM) with laser-assisted machining (LAM). LAM is that the workpiece is locally heated by an intense laser beam prior to material removal. We have a comprehensive comparison between LAM and TM in terms of atomic trajectories, phase transformation, radial distribution function, chips, temperature distribution, number of atoms in different temperature, grinding temperature, grinding force, friction coefficient and atomic potential energy. It can be found that there is a decrease of atoms with five and six nearest neighbors, and LAM generates more chips than that in the TM. It indicates that LAM reduces the subsurface damage of workpiece, gets a better-qualified ground surface and improves the material removal rate. Moreover, laser energy makes the materials fully softened before being removed, the number of atoms with temperature above 500 K is increased, and the average temperature of workpiece higher and faster to reach the equilibrium in LAM. It means that LAM has an absolute advantage in machining materials and greatly reduces the material resistance. Not only the tangential force (Fx) and the normal force (Fy) but also friction coefficients become smaller as laser heating reduces the strength and hardness of the material in LAM. These results show that LAM is a promising technique since it can get a better-qualified workpiece surface with larger material removal rates, less grinding force and lower friction coefficient.
Surfactants for Bubble Removal against Buoyancy
Raza, Md. Qaisar; Kumar, Nirbhay; Raj, Rishi
2016-01-01
The common phenomenon of buoyancy-induced vapor bubble lift-off from a heated surface is of importance to many areas of science and technology. In the absence of buoyancy in zero gravity of space, non-departing bubbles coalesce to form a big dry patch on the heated surface and heat transfer deteriorates despite the high latent heat of vaporization of water. The situation is worse on an inverted heater in earth gravity where both buoyancy and surface tension act upwards to oppose bubble removal. Here we report a robust passive technique which uses surfactants found in common soaps and detergents to avoid coalescence and remove bubbles downwards, away from an inverted heater. A force balance model is developed to demonstrate that the force of repulsion resulting from the interaction of surfactants adsorbed at the neighboring liquid-vapor interfaces of the thin liquid film contained between bubbles is strong enough to overcome buoyancy and surface tension. Bubble removal frequencies in excess of ten Hz resulted in more than twofold enhancement in heat transfer in comparison to pure water. We believe that this novel bubble removal mechanism opens up opportunities for designing boiling-based systems for space applications. PMID:26743179
Surfactants for Bubble Removal against Buoyancy
NASA Astrophysics Data System (ADS)
Raza, Md. Qaisar; Kumar, Nirbhay; Raj, Rishi
2016-01-01
The common phenomenon of buoyancy-induced vapor bubble lift-off from a heated surface is of importance to many areas of science and technology. In the absence of buoyancy in zero gravity of space, non-departing bubbles coalesce to form a big dry patch on the heated surface and heat transfer deteriorates despite the high latent heat of vaporization of water. The situation is worse on an inverted heater in earth gravity where both buoyancy and surface tension act upwards to oppose bubble removal. Here we report a robust passive technique which uses surfactants found in common soaps and detergents to avoid coalescence and remove bubbles downwards, away from an inverted heater. A force balance model is developed to demonstrate that the force of repulsion resulting from the interaction of surfactants adsorbed at the neighboring liquid-vapor interfaces of the thin liquid film contained between bubbles is strong enough to overcome buoyancy and surface tension. Bubble removal frequencies in excess of ten Hz resulted in more than twofold enhancement in heat transfer in comparison to pure water. We believe that this novel bubble removal mechanism opens up opportunities for designing boiling-based systems for space applications.
Lower limb ice application alters ground reaction force during gait initiation.
Muniz, Thiago B; Moraes, Renato; Guirro, Rinaldo R J
2015-01-01
Cryotherapy is a widely used technique in physical therapy clinics and sports. However, the effects of cryotherapy on dynamic neuromuscular control are incompletely explained. To evaluate the effects of cryotherapy applied to the calf, ankle and sole of the foot in healthy young adults on ground reaction forces during gait initiation. This study evaluated the gait initiation forces, maximum propulsion, braking forces and impulses of 21 women volunteers through a force platform, which provided maximum and minimum ground reaction force values. To assess the effects of cooling, the task--gait initiation--was performed before ice application, immediately after and 30 minutes after removal of the ice pack. Ice was randomly applied on separate days to the calf, ankle and sole of the foot of the participants. It was demonstrated that ice application for 30 minutes to the sole of the foot and calf resulted in significant changes in the vertical force variables, which returned to their pre-application values 30 minutes after the removal of the ice pack. Ice application to the ankle only reduced propulsion impulse. These results suggest that although caution is necessary when performing activities that require good gait control, the application of ice to the ankle, sole of the foot or calf in 30-minute intervals may be safe even preceding such activities.
Physiotherapy Secretion Removal Techniques in People With Spinal Cord Injury: A Systematic Review
Reid, W. Darlene; Brown, Jennifer A; Konnyu, Kristin J; Rurak, Jennifer M.E; Sakakibara, Brodie M
2010-01-01
Objective: To address whether secretion removal techniques increase airway clearance in people with chronic spinal cord injury (SCI). Data Sources and Study Selection: MEDLINE/PubMed, CINAHL, EMBASE, and PsycINFO were searched from inception to May 2009 for population keywords (spinal cord injury, paraplegia, tetraplegia, quadriplegia) paired with secretion removal–related interventions and outcomes. Inclusion criteria for articles were a research study, irrespective of design, that examined secretion removal in people with chronic SCI published in English. Review Methods: Two reviewers determined whether articles met the inclusion criteria, abstracted information, and performed a quality assessment using PEDro or Downs and Black criteria. Studies were then given a level of evidence based on a modified Sackett scale. Results: Of 2,416 abstracts and titles retrieved, 24 met the inclusion criteria. Subjects were young (mean, 31 years) and 84% were male. Most evidence was level 4 or 5 and only 2 studies were randomized controlled trials. Three reports described outcomes for secretion removal techniques in addition to cough, whereas most articles examined the immediate effects of various components of cough. Studies examining insufflation combined with manual assisted cough provided the most consistent, high-level evidence. Compelling recent evidence supports the use of respiratory muscle training or electrical stimulation of the expiratory muscles to facilitate airway clearance in people with SCI. Conclusion: Evidence supporting the use of secretion removal techniques in SCI, while positive, is limited and mostly of low level. Treatments that increase respiratory muscle force show promise as effective airway clearance techniques. PMID:21061895
5 CFR 359.405 - Removal: Reduction in force.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 5 Administrative Personnel 1 2010-01-01 2010-01-01 false Removal: Reduction in force. 359.405... Appointees During Probation § 359.405 Removal: Reduction in force. (a) Coverage. This section covers the removal of a career appointee from the SES during the probationary period under a reduction in force. (b...
Dezawa, A; Sairyo, K
2011-05-01
The serial dilating technique used to access herniated discs at the L5-S1 space using percutaneous endoscopic discectomy (PED) via an 8 mm skin incision can possibly injure the S1 nerve root. In this paper, we describe in detail a new surgical procedure to safely access the disc and to avoid the nerve root damage. This small-incision endoscopic technique, small-incision microendoscopic discectomy (sMED), mimics microendoscopic discectomy and applies PED. The sMED approach is similar to the well-established microendoscopic discectomy technique. To secure the surgical field, a duckbill-type PED cannula is used. Following laminotomy of L5 using a high-speed drill, the ligamentum flavum is partially removed using the Kerrison rongeur. Using the curved nerve root retractor, the S1 nerve root is gradually and gently moved caudally. Following the compete retraction of the S1 nerve root to the caudal side of the herniated nucleus pulposus (HNP), the nerve root is retracted safely medially and caudally using the bill side of the duckbill PED cannula. Next, using the HNP rongeur for PED, the HNP is removed piece by piece until the nerve root is decompressed. A total of 30 patients with HNP at the L5-S1 level underwent sMED. In all cases, HNP was successfully removed and patients showed improvement following surgery. Only one patient complained of moderate radiculopathy at the final visit. No complications were encountered. We introduced a minimally invasive technique to safely remove HNP at the L5-S1 level. sMED is possibly the least invasive technique for HNP removal at the L5-S1 level. © 2011 Japan Society for Endoscopic Surgery, Asia Endosurgery Task Force and Blackwell Publishing Asia Pty Ltd.
Restoration of high-resolution AFM images captured with broken probes
NASA Astrophysics Data System (ADS)
Wang, Y. F.; Corrigan, D.; Forman, C.; Jarvis, S.; Kokaram, A.
2012-03-01
A type of artefact is induced by damage of the scanning probe when the Atomic Force Microscope (AFM) captures a material surface structure with nanoscale resolution. This artefact has a dramatic form of distortion rather than the traditional blurring artefacts. Practically, it is not easy to prevent the damage of the scanning probe. However, by using natural image deblurring techniques in image processing domain, a comparatively reliable estimation of the real sample surface structure can be generated. This paper introduces a novel Hough Transform technique as well as a Bayesian deblurring algorithm to remove this type of artefact. The deblurring result is successful at removing blur artefacts in the AFM artefact images. And the details of the fibril surface topography are well preserved.
Lower limb ice application alters ground reaction force during gait initiation
Muniz, Thiago B.; Moraes, Renato; Guirro, Rinaldo R. J.
2015-01-01
BACKGROUND: Cryotherapy is a widely used technique in physical therapy clinics and sports. However, the effects of cryotherapy on dynamic neuromuscular control are incompletely explained. OBJECTIVES: To evaluate the effects of cryotherapy applied to the calf, ankle and sole of the foot in healthy young adults on ground reaction forces during gait initiation. METHOD: This study evaluated the gait initiation forces, maximum propulsion, braking forces and impulses of 21 women volunteers through a force platform, which provided maximum and minimum ground reaction force values. To assess the effects of cooling, the task - gait initiation - was performed before ice application, immediately after and 30 minutes after removal of the ice pack. Ice was randomly applied on separate days to the calf, ankle and sole of the foot of the participants. RESULTS: It was demonstrated that ice application for 30 minutes to the sole of the foot and calf resulted in significant changes in the vertical force variables, which returned to their pre-application values 30 minutes after the removal of the ice pack. Ice application to the ankle only reduced propulsion impulse. CONCLUSIONS: These results suggest that although caution is necessary when performing activities that require good gait control, the application of ice to the ankle, sole of the foot or calf in 30-minute intervals may be safe even preceding such activities. PMID:25993625
Patterning of graphene on silicon-on-insulator waveguides through laser ablation and plasma etching
NASA Astrophysics Data System (ADS)
Van Erps, Jürgen; Ciuk, Tymoteusz; Pasternak, Iwona; Krajewska, Aleksandra; Strupinski, Wlodek; Van Put, Steven; Van Steenberge, Geert; Baert, Kitty; Terryn, Herman; Thienpont, Hugo; Vermeulen, Nathalie
2016-05-01
We present the use of femtosecond laser ablation for the removal of monolayer graphene from silicon-on-insulator (SOI) waveguides, and the use of oxygen plasma etching through a metal mask to peel off graphene from the grating couplers attached to the waveguides. Through Raman spectroscopy and atomic force microscopy, we show that the removal of graphene is successful with minimal damage to the underlying SOI waveguides. Finally, we employ both removal techniques to measure the contribution of graphene to the loss of grating-coupled graphene-covered SOI waveguides using the cut-back method. This loss contribution is measured to be 0.132 dB/μm.
Sun, Guoyan; Zhao, Lingling; Zhao, Qingliang; Gao, Limin
2018-05-10
There have been few investigations dealing with the force model on grinding brittle materials. However, the dynamic material removal mechanisms have not yet been sufficiently explicated through the grain-workpiece interaction statuses while considering the brittle material characteristics. This paper proposes an improved grinding force model for Zerodur, which contains ductile removal force, brittle removal force, and frictional force, corresponding to the ductile and brittle material removal phases, as well as the friction process, respectively. The critical uncut chip thickness a gc of brittle-ductile transition and the maximum uncut chip thickness a gmax of a single abrasive grain are calculated to identify the specified material removal mode, while the comparative result between a gmax and a gc can be applied to determine the selection of effective grinding force components. Subsequently, indentation fracture tests are carried out to acquire accurate material mechanical properties of Zerodur in establishing the brittle removal force model. Then, the experiments were conducted to derive the coefficients in the grinding force prediction model. Simulated through this model, correlations between the grinding force and grinding parameters can be predicted. Finally, three groups of grinding experiments are carried out to validate the mathematical grinding force model. The experimental results indicate that the improved model is capable of predicting the realistic grinding force accurately with the relative mean errors of 6.04% to the normal grinding force and 7.22% to the tangential grinding force, respectively.
Kelly, Michael E; Turner, Raymond; Gonugunta, Vivek; Rasmussen, Peter A; Woo, Henry H; Fiorella, David
2008-07-01
Microcatheters retained after Onyx (eV3 Neurovascular, Inc., Irvine, CA) embolization represent a potential source of thromboembolic complications. Catheter retention depends on the degree of Onyx reflux and vessel tortuosity. To overcome this problem, we have adapted a previously described monorail snare technique for stretched coils to remove an adherent microcatheter from the occipital artery during Onyx embolization of a dural arteriovenous fistula. We used this technique successfully in a 62-year-old man with a posterior fossa dural arteriovenous fistula. An Echelon-10 microcatheter (eV3 Neurovascular, Inc.) system became adherent in the right occipital artery because of reflux and vessel tortuosity. Significant stretching of the microcatheter was observed during attempted removal. A 2-mm Amplatz Goose Neck microsnare (Microvena Corp., White Bear Lake, MN) was placed through a Rapid Transit microcatheter (Cordis Corp., Miami, FL). The hub of the indwelling Echelon microcatheter was cut off and the snare advanced over the outside of the microcatheter. The snare and Rapid Transit microcatheter were then advanced into the guiding catheter (6-French) as a unit over the indwelling Echelon microcatheter. Using the adherent Echelon as a "monorail" guide, the snare and Rapid Transit microcatheter were advanced distally into the occipital artery and the snare was retracted to engage the microcatheter. The microcatheters and snare were then easily removed because of the second vector of force placed by the snare system on the adherent microcatheter very close to the point of adherence. The monorail snare technique represents a simple and safe way to remove an adherent microcatheter from an Onyx cast during the embolization of dural arteriovenous fistulas. Prospective knowledge of this technique will facilitate more aggressive embolization without the reservation that a retained microcatheter could require surgical removal or anticoagulation.
Santosa, Robert E; Martin, William; Morton, Dean
2010-01-01
Excess residual cement around the implant margin has been shown to be detrimental to the peri-implant tissue. This in vitro study examines the retentive strengths of two different cementing techniques and two different luting agents on a machined titanium abutment and solid screw implants. The amount of reduction of excess cement weight between the two cementation techniques was assessed. Forty gold castings were fabricated for 4.1 mm in diameter and 10 mm in length solid-screw dental implants paired with 5.5-mm machined titanium abutments. Twenty implants received a provisional cement, and 20 implants received a definitive cement. Each group was further divided into two groups. In the control group, cement was applied and the castings seated over the implant-abutment assembly. The excess cement was then removed. In the study group, a "practice abutment" was used to express excess cement prior to cementation. The weight of the implant-casting assembly was measured and the residual weight of cement was calculated. The samples were then stored for 24 hours at 100% humidity prior to tensile strength testing. Statistical analysis revealed significant differences in tensile strength across the groups. Further Tukey tests showed no significant difference in tensile strength between the practice abutment technique and the conventional technique for both definitive and provisional cements. There was a significant reduction in residual cement weight, irrespective of the type of cement, when the practice abutment was used prior to cementation. Cementation of implant restorations on a machined abutment using the practice abutment technique and definitive cement may provide similar uniaxial retention force and significantly reduced residual cement weight compared to the conventional technique of cement removal.
Horiuchi, Tsutomu; Tobita, Tatsuya; Miura, Toru; Iwasaki, Yuzuru; Seyama, Michiko; Inoue, Suzuyo; Takahashi, Jun-ichi; Haga, Tsuneyuki; Tamechika, Emi
2012-01-01
We have developed a measurement chip installation/removal mechanism for a surface plasmon resonance (SPR) immunoassay analysis instrument designed for frequent testing, which requires a rapid and easy technique for changing chips. The key components of the mechanism are refractive index matching gel coated on the rear of the SPR chip and a float that presses the chip down. The refractive index matching gel made it possible to optically couple the chip and the prism of the SPR instrument easily via elastic deformation with no air bubbles. The float has an autonomous attitude control function that keeps the chip parallel in relation to the SPR instrument by employing the repulsive force of permanent magnets between the float and a float guide located in the SPR instrument. This function is realized by balancing the upward elastic force of the gel and the downward force of the float, which experiences a leveling force from the float guide. This system makes it possible to start an SPR measurement immediately after chip installation and to remove the chip immediately after the measurement with a simple and easy method that does not require any fine adjustment. Our sensor chip, which we installed using this mounting system, successfully performed an immunoassay measurement on a model antigen (spiked human-IgG) in a model real sample (non-homogenized milk) that included many kinds of interfering foreign substances without any sample pre-treatment. The ease of the chip installation/removal operation and simple measurement procedure are suitable for frequent on-site agricultural, environmental and medical testing. PMID:23202030
Abbas, Ahmed A; Santiwong, Peerapong; Wonglamsam, Amornrat; Srithavaj, Theerathavaj; Chanthasopeephan, Teeranoot
The purpose of this study was to evaluate stress distribution around two craniofacial implants in an auricular prosthesis according to the removal forces. Three attachment combinations were used to evaluate the stress distribution under removal forces of 45 and 90 degrees. Three attachment designs were examined: (1) a Hader bar with three clips; (2) a Hader bar with one clip and two extracoronal resilient attachments (ERAs); and (3) a Hader bar with one clip and two Locators. The removal force was determined by means of an Instron universal testing machine with a crosshead speed of 10 mm/minute. All three designs were created in three dimensions using SolidWorks. The applied removal force and the models were then introduced to finite element software to analyze the stress distribution. The angle of removal force greatly affected the magnitude and direction of stress distribution on the implants. The magnitude of stress under the 45-degree removal force was higher than the stress at 90 degrees. The combination of the 1,000-g retention clip and 2,268-g retention Locator exhibited the highest stress on the implant flange when the removal force was applied at 45 degrees. The removal angle greatly influences the amount of force and stress on the implants. Prosthodontists are encouraged to inform patients to remove the prosthesis at 90 degrees and, if possible, use a low-retentive attachment to reduce stress.
Normal force and drag force in magnetorheological finishing
NASA Astrophysics Data System (ADS)
Miao, Chunlin; Shafrir, Shai N.; Lambropoulos, John C.; Jacobs, Stephen D.
2009-08-01
The material removal in magnetorheological finishing (MRF) is known to be controlled by shear stress, λ, which equals drag force, Fd, divided by spot area, As. However, it is unclear how the normal force, Fn, affects the material removal in MRF and how the measured ratio of drag force to normal force Fd/Fn, equivalent to coefficient of friction, is related to material removal. This work studies, for the first time for MRF, the normal force and the measured ratio Fd/Fn as a function of material mechanical properties. Experimental data were obtained by taking spots on a variety of materials including optical glasses and hard ceramics with a spot-taking machine (STM). Drag force and normal force were measured with a dual load cell. Drag force decreases linearly with increasing material hardness. In contrast, normal force increases with hardness for glasses, saturating at high hardness values for ceramics. Volumetric removal rate decreases with normal force across all materials. The measured ratio Fd/Fn shows a strong negative linear correlation with material hardness. Hard materials exhibit a low "coefficient of friction". The volumetric removal rate increases with the measured ratio Fd/Fn which is also correlated with shear stress, indicating that the measured ratio Fd/Fn is a useful measure of material removal in MRF.
Normal Force and Drag Force in Magnetorheological Finishing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miao, C.; Shafrir, S.N.; Lambropoulos, J.C.
2010-01-13
The material removal in magnetorheological finishing (MRF) is known to be controlled by shear stress, tau, which equals drag force, Fd, divided by spot area, As. However, it is unclear how the normal force, Fn, affects the material removal in MRF and how the measured ratio of drag force to normal force Fd/Fn, equivalent to coefficient of friction, is related to material removal. This work studies, for the first time for MRF, the normal force and the measured ratio Fd/Fn as a function of material mechanical properties. Experimental data were obtained by taking spots on a variety of materials includingmore » optical glasses and hard ceramics with a spot-taking machine (STM). Drag force and normal force were measured with a dual load cell. Drag force decreases linearly with increasing material hardness. In contrast, normal force increases with hardness for glasses, saturating at high hardness values for ceramics. Volumetric removal rate decreases with normal force across all materials. The measured ratio Fd/Fn shows a strong negative linear correlation with material hardness. Hard materials exhibit a low “coefficient of friction”. The volumetric removal rate increases with the measured ratio Fd/Fn which is also correlated with shear stress, indicating that the measured ratio Fd/Fn is a useful measure of material removal in MRF.« less
Gutiérrez-Martínez, Maria del Rosario; Muñoz-Guerrero, Hernán; Alcaína-Miranda, Maria Isabel; Barat, José Manuel
2014-03-01
The salting step in food processes implies the production of large quantities of waste brines, having high organic load, high conductivity, and other pollutants with high oxygen demand. Direct disposal of the residual brine implies salinization of soil and eutrophication of water. Since most of the organic load of the waste brines comes from proteins leaked from the salted product, precipitation of dissolved proteins by acidification and removal by centrifugation is an operation to be used in waste brine cleaning. The aim of this study is optimizing the conditions for carrying out the separation of proteins from waste brines generated in the pork ham salting operation, by studying the influence of pH, centrifugal force, and centrifugation time. Models for determining the removal of proteins depending on the pH, centrifugal force, and time were obtained. The results showed a high efficacy of the proposed treatment for removing proteins, suggesting that this method could be used for waste brine protein removal. The best pH value to be used in an industrial process seems to be 3, while the obtained results indicate that almost 90% of the proteins from the brine can be removed by acidification followed by centrifugation. A further protein removal from the brine should have to be achieved using filtrating techniques, which efficiency could be highly improved as a consequence of the previous treatment through acidification and centrifugation. Waste brines from meat salting have high organic load and electrical conductivity. Proteins can be removed from the waste brine by acidification and centrifugation. The total protein removal can be up to 90% of the initial content of the waste brine. Protein removal is highly dependent on pH, centrifugation rate, and time. © 2014 Institute of Food Technologists®
Yang, Chih-Wen; Lu, Yi-Hsien; Hwang, Ing-Shouh
2013-05-08
We have imaged nanobubbles on highly ordered pyrolytic graphite (HOPG) surfaces in pure water with different atomic force microscopy (AFM) modes, including the frequency-modulation, the tapping, and the PeakForce techniques. We have compared the performance of these modes in obtaining the surface profiles of nanobubbles. The frequency-modulation mode yields a larger height value than the other two modes and can provide more accurate measurement of the surface profiles of nanobubbles. Imaging with PeakForce mode shows that a nanobubble appears smaller and shorter with increasing peak force and disappears above a certain peak force, but the size returns to the original value when the peak force is reduced. This indicates that imaging with high peak forces does not cause gas removal from the nanobubbles. Based on the presented findings and previous AFM observations, the existing models for nanobubbles are reviewed and discussed. The model of gas aggregate inside nanobubbles provides a better explanation for the puzzles of the high stability and the contact angle of surface nanobubbles.
The Development of Neutron Radiography and Tomography on a SLOWPOKE-2 Reactor
NASA Astrophysics Data System (ADS)
Bennett, L. G. I.; Lewis, W. J.; Hungler, P. C.
Development of neutron radiography at the Royal Military College of Canada (RMC) started by trying to interest the Royal Canadian Air Force (RCAF) in this new non-destructive testing (NDT) technique. A Californium-252 based device was ordered and then installed at RMC for development of applicable techniques for aircraft by the first author. A second and transportable device was then designed, modified and used in trials at RCAF Bases and other locations for one year. This activity was the only foreign loan of the U.S. Californium Loan Program. Around this time, SLOWPOKE-2 reactors were being installed at four Canadian universities, while a new science and engineering building was being built at RMC. A reactor pool was incorporated and efforts to procure a reactor succeeded a decade later with a SLOWPOKE-2 reactor being installed at RMC. The only modification by the vendor for RMC was a thermal column replacing an irradiation site inside the reactor container for a later installation of a neutron beam tube (NBT). Development of a working NBT took several years, starting with the second author. A demonstration of the actual worth of neutron radiography took place with a CF-18 Hornet aircraft being neutron and X-radiographed at McClellan Air Force Base, Sacramento, CA. This inspection was followed by one of the rudders that had indications of water ingress being radiographed successfully at RMC just after the NBT became functional. The next step was to develop a neutron radioscopy system (NRS), initially employing film and then digital imaging, and is in use today for all flight control surfaces (FCS). With the third author, a technique capable of removing water from affected FCS was developed at RMC. Heating equipment and a vacuum system were utilized to carefully remove the water. This technique was proven using a sequence of near real time neutron images obtained during the drying process. The results of the drying process were correlated with a relative humidity gauge and an NDT technique that could be performed at Canadian Forces (CF) Bases was developed. In order to determine the structural integrity of the component having undergone this water removal, further research was required into the effect of water inside composite honeycomb structures. This need has led to the present development of neutron tomography on the reactor at RMC, which is capable of determining the exact location of water ingress inside composite components. This technique has been successfully applied to coupons as well as to complete rudders.
Emanuel, Mark Hans; Wamsteker, Kees
2005-01-01
A new hysteroscopic operating technique was compared retrospectively with conventional resectoscopy. Retrospective comparison (Canadian Task Force Classification II-2). Gynecology department of a university-affiliated teaching hospital. Fifty-five women, 27 with endometrial polyps and 28 with submucous myomas. Patients were treated with a prototype of the Intra Uterine Morcellator (IUM). This cutting device, 35 cm in length, was inserted into a straight working channel of a 90-mm hysteroscope. The major advantages were ease of removal of tissue fragments through the instrument and the use of saline solution instead of electrolyte-free solutions used in monopolar high-frequency resectoscopy. The mean operating time was 8.7 minutes (95% CI: 7.3-10.1) for the removal of endometrial polyps compared with 30.9 minutes (CI: 27.0-34.8) for resectoscopy, and 16.4 minutes (CI: 12.6-20.2) for submucous myomas compared with 42.2 minutes (CI: 39.7-44.7) for resectoscopy. All procedures were uneventful. This new technique is faster, and it appears to be easier to perform. Therefore, it can be expected to result in fewer fluid-related complications and to lead to a shorter learning curve when compared with conventional resectoscopy.
Advanced Coating Removal Techniques
NASA Technical Reports Server (NTRS)
Seibert, Jon
2006-01-01
An important step in the repair and protection against corrosion damage is the safe removal of the oxidation and protective coatings without further damaging the integrity of the substrate. Two such methods that are proving to be safe and effective in this task are liquid nitrogen and laser removal operations. Laser technology used for the removal of protective coatings is currently being researched and implemented in various areas of the aerospace industry. Delivering thousands of focused energy pulses, the laser ablates the coating surface by heating and dissolving the material applied to the substrate. The metal substrate will reflect the laser and redirect the energy to any remaining protective coating, thus preventing any collateral damage the substrate may suffer throughout the process. Liquid nitrogen jets are comparable to blasting with an ultra high-pressure water jet but without the residual liquid that requires collection and removal .As the liquid nitrogen reaches the surface it is transformed into gaseous nitrogen and reenters the atmosphere without any contamination to surrounding hardware. These innovative technologies simplify corrosion repair by eliminating hazardous chemicals and repetitive manual labor from the coating removal process. One very significant advantage is the reduction of particulate contamination exposure to personnel. With the removal of coatings adjacent to sensitive flight hardware, a benefit of each technique for the space program is that no contamination such as beads, water, or sanding residue is left behind when the job is finished. One primary concern is the safe removal of coatings from thin aluminum honeycomb face sheet. NASA recently conducted thermal testing on liquid nitrogen systems and found that no damage occurred on 1/6", aluminum substrates. Wright Patterson Air Force Base in conjunction with Boeing and NASA is currently testing the laser remOval technique for process qualification. Other applications of liquid nitrogen operations include cutting of both soft and hard materials. While the laser will not cut materials, it can be used to roughen surfaces and to remove other materials from the substrate including oil, grease, and mold. The space program can benefit from several of these applications with the need for precise removal of coatings and other organic compounds in areas adjacent to sensitive space flight hardware. Significant advantages are evident when comparing liquid nitrogen and laser removal operations over current techniques of media blasting and sanding.
NASA Technical Reports Server (NTRS)
Chan, David T.; Milholen, William E., II; Jones, Gregory S.; Goodliff, Scott L.
2014-01-01
A second wind tunnel test of the FAST-MAC circulation control semi-span model was recently completed in the National Transonic Facility at the NASA Langley Research Center. The model allowed independent control of four circulation control plenums producing a high momentum jet from a blowing slot near the wing trailing edge that was directed over a 15% chord simple-hinged flap. The model was configured for transonic testing of the cruise configuration with 0deg flap deflection to determine the potential for drag reduction with the circulation control blowing. Encouraging results from analysis of wing surface pressures suggested that the circulation control blowing was effective in reducing the transonic drag on the configuration, however this could not be quantified until the thrust generated by the blowing slot was correctly removed from the force and moment balance data. This paper will present the thrust removal methodology used for the FAST-MAC circulation control model and describe the experimental measurements and techniques used to develop the methodology. A discussion on the impact to the force and moment data as a result of removing the thrust from the blowing slot will also be presented for the cruise configuration, where at some Mach and Reynolds number conditions, the thrust-removed corrected data showed that a drag reduction was realized as a consequence of the blowing.
Zander, N.E.; Strawhecker, K.E.; Orlicki, J.A.; Rawlett, A.M.; Beebe, T.P.
2011-01-01
Poly(methylmethacrylate) (PMMA)- Polyacrylonitrile (PAN) fibers were prepared using a conventional single-nozzle electrospinning technique. The as-spun fibers exhibited core-shell morphology as verified by transmission electron microscopy (TEM) and atomic force microscopy (AFM). AFM-phase and modulus mapping images of the fiber cross-section and x-ray photoelectron spectroscopy (XPS) analysis indicated PAN formed the shell and PMMA the core material. XPS, thermal gravimetric analysis (TGA), and elemental analysis were used to determine fiber compositional information. Soaking the fibers in solvent demonstrated removal of the core material, generating hollow PAN fibers. PMID:21928836
Sobolewski, B; Mackenstedt, U; Mehlhorn, H
1993-01-01
A new method for the isolation of intraerythrocytic stages of Plasmodium berghei and Babesia divergens from red blood cells is described. The technique is based on hydrodynamic forces occurring in a flow channel containing a turbulent liquid current, which are capable of rupturing infected erythrocytes and removing their plasma membrane from the parasites' surface. The temperature and the concentration of cells were revealed as factors influencing the hydrodynamic forces. About 90% of the intact and apparently infectious parasites of both species were isolated from the lysed erythrocytes.
NASA Astrophysics Data System (ADS)
Geetha, P.; Latha, M. S.; Pillai, Saumya S.; Deepa, B.; Santhosh Kumar, K.; Koshy, Mathew
2016-02-01
Green synthesis of nanoparticles has attained considerable attention in recent years because of its myriad of applications including drug delivery, tissue engineering and water purification. In the present study, alginate nanoparticles stabilized by honey were prepared by cross-linking aqueous solution of alginate with calcium ions. Honey mediated synthesis has been reported earlier for the production of metal nanoparticles. However no literature is available on the use of this technique for polymeric nanoparticles. Highly stable nanoparticles of 10-100 nm size were generated by this technique. The synthesised nanoparticles were characterized by transmission electron microscopy, scanning electron microscopy, atomic force microscopy, dynamic light scattering and Fourier transform infrared spectroscopic techniques. Potential of using these nanoparticles for heavy metal removal was studied by using Cr(VI) from aqueous solution, where a maximum removal efficiency of 93.5% was obtained. This method was also successfully employed for the production of other polymeric nanoparticles like casein, chitosan and albumin.
Phaco chop technique for cataract surgery in the dog.
Warren, Christi
2004-01-01
Phaco chop is a bimanual phacoemulsification technique to remove cataracts. The technique was first presented at the 1993 3rd American-International Congress on Cataract, IOL, and Refractive Surgery in Seattle by Dr Kunihiro Nagahara. He compared the lens with a block of wood and by applying chopping forces parallel to the natural planes of the lens lamellae, as one does in splitting wood, a nucleus can be cleaved with surprisingly little force and time. Dr Nagahara used the phaco tip to impale and high vacuum to hold the nucleus while a second instrument, or chopper, hooked the equator and was pulled centrally, splitting the nucleus along its natural cleavage planes. This was a breakthrough for surgeons who had been utilizing several minutes of phaco energy sculpting grooves and bowls in a lens. Studies have shown that compared with four-quadrant 'divide and conquer', the phaco chop technique uses less phaco time and energy, significantly reducing endothelial cell damage. Other advantages of phaco chop include reduction of zonular and capsular stress because forces are directed toward an opposing instrument and the phaco tip is kept in a central 'safe zone' in the middle of the pupil. This technique has also been successfully adapted to the canine phacoemulsification procedure. The larger canine lens requires some modifications, and lenses with hard nuclear and cortical material may not be amenable to this procedure.
NASA Astrophysics Data System (ADS)
Amanokura, Jin; Ono, Hiroshi; Hombo, Kyoko
2011-05-01
In order to obtain a high-speed copper chemical mechanical polishing (CMP) process for through silicon vias (TSV) application, we developed a new Cu CMP slurry through friction analysis of Cu reaction layer by an atomic force microscope (AFM) technique. A lateral modulation friction force microscope (LM-FFM) is able to measure the friction value properly giving a vibration to the layer. We evaluated the torsional displacement between the probe of the LM-FFM and the Cu reaction layer under a 5 nm vibration to cancel the shape effect of the Cu reaction layer. The developed Cu CMP slurry forms a frictionally easy-removable Cu reaction layer.
Plastic Media Blasting Data Gathering Study
1986-12-01
products of organic compounds containing the amino group (-NH 2 ) and an aldehyde. The better known members of this group are urea formaldehyde (a...suspected carcinogen) and melamine formaldehyde . The actual composition and toxicity of the dust from the various operations must be collected and...blasting is a paint removal technique in which small, granular amino thermoset or unsaturated polyester resins (plastic beads) are forced at high
Cell partition in two phase polymer systems
NASA Technical Reports Server (NTRS)
Brooks, D. E.
1979-01-01
Aqueous phase-separated polymer solutions can be used as support media for the partition of biological macromolecules, organelles and cells. Cell separations using the technique have proven to be extremely sensitive to cell surface properties but application of the systems are limited to cells or aggregates which do not significantly while the phases are settling. Partition in zero g in principle removes this limitation but an external driving force must be applied to induce the phases to separate since their density difference disappears. We have recently shown that an applied electric field can supply the necessary driving force. We are proposing to utilize the NASA FES to study field-driven phase separation and cell partition on the ground and in zero g to help define the separation/partition process, with the ultimate goal being to develop partition as a zero g cell separation technique.
A Deformable Smart Skin for Continuous Sensing Based on Electrical Impedance Tomography.
Visentin, Francesco; Fiorini, Paolo; Suzuki, Kenji
2016-11-16
In this paper, we present a low-cost, adaptable, and flexible pressure sensor that can be applied as a smart skin over both stiff and deformable media. The sensor can be easily adapted for use in applications related to the fields of robotics, rehabilitation, or costumer electronic devices. In order to remove most of the stiff components that block the flexibility of the sensor, we based the sensing capability on the use of a tomographic technique known as Electrical Impedance Tomography. The technique allows the internal structure of the domain under study to be inferred by reconstructing its conductivity map. By applying the technique to a material that changes its resistivity according to applied forces, it is possible to identify these changes and then localise the area where the force was applied. We tested the system when applied to flat and curved surfaces. For all configurations, we evaluate the artificial skin capabilities to detect forces applied over a single point, over multiple points, and changes in the underlying geometry. The results are all promising, and open the way for the application of such sensors in different robotic contexts where deformability is the key point.
A Deformable Smart Skin for Continuous Sensing Based on Electrical Impedance Tomography
Visentin, Francesco; Fiorini, Paolo; Suzuki, Kenji
2016-01-01
In this paper, we present a low-cost, adaptable, and flexible pressure sensor that can be applied as a smart skin over both stiff and deformable media. The sensor can be easily adapted for use in applications related to the fields of robotics, rehabilitation, or costumer electronic devices. In order to remove most of the stiff components that block the flexibility of the sensor, we based the sensing capability on the use of a tomographic technique known as Electrical Impedance Tomography. The technique allows the internal structure of the domain under study to be inferred by reconstructing its conductivity map. By applying the technique to a material that changes its resistivity according to applied forces, it is possible to identify these changes and then localise the area where the force was applied. We tested the system when applied to flat and curved surfaces. For all configurations, we evaluate the artificial skin capabilities to detect forces applied over a single point, over multiple points, and changes in the underlying geometry. The results are all promising, and open the way for the application of such sensors in different robotic contexts where deformability is the key point. PMID:27854325
Bhasker, A; Gadgil, M; Muda, N H; Lotwala, V; Lakdawala, M A
2011-02-01
In Asia, long-term weight loss results of gastric banding have been unsatisfactory. Bands are associated with higher complication rates, which result in a high reoperation rate. The aim of this paper is to discuss the choice of revisional procedure, operative technique and evaluate the postoperative complication rates. Between January 2007 and January 2010, we operated on 41 patients who were included retrospectively in this series. The most common reason for band removal was failure to lose adequate weight. Of those patients, 40 underwent band removal and conversion to a revisional bariatric surgery concomitantly; one patient's procedure was deferred to a later date. LSG was performed in 26 and LRYGB in 15. The highlights of the operative technique were meticulous dissection, complete removal of the pseudocapsule, choosing the right stapler cartridge, oversewing and inverting the entire staple line, and complete dissection of the left crus and pars flaccid. The median duration of surgery was 85 min (range, 55-180 min). There was no conversion to open surgery. The median stay in the hospital was 4 d (range, 2-7 d). There were no leaks or any other major complications in the postoperative period. Concomitant revisional procedure after removal of gastric band is safe and feasible. The operative technique followed at our center has had an extremely low postoperative morbidity rate and a 0% leak rate. © 2010 Japan Society for Endoscopic Surgery, Asia Endosurgery Task Force and Blackwell Publishing Asia Pty Ltd.
Clinical validation of robot simulation of toothbrushing - comparative plaque removal efficacy
2014-01-01
Background Clinical validation of laboratory toothbrushing tests has important advantages. It was, therefore, the aim to demonstrate correlation of tooth cleaning efficiency of a new robot brushing simulation technique with clinical plaque removal. Methods Clinical programme: 27 subjects received dental cleaning prior to 3-day-plaque-regrowth-interval. Plaque was stained, photographically documented and scored using planimetrical index. Subjects brushed teeth 33–47 with three techniques (horizontal, rotating, vertical), each for 20s buccally and for 20s orally in 3 consecutive intervals. The force was calibrated, the brushing technique was video supported. Two different brushes were randomly assigned to the subject. Robot programme: Clinical brushing programmes were transfered to a 6-axis-robot. Artificial teeth 33–47 were covered with plaque-simulating substrate. All brushing techniques were repeated 7 times, results were scored according to clinical planimetry. All data underwent statistical analysis by t-test, U-test and multivariate analysis. Results The individual clinical cleaning patterns are well reproduced by the robot programmes. Differences in plaque removal are statistically significant for the two brushes, reproduced in clinical and robot data. Multivariate analysis confirms the higher cleaning efficiency for anterior teeth and for the buccal sites. Conclusions The robot tooth brushing simulation programme showed good correlation with clinically standardized tooth brushing. This new robot brushing simulation programme can be used for rapid, reproducible laboratory testing of tooth cleaning. PMID:24996973
Clinical validation of robot simulation of toothbrushing--comparative plaque removal efficacy.
Lang, Tomas; Staufer, Sebastian; Jennes, Barbara; Gaengler, Peter
2014-07-04
Clinical validation of laboratory toothbrushing tests has important advantages. It was, therefore, the aim to demonstrate correlation of tooth cleaning efficiency of a new robot brushing simulation technique with clinical plaque removal. Clinical programme: 27 subjects received dental cleaning prior to 3-day-plaque-regrowth-interval. Plaque was stained, photographically documented and scored using planimetrical index. Subjects brushed teeth 33-47 with three techniques (horizontal, rotating, vertical), each for 20s buccally and for 20s orally in 3 consecutive intervals. The force was calibrated, the brushing technique was video supported. Two different brushes were randomly assigned to the subject. Robot programme: Clinical brushing programmes were transfered to a 6-axis-robot. Artificial teeth 33-47 were covered with plaque-simulating substrate. All brushing techniques were repeated 7 times, results were scored according to clinical planimetry. All data underwent statistical analysis by t-test, U-test and multivariate analysis. The individual clinical cleaning patterns are well reproduced by the robot programmes. Differences in plaque removal are statistically significant for the two brushes, reproduced in clinical and robot data. Multivariate analysis confirms the higher cleaning efficiency for anterior teeth and for the buccal sites. The robot tooth brushing simulation programme showed good correlation with clinically standardized tooth brushing.This new robot brushing simulation programme can be used for rapid, reproducible laboratory testing of tooth cleaning.
Yilmaz, Ayca; Helvacioglu-Yigit, Dilek; Gur, Cansu; Ersev, Handan; Kiziltas Sendur, Gullu; Avcu, Egemen; Baydemir, Canan; Abbott, Paul Vincent
2017-01-01
The purpose of this study was to compare the incidence and longitudinal propagation of dentin defects after gutta-percha removal with hand and rotary instruments using microcomputed tomography. Twenty mandibular incisors were prepared using the balanced-force technique and scanned in a 19.9 μ m resolution. Following filling with the lateral compaction technique, gutta-percha was removed with ProTaper Universal Retreatment (PTUR) or hand instruments. After rescanning, a total of 24,120 cross-sectional images were analyzed. The numbers, types, and longitudinal length changes of defects were recorded. Defects were observed in 36.90% of the cross sections. A total of 73 defects were comprised of 87.67% craze lines, 2.73% partial cracks, and 9.58% fractures. No significant difference in terms of new defect formation was detected between the retreatment groups. The apical and middle portions of the roots had more dentin defects than the coronal portions. Defects in three roots of the PTUR instrument group increased in length. Under the conditions of this in vitro study, gutta-percha removal seemed to not increase the incidence of dentin defect formation, but the longitudinal defect propagation finding suggests possible cumulative dentinal damage due to additional endodontic procedures. Hand and rotary instrumentation techniques caused similar dentin defect formation during root canal retreatment.
The restoration of obliterated stamped serial numbers by ultrasonically induced cavitation in water
NASA Technical Reports Server (NTRS)
Young, S. G.
1973-01-01
Seventeen out of 21 obliterated stamped serial numbers on test specimens of copper, brass, steel, and aluminum were successfully restored. Cavitation induced in water by a piezoelectric transducer was the mechanism used. Primarily, smeared metal was removed from the number grooves by the force of the cavitation, however, numbers were also restored at depths at or below the level of the stamped grooves. The feasibility of this technique as a low cost tool for crime laboratories has been clearly demonstrated. The technique is applicable to a variety of materials, and no previous surface or chemical treatments are necessary.
Final Design for a Comprehensive Orbital Debris Management Program
NASA Technical Reports Server (NTRS)
1990-01-01
The rationale and specifics for the design of a comprehensive program for the control of orbital debris, as well as details of the various components of the overall plan, are described. The problem of orbital debris has been steadily worsening since the first successful launch in 1957. The hazards posed by orbital debris suggest the need for a progressive plan for the prevention of future debris, as well as the reduction of the current debris level. The proposed debris management plan includes debris removal systems and preventative techniques and policies. The debris removal is directed at improving the current debris environment. Because of the variance in sizes of debris, a single system cannot reasonably remove all kinds of debris. An active removal system, which deliberately retrieves targeted debris from known orbits, was determined to be effective in the disposal of debris tracked directly from earth. However, no effective system is currently available to remove the untrackable debris. The debris program is intended to protect the orbital environment from future abuses. This portion of the plan involves various environment from future abuses. This portion of the plan involves various methods and rules for future prevention of debris. The preventative techniques are protective methods that can be used in future design of payloads. The prevention policies are rules which should be employed to force the prevention of orbital debris.
Markolf, Keith L; Jackson, Steven R; McAllister, David R
2012-02-01
Tears of the medial meniscus posterior horn attachment (PHA) occur clinically, and an anterior cruciate ligament (ACL)-deficient knee may be more vulnerable to this injury. The PHA forces from applied knee loadings will increase after removal of the ACL. Controlled laboratory study. A cap of bone containing the medial meniscus PHA was attached to a load cell that measured PHA tensile force. Posterior horn attachment forces were recorded before and after ACL removal during anteroposterior (AP) laxity testing at ±200 N and during passive knee extension tests with 5 N·m tibial torque and varus-valgus moment. Selected tests were also performed with 500 N joint load. For AP tests with no joint load, ACL removal increased laxity between 0° and 90° and increased PHA force generated by applied anterior tibial force between 30° and 90°. For AP tests with an intact ACL, application of joint load approximately doubled PHA forces. Anteroposterior testing of ACL-deficient knees was not possible with joint load because of bone cap failures from high PHA forces. Removal of the ACL during knee extension tests under joint load significantly increased PHA forces between 20° and 90° of flexion. For unloaded tests with applied tibial torque and varus-valgus moment, ACL removal had no significant effect on PHA forces. Applied anterior tibial force and external tibial torque were loading modes that produced relatively high PHA forces, presumably by impingement of the medial femoral condyle against the medial meniscus posterior horn rim. Under joint load, an ACL-deficient knee was particularly susceptible to PHA injury from applied anterior tibial force. Because tensile forces developed in the PHA are also borne by meniscus tissue near the attachment site, loading mechanisms that produce high PHA forces could also produce complete or partial radial tears near the posterior horn, a relatively common clinical observation.
Dehzangi, Arash; Larki, Farhad; Hutagalung, Sabar D.; Goodarz Naseri, Mahmood; Majlis, Burhanuddin Y.; Navasery, Manizheh; Hamid, Norihan Abdul; Noor, Mimiwaty Mohd
2013-01-01
In this letter, we investigate the fabrication of Silicon nanostructure patterned on lightly doped (1015 cm−3) p-type silicon-on-insulator by atomic force microscope nanolithography technique. The local anodic oxidation followed by two wet etching steps, potassium hydroxide etching for silicon removal and hydrofluoric etching for oxide removal, are implemented to reach the structures. The impact of contributing parameters in oxidation such as tip materials, applying voltage on the tip, relative humidity and exposure time are studied. The effect of the etchant concentration (10% to 30% wt) of potassium hydroxide and its mixture with isopropyl alcohol (10%vol. IPA ) at different temperatures on silicon surface are expressed. For different KOH concentrations, the effect of etching with the IPA admixture and the effect of the immersing time in the etching process on the structure are investigated. The etching processes are accurately optimized by 30%wt. KOH +10%vol. IPA in appropriate time, temperature, and humidity. PMID:23776479
The combination of electrospray and flow focusing
NASA Astrophysics Data System (ADS)
Gañán-Calvo, Alfonso M.; López-Herrera, José M.; Riesco-Chueca, Pascual
2006-11-01
An ultra-fine liquid atomization procedure combining the advantages of electrospray and flow focusing is presented. Both techniques are known to produce strikingly small and steady liquid micro-jets issuing from menisci held by capillary forces. Such menisci take the form of a cusp-like drop attached to the feeding tube (flow focusing: FF) or a Taylor cone (electrospray: ES). The issuing micro-jets are forced or ‘sucked’ from the parent meniscus either by pressure or electrohydrodynamic forces. Subsequent capillary breakup of the jet leads to fine sprays of remarkable quality. Here we describe the joint effect of pressurization and electrification in a flow focusing device, and the subsequent coupling of both ES and FF phenomena. For any given liquid and flow rate, the combined procedure gives rise to significantly smaller droplet sizes than observed in any of the source techniques. The co-flowing gas stream removes space charges; in addition, the perforated plate facing the feed tube provides an electric barrier, shielding the jet-meniscus or ‘production’ area from the spray or ‘product’ area. As a result, space charges and electrified droplets are removed from the production area, thus avoiding the ambient electric saturation which becomes a limiting factor in ES-spraying: a significantly enhanced spraying stability ensues, with a much wider operation range than FF or ES. Other unexpected outcomes from the combination are also shown. A theoretical model is developed to predict the emitted droplet size: a first integral of the momentum equation yielding a generalized Bernoulli equation, and an explicit approximation for the jet diameter and droplet size, accurate within a broad parametrical band.
Correlation of impression removal force with elastomeric impression material rigidity and hardness.
Walker, Mary P; Alderman, Nick; Petrie, Cynthia S; Melander, Jennifer; McGuire, Jacob
2013-07-01
Difficult impression removal has been linked to high rigidity and hardness of elastomeric impression materials. In response to this concern, manufacturers have reformulated their materials to reduce rigidity and hardness to decrease removal difficulty; however, the relationship between impression removal and rigidity or hardness has not been evaluated. The purpose of this study was to determine if there is a positive correlation between impression removal difficulty and rigidity or hardness of current elastomeric impression materials. Light- and medium-body polyether (PE), vinylpolysiloxane (VPS), and hybrid vinyl polyether siloxane (VPES) impression materials were tested (n = 5 for each material/consistency/test method). Rigidity (elastic modulus) was measured via tensile testing of dumbbell-shaped specimens (Die C, ASTM D412). Shore A hardness was measured using disc specimens according to ASTM D2240-05 test specifications. Impressions were also made of a custom stainless steel model using a custom metal tray that could be attached to a universal tester to measure associated removal force. Within each impression material consistency, one-factor ANOVA and Tukey's post hoc analyses (α = 0.05) were used to compare rigidity, hardness, and removal force of the three types of impression materials. A Pearson's correlation (α = 0.05) was used to evaluate the association between impression removal force and rigidity or hardness. With medium-body materials, VPS exhibited significantly higher (p ≤ 0.05) rigidity and hardness than VPES or PE, while PE impressions required significantly higher (p ≤ 0.05) removal force than VPS or VPES impressions. With light-body materials, VPS again demonstrated significantly higher (p ≤ 0.05) hardness than VPES or PE, while the rigidity of the light-body materials did not significantly differ between materials (p > 0.05); however, just as with the medium-body materials, light-body PE impressions required significantly higher (p ≤ 0.05) removal force than VPS or VPES. Moreover, there was no positive correlation (p > 0.05) between impression removal force and rigidity or hardness with either medium- or light-body materials. The evidence suggests that high impression material rigidity and hardness are not predictors of impression removal difficulty. © 2013 by the American College of Prosthodontists.
Gandyra, Daniel; Gorb, Stanislav; Barthlott, Wilhelm
2015-01-01
Summary We report a novel, practical technique for the concerted, simultaneous determination of both the adhesion force of a small structure or structural unit (e.g., an individual filament, hair, micromechanical component or microsensor) to a liquid and its elastic properties. The method involves the creation and development of a liquid meniscus upon touching a liquid surface with the structure, and the subsequent disruption of this liquid meniscus upon removal. The evaluation of the meniscus shape immediately before snap-off of the meniscus allows the quantitative determination of the liquid adhesion force. Concurrently, by measuring and evaluating the deformation of the structure under investigation, its elastic properties can be determined. The sensitivity of the method is remarkably high, practically limited by the resolution of the camera capturing the process. Adhesion forces down to 10 µN and spring constants up to 2 N/m were measured. Three exemplary applications of this method are demonstrated: (1) determination of the water adhesion force and the elasticity of individual hairs (trichomes) of the floating fern Salvinia molesta. (2) The investigation of human head hairs both with and without functional surface coatings (a topic of high relevance in the field of hair cosmetics) was performed. The method also resulted in the measurement of an elastic modulus (Young’s modulus) for individual hairs of 3.0 × 105 N/cm2, which is within the typical range known for human hair. (3) Finally, the accuracy and validity of the capillary adhesion technique was proven by examining calibrated atomic force microscopy cantilevers, reproducing the spring constants calibrated using other methods. PMID:25671147
Aguirrebeitia, Josu; Abasolo, Mikel; Müftü, Sinan; Vallejo, Javier
2017-04-01
A previous study investigated the effects of the preload and taper-angle mismatch in tapered implant systems on the removal force characteristics of the self-locking mechanism. The present study builds upon the previous one and introduces the effects of the time elapsed between insertion and removal and the presence of saliva in the implant-abutment interface as 2 new additional parameters. The purpose of this in vitro study was to elucidate the influences of design and clinical parameters on the removal force for implant systems that use tapered interference fit (TIF) type connections by measuring the force needed to remove an abutment from an implant. Ninety-six implants with tapered abutment-implant interfaces specifically built for an unreplicated factorial design were tested on a custom-built workbench for removal force. Four levels were chosen for the preload, F P , and the taper mismatch Δθ; 3 levels for the wait time t; and 2 levels for the saliva presence s at the interface. A regression model was used based on physical reasoning and a theoretical understanding of the interface. A 4-way ANOVA was used to evaluate the influence of the main effects and interactions (α=.05). The experiments strongly indicated that preload, taper mismatch, and saliva presence are relevant variables in removal force. The wait time becomes important when its effect is evaluated along with the preload. The results of this study can be used for decision making in the design and use of TIF type systems. The study supports the use of artificial saliva in any implant design experiment because of its significance in the removal force of the abutment. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Wang, Zengwei; Zhu, Ping; Zhao, Jianxuan
2017-02-01
In this paper, the prediction capabilities of the Global Transmissibility Direct Transmissibility (GTDT) method are further developed. Two path blocking techniques solely using the easily measured variables of the original system to predict the response of a path blocking system are generalized to finite element models of continuous systems. The proposed techniques are derived theoretically in a general form for the scenarios of setting the response of a subsystem to zero and of removing the link between two directly connected subsystems. The objective of this paper is to verify the reliability of the proposed techniques by finite element simulations. Two typical cases, the structural vibration transmission case and the structure-borne sound case, in two different configurations are employed to illustrate the validity of proposed techniques. The points of attention for each case have been discussed, and conclusions are given. It is shown that for the two cases of blocking a subsystem the proposed techniques are able to predict the new response using measured variables of the original system, even though operational forces are unknown. For the structural vibration transmission case of removing a connector between two components, the proposed techniques are available only when the rotational component responses of the connector are very small. The proposed techniques offer relative path measures and provide an alternative way to deal with NVH problems. The work in this paper provides guidance and reference for the engineering application of the GTDT prediction techniques.
NASA Astrophysics Data System (ADS)
Miao, Chunlin; Lambropoulos, John C.; Romanofsky, Henry; Shafrir, Shai N.; Jacobs, Stephen D.
2009-08-01
Magnetorheological finishing (MRF) is a sub-aperture deterministic process for fabricating high-precision optics by removing material and smoothing the surface. The goal of this work is to study the relative contribution of nanodiamonds and water in material removal for MRF of aluminum oxynitride ceramic (ALON) based upon a nonaqueous magnetorheological (MR) fluid. Removal was enhanced by a high carbonyl iron concentration and the addition of nanodiamond abrasives. Small amounts of deionized (DI) water were introduced into the nonaqueous MR fluid to further influence the material removal process. Material removal data were collected with a spot-taking machine. Drag force (Fd) and normal force (Fn) before and after adding nanodiamonds or DI water were measured with a dual load cell. Both drag force and normal force were insensitive to the addition of nanodiamonds but increased with DI water content in the nonaqueous MR fluid. Shear stress (i.e., drag force divided by spot area) was calculated, and examined as a function of nanodiamond concentration and DI water concentration. Volumetric removal rate increased with increasing shear stress, which was shown to be a result of increasing viscosity after adding nanodiamonds and DI water. This work demonstrates that removal rate for a hard ceramic with MRF can be enhanced by adding DI water into a nonaqueous MR fluid.
Method and apparatus for removal of gaseous, liquid and particulate contaminants from molten metals
Hobson, D.O.; Alexeff, I.; Sikka, V.K.
1987-08-10
Method and apparatus for removal of nonelectrically-conducting gaseous, liquid, and particulate contaminants from molten metal compositions by applying a force thereto. The force (commonly referred to as the Lorentz Force) exerted by simultaneous application of an electric field and a magnetic field on a molten conductor causes an increase, in the same direction as the force, in the apparent specific gravity thereof, but does not affect the nonconducting materials. This difference in apparent densities cause the nonconducting materials to ''float'' in the opposite direction from the Lorentz Force at a rapid rate. Means are further provided for removal of the contaminants and prevention of stirring due to rotational forces generated by the applied fields. 6 figs.
Method and apparatus for removal of gaseous, liquid and particulate contaminants from molten metals
Hobson, David O.; Alexeff, Igor; Sikka, Vinod K.
1988-01-01
Method and apparatus for removal of nonelectrically-conducting gaseous, liquid, and particulate contaminants from molten metal compositions by applying a force thereto. The force (commonly referred to as the Lorentz Force) exerted by simultaneous application of an electric field and a magnetic field on a molten conductor causes an increase, in the same direction as the force, in the apparent specific gravity thereof, but does not affect the nonconducting materials. This difference in apparent densities cause the nonconducting materials to "float" in the opposite direction from the Lorentz Force at a rapid rate. Means are further provided for removal of the contaminants and prevention of stirring due to rotational forces generated by the applied fields.
Plasma Radiofrequency Discharges as Cleaning Technique for the Removal of C-W Coatings
NASA Astrophysics Data System (ADS)
Cremona, A.; Vassallo, E.; Caniello, R.; Ghezzi, F.; Grosso, G.; Laguardia, L.
2013-06-01
Erosion of materials by chemical and physical sputtering is one of the most concern of plasma wall interaction in tokamaks. In divertor ITER-like tokamaks, where carbon and tungsten are planned to be used, hydrogenated C-W mixed compounds are expected to form by erosion, transport and re-deposition processes. The selection of these materials as divertor components involves lifetime and safety issues due to tritium retention in carbon co-deposits. In this paper a cleaning technique based on RF (13.56 MHz) capacitively coupled H2/Ar plasmas has been used to remove C-W mixed materials from test specimens. The dependence of the removal rate on the H2/Ar ratio and on the plasma pressure has been investigated by X-ray photoelectron spectroscopy, atomic force microscopy, profilometry as regards the solid phase and by Langmuir probe and optical emission spectroscopy as regards the plasma phase. The best result has been obtained with a H2/Ar ratio of 10/90 at a pressure of 1 Pa. An explanation based on a synergistic effect between physical sputtering due to energetic ions and chemical etching due to radicals, together with the pressure dependence of the ion energy distribution function, is given.
Innovative Techniques to Model, Analyze and Monitor Space Effects on Air Force Space-Based Systems
2010-03-20
of Comets in the Heliosphere as Observed by SMEI 4 2.8. Zodiacal Light Observations and Modeling 5 2.9. Space Weather Forecasting Lab (SWFL...This research resulted in two publications and a presentation at the 2007 American Geophysical Union Fall Meeting. 2.8. Zodiacal Light Observations...and Modeling One of the backgrounds removed from SMEI imagery is the scattered zodiacal light from solar system dust. The zodiacal light has
NASA Technical Reports Server (NTRS)
Villareal, J.; Mallery, E.; Lynch, A.; Mills, N.; Baer, L.; Wade, C.; Ronca, A.; Dalton, Donnie (Technical Monitor)
2002-01-01
During labor and birth, fetuses are exposed to considerable physical stimulation associated with labor contractions and expulsion from the womb These forces are important for the neonates' adaptation to tile extrauterine environment. To further our understanding of the relationship between labor and postpartum outcome, we developed a novel method for measuring intrauterine pressure (IUP) in freely-moving, late pregnant and parturient rats that enables us to make precise, reliable measures of the forces experienced by rat fetuses during parturition. A small (1.25 x 4 cm) telemetric blood pressure sensor was fitted within a fluid-filled balloon, similar in size to a full term rat fetus. On Gestational day (G) 19 of the rats' 22/23 day pregnancy, each dam was anesthetized and a balloon/sensor unit surgically implanted within the uterus following removal of two fetuses. Comparisons were made between sensor-implanted dams (IMPL) and a control conditions: 1) LAP-R, laparotomy with two fetuses removed or 2) LAP-NR, laparotomy with no fetuses removed. IUP signals were sampled at 10s intervals from the IMPL dams during labor and birth. Dams in all three conditions were videorecorded enabling us to analyze the effect of the implant on behavioral expressions of parturition. Contraction frequency, duration, pup-to-pup birth intervals and pup-oriented activities of the dams measured from one hour prior to the first pup birth until the birth of the third pup were unaffected by the sensor implant. Intrauterine telemetry of freely-moving dams offers significant advantages over conventional hardwired IUP measurement techniques. These findings establish and validate intrauterine telemetry as a reliable, non-invasive technique for quantifying pressures associated with parturition.
Hao, Zhichao; Chao, Yonglie; Meng, Yukun; Yin, Hongmin
2014-08-01
Magnetic attachments are widely used in overdentures and maxillofacial prostheses. Because the patient will routinely have to insert and remove a removable prosthesis, the retentive force and magnetic flux leakage of the magnetic attachments after repeated insertion and removal must be evaluated to assess their clinical performance. The purpose of this in vitro study was to investigate the retentive force and flux leakage of magnetic attachments after repeated insertion and removal. Magfit EX600W magnet-keeper combinations (n=5) were used in this study. After 5000, 10,000, and 20,000 insertion-removal cycles, the retentive force of the magnetic attachments was measured 5 times at a crosshead speed of 5 mm/min with a universal testing machine. Magnetic flux leakage at 3 positions (P1, the upper surface of the magnet; P2, the lower surface of the keeper; and P3, the lateral side of the magnetic attachment set) was evaluated with a gaussmeter. Data were statistically analyzed by 1-way ANOVA (α=.05). The morphology of the abraded surfaces for both the magnet and the keeper was observed with an optical microscope (5×). The mean retentive force decreased significantly after 5000, 10,000, and 20,000 insertion-removal movements (P<.05). Significant differences of flux leakage were also observed at P1 after 5000 cycles and 10,000 cycles, at P2 after 5000 cycles, and at P3 after 5000, 10,000, and 20,000 insertion-removal cycles (P < .05). However, no significant differences in flux leakage were evident after 20,000 cycles at P1 and 10,000 cycles and 20,000 cycles at P2. Repeated insertion and removal influenced the retentive force and magnetic flux leakage of the magnetic attachments. Retentive force decreased significantly after repeated insertion-removal cycles, whereas the variation of magnetic flux leakage depended on refitting cycles and positions of the magnetic attachments. Copyright © 2014 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
Dykes, P J; Heggie, R
2003-07-01
The study compared the level of discomfort experienced by healthy volunteers on the removal of a range of adhesive wounds. This was an open, within subject comparative study of six adhesive dressings in 24 volunteers. The test site was the lower back. Allocation of test materials to the test sites was randomised. The peel force of removal was recorded after 24 hours of application using a device that removed the dressing at a constant speed and angle to the skin surface. The discomfort experienced at each removal was assessed by the subjects themselves using an electronic visual analogue scale. Overall, Mepilex Border was given a significantly lower discomfort score (p < or = 0.01) by the subjects than the other dressings. There were no clear differences between the five other products tested. Tielle and Allevyn Adhesive had significantly higher (p < or = 0.05) peel force than the other products. Mepilex Border caused less discomfort on removal than Duoderm Extra Thin, Biatain and Versiva, even though the peel force was similar. Tielle and Allevyn had higher peel force, but the levels of discomfort were not significantly higher for these products. It may be that the level of discomfort experienced by subjects on removal of an adhesive dressing is not entirely dependent on the peel force and that other aspects of the interaction of the skin surface and adhesive play a role.
Greenhouse Gas Emissions from Three Cage Layer Housing Systems
Fournel, Sébastien; Pelletier, Frédéric; Godbout, Stéphane; Lagacé, Robert; Feddes, John
2011-01-01
Simple Summary Greenhouse gas (GHG) emissions were measured from three different cage layer housing systems. A comparative study was conducted to identify the housing system with the least impact on the environment. The results showed that liquid manure from deep-pit housing systems produces greater emissions of carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) than natural and forced dried manure from belt housing systems. The influencing factors appeared to be the manure removal frequency and the dry matter content of the manure. Abstract Agriculture accounts for 10 to 12% of the World’s total greenhouse gas (GHG) emissions. Manure management alone is responsible for 13% of GHG emissions from the agricultural sector. During the last decade, Québec’s egg production systems have shifted from deep-pit housing systems to manure belt housing systems. The objective of this study was to measure and compare carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) emissions from three different cage layer housing systems: a deep liquid manure pit and a manure belt with natural or forced air drying. Deep liquid manure pit housing systems consist of “A” frame layer cages located over a closed pit containing the hens’ droppings to which water is added to facilitate removal by pumping. Manure belt techniques imply that manure drops on a belt beneath each row of battery cages where it is either dried naturally or by forced air until it is removed. The experiment was replicated with 360 hens reared into twelve independent bench-scale rooms during eight weeks (19–27 weeks of age). The natural and forced air manure belt systems reduced CO2 (28.2 and 28.7 kg yr−1 hen−1, respectively), CH4 (25.3 and 27.7 g yr−1 hen−1, respectively) and N2O (2.60 and 2.48 g yr−1 hen−1, respectively) emissions by about 21, 16 and 9% in comparison with the deep-pit technique (36.0 kg CO2 yr−1 hen−1, 31.6 g CH4 yr−1 hen−1 and 2.78 g N2O yr−1 hen−1). The shift to manure belt systems needs to be encouraged since this housing system significantly decreases the production of GHG. PMID:26486772
Nanobubbles do not sit alone at the solid-liquid interface.
Peng, Hong; Hampton, Marc A; Nguyen, Anh V
2013-05-21
The unexpected stability and anomalous contact angle of gaseous nanobubbles at the hydrophobic solid-liquid interface has been an issue of debate for almost two decades. In this work silicon-nitride tipped AFM cantilevers are used to probe the highly ordered pyrolytic graphite (HOPG)-water interface with and without solvent-exchange (a common nanobubble production method). Without solvent-exchange the force obtained by the single force and force mapping techniques is consistent over the HOPG atomic layers and described by DLVO theory (strong EDL repulsion). With solvent-exchange the force is non-DLVO (no EDL repulsion) and the range of the attractive jump-in (>10 nm) over the surface is grouped into circular areas of longer range, consistent with nanobubbles, and the area of shorter range. The non-DLVO nature of the area between nanobubbles suggests that the interaction is no longer between a silicon-nitride tip and HOPG. Interfacial gas enrichment (IGE) covering the entire area between nanobubbles is suggested to be responsible for the non-DLVO forces. The absence of EDL repulsion suggests that both IGE and nanobubbles are not charged. The coexistence of nanobubbles and IGE provides further evidence of nanobubble stability by dynamic equilibrium. The IGE cannot be removed by contact mode scanning of a cantilever tip in pure water, but in a surfactant (SDS) solution the mechanical action of the tip and the chemical action of the surfactant molecules can successfully remove the enrichment. Strong EDL repulsion between the tip and nanobubbles/IGE in surfactant solutions is due to the polar heads of the adsorbed surfactant molecules.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boyd, J.L.
