Science.gov

Sample records for forced convective boiling

  1. Subcooled forced convection boiling of trichlorotrifluoroethane

    NASA Technical Reports Server (NTRS)

    Dougall, R. S.; Panian, D. J.

    1972-01-01

    Experimental heat-transfer data were obtained for the forced-convection boiling of trichlorotrifluoroethane (R-113 or Freon-113) in a vertical annular test annular test section. The 97 data points obtained covered heat transfer by forced convection, local boiling, and fully-developed boiling. Correlating methods were obtained which accurately predicted the heat flux as a function of wall superheat (boiling curve) over the range of parameters studied.

  2. A study of forced convection boiling under reduced gravity

    NASA Technical Reports Server (NTRS)

    Merte, Herman, Jr.

    1992-01-01

    This report presents the results of activities conducted over the period 1/2/85-12/31/90, in which the study of forced convection boiling under reduced gravity was initiated. The study seeks to improve the understanding of the basic processes that constitute forced convection boiling by removing the buoyancy effects which may mask other phenomena. Specific objectives may also be expressed in terms of the following questions: (1) what effects, if any, will the removal of body forces to the lowest possible levels have on the forced convection boiling heat transfer processes in well-defined and meaningful circumstances? (this includes those effects and processes associated with the nucleation or onset of boiling during the transient increase in heater surface temperature, as well as the heat transfer and vapor bubble behaviors with established or steady-state conditions); and (2) if such effects are present, what are the boundaries of the relevant parameters such as heat flux, heater surface superheat, fluid velocity, bulk subcooling, and geometric/orientation relationships within which such effects will be produced?

  3. Mechanistic modeling of CHF in forced-convection subcooled boiling

    SciTech Connect

    Podowski, M.Z.; Alajbegovic, A.; Kurul, N.; Drew, D.A.; Lahey, R.T. Jr.

    1997-05-01

    Because of the complexity of phenomena governing boiling heat transfer, the approach to solve practical problems has traditionally been based on experimental correlations rather than mechanistic models. The recent progress in computational fluid dynamics (CFD), combined with improved experimental techniques in two-phase flow and heat transfer, makes the use of rigorous physically-based models a realistic alternative to the current simplistic phenomenological approach. The objective of this paper is to present a new CFD model for critical heat flux (CHF) in low quality (in particular, in subcooled boiling) forced-convection flows in heated channels.

  4. Development of a mechanistic model for forced convection subcooled boiling

    NASA Astrophysics Data System (ADS)

    Shaver, Dillon R.

    The focus of this work is on the formulation, implementation, and testing of a mechanistic model of subcooled boiling. Subcooled boiling is the process of vapor generation on a heated wall when the bulk liquid temperature is still below saturation. This is part of a larger effort by the US DoE's CASL project to apply advanced computational tools to the simulation of light water reactors. To support this effort, the formulation of the dispersed field model is described and a complete model of interfacial forces is formulated. The model has been implemented in the NPHASE-CMFD computer code with a K-epsilon model of turbulence. The interfacial force models are built on extensive work by other authors, and include novel formulations of the turbulent dispersion and lift forces. The complete model of interfacial forces is compared to experiments for adiabatic bubbly flows, including both steady-state and unsteady conditions. The same model is then applied to a transient gas/liquid flow in a complex geometry of fuel channels in a sodium fast reactor. Building on the foundation of the interfacial force model, a mechanistic model of forced-convection subcooled boiling is proposed. This model uses the heat flux partitioning concept and accounts for condensation of bubbles attached to the wall. This allows the model to capture the enhanced heat transfer associated with boiling before the point of net generation of vapor, a phenomenon consistent with existing experimental observations. The model is compared to four different experiments encompassing flows of light water, heavy water, and R12 at different pressures, in cylindrical channels, an internally heated annulus, and a rectangular channel. The experimental data includes axial and radial profiles of both liquid temperature and vapor volume fraction, and the agreement can be considered quite good. The complete model is then applied to simulations of subcooled boiling in nuclear reactor subchannels consistent with the

  5. A Study of Nucleate Boiling with Forced Convection in Microgravity

    NASA Technical Reports Server (NTRS)

    Merte, Herman, Jr.

    1999-01-01

    The ultimate objective of basic studies of flow boiling in microgravity is to improve the understanding of the processes involved, as manifested by the ability to predict its behavior. This is not yet the case for boiling heat transfer even in earth gravity, despite the considerable research activity over the past 30 years. The elements that constitute the nucleate boiling process - nucleation, growth, motion, and collapse of the vapor bubbles (if the bulk liquid is subcooled) - are common to both pool and flow boiling. It is well known that the imposition of bulk liquid motion affects the vapor bubble behavior relative to pool boiling, but does not appear to significantly influence the heat transfer. Indeed, it has been recommended in the past that empirical correlations or experimental data of pool boiling be used for design purposes with forced convection nucleate boiling. It is anticipated that such will most certainly not be possible for boiling in microgravity, based on observations made with pool boiling in microgravity. In earth gravity buoyancy will act to remove the vapor bubbles from the vicinity of the heater surface regardless of how much the imposed bulk velocity is reduced, depending, of course, on the geometry of the system. Vapor bubbles have been observed to dramatically increase in size in pool boiling in microgravity, and the heat flux at which dryout took place was reduced considerably below what is generally termed the critical heat flux (CHF) in earth gravity, depending on the bulk liquid subcooling. However, at heat flux levels below dryout, the nucleate pool boiling process was enhanced considerably over that in earth gravity, in spite of the large vapor bubbles formed in microgravity and perhaps as a consequence. These large vapor bubbles tended to remain in the vicinity of the heater surface, and the enhanced heat transfer appeared to be associated with the presence of what variously has been referred to as a liquid microlayer between the

  6. A Study of Nucleate Boiling with Forced Convection in Microgravity

    NASA Technical Reports Server (NTRS)

    Merte, Herman, Jr.

    1996-01-01

    Boiling is a rather imprecise term applied to the process of evaporation in which the rate of liquid-vapor phase change is large. In seeking to determine the role and significance of body forces on the process, of which buoyancy or gravity is just one agent, it becomes necessary to define the term more precisely. It is generally characterized by the formation and growth of individual vapor bubbles arising from heat transfer to the liquid, either at a solid/liquid or liquid/liquid interface, or volumetrically. The terms 'bubble' boiling and 'nucleate' boiling are frequently used, in recognition of the interactions of surface tension and other forces in producing discrete bubbles at distinctive locations (although not always). Primary considerations are that evaporation can occur only at existing liquid-vapor interfaces, so that attention must be given to the formation of an interface (the nucleation process), and that the latent heat for this evaporation can come only from the superheated liquid, so that attention must also be given to the temperature distributions in the liquid.

  7. Fundamental Study of Local Heat Transfer in Forced Convective Boiling of Ammonia on Vertical Flat Plate

    NASA Astrophysics Data System (ADS)

    Kim, Jeong-Hun; Arima, Hirofumi; Ikegami, Yasuyuki

    In the present study, the fundamental experiments that investigate characteristics of local heat transfer in forced convective boiling on vertical flat plate with 2-mm channel height are taken to realize plate type compact evaporator for OTEC or STEC. The experiments are performed with ammonia as the working fluid. The experiments are also carried out with the following test conditions; saturated pressure = 0.7, 0.8, 0.9 MPa, mass flux = 7.5, 10, 15 kg/(m2•s), heat flux = 15, 20, 25 kW/m2 and inlet quality = 0.1 ~ 0.4 [-]. The result shows that the wall superheated temperature of forced convective boiling is lower than that of pool boiling. And the heat transfer coefficient increases with an increase in quality and the decrease in the local heat flux and saturated pressure for prescribed experimental conditions. However, local heat transfer coefficients are not affected by mass fluxes in the prescribed experimental conditions. An empirical correlation that can predict the local heat transfer coefficient on vertical flat plate within experimental conditions is also proposed.

  8. Boiling incipience and convective boiling of neon and nitrogen

    NASA Technical Reports Server (NTRS)

    Papell, S. S.; Hendricks, R. C.

    1977-01-01

    Forced convection and subcooled boiling heat transfer data for liquid nitrogen and liquid neon were obtained in support of a design study for a 30 tesla cryomagnet cooled by forced convection of liquid neon. The cryogen data obtained over a range of system pressures, fluid flow rates, and applied heat fluxes were used to develop correlations for predicting boiling incipience and convective boiling heat transfer coefficients in uniformly heated flow channels. The accuracy of the correlating equations was then evaluated. A technique was also developed to calculate the position of boiling incipience in a uniformly heated flow channel. Comparisons made with the experimental data showed a prediction accuracy of + or - 15 percent.

  9. Heat and momentum transfer model studies applicable to once-through, forced convection potassium boiling

    NASA Technical Reports Server (NTRS)

    Sabin, C. M.; Poppendiek, H. F.

    1971-01-01

    A number of heat transfer and fluid flow mechanisms that control once-through, forced convection potassium boiling are studied analytically. The topics discussed are: (1) flow through tubes containing helical wire inserts, (2) motion of droplets entrained in vapor flow, (3) liquid phase distribution in boilers, (4) temperature distributions in boiler tube walls, (5) mechanisms of heat transfer regime change, and (6) heat transfer in boiler tubes. Whenever possible, comparisons of predicted and actual performances are made. The model work presented aids in the prediction of operating characteristics of actual boilers.

  10. Critical heat flux in forced convective boiling with a plane jet (Revised correlation for saturated condition)

    NASA Astrophysics Data System (ADS)

    Monde, M.; Wang, X.

    Critical heat flux (CHF) has been measured in saturated forced convective boiling with a wall jet on a rectangular heated surface of 40 and 80mm in length and 20mm in width. The jet velocity is varied from 3 to 15 m/s, and the system pressure is 0.1, 0.2, and 0.4MPa for R113. It is found that the existing correlation for saturation condition can be applied to the CHF at high and low ρl/ρg values (e.g. water and R22), but hardly to the CHF at medium ρl/ρg values (e.g. R113 at 0.2 and 0.4MPa). A revised correlation is proposed to predict most of the CHF data within an accuracy of +/-25%.

  11. Void fraction measurement in subcooled forced convective boiling with refrigerant 12

    SciTech Connect

    Stangl, G.; Mayinger, F. )

    1990-01-01

    This article presents investigations and results of void fraction and pressure drop of dichlordifluomethane (CCl{sub 2}F{sub 2}) in forced convective, subcooled boiling. The data were taken at different heat fluxes in a 12- to 25-bar pressure range, the mass fluxes have been varied from 500 to 3000 kg/m{sup 2}s with an inlet subcooling in the range from 10 to 50 K. The experiments have been conducted in an annular test channel with a 0.016-m inner diameter and a 0.03-m outer diameter. The inner tube of the annulus was heated by direct current. The void fraction data were gauged with a {gamma}-densitometer and a specially designed impedance void meter. The experimental results reveal that the void fraction is nearly constant from the onset of nucleation boiling to subcooling of about {Delta}T = 10 K. A method for predicting the void fraction based on the drift flux model is presented.

  12. Heat Transfer Enhancement in Forced Convective Boiling in Microchannels by Periodic Electrospun Nanofiber Coatings

    NASA Astrophysics Data System (ADS)

    Yarin, Alexander; Freystein, Martin; Kolberg, Felix; Sinha-Ray, Sumit; Sahu, Rakesh; Spiegel, Lucas; Gambaryan-Roisman, Tatiana; Stephan, Peter

    2015-03-01

    To enhance heat transfer in forced convective boiling the microchannel bottom was amended by a nano-texture - periodic rectangular mats of electrospun polymer nanofibers. The fibers were ~ 300-500 nm in diameter and the mat thicknesses were about 6-15 μm. The test fluid was FC-72 and the flow in microchannels contained trains of Taylor bubbles. The role of the nanofibers was to retain the warm microchannel bottom wet, to prevent dry-out and thus to enhance the heat removal rate. In the present experiments the time-average heat flux and heat transfer coefficient at the nanofiber-coated domains were found to be 1.5-2 times higher than those at the uncoated ones. Accordingly, a significant decrease (by 5-8 K) in the superheat was observed at the same Re of 387 and power supply of 36.1 kW/m2. At a higher Re of 432 and lower power supply of 28.1 kW/m2 similar trends in the heat removal rate and surface superheat were found. The significant enhancement of the heat transfer results from the fact that nanofiber mats facilitate wetting of surface under passing Taylor bubbles, thus delaying formation of vapor flow at the channel bottom. The interstices of the nanofiber mat act as the nucleation sites facilitating formation of tiny bubbles, which eventually results in a higher heat removal rate from the surface at a reduced superheat.

  13. Review of nucleation and incipient boiling under pool and forced convection conditions

    NASA Technical Reports Server (NTRS)

    Merte, Herman, Jr.

    1987-01-01

    An overview of liquid-vapor nucleation is given. The result of thermodynamic equilibrium across curved liquid-vapor interfaces is presented. The extension of this to include the interaction with idealizations of surface cavities is made to demonstrate how superheat requirements for nucleation will be affected by surface roughness, flow velocity and buoyancy. Experimental measurements of high liquid superheats and nucleation delay times are presented as examples of homogeneous nucleation. Examples of nucleation and boiling on smooth glass substrates and on metal surfaces with various surface roughnesses are presented.

  14. Forced Convection Boiling and Critical Heat Flux of Ethanol in Electrically Heated Tube Tests

    NASA Technical Reports Server (NTRS)

    Meyer, Michael L.; Linne, Diane L.; Rousar, Donald C.

    1998-01-01

    Electrically heated tube tests were conducted to characterize the critical heat flux (transition from nucleate to film boiling) of subcritical ethanol flowing at conditions relevant to the design of a regeneratively cooled rocket engine thrust chamber. The coolant was SDA-3C alcohol (95% ethyl alcohol, 5% isopropyl alcohol by weight), and tests were conducted over the following ranges of conditions: pressure from 144 to 703 psia, flow velocities from 9.7 to 77 ft/s, coolant subcooling from 33 to 362 F, and critical heat fluxes up to 8.7 BTU/in(exp 2)/sec. For the data taken near 200 psia, critical heat flux was correlated as a function of the product of velocity and fluid subcooling to within +/- 20%. For data taken at higher pressures, an additional pressure term is needed to correlate the critical heat flux. It was also shown that at the higher test pressures and/or flow rates, exceeding the critical heat flux did not result in wall burnout. This result may significantly increase the engine heat flux design envelope for higher pressure conditions.

  15. Forced convection and flow boiling with and without enhancement devices for top-side-heated horizontal channels

    NASA Astrophysics Data System (ADS)

    Boyd, Ronald D., Sr.; Turknett, Jerry C.

    The effect of enhancement devices on flow boiling heat transfer in coolant channels, which are heated either from the top side or uniformly was studied. Studies are completed of the variations in the local (axial and circumferential) and mean heat transfer coefficients in horizontal, top-heated coolant channels with smooth walls and internal heat transfer enhancement devices. The working fluid is freon-11. The objectives are to: (1) examine the variations in both the mean and local (axial and circumferential) heat transfer coefficients for a circular coolant channel with either smooth walls or with both a twisted tape and spiral finned walls; (2) examine the effect of channel diameter (and the length-to-diameter aspect ratio) variations for the smooth wall channel; and (3) develop and improved data reduction analysis. The case of the top-heated, horizontal flow channel with smooth wall (1.37 cm inside diameter, and 122 cm heated length) was completed. The data were reduced using a preliminary analysis based on the heated hydraulic diameter. Preliminary examination of the local heat transfer coefficient variations indicated that there are significant axial and circumferential variations. However, it appears that the circumferential variation is more significant than the axial ones. In some cases, the circumferential variations were as much as a factor of ten. The axial variations rarely exceeded a factor of three.

  16. Forced convection and flow boiling with and without enhancement devices for top-side-heated horizontal channels

    NASA Technical Reports Server (NTRS)

    Boyd, Ronald D., Sr.; Turknett, Jerry C.

    1989-01-01

    The effect of enhancement devices on flow boiling heat transfer in coolant channels, which are heated either from the top side or uniformly was studied. Studies are completed of the variations in the local (axial and circumferential) and mean heat transfer coefficients in horizontal, top-heated coolant channels with smooth walls and internal heat transfer enhancement devices. The working fluid is freon-11. The objectives are to: (1) examine the variations in both the mean and local (axial and circumferential) heat transfer coefficients for a circular coolant channel with either smooth walls or with both a twisted tape and spiral finned walls; (2) examine the effect of channel diameter (and the length-to-diameter aspect ratio) variations for the smooth wall channel; and (3) develop and improved data reduction analysis. The case of the top-heated, horizontal flow channel with smooth wall (1.37 cm inside diameter, and 122 cm heated length) was completed. The data were reduced using a preliminary analysis based on the heated hydraulic diameter. Preliminary examination of the local heat transfer coefficient variations indicated that there are significant axial and circumferential variations. However, it appears that the circumferential variation is more significant than the axial ones. In some cases, the circumferential variations were as much as a factor of ten. The axial variations rarely exceeded a factor of three.

  17. Thermal-hydraulic performance of convective boiling jet array impingement

    NASA Astrophysics Data System (ADS)

    Jenkins, R.; De Brún, C.; Kempers, R.; Lupoi, R.; Robinson, A. J.

    2016-09-01

    Jet impingement boiling is investigated with regard to heat transfer and pressure drop performance using a novel laser sintered 3D printed jet impingement manifold design. Water was the working fluid at atmospheric pressure with inlet subcooling of 7oC. The convective boiling performance of the impinging jet system was investigated for a flat copper target surface for 2700≤Re≤5400. The results indicate that the heat transfer performance of the impinging jet is independent of Reynolds number for fully developed boiling. Also, the investigation of nozzle to plate spacing shows that low spacing delays the onset of nucleate boiling causing a superheat overshoot that is not observed with larger gaps. However, no sensitivity to the gap spacing was measured once boiling was fully developed. The assessment of the pressure drop performance showed that the design effectively transfers heat with low pumping power requirements. In particular, owing to the insensitivity of the heat transfer to flow rate during fully developed boiling, the coefficient of performance of jet impingement boiling in the fully developed boiling regime deteriorates with increased flow rate due to the increase in pumping power flux.

  18. A microgravity boiling and convective condensation experiment

    NASA Technical Reports Server (NTRS)

    Kachnik, Leo; Lee, Doojeong; Best, Frederick; Faget, Nanette

    1987-01-01

    A boiling and condensing test article consisting of two straight tube boilers, one quartz and one stainless steel, and two 1.5 m long glass-in-glass heat exchangers, on 6 mm ID and one 10 mm ID, was flown on the NASA KC-135 0-G aircraft. Using water as the working fluid, the 5 kw boiler produces two phase mixtures of varying quality for mass flow rates between 0.005 and 0.1 kg/sec. The test section is instrumented at eight locations with absolute and differential pressure transducers and thermocouples. A gamma densitometer is used to measure void fraction, and high speed photography records the flow regimes. A three axis accelerometer provides aircraft acceleration data (+ or - 0.01G). Data are collected via an analog-to-digital conversion and data acquisition system. Bubbly, annular, and slug flow regimes were observed in the test section under microgravity conditions. Flow oscillations were observed for some operating conditions and the effect of the 2-G pullout prior to the 0-G period was observed by continuously recording data throughout the parabolas. A total fo 300 parabolas was flown.

  19. A microgravity boiling and convective condensation experiment

    NASA Astrophysics Data System (ADS)

    Kachnik, Leo; Lee, Doojeong; Best, Frederick; Faget, Nanette

    1987-12-01

    A boiling and condensing test article consisting of two straight tube boilers, one quartz and one stainless steel, and two 1.5 m long glass-in-glass heat exchangers, on 6 mm ID and one 10 mm ID, was flown on the NASA KC-135 0-G aircraft. Using water as the working fluid, the 5 kw boiler produces two phase mixtures of varying quality for mass flow rates between 0.005 and 0.1 kg/sec. The test section is instrumented at eight locations with absolute and differential pressure transducers and thermocouples. A gamma densitometer is used to measure void fraction, and high speed photography records the flow regimes. A three axis accelerometer provides aircraft acceleration data (+ or - 0.01G). Data are collected via an analog-to-digital conversion and data acquisition system. Bubbly, annular, and slug flow regimes were observed in the test section under microgravity conditions. Flow oscillations were observed for some operating conditions and the effect of the 2-G pullout prior to the 0-G period was observed by continuously recording data throughout the parabolas. A total fo 300 parabolas was flown.

  20. Enhanced Natural Convection in a Metal Layer Cooled by Boiling Water

    SciTech Connect

    Cho, Jae-Seon; Suh, Kune Y.; Chung, Chang-Hyun; Park, Rae-Joon; Kim, Sang-Baik

    2004-12-15

    An experimental study is performed to investigate the natural convection heat transfer characteristics and the solidification of the molten metal pool concurrently with forced convective boiling of the overlying coolant to simulate a severe accident in a nuclear power plant. The relationship between the Nusselt number (Nu) and the Rayleigh number (Ra) in the molten metal pool region is determined and compared with the correlations in the literature and experimental data with subcooled water. Given the same Ra condition, the present experimental results for Nu of the liquid metal pool with coolant boiling are found to be higher than those predicted by the existing correlations or measured from the experiment with subcooled boiling. To quantify the observed effect of the external cooling on the natural convection heat transfer rate from the molten pool, it is proposed to include an additional dimensionless group characterizing the temperature gradients in the molten pool and in the external coolant region. Starting from the Globe and Dropkin correlation, engineering correlations are developed for the enhancement of heat transfer in the molten metal pool when cooled by an overlying coolant. The new correlations for predicting natural convection heat transfer are applicable to low-Prandtl-number (Pr) materials that are heated from below and solidified by the external coolant above. Results from this study may be used to modify the current model in severe accident analysis codes.

  1. Enhancement of Forced Convection Heat Transfer

    NASA Astrophysics Data System (ADS)

    Tanasawa, Ichiro

    There has been strong demand for enhancement techniques of single-phase forced convection heat transfer because of its wide area of application on the one side and because of inferior heat-transfer capability, when compared with phase change heat transfer such as boiling and condensation, on the other side. The enhancement techniques are indispensable when gases are used as heat-transfer media. In this article the basic principles of enhancement of single-phase forced convection heat transfer are described in the first place. Three principal techniques currently employed, i.e.,(a) interrupted fins, (b) twisted tapes, and (c) turbulence promoters, are introduced. Mechanisms of heat-tansfer enhancement and the state-of-the art review on the R&D are presented for these techniques. In addition to these, supplementary remarks are given on techniques utilizing multiphase flow and electrostatic field.

  2. Natural Convection and Boiling for Cooling SRP Reactors During Loss of Circulation Conditions

    SciTech Connect

    Buckner, M.R.

    2001-06-26

    This study investigated natural convection and boiling as a means of cooling SRP reactors in the event of a loss of circulation accident. These studies show that single phase natural convection cooling of SRP reactors in shutdown conditions with the present piping geometry is probably not feasible.

  3. Forced convection around the human head.

    PubMed Central

    Clark, R P; Toy, N

    1975-01-01

    1. The parameters determining the forced convective heat loss from a heated body in an air stream are outlined. 2. Local forced convective heat transfer distributions around the human head and a heated vertical cylinder at various wind speeds in a climatic chamber have been found to be similar and related to the aerodynamic flow patterns. 3. From the local convective coefficient distribution, values for the overall convective coefficient h-c at various wind speeds have been evaluated. These are seen to agree closely with existing whole body coefficients determined by other methods. PMID:1142119

  4. Boils

    MedlinePlus

    A boil may begin as tender, pinkish-red, and swollen, on a firm area of the skin. Over time, it will feel like a water-filled balloon or cyst . Pain gets worse as it fills with pus and dead tissue. Pain lessens when the boil drains. A boil ...

  5. Modeling of convective subcooled boiling in microtubes for high heat fluxes

    NASA Astrophysics Data System (ADS)

    Hoffman, Myron A.; Stetson, James D., IV

    1993-02-01

    Cooling systems for very compact electronic components and computer chips are being miniaturized to meet the need for smaller overall packaging. One of the important present directions has been to use laminar flow in very small channels with hydraulic diameters in the sub-millimeter range to get high heat transfer coefficients with low pressure drops. It has been speculated that there might be some advantage to having convective subcooled boiling (SCB) occur in the micro-channels. As a first step in the evaluation of the utility of subcooled boiling in these micro-channels, a model has been developed for subcooled boiling in sub-millimeter diameter microtubes subject to uniform heat flux. This model builds on a previously well-validated computer code for convective subcooled boiling in tubes down to 1.57 mm inner diameter. The basic features of the new microtube model are described and some predictions using this model for 0.3 mm and 0.1 mm microtubes subject to a high heat flux of 10 MW/m2 are given.

  6. Technology of forced flow and once-through boiling: A survey. [pressure distribution

    NASA Technical Reports Server (NTRS)

    Poppendieck, H. F.; Sabin, C. M.

    1975-01-01

    Representative boiling heat transfer and pressure drop information obtained primarily from past NASA and AEC programs is presented which is applicable to forced flow and once-through boiler systems. The forced convection boiler has a number of advantages: little possibility of flow mal-distribution; heat transfer characteristics are usually consistent; and conductances are predictable, so that higher heat fluxes may be employed with safety (which leads to more compact, lighter weight equipment). It was found that in gas-fired systems particularly, the controlling heat transfer resistance may be on the hot side, so that increased fluxes would require extended surfaces. If in a power generation system the working fluid is very expensive, a forced flow boiler can be designed especially for small holdup volume. If the fluid is temperature sensitive, the boiling side wall temperatures can be tailored to maintain maximum heat transfer rates without overheating the fluid. The forced flow and once-through configurations may be the only type which can satisfy a specific need (such as the automotive Rankine cycle power plant design having a very short time-response boiler).

  7. Dissolved gas effects on thermocapillary convection during boiling in reduced gravity environments

    NASA Astrophysics Data System (ADS)

    Henry, C. D.; Kim, J.; McQuillen, J.

    2006-08-01

    The mechanisms by which thermocapillary convection arises during boiling of nominally pure fluids in low- g environments are currently not known. It has recently been suggested that small amounts of dissolved gas within the bulk liquid can accumulate within the vapor bubble, forming localized concentration gradients that results in a temperature gradient to form along the liquid-vapor interface that drives thermocapillary convection. This hypothesis was tested by boiling > 99.3% pure n-perfluorohexane with and without noncondensible gas in a low- g environment using a 7.0 × 7.0 mm2 microheater array to measure time and space resolved heat transfer at various wall superheats. The thermocapillary convection around the primary bubble that formed in the gassy fluid was found to be much weaker than in the degassed fluid, and the primary bubble diameter was much larger in the gassy fluid due to the accumulation of noncondensible gas within the bubble. The results suggest that the accumulation of noncondensible gas in the bubble can result in temperature variations along the interface but due to the increased vapor/gas bubble size, the driving thermocapillary temperature gradient along the interface is significantly reduced and result in much weaker thermocapillary flow. The highest CHF values in a reduced gravity environment (19 W/cm2) occurred when the fluid was highly subcooled and degassed.

  8. Forced Convection Heat Transfer in Circular Pipes

    ERIC Educational Resources Information Center

    Tosun, Ismail

    2007-01-01

    One of the pitfalls of engineering education is to lose the physical insight of the problem while tackling the mathematical part. Forced convection heat transfer (the Graetz-Nusselt problem) certainly falls into this category. The equation of energy together with the equation of motion leads to a partial differential equation subject to various…

  9. Magnetospheric Convection as a Global Force Phenomenon

    NASA Astrophysics Data System (ADS)

    Siscoe, G.

    2007-12-01

    Since 1959 when Thomas Gold showed that motions in the magnetosphere were possible despite plasma being frozen to the magnetic field, magnetospheric convection as a subject of study has gone through several stages (to be reviewed) leading to a recent one that integrates convection into a global system of balance of forces. This area of research has opened by focusing on the region 1 current system as a carrier of force between the solar wind and the ionosphere/thermosphere fluid. An important result to emerge from it is the realization that the force that the solar wind delivers to the magnetosphere in being transferred by the region 1 current system to the ionosphere/thermosphere fluid is amplified by about an order of magnitude. (Vasyliunas refers to this as "leveraging.") The apparent violation of Newton's Third Law results from the main participants in the force balance being not the solar wind force but the JxB force on the ionosphere/thermosphere fluid and the mu-dot-grad-B force on the Earth's dipole. This talk extends the study by considering the global force-balance problem separately for the Pedersen current (a completion of the region 1 problem), the Hall current (thus introducing the region 2 current system), and the Cowling current (bringing in the substorm current wedge). The approach is through representing the ionosphere/thermosphere fluid by the shallow water equations. Novelties that result include force balance by means of tidal bulges and tidal bores.

  10. An experimental investigation of liquid methane convection and boiling in rocket engine cooling channels

    NASA Astrophysics Data System (ADS)

    Trujillo, Abraham Gerardo

    approximately 0.1 for all channels. Convective Nusselt number follows predicted trends for Reynolds number with a wall temperature correction for both the boiling and non-boiling regimes.

  11. Performance of thermal adhesives in forced convection

    NASA Technical Reports Server (NTRS)

    Kundu, Nikhil K.

    1993-01-01

    Cooling is critical for the life and performance of electronic equipment. In most cases cooling may be achieved by natural convection but forced convection may be necessary for high wattage applications. Use of conventional type heat sinks may not be feasible from the viewpoint of specific applications and the costs involved. In a heat sink, fins can be attached to the well by ultrasonic welding, by soldering, or with a number of industrially available thermal adhesives. In this paper, the author investigates the heat transfer characteristics of several adhesives and compares them with ultrasonic welding and theoretically calculated values. This experiment was conducted in an air flow chamber. Heat was generated by using heaters mounted on the well. Thermstrate foil, Uniset A401, and Aremco 571 adhesives were tested along with an ultrasonically welded sample. Ultrasonic welding performed far better than the adhesives and Thermstrate foil. This type of experiment can be adapted for a laboratory exercise in an upper level heat transfer course. It gives students an exposure to industrial applications that help them appreciate the importance of the course material.

  12. Thermal instability of forced convection boundary layers

    NASA Astrophysics Data System (ADS)

    Chen, K.; Chen, M. M.

    1981-11-01

    The thermal instability of forced convection boundary layers with non-zero streamwise pressure gradient is examined. An analysis is carried out for the family of Falkner-Skan flows, and only the streamwise buoyancy generated instability for fluid layers with shear at low Reynolds number are considered. When the wedge angle is equal to one, the perturbation equations based on the boundary layer equations are identical to the exact perturbation equations for the stagnation flow. Calculated critical Rayleigh numbers and wave numbers are found to be independent of wedge angle in the limiting case of infinite Prandtl number, and results are compared with previous experimental results by Gilpin et al. (1978), showing good agreement.

  13. Experimental measurements and CFD simulation of convective boiling during subcooled developing flow of R-11 within vertical annulus

    NASA Astrophysics Data System (ADS)

    Bouaichaoui, Y.; Kibboua, R.; Matkovič, M.

    2015-05-01

    In this paper a convective flow boiling of refrigerant R-11 in a vertical annular channel has been investigated. Measurements were performed under various conditions of mass flux, heat flux, and inlet subcooling, which enabled to study the influence of different boundary conditions on the development of local flow parameters. Also, some measurements have been compared to the predictions by the three-dimensional two-fluid model of subcooled boiling flow carried out with the computer code ANSYS-CFX-13. Simulation results successfully predict the main experimental tendencies associated with the heat flux and Reynolds number variation. A sensitivity analysis of several modelling parameters on the radial distribution of flow quantities has highlighted the importance of correct description of the boiling boundary layer. In general a good quantitative and qualitative agreement with experimental data was obtained.

  14. Film Boiling Heat Transfer Properties of Liquid Hydrogen in Natural Convection

    NASA Astrophysics Data System (ADS)

    Horie, Y.; Shirai, Y.; Shiotsu, M.; Matsuzawa, T.; Yoneda, K.; Shigeta, H.; Tatsumoto, H.; Hata, K.; Naruo, Y.; Kobayashi, H.; Inatani, Y.

    Film boiling heat transfer properties of LH2 for various pressures and subcooling conditions were measured by applying electric current to give an exponential heat input to a PtCo wire with a diameter of 1.2 mm submerged in LH2. The heated wire was set to be horizontal to the ground. The heat transfer coefficient in the film boiling region was higher for higher pressure and higher subcooling. The experimental results are compared with the equation of pool film boiling heat transfer. It is confirmed that the pool film boiling heat transfer coefficients in LH2 can be expressed by this equation.

  15. Forced-to-natural convection transition tests in parallel simulated liquid metal reactor fuel assemblies

    SciTech Connect

    Levin, A.E. ); Montgomery, B.H. )

    1990-01-01

    The Thermal-Hydraulic Out of Reactor Safety (THORS) Program at Oak Ridge National Laboratory (ORNL) had as its objective the testing of simulated, electrically heated liquid metal reactor (LMR) fuel assemblies in an engineering-scale, sodium loop. Between 1971 and 1985, the THORS Program operated 11 simulated fuel bundles in conditions covering a wide range of normal and off-normal conditions. The last test series in the Program, THORS-SHRS Assembly 1, employed two parallel, 19-pin, full-length, simulated fuel assemblies of a design consistent with the large LMR (Large Scale Prototype Breeder -- LSPB) under development at that time. These bundles were installed in the THORS Facility, allowing single- and parallel-bundle testing in thermal-hydraulic conditions up to and including sodium boiling and dryout. As the name SHRS (Shutdown Heat Removal System) implies, a major objective of the program was testing under conditions expected during low-power reactor operation, including low-flow forced convection, natural convection, and forced-to-natural convection transition at various powers. The THORS-SHRS Assembly 1 experimental program was divided up into four phases. Phase 1 included preliminary and shakedown tests, including the collection of baseline steady-state thermal-hydraulic data. Phase 2 comprised natural convection testing. Forced convection testing was conducted in Phase 3. The final phase of testing included forced-to-natural convection transition tests. Phases 1, 2, and 3 have been discussed in previous papers. The fourth phase is described in this paper. 3 refs., 2 figs.

  16. Driving forces: Slab subduction and mantle convection

    NASA Technical Reports Server (NTRS)

    Hager, Bradford H.