1996-08-01
As of December 1995, the manufacture of Freon, along with many other chlorofluorocarbons (CFCs), was prohibited by the Clean Air Act of 1990 (CAA). The ban of CFC solvents has forced manufacturers across the country to search for alternative metal cleaning techniques. The objective of this study was to develop a thorough, scientific based approach for resolving one specific manufacturer`s problem of removing organic contamination from a stainless steel part. This objective was accomplished with an approach that involved: (1) defining the problem, (2) identifying the process constraints, (3) researching alternate cleaning methods, (4) researching applicable government regulations, (5) performingmore » a scientific evaluation and (6) drawing conclusions.« less
Effect of muscle restraint on sheep meat tenderness with rigor mortis at 18°C.
Devine, Carrick E; Payne, Steven R; Wells, Robyn W
2002-02-01
The effect on shear force of skeletal restraint and removing muscles from lamb m. longissimus thoracis et lumborum (LT) immediately after slaughter and electrical stimulation was undertaken at a rigor temperature of 18°C (n=15). The temperature of 18°C was achieved through chilling of electrically stimulated sheep carcasses in air at 12°C, air flow 1-1.5 ms(-2). In other groups, the muscle was removed at 2.5 h post-mortem and either wrapped or left non-wrapped before being placed back on the carcass to follow carcass cooling regimes. Following rigor mortis, the meat was aged for 0, 16, 40 and 65 h at 15°C and frozen. For the non-stimulated samples, the meat was aged for 0, 12, 36 and 60 h before being frozen. The frozen meat was cooked to 75°C in an 85°C water bath and shear force values obtained from a 1 × 1 cm cross-section. Commencement of ageing was considered to take place at rigor mortis and this was taken as zero aged meat. There were no significant differences in the rate of tenderisation and initial shear force for all treatments. The 23% cook loss was similar for all wrapped and non-wrapped situations and the values decreased slightly with longer ageing durations. Wrapping was shown to mimic meat left intact on the carcass, as it prevented significant prerigor shortening. Such techniques allows muscles to be removed and placed in a controlled temperature environment to enable precise studies of ageing processes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miao, C.; Lambropoulos, J.C.; Romanofsky, H.
2010-01-13
Magnetorheological finishing (MRF) is a sub-aperture deterministic process for fabricating high-precision optics by removing material and smoothing the surface. The goal of this work is to study the relative contribution of nanodiamonds and water in material removal for MRF of aluminum oxynitride ceramic (ALON) based upon a nonaqueous magnetorheological (MR) fluid. Removal was enhanced by a high carbonyl iron concentration and the addition of nanodiamond abrasives. Small amounts of deionized (DI) water were introduced into the nonaqueous MR fluid to further influence the material removal process. Material removal data were collected with a spot-taking machine. Drag force (Fd) and normalmore » force (Fn) before and after adding nanodiamonds or DI water were measured with a dual load cell. Both drag force and normal force were insensitive to the addition of nanodiamonds but increased with DI water content in the nonaqueous MR fluid. Shear stress (i.e., drag force divided by spot area) was calculated, and examined as a function of nanodiamond concentration and DI water concentration. Volumetric removal rate increased with increasing shear stress, which was shown to be a result of increasing viscosity after adding nanodiamonds and DI water. This work demonstrates that removal rate for a hard ceramic with MRF can be enhanced by adding DI water into a nonaqueous MR fluid.« less
NASA Astrophysics Data System (ADS)
Russano, G.; Cavalleri, A.; Cesarini, A.; Dolesi, R.; Ferroni, V.; Gibert, F.; Giusteri, R.; Hueller, M.; Liu, L.; Pivato, P.; Tu, H. B.; Vetrugno, D.; Vitale, S.; Weber, W. J.
2018-02-01
LISA Pathfinder is a differential accelerometer with the main goal being to demonstrate the near perfect free-fall of reference test masses, as is needed for an orbiting gravitational wave observatory, with a target sensitivity of 30 fm s‑2 Hz-1/2 at 1 mHz. Any lasting background differential acceleration between the two test masses must be actively compensated, and noise associated with the applied actuation force can be a dominant source of noise. To remove this actuation, and the associated force noise, a ‘free-fall’ actuation control scheme has been designed; actuation is limited to brief impulses, with both test masses in free-fall in the time between the impulses, allowing measurement of the remaining acceleration noise sources. In this work, we present an on-ground torsion pendulum testing campaign of this technique and associated data analysis algorithms at a level nearing the sub-femto-g/\\sqrtHz performance required for LISA Pathfinder.
Rodrigues, Renata Cristina Silveira; Ribeiro, Ricardo Faria; de Mattos, Maria da Gloria Chiarello; Bezzon, Osvaldo Luiz
2002-09-01
The interest in using titanium to fabricate removable partial denture (RPD) frameworks has increased, but there are few studies to support its use. The objective of this study was to compare circumferential RPD clasps made of commercially pure titanium and identical clasps made of 2 different cobalt (Co)-chromium (Cr) alloys by testing insertion/removal and radiographically inspecting the casts for defects. On refractory casts that represent a partially edentulous mandibular right hemi-arch segment, 36 frameworks were cast from commercially pure titanium (n = 12) and 2 Co-Cr alloys (n = 12 each) with identical prefabricated patterns and the manufacturer-designated investment and casting technique. Each group was divided into 2 subgroups, corresponding to .25-mm and .50-mm undercuts, respectively. No polishing procedures were performed to ensure uniformity. Only nodules and burs were carefully removed with tungsten burs under magnification when necessary. The specimens were radiographed and subjected to an insertion/removal test simulating 5 years of framework use. The data were subjected to analysis of variance and the Tukey complementary test (P<.01) to compare the retentive forces of RPDs made with the different materials. The Student t test (P<.01) was used to compare the retentive forces of RPDs fabricated with the same alloy with different undercuts. A total of 20% of the titanium specimens demonstrated porosity, showing casting difficulties, and any defect detected on the clasps determined the sample replacement. For Co-Cr alloys, casting difficulties were not found. The data were subjected to analysis of variance and the Tukey complementary test to compare materials for the same undercut. For the .25-mm undercut, no significant difference was found between Magnum and Rematitan alloys; they were both different from the Remanium alloy (P<.01). For the.50-mm undercut, no significant difference was found between Co-Cr alloys; they were both different from Rematitan alloy (P<.01). The Student t test used to compare the same alloys with different undercuts showed no significant difference between Remanium with .25-mm and .50-mm undercuts. For Magnum and Rematitan alloys, there was a significant difference between different undercuts (P=.01). Within the limitations of this simulation study, the results suggest that commercially pure titanium clasps maintained retention over a simulated 5-year period, with lower retention force than identical Co-Cr clasps.
Forced Child Removal and the Politics of National Apologies in Australia
ERIC Educational Resources Information Center
Cuthbert, Denise; Quartly, Marian
2013-01-01
Inquiries into the removal and mistreatment of Indigenous and non-Indigenous children, national regret, and national apologies constitute a congested political landscape in contemporary Australia. Within two years, two formal apologies were delivered by the prime minister, Kevin Rudd, to individuals who had suffered forced removal from family and…
A novel method for producing low cost dynamometric wheels based on harmonic elimination techniques
NASA Astrophysics Data System (ADS)
Gutiérrez-López, María D.; García de Jalón, Javier; Cubillo, Adrián
2015-02-01
A method for producing low cost dynamometric wheels is presented in this paper. For carrying out this method, the metallic part of a commercial wheel is instrumented with strain gauges, which must be grouped in at least three circumferences and in equidistant radial lines. The strain signals of the same circumference are linearly combined to obtain at least two new signals that only depend on the tyre/road contact forces and moments. The influence of factors like the angle rotated by the wheel, the temperature or the centrifugal forces is eliminated in them by removing the continuous component and the largest possible number of harmonics, except the first or the second one, of the strain signals. The contact forces and moments are obtained from these new signals by solving two systems of linear equations with three unknowns each. This method is validated with some theoretical and experimental examples.
Durkan, C; Wang, N
2014-12-01
To investigate the effect of different washing regimes on the surface of human hair at the nanometre scale - comparable to the size of typical deposits left behind by commercial products. Atomic force microscopy (AFM) and related techniques. It can be directly seen that washing hair using commercial hair care products removes deposits that naturally form on the shaft, revealing the underlying structure of the hair, whereas in many cases leaving new deposits behind. The spatial distribution of these deposits is explored and quantified. The spatial distribution of the surface charge of pristine hair is mapped, and the electrical screening effect of deposits is directly observed. We also show that the roughness of the treated hair depends directly on the type of product used, with a marked difference between shampoo and conditioner. Some products leave isolated deposits behind, whereas others leave layers of material behind which wet the hair surface. Atomic force microscopy and the related techniques we have employed in a forensic approach is able to distinguish between different hair care products on the basis of the deposits they leave behind. This opens up the capability of further analysis tools to complement already existing techniques. © 2014 Society of Cosmetic Scientists and the Société Française de Cosmétologie.
Real-time augmented feedback benefits robotic laparoscopic training.
Judkins, Timothy N; Oleynikov, Dmitry; Stergiou, Nick
2006-01-01
Robotic laparoscopic surgery has revolutionized minimally invasive surgery for treatment of abdominal pathologies. However, current training techniques rely on subjective evaluation. There is a lack of research on the type of tasks that should be used for training. Robotic surgical systems also do not currently have the ability to provide feedback to the surgeon regarding success of performing tasks. We trained medical students on three laparoscopic tasks and provided real-time feedback of performance during training. We found that real-time feedback can benefit training if the feedback provides information that is not available through other means (grip force). Subjects that received grip force feedback applied less force when the feedback was removed. Other forms of feedback (speed and relative phase) did not aid or impede training. Secondly, a relatively short training period (10 trials for each task) significantly improved most objective measures of performance. We also showed that robotic surgical performance can be quantitatively measured and evaluated. Providing grip force feedback can make the surgeon more aware of the forces being applied to delicate tissue during surgery.
Wang, Liqun; Chen, Tangting; Zhou, Xiang; Huang, Qiaobing; Jin, Chunhua
2013-08-01
We applied atomic force microscopy (AFM) to observe lipopolysaccharide (LPS)-induced intracellular cytoskeleton reorganization in primary cardiomyocytes from neonatal mouse. The nonionic detergent Triton X-100 was used to remove the membrane, soluble proteins, and organelles from the cell. The remaining cytoskeleton can then be directly visualized by AFM. Using three-dimensional technique of AFM, we were able to quantify the changes of cytoskeleton by the "density" and total "volume" of the cytoskeleton fibers. Compared to the control group, the density of cytoskeleton was remarkably decreased and the volume of cytoskeleton was significantly increased after LPS treatment, which suggests that LPS may induce the cytoskeleton reorganization and change the cardiomyocyte morphology. Copyright © 2013 Elsevier Ltd. All rights reserved.
Kianmajd, Babak; Carter, David; Soshi, Masakazu
2016-10-01
Robotic total hip arthroplasty is a procedure in which milling operations are performed on the femur to remove material for the insertion of a prosthetic implant. The robot performs the milling operation by following a sequential list of tool motions, also known as a toolpath, generated by a computer-aided manufacturing (CAM) software. The purpose of this paper is to explain a new toolpath force prediction algorithm that predicts cutting forces, which results in improving the quality and safety of surgical systems. With a custom macro developed in the CAM system's native application programming interface, cutting contact patch volume was extracted from CAM simulations. A time domain cutting force model was then developed through the use of a cutting force prediction algorithm. The second portion validated the algorithm by machining a hip canal in simulated bone using a CNC machine. Average cutting forces were measured during machining using a dynamometer and compared to the values predicted from CAM simulation data using the proposed method. The results showed the predicted forces matched the measured forces in both magnitude and overall pattern shape. However, due to inconsistent motion control, the time duration of the forces was slightly distorted. Nevertheless, the algorithm effectively predicted the forces throughout an entire hip canal procedure. This method provides a fast and easy technique for predicting cutting forces during orthopedic milling by utilizing data within a CAM software.
Nano Mechanical Machining Using AFM Probe
NASA Astrophysics Data System (ADS)
Mostofa, Md. Golam
Complex miniaturized components with high form accuracy will play key roles in the future development of many products, as they provide portability, disposability, lower material consumption in production, low power consumption during operation, lower sample requirements for testing, and higher heat transfer due to their very high surface-to-volume ratio. Given the high market demand for such micro and nano featured components, different manufacturing methods have been developed for their fabrication. Some of the common technologies in micro/nano fabrication are photolithography, electron beam lithography, X-ray lithography and other semiconductor processing techniques. Although these methods are capable of fabricating micro/nano structures with a resolution of less than a few nanometers, some of the shortcomings associated with these methods, such as high production costs for customized products, limited material choices, necessitate the development of other fabricating techniques. Micro/nano mechanical machining, such an atomic force microscope (AFM) probe based nano fabrication, has, therefore, been used to overcome some the major restrictions of the traditional processes. This technique removes material from the workpiece by engaging micro/nano size cutting tool (i.e. AFM probe) and is applicable on a wider range of materials compared to the photolithographic process. In spite of the unique benefits of nano mechanical machining, there are also some challenges with this technique, since the scale is reduced, such as size effects, burr formations, chip adhesions, fragility of tools and tool wear. Moreover, AFM based machining does not have any rotational movement, which makes fabrication of 3D features more difficult. Thus, vibration-assisted machining is introduced into AFM probe based nano mechanical machining to overcome the limitations associated with the conventional AFM probe based scratching method. Vibration-assisted machining reduced the cutting forces and burr formations through intermittent cutting. Combining the AFM probe based machining with vibration-assisted machining enhanced nano mechanical machining processes by improving the accuracy, productivity and surface finishes. In this study, several scratching tests are performed with a single crystal diamond AFM probe to investigate the cutting characteristics and model the ploughing cutting forces. Calibration of the probe for lateral force measurements, which is essential, is also extended through the force balance method. Furthermore, vibration-assisted machining system is developed and applied to fabricate different materials to overcome some of the limitations of the AFM probe based single point nano mechanical machining. The novelty of this study includes the application of vibration-assisted AFM probe based nano scale machining to fabricate micro/nano scale features, calibration of an AFM by considering different factors, and the investigation of the nano scale material removal process from a different perspective.
49 CFR 571.225 - Standard No. 225; Child restraint anchorage systems.
Code of Federal Regulations, 2010 CFR
2010-10-01
..., lock the seat belt retractor, and tighten the tether belt strap to remove all slack. A rearward force... remove any slack or tension. (c) Apply the force— (1) Initially, in a forward direction in a vertical... rearward extensions of the SFAD is adjusted to remove any slack or tension. Apply a preload force of 500 N...
NASA Astrophysics Data System (ADS)
Ashby, Paul David
Investigation into the origin of forces dates to the early Greeks. Yet, only in recent decades have techniques for elucidating the molecular origin of forces been developed. Specifically, Chemical Force Microscopy uses the high precision and nanometer scale probe of Atomic Force Microscopy to measure molecular and interfacial interactions. This thesis presents the development of many novel Chemical Force Microscopy techniques for measuring equilibrium and time-dependant force profiles of molecular interactions, which led to a greater understanding of the origin of interfacial forces in solution. In chapter 2, Magnetic Feedback Chemical Force Microscopy stiffens the cantilever for measuring force profiles between self-assembled monolayer (SAM) surfaces. Hydroxyl and carboxyl terminated SAMs produce long-range interactions that extend one or three nanometers into the solvent, respectively. In chapter 3, an ultra low noise AFM is produced through multiple modifications to the optical deflection detection system and signal processing electronics. In chapter 4, Brownian Force Profile Reconstruction is developed for accurate measurement of steep attractive interactions. Molecular ordering is observed for OMCTS, 1-nonanol, and water near flat surfaces. The molecular ordering of the solvent produces structural or solvation forces, providing insight into the orientation and possible solidification of the confined solvent. Seven molecular layers of OMCTS are observed but the oil remains fluid to the last layer. 1-nonanol strongly orders near the surface and becomes quasi-crystalline with four layers. Water is oriented by the surface and symmetry requires two layers of water (3.7 A) to be removed simultaneously. In chapter 5, electronic control of the cantilever Q (Q-control) is used to obtain the highest imaging sensitivity. In chapter 6, Energy Dissipation Chemical Force Microscopy is developed to investigate the time dependence and dissipative characteristics of SAM interfacial interactions in solution. Long-range adhesive forces for hydroxyl and carboxyl terminated SAM surfaces arise from solvent, not ionic, interactions. Exclusion of the solvent and contact between the SAM surfaces leads to rearrangement of the SAM headgroups. The isolation of the chemical and physical interfacial properties from the topography by Energy Dissipation Chemical Force Microscopy produces a new quantitative high-sensitivity imaging mode.
Predictive Modeling and Optimization of Vibration-assisted AFM Tip-based Nanomachining
NASA Astrophysics Data System (ADS)
Kong, Xiangcheng
The tip-based vibration-assisted nanomachining process offers a low-cost, low-effort technique in fabricating nanometer scale 2D/3D structures in sub-100 nm regime. To understand its mechanism, as well as provide the guidelines for process planning and optimization, we have systematically studied this nanomachining technique in this work. To understand the mechanism of this nanomachining technique, we firstly analyzed the interaction between the AFM tip and the workpiece surface during the machining process. A 3D voxel-based numerical algorithm has been developed to calculate the material removal rate as well as the contact area between the AFM tip and the workpiece surface. As a critical factor to understand the mechanism of this nanomachining process, the cutting force has been analyzed and modeled. A semi-empirical model has been proposed by correlating the cutting force with the material removal rate, which was validated using experimental data from different machining conditions. With the understanding of its mechanism, we have developed guidelines for process planning of this nanomachining technique. To provide the guideline for parameter selection, the effect of machining parameters on the feature dimensions (depth and width) has been analyzed. Based on ANOVA test results, the feature width is only controlled by the XY vibration amplitude, while the feature depth is affected by several machining parameters such as setpoint force and feed rate. A semi-empirical model was first proposed to predict the machined feature depth under given machining condition. Then, to reduce the computation intensity, linear and nonlinear regression models were also proposed and validated using experimental data. Given the desired feature dimensions, feasible machining parameters could be provided using these predictive feature dimension models. As the tip wear is unavoidable during the machining process, the machining precision will gradually decrease. To maintain the machining quality, the guideline for when to change the tip should be provided. In this study, we have developed several metrics to detect tip wear, such as tip radius and the pull-off force. The effect of machining parameters on the tip wear rate has been studied using these metrics, and the machining distance before a tip must be changed has been modeled using these machining parameters. Finally, the optimization functions have been built for unit production time and unit production cost subject to realistic constraints, and the optimal machining parameters can be found by solving these functions.
Herndon, Charles; Brown, Roger A.
2002-01-01
An apparatus and process for removing a ball valve is provided. The ball valve removal tool provides a handle sliding along the length of a shaft. One end of the shaft is secured within an interior cavity of a ball valve while the opposite end of the shaft defines a stop member. By providing a manual sliding force to the handle, the handle impacts the stop member and transmits the force to the ball valve. The direction of the force is along the shaft of the removal tool and disengages the ball valve from the ball valve housing.
NASA Astrophysics Data System (ADS)
Sysoev, N. I.; Turuk, Yu V.; Kolesnichenko, I. Y.; Lugantsev, B. B.
2017-10-01
The reasons for the failure of the pitch stability of the knife-plane installation due to the action of extreme effort in the plane of the seam from the conveyor side on the mechanism of removing sections of mechanized sets are shown. The technique for determining this effort is presented. The constructions of the adaptive mechanisms of the removing sections of mechanized sets with the basements of catamaran type, in the constrictions of which elastic elements (rods) are used, are considered. The constructions of the mechanism of removing a section of the mechanized set with the basement of catamaran type in which the stock of the hydraulic jack is connected with the band loop through the movable rods intermediate basement with a link are worked out. The intermediate basement unloads the stock of the hydraulic jack of the moving installation from the side curving efforts, caused by the action of lateral forces in the plane of the seam on the conveyor side. It increases the reliability and efficiency of work of the knife plane mechanized complex.
NASA Technical Reports Server (NTRS)
Calle, C. I.; Buhler, C. R.; McFall, J. L.; Snyder, S. J.
2009-01-01
Particle removal during lunar exploration activities is of prime importance for the success of robotic and human exploration of the moon. We report on our efforts to use electrostatic and dielectrophoretic forces to develop a dust removal technology that prevents the accumulation of dust on solar panels and removes dust adhering to those surfaces. Testing of several prototypes showed solar shield output above 90% of the initial potentials after dust clearing.
Ming, Tingzhen; de Richter, Renaud; Shen, Sheng; Caillol, Sylvain
2016-04-01
Even if humans stop discharging CO2 into the atmosphere, the average global temperature will still increase during this century. A lot of research has been devoted to prevent and reduce the amount of carbon dioxide (CO2) emissions in the atmosphere, in order to mitigate the effects of climate change. Carbon capture and sequestration (CCS) is one of the technologies that might help to limit emissions. In complement, direct CO2 removal from the atmosphere has been proposed after the emissions have occurred. But, the removal of all the excess anthropogenic atmospheric CO2 will not be enough, due to the fact that CO2 outgases from the ocean as its solubility is dependent of its atmospheric partial pressure. Bringing back the Earth average surface temperature to pre-industrial levels would require the removal of all previously emitted CO2. Thus, the atmospheric removal of other greenhouse gases is necessary. This article proposes a combination of disrupting techniques to transform nitrous oxide (N2O), the third most important greenhouse gas (GHG) in terms of current radiative forcing, which is harmful for the ozone layer and possesses quite high global warming potential. Although several scientific publications cite "greenhouse gas removal," to our knowledge, it is the first time innovative solutions are proposed to effectively remove N2O or other GHGs from the atmosphere other than CO2.
Wen, Junxiang; Xu, Jianwei; Li, Lijun; Yang, Mingjie; Pan, Jie; Chen, Deyu; Jia, Lianshun; Tan, Jun
2017-06-01
In vitro biomechanical study of cervical intervertebral distraction. To investigate the forces required for distraction to different heights in an in vitro C5-C6 anterior cervical distraction model, focusing on the influence of the intervertebral disk, posterior longitudinal ligament (PLL), and ligamentum flavum (LF). No previous studies have reported on the forces required for distraction to various heights or the factors resisting distraction in anterior cervical discectomy and fusion. Anterior cervical distraction at C5-C6 was performed in 6 cadaveric specimens using a biomechanical testing machine, under 4 conditions: A, before disk removal; B, after disk removal; C, after disk and PLL removal; and D, after disk and PLL removal and cutting of the LF. Distraction was performed from 0 to 10 mm at a constant velocity (5 mm/min). Force and distraction height were recorded automatically. The force required increased with distraction height under all 4 conditions. There was a sudden increase in force required at 6-7 mm under conditions B and C, but not D. Under condition A, distraction to 5 mm required a force of 268.3±38.87 N. Under conditions B and C, distraction to 6 mm required <15 N, and further distraction required dramatically increased force, with distraction to 10 mm requiring 115.4±10.67 and 68.4±9.67 N, respectively. Under condition D, no marked increase in force was recorded. Distraction of the intervertebral space was much easier after disk removal. An intact LF caused a sudden marked increase in the force required for distraction, possibly indicating the point at which the LF was fully stretched. This increase in resistance may help to determine the optimal distraction height to avoid stress to the endplate spacer.
Electrically induced formation of uncapped, hollow polymeric microstructures
NASA Astrophysics Data System (ADS)
Lee, Sung Hun; Kim, Pilnam; Jeong, Hoon Eui; Suh, Kahp Y.
2006-11-01
Uncapped, hollow polymeric microstructures were fabricated on a silicon substrate using electric field induced stretching and detachment. Initially, square or cylinder microposts were generated using a solvent-assisted capillary molding technique, and a featureless electrode mask was positioned on the top of the microstructure with spacers maintaining an air gap (~20 µm). Upon exposure to an external electric field (1.0-3.0 V µm-1), the hollow microstructures were destabilized and stretched by the well-known electrohydrodynamic instability, resulting in contact of the top polymer surface with the mask. Subsequently, detachment of the capping layer occurred upon removal of the mask due to larger adhesion forces at the polymer/mask interface than cohesion forces of the polymer. These hollow microstructures were tested to capture the budding yeast, Saccharomyces cerevisiae, for shear protection.
Koga, S; Sairyo, K; Shibuya, I; Kanamori, Y; Kosugi, T; Matsumoto, H; Kitagawa, Y; Sumita, T; Dezawa, A
2012-02-01
In this report, we introduce two cases of recurrent herniated nucleus pulposus (HNP) at L5-S1 that were successfully removed using the small incised microendoscopic discectomy (sMED) technique, proposed by Dezawa and Sairyo in 2011. sMED was performed via the interlaminar approach with a percutaneous endoscope. The patients had previously underdone microendoscopic discectomy for HNP. For the recurrent HNP, the sMED interlaminar approach was selected because the HNP occurred at the level of L5-S1; the percutaneous endoscopic transforaminal approach was not possible for anatomical reasons. To perform sMED via the interlaminar approach, we employed new, specially made devices to enable us to use this technique. In conclusion, sMED is the most minimally invasive approach available for HNP, and its limitations have been gradually eliminated with the introduction specially made devices. In the near future, percutaneous endoscopic surgery could be the gold standard for minimally invasive disc surgery. © 2012 Japan Society for Endoscopic Surgery, Asia Endosurgery Task Force and Blackwell Publishing Asia Pty Ltd.
Surface microroughness of ion-beam etched optical surfaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Savvides, N.
2005-03-01
Ion-beam etching (IBE) and ion-beam figuring techniques using low-energy ion-beam sources have been applied for more than ten years in the fabrication and finishing of extremely smooth high-performance optics. We used optical interferometric techniques and atomic force microscopy to study the evolution of the surface root-mean-square (rms) microroughness, Rq, as a function of depth of a material removed (0-3000 nm) by a broad ion-beam source (Ar{sup +} ions of energy 600 eV and ion current density of 1 mA cm{sup -2}). Highly polished samples of fused silica and Zerodur (Rq{approx}3.5 A) showed a small decrease in microroughness (to 2.5 A)more » after 3000-nm IBE removal while an ultrapolished single-crystal sapphire sample (Rq{approx}1 A rms) retained its very low microroughness during IBE. Power spectral density functions over the spatial frequency interval of measurement (f=5x10{sup -3}-25 {mu}m{sup -1}) indicate that the IBE surfaces have minimal subsurface damage and low optical scatter.« less
Spinal Tissue Loading Created by Different Methods of Spinal Manipulative Therapy Application
Funabashi, Martha; Nougarou, François; Descarreaux, Martin; Prasad, Narasimha; Kawchuk, Gregory N.
2017-01-01
Study Design. Comparative study using robotic replication of spinal manipulative therapy (SMT) vertebral kinematics together with serial dissection. Objective. The aim of this study was to quantify loads created in cadaveric spinal tissues arising from three different forms of SMT application. Summary of Background Data. There exist many distinct methods by which to apply SMT. It is not known presently whether different forms of SMT application have different effects on spinal tissues. Should the method of SMT application modulate spinal tissue loading, quantifying this relation may help explain the varied outcomes of SMT in terms of effect and safety. Methods. SMT was applied to the third lumbar vertebra in 12 porcine cadavers using three SMT techniques: a clinical device that applies forces through a hand-held instrument (INST), a manual technique of applying SMT clinically (MAN) and a research device that applies parameters of manual SMT through a servo-controlled linear actuator motor (SERVO). The resulting kinematics from each SMT application were tracked optically via indwelling bone pins. The L3/L4 segment was then removed, mounted in a parallel robot and the resulting kinematics from SMT replayed for each SMT application technique. Serial dissection of spinal structures was conducted to quantify loading characteristics of discrete spinal tissues. Results. In terms of load magnitude, SMT application with MAN and SERVO created greater forces than INST in all conditions (P < 0.05). Additionally, MAN and SERVO created comparable posterior forces in the intact specimen, but MAN created greater posterior forces on IVD structures compared to SERVO (P < 0.05). Conclusion. Specific methods of SMT application create unique vertebral loading characteristics, which may help explain the varied outcomes of SMT in terms of effect and safety. Level of Evidence: N/A PMID:28146021
Direct conversion of rheological compliance measurements into storage and loss moduli.
Evans, R M L; Tassieri, Manlio; Auhl, Dietmar; Waigh, Thomas A
2009-07-01
We remove the need for Laplace/inverse-Laplace transformations of experimental data, by presenting a direct and straightforward mathematical procedure for obtaining frequency-dependent storage and loss moduli [G'(omega) and G''(omega), respectively], from time-dependent experimental measurements. The procedure is applicable to ordinary rheological creep (stress-step) measurements, as well as all microrheological techniques, whether they access a Brownian mean-square displacement, or a forced compliance. Data can be substituted directly into our simple formula, thus eliminating traditional fitting and smoothing procedures that disguise relevant experimental noise.
Direct conversion of rheological compliance measurements into storage and loss moduli
NASA Astrophysics Data System (ADS)
Evans, R. M. L.; Tassieri, Manlio; Auhl, Dietmar; Waigh, Thomas A.
2009-07-01
We remove the need for Laplace/inverse-Laplace transformations of experimental data, by presenting a direct and straightforward mathematical procedure for obtaining frequency-dependent storage and loss moduli [ G'(ω) and G″(ω) , respectively], from time-dependent experimental measurements. The procedure is applicable to ordinary rheological creep (stress-step) measurements, as well as all microrheological techniques, whether they access a Brownian mean-square displacement, or a forced compliance. Data can be substituted directly into our simple formula, thus eliminating traditional fitting and smoothing procedures that disguise relevant experimental noise.
The free-fall mode experiment on LISA Pathfinder: first results
NASA Astrophysics Data System (ADS)
Giusteri, Roberta; LPF Collaboration
2017-05-01
The LISA Pathfinder space mission is testing the critical experimental challenge for LISA by measuring the differential acceleration between two free-falling test masses inside a single co-orbiting spacecraft at a level of sub-femto-g for frequencies down to 0.1mHz. In LPF it is necessary that one test mass (TM) is electrostatically forced to follow the orbit of the other TM. This force represents a noise source in differential acceleration at frequencies below 1mHz. The free-fall mode experiment has been performed in order to reduce this source of noise: the actuation is limited to short impulses on one TM, so that it is in free fall between two successive kicks, while the other TM is drag-free. The free-fall mode thus provides a different technique for measuring the differential TM acceleration without the added force noise and calibration issues introduced by the actuator. Data analysis challenge is related to the presence of the kicks: they represent a high-noise contribution and need to be removed, thus leaving short gaps in data. This article presents preliminary data of the LPF free-fall measurement campaign and describes the three data analysis techniques developed to mitigate the presence of gaps.
Mechanical Coupling of Smooth Muscle Cells Using Microengineered Substrates and Local Stimulation
NASA Astrophysics Data System (ADS)
Copeland, Craig; Hunter, David; Tung, Leslie; Chen, Christopher; Reich, Daniel
2013-03-01
Mechanical stresses directly affect many cellular processes, including signal transduction, growth, differentiation, and survival. Cells can themselves generate such stresses by activating myosin to contract the actin cytoskeleton, which in turn can regulate both cell-substrate and cell-cell interactions. We are studying mechanical forces at cell-cell and cell-substrate interactions using arrays of selectively patterned flexible PDMS microposts combined with the ability to apply local chemical stimulation. Micropipette ``spritzing'', a laminar flow technique, uses glass micropipettes mounted on a microscope stage to deliver drugs to controlled regions within a cellular construct while cell traction forces are recorded via the micropost array. The pipettes are controlled by micromanipulators allowing for rapid and precise movement across the array and the ability to treat multiple constructs within a sample. This technique allows for observing the propagation of a chemically induced mechanical stimulus through cell-cell and cell-substrate interactions. We have used this system to administer the acto-myosin inhibitors Blebbistatin and Y-27632 to single cells and observed the subsequent decrease in cell traction forces. Experiments using trypsin-EDTA have shown this system to be capable of single cell manipulation through removal of one cell within a pair configuration while leaving the other cell unaffected. This project is supported in part by NIH grant HL090747
Frictional forces in material removal for glasses and ceramics using magnetorheological finishing
NASA Astrophysics Data System (ADS)
Miao, Chunlin
Magnetorheological finishing (MRF) spotting experiments on stationary parts are conducted in this work to understand the material removal mechanism in MRF. Drag force and normal force are measured in situ, simultaneously for the first time for a variety of optical materials in MRF. We study material removal process in MRF as a function of material mechanical properties. We experimentally demonstrate that material removal in MRF is strongly related to shear stress. Shear stress is predominantly determined by material mechanical properties. A modified Preston's equation is proposed to estimate the material removal in MRF by combining shear stress and material mechanical properties. We investigate extensively the effect of various MRF process parameters, including abrasive concentration, magnetic field strength, penetration depth and wheel speed, on material removal efficiency. Material removal rate model is expanded to include these parameters. We develop a nonaqueous magnetorheological (MR) fluid for examining the mechanical contribution in MRF material removal. This fluid is based on a combination of two CI particles and a combination of two organic liquids. Material removal with this nonaqueous MR fluid is discussed. We formulate a new corrosion resistant MR fluid which is based on metal oxide coated carbonyl iron (CI) particles. The rheological behavior, stability and corrosion resistance are examined.
Numerical Study of High-Speed Droplet Impact on Surfaces and its Physical Cleaning Effects
NASA Astrophysics Data System (ADS)
Kondo, Tomoki; Ando, Keita
2015-11-01
Spurred by the demand for cleaning techniques of low environmental impact, one favors physical cleaning that does not rely on any chemicals. One of the promising candidates is based on water jets that often involve fission into droplet fragments and collide with target surfaces to which contaminant particles (often micron-sized or even smaller) stick. Hydrodynamic force (e.g., shearing and lifting) arising from the droplet impact will play a role to remove the particles, but its detailed mechanism is still unknown. To explore the role of high-speed droplet impact in physical cleaning, we solve compressible Navier-Stokes equations with a finite volume method that is designed to capture both shocks and material interfaces in accurate and robust manners. Water hammer and shear flow accompanied by high-speed droplet impact at a rigid wall is simulated to evaluate lifting force and rotating torque, which are relevant to the application of particle removal. For the simulation, we use the numerical code recently developed by Computational Flow Group lead by Tim Colonius at Caltech. The first author thanks Jomela Meng for her help in handling the code during his stay at Caltech.
A simple, less invasive stripper micropipetter-based technique for day 3 embryo biopsy.
Cedillo, Luciano; Ocampo-Bárcenas, Azucena; Maldonado, Israel; Valdez-Morales, Francisco J; Camargo, Felipe; López-Bayghen, Esther
2016-01-01
Preimplantation genetic screening (PGS) is an important procedure for in vitro fertilization (IVF). A key step of PGS, blastomere removal, is abundant with many technical issues. The aim of this study was to compare a more simple procedure based on the Stipper Micropipetter, named S-biopsy, to the conventional aspiration method. On Day 3, 368 high-quality embryos (>7 cells on Day3 with <10% fragmentation) were collected from 38 women. For each patient, their embryos were equally separated between the conventional method ( n = 188) and S-biopsy method ( n = 180). The conventional method was performed using a standardized protocol. For the S-biopsy method, a laser was used to remove a significantly smaller portion of the zona pellucida. Afterwards, the complete embryo was aspirated with a Stripper Micropipetter, forcing the removal of the blastomere. Selected blastomeres went to PGS using CGH microarrays. Embryo integrity and blastocyst formation were assessed on Day 5. Differences between groups were assessed by either the Mann-Whitney test or Fisher Exact test. Both methods resulted in the removal of only one blastomere. The S-biopsy and the conventional method did not differ in terms of affecting embryo integrity (95.0% vs. 95.7%) or blastocyst formation (72.7% vs. 70.7%). PGS analysis indicated that aneuploidy rate were similar between the two methods (63.1% vs. 65.2%). However, the time required to perform the S-biopsy method (179.2 ± 17.5 s) was significantly shorter (5-fold) than the conventional method. The S-biopsy method is comparable to the conventional method that is used to remove a blastomere for PGS, but requires less time. Furthermore, due to the simplicity of the S-biopsy technique, this method is more ideal for IVF laboratories.
Are visual cue masking and removal techniques equivalent for studying perceptual skills in sport?
Mecheri, Sami; Gillet, Eric; Thouvarecq, Regis; Leroy, David
2011-01-01
The spatial-occlusion paradigm makes use of two techniques (masking and removing visual cues) to provide information about the anticipatory cues used by viewers. The visual scene resulting from the removal technique appears to be incongruous, but the assumed equivalence of these two techniques is spreading. The present study was designed to address this issue by combining eye-movement recording with the two types of occlusion (removal versus masking) in a tennis serve-return task. Response accuracy and decision onsets were analysed. The results indicated that subjects had longer reaction times under the removal condition, with an identical proportion of correct responses. Also, the removal technique caused the subjects to rely on atypical search patterns. Our findings suggest that, when the removal technique was used, viewers were unable to systematically count on stored memories to help them accomplish the interception task. The persistent failure to question some of the assumptions about the removal technique in applied visual research is highlighted, and suggestions for continued use of the masking technique are advanced.
van der Sluis, L W M
2015-10-01
The aims of root canal irrigation are the chemical dissolution or disruption and the mechanical detachment of pulp tissue, dentin debris and smear layer (instrumentation products), microorganisms (planktonic or biofilm) and their products from the root canal wall, their removal out of the root canal system and their chemical dissolution or disruption. Each of the endodontic irrigation systems has its own irrigant flow characteristics, which should fulfill these aims. Without flow (convection), the irrigant would have to be distributed through diffusion. This process is slow and depends on temperature and concentration gradients. On the other hand, convection is a faster and more efficient transport mechanism. During irrigant flow, frictional forces will occur, for example between the irrigant and the root canal wall (wall shear stress). These frictional forces have a mechanical cleaning effect on the root canal wall. These frictional forces are the result of the flow characteristics related to the different irrigation systems.
Instrument Package Manipulation Through the Generation and Use of an Attenuated-Fluent Gas Fold
NASA Technical Reports Server (NTRS)
Breen, Daniel P.
2012-01-01
This document discusses a technique that provides a means for suspending large, awkward loads, instrument packages, components, and machinery in a stable, controlled, and precise manner. In the baseplate of the test machine, a pattern of grooves and ports is installed that when pressurized generates an attenuated- fluent gas fold providing a low-cost, near-zero-coefficient-of-friction lubrication boundary layer that supports the object evenly, and in a predictable manner. Package movement control requires minimal force. Aids to repeatable travel and positional accuracy can be added via the addition of simple guide bars and stops to the floor or object being moved. This allows easily regulated three-axis motions. Loads of extreme weight and size can be moved and guided by a single person, or by automated means, using minimal force. Upon removal of the attenuated fluent gas fold, the object returns to a stable resting position without impact forces affecting the object.
Vanderveken, Olivier M; Van de Heyning, Paul; Braem, Marc J
2014-05-01
In order for a mandibular advancement device (MAD) to be efficacious, it must remain seated on the teeth during sleep. Quantitative data on the retentive characteristics of MADs are currently unavailable. The present pilot study is the first to describe an in vitro setup testing the retentive characteristics of different monobloc MADs. A hydraulic cyclic test machine was used with MADs seated on dental casts to measure retention forces upon removal of the MADs. A custom-made monobloc (CM-mono), a thermoplastic monobloc (TP-mono), and a thermoplastic duobloc (TP-duo) configured as a monobloc were tested. Two protrusions were investigated, representing 25 and 65% of the maximal protrusion. The effects of the type of MAD, duration of the test, and amount of protrusion on removal forces were measured. The measured removal forces of all three MADs tested differed significantly, with the TP-duo showing the highest values (P < 0.0001). The effects of wear due to the repetitive cyclic loading became obvious by the production of wear particles in all MADs tested. However, only the TP-duo showed a significant reduction in time in removal forces for both protrusion positions (P < 0.0001; P = 0.0011). The effect of the amount of protrusion on the removal forces differed significantly between all three MADs tested (P = 0.0074). This in vitro pilot study reveals significant differences in retention forces for the MADs tested. The findings are consistent with clinical effects of nightly loss of MADs as reported in the literature and are within the range of reported physiological mouth-opening forces. Future research is needed to determine the key design features of MADs that explain these differences.
Nicholas, Joseph W; Dieker, Laura E; Sloan, E Dendy; Koh, Carolyn A
2009-03-15
Adhesive forces between cyclopentane (CyC5) hydrates and carbon steel (CS) were measured. These forces were found to be substantially lower than CyC5 hydrate-CyC5 hydrate particle measurements and were also lower than ice-CS measurements. The measured adhesive forces were used in a force balance to predict particle removal from the pipeline wall, assuming no free water was present. The force balance predicted entrained hydrate particles of 3 microns and larger diameter would be removed at typical operating flow rates in offshore oil and gas pipelines. These predictions also suggest that hydrate deposition will not occur in stabilized (cold) flow practices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Row, K.L.; Johnson, R.B.
1990-10-01
Maxillary right first molar teeth of rats were tipped mesially with an orthodontic appliance for 2 weeks (experimental group), {sup 3}H-proline was injected, and orthodontic forces were removed 6 hr later (time 0). The contralateral molar teeth of treated (internal control group) and age- and weight-matched untreated animals (external control group) were also studied. Diastemata were created between the molar teeth by the orthodontic appliance, and transseptal fibers between first and second (P less than 0.001) and second and third molars (P less than 0.005) were significantly lengthened as compared to external and internal controls at time 0. Diastemata betweenmore » molar teeth were closed 5 days after removal of orthodontic force. Transseptal fibers adjacent to the source of the orthodontic force (mesial region) had the highest mean number of {sup 3}H-proline-labeled proteins at time 0 and at all times following removal of the force (P less than 0.001), and had the highest rate of labeled protein removal (P less than 0.001). Half-lives for removal of 3H-proline-labeled transseptal fiber proteins were significantly greater in mesial and distal regions and significantly less in middle regions of experimentals than in corresponding regions of external controls (P less than 0.001).« less
Ortega-Insaurralde, Isabel; Toloza, Ariel Ceferino; Picollo, María Inés; Vassena, Claudia
2014-09-01
Head lice lay eggs in human head hairs in order to reproduce. There is a difficulty associated to the process of detaching these eggs: they are tightly gripped to the hair by a secretion produced by female head lice. The physical removal of eggs has become an important part of treatment of louse infestations. The finding of new products to loosen the eggs is necessary to avoid mistaken diagnosis or reinfestations. This work aimed to compare different kinds of pediculicide formulations in order to find if their presentations represented differences in the egg remover effect. We also wanted to present a new device to test the efficacy of the egg remover formulations. Products with creamy presentations (Bio infant lice and egg remover and hair conditioner) and one containing dimethicone (Nyda) showed the lower mean forces compared with the control (lower mean forces represented best removal activity). Whereas, the Biferdil egg remover (gel) and Nopucid Tribit (hydroalcoholic lotion) had no egg removal effect, presenting the highest mean forces (177.82 and 189.99 mN, respectively) compared with the control. Additionally, we proposed a removal index (RI) to compare the efficacy of different products on the egg removal activity (RI > 0, good performance). The higher index values were for Bio infant lice and egg remover (0.72) and Biferdil hair conditioner (0.58). The lowest index values were for Biferdil egg remover (-0.26) and Nopucid Tribit (-0.35).The formulation of over the counter pediculicides in the egg remover effect was discussed.
Image simulation and surface reconstruction of undercut features in atomic force microscopy
NASA Astrophysics Data System (ADS)
Qian, Xiaoping; Villarrubia, John; Tian, Fenglei; Dixson, Ronald
2007-03-01
CD-AFMs (critical dimension atomic force microscopes) are instruments with servo-control of the tip in more than one direction. With appropriately "boot-shaped" or flared tips, such instruments can image vertical or even undercut features. As with any AFM, the image is a dilation of the sample shape with the tip shape. Accurate extraction of the CD requires a correction for the tip effect. Analytical methods to correct images for the tip shape have been available for some time for the traditional (vertical feedback only) AFMs, but were until recently unavailable for instruments with multi-dimensional feedback. Dahlen et al. [J. Vac. Sci. Technol. B23, pp. 2297-2303, (2005)] recently introduced a swept-volume approach, implemented for 2-dimensional (2D) feedback. It permits image simulation and sample reconstruction, techniques previously developed for the traditional instruments, to be extended for the newer tools. We have introduced [X. Qian and J. S. Villarrubia, Ultramicroscopy, in press] an alternative dexel-based method, that does the same in either 2D or 3D. This paper describes the application of this method to sample shapes of interest in semiconductor manufacturing. When the tip shape is known (e.g., by prior measurement using a tip characterizer) a 3D sample surface may be reconstructed from its 3D image. Basing the CD measurement upon such a reconstruction is shown here to remove some measurement artifacts that are not removed (or are incompletely removed) by the existing measurement procedures.
When properly conducted, sediment removal is an effective lake management technique. This chapter describes: (1) purposes of sediment removal, (2) environmental concerns, (3) appropriate depth of sediment removal, (4) sediment removal techniques, (5) suitable lake conditions, (6)...
Supramolecular organization of the sperm plasma membrane during maturation and capacitation.
Jones, Roy; James, Peter S; Howes, Liz; Bruckbauer, Andreas; Klenerman, David
2007-07-01
In the present study, a variety of high resolution microscopy techniques were used to visualize the organization and motion of lipids and proteins in the sperm's plasma membrane. We have addressed questions such as the presence of diffusion barriers, confinement of molecules to specific surface domains, polarized diffusion and the role of cholesterol in regulating lipid rafts and signal transduction during capacitation. Atomic force microscopy identified a novel region (EqSS) within the equatorial segment of bovine, porcine and ovine spermatozoa that was enriched in constitutively phosphorylated proteins. The EqSS was assembled during epididymal maturation. Fluorescence imaging techniques were then used to follow molecular diffusion on the sperm head. Single lipid molecules were freely exchangeable throughout the plasma membrane and showed no evidence for confinement within domains. Large lipid aggregates, however, did not cross over the boundary between the post-acrosome and equatorial segment suggesting the presence of a molecular filter between these two domains. A small reduction in membrane cholesterol enlarges or increases lipid rafts concomitant with phosphorylation of intracellular proteins. Excessive removal of cholesterol, however, disorganizes rafts with a cessation of phosphorylation. These techniques are forcing a revision of long-held views on how lipids and proteins in sperm membranes are assembled into larger complexes that mediate recognition and fusion with the egg.
Molecular Sieve Bench Testing and Computer Modeling
NASA Technical Reports Server (NTRS)
Mohamadinejad, Habib; DaLee, Robert C.; Blackmon, James B.
1995-01-01
The design of an efficient four-bed molecular sieve (4BMS) CO2 removal system for the International Space Station depends on many mission parameters, such as duration, crew size, cost of power, volume, fluid interface properties, etc. A need for space vehicle CO2 removal system models capable of accurately performing extrapolated hardware predictions is inevitable due to the change of the parameters which influences the CO2 removal system capacity. The purpose is to investigate the mathematical techniques required for a model capable of accurate extrapolated performance predictions and to obtain test data required to estimate mass transfer coefficients and verify the computer model. Models have been developed to demonstrate that the finite difference technique can be successfully applied to sorbents and conditions used in spacecraft CO2 removal systems. The nonisothermal, axially dispersed, plug flow model with linear driving force for 5X sorbent and pore diffusion for silica gel are then applied to test data. A more complex model, a non-darcian model (two dimensional), has also been developed for simulation of the test data. This model takes into account the channeling effect on column breakthrough. Four FORTRAN computer programs are presented: a two-dimensional model of flow adsorption/desorption in a packed bed; a one-dimensional model of flow adsorption/desorption in a packed bed; a model of thermal vacuum desorption; and a model of a tri-sectional packed bed with two different sorbent materials. The programs are capable of simulating up to four gas constituents for each process, which can be increased with a few minor changes.
Machinability of Al 6061 Deposited with Cold Spray Additive Manufacturing
NASA Astrophysics Data System (ADS)
Aldwell, Barry; Kelly, Elaine; Wall, Ronan; Amaldi, Andrea; O'Donnell, Garret E.; Lupoi, Rocco
2017-10-01
Additive manufacturing techniques such as cold spray are translating from research laboratories into more mainstream high-end production systems. Similar to many additive processes, finishing still depends on removal processes. This research presents the results from investigations into aspects of the machinability of aluminum 6061 tubes manufactured with cold spray. Through the analysis of cutting forces and observations on chip formation and surface morphology, the effect of cutting speed, feed rate, and heat treatment was quantified, for both cold-sprayed and bulk aluminum 6061. High-speed video of chip formation shows changes in chip form for varying material and heat treatment, which is supported by the force data and quantitative imaging of the machined surface. The results shown in this paper demonstrate that parameters involved in cold spray directly impact on machinability and therefore have implications for machining parameters and strategy.
Kim, Pyeong Hwa; Song, Ho-Young; Park, Jung-Hoon; Zhou, Wei-Zhong; Na, Han Kyu; Cho, Young Chul; Jun, Eun Jung; Kim, Jun Ki; Kim, Guk Bae
2017-03-01
To evaluate clinical outcomes of fluoroscopic removal of retrievable self-expandable metal stents (SEMSs) for malignant oesophageal strictures, to compare clinical outcomes of three different removal techniques, and to identify predictive factors of successful removal by the standard technique (primary technical success). A total of 137 stents were removed from 128 patients with malignant oesophageal strictures. Primary overall technical success and removal-related complications were evaluated. Logistic regression models were constructed to identify predictive factors of primary technical success. Primary technical success rate was 78.8 % (108/137). Complications occurred in six (4.4 %) cases. Stent location in the upper oesophagus (P=0.004), stricture length over 8 cm (P=0.030), and proximal granulation tissue (P<0.001) were negative predictive factors of primary technical success. If granulation tissue was present at the proximal end, eversion technique was more frequently required (P=0.002). Fluoroscopic removal of retrievable SEMSs for malignant oesophageal strictures using three different removal techniques appeared to be safe and easy. The standard technique is safe and effective in the majority of patients. The presence of proximal granulation tissue, stent location in the upper oesophagus, and stricture length over 8 cm were negative predictive factors for primary technical success by standard extraction and may require a modified removal technique. • Fluoroscopic retrievable SEMS removal is safe and effective. • Standard removal technique by traction is effective in the majority of patients. • Three negative predictive factors of primary technical success were identified. • Caution should be exercised during the removal in those situations. • Eversion technique is effective in cases of proximal granulation tissue.
Choi, Hae Won; Park, Young Seok; Chung, Shin Hye; Jung, Min Ho; Moon, Won; Rhee, Sang Hoon
2017-07-01
The aim of this study was to compare the initial stability as insertion and removal torque and the clinical applicability of novel orthodontic zirconia micro-implants made using a powder injection molding (PIM) technique with those parameters in conventional titanium micro-implants. Sixty zirconia and 60 titanium micro-implants of similar design (diameter, 1.6 mm; length, 8.0 mm) were inserted perpendicularly in solid polyurethane foam with varying densities of 20 pounds per cubic foot (pcf), 30 pcf, and 40 pcf. Primary stability was measured as maximum insertion torque (MIT) and maximum removal torque (MRT). To investigate clinical applicability, compressive and tensile forces were recorded at 0.01, 0.02, and 0.03 mm displacement of the implants at angles of 0°, 10°, 20°, 30°, and 40°. The biocompatibility of zirconia micro-implants was assessed via an experimental animal study. There were no statistically significant differences between zirconia micro-implants and titanium alloy implants with regard to MIT, MRT, or the amount of movement in the angulated lateral displacement test. As angulation increased, the mean compressive and tensile forces required to displace both types of micro-implants increased substantially at all distances. The average bone-to-implant contact ratio of prototype zirconia micro-implants was 56.88 ± 6.72%. Zirconia micro-implants showed initial stability and clinical applicability for diverse orthodontic treatments comparable to that of titanium micro-implants under compressive and tensile forces.
Gatkin, E Ja; Razumovskij, A Ju; Korsunskij, A A; Konovalov, A K; Sergeev, A V; Vinogradov, A Ja; Sein, V A
2015-01-01
It was analyzed the results of treatment of 48 children aged from 1 month to 14 years. In these observations by the 6th - 7th days after doubleintestinalstoma formation magnetic dies with inductance from 300 to 360 mTl and energy force at least 255 kJ/m3 were introduced into lumen of afferent and efferent intestinal loops. Attractive or compression force between dies was 600 g, i.e. force per 1 cm2 was 200 g according to dies' surface 1.12.83.0 cm. Magnets are not only surgical instruments but also physiotherapeutic devices improving microcirculation and stimulating regeneration in the area of anastomosis. Interintestinal anastomosis has been completely formed for 5-7 days. Thereafter magnetic dies have been removed. Stool was normalized in 45 of 48 observations after surgery (1-3 times daily). Intestinal discharge from ileostomy reduced to minimal amount. In 2 patients irregular bowel movements was observed due to adhesive stenosis of interintestinal anastomosis. Magnetic dies can't be established in 1 case due to adhesive process. Hospital stay was from 10 to 25 days in 41 children. 7 patients were discharged for outpatient treatment later. All children were under observation for the period 2-4 months after discharge. Signs of hypotrophy including body weight deficit within 10% of age norm were diagnosed only in 3 children with prematurity degree I-II. Hereafter children were repeatedly hospitalized; intestinal stomas were surgically removed using conventional technique. Thus complete convalescence was obtained.
Quantitative assessment of the enamel machinability in tooth preparation with dental diamond burs.
Song, Xiao-Fei; Jin, Chen-Xin; Yin, Ling
2015-01-01
Enamel cutting using dental handpieces is a critical process in tooth preparation for dental restorations and treatment but the machinability of enamel is poorly understood. This paper reports on the first quantitative assessment of the enamel machinability using computer-assisted numerical control, high-speed data acquisition, and force sensing systems. The enamel machinability in terms of cutting forces, force ratio, cutting torque, cutting speed and specific cutting energy were characterized in relation to enamel surface orientation, specific material removal rate and diamond bur grit size. The results show that enamel surface orientation, specific material removal rate and diamond bur grit size critically affected the enamel cutting capability. Cutting buccal/lingual surfaces resulted in significantly higher tangential and normal forces, torques and specific energy (p<0.05) but lower cutting speeds than occlusal surfaces (p<0.05). Increasing material removal rate for high cutting efficiencies using coarse burs yielded remarkable rises in cutting forces and torque (p<0.05) but significant reductions in cutting speed and specific cutting energy (p<0.05). In particular, great variations in cutting forces, torques and specific energy were observed at the specific material removal rate of 3mm(3)/min/mm using coarse burs, indicating the cutting limit. This work provides fundamental data and the scientific understanding of the enamel machinability for clinical dental practice. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Holden, S. C.; Fleming, J. R.
1978-01-01
Fabrication of a prototype large capacity multiple blade slurry saw is considered. Design of the bladehead which will tension up to 1000 blades, and cut a 45 cm long silicon ingot as large as 12 cm in diameter is given. The large blade tensioning force of 270,000 kg is applied through two bolts acting on a pair of scissor toggles, significantly reducing operator set-up time. Tests with an upside-down cutting technique resulted in 100% wafering yields and the highest wafer accuracy yet experienced with MS slicing. Variations in oil and abrasives resulted only in degraded slicing results. A technique of continuous abrasive slurry separation to remove silicon debris is described.
MANAGEMENT OF LAKES THROUGH SEDIMENT REMOVAL
When properly conducted, sediment removal is an effective lake management technique. This paper describes: (1) the purpose of sediment removal, (2) environmental concerns, (3) depth of sediment removal, (4) sediment removal techniques, (5) suitable lake conditions, (6) exemplary ...
Zhu, Q A; Park, Y B; Sjovold, S G; Niosi, C A; Wilson, D C; Cripton, P A; Oxland, T R
2008-02-01
Experimental measurement of the load-bearing patterns of the facet joints in the lumbar spine remains a challenge, thereby limiting the assessment of facet joint function under various surgical conditions and the validation of computational models. The extra-articular strain (EAS) technique, a non-invasive measurement of the contact load, has been used for unilateral facet joints but does not incorporate strain coupling, i.e. ipsilateral EASs due to forces on the contralateral facet joint. The objectives of the present study were to establish a bilateral model for facet contact force measurement using the EAS technique and to determine its effectiveness in measuring these facet joint contact forces during three-dimensional flexibility tests in the lumbar spine. Specific goals were to assess the accuracy and repeatability of the technique and to assess the effect of soft-tissue artefacts. In the accuracy and repeatability tests, ten uniaxial strain gauges were bonded to the external surface of the inferior facets of L3 of ten fresh lumbar spine specimens. Two pressure-sensitive sensors (Tekscan) were inserted into the joints after the capsules were cut. Facet contact forces were measured with the EAS and Tekscan techniques for each specimen in flexion, extension, axial rotation, and lateral bending under a +/- 7.5 N m pure moment. Four of the ten specimens were tested five times in axial rotation and extension for repeatability. These same specimens were disarticulated and known forces were applied across the facet joint using a manual probe (direct accuracy) and a materials-testing system (disarticulated accuracy). In soft-tissue artefact tests, a separate set of six lumbar spine specimens was used to document the virtual facet joint contact forces during a flexibility test following removal of the superior facet processes. Linear strain coupling was observed in all specimens. The average peak facet joint contact forces during flexibility testing was greatest in axial rotation (71 +/- 25 N), followed by extension (27 +/- 35 N) and lateral bending (25 +/- 28 N), and they were most repeatable in axial rotation (coefficient of variation, 5 per cent). The EAS accuracy was about 20 per cent in the direct accuracy assessment and about 30 per cent in the disarticulated accuracy test. The latter was very similar to the Tekscan accuracy in the same test. Virtual facet loads (r.m.s.) were small in axial rotation (12 N) and lateral bending (20 N), but relatively large in flexion (34 N) and extension (35 N). The results suggested that the bilateral EAS model could be used to determine the facet joint contact forces in axial rotation but may result in considerable error in flexion, extension, and lateral bending.
Emergency Cooling of Nuclear Power Plant Reactors With Heat Removal By a Forced-Draft Cooling Tower
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murav’ev, V. P., E-mail: murval1@mail.ru
The feasibility of heat removal during emergency cooling of a reactor by a forced-draft cooling tower with accumulation of the peak heat release in a volume of precooled water is evaluated. The advantages of a cooling tower over a spray cooling pond are demonstrated: it requires less space, consumes less material, employs shorter lines in the heat removal system, and provides considerably better protection of the environment from wetting by entrained moisture.
NASA Astrophysics Data System (ADS)
Szabo, Gyorgy; Kovacs, Lajos; Barabas, Jozsef; Nemeth, Zsolt; Maironna, Carlo
2001-11-01
The purpose of this paper is to discuss the background to advanced surface modification technologies and to present a new technique, involving the formation of a titanium oxide ceramic coating, with relatively long-term results of its clinical utilization. Three general techniques are used to modify surfaces: the addition or removal of material and the change of material already present. Surface properties can also be changed without the addition or removal of material, through the laser or electron beam thermal treatment. The new technique outlined in this paper relates to the production of a corrosion-resistant 2000-2500 A thick, ceramic oxide layer with a coherent crystalline structure on the surface of titanium implants. The layer is grown electrochemically from the bulk of the metal and is modified by heat treatment. Such oxide ceramic-coated implants have a number of advantageous properties relative to implants covered with various other coatings: a higher external hardness, a greater force of adherence between the titanium and the oxide ceramic coating, a virtually perfect insulation between the organism and the metal (no possibility of metal allergy), etc. The coated implants were subjected to various physical, chemical, electronmicroscopic, etc. tests for a qualitative characterization. Finally, these implants (plates, screws for maxillofacial osteosynthesis and dental root implants) were applied in surgical practice for a period of 10 years. Tests and the experience acquired demonstrated the good properties of the titanium oxide ceramic-coated implants.
Al-Almaie, Saad
2017-01-01
This rare case report describes prosthodontic complications resulting from a dental implant was placed surgically more distally in the area of the missing mandibular first molar with a cantilever effect and a crest width of >12 mm in a 59-year-old patient who had a history of bruxism. Fracture of abutment is a common complication in implant was placed in area with high occlusal forces. Inability to remove the broken abutment may most often end up in discarding the implant. Adding one more dental implant mesially to the previously placed implant, improvisation of technique to remove the broken abutment without sacrificing the osseointegrated dental implant, fabrication with cemented custom-made abutment to replace the broken abutment for the first implant, and the use of the two implants to replace a single molar restoration proved reliable and logical treatment solutions to avoid these prosthodontic complications.
Dislocation-free strained silicon-on-silicon by in-place bonding
NASA Astrophysics Data System (ADS)
Cohen, G. M.; Mooney, P. M.; Paruchuri, V. K.; Hovel, H. J.
2005-06-01
In-place bonding is a technique where silicon-on-insulator (SOI) slabs are bonded by hydrophobic attraction to the underlying silicon substrate when the buried oxide is undercut in dilute HF. The bonding between the exposed surfaces of the SOI slab and the substrate propagates simultaneously with the buried oxide etching. As a result, the slabs maintain their registration and are referred to as "bonded in-place". We report the fabrication of dislocation-free strained silicon slabs from pseudomorphic trilayer Si/SiGe/SOI by in-place bonding. Removal of the buried oxide allows the compressively strained SiGe film to relax elastically and induce tensile strain in the top and bottom silicon films. The slabs remain bonded to the substrate by van der Waals forces when the wafer is dried. Subsequent annealing forms a covalent bond such that when the upper Si and the SiGe layer are removed, the bonded silicon slab remains strained.
Carbide Derived Carbon Super Capacitor Application
NASA Astrophysics Data System (ADS)
Appelgate, James; Bauer, Dave; Quirin, James; Lofland, S. E.; Hettinger, J. D.; Heon, M.; Gogotsi, Y.
2010-02-01
Supercapacitors can be applied into many different fields from nano-robots to high density energy storage. Growing TiC films from a know recipe and removing the transition metal element, Titanium, by chlorination leaves a carbon film that can then be applied as an electrode in a super capacitor. The problem is when the Titanium is removed from the film the stress induced by this process causes the films to fracture into isolated islands. The islands allow electrons to travel across them every easily, but there is no transfer of electrons from island to island. We present results of an investigation of a technique control the location of the fractures and use them to our benefit. Ideally, we want to create them to fracture in parallel lines. To force these fractures into straight lines we will purchase substrates with thermal SiO2 created on the surface of Si. Using an etching process we will removed a channel of SiO2 the same as the thickness of the TiC film we plan on growing. These channels will allow the fractures to form in a correlated way creating a straight line. )
NASA Astrophysics Data System (ADS)
Si, Lina; Guo, Dan; Luo, Jianbin; Lu, Xinchun; Xie, Guoxin
2011-04-01
In an abrasive chemical mechanical polishing (CMP) process, materials were considered to be removed by abrasive sliding and rolling. Abrasive sliding has been investigated by many molecular dynamics (MD) studies; while abrasive rolling was usually considered to be negligible and therefore was rarely investigated. In this paper, an MD simulation was used to study the effects of abrasive rolling on material removal and surface finish in the CMP process. As the silica particle rolled across the silicon substrate, some atoms of the substrate were dragged out from their original positions and adhered to the silica particle, leaving some atomic vacancies on the substrate surface. Meanwhile, a high quality surface could be obtained. During the abrasive rolling process, the influencing factors of material removal, e.g., external down force and driving force, were also discussed. Finally, MD simulations were carried out to examine the effects of abrasive sliding on material removal under the same external down force as abrasive rolling. The results showed that the ability of abrasive rolling to remove material on the atomic scale was not notably inferior to that of abrasive sliding. Therefore, it can be proposed that both abrasive sliding and rolling play important roles in material removal in the abrasive CMP of the silicon substrate.
Investigation of a Technique for Measuring Dynamic Ground Effect in a Subsonic Wind Tunnel
NASA Technical Reports Server (NTRS)
Graves, Sharon S.
1999-01-01
To better understand the ground effect encountered by slender wing supersonic transport aircraft, a test was conducted at NASA Langley Research Center's 14 x 22 foot Subsonic Wind Tunnel in October, 1997. Emphasis was placed on improving the accuracy of the ground effect data by using a "dynamic" technique in which the model's vertical motion was varied automatically during wind-on testing. This report describes and evaluates different aspects of the dynamic method utilized for obtaining ground effect data in this test. The method for acquiring and processing time data from a dynamic ground effect wind tunnel test is outlined with details of the overall data acquisition system and software used for the data analysis. The removal of inertial loads due to sting motion and the support dynamics in the balance force and moment data measurements of the aerodynamic forces on the model is described. An evaluation of the results identifies problem areas providing recommendations for future experiments. Test results are validated by comparing test data for an elliptical wing planform with an Elliptical wing planform section with a NACA 0012 airfoil to results found in current literature. Major aerodynamic forces acting on the model in terms of lift curves for determining ground effect are presented. Comparisons of flight and wind tunnel data for the TU-144 are presented.
A computer-guided minimally-invasive technique for orthodontic forced eruption of impacted canines.
BERTELè, Matteo; Minniti, Paola P; Dalessandri, Domenico; Bonetti, Stefano; Visconti, Luca; Paganelli, Corrado
2016-06-01
The aim of this study was to develop a computer-guided minimally-invasive protocol for the surgical application of an orthodontic traction during the forced eruption of an impacted canine. 3Diagnosys® software was used to evaluate impacted canines position and to plan the surgical access, taking into account soft and hard tissues thickness, orthodontic traction path and presence of possible obstacles. Geomagic® software was used for reverse engineering and RhinocerosTM software was employed as three-dimensional modeller in preparing individualized surgical guides. Surgical access was gained flapless through the use of a mucosal punch for soft tissues, followed by a trephine bur with a pre-adjusted stop for bone path creation. A diamond bur mounted on SONICflex® 2003/L handpiece was used to prepare a 2-mm-deep calibrated hole into the canine enamel where a titanium screw connected with a stainless steel ligature was screwed. In-vitro pull-out tests, radiological and SEM analysis were realized in order to investigate screw stability and position. In two out of ten samples the screw was removed after the application of a 1-kg pull-out force. Radiological and SEM analysis demonstrated that all the screws were inserted into the enamel without affecting dentine integrity. This computer-guided minimally-invasive technique allowed a precise and reliable positioning of screws utilized during the orthodontic traction of impacted canines.
Fariña-Perez, Luis Angel; Pesqueira-Santiago, Daniel
2012-05-01
A retained postoperative drain tube, trapped by one or more of the sutures of the abdominal wall closure, is a rare complication of frustrating consequences and potential legal repercussions. There are few reports of techniques for minimally invasive removal of an anchored postoperative drain tube, which not infrequently has been treated by reopening the wound. A 75 years-old man with a left T2-T3N0M0 renal carcinoma was treated with transperitoneal laparoscopic nephrectomy and a Jackson-Pratt drain was left in place. Drain removal the day after revealed impossible, as if being caught with fascial suture. With the patient under sedation, we introduced a Sachse urethrotome parallel to the drain, and the abdominal fascia was identified, then the polyglycolic stitch anchoring it to the wall could be severed, freeing the drain. Percutaneous extraction with the Sachse urethrotome of an anchored postoperative drain, should be the first option, before trying a forced traction or using more complex options. This technique is for the first time published in the Spanish bibliography, and we think this possibility should be disclosed to abdominal surgeons.
NASA Technical Reports Server (NTRS)
Dominguez, Jesus A.; Phillips, James R. III; Mackey, Paul J.; Hogue, Michael D.; Johansen, Michael R.; Cox, Rachel E.; Calle, Carlos I.
2017-01-01
The Electrostatics and Surface Physics Laboratory (ESPL) at NASA Kennedy Space Center has developed a dust mitigation technology that uses electrostatic and dielectrophoretic (DEP) forces to disperse and remove the dust already deposited on surfaces preventing the accumulation of dust particles approaching or already deposited on those surfaces.
Forces acting between polishing tool and workpiece surface in magnetorheological finishing
NASA Astrophysics Data System (ADS)
Schinhaerl, Markus; Vogt, Christian; Geiss, Andreas; Stamp, Richard; Sperber, Peter; Smith, Lyndon; Smith, Gordon; Rascher, Rolf
2008-08-01
Magnetorheological finishing is a computer-controlled polishing technique that is used mainly in the field of high-quality optical lens production. The process is based on the use of a magnetorheological polishing fluid that is able, in a reversible manner, to change its viscosity from a liquid state to a solid state under the control of a magnetic field. This outstanding characteristic facilitates rapid control (in milliseconds) of the yield stress, and thus the pressure applied to the workpiece surface to be polished. A three-axis dynamometer was used to measure the forces acting between the magnetorheological fluid and the workpiece surface during determination of the material removal characteristic of the polishing tool (influence function). The results of a testing series using a QED Q22-X MRF polishing machine with a 50 mm wheel assembly show that the normal forces range from about 2 to 20 N. Knowledge of the forces is essential, especially when thin workpieces are to be polished and distortion becomes significant. This paper discusses, and gives examples of, the variation in the parameters experienced during a programme of experiments, and provides examples of the value of this work.
"Spaghetti maneuver": a useful tool in pediatric laparoscopy - our experience.
Marte, Antonio; Cavaiuolo, Silvia; Pintozzi, Lucia; Prezioso, Maurizio; Nino, Fabiano; Coppola, Sandra; Borrelli, Micaela; Parmeggiani, Pio
2011-01-01
The laparoscopic "Spaghetti Maneuver" consists in holding an organ by its extremity with a grasper and rolling it up around the tool to keep the organ stable and facilitate its traction within a small space. We describe our experience with the "Spaghetti Maneuver" in some minimally invasive procedures. We successfully adopted this technique in 13 patients (5F : 8M) aged between 6 and 14 years (average age, 10) on whom we performed 7 appendectomies, 2 ureteral reimplantation and 4 cholecystectomies. In all cases, after the first steps, the appendix, the gallbladder and the ureter were rolled around the grasper and easily isolated; hemostasis was thus induced and the organ was mobilized until removal during cholecystectomy and appendectomy, and before the reimplantation in case of ureteral reimplantation. We found that this technique facilitated significantly the acts of holding, isolating and removing, when necessary, the structures involved, which remained constantly within the visual field of the operator. This allowed a very ergonomic work setting, overcoming the problem of the "blind" zone, which represents a dangerous and invisible area out of the operator's control during laparoscopy. Moreover the isolation maneuvers resulted easier and reduced operating time. We think that this technique is easy to perform and very useful, because it facilitates the dissection of these organs, by harmonizing and stabilizing the force of traction exercised.
A review of techniques of induced abortion.
Hepburn, S
1981-04-01
Various techniques are available for inducing abortion. Evacuation of the uterus through the vagina is generally the preferred method in first trimester pregnancies. Dilation of the cervical canal by inserting rod dilators or laminaria tents allows the withdrawal of the fetus. Suction procedures (vacuum aspiration, uterine aspiration, or suction curettage) are possible since the decidua are separable from the basal layer of endometrium. This removal by force does not damage other maternal tissue. A cannula is introduced into the uterine cavity through the dilated cervix and its operator is then connected to a pump by way of a flexible tube which delivers negative pressure of about 600 mm of mercury. When the fetus is withdrawn, the uterus is felt to contract onto the cannula. The average time for this procedure is 5 minutes. Surgical curettage or dilatation and evacuation first dilates the cervical canal and then removes fetal parts and tissue from ovum forceps; a sharp curette does the rest. Anesthesia for these procedures may be general, local, or spinal. The techniques of menstrual regulation is used before pregnancy can be confirmed. However with the advent of the RIA test for the beta subunit of HCG this procedure is rarely indicated. Induction of premature labor is used in the later 1/2 of the second trimester and utilizes prostaglandins. Intraamniobor usually begins within 24 hours. Hysterotomy and hysterectomy are surgical procedures used in abortions.
NASA Astrophysics Data System (ADS)
Petit, Camille
Air pollution related to the release of industrial toxic gases, represents one of the main concerns of our modern world owing to its detrimental effect on the environment. To tackle this growing issue, efficient ways to reduce/control the release of pollutants are required. Adsorption of gases on porous materials appears as a potential solution. However, the physisorption of small molecules of gases such as ammonia is limited at ambient conditions. For their removal, adsorbents providing strong adsorption forces must be used/developed. In this study, new carbon-based materials are prepared and tested for ammonia adsorption at ambient conditions. Characterization of the adsorbents' texture and surface chemistry is performed before and after exposure to ammonia to identify the features responsible for high adsorption capacity and for controlling the mechanisms of retention. The characterization techniques include: nitrogen adsorption, thermal analysis, potentiometric titration, FT-IR spectroscopy, X-ray diffraction, Energy Dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy and Electron Microscopy. The results obtained indicate that ammonia removal is governed by the adsorbent's surface chemistry. On the contrary, porosity (and thus physisorption) plays a secondary role in this process, unless strong dispersive forces are provided by the adsorbent. The surface chemistry features responsible for the enhanced ammonia adsorption include the presence of oxygen-(carboxyl, hydroxyl, epoxy) and sulfur- (sulfonic) containing groups. Metallic species improve the breakthrough capacity as well as they lead to the formation of Lewis acid-base interactions, hydrogen-bonding or complexation. In addition to the latter three mechanisms, ammonia is retained on the adsorbent surface via Bronsted acid-base interactions or via specific reactions with the adsorbent's functionalities leading to the incorporation of ammonia into the adsorbent's matrix. Another mechanism involves dissolution of ammonia in water when moisture is present in the system. Even though this process increases the breakthrough capacity of a material, it provides rather weak retention forces since ammonia dissolved in water is easily desorbed from the adsorbent's surface.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gu, B.
2003-05-30
Selective ion exchange is one of the most effective treatment technologies for removing low levels of perchlorate (ClO{sub 4}{sup -}) from contaminated water because of its high efficiency without adverse impacts on the water quality caused by adding or removing any chemicals or nutrients. This report summarizes both the laboratory and a field pilot-scale studies to determine the ability and efficiency of the bifunctional synthetic resins to remove ClO{sub 4}{sup -} from the contaminated groundwater at the Edwards Air Force Base in California. Regeneration of the resins after groundwater treatment was also evaluated using the FeCl{sub 3}-HCl regeneration technique recentlymore » developed at Oak Ridge National Laboratory. On the basis of this study, the bifunctional resin, D-3696 was found to be highly selective toward ClO{sub 4}{sup -} and performed much better than one of the best commercial nitrate-selective resins (Purolite A-520E) and more than an order of magnitude better than the Purolite A-500 resin (with a relatively low selectivity). At an influent concentration of {approx} 450 {micro}g/L ClO{sub 4}{sup -} in groundwater, the bifunctional resin bed treated {approx} 40,000 empty bed volumes of groundwater before a significant breakthrough of ClO{sub 4}{sup -} occurred. The presence of relatively high concentrations of chloride and sulfate in site groundwater did not appear to affect the ability of the bifunctional resin to remove ClO{sub 4}{sup -}. However, the presence of high iron or iron oxyhydroxides and/or biomass in groundwater caused a significant fouling of the resin beds and greatly influenced the effectiveness in regenerating the resins sorbed with ClO{sub 4}{sup -}. Under such circumstances, a prefilter ({approx} 0.5-1 {micro}m) was found to be necessary to remove these particulates and to reduce the risk of fouling of the resin beds. Without significant fouling, the resin bed could be effectively regenerated by the FeCl{sub 3} displacement technique. Nearly 100% of the sorbed ClO{sub 4}{sup -} was displaced or recovered after elution with only {approx} 2-5 bed volumes of the FeCl{sub 3}-HCl regenerant solution. On the basis of both the laboratory and field pilot-scale studies, they therefore anticipate that a combination of the selective ion exchange and the FeCl{sub 3}-regeneration technologies may offer a cost-effective means to remove ClO{sub 4}{sup -} from contaminated groundwater with significantly reduced waste generation and operational cost.« less
NASA Astrophysics Data System (ADS)
Shibata, Takayuki; Yamamoto, Kota; Sasano, Junji; Nagai, Moeto
2017-09-01
This paper presents a nanofabrication technique based on the electrochemically assisted chemical dissolution of zinc oxide (ZnO) single crystals in water at room temperature using a catalytically active Pt-coated atomic force microscopy (AFM) probe. Fabricated grooves featured depths and widths of several tens and several hundreds of nanometers, respectively. The material removal rate of ZnO was dramatically improved by controlling the formation of hydrogen ions (H+) on the surface of the catalytic Pt-coated probe via oxidation of H2O molecules; this reaction can be enhanced by applying a cathodic potential to an additional Pt-wire working electrode in a three-electrode configuration. Consequently, ZnO can be dissolved chemically in water as a soluble Zn2+ species via a reaction with H+ species present in high concentrations in the immediate vicinity of the AFM tip apex.
Paepoemsin, T; Reichart, P A; Chaijareenont, P; Strietzel, F P; Khongkhunthian, P
2016-01-01
The aim of this study was to evaluate the removal torque of three different abutment screws and pull out strength of implant-abutment connection for single implant restorations after mechanical cyclic loading. The study was performed in accordance with ISO 14801:2007. Three implant groups (n=15) were used: group A, PW Plus® with flat head screw; group B, PW Plus® with tapered screw; and group C, Conelog® with flat head screw. All groups had the same implant-abutment connection feature: cone with mandatory index. All screws were tightened with manufacturer's recommended torque. Ten specimens in each group underwent cyclic loading (1×106 cycles, 10 Hz, and 250 N). Then, all specimens were un-tightened, measured for the removal torque, and underwent a tensile test. The force that dislodged abutment from implant fixture was recorded. The data were analysed using independent sample t-test, ANOVA and Tukey HSD test. Before cyclic loading, removal torque in groups A, B and C were significantly different (B> A> C, P<.05). After cyclic loading, removal torque in all groups decreased significantly (P<.05). Group C revealed significantly less removal torque than groups A and B (P<.005). Tensile force in all groups significantly increased after cyclic loading (P<.05), group A had significantly less tensile force than groups B and C (P<.005). Removal torque reduced significantly after cyclic loading. Before cyclic loading, tapered screws maintained more preload than did flat head screws. After cyclic loading, tapered and flat head screws maintained even amounts of preload. The tensile force that dislodged abutment from implant fixture increased immensely after cyclic loading.
PAEPOEMSIN, T.; REICHART, P. A.; CHAIJAREENONT, P.; STRIETZEL, F. P.; KHONGKHUNTHIAN, P.
2016-01-01
SUMMARY Purpose The aim of this study was to evaluate the removal torque of three different abutment screws and pull out strength of implant-abutment connection for single implant restorations after mechanical cyclic loading. Methods The study was performed in accordance with ISO 14801:2007. Three implant groups (n=15) were used: group A, PW Plus® with flat head screw; group B, PW Plus® with tapered screw; and group C, Conelog® with flat head screw. All groups had the same implant-abutment connection feature: cone with mandatory index. All screws were tightened with manufacturer’s recommended torque. Ten specimens in each group underwent cyclic loading (1×106 cycles, 10 Hz, and 250 N). Then, all specimens were un-tightened, measured for the removal torque, and underwent a tensile test. The force that dislodged abutment from implant fixture was recorded. The data were analysed using independent sample t-test, ANOVA and Tukey HSD test. Results Before cyclic loading, removal torque in groups A, B and C were significantly different (B> A> C, P<.05). After cyclic loading, removal torque in all groups decreased significantly (P<.05). Group C revealed significantly less removal torque than groups A and B (P<.005). Tensile force in all groups significantly increased after cyclic loading (P<.05), group A had significantly less tensile force than groups B and C (P<.005). Conclusions Removal torque reduced significantly after cyclic loading. Before cyclic loading, tapered screws maintained more preload than did flat head screws. After cyclic loading, tapered and flat head screws maintained even amounts of preload. The tensile force that dislodged abutment from implant fixture increased immensely after cyclic loading. PMID:28042450
Estimation of polymer-surface interfacial interaction strength by a contact AFM technique.
Dvir, H; Jopp, J; Gottlieb, M
2006-12-01
Atomic force microscopy (AFM) measurements were employed to assess polymer-surface interfacial interaction strength. The main feature of the measurement is the use of contact-mode AFM as a tool to scratch off the polymer monolayer adsorbed on the solid surface. Tapping-mode AFM was used to determine the depth of the scraped recess. Independent determination of the layer thickness obtained from optical phase interference microscopy (OPIM) confirmed the depth of the AFM scratch. The force required for the complete removal of the polymer layer with no apparent damage to the substrate surface was determined. Polypropylene (PP), low-density polyethylene (PE), and PP-grafted-maleic anhydride (PP-g-ma) were scraped off silane-treated glass slabs, and the strength of surface interaction of the polymer layer was determined. In all cases it was determined that the magnitude of surface interaction force is of the order of van der Waals (VDW) interactions. The interaction strength is influenced either by polymer ability to wet the surface (hydrophobic or hydrophilic interactions) or by hydrogen bonding between the polymer and the surface treatment.
De Nunzio, Alessandro Marco; Dosen, Strahinja; Lemling, Sabrina; Markovic, Marko; Schweisfurth, Meike Annika; Ge, Nan; Graimann, Bernhard; Falla, Deborah; Farina, Dario
2017-08-01
Grasping is a complex task routinely performed in an anticipatory (feedforward) manner, where sensory feedback is responsible for learning and updating the internal model of grasp dynamics. This study aims at evaluating whether providing a proportional tactile force feedback during the myoelectric control of a prosthesis facilitates learning a stable internal model of the prosthesis force control. Ten able-bodied subjects controlled a sensorized myoelectric prosthesis performing four blocks of consecutive grasps at three levels of target force (30, 50, and 70%), repeatedly closing the fully opened hand. In the first and third block, the subjects received tactile and visual feedback, respectively, while during the second and fourth block, the feedback was removed. The subjects also performed an additional block with no feedback 1 day after the training (Retest). The median and interquartile range of the generated forces was computed to assess the accuracy and precision of force control. The results demonstrated that the feedback was indeed an effective instrument for the training of prosthesis control. After the training, the subjects were still able to accurately generate the desired force for the low and medium target (30 and 50% of maximum force available in a prosthesis), despite the feedback being removed within the session and during the retest (low target force). However, the training was substantially less successful for high forces (70% of prosthesis maximum force), where subjects exhibited a substantial loss of accuracy as soon as the feedback was removed. The precision of control decreased with higher forces and it was consistent across conditions, determined by an intrinsic variability of repeated myoelectric grasping. This study demonstrated that the subject could rely on the tactile feedback to adjust the motor command to the prosthesis across trials. The subjects adjusted the mean level of muscle activation (accuracy), whereas the precision could not be modulated as it depends on the intrinsic myoelectric variability. They were also able to maintain the feedforward command even after the feedback was removed, demonstrating thereby a stable learning, but the retention depended on the level of the target force. This is an important insight into the role of feedback as an instrument for learning of anticipatory prosthesis force control.
Parthasarathy, Anand; Por, Yong Ming; Tan, Donald T H
2007-10-01
To describe a quick and simple "small-bubble" technique to immediately determine the success of attaining complete Descemet's membrane (DM) separation from corneal stroma through Anwar's "big-bubble" technique of deep anterior lamellar keratoplasty (DALK) for complete stromal removal. A partial trephination was followed by a lamellar dissection of the anterior stroma. Deep stromal air injection was then attempted to achieve the big bubble to help separate the stroma from the DM. To confirm that a big bubble had been achieved, a small air bubble was injected into the anterior chamber (AC) through a limbal paracentesis. If the small bubble is then seen at the corneal periphery, it confirms that the big-bubble separation of DM was successful because the convex nature of the bubble will cause it to protrude posteriorly, forcing the small AC bubble to the periphery. If the small AC bubble is not seen in the corneal periphery, this means that it is present in the centre, beneath the opaque corneal stroma, and therefore the big bubble has not been achieved. We used the small-bubble technique to confirm the presence of the big bubble in three (one keratoconus, one interstitial keratitis and one dense corneal scar) out of 41 patients who underwent DALK. The small-bubble technique confirmed that the big bubble was achieved in the eye of all three patients. Complete stromal removal with baring of the DM was achieved, and postoperatively all three eyes achieved best corrected vision of 6/6. The small-bubble technique can be a useful surgical tool for corneal surgeons attempting lamellar keratoplasty using the big-bubble technique. It helps in confirming the separation of DM from the deep stroma, which is important in achieving total stromal replacement. It will help to make the transition to lamellar keratoplasty smoother, enhance corneal graft success and improve visual outcomes in patients.
Real-time Focused Ultrasound Surgery (FUS) Monitoring Using Harmonic Motion Imaging (HMI)
NASA Astrophysics Data System (ADS)
Maleke, Caroline; Konofagou, Elisa E.
2009-04-01
Monitoring changes in tissue mechanical properties to optimally control thermal exposure is important in thermal therapies. The amplitude-modulated (AM) harmonic motion imaging (HMI) for focused ultrasound (HMIFU) technique is a radiation force technique, which has the capability of tracking tissue stiffness during application of an oscillatory force. The feasibility of HMIFU for assessing mechanical tissue properties has been previously demonstrated. In this paper, a confocal transducer, combining a 4.5 MHz FUS transducer and a 3.3 MHz phased array imaging transducer, was used. The FUS transducer was driven by AM wave at 15 Hz with an acoustic intensity (Ispta) was equal to 1050 W/cm2. A lowpass digital filter was used to remove the spectrum of the higher power beam prior to displacement estimation. The resulting axial tissue displacement was estimated using 1D cross-correlation with a correlation window of 2 mm and a 92.5% overlap. A thermocouple was also used to measure the temperature near the ablated region. 2D HMI-images from six-bovine-liver specimens indicated the onset of coagulation necrosis through changes in amplitude displacement after coagulation due to its simultaneous probing and heating capability. The HMI technique can thus be used to monitor temperature-related stiffness changes of tissues during thermal therapies in real-time, i.e., without interrupting or modifying the treatment protocol.
Fracture resistance of retreated roots using different retreatment systems.
Er, Kursat; Tasdemir, Tamer; Siso, Seyda Herguner; Celik, Davut; Cora, Sabri
2011-08-01
This study was designed to evaluate the fracture resistance of retreated roots using different rotary retreatment systems. Forty eight freshly extracted human canine teeth with single straight root canals were instrumented sequentially increasing from size 30 to a size 55 using K-files whit a stepback technique. The teeth were randomly divided into three experimental and one control groups of 12 specimens each. The root canals were filled using cold lateral compaction of gutta-percha and AH Plus (Dentsply Detrey, Konstanz, Germany) sealer in experimental groups. Removal of gutta-percha was performed with the following devices and techniques: ProTaper Universal (Dentsply Maillefer, Ballaigues, Switzerland), R-Endo (Micro-Mega, Besançon, France), and Mtwo (Sweden & Martina, Padova, Italy) rotary retreatment systems. Control group specimens were only instrumented, not filled or retreated. The specimens were then mounted in copper rings, were filled with a self-curing polymethylmethacrylate resin, and the force required to cause vertical root fracture was measured using a universal testing device. The force of fracture of the roots was recorded and the results in the various groups were compared. Statistical analysis was accomplished by one-way ANOVA and a post hoc Tukey tests. There were statistically significant differences between the control and experimental groups (P<.05). However, there were no significant differences among the experimental groups. Based on the results, all rotary retreatment techniques used in this in vitro study produced similar root weakness.
Real-time Focused Ultrasound Surgery (FUS) Monitoring Using Harmonic Motion Imaging (HMI)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maleke, Caroline; Konofagou, Elisa E.; Department of Radiology, Columbia University, New York, NY
2009-04-14
Monitoring changes in tissue mechanical properties to optimally control thermal exposure is important in thermal therapies. The amplitude-modulated (AM) harmonic motion imaging (HMI) for focused ultrasound (HMIFU) technique is a radiation force technique, which has the capability of tracking tissue stiffness during application of an oscillatory force. The feasibility of HMIFU for assessing mechanical tissue properties has been previously demonstrated. In this paper, a confocal transducer, combining a 4.5 MHz FUS transducer and a 3.3 MHz phased array imaging transducer, was used. The FUS transducer was driven by AM wave at 15 Hz with an acoustic intensity (I{sub spta}) wasmore » equal to 1050 W/cm{sup 2}. A lowpass digital filter was used to remove the spectrum of the higher power beam prior to displacement estimation. The resulting axial tissue displacement was estimated using 1D cross-correlation with a correlation window of 2 mm and a 92.5% overlap. A thermocouple was also used to measure the temperature near the ablated region. 2D HMI-images from six-bovine-liver specimens indicated the onset of coagulation necrosis through changes in amplitude displacement after coagulation due to its simultaneous probing and heating capability. The HMI technique can thus be used to monitor temperature-related stiffness changes of tissues during thermal therapies in real-time, i.e., without interrupting or modifying the treatment protocol.« less
Anderson, Andrew; Tollefson, Brian; Cohen, Rob; Johnson, Jeremy; Summers, Richard L
2011-04-01
American football is the source of a significant number of cervical spine injuries. Removal of the helmets from these individuals is often problematic and presents a potential for exacerbation of the injury. There are two widely recognized helmet removal techniques that are currently in practice. In this study, the two methods are compared for cervical movement and potential for cord injury to determine their relative efficiency and clinical utility. A single cadaver with a simulated cervical injury was used to compare the National Athletic Trainers' Association (NATA) and cast saw techniques of helmet removal. Directed lateral fluoroscopy was used to measure the relative changes in angulation, translation, distraction, and space available to the spinal cord during helmet removal using the two techniques as performed by medical personnel with limited training in the methods. By radiologists' reports, there were no detectable changes in disc height, translation or space available for the spinal cord during helmet removal with either of the studied techniques. Operators noted that the noise of the cast saw would probably be significantly uncomfortable for any live subject inside of a helmet. Both the NATA and cast saw methods appear effective for the safe removal of a football helmet and with little risk of further injury to the cervical spine. Considering the simplicity and efficiency of the NATA helmet removal technique, the authors conclude that the NATA technique should be the preferred helmet removal method.
Virus removal in ceramic depth filters based on diatomaceous earth.
Michen, Benjamin; Meder, Fabian; Rust, Annette; Fritsch, Johannes; Aneziris, Christos; Graule, Thomas
2012-01-17
Ceramic filter candles, based on the natural material diatomaceous earth, are widely used to purify water at the point-of-use. Although such depth filters are known to improve drinking water quality by removing human pathogenic protozoa and bacteria, their removal regarding viruses has rarely been investigated. These filters have relatively large pore diameters compared to the physical dimension of viruses. However, viruses may be retained by adsorption mechanisms due to intermolecular and surface forces. Here, we use three types of bacteriophages to investigate their removal during filtration and batch experiments conducted at different pH values and ionic strengths. Theoretical models based on DLVO-theory are applied in order to verify experimental results and assess surface forces involved in the adsorptive process. This was done by calculation of interaction energies between the filter surface and the viruses. For two small spherically shaped viruses (MS2 and PhiX174), these filters showed no significant removal. In the case of phage PhiX174, where attractive interactions were expected, due to electrostatic attraction of oppositely charged surfaces, only little adsorption was reported in the presence of divalent ions. Thus, we postulate the existence of an additional repulsive force between PhiX174 and the filter surface. It is hypothesized that such an additional energy barrier originates from either the phage's specific knobs that protrude from the viral capsid, enabling steric interactions, or hydration forces between the two hydrophilic interfaces of virus and filter. However, a larger-sized, tailed bacteriophage of the family Siphoviridae was removed by log 2 to 3, which is explained by postulating hydrophobic interactions.
Safe removal of upper esophageal coins by using Magill forceps: two centers' experience.
Cetinkursun, Salih; Sayan, Ali; Demirbag, Suzi; Surer, Ilhami; Ozdemir, Tunc; Arikan, Ahmet
2006-01-01
Coin ingestion with subsequent esophageal coin impaction is common in children. Considerable debate surrounds the choice of technique for the removal of esophageal coins. This study demonstrates a minimally invasive technique for upper esophageal coin extraction. A retrospective review was conducted of 165 children who had upper esophageal coins extracted by using a Magill forceps. One hundred fifty-six coins (96.4%) were successfully removed without any complications. The average time taken to remove the coin was 33 seconds. Use of the Magill forceps technique minimizes instrumentation of the esophagus and is an easy, safe technique for removing coins from the upper end of the esophagus.
Abdel-Wahab, Magd M; Wang, Chong; Vanegas-Useche, Libardo V; Parker, Graham A
2011-06-01
The removal ability of gutter brushes for road sweeping for various debris types and different sweeping parameters is studied through experimental tests. The brushing test rig used comprises two commercial gutter brushes, a concrete test bed, and an asphalt test road with a gutter of 0.25 cm width and 10° slope. The brush-surface contact area is determined by sweeping sand on the concrete test bed. Sweeping problems are identified and discussed, and sweeping criteria for the different debris types are suggested. Also, optimum sweeping parameters are proposed for each debris type. In addition, debris removal mechanisms are discussed and analysed. The results indicate that for large heavy debris such as stones and gravel, it is not difficult to achieve large removal forces, because the steel bristles are relatively stiff. Conversely, high removal forces are not needed for particles of millimetre or micron sizes, but bristle curvature has to be appropriate to remove particles from road concavities. Finally, it is found that mud, especially dry mud on a rough surface, is the hardest debris to sweep, requiring a brush with a large tilt angle and a very large penetration to produce large removal forces. Copyright © 2011 Elsevier Ltd. All rights reserved.
Mathaes, Roman; Mahler, Hanns-Christian; Vorgrimler, Lothar; Steinberg, Henrik; Dreher, Sascha; Roggo, Yves; Nieto, Alejandra; Brown, Helen; Roehl, Holger; Adler, Michael; Luemkemann, Joerg; Huwyler, Joerg; Lam, Philippe; Stauch, Oliver; Mohl, Silke; Streubel, Alexander
2016-01-01
The majority of parenteral drug products are manufactured in glass vials with an elastomeric rubber stopper and a crimp cap. The vial sealing process is a critical process step during fill-and-finish operations, as it defines the seal quality of the final product. Different critical capping process parameters can affect rubber stopper defects, rubber stopper compression, container closure integrity, and also crimp cap quality. A sufficiently high force to remove the flip-off button prior to usage is required to ensure quality of the drug product unit by the flip-off button during storage, transportation, and until opening and use. Therefore, the final product is 100% visually inspected for lose or defective crimp caps, which is subjective as well as time- and labor-intensive. In this study, we sealed several container closure system configurations with different capping equipment settings (with corresponding residual seal force values) to investigate the torque moment required to turn the crimp cap. A correlation between torque moment and residual seal force has been established. The torque moment was found to be influenced by several parameters, including diameter of the vial head, type of rubber stopper (serum or lyophilized) and type of crimp cap (West(®) or Datwyler(®)). In addition, we measured the force required to remove the flip-off button of a sealed container closure system. The capping process had no influence on measured forces; however, it was possible to detect partially crimped vials. In conclusion, a controlled capping process with a defined target residual seal force range leads to a tight crimp cap on a sealed container closure system and can ensure product quality. The majority of parenteral drug products are manufactured in a glass vials with an elastomeric rubber stopper and a crimp cap. The vial sealing process is a critical process step during fill-and-finish operations, as it defines the seal quality of the final product. An adequate force to remove the flip-off button prior to usage is required to ensure product quality during storage and transportation until use. In addition, the complete crimp cap needs to be fixed in a tight position on the vial. In this study, we investigated the torque moment required to turn the crimp cap and the force required to remove the flip-off button of container closure system sealed with different capping equipment process parameters (having different residual seal force values). © PDA, Inc. 2016.
Nerve cuff electrode using embedded magnets and its application to hypoglossal nerve stimulation.
Seo, Jungmin; Wee, Jee Hye; Park, Jeong Hoan; Park, Pona; Kim, Jeong-Whun; Kim, Sung June
2016-12-01
A novel nerve cuff electrode with embedded magnets was fabricated and developed. In this study, a pair of magnets was fully embedded and encapsulated in a liquid crystal polymer (LCP) substrate to utilize magnetic force in order to replace the conventional installing techniques of cuff electrodes. In vitro and in vivo experiments were conducted to evaluate the feasibility of the magnet-embedded nerve cuff electrode (MENCE). Lastly, several issues pertaining to the MENCE such as the cuff-to-nerve diameter ratio, the force of the magnets, and possible concerns were discussed in the discussion section. Electrochemical impedance spectrum and cyclic voltammetry assessments were conducted to measure the impedance and charge storage capacity of the cathodal phase (CSC c ). The MENCE was installed onto the hypoglossal nerve (HN) of a rabbit and the movement of the genioglossus was recorded through C-arm fluoroscopy while the HN was stimulated by a pulsed current. The measured impedance was 0.638 ∠ -67.8° kΩ at 1 kHz and 5.27 ∠ -82.1° kΩ at 100 Hz. The average values of access resistance and cut-off frequency were 0.145 kΩ and 3.98 kHz, respectively. The CSC c of the electrode was measured as 1.69 mC cm -2 at the scan rate of 1 mV s -1 . The movement of the genioglossus contraction was observed under a pulsed current with an amplitude level of 0.106 mA, a rate of 0.635 kHz, and a duration of 0.375 ms applied through the MENCE. A few methods to close and secure cuff electrodes have been researched, but they are associated with several drawbacks. To overcome these, we used magnetic force as a closing method of the cuff electrode. The MENCE can be precisely installed on a target nerve without any surgical techniques such as suturing or molding. Furthermore, it is convenient to remove the installed MENCE because it requires little force to detach one magnet from the other, enabling repeatable installation and removal. We anticipate that the MENCE will become a very useful tool given its unique properties as a cuff electrode for neural engineering.
5 CFR 359.602 - Agency reductions in force.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 5 Administrative Personnel 1 2010-01-01 2010-01-01 false Agency reductions in force. 359.602... Appointees as a Result of Reduction in Force § 359.602 Agency reductions in force. (a) Competitive procedures... removed from the SES in any reduction in force of career appointees within the agency. Such competitive...
Segmenting overlapping nano-objects in atomic force microscopy image
NASA Astrophysics Data System (ADS)
Wang, Qian; Han, Yuexing; Li, Qing; Wang, Bing; Konagaya, Akihiko
2018-01-01
Recently, techniques for nanoparticles have rapidly been developed for various fields, such as material science, medical, and biology. In particular, methods of image processing have widely been used to automatically analyze nanoparticles. A technique to automatically segment overlapping nanoparticles with image processing and machine learning is proposed. Here, two tasks are necessary: elimination of image noises and action of the overlapping shapes. For the first task, mean square error and the seed fill algorithm are adopted to remove noises and improve the quality of the original image. For the second task, four steps are needed to segment the overlapping nanoparticles. First, possibility split lines are obtained by connecting the high curvature pixels on the contours. Second, the candidate split lines are classified with a machine learning algorithm. Third, the overlapping regions are detected with the method of density-based spatial clustering of applications with noise (DBSCAN). Finally, the best split lines are selected with a constrained minimum value. We give some experimental examples and compare our technique with two other methods. The results can show the effectiveness of the proposed technique.
Vasilikostas, Georgios; Sanmugalingam, Nimalan; Khan, Omar; Reddy, Marcus; Groves, Chris; Wan, Andrew
2014-03-01
Endoscopic stenting is a relatively new technique for the treatment of post sleeve gastrectomy complications. Partially covered stents are used in this method to minimise the risk of migration but they are associated with difficulties with removal. Patients requiring emergency stenting following sleeve gastrectomy underwent insertion of a partially covered metallic stent. One month later, if the stent was not easily removable, a fully covered overlapping stent was inserted and the patient was readmitted 2 weeks later for removal of both stents. Four patients required stenting following sleeve gastrectomy leaks, and one patient required stenting for a stricture. In these cases, a 'stent in a stent' technique was used for removal. This technique allows the safe removal of partially covered stents inserted following sleeve gastrectomy complications.
Tanner, Bertrand C.W.; McNabb, Mark; Palmer, Bradley M.; Toth, Michael J.; Miller, Mark S.
2014-01-01
Diminished skeletal muscle performance with aging, disuse, and disease may be partially attributed to the loss of myofilament proteins. Several laboratories have found a disproportionate loss of myosin protein content relative to other myofilament proteins, but due to methodological limitations, the structural manifestation of this protein loss is unknown. To investigate how variations in myosin content affect ensemble cross-bridge behavior and force production we simulated muscle contraction in the half-sarcomere as myosin was removed either i) uniformly, from the Z-line end of thick-filaments, or ii) randomly, along the length of thick-filaments. Uniform myosin removal decreased force production, showing a slightly steeper force-to-myosin content relationship than the 1:1 relationship that would be expected from the loss of cross-bridges. Random myosin removal also decreased force production, but this decrease was less than observed with uniform myosin loss, largely due to increased myosin attachment time (ton) and fractional cross-bridge binding with random myosin loss. These findings support our prior observations that prolonged ton may augment force production in single fibers with randomly reduced myosin content from chronic heart failure patients. These simulation also illustrate that the pattern of myosin loss along thick-filaments influences ensemble cross-bridge behavior and maintenance of force throughout the sarcomere. PMID:24486373
Development of countermeasures for use in space missions. [to adaptive response to space flight
NASA Technical Reports Server (NTRS)
Nicogossian, A. E. T.; Pool, S.; Huntoon, C. S. L.; Leonard, J. I.
1985-01-01
Several measures used to mitigate the inappropriate adaptive responses of space flight are investigated. Weighlessness results in a cephalic fluid shift, which causes a reduction in the circulating blood volume, and removal of weight bearing forces from musculoskeletal systems. The physiological changes that occur from one-g initiated hypovolemia and zero-g initiated fluild shifts are analyzed and compared. The role of barorecptors on the activation of the adrenergic responses that occurs as a result of hypovolemia is studied. The proper selection and administration of in-flight and post flight countermeasures, which include passive and active physical conditioning techniques, drugs, and vitamins are examined.
Imaging, cutting, and collecting instrument and method
Tench, Robert J.; Siekhaus, Wigbert J.; Balooch, Mehdi; Balhorn, Rodney L.; Allen, Michael J.
1995-01-01
Instrumentation and techniques to image small objects, such as but not limited to individual human chromosomes, with nanometer resolution, to cut-off identified parts of such objects, to move around and manipulate such cut-off parts on the substrate on which they are being imaged to predetermined locations on the substrate, and to remove the cut-off parts from the substrate. This is accomplished using an atomic force microscope (AFM) and by modification of the conventional cantilever stylus assembly of an AFM, such that plural cantilevers are used with either sharp-tips or knife-edges thereon. In addition, the invention can be utilized for measuring hardness of materials.
Dall'Agnol, Cristina; Hartmann, Mateus Silveira Martins; Barletta, Fernando Branco
2008-01-01
This study evaluated the efficiency of different techniques for removal of filling material from root canals, using computed tomography (CT). Sixty mesial roots from extracted human mandibular molars were used. Root canals were filled and, after 6 months, the teeth were randomly assigned to 3 groups, according to the root-filling removal technique: Group A - hand instrumentation with K-type files; Group B - reciprocating instrumentation with engine-driven K-type files; and Group C rotary instrumentation with engine-driven ProTaper system. CT scans were used to assess the volume of filling material inside the root canals before and after the removal procedure. In both moments, the area of filling material was outlined by an experienced radiologist and the volume of filling material was automatically calculated by the CT software program. Based on the volume of initial and residual filling material of each specimen, the percentage of filling material removed from the root canals by the different techniques was calculated. Data were analyzed statistically by ANOVA and chi-square test for linear trend (?=0.05). No statistically significant difference (p=0.36) was found among the groups regarding the percent means of removed filling material. The analysis of the association between the percentage of filling material removal (high or low) and the proposed techniques by chi-square test showed statistically significant difference (p=0.015), as most cases in group B (reciprocating technique) presented less than 50% of filling material removed (low percent removal). In conclusion, none of the techniques evaluated in this study was effective in providing complete removal of filling material from the root canals.
Jumbo Cutter for Removal of A Bent Femoral Interlocking Nail: A Cost Effective Method
Dhanda, Manjeet Singh; Sharma, Sansar C; Ali, Nadeem; Bhat, Abedullah
2015-01-01
Closed diaphyseal femoral shaft fractures can be treated with multiple surgical options. It is more challenging to remove a bent nail than a broken one because it is difficult to retrieve the bent nail through the intramedullary canal. Various authors have published their techniques for removal of bent femoral interlocking nail. This article describes a simple technique using Jumbo cutter for sectioning and removal of bent interlocking nail. This technique will help orthopaedic surgeons to remove bent nail without using any specialised metal cutting instruments. PMID:26266173
Tokumura, Fumio; Homma, Takeyasu; Tomiya, Toshiki; Kobayashi, Yuko; Matsuda, Tetsuaki
2007-05-01
The use of soft adhesives in the manufacture of pressure-sensitive adhesive tapes has recently increased. The dermal peeling force of adhesive tapes with soft adhesives was studied. Four kinds of adhesive tapes with adhesives of different softness were made, by adding varying amounts of isopropyl myristate as a softener. The tapes were applied on the flexor side of the forearm of six healthy male volunteers. The dermal peeling force, the amount of stripped corneocytes, the level of pain when the tapes were removed and the degree of penetration of adhesives into the sulcus cutis (skin furrows) were evaluated at 1 and 24 h after application of the tapes. Furthermore, a skin model panel (a sulcus cutis and crista cutis model panel) and a crista cutis model panel were constructed from a general stainless-steel panel, and the peeling force of the tapes against the model panels was measured. As the softness of adhesives increased, the peeling force against a general stainless-steel panel with a flat surface decreased, although the peeling force against human skin did not significantly change. The amount of stripped corneocytes on the removed tapes and the level of pain when the tapes were removed decreased with the increase in softness of the adhesives. These results suggest that adhesive tapes with soft adhesives that contain isopropyl myristate as a softener are suitable for the skin. Furthermore, the degree of penetration of adhesive into the sulcus cutis increased as the softness of adhesives increased. Upon evaluation of the peeling force against the model panels, as the softness of adhesives increased, there was a slight decrease in the peeling force against the skin model panel, while there was a remarkable decrease in the peeling force against the crista cutis model panel. These results suggest that the lack of change in the dermal peeling force as the softness of adhesives increased was caused by penetration of soft adhesive into the sulcus cutis, and that the decrease in the amount of stripped corneocytes was caused by a decrease in the peeling force against the crista cutis, which consists of corneocytes mainly removed by the tapes.
Combined tool approach is 100% successful for emergency football face mask removal.
Copeland, Aaron J; Decoster, Laura C; Swartz, Erik E; Gattie, Eric R; Gale, Stephanie D
2007-11-01
To compare effectiveness of two techniques for removing football face masks: cutting loop straps [cutting tool: FMXtractor (FMX)] or removing screws with a cordless screwdriver and using the FMXtractor as needed for failed removals [combined tool (CT)]. Null hypotheses: no differences in face mask removal success, removal time or difficulty between techniques or helmet characteristics. Retrospective, cross-sectional. NOCSAE-certified helmet reconditioning plants. 600 used high school helmets. Face mask removal attempted with two techniques. Success, removal time, rating of perceived exertion (RPE). Both techniques were effective [CT 100% (300/300); FMX 99.4% (298/300)]. Use of the backup FMXtractor in CT trials was required in 19% of trials. There was significantly (P<0.001) less call for the backup tool in helmets with silver screws (6%) than in helmets with other screws (31%). Mean removal time was 44.51+/-18.79s (CT: 37.84+/-15.37s, FMX: 51.21+/-19.54s; P<0.001). RPE was different between techniques (CT: 1.83+/-1.20, FMX: 3.11+/-1.27; P<0.001). Removal from helmets with silver screws was faster (Silver=33.38+/-11.03, Others=42.18+/-17.64; P<0.001) and easier (Silver=1.42+/-0.89, Other=2.23+/-1.33; P<0.001). CT was faster and easier than FMX. Most CT trials were completed with the screwdriver alone; helmets with silver screws had 94% screwdriver success. Clinically, these findings are important because this and other research shows that compared to removal with cutting tools, screwdriver removal decreases time, difficulty and helmet movement (reducing potential for iatrogenic injury). The combined-tool approach captures benefits of the screwdriver while offering a contingency for screw removal failure. Teams should use degradation-resistant screws. Sports medicine professionals must be prepared with appropriate tools and techniques to efficiently remove the face mask from an injured football player's helmet.
Patel, Premal Amrishkumar; Parra, Dimitri A; Bath, Ramnik; Amaral, Joao G; Temple, Michael J; John, Philip R; Connolly, Bairbre L
2016-06-01
To identify factors associated with adherence of implanted venous access port catheters in children and describe technical strategies for removing "stuck" ports. A retrospective single-center review of port removals was conducted between 2003 and 2012. Cases were identified through radiology reports. Clinical details (eg, demographics, disease, port dwell time, interventional techniques) were obtained through patient charts. Cases were classified as difficult removals if there was documented adherence to soft tissues or vein, or simple removals if no difficulty was recorded. Difficult removals were categorized and graded on increasing invasiveness of techniques required. Successful removal was defined as complete removal of the port catheter. Difficult removals were compared with simple removals for factors associated with difficult removal. Of all removals (N = 1,306), 58 were classified as difficult removals (4%). Using various techniques, 57 of 58 (98%) adherent port catheters were successfully removed. Factors identified with difficult removals included primary diagnosis of acute lymphoblastic leukemia (ALL) (78% vs 37%, P < .0001), age at insertion (3.7 y vs 5.4 y, P = .0019), and port dwell time (median 1,087 d vs 616 d, P < .0001). Difficulty removing port catheters in children is uncommon. Port catheters can usually be removed successfully using various IR techniques ranging in invasiveness. There is an association of difficult removal with early age at insertion, ALL diagnosis, and long port dwell time. Awareness of these factors may help physicians inform parents of potential difficulties and plan the removal procedure. Copyright © 2016 SIR. Published by Elsevier Inc. All rights reserved.
Simulated Cytoskeletal Collapse via Tau Degradation
Sendek, Austin; Fuller, Henry R.; Hayre, N. Robert; Singh, Rajiv R. P.; Cox, Daniel L.
2014-01-01
We present a coarse-grained two dimensional mechanical model for the microtubule-tau bundles in neuronal axons in which we remove taus, as can happen in various neurodegenerative conditions such as Alzheimers disease, tauopathies, and chronic traumatic encephalopathy. Our simplified model includes (i) taus modeled as entropic springs between microtubules, (ii) removal of taus from the bundles due to phosphorylation, and (iii) a possible depletion force between microtubules due to these dissociated phosphorylated taus. We equilibrate upon tau removal using steepest descent relaxation. In the absence of the depletion force, the transverse rigidity to radial compression of the bundles falls to zero at about 60% tau occupancy, in agreement with standard percolation theory results. However, with the attractive depletion force, spring removal leads to a first order collapse of the bundles over a wide range of tau occupancies for physiologically realizable conditions. While our simplest calculations assume a constant concentration of microtubule intercalants to mediate the depletion force, including a dependence that is linear in the detached taus yields the same collapse. Applying percolation theory to removal of taus at microtubule tips, which are likely to be the protective sites against dynamic instability, we argue that the microtubule instability can only obtain at low tau occupancy, from 0.06–0.30 depending upon the tau coordination at the microtubule tips. Hence, the collapse we discover is likely to be more robust over a wide range of tau occupancies than the dynamic instability. We suggest in vitro tests of our predicted collapse. PMID:25162587
High Resolution Quantification of Cellular Forces for Rigidity Sensing
NASA Astrophysics Data System (ADS)
Liu, Shuaimin
This thesis describes a comprehensive study of understanding the mechanism of rigidity sensing by quantitative analysis using submicron pillar array substrates. From mechanobiology perspective, we explore and study molecular pathways involved in rigidity and force sensing at cell-matrix adhesions with regard to cancer, regeneration, and development by quantification methods. In Chapter 2 and 3, we developed fabrication and imaging techniques to enhance the performance of a submicron pillar device in terms of spatial and temporal measurement ability, and we discovered a correlation of rigidity sensing forces and corresponding proteins involved in the early rigidity sensing events. In Chapter 2, we introduced optical effect arising from submicron structure imaging, and we described a technique to identify the correct focal plane of pillar tip by fabricating a substrate with designed-offset pillars. From calibration result, we identified the correct focal plane that was previously overlooked, and verified our findings by other imaging techniques. In Chapter 3, we described several techniques to selectively functionalize elastomeric pillars top and compared these techniques in terms of purposes and fabrication complexity. Techniques introduced in this chapter included direct labeling, such as stamping of fluorescent substances (organic dye, nano-diamond, q-dot) to pillars top, as well as indirect labeling that selectively modify the surface of molds with either metal or fluorescent substances. In Chapter 4, we examined the characteristics of local contractility forces and identified the components formed a sarcomere like contractile unit (CU) that cells use to sense rigidity. CUs were found to be assembled at cell edge, contain myosin II, alpha-actinin, tropomodulin and tropomyosin (Tm), and resemble sarcomeres in size (˜2 mum) and function. Then we performed quantitative analysis of CUs to evaluate rigidity sensing activity over ˜8 hours time course and found that density of CUs decrease with time after spreading on stiff substrate. However addition of EGF dramatically increased local contraction activity such that about 30% of the total contractility was in the contraction units. This stimulatory effect was only observed on stiff substrate not on soft. Moreover, we find that in the early interactions of cells with rigid substrates that EGFR activity is needed for normal spreading and the assembly of local contraction units in media lacking serum and any soluble EGF. In Chapter 5, we performed high temporal- and spatial-resolution tracking of contractile forces exerted by cells on sub-micron elastomeric pillars. We found that actomyosin-based sarcomere-like CUs simultaneously moved opposing pillars in net steps of ˜2.5 nm, independent of rigidity. What correlated with rigidity was the number of steps taken to reach a force level that activated recruitment of alpha-actinin to the CUs. When we removed actomyosin restriction by depleting tropomyosin 2.1, we observed larger steps and higher forces that resulted in aberrant rigidity sensing and growth of non-transformed cells on soft matrices. Thus, we conclude that tropomyosin 2.1 acts as a suppressor of growth on soft matrices by supporting proper rigidity sensing.
Comparison of residual NAPL source removal techniques in 3D metric scale experiments
NASA Astrophysics Data System (ADS)
Atteia, O.; Jousse, F.; Cohen, G.; Höhener, P.
2017-07-01
This study compared four treatment techniques for the removal of a toluene/n-decane as NAPL (Non Aqueous Phase Liquid) phase mixture in identical 1 cubic meter tanks filled with different kind of sand. These four treatment techniques were: oxidation with persulfate, surfactant washing with Tween80®, sparging with air followed by ozone, and thermal treatment at 80 °C. The sources were made with three lenses of 26 × 26 × 6.5 cm, one having a hydraulic conductivity similar to the whole tank and the two others a value 10 times smaller. The four techniques were studied after conditioning the tanks with tap water during approximately 80 days. The persulfate treatment tests showed average removal of the contaminants but significant flux decrease if density effects are considered. Surfactant flushing did not show a highly significant increase of the flux of toluene but allowed an increased removal rate that could lead to an almost complete removal with longer treatment time. Sparging removed a significant amount but suggests that air was passing through localized gas channels and that the removal was stagnating after removing half of the contamination. Thermal treatment reached 100% removal after the target temperature of 80 °C was kept during more than 10 d. The experiments emphasized the generation of a high-spatial heterogeneity in NAPL content. For all the treatments the overall removal was similar for both n-decane and toluene, suggesting that toluene was removed rapidly and n-decane more slowly in some zones, while no removal existed in other zones. The oxidation and surfactant results were also analyzed for the relation between contaminant fluxes at the outlet and mass removal. For the first time, this approach clearly allowed the differentiation of the treatments. As a conclusion, experiments showed that the most important differences between the tested treatment techniques were not the global mass removal rates but the time required to reach 99% decrease in the contaminant fluxes, which were different for each technique. This paper presents the first comparison of four remediation techniques at the scale of 1 m3 tanks including heterogeneities. Sparging, persulfate and surfactant only remove 50% of the mass, while it is more than 99% for thermal. In terms of flux removal oxidant addition performs better when density effects are used.
Code of Federal Regulations, 2014 CFR
2014-10-01
... the test device described in S6 is used to apply a force to either side of the forward edge of a... more than 127 millimeters. The applied force in Newtons is equal to 1.5 times the unloaded vehicle... or removable roof structure in place over the occupant compartment. Remove roof racks or other non...
Code of Federal Regulations, 2012 CFR
2012-10-01
... the test device described in S6 is used to apply a force to either side of the forward edge of a... more than 127 millimeters. The applied force in Newtons is equal to 1.5 times the unloaded vehicle... or removable roof structure in place over the occupant compartment. Remove roof racks or other non...
Code of Federal Regulations, 2013 CFR
2013-10-01
... the test device described in S6 is used to apply a force to either side of the forward edge of a... more than 127 millimeters. The applied force in Newtons is equal to 1.5 times the unloaded vehicle... or removable roof structure in place over the occupant compartment. Remove roof racks or other non...
van Dongen, Heleen; Emanuel, Mark Hans; Wolterbeek, Ron; Trimbos, J Baptist; Jansen, Frank Willem
2008-01-01
The purpose of this randomized controlled study was to compare conventional resectoscopy and hysteroscopic morcellation among residents in training (Canadian Task Force classification I). Sixty women with an intrauterine polyp or myoma were randomized to either hysteroscopic removal by conventional resectoscopy or hysteroscopic morcellation performed by 6 residents in training for obstetrics and gynecology (10 procedures per resident). The mean operating time for resectosocpy and morcellation was 17.0 (95% confidence interval [95% CI] 14.1-17.9, standard deviation [SD] 8.4) and 10.6 (95% CI 7.3-14.0, SD 9.5) min, respectively (p = .008). Multiple linear regression analysis showed that operating time increased significantly, for both resectoscopy and morcellator, when volume of intrauterine disorder increased. The use of the hysteroscopic morcellator reduced operating time more than 8 min in comparison to conventional resectoscopy (p < .001) when correction for volume was applied. Subjective surgeon and trainer scores for convenience of technique on a visual analog scale were in favor of the morcellator. No learning curve was observed. In conclusion, the hysteroscopic morcellator for removal of intrauterine polyps and myomas offers a good alternative to conventional resectoscopy for residents in training.
NASA Astrophysics Data System (ADS)
Abrokwah, K.; O'Reilly, A. M.
2017-12-01
Groundwater is an important resource that is extracted every day because of its invaluable use for domestic, industrial and agricultural purposes. The need for sustaining groundwater resources is clearly indicated by declining water levels and has led to modeling and forecasting accurate groundwater levels. In this study, spectral decomposition of climatic forcing time series was used to develop hybrid wavelet analysis (WA) and moving window average (MWA) artificial neural network (ANN) models. These techniques are explored by modeling historical groundwater levels in order to provide understanding of potential causes of the observed groundwater-level fluctuations. Selection of the appropriate decomposition level for WA and window size for MWA helps in understanding the important time scales of climatic forcing, such as rainfall, that influence water levels. Discrete wavelet transform (DWT) is used to decompose the input time-series data into various levels of approximate and details wavelet coefficients, whilst MWA acts as a low-pass signal-filtering technique for removing high-frequency signals from the input data. The variables used to develop and validate the models were daily average rainfall measurements from five National Atmospheric and Oceanic Administration (NOAA) weather stations and daily water-level measurements from two wells recorded from 1978 to 2008 in central Florida, USA. Using different decomposition levels and different window sizes, several WA-ANN and MWA-ANN models for simulating the water levels were created and their relative performances compared against each other. The WA-ANN models performed better than the corresponding MWA-ANN models; also higher decomposition levels of the input signal by the DWT gave the best results. The results obtained show the applicability and feasibility of hybrid WA-ANN and MWA-ANN models for simulating daily water levels using only climatic forcing time series as model inputs.
Comparative study of two precision overdenture attachment designs.
Cohen, B I; Pagnillo, M; Condos, S; Deutsch, A S
1996-08-01
In this study two precision overdenture attachment designs were tested for retention--a nylon overdenture cap system and a new cap and keeper system. The new cap and keeper system was designed to reduce the time involved in replacing a cap worn by the conditions of the oral environment. Six groups were tested at two different angles and retentive failure was examined at two different angles (26 and 0 degrees). Failure was measured in pounds with a force gauge over a 2000 pull cycle. The amount of force required to remove caps for two overdenture caps and a replaced cap for the metal keeper system was determined. Two dependent variables were absolute force and relative force. Repeated measures analysis of variance (RMANOVA) was used to compare the between-subjects effects of cap and angle, and the within-subjects effect of pull. The results indicated a significant difference between cap types (p < 0.0001) with respect to the relative force required to remove the cap. There was no effect of angle. For absolute force, RMANOVA revealed a highly significant interaction between pull and cap (p < 0.0001). Thus, the way that force changed over pulls depended on which cap was used (no effect of angle). For relative force, RMANOVA revealed no interaction between pull and cap, but there was a main effect of cap type (p < 0.0001) (no effect of angle). The nylon cap design required less force for removal but showed more consistency in the force required over the course of the 2000 pulls when compared with the keeper with cap insert. The results obtained in this study were consistent with similar studies in literature.
Excessive force during removal of immigration detainees.
Granville-Chapman, Charlotte; Smith, Ellie; Moloney, Neil
2005-08-01
Use of force against immigration detainees during attempts to expel them from the UK must be limited to that which is strictly necessary and proportionate under the circumstances, using accepted methods of restraint designed to minimise injury risk to all concerned. Fourteen cases are reported after failed removal attempts, where there were allegations that excessive force had been employed. Collective analysis of the 14 cases reveals a misuse of handcuffs in 11 cases with resulting nerve injury in 4 cases, the use of inappropriate and unsafe methods of force, such as blows to the head and compression of the trunk and/or neck, and continued use of force even after termination of the deportation attempt, occurring inside security company vehicles out of sight of witnesses. An analysis of the legal implications for the government and recommendations aimed at eradication of abusive practices are given.
The Direct-Indirect Technique for Composite Restorations Revisited.
Ritter, André V; Fahl, Newton; Vargas, Marcos; Maia, Rodrigo R
2017-06-01
In the direct-indirect composite technique, composite is applied to a nonretentive tooth preparation (eg, a noncarious cervical lesion or a veneer/inlay/onlay preparation) without any bonding agent, sculpted to a primary anatomic form, and light-cured. The partially polymerized restoration is then removed from the preparation and finished and tempered extraorally chairside. The finished inlay is bonded to the preparation using a resin-based luting agent. Advantages of this technique include enhanced physical and mechanical properties afforded by the extraoral chairside tempering process because of increased monomer conversion, and greater operator control over the final marginal adaptation, surface finishing and polishing, and anatomy of the restoration, given that these elements are defined outside of the patient's mouth. The direct-indirect approach also affords enhanced gingival health and patient comfort. This article presents a clinical case in which the direct-indirect composite technique was used to restore three noncarious cervical lesions on the same quadrant on an adult patient. Clinical steps and tips for success are offered. The authors also present scanning electron microscope and atomic force microscope images showing the excellent marginal fit obtained with the direct-indirect composite technique.
Banerjee, K K; Kumar, S; Bremmell, K E; Griesser, H J
2010-11-01
Established methods for cleaning and sterilising biomedical devices may achieve removal of bioburden only at the macroscopic level while leaving behind molecular levels of contamination (mainly proteinaceous). This is of particular concern if the residue might contain prions. We investigated at the molecular level the removal of model and real-life proteinaceous contamination from model and practical surfaces by air plasma (ionised air) treatment. The surface-sensitive technique of X-ray photoelectron spectroscopy (XPS) was used to assess the removal of proteinaceous contamination, with the nitrogen (N1s) photoelectron signal as its marker. Model proteinaceous contamination (bovine serum albumin) adsorbed on to a model surface (silicon wafer) and the residual proteinaceous contamination resulting from incubating surgical stainless steel (a practical biomaterial) in whole human blood exhibited strong N1s signals [16.8 and 18.5 atomic percent (at.%), respectively] after thorough washing. After 5min air plasma treatment, XPS detected no nitrogen on the sample surfaces, indicating complete removal of proteinaceous contamination, down to the estimated XPS detection limit 10ng/cm(2). Applying the same plasma treatment, the 7.7at.% nitrogen observed on a clinically cleaned dental bur was reduced to a level reflective of new, as-received burs. Contact angle measurements and atomic force microscopy also indicated complete molecular-level removal of the proteinaceous contamination upon air plasma treatment. This study demonstrates the effectiveness of air plasma treatment for removing proteinaceous contamination from both model and practical surfaces and offers a method for ensuring that no molecular residual contamination such as prions is transferred upon re-use of surgical and dental instruments. Crown Copyright © 2010. Published by Elsevier Ltd. All rights reserved.
Device for use in loading tension members. [characterized by elongated elastic body
NASA Technical Reports Server (NTRS)
Appleberry, W. T. (Inventor)
1975-01-01
The indicator is characterized by an elongated elastic body having extended from the opposite ends of threaded shanks adapted to selected tension members. A pair of external shoulders, one of which is axially displaceable relative to the other, and a rigid tubular sleeve interposed between said shoulders are included. Tension is applied to the elastic body for imparting strain. The movable shoulder can be advanced into abutting engagement with the sleeve, whereby the sleeve is placed in compression once the tensile forces are removed from the shanks. A reapplication of tensile forces equal to the initially applied tensile forces removes the sleeve from compression, whereby the sleeve is freed for rotation for thus indicating the magnitude of the applied tensile forces.
Novel MRF fluid for ultra-low roughness optical surfaces
NASA Astrophysics Data System (ADS)
Dumas, Paul; McFee, Charles
2014-08-01
Over the past few years there have been an increasing number of applications calling for ultra-low roughness (ULR) surfaces. A critical demand has been driven by EUV optics, EUV photomasks, X-Ray, and high energy laser applications. Achieving ULR results on complex shapes like aspheres and X-Ray mirrors is extremely challenging with conventional polishing techniques. To achieve both tight figure and roughness specifications, substrates typically undergo iterative global and local polishing processes. Typically the local polishing process corrects the figure or flatness but cannot achieve the required surface roughness, whereas the global polishing process produces the required roughness but degrades the figure. Magnetorheological Finishing (MRF) is a local polishing technique based on a magnetically-sensitive fluid that removes material through a shearing mechanism with minimal normal load, thus removing sub-surface damage. The lowest surface roughness produced by current MRF is close to 3 Å RMS. A new ULR MR fluid uses a nano-based cerium as the abrasive in a proprietary aqueous solution, the combination of which reliably produces under 1.5Å RMS roughness on Fused Silica as measured by atomic force microscopy. In addition to the highly convergent figure correction achieved with MRF, we show results of our novel MR fluid achieving <1.5Å RMS roughness on fused silica and other materials.
Nanofluid as coolant for grinding process: An overview
NASA Astrophysics Data System (ADS)
Kananathan, J.; Samykano, M.; Sudhakar, K.; Subramaniam, S. R.; Selavamani, S. K.; Manoj Kumar, Nallapaneni; Keng, Ngui Wai; Kadirgama, K.; Hamzah, W. A. W.; Harun, W. S. W.
2018-04-01
This paper reviews the recent progress and applications of nanoparticles in lubricants as a coolant (cutting fluid) for grinding process. The role of grinding machining in manufacturing and the importance of lubrication fluids during material removal are discussed. In grinding process, coolants are used to improve the surface finish, wheel wear, flush the chips and to reduce the work-piece thermal deformation. The conventional cooling technique, i.e., flood cooling delivers a large amount of fluid and mist which hazardous to the environment and humans. Industries are actively looking for possible ways to reduce the volume of coolants used in metal removing operations due to the economical and ecological impacts. Thus as an alternative, an advanced cooling technique known as Minimum Quantity Lubrication (MQL) has been introduced to the enhance the surface finish, minimize the cost, to reduce the environmental impacts and to reduce the metal cutting fluid consumptions. Nanofluid is a new-fangled class of fluids engineered by dispersing nanometre-size solid particles into base fluids such as water, lubrication oils to further improve the properties of the lubricant or coolant. In addition to advanced cooling technique review, this paper also reviews the application of various nanoparticles and their performance in grinding operations. The performance of nanoparticles related to the cutting forces, surface finish, tool wear, and temperature at the cutting zone are briefly reviewed. The study reveals that the excellent properties of the nanofluid can be beneficial in cooling and lubricating application in the manufacturing process.
Monorail snare technique for the recovery of stretched platinum coils: technical case report.
Fiorella, David; Albuquerque, Felipe C; Deshmukh, Vivek R; McDougall, Cameron G
2005-07-01
Coil stretching represents a potentially hazardous technical complication not infrequently encountered during the embolization of cerebral aneurysms. Often, the stretched coil cannot be advanced into the aneurysm or withdrawn intact. The operator is then forced to attempt to retract the damaged coil, which may result in coil breakage, leaving behind a significant length of potentially thrombogenic stretched coil material within the parent vessel. To overcome this problem, we devised a technique to snare the distal, unstretched, intact portion of the platinum coil by use of the indwelling microcatheter and stretched portion of the coil as a monorail guide. We have used this technique successfully in four patients to snare coils stretched during cerebral aneurysm embolization. Three of these patients were undergoing Neuroform (Boston Scientific/Target, Fremont, CA) stent-supported coil embolization of unruptured aneurysms. In all cases, the snare was advanced easily to the targeted site for coil engagement by use of the microcatheter as a monorail guide. Once the intact distal segment of the coil was ensnared, coil removal was uneventful, with no disturbance of the remainder of the indwelling coil pack or Neuroform stent. A 2-mm Amplatz Goose Neck microsnare (Microvena Corp., White Bear Lake, MN) was placed through a Prowler-14 microcatheter (Cordis Corp., Miami, FL). The hub of the indwelling SL-10 microcatheter (Boston Scientific, Natick, MA) was then cut away with a scalpel, leaving the coil pusher wire intact, and removed. The open 2-mm snare was then advanced over the outside of the coil pusher wire and microcatheter. The snare and Prowler-14 microcatheter were then advanced into the guiding catheter (6- or 7-French) as a unit over the indwelling SL-10 microcatheter. By use of the SL-10 microcatheter and coil as a "monorail" guide, the snare was advanced over and beyond the microcatheter and the stretched portion of the coil until the snare was in position to engage the distal unstretched coil. At this point, the snare was then closed around the intact portion of the coil, and the microcatheters, snare, and coil were removed as a unit. The monorail snare technique represents a fast, safe, and easy method by which a stretched coil can be removed.
Safe emergency department removal of a hardened steel penile constriction ring.
Peay, Jeremy; Smithson, James; Nelson, James; Witucki, Peter
2009-10-01
Penile constriction devices are used for the enhancement of sexual performance. These devices have the potential to become incarcerated, leading to necrosis and amputation if not removed promptly. This article presents a step-by-step approach for the safe removal of a hardened steel penile constriction device using somewhat unorthodox tools found in a hospital. We present a case of an incarcerated hardened steel penile constriction ring that was not able to be removed with conventional techniques. We describe a novel technique using an electric grinder and laryngoscope blade. The technique described in this article is a valuable and relatively safe technique for the Emergency Physician to facilitate the timely removal of a hardened steel constriction device.
Modulation of bone remodeling via mechanically activated ion channels
NASA Technical Reports Server (NTRS)
Duncan, Randall L. (Principal Investigator)
1996-01-01
A critical factor in the maintenance of bone mass is the physical forces imposed upon the skeleton. Removal of these forces, such as in a weightless environment, results in a rapid loss of bone, whereas application of exogenous mechanical strain has been shown to increase bone formation. Numerous flight and ground-based experiments indicate that the osteoblast is the key bone cell influenced by mechanical stimulation. Aside from early transient fluctuations in response to unloading, osteoclast number and activity seem unaffected by removal of strain. However, bone formation is drastically reduced in weightlessness and osteoblasts respond to mechanical strain with an increase in the activity of a number of second messenger pathways resulting in increased anabolic activity. Unfortunately, the mechanism by which the osteoblast converts physical stimuli into a biochemical message, a process we have termed biochemical coupling, remains elusive. Prior to the application of this grant, we had characterized a mechanosensitive, cation nonselective channel (SA-cat) in osteoblast-like osteosarcoma cells that we proposed is the initial signalling mechanism for mechanotransduction. During the execution of this grant, we have made considerable progress to further characterize this channel as well as to determine its role in the osteoblastic response to mechanical strain. To achieve these goals, we combined electrophysiologic techniques with cellular and molecular biology methods to examine the role of these channels in the normal function of the osteoblast in vitro.
Development of a novel nanoscratch technique for quantitative measurement of ice adhesion strength
NASA Astrophysics Data System (ADS)
Loho, T.; Dickinson, M.