    1988-01-01

    Mantle convection is the mechanism ultimately responsible for most geological activity at Earth's surface. To zeroth order, the lithosphere is the cold outer thermal boundary layer of the convecting mantle. Subduction of cold dense lithosphere provides tha major source of negative buoyancy driving mantle convection and, hence, surface tectonics. There are, however, importnat differences between plate tectonics and the more familiar convecting systems observed in the laboratory. Most important, the temperature dependence of the effective viscosity of mantle rocks makes the thermal boundary layer mechanically strong, leading to nearly rigid plates. This strength stabilizes the cold boundary layer against small amplitude perturbations and allows it to store substantial gravitational potential energy. Paradoxically, through going faults at subduction zones make the lithosphere there locally weak, allowing rapid convergence, unlike what is observed in laboratory experiments using fluids with temperature dependent viscosities. This bimodal strength distribution of the lithosphere distinguishes plate tectonics from simple convection experiments. In addition, Earth has a buoyant, relatively weak layer (the crust) occupying the upper part of the thermal boundary layer. Phase changes lead to extra sources of heat and bouyancy. These phenomena lead to observed richness of behavior of the plate tectonic style of mantle convection.

  17. Observation of dendritic growth under the influence of forced convection

    NASA Astrophysics Data System (ADS)

    Roshchupkina, O.; Shevchenko, N.; Eckert, S.

    2015-06-01

    The directional solidification of Ga-25wt%In alloys within a Hele-Shaw cell was visualized by X-ray radioscopy. The investigations are focused on the impact of melt convection on the dendritic growth. Natural convection occurs during a bottom up solidification because lighter solute is rejected during crystallization. Forced convection was produced by a specific electromagnetic pump. The direction of forced melt flow is almost horizontal at the solidification front. Melt flow induces various effects on grain morphology primarily caused by convective transport of solute, such as a facilitation of the growth of primary trunks or lateral branches, dendrite remelting, fragmentation or freckle formation depending on the dendrite orientation, the flow direction and intensity. Forced flow eliminates solutal plumes and damps local fluctuations of solute. A preferential growth of the secondary arms occurs at the upstream side of the dendrites, whereas high solute concentration at the downstream side inhibits the formation of secondary branches.

  18. Atmospheric Forcing of Ocean Convection in the Labrador Sea

    DTIC Science & Technology

    2016-06-07

    affects the ocean. OBJECTIVES The ultimate objective of this study is to understand the relation between atmospheric forcing and deep convection in...during the 1997 and 1998 Labrador Sea Deep Convection Experiments. During the 1997 cruise of the R/V Knorr I performed the radiation and upper-air...the hypothesis. This will be done in collaboration with Harcourt and Garwood of the OPBL group at NPS. WORK COMPLETED I improved a web page

  19. Students' Understanding of Boiling Points and Intermolecular Forces

    ERIC Educational Resources Information Center

    Schmidt, Hans-Jurgen; Kaufmann, Birgit; Treagust, David F.

    2009-01-01

    In introductory chemistry courses students are presented with the model that matter is composed of particles, and that weak forces of attraction exist between them. This model is used to interpret phenomena such as solubility and melting points, and aids in understanding the changes in states of matter as opposed to chemical reactions. We…

  20. Boiling of a Liquid on Microstructured Surfaces Under Free-Convection Conditions

    NASA Astrophysics Data System (ADS)

    Shchelchkov, A. V.; Popov, I. A.; Zubkov, N. N.

    2016-09-01

    The authors have shown the possibilities of replacing complex and expensive technologies of manufacture of nanorough, microrough, and porous materials for boiling surfaces by a simple and resource-saving technique of mechanical treatment of surfaces: by the strain-cutting method. It has been established that the maximum levels of heat-transfer intensification (as high as four to six times) during the boiling of distilled water and increase (of six times) in the critical heat fluxes are inherent in surfaces obtained by the strain-cutting method with three-dimensional microfinning with spacings of width 120-180 μm at a height of fins of 340-570 μm and their longitudinal spacing of 240-400 μm.

  1. Advances in shell side boiling of refrigerants

    NASA Astrophysics Data System (ADS)

    Webb, Ralph L.

    The design of shell and tube evaporators used in air conditioning and refrigeration applications is discussed. The heat exchanger geometry of interest involves evaporation or condensation on the shell side of a horizontal tube bundle. Enhanced heat transfer geometries are typically used for shell side evaporation and for forced convection to water on the tube side. Refrigerant boiling data and forced convection refrigerant boiling correlations are described. The refrigerants of interest include R-11, 12, 22, 123, and 134a. Thermal design methods for sizing of the evaporator and condenser are outlined. A computer model for prediction of the evaporator performance is described.

  2. Investigation of Body Force Effects on Flow Boiling Critical Heat Flux

    NASA Technical Reports Server (NTRS)

    Zhang, Hui; Mudawar, Issam; Hasan, Mohammad M.

    2002-01-01

    The bubble coalescence and interfacial instabilities that are important to modeling critical heat flux (CHF) in reduced-gravity systems can be sensitive to even minute body forces. Understanding these complex phenomena is vital to the design and safe implementation of two-phase thermal management loops proposed for space and planetary-based thermal systems. While reduced gravity conditions cannot be accurately simulated in 1g ground-based experiments, such experiments can help isolate the effects of the various forces (body force, surface tension force and inertia) which influence flow boiling CHF. In this project, the effects of the component of body force perpendicular to a heated wall were examined by conducting 1g flow boiling experiments at different orientations. FC-72 liquid was boiled along one wall of a transparent rectangular flow channel that permitted photographic study of the vapor-liquid interface at conditions approaching CHF. High-speed video imaging was employed to capture dominant CHF mechanisms. Six different CHF regimes were identified: Wavy Vapor Layer, Pool Boiling, Stratification, Vapor Counterflow, Vapor Stagnation, and Separated Concurrent Vapor Flow. CHF showed great sensitivity to orientation for flow velocities below 0.2 m/s, where very small CHF values where measured, especially with downflow and downward-facing heated wall orientations. High flow velocities dampened the effects of orientation considerably. Figure I shows representative images for the different CHF regimes. The Wavy Vapor Layer regime was dominant for all high velocities and most orientations, while all other regimes were encountered at low velocities, in the downflow and/or downward-facing heated wall orientations. The Interfacial Lift-off model was modified to predict the effects of orientation on CHF for the dominant Wavy Vapor Layer regime. The photographic study captured a fairly continuous wavy vapor layer travelling along the heated wall while permitting liquid

  3. Plates of the dinosaur stegosaurus: forced convection heat loss fins?

    PubMed

    Farlow, J O; Thompson, C V; Rosner, D E

    1976-06-11

    It is suggested that the plates along the arched back and tail of Stegosaurus served an important thermoregulatory function as forced convection "fins." Wind tunnel experiments on finned models, internal heat conduction calculations, and direct observations of the morphology and internal structure of stegosaur plates support this hypothesis, demonstrating the comparative effectiveness of the plates as heat dissipaters, controllable through input blood flow rate, temperature, and body orientation (with respect to wind).

  4. Forced convection heat transfer to air/water vapor mixtures

    NASA Technical Reports Server (NTRS)

    Richards, D. R.; Florschuetz, L. W.

    1984-01-01

    Heat transfer coefficients were measured using both dry and humid air in the same forced convection cooling scheme and were compared using appropriate nondimensional parameters (Nusselt, Prandtl and Reynolds numbers). A forced convection scheme with a complex flow field, two dimensional arrays of circular jets with crossflow, was utilized with humidity ratios (mass ratio of water vapor to air) up to 0.23. The dynamic viscosity, thermal conductivity and specific heat of air, steam and air/steam mixtures are examined. Methods for determining gaseous mixture properties from the properties of their pure components are reviewed as well as methods for determining these properties with good confidence. The need for more experimentally determined property data for humid air is discussed. It is concluded that dimensionless forms of forced convection heat transfer data and empirical correlations based on measurements with dry air may be applied to conditions involving humid air with the same confidence as for the dry air case itself, provided that the thermophysical properties of the humid air mixtures are known with the same confidence as their dry air counterparts.

  5. An Analytical Approach for Relating Boiling Points of Monofunctional Organic Compounds to Intermolecular Forces

    ERIC Educational Resources Information Center

    Struyf, Jef

    2011-01-01

    The boiling point of a monofunctional organic compound is expressed as the sum of two parts: a contribution to the boiling point due to the R group and a contribution due to the functional group. The boiling point in absolute temperature of the corresponding RH hydrocarbon is chosen for the contribution to the boiling point of the R group and is a…

  6. Pool Boiling Experiment Has Successful Flights

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The Pool Boiling Experiment (PBE) is designed to improve understanding of the fundamental mechanisms that constitute nucleate pool boiling. Nucleate pool boiling is a process wherein a stagnant pool of liquid is in contact with a surface that can supply heat to the liquid. If the liquid absorbs enough heat, a vapor bubble can be formed. This process occurs when a pot of water boils. On Earth, gravity tends to remove the vapor bubble from the heating surface because it is dominated by buoyant convection. In the orbiting space shuttle, however, buoyant convection has much less of an effect because the forces of gravity are very small. The Pool Boiling Experiment was initiated to provide insight into this nucleate boiling process, which has many Earthbound applications, such as steam-generation power plants, petroleum, and other chemical plants. Also, by using the test fluid R-113, the Pool Boiling Experiment can provide some basic understanding of the boiling behavior of cryogenic fluids without the large cost of an experiment using an actual cryogen.

  7. Pool Boiling Experiment Has Five Successful Flights

    NASA Technical Reports Server (NTRS)

    Chiaramonte, Fran

    1997-01-01

    The Pool Boiling Experiment (PBE) is designed to improve understanding of the fundamental mechanisms that constitute nucleate pool boiling. Nucleate pool boiling is a process wherein a stagnant pool of liquid is in contact with a surface that can supply heat to the liquid. If the liquid absorbs enough heat, a vapor bubble can be formed. This process occurs when a pot of water boils. On Earth, gravity tends to remove the vapor bubble from the heating surface because it is dominated by buoyant convection. In the orbiting space shuttle, however, buoyant convection has much less of an effect because the forces of gravity are very small. The Pool Boiling Experiment was initiated to provide insight into this nucleate boiling process, which has many earthbound applications in steamgeneration power plants, petroleum plants, and other chemical plants. In addition, by using the test fluid R-113, the Pool Boiling Experiment can provide some basic understanding of the boiling behavior of cryogenic fluids without the large cost of an experiment using an actual cryogen.

  8. Evaluation of T-111 forced-convection loop tested with lithium at 1370 C. [free convection

    NASA Technical Reports Server (NTRS)

    Devan, J. H.; Long, E. L., Jr.

    1975-01-01

    A T-111 alloy (Ta-8% W-2% Hf) forced-convection loop containing molten lithium was operated 3000 hr at a maximum temperature of 1370 C. Flow velocities up to 6.3 m/sec were used, and the results of this forced-convection loop are very similar to those observed in lower velocity thermal-convection loops of T-111 containing lithium. Weight changes were determined at 93 positions around the loop. The maximum dissolution rate occurred at the maximum wall temperature of the loop and was less than 1.3 microns/year. Mass transfer of hafnium, nitrogen, and, to a lesser extent, carbon occurred from the hotter to cooler regions. Exposed surfaces in the highest temperature region were found to be depleted in hafnium to a depth of 60 microns with no detectable change in tungsten content. There was some loss in room-temperature tensile strength for specimens exposed to lithium at 1370 C, attributable to depletion of hafnium and nitrogen and to attendant grain growth.

  9. Combined forced and free convection in a curved duct

    NASA Technical Reports Server (NTRS)

    Yam, Clement G.; Dwyer, Harry A.

    1992-01-01

    The purpose of this study is to investigate the flow and heat transfer characteristics of a combined forced and free convection flow in a curved duct. Solutions are obtained by solving the low Mach number model of the Navier-Stokes equation using a control volume method. The finite-volume method was developed with the use of a predictor-corrector numerical scheme and some new variations of the classical projection method. Solutions indicated that the existence of a buoyancy force has changed the entire flow structure inside a curved duct. Reversed flow at both inner and outer bend is observed. For moderate Reynolds number, the upstream section of the duct was significantly influenced by the free convection processes. In general, heat transfer is strong at the inner bend of the beginning of the heated section and at the outer bend on the last half of the heated section. The maximum velocity location is strongly influenced by the combined effects of buoyancy and centrifugal forces. A strong buoyancy force can reduce the strength of the secondary flow where it plays an important role in mixing.

  10. Evaluation of engine coolants under flow boiling conditions

    SciTech Connect

    McAssey, E.V. Jr.; Stinson, C.; Gollin, M.

    1995-12-31

    An experimental program has been conducted to evaluate the heat transfer performance of two engine coolant mixtures, propylene-glycol/water and ethylene-glycol/water. In each mixture, the concentration was 50-50 by volume. Performance in this situation is defined as the ability to maintain a lower surface temperature for a given flux. The heat transfer regimes considered covered the range from single phase forced convection through saturated flow boiling. Results show that both coolants perform satisfactorily. However, in single phase convection, ethylene-glycol/water is slightly more effective. Conversely, for sub-cooled nucleate boiling and saturated boiling, propylene-glycol/water results in slightly lower metal temperatures.

  11. Liquid metal boiling inception

    NASA Technical Reports Server (NTRS)

    Sabin, C. M.; Poppendiek, H. F.; Mouritzen, G.; Meckel, P. T.; Cloakey, J. E.

    1972-01-01

    An experimental study of the inception of boiling in potassium in forced convection is reported. The boiler consisted of a 0.19-inch inside diameter, niobium-1% zirconium boiler tube approximately six feet long. Heating was accomplished by direct electrical tube wall conduction. Experiments were performed with both all-liquid fill and two-phase fill startup sequences and with a range of flow rates, saturation temperatures, inert gas levels, and fill liquid temperatures. Superheat of the liquid above the equilibrium saturation temperature was observed in all the experiments. Incipient boiling liquid superheat ranged from a few degrees to several hundred. Comparisons of these data with other data and with several analytical treatments are presented.

  12. Single phase channel flow forced convection heat transfer

    SciTech Connect

    Hartnett, J.P.

    1999-04-01

    A review of the current knowledge of single phase forced convection channel flow of liquids (Pr > 5) is presented. Two basic channel geometries are considered, the circular tube and the rectangular duct. Both laminar flow and turbulent flow are covered. The review begins with a brief overview of the heat transfer behavior of Newtonian fluids followed by a more detailed presentation of the behavior of purely viscous and viscoelastic Non-Newtonian fluids. Recent developments dealing with aqueous solutions of high molecular weight polymers and aqueous solutions of surfactants are discussed. The review concludes by citing a number of challenging research opportunities.

  13. Lox droplet vaporization in a supercritical forced convective environment

    NASA Technical Reports Server (NTRS)

    Hsiao, Chia-Chun; Yang, Vigor

    1994-01-01

    A systematic investigation has been conducted to study the effects of ambient flow conditions (i.e. pressure and velocity) on supercritical droplet gasification in a forced-convective environment. The model is based on the time-dependent conservation equations in axisymmetric coordinates, and accommodates thermodynamic nonidealities and transport anomalies. In addition, an efficient scheme for evaluating thermophysical properties over the entire range of fluid thermodynamic states is established. The analysis allows a thorough examination of droplet behavior during its entire lifetime, including transient gasification, dynamic deformation, and shattering. A parametric study of droplet vaporization rate in terms of ambient pressure and Reynolds number is also conducted.

  14. Microheater Array Boiling Experiment

    NASA Technical Reports Server (NTRS)

    Kim, Jungho; McQuillen, John; Balombin, Joe

    2002-01-01

    By conducting pool boiling tests in microgravity, the effect of buoyancy on the overall boiling process and the relative magnitude of other phenomena can be assessed. Data from KC-135 and sounding rocket experiments indicate little effect of gravity on boiling heat transfer at wall superheats below 25 C, despite vast differences in bubble behavior between gravity levels. In microgravity, a large primary bubble, surrounded by smaller satellite bubbles, moved over the surface, occasionally causing nucleation. Once formed, the primary bubble size remained constant for a given superheat, indicating evaporation at the bubble base is balanced with condensation on the bubble cap. The primary bubble's size increased with wall superheat. Most heaters under the primary bubble had low heat transfer rates, suggesting liquid dryout. Strong Marangoni convection developed in microgravity, forming a 'jet' into the bulk liquid that forced the bubble onto the heater. An experiment is being designed for the. Microgravity Science Glovebox. This experiment uses two 96 element microheater arrays, 2.7 and 7.0 mm in size. These heaters are individually controlled to operate at a constant temperature, measuring local heat fluxes as a function of time and space. Most boiling experiments operate at constant wall heat flux with larger heaters, allowing only time and space-averaged measurements. Each heater is about the bubble departure size in normal gravity, but significantly smaller than the bubble departure size in reduced gravity.

  15. Numerical study of forced convective heat transfer around airships

    NASA Astrophysics Data System (ADS)

    Dai, Qiumin; Fang, Xiande

    2016-02-01

    Forced convective heat transfer is an important factor that affects the thermal characteristics of airships. In this paper, the steady state forced convective heat transfer around an ellipsoid is numerically investigated. The numerical simulation is carried out by commercial computational fluid dynamic (CFD) software over the extended Re range from 20 to 108 and the aspect ratio from 2 to 4. Based on the regression and optimization with software, a new piecewise correlation of the Nusselt number at constant wall temperature for ellipsoid is proposed, which is suitable for applications to airships and other ellipse shaped bodies such as elliptical balloons. The thermal characteristics of a stratospheric airship in midsummer located in the north hemisphere are numerical studied. The helium temperature predicated using the new correlation is compared to those predicted by correlations applicable for spheres and flat plates. The results show that the helium temperature obtained using the new correlation at noon is about 5.4 K lower than that using the correlation of spheres and about 2.1 K higher than that of flat plates.

  16. Effect of Surface Omniphobicity on Drying by Forced Convection (Briefing Charts)

    DTIC Science & Technology

    2015-08-01

    Charts 3. DATES COVERED (From - To) July 2015-August 2015 4. TITLE AND SUBTITLE Effect of Surface Omniphobicity on Drying by Forced Convection ...Forced Convection Madani Khan The City College of New York STAR Program August, 2015 2DISTRIBUTION A: Approved for public release; distribution...to enhance the drying rate of liquids removed from the surface by forced convection . We control surface roughness by substrate abrasion and by the

  17. ARM - Midlatitude Continental Convective Clouds - Single Column Model Forcing (xie-scm_forcing)

    DOE Data Explorer

    Xie, Shaocheng; McCoy, Renata; Zhang, Yunyan

    2012-10-25

    The constrained variational objective analysis approach described in Zhang and Lin [1997] and Zhang et al. [2001]was used to derive the large-scale single-column/cloud resolving model forcing and evaluation data set from the observational data collected during Midlatitude Continental Convective Clouds Experiment (MC3E), which was conducted during April to June 2011 near the ARM Southern Great Plains (SGP) site. The analysis data cover the period from 00Z 22 April - 21Z 6 June 2011. The forcing data represent an average over the 3 different analysis domains centered at central facility with a diameter of 300 km (standard SGP forcing domain size), 150 km and 75 km, as shown in Figure 1. This is to support modeling studies on various-scale convective systems.

  18. A Closer Look at Trends in Boiling Points of Hydrides: Using an Inquiry-Based Approach to Teach Intermolecular Forces of Attraction

    ERIC Educational Resources Information Center

    Glazier, Samantha; Marano, Nadia; Eisen, Laura

    2010-01-01

    We describe how we use boiling-point trends of group IV-VII hydrides to introduce intermolecular forces in our first-year general chemistry classes. Starting with the idea that molecules in the liquid state are held together by some kind of force that must be overcome for boiling to take place, students use data analysis and critical reasoning to…

  19. LOX droplet vaporization in a supercritical forced convective environment

    NASA Astrophysics Data System (ADS)

    Hsiao, Chia-Chun; Yang, Vigor

    1993-11-01

    Modern liquid rocket engines often use liquid oxygen (LOX) and liquid hydrogen (LH2) as propellants to achieve high performance, with the engine operational conditions in the supercritical regimes of the propellants. Once the propellant exceeds its critical state, it essentially becomes a puff of dense fluid. The entire field becomes a continuous medium, and no distinct interfacial boundary between the liquid and gas exists. Although several studies have been undertaken to investigate the supercritical droplet behavior at quiescent conditions, very little effort has been made to address the fundamental mechanisms associated with LOX droplet vaporization in a supercritical, forced convective environment. The purpose is to establish a theoretical framework within which supercritical droplet dynamics and vaporization can be studied systematically by means of an efficient and robust numerical algorithm.

  20. Ergodicity in randomly forced Rayleigh-Bénard convection

    NASA Astrophysics Data System (ADS)

    Földes, J.; Glatt-Holtz, N. E.; Richards, G.; Whitehead, J. P.

    2016-11-01

    We consider the Boussinesq approximation for Rayleigh-Bénard convection perturbed by an additive noise and with boundary conditions corresponding to heating from below. In two space dimensions, with sufficient stochastic forcing in the temperature component and large Prandtl number Pr  >  0, we establish the existence of a unique ergodic invariant measure. In three space dimensions, we prove the existence of a statistically invariant state, and establish unique ergodicity for the infinite Prandtl Boussinesq system. Throughout this work we provide streamlined proofs of unique ergodicity which invoke an asymptotic coupling argument, a delicate usage of the maximum principle, and exponential martingale inequalities. Lastly, we show that the background method of Constantin and Doering (1996 Nonlinearity 9 1049-60) can be applied in our stochastic setting, and prove bounds on the Nusselt number relative to the unique invariant measure.

  1. LOX droplet vaporization in a supercritical forced convective environment

    NASA Technical Reports Server (NTRS)

    Hsiao, Chia-Chun; Yang, Vigor

    1993-01-01

    Modern liquid rocket engines often use liquid oxygen (LOX) and liquid hydrogen (LH2) as propellants to achieve high performance, with the engine operational conditions in the supercritical regimes of the propellants. Once the propellant exceeds its critical state, it essentially becomes a puff of dense fluid. The entire field becomes a continuous medium, and no distinct interfacial boundary between the liquid and gas exists. Although several studies have been undertaken to investigate the supercritical droplet behavior at quiescent conditions, very little effort has been made to address the fundamental mechanisms associated with LOX droplet vaporization in a supercritical, forced convective environment. The purpose is to establish a theoretical framework within which supercritical droplet dynamics and vaporization can be studied systematically by means of an efficient and robust numerical algorithm.

  2. Forced convection heat transfer to air/water vapor mixtures

    NASA Technical Reports Server (NTRS)

    Richards, D. R.; Florschuetz, L. W.

    1986-01-01

    Heat transfer coefficients were measured using both dry air and air/water vapor mixtures in the same forced convection cooling test rig (jet array impingement configurations) with mass ratios of water vapor to air up to 0.23. The primary objective was to verify by direct experiment that selected existing methods for evaluation of viscosity and thermal conductivity of air/water vapor mixtures could be used with confidence to predict heat transfer coefficients for such mixtures using as a basis heat transfer data for dry air only. The property evaluation methods deemed most appropriate require as a basis a measured property value at one mixture composition in addition to the property values for the pure components.

  3. Saturated film boiling at various gravity levels under the influence of electrohydrodynamic forces

    NASA Astrophysics Data System (ADS)

    Pandey, Vinod; Biswas, Gautam; Dalal, Amaresh

    2017-03-01

    The present work is focused on the analyses of the bubble growth and heat transfer characteristics in saturated film boiling at various levels of gravity. In addition to this, the occurrence of self-similarity in interface structures during the bubble growth is examined. The phenomenon of bubble growth is strongly influenced by the buoyant forces due to gravity and its dominant effect is found to be replaced by the electrohydrodynamic forces in reduced gravity conditions. The decrease in gravitational acceleration results in increasing the characteristic wavelength and time scale. The bubble volume and maximum height before pinch-off thus increase enormously as the gravity value is reduced. The bubble pinch-off velocity is found to be decreased significantly in the case of reduced gravity condition. Heat transfer rate deteriorates in reduced gravity conditions which can be recovered by the externally imposed electric field. The dominance of electric field on the heat transfer rate is found to be more in reduced gravity condition. However, as the value of imposed electric field is enhanced, the difference in the effect of increasing heat flux tends to reduce.

  4. Effect of dissolved noncondensables on liquid forced convection in microchannels

    SciTech Connect

    Adams, T.M.; Ghiaasiaan, S.M.; Abdel-Khalik, S.I.

    1999-07-01

    A method of quantifying the effect of noncondensable desorption on the forced flow of liquids in microchannels subject to a uniform heat flux has been developed. The model is based on the solution of the differential forms of the mass, momentum, energy and noncondensable species conservation equations assuming that the liquid is fully saturated with the noncondensable at the channel inlet. Parametric calculations for conditions encountered in typical microchannel experiments were performed and the results presented. The resulting calculations show that significant noncondensable desorption can take place in microchannel flow resulting in increased liquid velocities and enhanced heat transfer. Experiments were also performed with a 0.76 mm diameter microchannel using both fully degassed water and water saturated with air at the channel inlet. The measured heat transfer coefficients for the air-saturated data were significantly higher than for the fully degassed data in regions where the model predicts significant noncondensable desorption. The forced turbulent convective flow of water in microchannels offers a wide variety of applications including micro-electronic cooling, miniature refrigeration, micro heat exchanger systems and the cooling of fission reactor cores.

  5. Forced Convection and Sedimentation Past a Flat Plate

    NASA Technical Reports Server (NTRS)

    Pelekasis, Nikolaos A.; Acrivos, Andreas

    1995-01-01

    The steady laminar flow of a well-mixed suspension of monodisperse solid spheres, convected steadily past a horizontal flat plate and sedimenting under the action of gravity, is examined. It is shown that, in the limit as Re approaches infinity and epsilon approaches 0, where Re is the bulk Reynolds number and epsilon is the ratio of the particle radius a to the characteristic length scale L, the analysis for determining the particle concentration profile has several aspects in common with that of obtaining the temperature profile in forced-convection heat transfer from a wall to a fluid stream moving at high Reynolds and Prandtl numbers. Specifically, it is found that the particle concentration remains uniform throughout the O(Re(exp -1/2)) thick Blasius boundary layer except for two O(epsilon(exp 2/3)) thin regions on either side of the plate, where the concentration profile becomes non-uniform owing to the presence of shear-induced particle diffusion which balances the particle flux due to convection and sedimentation. The system of equations within this concentration boundary layer admits a similarity solution near the leading edge of the plate, according to which the particle concentration along the top surface of the plate increases from its value in the free stream by an amount proportional to X(exp 5/6), with X measuring the distance along the plate, and decreases in a similar fashion along the underside. But, unlike the case of gravity settling on an inclined plate in the absence of a bulk flow at infinity considered earlier, here the concentration profile remains continuous everywhere. For values of X beyond the region near the leading edge, the particle concentration profile is obtained through the numerical solution of the relevant equations. It is found that, as predicted from the similarity solution, there exists a value of X at which the particle concentration along the top side of the plate attains its maximum value phi(sub m) and that, beyond this

  6. Forced convection heat transfer from a wire inserted into a vertically-mounted pipe to liquid hydrogen flowing upward

    NASA Astrophysics Data System (ADS)

    Tatsumoto, H.; Shirai, Y.; Shiotsu, M.; Naruo, Y.; Kobayashi, H.; Inatani, Y.

    2014-12-01

    Forced convection heat transfer from a PtCo wire with a length of 120 mm and a diameter of 1.2 mm that was inserted into a vertically-mounted pipe with a diameter of 8.0 mm to liquid hydrogen flowing upward was measured with a quasi-steady increase of a heat generation rate for wide ranges of flow rate under saturated conditions. The pressures were varied from 0.4 MPa to 1.1 MPa. The non-boiling heat transfer characteristic agrees with that predicted by Dittus-Boelter correlation. The critical heat fluxes are higher for higher flow rates and lower pressures. Effect of Weber number on the CHF was clarified and a CHF correlation that can describe the experimental data is derived based on our correlation for a pipe.

  7. Heat transfer with nucleate boiling of liquids under weak mass force field conditions

    NASA Technical Reports Server (NTRS)

    Kirichenko, Y. A.

    1974-01-01

    The motion is examined of a vapor bubble growing and rising from a flat horizontal heater in the ideal fluid approximation and taking drag into account. Estimates are given of bubble lifetime, bubble radius at detachment, bubble detachment frequency, and time for the bubble to attain a constant rate of rise. The relations obtained for the microcharacteristics of the boiling process are used to determine the coefficients of heat transfer in developed nucleate boiling. A new form of the equations for describing heat transfer in nucleate boiling in dimensionless parameters is proposed.

  8. Forced convective melting at an evolving ice-water interface

    NASA Astrophysics Data System (ADS)

    Ramudu, Eshwan; Hirsh, Benjamin; Olson, Peter; Gnanadesikan, Anand

    2015-11-01

    The intrusion of warm Circumpolar Deep Water into the ocean cavity between the base of ice shelves and the sea bed in Antarctica causes melting at the ice shelves' basal surface, producing a turbulent melt plume. We conduct a series of laboratory experiments to investigate how the presence of forced convection (turbulent mixing) changes the delivery of heat to the ice-water interface. We also develop a theoretical model for the heat balance of the system that can be used to predict the change in ice thickness with time. In cases of turbulent mixing, the heat balance includes a term for turbulent heat transfer that depends on the friction velocity and an empirical coefficient. We obtain a new value for this coefficient by comparing the modeled ice thickness against measurements from a set of nine experiments covering one order of magnitude of Reynolds numbers. Our results are consistent with the altimetry-inferred melting rate under Antarctic ice shelves and can be used in climate models to predict their disintegration. This work was supported by NSF grant EAR-110371.

  9. The effects of natural, forced and thermoelectric magnetohydrodynamic convection during the solidification of thin sample alloys

    NASA Astrophysics Data System (ADS)

    Kao, A.; Shevchenko, N.; Roshchupinka, O.; Eckert, S.; Pericleous, K.

    2015-06-01

    Using a fully coupled transient 3-dimensional numerical model, the effects of convection on the microstructural evolution of a thin sample of Ga-In25%wt. was predicted. The effects of natural convection, forced convection and thermoelectric magnetohydrodynamics were investigated numerically. A comparison of the numerical results is made to experimental results for natural convection and forced convection. In the case of natural convection, density variations within the liquid cause plumes of solute to be ejected into the bulk. When forced convection is applied observed effects include the suppression of solute plumes, preferential secondary arm growth and an increase in primary arm spacing. These effects were observed both numerically and experimentally. By applying an external magnetic field inter-dendritic flow is generated by thermoelectrically induced Lorentz forces, while bulk flow experiences an electromagnetic damping force. The former causes preferential secondary growth, while the latter slows the formation of solute plumes. This work highlights that the application of external forces can be a valuable tool for tailoring the microstructure and ultimately the macroscopic material properties.

  10. Immersion cooling of an array of heated elements by convective boiling of a subcooled binary liquid mixture

    NASA Astrophysics Data System (ADS)

    McGillis, W. R.; Carey, V. P.

    1991-01-01

    Boiling data and the critical heat flux conditions are reported for both channel flow and jet impingement flow using varying concentrations of R-11 in R-113. An array of ten flush-mounted heated elements on one wall of a vertical passage were cooled by subcooled boiling. Data indicate that for this binary system the addition of R-11 to R-113 does not produce a significant change in critical heat flux. For channel flow boiling, the data indicate that addition of a small amount of a less volatile component slightly increases the critical heat flux, whereas addition of a small amount of more volatile component decreases it. The critical heat flux data were also found to agree well with critical heat flux correlations for pure fluids if the mole-weighted mean properties of the mixture were used to compute the critical heat flux from the pure fluid correlation. The significance of the findings of this study with regard to the use of binary mixtures of dielectric fluids for immersion cooling of electronic components is also discussed in this paper.

  11. Estimating surface temperature in forced convection nucleate boiling: A simplified method

    NASA Technical Reports Server (NTRS)

    Hendricks, R. C.; Papell, S. S.

    1977-01-01

    During a test program to investigate low-cycle thermal fatigue, 21 of 22 cylindrical test sections of a cylindrical rocket thrust chamber were thermally cycled to failure. Cylinder liners were fabricated from OFHC copper, Amzirc, and NARloy-Z. The cylinders were fabricated by milling cooling channels into the liner and closing out the backside with electrodeposited copper. The tests were conducted at a chamber pressure of 4.14 MN/sq m (600 psia) and an oxidant-fuel ratio of 6.0 using hydrogen-oxygen as propellants. The average throat heat flux was 54 MW/sq m (33 Btu/sq in./sec). All of the failures were characterized by a thinning of the cooling channel wall and eventual failure by tensile rupture. The 1/2-hard Amzirc material showed little improvement in cyclic life when compared with OFHC copper; while the NARloy-Z and aged Amzirc materials had the best cyclic life characteristics. One OFHC copper cylinder was thermall cycled 2044 times at a steady-state hot-gas-side wall temperature of 514 K (925 R) without failing.

  12. Diagnosis of the forcing of inertial-gravity waves in a severe convection system

    NASA Astrophysics Data System (ADS)

    Ran, Lingkun; Chen, Changsheng

    2016-11-01

    The non-hydrostatic wave equation set in Cartesian coordinates is rearranged to gain insight into wave generation in a mesoscale severe convection system. The wave equation is characterized by a wave operator on the lhs, and forcing involving three terms—linear and nonlinear terms, and diabatic heating—on the rhs. The equation was applied to a case of severe convection that occurred in East China. The calculation with simulation data showed that the diabatic forcing and linear and nonlinear forcing presented large magnitude at different altitudes in the severe convection region. Further analysis revealed the diabatic forcing due to condensational latent heating had an important influence on the generation of gravity waves in the middle and lower levels. The linear forcing resulting from the Laplacian of potential-temperature linear forcing was dominant in the middle and upper levels. The nonlinear forcing was determined by the Laplacian of potential-temperature nonlinear forcing. Therefore, the forcing of gravity waves was closely associated with the thermodynamic processes in the severe convection case. The reason may be that, besides the vertical component of pressure gradient force, the vertical oscillation of atmospheric particles was dominated by the buoyancy for inertial gravity waves. The latent heating and potential-temperature linear and nonlinear forcing played an important role in the buoyancy tendency. Consequently, these thermodynamic elements influenced the evolution of inertial-gravity waves.

  13. Forced convection in the wakes of sliding bubbles

    NASA Astrophysics Data System (ADS)

    Meehan, O'Reilly; Donnelly, B.; Persoons, T.; Nolan, K.; Murray, D. B.