2018-04-01
The mechanism for the way that ice adheres to surfaces is still not well understood. Currently there is no standard method to quantitatively measure how ice adheres to surfaces which makes ice surface studies difficult to compare. A novel quantitative lateral force adhesion measurement at the micro-nano scale for ice was created which shears micro-nano sized ice droplets (less than 3 μm in diameter and 100nm in height) using a nanoindenter. By using small ice droplets, the variables associated with bulk ice measurements were minimised which increased data repeatability compared to bulk testing. The technique provided post- testing surface scans to confirm that the ice had been removed and that measurements were of ice adhesion strength. Results show that the ice adhesion strength of a material is greatly affected by the nano-scale surface roughness of the material with rougher surfaces having higher ice adhesion strength.
Cui, Feng; Liu, Wu; Chen, Wenyuan; Zhang, Weiping; Wu, Xiaosheng
2011-01-01
A micromachined electrostatically suspended six-axis accelerometer, with a square plate as proof mass housed by a top stator and bottom stator, is presented. The device structure and related techniques concerning its operating principles, such as calculation of capacitances and electrostatic forces/moments, detection and levitation control of the proof mass, acceleration measurement, and structural parameters design, are described. Hybrid MEMS manufacturing techniques, including surface micromachining fabrication of thin film electrodes and interconnections, integration fabrication of thick nickel structures about 500 μm using UV-LIGA by successful removal of SU-8 photoresist mold, DRIE of silicon proof mass in thickness of 450 μm, microassembly and solder bonding, were employed to fabricate this prototype microdevice. A levitation experiment system for the fabricated microaccelerometer chip is introduced, and levitation results show that fast initial levitation within 10 ms and stable full suspension of the proof mass have been successfully demonstrated. PMID:22247662
Three-dimensional textures and defects of soft material layering revealed by thermal sublimation.
Yoon, Dong Ki; Kim, Yun Ho; Kim, Dae Seok; Oh, Seong Dae; Smalyukh, Ivan I; Clark, Noel A; Jung, Hee-Tae
2013-11-26
Layering is found and exploited in a variety of soft material systems, ranging from complex macromolecular self-assemblies to block copolymer and small-molecule liquid crystals. Because the control of layer structure is required for applications and characterization, and because defects reveal key features of the symmetries of layered phases, a variety of techniques have been developed for the study of soft-layer structure and defects, including X-ray diffraction and visualization using optical transmission and fluorescence confocal polarizing microscopy, atomic force microscopy, and SEM and transmission electron microscopy, including freeze-fracture transmission electron microscopy. Here, it is shown that thermal sublimation can be usefully combined with such techniques to enable visualization of the 3D structure of soft materials. Sequential sublimation removes material in a stepwise fashion, leaving a remnant layer structure largely unchanged and viewable using SEM, as demonstrated here using a lamellar smectic liquid crystal.
Turk, Marvee; Gupta, Vishal; Fischell, Tim A
2010-03-01
There have been reports of serious complications related to difficulty removing the deflated Taxus stent delivery balloon after stent deployment. The purpose of this study was to determine whether the Taxus SIBS polymer was "sticky" and associated with an increase in the force required to remove the stent delivery balloon after stent deployment, using a quantitative, ex-vivo model. Balloon-polymer-stent interactions during balloon withdrawal were measured with the Taxus Liberté, Liberté bare-metal stent (BMS; no polymer = control), the Cordis Cypher drug-eluting stent (DES; PEVA/PBMA polymer) and the BX Velocity (no polymer). We quantitatively measured the force required to remove the deflated stent delivery balloon from each of these stents in simulated vessels at 37 degrees C in a water bath. Balloon withdrawal forces were measured in straight (0 degree curve), mildly curved (20 degree curve) and moderately curved (40 degree curve) simulated vessel segments. The average peak force required to remove the deflated balloon catheter from the Taxus Liberté DES, the Liberté BMS, the Cypher DES, and the Bx Velocity BMS were similar in straight segments, but were much greater for the Taxus Liberté in the moderately curved segments (1.4 lbs vs. 0.11 lbs, 0.11 lbs and 0.12 lbs, respectively; p < 0.0001). The SIBS polymer of the Taxus Liberté DES appears to be "sticky" and is associated with high forces required to withdraw the deflated balloon from the deployed stent in curved segments. This withdrawal issue may help to explain the clinical complications that have been reported with this device.
Status and path to a final EUVL reticle-handling solution
NASA Astrophysics Data System (ADS)
He, Long; Orvek, Kevin; Seidel, Phil; Wurm, Stefan; Underwood, Jon; Betancourt, Ernie
2007-03-01
In extreme ultraviolet lithography (EUVL), the lack of a suitable material to build conventional pellicles calls for industry standardization of new techniques for protection and handling throughout the reticle's lifetime. This includes reticle shipping, robotic handling, in-fab transport, storage, and uses in atmospheric environments for metrology and vacuum environments for EUV exposure. In this paper, we review the status of the industry-wide progress in developing EUVL reticle-handling solutions. We show the industry's leading reticle carrier approaches for particle-free protection, such as improvements in conventional single carrier designs and new EUVL-specific carrier concepts, including variations on a removable pellicle. Our test indicates dual pod approach of the removable pellicle led to nearly particle-free use during a simulated life cycle, at ~50nm inspection sensitivity. We will provide an assessment of the remaining technical challenges facing EUVL reticle-handling technology. Finally, we will review the progress of the SEMI EUVL Reticle-handling Task Force in its efforts to standardize a final EUV reticle protection and handling solution.
27 CFR 44.202 - To officers of the armed forces for subsequent exportation.
Code of Federal Regulations, 2010 CFR
2010-04-01
... forces for subsequent exportation. 44.202 Section 44.202 Alcohol, Tobacco Products and Firearms ALCOHOL... Proprietors Notice of Removal of Shipment § 44.202 To officers of the armed forces for subsequent exportation... for delivery to officers of the armed forces of the United States in this country for subsequent...
27 CFR 44.202 - To officers of the armed forces for subsequent exportation.
Code of Federal Regulations, 2011 CFR
2011-04-01
... forces for subsequent exportation. 44.202 Section 44.202 Alcohol, Tobacco Products and Firearms ALCOHOL... Proprietors Notice of Removal of Shipment § 44.202 To officers of the armed forces for subsequent exportation... for delivery to officers of the armed forces of the United States in this country for subsequent...
Leszczynska, Danuta; Ahmad, Hafiz
2006-01-01
The electrokinetic technique is an emerging technology presently tested in situ to remove dissolved heavy metals from contaminated groundwater. There is a growing interest for using this system to cleanse clayey soil contaminated by toxic metallic ions. Currently, there are very few available non-destructive treatment methods that could be successfully applied in situ on low permeable type of soil matrix. The main objective of presented study was to validate and possibly enhance the overall efficiency of decontamination by the electrokinetic technique of the low permeable soil polluted by the arsenic in combination with chromium and copper ions. The chosen mixture of ions was imitating leak of pesticide well known as chromate copper arsenate (CCA). The chosen technique is showing a big promise to be used in the future as a portable, easy to install and run on sites with spills or leaks hard to reach otherwise; such as in the dense populated and urbanized areas. Laboratory electrokinetic experiments were designed to understand and possibly manipulate main mechanisms involved during forced migration of ions. All tests were conducted on artificially contaminated kaolinite (low permeable clay soil). Electrokinetic migration was inducted by the low voltage dc current applied through soil column. Series of experiments were designed to assess the efficiency of arsenic-chromium-copper remediation by applying (1) only dc current; and (2) by altering the soil environment. Obtained results showed that arsenic could be successfully removed from the soil in one day (25 hours) span. It was significant time reduction, very important during emergency response. Mass recovered at the end of each test depended on initial condition of soil and type of flushing solution. The best results were obtained, when soil was flushed with either NaOH or NaOCl (total removal efficiency 74.4% and 78.1%, respectively). Direct analysis of remained arsenic in soil after these tests confirmed substantial drop of the initial mass of arsenic in soil profile from 51.54 mg to 10.62 mg (NaOH) and 5.68 mg (NaOCl) after 25 hours of treatment. PMID:16823093
2017-06-09
New Electrostatic Precipitator in a flow-through system. The precipitator system is being developed to remove dust from the atmospheric intakes of the MARS ISRU chambers. It uses electrostatic forces for the dust removal.
Du, Xiao; Zhang, Hao; Hao, Xiaogang; Guan, Guoqing; Abudula, Abuliti
2014-06-25
A facile unipolar pulse electropolymerization (UPEP) technique is successfully applied for the preparation of ion-imprinted composite film composed of ferricyanide-embedded conductive polypyrrole (FCN/PPy) for the selective electrochemical removal of heavy metal ions from wastewater. The imprinted heavy metal ions are found to be easily removed in situ from the growing film only by tactfully applying potential oscillation due to the unstable coordination of FCN to the imprinted ions. The obtained Ni(2+) ion-imprinted FCN/PPy composite film shows fast uptake/release ability for the removal of Ni(2+) ions from aqueous solution, and the adsorption equilibrium time is less than 50 s. The ion exchange capacity reaches 1.298 mmol g(-1) and retains 93.5% of its initial value even after 1000 uptake/release cycles. Separation factors of 6.3, 5.6, and 6.2 for Ni(2+)/Ca(2+), Ni(2+)/K(+), and Ni(2+)/Na(+), respectively, are obtained. These characteristics are attributed to the high identification capability of the ion-imprinted composite film for the target ions and the dual driving forces resulting from both PPy and FCN during the redox process. It is expected that the present method can be used for simple preparation of other ion-imprinted composite films for the separation and recovery of target heavy metal ions as well.
Effect of Divalent Cation Removal on the Structure of Gram-Negative Bacterial Outer Membrane Models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clifton, Luke A.; Skoda, Maximilian W. A.; Le Brun, Anton P.
The Gram-negative bacterial outer membrane (GNB-OM) is asymmetric in its lipid composition with a phospholipid-rich inner leaflet and an outer leaflet predominantly composed of lipopolysaccharides (LPS). LPS are polyanionic molecules, with numerous phosphate groups present in the lipid A and core oligosaccharide regions. The repulsive forces due to accumulation of the negative charges are screened and bridged by the divalent cations (Mg 2+ and Ca 2+) that are known to be crucial for the integrity of the bacterial OM. Indeed, chelation of divalent cations is a well-established method to permeabilize Gram-negative bacteria such as Escherichia coli. Here, we use X-raymore » and neutron reflectivity (XRR and NR, respectively) techniques to examine the role of calcium ions in the stability of a model GNB-OM. Using XRR we show that Ca 2+ binds to the core region of the rough mutant LPS (RaLPS) films, producing more ordered structures in comparison to divalent cation free monolayers. Using recently developed solid-supported models of the GNB-OM, we study the effect of calcium removal on the asymmetry of DPPC:RaLPS bilayers. We show that without the charge screening effect of divalent cations, the LPS is forced to overcome the thermodynamically unfavorable energy barrier and flip across the hydrophobic bilayer to minimize the repulsive electrostatic forces, resulting in about 20% mixing of LPS and DPPC between the inner and outer bilayer leaflets. These results reveal for the first time the molecular details behind the well-known mechanism of outer membrane stabilization by divalent cations. This confirms the relevance of the asymmetric models for future studies of outer membrane stability and antibiotic penetration.« less
Effect of Divalent Cation Removal on the Structure of Gram-Negative Bacterial Outer Membrane Models
Clifton, Luke A.; Skoda, Maximilian W. A.; Le Brun, Anton P.; ...
2014-12-09
The Gram-negative bacterial outer membrane (GNB-OM) is asymmetric in its lipid composition with a phospholipid-rich inner leaflet and an outer leaflet predominantly composed of lipopolysaccharides (LPS). LPS are polyanionic molecules, with numerous phosphate groups present in the lipid A and core oligosaccharide regions. The repulsive forces due to accumulation of the negative charges are screened and bridged by the divalent cations (Mg 2+ and Ca 2+) that are known to be crucial for the integrity of the bacterial OM. Indeed, chelation of divalent cations is a well-established method to permeabilize Gram-negative bacteria such as Escherichia coli. Here, we use X-raymore » and neutron reflectivity (XRR and NR, respectively) techniques to examine the role of calcium ions in the stability of a model GNB-OM. Using XRR we show that Ca 2+ binds to the core region of the rough mutant LPS (RaLPS) films, producing more ordered structures in comparison to divalent cation free monolayers. Using recently developed solid-supported models of the GNB-OM, we study the effect of calcium removal on the asymmetry of DPPC:RaLPS bilayers. We show that without the charge screening effect of divalent cations, the LPS is forced to overcome the thermodynamically unfavorable energy barrier and flip across the hydrophobic bilayer to minimize the repulsive electrostatic forces, resulting in about 20% mixing of LPS and DPPC between the inner and outer bilayer leaflets. These results reveal for the first time the molecular details behind the well-known mechanism of outer membrane stabilization by divalent cations. This confirms the relevance of the asymmetric models for future studies of outer membrane stability and antibiotic penetration.« less
Effect of Divalent Cation Removal on the Structure of Gram-Negative Bacterial Outer Membrane Models
2014-01-01
The Gram-negative bacterial outer membrane (GNB-OM) is asymmetric in its lipid composition with a phospholipid-rich inner leaflet and an outer leaflet predominantly composed of lipopolysaccharides (LPS). LPS are polyanionic molecules, with numerous phosphate groups present in the lipid A and core oligosaccharide regions. The repulsive forces due to accumulation of the negative charges are screened and bridged by the divalent cations (Mg2+ and Ca2+) that are known to be crucial for the integrity of the bacterial OM. Indeed, chelation of divalent cations is a well-established method to permeabilize Gram-negative bacteria such as Escherichia coli. Here, we use X-ray and neutron reflectivity (XRR and NR, respectively) techniques to examine the role of calcium ions in the stability of a model GNB-OM. Using XRR we show that Ca2+ binds to the core region of the rough mutant LPS (RaLPS) films, producing more ordered structures in comparison to divalent cation free monolayers. Using recently developed solid-supported models of the GNB-OM, we study the effect of calcium removal on the asymmetry of DPPC:RaLPS bilayers. We show that without the charge screening effect of divalent cations, the LPS is forced to overcome the thermodynamically unfavorable energy barrier and flip across the hydrophobic bilayer to minimize the repulsive electrostatic forces, resulting in about 20% mixing of LPS and DPPC between the inner and outer bilayer leaflets. These results reveal for the first time the molecular details behind the well-known mechanism of outer membrane stabilization by divalent cations. This confirms the relevance of the asymmetric models for future studies of outer membrane stability and antibiotic penetration. PMID:25489959
Forced removals embodied as tuberculosis.
Richardson, Eugene T; Morrow, Carl D; Ho, Theodore; Fürst, Nicole; Cohelia, Rebekkah; Tram, Khai Hoan; Farmer, Paul E; Wood, Robin
2016-07-01
South Africa has one of the worst tuberculosis burdens in the world. Several ecological forces have contributed to this, including high HIV prevalence; failing TB control strategies; crowded, poorly ventilated indoor environments-including the complex web of political and economic interests which produce them; the development of racial capitalism; and mining and migration. In the following study, we measure CO2 levels in public transport to investigate the role extended commutes from peri-urban settlements to urban sites of work-a direct result of forced removals-potentially play in propagating the TB epidemic in Cape Town, South Africa. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Complex fluid flow and heat transfer analysis inside a calandria based reactor using CFD technique
NASA Astrophysics Data System (ADS)
Kulkarni, P. S.
2017-04-01
Series of numerical experiments have been carried out on a calandria based reactor for optimizing the design to increase the overall heat transfer efficiency by using Computational Fluid Dynamic (CFD) technique. Fluid flow and heat transfer inside the calandria is governed by many geometric and flow parameters like orientation of inlet, inlet mass flow rate, fuel channel configuration (in-line, staggered, etc.,), location of inlet and outlet, etc.,. It was well established that heat transfer is more wherever forced convection dominates but for geometries like calandria it is very difficult to achieve forced convection flow everywhere, intern it strongly depends on the direction of inlet jet. In the present paper the initial design was optimized with respect to inlet jet angle, the optimized design has been numerically tested for different heat load mass flow conditions. To further increase the heat removal capacity of a calandria, further numerical studies has been carried out for different inlet geometry. In all the analysis same overall geometry size and same number of tubes has been considered. The work gives good insight into the fluid flow and heat transfer inside the calandria and offer a guideline for optimizing the design and/or capacity enhancement of a present design.
Endodontic filling removal procedure: an ex vivo comparative study between two rotary techniques.
Vale, Mônica Sampaio do; Moreno, Melinna dos Santos; Silva, Priscila Macêdo França da; Botelho, Thereza Cristina Farias
2013-01-01
In this study, we compared the ex vivo removal capacity of two endodontic rotary techniques and determined whether there was a significant quantitative difference in residual material when comparing root thirds. Forty extracted molars were used. The palatal roots were selected, and the canals were prepared using a step-back technique and filled using a lateral condensation technique with gutta-percha points and Endofill sealer. After two weeks of storage in a 0.9% saline solution at 37 ºC in an oven, the specimens were divided into 2 groups of 20, with group 1 samples subjected to Gates-Glidden drills and group 2 samples subjected to the ProTaper retreatment System. Hedstroem files and eucalyptol solvent were used in both groups to complete the removal procedure. Then, the roots thirds were radiographed and the images were submitted to the NIH ImageJ program to measure the residual filling material in mm. Each root third was related to the total area of the root canals. The data were analyzed using Student's t test. There was a statistically significant difference between the two techniques as more filling material was removed by technique 2 (ProTaper) than technique 1 (Gates-Glidden drills, p < 0.05). The apical third had a greater amount of residual filling material than the cervical and middle thirds, and the difference was statistically significant (p < 0.05). None of the selected techniques removed all filling material, and the material was most difficult to remove from the apical third. The ProTaper files removed more material than the Gates-Glidden drills.
Fracture Resistance of Retreated Roots Using Different Retreatment Systems
Er, Kursat; Tasdemir, Tamer; Siso, Seyda Herguner; Celik, Davut; Cora, Sabri
2011-01-01
Objectives: This study was designed to evaluate the fracture resistance of retreated roots using different rotary retreatment systems. Methods: Forty eight freshly extracted human canine teeth with single straight root canals were instrumented sequentially increasing from size 30 to a size 55 using K-files whit a stepback technique. The teeth were randomly divided into three experimental and one control groups of 12 specimens each. The root canals were filled using cold lateral compaction of gutta-percha and AH Plus (Dentsply Detrey, Konstanz, Germany) sealer in experimental groups. Removal of gutta-percha was performed with the following devices and techniques: ProTaper Universal (Dentsply Maillefer, Ballaigues, Switzerland), R-Endo (Micro-Mega, Besançon, France), and Mtwo (Sweden & Martina, Padova, Italy) rotary retreatment systems. Control group specimens were only instrumented, not filled or retreated. The specimens were then mounted in copper rings, were filled with a self-curing polymethylmethacrylate resin, and the force required to cause vertical root fracture was measured using a universal testing device. The force of fracture of the roots was recorded and the results in the various groups were compared. Statistical analysis was accomplished by one-way ANOVA and a post hoc Tukey tests. Results: There were statistically significant differences between the control and experimental groups (P<.05). However, there were no significant differences among the experimental groups. Conclusions: Based on the results, all rotary retreatment techniques used in this in vitro study produced similar root weakness. PMID:21912497
Initial experience using the rigid forceps technique to remove wall-embedded IVC filters.
Avery, Allan; Stephens, Maximilian; Redmond, Kendal; Harper, John
2015-06-01
Severely tilted and embedded inferior vena cava (IVC) filters remain the most challenging IVC filters to remove. Heavy endothelialisation over the filter hook can prevent engagement with standard snare and cone recovery techniques. The rigid forceps technique offers a way to dissect the endothelial cap and reliably retrieve severely tilted and embedded filters. By developing this technique, failed IVC retrieval rates can be significantly reduced and the optimum safety profile offered by temporary filters can be achieved. We present our initial experience with the rigid forceps technique described by Stavropoulos et al. for removing wall-embedded IVC filters. We retrospectively reviewed the medical imaging and patient records of all patients who underwent a rigid forceps filter removal over a 22-month period across two tertiary referral institutions. The rigid forceps technique had a success rate of 85% (11/13) for IVC filter removals. All filters in the series showed evidence of filter tilt and embedding of the filter hook into the IVC wall. Average filter tilt from the Z-axis was 19 degrees (range 8-56). Filters observed in the case study were either Bard G2X (n = 6) or Cook Celect (n = 7). Average filter dwell time was 421 days (range 47-1053). There were no major complications observed. The rigid forceps technique can be readily emulated and is a safe and effective technique to remove severely tilted and embedded IVC filters. The development of this technique across both institutions has increased the successful filter removal rate, with perceived benefits to the safety profile of our IVC filter programme. © 2015 The Royal Australian and New Zealand College of Radiologists.
Churnside, Allison B; Sullan, Ruby May A; Nguyen, Duc M; Case, Sara O; Bull, Matthew S; King, Gavin M; Perkins, Thomas T
2012-07-11
Force drift is a significant, yet unresolved, problem in atomic force microscopy (AFM). We show that the primary source of force drift for a popular class of cantilevers is their gold coating, even though they are coated on both sides to minimize drift. Drift of the zero-force position of the cantilever was reduced from 900 nm for gold-coated cantilevers to 70 nm (N = 10; rms) for uncoated cantilevers over the first 2 h after wetting the tip; a majority of these uncoated cantilevers (60%) showed significantly less drift (12 nm, rms). Removing the gold also led to ∼10-fold reduction in reflected light, yet short-term (0.1-10 s) force precision improved. Moreover, improved force precision did not require extended settling; most of the cantilevers tested (9 out of 15) achieved sub-pN force precision (0.54 ± 0.02 pN) over a broad bandwidth (0.01-10 Hz) just 30 min after loading. Finally, this precision was maintained while stretching DNA. Hence, removing gold enables both routine and timely access to sub-pN force precision in liquid over extended periods (100 s). We expect that many current and future applications of AFM can immediately benefit from these improvements in force stability and precision.
Novel application of an established technique for removing a knotted ureteric stent.
Tempest, Heidi; Turney, Ben; Kumar, Sunil
2011-04-13
This report describes a case whereby a ureteric stent became knotted during removal and lodged within the upper ureter. The authors describe a novel minimally invasive technique to remove the knotted ureteric stent using the holmium laser.
General Vo Nguyen Giap: Operational Genius or Lucky Amateur
1993-05-17
responsibl , rather than superior soldiering and generaisbip by General Giap. The facts do not bear this out. A carefl study of the First Indochina War...rac exhibited toward him personally and Vietnam, as a nation. Hh resolution to remove the French by force and his suspicions of America may have been...anxious to remove the embarassment of World War H boasted they would defeat the Vietminh within a matter of weeks. Shortly thereafter, French forces engaged
Two-wave photon Doppler velocimetry measurements in direct impact Hopkinson pressure bar experiments
NASA Astrophysics Data System (ADS)
Lea, Lewis J.; Jardine, Andrew P.
2015-09-01
Direct impact Hopkinson pressure bar systems offer many potential advantages over split Hopkinson pressure bars, including access to higher strain rates, higher strains for equivalent striker velocity and system length, lower dispersion and faster achievement of force equilibrium. Currently advantages are gained at a significant cost: the fact that input bar data is unavailable removes all information about the striker impacted specimen face, preventing the determination of force equilibrium, and requiring approximations to be made on the sample deformation history. Recently photon Doppler velocimetry methods have been developed, which can replace strain gauges on Hopkinson bars. In this paper we discuss an experimental method and complementary data analysis for using Doppler velocimetry to measure surface velocities of the striker and output bars in a direct impact bar experiment, allowing similar data to be recorded as in a split bar system, with the same level of convenience. We discuss extracting velocity and force measurements, and improving the accuracy and convenience of Doppler velocimetry on Hopkinson bars. Results obtained using the technique are compared to equivalent split bar tests, showing improved stress measurements for the lowest and highest strains.
Comparison of Adhesion and Retention Forces for Two Candidate Docking Seal Elastomers
NASA Technical Reports Server (NTRS)
Hartzler, Brad D.; Panickar, Marta B.; Wasowski, Janice L.; Daniels, Christopher C.
2011-01-01
To successfully mate two pressurized vehicles or structures in space, advanced seals are required at the interface to prevent the loss of breathable air to the vacuum of space. A critical part of the development testing of candidate seal designs was a verification of the integrity of the retaining mechanism that holds the silicone seal component to the structure. Failure to retain the elastomer seal during flight could liberate seal material in the event of high adhesive loads during undocking. This work presents an investigation of the force required to separate the elastomer from its metal counter-face surface during simulated undocking as well as a comparison to that force which was necessary to destructively remove the elastomer from its retaining device. Two silicone elastomers, Wacker 007-49524 and Esterline ELASA-401, were evaluated. During the course of the investigation, modifications were made to the retaining devices to determine if the modifications improved the force needed to destructively remove the seal. The tests were completed at the expected operating temperatures of -50, +23, and +75 C. Under the conditions investigated, the comparison indicated that the adhesion between the elastomer and the metal counter-face was significantly less than the force needed to forcibly remove the elastomer seal from its retainer, and no failure would be expected.
Seasonality of Forcing by Carbonaceous Aerosols
NASA Astrophysics Data System (ADS)
Habib, G.; Bond, T.; Rasch, P. J.; Coleman, D.
2006-12-01
Aerosols can influence the energy balance of Earth-Atmosphere system with profound effect on regional climate. Atmospheric processes, such as convection, scavenging, wet and dry deposition, govern the lifetime and location of aerosol; emissions affect its quantity and location. Both affect climate forcing. Here we investigate the effect of seasonality in emissions and atmospheric processes on radiative forcing by carbonaceous aerosols, focusing on aerosol from fossil fuel and biofuel. Because aerosol lifetime is seasonal, ignoring the seasonality of sources such as residential biofuel may introduce a bias in aerosol burden and therefore in predicted climate forcing. We present a global emission inventory of carbonaceous aerosols with seasonality, and simulate atmospheric concentrations using the Community Atmosphere Model (CAM). We discuss where and when the seasonality of emissions and atmospheric processes has strong effects on atmospheric burden, lifetime, climate forcing and aerosol optical depth (AOD). Previous work has shown that aerosol forcing is higher in summer than in winter, and has identified the importance of aerosol above cloud in determining black carbon forcing. We show that predicted cloud height is a very important factor in determining normalized radiative forcing (forcing per mass), especially in summer. This can affect the average summer radiative forcing by nearly 50%. Removal by cloud droplets is the dominant atmospheric cleansing mechanism for carbonaceous aerosols. We demonstrate the modeled seasonality of removal processes and compare the importance of scavenging by warm and cold clouds. Both types of clouds contribute significantly to aerosol removal. We estimate uncertainty in direct radiative forcing due to scavenging by tagging the aerosol which has experienced cloud interactions. Finally, seasonal variations offer an opportunity to assess modeled processes when a single process dominates variability. We identify regions where aerosol burden is most sensitive to convection and scavenging in warm and cold clouds, and compare seasonally modeled AOD with that retrieved by the Moderate Resolution Imaging Spectroradiometer (MODIS).
Simon, Mareike; Keilig, Ludger; Schwarze, Jörg; Jung, Britta A; Bourauel, Christoph
2014-06-01
The exact force systems as well as their progressions generated by removable thermoplastic appliances have not been investigated. Thus, the purposes of this experimental study were to quantify the forces and moments delivered by a single aligner and a series of aligners (Invisalign; Align Technology, Santa Clara, Calif) and to investigate the influence of attachments and power ridges on the force transfer. We studied 970 aligners of the Invisalign system (60 series of aligners). The aligners came from 30 consecutive patients, of which 3 tooth movements (incisor torque, premolar derotation, molar distalization) with 20 movements each were analyzed. The 3 movement groups were subdivided so that 10 movements were supported with an attachment and 10 were not. The patients' ClinCheck (Align Technology, Santa Clara, Calif) was planned so that the movements to be investigated were performed in isolation in the respective quadrant. Resin replicas of the patients' intraoral situation before the start of the investigated movement were taken and mounted in a biomechanical measurement system. An aligner was put on the model, the force systems were measured, and the calculated movements were experimentally performed until no further forces or moments were generated. Subsequently, the next aligners were installed, and the measurements were repeated. The initial mean moments were about 7.3 N·mm for maxillary incisor torque and about 1.0 N for distalization. Significant differences in the generated moments were measured in the premolar derotation group, whether they were supported with an attachment (8.8 N·mm) or not (1.2 N·mm). All measurements showed an exponential force change. Apart from a few maximal initial force systems, the forces and moments generated by aligners of the Invisalign system are within the range of orthodontic forces. The force change is exponential while a patient is wearing removable thermoplastic appliances. Copyright © 2014 American Association of Orthodontists. Published by Mosby, Inc. All rights reserved.
Piezoelectric properties of synthetic hydroxyapatite-based organic-inorganic hydrated materials
NASA Astrophysics Data System (ADS)
Rodriguez, Rogelio; Rangel, Domingo; Fonseca, Gerardo; Gonzalez, Maykel; Vargas, Susana
Disks of synthetic hydroxyapatite agglutinated with a synthetic polymer and hydrated in a moisture fog, were prepared. A well-defined piezoelectric signal of these samples was obtained when a relative small compression stress of 35 MPa (corresponding a force of 450 daN) was applied; piezoelectric signals of up to 12 mV were obtained with this stress. Two different compression methods were followed to obtain the piezoelectric signal: (a) hold method, where the load was maintained constant once it reaches the maximum stress and (b) release method, where the load was removed rapidly when the stress reaches its maximum value. The samples were characterized using the techniques: X-ray Diffraction, Dielectric Relaxation Spectroscopy and mechanical test.
Imaging, cutting, and collecting instrument and method
Tench, R.J.; Siekhaus, W.J.; Balooch, M.; Balhorn, R.L.; Allen, M.J.
1995-10-31
Instrumentation and techniques are described to image small objects, such as but not limited to individual human chromosomes, with nanometer resolution. This instrument and method are also used to cut-off identified parts of objects, to move around and manipulate the cut-off parts on the substrate on which they are being imaged to predetermined locations on the substrate, and to remove the cut-off parts from the substrate. This is accomplished using an atomic force microscope (AFM) and by modification of the conventional cantilever stylus assembly of an AFM. The plural cantilevers are used with either sharp-tips or knife-edges. In addition, the invention can be utilized for measuring the hardness of materials. 10 figs.
Novel application of an established technique for removing a knotted ureteric stent
Tempest, Heidi; Turney, Ben; Kumar, Sunil
2011-01-01
This report describes a case whereby a ureteric stent became knotted during removal and lodged within the upper ureter. The authors describe a novel minimally invasive technique to remove the knotted ureteric stent using the holmium laser. PMID:22701009
92. FORCED DRAFT FAN & BASE OF BOILER SETTINGS SHOWING ...
92. FORCED DRAFT FAN & BASE OF BOILER SETTINGS SHOWING ASH REMOVAL DOORS. NOTE STOKER LINE SHAFT DRIVE UNDER CEILING. - Lakeview Pumping Station, Clarendon & Montrose Avenues, Chicago, Cook County, IL
Singh, Harpreet; Sharma, Rohit; Gupta, Sachin; Singh, Narinderjit; Singh, Simarpreet
2015-01-01
The advent of locking plates has brought new problems in implant removal. Difficulty in removing screws from a locking plate is well-known. These difficulties include cold welding between the screw head and locking screw hole, stripping of the recess of the screw head for the screwdriver, and cross-threading between threads in the screw head and screw hole. However, there are cases in which removal is difficult. We describe a new technique for removing a round headed, jammed locking screws from a locking plate. 55 years old male patient received a locking distal tibial plate along with distal fibular plate 3years back from UAE. Now patient came with complaint of non-healing ulcer over medial aspect of lower 1/3rd of right leg from past 1 year. Non operative management did not improve the symptoms. The patient consented to implant removal, with the express understanding that implant removal might be impossible because already one failed attempt had been performed at some other hospital six months back. We then decided to proceed with the new technique. The rest of the proximal screws were removed using a technique not previously described. We used stainless steel metal cutting blades that are used to cut door locks or pad locks to cut the remaining stripped headed screws. This technique is very quick, easy to perform and inexpensive because the metal cutting blades which are used to cut the screws are very cheap. Yet it is very effective technique to remove the stripped headed or jammed locking screws. It is also very less destructive because of very less heat production during the procedure there is no problem of thermal necrosis to the bone or the surrounding soft tissue.
Watson, K; Farré, M J; Knight, N
2012-11-15
The presence of bromide (Br(-)) and iodide (I(-)) in source waters leads to the formation of brominated and iodinated disinfection by-products (DBPs), which are often more toxic than their chlorinated analogues. The increasing scarcity of water resources in Australia is leading to use of impaired and alternative water supplies with high bromide and iodide levels, which may result in the production of more brominated and iodinated DBPs. This review aims to provide a summary of research into bromide and iodide removal from drinking water sources. Bromide and iodide removal techniques have been broadly classified into three categories, namely; membrane, electrochemical and adsorptive techniques. Reverse osmosis, nanofiltration and electrodialysis membrane techniques are reviewed. The electrochemical techniques discussed are electrolysis, capacitive deionization and membrane capacitive deionization. Studies on bromide and iodide removal using adsorptive techniques including; layered double hydroxides, impregnated activated carbons, carbon aerogels, ion exchange resins, aluminium coagulation and soils are also assessed. Halide removal techniques have been compared, and areas for future research have been identified. Copyright © 2012 Elsevier Ltd. All rights reserved.
A comparison of force sensing techniques for planetary manipulation
NASA Technical Reports Server (NTRS)
Helmick, Daniel; Okon, Avi; DiCicco, Matt
2006-01-01
Five techniques for sensing forces with a manipulator are compared analytically and experimentally. The techniques compared are: a six-axis wrist force/torque sensor, joint torque sensors, link strain gauges, motor current sensors, and flexibility modeling. The accuracy and repeatability fo each technique is quantified and compared.
2011-01-01
ground surface of the pad. The surface sludge at WP-26 is currently being removed, which would alleviate any potential adverse effects on the...removing and disposing of the top 5 inches of the ground surface , which is potentially contaminated sewage sludge, within WP-26 in a manner consistent...Construction, Operation, and Maintenance of a Hot Cargo Pad at Kirtland Air Force Base, New Mexico, to identifY and evaluate potential environmental effects
Capabilities and application of a dedicated conventional bomber force in 1993. Student report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thomits, J.R.
1988-04-01
The removal of intermediate-range ballistic missiles as a result of the INF treaty presents conventional balance-of-force implications that will be difficult for NATO to redress in the short term. This study evaluates how a dedicated conventional B-52 force, updated with presently available or programmed technologies, could be applied to overcome the conventional-force imbalance.
Brennan, Christopher J; Ghosh, Rudresh; Koul, Kalhan; Banerjee, Sanjay K; Lu, Nanshu; Yu, Edward T
2017-09-13
Two-dimensional (2D) materials have recently been theoretically predicted and experimentally confirmed to exhibit electromechanical coupling. Specifically, monolayer and few-layer molybdenum disulfide (MoS 2 ) have been measured to be piezoelectric within the plane of their atoms. This work demonstrates and quantifies a nonzero out-of-plane electromechanical response of monolayer MoS 2 and discusses its possible origins. A piezoresponse force microscope was used to measure the out-of-plane deformation of monolayer MoS 2 on Au/Si and Al 2 O 3 /Si substrates. Using a vectorial background subtraction technique, we estimate the effective out-of-plane piezoelectric coefficient, d 33 eff , for monolayer MoS 2 to be 1.03 ± 0.22 pm/V when measured on the Au/Si substrate and 1.35 ± 0.24 pm/V when measured on Al 2 O 3 /Si. This is on the same order as the in-plane coefficient d 11 reported for monolayer MoS 2 . Interpreting the out-of-plane response as a flexoelectric response, the effective flexoelectric coefficient, μ eff * , is estimated to be 0.10 nC/m. Analysis has ruled out the possibility of elastic and electrostatic forces contributing to the measured electromechanical response. X-ray photoelectron spectroscopy detected some contaminants on both MoS 2 and its substrate, but the background subtraction technique is expected to remove major contributions from the unwanted contaminants. These measurements provide evidence that monolayer MoS 2 exhibits an out-of-plane electromechanical response and our analysis offers estimates of the effective piezoelectric and flexoelectric coefficients.
Rotary ultrasonic machining of CFRP: a mechanistic predictive model for cutting force.
Cong, W L; Pei, Z J; Sun, X; Zhang, C L
2014-02-01
Cutting force is one of the most important output variables in rotary ultrasonic machining (RUM) of carbon fiber reinforced plastic (CFRP) composites. Many experimental investigations on cutting force in RUM of CFRP have been reported. However, in the literature, there are no cutting force models for RUM of CFRP. This paper develops a mechanistic predictive model for cutting force in RUM of CFRP. The material removal mechanism of CFRP in RUM has been analyzed first. The model is based on the assumption that brittle fracture is the dominant mode of material removal. CFRP micromechanical analysis has been conducted to represent CFRP as an equivalent homogeneous material to obtain the mechanical properties of CFRP from its components. Based on this model, relationships between input variables (including ultrasonic vibration amplitude, tool rotation speed, feedrate, abrasive size, and abrasive concentration) and cutting force can be predicted. The relationships between input variables and important intermediate variables (indentation depth, effective contact time, and maximum impact force of single abrasive grain) have been investigated to explain predicted trends of cutting force. Experiments are conducted to verify the model, and experimental results agree well with predicted trends from this model. Copyright © 2013 Elsevier B.V. All rights reserved.
Simulated transition from RCP8.5 to RCP4.5 through three different Radiation Management techniques
NASA Astrophysics Data System (ADS)
Muri, H.; Kristjansson, J. E.; Adakudlu, M.; Grini, A.; Lauvset, S. K.; Otterå, O. H.; Schulz, M.; Tjiputra, J. F.
2016-12-01
Scenario studies have shown that in order to limit global warming to 2°C above pre-industrial levels, negative CO2 emissions are required. Currently, no safe and well-established technologies exist for achieving such negative emissions. Hence, although carbon dioxide removal may appear less risky and controversial than Radiation Management (RM) techniques, the latter type of climate engineering (CE) techniques cannot be ruled out as a future policy option. The EXPECT project, funded by the Norwegian Research Council, explores the potential and risks of RM through Earth System Model Simulations. We here describe results from a study that simulates a 21st century transition from an RCP8.5 to a RCP4.5 scenario through Radiation Management. The study uses the Norwegian Earth System Model (NorESM) to compare the results from the following three RM techniques: a) Stratospheric Aerosol Injections (SAI); b) Marine Sky Brightening (MSB); c) Cirrus Cloud Thinning (CCT). All three simulations start from the year 2020 and run until 2100. Whereas both SAI and MSB successfully simulate the desired negative radiative forcing throughout the 21st century, the CCT simulations have a +0.5 W m-2 residual forcing (on top of RCP4.5) at the end of the century. Although all three techniques obtain approximately the same global temperature evolution, precipitation responses are very different. In particular, the CCT simulation has even more globally averaged precipitation at year 2100 than RCP8.5, whereas both SAI and MSB simulate less precipitation than RCP4.5. In addition, there are significant differences in geographical patterns of precipitation. Natural variability in the Earth System also exhibits sensitivity to the choice of RM technique: Both the Atlantic Meridional Overturning Circulation and the Pacific Decadal Oscillation respond differently to the choice of SAI, MSB or CCT. We will present a careful analysis, as well as a physical interpretation of the above results.
104. VIEW OF CABLE RACEWAY BENEATH REMOVABLE FLOOR PANEL IN ...
104. VIEW OF CABLE RACEWAY BENEATH REMOVABLE FLOOR PANEL IN LANDLINE INSTRUMENTATION ROOM - Vandenberg Air Force Base, Space Launch Complex 3, Launch Operations Building, Napa & Alden Roads, Lompoc, Santa Barbara County, CA
Research notes : beaver bafflers.
DOT National Transportation Integrated Search
2001-05-01
Historically, highway maintenance forces have had to remove beaver dams from roadside culverts each year. The dams can create significant pools, saturating and weakening the roadway structure. If not removed, the water behind the dam can cover the hi...
Exploration of new technologies for nanotransfer and nanocatalysts
NASA Astrophysics Data System (ADS)
Unlu, Ilyas
This dissertation aims at developing methods for transferring nanoelements from a template to a substrate over large areas and for conveniently fabricating supported gold nanoparticle catalysts. The transfer method relies on the light-induced wettability conversion behavior of some transition metal oxides (e.g., titanium dioxide) such that their surfaces become hydrophilic/amphiphilic upon UV irradiation. In principle, this could allow hydrophilic nanoelements to be pulled off by attractive forces to a photo-activated metal oxide substrate. This method could preserve nanotemplates for further use because there is no physical contact between it and the substrate surface. To lay the groundwork for light-induced transfer, force-distance (F-D) measurements using an atomic force microscope (AFM) were carried out to investigate the adhesion of gold nanoparticles on bare and self-assembled monolayer (SAM)-covered quartz surfaces. Silane and thiol SAMs were prepared through solution and vapor deposition methods and characterized via different techniques, including x-ray photoelectron spectroscopy (XPS), AFM and water contact angle measurements. The colloidal probe technique, using hydrophilic Au nanoparticle-coated-probes, is highly sensitive toward SAM quality and exhibited higher adhesive forces on fluorinated quartz than on bare quartz due to surface defects of the SAM. Thus, SAM quality, including molecular orientation, plays a crucial role in determining adhesion of Au NPs, and it was found that defects cause a fluorinated surface to be more adhesive to hydrophilic nanoparticles. Potential methods for enabling the light-induced transfer of nanoelements were also explored. While successful transfer was not an outcome of this thesis, the knowledge learned may enable future researchers to accomplish this high-risk/high payoff goal. In the second half of this thesis, gold nanoparticles (Au NPs) with pre-determined sizes for effective catalysis were attached to a ZnO nanorod (NR) support using a dithiol linker However, this approach leaves organic ligands on the Au NPs and ZnO NRs, which will interfere with the catalytic properties. Therefore, to remove the ligands, the composites were treated with heat and ozone to activate their catalytic properties. The thermal treatment led to aggregation of Au NPs, which resulted in larger sized and differently shaped Au NPs, however, UV-Ozone treatment did not change the size and shape of the NPs, but it removed the ligands. However, it was not as efficient as thermal treatment. The advantages/disadvantages of different dithiol linkers were investigated. Finally, these AuNP/NR composites were successfully used to photocatalyze the degradation of an organic dye, Rhodamine B.
The effect of the descent technique and truck cabin layout on the landing impact forces.
Patenaude, S; Marchand, D; Samperi, S; Bélanger, M
2001-12-01
The majority of injuries to truckers are caused by falls during the descent from the cab of the truck. Several studies have shown that the techniques used to descend from the truck and the layout of the truck's cabin are the principal cause of injury. The goal of the present study was to measure the effects of the descent techniques used by the trucker and the layout of the truck's cabin on the impact forces absorbed by the lower limbs and the back. Kinematic data, obtained with the aid of a video camera, were combined with the force platform data to allow for calculation of the lower limb and L5-S1 torques as well as L5-S1 compressive forces. The trucker descended from two different conventional tractor cabin layouts. Each trucker descended from cabin using either "facing the truck" (FT) or "back to the truck" (BT) techniques. The results demonstrate that the BT technique produces greater ground impact forces than the FT technique, particularly when the truck does not have a handrail. The BT technique also causes an increase in the compressive forces exerted on the back. In conclusion, the use of the FT technique along with the aids (i.e., handrails and all the steps) help lower the landing impact forces as well as the lumbosacral compressive forces.
Latest innovations for tattoo and permanent makeup removal.
Mao, Johnny C; DeJoseph, Louis M
2012-05-01
The goal of this article is to reveal the latest techniques and advances in laser removal of both amateur and professional tattoos, as well as cosmetic tattoos and permanent makeup. Each pose different challenges to the removing physician, but the goal is always the same: removal without sequelae. The authors' technique is detailed, and discussion of basic principles of light reflection, ink properties, effects of laser energy and heat, and outcomes and complications of tattoo removal are presented. Copyright © 2012 Elsevier Inc. All rights reserved.
Localized removal of layers of metal, polymer, or biomaterial by ultrasound cavitation bubbles
Fernandez Rivas, David; Verhaagen, Bram; Seddon, James R. T.; Zijlstra, Aaldert G.; Jiang, Lei-Meng; van der Sluis, Luc W. M.; Versluis, Michel; Lohse, Detlef; Gardeniers, Han J. G. E.
2012-01-01
We present an ultrasonic device with the ability to locally remove deposited layers from a glass slide in a controlled and rapid manner. The cleaning takes place as the result of cavitating bubbles near the deposited layers and not due to acoustic streaming. The bubbles are ejected from air-filled cavities micromachined in a silicon surface, which, when vibrated ultrasonically at a frequency of 200 kHz, generate a stream of bubbles that travel to the layer deposited on an opposing glass slide. Depending on the pressure amplitude, the bubble clouds ejected from the micropits attain different shapes as a result of complex bubble interaction forces, leading to distinct shapes of the cleaned areas. We have determined the removal rates for several inorganic and organic materials and obtained an improved efficiency in cleaning when compared to conventional cleaning equipment. We also provide values of the force the bubbles are able to exert on an atomic force microscope tip. PMID:23964308
NASA Astrophysics Data System (ADS)
Senkawa, K.; Nakai, Y.; Mishima, F.; Akiyama, Y.; Nishijima, S.
2011-11-01
In the industrial plants such as foods, medicines or industrial materials, there are big amount of issues on contamination by metallic wear debris originated from pipes of manufacturing lines. In this study, we developed a high gradient magnetic separation system (HGMS) under the dry process by using superconducting magnet to remove the ferromagnetic particles. One of the major problems of dry HGMS systems is, however, the blockage of magnetic filter caused by particle coagulation or deposition. In order to actualize the magnetic separation without blockage, we introduced pneumatic conveyance system as a new method to feed the powder. It is important to increase the drag force acting on the sufficiently dispersed particles, which require strong magnetic fields. To generate the strong magnetic fields, HGMS technique was examined which consists of a magnetic filter and a superconducting solenoid magnet. As a result of the magnetic separation experiment, it was shown that the separation efficiency changes due to the difference of the cohesive property of the particles. On the basis of the result, the adhesion force which acts between the ferromagnetic particles and the medium particles used for the magnetic separation was measured by Atomic Force Microscope (AFM), and cohesion of particles was studied from the aspect of interparticle interaction. We assessed a suitable flow velocity for magnetic separation according to the cohesive property of each particle based on the result.
Bionetics Company technician preparing to remove rats from shipping container
NASA Technical Reports Server (NTRS)
1985-01-01
A Bionetics Company technician in Hanger L at Cape Canaveral Air Force Station, is preparing to remove 5 rats from their shipping container. They will fly aboard the shuttle Challenger in the Spacelab module.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wenning, Brandon M.; Martinelli, Elisa; Mieszkin, Sophie
A set of controlled surface composition films was produced utilizing amphiphilic block copolymers dispersed in a cross-linked poly(dimethylsiloxane) network. These block copolymers contained oligo(ethylene glycol) (PEGMA) and fluoroalkyl (AF6) side chains in selected ratios and molecular weights to control surface chemistry including antifouling and fouling-release performance. Such properties were assessed by carrying out assays using two algae, the green macroalga Ulva linza (favors attachment to polar surfaces) and the unicellular diatom Navicula incerta (favors attachment to nonpolar surfaces). All films performed well against U. linza and exhibited high removal of attached sporelings (young plants) under an applied shear stress, withmore » the lower molecular weight block copolymers being the best performing in the set. The composition ratios from 50:50 to 60:40 of the AF6/PEGMA side groups were shown to be more effective, with several films exhibiting spontaneous removal of the sporelings. The cells of N. incerta were also removed from several coating compositions. All films were characterized by surface techniques including captive bubble contact angle, atomic force microscopy, and near edge X-ray absorption fine structure spectroscopy to correlate surface chemistry and morphology with biological performance.« less
NASA Astrophysics Data System (ADS)
Shiau, Bo-Wen; Lin, Chien-Hung; Liao, Ying-Yen; Lee, Ya-Rong; Liu, Shih-Hao; Ding, Wei-Cheng; Lee, Jia-Ren
2018-05-01
In this work, the optical properties of Au nanoparticles processed by centrifugation techniques are studied. Most of the literature related to the control of nanoparticle size has focused on different preparation parameters; however, the wide size distribution is commonly an issue for follow-up investigations and further applications. Therefore, we developed a method in which specific-diameter particles can be effectively separated using different centrifugal procedures. The initial nanoparticle solution with a primary absorption peak at 534 nm is separated into discernible resonance wavelengths from 526 to 537 nm, with corresponding particle sizes from 30 to 55 nm. For the atomic force microscopy analysis of nanoparticle size, a dry cetyltrimethylammonium bromide (CTAB) film often covers the particles and interferes with the measurement; thus, CTAB has to be removed. However, if too much CTAB is removed, the surface of the Au nanoparticle becomes unstable, and the particles aggregate. Accordingly, we used UV spectroscopy to monitor the CTAB content; properly adjust the rotational speed and the number of centrifugation stages; and design a method that can effectively remove impurities, avoid clustering, and enable particle size measurement. The usually complicated procedures and high cost of preparation of specific-size Au nanoparticles are greatly simplified and reduced by the convenient extraction process proposed in this work, which would benefit related research and applications.
Zazouli, Mohammad Ali; Kalankesh, Laleh R
2017-01-01
Disinfection by-products (DBPs) have heterogeneous structures which are suspected carcinogens as a result of reactions between NOMs (Natural Organic Matter) and oxidants/disinfectants such as chlorine. Because of variability in DBPs characteristics, eliminate completely from drinking water by single technique is impossible. The current article reviews removal of the precursors and DBPs by different membrane filtration methods such as Microfiltration (MF), Ultrafiltration (UF), Nanofiltration (NF) and Reverse Osmosis (RO) techniques. Also, we provide an overview of existing and potentially Membrane filtration techniques, highlight their strengths and drawbacks. MF membranes are a suitable alternative to remove suspended solids and colloidal materials. However, NOMs fractions are effectively removed by negatively charged UF membrane. RO can remove both organic and inorganic DBPs and precursors simultaneously. NF can be used to remove compounds from macromolecular size to multivalent ions.
Toshimitsu, Fumiyuki; Nakashima, Naotoshi
2015-12-14
The ideal form of semiconducting-single-walled carbon nanotubes (sem-SWNTs) for science and technology is long, defect-free, chirality pure and chemically pure isolated narrow diameter tubes. While various techniques to solubilize and purify sem-SWNTs have been developed, many of them targeted only the chiral- or chemically-purity while sacrificing the sem-SWNT intrinsic structural identities by applying strong ultra-sonication and/or chemical modifications. Toward the ultimate purification of the sem-SWNTs, here we report a mild-conditioned extraction of the sem-SWNTs using removable supramolecular hydrogen-bonding polymers (HBPs) that are composed of dicarboxylic- or diaminopyridyl-fluorenes with ~70%-(8,6)SWNT selective extraction. Replacing conventional strong sonication techniques by a simple shaking using HPBs was found to provide long sem-SWNTs (>2.0 μm) with a very high D/G ratio, which was determined by atomic force microscopy observations. The HBPs were readily removed from the nanotube surfaces by an outer stimulus, such as a change in the solvent polarities, to provide chemically pure (8,6)-enriched sem-SWNTs. We also describe molecular mechanics calculations to propose possible structures for the HBP-wrapped sem-SWNTs, furthermore, the mechanism of the chiral selectivity for the sorted sem-SWNTs is well explained by the relationship between the molecular surface area and mass of the HBP/SWNT composites.
String Technique for Anterior Orbital Fish Hook Removal.
Starr, Matthew R; Choi, Michael B; Mahr, Michael A; Mettu, Pradeep; Patterson, David F
2018-06-13
Removing fish hooks is a common procedure performed by many emergency department providers. There are several techniques that are commonly employed to aid in successful removal. However, when a fish hook becomes embedded within the orbit, there are limited options as to avoid damaging vital surrounding structures. The authors report the removal of a fish hook within the anterior orbit using the string technique in a 25-year-old patient. The procedure was performed under general anesthesia with the aid of size 5 polyglactin suture wrapped around the hook. The procedure itself took less than 10 seconds and was successful in swiftly and safely removing the hook without damaging surrounding orbital structures. The patient recovered well without any permanent sequelae.
Kubo, Keitaro; Koike, Takashi; Ueda, Takayuki; Sakurai, Kaoru
2018-03-15
Information is lacking about the selection criteria for silicone resilient denture liners applied as a matrix material for attachments on overdentures. The purpose of this in vitro study was to investigate the mechanical properties of silicone resilient denture liners and their influence on the initial retention force of overdenture attachments and the reduction in retention force over time. Nine types of silicone resilient denture liner were injected and fixed to the matrix section of an experimental denture base. They were then fitted to an epoxy resin model that simulated the residual ridge with a patrix ball attachment (n=10). The retention force of the denture was measured with a digital force gauge, and the maximum force of traction (N) was regarded as the initial retention force. The retention force reduction (N) after repeated insertion and removal (n=5) was calculated by subtracting the retention force after 3348 cycles (3-year simulated insertion and removal) from the initial retention force. The intaglio of the matrix was observed with a scanning electron microscope (SEM) before and after the 3348 cycles. Four mechanical properties (hardness, strain-in-compression, tensile strength, and arithmetic mean roughness) of the resilient denture liners were measured. One-way ANOVA of the initial retention force of each lining material was performed, followed by the Scheffe test (α=.05). Pearson correlation analysis was used (α=.05) to analyze correlations of the initial retention force with the retention force reduction after insertion and removal and the mechanical properties of each material. Multiple regression analysis with the stepwise method extracted the initial retention force and the retention force reduction as dependent variables, and the resilient denture liner mechanical properties as explanatory variables (α=.05). The initial retention force of the resilient denture liners was 1.3 to 5.4 N. Multiple comparisons showed significant differences in some groups (P<.05). The retention force reduction of the resilient denture liners was 0.2 to 1.9 N. Multiple regression analysis with the stepwise method extracted hardness and strain-in-compression as explanatory variables for the initial retention force and the retention force reduction. Within the limitations of this in vitro study, we found that hardness influenced the initial retention force of the overdenture, and that strain-in-compression influenced the retention force reduction in the 3-year simulation. Copyright © 2017 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
Glucagon Is a Safe and Inexpensive Initial Strategy in Esophageal Food Bolus Impaction.
Haas, Jason; Leo, Julia; Vakil, Nimish
2016-03-01
Controversy exists about the utility of pharmacologic agents and endoscopic technique used for esophageal food bolus impaction. To evaluate the utility of glucagon and the technique used for endoscopic removal, including the rate of success and the adverse events of the techniques. The database of the largest healthcare provider in southeastern Wisconsin was retrospectively reviewed for patients presenting with esophageal food bolus impaction. Data extracted included glucagon administration and its success rate, outcome of radiographic studies, and the endoscopic method of removal and adverse events associated with it, including 30-day mortality. A total of 750 patients were identified with food bolus impaction from 2007 to 2012. Glucagon was administered in 440 patients and was successful in 174 (39.5%). Endoscopic removal was performed in 470 patients and was successful in 469 (99.8%). The push technique was utilized in 209 patients, reduction in the bolus size by piecemeal removal followed by the push technique was utilized in 97 patients, and the pull technique was utilized in 107 patients. There were no perforations with endoscopic removal. Only 4.5% of the X-rays performed reported a possible foreign body within the esophagus. Glucagon was a significantly less-expensive strategy than endoscopic therapy (p < 0.0001). Glucagon is low cost, is moderately effective, and may be considered as an initial strategy. Endoscopic removal regardless of technique is safe and effective. The yield of radiography is poor in the setting of food bolus impaction.
Forces of Commonly Used Chiropractic Techniques for Children: A Review of the Literature.
Todd, Angela J; Carroll, Matthew T; Mitchell, Eleanor K L
2016-01-01
The purpose of this study is to review the available literature that describes forces of the most commonly used chiropractic techniques for children. Review of the English-language literature using search terms Chiropract* and technique, protocol, or approach in databases PubMed, Cumulative Index to Nursing and Allied Health Literature, Allied and Complementary Medicine, and Index to Chiropractic Literature and direct contact with authors of articles and book chapters. Eleven articles that discussed the 7 most commonly used pediatric chiropractic techniques and the forces applied were identified. Chiropractic techniques reviewed described forces that were modified based on the age of the patient. Force data for mechanically assisted devices were varied, with the minimum force settings for some devices outside the age-specific safe range recommended in the literature when not modified in some way. This review found that technique selection and application by chiropractors treating infants and young children are typically modified in force and speed to suit the age and development of the child. Copyright © 2016. Published by Elsevier Inc.
A study of forced convection boiling under reduced gravity
NASA Technical Reports Server (NTRS)
Merte, Herman, Jr.
1992-01-01
This report presents the results of activities conducted over the period 1/2/85-12/31/90, in which the study of forced convection boiling under reduced gravity was initiated. The study seeks to improve the understanding of the basic processes that constitute forced convection boiling by removing the buoyancy effects which may mask other phenomena. Specific objectives may also be expressed in terms of the following questions: (1) what effects, if any, will the removal of body forces to the lowest possible levels have on the forced convection boiling heat transfer processes in well-defined and meaningful circumstances? (this includes those effects and processes associated with the nucleation or onset of boiling during the transient increase in heater surface temperature, as well as the heat transfer and vapor bubble behaviors with established or steady-state conditions); and (2) if such effects are present, what are the boundaries of the relevant parameters such as heat flux, heater surface superheat, fluid velocity, bulk subcooling, and geometric/orientation relationships within which such effects will be produced?
Navajo-Hopi Land Dispute: Impact of Forced Relocation on Navajo Families.
ERIC Educational Resources Information Center
Gilbert, Betty Beetso
Emphasizing the fact that the Federal government has failed to recognize the inherent differences of the Hopi and Navajo lifestyles, this study examines the century-old Navajo-Hopi American Indian land dispute; the literature on forced removal of peoples; multi-dimensional stressors associated with the forced relocation of 15 Navajo families; and…
32 CFR Attachment 4 to Part 855 - Sample Joint-Use Agreement
Code of Federal Regulations, 2010 CFR
2010-07-01
... facilities for training. f. Air Force-owned airfield pavements made available for use under this Agreement... jointly used by Air Force aircraft will be designed to support the type of military aircraft assigned to... Transportation Safety Board, remove crashed civil aircraft from Air Force-owned pavements or property and shall...
32 CFR Attachment 4 to Part 855 - Sample Joint-Use Agreement
Code of Federal Regulations, 2014 CFR
2014-07-01
... facilities for training. f. Air Force-owned airfield pavements made available for use under this Agreement... jointly used by Air Force aircraft will be designed to support the type of military aircraft assigned to... Transportation Safety Board, remove crashed civil aircraft from Air Force-owned pavements or property and shall...
32 CFR Attachment 4 to Part 855 - Sample Joint-Use Agreement
Code of Federal Regulations, 2011 CFR
2011-07-01
... facilities for training. f. Air Force-owned airfield pavements made available for use under this Agreement... jointly used by Air Force aircraft will be designed to support the type of military aircraft assigned to... Transportation Safety Board, remove crashed civil aircraft from Air Force-owned pavements or property and shall...
32 CFR Attachment 4 to Part 855 - Sample Joint-Use Agreement
Code of Federal Regulations, 2013 CFR
2013-07-01
... facilities for training. f. Air Force-owned airfield pavements made available for use under this Agreement... jointly used by Air Force aircraft will be designed to support the type of military aircraft assigned to... Transportation Safety Board, remove crashed civil aircraft from Air Force-owned pavements or property and shall...
32 CFR Attachment 4 to Part 855 - Sample Joint-Use Agreement
Code of Federal Regulations, 2012 CFR
2012-07-01
... facilities for training. f. Air Force-owned airfield pavements made available for use under this Agreement... jointly used by Air Force aircraft will be designed to support the type of military aircraft assigned to... Transportation Safety Board, remove crashed civil aircraft from Air Force-owned pavements or property and shall...
Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy
Neuman, Keir C.; Nagy, Attila
2012-01-01
Single-molecule force spectroscopy has emerged as a powerful tool to investigate the forces and motions associated with biological molecules and enzymatic activity. The most common force spectroscopy techniques are optical tweezers, magnetic tweezers and atomic force microscopy. These techniques are described and illustrated with examples highlighting current capabilities and limitations. PMID:18511917
"Push back" technique: A simple method to remove broken drill bit from the proximal femur.
Chouhan, Devendra K; Sharma, Siddhartha
2015-11-18
Broken drill bits can be difficult to remove from the proximal femur and may necessitate additional surgical exploration or special instrumentation. We present a simple technique to remove a broken drill bit that does not require any special instrumentation and can be accomplished through the existing incision. This technique is useful for those cases where the length of the broken drill bit is greater than the diameter of the bone.
Techniques for noise removal and registration of TIMS data
Hummer-Miller, S.
1990-01-01
Extracting subtle differences from highly correlated thermal infrared aircraft data is possible with appropriate noise filters, constructed and applied in the spatial frequency domain. This paper discusses a heuristic approach to designing noise filters for removing high- and low-spatial frequency striping and banding. Techniques for registering thermal infrared aircraft data to a topographic base using Thematic Mapper data are presented. The noise removal and registration techniques are applied to TIMS thermal infrared aircraft data. -Author
Active silicone oil removal with a modified vacuum syringe.
Bajaire, Boris J; Oudovitchenko, Elena; Salguero, Andrés E; Paipilla, Diego F
2012-01-01
At present, the number of clinical indications for the use of silicone oil (SO) has increased in intraocular surgery because of the advent of new techniques in vitreoretinal surgery, availability of better quality oils, and greater experience in its use. Consequently, the number of procedures for SO removal has increased, and support technologies for these procedures are always a concern. A simple active technique for SO removal based on a 5-mL standard syringe with an 18G cannula was developed. The oil is suctioned into the syringe by the pulling effect of a spring assembled along the axis of the piston. No abrupt change in the intraocular pressure is produced because of the oil viscosity and the reduced diameter of the cannula. A technique for SO removal that has been used successfully during the past 7 years is presented in this article. During the 7-year period, 234 SO removals were performed without any complication or device failure. Using the present method, the average time for SO removal was 4 minutes. The average extraction time with the technique is 4 minutes, which is in the range of other active techniques, and it is faster than passive methods that are performed between 8 and 9 minutes. The technique is in line with the advantages of more elaborated active methods without using complex technology. It is considered to be highly successful and easy to implement.
Ultrasound Effect in the Removal of Intraradicular Posts Cemented with Different Materials.
Berbert, Fabio Luiz Camargo Vilella; Espir, Camila Galletti; Crisci, Fernando Simões; Ferrarezz, Marcelo; de Andrade, T; Chávez-Andrade, Gisselle Moraima; Leonardo, Renato de Toledo; Saad, José Roberto Cury; Segalla, José Claudio Martins; Vaz, Luiz Geraldo; Jordão Basso, Keren Cristina Fagundes; Dantas, Andrea Abi Rached
2015-06-01
This study evaluated the effect of ultrasonic vibration on the tensile strength required to remove intraradicular post cemented with different materials. Bovine teeth were selected, and 7 mm of the cervical root canals were prepared to size 5 Largo drill, the posts were cemented with zinc phosphate, Enforce (resin) or Rely X (glass ionomer). The specimens were divided into six groups (n = 10), according to the following procedures: GI-cementation with zinc phosphate associated with traction force; GII-cementation with zinc phosphate associated with ultrasonic activation and traction force; G111-cementation with Enforce associated with traction force; GIV-cementation with Enforce associated with ultrasonic activation and traction force; GV-cementation with Rely X associated with traction force; and GVI-cementation with Rely X associated with ultrasonic activation and traction force. The tensile test was conducted using the electromechanical testing machine, the force was determined by a specialized computer program and ultrasonic activation using the Jet Sonic Four Plus (Gnatus) device in 10P. Concerning to average ranking, GI showed statistically significant difference in comparison with GII and GVI (p < 0.05); there was no statistical difference in GIII and GIV when compared to other groups (p > 0.05). The ultrasound favored the intraradicular post traction regardless of the employed cement in greater or lesser extent. The post removal is a routine practice in the dental office, therefore, new solutions and better alternatives are need to the practitioner. We did not find in the literature many articles referring to this practice. Thus, the results from this study are relevant in the case planning and to promote more treatment options.
Ahmad Khan, Hayat; Kamal, Younis; Lone, Ansar Ul Haq
2014-04-01
Fishing is a leisure activity for some people around the world. Accidently the fish hook can get hooked in the hand. If the hook is barbed, removal becomes difficult. We report a case of such a injury in the hand and discuss the technique for its removal with a brief review of the literature. A thirty-two year old male accidently suffered a fishhook injury to his hand. He came to the orthopaedic ward two hours after the incident with pain; the fish hook was hanging from the hand. Unsuccessful attempts to remove it were made by his relatives. A push-through and cut-off technique was used for removal of barbed hook. Barbed hooks are to be removed atraumatically with controlled incision over properly anaesthetised skin. Proper wound management and prophylactic antibiotics suitable for treatment of Aeromonas species should be initiated to prevent complications.
Automatic feed system for ultrasonic machining
Calkins, Noel C.
1994-01-01
Method and apparatus for ultrasonic machining in which feeding of a tool assembly holding a machining tool toward a workpiece is accomplished automatically. In ultrasonic machining, a tool located just above a workpiece and vibrating in a vertical direction imparts vertical movement to particles of abrasive material which then remove material from the workpiece. The tool does not contact the workpiece. Apparatus for moving the tool assembly vertically is provided such that it operates with a relatively small amount of friction. Adjustable counterbalance means is provided which allows the tool to be immobilized in its vertical travel. A downward force, termed overbalance force, is applied to the tool assembly. The overbalance force causes the tool to move toward the workpiece as material is removed from the workpiece.
The current MCL for arsenic is being revised to a lower level by the USEPA. Many new utilities, particularly small utilities, will be forced to add an arsenic removal process or fine tune their curent water treatment process to meet the new MCL. Many arsenic removal processes rel...