    2016-09-01

    Both vapour and gas bubbles are known to significantly increase heat transfer rates between a heated surface and the surrounding fluid, even with no phase change. However, the complex wake structures means that the surface cooling is not fully understood. The current study uses high speed infra-red thermography to measure the surface temperature and convective heat flux enhancement associated with an air bubble sliding under an inclined surface, with a particular focus on the wake. Enhancement levels of 6 times natural convection levels are observed, along with cooling patterns consistent with a possible hairpin vortex structure interacting with the thermal boundary layer. Local regions of suppressed convective heat transfer highlight the complexity of the bubble wake in two-phase applications.

  14. Experimental StudyHigh Altitude Forced Convective Cooling of Electromechanical Actuation Systems

    DTIC Science & Technology

    2016-01-01

    EMAS Electromechanical Actuator System FPGA Field-Programmable Gate Array HTC Heat Transfer Coefficient I/O Input/Output inH2O Inches of Water...power density. This means that thermal management will need to be more efficient in removing large transient heat loads and need to be collocated with...convective heat transfer could be profound. When designing forced convective heat transfer solutions for all varieties of systems engineers use

  15. Magnetothermal Convection of Air in a Shallow Vessel under the Application of an Axisymmetric Magnetic Force

    NASA Astrophysics Data System (ADS)

    Maki, Syou; Tanaka, Keito; Morimoto, Shotaro

    2017-02-01

    We examined, by three-dimensional numerical computations, the magnetothermal convection of air (a paramagnetic substance) enclosed in a cylindrical vessel with a Rayleigh-Benard model under the application of an axisymmetric magnetic force at the center of a solenoidal superconducting magnet. Axisymmetric steady convective flows were induced when the magnitude of the radial component of the magnetic force (fmR) was 1.0 and 5.0 times that of the gravitational force at the vessel sidewall; e.g., the hot air was concentrated at the vessel center and the cold air was driven to the vicinity of the vessel sidewall. This flow pattern was similar to the case of water (a diamagnetic substance), although the axisymmetric arrangements of hot and cold water were the reverse of the present convection of air. When fmR was 0.5 times that of the gravitational force, the axisymmetric flows appeared only in the vicinity of the vessel sidewall. Unsteady convective rolls simultaneously occurred in the vessel center, and they repeatedly combined and separated from each other. When fmR was 0.1 times that of the gravitational force, there were barely any axisymmetric flows in the close vicinity of the vessel sidewall, while the initial convective flows remained in most other parts of the vessel. Thus, we varied the magnitude of fmR and clarified the transitional processes of isothermal and velocity distributions of magnetothermal convection. We discuss those convective flows with the magnitude and direction of fmR.

  16. From conduction to convection of thermally relativistic fluids between two parallel walls under gravitational force

    NASA Astrophysics Data System (ADS)

    Yano, Ryosuke

    2017-01-01

    The thermal conduction and convection of thermally relativistic fluids between two parallel walls under the gravitational force are discussed both theoretically and numerically. In the theoretical discussion, the Lorentz contraction is assumed to be negligible and spacetime is assumed to be flat. For understanding of the thermal conduction and convection of thermally relativistic fluids between two parallel walls under the gravitational force, the relativistic Boltzmann equation is solved using the direct simulation Monte Carlo method, numerically. Numerical results indicate that strongly nonequilibrium states are formed in vicinities of two walls, which do not allow us to discuss the transition of the thermal conduction to the thermal convection of thermally relativistic fluids under the gravitational force in the framework of the relativistic Navier-Stokes-Fourier equation, when the flow-field is under the transition regime between the rarefied and continuum regimes, whereas such strongly nonequilibrium states are not formed in vicinities of two walls under the nonrelativistic limit.

  17. Flow Boiling Heat Transfer to Lithium Bromide Aqueous Solution in Subcooled Region

    NASA Astrophysics Data System (ADS)

    Kaji, Masao; Furukawa, Masahiro; Nishizumi, Takeharu; Ozaki, Shinji; Sekoguchi, Kotohiko

    A theoretical prediction model of the boiling heat transfer coefficient in the subcooled region for water and lithium bromide aqueous solution flowing in a rectangular channel is proposed. In the present heat transfer model, a heat flux is assumed to consist of both the forced convective and the boiling effect components. The forced convective component is evaluated from the empirical correlation of convective heat transfer coefficient for single-phase flow considering the effect of increase of liquid velocity due to net vapor generation. Empirical correlations for determining the heat flux due to the boiling effect and the quality at the onset point of net vapor generation are obtained from the data presented in the first report1). Agreement between the present theoretical prediction and the experimental data is satisfactorily good both for water and lithium bromide aqueous solution.

  18. Studies of Forced-Convection Heat Transfer Augmentation in Large Containment Enclosures

    SciTech Connect

    Kuhn, S.Z.; Peterson, P.F.

    2001-06-17

    Heat transfer enhancement due to jet mixing inside a cylindrical enclosure is discussed. This work addresses conservative heat transfer assumptions regarding mixing and condensation that have typically been incorporated into passive containment design analyses. This research presents the possibility for increasing decay heat removal of passive containment systems under combined natural and forced convection. Eliminating these conservative assumptions could result in a changed containment design and reduce the construction cost. It is found that the ratio of forced- and free-convection Nusselt numbers can be predicted as a function of the Archimedes number and a correlated factor accounting for jet orientation and enclosure geometry.

  19. MHD forced convective laminar boundary layer flow from a convectively heated moving vertical plate with radiation and transpiration effect.

    PubMed

    Uddin, Md Jashim; Khan, Waqar A; Ismail, A I Md

    2013-01-01

    A two-dimensional steady forced convective flow of a Newtonian fluid past a convectively heated permeable vertically moving plate in the presence of a variable magnetic field and radiation effect has been investigated numerically. The plate moves either in assisting or opposing direction to the free stream. The plate and free stream velocities are considered to be proportional to x(m) whilst the magnetic field and mass transfer velocity are taken to be proportional to x((m-1)/2) where x is the distance along the plate from the leading edge of the plate. Instead of using existing similarity transformations, we use a linear group of transformations to transform the governing equations into similarity equations with relevant boundary conditions. Numerical solutions of the similarity equations are presented to show the effects of the controlling parameters on the dimensionless velocity, temperature and concentration profiles as well as on the friction factor, rate of heat and mass transfer. It is found that the rate of heat transfer elevates with the mass transfer velocity, convective heat transfer, Prandtl number, velocity ratio and the magnetic field parameters. It is also found that the rate of mass transfer enhances with the mass transfer velocity, velocity ratio, power law index and the Schmidt number, whilst it suppresses with the magnetic field parameter. Our results are compared with the results existing in the open literature. The comparisons are satisfactory.

  20. MHD Forced Convective Laminar Boundary Layer Flow from a Convectively Heated Moving Vertical Plate with Radiation and Transpiration Effect

    PubMed Central

    Uddin, Md. Jashim; Khan, Waqar A.; Ismail, A. I. Md.

    2013-01-01

    A two-dimensional steady forced convective flow of a Newtonian fluid past a convectively heated permeable vertically moving plate in the presence of a variable magnetic field and radiation effect has been investigated numerically. The plate moves either in assisting or opposing direction to the free stream. The plate and free stream velocities are considered to be proportional to whilst the magnetic field and mass transfer velocity are taken to be proportional to where is the distance along the plate from the leading edge of the plate. Instead of using existing similarity transformations, we use a linear group of transformations to transform the governing equations into similarity equations with relevant boundary conditions. Numerical solutions of the similarity equations are presented to show the effects of the controlling parameters on the dimensionless velocity, temperature and concentration profiles as well as on the friction factor, rate of heat and mass transfer. It is found that the rate of heat transfer elevates with the mass transfer velocity, convective heat transfer, Prandtl number, velocity ratio and the magnetic field parameters. It is also found that the rate of mass transfer enhances with the mass transfer velocity, velocity ratio, power law index and the Schmidt number, whilst it suppresses with the magnetic field parameter. Our results are compared with the results existing in the open literature. The comparisons are satisfactory. PMID:23741295

  1. Jet Impingement and Forced Convection Cooling Experimental Study in Rotating Turbine Blades

    NASA Astrophysics Data System (ADS)

    Li, Hsin-Lung; Chiang, Hsiao-Wei D.; Hsu, Chih-Neng

    2011-06-01

    Both jet impingement and forced convection are attractive cooling mechanisms widely used in cooling gas turbine blades. Convective heat transfer from impinging jets is known to yield high local and area averaged heat transfer coefficients. Impingement jets are of particular interest in the cooling of gas turbine components where advancement relies on the ability to dissipate extremely large heat loads. Current research is concerned with the measurement and comparison of both jet impingement and forced convection heat transfer in the Reynolds number range of 10,000 to 30,000. This study is aimed at experimentally testing two different setups with forced convection and jet impingement in rotating turbine blades up to 700 RPM. This research also observes Coriolis force and impingement cooling inside the passage during rotating conditions within a cooling passage. Local heat transfer coefficients are obtained for each test section using thermocouple technique with slip rings. The cross section of the passage is 10 mm × 10 mm without ribs and the surface heating condition has enforced uniform heat flux. The forced convection cooling effects were studied using serpentine passages with three corner turns under different rotating speeds and different inlet Reynolds numbers. The impingement cooling study uses a straight passage with a single jet hole under different Reynolds numbers of the impingement flow and the cross flow. In summary, the main purpose is to study the rotation effects on both the jet impingement and the serpentine convection cooling types. Our study shows that rotation effects increase serpentine cooling and reduce jet impingement cooling.

  2. The Role of Ascent-Forced Convection in Orographic Precipitation: Results from the DOMEX Field Campaign

    NASA Astrophysics Data System (ADS)

    Minder, J. R.; Smith, R. B.; Nugent, A. D.; Kirshbaum, D. J.

    2011-12-01

    Shallow convection is a pervasive feature of orographic precipitation, but its detailed role remains poorly understood. The mountainous Caribbean island of Dominica is a natural laboratory for isolating the role of shallow convection in orographic rainfall. It lies in a region of persistent easterly trade wind flow, and receives much of its rainfall from shallow convection that is forced mechanically by ascent of easterly flow over the Dominican terrain. The Dominica Experiment (DOMEX) has focused on convective orographic precipitation over the island from 2007-2011. The first phase of the project developed a climatology of rainfall and theories to explain the observed enhancement over the terrain. The second phase of the project (Apr-May 2011) has provided a detailed view of 20 individual rainfall events with data from: surface gauges, time-lapse photography, operational radar scans, a mountaintop weather station, and both in situ and remote observations from the University of Wyoming King Air research aircraft. Focusing on ascent--forced convection during DOMEX has revealed a number of the key processes that control the rainfall. Upwind of the island, clouds and water vapor anomalies exist that appear to play a crucial role in seeding the convection over the terrain and determining its vigor. Over the windward slopes the air is readily lifted with little flow deflection. Strong convective cells rapidly develop to produce large rainfall rates. Over the lee slopes of the terrain there is an abrupt transition to a deep and turbulent plunging flow that quickly eliminates convective clouds, but allows for the spillover of rainfall. The air that passes over the island is transformed such that low-levels are dried, warmed and decelerated, and the downwind wake becomes less hospitable to trade wind cumuli.

  3. Interaction of free and forced convection in horizontal tubes in the transition regime.

    NASA Technical Reports Server (NTRS)

    Nagendra, H. R.

    1973-01-01

    Experimental investigation of some new aspects of the combined free and forced convection interacting in the transition regime of a horizontal tube under uniform heat flux conditions. The results obtained include indications that thermally induced secondary flows attenuate the fluctuations in low inlet turbulence flows, while they restabilize the flow as the inlet turbulence is increased.

  4. Experimental investigation of forced-convection heat-transfer characteristics of lead-bismuth eutectic

    NASA Technical Reports Server (NTRS)

    Lubarsky, Bernard

    1951-01-01

    The forced-convection heat-transfer characteristics of lead-bismuth eutectic were experimentally investigated. Experimental values of Nusselt number for lead-bismuth fell considerably below predicted values. The addition of a wetting agent did not change the heat transfer characteristics.

  5. Determination of forced convective heat transfer coefficients for subsonic flows over heated asymmetric NANA 4412 airfoil

    NASA Astrophysics Data System (ADS)

    Dag, Yusuf

    Forced convection over traditional surfaces such as flat plate, cylinder and sphere have been well researched and documented. Data on forced convection over airfoil surfaces, however, remain very scanty in literature. High altitude vehicles that employ airfoils as lifting surfaces often suffer leading edge ice accretions which have tremendous negative consequences on the lifting capabilities and stability of the vehicle. One of the ways of mitigating the effect of ice accretion involves judicious leading edge convective cooling technique which in turn depends on the accuracy of convective heat transfer coefficient used in the analysis. In this study empirical investigation of convective heat transfer measurements on asymmetric airfoil is presented at different angle of attacks ranging from 0° to 20° under subsonic flow regime. The top and bottom surface temperatures are measured at given points using Senflex hot film sensors (Tao System Inc.) and used to determine heat transfer characteristics of the airfoils. The model surfaces are subjected to constant heat fluxes using KP Kapton flexible heating pads. The monitored temperature data are then utilized to determine the heat convection coefficients modelled empirically as the Nusselt Number on the surface of the airfoil. The experimental work is conducted in an open circuit-Eiffel type wind tunnel, powered by a 37 kW electrical motor that is able to generate subsonic air velocities up to around 41 m/s in the 24 square-inch test section. The heat transfer experiments have been carried out under constant heat flux supply to the asymmetric airfoil. The convective heat transfer coefficients are determined from measured surface temperature and free stream temperature and investigated in the form of Nusselt number. The variation of Nusselt number is shown with Reynolds number at various angles of attacks. It is concluded that Nusselt number increases with increasing Reynolds number and increase in angle of attack from 0

  6. Experimental Study of Combined Forced and Free Laminar Convection in a Vertical Tube

    NASA Technical Reports Server (NTRS)

    Hallman, Theodore M.

    1961-01-01

    An apparatus was built to verify an analysis of combined forced and free convection in a vertical tube with uniform wall heat flux and to determine the limits of the analysis. The test section was electrically heated by resistance heating of the tube wall and was instrumented with thermocouples in such a way that detailed thermal entrance heat-transfer coefficients could be obtained for both upflow and downflow and any asymmetry in wall temperature could be detected. The experiments showed that fully developed heat-transfer results, predicted by a previous analysis, were confirmed over the range of Rayleigh numbers investigated. The concept of "locally fully developed" heat transfer was established. This concept involves the assumption that the fully developed heat-transfer analysis can be applied locally even though the Rayleigh number is varying along the tube because of physical-property variations with temperature. Thermal entrance region data were obtained for pure forced convection and for combined forced and free convection. The analysis of laminar pure forced convection in the thermal entrance region conducted by Siegel, Sparrow, and Hallman was experimentally confirmed. A transition to an eddy motion, indicated by a fluctuation in wall temperature was found in many of the upflow runs. A stability correlation was found. The fully developed Nusselt numbers in downflow were below those for pure forced convection but fell about 10 percent above the analytical curve. Quite large circumferential variations in wall temperature were observed in downflow as compaired with those encountered in upflow, and the fully developed Nussalt numbers reported are based on average wall temperatures determined by averaging the readings of two diametrically opposite wall thermocouples at each axial position. With larger heating rates in downflow the wall temperature distributions strongly suggested a cell flow near the bottom. At still larger heating rates the wall temperatures

  7. A more general Force Balance Model to predict Bubble Departure and Lift-off Diameters in flow boiling

    NASA Astrophysics Data System (ADS)

    Kommajosyula, Ravikishore; Mazzocco, Thomas; Ambrosini, Walter; Baglietto, Emilio

    2016-11-01

    Accurate prediction of Bubble Departure and Lift-off Diameters is key for development of closures in two-phase Eulerian CFD simulation of Flow Boiling, owing to its sensitivity in the Heat Flux partitioning approach. Several models ranging from simple correlations to solving complex force balance models have been proposed in literature; however, they rely on data-fitting for specific databases, and have shown to be inapplicable for general flow applications. The aim of this study is to extend the approach by proposing a more consistent and general formulation that accounts for relevant forces acting on the Bubble at the point of Departure and Lift-off. Among the key features of the model, the Bubble Inclination angle is treated as an unknown to be inferred along with the Departure Diameter, and the relative velocity of the bubble sliding on the surface, is modeled to determine the Lift-off Diameter. A novel expression is developed for the bubble growth force in terms of flow quantities, based on extensive data analysis. The model has been validated using 6 different experimental databases with varying flow conditions and 3 fluids. Results show high accuracy of predictions over a broad range, outperforming existing models both in terms of accuracy and generality. CASL - The Consortium for Advanced Simulation of LWRs.

  8. New flow boiling heat transfer model for hydrocarbons evaporating inside horizontal tubes

    SciTech Connect

    Chen, G. F.; Gong, M. Q.; Wu, J. F.; Zou, X.; Wang, S.

    2014-01-29

    Hydrocarbons have high thermodynamic performances, belong to the group of natural refrigerants, and they are the main components in mixture Joule-Thomson low temperature refrigerators (MJTR). New evaluations of nucleate boiling contribution and nucleate boiling suppression factor in flow boiling heat transfer have been proposed for hydrocarbons. A forced convection heat transfer enhancement factor correlation incorporating liquid velocity has also been proposed. In addition, the comparisons of the new model and other classic models were made to evaluate its accuracy in heat transfer prediction.

  9. Pressure drop, heat transfer, critical heat flux, and flow stability of two-phase flow boiling of water and ethylene glycol/water mixtures - final report for project "Efficent cooling in engines with nucleate boiling."

    SciTech Connect

    Yu, W.; France, D. M.; Routbort, J. L.

    2011-01-19

    Because of its order-of-magnitude higher heat transfer rates, there is interest in using controllable two-phase nucleate boiling instead of conventional single-phase forced convection in vehicular cooling systems to remove ever increasing heat loads and to eliminate potential hot spots in engines. However, the fundamental understanding of flow boiling mechanisms of a 50/50 ethylene glycol/water mixture under engineering application conditions is still limited. In addition, it is impractical to precisely maintain the volume concentration ratio of the ethylene glycol/water mixture coolant at 50/50. Therefore, any investigation into engine coolant characteristics should include a range of volume concentration ratios around the nominal 50/50 mark. In this study, the forced convective boiling heat transfer of distilled water and ethylene glycol/water mixtures with volume concentration ratios of 40/60, 50/50, and 60/40 in a 2.98-mm-inner-diameter circular tube has been investigated in both the horizontal flow and the vertical flow. The two-phase pressure drop, the forced convective boiling heat transfer coefficient, and the critical heat flux of the test fluids were determined experimentally over a range of the mass flux, the vapor mass quality, and the inlet subcooling through a new boiling data reduction procedure that allowed the analytical calculation of the fluid boiling temperatures along the experimental test section by applying the ideal mixture assumption and the equilibrium assumption along with Raoult's law. Based on the experimental data, predictive methods for the two-phase pressure drop, the forced convective boiling heat transfer coefficient, and the critical heat flux under engine application conditions were developed. The results summarized in this final project report provide the necessary information for designing and implementing nucleate-boiling vehicular cooling systems.

  10. Heat-flux scaling for weakly forced turbulent convection in the atmosphere

    NASA Astrophysics Data System (ADS)

    Rao, Kusuma G.; Narasimha, R.

    Observational data in the atmosphere indicate that conventionally defined drag and heat transfer coefficients increase rapidly as wind speed falls. It is shown here that, at sufficiently low wind speeds, the observed heat flux is nearly independent of wind speed but the drag increases linearly with it. These findings are not consistent with the free-convection limit of the Businger relations for Monin Obukhov theory, and lend support to the ideas of Ingersoll (1966) and Grachev (1990), till now checked only against laboratory experiments. We propose here that it is useful to define, within the regime of mixed convection, a sub-regime of ‘weakly forced convection’ in which, to a first approximation, the heat flux is determined by temperature differentials as in free convection and the momentum flux by a perturbation, linear in wind, on free convection. It is further proposed that this regime is governed by velocity scales determined by the heat flux (rather than by the friction velocity as in classical turbulent boundary layer theory). Three candidates for the heat-flux velocity scale are considered; novel definitions of the drag and heat exchange coefficients, based on the preferred scale, are found to show very weak dependence on wind speed up to values of about 5 10 m s^{-1}; but there is some evidence that the usefulness of heat-flux scaling may extend beyond the velocity limits where pure free-convection scaling for heat flux is valid.

  11. Effects of vertically ribbed surface roughness on the forced convective heat losses in central receiver systems

    NASA Astrophysics Data System (ADS)

    Uhlig, Ralf; Frantz, Cathy; Fritsch, Andreas

    2016-05-01

    External receiver configurations are directly exposed to ambient wind. Therefore, a precise determination of the convective losses is a key factor in the prediction and evaluation of the efficiency of the solar absorbers. Based on several studies, the forced convective losses of external receivers are modeled using correlations for a roughened cylinder in a cross-flow of air. However at high wind velocities, the thermal efficiency measured during the Solar Two experiment was considerably lower than the efficiency predicted by these correlations. A detailed review of the available literature on the convective losses of external receivers has been made. Three CFD models of different level of detail have been developed to analyze the influence of the actual shape of the receiver and tower configuration, of the receiver shape and of the absorber panels on the forced convective heat transfer coefficients. The heat transfer coefficients deduced from the correlations have been compared to the results of the CFD simulations. In a final step the influence of both modeling approaches on the thermal efficiency of an external tubular receiver has been studied in a thermal FE model of the Solar Two receiver.

  12. Aerosol Radiative Effects on Deep Convective Clouds and Associated Radiative Forcing

    NASA Technical Reports Server (NTRS)

    Fan, J.; Zhang, R.; Tao, W.-K.; Mohr, I.

    2007-01-01

    The aerosol radiative effects (ARE) on the deep convective clouds are investigated by using a spectral-bin cloud-resolving model (CRM) coupled with a radiation scheme and an explicit land surface model. The sensitivity of cloud properties and the associated radiative forcing to aerosol single-scattering albedo (SSA) are examined. The ARE on cloud properties is pronounced for mid-visible SSA of 0.85. Relative to the case excluding the ARE, cloud fraction and optical depth decrease by about 18% and 20%, respectively. Cloud droplet and ice particle number concentrations, liquid water path (LWP), ice water path (IWP), and droplet size decrease significantly when the ARE is introduced. The ARE causes a surface cooling of about 0.35 K and significantly high heating rates in the lower troposphere (about 0.6K/day higher at 2 km), both of which lead to a more stable atmosphere and hence weaker convection. The weaker convection and the more desiccation of cloud layers explain the less cloudiness, lower cloud optical depth, LWP and IWP, smaller droplet size, and less precipitation. The daytime-mean direct forcing induced by black carbon is about 2.2 W/sq m at the top of atmosphere (TOA) and -17.4 W/sq m at the surface for SSA of 0.85. The semi-direct forcing is positive, about 10 and 11.2 W/sq m at the TOA and surface, respectively. Both the TOA and surface total radiative forcing values are strongly negative for the deep convective clouds, attributed mostly to aerosol indirect forcing. Aerosol direct and semi-direct effects are very sensitive to SSA. Because the positive semi-direct forcing compensates the negative direct forcing at the surface, the surface temperature and heat fluxes decrease less significantly with the increase of aerosol absorption (decreasing SSA). The cloud fraction, optical depth, convective strength, and precipitation decrease with the increase of absorption, resulting from a more stable and dryer atmosphere due to enhanced surface cooling and

  13. Numerical simulation on forced convection heat transfer in porous media using Gibson-Ashby constitutive model

    NASA Astrophysics Data System (ADS)

    Wang, J. X.; Jia, P. Y.; Wang, Y. S.; Jiang, L.

    2010-03-01

    In this article, using Gibson-Ashby constitutive model, we suggest a new method for numerical investigation of forced convection heat transfer in porous foam metal, and try to consolidate the study for mechanical property and that for thermal characteristic. By available experimental data, we simulated to two cases, namely as the transfer in porous media for diameter is 0.6 mm and porosity is 0.402, and for diameter is 1.6 mm and porosity is 0.462. The result, from our constitutive model for single forced convection heat transfer, corresponds well with the experimental data. As for pressure drop prediction in porous is in good agreement with experiment, and the error is only 5% to 10%, but for transfer is less accurate, the error is about 20%, which is acceptable in practice. So it is done that constitutive model is used to simulate the transfer property.

  14. Forces on a boiling bubble in a developing boundary layer, in microgravity with g-jitter and in terrestrial conditions

    NASA Astrophysics Data System (ADS)

    van der Geld, C. W. M.; Colin, C.; Segers, Q. I. E.; Pereira da Rosa, V. H.; Yoshikawa, H. N.

    2012-08-01

    Terrestrial and microgravity flow boiling experiments were carried out with the same test rig, comprising a locally heated artificial cavity in the center of a channel near the frontal edge of an intrusive glass bubble generator. Bubble shapes were in microgravity generally not far from those of truncated spheres, which permitted the computation of inertial lift and drag from potential flow theory for truncated spheres approximating the actual shape. For these bubbles, inertial lift is counteracted by drag and both forces are of the same order of magnitude as g-jitter. A generalization of the Laplace equation is found which applies to a deforming bubble attached to a plane wall and yields the pressure difference between the hydrostatic pressures in the bubble and at the wall, Δp. A fully independent way to determine the overpressure Δp is given by a second Euler-Lagrange equation. Relative differences have been found to be about 5% for both terrestrial and microgravity bubbles. A way is found to determine the sum of the two counteracting major force contributions on a bubble in the direction normal to the wall from a single directly measurable quantity. Good agreement with expectation values for terrestrial bubbles was obtained with the difference in radii of curvature averaged over the liquid-vapor interface, ⟨(1/R2 - 1/R1)⟩, multiplied with the surface tension coefficient, σ. The new analysis methods of force components presented also permit the accounting for a surface tension gradient along the liquid-vapor interface. No such gradients were found for the present measurements.

  15. Performance characteristics of a thermal energy storage module - A transient PCM/forced convection conjugate analysis

    NASA Technical Reports Server (NTRS)

    Cao, Y.; Faghri, A.

    1991-01-01

    The performance of a thermal energy storage module is simulated numerically. The change of phase of the phase-change material (PCM) and the transient forced convective heat transfer for the transfer fluid with low Prandtl numbers are solved simultaneously as a conjugate problem. A parametric study and a system optimization are conducted. The numerical results show that module geometry is crucial to the design of a space-based thermal energy storage system.

  16. Response of High Latitude Birkeland Currents and Ionospheric Convection to Transitions in Solar Wind Forcing

    NASA Astrophysics Data System (ADS)

    Anderson, B. J.; Korth, H.; Merkin, V. G.; Barnes, R. J.; Ruohoniemi, J. M.

    2014-12-01

    Recent results from the Active Magnetosphere and Planetary Electrodynamics Response Experiment (AMPERE) indicate that at least some transitions from northward to southward IMF produce a specific sequence in the development of large-scale Birkeland currents. First, a set of Region 1 and Region 2 currents forms on the dayside restricted to within a few hours of noon. After about 40 minutes, currents strongly intensify on the nightside, first near midnight local time associated with substorm onset, and then progressively further toward the dayside via dawn and dusk. Only after an hour or more after the transition to stronger solar wind forcing, is the complete Region 1, Region 2 current system developed. The results imply that the initial response to a transition from weak to strong forcing is convection into the polar cap and lobes without strong return convection to the dayside from the nightside magnetosphere. Return convection from the nightside begins with substorm onset and progresses to the dayside. This analysis is extended by examining a large number of transitions from prolonged auroral quiescence, associated with northward IMF, to southward IMF and the development of large-scale Region 1/Region 2 Birkeland currents, to assess whether the above progression holds in general. In addition, transition events to particularly intense driving, for example, associated with shocks are examined to assess how this ordering of events may be changed for onsets of particularly intense solar wind forcing.

  17. The effect of natural and forced melt convection on dendritic solidification in Ga-In alloys

    NASA Astrophysics Data System (ADS)

    Shevchenko, N.; Roshchupkina, O.; Sokolova, O.; Eckert, S.

    2015-05-01

    The directional solidification of Ga-25 wt%In alloys within a Hele-Shaw cell was visualized by means of X-ray radioscopy. The experimental investigations are especially focused on the impact of melt convection on the dendritic growth. Natural convection occurs during a bottom up solidification because lighter solute is rejected at the solid-liquid interface leading to an unstable density stratification. Forced convection was produced by a rotating wheel with two parallel disks containing at their inner sides a set of permanent NdFeB magnets with alternating polarization. The direction of forced melt flow is almost horizontal at the solidification front whereas local flow velocities in the range between 0.1 and 1.0 mm/s were achieved by controlling the rotation speed of the magnetic wheel. Melt flow induces various effects on the grain morphology primarily caused by the convective transport of solute. Our observations show a facilitation of the growth of primary trunks or lateral branches, suppression of side branching, dendrite remelting and fragmentation. The manifestation of all phenomena depends on the dendrite orientation, local direction and intensity of the flow. The forced flow eliminates the solutal plumes and damps the local fluctuations of solute concentration. It provokes a preferential growth of the secondary arms at the upstream side of the primary dendrite arms, whereas the high solute concentration at the downstream side of the dendrites can inhibit the formation of secondary branches completely. Moreover, the flow changes the inclination angle of the dendrites and the angle between primary trunks and secondary arms.

  18. Effect of forced convection on the collision and interaction between nanoparticles and ultramicroelectrode.

    PubMed

    Jiang, Jing; Huang, Xinjian; Wang, Lishi

    2016-04-01

    Detection of nanoparticle (NP) collision events at ultramicroelectrode (UME) has emerged as a new methodology for the investigation of single NP in recent years. Although the method was widely employed, some fundamental knowledge such as how the NP moves to and interacts with the UME remain less understood. It was generally recognized that the recorded rate of collision was determined by diffusion that should follow Fick's first law. However, significant lower collision frequency compared with that of predicted by theory were frequently reported. Experiments carried out by us suggest that the collision frequency will increase dramatically if forced convection (stir or flow injection) is applied during detection. Furthermore, the collision frequency gradually increases to a maximum and then decreases, along with the increase of the convection intensity. This phenomenon is interpreted as follows: (a) there are two steps for a freely moving NP to generate a detectable collision signal. The first step is the move of NP from bulk solution to the surface of the UME which is mass transfer limited; the second step is the landing of NP on the surface of UME which is affected by many factors and is the critical step; (b) there is a barrier that must be overcame before the contact between freely moving NP and UME. Forced convection with moderate intensity can not only increase the mass transfer rate but also help to overcome this barrier and thus enhance the collision frequency; (c) the landing of NP on the surface of UME can be suppressed by stronger convections, because NP will be swept away by hydrodynamic force.

  19. Transient boiling heat transfer in saturated liquid nitrogen and F113 at standard and zero gravity

    NASA Technical Reports Server (NTRS)

    Oker, E.; Merte, H., Jr.

    1973-01-01

    Transient and steady state nucleate boiling in saturated LN2 and F113 at standard and near zero gravity conditions were investigated for the horizontal up, vertical and horizontal down orientations of the heating surface. Two distinct regimes of heat transfer mechanisms were observed during the interval from the step increase of power input to the onset of nucleate boiling: the conduction and convection dominated regimes. The time duration in each regime was considerably shorter with LN2 than with F113, and decreased as heat flux increased, as gravity was reduced, and as the orientation was changed from horizontal up to horizontal down. In transient boiling, boiling initiates at a single point following the step increase in power, and then spreads over the surface. The delay time for the inception of boiling at the first site, and the velocity of spread of boiling varies depending upon the heat flux, orientation, body force, surface roughness and liquid properties, and are a consequence of changes in boundary layer temperature levels associated with changes in natural convection. Following the step increase in power input, surface temperature overshoot and undershoot occur before the steady state boiling temperature level is established.

  20. Solar drying of whole mint plant under natural and forced convection.

    PubMed

    Sallam, Y I; Aly, M H; Nassar, A F; Mohamed, E A

    2015-03-01

    Two identical prototype solar dryers (direct and indirect) having the same dimensions were used to dry whole mint. Both prototypes were operated under natural and forced convection modes. In the case of the later one the ambient air was entered the dryer with the velocity of 4.2 m s(-1). The effect of flow mode and the type of solar dryers on the drying kinetics of whole mint were investigated. Ten empirical models were used to fit the drying curves; nine of them represented well the solar drying behavior of mint. The results indicated that drying of mint under different operating conditions occurred in the falling rate period, where no constant rate period of drying was observed. Also, the obtained data revealed that the drying rate of mint under forced convection was higher than that of mint under natural convection, especially during first hours of drying (first day). The values of the effective diffusivity coefficient for the mint drying ranged between 1.2 × 10(-11) and 1.33 × 10(-11) m(2) s(-1).

  1. Aspects of subcooled boiling

    SciTech Connect

    Bankoff, S.G.

    1997-12-31

    Subcooled boiling boiling refers to boiling from a solid surface where the bulk liquid temperature is below the saturation temperature (subcooled). Two classes are considered: (1) nucleate boiling, where, for large subcoolings, individual bubbles grow and collapse while remaining attached to the solid wall, and (2) film boiling, where a continuous vapor film separates the solid from the bulk liquid. One mechanism by which subcooled nucleate boiling results in very large surface heat transfer coefficient is thought to be latent heat transport within the bubble, resulting from simultaneous evaporation from a thin residual liquid layer at the bubble base, and condensation at the polar bubble cap. Another is the increased liquid microconvection around the oscillating bubble. Two related problems have been attacked. One is the rupture of a thin liquid film subject to attractive and repulsive dispersion forces, leading to the formation of mesoscopic drops, which then coalesce and evaporate. Another is the liquid motion in the vicinity of an oscillating contact line, where the bubble wall is idealized as a wedge of constant angle sliding on the solid wall. The subcooled film boiling problem has been attacked by deriving a general long-range nonlinear evolution equation for the local thickness of the vapor layer. Linear and weakly-nonlinear stability results have been obtained. A number of other related problems have been attacked.

  2. Pool boiling

    SciTech Connect

    Lallemand, M.

    1993-10-01

    Heat transfer between a wall and a stagnant boiling liquid is reviewed in this paper. The effect of different parameters on the boiling curve is pointed out on the basis of experimental data from the literature. Augmentation of heat transfer by enhanced surfaces is described briefly. The available correlations for prediction of heat transfer coefficients are given for the entire boiling curve, i.e., nucleate, transitional, and film boiling, and critical points. These correlations are useful for the design and operation of various heat-exchange systems.

  3. Details of Exact Low Prandtl Number Boundary-Layer Solutions for Forced and For Free Convection

    NASA Technical Reports Server (NTRS)

    Sparrow, E. M.; Gregg, J. L.

    1959-01-01

    A detailed report is given of exact (numerical) solutions of the laminar-boundary-layer equations for the Prandtl number range appropriate to liquid metals (0.003 to 0.03). Consideration is given to the following situations: (1) forced convection over a flat plate for the conditions of uniform wall temperature and uniform wall heat flux, and (2) free convection over an isothermal vertical plate. Tabulations of the new solutions are given in detail. Results are presented for the heat-transfer and shear-stress characteristics; temperature and velocity distributions are also shown. The heat-transfer results are correlated in terms of dimensionless parameters that vary only slightly over the entire liquid-metal range. Previous analytical and experimental work on low Prandtl number boundary layers is surveyed and compared with the new exact solutions.

  4. Numerical and experimental study of flows in a rotating annulus with local convective forcing.

    NASA Astrophysics Data System (ADS)

    Scolan, Hélène; Su, Sylvie; Wright, Susie; Young, Roland M. B.; Read, Peter

    2016-04-01

    We present a numerical and experimental study of flows in a rotating annulus convectively forced by local thermal forcing via a heated annular ring at the bottom near the external wall and a cooled circular disk near the centre at the top surface of the annulus. This new configuration is a variant of the classical thermally-driven annulus analogue of the atmosphere circulation, where thermal forcing was previously applied uniformly on the sidewalls. Two vertically and horizontally displaced heat sources/sinks are arranged so that, in the absence of background rotation, statically unstable Rayleigh-Bénard convection would be induced above the source and beneath the sink, thereby relaxing strong constraints placed on background temperature gradients in previous experimental configurations to better mimic in fine local vigorous convection events in tropics and polar regions whilst also facilitating baroclinic motion in midlatitude regions in the Earth's atmosphere. By using the Met Office/ Oxford Rotating Annulus Laboratory (MORALS) code, we have investigated a series of equilibrated, 2D axisymmetric flows for a large range of dimensionless parameters and characterized them in terms of velocity and temperature fields. Several distinct and different flow regimes were identified, depending upon the rotation rate and strength of differential heating. These regimes will be presented with reference to variations of horizontal Ekman layer thickness versus the thermal boundary layer thickness and corresponding scalings for various quantities such as the azimuthal velocity or the heat transport. Experimental investigation of the same setup is carried out with a 1m diameter cylindrical container on a rotating platform: local heating is produced with an electrically heated annular ring at the bottom of the tank and cooling is imposed through a circular disk near the centre of the tank at the upper surface, cooled with circulating water. Different unstable circulation regimes

  5. Experimental Validation Data for Computational Fluid Dynamics of Forced Convection on a Vertical Flat Plate

    SciTech Connect

    Harris, Jeff R.; Lance, Blake W.; Smith, Barton L.

    2015-08-10

    We present computational fluid dynamics (CFD) validation dataset for turbulent forced convection on a vertical plate. The design of the apparatus is based on recent validation literature and provides a means to simultaneously measure boundary conditions (BCs) and system response quantities (SRQs). Important inflow quantities for Reynolds-Averaged Navier-Stokes (RANS). CFD are also measured. Data are acquired at two heating conditions and cover the range 40,000 < Rex < 300,000, 357 < Reδ2 < 813, and 0.02 < Gr/Re2 < 0.232.

  6. A theoretical study of the spheroidal droplet evaporation in forced convection

    NASA Astrophysics Data System (ADS)

    Li, Jie; Zhang, Jian

    2014-11-01

    In many applications, the shape of a droplet may be assumed to be an oblate spheroid. A theoretical study is conducted on the evaporation of an oblate spheroidal droplet under forced convection conditions. Closed-form analytical expressions of the mass evaporation rate for an oblate spheroid are derived, in the regime of controlled mass-transfer and heat-transfer, respectively. The variation of droplet size during the evaporation process is presented in the regime of shrinking dynamic model. Comparing with the droplets having the same surface area, an increase in the aspect ratio enhances the mass evaporation rate and prolongs the burnout time.

  7. Experimental Validation Data for Computational Fluid Dynamics of Forced Convection on a Vertical Flat Plate

    DOE PAGES

    Harris, Jeff R.; Lance, Blake W.; Smith, Barton L.

    2015-08-10

    We present computational fluid dynamics (CFD) validation dataset for turbulent forced convection on a vertical plate. The design of the apparatus is based on recent validation literature and provides a means to simultaneously measure boundary conditions (BCs) and system response quantities (SRQs). Important inflow quantities for Reynolds-Averaged Navier-Stokes (RANS). CFD are also measured. Data are acquired at two heating conditions and cover the range 40,000 < Rex < 300,000, 357 < Reδ2 < 813, and 0.02 < Gr/Re2 < 0.232.

  8. Pool and flow boiling in variable and microgravity

    NASA Technical Reports Server (NTRS)

    Merte, Herman, Jr.

    1994-01-01

    As is well known, boiling is an effective mode of heat transfer in that high heat flux levels are possible with relatively small temperature differences. Its optimal application requires that the process be adequately understood. A measure of the understanding of any physical event lies in the ability to predict its behavior in terms of the relevant parameters. Despite many years of research the predictability of boiling is currently possible only for quite specialized circumstances, e.g., the critical heat flux and film boiling for the pool boiling case, and then only with special geometries. Variable gravity down to microgravity provides the opportunity to test this understanding, but possibly more important, by changing the dimensional and time scales involved permits more detailed observations of elements involved in the boiling process, and perhaps discloses phenomena heretofore unknown. The focus here is on nucleate boiling although, as will be demonstrated below, under but certain circumstances in microgravity it can take place concurrently with the dryout process. In the presence of earth gravity or forced convection effects, the latter process is usually referred to as film boiling. However, no vapor film as such forms with pool boiling in microgravity, only dryout. Initial results are presented here for pool boiling in microgravity, and were made possible at such an early date by the availability of the Get-Away-Specials (GAS). Also presented here are some results of ground testing of a flow loop for the study of low velocity boiling, eventually to take place also in microgravity. In the interim, variable buoyancy normal to the heater surface is achieved by rotation of the entire loop relative to earth gravity. Of course, this is at the expense of varying the buoyancy parallel to the heater surface. Two questions which must be resolved early in the study of flow boiling in microgravity are (1) the lower limits of liquid flow velocity where buoyancy

  9. Single-drop reactive extraction/extractive reaction with forced convective diffusion and interphase mass transfer

    NASA Technical Reports Server (NTRS)

    Kleinman, Leonid S.; Red, X. B., Jr.

    1995-01-01

    An algorithm has been developed for time-dependent forced convective diffusion-reaction having convection by a recirculating flow field within the drop that is hydrodynamically coupled at the interface with a convective external flow field that at infinity becomes a uniform free-streaming flow. The concentration field inside the droplet is likewise coupled with that outside by boundary conditions at the interface. A chemical reaction can take place either inside or outside the droplet, or reactions can take place in both phases. The algorithm has been implemented, and for comparison results are shown here for the case of no reaction in either phase and for the case of an external first order reaction, both for unsteady behavior. For pure interphase mass transfer, concentration isocontours, local and average Sherwood numbers, and average droplet concentrations have been obtained as a function of the physical properties and external flow field. For mass transfer enhanced by an external reaction, in addition to the above forms of results, we present the enhancement factor, with the results now also depending upon the (dimensionless) rate of reaction.

  10. Radiative-convective model with an explicit hydrologic cycle. 2: Sensitivity to large changes in solar forcing

    NASA Technical Reports Server (NTRS)

    Renno, Nilton O.; Stone, Peter H.; Emanuel, Kerry A.

    1994-01-01

    The one-dimensional radiative-convective equilibrium model with an explicit hydrologic cycle introduced in part 1 is used to study the sensitivity of the model's atmosphere to large changes in the solar forcing, when various cumulus convection parameterizations are used. When the concentration of the absorbing as in the atmosphere is temperature dependent, equilibrium is impossible for values of the solar forcing larger than a critical value. This result is referred to as a runaway greenhouse. The cumulus convection parameterization schemes currently in use in global climate models (GCMs) employ different assumptions about moistening. This causes the critical solar forcing above which a runaway greenhouse occurs to be very sensitive to the cumulus convection scheme employed. Furthermore, we show that the sensitivity of the equilibrium temperature to changes in the solar forcing depends crucially on the microphysics of cumulus convection. For fixed cloud conditions, the critical forcing for a runaway greenhouse to occur is between approximately 1.22 and 1.49 times the global mean value for the Earth, and for clear sky conditions, it is a few percent lower. The runaway greenhouse in the experiments with the mass flux schemes generally occurs more rapidly than in the experiments with the adjustment schemes. In addition, the inability of the hard convective adjustment scheme to produce an efficient vertical transport of moisture, together with the saturation requirement for convection to occur, leads to the breakdown of the radiative-convective equilibria when other processes are not available to provide the necessary vertical transport of water vapor.

  11. Why Is NASA Boiling Fluids in Space?

    NASA Video Gallery

    Convection and buoyancy work differently in space than on Earth. Learn how NASA uses this information and applies it to everyday life. Boiling fluids in space is easier than it is on Earth. Learn m...

  12. Combined free and forced convection laminar film condensation on an inclined circular tube with isothermal surface

    SciTech Connect

    Mosaad, M.

    1999-07-01

    Laminar film condensation on an inclined circular tube, under the condition of combined free and forced convection, is analyzed. The assumptions are as in the analysis of Shekriladze and Gomelauri (1966) for the horizontal tube case. In addition, some approximations are introduced for the determination of the interfacial shear stress. The resultant governing equation, in special cases, yields the known analytical solutions of horizontal and vertical tubes, which were obtained in previous studies. A numerically-obtained solution reveals the effects of vapor velocity and gravity force on local and mean Nusselt numbers. For the case of an infinitely-long tube, an explicit simple expression has been obtained, based on numerical results, to calculate the mean Nusselt number for the whole tube surface.

  13. Experimental and theoretical analysis of a hybrid solar thermoelectric generator with forced convection cooling

    NASA Astrophysics Data System (ADS)

    Sundarraj, Pradeepkumar; Taylor, Robert A.; Banerjee, Debosmita; Maity, Dipak; Sinha Roy, Susanta

    2017-01-01

    Hybrid solar thermoelectric generators (HSTEGs) have garnered significant research attention recently due to their potential ability to cogenerate heat and electricity. In this paper, theoretical and experimental investigations of the electrical and thermal performance of a HSTEG system are reported. In order to validate the theoretical model, a laboratory scale HSTEG system (based on forced convection cooling) is developed. The HSTEG consists of six thermoelectric generator modules, an electrical heater, and a stainless steel cooling block. Our experimental analysis shows that the HSTEG is capable of producing a maximum electrical power output of 4.7 W, an electrical efficiency of 1.2% and thermal efficiency of 61% for an average temperature difference of 92 °C across the TEG modules with a heater power input of 382 W. These experimental results of the HSTEG system are found to be in good agreement with the theoretical prediction. This experimental/theoretical analysis can also serve as a guide for evaluating the performance of the HSTEG system with forced convection cooling.

  14. Effect of the centrifugal force on domain chaos in Rayleigh-Bénard convection.

    PubMed

    Becker, Nathan; Scheel, J D; Cross, M C; Ahlers, Guenter

    2006-06-01

    Experiments and simulations from a variety of sample sizes indicated that the centrifugal force significantly affects the domain-chaos state observed in rotating Rayleigh-Bénard convection-patterns. In a large-aspect-ratio sample, we observed a hybrid state consisting of domain chaos close to the sample center, surrounded by an annulus of nearly stationary nearly radial rolls populated by occasional defects reminiscent of undulation chaos. Although the Coriolis force is responsible for domain chaos, by comparing experiment and simulation we show that the centrifugal force is responsible for the radial rolls. Furthermore, simulations of the Boussinesq equations for smaller aspect ratios neglecting the centrifugal force yielded a domain precession-frequency f approximately epsilon(mu) with mu approximately equal to 1 as predicted by the amplitude-equation model for domain chaos, but contradicted by previous experiment. Additionally the simulations gave a domain size that was larger than in the experiment. When the centrifugal force was included in the simulation, mu and the domain size were consistent with experiment.

  15. Turbulent heat transfer with combined forced and natural convection along a vertical flat plate. Effect of Prandtl number

    SciTech Connect

    Inagaki, T. ); Kitamura, K. )

    1990-01-01

    The turbulent heat transfer of combined forced and natural convection along a vertical flat plate was investigated experimentally both with aiding and opposing flows of air. Local heat-transfer coefficients were measured in the vertical direction. The results show that the local Nusselt numbers for aiding flow become smaller than those for the forced and the natural convection, while the Nusselt numbers for the opposing flow are increased significantly. These results are compared with the previous results for water. It has been found that the nondimensional parameter Z(= Gr{sub x}*/Nu{sub x}Re{sub x}){sup 2.7}Pr{sup 0.6} can predict the behavior of heat transfer both for air and water. Furthermore, the natural, forced, and combined convection regions can be classified in terms of the above parameter.

  16. Experimental study of forced convection heat transfer during upward and downward flow of helium at high pressure and high temperature

    SciTech Connect

    Francisco Valentin; Narbeh Artoun; Masahiro Kawaji; Donald M. McEligot

    2015-08-01

    Fundamental high pressure/high temperature forced convection experiments have been conducted in support of the development of a Very High Temperature Reactor (VHTR) with a prismatic core. The experiments utilize a high temperature/high pressure gas flow test facility constructed for forced convection and natural circulation experiments. The test section has a single 16.8 mm ID flow channel in a 2.7 m long, 108 mm OD graphite column with four 2.3kW electric heater rods placed symmetrically around the flow channel. This experimental study presents the role of buoyancy forces in enhancing or reducing convection heat transfer for helium at high pressures up to 70 bar and high temperatures up to 873 degrees K. Wall temperatures have been compared among 10 cases covering the inlet Re numbers ranging from 500 to 3,000. Downward flows display higher and lower wall temperatures in the upstream and downstream regions, respectively, than the upward flow cases due to the influence of buoyancy forces. In the entrance region, convection heat transfer is reduced due to buoyancy leading to higher wall temperatures, while in the downstream region, buoyancyinduced mixing causes higher convection heat transfer and lower wall temperatures. However, their influences are reduced as the Reynolds number increases. This experimental study is of specific interest to VHTR design and validation of safety analysis codes.

  17. Selection criterion for the growing dendritic tip in a non-isothermal binary system under forced convective flow

    NASA Astrophysics Data System (ADS)

    Alexandrov, D. V.; Galenko, P. K.; Herlach, D. M.

    2010-07-01

    A free dendrite growth during solidification into external forced flow is analyzed using a sharp interface model. A criterion for selection of the stable growth mode is derived for the axisymmetric dendrite growing into non-isothermal binary system under convective flow. The criterion obtained rallies analytic results for dendrite growth under forced convection in a pure system [Ph. Bouissou, P. Pelce, Phys. Rev. A 40 (1989) 6673] and dendrite growth in a stagnant binary system [M. Ben Amar, P. Pelce, Phys. Rev. A 39 (1989) 4263].

  18. General expression for laminar forced and natural convection heat transfer from isothermal flat plates for all Prandtl numbers

    NASA Astrophysics Data System (ADS)

    Yovanovich, M. M.

    1993-07-01

    It is presently shown that the correlation equations for forced and natural convection-involving bloundary-layer flows, over isothermal flat plates, collapse into a simple expression directly relating the dimensionless wall-temperature excess to a novel Prandtl number function. This function is demonstrated to be applicable for the full, zero-to-infinity Prandtl number range. This formulation allows forced and natural convection heat-transfer results to appear on the same graph, as dimensionless temperature excess vs Prandtl number functions.

  19. Single-drop reactive extraction/extractive reaction with forced convective diffusion and interphase mass transfer

    NASA Technical Reports Server (NTRS)

    Kleinman, Leonid S.; Reed, X. B., Jr.

    1995-01-01

    An algorithm has been developed for the forced convective diffusion-reaction problem for convection inside and outside a droplet by a recirculating flow field hydrodynamically coupled at the droplet interface with an external flow field that at infinity becomes a uniform streaming flow. The concentration field inside the droplet is likewise coupled with that outside by boundary conditions at the interface. A chemical reaction can take place either inside or outside the droplet or reactions can take place in both phases. The algorithm has been implemented and results are shown here for the case of no reaction and for the case of an external first order reaction, both for unsteady behavior. For pure interphase mass transfer, concentration isocontours, local and average Sherwood numbers, and average droplet concentrations have been obtained as a function of the physical properties and external flow field. For mass transfer enhanced by an external reaction, in addition to the above forms of results, we present the enhancement factor, with the results now also depending upon the (dimensionless) rate of reaction.

  20. Numerical investigation on forced convection in rectangular cross section micro-channels with nanofluids

    NASA Astrophysics Data System (ADS)

    Buonomo, B.; Cirillo, L.; Manca, O.; Nardini, S.; Tamburrino, S.

    2017-01-01

    In this paper a numerical investigation on laminar forced convection flow of a water-Al2O3 nanofluid in a rectangular microchannel is accomplished. A constant and uniform heat flux on the external surfaces has been applied and a single-phase model approach has been employed. The analysis has been performed in steady state regime for particle size in nanofluids equal to 38 nm. The CFD commercial code Fluent has been employed in order to solve the 3-D numerical model. The geometrical configuration under consideration consists in a duct with a rectangular shaped crossing area. A steady laminar flow and different nanoparticle volume fractions have been considered. The base fluid is water and nanoparticles are made up of alumina (Al2O3). The length the edge and height of the duct are 0.030 m, 1.7 x10-7 and 1.1 x10-7 m, respectively. Results are presented in terms of temperature and velocity distributions, surface shear stress and heat transfer convective coefficient, Nusselt number and required pumping power profiles. Comparison with results related to the fluid dynamic and thermal behaviors are carried out in order to evaluate the enhancement due to the presence of nanoparticles in terms of volumetric concentration.

  1. Heat tranfer 1982; Proceedings of the Seventh International Conference, Technische Universitaet Muenchen, Munich, West Germany, September 6-10, 1982. Volume 3 - General papers: Forced convection, mixed convection

    NASA Astrophysics Data System (ADS)

    Grigull, U.; Straub, J.; Hahne, E.; Stephan, K.

    The present conference on forced convection and mixed convection heat transfer covers heat transfer for a developing laminar pulsed flow of air in a tube, a finite analytic numerical solution for heat transfer and flow past a square channel cavity, heat transfer to laminar flow in non-Newtonian pseudoplastic fluids in tubes, heat transfer in a vertical rotating annulus, heat transfer at the tip of an unshrouded turbine blade, convective heat transfer in MHD channels, the turbulent diffusion of heat in recirculating liquid metal and water flows, the effects of molecular vibrational relaxation on stagnation heat transfer, and local heat transfer rates from two adjacent spheres in turbulent axisymmetric flows. Also considered are heat transfer from vibrating tubes in turbulent flow, modeling assumptions for turbulent heat transfer, calculation of heat transfer in turbulent, transpired boundary layers, heat transfer enhancement using vortex generators, modeling of mass transport in turbulent shear flows, cooling of a rotating disk by an impinging jet, profile analysis of heat/mass transfer across the plane wall jet, heat transfer coefficients of water jets impinging on a hot surface, the effect of suction on impingement heat transfer, acoustic enhancement of heat transfer in plane channels, wake interference for a heated oscillating cylinder, and mixed convection heat transfer to supercritical pressure water. (For individual items see A83-42701 to A83-42756)

  2. The effects of outward forced convective flow on inward diffusion in human dentine in vitro.

    PubMed

    Pashley, D H; Matthews, W G

    1993-07-01

    In vitro experiments were conducted to evaluate the influence of outward forced convective flow on the inward diffusion of radioactive iodide. When the smear layer was present, application of 15 cmH2O (1.47 kPa) outward-directed filtration pressure reduced the inward flux of iodide by about 10-20% depending upon the hydraulic conductance of each specimen. When the smear layer was removed by acid etching, the same 1.47 kPa pressure lowered the inward iodide flux by as much as 60%, depending on the hydraulic conductance. The results demonstrate the importance of the balance between inward diffusion and outward bulk-fluid movement on the rate of permeation of exogenous solutes.

  3. Effects of corrugation angle on developing laminar forced convection and entropy generation in a wavy channel

    NASA Astrophysics Data System (ADS)

    Ko, Tzu-Hsiang

    2007-12-01

    This paper investigates the effects of corrugation angle ( β) on the developing laminar forced convection and entropy generation in a wavy channel with numerical methods. The studied cases cover β = 10-, 15-, 20-, 25-, 30- and 35°, whilst Reynolds number ( Re) is varied as 100, 200 and 400. The analyzed flow characteristics include recirculating flows, secondary vortices, temperature distributions, and friction factor as well as Nusselt number. In particular, the effects of corrugation angle on the distributions and magnitudes of local entropy generation resulted from frictional irreversibility ( S {/P '''}) and heat transfer irreversibility ( S {/T '''}) are separately discussed in detail in the present paper. Based on the minimal entropy generation principle, the optimal corrugation angle and favorable Re are reported.

  4. Application of a finite volume based method of lines to turbulent forced convection in circular tubes

    SciTech Connect

    Campo, A.; Tebeest, K.; Lacoa, U.; Morales, J.C.

    1996-10-01

    A semianalytic analysis of in-tube turbulent forced convection is performed whose special computational feature is the combination of the method of lines, the finite volume technique, and a radial coordinate transformation. First, a numerical solution of the momentum equation was obtained by a simple Runge-Kutta integration scheme. Second, the energy equation was reformulated into a system of ordinary differential equations of first order. Each equation in the system controls the temperature along a line in a mesh consisting of concentric lines. Reliable analytic solutions for the temperature distribution of fluids in the region of thermal development can be determined for combinations of Reynolds and Prandtl numbers. Predicted results for the distributions of mean bulk temperature and local Nusselt numbers for air, water, and oils compare satisfactorily with the available experimental data.

  5. A steady-state model for the forced convection solar cabinet dryer

    SciTech Connect

    Chirarattananon, S.; Chirarattananon, R. , Bangkok ); Chinporncharoenpong, C. )

    1988-01-01

    The insufficient knowledge base for the design and optimization of solar dryer could be the obstacle to the unrealized promise of solar drying. By applying the lumped-parameter approach in the analysis of the transfer processes and utilizing known results from drying theory, this article demonstrates a methodology for the construction of a reduced mathematical model of the forced convection solar cabinet dryer. The model comprises only the variables directly involved in the energy and mass balance relationships for the drying process. The values of the variables determine the state of the processes in the dryer, and the model is a set of relationships that determine such a state. Specializing into thin product bed with sponge pieces constituting the product, this article describes an experiment carried out to verify the model. It also presents an assessment of the model parameter value from the experimental result and a simulation procedure with a result, which positively validates the model.

  6. Laminar forced convection from a rotating horizontal cylinder in cross flow

    NASA Astrophysics Data System (ADS)

    Chandran, Prabul; Venugopal, G.; Jaleel, H. Abdul; Rajkumar, M. R.

    2017-04-01

    The influence of non-dimensional rotational velocity, flow Reynolds number and Prandtl number of the fluid on laminar forced convection from a rotating horizontal cylinder subject to constant heat flux boundary condition is numerically investigated. The numerical simulations have been conducted using commercial Computational Fluid Dynamics package CFX available in ANSYS Workbench 14. Results are presented for the non-dimensional rotational velocity α ranging from 0 to 4, flow Reynolds number from 25 to 40 and Prandtl number of the fluid from 0.7 to 5.4. The rotational effects results in reduction in heat transfer compared to heat transfer from stationary heated cylinder due to thickening of boundary layer as consequence of the rotation of the cylinder. Heat transfer rate increases with increase in Prandtl number of the fluid.

  7. Effect of finite length on forced convection heat transfer from cylinders

    NASA Astrophysics Data System (ADS)

    Quarmby, A.; Al-Fakhri, A. A. M.

    1980-04-01

    Forced convection heat transfer from single cylinders of finite length is investigated experimentally with particular reference to the effect of aspect (length/diameter) ratio of the cylinder. It is found that for aspect ratios greater than 4 there is little further effect as aspect ratio increases to infinity. The disagreement between the correlations proposed by Zukauskas (1972) and Morgan (1975) is considered and resolved in favor of the Zukauskas correlation. A correlation is proposed for heat transfer from cylinders of low aspect ratio which in the limit agrees with the correlation for large aspect ratios and with the generally accepted correlation for turbulent heat transfer from isothermal flat plates for small aspect ratios.

  8. MHD forced convection flow adjacent to a non-isothermal wedge

    SciTech Connect

    Yih, K.A.

    1999-08-01

    The problem of magnetohydrodynamic (MHD) incompressible viscous flow has many important engineering applications in devices such as MHD power generator and the cooling of reactors. In this analysis, the effects of viscous dissipation and stress work on the MHD forced convection adjacent to a non-isothermal wedge is numerically analyzed. These partial differential equations are transformed into the nonsimilar boundary layer equations and solved by the Keller box method. Numerical results for the local friction coefficient and the local Nusselt number are presented for the pressure gradient parameter m, the magnetic parameter {xi}, the Prandtl number Pr, and the Eckert number Ec. In general, increasing the pressure gradient parameter m or the magnetic parameter {xi} or the Prandtl number Pr or decreasing the Eckert number EC increases the local Nusselt number.

  9. Numerical study of thermal performance of perforated circular pin fin heat sinks in forced convection

    NASA Astrophysics Data System (ADS)

    Wen, Mao-Yu; Yeh, Cheng-Hsiung

    2016-12-01

    This paper presents a numerical simulation of the heat transfer performance under forced convection for two different types of circular pin fin heat sinks with (Type A) and without (Type B) a hollow in the heated base. COMSOL Multiphysics, which is used for the thermal hydraulic analyses, has proven to be a powerful finite-element-based simulation tool for solving multiple physics-based systems of partial and ordinary differential equations. The standard κ- ɛ two-equations turbulence model is employed to describe the turbulent structure and behavior. The numerical results are validated with the experimental results, and are shown to be in good agreement. The effects of the Reynolds number, height of the fin, finning factor and the perforated base plate on the heat-transfer coefficient are investigated and evaluated. The present study strongly recommends the use of a small hollow ( (Dh /Db ) < 0.15 ) constructed in the base plate of the pin fin heat sink.

  10. Forced convection analysis for generalized Burgers nanofluid flow over a stretching sheet

    NASA Astrophysics Data System (ADS)

    Khan, Masood; Khan, Waqar Azeem

    2015-10-01

    This article reports the two-dimensional forced convective flow of a generalized Burgers fluid over a linearly stretched sheet under the impacts of nano-sized material particles. Utilizing appropriate similarity transformations the coupled nonlinear partial differential equations are converted into a set of coupled nonlinear ordinary differential equations. The analytic results are carried out through the homotopy analysis method (HAM) to investigate the impact of various pertinent parameters for the velocity, temperature and concentration fields. The obtained results are presented in tabular form as well as graphically and discussed in detail. The presented results show that the rate of heat transfer at the wall and rate of nanoparticle volume fraction diminish with each increment of the thermophoresis parameter. While incremented values of the Brownian motion parameter lead to a quite opposite effect on the rates of heat transfer and nanoparticle volume fraction at the wall.

  11. Enhancing filling of interconnect deep trenches using forced convection magneto-electroplating

    NASA Astrophysics Data System (ADS)

    Said, R. A.

    2006-01-01

    Filling deep trenches and cavities is currently accomplished by copper electro-less plating technology utilizing super-conformal deposition methods. Unlike typical electrolyses processes, where an electric potential is applied between the anodes to activate the plating reaction, electro-less plating relies on chemical agents to activate deposition. To achieve super-conformal deposition, special electrolytic paths must be used. This poses a challenge to the fabrication of narrower trenches, and thus requires the development of other deposition schemes. This work proposes an alternative solution to the filling of deep trenches that avoids the difficulties outlined above, using a forced convection magneto-electroplating method. The technique operates as in typical electrolysis processes, however, with forcing the flow of the plating electrolyte, by hydro-dynamic means, in the presence of an externally applied magnetic field. This arrangement introduces a Lorentz type of force that enhances the transport of deposit species toward desired locations, such as deep regions in interconnect trenches. The proposed method is demonstrated by filling interconnect trenches with aspect ratio as high as 3:1. Quality of samples filled using the proposed magneto-electroplating method is compared with the quality of samples filled by typical electroplating method.

  12. Energetic dynamics of a rotating horizontal convection model of an ocean basin with wind forcing

    NASA Astrophysics Data System (ADS)

    Zemskova, Varvara; White, Brian; Scotti, Alberto

    2016-11-01

    We analyze the energetic dynamics in a rotating horizontal convection model, where flow is driven by a differential buoyancy forcing along a horizontal surface. This model is used to quantify the influence of surface heating and cooling and surface wind stress on the Meridional Overturning Circulation. We study a model of the Southern Ocean in a rectangular basin with surface cooling on one end (the South pole) and surface warming on the other end (mid-latitudes). Free-slip boundary conditions are imposed in the closed box, while zonally periodic boundary conditions are enforced in the reentrant channel. Wind stress and differential buoyancy forcing are applied at the top boundary. The problem is solved numerically using a 3D DNS model based on a finite-volume AMR solver for the Boussinesq Navier-Stokes equations with rotation. The overall dynamics, including large-scale overturning, baroclinic eddying, turbulent mixing, and resulting energy cascades are investigated using the local Available Potential Energy framework introduced in. We study the relative contributions of surface buoyancy and wind forcing along with the effects of bottom topography to the energetic balance of this dynamic model. This research is part of the Blue Waters sustained-petascale computing project, supported by the NSF (awards OCI-0725070, ACI-1238993 and ACI-14-44747) and the state of Illinois.

  13. Length Scale and Gravity Effects on Microgravity Boiling Heat Transfer

    NASA Astrophysics Data System (ADS)

    Kim, Jungho; McQuillen, John; Balombin, Joe

    2002-11-01

    Boiling is a complex phenomenon where hydrodynamics, heat transfer, mass transfer, and interfacial phenomena are tightly interwoven. An understanding of boiling and critical heat flux in microgravity environments is of importance to space based hardware and processes such as heat exchange, cryogenic fuel storage and transportation, electronic cooling, and material processing due to the large amounts of heat that can be removed with relatively little increase in temperature. Although research in this area has been performed in the past four decades, the mechanisms by which heat is removed from surfaces in microgravity are still unclear. In earth gravity, buoyancy is an important parameter that affects boiling heat transfer through the rate at which bubbles are removed from the surface. A simple model describing the bubble departure size based on a quasistatic force balance between buoyancy and surface tension is given by the Fritz I relation: Bo1/2 = 0.0208 theta where Bo is the ratio between buoyancy and surface tension forces. For small, rapidly growing bubbles, inertia associated with the induced liquid motion can also cause bubble departure. In microgravity, the magnitude of effects related to natural convection and buoyancy are small and physical mechanisms normally masked by natural convection in earth gravity such as Marangoni convection can substantially influence the boiling and vapor bubble dynamics. CHF (critical heat transfer) is also substantially affected by microgravity. In 1 g environments, Bo has been used as a correlating parameter for CHF. Zuber's CHF model for an infinite horizontal surface assumes that vapor columns formed by the merger of bubbles become unstable due to a Helmholtz instability blocking the supply of liquid to the surface. The jets are spaced lambdaD apart, where lambdaD = 2pi square root of 3[(sigma)/(g(rhol - rhov]1/2 = 2pi square root of 3 L Bo-1/2 = square root of 3 lambdac and is the wavelength that amplifies most rapidly

  14. Length Scale and Gravity Effects on Microgravity Boiling Heat Transfer

    NASA Technical Reports Server (NTRS)

    Kim, Jungho; McQuillen, John; Balombin, Joe

    2002-01-01

    Boiling is a complex phenomenon where hydrodynamics, heat transfer, mass transfer, and interfacial phenomena are tightly interwoven. An understanding of boiling and critical heat flux in microgravity environments is of importance to space based hardware and processes such as heat exchange, cryogenic fuel storage and transportation, electronic cooling, and material processing due to the large amounts of heat that can be removed with relatively little increase in temperature. Although research in this area has been performed in the past four decades, the mechanisms by which heat is removed from surfaces in microgravity are still unclear. In earth gravity, buoyancy is an important parameter that affects boiling heat transfer through the rate at which bubbles are removed from the surface. A simple model describing the bubble departure size based on a quasistatic force balance between buoyancy and surface tension is given by the Fritz [I] relation: Bo(exp 1/2) = 0.0208 theta where Bo is the ratio between buoyancy and surface tension forces. For small, rapidly growing bubbles, inertia associated with the induced liquid motion can also cause bubble departure. In microgravity, the magnitude of effects related to natural convection and buoyancy are small and physical mechanisms normally masked by natural convection in earth gravity such as Marangoni convection can substantially influence the boiling and vapor bubble dynamics. CHF (critical heat transfer) is also substantially affected by microgravity. In 1 g environments, Bo has been used as a correlating parameter for CHF. Zuber's CHF model for an infinite horizontal surface assumes that vapor columns formed by the merger of bubbles become unstable due to a Helmholtz instability blocking the supply of liquid to the surface. The jets are spaced lambda(sub D) apart, where lambda(sub D) = 2pi square root of 3[(sigma)/(g(rho(sub l) - rho(sub v)](exp 1/2) = 2pi square root of 3 L Bo(exp -1/2) = square root of 3 lambda(sub c

  15. Fundamental research on convective heat transfer in electronic cooling technology

    NASA Astrophysics Data System (ADS)

    Ma, C. F.; Gan, Y. P.; Tian, Y. Q.; Lei, D. H.

    1992-03-01

    During the past six years comprehensive research programs have been conducted at the Beijing Polytechnic University to provide a better understanding of heat transfer characteristics of existing and condidate cooling techniques for electronic and microelectronic devices. This paper provides a review and summary of the programs with emphasis on direct liquid cooling. Included in this review are the heat transfer investigations related to the following cooling modes: liquid free, mixed and forced convection, liquid jet impingement, flowing liquid film cooling, pool boiling, spray cooling, foreign gas jet impingement in liquid pool, and forced convection air-cooling.