2006-01-26
KENNEDY SPACE CENTER, FLA. - At Cape Canaveral Air Force Station, a crane is lifted near the Cape Canaveral Lighthouse for use in removing the lamp room at top. Leaks in the roof allowed moisture to seep in. The lamp room is being removed for repairs and refurbishment. In addition, the original brass roof will be restored and put back in place. The Cape Canaveral Lighthouse is the only operational lighthouse owned by the Air Force. It was first erected in 1868 near the edge of the Atlantic Ocean. Photo credit: NASA/Jack Pfaller
Aerosol removal due to precipitation and wind forcings in Milan urban area
NASA Astrophysics Data System (ADS)
Cugerone, Katia; De Michele, Carlo; Ghezzi, Antonio; Gianelle, Vorne
2018-01-01
Air pollution represents a critical issue in Milan urban area (Northern Italy). Here, the levels of fine particles increase, overcoming the legal limits, mostly in wintertime, due to favourable calm weather conditions and large heating and vehicular traffic emissions. The main goal of this work is to quantify the aerosol removal effect due to precipitation at the ground. At first, the scavenging coefficients have been calculated for aerosol particles with diameter between 0.25 and 3 μm. The average values of this coefficient vary between 2 ×10-5 and 5 ×10-5 s-1. Then, the aerosol removal induced separately by precipitation and wind have been compared through the introduction of a removal index. As a matter of fact, while precipitation leads to a proper wet scavenging of the particles from the atmosphere, high wind speeds cause enhanced particle dispersion and dilution, that locally bring to a tangible decrease of aerosol particles' number. The removal triggered by these two forcings showed comparable average values, but different trends. The removal efficiency of precipitation lightly increases with the increase of particle diameters and vice versa happens with strong winds.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1992-04-01
This Removal Action System Design has been prepared as a Phase I Volume for the implementation of the Phase II removal action at Wright-Patterson Air Force Base (WPAFB) near Dayton, Ohio. The objective of the removal action is to prevent, to the extent practicable, the migration of ground water contaminated with chlorinated volatile organic compounds (VOCS) across the southwest boundary of Area C. The Phase 1, Volume 9 Removal Action System Design compiles the design documents prepared for the Phase II Removal Action. These documents, which are presented in Appendices to Volume 9, include: Process Design, which presents the 30more » percent design for the ground water treatment system (GWTS); Design Packages 1 and 2 for Earthwork and Road Construction, and the Discharge Pipeline, respectively; no drawings are included in the appendix; Design Package 3 for installation of the Ground Water Extraction Well(s); Design Package 4 for installation of the Monitoring Well Instrumentation; and Design Package 5 for installation of the Ground Water Treatment System; this Design Package is incorporated by reference because of its size.« less
Shorey, A B; Jacobs, S D; Kordonski, W I; Gans, R F
2001-01-01
Recent advances in the study of the magnetorheological finishing (MRF) have allowed for the characterization of the dynamic yield stress of the magnetorheological (MR) fluid, as well as the nanohardness (H(nano)) of the carbonyl iron (CI) used in MRF. Knowledge of these properties has allowed for a more complete study of the mechanisms of material removal in MRF. Material removal experiments show that the nanohardness of CI is important in MRF with nonaqueous MR fluids with no nonmagnetic abrasives, but is relatively unimportant in aqueous MR fluids or when nonmagnetic abrasives are present. The hydrated layer created by the chemical effects of water is shown to change the way material is removed by hard CI as the MR fluid transitions from a nonaqueous MR fluid to an aqueous MR fluid. Drag force measurements and atomic force microscope scans demonstrate that, when added to a MR fluid, nonmagnetic abrasives (cerium oxide, aluminum oxide, and diamond) are driven toward the workpiece surface because of the gradient in the magnetic field and hence become responsible for material removal. Removal rates increase with the addition of these polishing abrasives. The relative increase depends on the amount and type of abrasive used.
2016-12-21
STINFO COPY) AIR FORCE RESEARCH LABORATORY MATERIALS AND MANUFACTURING DIRECTORATE WRIGHT-PATTERSON AIR FORCE BASE, OH 45433-7750 AIR FORCE MATERIEL...9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING AGENCY ACRONYM(S) Air Force Research Laboratory...removing excess cholesterol from arterial plaques. Gold nanoparticles (AuNPs) functionalized with apolipoprotein A-I and with the lipids 1,2
NASA Astrophysics Data System (ADS)
Fosso-Kankeu, Elvis
2018-06-01
In the present study af-PFCl, GL-g-P(AN) hydrogel and GL-g-P(AN)/TEOS hydrogel composite were synthesized. The hydrogels were characterized using the fourier transformed infra-red (FTIR) and the scanning electron microscope (SEM) techniques. The coagulant af-PFCl and the hydrogels were applied consecutively in flocculation and adsorption processes respectively for the treatment of acid mine drainage (AMD). It was observed that the grafting process increased the amount of binding groups on the hydrogels. The hybridization of the techniques assisted in the removal of anions; while the cations were mostly removed by the adsorption process. The adsorbents behaviour was fittingly expressed by the pseudo-second order model. The adsorption capacities of GL-g-P(AN)/TEOS hydrogel composite for the removal of Al, As and Zn were 3.89, 0.66 and 0.394 respectively; while the adsorption capacities of GL-g-P(AN) for the removal of Al and Mg were 3.47 and 9.66 mg/g respectively. The techniques applied in this study have shown good potential for the removal of specific pollutants from the AMD; it is however, important that the appropriate hybridization of techniques allows to remove all the pollutants and restore acceptable water quality.
Molecular dynamics modeling of bonding two materials by atomic scale friction stir welding
NASA Astrophysics Data System (ADS)
Konovalenko S., Iv.; Konovalenko, Ig. S.; Psakhie, S. G.
2017-12-01
Molecular dynamics model of atomic scale friction stir welding has been developed. Formation of a butt joint between two crystallites was modeled by means of rotating rigid conical tool traveling along the butt joint line. The formed joint had an intermixed atomic structure composed of atoms initially belonged to the opposite mated piece of metal. Heat removal was modeled by adding the extra viscous force to peripheral atomic layers. This technique provides the temperature control in the tool-affected zone during welding. Auxiliary vibration action was added to the rotating tool. The model provides the variation of the tool's angular velocity, amplitude, frequency and direction of the auxiliary vibration action to provide modeling different welding modes.
Health costs of economic expansion: the case of manufacturing accident injuries.
Catalano, R
1979-01-01
The hypothesized relationship between economic expansion and accident injuries is tested using archival economic and accident data from the Los Angeles-Long Beach, California metropolitan area. The association is measured using cross-correlation techniques after variation shared with a comparison metropolitan area (Anaheim-Santa Ana-Garden Grove) is removed. Two tests of association are conducted. The first uses the raw accident rate of the comparison metropolitan area as a control variable while the second adjusts the control variable to reflect shared industrial sectors. Findings suggest that the incidence of disabling accidents increases in the month before and during the month that the manufacturing work force expands. The impact appears strongest during the month that new workers are added. PMID:453412
Mkhize, Dennis S; Nyoni, Hlengilizwe; Quinn, Laura P; Mamba, Bhekie B; Msagati, Titus A M
2017-04-01
Molecularly imprinted membranes (MIMs) with selective removal properties for polychlorinated biphenyls (PCBs) were prepared through the phase inversion technique. The MIMs were obtained from casting the viscous solutions of molecularly imprinted polymers (MIPs), polysulfone (PSf), and N-methyl-2-pyrrolidone (NMP) as the casting solvent. Different membranes were prepared at different concentration of MIPs and PSf. The resulting MIMs were characterized by atomic force microscope (AFM), scanning electron microscope (SEM), and Fourier transform infrared spectroscopy (FTIR). Moreover, the performance of the membranes was evaluated by determining and interpreting the rejection (%), flux (F), permeability coefficient (P), permselectivity factor ( α ' PCB/DDT or anthracene ), and enrichment factors of PCBs, dichlorodiphenyltrichloroethane (p,p'-DDT), and anthracene from model contaminated water using the dead-end filtration cell. Molecularly imprinted membrane prepared with 18 wt% PSf and 20 wt% MIP 4 exhibited a well-defined porous structure, which was accompanied by enhanced PCB enrichment. Furthermore, molecularly imprinted membrane showed good enrichment factors for PCBs even from spiked natural water samples of Hartbeespoort dam.
Le, Thao Thanh; Murugesan, Kumarasamy; Lee, Chung-Seop; Vu, Chi Huong; Chang, Yoon-Seok; Jeon, Jong-Rok
2016-09-01
Immobilization of laccase has been highlighted to enhance their stability and reusability in bioremediation. In this study, we provide a novel immobilization technique that is very suitable to real wastewater treatment. A perfect core-shell system composing copper alginate for the immobilization of laccase (Lac-beads) was produced. Additionally, nFe2O3 was incorporated for the bead recycling through magnetic force. The beads were proven to immobilize 85.5% of total laccase treated and also to be structurally stable in water, acetate buffer, and real wastewater. To test the Lac-beads reactivity, triclosan (TCS) and Remazol Brilliant Blue R (RBBR) were employed. The Lac-beads showed a high percentage of TCS removal (89.6%) after 8h and RBBR decolonization at a range from 54.2% to 75.8% after 4h. Remarkably, the pollutants removal efficacy of the Lac-beads was significantly maintained in real wastewater with the bead recyclability, whereas that of the corresponding free laccase was severely deteriorated. Copyright © 2016 Elsevier Ltd. All rights reserved.
Pang, Chunsheng; Xie, Tujun; Lin, Lu; Zhuang, Junping; Liu, Ying; Shi, Jianbin; Yang, Qiulin
2012-01-01
This study presents a novel, efficient and environmentally friendly process for the cooking of corn stalk that uses active oxygen (O2 and H2O2) and a recoverable solid alkali (MgO). The structural changes on the surface of corn stalk before and after cooking were characterized by attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM) techniques. The results showed that lignin and extractives were effectively removed, especially those on the surface of corn stalk. Additionally, the changes included becoming fibrillar, the exposure of cellulose and hemi-cellulose and the pitting corrosion on the surface, etc. The results also showed that the removal reaction is from outside to inside, but the main reaction is possibly on the surface. Furthermore, the results of active oxygen cooking with a solid alkali are compared with those of alkaline cooking in the paper. Copyright © 2011 Elsevier Ltd. All rights reserved.
Liu, Dong-Hai; Guo, Yue; Zhang, Lu-Hua; Li, Wen-Cui; Sun, Tao; Lu, An-Hui
2013-11-25
Magnetic hollow structures with microporous shell and highly dispersed active cores (Fe/Fe3 C nanoparticles) are rationally designed and fabricated by solution-phase switchable transport of active iron species combined with a solid-state thermolysis technique, thus allowing selective encapsulation of functional Fe/Fe3 C nanoparticles in the interior cavity. These engineered functional materials show high loading (≈54 wt%) of Fe, excellent chromium removal capability (100 mg g(-1)), fast adsorption rate (8766 mL mg(-1) h(-1)), and easy magnetic separation property (63.25 emu g(-1)). During the adsorption process, the internal highly dispersed Fe/Fe3 C nanoparticles supply a driving force for facilitating Cr(VI) diffusion inward, thus improving the adsorption rate and the adsorption capacity. At the same time, the external microporous carbon shell can also efficiently trap guest Cr(VI) ions and protect Fe/Fe3 C nanoparticles from corrosion and subsequent leaching problems. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Rapid tooling method for soft customized removable oral appliances.
Salmi, Mika; Tuomi, Jukka; Sirkkanen, Rauno; Ingman, Tuula; Mäkitie, Antti
2012-01-01
Traditionally oral appliances i.e. removable orthodontic appliances, bite splints and snoring / sleep apnea appliances are made with alginate impressions and wax registrations. Our aim was to describe the process of manufacturing customized oral appliances with a new technique i.e. rapid tooling method. The appliance should ideally be custom made to match the teeth. An orthodontic patient, scheduled for conventional orthodontic treatment, served as a study subject. After a precise clinical and radiographic examination, the approach was to digitize the patient's dental arches and then to correct them virtually by computer. Additive manufacturing was then used to fabricate a mould for a soft customized appliance. The mould was manufactured using stereolithography from Somos ProtoGen O-XT 18420 material. Casting material for the mould to obtain the final appliance was silicone. As a result we managed to create a customized soft orthodontic appliance. Also, the accuracy of the method was found to be adequate. Two versions of the described device were manufactured: one with small and one with moderate orthodontic force. The study person also gave information on the subjective patient adaptation aspects of the oral appliance.
In-Situ Swelling For Holographic Color Control
NASA Astrophysics Data System (ADS)
Walker Parker, Julie L.; Benton, Stephen A.
1989-05-01
Deliberate variations of the emulsion thickness between holographic exposures and reconstruction produce a range of output wavelengths from a fixed exposure wavelength, a technique known as "pseudo-color" multi-color reflection holography. Usual methods require the removal of the film or plate from the holographic setup between exposures for imbibition of a swelling agent, followed by drying and replacement, so that a retention of the swelling agent forces a physical increase in the thickness of the emulsion. The density (and hence the thickness) of the gelatin binder can also be varied by changing its electrolytic environment. By immersing the holographic emulsion in a suitable solution, allowing it to come to a new equilibrium thickness, and exposing with a long-wavelength laser, shorter wavelength reconstructions can be obtained without removing the film or plate from the setup. Accurate changes of solution can make a precise sequence of swellings possible, producing multiple reconstruction colors from a set of constant-wavelength recordings. Here we describe pre-treatments of the emulsion that make rapid and stable equilibria possible, and swelling bath sequences that produce color primaries suitable for full-color computer-graphic holographic imagery.
Bhatt, Ronak; Sreedhar, B; Padmaja, P
2017-11-01
A facile synthesis of Chitosan Supramolecularly cross-linked with Trimesic Acid (CTMA) is reported in this work. The adsorption potential of CTMA for removal of hexavalent chromium was evaluated and the influence of pH, temperature, contact time and adsorbent dose on the adsorption process was investigated. The experimental results showed that CTMA could efficiently adsorb Cr 6+ and partially reduce it to the less toxic Cr 3+ state. The maximum adsorption capacity of CTMA for Cr 6+ was found to be 129.53mg/g at pH 2.0. CTMA and chromium loaded CTMA were characterised by FT-IR, Raman, TGA-DSC, SEM-EDX, XRD, ESR and XPS spectroscopic techniques. Chitosan was observed to be cross- linked with TMA via ionic, hydrogen bonding and pi-pi supramolecular interactions while adsorption of chromium onto CTMA was by electrostatic forces and hydrogen bonding. From the observed results it was evident that CTMA was successfully applied for simultaneous removal of chromium, lead and iron from chrome plating effluent. Copyright © 2017 Elsevier B.V. All rights reserved.
77 FR 1654 - Airworthiness Directives; Agusta S.p.A. Helicopters
Federal Register 2010, 2011, 2012, 2013, 2014
2012-01-11
... a ``T'' marked after the serial number, or Inspect the link assembly for the torsion value force of...-service, remove the link assembly from the helicopter and inspect the torsion value force of the ball bearing rotation. If the torsion value force in either end of the link assembly is greater than 7.30 N...
(Environmental investigation of ground water contamination at Wright-Patterson Air Force Base, Ohio)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1992-04-01
This Removal Action System Design has been prepared as a Phase I Volume for the implementation of the Phase II removal action at Wright-Patterson Air Force Base (WPAFB) near Dayton, Ohio. The objective of the removal action is to prevent, to the extent practicable, the migration of ground water contaminated with chlorinated volatile organic compounds (VOCS) across the southwest boundary of Area C. The Phase 1, Volume 9 Removal Action System Design compiles the design documents prepared for the Phase II Removal Action. These documents, which are presented in Appendices to Volume 9, include: Process Design, which presents the 30more » percent design for the ground water treatment system (GWTS); Design Packages 1 and 2 for Earthwork and Road Construction, and the Discharge Pipeline, respectively; no drawings are included in the appendix; Design Package 3 for installation of the Ground Water Extraction Well(s); Design Package 4 for installation of the Monitoring Well Instrumentation; and Design Package 5 for installation of the Ground Water Treatment System; this Design Package is incorporated by reference because of its size.« less
Shear Stress in Magnetorheological FInishing for Glasses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miao, C.; Shafrir, S.N.; Lambropoulos, J.C.
2009-04-28
We report in situ, simultaneous measurements of both drag and normal forces in magnetorheological finishing (MRF) for what is believed to be the first time, using a spot taking machine (STM) as a test bed to take MRF spots on stationary parts. The measurements are carried out over the entire area where material is being removed, i.e., the projected area of the MRF removal function/spot on the part surface, using a dual force sensor. This approach experimentally addresses the mechanisms governing material removal in MRF for optical glasses in terms of the hydrodynamic pressure and shear stress, applied by themore » hydrodynamic flow of magnetorheological fluid at the gap between the part surface and the STM wheel. This work demonstrates that the volumetric removal rate shows a positive linear dependence on shear stress. Shear stress exhibits a positive linear dependence on a material figure of merit that depends upon Young’s modulus, fracture toughness, and hardness. A modified Preston’s equation is proposed that better estimates MRF material removal rate for optical glasses by incorporating mechanical properties, shear stress, and velocity.« less
Shear stress in magnetorheological finishing for glasses.
Miao, Chunlin; Shafrir, Shai N; Lambropoulos, John C; Mici, Joni; Jacobs, Stephen D
2009-05-01
We report in situ, simultaneous measurements of both drag and normal forces in magnetorheological finishing (MRF) for what is believed to be the first time, using a spot taking machine (STM) as a test bed to take MRF spots on stationary parts. The measurements are carried out over the entire area where material is being removed, i.e., the projected area of the MRF removal function/spot on the part surface, using a dual force sensor. This approach experimentally addresses the mechanisms governing material removal in MRF for optical glasses in terms of the hydrodynamic pressure and shear stress, applied by the hydrodynamic flow of magnetorheological fluid at the gap between the part surface and the STM wheel. This work demonstrates that the volumetric removal rate shows a positive linear dependence on shear stress. Shear stress exhibits a positive linear dependence on a material figure of merit that depends upon Young's modulus, fracture toughness, and hardness. A modified Preston's equation is proposed that better estimates MRF material removal rate for optical glasses by incorporating mechanical properties, shear stress, and velocity.
García Raya, Daniel; Madueño, Rafael; Blázquez, Manuel; Pineda, Teresa
2010-07-20
A characterization of the 1,8-octanedithiol (ODT) self-assembled monolayer (SAM) formed from a Triton X-100 lyotropic medium has been conducted by electrochemical techniques. It is found that an ODT layer of standing-up molecules is obtained at short modification time without removing oxygen from the medium. The electrochemical study shows that the ODT layer formed after 15 min of modification time has similar electron-transfer blocking properties to the layers formed from organic solvents at much longer modification times. On the basis of XPS data, it is demonstrated that the inability to bind gold nanoparticles (AuNPs) is due to the presence of extra ODT molecules either interdigited or on top of the layer. Treatment consisting of an acid washing step following the formation of the ODT-Au(111) SAM produces a layer that is able to attach AuNPs as demonstrated by electrochemical techniques and atomic force microscopy (AFM) images.
A 3-D enlarged cell technique (ECT) for elastic wave modelling of a curved free surface
NASA Astrophysics Data System (ADS)
Wei, Songlin; Zhou, Jianyang; Zhuang, Mingwei; Liu, Qing Huo
2016-09-01
The conventional finite-difference time-domain (FDTD) method for elastic waves suffers from the staircasing error when applied to model a curved free surface because of its structured grid. In this work, an improved, stable and accurate 3-D FDTD method for elastic wave modelling on a curved free surface is developed based on the finite volume method and enlarged cell technique (ECT). To achieve a sufficiently accurate implementation, a finite volume scheme is applied to the curved free surface to remove the staircasing error; in the mean time, to achieve the same stability as the FDTD method without reducing the time step increment, the ECT is introduced to preserve the solution stability by enlarging small irregular cells into adjacent cells under the condition of conservation of force. This method is verified by several 3-D numerical examples. Results show that the method is stable at the Courant stability limit for a regular FDTD grid, and has much higher accuracy than the conventional FDTD method.
Centripetal Force on an Overhead Projector.
ERIC Educational Resources Information Center
Rheam, Harry
1995-01-01
Describes two simple demonstrations of an object moving in a straight line tangent to the circle if centripetal force is removed. Demonstrations use a pie plate and petri dish with ball bearings to illustrate the phenomena on an overhead projector. (LZ)
Influence of Solutocapillary Convection on Macrovoid Defect Formation in Polymeric Membranes
NASA Technical Reports Server (NTRS)
Pekny, M. R.; Zartman, J.; Greenberg, A. R.; Todd, P.; Krantz, W. B.
2001-01-01
Macrovoids (MVs) are large (10-50 micrometers) pores often found in polymeric membranes prepared via phase-inversion techniques. They are generally considered undesirable, as they adversely affect the permeability properties and performance of polymeric membranes for microfiltration, ultrafiltration, and reverse osmosis. However, MVs can be useful in certain thin-film applications in which vapor transmission is necessary, or for use as reservoirs for enzymes or liquid membrane material. If more could be learned about the nature and causes of MV formation, it might be possible to devise techniques to control and/or prevent MV formation that are more effective than those currently employed. Two hypotheses for the MV growth mechanism have been advanced. Reuvers proposed that once initiated, MV growth can be attributed to diffusion of (primarily) solvent to the MV nuclei. Because this mechanism does not involve gross movement of the MV, the presence or absence of body forces such as buoyancy should not significantly affect MV growth. On the other hand, Shojaie et al. proposed that solutocapillary convection induced by a steep surface-tension gradient along the MV/bulk solution interface enhances mass transfer to the growing MV. This interfacial convection exerts a force that pulls the growing MV downward into the casting solution. Both buoyancy and viscous drag hinder MV growth by inhibiting this motion. Thus, removing the buoyancy force by casting in microgravity should augment MV growth according to this hypothesis. Whereas neither surface tension nor gravity has a significant effect on MV growth according to the first hypothesis, buoyancy forces should be important if the second hypothesis is correct. The overall goal of this research is to test these two hypotheses in order to improve our understanding of the MV growth processing solvent-cast polymeric membranes. Studying MV growth in low-gravity conditions is pivotal to our ability to discriminate between these two hypotheses.
Hangody, Gy; Pánics, G; Szebényi, G; Kiss, R; Hangody, L; Pap, K
2016-03-01
The goal of the study was to find a proper technique to fix tendon grafts into an INSTRON loading machine. From 8 human cadavers, 40 grafts were collected. We removed the bone-patella tendon-bone grafts, the semitendinosus and gracilis tendons, the quadriceps tendon-bone grafts, the Achilles tendons, and the peroneus longus tendons from each lower extremity. We tested the tendon grafts with five different types of fixation devices: surgical thread (Premicron 3), general mounting clamp, wire mesh, cement fixation, and a modified clamp for an INSTRON loading machine. The mean failure load in case of surgical thread fixation was (381N ± 26N). The results with the general clamp were (527N ± 45N). The wire meshes were more promising (750N ± 21N), but did not reach the outcomes we desired. Easy slippages of the ends of the tendons from the cement encasements were observed (253N ± 18N). We then began to use Shi's clamp that could produce 977N ± 416N peak force. We combined Shi's clamp with freezing of the graft and the rupture of the tendon itself demonstrated an average force of 2198 N ± 773N. We determined that our modified frozen clamp fixed the specimens against high tensile forces.
Soncin, Rafael; Mezêncio, Bruno; Ferreira, Jacielle Carolina; Rodrigues, Sara Andrade; Huebner, Rudolf; Serrão, Julio Cerca; Szmuchrowski, Leszek
2017-06-01
The aim of this study was to propose a new force parameter, associated with swimmers' technique and performance. Twelve swimmers performed five repetitions of 25 m sprint crawl and a tethered swimming test with maximal effort. The parameters calculated were: the mean swimming velocity for crawl sprint, the mean propulsive force of the tethered swimming test as well as an oscillation parameter calculated from force fluctuation. The oscillation parameter evaluates the force variation around the mean force during the tethered test as a measure of swimming technique. Two parameters showed significant correlations with swimming velocity: the mean force during the tethered swimming (r = 0.85) and the product of the mean force square root and the oscillation (r = 0.86). However, the intercept coefficient was significantly different from zero only for the mean force, suggesting that although the correlation coefficient of the parameters was similar, part of the mean velocity magnitude that was not associated with the mean force was associated with the product of the mean force square root and the oscillation. Thus, force fluctuation during tethered swimming can be used as a quantitative index of swimmers' technique.
Malden, N J; Maidment, Y G
2002-08-24
Lingual nerve damage subsequent to lower wisdom tooth removal affects a small number of patients, sometimes producing permanent sensory loss or impairment. A number of surgical techniques have been described which are associated with low incidences of this distressing post-operative complication. When a technique is adopted by an individual clinician then a personal audit may be prudent to establish how effective it is in relation to established nerve injury rates. This audit looks at a technique involving the minimal interference of lingual soft tissues during lower wisdom tooth removal in a high street practice situation for patients having mild to moderate impacted wisdom teeth removed under local anaesthetic. It was concluded that the technique employed was associated with a low incidence of lingual nerve trauma, comparable with that reported elsewhere.
A Forced-Choice Technique to Evaluate Deafness in the Hysterical or Malingering Patient
ERIC Educational Resources Information Center
Pankratz, Loren; And Others
1975-01-01
The two-alternative forced-choice technique, which has been used to examine hysterical blindness, was used to assess purported loss of hearing in a 27-year-old male. The results are discussed in terms of using the forced-choice technique as a strategy for assessing sensory deficits. (Author)
Nerger, Bryan A.; Siedlik, Michael J.; Nelson, Celeste M.
2016-01-01
Cell-generated forces drive an array of biological processes ranging from wound healing to tumor metastasis. Whereas experimental techniques such as traction force microscopy are capable of quantifying traction forces in multidimensional systems, the physical mechanisms by which these forces induce changes in tissue form remain to be elucidated. Understanding these mechanisms will ultimately require techniques that are capable of quantifying traction forces with high precision and accuracy in vivo or in systems that recapitulate in vivo conditions, such as microfabricated tissues and engineered substrata. To that end, here we review the fundamentals of traction forces, their quantification, and the use of microfabricated tissues designed to study these forces during cell migration and tissue morphogenesis. We emphasize the differences between traction forces in two- and three-dimensional systems, and highlight recently developed techniques for quantifying traction forces. PMID:28008471
The analysis of cable forces based on natural frequency
NASA Astrophysics Data System (ADS)
Suangga, Made; Hidayat, Irpan; Juliastuti; Bontan, Darwin Julius
2017-12-01
A cable is a flexible structural member that is effective at resisting tensile forces. Cables are used in a variety of structures that employ their unique characteristics to create efficient design tension members. The condition of the cable forces in the cable supported structure is an important indication of judging whether the structure is in good condition. Several methods have been developed to measure on site cable forces. Vibration technique using correlation between natural frequency and cable forces is a simple method to determine in situ cable forces, however the method need accurate information on the boundary condition, cable mass, and cable length. The natural frequency of the cable is determined using FFT (Fast Fourier Transform) Technique to the acceleration record of the cable. Based on the natural frequency obtained, the cable forces then can be determine by analytical or by finite element program. This research is focus on the vibration techniques to determine the cable forces, to understand the physical parameter effect of the cable and also modelling techniques to the natural frequency and cable forces.
A Novel Stimulus Artifact Removal Technique for High-Rate Electrical Stimulation
Heffer, Leon F; Fallon, James B
2008-01-01
Electrical stimulus artifact corrupting electrophysiological recordings often make the subsequent analysis of the underlying neural response difficult. This is particularly evident when investigating short-latency neural activity in response to high-rate electrical stimulation. We developed and evaluated an off-line technique for the removal of stimulus artifact from electrophysiological recordings. Pulsatile electrical stimulation was presented at rates of up to 5000 pulses/s during extracellular recordings of guinea pig auditory nerve fibers. Stimulus artifact was removed by replacing the sample points at each stimulus artifact event with values interpolated along a straight line, computed from neighbouring sample points. This technique required only that artifact events be identifiable and that the artifact duration remained less than both the inter-stimulus interval and the time course of the action potential. We have demonstrated that this computationally efficient sample-and-interpolate technique removes the stimulus artifact with minimal distortion of the action potential waveform. We suggest that this technique may have potential applications in a range of electrophysiological recording systems. PMID:18339428
NASA Astrophysics Data System (ADS)
Hamilton, J.
2012-09-01
Protection and cleaning of precision optical surfaces on large scale astronomical instruments has entered a new era. First surface mirrors have been restored to "like-new" condition avoiding the expense and downtime of recoating. Nearly 10 years of testing and evaluation at a variety of sites including optics at Vandenberg Air Force Base, the Canada France Hawaii Telescope (CFHT) and the W.M Keck Telescope on Mauna Kea, have yielded impressive results: restored reflectivity, no residue, insitu cleaning and better coating performance when used as a precleaner when coating. Metrology and research in our labs has resulted in these novel, commercially available polymeric stripcoatings that are applied as a liquid and subsequently peeled off the substrate as a solid film. These designer polymer solutions safely clean and protect a wide variety of nanostructured surfaces and leave the surface almost atomically clean. Contaminant removal was monitored by a variety of techniques including Reflectivity, Nomarski, Atomic Force and Scanning Electron Microscopy as well as XPS. In addition, data demonstrates that the material safely removes particulate contamination and finger oils from nanostructures such as the 300nm wide lines on diffraction gratings and similar submicron features on Si wafers. High power laser damage testing found no residue on the optical surfaces following dried film removal and YAG laser damage thresholds after cleaning on coated BK7 of 15J/cm2 at 20ns and 20Hz were unchanged. Additionally to these adhesion tunable polymer systems, nanotube and graphene doped, ESD free polymer strip coatings for surface protection, nanoreplication, cleaning and dust mitigation have also been developed. Our coatings have been successfully used on diverse surfaces like high power laser optics, the Hope Diamond in Washington DC, CCD s for the 520 megapixel Dark Energy Survey Camera being built at Fermilab and lithographically fabbed detector surfaces for the Cryogenic Dark Matter Search.
Children's memories of removal: a test of attachment theory.
Melinder, Annika; Baugerud, Gunn Astrid; Ovenstad, Kristianne Stigsdatter; Goodman, Gail S
2013-02-01
We report a study of parents' attachment orientations and children's autobiographical memory for an experience that according to Bowlby's (1982) attachment theory should be particularly threatening-children's forced separation from their parents. It was hypothesized that individual differences in parents' attachment orientations would be associated with children's distress and memory for this highly traumatic event. Children (n = 28) were observed during forced removal from home or school by Child Protective Services due to allegations of child maltreatment. Children's memory for the removal was tested 1 week later, and biological parents (n = 28) completed an adult attachment measure. Parental attachment anxiety significantly predicted children's distress during less stressful phases of the removal, R(2) = .25, and parents' attachment-related avoidance predicted fewer correct memory reports from the children (i.e., fewer hits to open-ended questions, R(2) = .16, and fewer hits to direct questions, R(2) = .27). The findings indicate that attachment theory provides important guidance for understanding children's autobiographical memory for traumatic events. Copyright © 2013 International Society for Traumatic Stress Studies.
Pretest predictions for degraded shutdown heat-removal tests in THORS-SHRS Assembly 1. [LMFBR
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rose, S.D.; Carbajo, J.J.
The recent modification of the Thermal-Hydraulic Out-of-Reactor Safety (THORS) facility at ORNL will allow testing of parallel simulated fuel assemblies under natural-convection and low-flow forced-convection conditions similar to those that might occur during a partial failure of the Shutdown Heat Removal System (SHRS) of an LMFBR. An extensive test program has been prepared and testing will be started in September 1983. THORS-SHRS Assembly 1 consists of two 19-pin bundles in parallel with a third leg serving as a bypass line and containing a sodium-to-sodium intermediate heat exchanger. Testing at low powers wil help indicate the maximum amount of heat thatmore » can be removed from the reactor core during conditions of degraded shutdown heat removal. The thermal-hydraulic behavior of the test bundles will be characterized for single-phase and two-phase conditions up to dryout. The influence of interassembly flow redistribution including transients from forced- to natural-convection conditions will be investigated during testing.« less
Quick application/release nut with engagement indicator
NASA Technical Reports Server (NTRS)
Wright, Jay M. (Inventor)
1992-01-01
A composite nut is shown which permits a fastener to be inserted or removed from either side with an indicator of fastener engagement. The nut has a plurality of segments, preferably at least three segments, which are internally threaded, spring loaded apart by an internal spring, and has detents on opposite sides which force the nut segments into operative engagements with a threaded member when pushed in and release the segments for quick insertion or removal of the nut when moved out. When the nut is installed, end pressure on one of the detents presses the nut segments into operative engagement with a threaded member where continued rotation locks the structure together with the detents depressed to indicate positive locking engagement of the nut. On removal, counterclockwise rotation of the nut relieves the endwise pressure on the detents, permitting internal springs to force the detents outward and allowing the nut segments to move outward and separate to permit quick removal of the fastener.
NASA Technical Reports Server (NTRS)
Wright, Jay M.
1991-01-01
This is an assembly which permits a fastener to be inserted or removed from either side with an indicator of fastener engagement. The nut has a plurality of segments, preferably at least three segments, which are internally threaded, spring loaded apart by an internal spring, and has detents on opposite sides which force the nut segments into operative engagement with a threaded member when pushed in and release the segments for quick insertion or removal of the fastener when moved out. When the nut is installed, end pressure on the detents presses the nut segments into operative engagement with a threaded member where continued rotation locks the structure together with the detents depressed to indicate positive locking engagement of the nut. On removal, counterclockwise rotation relieves the endwise pressure on the detents, permitting internal springs to force the detents outward, allowing the nut segments to move outward and separate to permit quick removal of the fastener.
Easy and safe coated optical fiber direct connection without handling bare optical fiber
NASA Astrophysics Data System (ADS)
Saito, Kotaro; Kihara, Mitsuru; Shimizu, Tomoya; Kurashima, Toshio
2015-06-01
We propose a novel field installable splicing technique for the direct connection of 250 μm diameter coated optical fiber that does not require bare optical fiber to be handled. Our proposed technique can realize a low insertion loss over a wide field installation temperature range of -10-40 °C. The keys to coated optical fiber direct connection are a cleaving technique and a technique for removing coated optical fiber. As the cleaving technique, we employed a method where the fiber is stretched and then a blade is pushed perpendicularly against the stretched fiber. As a result we confirmed that fiber endfaces cleaved at -10-40 °C were all mirror endfaces. With the removal technique, the coating is removed inside the connecting component by incorporating a circular cone shaped coating removal part. A mechanical splice based on these techniques successfully achieved a low insertion loss of less than 0.11 dB and a return loss of more than 50 dB at -10, 20, and 40 °C. In addition, the temperature cycle characteristics were stable over a wide temperature range of -40-75 °C.
A Comparison of Three Different Thick Epinucleus Removal Techniques in Cataract Surgery.
Hwang, Ho Sik; Lim, Byung-Su; Kim, Man Soo; Kim, Eun Chul
2017-01-01
To compare the outcomes of cataract surgery performed with three different types of the epinucleus removal techniques (safe boat, infusion/aspiration (I/A) cannulas, and phacoemulsification tip). Ninety eyes with thick adhesive epinuclei were randomly subdivided into three groups according to epinucleus removal technique: epinucleus floating (safe boat) technique, 30 patients; I/A tip, 30 patients; and phaco tip, 30 patients. Intraoperative measurements included ultrasound time (UST), mean cumulative dissipated ultrasound energy (CDE), and balanced salt solution (BSS) use. Clinical measurements were made preoperatively, and at one day, one month and two months postoperatively, including the best corrected visual acuity (BCVA), the central corneal thickness (CCT), and the endothelial cell count (ECC). Intraoperative measurements showed significantly less UST, CDE, and BSS use in the safe boat group than in the phaco tip groups (p < 0.05). The percentage of endothelial cell loss in the safe boat group was significantly lower than that in the phaco tip groups at two months post-cataract surgery (p < 0.05). The safe boat technique is a safer and more effective epinucleus removal technique than phaco tip techniques in cases with thick epinucleus.
Effects of abutment screw coating on implant preload.
Park, Jae-Kyoung; Choi, Jin-Uk; Jeon, Young-Chan; Choi, Kyung-Soo; Jeong, Chang-Mo
2010-08-01
The aim of the present study was to investigate the effects of tungsten carbide carbon (WC/CTa) screw surface coating on abutment screw preload in three implant connection systems in comparison to noncoated titanium alloy (Ta) screws. Preload of WC/CTa abutment screws was compared to noncoated Ta screws in three implant connection systems. The differences in preloads were measured in tightening rotational angle, compression force, initial screw removal torque, and postload screw removal torque after 1 million cyclic loads. Preload loss percent was calculated to determine the efficacy of maintaining the preload of two abutment screw types in relation to implant connection systems. WC/CTa screws provided 10 degrees higher tightening rotational angle than Ta screws in all three connection systems. This difference was statistically significant (p < 0.05). External-hex butt joint implant connections had a higher compression force than the two internal conical implant connections. WC/CTa screws provided a statistically significantly higher compression force than Ta screws in all three implant connections (p < 0.05). Ta screws required statistically higher removal torque than WC/CTa screws in all three implant connections (p < 0.05); however, Ta screws needed statistically lower postload removal torque than WC/CTa screws in all three implant connections (p < 0.05). Ta screws had a statistically higher preload loss percent than WC/CTa screws in all three implant connections (p < 0.05), indicating that WC/CTa screws were superior in maintaining the preload than Ta screws. Within the limits of present study, the following conclusions were made: (1) WC/CTa screws provided higher preload than noncoated Ta screws in all three implant connection systems. (2) The initial removal torque for Ta screws required higher force than WC/CTa screws, whereas postload removal torque for Ta screws was lower than WC/CTa screws. Calculated Ta screw preload loss percent was higher than for WC/CTa screws, suggesting that WC/CTa screws were more effective in maintaining the preload than Ta screws. (3) Internal conical connections were more effective in maintaining the screw preload in cyclic loads than external-hex butt joint connections.
Techniques of Celloidin Removal From Temporal Bone Sections
O’Malley, Jennifer T.; Burgess, Barbara J.; Jones, Diane D.; Adams, Joe C.; Merchant, Saumil N.
2009-01-01
Objectives We sought to determine whether the technique of celloidin removal influences the results of immunostaining in celloidin-embedded cochleae. Methods We compared four protocols of celloidin removal, including those using clove oil, acetone, ether-alcohol, and methanol saturated with sodium hydroxide. By optimally fixing our tissue (perfused mice), and keeping constant the fixative type (formalin plus acetic acid), fixation time (25 hours), and decalcification time (ethylenediaminetetraacetic acid for 7 days), we determined whether the technique of celloidin removal influenced the immunostaining results. Six antibodies were used with each removal method: prostaglandin D synthase, sodium, potassium adenosine triphosphatase (Na+,K+-ATPase), aquaporin 1, connective tissue growth factor, tubulin, and 200 kd neurofilament. Results Clove oil, acetone, and ether-alcohol resulted in incomplete removal of the celloidin, thereby negatively affecting the results of immunostaining. The methanol–sodium hydroxide method was effective in completely removing the celloidin; it produced the cleanest and most reproducible immunostaining for all six antibodies. Conclusions Freshly prepared methanol saturated with sodium hydroxide and diluted 1:2 with methanol was the best solvent for removing celloidin from mouse temporal bone sections, resulting in consistent and reproducible immunostaining with the six antibodies tested. PMID:19663375
Mechanical Removal and Rescreening of Local Screening Charges on Ferroelectric Surfaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tong, Sheng; Park, Woon Ik; Choi, YoonYoung
2015-01-20
We report the kinetics of screening charge removal and rescreening on periodically poled lithium niobate using charge-gradient microscopy and electrostatic force microscopy (EFM). A minimum pressure needs to be applied to initiate mechanical screening charge removal, and increasing the pressure leads to further removal of charge until a threshold is reached when all screening charges are removed. We fit all rescreening EFM contrast curves under various pressures into a universal exponential decay. The findings imply that we can control the screening degree of ferroelectric surfaces by mechanical means without affecting the polarization underneath.
Mechanical Removal and Rescreening of Local Screening Charges at Ferroelectric Surfaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tong, Sheng; Park, Woon Ik; Choi, Yoon-Young
2015-01-20
In this paper, we report the kinetics of screening charge removal and rescreening on periodically poled lithium niobate using charge-gradient microscopy and electrostatic force microscopy (EFM). A minimum pressure needs to be applied to initiate mechanical screening charge removal, and increasing the pressure leads to further removal of charge until a threshold is reached when all screening charges are removed. We fit all rescreening EFM contrast curves under various pressures into a universal exponential decay. Finally, the findings imply that we can control the screening degree of ferroelectric surfaces by mechanical means without affecting the polarization underneath.
A technique to remove the tensile instability in weakly compressible SPH
NASA Astrophysics Data System (ADS)
Xu, Xiaoyang; Yu, Peng
2018-01-01
When smoothed particle hydrodynamics (SPH) is directly applied for the numerical simulations of transient viscoelastic free surface flows, a numerical problem called tensile instability arises. In this paper, we develop an optimized particle shifting technique to remove the tensile instability in SPH. The basic equations governing free surface flow of an Oldroyd-B fluid are considered, and approximated by an improved SPH scheme. This includes the implementations of the correction of kernel gradient and the introduction of Rusanov flux into the continuity equation. To verify the effectiveness of the optimized particle shifting technique in removing the tensile instability, the impacting drop, the injection molding of a C-shaped cavity, and the extrudate swell, are conducted. The numerical results obtained are compared with those simulated by other numerical methods. A comparison among different numerical techniques (e.g., the artificial stress) to remove the tensile instability is further performed. All numerical results agree well with the available data.
Lorenzo, Rosa A.; Carro, Antonia M.; Alvarez-Lorenzo, Carmen; Concheiro, Angel
2011-01-01
Template removal is a critical step in the preparation of most molecularly imprinted polymers (MIPs). The polymer network itself and the affinity of the imprinted cavities for the template make its removal hard. If there are remaining template molecules in the MIPs, less cavities will be available for rebinding, which decreases efficiency. Furthermore, if template bleeding occurs during analytical applications, errors will arise. Despite the relevance to the MIPs performance, template removal has received scarce attention and is currently the least cost-effective step of the MIP development. Attempts to reach complete template removal may involve the use of too drastic conditions in conventional extraction techniques, resulting in the damage or the collapse of the imprinted cavities. Advances in the extraction techniques in the last decade may provide optimized tools. The aim of this review is to analyze the available data on the efficiency of diverse extraction techniques for template removal, paying attention not only to the removal yield but also to MIPs performance. Such an analysis is expected to be useful for opening a way to rational approaches for template removal (minimizing the costs of solvents and time) instead of the current trial-and-error methods. PMID:21845081
Lorenzo, Rosa A; Carro, Antonia M; Alvarez-Lorenzo, Carmen; Concheiro, Angel
2011-01-01
Template removal is a critical step in the preparation of most molecularly imprinted polymers (MIPs). The polymer network itself and the affinity of the imprinted cavities for the template make its removal hard. If there are remaining template molecules in the MIPs, less cavities will be available for rebinding, which decreases efficiency. Furthermore, if template bleeding occurs during analytical applications, errors will arise. Despite the relevance to the MIPs performance, template removal has received scarce attention and is currently the least cost-effective step of the MIP development. Attempts to reach complete template removal may involve the use of too drastic conditions in conventional extraction techniques, resulting in the damage or the collapse of the imprinted cavities. Advances in the extraction techniques in the last decade may provide optimized tools. The aim of this review is to analyze the available data on the efficiency of diverse extraction techniques for template removal, paying attention not only to the removal yield but also to MIPs performance. Such an analysis is expected to be useful for opening a way to rational approaches for template removal (minimizing the costs of solvents and time) instead of the current trial-and-error methods.
Martorelli, Massimo; Gerbino, Salvatore; Giudice, Michele; Ausiello, Pietro
2013-02-01
Aim of the research is to compare the orthodontic appliances fabricated by using rapid prototyping (RP) systems, in particular 3D printers, with those manufactured by using computer numerical control (CNC) milling machines. 3D printing is today a well-accepted technology to fabricate orthodontic aligners by using the thermoforming process, instead the potential of CNC systems in dentistry have not yet been sufficiently explored. One patient, with mal-positioned maxillary central and lateral incisors, was initially selected. In the computer aided virtual planning was defined that, for the treatment, the patient needed to wear a series of 7 removable orthodontic appliances (ROA) over a duration of 21 weeks, with one appliance for every 3 weeks. A non-contact reverse engineering (RE) structured-light 3D scanner was used to create the 3D STL model of the impression of the patient's mouth. Numerical FEM simulations were performed varying the position of applied forces (discrete and continuous forces) on the same model, simulating, in this way, 3 models with slice thickness of 0.2 mm, 0.1 mm (RP staircase effect) and without slicing (ideal case). To define the areas of application of forces, two configuration "i" and "i-1" of the treatment were overlapped. 6 patients to which for three steps (3rd, 4th and 5th step) were made to wear aligners fabricated starting from physical models by 3D printing (3DP-ROA) and afterwards, for the next steps (6th, 7th and 8th step), aligners fabricated starting from physical models by CNC milling machine (CNC-ROA), were selected. For the 6 patients wearing the CNC-ROA, it was observed a best fitting of the aligner to the teeth and a more rapid teeth movement than the 3DP-ROA (2 weeks compared to 3 weeks for every appliance). FEM simulations showed a more uniform stress distribution for CNC-ROA than 3DP-ROA. In this research, 6 different case studies and CAD-FEM simulations showed that, to fabricate an efficient clear and removable orthodontic aligner, it is necessary to consider a compromise of several factors. A lower staircase effect (lower layer thickness) and a higher physical prototype accuracy allow a better control of tooth movement. Copyright © 2012 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Environmental Assessment for Multiple Projects at Laughlin Air Forc Base, TX
2013-02-06
Table 5 5 Stormwater Concrete Removal 6 Area Disturbed (acres) Average Removal Depth (ft) Concrete Density (lb/ft 3 ) Concrete Removed (lb...600 feet to the north; and, • Repair and improve stormwater drainage and steep slopes at the Laughlin AFB airfield. Construction would include site...of exposed soils from stormwater runoff, best management practices (BMPs) would be implemented during construction and demolition (C&D). These
NASA Astrophysics Data System (ADS)
Tristán, Ferdinando; Solís, Araceli; Palestino, Gabriela; Gergely, Csilla; Cuisinier, Frédéric; Pérez, Elías
2005-04-01
The adsorption of Glucose Oxidase (GOX) on layers of poly(allylamine hydrochloride) (PAH) and poly(acrylic acid) (PAA) deposited on Sequentially Adsorbed Polyelectrolyte Films (SAPFs) were studied by three different spectroscopic techniques. These techniques are: Optical Wave Light Spectroscopy (OWLS) to measure surface density; Fluorescence Resonance Energy Transfer (FRET) to verify the adsorption of GOX on the surface; and Fourier Transform Infrared Spectroscopy in Attenuated Total Reflection mode (FTIR-HATR) to inspect local structure of polyelectrolytes and GOX. Two positive and two negative polyelectrolytes are used: Cationic poly(ethyleneimine) (PEI) and poly(allylamine hydrochloride) (PAH) and anionic poly(sodium 4-styrene sulfonate) (PSS) and poly(acrylic acid) (PAA). These spectroscopic techniques do not require any labeling for GOX or SAPFs, specifically GOX and PSS are naturally fluorescent and are used as a couple donor-acceptor for the FRET technique. The SAPFs are formed by a (PEI)-(PSS/PAH)2 film followed by (PAA/PAH)n bilayers. GOX is finally deposited on top of SAPFs at different values of n (n=1..5). Our results show that GOX is adsorbed on positive ended SAPFs forming a monolayer. Contrary, GOX adsorption is not observed on negative ended film polyelectrolyte. GOX stability was tested adding a positive and a negative polyelectrolyte after GOX adsorption. Protein is partially removed by PAH and PAA, with lesser force by PAA.
Medial malleolar fractures: a biomechanical study of fixation techniques.
Fowler, T Ty; Pugh, Kevin J; Litsky, Alan S; Taylor, Benjamin C; French, Bruce G
2011-08-08
Fracture fixation of the medial malleolus in rotationally unstable ankle fractures typically results in healing with current fixation methods. However, when failure occurs, pullout of the screws from tension, compression, and rotational forces is predictable. We sought to biomechanically test a relatively new technique of bicortical screw fixation for medial malleoli fractures. Also, the AO group recommends tension-band fixation of small avulsion type fractures of the medial malleolus that are unacceptable for screw fixation. A well-documented complication of this technique is prominent symptomatic implants and secondary surgery for implant removal. Replacing stainless steel 18-gauge wire with FiberWire suture could theoretically decrease symptomatic implants. Therefore, a second goal was to biomechanically compare these 2 tension-band constructs. Using a tibial Sawbones model, 2 bicortical screws were compared with 2 unicortical cancellous screws on a servohydraulic test frame in offset axial, transverse, and tension loading. Second, tension-band fixation using stainless steel wire was compared with FiberWire under tensile loads. Bicortical screw fixation was statistically the stiffest construct under tension loading conditions compared to unicortical screw fixation and tension-band techniques with FiberWire or stainless steel wire. In fact, unicortical screw fixation had only 10% of the stiffness as demonstrated in the bicortical technique. In a direct comparison, tension-band fixation using stainless steel wire was statistically stiffer than the FiberWire construct. Copyright 2011, SLACK Incorporated.
Development testing of large volume water sprays for warm fog dispersal
NASA Technical Reports Server (NTRS)
Keller, V. W.; Anderson, B. J.; Burns, R. A.; Lala, G. G.; Meyer, M. B.; Beard, K. V.
1986-01-01
A new brute-force method of warm fog dispersal is described. The method uses large volume recycled water sprays to create curtains of falling drops through which the fog is processed by the ambient wind and spray induced air flow. Fog droplets are removed by coalescence/rainout. The efficiency of the technique depends upon the drop size spectra in the spray, the height to which the spray can be projected, the efficiency with which fog laden air is processed through the curtain of spray, and the rate at which new fog may be formed due to temperature differences between the air and spray water. Results of a field test program, implemented to develop the data base necessary to assess the proposed method, are presented. Analytical calculations based upon the field test results indicate that this proposed method of warm fog dispersal is feasible. Even more convincingly, the technique was successfully demonstrated in the one natural fog event which occurred during the test program. Energy requirements for this technique are an order of magnitude less than those to operate a thermokinetic system. An important side benefit is the considerable emergency fire extinguishing capability it provides along the runway.
Ramieri, G A; Spada, M C; Austa, M; Bianchi, S D; Berrone, S
2005-06-01
In 29 adult patients presenting with maxillary deficiency, a bone-anchored palatal distractor (Surgi-Tec NV, Brugge, Belgium) was applied after osteotomy of the anterolateral walls of the maxillary sinuses, midpalatal suture, and, eventually, separation of the pterygomaxillary sutures. Expansion proceeded at a rate of 0.33-0.66 mm per day and the device was retained for 4-6 months for consolidation. Active orthodontic therapy was started after 8-10 weeks. The increment of arch width and the perimeter were evaluated using dental casts. Tooth thermal sensitivity and the periodontal side effects of treatment were monitored clinically after distraction, at device removal, and after 1 year. Bone healing was also investigated during the procedure using conventional radiological techniques. This experience confirms that transverse maxillary distraction is an effective technique in adult patients, leading to the formation of new bone. There were no noticeable intraoperative complications, but postsurgical periodontal side effects were documented. The procedure offers advantages over traditional teeth-borne appliances in terms of rapidity of treatment and the absence of mechanical forces acting on the teeth. Further evaluation is required to assess the long-term stability and periodontal consequences of this technique.
How Effective are Existing Arsenic Removal Techniques
This presentation will summarize the system performance results of the technologies demonstrated in the arsenic demonstration program. The technologies include adsorptive media, iron removal, iron removal with iron additions, iron removal followed by adsorptive media, coagulatio...
Reschechtko, Sasha; Hasanbarani, Fariba; Akulin, Vladimir M; Latash, Mark L
2017-05-14
The study explored unintentional force changes elicited by removing visual feedback during cyclical, two-finger isometric force production tasks. Subjects performed two types of tasks at 1Hz, paced by an auditory metronome. One - Force task - required cyclical changes in total force while maintaining the sharing, defined as relative contribution of a finger to total force. The other task - Share task - required cyclical changes in sharing while keeping total force unchanged. Each trial started under full visual feedback on both force and sharing; subsequently, feedback on the variable that was instructed to stay constant was frozen, and finally feedback on the other variable was also removed. In both tasks, turning off visual feedback on total force elicited a drop in the mid-point of the force cycle and an increase in the peak-to-peak force amplitude. Turning off visual feedback on sharing led to a drift of mean share toward 50:50 across both tasks. Without visual feedback there was consistent deviation of the two force time series from the in-phase pattern (typical of the Force task) and from the out-of-phase pattern (typical of the Share task). This finding is in contrast to most earlier studies that demonstrated only two stable patterns, in-phase and out-of-phase. We interpret the results as consequences of drifts of parameters in a dynamical system leading in particular to drifts in the referent finger coordinates toward their actual coordinates. The relative phase desynchronization is caused by the right-left differences in the hypothesized drift processes, consistent with the dynamic dominance hypothesis. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.
Reschechtko, Sasha; Hasanbarani, Fariba; Akulin, Vladimir M.; Latash, Mark L.
2017-01-01
The study explored unintentional force changes elicited by removing visual feedback during cyclical, two-finger isometric force production tasks. Subjects performed two types of tasks at 1 Hz, paced by an auditory metronome. One – Force task – required cyclical changes in total force while maintaining the sharing, defined as relative contribution of a finger to total force. The other task – Share task – required cyclical changes in sharing while keeping total force unchanged. Each trial started under full visual feedback on both force and sharing; subsequently, feedback on the variable that was instructed to stay constant was frozen, and finally feedback on the other variable was also removed. In both tasks, turning off visual feedback on total force elicited a drop in the mid-point of the force cycle and an increase in the peak-to-peak force amplitude. Turning off visual feedback on sharing led to a drift of mean share toward 50:50 across both tasks. Without visual feedback there was consistent deviation of the two force time series from the in-phase pattern (typical of the Force task) and from the out-of-phase pattern (typical of the Share task). This finding is in contrast to most earlier studies that demonstrated only two stable patterns, in-phase and out-of-phase. We interpret the results as consequences of drifts of parameters in a dynamical system leading in particular to drifts in the referent finger coordinates toward their actual coordinates. The relative phase desynchronization is caused by the right-left differences in the hypothesized drift processes, consistent with the dynamic dominance hypothesis. PMID:28344070
Impact of low-temperature plasmas on Deinococcus radiodurans and biomolecules
NASA Technical Reports Server (NTRS)
Mogul, Rakesh; Bol'shakov, Alexander A.; Chan, Suzanne L.; Stevens, Ramsey M.; Khare, Bishun N.; Meyyappan, M.; Trent, Jonathan D.
2003-01-01
The effects of cold plasma on Deinococcus radiodurans, plasmid DNA, and model proteins were assessed using microbiological, spectrometric, and biochemical techniques. In low power O(2) plasma (approximately 25 W, approximately 45 mTorr, 90 min), D. radiodurans, a radiation-resistant bacterium, showed a 99.999% reduction in bioburden. In higher power O(2) plasma (100 W and 500 mTorr), the reduction rate increased about 10-fold and observation by atomic force microscopy showed significant damage to the cell. Damage to cellular lipids, proteins, and chromosome was indicated by losses of infrared spectroscopic peaks at 2930, 1651, 1538, and 1245 cm(-1), respectively. In vitro experiments show that O(2) plasmas induce DNA strand scissions and cross-linking as well as reduction of enzyme activity. The observed degradation and removal of biomolecules was power-dependent. Exposures to 200 W at 500 mTorr removed biomolecules to below detection limits in 60 s. Emission spectroscopy indicated that D. radiodurans cells were volatilized into CO(2), CO, N(2), and H(2)O, confirming that these plasmas were removing complex biological matter from surfaces. A CO(2) plasma was not as effective as the O(2) plasma, indicating the importance of plasma composition and the dominant role of chemical degradation. Together, these findings have implications for NASA planetary protection schemes and for the contamination of Mars.
NASA Astrophysics Data System (ADS)
Ihsani, V.; Nursasongko, B.; Djauharie, N.
2017-08-01
The concept of conserving healthy tooth structures during cavity preparation has gained popularity with chemo-mechanical caries removal. This study compared three methods of caries removal using: a chemo-mechanical caries removal papain gel; Papacarie® (these contain natural ingredients, mainly papain enzyme); and mechanical preparation with a bur rotary instrument. The purpose of this study was to compare affected dentin micro-hardness after removal of infected dentin with mechanical and chemo-mechanical techniques. Twenty-seven permanent molar teeth were randomly divided into three groups receiving removal of infected dentin. These were: Group 1: chemo-mechanical technique using papain gel; Group 2: chemo-mechanical technique using Papacarie® Group 3: mechanical technique using a bur rotary instrument. Each group was tested using Knoop Micro-hardness tester, and the data were submitted to one way ANOVA and Post-hoc Tukey test. There is a significant difference between Groups 1 and 3, and Groups 2 and 3, p = 0.000. However, there is no significant difference between Groups 1 and 2, p = 1.000. Affected dentin micro-hardness after removal of infected dentin with a bur rotary tool is higher than after use of the papain gel or Papacarie®. Affected dentin micro-hardness after removal of infected dentin with Papacarie® and papain gel give almost the same result.
Koh, Kyung; Kwon, Hyun Joon; Yoon, Bum Chul; Cho, Yongseok; Shin, Joon-Ho; Hahn, Jin-Oh; Miller, Ross H; Kim, Yoon Hyuk; Shim, Jae Kun
2015-09-01
The hand, one of the most versatile but mechanically redundant parts of the human body, must overcome imperfect motor commands and inherent noise in both the sensory and motor systems in order to produce desired motor actions. For example, it is nearly impossible to produce a perfectly consistent note during a single violin stroke or to produce the exact same note over multiple strokes, which we denote online and offline control, respectively. To overcome these challenges, the central nervous system synergistically integrates multiple sensory modalities and coordinates multiple motor effectors. Among these sensory modalities, tactile sensation plays an important role in manual motor tasks by providing hand-object contact information. The purpose of this study was to investigate the role of tactile feedback in individual finger actions and multi-finger interactions during constant force production tasks. We developed analytical techniques for the linear decomposition of the overall variance in the motor system in both online and offline control. We removed tactile feedback from the fingers and demonstrated that tactile sensors played a critical role in the online control of synergistic interactions between fingers. In contrast, the same sensors did not contribute to offline control. We also demonstrated that when tactile feedback was removed from the fingers, the combined motor output of individual fingers did not change while individual finger behaviors did. This finding supports the idea of hierarchical control where individual fingers at the lower level work together to stabilize the performance of combined motor output at the higher level.
Melvin, Alan J; Litsky, Alan S; Mayerson, Joel L; Stringer, Keith; Juncosa-Melvin, Natalia
2012-07-01
Whenever a tendon or its bone insertion is disrupted or removed, existing surgical techniques provide a temporary connection or scaffolding to promote healing, but the interface of living to non-living materials soon breaks down under the stress of these applications, if it must bear the load more than acutely. Patients are thus disabled whose prostheses, defect size, or mere anatomy limit the availability or outcomes of such treatments. Our group developed the OrthoCoupler™ device to join skeletal muscle to prosthetic or natural structures without this interface breakdown. In this study, the goat knee extensor mechanism (quadriceps tendon, patella, and patellar tendon) was removed from the right hind limb in 16 goats. The device connected the quadriceps muscle to a stainless steel bone plate on the tibia. Mechanical testing and histology specimens were collected from each operated leg and contralateral unoperated control legs at 180 days. Maximum forces in the operated leg (vs. unoperated) were 1,400 ± 93 N (vs. 1,179 ± 61 N), linear stiffnesses were 33 ± 3 N/mm (vs. 37 ± 4 N/mm), and elongations at failure were 92.1 ± 5.3 mm (vs. 68.4 ± 3.8 mm; mean ± SEM). Higher maximum forces (p = 0.02) and elongations at failure (p=0.008) of legs with the device versus unoperated controls were significant; linear stiffnesses were not (p=0.3). We believe this technology will yield improved procedures for clinical challenges in orthopedic oncology, revision arthroplasty, tendon transfer, and tendon injury reconstruction. Copyright © 2011 Orthopaedic Research Society.
Kawchuk, Gregory N; Carrasco, Alejandro; Beecher, Grayson; Goertzen, Darrell; Prasad, Narasimha
2010-10-15
Serial dissection of porcine motion segments during robotic control of vertebral kinematics. To identify which spinal tissues are loaded in response to manual therapy (manipulation and mobilization) and to what magnitude. Various theoretical constructs attempt to explain how manual therapies load specific spinal tissues. By using a parallel robot to control vertebral kinematics during serial dissection, it is possible to quantify the loads experienced by discrete spinal tissues undergoing common therapeutic procedures such as manual therapy. In 9 porcine cadavers, manual therapy was provided to L3 and the kinematic response of L3-L4 recorded. The exact kinematic trajectory experienced by L3-L4 in response to manual therapy was then replayed to the isolated segment by a parallel robot equipped with a 6-axis load cell. Discrete spinal tissues were then removed and the kinematic pathway replayed. The change in forces and moments following tissue removal were considered to be those applied to that specific tissue by manual therapy. In this study, both manual therapies affected spinal tissues. The intervertebral disc experienced the greatest forces and moments arising from both manipulation and mobilization. This study is the first to identify which tissues are loaded in response to manual therapy. The observation that manual therapy loads some tissues to a much greater magnitude than others offers a possible explanation for its modest treatment effect; only conditions involving these tissues may be influenced by manual therapy. Future studies are planned to determine if manual therapy can be altered to target (or avoid) specific spinal tissues.
Xu Zhou, Ke; Li, Nan; Christie, Graham
2017-01-01
Abstract The adhesion of spores of 3 Bacillus species with distinctive morphologies to stainless steel and borosilicate glass was studied using the fluid dynamic gauging technique. Marked differences were observed between different species of spores, and also between spores of the same species prepared under different sporulation conditions. Spores of the food‐borne pathogen B. cereus were demonstrated to be capable of withstanding shear stresses greater than 1500 Pa when adhered to stainless steel, in contrast to spores of Bacillus subtilis and Bacillus megaterium, which detached in response to lower shear stress. An extended DLVO model was shown to be capable of predicting the relative differences in spore adhesion between spores of different species and different culture conditions, but did not predict absolute values of force of adhesion well. Applying the model to germinating spores showed a significant reduction in adhesion force shortly after triggering germination, indicating a potential strategy to achieve enhanced removal of spores from surfaces in response to shear stress, such as during cleaning‐in‐place procedures. Practical Application Spore‐forming bacteria are a concern to the food industry because they have the potential to cause food‐borne illness and product spoilage, while being strongly adhesive to processing surfaces and resistant to cleaning‐in‐place procedures. This work is of significance to the food processors and manufacturers because it offers insight to the properties of spore adhesion and identifies a potential strategy to facilitate the removal of spores during cleaning procedures. PMID:29125641
Mechanical manipulation of magnetic nanoparticles by magnetic force microscopy
NASA Astrophysics Data System (ADS)
Liu, Jinyun; Zhang, Wenxiao; Li, Yiquan; Zhu, Hanxing; Qiu, Renxi; Song, Zhengxun; Wang, Zuobin; Li, Dayou
2017-12-01
A method has been developed in this work for the mechanical manipulation of magnetic nanoparticles (MNPs). A helical curve was designed as the capture path to pick up and remove the target nanoparticle on a mica surface by a magnetic probe based on the magnetic force microscope (MFM). There were magnetic, tangential and pushing forces acting on the target particle during the approaching process when the tip followed the helical curve as the capture path. The magnetic force was significant when the tip was closer to the particle. The target particle can be attached on the surface of the magnetic probe tip and then be picked up after the tip retracted from the mica surface. Theoretical analysis and experimental results were presented for the pick-up and removal of MNPs. With this method, the precision and flexibility of manipulation of MNPs were improved significantly compared to the pushing or sliding of the target object away from the corresponding original location following a planned path.
Laser balancing system for high material removal rates
NASA Technical Reports Server (NTRS)
Jones, M. G.; Georgalas, G.; Ortiz, A. L.
1984-01-01
A laser technique to remove material in excess of 10 mg/sec from a spinning rotor is described. This material removal rate is 20 times greater than previously reported for a surface speed of 30 m/sec. Material removal enhancement was achieved by steering a focused laser beam with moving optics to increase the time of laser energy interaction with a particular location on the circumferential surface of a spinning rotor. A neodymium:yttrium aluminum garnet (Nd:YAG) pulse laser was used in this work to evaluate material removal for carbon steel, 347 stainless steel, Inconal 718, and titanium 6-4. This technique is applicable to dynamic laser balancing.
Tüfekçi, E; Svensk, D; Kallunki, J; Huggare, J; Lindauer, S J; Laskin, D M
2009-11-01
To compare the opinions of Swedish orthodontists and American orthodontists regarding the association between third molar eruption and dental crowding. A survey was distributed to Swedish orthodontists (n = 230) asking their views on the force exerted by erupting third molars, its relationship to crowding, and their recommendations for prophylactic removal. Results were compared with those from a similar study conducted in the United States. Chi square analysis was used to determine differences in responses to questions between Swedish and American orthodontists. P < or = .05 was considered significant. Both Swedish and American orthodontists believed that lower third molars were more likely than upper third molars to cause force (65% and 58% for Swedish and American orthodontists, respectively) and crowding (42% and 40%, respectively). No statistically significant differences were seen between the answers of American and Swedish orthodontists regarding the role of upper and lower third molars in causing crowding. Although only 18% of Swedish orthodontists "generally" or "sometimes" recommended prophylactic removal of mandibular third molars, 36% of American orthodontists "generally" or "sometimes" recommended removal (P < .0001). Most orthodontists in the United States and Sweden do believe that erupting lower third molars exert an anterior force; however, they also believe that these teeth "rarely" or "never" cause crowding of the dentition. The reason that more American orthodontists recommend prophylactic removal of mandibular third molars remains unexplained.
Atmospheric Removal of Very Long-lived Greenhouse Gases in the Mesosphere
NASA Astrophysics Data System (ADS)
Totterdill, A.; Kovacs, T.; Gomez Martin, J.; FENG, W.; Chipperfield, M.; Plane, J. M.