  16. Energetic dynamics of a rotating horizontal convection model with wind forcing

    NASA Astrophysics Data System (ADS)

    Zemskova, Varvara; White, Brian; Scotti, Alberto

    2015-11-01

    We present a new test case for rotating horizontal convection, where the flow is driven by differential buoyancy forcing along a horizontal surface. This simple model is used to understand and quantify the influence of surface heating and cooling and wind stress on the Meridional Overturning Circulation. The domain is a rectangular basin with surface cooling at both ends (the poles) and surface warming in the middle (equatorial) region. To model the effect of the Antarctic Circumpolar Current, reentrant channel is placed near the Southern pole. Free-slip boundary conditions are imposed in the closed box, while zonally periodic boundary conditions are enforced in the channel. The problem is solved numerically using a 3D DNS model based on a finite-volume AMR solver for the Boussinesq Navier-Stokes equations with rotation. The relative contributions of surface buoyancy and wind forcing and the energetic balance are analyzed at a Rayleigh number of 108 and a relatively high aspect ratio of [5, 10, 1] in zonal, meridional and vertical directions, respectively. The overall dynamics, including large-scale overturning, baroclinic eddying, and turbulent mixing are investigated using the local Available Potential Energy framework introduced in [Scotti and White, J. Fluid Mech., 2014]. This research is part of the Blue Waters sustained-petascale computing project, supported by the NSF (awards OCI-0725070, ACI-1238993 and ACI-14-44747) and the state of Illinois.

  17. Forcings and feedbacks on convection in the 2010 Pakistan flood: Modeling extreme precipitation with interactive large-scale ascent

    NASA Astrophysics Data System (ADS)

    Nie, Ji; Shaevitz, Daniel A.; Sobel, Adam H.

    2016-09-01

    Extratropical extreme precipitation events are usually associated with large-scale flow disturbances, strong ascent, and large latent heat release. The causal relationships between these factors are often not obvious, however, the roles of different physical processes in producing the extreme precipitation event can be difficult to disentangle. Here we examine the large-scale forcings and convective heating feedback in the precipitation events, which caused the 2010 Pakistan flood within the Column Quasi-Geostrophic framework. A cloud-revolving model (CRM) is forced with large-scale forcings (other than large-scale vertical motion) computed from the quasi-geostrophic omega equation using input data from a reanalysis data set, and the large-scale vertical motion is diagnosed interactively with the simulated convection. Numerical results show that the positive feedback of convective heating to large-scale dynamics is essential in amplifying the precipitation intensity to the observed values. Orographic lifting is the most important dynamic forcing in both events, while differential potential vorticity advection also contributes to the triggering of the first event. Horizontal moisture advection modulates the extreme events mainly by setting the environmental humidity, which modulates the amplitude of the convection's response to the dynamic forcings. When the CRM is replaced by either a single-column model (SCM) with parameterized convection or a dry model with a reduced effective static stability, the model results show substantial discrepancies compared with reanalysis data. The reasons for these discrepancies are examined, and the implications for global models and theoretical models are discussed.

  18. Application of Theory to Observed Cases of Orographically Forced Convective Rainfall

    NASA Astrophysics Data System (ADS)

    Rotunno, R.; Miglietta, M.

    2011-12-01

    In a series of papers, Miglietta and Rotunno reported on numerical simulations of conditionally unstable flows past an idealized mesoscale mountain ridge. These idealized simulations, which were performed with a three- dimensional, explicitly cloud-resolving model, allowed the investigation of simulated-precipitation characteristics as a function of the prescribed environment. The numerical solutions were carried out for a uniform wind flowing past a bell-shaped ridge and using an idealized unstable sounding with prescribed values of the relevant parameters. Dimensional analysis of the numerical solutions revealed that the simulated maximum nondimensional rainfall rate depends on five nondimensional parameters. In this talk I will report on recent work by Migletta and Rotunno in which these theoretical results are applied to observed cases of orographically forced convective rainfall including the Big Thompson Flood (1976, Colorado), the Oahu Flood (1974, Hawaii), and the Gard Flood (2002, France). Specifically, numerical simulations were carried out using observed and idealized soundings relevant to these cases but with idealized topography. It is found that using the observed soundings, but with idealized constant wind profiles, the simulated rain rates fit reasonably well within the previous theoretically derived parameter space for intense orographic convective rainfall. However, in order to reproduce larger rainfall amounts, in closer agreement with observations, in the first two cases it was necessary to initialize the sounding with a wind profile characterized by low-level flow towards the mountain with weak flow aloft (as observed). However for the Gard case, the situation was more complex and it was found to be unlikely that the situation can be reduced to a simple two-dimensional problem.

  19. The diurnal interaction between convection and peninsular-scale forcing over South Florida

    NASA Technical Reports Server (NTRS)

    Cooper, H. J.; Simpson, J.; Garstang, M.

    1982-01-01

    One of the outstanding problems in modern meterology is that of describing in detail the manner in which larger scales of motion interact with, influence and are influenced by successively smaller scales of motion. The present investigation is concerned with a study of the diurnal evolution of convection, the interaction between the peninsular-scale convergence and convection, and the role of the feedback produced by the cloud-scale downdrafts in the maintenance of the convection. Attention is given to the analysis, the diurnal cycle of the network area-averaged divergence, convective-scale divergence, convective mass transports, and the peninsular scale divergence. The links established in the investigation between the large scale (peninsular), the mesoscale (network), and the convective scale (cloud) are found to be of fundamental importance to the understanding of the initiation, maintenance, and decay of deep precipitating convection and to its theoretical parameterization.

  20. Investigation of combined free and forced convection in a 2 x 6 rod bundle during controlled flow transients

    SciTech Connect

    Bates, J.M.; Khan, E.U.

    1980-10-01

    An experimental study was performed to obtain local fluid velocity and temperature measurements in the mixed (combined free and forced) convection regime for specific flow coastdown transients. A brief investigation of steady-state flows for the purely free-convection regime was also completed. The study was performed using an electrically heated 2 x 6 rod bundle contained in a flow housing. In addition a transient data base was obtained for evaluating the COBRA-WC thermal-hydraulic computer program (a modified version of the COBRA-IV code).

  1. A genetic algorithm-based optimization model for pool boiling heat transfer on horizontal rod heaters at isolated bubble regime

    NASA Astrophysics Data System (ADS)

    Alavi Fazel, S. Ali

    2017-03-01

    A new optimized model which can predict the heat transfer in the nucleate boiling at isolated bubble regime is proposed for pool boiling on a horizontal rod heater. This model is developed based on the results of direct observations of the physical boiling phenomena. Boiling heat flux, wall temperature, bubble departing diameter, bubble generation frequency and bubble nucleation site density have been experimentally measured. Water and ethanol have been used as two different boiling fluids. Heating surface was made by several metals and various degrees of roughness. The mentioned model considers various mechanisms such as latent heat transfer due to micro-layer evaporation, transient conduction due to thermal boundary layer reformation, natural convection, heat transfer due to the sliding bubbles and bubble super-heating. The fractional contributions of individual mentioned heat transfer mechanisms have been calculated by genetic algorithm. The results show that at wall temperature difference more that about 3 K, bubble sliding transient conduction, non-sliding transient conduction, micro-layer evaporation, natural convection, radial forced convection and bubble super-heating have higher to lower fractional contributions respectively. The performance of the new optimized model has been verified by comparison of the existing experimental data.

  2. Validation of a new whole-body cryotherapy chamber based on forced convection.

    PubMed

    Bouzigon, Romain; Arfaoui, Ahlem; Grappe, Frédéric; Ravier, Gilles; Jarlot, Benoit; Dugue, Benoit

    2017-04-01

    Whole-body cryotherapy (WBC) and partial-body cryotherapy (PBC) are two methods of cold exposure (from -110 to -195°C according to the manufacturers). However, temperature measurement in the cold chamber during a PBC exposure revealed temperatures ranging from -25 to -50°C next to the skin of the subjects (using isolating layer placed between the sensor and the skin). This discrepancy is due to the human body heat transfer. Moreover, on the surface of the body, an air layer called the boundary layer is created during the exposure and limits heat transfer from the body to the cabin air. Incorporating forced convection in a chamber with a participant inside could reduce this boundary layer. The aim of this study was to explore the use of a new WBC technology based on forced convection (frontal unilateral wind) through the measurement of skin temperature. Fifteen individuals performed a 3-min WBC exposure at -40°C with an average wind speed of 2.3ms(-1). The subjects wore a headband, a surgical mask, underwear, gloves and slippers. The skin temperature of the participants was measured with a thermal camera just before exposure, just after exposure and at 1, 3, 5, 10, 15 and 20min after exposure. Mean skin temperature significantly dropped by 11°C just after exposure (p<0.001) and then significantly increased during the 20-min post exposure period (p<0.001). No critically low skin temperature was observed at the end of the cold exposure. This decrease was greater than the mean decreases in all the cryosauna devices with reported exposures between -140°C and -160°C and those in two other WBC devices with reported exposures between -60°C and -110°C. The use of this new technology provides the ability to reach decreases in skin temperature similar to other technologies. The new chamber is suitable and relevant for use as a WBC device.

  3. Conceptual Design of Forced Convection Molten Salt Heat Transfer Testing Loop

    SciTech Connect

    Manohar S. Sohal; Piyush Sabharwall; Pattrick Calderoni; Alan K. Wertsching; S. Brandon Grover

    2010-09-01

    This report develops a proposal to design and construct a forced convection test loop. A detailed test plan will then be conducted to obtain data on heat transfer, thermodynamic, and corrosion characteristics of the molten salts and fluid-solid interaction. In particular, this report outlines an experimental research and development test plan. The most important initial requirement for heat transfer test of molten salt systems is the establishment of reference coolant materials to use in the experiments. An earlier report produced within the same project highlighted how thermophysical properties of the materials that directly impact the heat transfer behavior are strongly correlated to the composition and impurities concentration of the melt. It is therefore essential to establish laboratory techniques that can measure the melt composition, and to develop purification methods that would allow the production of large quantities of coolant with the desired purity. A companion report describes the options available to reach such objectives. In particular, that report outlines an experimental research and development test plan that would include following steps: •Molten Salts: The candidate molten salts for investigation will be selected. •Materials of Construction: Materials of construction for the test loop, heat exchangers, and fluid-solid corrosion tests in the test loop will also be selected. •Scaling Analysis: Scaling analysis to design the test loop will be performed. •Test Plan: A comprehensive test plan to include all the tests that are being planned in the short and long term time frame will be developed. •Design the Test Loop: The forced convection test loop will be designed including extensive mechanical design, instrument selection, data acquisition system, safety requirements, and related precautionary measures. •Fabricate the Test Loop. •Perform the Tests. •Uncertainty Analysis: As a part of the data collection, uncertainty analysis will

  4. Boiling radial flow in fractures of varying wall porosity

    SciTech Connect

    Barnitt, Robb Allan

    2000-06-01

    The focus of this report is the coupling of conductive heat transfer and boiling convective heat transfer, with boiling flow in a rock fracture. A series of experiments observed differences in boiling regimes and behavior, and attempted to quantify a boiling convection coefficient. The experimental study involved boiling radial flow in a simulated fracture, bounded by a variety of materials. Nonporous and impermeable aluminum, highly porous and permeable Berea sandstone, and minimally porous and permeable graywacke from The Geysers geothermal field. On nonporous surfaces, the heat flux was not strongly coupled to injection rate into the fracture. However, for porous surfaces, heat flux, and associated values of excess temperature and a boiling convection coefficient exhibited variation with injection rate. Nucleation was shown to occur not upon the visible surface of porous materials, but a distance below the surface, within the matrix. The depth of boiling was a function of injection rate, thermal power supplied to the fracture, and the porosity and permeability of the rock. Although matrix boiling beyond fracture wall may apply only to a finite radius around the point of injection, higher values of heat flux and a boiling convection coefficient may be realized with boiling in a porous, rather than nonporous surface bounded fracture.

  5. BOILING REACTORS

    DOEpatents

    Untermyer, S.

    1962-04-10

    A boiling reactor having a reactivity which is reduced by an increase in the volume of vaporized coolant therein is described. In this system unvaporized liquid coolant is extracted from the reactor, heat is extracted therefrom, and it is returned to the reactor as sub-cooled liquid coolant. This reduces a portion of the coolant which includes vaporized coolant within the core assembly thereby enhancing the power output of the assembly and rendering the reactor substantially self-regulating. (AEC)

  6. Effects of streamwise convergence in radius on the laminar forced convection in axisymmetric ducts

    SciTech Connect

    Lee, S.H.K.; Jaluria, Y.

    1995-07-01

    A systematic study has been carried out on the effects of streamwise convergence in radius on the laminar forced convection in an axisymmetric duct. This transport circumstance is relevant to many practical processes such as injection molding, glass molding, fiber drawing, and extrusion, where large variations in the radius may occur downstream and where the flow rates are generally small enough to yield a laminar flow. A fairly uncommon transformation technique was used to transform the pseudo-transient conservation equations for the stream function, vorticity, and energy, and several new numerical techniques were developed. These include a nonuniform grid scheme, a second-order-accurate vorticity condition for an arbitrary surface, and a nominally second-order-accurate vorticity condition for an arbitrary surface, and a nominally second-order-accurate approximation for the derivatives on a nonuniform grid. The three geometries studied were those of the straight, periodic, and converging ducts, where the results for the first two were obtained mainly for validation purposes. However, new results were also obtained for the periodic duct, showing the attainment of a sinusoidal steady state with the local Nusselt number varying from 1.0 to 6.0. For the converging duct, the local Nusselt number was found, for the first time, to increase with increasing convergence of the duct wall.

  7. Computation of the Nusselt number asymptotes for laminar forced convection flows in internally finned tubes

    SciTech Connect

    Ledezma, G.A.; Campo, A.

    1999-04-01

    The utilization of internal longitudinal finned tubes has received unparallel attention in the heat transfer literature over the years as a result of its imminent application in high performance compact heat exchangers to enhance the heat transfer between laminar streams of viscous fluids and tube walls. Here, the central goal of this paper is to report a simple approximate way for the prediction of the two asymptotes for the local Nusselt number in laminar forced convection flows inside internal longitudinal finned tubes. The computational attributes of the Method Of Lines (MOL) are propitious for the determination of asymptotic temperature solutions and corresponding heat transfer rates (one for Z {r_arrow} 0 and the other for z {r_arrow} {infinity}). The two local Nusselt number sub-distributions, namely Nu{sub z{r_arrow}0} and Nu{sub z{r_arrow}{infinity}}, blend themselves into an approximate Nusselt number distribution that covers the entire z-domain in a natural way.

  8. Skin-friction drag analysis from the forced convection modeling in simplified underwater swimming.

    PubMed

    Polidori, G; Taïar, R; Fohanno, S; Mai, T H; Lodini, A

    2006-01-01

    This study deals with skin-friction drag analysis in underwater swimming. Although lower than profile drag, skin-friction drag remains significant and is the second and only other contribution to total drag in the case of underwater swimming. The question arises whether varying the thermal gradient between the underwater swimmer and the pool water may modify the surface shear stress distribution and the resulting skin-friction drag acting on a swimmer's body. As far as the authors are aware, such a question has not previously been addressed. Therefore, the purpose of this study was to quantify the effect of this thermal gradient by using the integral formalism applied to the forced convection theory. From a simplified model in a range of pool temperatures (20-30 degrees C) it was demonstrated that, whatever the swimming speeds, a 5.3% reduction in the skin-friction drag would occur with increasing average boundary-layer temperature provided that the flow remained laminar. However, as the majority of the flow is actually turbulent, a turbulent flow analysis leads to the major conclusion that friction drag is a function of underwater speed, leading to a possible 1.5% reduction for fast swimming speeds above 1m/s. Furthermore, simple correlations between the surface shear stress and resulting skin-friction drag are derived in terms of the boundary-layer temperature, which may be readily used in underwater swimming situations.

  9. Kinetics modeling of the drying of sunflower stem (Helianthus annuus L.) in a forced convection tunnel

    NASA Astrophysics Data System (ADS)

    López, R.; Vaca, M.; Terres, H.; Lizardi, A.; Morales, J.; Flores, J.; Chávez, S.

    2015-01-01

    The sunflower is an annual plant native to the Americas. It possesses a large inflorescence (flowering head), and its name is derived from the flower's shape and image, which is often used to capture the sun. The plant has a rough, broad, hairy stem, coarsely toothed, with rough leaves, and circular flower heads. The sunflower seeds are appreciated for their oil, which has become a widespread cooking ingredient. Leaves of the sunflower can be used as cattle feed, while the stems contain a fiber that may be used in paper production. Recently this flower has been used in phytoremediation of soils, contaminated with heavy metals. Sunflower has been probed as an efficient phytoextractor of chromium, lead, aluminum, zinc, cadmium from soil. In this work we present the experimental results of the drying of the sunflower stem, cut in 100 mm longitudinal sections, with diameters in the range of 11-18 mm. The aim was to obtain a dry and easy-to-handle final product, since these plants were originally cultivated in order to extract heavy metals from a polluted soil. The dried stems could then be easily confined or sent to recycle premises to concentrate the metals. The drying process was done in forced convection within a hot air tunnel. The used temperature was 60 °C, the velocity of air was 3 m/s and the required times were 8 hours. The initial average wet mass was 28 g and the final value was 5 g, resulting in the aimed product.

  10. Forced convective heat transfer in boundary layer flow of Sisko fluid over a nonlinear stretching sheet.

    PubMed

    Munir, Asif; Shahzad, Azeem; Khan, Masood

    2014-01-01

    The major focus of this article is to analyze the forced convective heat transfer in a steady boundary layer flow of Sisko fluid over a nonlinear stretching sheet. Two cases are studied, namely (i) the sheet with variable temperature (PST case) and (ii) the sheet with variable heat flux (PHF case). The heat transfer aspects are investigated for both integer and non-integer values of the power-law index. The governing partial differential equations are reduced to a system of nonlinear ordinary differential equations using appropriate similarity variables and solved numerically. The numerical results are obtained by the shooting method using adaptive Runge Kutta method with Broyden's method in the domain[Formula: see text]. The numerical results for the temperature field are found to be strongly dependent upon the power-law index, stretching parameter, wall temperature parameter, material parameter of the Sisko fluid and Prandtl number. In addition, the local Nusselt number versus wall temperature parameter is also graphed and tabulated for different values of pertaining parameters. Further, numerical results are validated by comparison with exact solutions as well as previously published results in the literature.

  11. Numerical Study on Frost Profile over the Cooling Plate under Forced Convection

    NASA Astrophysics Data System (ADS)

    Kondou, Chieko; Senshu, Takao; Koyama, Shigeru; Kuwahara, Ken; Oguni, Kensaku

    This paper deals the numerical analysis on mass transfer under forced convection cooling. The transients of frost profiles on a cooling plat in a narrow channel were calculated by use of the packaged software with built in some original subroutines. In this paper, the architecture of these subroutines and this benchmark tests were showed. The calculation results exhibit local mass transfer rates and clarified following things. On the leading edge of the cooling plate, the frost accumulation accelerates locally. For the prediction on the cooling plate temperature distribution, to take into account latent heat of sublimation is necessary. In addition, the comparison between calculation and experimental results shows below issues. Both frost distribution profiles overlap in upstream; on the contrary, they do not overlap in the downstream. This comparison result indicates that the super saturation or mist flow is not negligible in the downstream. In terms of total frost weight, both results are roughly agreed and this weight increases proportionally with a run time despite increasing of the heat resistance caused by frost layer.

  12. Computational study of forced air-convection in open-cathode polymer electrolyte fuel cell stacks

    NASA Astrophysics Data System (ADS)

    Sasmito, A. P.; Lum, K. W.; Birgersson, E.; Mujumdar, A. S.

    A mathematical model for a polymer electrolyte fuel cell (PEFC) stack with an open-cathode manifold, where a fan provides the oxidant as well as cooling, is derived and studied. In short, the model considers two-phase flow and conservation of mass, momentum, species and energy in the ambient and PEFC stack, as well as conservation of charge and a phenomenological membrane and agglomerate model for the PEFC stack. The fan is resolved as an interfacial condition with a polynomial expression for the static pressure increase over the fan as a function of the fan velocity. The results suggest that there is strong correlation between fan power rating, the height of cathode flow-field and stack performance. Further, the placement of the fan - either in blowing or suction mode - does not give rise to a discernable difference in stack performance for the flow-field considered (metal mesh). Finally, it is noted that the model can be extended to incorporate other types of flow-fields and, most importantly, be employed for design and optimization of forced air-convection open-cathode PEFC stacks and adjacent fans.

  13. Regressed relations for forced convection heat transfer in a direct injection stratified charge rotary engine

    NASA Technical Reports Server (NTRS)

    Lee, Chi M.; Schock, Harold J.

    1988-01-01

    Currently, the heat transfer equation used in the rotary combustion engine (RCE) simulation model is taken from piston engine studies. These relations have been empirically developed by the experimental input coming from piston engines whose geometry differs considerably from that of the RCE. The objective of this work was to derive equations to estimate heat transfer coefficients in the combustion chamber of an RCE. This was accomplished by making detailed temperature and pressure measurements in a direct injection stratified charge (DISC) RCE under a range of conditions. For each specific measurement point, the local gas velocity was assumed equal to the local rotor tip speed. Local physical properties of the fluids were then calculated. Two types of correlation equations were derived and are described in this paper. The first correlation expresses the Nusselt number as a function of the Prandtl number, Reynolds number, and characteristic temperature ratio; the second correlation expresses the forced convection heat transfer coefficient as a function of fluid temperature, pressure and velocity.

  14. Control of dynamical self-assembly of strongly Brownian nanoparticles through convective forces induced by ultrafast laser

    NASA Astrophysics Data System (ADS)

    Ilday, Serim; Akguc, Gursoy B.; Tokel, Onur; Makey, Ghaith; Yavuz, Ozgun; Yavuz, Koray; Pavlov, Ihor; Ilday, F. Omer; Gulseren, Oguz

    We report a new dynamical self-assembly mechanism, where judicious use of convective and strong Brownian forces enables effective patterning of colloidal nanoparticles that are almost two orders of magnitude smaller than the laser beam. Optical trapping or tweezing effects are not involved, but the laser is used to create steep thermal gradients through multi-photon absorption, and thereby guide the colloids through convective forces. Convective forces can be thought as a positive feedback mechanism that helps to form and reinforce pattern, while Brownian motion act as a competing negative feedback mechanism to limit the growth of the pattern, as well as to increase the possibilities of bifurcation into different patterns, analogous to the competition observed in reaction-diffusion systems. By steering stochastic processes through these forces, we are able to gain control over the emergent pattern such as to form-deform-reform of a pattern, to change its shape and transport it spatially within seconds. This enables us to dynamically initiate and control large patterns comprised of hundreds of colloids. Further, by not relying on any specific chemical, optical or magnetic interaction, this new method is, in principle, completely independent of the material type being assembled.

  15. Boiling Heat Transfer in High Temperature Generator of Absorption Chiller/Heater

    NASA Astrophysics Data System (ADS)

    Furukawa, Masahiro; Enomoto, Eiichi; Sekoguchi, Kotohiko

    Heat transfer performance of forced convective boiling in high temperature generator was experimentally studied using an actual absorption chiller/heater. Measurements were made at six locations, three different levels on a couple of laterally separated lines, for the fluid rising along the rear wall of the high temperature generator furnace. Fluids tested were water and lithium bromide aqueous solution. System pressures were maintained at 96 and 24 kPa, and firing rates were changed from 100 to 40 % of the full load of the machine. Through the experiments, thermodynamic states of both of the fluids were in subcooled region at the lower and middle locations and in saturated region at the upper location. It can be suggested that saturated boiling occurs at comparatively narrow area, located at the upper zone of heat transfer surface of the generator, while forced convective heat transfer and subcooled boiling appear at the remaining broad area. Enhancement of heat transfer due to saturated boiling was not pronounced for lithium bromide aqueous solution than for water.

  16. Magnetothermal Convection of Water with the Presence or Absence of a Magnetic Force Acting on the Susceptibility Gradient

    PubMed Central

    Maki, Syou

    2016-01-01

    Heat transfer of magnetothermal convection with the presence or absence of the magnetic force acting on the susceptibility gradient (fsc) was examined by three-dimensional numerical computations. Thermal convection of water enclosed in a shallow cylindrical vessel (diameter over vessel height = 6.0) with the Rayleigh-Benard model was adopted as the model, under the conditions of Prandtl number 6.0 and Ra number 7000, respectively. The momentum equations of convection were nondimensionalized, which involved the term of fsc and the term of magnetic force acting on the magnetic field gradient (fb). All the computations resulted in axisymmetric steady rolls. The values of the averaged Nu, the averaged velocity components U, V, and W, and the isothermal distributions and flow patterns were almost completely the same, regardless of the presence or absence of the term of fsc. As a result, we found that the effect of fsc was extremely small, although much previous research emphasized the effect with paramagnetic solutions under an unsteady state. The magnitude of fsc depends not only on magnetic conditions (magnitudes of magnetic susceptibility and magnetic flux density), but also on the thermal properties of the solution (thermal conductivity, thermal diffusivity, and viscosity). Therefore the effect of fb becomes dominant on the magnetothermal convection. Active control over the density gradient with temperature will be required to advance heat transfer with the effect of fsc. PMID:27606823

  17. Flow boiling with enhancement devices for cold plate coolant channel design

    NASA Technical Reports Server (NTRS)

    Boyd, Ronald D.

    1991-01-01

    Future space exploration and commercialization will require more efficient heat rejection systems. For the required heat transfer rates, such systems must use advanced heat transfer techniques. Forced two phase flow boiling heat transfer with enhancements falls in this category. However, moderate to high quality two phase systems tend to require higher pressure losses. This report is divided into two major parts: (1) Multidimensional wall temperature measurement and heat transfer enhancement for top heated horizontal channels with flow boiling; and (2) Improved analytical heat transfer data reduction for a single side heated coolant channel. Part 1 summarizes over forty experiments which involve both single phase convection and flow boiling in a horizontal channel heated externally from the top side. Part 2 contains parametric dimensionless curves with parameters such as the coolant channel radius ratio, the Biot number, and the circumferential coordinate.

  18. A PCM/forced convection conjugate transient analysis of energy storage systems with annular and countercurrent flows

    NASA Technical Reports Server (NTRS)

    Cao, Y.; Faghri, A.; Juhasz, A.

    1991-01-01

    Latent heat energy storage systems with both annular and countercurrent flows are modeled numerically. The change of phase of the phase-change material (PCM) and the transient forced convective heat transfer for the transfer fluid are solved simultaneously as a conjugate problem. A parametric study and a system optimization are conducted. It is found that the energy storage system with the countercurrent flow is an efficient way to absorb heat energy in a short period for pulsed power load space applications.

  19. The initial transient of natural convection during copper electrolysis in the presence of an opposing Lorentz force: Current dependence

    NASA Astrophysics Data System (ADS)

    Yang, Xuegeng; Mühlenhoff, Sascha; Nikrityuk, Petr A.; Eckert, Kerstin

    2013-03-01

    Magnetic fields are well-established in electrochemistry as an attractive tool to improve both the quality of the deposit as well as the deposition rate. The key mechanism is a mass transfer enhancement by Lorentz-force-driven convection. However, during electrolysis this convection interacts with buoyancy-driven convection, which arises from concentration differences, in a sometimes intriguing way. In the case of a Lorentz force opposing buoyancy, this is due to the growth of a bubble-like zone of less-concentrated cupric ion solution at the lower part of the vertical cathode when copper electrolysis is performed. If buoyancy is strong enough to compete with the Lorentz force, this zone rises along the cathode and causes surprisingly unsteady initial transient behaviour. We explore this initial transient under galvanostatic conditions by analyzing the development of the concentration and velocity boundary layers obtained by Mach-Zehnder interferometry and particle image velocimetry. Particular attention is also paid to higher current densities above the limiting current, obtained from potentiodynamic measurements, at which a chaotic advection takes place. The results are compared by scaling analysis.

  20. The effect of rowing headgear on forced convective heat loss and radiant heat gain on a thermal manikin headform.

    PubMed

    Bogerd, Cornelis P; Brühwiler, Paul A; Heus, Ronald

    2008-05-01

    Both radiant and forced convective heat flow were measured for a prototype rowing headgear and white and black cotton caps. The measurements were performed on a thermal manikin headform at a wind speed of 4.0 m . s(-1) (s = 0.1) in a climate chamber at 22.0 degrees C (s = 0.05), with and without radiant heat flow from a heat lamp, coming from either directly above (90 degrees ) or from above at an angle of 55 degrees . The effects of hair were studied by repeating selected measurements with a wig. All headgear reduced the radiant heat gain compared with the nude headform: about 80% for the caps and 95% for the prototype rowing headgear (P < 0.01). Forced convective heat loss was reduced more by the caps (36%) than by the prototype rowing headgear (9%) (P < 0.01). The radiant heat gain contributed maximally 13% to the net heat transfer, with or without headgear, showing that forced convective heat loss is the dominant heat transfer parameter under the chosen conditions. The results of the headgear - wig combinations were qualitatively similar, with lower absolute heat transfer.

  1. Nucleate pool boiling: High gravity to reduced gravity; liquid metals to cryogens

    NASA Technical Reports Server (NTRS)

    Merte, Herman, Jr.

    1988-01-01

    Requirements for the proper functioning of equipment and personnel in reduced gravity associated with space platforms and future space station modules introduce unique problems in temperature control; power generation; energy dissipation; the storage, transfer, control and conditioning of fluids; and liquid-vapor separation. The phase change of boiling is significant in all of these. Although both pool and flow boiling would be involved, research results to date include only pool boiling because buoyancy effects are maximized for this case. The effective application of forced convection boiling heat transfer in the microgravity of space will require a well grounded and cogent understanding of the mechanisms involved. Experimental results are presented for pool boiling from a single geometrical configuration, a flat surface, covering a wide range of body forces from a/g = 20 to 1 to a/g = 0 to -1 for a cryogenic liquid, and from a/g = 20 to 1 for water and a liquid metal. Similarities in behavior are noted for these three fluids at the higher gravity levels, and may reasonably be expected to continue at reduced gravity levels.

  2. Geysering in boiling channels

    SciTech Connect

    Aritomi, Masanori; Takemoto, Takatoshi; Chiang, Jing-Hsien

    1995-09-01

    A concept of natural circulation BWRs such as the SBWR has been proposed and seems to be promising in that the primary cooling system can be simplified. The authors have been investigating thermo-hydraulic instabilities which may appear during the start-up in natural circulation BWRs. In our previous works, geysering was investigated in parallel boiling channels for both natural and forced circulations, and its driving mechanism and the effect of system pressure on geysering occurrence were made clear. In this paper, geysering is investigated in a vertical column and a U-shaped vertical column heated in the lower parts. It is clarified from the results that the occurrence mechanism of geysering and the dependence of system pressure on geysering occurrence coincide between parallel boiling channels in circulation systems and vertical columns in non-circulation systems.

  3. Development of a Forced-Convection Liquid-Fluoride-Salt Test Loop

    SciTech Connect

    Yoder Jr, Graydon L; Wilson, Dane F; Peretz, Fred J; Wilgen, John B; Romanoski, Glenn R; Kisner, Roger A; Holcomb, David Eugene; Heatherly, Dennis Wayne; Aaron, Adam M

    2010-01-01

    A small forced-convection molten-fluoride-salt loop is being constructed at Oak Ridge National Laboratory to examine the heat transfer behavior of FLiNaK salt in a heated pebble bed. Objectives of the experiment include reestablishing infrastructure needed for fluoride-salt loop testing, developing a unique inductive heating technique for performing heat transfer (or other) experiments, measuring heat transfer characteristics in a liquid-fluoride-salt-cooled pebble bed, and demonstrating the use of silicon carbide (SiC) as a structural component for salt systems. The salt loop will consist of an Inconel 600 piping system, a sump-type pump, a SiC test section, and an air-cooled heat exchanger, as well as auxiliary systems needed to pre-heat the loop, transport salt into and out of the loop, and maintain an inert cover gas over the salt. A 30,000 Hz inductive heating system will be used to provide up to 250 kW of power to a 15 cm diameter SiC test section containing a packed bed of 3 cm graphite spheres. A SiC-to-Inconel 600 joint will use a conventional nickel/grafoil spiral wound gasket sandwiched between SiC and Inconel flanges. The loop system can provide up to 4.5 kg/s of salt flow at a head of 0.125 MPa and operate at a pressure just above atmospheric. Pebble Reynolds numbers of up to 2600 are possible with this configuration. A sump system is provided to drain and store the salt when not in use. Instrumentation on the loop will include pressure, temperature, and flow measurements, while the test section will be instrumented to provide pebble and FLiNaK temperatures.

  4. Similarity Solution for Combined Free-Forced Convection Past a Vertical Porous Plate in a Porous Medium with a Convective Surface Boundary Condition

    NASA Astrophysics Data System (ADS)

    Garg, P.; Purohit, G. N.; Chaudhary, R. C.

    2016-12-01

    This paper studies the mathematical implications of the two dimensional viscous steady laminar combined free-forced convective flow of an incompressible fluid over a semi infinite fixed vertical porous plate embedded in a porous medium. It is assumed that the left surface of the plate is heated by convection from a hot fluid which is at a temperature higher than the temperature of the fluid on the right surface of the vertical plate. To achieve numerical consistency for the problem under consideration, the governing non linear partial differential equations are first transformed into a system of ordinary differential equations using a similarity variable and then solved numerically under conditions admitting similarity solutions. The effects of the physical parameters of both the incompressible fluid and the vertical plate on the dimensionless velocity and temperature profiles are studied and analysed and the results are depicted both graphically and in a tabular form. Finally, algebraic expressions and the numerical values are obtained for the local skin-friction coefficient and the local Nusselt number.

  5. Heat Transfer in Boiling Dilute Emulsion with Strong Buoyancy

    NASA Astrophysics Data System (ADS)

    Freeburg, Eric Thomas

    Little attention has been given to the boiling of emulsions compared to that of boiling in pure liquids. The advantages of using emulsions as a heat transfer agent were first discovered in the 1970s and several interesting features have since been studied by few researchers. Early research focuses primarily on pool and flow boiling and looks to determine a mechanism by which the boiling process occurs. This thesis looks at the boiling of dilute emulsions in fluids with strong buoyant forces. The boiling of dilute emulsions presents many favorable characteristics that make it an ideal agent for heat transfer. High heat flux electronics, such as those seen in avionics equipment, produce high heat fluxes of 100 W/cm2 or more, but must be maintained at low temperatures. So far, research on single phase convection and flow boiling in small diameter channels have yet to provide an adequate solution. Emulsions allow the engineer to tailor the solution to the specific problem. The fluid can be customized to retain the high thermal conductivity and specific heat capacity of the continuous phase while enhancing the heat transfer coefficient through boiling of the dispersed phase component. Heat transfer experiments were carried out with FC-72 in water emulsions. FC-72 has a saturation temperature of 56 °C, far below that of water. The parameters were varied as follows: 0% ≤ epsilon ≤ 1% and 1.82 x 1012 ≤ RaH ≤ 4.42 x 1012. Surface temperatures along the heated surface reached temperature that were 20 °C in excess of the dispersed phase saturation temperature. An increase of ˜20% was seen in the average Nusselt numbers at the highest Rayleigh numbers. Holography was used to obtain images of individual and multiple FC-72 droplets in the boundary layer next to the heated surface. The droplet diameters ranged from 0.5 mm to 1.3 mm. The Magnus effect was observed when larger individual droplets were injected into the boundary layer, causing the droplets to be pushed

  6. Gravity Wave Forcing of the Mesosphere and Lower Thermosphere: Mountain and Convective Waves Ascending Vertically (MaCWAVE)

    NASA Technical Reports Server (NTRS)

    Fritts, David C.

    2004-01-01

    The specific objectives of this research effort included the following: 1) Quantification of gravity wave propagation throughout the lower and middle atmosphere in order to define the roles of topographic and convective sources and filtering by mean and low-frequency winds in defining the wave field and wave fluxes at greater altitudes; 2) The influences of wave instability processes in constraining wave amplitudes and fluxes and generating turbulence and transport; 3) Gravity wave forcing of the mean circulation and thermal structure in the presence of variable motion fields and wave-wave interactions, since the mean forcing may be a small residual when wave interactions, anisotropy, and momentum and heat fluxes are large; 4) The statistical forcing and variability imposed on the thermosphere at greater altitudes by the strong wave forcing and interactions occurring in the MLTI.

  7. Determination of blade-to-coolant heat-transfer coefficients on a forced-convection, water-cooled, single-stage turbine

    NASA Technical Reports Server (NTRS)

    Freche, John C; Schum, Eugene F

    1951-01-01

    Blade-to-coolant convective heat-transfer coefficients were obtained on a forced-convection water-cooled single-stage turbine over a large laminar flow range and over a portion of the transition range between laminar and turbulent flow. The convective coefficients were correlated by the general relation for forced-convection heat transfer with laminar flow. Natural-convection heat transfer was negligible for this turbine over the Grashof number range investigated. Comparison of turbine data with stationary tube data for the laminar flow of heated liquids showed good agreement. Calculated average midspan blade temperatures using theoretical gas-to-blade coefficients and blade-to-coolant coefficients from stationary-tube data resulted in close agreement with experimental data.

  8. Numerical study of forced convection in a turbulent heat sink made of several rows of blocks of square form

    NASA Astrophysics Data System (ADS)

    Bouchenafa, Rachid; Saim, Rachid; Abboudi, Said

    2015-09-01

    Forced convection is a phenomenon associated with the heat transfer fluid flows. The presence of convection affects simultaneously the thermal and hydrodynamic fields, the problem is thus coupled. This form of heat transfer inside ducts occurs in many practical applications such as solar collectors, heat exchangers, cooling of electronic components as well as chemical and nuclear. In this work, we are interested primarily for a numerical study of thermo-hydraulic performances of an incompressible turbulent flow of air through a heat sink composed of several rows of bars of square section. Profiles and the axial velocity fields, as well as profiles and the distribution of the Nusselt number are plotted for all the geometry considered and chosen for different sections. The effects of geometrical parameters of the model and the operating parameters on the dynamic and thermal behavior of the air are analyzed.

  9. Lattice Boltzmann modeling of boiling heat transfer: The boiling curve and the effects of wettability

    SciTech Connect

    Li, Q.; Kang, Q. J.; Francois, M. M.; He, Y. L.; Luo, K. H.

    2015-03-03

    A hybrid thermal lattice Boltzmann (LB) model is presented to simulate thermal multiphase flows with phase change based on an improved pseudopotential LB approach (Li et al., 2013). The present model does not suffer from the spurious term caused by the forcing-term effect, which was encountered in some previous thermal LB models for liquid–vapor phase change. Using the model, the liquid–vapor boiling process is simulated. The boiling curve together with the three boiling stages (nucleate boiling, transition boiling, and film boiling) is numerically reproduced in the LB community for the first time. The numerical results show that the basic features and the fundamental characteristics of boiling heat transfer are well captured, such as the severe fluctuation of transient heat flux in the transition boiling and the feature that the maximum heat transfer coefficient lies at a lower wall superheat than that of the maximum heat flux. Moreover, the effects of the heating surface wettability on boiling heat transfer are investigated. It is found that an increase in contact angle promotes the onset of boiling but reduces the critical heat flux, and makes the boiling process enter into the film boiling regime at a lower wall superheat, which is consistent with the findings from experimental studies.

  10. Lattice Boltzmann modeling of boiling heat transfer: The boiling curve and the effects of wettability

    DOE PAGES

    Li, Q.; Kang, Q. J.; Francois, M. M.; ...

    2015-03-03

    A hybrid thermal lattice Boltzmann (LB) model is presented to simulate thermal multiphase flows with phase change based on an improved pseudopotential LB approach (Li et al., 2013). The present model does not suffer from the spurious term caused by the forcing-term effect, which was encountered in some previous thermal LB models for liquid–vapor phase change. Using the model, the liquid–vapor boiling process is simulated. The boiling curve together with the three boiling stages (nucleate boiling, transition boiling, and film boiling) is numerically reproduced in the LB community for the first time. The numerical results show that the basic featuresmore » and the fundamental characteristics of boiling heat transfer are well captured, such as the severe fluctuation of transient heat flux in the transition boiling and the feature that the maximum heat transfer coefficient lies at a lower wall superheat than that of the maximum heat flux. Moreover, the effects of the heating surface wettability on boiling heat transfer are investigated. It is found that an increase in contact angle promotes the onset of boiling but reduces the critical heat flux, and makes the boiling process enter into the film boiling regime at a lower wall superheat, which is consistent with the findings from experimental studies.« less

  11. Nucleate boiling of water in twisted-tape swirled flow

    SciTech Connect

    Kudryavtsev, I.S.; Lekakh, B.M.; Paskar, B.L.; Fedorovich, Y.D. )

    1990-01-01

    This paper analyzes nucleate boiling in twisted-tape swirled water flow. The transverse flow velocity in the wall region, generated by the density gradient and acceleration, is estimated. It is concluded that the turbulence has a significant effect on the growth of vapor bubbles, decreasing the rate of nucleate boiling without simultaneously increasing the convective component to compensate for this effect.

  12. Computations of Boiling in Microgravity

    NASA Technical Reports Server (NTRS)

    Tryggvason, Gretar; Jacqmin, David

    1999-01-01

    The absence (or reduction) of gravity, can lead to major changes in boiling heat transfer. On Earth, convection has a major effect on the heat distribution ahead of an evaporation front, and buoyancy determines the motion of the growing bubbles. In microgravity, convection and buoyancy are absent or greatly reduced and the dynamics of the growing vapor bubbles can change in a fundamental way. In particular, the lack of redistribution of heat can lead to a large superheat and explosive growth of bubbles once they form. While considerable efforts have been devoted to examining boiling experimentally, including the effect of microgravity, theoretical and computational work is limited to very simple models. In this project, the growth of boiling bubbles is studied by direct numerical simulations where the flow field is fully resolved and the effects of inertia, viscosity, surface deformation, heat conduction and convection, as well as the phase change, are fully accounted for. The proposed work is based on previously funded NASA work that allowed us to develop a two-dimensional numerical method for boiling flows and to demonstrate the ability of the method to simulate film boiling. While numerical simulations of multi-fluid flows have been advanced in a major way during the last five years, or so, similar capability for flows with phase change are still in their infancy. Although the feasibility of the proposed approach has been demonstrated, it has yet to be extended and applied to fully three-dimensional simulations. Here, a fully three-dimensional, parallel, grid adaptive code will be developed. The numerical method will be used to study nucleate boiling in microgravity, with particular emphasis on two aspects of the problem: 1) Examination of the growth of bubbles at a wall nucleation site and the instabilities of rapidly growing bubbles. Particular emphasis will be put on accurately capturing the thin wall layer left behind as a bubble expands along a wall, on

  13. Evaluation of electric belt grill, forced-air convection oven, and electric broiler cookery methods for beef tenderness research.

    PubMed

    Lawrence, T E; King, D A; Obuz, E; Yancey, E J; Dikeman, M E

    2001-07-01

    Five muscles from USDA Select beef carcasses were cooked on an electric belt grill at three temperatures (93, 117, and 163°C), in a forced-air convection oven, and on an electric broiler to determine effects of cooking treatment and muscle on Warner-Bratzler shear force values, cooking traits (cooking loss, cooking time, and endpoint temperature), and repeatability of duplicate measurements. All cooking treatments allowed shear force differences to be detected (P<0.05) among the five muscles, although the differences were inconsistent. Neither longissimus lumborum nor semitendinosus shear values differed among the five cooking treatments; however, shear values for biceps femoris, deep pectoralis, and gluteus medius differed (P<0.05) among cooking treatments. Belt grill cooking resulted in the highest shear force repeatability (R=0.70 to 0.89) for the longissimus lumborum. All cooking methods provided acceptable repeatability (R⩾0.60) of shear values for the biceps femoris and semitendinosus. The electric broiler was the only cooking treatment that resulted in acceptable repeatability of shear force measurements for all five muscles. It is not recommended to use the gluteus medius to test treatment effects on shear force values. Belt grill or electric broiler cooking are recommended for shear force evaluations.

  14. Momentum effects in steady nucleate pool boiling during microgravity.

    PubMed

    Merte, Herman

    2004-11-01

    Pool boiling experiments were conducted in microgravity on five space shuttle flights, using a flat plate heater consisting of a semitransparent thin gold film deposited on a quartz substrate that also acted as a resistance thermometer. The test fluid was R-113, and the vapor bubble behavior at the heater surface was photographed from beneath as well as from the side. Each flight consisted of a matrix of three levels of heat flux and three levels of subcooling. In 26 of the total of 45 experiments conditions of steady-state pool boiling were achieved under certain combinations of heat flux and liquid subcooling. In many of the 26 cases, it was observed from the 16-mm movie films that a large vapor bubble formed, remaining slightly removed from the heater surface, and that subsequent vapor bubbles nucleate and grow on the heater surface. Coalescence occurs upon making contact with the large bubble, which thus acts as a vapor reservoir. Recently, measurements of the frequencies and sizes of the small vapor bubbles as they coalesced with the large bubble permitted computation of the associated momentum transfer. The transient forces obtained are presented here. Where these arise from the conversion of the surface energy in the small vapor bubble to kinetic energy acting away from the solid heater surface, they counter the Marangoni convection due to the temperature gradients normal to the heater surface. This Marangoni convection would otherwise impel the large vapor bubble toward the heater surface and result in dryout and unsteady heat transfer.

  15. Free and Forced Convection in High Permeability Porous Media: Impact on Gas Flux at the Earth-atmosphere Interface

    NASA Astrophysics Data System (ADS)

    Weisbrod, N.; Levintal, E.; Dragila, M. I.; Kamai, T.

    2015-12-01

    Gas movement within the earth's subsurface and its exchange with the atmosphere is one of the principal elements contributing to soil and atmospheric function. As the soil permeability increases, gas circulation by convective mechanisms becomes significantly greater than the diffusion. Two of the convective mechanisms, which can be of great importance, are being explored in this research. The first one is thermal convection venting (TCV), which develops when there are unstable density gradients. The second mechanism is wind induced convection (WIC), which develops due to surface winds that drive air movement. Here, we report the results of a study on the relationships between the porous media permeability and particle size, and the development and magnitude of TCV and WIC with the development of thermal differences and surface winds. The research included large high-permeability column experiments carried out under highly controlled laboratory conditions, using well-defined single-sized spherical particles while surface winds and thermal differences were forced and monitored. CO2 enriched air, functioned as a tracer, was used to quantify the impact of TCV and WIC on gas migration in the porous media. Results show that in homogenous porous media a permeability range of 10-7 to 10-6 m2 is the threshold value for TCV onset under standard atmospheric conditions. Adding surface wind with an average velocity of 1.5 m s-1 resulted in WIC effect to a depth of -0.3 m in most experimental settings; however, it did not caused additional air circulation at the reference depth of -0.9 m. Furthermore, given the appropriate conditions, a combined effect of TCV and WIC did significantly increase the overall media ventilation. Simulations of temperature profiles in soil under that permeability, showed that as the thermal gradient changes with depth and is a continuous function, TCV cells can be developed in local sections of the profile, not necessarily reaching the atmosphere.

  16. Properties of forced convection experimental with silicon carbide based nano-fluids

    NASA Astrophysics Data System (ADS)

    Soanker, Abhinay

    -fluids. The nano-fluid properties were tested at three different volume concentrations; 0.55%, 1% and 1.6%. Thermal conductivity was measured for the three-volume concentration as function of temperature. Thermal conductivity enhancement increased with the temperature and may be attributed to increased Brownian motion of colloidal particles at higher temperatures. Measured thermal conductivity values are compared with results obtained by theoretical model derived in this work. Effect of temperature and volume concentration on viscosity was also measured and reported. Viscosity increase and related consequences are important issues for the use of nano-fluids. Extensive measurements of heat transfer and pressure drop for forced convection in circular pipes with nano-fluids was also conducted. Parameters such as heat transfer coefficient, Nusselt number, pressure drop and a thermal hydraulic performance factor that takes into account the gains made by increase in thermal conductivity as well as penalties related to increase in pressure drop are evaluated for laminar and transition flow regimes. No significant improvement in heat transfer (Nusselt number) compared to its based fluid was observed. It is also observed that the values evaluated for the thermal-hydraulic performance factor (change in heat transfer/change in pressure drop) was under unity for many flow conditions indicating poor overall applicability of SiC based nano-fluids.

  17. Design of Test Loops for Forced Convection Heat Transfer Studies at Supercritical State

    NASA Astrophysics Data System (ADS)

    Balouch, Masih N.

    Worldwide research is being conducted to improve the efficiency of nuclear power plants by using supercritical water (SCW) as the working fluid. One such SCW reactor considered for future development is the CANDU-Supercritical Water Reactor (CANDU-SCWR). For safe and accurate design of the CANDU-SCWR, a detailed knowledge of forced-convection heat transfer in SCW is required. For this purpose, two supercritical fluid loops, i.e. a SCW loop and an R-134a loop are developed at Carleton University. The SCW loop is designed to operate at pressures as high as 28 MPa, temperatures up to 600 °C and mass fluxes of up to 3000 kg/m2s. The R-134a loop is designed to operate at pressures as high as 6 MPa, temperatures up to 140 °C and mass fluxes in the range of 500-6000 kg/m2s. The test loops designs allow for up to 300 kW of heating power to be imparted to the fluid. Both test loops are of the closed-loop design, where flow circulation is achieved by a centrifugal pump in the SCW loop and three parallel-connected gear pumps in the R-134a loop, respectively. The test loops are pressurized using a high-pressure nitrogen cylinder and accumulator assembly, which allows independent control of the pressure, while simultaneously dampening pump induced pressure fluctuations. Heat exchangers located upstream of the pumps control the fluid temperature in the test loops. Strategically located measuring instrumentation provides information on the flow rate, pressure and temperature in the test loops. The test loops have been designed to accommodate a variety of test-section geometries, ranging from a straight circular tube to a seven-rod bundle, achieving heat fluxes up to 2.5 MW/m2 depending on the test-section geometry. The design of both test loops allows for easy reconfiguration of the test-section orientation relative to the gravitational direction. All the test sections are of the directly-heated design, where electric current passing through the pressure retaining walls of the

  18. A New Theory of Nucleate Pool Boiling in Arbitrary Gravity

    NASA Technical Reports Server (NTRS)

    Buyevich, Y. A.; Webbon, Bruce W.

    1995-01-01

    gravity levels, with a good agreement with experimental evidence. The other problem bears upon equilibrium shapes of a detached bubble near a heated surface in exceedingly low gravity. In low gravity or in weightlessness, the bubble can remain in the close vicinity of the surface for a long time, and its shape is greatly affected by the Marangoni effect due to both temperature and possible surfactant concentration being nonuniform along the interface. The bubble performs at these conditions like a heat pipe, with evaporation at the bubble lower boundary and condensation at its upper boundary, and ultimately ensures a substantial increase in heat removal as compared with that in normal gravity. Some other problems relevant to nucleate pool and forced convection boiling heat transfer are also discussed.

  19. Vertical microphysical profiles of convective clouds as a tool for obtaining aerosol cloud-mediated climate forcings

    SciTech Connect

    Rosenfeld, Daniel

    2015-12-23

    Quantifying the aerosol/cloud-mediated radiative effect at a global scale requires simultaneous satellite retrievals of cloud condensation nuclei (CCN) concentrations and cloud base updraft velocities (Wb). Hitherto, the inability to do so has been a major cause of high uncertainty regarding anthropogenic aerosol/cloud-mediated radiative forcing. This can be addressed by the emerging capability of estimating CCN and Wb of boundary layer convective clouds from an operational polar orbiting weather satellite. Our methodology uses such clouds as an effective analog for CCN chambers. The cloud base supersaturation (S) is determined by Wb and the satellite-retrieved cloud base drop concentrations (Ndb), which is the same as CCN(S). Developing and validating this methodology was possible thanks to the ASR/ARM measurements of CCN and vertical updraft profiles. Validation against ground-based CCN instruments at the ARM sites in Oklahoma, Manaus, and onboard a ship in the northeast Pacific showed a retrieval accuracy of ±25% to ±30% for individual satellite overpasses. The methodology is presently limited to boundary layer not raining convective clouds of at least 1 km depth that are not obscured by upper layer clouds, including semitransparent cirrus. The limitation for small solar backscattering angles of <25º restricts the satellite coverage to ~25% of the world area in a single day. This methodology will likely allow overcoming the challenge of quantifying the aerosol indirect effect and facilitate a substantial reduction of the uncertainty in anthropogenic climate forcing.

  20. Forced organization of flute-type turbulence by convective cell injection

    SciTech Connect

    Iizuka, S.; Huld, T.; Pecseli, H.L.; Rasmussen, J.J.

    1988-03-14

    Nonlinear interactions between flute-type turbulence and an externally excited convective cell in a strongly magnetized plasma are investigated. During the interaction the azimuthal-mode-number spectrum of the turbulence is deformed and a broad spectrum evolves, indicating an inverse cascade. As a result of a modification in phase and amplitude of the fluctuations, an organized structure is created in turbulence. The macroscopic behavior is well explained by a Van der Pol--type equation.

  1. Convection in a differentially heated rotating spherical shell of Boussinesq fluid with radiative forcing

    NASA Astrophysics Data System (ADS)

    Babalola, David

    In this study we investigate the flow of a Boussinesq fluid contained in a rotating, differentially heated spherical shell. Previous work, on the spherical shell of Boussinesq fluid, differentially heated the shell by prescribing temperature on the inner boundary of the shell, setting the temperature deviation from the reference temperature to vary proportionally with -cos 2θ, from the equator to the pole. We change the model to include an energy balance equation at the earth's surface, which incorporates latitudinal solar radiation distribution and ice-albedo feedback mechanism with moving ice boundary. For the fluid velocity, on the inner boundary, two conditions are considered: stress-free and no-slip. However, the model under consideration contains only simple representations of a small number of climate variables and thus is not a climate model per se but rather a tool to aid in understanding how changes in these variables may affect our planet's climate. The solution of the model is followed as the differential heating is changed, using the pseudo arc-length continuation method, which is a reliable method that can successfully follow a solution curve even at a turning point. Our main result is in regards to hysteresis phenomenon that is associated with transition from one to multiple convective cells, in a differentially heated, co-rotating spherical shell. In particular, we find that hysteresis can be observed without transition from one to multiple convective cells. Another important observation is that the transition to multiple convective cells is significantly suppressed altogether, in the case of stress-free boundary conditions on the fluid velocity. Also, the results of this study will be related to our present-day climate.

  2. Simulation of forced convection in a channel with nanofluid by the lattice Boltzmann method

    PubMed Central

    2013-01-01

    This paper presents a numerical study of the thermal performance of fins mounted on the bottom wall of a horizontal channel and cooled with either pure water or an Al2O3-water nanofluid. The bottom wall of the channel is heated at a constant temperature and cooled by mixed convection of laminar flow at a relatively low temperature. The results of the numerical simulation indicate that the heat transfer rate of fins is significantly affected by the Reynolds number (Re) and the thermal conductivity of the fins. The influence of the solid volume fraction on the increase of heat transfer is more noticeable at higher values of the Re. PMID:23594696

  3. Boiling heat transfer characteristics of liquid xenon

    NASA Astrophysics Data System (ADS)

    Haruyama, T.

    2002-05-01

    Liquid xenon is one of the excellent media for high-energy particle calorimeter. In order to detect a scintillation light effectively, a large number of photo-multipliers (PMTs) will be immersed in liquid xenon. Many chip-resistors equipped with the PMTs dissipate heat into liquid and possibly generate thermal turbulence, such as bubbles, convection flow under a certain operating condition. There is, however, no heat transfer curve (q-ΔT curve) in the literature. Boiling heat transfer characteristics of liquid xenon were measured at a saturated pressure of 0.1 MPa for the first time by using a small pulse tube refrigerator. The heat transfer surface is a thin platinum wire of 0.1 mm diameter and 25 mm long. The measured results were in good agreement with the calculated values both in natural convection and nucleate boiling condition. The film boiling state was difficult to obtain due to its poor reproducibility, and only one data was obtained. The relationship between the heat flux q and temperature difference ΔT was in good agreement with the Morgan's empirical equation in the natural convection region, and with the Kutateladze's equation in the nucleate boiling region.

  4. Numerical Investigation of Nanofluid Laminar Forced Convective Heat Transfer inside an Equilateral Triangular Tube

    NASA Astrophysics Data System (ADS)

    Etminan, Amin; Harun, Zambri; Sharifian, Ahmad

    2017-01-01

    In this article distilled water and CuO particles with volume fraction of 1%, 2% and 4% are studied numerically. The steady state flow regime is considered laminar with Reynolds number of 100 and nanoparticles diameters (dp) are set in the range of 20 nm and 80 nm. The hydraulic diameter and the length of equilateral triangular channel are 8 mm and 1000 mm respectively. The problem is solved using finite volume method with constant heat flux for two sides and constant temperature for one side. Convective heat transfer coefficient, Nusselt number and convective heat transfer coefficient distribution on walls are investigated in details. The fluid flow is supposed to be one phase flow. It can be observed that nanofluid leads to a remarkable enhancement on heat transfer coefficient pressure loss through the channel. The computations reveal that the size of nanoparticles has no significant influence on heat transfer properties. Besides, the study shows a good agreement between current results and experimental data in the literatures.

  5. Improving Microstructure and Mechanical Properties for Large-Diameter 7075 Aluminum Alloy Ingots by a Forced Convection Stirring Casting Process

    NASA Astrophysics Data System (ADS)

    Qi, Mingfan; Kang, Yonglin; Zhu, Guoming; Li, Yangde; Li, Weirong

    2017-04-01

    A simple process so-called forced convection stirring casting (FCSC) was proposed to prepare large-diameter 7075 Al alloy ingots. The flow behavior, temperature, and composition fields of the melt in the FCSC process were simulated. The macromorphology, macrosegregation, microstructure, and mechanical properties of the ingots prepared by the FCSC were studied and compared with those prepared by normal casting (NC). The results showed that in the FCS device, the strong convection caused by the axial flow and circular flow rapidly promoted the uniformity of the temperature and composition fields of the melt. Microstructures of the FCSC ingots from the edge to the center were all nearly spherical grains, which were much finer and more uniform than that of the NC ingots. The rotation speed played an important role in the microstructure of the FCSC ingots, and the grains became finer and rounder as the speed increasing. The FCSC process effectively eliminated cracks, improved macrosegregation, and decreased the eutectic phase area fraction and the average grain boundary thickness of ingots. Mechanical properties of the ingots prepared by the FCSC are far better than that of the NC ingots.

  6. Experimental investigation of TiO2/water nanofluid laminar forced convective heat transfer through helical coiled tube

    NASA Astrophysics Data System (ADS)

    Kahani, M.; Zeinali Heris, S.; Mousavi, S. M.

    2014-05-01

    Coiled tubes and nanofludics are two significant techniques to enhance the heat transfer ability of thermal equipments. The forced convective heat transfer and the pressure drop of nanofluid inside straight tube and helical coiled one with a constant wall heat flux were studied experimentally. Distilled water was used as a host fluid and Nanofluids of aqueous TiO2 nanoparticles (50 nm) suspensions were prepared in various volume concentrations of 0.25-2 %. The heat transfer coefficient of nanofluids is obtained for different nanoparticle concentrations as well as various Reynolds numbers. The experiments covered a range of Reynolds number of 500-4,500. The results show the considerable enhancement of heat transfer rate, which is due to the nanoparticles present in the fluid. Heat transfer coefficient increases by increasing the volume concentration of nanoparticles as well as Reynolds number. Moreover, due to the curvature of the tube when fluid flows inside helical coiled tube instead of straight one, both convective heat transfer coefficient and the pressure drop of fluid grow considerably. Also, the thermal performance factors for tested nanofluids are greater than unity and the maximum thermal performance factor of 3.72 is found with the use of 2.0 % volume concentration of nanofluid at Reynolds number of 1,750.

  7. Improving Microstructure and Mechanical Properties for Large-Diameter 7075 Aluminum Alloy Ingots by a Forced Convection Stirring Casting Process

    NASA Astrophysics Data System (ADS)

    Qi, Mingfan; Kang, Yonglin; Zhu, Guoming; Li, Yangde; Li, Weirong

    2017-01-01

    A simple process so-called forced convection stirring casting (FCSC) was proposed to prepare large-diameter 7075 Al alloy ingots. The flow behavior, temperature, and composition fields of the melt in the FCSC process were simulated. The macromorphology, macrosegregation, microstructure, and mechanical properties of the ingots prepared by the FCSC were studied and compared with those prepared by normal casting (NC). The results showed that in the FCS device, the strong convection caused by the axial flow and circular flow rapidly promoted the uniformity of the temperature and composition fields of the melt. Microstructures of the FCSC ingots from the edge to the center were all nearly spherical grains, which were much finer and more uniform than that of the NC ingots. The rotation speed played an important role in the microstructure of the FCSC ingots, and the grains became finer and rounder as the speed increasing. The FCSC process effectively eliminated cracks, improved macrosegregation, and decreased the eutectic phase area fraction and the average grain boundary thickness of ingots. Mechanical properties of the ingots prepared by the FCSC are far better than that of the NC ingots.

  8. A review on boiling heat transfer enhancement with nanofluids

    PubMed Central

    2011-01-01

    There has been increasing interest of late in nanofluid boiling and its use in heat transfer enhancement. This article covers recent advances in the last decade by researchers in both pool boiling and convective boiling applications, with nanofluids as the working fluid. The available data in the literature is reviewed in terms of enhancements, and degradations in the nucleate boiling heat transfer and critical heat flux. Conflicting data have been presented in the literature on the effect that nanofluids have on the boiling heat-transfer coefficient; however, almost all researchers have noted an enhancement in the critical heat flux during nanofluid boiling. Several researchers have observed nanoparticle deposition at the heater surface, which they have related back to the critical heat flux enhancement. PMID:21711794

  9. A review on boiling heat transfer enhancement with nanofluids.

    PubMed

    Barber, Jacqueline; Brutin, David; Tadrist, Lounes

    2011-04-04

    There has been increasing interest of late in nanofluid boiling and its use in heat transfer enhancement. This article covers recent advances in the last decade by researchers in both pool boiling and convective boiling applications, with nanofluids as the working fluid. The available data in the literature is reviewed in terms of enhancements, and degradations in the nucleate boiling heat transfer and critical heat flux. Conflicting data have been presented in the literature on the effect that nanofluids have on the boiling heat-transfer coefficient; however, almost all researchers have noted an enhancement in the critical heat flux during nanofluid boiling. Several researchers have observed nanoparticle deposition at the heater surface, which they have related back to the critical heat flux enhancement.

  10. Boiling Heat Transfer in High Temperature Generator of Absorption Chiller/Heater

    NASA Astrophysics Data System (ADS)

    Furukawa, Masahiro; Enomoto, Eiichi; Sekoguchi, Kotohiko

    The heat transfer performance of forced convective boiling was tested using a high temperature generator of absorption chiller/heater, the rear furnace wall of which was composed of two different surfaces; i. e., plain and sprayed heated surfaces. These two surfaces were bisymmetrically set. Wall surface temperatures of both the fire and fluid sides were measured at three locations along the upward flow direction in each heated surface for determining the heat flux and heat transfer coefficient. Nickel-chromium and alumina were employed as the spray materials. The test results show that the sprayed surface can yield a marked elevation in the heat transfer performance due to boiling on the plain surface. Therefore the level of heated surface temperature is largely reduced by means of the spraying surface treatment. This implies that the spraying would much improve a corrosive condition of the heated surface.

  11. RUBI -a Reference mUltiscale Boiling Investigation for the Fluid Science Laboratory

    NASA Astrophysics Data System (ADS)

    Schweizer, Nils; Stelzer, Marco; Schoele-Schulz, Olaf; Picker, Gerold; Ranebo, Hans; Dettmann, Jan; Minster, Olivier; Toth, Balazs; Winter, Josef; Tadrist, Lounes; Stephan, Peter; Grassi, Walter; di Marco, Paolo; Colin, Catherine; Piero Celata, Gian; Thome, John; Kabov, Oleg

    Boiling is a two-phase heat transfer process where large heat fluxes can be transferred with small driving temperature differences. The high performance of boiling makes the process very interesting for heat transfer applications and it is widely used in industry for example in power plants, refrigeration systems, and electronics cooling. Nevertheless, due to the large number of involved phenomena and their often highly dynamic nature a fundamental understanding and closed theoretical description is not yet accomplished. The design of systems incorporating the process is generally based on empirical correlations, which are commonly accompanied by large uncertainties and, thus, has to be verified by expensive test campaigns. Hence, strong efforts are currently made to develop applicable numerical tools for a reliable prediction of the boiling heat transfer performance and limits. In order to support and validate this development and, in particular as a precondition, to enhance the basic knowledge about boiling the comprehensive multi-scale experiment RUBI (Reference mUlti-scale Boiling Investigation) for the Fluid Science Laboratory on board the ISS is currently in preparation. The scientific objectives and requirements of RUBI have been defined by the members of the ESA topical team "Boiling and Multiphase Flow" and addresses fundamental aspects of boiling phenomena. The main objectives are the measurement of wall temperature and heat flux distribution underneath vapour bubbles with high spatial and tem-poral resolution by means of IR thermography accompanied by the synchronized high-speed observation of the bubble shapes. Furthermore, the fluid temperature in the vicinity and inside of the bubbles will be measured by a micro sensor array. Additional stimuli are the generation of an electric field above the heating surface and a shear flow created by a forced convection loop. The objective of these stimuli is to impose forces on the bubbles and investigate the

  12. Liquid crystal visualization and computer modeling of enhanced heat transfer on a flat plate in forced convection

    SciTech Connect

    Voegler, G.R.; Anderson, A.M.

    1996-12-31

    This paper presents the results of an experimental and computational study of heat transfer enhancement found in the vicinity of a three dimensional block placed on a constant heat flux plate in turbulent forced convection. The experiments used thermochromic liquid crystals to visualize temperature on the surface. Photographs were taken to establish temperature contour lines at a range of velocities and a variety of block sizes and configurations. The results show heat transfer enhancement exists upstream and downstream of the blocks. The enhancement is caused by a horse shoe vortex which stagnates on the front surface of the block and then wraps around the sides. Thin blocks (narrow in the flow direction) show the best enhancement. The computer simulations used the {kappa}-epsilon turbulence model and had reasonable qualitative agreement with the experiments.

  13. An experimental investigation of pressure drop in forced-convection condensation and evaporation of oil-refrigerant mixtures

    SciTech Connect

    Tichy, J.A.; Duque-Rivera, J.; Macken, N.A.; Duval, W.M.B.

    1986-01-01

    Experimental measurements of pressure drop have been made for forced-convection evaporation and condensation of oil-refrigerant (R-12) mixtures inside a horizontal tube. Data were compared to a wide range of frictional pressure drop and void fraction relationships. The best representations for the oil-free data were then modified to better correlate both oil-free and oil-refrigerant results. For condensation, a modification of the prediction given by the Lockhart-Martinelli relation for frictional pressure drop and the homogeneous void fraction model is presented. For evaporation, the prediction given by the Dukler II frictional pressure-drop correlation and the homogeneous void fraction is modified. These relationships predict the pressure drop for 85% of the data to within +- 35%. The added oil increased the pressure drop 2% to 6% for condensation and 63% to 86% for evaporation.

  14. The influence of tip clearance and Prandtl number on turbulent forced convection heat transfer of rectangular fins

    NASA Astrophysics Data System (ADS)

    Park, Hae-Kyun; Chung, Bum-Jin

    2016-12-01

    The turbulent forced convection heat transfer of rectangular fins in a duct was investigated by varying the tip clearance and Pr. Mass transfer experiments using a H2SO4-CuSO4 electroplating system were performed based on the analogy between heat and mass transfers. FLUENT 6.3 was used for calculations. Turbulent models were tested and the Reynolds Stress Model was chosen, which showed a 1.15 % discrepancy with the existing correlation for a simple tube flow when Pr = 2, but 13 % when Pr = 2014. For a more complex fin channel, the discrepancy increased up to 30 %. The optimal tip clearances, corresponding to maximum heat transfer rates, did not vary with Pr, which is explained using the temperature contours. The results were also compared with the laminar case where Pr influenced the optimal tip clearance.