2013-12-01
Chlorofluorocarbons are known to have serious ozone depleting and global warming potentials. Perfluorinated compounds such as SF6, NF3, SF5CF3 and CF3CF2Cl which have very long lifetimes (ranging from a few centuries to over 3000 years) are too stable to affect stratospheric ozone but do have among the highest per molecule radiative forcing of any greenhouse pollutant, making them extremely potent greenhouse gases. Due to the stability of these gases in the lower atmosphere, mesospheric loss processes could significantly reduce their estimated atmospheric lifetimes and hence, overall climate impact. Potential sinks include reactions with metals and energetic particles such as electrons or short wavelength photons already present in the upper atmosphere. The metals, in this instance iron, sodium or potassium, are produced by meteoric ablation, while background and energetic electrons have the continuous source of photoionization and auroral precipitation, respectively. In this study we investigate the removal potentials of four very long lived gases (SF6, NF3, SF5CF3 and CF3CF2Cl). First, by four metals (Fe, Mg, Na and K), where rate coefficients are measured using the Fast Flow Tube and Pulsed Laser Flash Photolysis / Laser Induced Fluorescence techniques. Second, removal by electron attachment was investigated using a quadrupole mass spectrometer. measurements. Third, Lyman-alpha (121.56 nm) photolysis was measured in a VUV absorption cell. The resulting removal rate coefficients are currently being input into the Whole Atmosphere Community Climate Model (WACCM) to obtain lifetime measurements for these species.
van der Zijden, A M; Groen, B E; Tanck, E; Nienhuis, B; Verdonschot, N; Weerdesteyn, V
2012-06-01
Sideways falls onto the hip are a major cause of femoral fractures in the elderly. Martial arts (MA) fall techniques decrease hip impact forces in sideways falls. The femoral fracture risk, however, also depends on the femoral loading configuration (direction and point of application of the force). The purpose of this study was to determine the effect of fall techniques, landing surface and fall height on the impact force and the loading configuration in sideways falls. Twelve experienced judokas performed sideways MA and Block ('natural') falls on a force plate, both with and without a judo mat on top. Kinematic and force data were analysed to determine the hip impact force and the loading configuration. In falls from a kneeling position, the MA technique reduced the impact force by 27%, but did not change the loading configuration. The use of the mat did not change the loading configuration. Falling from a standing changed the force direction. In all conditions, the point of application was distal and posterior to the greater trochanter, but it was less distal and more posterior in falls from standing than from kneeling position. The present decrease in hip impact force with an unchanged loading configuration indicates the potential protective effect of the MA technique on the femoral fracture risk. The change in loading configuration with an increased fall height warrant further studies to examine the effect of MA techniques on fall severity under more natural fall circumstances. Copyright © 2012 Elsevier Ltd. All rights reserved.
Nb3Sn Superconductor Loss Study
1988-01-08
ABERO PROPULSION LABORATORY AIR FORCE WRIGHT AERONAUTICAL LABORATORIES AIR FORCE SYSTEMS COMMAND WRIGHT-PATTERSON AIR FORCE BASE, OHIO 45433-6563 93...Advanced Power Systems Branch Aerospace Power Division Aero Propulsion & Power Laboratory FOR THE COMMANDER MiCHAEL D. BRAYDICH, Maj, USAF Deputy Director...Aerospace Power Division Aero Propulsion & Power Laboratory IF YOUR ADDRESS HAS CHANGED, IF YOU WISH TO BE REMOVED FROM OUR MAIUNG LIST, OR IF THE
DOT National Transportation Integrated Search
2013-04-01
The Virginia Department of Transportation (VDOT) removes an estimated 55,000 deer carcasses from its roadways : each year at a cost of more than $4 million per year. Many VDOT maintenance facilities have a need for viable, environmentally : compliant...
SERDP AND NRMRL SPONSOR FIELD TEST OF COSOLVENT-ENHANCED DNAPL REMOVAL
A field test of multicomponent cosolvent flooding for in-situ remediation of DNAPL source zones was conducted at the Dover National Test Site (DNTS) at Dover Air Force Base, Delaware, in July, 2001. The test was part of an Enhanced Source Removal (ESR) demonstration project fund...
40 CFR 63.11607 - What definitions apply to this subpart?
Code of Federal Regulations, 2013 CFR
2013-07-01
... an air pollution control device that uses filtration, impaction, or electrical forces to remove... weight for non-carcinogens, as shown in formulation data provided by the manufacturer or supplier, such... to contact and remove particulate matter in the exhaust stream. [74 FR 63525, Dec. 3, 2009, as...
40 CFR 63.11607 - What definitions apply to this subpart?
Code of Federal Regulations, 2014 CFR
2014-07-01
... an air pollution control device that uses filtration, impaction, or electrical forces to remove... weight for non-carcinogens, as shown in formulation data provided by the manufacturer or supplier, such... to contact and remove particulate matter in the exhaust stream. [74 FR 63525, Dec. 3, 2009, as...
40 CFR 63.11607 - What definitions apply to this subpart?
Code of Federal Regulations, 2012 CFR
2012-07-01
... an air pollution control device that uses filtration, impaction, or electrical forces to remove... weight for non-carcinogens, as shown in formulation data provided by the manufacturer or supplier, such... to contact and remove particulate matter in the exhaust stream. [74 FR 63525, Dec. 3, 2009, as...
40 CFR 63.11607 - What definitions apply to this subpart?
Code of Federal Regulations, 2011 CFR
2011-07-01
... an air pollution control device that uses filtration, impaction, or electrical forces to remove... weight for non-carcinogens, as shown in formulation data provided by the manufacturer or supplier, such... to contact and remove particulate matter in the exhaust stream. [74 FR 63525, Dec. 3, 2009, as...
Developing clean fuels: Novel techniques for desulfurization
NASA Astrophysics Data System (ADS)
Nehlsen, James P.
The removal of sulfur compounds from petroleum is crucial to producing clean burning fuels. Sulfur compounds poison emission control catalysts and are the source of acid rain. New federal regulations require the removal of sulfur in both gasoline and diesel to very low levels, forcing existing technologies to be pushed into inefficient operating regimes. New technology is required to efficiently produce low sulfur fuels. Two processes for the removal of sulfur compounds from petroleum have been developed: the removal of alkanethiols by heterogeneous reaction with metal oxides; and oxidative desulfurization of sulfides and thiophene by reaction with sulfuric acid. Alkanethiols, common in hydrotreated gasoline, can be selectively removed and recovered from a hydrocarbon stream by heterogeneous reaction with oxides of Pb, Hg(II), and Ba. The choice of reactive metal oxides may be predicted from simple thermodynamic considerations. The reaction is found to be autocatalytic, first order in water, and zero order in thiol in the presence of excess oxide. The thiols are recovered by reactive extraction with dilute oxidizing acid. The potential for using polymer membrane hydrogenation reactors (PEMHRs) to perform hydrogenation reactions such as hydrodesulfurization is explored by hydrogenating ketones and olefins over Pt and Au group metals. The dependence of reaction rate on current density suggests that the first hydrogen addition to the olefin is the rate limiting step, rather than the adsorption of hydrogen, for all of the metals tested. PEMHRs proved unsuccessful in hydrogenating sulfur compounds to perform HDS. For the removal of sulfides, a two-phase reactor is used in which concentrated sulfuric acid oxidizes aromatic and aliphatic sulfides present in a hydrocarbon solvent, generating sulfoxides and other sulfonated species. The polar oxidized species are extracted into the acid phase, effectively desulfurizing the hydrocarbon. A reaction scheme is proposed for this system and is justified with a thermodynamic analysis and an experimental determination of the reaction rate law.
Pampalona, Jennifer Rovira; Bastos, Maria Degollada; Moreno, Gemma Mancebo; Pust, Andrea Buron; Montesdeoca, Gemma Escribano; Guerra Garcia, Angel; Pruñonosa, Juan Carles Mateu; Collado, Ramon Carreras; Torras, Pere Bresco
2015-01-01
To assess and compare efficacy, pain, and the learning curve associated with diagnostic therapeutic hysteroscopy using mechanical tissue removal versus bipolar electrical resection in the management of endometrial polyps in an ambulatory care setting. A randomized controlled clinical trial (Canadian Task Force classification I). Hospital de Igulada, Barcelona, Spain. A total of 133 patients diagnosed with endometrial polyp(s) were included and randomly assigned to 1 of the 2 hysteroscopic methods. Criteria assessed were total hysteroscopy time, full polypectomy procedure time, pain experienced by patients, and learning curve of staff in training. The average time to perform total hysteroscopy using the mechanical tissue removal system (TRUCLEAR 5.0 System; Smith & Nephew Inc., Andover, MD) was 6 minutes 49 seconds versus 11 minutes 37 seconds required for the bipolar electrosurgery system (GYNECARE VERSAPOINT; Ethicon Inc, Somerville, NJ) (p < .01). Results for complete polypectomy time favored the TRUCLEAR System at 3 minutes 7 seconds over the VERSAPOINT System at 8 minutes 25 seconds (p < .01). If a successful procedure is predicated on access to cavity, visualization, and complete resection and excision of endometrial polyp, the mechanical TRUCLEAR Tissue Removal System shows a higher success rate than the VERSAPOINT Bipolar Electrosurgery System at 92% and 77%, respectively. Analysis of pain using the visual analog scale revealed no significant differences between the 2 techniques (p > .05). A study of the residents' learning curve showed a higher level of autonomy with hysteroscopy using the TRUCLEAR Tissue Removal System with which residents showed a higher level of confidence compared with hysteroscopy with the VERSAPOINT Bipolar Electrosurgery System. In hysteroscopic polypectomy, the mechanical tissue removal system was significantly faster, achieved a greater success rate for complete polypectomy, and required a shorter learning curve from staff being trained in the management of endometrial polyps when compared with bipolar electrical resection. Copyright © 2015 AAGL. Published by Elsevier Inc. All rights reserved.
Charbonneau, Daniel; Sasaki, Takao; Dornhaus, Anna
2017-01-01
Social insect colonies are highly successful, self-organized complex systems. Surprisingly however, most social insect colonies contain large numbers of highly inactive workers. Although this may seem inefficient, it may be that inactive workers actually contribute to colony function. Indeed, the most commonly proposed explanation for inactive workers is that they form a 'reserve' labor force that becomes active when needed, thus helping mitigate the effects of colony workload fluctuations or worker loss. Thus, it may be that inactive workers facilitate colony flexibility and resilience. However, this idea has not been empirically confirmed. Here we test whether colonies of Temnothorax rugatulus ants replace highly active (spending large proportions of time on specific tasks) or highly inactive (spending large proportions of time completely immobile) workers when they are experimentally removed. We show that colonies maintained pre-removal activity levels even after active workers were removed, and that previously inactive workers became active subsequent to the removal of active workers. Conversely, when inactive workers were removed, inactivity levels decreased and remained lower post-removal. Thus, colonies seem to have mechanisms for maintaining a certain number of active workers, but not a set number of inactive workers. The rapid replacement (within 1 week) of active workers suggests that the tasks they perform, mainly foraging and brood care, are necessary for colony function on short timescales. Conversely, the lack of replacement of inactive workers even 2 weeks after their removal suggests that any potential functions they have, including being a 'reserve', are less important, or auxiliary, and do not need immediate recovery. Thus, inactive workers act as a reserve labor force and may still play a role as food stores for the colony, but a role in facilitating colony-wide communication is unlikely. Our results are consistent with the often cited, but never yet empirically supported hypothesis that inactive workers act as a pool of 'reserve' labor that may allow colonies to quickly take advantage of novel resources and to mitigate worker loss.
Sasaki, Takao; Dornhaus, Anna
2017-01-01
Social insect colonies are highly successful, self-organized complex systems. Surprisingly however, most social insect colonies contain large numbers of highly inactive workers. Although this may seem inefficient, it may be that inactive workers actually contribute to colony function. Indeed, the most commonly proposed explanation for inactive workers is that they form a ‘reserve’ labor force that becomes active when needed, thus helping mitigate the effects of colony workload fluctuations or worker loss. Thus, it may be that inactive workers facilitate colony flexibility and resilience. However, this idea has not been empirically confirmed. Here we test whether colonies of Temnothorax rugatulus ants replace highly active (spending large proportions of time on specific tasks) or highly inactive (spending large proportions of time completely immobile) workers when they are experimentally removed. We show that colonies maintained pre-removal activity levels even after active workers were removed, and that previously inactive workers became active subsequent to the removal of active workers. Conversely, when inactive workers were removed, inactivity levels decreased and remained lower post-removal. Thus, colonies seem to have mechanisms for maintaining a certain number of active workers, but not a set number of inactive workers. The rapid replacement (within 1 week) of active workers suggests that the tasks they perform, mainly foraging and brood care, are necessary for colony function on short timescales. Conversely, the lack of replacement of inactive workers even 2 weeks after their removal suggests that any potential functions they have, including being a ‘reserve’, are less important, or auxiliary, and do not need immediate recovery. Thus, inactive workers act as a reserve labor force and may still play a role as food stores for the colony, but a role in facilitating colony-wide communication is unlikely. Our results are consistent with the often cited, but never yet empirically supported hypothesis that inactive workers act as a pool of ‘reserve’ labor that may allow colonies to quickly take advantage of novel resources and to mitigate worker loss. PMID:28877229
Head-on collision of drops: A numerical investigation
NASA Technical Reports Server (NTRS)
Nobari, M. R.; Jan, Y.-J.; Tryggvason, G.
1993-01-01
The head-on collision of equal sized drops is studied by full numerical simulations. The Navier-Stokes equations are solved for fluid motion both inside and outside the drops using a front tracking/finite difference technique. The drops are accelerated toward each other by a body force that is turned off before the drops collide. When the drops collide, the fluid between them is pushed outward leaving a thin later bounded by the drop surface. This layer gets progressively thinner as the drops continue to deform and in several of the calculations this double layer is artificially removed once it is thin enough, thus modeling rupture. If no rupture takes place, the drops always rebound, but if the film is ruptured the drops may coalesce permanently or coalesce temporarily and then split again.
Adsorption of Methyl Red by water-hyacinth (Eichornia crassipes) biomass.
Tarawou, Temi; Horsfall, Michael; Vicente, José L
2007-09-01
The surface characteristics and adsorbent properties of biomass, obtained from low-cost and environmentally problematic water hyacinth, were determined. Optimum conditions for the elimination of the industrial dye Methyl Red (1) from aqueous solution were established by means of a batch adsorption technique. The ultimate adsorption capacity of water-hyacinth biomass in terms of the elimination of 1 was calculated from a Langmuir-type isotherm as 8.85x10(-2) mol g(-1) at 30 degrees and at an optimum solution pH of 8.0. Dye elimination was found to be associated with strong electrostatic forces (physisorption), the overall process being slightly endergonic (deltaG>0). Our study shows that water hyacinth has a great potential of removing color from wastewater and other dye-polluted aquatic systems.
Predicting, examining, and evaluating FAC in US power plants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cohn, M.J.; Garud, Y.S.; Raad, J. de
1999-11-01
There have been many pipe failures in fossil and nuclear power plant piping systems caused by flow-accelerated corrosion (FAC). In some piping systems, this failure mechanism maybe the most important type of damage to mitigate because FAC damage has led to catastrophic failures and fatalities. Detecting the damage and mitigating the problem can significantly reduce future forced outages and increase personnel safety. This article discusses the implementation of recent developments to select FAC inspection locations, perform cost-effective examinations, evaluate results, and mitigate FAC failures. These advances include implementing the combination of software to assist in selecting examination locations and anmore » improved pulsed eddy current technique to scan for wall thinning without removing insulation. The use of statistical evaluation methodology and possible mitigation strategies also are discussed.« less
NASA Astrophysics Data System (ADS)
Faria, Jorge C. D.; Garnier, Philippe; Devos, Arnaud
2017-12-01
We demonstrate the ability to construct wide-area spatial mappings of buried interfaces in thin film stacks in a non-destructive manner using two color picosecond acoustics. Along with the extraction of layer thicknesses and sound velocities from acoustic signals, the morphological information presented is a powerful demonstration of phonon imaging as a metrological tool. For a series of heterogeneous (polymer, metal, and semiconductor) thin film stacks that have been treated with a chemical procedure known to alter layer properties, the spatial mappings reveal changes to interior thicknesses and chemically modified surface features without the need to remove uppermost layers. These results compare well to atomic force microscopy scans showing that the technique provides a significant advantage to current characterization methods for industrially important device stacks.
In vitro rapid intraoral adjustment of porcelain prostheses using a high-speed dental handpiece.
Song, Xiao-Fei; Yin, Ling; Han, Yi-Gang; Wang, Hui
2008-03-01
In vitro rapid intraoral adjustment of porcelain prostheses was conducted using a high-speed dental handpiece and diamond bur. The adjustment process was characterized by measurement of removal forces and energy, with scanning electron microscopic (SEM) observation of porcelain debris, surfaces and subsurface damage produced as a function of operational feed rate. Finite element analysis (FEA) was applied to evaluate subsurface stress distributions and degrees of subsurface damage. The results show that an increase in feed rate resulted in increases in both tangential and normal forces (analysis of variance (ANOVA), P<0.01). When the feed rate approached the highest rate of 60mm min(-1) at a fixed depth of cut of 100microm, the tangential force was nearly seven times that at the lowest feed rate of 15mm min(-1). Consequently, the specific removal energy increased significantly (ANOVA, P<0.01), and the maximum depth of subsurface damage obtained was approximately 110 and 120microm at the highest feed rate of 60mm min(-1) using SEM and FEA, respectively. The topographies of both the adjusted porcelain surfaces and the debris demonstrate microscopically that porcelain was removed via brittle fracture and plastic deformation. Clinicians must be cautious when pursuing rapid dental adjustments, because high operational energy, larger forces and severe surface and subsurface damage can be induced.
The influence of cricket fast bowlers' front leg technique on peak ground reaction forces.
Worthington, Peter; King, Mark; Ranson, Craig
2013-01-01
High ground reaction forces during the front foot contact phase of the bowling action are believed to be a major contributor to the high prevalence of lumbar stress fractures in fast bowlers. This study aimed to investigate the influence of front leg technique on peak ground reaction forces during the delivery stride. Three-dimensional kinematic data and ground reaction forces during the front foot contact phase were captured for 20 elite male fast bowlers. Eight kinematic parameters were determined for each performance, describing run-up speed and front leg technique, in addition to peak force and time to peak force in the vertical and horizontal directions. There were substantial variations between bowlers in both peak forces (vertical 6.7 ± 1.4 body weights; horizontal (braking) 4.5 ± 0.8 body weights) and times to peak force (vertical 0.03 ± 0.01 s; horizontal 0.03 ± 0.01 s). These differences were found to be linked to the orientation of the front leg at the instant of front foot contact. In particular, a larger plant angle and a heel strike technique were associated with lower peak forces and longer times to peak force during the front foot contact phase, which may help reduce the likelihood of lower back injuries.
Improved grid-noise removal in single-frame digital moiré 3D shape measurement
NASA Astrophysics Data System (ADS)
Mohammadi, Fatemeh; Kofman, Jonathan
2016-11-01
A single-frame grid-noise removal technique was developed for application in single-frame digital-moiré 3D shape measurement. The ability of the stationary wavelet transform (SWT) to prevent oscillation artifacts near discontinuities, and the ability of the Fourier transform (FFT) applied to wavelet coefficients to separate grid-noise from useful image information, were combined in a new technique, SWT-FFT, to remove grid-noise from moiré-pattern images generated by digital moiré. In comparison to previous grid-noise removal techniques in moiré, SWT-FFT avoids the requirement for mechanical translation of optical components and capture of multiple frames, to enable single-frame moiré-based measurement. Experiments using FFT, Discrete Wavelet Transform (DWT), DWT-FFT, and SWT-FFT were performed on moiré-pattern images containing grid noise, generated by digital moiré, for several test objects. SWT-FFT had the best performance in removing high-frequency grid-noise, both straight and curved lines, minimizing artifacts, and preserving the moiré pattern without blurring and degradation. SWT-FFT also had the lowest noise amplitude in the reconstructed height and lowest roughness index for all test objects, indicating best grid-noise removal in comparison to the other techniques.
Deairing Techniques for Double-Ended Centrifugal Total Artificial Heart Implantation.
Karimov, Jamshid H; Horvath, David J; Byram, Nicole; Sunagawa, Gengo; Grady, Patrick; Sinkewich, Martin; Moazami, Nader; Sale, Shiva; Golding, Leonard A R; Fukamachi, Kiyotaka
2017-06-01
The unique device architecture of the Cleveland Clinic continuous-flow total artificial heart (CFTAH) requires dedicated and specific air-removal techniques during device implantation in vivo. These procedures comprise special surgical techniques and intraoperative manipulations, as well as engineering design changes and optimizations to the device itself. The current study evaluated the optimal air-removal techniques during the Cleveland Clinic double-ended centrifugal CFTAH in vivo implants (n = 17). Techniques and pump design iterations consisted of developing a priming method for the device and the use of built-in deairing ports in the early cases (n = 5). In the remaining cases (n = 12), deairing ports were not used. Dedicated air-removal ports were not considered an essential design requirement, and such ports may represent an additional risk for pump thrombosis. Careful passive deairing was found to be an effective measure with a centrifugal pump of this design. In this report, the techniques and design changes that were made during this CFTAH development program to enable effective residual air removal and prevention of air embolism during in vivo device implantation are explained. © 2016 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.
Determining the response of sea level to atmospheric pressure forcing using TOPEX/POSEIDON data
NASA Technical Reports Server (NTRS)
Fu, Lee-Lueng; Pihos, Greg
1994-01-01
The static response of sea level to the forcing of atmospheric pressure, the so-called inverted barometer (IB) effect, is investigated using TOPEX/POSEIDON data. This response, characterized by the rise and fall of sea level to compensate for the change of atmospheric pressure at a rate of -1 cm/mbar, is not associated with any ocean currents and hence is normally treated as an error to be removed from sea level observation. Linear regression and spectral transfer function analyses are applied to sea level and pressure to examine the validity of the IB effect. In regions outside the tropics, the regression coefficient is found to be consistently close to the theoretical value except for the regions of western boundary currents, where the mesoscale variability interferes with the IB effect. The spectral transfer function shows near IB response at periods of 30 degrees is -0.84 +/- 0.29 cm/mbar (1 standard deviation). The deviation from = 1 cm /mbar is shown to be caused primarily by the effect of wind forcing on sea level, based on multivariate linear regression model involving both pressure and wind forcing. The regression coefficient for pressure resulting from the multivariate analysis is -0.96 +/- 0.32 cm/mbar. In the tropics the multivariate analysis fails because sea level in the tropics is primarily responding to remote wind forcing. However, after removing from the data the wind-forced sea level estimated by a dynamic model of the tropical Pacific, the pressure regression coefficient improves from -1.22 +/- 0.69 cm/mbar to -0.99 +/- 0.46 cm/mbar, clearly revealing an IB response. The result of the study suggests that with a proper removal of the effect of wind forcing the IB effect is valid in most of the open ocean at periods longer than 20 days and spatial scales larger than 500 km.
ERIC Educational Resources Information Center
Kimzey, Reed T.; Prince, Samuel M. O.
The thesis discusses the advantages and disadvantages of one work force scheduling technique--flextime. The authors were interested in determining if a flextime schedule could be put into effect in a governmental organization such as Headquarters Air Force Logistics Command (AFLC). The study objectives were to determine the feasibility,…
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-17
... showerhead must be manufactured such that a pushing or pulling force of 8 lbf or more is required to remove... mechanically retained at the point of manufacture such that a pulling or pushing force of 8 lbf or more is...
The Role of Market Forces in Providing Student Loans.
ERIC Educational Resources Information Center
Burd, Stephen
2000-01-01
Discusses issues addressed by a Congessionally mandated panel to identify and evaluate options for infusing market forces into the student loan program. Notes possible advantages. Conflicting views of the panel's student representatives, college administrators, and lenders are reported concerning reductions of lenders' profits, removal of…
Environmentally safe aviation fuels
NASA Technical Reports Server (NTRS)
Liberio, Patricia D.
1995-01-01
In response to the Air Force directive to remove Ozone Depleting Chemicals (ODC's) from military specifications and Defense Logistics Agency's Hazardous Waste Minimization Program, we are faced with how to ensure a quality aviation fuel without using such chemicals. Many of these chemicals are found throughout the fuel and fuel related military specifications and are part of test methods that help qualify the properties and quality of the fuels before they are procured. Many years ago there was a directive for military specifications to use commercially standard test methods in order to provide standard testing in private industry and government. As a result the test methods used in military specifications are governed by the American Society of Testing and Materials (ASTM). The Air Force has been very proactive in the removal or replacement of the ODC's and hazardous materials in these test methods. For example, ASTM D3703 (Standard Test Method for Peroxide Number of Aviation Turbine Fuels), requires the use of Freon 113, a known ODC. A new rapid, portable hydroperoxide test for jet fuels similar to ASTM D3703 that does not require the use of ODC's has been developed. This test has proved, in limited testing, to be a viable substitute method for ASTM D3703. The Air Force is currently conducting a round robin to allow the method to be accepted by ASTM and therefore replace the current method. This paper will describe the Air Force's initiatives to remove ODC's and hazardous materials from the fuel and fuel related military specifications that the Air Force Wright Laboratory.
Hidden Surface Removal through Object Space Decomposition.
1982-01-01
12 2.1 Methods of Subdividing the Object Space ..................................................... 14 2.2 Accessing...AC.AIIA TO5ASK FORCE MNT OF TECH WRIONT-PATTERSON AFB 0O4 P/O 1a/I 64100(6 SURFACE REMOVAL THROWN4 OBJECT SPACE 0(COMPOSIT109d.(U UiCLASIFIEC AFZITNl...Surface Removal Through Object Space THESlS/ J AJ;I Decomposition 6. PERFORMING ORG. REPORT NUMBER 7. AUTHOR() a. CONTRACT OR GRANT NUMBER(s) Robert
NASA Technical Reports Server (NTRS)
Kim, Young-Joon; Pak, Kyung S.; Dunbar, R. Scott; Hsiao, S. Vincent; Callahan, Philip S.
2000-01-01
Planetary boundary layer (PBL) models are utilized to enhance directional ambiguity removal skill in scatterometer data processing. The ambiguity in wind direction retrieved from scatterometer measurements is removed with the aid of physical directional information obtained from PBL models. This technique is based on the observation that sea level pressure is scalar and its field is more coherent than the corresponding wind. An initial wind field obtained from the scatterometer measurements is used to derive a pressure field with a PBL model. After filtering small-scale noise in the derived pressure field, a wind field is generated with an inverted PBL model. This derived wind information is then used to remove wind vector ambiguities in the scatterometer data. It is found that the ambiguity removal skill can be improved when the new technique is used properly in conjunction with the median filter being used for scatterometer wind dealiasing at JPL. The new technique is applied to regions of cyclone systems which are important for accurate weather prediction but where the errors of ambiguity removal are often large.
Krishnaiah, Yellela S R; Katragadda, Usha; Khan, Mansoor A
2014-05-01
Cold flow is a phenomenon occurring in drug-in-adhesive type of transdermal drug delivery systems (DIA-TDDS) because of the migration of DIA coat beyond the edge. Excessive cold flow can affect their therapeutic effectiveness, make removal of DIA-TDDS difficult from the pouch, and potentially decrease available dose if any drug remains adhered to pouch. There are no compendial or noncompendial methods available for quantification of this critical quality attribute. The objective was to develop a method for quantification of cold flow using stereomicroscopic imaging technique. Cold flow was induced by applying 1 kg force on punched-out samples of marketed estradiol DIA-TDDS (model product) stored at 25°C, 32°C, and 40°C/60% relative humidity (RH) for 1, 2, or 3 days. At the end of testing period, dimensional change in the area of DIA-TDDS samples was measured using image analysis software, and expressed as percent of cold flow. The percent of cold flow significantly decreased (p < 0.001) with increase in size of punched-out DIA-TDDS samples and increased (p < 0.001) with increase in cold flow induction temperature and time. This first ever report suggests that dimensional change in the area of punched-out samples stored at 32°C/60%RH for 2 days applied with 1 kg force could be used for quantification of cold flow in DIA-TDDS. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.
Porter; Eastman; Pace; Bradley
2000-09-01
Polymer-based materials can be incorporated as the active sensing elements in chemiresistor devices. Most of these devices take advantage of the fact that certain polymers will swell when exposed to gaseous analytes. To measure this response, a conducting material such as carbon black is incorporated within the nonconducting polymer matrix. In response to analytes, polymer swelling results in a measurable change in the conductivity of the polymer/carbon composite material. Arrays of these sensors may be used in conjunction with pattern recognition techniques for purposes of analyte recognition and quantification. We have used the technique of scanning force microscopy (SFM) to investigate microstructural changes in carbon-polymer composites formed from the polymers poly (isobutylene) (PIB), poly (vinyl alcohol) (PVA), and poly (ethylene-vinyl acetate) (PEVA) when exposed to the analytes hexane, toluene, water, ethanol, and acetone. Using phase-contrast imaging (PI), changes in the carbon nanoparticle distribution on the surface of the polymer matrix are measured as the polymers are exposed to the analytes in vapor phase. In some but not all cases, the changes were reversible (at the scale of the SFM measurements) upon removal of the analyte vapor. In this paper, we also describe a new type of microsensor based on piezoresistive microcantilever technology. With these new devices, polymeric volume changes accompanying exposure to analyte vapor are measured directly by a piezoresistive microcantilever in direct contact with the polymer. These devices may offer a number of advantages over standard chemiresistor-based sensors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ness, K; Rose, K; Jung, B
2008-03-27
Automated front-end sample preparation technologies can significantly enhance the sensitivity and reliability of biodetection assays [1]. We are developing advanced sample preparation technologies for biowarfare detection and medical point-of-care diagnostics using microfluidic systems with continuous sample processing capabilities. Here we report an electrophoretically assisted acoustic focusing technique to rapidly extract and enrich viral and bacterial loads from 'complex samples', applied in this case to human nasopharyngeal samples as well as simplified surrogates. The acoustic forces capture and remove large particles (> 2 {micro}m) such as host cells, debris, dust, and pollen from the sample. We simultaneously apply an electric fieldmore » transverse to the flow direction to transport small ({le} 2 {micro}m), negatively-charged analytes into a separate purified recovery fluid using a modified H-filter configuration [Micronics US Patent 5,716,852]. Hunter and O'Brien combined transverse electrophoresis and acoustic focusing to measure the surface charge on large particles, [2] but to our knowledge, our work is the first demonstration combining these two techniques in a continuous flow device. Marina et al. demonstrated superimposed dielectrophoresis (DEP) and acoustic focusing for enhanced separations [3], but these devices have limited throughput due to the rapid decay of DEP forces. Both acoustic standing waves and electric fields exert significant forces over the entire fluid volume in microchannels, thus allowing channels with larger dimensions (> 100 {micro}m) and high throughputs (10-100 {micro}L/min) necessary to process real-world volumes (1 mL). Previous work demonstrated acoustic focusing of microbeads [4] and biological species [5] in various geometries. We experimentally characterized our device by determining the biological size-cutoff where acoustic radiation pressure forces no longer transport biological particles. Figure 1 shows images of E.Coli ({approx}1 {micro}m) and yeast ({approx}4-5 {micro}m) flowing in a microchannel (200 {micro}m deep, 500 {micro}m wide) at a flow rate of 10 {micro}L/min. The E.Coli does not focus in the acoustic field while the yeast focuses at the channel centerline. This result suggests the acoustic size-cutoff for biological particles in our device lies between 2 and 3 {micro}m. Transverse electrophoresis has been explored extensively in electric field flow fractionation [6] and isoelectric focusing devices [7]. We demonstrated transverse electrophoretic transport of a wide variety of negatively-charged species, including fluorophores, beads, viruses, E.Coli, and yeast. Figure 2 shows the electromigration of a fluorescently labeled RNA virus (MS2) from the lower half of the channel to the upper half region with continuous flow. We demonstrated the effectiveness of our electrophoretically assisted acoustic focusing device by separating virus-like particles (40 nm fluorescent beads, selected to aid in visualization) from a high background concentration of yeast contaminants (see Figure 3). Our device allows for the efficient recovery of virus into a pre-selected purified buffer while background contaminants are acoustically captured and removed. We also tested the device using clinical nasopharyngeal samples, both washes and lavages, and demonstrated removal of unknown particulates (>2 ?m size) from the sample. Our future research direction includes spiking known amounts of bacteria and viruses into clinical samples and performing quantitative off-chip analysis (real-time PCR and flow cytometry).« less
Brüggemann, Dagmar A.; Risbo, Jens; Pierzynowski, Stefan G.; Harrison, Adrian P.
2008-01-01
Muscle contraction studies often focus solely on myofibres and the proteins known to be involved in the processes of sarcomere shortening and cross-bridge cycling, but skeletal muscle also comprises a very elaborate ancillary network of capillaries, which not only play a vital role in terms of nutrient delivery and waste product removal, but are also tethered to surrounding fibres by collagen ”wires”. This paper therefore addresses aspects of the ancillary network of skeletal muscle at both a microscopic and functional level in order to better understand its role holistically as a considerable contributor to force transfer within muscular tissue. PMID:19325816
Hassan, Ghassan; Yilbas, B. S.; Said, Syed A. M.; Al-Aqeeli, N.; Matin, Asif
2016-01-01
Mud formed from environmental dust particles in humid ambient air significantly influences the performance of solar harvesting devices. This study examines the characterization of environmental dust particles and the chemo-mechanics of dry mud formed from dust particles. Analytical tools, including scanning electron microscopy, atomic force microscopy, energy dispersive spectroscopy, particle sizing, and X-ray diffraction, are used to characterize dry mud and dust particles. A micro/nano tribometer is used to measure the tangential force and friction coefficient while tensile tests are carried out to assess the binding forces of dry mud pellets. After dry mud is removed, mud residuals on the glass surface are examined and the optical transmittance of the glass is measured. Dust particles include alkaline compounds, which dissolve in water condensate and form a mud solution with high pH (pH = 7.5). The mud solution forms a thin liquid film at the interface of dust particles and surface. Crystals form as the mud solution dries, thus, increasing the adhesion work required to remove dry mud from the surface. Optical transmittance of the glass is reduced after dry mud is removed due to the dry mud residue on the surface. PMID:27445272
Hassan, Ghassan; Yilbas, B S; Said, Syed A M; Al-Aqeeli, N; Matin, Asif
2016-07-22
Mud formed from environmental dust particles in humid ambient air significantly influences the performance of solar harvesting devices. This study examines the characterization of environmental dust particles and the chemo-mechanics of dry mud formed from dust particles. Analytical tools, including scanning electron microscopy, atomic force microscopy, energy dispersive spectroscopy, particle sizing, and X-ray diffraction, are used to characterize dry mud and dust particles. A micro/nano tribometer is used to measure the tangential force and friction coefficient while tensile tests are carried out to assess the binding forces of dry mud pellets. After dry mud is removed, mud residuals on the glass surface are examined and the optical transmittance of the glass is measured. Dust particles include alkaline compounds, which dissolve in water condensate and form a mud solution with high pH (pH = 7.5). The mud solution forms a thin liquid film at the interface of dust particles and surface. Crystals form as the mud solution dries, thus, increasing the adhesion work required to remove dry mud from the surface. Optical transmittance of the glass is reduced after dry mud is removed due to the dry mud residue on the surface.
In vivo wall shear measurements within the developing zebrafish heart.
Jamison, R Aidan; Samarage, Chaminda R; Bryson-Richardson, Robert J; Fouras, Andreas
2013-01-01
Physical forces can influence the embryonic development of many tissues. Within the cardiovascular system shear forces resulting from blood flow are known to be one of the regulatory signals that shape the developing heart. A key challenge in investigating the role of shear forces in cardiac development is the ability to obtain shear force measurements in vivo. Utilising the zebrafish model system we have developed a methodology that allows the shear force within the developing embryonic heart to be determined. Accurate wall shear measurement requires two essential pieces of information; high-resolution velocity measurements near the heart wall and the location and orientation of the heart wall itself. We have applied high-speed brightfield imaging to capture time-lapse series of blood flow within the beating heart between 3 and 6 days post-fertilization. Cardiac-phase filtering is applied to these time-lapse images to remove the heart wall and other slow moving structures leaving only the red blood cell movement. Using particle image velocimetry to calculate the velocity of red blood cells in different regions within the heart, and using the signal-to-noise ratio of the cardiac-phase filtered images to determine the boundary of blood flow, and therefore the position of the heart wall, we have been able to generate the necessary information to measure wall shear in vivo. We describe the methodology required to measure shear in vivo and the application of this technique to the developing zebrafish heart. We identify a reduction in shear at the ventricular-bulbar valve between 3 and 6 days post-fertilization and demonstrate that the shear environment of the ventricle during systole is constantly developing towards a more uniform level.
Yang, Lili; Suzuki, Eduardo Yugo; Suzuki, Boonsiva
2014-01-01
The purpose of this study was to compare the distraction forces and the biomechanical effects between two different intraoperative surgical procedures (down-fracture [DF] and non-DF [NDF]) for maxillary distraction osteogenesis. Eight patients were assigned into two groups according to the surgical procedure: DF, n = 6 versus NDF, n = 2. Lateral cephalograms taken preoperatively (T1), immediately after removal of the distraction device (T2), and after at least a 6 months follow-up period (T3) were analyzed. Assessment of distraction forces was performed during the distraction period. The Mann-Whitney U-test was used to compare the difference in the amount of advancement, the maximum distraction force and the amount of relapse. Although a significantly greater amount of maxillary movement was observed in the DF group (median 9.5 mm; minimum-maximum 7.9-14.1 mm) than in the NDF group (median 5.9 mm; minimum-maximum 4.4-7.6 mm), significantly lower maximum distraction forces were observed in the DF (median 16.4 N; minimum-maximum 15.1-24.6 N) than in the NDF (median 32.9 N; minimum-maximum 27.6-38.2 N) group. A significantly greater amount of dental anchorage loss was observed in the NDF group. Moreover, the amount of relapse observed in the NDF group was approximately 3.5 times greater than in the DF group. In this study, it seemed that, the use of the NDF procedure resulted in lower levels of maxillary mobility at the time of the maxillary distraction, consequently requiring greater amounts of force to advance the maxillary bone. Moreover, it also resulted in a reduced amount of maxillary movement, a greater amount of dental anchorage loss and poor treatment stability.
Standard Approach to Urinary Bladder Endometriosis.
Fernandes, Rodrigo Pinto; Centini, Gabriele; Afors, Karolina; Puga, Marco; Alves, Joao; Wattiez, Arnaud
2017-12-28
Urinary endometriosis accounts for 1% of all endometriosis where the bladder is the most affected organ. Although the laparoscopic removal of bladder endometriosis has been demonstrated to be effective in terms of symptom relief with a low recurrence rate, there is no standardized technique. Partial cystectomy allows the complete removal of the disease and is associated with low intra- and postoperative complications. Here we describe a stepwise approach to a rare case of a large endometriosis nodule affecting the trigone of the urinary bladder. Step-by-step video explanation of a large endometriotic nodule excision (Canadian Task Force classification III). IRCAD AMITS - Barretos | Hospital Pio XVI. The video was approved by the local institutional review board. A 31-year-old woman. Laparoscopic approach for bladder endometriosis. We present a case of a 31-year-old woman who complained of dysuria and hematuria with a bladder nodule of 3 cm affecting the bladder trigone. Laparoscopic complete excision of the nodule was performed. Laparoscopy began with full inspection of the pelvic and abdominal cavity. Vaginal examination under laparoscopic view helped to determinate the dimensions of the bladder nodule. Strategy consisted of bilateral dissection of the paravesical fossae and the identification of both uterine arteries and ureters. The bladder was slowly dissected from the uterine isthmus and was intentionally opened, thus helping the surgeons to identify the lateral and lower limits of the nodule and its proximity to both ureters. Bilateral double J stents were previously placed to guide the excision and further suture. Once the nodule was removed, the remaining wall consisted of the lower aspect of the trigone, both medial lower parts of the ureter, and the apex of the bladder. Suturing was performed in 2 steps. A simple monofilament interrupted suture was applied vertically at the lower wall between both ureters. The same technique was applied horizontally on the bladder dome. Pressure test demonstrated adequate correction. The patient was discharged 2 days later with a bladder catheter and double J stent. After 15 days, both indwelling catheter and ureteric stent were removed, and patient was submitted to a cystogram where no leakage was found. If a leakage had been found on the cystogram, the bladder should be allowed an additional week of continuous drainage. Early follow-up demonstrated a lower bladder capacity that was resolved within 6 months. After a 1-year follow-up the patient had no symptoms and demonstrated no recurrence. She is now 20 weeks pregnant with no need of assisted reproductive methods. The technique showed in the video demonstrates the feasibility of a laparoscopic approach for bladder endometriosis. Furthermore, the laparoscopic approach allowed the removal of the large nodule, reducing the risk of small bladder symptoms. Copyright © 2018. Published by Elsevier Inc.
77 FR 38850 - Federal Property Suitable as Facilities to Assist the Homeless
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-29
... address), providers should contact the appropriate landholding agencies at the following addresses: AIR FORCE: Mr. Robert Moore, Air Force Real Property Agency, 143 Billy Mitchell Blvd., San Antonio, TX 78226... needed; potential ground water contamination; secured area; need approval to access and remove property...
President's Task Force on Communications Policy. Final Report.
ERIC Educational Resources Information Center
Rostow, Eugene V.
The final report of the President's Task Force on Communications Policy recommends strengthened federal powers to form public policy in telecommunications. Such planned policy would enable the private sector to reach its full capacities in the field by improving regulation when it is necessary and removing unnecessary regulation. Monopoly of…
Using GC-FID to Quantify the Removal of 4-sec-Butylphenol from NGS Solvent by NaOH
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sloop, Jr., Frederick V.; Moyer, Bruce A.
2014-12-01
A caustic wash of the solvent used in the Next-Generation Caustic-Side Solvent Extraction (NG-CSSX) process was found to remove the modifier breakdown product 4-sec-butylphenol (SBP) with varying efficiency depending on the aqueous NaOH concentration. Recent efforts at ORNL have aimed at characterizing the flowsheet chemistry and reducing the technical uncertainties of the NG-CSSX process. One technical uncertainty has been the efficacy of caustic washing of the solvent for the removal of lipophilic anions, in particular, the efficient removal of SBP, an important degradation product of the solvent modifier, Cs-7SB. In order to make this determination, it was necessary to developmore » a sensitive and reliable analytical technique for the detection and quantitation of SBP. This report recounts the development of a GC-FID-based (Gas Chromatography Flame Ionization Detection) technique for analyzing SBP and the utilization of the technique to subsequently confirm the ability of the caustic wash to efficiently remove SBP from the Next Generation Solvent (NGS) used in NG-CSSX. In particular, the developed technique was used to monitor the amount of SBP removed from a simple solvent and the full NGS by contact with sodium hydroxide wash solutions over a range of concentrations. The results show that caustic washing removes SBP with effectively the same efficiency as it did in the original Caustic-Side Solvent Extraction (CSSX) process.« less
Suction-based grasping tool for removal of regular- and irregular-shaped intraocular foreign bodies.
Erlanger, Michael S; Velez-Montoya, Raul; Mackenzie, Douglas; Olson, Jeffrey L
2013-01-01
To describe a suction-based grasping tool for the surgical removal of irregular-shaped and nonferromagnetic intraocular foreign bodies. A surgical tool with suction capabilities, consisting of a stainless steel shaft with a plastic handle and a customizable and interchangeable suction tip, was designed in order to better engage and manipulate irregular-shaped in-traocular foreign bodies of various sizes and physical properties. The maximal suction force and surgical capabilities were assessed in the laboratory and on a cadaveric eye vitrectomy model. The suction force of the water-tight seal between the intraocular foreign body and the suction tip was estimated to be approximately 40 MN. During an open-sky vitrectomy in a porcine model, the device was successful in engaging and firmly securing foreign bodies of different sizes and shapes. The suction-based grasping tool enables removal of irregular-shaped and nonferromagnetic foreign bodies. Copyright 2013, SLACK Incorporated.
Bayani, Shahin; Masoomi, Fatemeh; Aghaabbasi, Sharereh; Farsinejad, Alireza
2016-01-01
The purpose of this study was to evaluate the effect of platelet-released growth factor (PRGF) and immediate orthodontic forces on the removal torque of miniscrews. This study was conducted on three male dogs aged 6 to 8 months with a body weight of 17.6 to 18.4 kg. Sixty miniscrews were inserted in the posterior aspect of the femur. There were four groups, including loaded miniscrews with application of PRGF, unloaded miniscrews without application of PRGF, unloaded miniscrews with PRGF, and loaded miniscrews without PRGF. Twenty miniscrews were inserted in the femoral bone of one foot of each dog, including all the aforementioned subgroups. After 12 weeks, the miniscrews were removed by a removal torque tester device and measured in newton centimeters. The mean removal torque values in four groups of immediately loaded screws with PRGF, unloaded screws with PRGF, immediately loaded screws without PRGF, and unloaded screws without PRGF were 19.68, 21.74, 13.65, and 15.46 Ncm, respectively. It was shown that the mean removal torque value for the group with PRGF was significantly higher than that in the other groups (P = .0001). Although there was a tendency toward a decrease in removal torque value with immediate loading, it was not statistically significant (P = .21). According to the results of this study, applying PRGF with miniscrews increased their stability, but the delivery of immediate force on miniscrews had no effect on the miniscrews' stability.
Farpour, Bijan; Browne, Alison; McClellan, BmedscKathyA; Billson, Frank A
2002-01-01
The purpose of this report is to describe a modified surgical iridocyclectomy technique and lensectomy for the removal of a recurrent iris cyst and a cataract in a child. A 3-year-old boy underwent uncomplicated standard iridocyclectomy for the removal of an enlarging congenital epidermal iris cyst. In the postoperative period, the cyst recurred. A second surgical intervention was performed using a modified iridocyclectomy technique. Sclerocorneal dissection of the involved quadrant was performed. After a lensectomy, an additional deep lamellar dissection of the peripheral cornea was undertaken prior to iris cyst removal and pupil reconstruction. This modified two-layered iridocyclectomy technique permits an elegant access to the iris lesion and allows the construction of a two-layered watertight wound, reducing the risk of hypotony and wound ectasia. We believe it also allows a better control of astigmatism and is a safe procedure in the pediatric population, particularly during the amblyogenic period.
2010-06-01
s) __ Test Plt(s) __ Test Trench(es) __ Deep Test(s) __ PZ or Humus Removal __ Testing/Excav. (strategy unknown) __ Mitigation/Block Excavation...Collection __ Surface Collection _Auger/Soil Corer _Shovel Test (s) .lL... Test Pit (s) _Test Trench (es) __ Deep Test (s) _ PZ or Humus Removal
NASA Technical Reports Server (NTRS)
Sharpe, M. H.; Roberts, M. L.; Hill, W. E.; Jackson, C. H.
1983-01-01
Water blasting system under development removes hard, dense, extraneous material from surfaces. High pressure pump forces water at supersonic speed through nozzle manipulated by robot. Impact of water blasts away unwanted material from workpiece rotated on air bearing turntable. Designed for removing thermal-protection material, system is adaptable to such industrial processes as cleaning iron or steel castings.
NASA Astrophysics Data System (ADS)
Jin, Yan; Ye, Chen; Luo, Xiao; Yuan, Hui; Cheng, Changgui
2017-05-01
In order to improve the inclusion removal property of the tundish, the mathematic model for simulation of the flow field sourced from inner-swirl-type turbulence controller (ISTTC) was developed, in which there were six blades arranged with an eccentric angle (θ) counterclockwise. Based on the mathematical and water model, the effect of inclusion removal in the swirling flow field formed by ISTTC was analyzed. It was found that ISTTC had got the better effect of inhibiting turbulence in tundish than traditional turbulence inhibitor (TI). As the blades eccentric angle (θ) of ISTTC increasing, the intensity of swirling flow above it increased. The maximum rotate speed of fluid in swirling flow band driven by ISTTC (θ=45°) was equal to 25 rmp. Based on the force analysis of inclusion in swirling flow sourced from ISTTC, the removal effect of medium size inclusion by ISTTC was attributed to the centripetal force (Fct) of swirling flow, but removal effect of ISTTC to small size inclusion was more depend on its better turbulence depression behavior.
Laparoscopic Myomectomy for a Plethora of Submucous Myomas.
Paul, P G; Paul, George; Radhika, K T; Bulusu, Saumya; Shintre, Hemant
To demonstrate a laparoscopic myomectomy technique for the removal of multiple submucous myomas. A step-by-step demonstration of the surgical procedure (Canadian Task Force classification III-C). In cases of multiple submucous myomas, hysteroscopic resection of myomas might not be a viable option, especially in cases requiring fertility preservation. It may cause significant damage to the endometrial surface, leading to the formation of endometrial synechiae [1]. The procedure is technically challenging and requires prolonged operating time owing to impaired visibility and the need for repeated specimen removal. This can lead to complications, such as fluid overload and, rarely, air embolism [2]. Thus, laparoscopic myomectomy may be a better option in such cases [1]. A 30-year-old nulligravida presented with a 3-year history of heavy menstrual bleeding and dysmenorrhea. She had received no symptom relief with hormonal medications and magnetic resonance-guided focused ultrasound. On examination, she was anemic, and her uterus was enlarged to 16-weeks gravid size. Ultrasonography revealed an intramural fundal myoma of 6 × 4.2 cm and numerous submucous myomas of 1 to 3.2 cm. During hysteroscopy, multiple submucous myomas of varying sizes ranging from type 0 to type 1 were seen. On laparoscopy, an incision was made on the uterine fundus with an ultrasonic device after injecting vasopressin (20 U in 200 mL dilution), and the fundal myoma was enucleated. The incision was then extended to open the endometrial cavity for the removal of the submucous myomas. Most of the myomas were removed with mechanical force, along with the minimal use of ultrasonic energy. A total of 46 myomas were removed, and the myometrium was closed in 2 layers. The duration of the surgery was 210 minutes, and estimated blood loss was 850 mL. The patient did not require blood transfusion, but was advised to take hematinics. At a 6-month follow-up, the patient reported significant improvement in her symptoms. A repeat hysteroscopy revealed moderate synechiae in the midline and 2 small submucous myomas near the internal os. The synechiae were incised with hysteroscopic scissors, and the submucous myomas were resected with a bipolar resectoscope. The patient was advised to attempt conception after 2 months. Laparoscopic myomectomy is an alternative to hysteroscopic resection for multiple submucous myomas. A repeat hysteroscopy is useful for identifying any residual myomas and synechiae. Copyright © 2017 AAGL. Published by Elsevier Inc. All rights reserved.
A novel background field removal method for MRI using projection onto dipole fields (PDF).
Liu, Tian; Khalidov, Ildar; de Rochefort, Ludovic; Spincemaille, Pascal; Liu, Jing; Tsiouris, A John; Wang, Yi
2011-11-01
For optimal image quality in susceptibility-weighted imaging and accurate quantification of susceptibility, it is necessary to isolate the local field generated by local magnetic sources (such as iron) from the background field that arises from imperfect shimming and variations in magnetic susceptibility of surrounding tissues (including air). Previous background removal techniques have limited effectiveness depending on the accuracy of model assumptions or information input. In this article, we report an observation that the magnetic field for a dipole outside a given region of interest (ROI) is approximately orthogonal to the magnetic field of a dipole inside the ROI. Accordingly, we propose a nonparametric background field removal technique based on projection onto dipole fields (PDF). In this PDF technique, the background field inside an ROI is decomposed into a field originating from dipoles outside the ROI using the projection theorem in Hilbert space. This novel PDF background removal technique was validated on a numerical simulation and a phantom experiment and was applied in human brain imaging, demonstrating substantial improvement in background field removal compared with the commonly used high-pass filtering method. Copyright © 2011 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Dyar, M. Darby; Giguere, Stephen; Carey, CJ; Boucher, Thomas
2016-12-01
This project examines the causes, effects, and optimization of continuum removal in laser-induced breakdown spectroscopy (LIBS) to produce the best possible prediction accuracy of elemental composition in geological samples. We compare prediction accuracy resulting from several different techniques for baseline removal, including asymmetric least squares (ALS), adaptive iteratively reweighted penalized least squares (Air-PLS), fully automatic baseline correction (FABC), continuous wavelet transformation, median filtering, polynomial fitting, the iterative thresholding Dietrich method, convex hull/rubber band techniques, and a newly-developed technique for Custom baseline removal (BLR). We assess the predictive performance of these methods using partial least-squares analysis for 13 elements of geological interest, expressed as the weight percentages of SiO2, Al2O3, TiO2, FeO, MgO, CaO, Na2O, K2O, and the parts per million concentrations of Ni, Cr, Zn, Mn, and Co. We find that previously published methods for baseline subtraction generally produce equivalent prediction accuracies for major elements. When those pre-existing methods are used, automated optimization of their adjustable parameters is always necessary to wring the best predictive accuracy out of a data set; ideally, it should be done for each individual variable. The new technique of Custom BLR produces significant improvements in prediction accuracy over existing methods across varying geological data sets, instruments, and varying analytical conditions. These results also demonstrate the dual objectives of the continuum removal problem: removing a smooth underlying signal to fit individual peaks (univariate analysis) versus using feature selection to select only those channels that contribute to best prediction accuracy for multivariate analyses. Overall, the current practice of using generalized, one-method-fits-all-spectra baseline removal results in poorer predictive performance for all methods. The extra steps needed to optimize baseline removal for each predicted variable and empower multivariate techniques with the best possible input data for optimal prediction accuracy are shown to be well worth the slight increase in necessary computations and complexity.
DNA under Force: Mechanics, Electrostatics, and Hydration.
Li, Jingqiang; Wijeratne, Sithara S; Qiu, Xiangyun; Kiang, Ching-Hwa
2015-02-25
Quantifying the basic intra- and inter-molecular forces of DNA has helped us to better understand and further predict the behavior of DNA. Single molecule technique elucidates the mechanics of DNA under applied external forces, sometimes under extreme forces. On the other hand, ensemble studies of DNA molecular force allow us to extend our understanding of DNA molecules under other forces such as electrostatic and hydration forces. Using a variety of techniques, we can have a comprehensive understanding of DNA molecular forces, which is crucial in unraveling the complex DNA functions in living cells as well as in designing a system that utilizes the unique properties of DNA in nanotechnology.
Non-contact lateral force microscopy.
Weymouth, A J
2017-08-16
The goal of atomic force microscopy (AFM) is to measure the short-range forces that act between the tip and the surface. The signal recorded, however, includes long-range forces that are often an unwanted background. Lateral force microscopy (LFM) is a branch of AFM in which a component of force perpendicular to the surface normal is measured. If we consider the interaction between tip and sample in terms of forces, which have both direction and magnitude, then we can make a very simple yet profound observation: over a flat surface, long-range forces that do not yield topographic contrast have no lateral component. Short-range interactions, on the other hand, do. Although contact-mode is the most common LFM technique, true non-contact AFM techniques can be applied to perform LFM without the tip depressing upon the sample. Non-contact lateral force microscopy (nc-LFM) is therefore ideal to study short-range forces of interest. One of the first applications of nc-LFM was the study of non-contact friction. A similar setup is used in magnetic resonance force microscopy to detect spin flipping. More recently, nc-LFM has been used as a true microscopy technique to systems unsuitable for normal force microscopy.
Investigating biomolecular recognition at the cell surface using atomic force microscopy.
Wang, Congzhou; Yadavalli, Vamsi K
2014-05-01
Probing the interaction forces that drive biomolecular recognition on cell surfaces is essential for understanding diverse biological processes. Force spectroscopy has been a widely used dynamic analytical technique, allowing measurement of such interactions at the molecular and cellular level. The capabilities of working under near physiological environments, combined with excellent force and lateral resolution make atomic force microscopy (AFM)-based force spectroscopy a powerful approach to measure biomolecular interaction forces not only on non-biological substrates, but also on soft, dynamic cell surfaces. Over the last few years, AFM-based force spectroscopy has provided biophysical insight into how biomolecules on cell surfaces interact with each other and induce relevant biological processes. In this review, we focus on describing the technique of force spectroscopy using the AFM, specifically in the context of probing cell surfaces. We summarize recent progress in understanding the recognition and interactions between macromolecules that may be found at cell surfaces from a force spectroscopy perspective. We further discuss the challenges and future prospects of the application of this versatile technique. Copyright © 2014 Elsevier Ltd. All rights reserved.
Surface modifications of crystal-ion-sliced LiNbO3 thin films by low energy ion irradiations
NASA Astrophysics Data System (ADS)
Bai, Xiaoyuan; Shuai, Yao; Gong, Chaoguan; Wu, Chuangui; Luo, Wenbo; Böttger, Roman; Zhou, Shengqiang; Zhang, Wanli
2018-03-01
Single crystalline 128°Y-cut LiNbO3 thin films with a thickness of 670 nm are fabricated onto Si substrates by means of crystal ion slicing (CIS) technique, adhesive wafer bonding using BCB as the medium layer to alleviate the large thermal coefficient mismatch between LiNbO3 and Si, and the X-ray diffraction pattern indicates the exfoliated thin films have good crystalline quality. The LiNbO3 thin films are modified by low energy Ar+ irradiation, and the surface roughness of the films is decreased from 8.7 nm to 3.4 nm. The sputtering of the Ar+ irradiation is studied by scanning electron microscope, atomic force microscope and X-ray photoelectron spectroscopy, and the results show that an amorphous layer exists at the surface of the exfoliated film, which can be quickly removed by Ar+ irradiation. A two-stage etching mechanism by Ar+ irradiation is demonstrated, which not only establishes a new non-contact surface polishing method for the CIS-fabricated single crystalline thin films, but also is potentially useful to remove the residue damage layer produced during the CIS process.
Kohta, M; Iwasaki, T
2015-01-01
In the treatment of pressure ulcers and leg ulcers it is necessary to achieve an effective balance between adhesive and skin-protective properties. We speculated that addition of a tackifying agent (TA) to ceramide 2-containing hydrocolloid dressings would increase their adhesiveness under dry conditions and reduce their adhesiveness under wet conditions because dry tack converts to wet tack after water absorption. We prepared ceramide 2-containing hydrocolloid dressings with varying amounts of TA. Basic characteristics of the test ceraminde dressings, such as initial tack force and peeling force, were evaluated using standard methods. Peeling force and stratum corneum (SC) removal on healthy human skin were also evaluated at 20 minutes, 7 hours, and 72 hours. In addition, the effect of 10 repeated applications on transepidermal water loss (TEWL) was investigated on the skin of hairless mice under dry and wet conditions. Statistical analyses were performed using one-way analysis of variance followed by Dunnett's multiple comparison test. A p-value of <0.05 was considered statistically significant. On a stainless steel substrate, initial tack force and 180° peeling force increased as TA content increased. Twenty minutes after application on human skin, peeling force and SC removal increased with increasing TA content. When TA contents were over 10%, significant differences in peeling force and SC removal were obtained compared with ceramide 2-containing hydrocolloid dressings without TA (p<0.05). However, a TA content-dependent increase in peeling force was not evident 7 hours and 72 hours after application. Under dry conditions, TEWL increased with repeated application and peeling. Conversely, no significant increases in TEWL were evident under wet conditions after 10 repeated applications and peelings. Our data demonstrate that the initial attachment of ceramide 2-containing hydrocolloid dressings to the skin increases with addition of TA. Skin damage can be avoided by conversion of the adhesive system to wet tack with water absorption. Masushi Kohta and Tetsuji IwasakI are employees of ALCARE Co., Ltd., Japan. This project was supported by an unrestricted grant from ALCARE.
[Technique for removing donor sclera by eyeball extrusion].
González Del Valle, F; Álvarez Portela, M; Lara Medina, J; Celis Sánchez, J; Barrajón Rodríguez, A
2012-09-01
To describe a surgery technique for removing donor sclera tissue after corneo-scleral button excision. The extrusion technique is easy to perform. It allows the complete scleral extraction its total clean up to be performed, as well as making easier to isolate the retina and uveal tissue. This technique could have an important role in the anatomical and morphological study of ocular structures. Copyright © 2011 Sociedad Española de Oftalmología. Published by Elsevier Espana. All rights reserved.
A review on pesticide removal through different processes.
Marican, Adolfo; Durán-Lara, Esteban F
2018-01-01
The main organic pollutants worldwide are pesticides, persistent chemicals that are of concern owing to their prevalence in various ecosystems. In nature, pesticide remainders are subjected to the chemical, physical, and biochemical degradation process, but because of its elevated stability and some cases water solubility, the pesticide residues persist in the ecosystem. The removal of pesticides has been performed through several techniques classified under biological, chemical, physical, and physicochemical process of remediation from different types of matrices, such as water and soil. This review provides a description of older and newer techniques and materials developed to remove specific pesticides according to previous classification, which range from bioremediation with microorganisms, clay, activated carbon, and polymer materials to chemical treatment based on oxidation processes. Some types of pesticides that have been removed successfully to large and small scale include, organophosphorus, carbamates, organochlorines, chlorophenols, and synthetic pyrethroids, among others. The most important characteristics, advantages, and disadvantages of techniques and materials for removing pesticides are described in this work.
A NOVEL TECHNIQUE APPLYING SPECTRAL ESTIMATION TO JOHNSON NOISE THERMOMETRY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ezell, N Dianne Bull; Britton Jr, Charles L; Roberts, Michael
Johnson noise thermometry (JNT) is one of many important measurements used to monitor the safety levels and stability in a nuclear reactor. However, this measurement is very dependent on the electromagnetic environment. Properly removing unwanted electromagnetic interference (EMI) is critical for accurate drift free temperature measurements. The two techniques developed by Oak Ridge National Laboratory (ORNL) to remove transient and periodic EMI are briefly discussed in this document. Spectral estimation is a key component in the signal processing algorithm utilized for EMI removal and temperature calculation. Applying these techniques requires the simple addition of the electronics and signal processing tomore » existing resistive thermometers.« less
Baumketner, Andrij
2009-01-01
The performance of reaction-field methods to treat electrostatic interactions is tested in simulations of ions solvated in water. The potential of mean force between sodium chloride pair of ions and between side chains of lysine and aspartate are computed using umbrella sampling and molecular dynamics simulations. It is found that in comparison with lattice sum calculations, the charge-group-based approaches to reaction-field treatments produce a large error in the association energy of the ions that exhibits strong systematic dependence on the size of the simulation box. The atom-based implementation of the reaction field is seen to (i) improve the overall quality of the potential of mean force and (ii) remove the dependence on the size of the simulation box. It is suggested that the atom-based truncation be used in reaction-field simulations of mixed media. PMID:19292522
Kwak, Young-Seok; Cho, Dae-Chul; Kim, Young-Baeg
2012-01-01
Conventional laminectomy is the most popular technique for the complete removal of intradural spinal tumors. In particular, the central portion intramedullary tumor and large intradural extramedullary tumor often require a total laminectomy for the midline myelotomy, sufficient decompression, and adequate visualization. However, this technique has the disadvantages of a wide incision, extensive periosteal muscle dissection, and bony structural injury. Recently, split-spinous laminectomy and tubular retractor systems were found to decrease postoperative muscle injuries, skin incision size and discomfort. The combined technique of split-spinous laminectomy, using a quadrant tube retractor system allows for an excellent exposure of the tumor with minimal trauma of the surrounding tissue. We propose that this technique offers possible advantages over the traditional open tumor removal of the intradural spinal cord tumors, which covers one or two cervical levels and requires a total laminectomy. PMID:23133739
Microplate technique for determining accumulation of metals by algae
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hassett, J.M.; Jennett, J.C.; Smith, J.E.
1981-05-01
A microplate technique was developed to determine the conditions under which pure cultures of algae removed heavy metals from aqueous solutions. Variables investigated included algal species and strain, culture age (11 and 44 days), metal (mercury, lead, cadmium, and zinc), pH, effects of different buffer solutions, and time of exposure. Plastic, U-bottomed microtiter plates were used in conjunction with heavy metal radionuclides to determine concentration factors for metal-alga combinations. The technique developed was rapid, statistically reliable, and economical of materials and cells. All species of algae studied removed mercury from solution. Green algae proved better at accumulating cadmium than didmore » blue-green algae. No alga studied removed zinc, perhaps because cells were maintained in the dark during the labeling period. Chlamydomonas sp. proved superior in ability to remove lead from solution.« less
Chys, Michael; Demeestere, Kristof; Ingabire, Ange Sabine; Dries, Jan; Van Langenhove, Herman; Van Hulle, Stijn W H
2017-07-01
Ozonation and three (biological) filtration techniques (trickling filtration (TF), slow sand filtration (SSF) and biological activated carbon (BAC) filtration) have been evaluated in different combinations as tertiary treatment for municipal wastewater effluent. The removal of 18 multi-class pharmaceuticals, as model trace organic contaminants (TrOCs), has been studied. (Biological) activated carbon filtration could reduce the amount of TrOCs significantly (>99%) but is cost-intensive for full-scale applications. Filtration techniques mainly depending on biodegradation mechanisms (TF and SSF) are found to be inefficient for TrOCs removal as a stand alone technique. Ozonation resulted in 90% removal of the total amount of quantified TrOCs, but a post-ozonation step is needed to cope with an increased unselective toxicity. SSF following ozonation showed to be the only technique able to reduce the unselective toxicity to the same level as before ozonation. In view of process control, innovative correlation models developed for the monitoring and control of TrOC removal during ozonation, are verified for their applicability during ozonation in combination with TF, SSF or BAC. Particularly for the poorly ozone reactive TrOCs, statistically significant models were obtained that correlate TrOC removal and reduction in UVA 254 as an online measured surrogate parameter.
Sublimation-assisted graphene transfer technique based on small polyaromatic hydrocarbons
NASA Astrophysics Data System (ADS)
Chen, Mingguang; Stekovic, Dejan; Li, Wangxiang; Arkook, Bassim; Haddon, Robert C.; Bekyarova, Elena
2017-06-01
Advances in the chemical vapor deposition (CVD) growth of graphene have made this material a very attractive candidate for a number of applications including transparent conductors, electronics, optoeletronics, biomedical devices and energy storage. The CVD method requires transfer of graphene on a desired substrate and this is most commonly accomplished with polymers. The removal of polymer carriers is achieved with organic solvents or thermal treatment which makes this approach inappropriate for application to plastic thin films such as polyethylene terephthalate substrates. An ultraclean graphene transfer method under mild conditions is highly desired. In this article, we report a naphthalene-assisted graphene transfer technique which provides a reliable route to residue-free transfer of graphene to both hard and flexible substrates. The quality of the transferred graphene was characterized with atomic force microscopy, scanning electron microscopy, and Raman spectroscopy. Field effect transistors, based on the naphthalene-transfered graphene, were fabricated and characterized. This work has the potential to broaden the applications of CVD graphene in fields where ultraclean graphene and mild graphene transfer conditions are required.
2012-01-01
Background Wire closure still remains the preferred technique despite reasonable disadvantages. Associated complications, such as infection and sternal instability, cause time- and cost-consuming therapies. We present a new tool for sternal closure with its first clinical experience and results. Methods The sternal ZipFixTM System is based on the cable-tie principle. It primarily consists of biocompatible Poly-Ether-Ether-Ketone implants and is predominantly used peristernally through the intercostal space. The system provides a large implant-to-bone contact for better force distribution and for avoiding bone cut through. Results 50 patients were closed with the ZipFixTM system. No sternal instability was observed at 30 days. Two patients developed a mediastinitis that necessitated the removal of the device; however, the ZipFixTM were intact and the sternum remained stable. Conclusions In our initial evaluation, the short-term results have shown that the sternal ZipFixTM can be used safely and effectively. It is fast, easy to use and serves as a potential alternative for traditional wire closure. PMID:22731778
Chow, John W; Stokic, Dobrivoje S
2018-03-01
We examined changes in variability, accuracy, frequency composition, and temporal regularity of force signal from vision-guided to memory-guided force-matching tasks in 17 subacute stroke and 17 age-matched healthy subjects. Subjects performed a unilateral isometric knee extension at 10, 30, and 50% of peak torque [maximum voluntary contraction (MVC)] for 10 s (3 trials each). Visual feedback was removed at the 5-s mark in the first two trials (feedback withdrawal), and 30 s after the second trial the subjects were asked to produce the target force without visual feedback (force recall). The coefficient of variation and constant error were used to quantify force variability and accuracy. Force structure was assessed by the median frequency, relative spectral power in the 0-3-Hz band, and sample entropy of the force signal. At 10% MVC, the force signal in subacute stroke subjects became steadier, more broadband, and temporally more irregular after the withdrawal of visual feedback, with progressively larger error at higher contraction levels. Also, the lack of modulation in the spectral frequency at higher force levels with visual feedback persisted in both the withdrawal and recall conditions. In terms of changes from the visual feedback condition, the feedback withdrawal produced a greater difference between the paretic, nonparetic, and control legs than the force recall. The overall results suggest improvements in force variability and structure from vision- to memory-guided force control in subacute stroke despite decreased accuracy. Different sensory-motor memory retrieval mechanisms seem to be involved in the feedback withdrawal and force recall conditions, which deserves further study. NEW & NOTEWORTHY We demonstrate that in the subacute phase of stroke, force signals during a low-level isometric knee extension become steadier, more broadband in spectral power, and more complex after removal of visual feedback. Larger force errors are produced when recalling target forces than immediately after withdrawing visual feedback. Although visual feedback offers better accuracy, it worsens force variability and structure in subacute stroke. The feedback withdrawal and force recall conditions seem to involve different memory retrieval mechanisms.
Intraluminal pneumatic lithotripsy for the removal of encrusted urinary catheters.
Canby-Hagino, E D; Caballero, R D; Harmon, W J
1999-12-01
Urologists frequently treat patients requiring long-term urinary drainage with a percutaneous nephrostomy tube or ureteral stent. When such tubes are neglected and become encrusted, removal challenges even experienced urologists. We describe a new, minimally invasive technique for safely and rapidly removing encrusted, occluded tubes using the Swiss Lithoclast pneumatic lithotriptor. Patients presenting with an encrusted urinary catheter were evaluated by excretory urography for renal function and obstruction. Gentle manual extraction of the tube was attempted, followed by traditional extracorporeal shock wave lithotripsy and/or ureteroscopy. When the tube was not extracted, patients were then treated with intraluminal insertion of a pneumatic lithotripsy probe. One patient presented with an encrusted, occluded nephrostomy tube and 2 had an encrusted, occluded, indwelling ureteral stent. None was removed by manual traction. Intraluminal encrustations prevented the pigtail portions of these tubes from uncoiling and removal. In each case a pneumatic lithotripsy probe was inserted into the lumen of the catheter and advanced in a jackhammer-like fashion. This technique resulted in disruption of the intraluminal encrustations and straightening of the tubes so that they were removed in an atraumatic manner. Intraluminal pneumatic lithotripsy is a safe, easy and rapid technique for removing encrusted urinary catheters. It is unique in that the pneumatic lithotripsy probe functions in an aqueous and nonaqueous environment, and dislodges intraluminal calcifications. We recommend its use as first line treatment for removing encrusted urinary catheters.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, S.S.; Zhu, S.; Cai, Y.
Motion-dependent magnetic forces are the key elements in the study of magnetically levitated vehicle (maglev) system dynamics. In the past, most maglev-system designs were based on a quasisteady-motion theory of magnetic forces. This report presents an experimental and analytical study that will enhance our understanding of the role of unsteady-motion-dependent magnetic forces and demonstrate an experimental technique that can be used to measure those unsteady magnetic forces directly. The experimental technique provides a useful tool to measure motion-dependent magnetic forces for the prediction and control of maglev systems.
Image processing on the image with pixel noise bits removed
NASA Astrophysics Data System (ADS)
Chuang, Keh-Shih; Wu, Christine
1992-06-01
Our previous studies used statistical methods to assess the noise level in digital images of various radiological modalities. We separated the pixel data into signal bits and noise bits and demonstrated visually that the removal of the noise bits does not affect the image quality. In this paper we apply image enhancement techniques on noise-bits-removed images and demonstrate that the removal of noise bits has no effect on the image property. The image processing techniques used are gray-level look up table transformation, Sobel edge detector, and 3-D surface display. Preliminary results show no noticeable difference between original image and noise bits removed image using look up table operation and Sobel edge enhancement. There is a slight enhancement of the slicing artifact in the 3-D surface display of the noise bits removed image.
Generation and Long-term Maintenance of Nerve-free Hydra.
Tran, Cassidy M; Fu, Sharon; Rowe, Trevor; Collins, Eva-Maria S
2017-07-07
The interstitial cell lineage of Hydra includes multipotent stem cells, and their derivatives: gland cells, nematocytes, germ cells, and nerve cells. The interstitial cells can be eliminated through two consecutive treatments with colchicine, a plant-derived toxin that kills dividing cells, thus erasing the potential for renewal of the differentiated cells that are derived from the interstitial stem cells. This allows for the generation of Hydra that lack nerve cells. A nerve-free polyp cannot open its mouth to feed, egest, or regulate osmotic pressure. Such animals, however, can survive and be cultured indefinitely in the laboratory if regularly force-fed and burped. The lack of nerve cells allows for studies of the role of the nervous system in regulating animal behavior and regeneration. Previously published protocols for nerve-free Hydra maintenance involve outdated techniques such as mouth-pipetting with hand-pulled micropipette tips to feed and clean the Hydra. Here, an improved protocol for maintenance of nerve-free Hydra is introduced. Fine-tipped forceps are used to force open the mouth and insert freshly killed Artemia. Following force-feeding, the body cavity of the animal is flushed with fresh medium using a syringe and hypodermic needle to remove undigested material, referred to here as "burping". This new method of force-feeding and burping nerve-free Hydra through the use of forceps and syringes eliminates the need for mouth-pipetting using hand-pulled micropipette tips. It thus makes the process safer and significantly more time efficient. To ensure that the nerve cells in the hypostome have been eliminated, immunohistochemistry using anti-tyrosine-tubulin is conducted.
NASA Technical Reports Server (NTRS)
Rutledge, Sharon K.; Banks, Bruce A.; Cales, Michael
1994-01-01
Current techniques for removal of varnish (lacquer) and other organic protective coatings from paintings involve contact with the surface. This contact can remove pigment, or alter the shape and location of paint on the canvas surface. A thermal energy atomic oxygen plasma, developed to simulate the space environment in low Earth orbit, easily removes these organic materials. Uniform removal of organic protective coatings from the surfaces of paintings is accomplished through chemical reaction. Atomic oxygen will not react with oxides so that most paint pigments will not be affected by the reaction. For paintings containing organic pigments, the exposure can be carefully timed so that the removal stops just short of the pigment. Color samples of Alizarin Crimson, Sap Green, and Zinc White coated with Damar lacquer were exposed to atomic oxygen. The lacquer was easily removed from all of the samples. Additionally, no noticeable change in appearance was observed after the lacquer was reapplied. The same observations were made on a painted canvas test sample obtained from the Cleveland Museum of Art. Scanning electron microscope photographs showed a slight microscopic texturing of the vehicle after exposure. However, there was no removal or disturbance of the paint pigment on the surface. It appears that noncontact cleaning using atomic oxygen may provide a viable alternative to other cleaning techniques. It is especially attractive in cases where the organic protective surface cannot be acceptably or safely removed by conventional techniques.
Machinability of lithium disilicate glass ceramic in in vitro dental diamond bur adjusting process.
Song, Xiao-Fei; Ren, Hai-Tao; Yin, Ling
2016-01-01
Esthetic high-strength lithium disilicate glass ceramics (LDGC) are used for monolithic crowns and bridges produced in dental CAD/CAM and oral adjusting processes, which machinability affects the restorative quality. A machinability study has been made in the simulated oral clinical machining of LDGC with a dental handpiece and diamond burs, regarding the diamond tool wear and chip control, machining forces and energy, surface finish and integrity. Machining forces, speeds and energy in in vitro dental adjusting of LDGC were measured by a high-speed data acquisition and force sensor system. Machined LDGC surfaces were assessed using three-dimensional non-contact chromatic confocal optical profilometry and scanning electron microscopy (SEM). Diamond bur morphology and LDGC chip shapes were also examined using SEM. Minimum tool wear but significant LDGC chip accumulations were found. Machining forces and energy significantly depended on machining conditions (p<0.05) and were significantly higher than other glass ceramics (p<0.05). Machining speeds dropped more rapidly with increased removal rates than other glass ceramics (p<0.05). Two material machinability indices associated with the hardness, Young's modulus and fracture toughness were derived based on the normal force-removal rate relations, which ranked LDGC the most difficult to machine among glass ceramics. Surface roughness for machined LDGC was comparable for other glass ceramics. The removal mechanisms of LDGC were dominated by penetration-induced brittle fracture and shear-induced plastic deformation. Unlike most other glass ceramics, distinct intergranular and transgranular fractures of lithium disilicate crystals were found in LDGC. This research provides the fundamental data for dental clinicians on the machinability of LDGC in intraoral adjustments. Copyright © 2015 Elsevier Ltd. All rights reserved.
[Learning experience of acupuncture technique from professor ZHANG Jin].
Xue, Hongsheng; Zhang, Jin
2017-08-12
As a famous acupuncturist in the world, professor ZHANG Jin believes the key of acupuncture technique is the use of force, and the understanding of the "concentrating the force into needle body" is essential to understand the essence of acupuncture technique. With deep study of Huangdi Neijing ( The Inner Canon of Huangdi ) and Zhenjiu Dacheng ( Compendium of Acupuncture and Moxibustion ), the author further learned professor ZHANG Jin 's theory and operation specification of "concentrating force into needle body, so the force arriving before and together with needle". The whole-body force should be subtly focused on the tip of needle, and gentle force at tip of needle could get significant reinforcing and reducing effect. In addition, proper timing at tip of needle could start reinforcing and reducing effect, lead qi to disease location, and achieve superior clinical efficacy.
ERIC Educational Resources Information Center
Geddes, John B.; Black, Kelly
2008-01-01
We examine an experimental apparatus that is used to motivate the connections between the basic properties of vectors, potential functions, systems of nonlinear equations, and Newton's method for nonlinear systems of equations. The apparatus is an adaptation of a force table where we remove the center-pin and allow the center-ring to move freely.…
8 CFR 216.5 - Waiver of requirement to file joint petition to remove conditions by alien spouse.
Code of Federal Regulations, 2013 CFR
2013-01-01
... act or threatened act of violence, including any forceful detention, which results or threatens to..., molestation, incest (if the victim is a minor) or forced prostitution shall be considered acts of violence... from police, judges, medical personnel, school officials and social service agency personnel. The...
8 CFR 1216.5 - Waiver of requirement to file joint petition to remove conditions by alien spouse.
Code of Federal Regulations, 2013 CFR
2013-01-01
... violence, including any forceful detention, which results or threatens to result in physical or mental... is a minor) or forced prostitution shall be considered acts of violence. (ii) A conditional resident..., medical personnel, school officials and social service agency personnel. The Service must be satisfied...
8 CFR 1216.5 - Waiver of requirement to file joint petition to remove conditions by alien spouse.
Code of Federal Regulations, 2014 CFR
2014-01-01
... violence, including any forceful detention, which results or threatens to result in physical or mental injury. Psychological or sexual abuse or exploitation, including rape, molestation, incest (if the victim is a minor) or forced prostitution shall be considered acts of violence. (ii) A conditional resident...
8 CFR 216.5 - Waiver of requirement to file joint petition to remove conditions by alien spouse.
Code of Federal Regulations, 2012 CFR
2012-01-01
... act or threatened act of violence, including any forceful detention, which results or threatens to result in physical or mental injury. Psychological or sexual abuse or exploitation, including rape, molestation, incest (if the victim is a minor) or forced prostitution shall be considered acts of violence...
8 CFR 1216.5 - Waiver of requirement to file joint petition to remove conditions by alien spouse.
Code of Federal Regulations, 2012 CFR
2012-01-01
... violence, including any forceful detention, which results or threatens to result in physical or mental injury. Psychological or sexual abuse or exploitation, including rape, molestation, incest (if the victim is a minor) or forced prostitution shall be considered acts of violence. (ii) A conditional resident...
8 CFR 216.5 - Waiver of requirement to file joint petition to remove conditions by alien spouse.
Code of Federal Regulations, 2014 CFR
2014-01-01
... act or threatened act of violence, including any forceful detention, which results or threatens to result in physical or mental injury. Psychological or sexual abuse or exploitation, including rape, molestation, incest (if the victim is a minor) or forced prostitution shall be considered acts of violence...
A direct comparison of short-term audiomotor and visuomotor memory.
Ward, Amanda M; Loucks, Torrey M; Ofori, Edward; Sosnoff, Jacob J
2014-04-01
Audiomotor and visuomotor short-term memory are required for an important variety of skilled movements but have not been compared in a direct manner previously. Audiomotor memory capacity might be greater to accommodate auditory goals that are less directly related to movement outcome than for visually guided tasks. Subjects produced continuous isometric force with the right index finger under auditory and visual feedback. During the first 10 s of each trial, subjects received continuous auditory or visual feedback. For the following 15 s, feedback was removed but the force had to be maintained accurately. An internal effort condition was included to test memory capacity in the same manner but without external feedback. Similar decay times of ~5-6 s were found for vision and audition but the decay time for internal effort was ~4 s. External feedback thus provides an advantage in maintaining a force level after feedback removal, but may not exclude some contribution from a sense of effort. Short-term memory capacity appears longer than certain previous reports but there may not be strong distinctions in capacity across different sensory modalities, at least for isometric force.
Effective removal of equine arteritis virus from stallion semen.
Morrell, J M; Geraghty, R M
2006-05-01
A method of removing equine arteritis virus (EAV) from equine semen used for artificial insemination is urgently needed. Recent medical studies suggest that a double semen processing technique of density gradient centrifugation followed by a 'swim-up' can provide virus-free sperm preparations for assisted reproduction. To investigate the use of the double semen processing technique to obtain virus-free sperm preparations from stallion semen containing EAV. Aliquots of an ejaculate from an uninfected stallion were spiked with virus and processed by the double processing technique. The sperm preparations were tested by PCR for the presence of EAV. The procedure was repeated using an ejaculate from a known shedding stallion, testing processed and unprocessed aliquots by PCR and virus isolation. Virus-free sperm preparations were obtained using the double sperm processing technique. The 'swim-up' step is apparently required to ensure complete virus removal. The double semen processing technique is potentially a useful and simple tool for the removal of EAV from the semen of shedding stallions. The inclusion of density gradient centrifugation and 'swim-up' in protocols for the processing of semen for artificial insemination could help prevent the transmission of viral diseases carried in semen, such as EAV.
Kubena, L F; Byrd, J A; Moore, R W; Ricke, S C; Nisbet, D J
2005-02-01
Feed deprivation is used in the layer industry to induce molting and stimulate multiple egg-laying cycles in laying hens. Unfortunately, the stress involved increases susceptibility to Salmonella enteritidis (SE), the risk of SE-positive eggs, and incidence of SE in internal organs. Leghorn hens over 50 wk of age were divided into 4 treatment groups of 12 hens each in experiment 1 and 3 treatment groups of 12 hens in experiments 2 and 3; hens were placed in individual laying hen cages. Treatment groups were 1) nonmolted (NM) and received feed and distilled water for 9 d, 2) force molted by feed removal for 9 d and received distilled water, 3) force molted by feed removal for 9 d and received 0.5% lactic acid (LA) in distilled water. An additional group (4) in experiment 1 only was force molted by feed removal for 9 d and received 0.5% acetic acid in distilled water. Seven days before feed removal hens were exposed to an 8L:16D photoperiod, which was continued throughout the experiment. Individual hens among all treatments were challenged orally with 10(4) SE on d 4 of feed removal. When compared with the NM treatments, weight losses were significantly higher in the M treatments, regardless of water treatments. When compared with NM treatments, crop pH was significantly higher in the M treatment receiving distilled water. Crop pH was reduced to that of the NM controls by 0.5% acetic acid in the drinking water. No consistent significant changes were observed for volatile fatty acids. The number of hens positive for SE in crop and ceca after culture and the number of SE per crop and per gram of cecal contents were higher in the M treatments, when compared with the NM treatments, but there was no effect of addition of either of the acids to the drinking water. Additional research using different acid treatment regimens may provide a tool for reducing the incidence of SE in eggs and internal organs during and following molting of laying hens.
Techniques For Focusing In Zone Electrophoresis
NASA Technical Reports Server (NTRS)
Sharnez, Rizwan; Twitty, Garland E.; Sammons, David W.
1994-01-01
In two techniques for focusing in zone electrophoresis, force of applied electrical field in each charged particle balanced by restoring force of electro-osmosis. Two techniques: velocity-gradient focusing (VGF), suitable for rectangular electrophoresis chambers; and field-gradient focusing (FGF), suitable for step-shaped electrophoresis chambers.
Aerodynamic force measurement on a large-scale model in a short duration test facility
NASA Astrophysics Data System (ADS)
Tanno, H.; Kodera, M.; Komuro, T.; Sato, K.; Takahasi, M.; Itoh, K.
2005-03-01
A force measurement technique has been developed for large-scale aerodynamic models with a short test time. The technique is based on direct acceleration measurements, with miniature accelerometers mounted on a test model suspended by wires. Measuring acceleration at two different locations, the technique can eliminate oscillations from natural vibration of the model. The technique was used for drag force measurements on a 3m long supersonic combustor model in the HIEST free-piston driven shock tunnel. A time resolution of 350μs is guaranteed during measurements, whose resolution is enough for ms order test time in HIEST. To evaluate measurement reliability and accuracy, measured values were compared with results from a three-dimensional Navier-Stokes numerical simulation. The difference between measured values and numerical simulation values was less than 5%. We conclude that this measurement technique is sufficiently reliable for measuring aerodynamic force within test durations of 1ms.
The impact of working technique on physical loads - an exposure profile among newspaper editors.
Lindegård, A; Wahlström, J; Hagberg, M; Hansson, G-A; Jonsson, P; Wigaeus Tornqvist, E
2003-05-15
The aim of this study was to investigate the possible associations between working technique, sex, symptoms and level of physical load in VDU-work. A study group of 32 employees in the editing department of a daily newspaper answered a questionnaire, about physical working conditions and symptoms from the neck and the upper extremities. Muscular load, wrist positions and computer mouse forces were measured. Working technique was assessed from an observation protocol for computer work. In addition ratings of perceived exertion and overall comfort were collected. The results showed that subjects classified as having a good working technique worked with less muscular load in the forearm (extensor carpi ulnaris p=0.03) and in the trapezius muscle on the mouse operating side (p=0.02) compared to subjects classified as having a poor working technique. Moreover there were no differences in gap frequency (number of episodes when muscle activity is below 2.5% of a reference contraction) or muscular rest (total duration of gaps) between the two working technique groups. Women in this study used more force (mean force p=0.006, peak force p=0.02) expressed as % MVC than the men when operating the computer mouse. No major differences were shown in muscular load, wrist postures, perceived exertion or perceived comfort between men and women or between cases and symptom free subjects. In conclusion a good working technique was associated with reduced muscular load in the forearm muscles and in the trapezius muscle on the mouse operating side. Moreover women used more force (mean force and peak force) than men when operating the click button (left button) of the computer mouse.
Extending CO2 cryogenic aerosol cleaning for advanced optical and EUV mask cleaning
NASA Astrophysics Data System (ADS)
Varghese, Ivin; Bowers, Charles W.; Balooch, Mehdi
2011-11-01
Cryogenic CO2 aerosol cleaning being a dry, chemically-inert and residue-free process is used in the production of optical lithography masks. It is an attractive cleaning option for the mask industry to achieve the requirement for removal of all printable soft defects and repair debris down to the 50nm printability specification. In the technique, CO2 clusters are formed by sudden expansion of liquid from high to almost atmospheric pressure through an optimally designed nozzle orifice. They are then directed on to the soft defects or debris for momentum transfer and subsequent damage free removal from the mask substrate. Unlike aggressive acid based wet cleaning, there is no degradation of the mask after processing with CO2, i.e., no critical dimension (CD) change, no transmission/phase losses, or chemical residue that leads to haze formation. Therefore no restriction on number of cleaning cycles is required to be imposed, unlike other cleaning methods. CO2 aerosol cleaning has been implemented for several years as full mask final clean in production environments at several state of the art mask shops. Over the last two years our group reported successful removal of all soft defects without damage to the fragile SRAF features, zero adders (from the cleaning and handling mechanisms) down to a 50nm printability specification. In addition, CO2 aerosol cleaning is being utilized to remove debris from Post-RAVE repair of hard defects in order to achieve the goal of no printable defects. It is expected that CO2 aerosol cleaning can be extended to extreme ultraviolet (EUV) masks. In this paper, we report advances being made in nozzle design qualification for optimum snow properties (size, velocity and flux) using Phase Doppler Anemometry (PDA) technique. In addition the two new areas of focus for CO2 aerosol cleaning i.e. pellicle glue residue removal on optical masks, and ruthenium (Ru) film on EUV masks are presented. Usually, the residue left over after the pellicle has been removed from returned masks (after long term usage/exposure in the wafer fab), requires a very aggressive SPM wet clean, that drastically reduces the available budget for mask properties (CD, phase/transmission). We show that CO2aerosol cleaning can be utilized to remove the bulk of the glue residue effectively, while preserving the mask properties. This application required a differently designed nozzle to impart the required removal force for the sticky glue residue. A new nozzle was developed and qualified that resulted in PRE in the range of 92-98%. Results also include data on a patterned mask that was exposed in a lithography stepper in a wafer production environment. On EUV mask, our group has experimentally demonstrated that 50 CO2 cleaning cycles of Ru film on the EUV Front-side resulted in no appreciable reflectivity change, implying that no degradation of the Ru film occurs.
2004-03-26
The alien plants include the Heliotropium and the Mexican thorn (Prosopis juliflora). These should be dug up, removed, and the area monitored to...controlled. On Round Hill, the alien plants include the Heliotropium and the Mexican Thorn (Prosopis juliflora). These should be dug up, removed, and
Effects of Forced Removal from Family and Culture on Indian Children.
ERIC Educational Resources Information Center
Avina, Cheryl
This paper recounts the author's removal as an Indian child to a non-Indian foster home and consequent alienation and identity crisis, and presents survey results from Indian adults with similar childhood experiences. The problems in this particular case began when, at age 5, the author moved with her family from the reservation to an urban…
Technologies for Arsenic Removal from Water: Current Status and Future Perspectives
Nicomel, Nina Ricci; Leus, Karen; Folens, Karel; Van Der Voort, Pascal; Du Laing, Gijs
2015-01-01
This review paper presents an overview of the available technologies used nowadays for the removal of arsenic species from water. Conventionally applied techniques to remove arsenic species include oxidation, coagulation-flocculation, and membrane techniques. Besides, progress has recently been made on the utility of various nanoparticles for the remediation of contaminated water. A critical analysis of the most widely investigated nanoparticles is presented and promising future research on novel porous materials, such as metal organic frameworks, is suggested. PMID:26703687
Technologies for Arsenic Removal from Water: Current Status and Future Perspectives.
Nicomel, Nina Ricci; Leus, Karen; Folens, Karel; Van Der Voort, Pascal; Du Laing, Gijs
2015-12-22
This review paper presents an overview of the available technologies used nowadays for the removal of arsenic species from water. Conventionally applied techniques to remove arsenic species include oxidation, coagulation-flocculation, and membrane techniques. Besides, progress has recently been made on the utility of various nanoparticles for the remediation of contaminated water. A critical analysis of the most widely investigated nanoparticles is presented and promising future research on novel porous materials, such as metal organic frameworks, is suggested.
The way from microscopic many-particle theory to macroscopic hydrodynamics.
Haussmann, Rudolf
2016-03-23
Starting from the microscopic description of a normal fluid in terms of any kind of local interacting many-particle theory we present a well defined step by step procedure to derive the hydrodynamic equations for the macroscopic phenomena. We specify the densities of the conserved quantities as the relevant hydrodynamic variables and apply the methods of non-equilibrium statistical mechanics with projection operator techniques. As a result we obtain time-evolution equations for the hydrodynamic variables with three kinds of terms on the right-hand sides: reversible, dissipative and fluctuating terms. In their original form these equations are completely exact and contain nonlocal terms in space and time which describe nonlocal memory effects. Applying a few approximations the nonlocal properties and the memory effects are removed. As a result we find the well known hydrodynamic equations of a normal fluid with Gaussian fluctuating forces. In the following we investigate if and how the time-inversion invariance is broken and how the second law of thermodynamics comes about. Furthermore, we show that the hydrodynamic equations with fluctuating forces are equivalent to stochastic Langevin equations and the related Fokker-Planck equation. Finally, we investigate the fluctuation theorem and find a modification by an additional term.
NASA Astrophysics Data System (ADS)
Lotfy, K.; Sarkar, N.
2017-11-01
In this work, a novel generalized model of photothermal theory with two-temperature thermoelasticity theory based on memory-dependent derivative (MDD) theory is performed. A one-dimensional problem for an elastic semiconductor material with isotropic and homogeneous properties has been considered. The problem is solved with a new model (MDD) under the influence of a mechanical force with a photothermal excitation. The Laplace transform technique is used to remove the time-dependent terms in the governing equations. Moreover, the general solutions of some physical fields are obtained. The surface taken into consideration is free of traction and subjected to a time-dependent thermal shock. The numerical Laplace inversion is used to obtain the numerical results of the physical quantities of the problem. Finally, the obtained results are presented and discussed graphically.
Analysis of forces developed during root canal preparation with the balanced force technique.
Blum, J Y; Machtou, P; Esber, S; Micallef, J P
1997-11-01
The aim of this study was to examine the forces and torque developed during root canal preparation with the balanced force technique using a recently described force-analyser device. A tooth was placed in a holder within the Endograph and forces and torques exerted were recorded. These parameters, which can be studied during preparation (on-line) or stored and examinated subsequently (off-line) generated endograms, which showed the forces generated with time. In addition, the endograms of preparations performed by students and endodontists, as well as deliberately induced failures in preparation technique (broken instruments), were compared. The values for the forces and torques depended on the size of the instruments and were related to the phase of the preparation. For the endodontists, the vertical and horizontal forces varied, respectively, from 0.08 +/- 0.01 kg for a size 15 to 0.65 +/- 0.10 kg for a size 45, and from 0.01 +/- 0.005 kg for a size 15 to 0.4 +/- 0.1 kg for a size 40. The torque varied from 0.08 +/- 1 kg mm-1 for a size 15 to 1.6 +/- 0.4 kg mm-1 for a size 45. With the endograms used as a reference, the relation between the developed vertical forces and the torque became more similar between the groups of endodontists and students. The Endograph provides a new approach to the analysis of preparation technique because it depicts the relationships between the different parameters of the preparation.
Nitrogen removal from digested slurries using a simplified ammonia stripping technique.
Provolo, Giorgio; Perazzolo, Francesca; Mattachini, Gabriele; Finzi, Alberto; Naldi, Ezio; Riva, Elisabetta
2017-11-01
This study assessed a novel technique for removing nitrogen from digested organic waste based on a slow release of ammonia that was promoted by continuous mixing of the digestate and delivering a continuous air stream across the surface of the liquid. Three 10-day experiments were conducted using two 50-L reactors. In the first two, nitrogen removal efficiencies were evaluated from identical digestates maintained at different temperatures (30°C and 40°C). At the start of the first experiment, the digestates were adjusted to pH 9 using sodium hydroxide, while in the second experiment pH was not adjusted. The highest ammonia removal efficiency (87%) was obtained at 40°C with pH adjustment. However at 40°C without pH adjustment, removal efficiencies of 69% for ammonia and 47% for total nitrogen were obtained. In the third experiment two different digestates were tested at 50°C without pH adjustment. Although the initial chemical characteristics of the digestates were different in this experiment, the ammonia removal efficiencies were very similar (approximately 85%). Despite ammonia removal, the pH increased in all experiments, most likely due to carbon dioxide stripping that was promoted by temperature and mixing. The technique proved to be suitable for removing nitrogen following anaerobic digestion of livestock manure because effective removal was obtained at natural pH (≈8) and 40°C, common operating conditions at typical biogas plants that process manure. Furthermore, the electrical energy requirement to operate the process is limited (estimated to be 3.8kWhm -3 digestate). Further improvements may increase the efficiency and reduce the processing time of this treatment technique. Even without these advances slow-rate air stripping of ammonia is a viable option for reducing the environmental impact associated with animal manure management. Copyright © 2017 Elsevier Ltd. All rights reserved.
Minimally invasive surgical technique for tethered surgical drains
Hess, Shane R; Satpathy, Jibanananda; Waligora, Andrew C; Ugwu-Oju, Obinna
2017-01-01
A feared complication of temporary surgical drain placement is from the technical error of accidentally suturing the surgical drain into the wound. Postoperative discovery of a tethered drain can frequently necessitate return to the operating room if it cannot be successfully removed with nonoperative techniques. Formal wound exploration increases anesthesia and infection risk as well as cost and is best avoided if possible. We present a minimally invasive surgical technique that can avoid the morbidity associated with a full surgical wound exploration to remove a tethered drain when other nonoperative techniques fail. PMID:28400669
A Novel Technique for Inferior Vena Cava Filter Extraction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnston, Edward William, E-mail: ed.johnston@doctors.org.uk; Rowe, Luke Michael Morgan; Brookes, Jocelyn
Inferior vena cava (IVC) filters are used to protect against pulmonary embolism in high-risk patients. Whilst the insertion of retrievable IVC filters is gaining popularity, a proportion of such devices cannot be removed using standard techniques. We describe a novel approach for IVC filter removal that involves snaring the filter superiorly along with the use of flexible forceps or laser devices to dissect the filter struts from the caval wall. This technique has used to successfully treat three patients without complications in whom standard techniques failed.
A novel capsulorhexis technique using shearing forces with cystotome.
Karim, Shah M R; Ong, Chin T; Sleep, Tamsin J
2010-05-15
To demonstrate a capsulorhexis technique using predominantly shearing forces with a cystotome on a virtual reality simulator and on a human eye. Our technique involves creating the initial anterior capsular tear with a cystotome to raise a flap. The flap left unfolded on the lens surface. The cystotome tip is tilted horizontally and is engaged on the flap near the leading edge of the tear. The cystotome is moved in a circular fashion to direct the vector forces. The loose flap is constantly swept towards the centre so that it does not obscure the view on the tearing edge. Our technique has the advantage of reducing corneal wound distortion and subsequent anterior chamber collapse. The capsulorhexis flap is moved away from the tear leading edge allowing better visualisation of the direction of tear. This technique offers superior control of the capsulorhexis by allowing the surgeon to change the direction of the tear to achieve the desired capsulorhexis size. The EYESI Surgical Simulator is a realistic training platform for surgeons to practice complex capsulorhexis techniques. The shearing forces technique is a suitable alternative and in some cases a far better technique in achieving the desired capsulorhexis.
Biomechanical implications of lateral pterygoid contribution to biting and jaw opening in humans.
Osborn, J W
1995-12-01
The contributions of the lateral pterygoid muscle to a variety of different tasks were analysed by a linear programming mode based on the equations for static equilibrium in three dimensions and containing 12 muscles. The model was used to study lateral pterygoid activity at maximum bite force (MBF) for changes in (i) the direction and point of application of the bite force, (ii) the orientation of the masseter and medial pterygoid muscles and (iii) the slope of the articular eminence (glenoid slope). The effects on MBF of removing one or both lateral pterygoids were also examined. Lateral pterygoid provided a very important indirect contribution to some clenching forces. Under some conditions removing one lateral pterygoid muscle (simulating guarding an injured muscle) halved the MBF. Its activity at MBF was reduced as masseter was tilted more forward, the glenoid slope was made more horizontal and the bite force was made more vertical. The muscle helped to oppose (balance) the horizontal reaction forces at the bite point and joints, which potentially pushed the condyle backward. A balancing muscle is now defined as one (like lateral pterygoid) whose activity increases the output force by far more than its direct contribution to that force. In a larger model containing 16 muscles, every muscle was most active when its line of action was parallel to the output force. Finally, in a model which divided lateral pterygoid into superior and inferior heads, activity suddenly switched from the superior head to the inferior head when the angle of opening changed from 120 degrees (forward from the vertical) to 140 degrees.
Fabrication of five-level ultraplanar micromirror arrays by flip-chip assembly
NASA Astrophysics Data System (ADS)
Michalicek, M. Adrian; Bright, Victor M.
2001-10-01
This paper reports a detailed study of the fabrication of various piston, torsion, and cantilever style micromirror arrays using a novel, simple, and inexpensive flip-chip assembly technique. Several rectangular and polar arrays were commercially prefabricated in the MUMPs process and then flip-chip bonded to form advanced micromirror arrays where adverse effects typically associated with surface micromachining were removed. These arrays were bonded by directly fusing the MUMPs gold layers with no complex preprocessing. The modules were assembled using a computer-controlled, custom-built flip-chip bonding machine. Topographically opposed bond pads were designed to correct for slight misalignment errors during bonding and typically result in less than 2 micrometers of lateral alignment error. Although flip-chip micromirror performance is briefly discussed, the means used to create these arrays is the focus of the paper. A detailed study of flip-chip process yield is presented which describes the primary failure mechanisms for flip-chip bonding. Studies of alignment tolerance, bonding force, stress concentration, module planarity, bonding machine calibration techniques, prefabrication errors, and release procedures are presented in relation to specific observations in process yield. Ultimately, the standard thermo-compression flip-chip assembly process remains a viable technique to develop highly complex prototypes of advanced micromirror arrays.
Axicons, prisms and integrators: searching for simple laser beam shaping solutions
NASA Astrophysics Data System (ADS)
Lizotte, Todd
2010-08-01
Over the last thirty five years there have been many papers presented at numerous conferences and published within a host of optical journals. What is presented in many cases is either too exotic or technically challenging in practical application terms and it could be said both are testaments to the imagination of engineers and researchers. For many brute force laser processing applications such as paint stripping, large area ablation or general skiving of flex circuits, the opportunity to use a beam shaper that is inexpensive is a welcomed tool. Shaping the laser beam for less demanding applications, provides for a more uniform removal rate and increases the overall quality of the part being processed. It is a well known fact customers like their parts to look good. Many times, complex optical beam shaping techniques are considered because no one is aware of the historical solutions that have been lost to the ages. These complex solutions can range in price from 10,000 to 60,000 and require many months to design and fabricate. This paper will provide an overview of various beam shaping techniques that are both elegant and simple in concept and design. Optical techniques using axicons, prisms and reflective integrators will be discussed in an overview format.
Recycling of end-of-life reverse osmosis membranes by oxidative treatment: a technical evaluation.
Coutinho de Paula, Eduardo; Gomes, Júlia Célia Lima; Amaral, Míriam Cristina Santos
2017-07-01
The adverse impacts caused by the disposal of thousands of tonnes per annum of reverse osmosis (RO) membranes modules have grown dramatically around the world. The objective of this study was to evaluate the technical feasibility of recycling by chemical oxidation of end-of-life RO membranes for applications in other separation processes with specifications less rigorous. The recycling technique consisted in to cause a membrane exposition with oxidant solutions in order to remove its aromatic polyamide layer and subsequent conversion to a porous membrane. The recycling technique was evaluated by water permeability and salt rejection tests before and after the oxidative treatments. Initially, membranes' chemical cleaning and pretreatment procedures were assessed. Among factors evaluated, the oxidizing agent, its concentration and pH, associated with the oxidative treatment time, showed important influence on the oxidation of the membranes. Results showed that sodium hypochlorite and potassium permanganate are efficient agents for the membrane recycling. The great increased permeability and decreased salt rejection indicated changes on membranes' selective properties. Scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), atomic force microscopy (AFM), and contact angle characterization techniques revealed marked changes on the main membranes' physical-chemical properties, such as morphology, roughness and hydrophobicity. Reuse of produced effluents and fouling tendency of recycled membranes were also evaluated.
Company fires worker after test reveals AIDS drug in his blood.
1996-02-09
[Name removed], a vitamin and herbal supplement manufacturer, claims that it terminated [name removed] because of the presence of a cannabinoid in his blood, not because he has AIDS. A random drug test revealed that Mr. [Name removed], a quality control inspector, had Marinol in his blood, a medication prescribed to enhance appetite. [Name removed]'s AIDS status was revealed when [name removed]'s physician proved that the prescription was legitimate. Solaray's policy allows AIDS patients to continue working as long as they meet acceptable performance standards. The American Civil Liberties Union Foundation of Utah filed suit on [name removed]'s behalf. Concomitantly, the U.S. Equal Employment Opportunity Commission (EEOC) concluded that [name removed] violates the Americans with Disabilities Act (ADA) by demanding medical records and forcing workers to undergo periodic medical exams. [Name removed] justifies its demand by citing an obligation to protect all employees, customers, and other visitors. [Name removed] has refused to settle out of court or to allow [name removed] to return to work. The company contends that Marinol, a psychoactive substance, negatively affects [name removed]'s ability to perform quality control tasks. Attorneys for [name removed] will begin the deposition process in February 1996.
Polydimethylsiloxane pressure sensors for force analysis in tension band wiring of the olecranon.
Zens, Martin; Goldschmidtboeing, Frank; Wagner, Ferdinand; Reising, Kilian; Südkamp, Norbert P; Woias, Peter
2016-11-14
Several different surgical techniques are used in the treatment of olecranon fractures. Tension band wiring is one of the most preferred options by surgeons worldwide. The concept of this technique is to transform a tensile force into a compression force that adjoins two surfaces of a fractured bone. Currently, little is known about the resulting compression force within a fracture. Sensor devices are needed that directly transduce the compression force into a measurement quality. This allows the comparison of different surgical techniques. Ideally the sensor devices ought to be placed in the gap between the fractured segments. The design, development and characterization of miniaturized pressure sensors fabricated entirely from polydimethylsiloxane (PDMS) for a placement within a fracture is presented. The pressure sensors presented in this work are tested, calibrated and used in an experimental in vitro study. The pressure sensors are highly sensitive with an accuracy of approximately 3 kPa. A flexible fabrication process for various possible applications is described. The first in vitro study shows that using a single-twist or double-twist technique in tension band wiring of the olecranon has no significant effect on the resulting compression forces. The in vitro study shows the feasibility of the proposed measurement technique and the results of a first exemplary study.
Lasers for tattoo removal: a review.
Choudhary, Sonal; Elsaie, Mohamed L; Leiva, Angel; Nouri, Keyvan
2010-09-01
Tattoos have existed and have been used as an expression of art by man for ages-and so have the techniques to remove them. Lasers based on the principle of selective photothermolysis are now being used to remove black as well as colorful tattoos with varying successes. The commonly used lasers for tattoo removal are the Q-switched 694-nm ruby laser, the Q-switched 755-nm alexandrite laser, the 1,064-nm Nd:YAG laser, and the 532-nm Nd:YAG laser. Newer techniques and methods are evolving in tattoo removal with lasers. Choosing the right laser for the right tattoo color is necessary for a successful outcome. Our review aims to understand the principles of laser tattoo removal and their applications for different types and colors of tattoos. The review also highlights the complications that can occur such as dyspigmentation, allergic reactions, epidermal debris, ink darkening, and so on, in this process and how to prevent them.
ERIC Educational Resources Information Center
Civan, Andrea; Teller, Davida Y.; Palmer, John
2005-01-01
We here describe a discrete trial, forced-choice, combined spontaneous preference and novelty preference technique. In this technique, spontaneous preferences and familiarized (postfamiliarization) preferences are measured with the same stimulus pairs under closely parallel conditions. A variety of systematic stimulus variations were used in…
1995-05-18
U.S. and German personnel of the X-31 Enhanced Fighter Maneuverability Technology Demonstrator aircraft program removing the right wing of the aircraft, which was ferried from Edwards Air Force Base, California, to Europe on May 22, 1995 aboard an Air Force Reserve C-5 transport. The X-31, based at the NASA Dryden Flight Research Center was ferried to Europe and flown in the Paris Air Show in June. The wing of the X-31 was removed on May 18, 1995, to allow the aircraft to fit inside the C-5 fuselage. Officials of the X-31 project used Manching, Germany, as a staging base to prepare the aircraft for the flight demonstration. At the air show, the X-31 demonstrated the value of using thrust vectoring (directing engine exhaust flow) coupled with advanced flight control systems to provide controlled flight at very high angles of attack. The aircraft arrived back at Edwards in a Air Force Reserve C-5 on June 25, 1995 and off loaded at Dryden June 27. The X-31 aircraft was developed jointly by Rockwell International's North American Aircraft Division (now part of Boeing) and Daimler-Benz Aerospace (formerly Messerschmitt-Bolkow-Blohm), under sponsorship by the U.S. Department of Defense and the German Federal Ministry of Defense.
Noise removing in encrypted color images by statistical analysis
NASA Astrophysics Data System (ADS)
Islam, N.; Puech, W.
2012-03-01
Cryptographic techniques are used to secure confidential data from unauthorized access but these techniques are very sensitive to noise. A single bit change in encrypted data can have catastrophic impact over the decrypted data. This paper addresses the problem of removing bit error in visual data which are encrypted using AES algorithm in the CBC mode. In order to remove the noise, a method is proposed which is based on the statistical analysis of each block during the decryption. The proposed method exploits local statistics of the visual data and confusion/diffusion properties of the encryption algorithm to remove the errors. Experimental results show that the proposed method can be used at the receiving end for the possible solution for noise removing in visual data in encrypted domain.
Hinkson, Larry; Suermann, Mia Amelie; Hinkson, Susan; Henrich, Wolfgang
2017-08-01
The primary objective is to assess the reduction in manual removal of placenta with the Windmill technique of placenta delivery in patients with retained placenta. The Windmill technique involves the application of continuous 360° umbilical cord traction and rotation in such a manner as to be perpendicular to the direction of the birth canal at the level of the introitus. This rotation through 360° is repeated slowly with movement akin to the motion of the blades of a windmill. We performed a 3-year retrospective case-control study at the Charité University Hospital in Berlin. Patients with a retained placenta more than 30min following failed traditional interventions were consented and offered the Windmill technique of placenta delivery. Study cases were compared to controls where an operative manual removal of placenta was performed. Patients with suspected placenta implantation problems, uterine atony, bleeding due to vaginal tract injury and coagulation disturbances were excluded. Over the study period 14 patients were recruited to the study arm and 17 patients were in the control group. With the Windmill technique for retained placenta, 86% (12/14, p<0.001) of patients avoided invasive operative manual removal of the placenta in theatre. There was a statistically significant reduction in mean blood loss (429ml vs 724ml, p=0.001) and mean postoperative fall in hemoglobin values (1.3g/dl vs 2.5g/dl, p=0.04). There was a reduction in the time to delivery of the placenta, antibiotic prophylaxis and use of general anesthesia. The Windmill technique for the delivery of the retained placenta is a simple, safe, effective and easy to teach technique that reduces invasive operative manual removal of the placenta, postpartum blood loss and delay in the placenta delivery. This innovative technique can also be a lifesaving intervention especially in areas with limited or no access to operative facilities. Copyright © 2017 Elsevier B.V. All rights reserved.
Surgical Removal of Neglected Soft Tissue Foreign Bodies by Needle-Guided Technique
Ebrahimi, Ali; Radmanesh, Mohammad; Rabiei, Sohrab; kavoussi, Hossein
2013-01-01
Introduction: The phenomenon of neglected foreign bodies is a significant cause of morbidity in soft tissue injuries and may present to dermatologists as delayed wound healing, localized cellulitis and inflammation, abscess formation, or foreign body sensation. Localization and removal of neglected soft tissue foreign bodies (STFBs) is complex due to possible inflammation, indurations, granulated tissue, and fibrotic scar. This paper describes a simple method for the quick localization and (surgical) removal of neglected STFBs using two 23-gauge needles without ultrasonographic or fluoroscopic guidance. Materials and Methods: A technique based on the use of two 23-gauge needles was used in 41 neglected STFBs in order to achieve proper localization and fixation of foreign bodies during surgery. Results: Surgical removal was successful in 38 of 41 neglected STFBs (ranging from 2–13mm in diameter). Conclusion: The cross-needle-guided technique is an office-based procedure that allows the successful surgical removal of STFBs using minimal soft tissue exploration and dissection via proper localization, fixation, and propulsion of the foreign body toward the surface of the skin. PMID:24303416
A comparative study of two different uncinectomy techniques: swing-door and classical.
Singhania, Ankit A; Bansal, Chetan; Chauhan, Nirali; Soni, Saurav
2012-01-01
The aim of this study was to determine which technique of uncinectomy, classical or swing door technique. Four hundred eighty Cases of sinusitis were selected and operated for Functional Endoscopic Sinus Surgery (FESS). Out of these, in 240 uncinectomies classical uncinectomy was done whereas in another 240 uncinectomies swing door technique was used. Initially patients were medically managed treated according to their symptoms and prior management. Patients who had received previous adequate medical management were evaluated with CT scan of the sinuses. If disease still persists than they were operated for FESS. The authors' experience indicates that Functional endoscopic sinus surgery can be performed under local or general anesthesia, as permitted or tolerated. In this review classical technique was used in 240 uncinectomies. Out of this, ethmoidal complex injury was noted in 4 cases, missed maxillary ostium syndrome (incomplete removal) was reported in 12 patients and orbital fat exposure was encountered in 5 patients. As compared to 240 uncinectomies done with swing door technique, incomplete removal was evident in 2 cases and lacrimal duct injury was reported in 3 cases. 'Evidence that underscores how this 'swing door technique' successfully combines 'the conservation goals of the anterior-to-posterior approach and anatomic virtues of the posterior-to-anterior approach to ethmoidectomy of the total 480 uncinectomies operated. Out of which 240 uncinectomies have been performed using the 'swing-door' technique. The 240 uncinectomies performed using classical technique were used as controls. The incidence of orbital penetration, incomplete removal, ethmoidal complex injury and ostium non-identification was significantly less with the new technique. Three lacrimal injuries occurred with the 'swing-door' technique compared to no injuries with classical technique. The authors recommend swing door technique as it is easy to learn, allows complete removal of the uncinate flush with the lateral nasal wall and allows easy identification of the natural ostium of the maxillary sinus without injuring the ethmoidal complex.
Unsteady force estimation using a Lagrangian drift-volume approach
NASA Astrophysics Data System (ADS)
McPhaden, Cameron J.; Rival, David E.
2018-04-01
A novel Lagrangian force estimation technique for unsteady fluid flows has been developed, using the concept of a Darwinian drift volume to measure unsteady forces on accelerating bodies. The construct of added mass in viscous flows, calculated from a series of drift volumes, is used to calculate the reaction force on an accelerating circular flat plate, containing highly-separated, vortical flow. The net displacement of fluid contained within the drift volumes is, through Darwin's drift-volume added-mass proposition, equal to the added mass of the plate and provides the reaction force of the fluid on the body. The resultant unsteady force estimates from the proposed technique are shown to align with the measured drag force associated with a rapid acceleration. The critical aspects of understanding unsteady flows, relating to peak and time-resolved forces, often lie within the acceleration phase of the motions, which are well-captured by the drift-volume approach. Therefore, this Lagrangian added-mass estimation technique opens the door to fluid-dynamic analyses in areas that, until now, were inaccessible by conventional means.
Haas, Edwin Gerard; Beauman, Ronald; Palo, Jr., Stefan
2013-01-29
The invention provides a device and method for actuating electrical switches remotely. The device is removably attached to the switch and is actuated through the transfer of a user's force. The user is able to remain physically removed from the switch site obviating need for protective equipment. The device and method allow rapid, safe actuation of high-voltage or high-current carrying electrical switches or circuit breakers.
Development of an air knife to remove seed coat fragments during lint cleaning
USDA-ARS?s Scientific Manuscript database
An air knife is a tool commonly used to blow off debris in a manufacturing line. The knife may also be used to break the attachment force between a lint cleaner saw and a seed coat fragment (SCF) with attached fiber, and remove them. Work continued on evaluating an auxiliary air knife mounted on t...
During the summer of 1996, a pilot-scale demonstration of a surfactant enhanced aquifer remediation (SEAR) process for removal of dense non-aqueous phase liquids (DNAPLs) from soils was conducted at Hill Air Force Base in Layton, Utah. Five thousand gallons of the extracted DNAP...
Muscle optimization techniques impact the magnitude of calculated hip joint contact forces.
Wesseling, Mariska; Derikx, Loes C; de Groote, Friedl; Bartels, Ward; Meyer, Christophe; Verdonschot, Nico; Jonkers, Ilse
2015-03-01
In musculoskeletal modelling, several optimization techniques are used to calculate muscle forces, which strongly influence resultant hip contact forces (HCF). The goal of this study was to calculate muscle forces using four different optimization techniques, i.e., two different static optimization techniques, computed muscle control (CMC) and the physiological inverse approach (PIA). We investigated their subsequent effects on HCFs during gait and sit to stand and found that at the first peak in gait at 15-20% of the gait cycle, CMC calculated the highest HCFs (median 3.9 times peak GRF (pGRF)). When comparing calculated HCFs to experimental HCFs reported in literature, the former were up to 238% larger. Both static optimization techniques produced lower HCFs (median 3.0 and 3.1 pGRF), while PIA included muscle dynamics without an excessive increase in HCF (median 3.2 pGRF). The increased HCFs in CMC were potentially caused by higher muscle forces resulting from co-contraction of agonists and antagonists around the hip. Alternatively, these higher HCFs may be caused by the slightly poorer tracking of the net joint moment by the muscle moments calculated by CMC. We conclude that the use of different optimization techniques affects calculated HCFs, and static optimization approached experimental values best. © 2014 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.
Bramante, Clovis Monteiro; Fidelis, Natasha Siqueira; Assumpção, Tatiana Santos; Bernardineli, Norberti; Garcia, Roberto Brandão; Bramante, Alexandre Silva; de Moraes, Ivaldo Gomes
2010-11-01
This ex vivo study evaluated the heat release, time required, and cleaning efficacy of MTwo (VDW, Munich, Germany) and ProTaper Universal Retreatment systems (Dentsply/Maillefer, Ballaigues, Switzerland) and hand instrumentation in the removal of filling material. Sixty single-rooted human teeth with a single straight canal were obturated with gutta-percha and zinc oxide and eugenol-based cement and randomly allocated to 3 groups (n = 20). After 30-day storage at 37 °C and 100% humidity, the root fillings were removed using ProTaper UR, MTwo R, or hand files. Heat release, time required, and cleaning efficacy data were analyzed statistically (analysis of variance and the Tukey test, α = 0.05). None of the techniques removed the root fillings completely. Filling material removal with ProTaper UR was faster but caused more heat release. Mtwo R produced less heat release than the other techniques but was the least efficient in removing gutta-percha/sealer. ProTaper UR and MTwo R caused the greatest and lowest temperature increase on root surface, respectively; regardless of the type of instrument, more heat was released in the cervical third. Pro Taper UR needed less time to remove fillings than MTwo R. All techniques left filling debris in the root canals. Copyright © 2010 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
An integrated anaerobic digestion and UV photocatalytic treatment of distillery wastewater.
Apollo, Seth; Onyango, Maurice S; Ochieng, Aoyi
2013-10-15
Anaerobic up-flow fixed bed reactor and annular photocatalytic reactor were used to study the efficiency of integrated anaerobic digestion (AD) and ultraviolet (UV) photodegradation of real distillery effluent and raw molasses wastewater (MWW). It was found that UV photodegradation as a stand-alone technique achieved colour removal of 54% and 69% for the distillery and MWW, respectively, with a COD reduction of <20% and a negligible BOD reduction. On the other hand, AD as a single treatment technique was found to be effective in COD and BOD reduction with efficiencies of above 75% and 85%, respectively, for both wastewater samples. However, the AD achieved low colour removal efficiency, with an increase in colour intensity of 13% recorded when treating MWW while a colour removal of 51% was achieved for the distillery effluent. The application of UV photodegradation as a pre-treatment method to the AD process reduced the COD removal and biogas production efficiency. However, an integration in which UV photodegradation was employed as a post-treatment to the AD process achieved high COD removal of above 85% for both wastewater samples, and colour removal of 88% for the distillery effluent. Thus, photodegradation can be employed as a post-treatment technique to an AD system treating distillery effluent for complete removal of the biorecalcitrant and colour imparting compounds. Copyright © 2013 Elsevier B.V. All rights reserved.
Kajbafzadeh, Abdol-Mohammad; Zeinoddini, Atefeh; Ebadi, Maryam; Heidari, Reza; Tajalli, Afshin
2014-04-01
The purpose of the study is to describe our experience with the application of externalized double-J ureteral stent (DJUS) during pyeloplasty for correction of ureteropelvic junction obstruction (UPJO) in order to avoid cystoscopy for stent removal. Pyeloplasty was performed in 523 infants with UPJO using miniature pyeloplasty technique. After removing the obstructed segment, a 3-Fr. DJUS was placed into the ureter. In order to avoid cystoscopy for the removal of the stent, a feeding tube was passed through the skin and renal pelvis via a separate stab incision, connected to the DJUS and secured to the external body surface (skin), and the pyeloplasty was completed. The feeding tube along with the stent was removed after 3-4 weeks, respectively. Postoperative follow-up visits were performed 1, 3, and 6 months after the procedure. The mean operative time was 49 min (range 41-79). Patients were discharged after 17 ± 2 h (mean ± SD). No patient experienced bladder spasm or anticholinergic administration. Forty-four patients (8.4 %) experienced minor complications including non-febrile urinary tract infections and mild hematuria. No major complication including urinoma, leakage, and stent migration or displacement was observed during the follow-up period. Stent removal was tolerated by 99.8 % of patients in an outpatient setting with minimal discomfort without performing cystoscopy. Using external DJUS along with a pyelocutaneous stent extension during pyeloplasty is a safe, feasible, and beneficial technique. This technique resulted in high success rate with minimal cost and no renal injury. The non-cystoscopic stent removal and elimination of urethral catheterization following pyeloplasty are the other advantages of this technique.
Transurethral removal of a cystic urolith in a mare using a laparoscopic specimen pouch.
Williamson, A J; McKinnon, A O
2017-05-01
Cystic urolithiasis is the most common form of urolithiasis reported in horses. In contrast to the gelding or stallion, clinical disease is less common in the mare and manual removal techniques are possible because of their shorter, wider urethral anatomy. However, these manual removal techniques can be traumatic and are limited by the size of the urolith. This report describes the use of a commercial laparoscopic specimen pouch to remove a cystic urolith in a mare. This approach may allow the extraction of larger uroliths per urethra in the mare, while affording some protection to the mucosa of the bladder neck and urethra. © 2017 Australian Veterinary Association.
Interpretation of NO and OH Emission from 1976 Airborne Measurements,
1979-01-01
Development. .~\\ . 0.. ’ ~1 AIR FORCE GEOPHYSICS LABORATORY AIR FORCE SYSTEMS COMMAND UNITED STATES AIR FORCE UANSCOM APE , MASSACHUSETTS 01731 79 09 17 ...INGSCHEDULE 16. DISTRIBUTION STATEMENT (of tAle R.port) Approved for public release , distribution unlimited 17 . DISTRIBUTION STATEMENT (of iS. abet,act .nt...for March 7, 1976 from 1000 to 1030 UT, and processed 2.94 pm data with the OH background removed 17 Figure 5. Measured 39l4~ , 2.94 pm , and 1.7 pm
Overview of the Machine-Tool Task Force
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sutton, G.P.
1981-06-08
The Machine Tool Task Force, (MTTF) surveyed the state of the art of machine tool technology for material removal for two and one-half years. This overview gives a brief summary of the approach, specific subjects covered, principal conclusions and some of the key recommendations aimed at improving the technology and advancing the productivity of machine tools. The Task Force consisted of 123 experts from the US and other countries. Their findings are documented in a five-volume report, Technology of Machine Tools.
Power, Jonathan D; Plitt, Mark; Gotts, Stephen J; Kundu, Prantik; Voon, Valerie; Bandettini, Peter A; Martin, Alex
2018-02-27
"Functional connectivity" techniques are commonplace tools for studying brain organization. A critical element of these analyses is to distinguish variance due to neurobiological signals from variance due to nonneurobiological signals. Multiecho fMRI techniques are a promising means for making such distinctions based on signal decay properties. Here, we report that multiecho fMRI techniques enable excellent removal of certain kinds of artifactual variance, namely, spatially focal artifacts due to motion. By removing these artifacts, multiecho techniques reveal frequent, large-amplitude blood oxygen level-dependent (BOLD) signal changes present across all gray matter that are also linked to motion. These whole-brain BOLD signals could reflect widespread neural processes or other processes, such as alterations in blood partial pressure of carbon dioxide (pCO 2 ) due to ventilation changes. By acquiring multiecho data while monitoring breathing, we demonstrate that whole-brain BOLD signals in the resting state are often caused by changes in breathing that co-occur with head motion. These widespread respiratory fMRI signals cannot be isolated from neurobiological signals by multiecho techniques because they occur via the same BOLD mechanism. Respiratory signals must therefore be removed by some other technique to isolate neurobiological covariance in fMRI time series. Several methods for removing global artifacts are demonstrated and compared, and were found to yield fMRI time series essentially free of motion-related influences. These results identify two kinds of motion-associated fMRI variance, with different physical mechanisms and spatial profiles, each of which strongly and differentially influences functional connectivity patterns. Distance-dependent patterns in covariance are nearly entirely attributable to non-BOLD artifacts.
Single-band mucosectomy for granular cell tumor of the esophagus: safe and easy technique.
Battaglia, G; Rampado, S; Bocus, P; Guido, E; Portale, G; Ancona, E
2006-08-01
Mucosectomy involves resection of a digestive wall fragment that frequently removes a part or even all of the submucosal mass. The single-band mucosectomy technique was used to remove a granular cell tumor (GCT) of the esophagus. Only 3% of GCTs, which are relatively uncommon neoplasms, arise in the esophagus. Ultrasonography has allowed for more frequent recognition and better definition of this disease. Until recently, surgical resection of the esophagus has been the only treatment alternative to endoscopic surveillance. Endoscopic techniques such as mucosal resection (EMR), laser, and argon plasma have been proposed as safe and effective alternatives to surgery. However, to date, only a few reports of these endoscopic techniques have been published. This study aimed to evaluate the safety and feasibility of single-band mucosectomy for removing a GCT of the esophagus. Six patients (1 man and 5 women; mean age, 45 years) with a GCT were studied between January 2000 and May 2004. They underwent EMR after endoscopic ultrasonography. The EMR was performed with a diathermic loop after injection of saline solution into the esophageal wall. Only one session was necessary for removal of the tumor from all 6 patients, and no complication was observed. During a mean clinical endoscopic follow-up period of 36 months, no recurrences, scars, or stenoses were observed. These findings show EMR to be a safe and effective technique that allows complete removal of GCTs. Furthermore, this technique provides tissue for a definitive pathologic diagnosis, which laser and argon plasma do not provide. We recommend EMR as the treatment of choice for GCTs after an accurate ultrasonographic evaluation.
A Study of a Super-Cooling Technique for Removal of Rubber from Solid-Rubber Tires.
environmental pollution . In answering these questions, an experiment is conducted to validate the concept and to determine liquid...is performed to compare the costs of the super-cooling technique with those of the brake drum lathe method of rubber removal. Safety and environmental pollution factors are also investigated and
Image-guided scapulothoracic arthroscopy for removing firearm projectiles
Ejnisman, Benno; Andreoli, Carlos Vicente; Carvalho, Cassiano Diniz; Pochini, Alberto De Castro
2014-01-01
Scapulothoracic arthroscopy is gaining recognition among arthroscopic procedures as it is considered a relatively low morbidity procedure; also, continuing studies of this technique are making it safer. Scapulothoracic arthroscopy can be used for removal of a foreign body. This case report describes the removal of a firearm projectile using image-guided arthroscopy, highlighting the anatomical aspects and characteristics of the surgical technique. In this case, the patient recovered uneventfully, with complete remission of symptoms in 30 days, returning to his usual activities within 2 months after surgery. PMID:25480137
The Fate of Trace Contaminants in a Crewed Spacecraft Cabin Environment
NASA Technical Reports Server (NTRS)
Perry, Jay L.; Kayatin, Matthew J.
2016-01-01
Trace chemical contaminants produced via equipment offgassing, human metabolic sources, and vehicle operations are removed from the cabin atmosphere by active contamination control equipment and incidental removal by other air quality control equipment. The fate of representative trace contaminants commonly observed in spacecraft cabin atmospheres is explored. Removal mechanisms are described and predictive mass balance techniques are reviewed. Results from the predictive techniques are compared to cabin air quality analysis results. Considerations are discussed for an integrated trace contaminant control architecture suitable for long duration crewed space exploration missions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sotiriadis, Charalampos; Hajdu, Steven David; Degrauwe, Sophie
With the increased use of implanted venous access devices (IVADs) for continuous long-term venous access, several techniques such as percutaneous endovascular fibrin sheath removal, have been described, to maintain catheter function. Most standard techniques do not capture the stripped fibrin sheath, which is subsequently released in the pulmonary circulation and may lead to symptomatic pulmonary embolism. The presented case describes an endovascular technique which includes stripping, capture, and removal of fibrin sheath using a novel filter device. A 64-year-old woman presented with IVAD dysfunction. Stripping was performed using a co-axial snare to the filter to capture the fibrin sheath. Themore » captured fragment was subsequently removed for visual and pathological verification. No immediate complication was observed and the patient was discharged the day of the procedure.« less
NASA Astrophysics Data System (ADS)
Garber, E. A.; Timofeeva, M. A.
2016-11-01
New propositions are introduced into the technique of energy-force calculation of pinch-pass mills in order to determine the energy-force and technological parameters of skin rolling of cold-rolled steel strips at the minimum errors. The application of these propositions decreases the errors of calculating the forces and torques in a working stand by a factor of 3-5 as compared to the calculation according to the well-known technique, saves the electric power in the existing mills, and demonstrates the possibility of decreasing the dimensions of working stands and the power of the rolling mill engine.
Ji, Jong-Hun; Shafi, Mohamed; Moon, Chang-Yun; Park, Sang-Eun; Kim, Yeon-Jun; Kim, Sung-Eun
2013-11-01
Arthroscopic removal, now the main treatment option, has almost replaced open surgery for treatment of resistant calcific tendinitis. In some cases of chronic calcific tendinitis of the shoulder, the calcific materials are hard and adherent to the tendon. Removal of these materials can cause significant intratendinous tears between the superficial and deep layers of the degenerated rotator cuff. Thus far, there are no established surgical techniques for removing the calcific materials while ensuring cuff integrity. Good clinical results for rotator cuff repair were achieved by using an arthroscopic suture bridge technique in patients with long-standing calcific tendinitis. Intact rotator cuff integrity and recovery of signal change on follow-up magnetic resonance imaging scans were confirmed. This is a technical note about a surgical technique and its clinical results with a review of relevant published reports. © 2013 Chinese Orthopaedic Association and Wiley Publishing Asia Pty Ltd.
NASA Astrophysics Data System (ADS)
Selvaraj, A.; Nambi, I. M.
2014-12-01
In this study, an innovative technique of ZVI mediated 'coupling of Fenton like oxidation of phenol and Cr(VI) reduction technique' was attempted. The hypothesis is that Fe3+ generated from Cr(VI) reduction process acts as electron acceptor and catalyst for Fenton's Phenol oxidation process. The Fe2+ formed from Fenton reactions can be reused for Cr(VI) reduction. Thus iron can be made to recycle between two reactions, changing back and forth between Fe2+ and Fe3+ forms, makes treatment sustainable.(Fig 1) This approach advances current Fenton like oxidation process by (i)single system removal of heavy metal and organic matter (ii)recycling of iron species; hence no additional iron required (iii)more contaminant removal to ZVI ratio (iv)eliminating sludge related issues. Preliminary batch studies were conducted at different modes i) concurrent removal ii) sequential removal. The sequential removal was found better for in-situ PRB applications. PRB was designed based on kinetic rate slope and half-life time, obtained from primary column study. This PRB has two segments (i)ZVI segment[Cr(VI)] (ii)iron species segment[phenol]. This makes treatment sustainable by (i) having no iron ions in outlet stream (ii)meeting hypothesis and elongates the life span of PRB. Sequential removal of contaminates were tested in pilot scale PRB(Fig 2) and its life span was calculated based on the exhaustion of filling material. Aqueous, sand and iron aliquots were collected at various segments of PRB and analyzed for precipitation and chemical speciation thoroughly (UV spectrometer, XRD, FTIR, electron microscope). Chemical speciation profile eliminates the uncertainties over in-situ PRB's long term performance. Based on the pilot scale PRB study, 'field level PRB wall construction' was suggested to remove heavy metal and organic compounds from Pallikaranai marshland(Fig 3)., which is contaminated with leachate coming from nearby Perungudi dumpsite. This research provides (i)deeper insight into the environmental friendly, accelerated, sustainable technique for combined removal of organic matter and heavy metal (ii)evaluation of the novel technique in PRB, which resulted in PRB's increased life span (iii)designing of PRB to remediate the marshland and its ecosystem, thus save the habitats related to it.