  15. Dynamical and statistical phenomena of circulation and heat transfer in periodically forced rotating turbulent Rayleigh-Bénard convection

    NASA Astrophysics Data System (ADS)

    Sterl, Sebastian; Li, Hui-Min; Zhong, Jin-Qiang

    2016-12-01

    In this paper, we present results from an experimental study into turbulent Rayleigh-Bénard convection forced externally by periodically modulated unidirectional rotation rates. We find that the azimuthal rotation velocity θ ˙(t ) and thermal amplitude δ (t ) of the large-scale circulation (LSC) are modulated by the forcing, exhibiting a variety of dynamics including increasing phase delays and a resonant peak in the amplitude of θ ˙(t ) . We also focus on the influence of modulated rotation rates on the frequency of occurrence η of stochastic cessation or reorientation events, and on the interplay between such events and the periodically modulated response of θ ˙(t ) . Here we identify a mechanism by which η can be amplified by the modulated response, and these normally stochastic events can occur with high regularity. We provide a modeling framework that explains the observed amplitude and phase responses, and we extend this approach to make predictions for the occurrence of cessation events and the probability distributions of θ ˙(t ) and δ (t ) during different phases of a modulation cycle, based on an adiabatic approach that treats each phase separately. Last, we show that such periodic forcing has consequences beyond influencing LSC dynamics, by investigating how it can modify the heat transport even under conditions where the Ekman pumping effect is predominant and strong enhancement of heat transport occurs. We identify phase and amplitude responses of the heat transport, and we show how increased modulations influence the average Nusselt number.

  16. Variability of radiatively forced diurnal cycle of intense convection in the tropical west pacific

    SciTech Connect

    Gray, W.M.; Sheaffer, J.D.; Thorson, W.B.

    1996-04-01

    Strong differences occur in daytime versus nighttime (DVN) net radiative cooling in clear versus cloudy areas of the tropical atmosphere. Daytime average cooling is approximately -0.7{degrees}C/day, whereas nighttime net tropospheric cooling rates are about -1.5{degrees}C/day, an approximately two-to-one difference. The comparatively strong nocturnal cooling in clear areas gives rise to a diurnally varying vertical circulation and horizontal convergence cycle. Various manifestations of this cyclic process include the observed early morning heavy rainfall maxima over the tropical oceans. The radiatively driven DVN circulation appears to strongly modulate the resulting diurnal cycle of intense convection which creates the highest, coldest cloudiness over maritime tropical areas and is likely a fundamental mechanism governing both small and large scale dynamics over much of the tropical environment.

  17. Similarity solutions for magneto-forced-unsteady free convective laminar boundary-layer flow

    NASA Astrophysics Data System (ADS)

    Abd-El-Malek, Mina B.; Helal, Medhat M.

    2008-09-01

    The group theoretic method is applied for solving problem of a unsteady free-convective laminar boundary-layer flow on a non-isothermal vertical plate under the effect of an external velocity and a magnetic field normal to the plate. The application of two-parameter transformation group reduces the number of independent variables, by two, and consequently the system of governing partial differential equations with the boundary and initial conditions reduces to a system of ordinary differential equations with appropriate corresponding conditions. The Runge-Kutta shooting method used to find the numerical solution of the velocity field, shear stress, heat transfer and heat flux has been obtained. The effect of the magnetic field on the velocity field and the Prandtl number on the heat transfer and heat flux has been discussed.

  18. Effect of the magnetic field direction on forced convection heat transfer enhancements in ferrofluids

    NASA Astrophysics Data System (ADS)

    Cherief, Wahid; Avenas, Yvan; Ferrouillat, Sébastien; Kedous-Lebouc, Afef; Jossic, Laurent; Berard, Jean; Petit, Mickael

    2015-07-01

    Applying a magnetic field on a ferrofluid flow induces a large increase of the convective heat transfer coefficient. In this paper, the thermal-hydraulic behaviors of two commercial ferrofluids are compared. The variations of both the pressure drop and the heat transfer coefficient due to the magnetic field are measured in the following conditions: square duct, laminar flow and uniform wall heat flux. The square section with two insulated walls allows for the characterization of the effect of the magnetic field direction. The experimental results show that the heat transfer is better enhanced when the magnetic field is perpendicular to the heat flux. In the best case, the local heat transfer coefficient increase is about 75%. On the contrary, another experimental setup shows no enhancement of thermal conductivity when the magnetic field is perpendicular to the heat flux. Contribution to the topical issue "Electrical Engineering Symposium (SGE 2014) - Elected submissions", edited by Adel Razek

  19. A methodology to determine boundary conditions from forced convection experiments using liquid crystal thermography

    NASA Astrophysics Data System (ADS)

    Jakkareddy, Pradeep S.; Balaji, C.

    2017-02-01

    This paper reports the results of an experimental study to estimate the heat flux and convective heat transfer coefficient using liquid crystal thermography and Bayesian inference in a heat generating sphere, enclosed in a cubical Teflon block. The geometry considered for the experiments comprises a heater inserted in a hollow hemispherical aluminium ball, resulting in a volumetric heat generation source that is placed at the center of the Teflon block. Calibrated thermochromic liquid crystal sheets are used to capture the temperature distribution at the front face of the Teflon block. The forward model is the three dimensional conduction equation which is solved within the Teflon block to obtain steady state temperatures, using COMSOL. Match up experiments are carried out for various velocities by minimizing the residual between TLC and simulated temperatures for every assumed loss coefficient, to obtain a correlation of average Nusselt number against Reynolds number. This is used for prescribing the boundary condition for the solution to the forward model. A surrogate model obtained by artificial neural network built upon the data from COMSOL simulations is used to drive a Markov Chain Monte Carlo based Metropolis Hastings algorithm to generate the samples. Bayesian inference is adopted to solve the inverse problem for determination of heat flux and heat transfer coefficient from the measured temperature field. Point estimates of the posterior like the mean, maximum a posteriori and standard deviation of the retrieved heat flux and convective heat transfer coefficient are reported. Additionally the effect of number of samples on the performance of the estimation process has been investigated.

  20. A methodology to determine boundary conditions from forced convection experiments using liquid crystal thermography

    NASA Astrophysics Data System (ADS)

    Jakkareddy, Pradeep S.; Balaji, C.

    2016-05-01

    This paper reports the results of an experimental study to estimate the heat flux and convective heat transfer coefficient using liquid crystal thermography and Bayesian inference in a heat generating sphere, enclosed in a cubical Teflon block. The geometry considered for the experiments comprises a heater inserted in a hollow hemispherical aluminium ball, resulting in a volumetric heat generation source that is placed at the center of the Teflon block. Calibrated thermochromic liquid crystal sheets are used to capture the temperature distribution at the front face of the Teflon block. The forward model is the three dimensional conduction equation which is solved within the Teflon block to obtain steady state temperatures, using COMSOL. Match up experiments are carried out for various velocities by minimizing the residual between TLC and simulated temperatures for every assumed loss coefficient, to obtain a correlation of average Nusselt number against Reynolds number. This is used for prescribing the boundary condition for the solution to the forward model. A surrogate model obtained by artificial neural network built upon the data from COMSOL simulations is used to drive a Markov Chain Monte Carlo based Metropolis Hastings algorithm to generate the samples. Bayesian inference is adopted to solve the inverse problem for determination of heat flux and heat transfer coefficient from the measured temperature field. Point estimates of the posterior like the mean, maximum a posteriori and standard deviation of the retrieved heat flux and convective heat transfer coefficient are reported. Additionally the effect of number of samples on the performance of the estimation process has been investigated.

  1. A zonally symmetric model for the monsoon-Hadley circulation with stochastic convective forcing

    NASA Astrophysics Data System (ADS)

    De La Chevrotière, Michèle; Khouider, Boualem

    2017-02-01

    Idealized models of reduced complexity are important tools to understand key processes underlying a complex system. In climate science in particular, they are important for helping the community improve our ability to predict the effect of climate change on the earth system. Climate models are large computer codes based on the discretization of the fluid dynamics equations on grids of horizontal resolution in the order of 100 km, whereas unresolved processes are handled by subgrid models. For instance, simple models are routinely used to help understand the interactions between small-scale processes due to atmospheric moist convection and large-scale circulation patterns. Here, a zonally symmetric model for the monsoon circulation is presented and solved numerically. The model is based on the Galerkin projection of the primitive equations of atmospheric synoptic dynamics onto the first modes of vertical structure to represent free tropospheric circulation and is coupled to a bulk atmospheric boundary layer (ABL) model. The model carries bulk equations for water vapor in both the free troposphere and the ABL, while the processes of convection and precipitation are represented through a stochastic model for clouds. The model equations are coupled through advective nonlinearities, and the resulting system is not conservative and not necessarily hyperbolic. This makes the design of a numerical method for the solution of this system particularly difficult. Here, we develop a numerical scheme based on the operator time-splitting strategy, which decomposes the system into three pieces: a conservative part and two purely advective parts, each of which is solved iteratively using an appropriate method. The conservative system is solved via a central scheme, which does not require hyperbolicity since it avoids the Riemann problem by design. One of the advective parts is a hyperbolic diagonal matrix, which is easily handled by classical methods for hyperbolic equations, while

  2. A zonally symmetric model for the monsoon-Hadley circulation with stochastic convective forcing

    NASA Astrophysics Data System (ADS)

    De La Chevrotière, Michèle; Khouider, Boualem

    2016-09-01

    Idealized models of reduced complexity are important tools to understand key processes underlying a complex system. In climate science in particular, they are important for helping the community improve our ability to predict the effect of climate change on the earth system. Climate models are large computer codes based on the discretization of the fluid dynamics equations on grids of horizontal resolution in the order of 100 km, whereas unresolved processes are handled by subgrid models. For instance, simple models are routinely used to help understand the interactions between small-scale processes due to atmospheric moist convection and large-scale circulation patterns. Here, a zonally symmetric model for the monsoon circulation is presented and solved numerically. The model is based on the Galerkin projection of the primitive equations of atmospheric synoptic dynamics onto the first modes of vertical structure to represent free tropospheric circulation and is coupled to a bulk atmospheric boundary layer (ABL) model. The model carries bulk equations for water vapor in both the free troposphere and the ABL, while the processes of convection and precipitation are represented through a stochastic model for clouds. The model equations are coupled through advective nonlinearities, and the resulting system is not conservative and not necessarily hyperbolic. This makes the design of a numerical method for the solution of this system particularly difficult. Here, we develop a numerical scheme based on the operator time-splitting strategy, which decomposes the system into three pieces: a conservative part and two purely advective parts, each of which is solved iteratively using an appropriate method. The conservative system is solved via a central scheme, which does not require hyperbolicity since it avoids the Riemann problem by design. One of the advective parts is a hyperbolic diagonal matrix, which is easily handled by classical methods for hyperbolic equations, while

  3. Numerical simulation of laminar forced convection of water-CuO nanofluid inside a triangular duct

    NASA Astrophysics Data System (ADS)

    Aghanajafi, Amir; Toghraie, Davood; Mehmandoust, Babak

    2017-01-01

    In this article, distilled water and CuO particles with volume fraction of 1%, 2% and 4% are numerically studied. The steady state flow regime is considered laminar with Reynolds number of 100, and nano-particles diameters are assumed 20 nm and 80 nm. The hydraulic diameter and the length of equilateral triangular channel are 8 mm and 1000 mm, respectively. The problem is solved for two different boundary conditions; firstly, constant heat flux for all sides as a validation approach; and secondly, constant heat flux for two sides and constant temperature for one side (hot plate). Convective heat transfer coefficient, Nusselt number, pressure loss through the channel, velocity distribution in cross section and temperature distribution on walls are investigated in detail. The fluid flow is supposed to be one-phase flow. It can be observed that nano-fluid leads to a remarkable enhancement on heat transfer coefficient. Furthermore, CuO particles increase pressure loss through the channel and velocity distribution in fully developed cross section of channel, as well. The computations reveal that the size of nano-particles has no significant influence on heat transfer properties. Besides, the study shows a good agreement between provided outcomes and experimental data available in the literature.

  4. A Model Study of Zonal Forcing in the Equatorial Stratosphere by Convectively Induced Gravity Waves

    NASA Technical Reports Server (NTRS)

    Alexander, M. J.; Holton, James R.

    1997-01-01

    A two-dimensional cloud-resolving model is used to examine the possible role of gravity waves generated by a simulated tropical squall line in forcing the quasi-biennial oscillation (QBO) of the zonal winds in the equatorial stratosphere. A simulation with constant background stratospheric winds is compared to simulations with background winds characteristic of the westerly and easterly QBO phases, respectively. In all three cases a broad spectrum of both eastward and westward propagating gravity waves is excited. In the constant background wind case the vertical momentum flux is nearly constant with height in the stratosphere, after correction for waves leaving the model domain. In the easterly and westerly shear cases, however, westward and eastward propagating waves, respectively, are strongly damped as they approach their critical levels, owing to the strongly scale-dependent vertical diffusion in the model. The profiles of zonal forcing induced by this wave damping are similar to profiles given by critical level absorption, but displaced slightly downward. The magnitude of the zonal forcing is of order 5 m/s/day. It is estimated that if 2% of the area of the Tropics were occupied by storms of similar magnitude, mesoscale gravity waves could provide nearly 1/4 of the zonal forcing required for the QBO.

  5. Convective forcing of mercury and ozone in the Arctic boundary layer induced by leads in sea ice.

    PubMed

    Moore, Christopher W; Obrist, Daniel; Steffen, Alexandra; Staebler, Ralf M; Douglas, Thomas A; Richter, Andreas; Nghiem, Son V

    2014-02-06

    The ongoing regime shift of Arctic sea ice from perennial to seasonal ice is associated with more dynamic patterns of opening and closing sea-ice leads (large transient channels of open water in the ice), which may affect atmospheric and biogeochemical cycles in the Arctic. Mercury and ozone are rapidly removed from the atmospheric boundary layer during depletion events in the Arctic, caused by destruction of ozone along with oxidation of gaseous elemental mercury (Hg(0)) to oxidized mercury (Hg(II)) in the atmosphere and its subsequent deposition to snow and ice. Ozone depletion events can change the oxidative capacity of the air by affecting atmospheric hydroxyl radical chemistry, whereas atmospheric mercury depletion events can increase the deposition of mercury to the Arctic, some of which can enter ecosystems during snowmelt. Here we present near-surface measurements of atmospheric mercury and ozone from two Arctic field campaigns near Barrow, Alaska. We find that coastal depletion events are directly linked to sea-ice dynamics. A consolidated ice cover facilitates the depletion of Hg(0) and ozone, but these immediately recover to near-background concentrations in the upwind presence of open sea-ice leads. We attribute the rapid recoveries of Hg(0) and ozone to lead-initiated shallow convection in the stable Arctic boundary layer, which mixes Hg(0) and ozone from undepleted air masses aloft. This convective forcing provides additional Hg(0) to the surface layer at a time of active depletion chemistry, where it is subject to renewed oxidation. Future work will need to establish the degree to which large-scale changes in sea-ice dynamics across the Arctic alter ozone chemistry and mercury deposition in fragile Arctic ecosystems.

  6. Liquid Salts as Media for Process Heat Transfer from VHTR's: Forced Convective Channel Flow Thermal Hydraulics, Materials, and Coating

    SciTech Connect

    Sridharan, Kumar; Anderson, Mark; Allen, Todd; Corradini, Michael

    2012-01-30

    on Cr-carbide on the graphite surface. Ni-electroplating dramatically reduced corrosion of alloys, although some diffusion of Fe and Cr were observed occur through the Ni plating. A pyrolytic carbon and SiC (PyC/SiC) CVD coating was also investigated and found to be effective in mitigating corrosion. The KCl-MgCl2 molten salt was less corrosive than FLiNaK fluoride salts for corrosion tests performed at 850oC. Cr dissolution in the molten chloride salt was still observed and consequently Ni-201 and Hastelloy N exhibited the least depth of attack. Grain-boundary engineering (GBE) of Incoloy 800H improved the corrosion resistance (as measured by weight loss and maximum depth of attack) by nearly 50% as compared to the as-received Incoloy 800H sample. Because Cr dissolution is an important mechanism of corrosion, molten salt electrochemistry experiments were initiated. These experiments were performed using anodic stripping voltammetry (ASV). Using this technique, the reduction potential of Cr was determined against a Pt quasi-reference electrode as well as against a Ni(II)-Ni reference electrode in molten FLiNaK at 650 oC. The integrated current increased linearly with Cr-content in the salt, providing for a direct assessment of the Cr concentration in a given salt of unknown Cr concentration. To study heat transfer mechanisms in these molten salts over the forced and mixed convection regimes, a forced convective loop was constructed to measure heat transfer coefficients, friction factors and corrosion rates in different diameter tubes in a vertical up flow configuration in the laminar flow regime. Equipment and instrumentation for the forced convective loop was designed, constructed, and tested. These include a high temperature centrifugal pump, mass flow meter, and differential pressure sensing capabilities to an uncertainty of < 2 Pa. The heat transfer coefficient for the KCl-MgCl2 salt was measured in two different diameter channels (0.083 and 0.370Ã). In the 0

  7. Forced convection and transport effects during hyperbaric laser chemical vapor deposition

    SciTech Connect

    Maxwell, James L; Chavez, Craig A; Espinoza, Miguel; Black, Marcie; Maskaly, Karlene; Boman, Mats

    2009-01-01

    This work explores mass transport processes during HP-LCYD, including the transverse forced-flow of precursor gases through a nozzle to enhance fiber growth rates. The use of laser trapping and suspension of nano-scale particles in the precursor flow is also described, providing insights into the nature of the gas flow, including jetting from the fiber tip and thermodiffusion processes near the reaction zone. The effects of differing molecular-weight buffer gases is also explored in conjunction with the Soret effect, and it is found that nucleation at the deposit surface (and homogeneous nucleation in the gas phase) can be enhanced/ retarded, depending on the buffer gas molecular weight. To demonstrate that extensive microstructures can be grown simultaneously, three-dimensional fiber arrays are also grown in-parallel using diffractive optics--without delatory effects from neighboring reaction sites.

  8. Nucleate boiling in drag-reducing polymer solutions

    SciTech Connect

    Jeun, G.

    1986-01-01

    Two types of experiment have been done to study the effects of polymer additives in nucleate boiling for plates and wires. Here, boiling on a flat surface is simulated by placing a flat unheated surface immediately underneath an electrically heated platinum wire. Saturated nucleate pool boiling curves were measured for water and solutions of six different polymers at various concentrations. For a bare wire and a simulated flat surface, the nucleate boiling curves are qualitatively similar. For equal heat fluxes, the temperature difference increases as the relative viscosity increases, although the temperature difference for the simulated flat surface is less than that for the bare wire. The observed changes in the nucleate boiling curves for polymer solutions are in qualitative agreement with those predicted using the Rohsenow correlation to account for change in the solution viscosity. These results show that for both wires and simulated flat surfaces, drag-reducing additives will reduce the heat transfer rate in nucleate boiling. Bubble dynamics on the heated wire and simulated flat surface were also measured using a high speed movie camera for water and Separan AP-30 at a relative viscosity of 1.16. The data were used to determine the relative contribution to the boiling heat flux of latent heat transport by bubbles, natural convection heat transfer, and enhanced convection heat transfer.

  9. Constitutive correlations for wire-wrapped subchannel analysis under forced and mixed convection conditions. Part 1. [LMFBR

    SciTech Connect

    Cheng, S.K.; Todreas, N.E.

    1984-08-01

    A simple subchannel analysis method based on the ENERGY series of codes, ENERGY-IV, has been established for predicting the temperature field in a single isolated wire-wrapped Liquid Metal Fast Breeder Reactor (LMFBR) subassembly under steady state forced and mixed convection conditions. The ENERGY-IV is a totally empirical code employed for fast running purposes and requires well calibrated lead length averaged input parameters to achieve satisfactory predictions. These input parameters were identified to be the inlet flow split parameters, the subchannel friction factors, the interchannel mixing parameters, the conduction shape factor, and the transverse velocity at the edge gap. Experiments were performed in a 37-pin wire-wrapped rod bundle with a geometry between that of a typical LMFBR fuel subassembly and blanket subassembly for filling the gap in the available data base for the input parameters. The isokinetic extraction method for measuring subchannel velocity, the pitot-static probe for measuring pressure drop, and the salt tracer injection method for estimating the interchannel mixing, were used in these experiments.

  10. Correlation of Normal Gravity Mixed Convection Blowoff Limits with Microgravity Forced Flow Blowoff Limits

    NASA Technical Reports Server (NTRS)

    Marcum, Jeremy W.; Olson, Sandra L.; Ferkul, Paul V.

    2016-01-01

    The axisymmetric rod geometry in upward axial stagnation flow provides a simple way to measure normal gravity blowoff limits to compare with microgravity Burning and Suppression of Solids - II (BASS-II) results recently obtained aboard the International Space Station. This testing utilized the same BASS-II concurrent rod geometry, but with the addition of normal gravity buoyant flow. Cast polymethylmethacrylate (PMMA) rods of diameters ranging from 0.635 cm to 3.81 cm were burned at oxygen concentrations ranging from 14 to 18% by volume. The forced flow velocity where blowoff occurred was determined for each rod size and oxygen concentration. These blowoff limits compare favorably with the BASS-II results when the buoyant stretch is included and the flow is corrected by considering the blockage factor of the fuel. From these results, the normal gravity blowoff boundary for this axisymmetric rod geometry is determined to be linear, with oxygen concentration directly proportional to flow speed. We describe a new normal gravity 'upward flame spread test' method which extrapolates the linear blowoff boundary to the zero stretch limit in order to resolve microgravity flammability limits-something current methods cannot do. This new test method can improve spacecraft fire safety for future exploration missions by providing a tractable way to obtain good estimates of material flammability in low gravity.

  11. Analytical and numerical studies on a single-droplet evaporation and combustion under forced convection

    NASA Astrophysics Data System (ADS)

    Zhou, L. X.; Li, K.

    2015-08-01

    Existing droplet evaporation/combustion models in computational fluid dynamics (CFD) simulation of spray combustion are based on simplified 1-D models. Both these models and recently developed 3-D models of single-droplet combustion do not give the conditions for the different existing droplet combustion modes. In this paper, droplet evaporation and combustion are studied both analytically and numerically. In the analytical solution, a 2-D axisymmetric flow surrounding an evaporating and combusting droplet was considered. The governing equations were solved using an integral method, similar to the Karman-Pohlhausen method for solving boundary-layer flows with pressure gradient. The results give a local evaporation rate and flame radius in agreement with experimental results. In numerical simulation, 3-D combusting gas flows surrounding an ethanol droplet were studied. The prediction results show three modes of droplet combustion under different relative velocities, explaining the change in the evaporation constant with an increase in relative velocity observed in experiments. This implies that different droplet combustion models should be developed in simulating spray combustion. The predicted local evaporation rate and flame radius by numerical simulation are in agreement with the analytical solution in the range of azimuthal angles . The numerical results indicate that the drag force of an evaporating and combusting droplet is much smaller than that of a cold solid particle, and thus the currently used drag models should be modified.

  12. Optimizing the Combination of Smoking and Boiling on Quality of Korean Traditional Boiled Loin (M. longissimus dorsi).

    PubMed

    Choi, Yun-Sang; Kim, Hyun-Wook; Hwang, Ko-Eun; Song, Dong-Heon; Kim, Yong-Jae; Jung, Tae-Jun; Kim, Young-Boong; Kim, Cheon-Jei

    2015-01-01

    The combined effects of smoking and boiling on the proximate composition, technological quality traits, shear force, and sensory characteristics of the Korean traditional boiled loin were studied. Cooking loss, processing loss, and shear force were lower in the smoked/boiled samples than those in the control (without smoking treatment) (p<0.05). The results showed that the boiled loin samples between the control and treatment did not differ significantly in protein, fat, or ash contents, or pH values (p>0.05). The treated samples had higher score for overall acceptability than the control (p<0.05). Thus, these results show that the Korean traditional boiled loin treated with smoking for 60 min before boiling had improved physicochemical properties and sensory characteristics.

  13. Evaporation, Boiling and Bubbles

    ERIC Educational Resources Information Center

    Goodwin, Alan

    2012-01-01

    Evaporation and boiling are both terms applied to the change of a liquid to the vapour/gaseous state. This article argues that it is the formation of bubbles of vapour within the liquid that most clearly differentiates boiling from evaporation although only a minority of chemistry textbooks seems to mention bubble formation in this context. The…

  14. Boiling Experiment Facility for Heat Transfer Studies in Microgravity

    NASA Technical Reports Server (NTRS)

    Delombard, Richard; McQuillen, John; Chao, David

    2008-01-01

    Pool boiling in microgravity is an area of both scientific and practical interest. By conducting tests in microgravity, it is possible to assess the effect of buoyancy on the overall boiling process and assess the relative magnitude of effects with regards to other "forces" and phenomena such as Marangoni forces, liquid momentum forces, and microlayer evaporation. The Boiling eXperiment Facility is now being built for the Microgravity Science Glovebox that will use normal perfluorohexane as a test fluid to extend the range of test conditions to include longer test durations and less liquid subcooling. Two experiments, the Microheater Array Boiling Experiment and the Nucleate Pool Boiling eXperiment will use the Boiling eXperiment Facility. The objectives of these studies are to determine the differences in local boiling heat transfer mechanisms in microgravity and normal gravity from nucleate boiling, through critical heat flux and into the transition boiling regime and to examine the bubble nucleation, growth, departure and coalescence processes. Custom-designed heaters will be utilized to achieve these objectives.

  15. Engineering correlations of variable-property effects on laminar forced convection mass transfer for dilute vapor species and small particles in air

    NASA Technical Reports Server (NTRS)

    Gokoglu, S. A.; Rosner, D. E.

    1984-01-01

    A simple engineering correlation scheme is developed to predict the variable property effects on dilute species laminar forced convection mass transfer applicable to all vapor molecules or Brownian diffusing small particle, covering the surface to mainstream temperature ratio of 0.25 T sub W/T sub e 4. The accuracy of the correlation is checked against rigorous numerical forced convection laminar boundary layer calculations of flat plate and stagnation point flows of air containing trace species of Na, NaCl, NaOH, Na2SO4, K, KCl, KOH, or K2SO4 vapor species or their clusters. For the cases reported here the correlation had an average absolute error of only 1 percent (maximum 13 percent) as compared to an average absolute error of 18 percent (maximum 54 percent) one would have made by using the constant-property results.

  16. Condensational Droplet Growth in Rarefied Quiescent Vapor and Forced Convective Conditions

    NASA Astrophysics Data System (ADS)

    Anand, Sushant

    Multiphase Heat transfer is ubiquitous in diverse fields of application such as cooling systems, micro and mini power systems and many chemical processes. By now, single phase dynamics are mostly understood in their applications in vast fields, however multiphase systems especially involving phase changes are still a challenge. Present study aims to enhance understanding in this domain especially in the field of condensation heat transfer. Of special relevance to present studies is study of condensation phenomenon for detection of airborne nanoparticles using heterogeneous nucleation. Detection of particulate matter in the environment via heterogeneous condensation is based on the droplet growth phenomenon where seeding particles in presence of supersaturated vapor undergo condensation on their surface and amplify in size to micrometric ranges, thereby making them optically visible. Previous investigations show that condensation is a molecular exchange process affected by mean free path of vapor molecules (lambda) in conjunction with size of condensing droplet (d), which is measured in terms of Knudsen number (Kn=lambda/ d). In an event involving heterogeneous nucleation with favorable thermodynamic conditions for condensation to take place, the droplet growth process begins with accretion of vapor molecules on a surface through random molecular collision (Kn>1) until diffusive forces start dominating the mass transport process (Kn<<1). Knowledge of droplet growth thus requires understanding of mass transport in both of these regimes. Present study aims to understand the dynamics of the Microthermofluidic sensor which has been developed, based on above mentioned fundamentals. Using continuum approach, numerical modeling was carried to understand the effect of various system parameters for improving the device performance to produce conditions which can lead to conditions abetting condensational growth. The study reveals that the minimum size of nanoparticle which

  17. Specific behaviour of thermosolutal convection induced in a vertical porous medium in the case of a separation coefficient identical to the ratio of buoyancy forces

    NASA Astrophysics Data System (ADS)

    Er-Raki, Mohammed; Hasnaoui, Mohammed; Amahmid, Abdelkhalk; El Ganaoui, Mohammed

    2008-03-01

    Thermosolutal natural convection induced in a vertical porous layer heated and salted with uniform fluxes is studied analytically and numerically. The study is focused on a specific case where the separation coefficient is identical to the ratio of buoyancy forces. Analytical results, describing both pseudo-conductive and boundary layer regimes, are discussed. Specific behaviour, corresponding to this particular situation, is presented. To cite this article: M. Er-Raki et al., C. R. Mecanique 336 (2008).

  18. Benchmarking of thermal hydraulic loop models for Lead-Alloy Cooled Advanced Nuclear Energy System (LACANES), phase-I: Isothermal steady state forced convection

    NASA Astrophysics Data System (ADS)

    Cho, Jae Hyun; Batta, A.; Casamassima, V.; Cheng, X.; Choi, Yong Joon; Hwang, Il Soon; Lim, Jun; Meloni, P.; Nitti, F. S.; Dedul, V.; Kuznetsov, V.; Komlev, O.; Jaeger, W.; Sedov, A.; Kim, Ji Hak; Puspitarini, D.

    2011-08-01

    As highly promising coolant for new generation nuclear reactors, liquid Lead-Bismuth Eutectic has been extensively worldwide investigated. With high expectation about this advanced coolant, a multi-national systematic study on LBE was proposed in 2007, which covers benchmarking of thermal hydraulic prediction models for Lead-Alloy Cooled Advanced Nuclear Energy System (LACANES). This international collaboration has been organized by OECD/NEA, and nine organizations - ENEA, ERSE, GIDROPRESS, IAEA, IPPE, KIT/IKET, KIT/INR, NUTRECK, and RRC KI - contribute their efforts to LACANES benchmarking. To produce experimental data for LACANES benchmarking, thermal-hydraulic tests were conducted by using a 12-m tall LBE integral test facility, named as Heavy Eutectic liquid metal loop for integral test of Operability and Safety of PEACER (HELIOS) which has been constructed in 2005 at the Seoul National University in the Republic of Korea. LACANES benchmark campaigns consist of a forced convection (phase-I) and a natural circulation (phase-II). In the forced convection case, the predictions of pressure losses based on handbook correlations and that obtained by Computational Fluid Dynamics code simulation were compared with the measured data for various components of the HELIOS test facility. Based on comparative analyses of the predictions and the measured data, recommendations for the prediction methods of a pressure loss in LACANES were obtained. In this paper, results for the forced convection case (phase-I) of LACANES benchmarking are described.

  19. Using C-Band Dual-Polarization Radar Signatures to Improve Convective Wind Forecasting at Cape Canaveral Air Force Station and NASA Kennedy Space Center

    NASA Technical Reports Server (NTRS)

    Amiot, Corey G.; Carey, Lawrence D.; Roeder, William P.; McNamara, Todd M.; Blakeslee, Richard J.

    2017-01-01

    The United States Air Force's 45th Weather Squadron (45WS) is the organization responsible for monitoring atmospheric conditions at Cape Canaveral Air Force Station and NASA Kennedy Space Center (CCAFS/KSC) and issuing warnings for hazardous weather conditions when the need arises. One such warning is issued for convective wind events, for which lead times of 30 and 60 minutes are desired for events with peak wind gusts of 35 knots or greater (i.e., Threshold-1) and 50 knots or greater (i.e., Threshold-2), respectively (Roeder et al. 2014).

  20. Computations of Boiling in Microgravity

    NASA Technical Reports Server (NTRS)

    Tryggvason, G.; Jacqmin, Dave

    2000-01-01

    The absence (or reduction) of gravity, can lead to major changes in boiling heat transfer. On Earth, convection has a major effect on the heat distribution ahead of an evaporation front, and buoyancy determines the motion of the growing bubbles. In microgravity, convection and buoyancy are absent or greatly reduced and the dynamics of the growing vapor bubbles can change in a fundamental way. In particular, the lack of redistribution of heat can lead to a large superheat and explosive growth of bubbles once they form. While considerable efforts have been devoted to examining boiling experimentally, including the effect of microgravity, theoretical and computational work have been limited. Here, the growth of boiling bubbles is studied by direct numerical simulations where the flow field is fully resolved and the effects of inertia, viscosity, surface deformation, heat conduction and convection, as well as the phase change, are fully accounted for. Boiling involves both fluid flow and heat transfer and thus requires the solution of the Navier-Stokes and the energy equations. The numerical method is based on writing one set of governing transport equations which is valid in both the liquid and vapor phases. This local, single-field formulation incorporates the effect of the interface in the governing equations as source terms acting only at the interface. These sources account for surface tension and latent heat in the equations for conservation of momentum and energy as well as mass transfer across the interface due to phase change. The single-field formulation naturally incorporates the correct mass, momentum and energy balances across the interface. Integration of the conservation equations across the interface directly yields the jump conditions derived in the local instant formulation for two-phase systems. In the numerical implementation, the conservation equations for the whole computational domain (both vapor and liquid) are solved using a stationary grid and

  1. Numerical investigation of forced convection of nano fluid flow in horizontal U-longitudinal finned tube heat exchanger

    NASA Astrophysics Data System (ADS)

    Qasim, S. M.; Sahar, A. F. A.; Firas, A. A.

    2015-11-01

    A numerical study has been carried out to investigate the heat transfer by laminar forced convection of nanofluid taking Titania (TiO2) and Alumina (Al2O3) as nanoparticles and the water as based fluid in a three dimensional plain and U-longitudinal finned tube heat exchanger. A Solid WORKS PREMIUM 2012 is used to draw the geometries of plain tube heat exchanger or U-longitudinal copper finned tube heat exchanger. Four U-longitudinal copper fins have 100 cm long, 3.8cm height and 1mm thickness are attached to a straight copper tube of 100 cm length, 2.2 cm inner diameter and 2.39 cm outer diameter. The governing equations which used as continuity, momentum and energy equations under assumptions are utilized to predict the flow field, temperature distribution, and heat transfer of the heat exchanger. The finite volume approach is used to obtain all the computational results using commercial ANSYS Fluent copy package 14.0 with assist of solid works and Gambit software program. The effect of various parameters on the performance of heat exchanger are investigated numerically such as Reynolds' number (ranging from 270 to 1900), volume consternation of nanoparticles (0.2%, 0.4%, 0.6%, 0.8%), type of nanoparticles, and mass flow rate of nanofluid in the hot region of heat exchanger. For 0.8% consternation of nanoparticles, heat transfer has significant enhancement in both nanofluids. It can be found about 7.3% for TiO2 and about 7.5% for Al2O3 compared with the water only as a working fluid.