Fuck, Lars-Michael; Wiechmann, Dirk; Drescher, Dieter
2005-09-01
Over the last few years, lingual appliances have become an established orthodontic treatment technique. Many studies have concentrated on various esthetic aspects, on laboratory and clinical procedures, and on patient comfort and compliance. The orthodontic force systems of these appliances, however, have not yet been investigated. The aim of this study was thus to determine the forces and moments produced by a new lingual bracket system during the leveling phase of orthodontic treatment and to compare those with the corresponding force system of a labial straight-wire appliance. The intra-oral situation of ten patients undergoing orthodontic treatment was replicated in measurement casts fitted with lingual and labial brackets. Special care was taken to precisely reproduce each patient's interbracket geometry. We measured each tooth's force systems as generated by a leveling arch inserted into the lingual and labial brackets. The resulting force systems of both appliances were found to be quite similar with regard to the magnitude of most force and moment components. Only the first molars were subjected to considerably greater single forces with the lingual appliance. Tipping moments were found to be significantly smaller with the lingual technique, whereas the rotational moments were significantly smaller with the labial appliance. All in all we noted significant differences between the two techniques only in certain areas which upon closer examination were distributed over only a few tooth types. The initial force systems produced by the new lingual bracket system proved to be comparable with those delivered by a conventional straight-wire appliance. The actual levels of forces and moments, however, were found in certain cases to be too heavy with both techniques. We therefore recommend the development of leveling wires producing considerably lighter forces and moments.
Artificial-intelligence-based optimization of the management of snow removal assets and resources.
DOT National Transportation Integrated Search
2002-10-01
Geographic information systems (GIS) and artificial intelligence (AI) techniques were used to develop an intelligent : snow removal asset management system (SRAMS). The system has been evaluated through a case study examining : snow removal from the ...
Wang, Hui; Yu, Yi-Fei; Chen, Qian-Wang; Cheng, Kai
2011-01-21
This communication demonstrates superparamagnetic nanosized particles with a magnetic core and a porous carbon shell (thickness of 11 nm), which can remove 97% of Pb(2+) ions from an acidic aqueous solution at a Pb(2+) ion concentration of 100 mg L(-1). It is suggested that a weak electrostatic force of attraction between the heavy metal ions and the nanoparticles and the heavy metal ions adsorption on the mesopore carbon shell contribute most to the superior removal property.
Performance capabilities of a JPL dual-arm advanced teleoperation system
NASA Technical Reports Server (NTRS)
Szakaly, Z. F.; Bejczy, A. K.
1991-01-01
The system comprises: (1) two PUMA 560 robot arms, each equipped with the latest JPL developed smart hands which contain 3-D force/moment and grasp force sensors; (2) two general purpose force reflecting hand controllers; (3) a NS32016 microprocessors based distributed computing system together with JPL developed universal motor controllers; (4) graphics display of sensor data; (5) capabilities for time delay experiments; and (6) automatic data recording capabilities. Several different types of control modes are implemented on this system using different feedback control techniques. Some of the control modes and the related feedback control techniques are described, and the achievable control performance for tracking position and force trajectories are reported. The interaction between position and force trajectory tracking is illustrated. The best performance is obtained by using a novel, task space error feedback technique.
Jefferson, S.
1958-01-28
This patent relates to a device normally termed a godevil for use in clearing pipes of sludge, and in particular describes an arrangement for housing a radioactive source within a go-devil whereby the source is removed from a radioactivity shield for detection purposes only when the go-devil is in use. In the described go-devil the radioactive source is housed in a member attached to a piston. Under normal pressure conditions the piston is forced in a direction to position the source within a lead shield. A bellows senses the pressure external to the go-devil and acts through a hydraulic line to force the piston in a direction to remove the source from the shield as long as the pressure is above a pre-set value.
Calibration of a horizontally acting force transducer with the use of a simple pendulum
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taberner, Andrew J.; Hunter, Ian W.; BioInstrumentation Laboratory, Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139 and Institute for Soldier Nanotechnologies, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139
This article details the implementation of a method for calibrating horizontally measuring force transducers using a pendulum. The technique exploits the sinusoidal inertial force generated by a suspended mass as it pendulates about a point on the measurement axis of the force transducer. The method is used to calibrate a reconfigurable, custom-made force transducer based on exchangeable cantilevers with stiffness ranging from 10 to 10{sup 4} N/m. In this implementation, the relative combined standard uncertainty in the calibrated transducer stiffness is 0.41% while the repeatability of the calibration technique is 0.46%.
Effect of volatile removal during molding on the properties of two phenolic-fiber composites
NASA Technical Reports Server (NTRS)
Price, H. L.; Lucy, M. H.
1974-01-01
A comparison has been made of the effect of three volatile-removing techniques during molding on the properties of phenolic-fiber composites. The first technique involved heating the molding compound from one side, initiating the volatile-producing reactions, and driving these volatiles through the compound toward the cooler side. The second technique involved the application of a vacuum to the molding cavity before and during the cure cycle. The third technique was a combination of the first two. These techniques were used in the compression molding of phenolic-asbestos and phenolic-glass composites. The effects of both the individual and combined techniques on the mechanical, thermal, and sorption properties of the composites are reported.
Dissolved oxygen as a key parameter to aerobic granule formation.
Sturm, B S McSwain; Irvine, R L
2008-01-01
Much research has asserted that high shear forces are necessary for the formation of aerobic granular sludge in Sequencing Batch Reactors (SBRs). In order to distinguish the role of shear and dissolved oxygen on granule formation, two separate experiments were conducted with three bench-scale SBRs. In the first experiment, an SBR was operated with five sequentially decreasing superficial upflow gas velocities ranging from 1.2 to 0.4 cm s(-1). When less than 1 cm s(-1) shear was applied to the reactor, aerobic granules disintegrated into flocs, with corresponding increases in SVI and effluent suspended solids. However, the dissolved oxygen also decreased from 8 mg L(-1) to 5 mg L(-1), affecting the Feast/Famine regime in the SBR and the substrate removal kinetics. A second experiment operated two SBRs with an identical shear force of 1.2 cm s(-1), but two dissolved oxygen concentrations. Even when supplied a high shear force, aerobic granules could not form at a dissolved oxygen less than 5 mg L(-1), with a Static Fill. These results indicate that the substrate removal kinetics and dissolved oxygen are more significant to granule formation than shear force. Copyright IWA Publishing 2008.
NASA Astrophysics Data System (ADS)
Yilbas, Bekir Sami.; Ali, Haider; Khaled, Mazen M.; Al-Aqeeli, Nasser; Abu-Dheir, Numan; Varanasi, Kripa K.
2015-10-01
Recent developments in climate change have increased the frequency of dust storms in the Middle East. Dust storms significantly influence the performances of solar energy harvesting systems, particularly (photovoltaic) PV systems. The characteristics of the dust and the mud formed from this dust are examined using various analytical tools, including optical, scanning electron, and atomic force microscopies, X-ray diffraction, energy spectroscopy, and Fourier transform infrared spectroscopy. The adhesion, cohesion and frictional forces present during the removal of dry mud from the glass surface are determined using a microtribometer. Alkali and alkaline earth metal compounds in the dust dissolve in water to form a chemically active solution at the glass surface. This solution modifies the texture of the glass surface, thereby increasing the microhardness and decreasing the transmittance of the incident optical radiation. The force required to remove the dry mud from the glass surface is high due to the cohesive forces that result from the dried mud solution at the interface between the mud and the glass. The ability altering the characteristics of the glass surface could address the dust/mud-related limitations of protective surfaces and has implications for efficiency enhancements in solar energy systems.
Yilbas, Bekir Sami; Ali, Haider; Khaled, Mazen M; Al-Aqeeli, Nasser; Abu-Dheir, Numan; Varanasi, Kripa K
2015-10-30
Recent developments in climate change have increased the frequency of dust storms in the Middle East. Dust storms significantly influence the performances of solar energy harvesting systems, particularly (photovoltaic) PV systems. The characteristics of the dust and the mud formed from this dust are examined using various analytical tools, including optical, scanning electron, and atomic force microscopies, X-ray diffraction, energy spectroscopy, and Fourier transform infrared spectroscopy. The adhesion, cohesion and frictional forces present during the removal of dry mud from the glass surface are determined using a microtribometer. Alkali and alkaline earth metal compounds in the dust dissolve in water to form a chemically active solution at the glass surface. This solution modifies the texture of the glass surface, thereby increasing the microhardness and decreasing the transmittance of the incident optical radiation. The force required to remove the dry mud from the glass surface is high due to the cohesive forces that result from the dried mud solution at the interface between the mud and the glass. The ability altering the characteristics of the glass surface could address the dust/mud-related limitations of protective surfaces and has implications for efficiency enhancements in solar energy systems.
Memory-guided force control in healthy younger and older adults.
Neely, Kristina A; Samimy, Shaadee; Blouch, Samantha L; Wang, Peiyuan; Chennavasin, Amanda; Diaz, Michele T; Dennis, Nancy A
2017-08-01
Successful performance of a memory-guided motor task requires participants to store and then recall an accurate representation of the motor goal. Further, participants must monitor motor output to make adjustments in the absence of visual feedback. The goal of this study was to examine memory-guided grip force in healthy younger and older adults and compare it to performance on behavioral tasks of working memory. Previous work demonstrates that healthy adults decrease force output as a function of time when visual feedback is not available. We hypothesized that older adults would decrease force output at a faster rate than younger adults, due to age-related deficits in working memory. Two groups of participants, younger adults (YA: N = 32, mean age 21.5 years) and older adults (OA: N = 33, mean age 69.3 years), completed four 20-s trials of isometric force with their index finger and thumb, equal to 25% of their maximum voluntary contraction. In the full-vision condition, visual feedback was available for the duration of the trial. In the no vision condition, visual feedback was removed for the last 12 s of each trial. Participants were asked to maintain constant force output in the absence of visual feedback. Participants also completed tasks of word recall and recognition and visuospatial working memory. Counter to our predictions, when visual feedback was removed, younger adults decreased force at a faster rate compared to older adults and the rate of decay was not associated with behavioral performance on tests of working memory.
Measuring Roughnesses Of Optical Surfaces
NASA Technical Reports Server (NTRS)
Coulter, Daniel R.; Al-Jumaily, Gahnim A.; Raouf, Nasrat A.; Anderson, Mark S.
1994-01-01
Report discusses use of scanning tunneling microscopy and atomic force microscopy to measure roughnesses of optical surfaces. These techniques offer greater spatial resolution than other techniques. Report notes scanning tunneling microscopes and atomic force microscopes resolve down to 1 nm.
NASA Astrophysics Data System (ADS)
Kim, Eng-Chan; Cho, Jae-Hwan; Kim, Min-Hye; Kim, Ki-Hong; Choi, Cheon-Woong; Seok, Jong-min; Na, Kil-Ju; Han, Man-Seok
2013-03-01
This study was conducted on 20 patients who had undergone pedicle screw fixation between March and December 2010 to quantitatively compare a conventional fat suppression technique, CHESS (chemical shift selection suppression), and a new technique, IDEAL (iterative decomposition of water and fat with echo asymmetry and least squares estimation). The general efficacy and usefulness of the IDEAL technique was also evaluated. Fat-suppressed transverse-relaxation-weighed images and longitudinal-relaxation-weighted images were obtained before and after contrast injection by using these two techniques with a 1.5T MR (magnetic resonance) scanner. The obtained images were analyzed for image distortion, susceptibility artifacts and homogenous fat removal in the target region. The results showed that the image distortion due to the susceptibility artifacts caused by implanted metal was lower in the images obtained using the IDEAL technique compared to those obtained using the CHESS technique. The results of a qualitative analysis also showed that compared to the CHESS technique, fewer susceptibility artifacts and more homogenous fat removal were found in the images obtained using the IDEAL technique in a comparative image evaluation of the axial plane images before and after contrast injection. In summary, compared to the CHESS technique, the IDEAL technique showed a lower occurrence of susceptibility artifacts caused by metal and lower image distortion. In addition, more homogenous fat removal was shown in the IDEAL technique.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 3 2012-01-01 2012-01-01 false Uniform Test Method for Measuring the Energy Consumption... Appendix D1 to Subpart B of Part 430—Uniform Test Method for Measuring the Energy Consumption of Clothes... without heated or unheated forced air circulation to remove moisture from the clothing, remove wrinkles or...
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 3 2014-01-01 2014-01-01 false Uniform Test Method for Measuring the Energy Consumption... Appendix D2 to Subpart B of Part 430—Uniform Test Method for Measuring the Energy Consumption of Clothes... forced air circulation to remove moisture from the clothing, remove wrinkles or prevent wrinkling of the...
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 3 2013-01-01 2013-01-01 false Uniform Test Method for Measuring the Energy Consumption... Appendix D1 to Subpart B of Part 430—Uniform Test Method for Measuring the Energy Consumption of Clothes... without heated or unheated forced air circulation to remove moisture from the clothing, remove wrinkles or...
17. PT13 PLANES BEING STORED IN HANGAR #1. BY REMOVING ...
17. PT-13 PLANES BEING STORED IN HANGAR #1. BY REMOVING THEIR WINGS, 239 PT-13s WERE STORED AT ONE TIME. Photographic copy of historic photograph. Jan.-June 1947 OAMA, (original print located at Ogden Air Logistics Center, Hill Air Force Base, Utah). Photographer unknown. - Hill Field, Airplane Repair Hangars No. 1-No. 4, 5875 Southgate Avenue, Layton, Davis County, UT
Preferentially etched epitaxial liftoff of InP material
NASA Technical Reports Server (NTRS)
Bailey, Sheila G. (Inventor); Wilt, David M. (Inventor); Deangelo, Frank L. (Inventor)
1995-01-01
The present invention is directed toward a method of removing epitaxial substrates from host substrates. A sacrificial release layer of ternary material is placed on the substrate. A layer of InP is then placed on the ternary material. Afterward a layer of wax is applied to the InP layer to apply compressive force and an etchant material is used to remove the sacrificial release layer.
Preferentially Etched Epitaxial Liftoff of InP Material
NASA Technical Reports Server (NTRS)
Bailey, Sheila G. (Inventor); Wilt, David M. (Inventor); DeAngelo, Frank L. (Inventor)
1997-01-01
The present invention is directed toward a method of removing epitaxial substrates from host substrates. A sacrificial release layer of ternary material is placed on the substrate. A layer of InP is then placed on the ternary material. Afterward a layer of wax is applied to the InP layer to apply compressive force and an etchant material is used to remove the sacrificial release layer.
Percutaneous focused force aortic valvuloplasty using the buddy-catheter technique.
Tada, Norio; Ootomo, Tatsushi; Meguro, Taiichiro
2012-06-01
Percutaneous transcatheter aortic valvuloplasty is seriously limited by high restenosis rates. We report a case where the use of a buddy-catheter technique during balloon inflation allowed increased focused force onto calcified stiff commissures with an increase in resultant valve area. This technique may result in further valve area enlargement and decrease the restenosis rate.
Techniques for forced response involving discrete nonlinearities. I - Theory. II - Applications
NASA Astrophysics Data System (ADS)
Avitabile, Peter; Callahan, John O.
Several new techniques developed for the forced response analysis of systems containing discrete nonlinear connection elements are presented and compared to the traditional methods. In particular, the techniques examined are the Equivalent Reduced Model Technique (ERMT), Modal Modification Response Technique (MMRT), and Component Element Method (CEM). The general theory of the techniques is presented, and applications are discussed with particular reference to the beam nonlinear system model using ERMT, MMRT, and CEM; frame nonlinear response using the three techniques; and comparison of the results obtained by using the ERMT, MMRT, and CEM models.
Process parameter effects on material removal in magnetorheological finishing of borosilicate glass.
Miao, Chunlin; Lambropoulos, John C; Jacobs, Stephen D
2010-04-01
We investigate the effects of processing parameters on material removal for borosilicate glass. Data are collected on a magnetorheological finishing (MRF) spot taking machine (STM) with a standard aqueous magnetorheological (MR) fluid. Normal and shear forces are measured simultaneously, in situ, with a dynamic dual load cell. Shear stress is found to be independent of nanodiamond concentration, penetration depth, magnetic field strength, and the relative velocity between the part and the rotating MR fluid ribbon. Shear stress, determined primarily by the material mechanical properties, dominates removal in MRF. The addition of nanodiamond abrasives greatly enhances the material removal efficiency, with the removal rate saturating at a high abrasive concentration. The volumetric removal rate (VRR) increases with penetration depth but is insensitive to magnetic field strength. The VRR is strongly correlated with the relative velocity between the ribbon and the part, as expected by the Preston equation. A modified removal rate model for MRF offers a better estimation of MRF removal capability by including nanodiamond concentration and penetration depth.
Ferreira, Cimara Fortes; Shafter, Mohamed Amer; Jain, Vinay; Wicks, Russel Anthony; Linder, Erno; Ledo, Carlos Alberto da Silva
2018-02-13
Extruded cement during dental implant crown cementation may cause peri-implant diseases if not removed adequately. Evaluate the efficiency of removal of cement after cementation of implant crowns using an experimental "circular crisscross flossing technique (CCCFT) flossing technique, compared to the conventional "C" shape flossing technique (CSFT). Twenty-four patients rendered 29 experimental and 29 control crowns. Prefabricated abutments were secured to the implant with the margins at least 1 mm subgingivally. The abutments were scanned using CADCAM technology and Emax crowns were fabricated in duplicates. Each crown was cemented separately and excess cement was removed using the CSFT and the CCFT techniques. After completion of cementation was completed, the screw access holes were accessed and the crown was unscrewed along with the abutment. The samples were disinfected using 70% ethanol for 10 minutes. Crowns were divided into 4 parts using a marker in order to facilitate measurement data collection. Vertical and horizontal measurements were made for extruded cement for each control and experimental groups by means of a digital microscope. One-hundred and seventeen measurements were made for each group. Mann-Whitney test was applied to verify statistical significance between the groups. The CCFT showed a highly statistically significant result (104.8 ± 13.66, p<0.0001) for cement removal compared with the CSFT (291.8 ± 21.96, p<0.0001). The vertical lengths of the extruded cement showed a median of 231.1 µm (IQR = 112.79 -398.39) and 43.62 µm (IQR = 0 - 180.21) for the control and the experimental flossing techniques, respectively. The horizontal length of the extruded cement showed a median of 987.1 µm (IQR = 476.7 - 1,933.58) and 139.2 µm (IQR = 0 - 858.28) for the control and the experimental flossing techniques, respectively. The CCFT showed highly statistically significant less cement after implant crowns cementation when compared with the CSFT.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feng, D.C.; Yu, Z.J.; Chen, Y.
2009-06-15
A large amount of wastewater is produced in the Lurgi coal-gasification process with the complex compounds carbon dioxide, ammonia, phenol, etc., which cause a serious environmental problem. In this paper, a novel stripper operated at elevated pressure is designed to improve the pretreatment process. In this technology, two noticeable improvements were established. First, the carbon dioxide and ammonia were removed simultaneously in a single stripper where sour gas (mainly carbon dioxide) is removed from the tower top and the ammonia vapor is drawn from the side and recovered by partial condensation. Second, the ammonia is removed before the phenol recoverymore » to reduce the pH value of the subsequent extraction units, so as the phenol removal performance of the extraction is greatly improved. To ensure the operational efficiency, some key operational parameters are analyzed and optimized though simulation. It is shown that when the top temperature is kept at 40 C and the weight ratio of the side draw to the feed is above 9%, the elevated pressures can ensure the removal efficiency of NH{sub 3} and carbon dioxide and the desired purified water as the bottom product of the unit is obtained. A real industrial application demonstrates the attractiveness of the new technique: it removes 99.9% CO{sub 2} and 99.6% ammonia, compared to known techniques which remove 66.5% and 94.4%, respectively. As a result, the pH value of the wastewater is reduced from above 9 to below 7. This ensures that the phenol removal ratio is above 93% in the following extraction units. The operating cost is lower than that of known techniques, and the operation is simplified.« less
Inverse Force Determination on a Small Scale Launch Vehicle Model Using a Dynamic Balance
NASA Technical Reports Server (NTRS)
Ngo, Christina L.; Powell, Jessica M.; Ross, James C.
2017-01-01
A launch vehicle can experience large unsteady aerodynamic forces in the transonic regime that, while usually only lasting for tens of seconds during launch, could be devastating if structural components and electronic hardware are not designed to account for them. These aerodynamic loads are difficult to experimentally measure and even harder to computationally estimate. The current method for estimating buffet loads is through the use of a few hundred unsteady pressure transducers and wind tunnel test. Even with a large number of point measurements, the computed integrated load is not an accurate enough representation of the total load caused by buffeting. This paper discusses an attempt at using a dynamic balance to experimentally determine buffet loads on a generic scale hammer head launch vehicle model tested at NASA Ames Research Center's 11' x 11' transonic wind tunnel. To use a dynamic balance, the structural characteristics of the model needed to be identified so that the natural modal response could be and removed from the aerodynamic forces. A finite element model was created on a simplified version of the model to evaluate the natural modes of the balance flexures, assist in model design, and to compare to experimental data. Several modal tests were conducted on the model in two different configurations to check for non-linearity, and to estimate the dynamic characteristics of the model. The experimental results were used in an inverse force determination technique with a psuedo inverse frequency response function. Due to the non linearity, the model not being axisymmetric, and inconsistent data between the two shake tests from different mounting configuration, it was difficult to create a frequency response matrix that satisfied all input and output conditions for wind tunnel configuration to accurately predict unsteady aerodynamic loads.
Msimanga, Huggins Z; Ollis, Robert J
2010-06-01
Principal component analysis (PCA) and partial least squares discriminant analysis (PLS-DA) were used to classify acetaminophen-containing medicines using their attenuated total reflection Fourier transform infrared (ATR-FT-IR) spectra. Four formulations of Tylenol (Arthritis Pain Relief, Extra Strength Pain Relief, 8 Hour Pain Relief, and Extra Strength Pain Relief Rapid Release) along with 98% pure acetaminophen were selected for this study because of the similarity of their spectral features, with correlation coefficients ranging from 0.9857 to 0.9988. Before acquiring spectra for the predictor matrix, the effects on spectral precision with respect to sample particle size (determined by sieve size opening), force gauge of the ATR accessory, sample reloading, and between-tablet variation were examined. Spectra were baseline corrected and normalized to unity before multivariate analysis. Analysis of variance (ANOVA) was used to study spectral precision. The large particles (35 mesh) showed large variance between spectra, while fine particles (120 mesh) indicated good spectral precision based on the F-test. Force gauge setting did not significantly affect precision. Sample reloading using the fine particle size and a constant force gauge setting of 50 units also did not compromise precision. Based on these observations, data acquisition for the predictor matrix was carried out with the fine particles (sieve size opening of 120 mesh) at a constant force gauge setting of 50 units. After removing outliers, PCA successfully classified the five samples in the first and second components, accounting for 45.0% and 24.5% of the variances, respectively. The four-component PLS-DA model (R(2)=0.925 and Q(2)=0.906) gave good test spectra predictions with an overall average of 0.961 +/- 7.1% RSD versus the expected 1.0 prediction for the 20 test spectra used.
Enhanced centrifuge-based approach to powder characterization
NASA Astrophysics Data System (ADS)
Thomas, Myles Calvin
Many types of manufacturing processes involve powders and are affected by powder behavior. It is highly desirable to implement tools that allow the behavior of bulk powder to be predicted based on the behavior of only small quantities of powder. Such descriptions can enable engineers to significantly improve the performance of powder processing and formulation steps. In this work, an enhancement of the centrifuge technique is proposed as a means of powder characterization. This enhanced method uses specially designed substrates with hemispherical indentations within the centrifuge. The method was tested using simulations of the momentum balance at the substrate surface. Initial simulations were performed with an ideal powder containing smooth, spherical particles distributed on substrates designed with indentations. The van der Waals adhesion between the powder, whose size distribution was based on an experimentally-determined distribution from a commercial silica powder, and the indentations was calculated and compared to the removal force created in the centrifuge. This provided a way to relate the powder size distribution to the rotational speed required for particle removal for various indentation sizes. Due to the distinct form of the data from these simulations, the cumulative size distribution of the powder and the Hamaker constant for the system were be extracted. After establishing adhesion force characterization for an ideal powder, the same proof-of-concept procedure was followed for a more realistic system with a simulated rough powder modeled as spheres with sinusoidal protrusions and intrusions around the surface. From these simulations, it was discovered that an equivalent powder of smooth spherical particles could be used to describe the adhesion behavior of the rough spherical powder by establishing a size-dependent 'effective' Hamaker constant distribution. This development made it possible to describe the surface roughness effects of the entire powder through one adjustable parameter that was linked to the size distribution. It is important to note that when the engineered substrates (hemispherical indentations) were applied, it was possible to extract both powder size distribution and effective Hamaker constant information from the simulated centrifuge adhesion experiments. Experimental validation of the simulated technique was performed with a silica powder dispersed onto a stainless steel substrate with no engineered surface features. Though the proof-of-concept work was accomplished for indented substrates, non-ideal, relatively flat (non-indented) substrates were used experimentally to demonstrate that the technique can be extended to this case. The experimental data was then used within the newly developed simulation procedure to show its application to real systems. In the absence of engineered features on the substrates, it was necessary to specify the size distribution of the powder as an input to the simulator. With this information, it was possible to extract an effective Hamaker constant distribution and when the effective Hamaker constant distribution was applied in conjunction with the size distribution, the observed adhesion force distribution was described precisely. An equation was developed that related the normalized effective Hamaker constants (normalized by the particle diameter) to the particle diameter was formulated from the effective Hamaker constant distribution. It was shown, by application of the equation, that the adhesion behavior of an ideal (smooth, spherical) powder with an experimentally-validated, effective Hamaker constant distribution could be used to effectively represent that of a realistic powder. Thus, the roughness effects and size variations of a real powder are captured in this one distributed parameter (effective Hamaker constant distribution) which provides a substantial improvement to the existing technique. This can lead to better optimization of powder processing by enhancing powder behavior models.
Coverage Root after Removing Peripheral Ossifying Fibroma: 5-Year Follow-Up Case Report
Okajima, Luciana S.; Nunes, Marcelo P.; Montalli, Victor A. M.
2016-01-01
When lesions in soft tissue reach the gingival margin, they can produce aesthetic defects during its permanence and after its removal. Periodontal plastic surgery allows the correction of the gingival contour using different techniques. This paper is a case report of a peripheral ossifying fibroma removal in the interproximal area of teeth 21 and 22 in addition to root coverage of the affected area through two surgical phases: keratinized gingival tissue augmentation surgery with free gingival graft concurrent with removal of the lesion and, in a second stage, root coverage by performing coronally advanced flap technique with a follow-up of five years. The initial results achieved, which were root coverage of 100% after 6 months, promoted an adequate gingival contour and prevented the development of a mucogingival defect or a root exposure with its functional and aesthetic consequences. After five years, the results showed long term success of the techniques, where the margin remained stable with complete root coverage and tissues were stable and harmonic in color. PMID:27891263
Coverage Root after Removing Peripheral Ossifying Fibroma: 5-Year Follow-Up Case Report.
Henriques, Paulo S G; Okajima, Luciana S; Nunes, Marcelo P; Montalli, Victor A M
2016-01-01
When lesions in soft tissue reach the gingival margin, they can produce aesthetic defects during its permanence and after its removal. Periodontal plastic surgery allows the correction of the gingival contour using different techniques. This paper is a case report of a peripheral ossifying fibroma removal in the interproximal area of teeth 21 and 22 in addition to root coverage of the affected area through two surgical phases: keratinized gingival tissue augmentation surgery with free gingival graft concurrent with removal of the lesion and, in a second stage, root coverage by performing coronally advanced flap technique with a follow-up of five years. The initial results achieved, which were root coverage of 100% after 6 months, promoted an adequate gingival contour and prevented the development of a mucogingival defect or a root exposure with its functional and aesthetic consequences. After five years, the results showed long term success of the techniques, where the margin remained stable with complete root coverage and tissues were stable and harmonic in color.
NASA Technical Reports Server (NTRS)
Hotaling, S. P.
1993-01-01
Two samples from Long Duration Exposure Facility (LDEF) experiment M0003-4 were analyzed for molecular and particulate contamination prior to and following treatment with advanced satellite contamination removal techniques (CO2 gas/solid jet spray and oxygen ion beam). The pre- and post-cleaning measurements and analyses are presented. The jet spray removed particulates in seconds. The low energy reactive oxygen ion beam removed 5,000 A of photo polymerized organic hydrocarbon contamination in less than 1 hour. Spectroscopic analytical techniques were applied to the analysis of cleaning efficiency including: Fourier transform infrared, Auger, x ray photoemissions, energy dispersive x ray, and ultraviolet/visible. The results of this work suggest that the contamination studied here was due to spacecraft self-contamination enhanced by atomic oxygen plasma dynamics and solar UV radiation. These results also suggest the efficacy for the jet spray and ion beam contamination control technologies for spacecraft optical surfaces.
Whole-Body Human Inverse Dynamics with Distributed Micro-Accelerometers, Gyros and Force Sensing †
Latella, Claudia; Kuppuswamy, Naveen; Romano, Francesco; Traversaro, Silvio; Nori, Francesco
2016-01-01
Human motion tracking is a powerful tool used in a large range of applications that require human movement analysis. Although it is a well-established technique, its main limitation is the lack of estimation of real-time kinetics information such as forces and torques during the motion capture. In this paper, we present a novel approach for a human soft wearable force tracking for the simultaneous estimation of whole-body forces along with the motion. The early stage of our framework encompasses traditional passive marker based methods, inertial and contact force sensor modalities and harnesses a probabilistic computational technique for estimating dynamic quantities, originally proposed in the domain of humanoid robot control. We present experimental analysis on subjects performing a two degrees-of-freedom bowing task, and we estimate the motion and kinetics quantities. The results demonstrate the validity of the proposed method. We discuss the possible use of this technique in the design of a novel soft wearable force tracking device and its potential applications. PMID:27213394
A cyber-physical approach to experimental fluid mechanics
NASA Astrophysics Data System (ADS)
Mackowski, Andrew Williams
This Thesis documents the design, implementation, and use of a novel type of experimental apparatus, termed Cyber-Physical Fluid Dynamics (CPFD). Unlike traditional fluid mechanics experiments, CPFD is a general-purpose technique that allows one to impose arbitrary forces on an object submerged in a fluid. By combining fluid mechanics with robotics, we can perform experiments that would otherwise be incredibly difficult or time-consuming. More generally, CPFD allows a high degree of automation and control of the experimental process, allowing for much more efficient use of experimental facilities. Examples of CPFD's capabilites include imposing a gravitational force in the horizontal direction (allowing a test object to "fall" sideways in a water channel), simulating nonlinear springs for a vibrating fluid-structure system, or allowing a self-propelled body to move forward under its own force. Because experimental parameters (including forces and even the mass of the test object) are defined in software, one can define entire ensembles of experiments to run autonomously. CPFD additionally integrates related systems such as water channel speed control, LDV flow speed measurements, and PIV flowfield measurements. The end result is a general-purpose experimental system that opens the door to a vast array of fluid-structure interaction problems. We begin by describing the design and implementation of CPFD, the heart of which is a high-performance force-feedback control system. Precise measurement of time-varying forces (including removing effects of the test object's inertia) is more critical here than in typical robotic force-feedback applications. CPFD is based on an integration of ideas from control theory, fluid dynamics, computer science, electrical engineering, and solid mechanics. We also describe experiments using the CPFD experimental apparatus to study vortex-induced vibration (VIV) and oscillating-airfoil propulsion. We show how CPFD can be used to simulate a hypothetical VIV energy harvesting device. By replacing standard linear springs with nonlinear ones, we can broaden the system's frequency response. Next, we transition from bluff bodies to unsteady airfoils, where we begin by measuring the thrust and efficiency of an airfoil pitching about its quarter-chord point. Finally, we examine how the propulsive performance of an oscillating airfoil is improved by the addition of passive dynamics.
A Novel Technique Applying Spectral Estimation to Johnson Noise Thermometry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ezell, N. Dianne Bull; Britton, Chuck; Ericson, Nance
Johnson noise thermometry is one of many important measurement techniques used to monitor the safety levels and stability in a nuclear reactor. However, this measurement is very dependent on the minimal electromagnetic environment. Properly removing unwanted electromagnetic interference (EMI) is critical for accurate drift-free temperature measurements. The two techniques developed by Oak Ridge National Laboratory (ORNL) to remove transient and periodic EMI are briefly discussed here. Spectral estimation is a key component in the signal processing algorithm used for EMI removal and temperature calculation. The cross-power spectral density is a key component in the Johnson noise temperature computation. Applying eithermore » technique requires the simple addition of electronics and signal processing to existing resistive thermometers. With minimal installation changes, the system discussed here can be installed on existing nuclear power plants. The Johnson noise system developed is tested at three locations: ORNL, Sandia National Laboratory, and the Tennessee Valley Authority’s Kingston Fossil Plant. Each of these locations enabled improvement on the EMI removal algorithm. Finally, the conclusions made from the results at each of these locations is discussed, as well as possible future work.« less
A Novel Technique Applying Spectral Estimation to Johnson Noise Thermometry
Ezell, N. Dianne Bull; Britton, Chuck; Ericson, Nance; ...
2018-03-30
Johnson noise thermometry is one of many important measurement techniques used to monitor the safety levels and stability in a nuclear reactor. However, this measurement is very dependent on the minimal electromagnetic environment. Properly removing unwanted electromagnetic interference (EMI) is critical for accurate drift-free temperature measurements. The two techniques developed by Oak Ridge National Laboratory (ORNL) to remove transient and periodic EMI are briefly discussed here. Spectral estimation is a key component in the signal processing algorithm used for EMI removal and temperature calculation. The cross-power spectral density is a key component in the Johnson noise temperature computation. Applying eithermore » technique requires the simple addition of electronics and signal processing to existing resistive thermometers. With minimal installation changes, the system discussed here can be installed on existing nuclear power plants. The Johnson noise system developed is tested at three locations: ORNL, Sandia National Laboratory, and the Tennessee Valley Authority’s Kingston Fossil Plant. Each of these locations enabled improvement on the EMI removal algorithm. Finally, the conclusions made from the results at each of these locations is discussed, as well as possible future work.« less
Defogging of road images using gain coefficient-based trilateral filter
NASA Astrophysics Data System (ADS)
Singh, Dilbag; Kumar, Vijay
2018-01-01
Poor weather conditions are responsible for most of the road accidents year in and year out. Poor weather conditions, such as fog, degrade the visibility of objects. Thus, it becomes difficult for drivers to identify the vehicles in a foggy environment. The dark channel prior (DCP)-based defogging techniques have been found to be an efficient way to remove fog from road images. However, it produces poor results when image objects are inherently similar to airlight and no shadow is cast on them. To eliminate this problem, a modified restoration model-based DCP is developed to remove the fog from road images. The transmission map is also refined by developing a gain coefficient-based trilateral filter. Thus, the proposed technique has an ability to remove fog from road images in an effective manner. The proposed technique is compared with seven well-known defogging techniques on two benchmark foggy images datasets and five real-time foggy images. The experimental results demonstrate that the proposed approach is able to remove the different types of fog from roadside images as well as significantly improve the image's visibility. It also reveals that the restored image has little or no artifacts.
UPb ages of zircon rims: A new analytical method using the air-abrasion technique
Aleinikoff, J.N.; Winegarden, D.L.; Walter, M.
1990-01-01
We present a new technique for directly dating, by conventional techniques, the rims of zircons. Several circumstances, such as a xenocrystic or inherited component in igneous zircon and metamorphic overgrowths on igneous cores, can result in grains with physically distinct age components. Pneumatic abrasion has been previously shown by Krogh to remove overgrowths and damaged areas of zircon, leaving more resistant and isotopically less disturbed parts available for analysis. A new abrader design, which is capable of very gently grinding only tips and interfacial edges of even needle-like grains, permits easy collection of abraded material for dating. Five examples demonstrate the utility of the "dust-collecting" technique, including two studies that compare conventional, ion microprobe and abrader data. Common Pb may be strongly concentrated in the outermost zones of many zircons and this Pb is not easily removed by leaching (even in weak HF). Thus, the benefit of removing only the outermost zones (and avoiding mixing of age components) is somewhat compromised by the much higher common Pb contents which result in less precise age determinations. A very brief abrasion to remove the high common Pb zones prior to collection of material for dating is selected. ?? 1990.
Ruggeri, Andrea Gennaro; Cappelletti, Martina; Fazzolari, Benedetta; Marotta, Nicola; Delfini, Roberto
2016-04-01
Traditionally, the surgical removal of tuberculum sellae meningioma (TSM) and olfactory groove meningioma (OGM) requires transcranial approaches and microsurgical techniques, but in the last decade endoscopic expanded endonasal approaches have been introduced: transcribriform for OGMs and transtuberculum-transplanum for TSM. A comparative analysis of the literature concerning the two types of surgical treatment of OGMs and TSM is, however, difficult. We conducted a literature search using the PubMed database to compare data for endoscopic and microsurgical techniques in the literature. We also conducted a retrospective analysis of selected cases from our series presenting favorable characteristics for an endoscopic approach, based on the criteria of operability of these lesions as generally accepted in the literature, and we compared the results obtained in these patients with those in the endoscopic literature. We believe that making the sample more homogeneous, the difference between microsurgical technique and endoscopic technique is no longer so striking. A greater radical removal rate, a reduced incidence of cerebrospinal fluid fistula and, especially, the possibility of removing lesions of any size are advantages of transcranial surgery; a higher percentage of improvement in visual outcome and a lower risk of a worsening of a pre-existing deficit or onset of a new deficit are advantages of the endoscopic technique. At present, the microsurgical technique is still the gold standard for the removal of the anterior cranial fossa meningiomas of all sizes, and the endoscopic technique remains a second option in certain cases. Copyright © 2016 Elsevier Inc. All rights reserved.
[The effect of smoking and forced use of the voice to development of the vocal polyps].
Gnjatic, M; Stankovic, P; Djukić, V
2009-01-01
Dysphonia is often caused by polyps which are benign changes of pseudotumors. With their presence they are hampering with glotis oclusion. Laryngomicroscopy of general and endotracheal anaesthesia has been preformed on all of the patients. Microsurgical technique has been used to remove the polyps. Bioptic material was analyzed in pathophysiological laboratory of clinic of pathology in Banjaluka. All of the results were presented through tables and graphic representations. Frequency of polyps through age and sex groups, along with the examination of ethyological factors in emergence of polyps of vocal cords. Results are in accordance with the results of other authors who were involved in similar problematics. Through analysis of our data we percieve that the abuse of voice is part of ethiological factors that lead not only to emergence of vocal fold lesions but aswell as other benign changes.
Inner- and outer-wall sorting of double-walled carbon nanotubes
NASA Astrophysics Data System (ADS)
Li, Han; Gordeev, Georgy; Wasserroth, Sören; Chakravadhanula, Venkata Sai Kiran; Neelakandhan, Shyam Kumar Chethala; Hennrich, Frank; Jorio, Ado; Reich, Stephanie; Krupke, Ralph; Flavel, Benjamin Scott
2017-12-01
Double-walled carbon nanotubes (DWCNTs) consist of two coaxially aligned single-walled carbon nanotubes (SWCNTs), and previous sorting methods only achieved outer-wall electronic-type selectivity. Here, a separation technique capable of sorting DWCNTs by semiconducting (S) or metallic (M) inner- and outer-wall electronic type is presented. Electronic coupling between the inner and outer wall is used to alter the surfactant coating around each of the DWCNT types, and aqueous gel permeation is used to separate them. Aqueous methods are used to remove SWCNT species from the raw material and prepare enriched DWCNT fractions. The enriched DWCNT fractions are then transferred into either chlorobenzene or toluene using the copolymer PFO-BPy to yield the four inner@outer combinations of M@M, M@S, S@M and S@S. The high purity of the resulting fractions is verified by absorption measurements, transmission electron microscopy, atomic force microscopy, resonance Raman mapping and high-density field-effect transistor devices.
Totally confined explosive welding
NASA Technical Reports Server (NTRS)
Bement, L. J. (Inventor)
1978-01-01
The undesirable by-products of explosive welding are confined and the association noise is reduced by the use of a simple enclosure into which the explosive is placed and in which the explosion occurs. An infrangible enclosure is removably attached to one of the members to be bonded at the point directly opposite the bond area. An explosive is completely confined within the enclosure at a point in close proximity to the member to be bonded and a detonating means is attached to the explosive. The balance of the enclosure, not occupied by explosive, is filled with a shaped material which directs the explosive pressure toward the bond area. A detonator adaptor controls the expansion of the enclosure by the explosive force so that the enclosure at no point experiences a discontinuity in expansion which causes rupture. The use of the technique is practical in the restricted area of a space station.
Inner- and outer-wall sorting of double-walled carbon nanotubes.
Li, Han; Gordeev, Georgy; Wasserroth, Sören; Chakravadhanula, Venkata Sai Kiran; Neelakandhan, Shyam Kumar Chethala; Hennrich, Frank; Jorio, Ado; Reich, Stephanie; Krupke, Ralph; Flavel, Benjamin Scott
2017-12-01
Double-walled carbon nanotubes (DWCNTs) consist of two coaxially aligned single-walled carbon nanotubes (SWCNTs), and previous sorting methods only achieved outer-wall electronic-type selectivity. Here, a separation technique capable of sorting DWCNTs by semiconducting (S) or metallic (M) inner- and outer-wall electronic type is presented. Electronic coupling between the inner and outer wall is used to alter the surfactant coating around each of the DWCNT types, and aqueous gel permeation is used to separate them. Aqueous methods are used to remove SWCNT species from the raw material and prepare enriched DWCNT fractions. The enriched DWCNT fractions are then transferred into either chlorobenzene or toluene using the copolymer PFO-BPy to yield the four inner@outer combinations of M@M, M@S, S@M and S@S. The high purity of the resulting fractions is verified by absorption measurements, transmission electron microscopy, atomic force microscopy, resonance Raman mapping and high-density field-effect transistor devices.
NASA Astrophysics Data System (ADS)
Megalini, Ludovico; Cabinian, Brian C.; Zhao, Hongwei; Oakley, Douglas C.; Bowers, John E.; Klamkin, Jonathan
2018-02-01
We employ a simple two-step growth technique to grow large-area 1550-nm laser structures by direct hetero-epitaxy of III-V compounds on patterned exact-oriented (001) silicon (Si) substrates by metal organic chemical vapor deposition. Densely-packed, highly uniform, flat and millimeter-long indium phosphide (InP) nanowires were grown from Si v-grooves separated by silicon dioxide (SiO2) stripes with various widths and pitches. Following removal of the SiO2 patterns, the InP nanowires were coalesced and, subsequently, 1550-nm laser structures were grown in a single overgrowth without performing any polishing for planarization. X-ray diffraction, photoluminescence, atomic force microscopy and transmission electron microscopy analyses were used to characterize the epitaxial material. PIN diodes were fabricated and diode-rectifying behavior was observed.
Gelatin-based laser direct-write technique for the precise spatial patterning of cells.
Schiele, Nathan R; Chrisey, Douglas B; Corr, David T
2011-03-01
Laser direct-writing provides a method to pattern living cells in vitro, to study various cell-cell interactions, and to build cellular constructs. However, the materials typically used may limit its long-term application. By utilizing gelatin coatings on the print ribbon and growth surface, we developed a new approach for laser cell printing that overcomes the limitations of Matrigel™. Gelatin is free of growth factors and extraneous matrix components that may interfere with cellular processes under investigation. Gelatin-based laser direct-write was able to successfully pattern human dermal fibroblasts with high post-transfer viability (91% ± 3%) and no observed double-strand DNA damage. As seen with atomic force microscopy, gelatin offers a unique benefit in that it is present temporarily to allow cell transfer, but melts and is removed with incubation to reveal the desired application-specific growth surface. This provides unobstructed cellular growth after printing. Monitoring cell location after transfer, we show that melting and removal of gelatin does not affect cellular placement; cells maintained registry within 5.6 ± 2.5 μm to the initial pattern. This study demonstrates the effectiveness of gelatin in laser direct-writing to create spatially precise cell patterns with the potential for applications in tissue engineering, stem cell, and cancer research.
Spectral Topography Generation for Arbitrary Grids
NASA Astrophysics Data System (ADS)
Oh, T. J.
2015-12-01
A new topography generation tool utilizing spectral transformation technique for both structured and unstructured grids is presented. For the source global digital elevation data, the NASA Shuttle Radar Topography Mission (SRTM) 15 arc-second dataset (gap-filling by Jonathan de Ferranti) is used and for land/water mask source, the NASA Moderate Resolution Imaging Spectroradiometer (MODIS) 30 arc-second land water mask dataset v5 is used. The original source data is coarsened to a intermediate global 2 minute lat-lon mesh. Then, spectral transformation to the wave space and inverse transformation with wavenumber truncation is performed for isotropic topography smoothness control. Target grid topography mapping is done by bivariate cubic spline interpolation from the truncated 2 minute lat-lon topography. Gibbs phenomenon in the water region can be removed by overwriting ocean masked target coordinate grids with interpolated values from the intermediate 2 minute grid. Finally, a weak smoothing operator is applied on the target grid to minimize the land/water surface height discontinuity that might have been introduced by the Gibbs oscillation removal procedure. Overall, the new topography generation approach provides spectrally-derived, smooth topography with isotropic resolution and minimum damping, enabling realistic topography forcing in the numerical model. Topography is generated for the cubed-sphere grid and tested on the KIAPS Integrated Model (KIM).
An Interagency Study of Depainting Techniques
NASA Technical Reports Server (NTRS)
Cook, B.
1997-01-01
Many popular and widely used paint stripping products now contain methylene chloride as their active ingredient. However, the Environmental Protection Agency (EPA) will critically curb the use of methylene chloride under an aerospace national emission standard for hazardous air pollutants (NESHAP) within the next 2-1/2 years. An effort is underway to identify and evaluate alternative depainting technologies emphasizing those believed to be both effective and environmentally benign. On behalf of the EPA and in cooperation with the U. S. Air Force (USAF), the National Aeronautics and Space Administration (NASA) is conducting a technical assessment of nine alternative technologies (i.e.: chemical stripping, two CO2 blasting processes, FLASHJET(TM) coating removal, laser stripping, plastic media blasting, sodium bicarbonate wet stripping, high-pressure water stripping, and wheat starch blasting). These depainting processes represent five removal method categories, namely abrasive, impact, cryogenic, thermal, and/or molecular bonding dissociation. This paper discusses the test plan and parameters for this interagency study. Several thicknesses of clad and non-clad aluminum substrates were used to prepare test specimens, which have been cut, cleaned, painted, and environmentally aged. Each depainting process has been assigned a specimen lot, which is now undergoing an initial strip cycle. Metallurgical impacts will be determined after these specimens complete five cycles of preparation and stripping.
The use of the venous stripper for graft removal in arterial reoperations.
Shifrin, E G; Eid, A; Anner, H; Witz, M
1987-10-01
A simple technique for removal of synthetic grafts using a standard venous stripper inside the graft is described. The method permits the simultaneous placement of a drainage tube in the canal after graft removal in cases where the graft is infected.
Effect of workload setting on propulsion technique in handrim wheelchair propulsion.
van Drongelen, Stefan; Arnet, Ursina; Veeger, Dirkjan H E J; van der Woude, Lucas H V
2013-03-01
To investigate the influence of workload setting (speed at constant power, method to impose power) on the propulsion technique (i.e. force and timing characteristics) in handrim wheelchair propulsion. Twelve able-bodied men participated in this study. External forces were measured during handrim wheelchair propulsion on a motor driven treadmill at different velocities and constant power output (to test the forced effect of speed) and at power outputs imposed by incline vs. pulley system (to test the effect of method to impose power). Outcome measures were the force and timing variables of the propulsion technique. FEF and timing variables showed significant differences between the speed conditions when propelling at the same power output (p < 0.01). Push time was reduced while push angle increased. The method to impose power only showed slight differences in the timing variables, however not in the force variables. Researchers and clinicians must be aware of testing and evaluation conditions that may differently affect propulsion technique parameters despite an overall constant power output. Copyright © 2012 IPEM. Published by Elsevier Ltd. All rights reserved.
An ergonomic, instrumented ultrasound probe for 6-axis force/torque measurement.
Gilbertson, Matthew W; Anthony, Brian W
2013-01-01
An ergonomic, instrumented ultrasound probe has been developed for medical imaging applications. The device, which fits compactly in the hand of sonographers and permits rapid attachment & removal of the ultrasound probe, measures ultrasound probe-to-patient contact forces and torques in all six axes. The device was used to measure contact forces and torques applied by ten professional sonographers on five patients during thirty-six abdominal exams. Of the three contact forces, those applied along the probe axis were found to be largest, averaging 7.0N. Measurement noise was quantified for each axis, and found to be small compared with the axial force. Understanding the range of forces applied during ultrasound imaging enables the design of more accurate robotic imaging systems and could also improve understanding of the correlation between contact force and sonographer fatigue and injury.
Khansary, Milad Asgarpour; Mellat, Mostafa; Saadat, Seyed Hassan; Fasihi-Ramandi, Mahdi; Kamali, Mehdi; Taheri, Ramezan Ali
2017-02-01
To analyze polymeric nanosorbents and nanofiltration/ultrafiltration membranes for hormone micropollutants removal from water effluents, here an in-through investigation on the suitability and compatibility of various polymers has been carried out. For this work, estradiol, estrone, testosterone, progesterone, estriol, mestranol, and ethinylestradiol were considered. A total number of 452 polymers were analyzed and initially screened using Hansen solubility parameters. The identified good pairs of hormones and polymers then were examined to obtain the equilibrium capacity of hormones removal from water effluents using a modified Flory-Huggins model. A distribution coefficient was defined as the ratio of hormones in water effluent phase and polymer phase. For removal of mestranol, estradiol and ethinylestradiol, no compatible polymer was identified based on initial screening of collected database. Three compatible polymers were identified for estriol. For progesterone, a wide variety of polymers was identified as good matching of polar, dispersion and hydrogen forces contributions can be observed for these pairs. For estrone, only two polymers can be proposed due to the mismatch observed between polar, dispersion and hydrogen forces contributions of other polymers and this hormone. The phase calculations showed that not all the identified good pairs could be used for practical separation applications. The domain of applicability of each good pair was investigated and potential polymers for practical micropollutants removal together with their removal capacity were represented in terms of phase envelops. The theoretical approach follows fundamental chemical thermodynamic equations and then can be simply applied for any system of interest. Copyright © 2016 Elsevier Ltd. All rights reserved.
Chávez Rossell, Miguel
2012-01-01
The ingestion of a foreign body is one of the most common endoscopic emergencies. Foreign bodies in the upper gastrointestinal tract should be extracted as soon as possible to avoid serious complications such as perforation o bleeding. However, removals of foreign bodies with sharp edges are very difficult and can develop complications during their removal. Various devices have therefore been developed to prevent mucosal injury from the sharp edges during endoscopic extraction. We report a new technique for the successful foreign body extraction of upper digestive tract using the cap from six shooter variceal banding reused. We present 17 cases (9 males and 8 females). The types of foreign bodies removed were: chicken bones (n:7), fish bones (n:3), denture prosthesis (n:2), food bolus (n:2), long pin (n:1), golden thumb tack (n: 1) and press-through package (n:1). There were no complications. This new technique is safe and effective. Highlights its advantages: enhanced sight pharyngo esophageal junction, foreign bodies disimpact at that level, food bolus suck, avoid sharp object damage mucosal or scope and decrease time removal.
Choi, Jae-Won; Bae, Ji-Hyeon; Jeong, Chang-Mo; Huh, Jung-Bo
2017-05-01
Implant angulation should be considered when selecting an attachment. Some in vitro studies have investigated the relationship between implant angulation and changes in the retention force of the stud attachment, but few studies have evaluated the effect of cyclic loading and repeated cycles of insertion and removal on the stud attachment. The purpose of this in vitro study was to evaluate the effects of implant angulation on the retentive characteristics of overdentures with 2 different stud attachments, an experimental system and O-rings in red and orange, after cyclic loading and repeated insertion and removal cycles. The canine region of a mandibular experimental model was fitted with 2 implant fixtures with 2 different stud attachment systems at implant angulations of 0, 15, or 30 degrees. A mastication simulator was used to simulate cyclic loading, and a universal testing machine was used to evaluate retentive force changes after repeated insertion and removal cycles. To simulate the numbers of mastication and insertion and removal cycles per annum, 400000 cyclic loadings and 1080 insertion and removal cycles were performed. Wear patterns and attachment surface deformations were evaluated by scanning electron microscopy. Data were analyzed using the Kruskal-Wallis test, Mann-Whitney U test with Bonferroni correction (α=.05/3=.017), and the paired-sample Student t test (α=.05). When retentive forces before and after testing were compared, O-ring showed significant retention loss at all implant angulations (P<.001). In contrast, the experimental system showed little retention loss in the 0- and 15-degree models (P>.05), whereas the 30-degree model showed a significant increase in retentive force (P=.001). At all implant angulations, retention loss increased significantly for the orange O-ring, followed by the red O-ring, and the experimental system (P<.001). Scanning electron microscopy analysis showed more intense wear in the matrix than the patrix (abutment that matches to matrix) and more severe wear and deformation of the O-ring rubber matrix than of the experimental zirconia ball. Upon completion of the experiment, wear and deformation were found for all attachment systems. Even when implants are not installed in parallel, the experimental system can be used without involving great loss of retention. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
Munro, Malcolm G
2016-01-01
To demonstrate a technique designed to expand the capabilities of hysteroscopic intrauterine morcellators to deep type 1 and type 2 lesions. The technique comprises "release" of the tumor using a bipolar radiofrequency needle, followed by dissection and extraction with an electromechanical morcellator, all under local anesthesia. Description of technique using images and video (Canadian Task Force classification Class III). Office uterine procedure and imaging center; academic medical center. Following the administration of local anesthesia and access to the endometrial cavity with a 5.5-mm-o.d. hysteroscopic sheath with a 5 Fr operative channel, a 5 Fr bipolar needle electrode system is used to circumscribe the leiomyoma and enter the pseudocapsule, thereby "releasing" the lesion. Blunt dissection is performed as appropriate and then the system is switched to a hysteroscopic morcellating system (MyoSure; Hologic, Bedford, MA), which is then used to further dissect and remove the target lesion with electromechanical morcellation. The development of intrauterine morcellators has facilitated the performance of hysteroscopic myomectomy, especially under local anesthesia, but the side aperture-based design of the systems limits their use in International Federation of Gynecology and Obstetrics (FIGO) type 1 and 2 tumors, particularly those located at the uterine fundus. This technique, based in part on a previously published technique of leiomyoma release, improves access of the electromechanical morcellator to leiomyomas that previously were inaccessible, and minimizes myometrial trauma by dissecting the tumor via the relatively avascular pseudocapsule. Copyright © 2016 AAGL. Published by Elsevier Inc. All rights reserved.
CRISPR-Cas9: Tool for Qualitative and Quantitative Plant Genome Editing
Noman, Ali; Aqeel, Muhammad; He, Shuilin
2016-01-01
Recent developments in genome editing techniques have aroused substantial excitement among agricultural scientists. These techniques offer new opportunities for developing improved plant lines with addition of important traits or removal of undesirable traits. Increased adoption of genome editing has been geared by swiftly developing Clustered regularly interspaced short palindromic repeats (CRISPR). This is appearing as driving force for innovative utilization in diverse branches of plant biology. CRISPR-Cas9 mediated genome editing is being used for rapid, easy and efficient alteration of genes among diverse plant species. With approximate completion of conceptual work about CRISPR-Cas9, plant scientists are applying this genome editing tool for crop attributes enhancement. The capability of this system for performing targeted and efficient modifications in genome sequence as well as gene expression will certainly spur novel developments not only in model plants but in crop and ornamental plants as well. Additionally, due to non-involvement of foreign DNA, this technique may help alleviating regulatory issues associated with genetically modified plants. We expect that prevailing challenges in plant science like genomic region manipulation, crop specific vectors etc. will be addressed along with sustained growth of this genome editing tool. In this review, recent progress of CRISPR-Cas9 technology in plants has been summarized and discussed. We reviewed significance of CRISPR-Cas9 for specific and non-traditional aspects of plant life. It also covers strengths of this technique in comparison with other genome editing techniques, e.g., Zinc finger nucleases, Transcription activator-like effector nucleases and potential challenges in coming decades have been described. PMID:27917188
NASA Astrophysics Data System (ADS)
Subramanian, Shyamala
This thesis explores two applications of self-assembled monolayers (SAMs) (a) for developing novel molecular assembly based nanolithography techniques and (b) for tailoring zeta-potential of surfaces towards achieving directional control of catalytically induced fluid flow. The first half of the thesis develops the process of molecular ruler lithography using sacrificial host structures. This is a novel hybrid nanolithography technique which combines chemical self-assembly with conventional fabrication methods for improving the resolution of existing lithography tools to sub-50 nm. Previous work related to molecular ruler lithography have shown the use of thiol-SAMs, placed one on top of the other like a molecular resist, for scaling down feature sizes. In this thesis various engineering solutions for improving the reproducibility, yield, nanoscale roughness and overall manufacturability of the process are introduced. This is achieved by introducing a sacrificial inert layer underneath the gold parent structure. This bilayer sacrificial host allows for preferential, easy and quick removal of the parent structures, isolates the parent metal from the underlying substrate and improves reproducibility of the lift-off process. Also it opens avenues for fabrication of high aspect ratio features. Also molecular layer vapor deposition method is developed for building the multilayer molecular resist via vapor phase to reduce contaminations and yield issues associated with solution phase deposition. The smallest isolated metal features produced using this process were 40 nm in width. The second half of the thesis describes application of thiol-SAMs to tailor surface properties of gold, specifically the surface charge or zeta potential. Previous work has demonstrated that the direction of movement of fluid in the vicinity of a catalytically active bimetallic junction placed in a solution of dilute hydrogen peroxide depends on the charge of the gold surface. SAMs with different end-group functionality impart different surface zeta potential to the gold surface. Zeta-potential engineering via patterning various end-group functionalized SAMs on gold surface to control direction of catalytically induced electroosmotic fluid flow is demonstrated for the first time. This work also describes the application of catalytic power to produce controlled rotational motion. Gold gears-like structures made using conventional microfabrication techniques and propelled by catalytic power are shown to rotate at speeds of 1 rotation/sec in a dilute solution of hydrogen peroxide. Fabrication of a force sensor for detection and measurement of catalytic forces is also introduced. The force sensor, with sensitivity in the piconewton range, consists of a microcantilever with a catalytically active silver post patterned on the tip. Changes in cantilever displacement and resonance frequency due to the catalytic force were monitored as a function of concentration of hydrogen peroxide. Overall, this thesis integrates SAM deposition and patterning techniques with conventional fabrication methods to engineer and control nanoscale structures and devices. Possible future device designs are described including CMOS devices having channel width defined using molecular ruler lithography with sacrificial hosts, drug delivery device based on AFM force sensor and channeless pumps powered by catalytic reactions with SAM controlled electroosmotic fluid flow.
Biomechanical factors related to occlusal load transfer in removable complete dentures.
Żmudzki, Jarosław; Chladek, Grzegorz; Kasperski, Jacek
2015-08-01
Owing to economic conditions, removable dentures remain popular despite the discomfort and reduced chewing efficiency experienced by most denture wearers. However, there is little evidence to confirm that the level of mucosal load exceeds the pressure pain threshold. This discrepancy stimulated us to review the current state of knowledge on the biomechanics of mastication with complete removable dentures. The loading beneath dentures was analyzed in the context of denture foundation characteristics, salivary lubrication, occlusal forces, and the biomechanics of mastication. The analysis revealed that the interpretation of data collected in vivo is hindered due to the simultaneous overlapping effects of many variables. In turn, problems with determining the pressure beneath a denture and analyzing frictional processes constitute principal limitations of in vitro model studies. Predefined conditions of finite element method simulations should include the effects of oblique mastication forces, simultaneous detachment and sliding of the denture on its foundation, and the stabilizing role of balancing contacts. This review establishes that previous investigations may have failed because of their unsubstantiated assumption that, in a well-working balanced occlusion, force is only exerted perpendicular to the occlusal plane, allowing the denture to sit firmly on its foundation. Recent improvements in the simulation of realistic biomechanical denture behavior raise the possibility of assessing the effects of denture design on the pressures and slides beneath the denture.
Ravani, Raghav; Chawla, Rohan; Azad, Shorya Vardhan; Gupta, Yogita; Kumar, Vinod; Kumar, Atul
2018-01-01
Purpose: The objective of this study is to describe the removal of retained intraocular foreign body (RIOFB) by bimanual pars plana vitrectomy through midline sclerotomy in phakic patients. Technique: Four eyes with RIOFB and clear lens underwent microincision vitrectomy surgery. A chandelier illumination was placed through one of the existing ports. The foreign body (FB) was localized by direct visualization (intravitreal) or indentation (pars plana), stabilized using an intraocular magnet/FB forceps introduced through a midline sclerotomy and freed of vitreous from all sides using a vitrectomy cutter through the other port bimanually, reoriented along their long axis and extracted through the midline sclerotomy. Results: All four FBs were removed successfully without slippage or damage to the clear lens. Conclusion: Chandelier illumination-assisted removal of FB through midline sclerotomy helps in easier localization, stabilization and removal, avoiding lens touch even in anteriorly located FBs such as at pars plana. PMID:29676316
Tissue artifact removal from respiratory signals based on empirical mode decomposition.
Liu, Shaopeng; Gao, Robert X; John, Dinesh; Staudenmayer, John; Freedson, Patty
2013-05-01
On-line measurement of respiration plays an important role in monitoring human physical activities. Such measurement commonly employs sensing belts secured around the rib cage and abdomen of the test object. Affected by the movement of body tissues, respiratory signals typically have a low signal-to-noise ratio. Removing tissue artifacts therefore is critical to ensuring effective respiration analysis. This paper presents a signal decomposition technique for tissue artifact removal from respiratory signals, based on the empirical mode decomposition (EMD). An algorithm based on the mutual information and power criteria was devised to automatically select appropriate intrinsic mode functions for tissue artifact removal and respiratory signal reconstruction. Performance of the EMD-algorithm was evaluated through simulations and real-life experiments (N = 105). Comparison with low-pass filtering that has been conventionally applied confirmed the effectiveness of the technique in tissue artifacts removal.
Rousseau, Anne-Françoise; Damas, Pierre; Renwart, Ludovic; Amand, Théo; Erpicum, Marie; Morimont, Philippe; Dubois, Bernard; Massion, Paul B
2014-11-01
Acute respiratory distress syndrome management is currently based on lung protective ventilation. Such strategy may lead to hypercapnic acidosis. We report a case of refractory hypercapnia in a severe burn adult, treated with simplified veno-venous extracorporeal carbon dioxide removal technique. We integrated a pediatric oxygenator in a continuous veno-venous hemofiltration circuit. This technique, used during at least 96h, was feasible, sure and efficient with carbon dioxide removal rate up to 32%. Copyright © 2014 Elsevier Ltd and ISBI. All rights reserved.
Optimising Laser Tattoo Removal
Sardana, Kabir; Ranjan, Rashmi; Ghunawat, Sneha
2015-01-01
Lasers are the standard modality for tattoo removal. Though there are various factors that determine the results, we have divided them into three logical headings, laser dependant factors such as type of laser and beam modifications, tattoo dependent factors like size and depth, colour of pigment and lastly host dependent factors, which includes primarily the presence of a robust immune response. Modifications in the existing techniques may help in better clinical outcome with minimal risk of complications. This article provides an insight into some of these techniques along with a detailed account of the factors involved in tattoo removal. PMID:25949018
Innovative signal processing for Johnson Noise thermometry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ezell, N. Dianne Bull; Britton, Jr, Charles L.; Roberts, Michael
This report summarizes the newly developed algorithm that subtracted the Electromagnetic Interference (EMI). The EMI performance is very important to this measurement because any interference in the form on pickup from external signal sources from such as fluorescent lighting ballasts, motors, etc. can skew the measurement. Two methods of removing EMI were developed and tested at various locations. This report also summarizes the testing performed at different facilities outside Oak Ridge National Laboratory using both EMI removal techniques. The first EMI removal technique reviewed in previous milestone reports and therefore this report will detail the second method.
Therapeutic plasma exchange: a technical and operational review.
Kaplan, Andre A
2013-02-01
Therapeutic plasma exchange (TPE) is an extracorporeal blood purification technique designed for the removal of large molecular weight substances. Examples of these substances include pathogenic autoantibodies, immune complexes, cryoglobulins, myeloma light chains, endotoxin and cholesterol containing lipoproteins. The basic premise of the treatment is that removal of these substances will allow for the reversal of the pathologic processes related to their presence. This review will cover the techniques for performing TPE, the kinetics of the removal of large molecules from the plasma and the benefits and risks of the different types of replacement fluids. Copyright © 2013 Wiley Periodicals, Inc.
Schellenberg, Florian; Oberhofer, Katja; Taylor, William R.
2015-01-01
Background. Knowledge of the musculoskeletal loading conditions during strength training is essential for performance monitoring, injury prevention, rehabilitation, and training design. However, measuring muscle forces during exercise performance as a primary determinant of training efficacy and safety has remained challenging. Methods. In this paper we review existing computational techniques to determine muscle forces in the lower limbs during strength exercises in vivo and discuss their potential for uptake into sports training and rehabilitation. Results. Muscle forces during exercise performance have almost exclusively been analysed using so-called forward dynamics simulations, inverse dynamics techniques, or alternative methods. Musculoskeletal models based on forward dynamics analyses have led to considerable new insights into muscular coordination, strength, and power during dynamic ballistic movement activities, resulting in, for example, improved techniques for optimal performance of the squat jump, while quasi-static inverse dynamics optimisation and EMG-driven modelling have helped to provide an understanding of low-speed exercises. Conclusion. The present review introduces the different computational techniques and outlines their advantages and disadvantages for the informed usage by nonexperts. With sufficient validation and widespread application, muscle force calculations during strength exercises in vivo are expected to provide biomechanically based evidence for clinicians and therapists to evaluate and improve training guidelines. PMID:26417378
Schellenberg, Florian; Oberhofer, Katja; Taylor, William R; Lorenzetti, Silvio
2015-01-01
Knowledge of the musculoskeletal loading conditions during strength training is essential for performance monitoring, injury prevention, rehabilitation, and training design. However, measuring muscle forces during exercise performance as a primary determinant of training efficacy and safety has remained challenging. In this paper we review existing computational techniques to determine muscle forces in the lower limbs during strength exercises in vivo and discuss their potential for uptake into sports training and rehabilitation. Muscle forces during exercise performance have almost exclusively been analysed using so-called forward dynamics simulations, inverse dynamics techniques, or alternative methods. Musculoskeletal models based on forward dynamics analyses have led to considerable new insights into muscular coordination, strength, and power during dynamic ballistic movement activities, resulting in, for example, improved techniques for optimal performance of the squat jump, while quasi-static inverse dynamics optimisation and EMG-driven modelling have helped to provide an understanding of low-speed exercises. The present review introduces the different computational techniques and outlines their advantages and disadvantages for the informed usage by nonexperts. With sufficient validation and widespread application, muscle force calculations during strength exercises in vivo are expected to provide biomechanically based evidence for clinicians and therapists to evaluate and improve training guidelines.