  2. The Impact of Model Configuration and Large-Scale, Upper-Level Forcing on CRM-Simulated Convective Systems

    NASA Technical Reports Server (NTRS)

    Tao, W.-K.; Zeng, X.; Shie, C.-L.; Starr, D.; Simpson, J.

    2004-01-01

    Real clouds and cloud systems are inherently three-dimensional (3D). Because of the limitations in computer resources, however, most cloud-resolving models (CRMs) today are still two-dimensional (2D, see a brief review by Tao 2003). Only recently have 3D experiments been performed for multi-day periods for tropical cloud systems with large horizontal domains at the National Center for Atmospheric Research, at NOAA GFDL, at the U. K. Met. Office, at Colorado State University and at NASA Goddard Space Flight Center (Tao 2003). At Goddard, a 3D Goddard Cumulus Ensemble (GCE) model was used to simulate periods during TOGA COARE (December 19-27, 1992), GATE (September 1-7, 1974), SCSMEX (June 2-11, 1998), ARM (June 26-30, 1997) and KWAJEX (August 7-13, August 18-21, and August 29-September 12, 1999) using a 512 km domain (with 2-kilometer resolution). The results indicate that surface precipitation and latent heating profiles are similar between the 2D and 3D GCE model simulations. However, there are difference in radiation, surface fluxes and precipitation characteristics. The 2D GCE model was used to perform a long-term integration on ARM/GCSS case 4 (22 days at the ARM southern Great Plains site in March 2000). Preliminary results showed a large temperature bias in the upper troposphere that had not been seen in previous tropical cases. The major objectives of this paper are: (1) to determine the sensitivities to model configuration (ie., 2D in west-east, south-north or 3D), (2) to identify the differences and similarities in the organization and entrainment rates of convection between 2D- and 3D-simulated ARM cloud systems, and (3) assess the impact of upper tropospheric forcing on tropical and ARM case 4 cases.

  3. The Impact of Model Configuration and Large-Scale, Upper-Level Forcing on CRM- Simulated Convective Systems

    NASA Technical Reports Server (NTRS)

    Tao, W.-K.; Zeng, X.; Shie, C.-L.; Starr, D.; Simpson, J.

    2004-01-01

    Real clouds and cloud systems are inherently three-dimensional (3D). Because of the limitations in computer resources, however, most cloud-resolving models (CRMs) today are still two-dimensional (2D, see a brief review by Tao 2003). Only recently have 3D experiments been performed for multi-day periods for tropical cloud systems with large horizontal domains at the National Center for Atmospheric Research, at NOAA GFDL, at the U. K. Met. Office, at Colorado State University and at NASA Goddard Space Flight Center (Tao 2003). At Goddard, a 3D Goddard Cumulus Ensemble (GCE) model was used to simulate periods during TOGA COARE (December 19-27, 1992), GATE (September 1-7, 1974), SCSMEX (June 2-11, 1998), ARM (June 26-30, 1997) and KWAJEX (August 7-13, August 18-21, and August 29-September 12, 1999) using a 512 by 512 km domain (with 2-km resolution). The results indicate that surface precipitation and latent heating profiles are similar between the 2D and 3D GCE model simulations. However, there are difference in radiation, surface fluxes and precipitation characteristics. The 2D GCE model was used to perform a long-term integration on ARM/GCSS case 4 (22 days at the ARM Southern Great Plains site in March 2000). Preliminary results showed a large temperature bias in the upper troposphere that had not been seen in previous tropical cases. The major objectives of this paper are: (1) to determine the sensitivities to model configuration (i.e., 2D in west-east, south-north or 3D), (2) to identify the differences and similarities in the organization and entrainment rates of convection between 2D- and 3D-simulated ARM cloud systems, and (3) assess the impact of upper tropospheric forcing on tropical and ARM case 4 cases.

  4. CHIMNEY FOR BOILING WATER REACTOR

    DOEpatents

    Petrick, M.

    1961-08-01

    A boiling-water reactor is described which has vertical fuel-containing channels for forming steam from water. Risers above the channels increase the head of water radially outward, whereby water is moved upward through the channels with greater force. The risers are concentric and the radial width of the space between them is somewhat small. There is a relatively low rate of flow of water up through the radially outer fuel-containing channels, with which the space between the risers is in communication. (AE C)

  5. Experimental validation benchmark data for CFD of transient convection from forced to natural with flow reversal on a vertical flat plate

    SciTech Connect

    Lance, Blake W.; Smith, Barton L.

    2016-06-23

    Transient convection has been investigated experimentally for the purpose of providing Computational Fluid Dynamics (CFD) validation benchmark data. A specialized facility for validation benchmark experiments called the Rotatable Buoyancy Tunnel was used to acquire thermal and velocity measurements of flow over a smooth, vertical heated plate. The initial condition was forced convection downward with subsequent transition to mixed convection, ending with natural convection upward after a flow reversal. Data acquisition through the transient was repeated for ensemble-averaged results. With simple flow geometry, validation data were acquired at the benchmark level. All boundary conditions (BCs) were measured and their uncertainties quantified. Temperature profiles on all four walls and the inlet were measured, as well as as-built test section geometry. Inlet velocity profiles and turbulence levels were quantified using Particle Image Velocimetry. System Response Quantities (SRQs) were measured for comparison with CFD outputs and include velocity profiles, wall heat flux, and wall shear stress. Extra effort was invested in documenting and preserving the validation data. Details about the experimental facility, instrumentation, experimental procedure, materials, BCs, and SRQs are made available through this paper. As a result, the latter two are available for download and the other details are included in this work.

  6. Experimental validation benchmark data for CFD of transient convection from forced to natural with flow reversal on a vertical flat plate

    DOE PAGES

    Lance, Blake W.; Smith, Barton L.

    2016-06-23

    Transient convection has been investigated experimentally for the purpose of providing Computational Fluid Dynamics (CFD) validation benchmark data. A specialized facility for validation benchmark experiments called the Rotatable Buoyancy Tunnel was used to acquire thermal and velocity measurements of flow over a smooth, vertical heated plate. The initial condition was forced convection downward with subsequent transition to mixed convection, ending with natural convection upward after a flow reversal. Data acquisition through the transient was repeated for ensemble-averaged results. With simple flow geometry, validation data were acquired at the benchmark level. All boundary conditions (BCs) were measured and their uncertainties quantified.more » Temperature profiles on all four walls and the inlet were measured, as well as as-built test section geometry. Inlet velocity profiles and turbulence levels were quantified using Particle Image Velocimetry. System Response Quantities (SRQs) were measured for comparison with CFD outputs and include velocity profiles, wall heat flux, and wall shear stress. Extra effort was invested in documenting and preserving the validation data. Details about the experimental facility, instrumentation, experimental procedure, materials, BCs, and SRQs are made available through this paper. As a result, the latter two are available for download and the other details are included in this work.« less

  7. Numerical Simulation of Natural Convection of a Nanofluid in an Inclined Heated Enclosure Using Two-Phase Lattice Boltzmann Method: Accurate Effects of Thermophoresis and Brownian Forces.

    PubMed

    Ahmed, Mahmoud; Eslamian, Morteza

    2015-12-01

    Laminar natural convection in differentially heated (β = 0°, where β is the inclination angle), inclined (β = 30° and 60°), and bottom-heated (β = 90°) square enclosures filled with a nanofluid is investigated, using a two-phase lattice Boltzmann simulation approach. The effects of the inclination angle on Nu number and convection heat transfer coefficient are studied. The effects of thermophoresis and Brownian forces which create a relative drift or slip velocity between the particles and the base fluid are included in the simulation. The effect of thermophoresis is considered using an accurate and quantitative formula proposed by the authors. Some of the existing results on natural convection are erroneous due to using wrong thermophoresis models or simply ignoring the effect. Here we show that thermophoresis has a considerable effect on heat transfer augmentation in laminar natural convection. Our non-homogenous modeling approach shows that heat transfer in nanofluids is a function of the inclination angle and Ra number. It also reveals some details of flow behavior which cannot be captured by single-phase models. The minimum heat transfer rate is associated with β = 90° (bottom-heated) and the maximum heat transfer rate occurs in an inclination angle which varies with the Ra number.

  8. Numerical Simulation of Natural Convection of a Nanofluid in an Inclined Heated Enclosure Using Two-Phase Lattice Boltzmann Method: Accurate Effects of Thermophoresis and Brownian Forces

    NASA Astrophysics Data System (ADS)

    Ahmed, Mahmoud; Eslamian, Morteza

    2015-07-01

    Laminar natural convection in differentially heated ( β = 0°, where β is the inclination angle), inclined ( β = 30° and 60°), and bottom-heated ( β = 90°) square enclosures filled with a nanofluid is investigated, using a two-phase lattice Boltzmann simulation approach. The effects of the inclination angle on Nu number and convection heat transfer coefficient are studied. The effects of thermophoresis and Brownian forces which create a relative drift or slip velocity between the particles and the base fluid are included in the simulation. The effect of thermophoresis is considered using an accurate and quantitative formula proposed by the authors. Some of the existing results on natural convection are erroneous due to using wrong thermophoresis models or simply ignoring the effect. Here we show that thermophoresis has a considerable effect on heat transfer augmentation in laminar natural convection. Our non-homogenous modeling approach shows that heat transfer in nanofluids is a function of the inclination angle and Ra number. It also reveals some details of flow behavior which cannot be captured by single-phase models. The minimum heat transfer rate is associated with β = 90° (bottom-heated) and the maximum heat transfer rate occurs in an inclination angle which varies with the Ra number.

  9. Heat transfer mechanisms in microgravity flow boiling.

    PubMed

    Ohta, Haruhiko

    2002-10-01

    The objective of this paper is to clarify the mechanisms of heat transfer and dryout phenomena in flow boiling under microgravity conditions. Liquid-vapor behavior in annular flow, encountered in the moderate quality region, has extreme significance for practical application in space. To clarify the gravity effect on the heat transfer observed for an upward flow in a tube, the research described here started from the measurement of pressure drop for binary gas-liquid mixture under various gravity conditions. The shear stress acting on the surface of the annular liquid film was correlated by an empirical method. Gravity effects on the heat transfer due to two-phase forced convection were investigated by the analysis of velocity and temperature profiles in the film. The results reproduce well the trends of heat transfer coefficients varying with the gravity level, quality, and mass velocity. Dryout phenomena in the moderate quality region were observed in detail by the introduction of a transparent heated tube. At heat fluxes just lower and higher than CHF value, a transition of the heat transfer coefficient was calculated from oscillating wall temperature, where a series of opposing heat transfer trends--the enhancement due to the quenching of dried areas or evaporation from thin liquid films and the deterioration due to the extension of dry patches--were observed between the passage of disturbance waves. The CHF condition that resulted from the insufficient decrease of wall temperature in the period of enhanced heat transfer was overcome by a temperature increase in the deterioration period. No clear effect of gravity on the mechanisms of dryout was observed within the range of experiments.

  10. Odd-Boiled Eggs

    ERIC Educational Resources Information Center

    Kaminsky, Kenneth; Scheman, Naomi

    2010-01-01

    At a Shabbat lunch in Madrid not long ago, the conversation turned to the question of boiling eggs. One of the guests mentioned that a Dutch rabbi he knew had heard that in order to make it more likely that boiled eggs be kosher, you should add an egg to the pot if the number you began with was even. According to the laws of Kashruth, Jews may not…

  11. Effect of Melt Convection at Various Gravity Levels and Orientations on the Forces Acting on a Large Spherical Particle in the Vicinity of a Solidification Interface

    NASA Technical Reports Server (NTRS)

    Bune, Andris V.; Sen, Subhayu; Mukherjee, Sundeep; Catalina, Adrian; Stefanescu, Doru M.

    2000-01-01

    Numerical modeling was Undertaken to analyze the influence of both radial and axial thermal gradients on convection patterns and velocities claiming solidification of pure Al and an Al-4 wt% Cu alloy. The objective of the numerical task was to predict the influence of convective velocity on an insoluble particle near a solid/liquid (s/l) interface. These predictions were then be used to define the minimum gravity level (q) required to investigate the fundamental physics of interactions between a particle and a s/l interface. This is an ongoing NASA founded flight experiment entitled "particle engulfment and pushing by solidifying interfaces (PEP)". Steady-state calculations were performed for different gravity levels and orientations with respect to the gravity vector The furnace configuration used in this analysis is the quench module insert (QMI-1) proposed for the Material Science Research Facility (MSRF) on board the International Space Station (ISS). The general model of binary alloy solidification was based on the finite element code FIDAP. At a low g level of 10(exp -4) g(sub o) (g(sub o) = 9.8 m/square s) maximum melt convection was obtained for an orientation of 90 deg. Calculations showed that even for this worst case orientation the dominant forces acting on the particle are the fundamental drag and interfacial forces.

  12. Unorthodox bubbles when boiling in cold water

    NASA Astrophysics Data System (ADS)

    Parker, Scott; Granick, Steve

    2014-01-01

    High-speed movies are taken when bubbles grow at gold surfaces heated spotwise with a near-infrared laser beam heating water below the boiling point (60-70 °C) with heating powers spanning the range from very low to so high that water fails to rewet the surface after bubbles detach. Roughly half the bubbles are conventional: They grow symmetrically through evaporation until buoyancy lifts them away. Others have unorthodox shapes and appear to contribute disproportionately to heat transfer efficiency: mushroom cloud shapes, violently explosive bubbles, and cavitation events, probably stimulated by a combination of superheating, convection, turbulence, and surface dewetting during the initial bubble growth. Moreover, bubbles often follow one another in complex sequences, often beginning with an unorthodox bubble that stirs the water, followed by several conventional bubbles. This large dataset is analyzed and discussed with emphasis on how explosive phenomena such as cavitation induce discrepancies from classical expectations about boiling.

  13. Unorthodox bubbles when boiling in cold water.

    PubMed

    Parker, Scott; Granick, Steve

    2014-01-01

    High-speed movies are taken when bubbles grow at gold surfaces heated spotwise with a near-infrared laser beam heating water below the boiling point (60-70 °C) with heating powers spanning the range from very low to so high that water fails to rewet the surface after bubbles detach. Roughly half the bubbles are conventional: They grow symmetrically through evaporation until buoyancy lifts them away. Others have unorthodox shapes and appear to contribute disproportionately to heat transfer efficiency: mushroom cloud shapes, violently explosive bubbles, and cavitation events, probably stimulated by a combination of superheating, convection, turbulence, and surface dewetting during the initial bubble growth. Moreover, bubbles often follow one another in complex sequences, often beginning with an unorthodox bubble that stirs the water, followed by several conventional bubbles. This large dataset is analyzed and discussed with emphasis on how explosive phenomena such as cavitation induce discrepancies from classical expectations about boiling.

  14. Boiling local heat transfer enhancement in minichannels using nanofluids

    PubMed Central

    2013-01-01

    This paper reports an experimental study on nanofluid convective boiling heat transfer in parallel rectangular minichannels of 800 μm hydraulic diameter. Experiments are conducted with pure water and silver nanoparticles suspended in water base fluid. Two small volume fractions of silver nanoparticles suspended in water are tested: 0.000237% and 0.000475%. The experimental results show that the local heat transfer coefficient, local heat flux, and local wall temperature are affected by silver nanoparticle concentration in water base fluid. In addition, different correlations established for boiling flow heat transfer in minichannels or macrochannels are evaluated. It is found that the correlation of Kandlikar and Balasubramanian is the closest to the water boiling heat transfer results. The boiling local heat transfer enhancement by adding silver nanoparticles in base fluid is not uniform along the channel flow. Better performances and highest effect of nanoparticle concentration on the heat transfer are obtained at the minichannels entrance. PMID:23506445

  15. Boiling local heat transfer enhancement in minichannels using nanofluids

    NASA Astrophysics Data System (ADS)

    Chehade, Ali Ahmad; Gualous, Hasna Louahlia; Le Masson, Stephane; Fardoun, Farouk; Besq, Anthony

    2013-03-01

    This paper reports an experimental study on nanofluid convective boiling heat transfer in parallel rectangular minichannels of 800 μm hydraulic diameter. Experiments are conducted with pure water and silver nanoparticles suspended in water base fluid. Two small volume fractions of silver nanoparticles suspended in water are tested: 0.000237% and 0.000475%. The experimental results show that the local heat transfer coefficient, local heat flux, and local wall temperature are affected by silver nanoparticle concentration in water base fluid. In addition, different correlations established for boiling flow heat transfer in minichannels or macrochannels are evaluated. It is found that the correlation of Kandlikar and Balasubramanian is the closest to the water boiling heat transfer results. The boiling local heat transfer enhancement by adding silver nanoparticles in base fluid is not uniform along the channel flow. Better performances and highest effect of nanoparticle concentration on the heat transfer are obtained at the minichannels entrance.

  16. Boiling local heat transfer enhancement in minichannels using nanofluids.

    PubMed

    Chehade, Ali Ahmad; Gualous, Hasna Louahlia; Le Masson, Stephane; Fardoun, Farouk; Besq, Anthony

    2013-03-18

    This paper reports an experimental study on nanofluid convective boiling heat transfer in parallel rectangular minichannels of 800 μm hydraulic diameter. Experiments are conducted with pure water and silver nanoparticles suspended in water base fluid. Two small volume fractions of silver nanoparticles suspended in water are tested: 0.000237% and 0.000475%. The experimental results show that the local heat transfer coefficient, local heat flux, and local wall temperature are affected by silver nanoparticle concentration in water base fluid. In addition, different correlations established for boiling flow heat transfer in minichannels or macrochannels are evaluated. It is found that the correlation of Kandlikar and Balasubramanian is the closest to the water boiling heat transfer results. The boiling local heat transfer enhancement by adding silver nanoparticles in base fluid is not uniform along the channel flow. Better performances and highest effect of nanoparticle concentration on the heat transfer are obtained at the minichannels entrance.

  17. Nucleate pool boiling of hydrocarbon mixtures

    SciTech Connect

    Sardesai, R.G.; Palen, J.W.; Thome, J.

    1986-01-01

    The Schlunder method can be correctly used to predict boiling heat transfer coefficient of multicomponent hydrocarbon mixtures. The method was tested against experimental mixtures containing up to five components. The Stephan-Abdelsalam correlation can be used to calculate a ''pseudo-single component'' boiling heat transfer coefficient for a mixture using weighted properties. The effective temperature driving force term and the high mass flux correction term in the Schlunder formulation are empirically adjusted to improve the accuracy of prediction. Predictions of the Schlunder method are sensitive to the VLE calculations. The UNIFAC method is used in this study for reasons discussed in the paper.

  18. Enhancements of Nucleate Boiling Under Microgravity Conditions

    NASA Technical Reports Server (NTRS)

    Zhang, Nengli; Chao, David F.; Yang, W. J.

    2000-01-01

    This paper presents two means for enhancing nucleate boiling and critical heat flux under microgravity conditions: using micro-configured metal-graphite composites as the boiling surface and dilute aqueous solutions of long-chain alcohols as the working fluid. In the former, thermocapillary force induced by temperature difference between the graphite-fiber tips and the metal matrix plays an important role in bubble detachment. Thus boiling-heat transfer performance does not deteriorate in a reduced-gravity environment. In the latter cases, the surface tension-temperature gradient of the long-chain alcohol solutions turns positive as the temperature exceeds a certain value. Consequently, the Marangoni effect does not impede, but rather aids in bubble departure from the heating surface. This feature is most favorable in microgravity. As a result, the bubble size of departure is substantially reduced at higher frequencies. Based on the existing experimental data, and a two-tier theoretical model, correlation formulas are derived for nucleate boiling on the copper-graphite and aluminum-graphite composite surfaces, in both the isolated and coalesced bubble regimes. In addition, performance equations for nucleate boiling and critical heat flux in dilute aqueous solutions of long-chain alcohols are obtained.

  19. Experimental investigation of nucleate boiling heat transfer mechanisms for cylinders in water and FC-72

    SciTech Connect

    Ammerman, C.N.; You, S.M.; Hong, Y.S.

    1995-12-31

    A recently developed photographic method is used to quantify vapor volumetric flow rate above a boiling wire. The volumetric flow rate is combined with additional analyses to determine the overall contributions to the total heat flux from four nucleate boiling heat transfer mechanisms (latent heat, natural convection, Marangoni flow, and micro-convection). This technique is used to quantify the boiling heat transfer mechanisms versus heat flux for a 510-{micro}m wire immersed in saturated water and in water with a small amount of liquid soap added. These data are compared with similar data taken for a 75-{micro}m wire boiling in saturated FC-72. For all cases, latent heat is the dominant heat transfer mechanism in the fully developed nucleate boiling regime. In addition, the latent heat component is significantly increased by the addition of small amounts of soap (surfactant).

  20. Natural convection: Fundamentals and applications

    NASA Astrophysics Data System (ADS)

    Kakac, S.; Aung, W.; Viskanta, R.

    Among the topics discussed are: stability solutions for laminar external boundary region flows; natural convection in plane layers and cavities with volumetric energy sources; and turbulence modelling equations. Consideration is also given to: natural convection in enclosures containing tube bundles; natural limiting behaviors in porous media cavity flows; numerical solutions in laminar and turbulent natural convection; and heat transfer in the critical region of binary mixtures. Additional topics discussed include: natural convective cooling of electronic equipment; natural convection suppression in solar collectors; and laser induced buoyancy and forced convection in vertical tubes.

  1. Radiolysis of boiling water

    NASA Astrophysics Data System (ADS)

    Yang, Shuang; Katsumura, Yosuke; Yamashita, Shinichi; Matsuura, Chihiro; Hiroishi, Daisuke; Lertnaisat, Phantira; Taguchi, Mitsumasa

    2016-06-01

    γ-radiolysis of boiling water has been investigated. The G-value of H2 evolution was found to be very sensitive to the purity of water. In high-purity water, both H2 and O2 gases were formed in the stoichiometric ratio of 2:1; a negligible amount of H2O2 remained in the liquid phase. The G-values of H2 and O2 gas evolution depend on the dose rate: lower dose rates produce larger yields. To clarify the importance of the interface between liquid and gas phase for gas evolution, the gas evolution under Ar gas bubbling was measured. A large amount of H2 was detected, similar to the radiolysis of boiling water. The evolution of gas was enhanced in a 0.5 M NaCl aqueous solution. Deterministic chemical kinetics simulation elucidated the mechanism of radiolysis in boiling water.

  2. Application of the Legendre wavelets method to the parallel plate flow of a third grade fluid and forced convection in a porous duct

    NASA Astrophysics Data System (ADS)

    Ali, N.; Ullah, Mati; Sajid, M.; Khan, S. U.

    2017-03-01

    A method based on Legendre wavelets is presented in this paper to discuss the flow of a third grade fluid between parallel plates and the forced convection in a porous duct. The flow problems are modeled in terms of integral equations which are then solved by the Legendre wavelets method. The comparison between present results and the existing solutions shows that the Legendre wavelets method is a powerful tool for solving nonlinear boundary value problems. We hope this method can be used for solving many interesting problems arising in non-Newtonian fluids.

  3. Numerical Investigation of Boiling

    NASA Astrophysics Data System (ADS)

    Sagan, Michael; Tanguy, Sebastien; Colin, Catherine

    2012-11-01

    In this work, boiling is numerically investigated, using two phase flow direct numerical simulation based on a level set / Ghost Fluid method. Nucleate boiling implies both thermal issue and multiphase dynamics issues at different scales and at different stages of bubble growth. As a result, the different phenomena are investigated separately, considering their nature and the scale at which they occur. First, boiling of a static bubble immersed in an overheated liquid is analysed. Numerical simulations have been performed at different Jakob numbers in the case of strong density discontinuity through the interface. The results show a good agreement on bubble radius evolution between the theoretical evolution and numerical simulation. After the validation of the code for the Scriven test case, interaction of a bubble with a wall is studied. A numerical method taking into account contact angle is evaluated by comparing simulations of the spreading of a liquid droplet impacting on a plate, with experimental data. Then the heat transfer near the contact line is investigated, and simulations of nucleate boiling are performed considering different contact angles values. Finally, the relevance of including a model to take into account the evaporation of the micro layer is discussed.

  4. Raman Shifting a Tunable ArF Excimer Laser to Wavelengths of 190 to 240 nm With a Forced Convection Raman Cell

    NASA Technical Reports Server (NTRS)

    Balla, R. Jeffrey; Herring, G. C.

    2000-01-01

    Tunable radiation, at ultraviolet wavelengths, is produced by Raman shifting a modified 285-mJ ArF excimer laser. Multiple Stokes outputs are observed in H2, CH4, D2, N2, SF6, and CF4 (20, 22, 53, 21, 2.1, and 0.35 percent, respectively). Numbers in parentheses are the first Stokes energy conversion efficiencies. We can access 70 percent of the frequency range 42000-52000 cm (exp -1) (190-240 nm) with Stokes energies that vary from 0.2 microJoule to 58 mJ inside the Raman cell. By using 110 mJ of pump energy and D 2 , the tunable first Stokes energy varies over the 29-58 mJ range as the wavelength is tuned over the 204-206 nm range. Dependence on input energy, gas pressure, He mixture fraction, and circulation of the gas in the forced convection Raman cell is discussed; Stokes conversion is also discussed for laser repetition rates from 1 to 100 Hz. An empirical equation is given to determine whether forced convection can improve outputs for a given repetition rate.

  5. A critical review of forced convection heat transfer and pressure drop of Al2O3, TiO2 and CuO nanofluids

    NASA Astrophysics Data System (ADS)

    Khurana, Deepak; Choudhary, Rajesh; Subudhi, Sudhakar

    2017-01-01

    Nanofluid is the colloidal suspension of nanosized solid particles like metals or metal oxides in some conventional fluids like water and ethylene glycol. Due to its unique characteristics of enhanced heat transfer compared to conventional fluid, it has attracted the attention of research community. The forced convection heat transfer of nanofluid is investigated by numerous researchers. This paper critically reviews the papers published on experimental studies of forced convection heat transfer and pressure drop of Al2O3, TiO2 and CuO based nanofluids dispersed in water, ethylene glycol and water-ethylene glycol mixture. Most of the researchers have shown a little rise in pressure drop with the use of nanofluids in plain tube. Literature has reported that the pumping power is appreciably high, only at very high particle concentration i.e. more than 5 %. As nanofluids are able to enhance the heat transfer at low particle concentrations so most of the researchers have used less than 3 % volume concentration in their studies. Almost no disagreement is observed on pressure drop results of different researchers. But there is not a common agreement in magnitude and mechanism of heat transfer enhancement. Few studies have shown an anomalous enhancement in heat transfer even at low particle concentration. On the contrary, some researchers have shown little heat transfer enhancement at the same particle concentration. A large variation (2-3 times) in Nusselt number was observed for few studies under similar conditions.

  6. Empirical Equation for Turbulent Forced-Convection Heat Transfer for Prandtl Numbers from 0.001 to 1000

    NASA Technical Reports Server (NTRS)

    vonGlahn, Uwe H.

    1960-01-01

    A review is made of some of the experimental data and analyses applicable to convective heat transfer in fully turbulent flow in smooth tubes with liquid metals and viscous Newtonian fluids. An empirical equation is evolved that closely approximates heat-transfer values obtained from selected analyses and experimental data for Prandtl numbers from 0.001 to 1000. The terms included in the equation are Reynolds number, Prandtl number, and an empirical diffusivity ratio between heat and momentum.

  7. Numerical analysis of the laminar forced convective heat transfer in coiled tubes with periodic ring-type corrugation

    NASA Astrophysics Data System (ADS)

    Vocale, Pamela; Mocerino, Andrea; Bozzoli, Fabio; Rainieri, Sara

    2016-09-01

    Wall curvature and wall corrugation represent two of the most used passive techniques to enhance convective heat transfer. The effectiveness of wall curvature is due to the fact that it gives origin to a secondary fluid motion orthogonal to the main flow, while wall corrugation is used to disrupt the development of the boundary layers, by enhancing the convective heat transfer mechanism. The compound use of the two techniques has been investigated in literature, mainly experimentally, but further investigation is still needed. In particular, it has been experimentally observed that this compound enhancement technique brings an additional heat transfer augmentation in the majority of applications whereas in the very low Reynolds number range the surface average performances of corrugated coils are lower than the one shown by smooth wall coils. This paper deepened the knowledge on this phenomenon presenting a numerical investigation of the effect induced by a periodic ring-type corrugation on the laminar convective heat transfer in coiled tubes. The study considered the laminar flow in the Reynolds and Dean number range 25-100 and 6-24 respectively. The investigation was particularly focused on the Dean's vortices destruction mechanism, induced by the wall corrugation and on the consequent breakdown of the average Nusselt number.

  8. Boiling on Microconfigured Composite Surfaces Enhanced

    NASA Technical Reports Server (NTRS)

    Chao, David F.

    2000-01-01

    Boiling heat transfer is one of the key technologies for the two-phase active thermal-control system used on space platforms, as well as for the dynamic power systems aboard the International Space Station. Because it is an effective heat transfer mode, boiling is integral to many space applications, such as heat exchangers and other cooling devices. Nucleate boiling near the critical heat flux (CHF) can transport very large thermal loads with a much smaller device and much lower pumping power than for single-phase heat exchangers. However, boiling performance sharply deteriorates in a reduced-gravity environment, and operation in the CHF regime is somewhat perilous because of the risk of burnout to the device surface. New materials called microconfigured metal-graphite composites can enhance boiling. The photomicrograph shows the microconfiguration (x3000) of the copper-graphite (Cu-Gr) surface as viewed by scanning electronic microscope. The graphite fiber tips appear as plateaus with rugged surfaces embedded in the copper matrix. It has been experimentally demonstrated that this type of material manifests excellent boiling heat transfer performance characteristics and an increased CHF. Nonisothermal surfaces were less sensitive to variations of wall superheat in the CHF regime. Because of the great difference in conductivity between the copper base and the graphite fiber, the composite surfaces have a nonisothermal surface characteristic and, therefore, will have a much larger "safe" operating region in the CHF regime. In addition, the thermocapillary forces induced by the temperature differences between the fiber tips and the metal matrix play an important role in bubble detachment, and may not be adversely affected in a reduced-gravity environment. All these factors indicate that microconfigured composites may improve the reliability and economy (dominant factors in all space applications) of various thermal components found on spacecraft during future

  9. Experimental investigation of forced convective heat transfer performance in nanofluids of Al2O3/water and CuO/water in a serpentine shaped micro channel heat sink

    NASA Astrophysics Data System (ADS)

    Sivakumar, A.; Alagumurthi, N.; Senthilvelan, T.

    2016-07-01

    The microchannels are device used to remove high heat fluxes from smaller area. In this experimental research work the heat transfer performance of nanofluids of Al2O3/water and CuO/water were compared. The important character of such fluids is the enhanced thermal conductivity, in comparison with base fluid without considerable alteration in physical and chemical properties. The effect of forced convective heat transfer coefficient was calculated using serpentine shaped microchannel heat exchanger. Furthermore we calculated the forced convective heat transfer coefficient of the nanofluids using theoretical correlations in order to compare the results with the experimental data. The heat transfer coefficient for different particle concentration and temperature were analysed using forced convection heat transfer using nanofluids. The findings indicate considerable enhancement in convective heat transfer coefficient of the nanofluids as compared to the basefluid. The results also shows that CuO/water nanofluid has increased heat transfer coefficient compared with Al2O3/water and base fluids. Moreover the experimental results indicate there is increased forced convective heat transfer coefficient with the increase in nano particle concentration.

  10. Rational engineering correlations of diffusional and inertial particle deposition behavior in non-isothermal forced convection environments

    NASA Technical Reports Server (NTRS)

    Rosner, D. E.; Gokoglu, S. A.; Israel, R.

    1982-01-01

    A multiparameter correlation approach to the study of particle deposition rates in engineering applications is discussed with reference to two specific examples, one dealing with thermophoretically augmented small particle convective diffusion and the other involving larger particle inertial impaction. The validity of the correlations proposed here is demonstrated through rigorous computations including all relevant phenomena and interactions. Such representations are shown to minimize apparent differences between various geometric, flow, and physicochemical parameters, allowing many apparently different physicochemical situations to be described in a unified way.

  11. Effect of surface oxidation on the onset of nucleate boiling in a materials test reactor coolant channel

    DOE PAGES

    Forrest, Eric C.; Don, Sarah M.; Hu, Lin -Wen; ...

    2016-02-29

    The onset of nucleate boiling (ONB) serves as the thermal-hydraulic operating limit for many research and test reactors. However, boiling incipience under forced convection has not been well-characterized in narrow channel geometries or for oxidized surface conditions. This study presents experimental data for the ONB in vertical upflow of deionized (DI) water in a simulated materials test reactor (MTR) coolant channel. The channel gap thickness and aspect ratio were 1.96 mm and 29:1, respectively. Boiling surface conditions were carefully controlled and characterized, with both heavily oxidized and native oxide surfaces tested. Measurements were performed for mass fluxes ranging from 750more » to 3000 kg/m2s and for subcoolings ranging from 10 to 45°C. ONB was identified using a combination of high-speed visual observation, surface temperature measurements, and channel pressure drop measurements. Surface temperature measurements were found to be most reliable in identifying the ONB. For the nominal (native oxide) surface, results indicate that the correlation of Bergles and Rohsenow, when paired with the appropriate single-phase heat transfer correlation, adequately predicts the ONB heat flux. Furthermore, incipience on the oxidized surface occurred at a higher heat flux and superheat than on the plain surface.« less

  12. Effect of surface oxidation on the onset of nucleate boiling in a materials test reactor coolant channel

    SciTech Connect

    Forrest, Eric C.; Don, Sarah M.; Hu, Lin -Wen; Buongiorno, Jacopo; McKrell, Thomas J.

    2016-02-29

    The onset of nucleate boiling (ONB) serves as the thermal-hydraulic operating limit for many research and test reactors. However, boiling incipience under forced convection has not been well-characterized in narrow channel geometries or for oxidized surface conditions. This study presents experimental data for the ONB in vertical upflow of deionized (DI) water in a simulated materials test reactor (MTR) coolant channel. The channel gap thickness and aspect ratio were 1.96 mm and 29:1, respectively. Boiling surface conditions were carefully controlled and characterized, with both heavily oxidized and native oxide surfaces tested. Measurements were performed for mass fluxes ranging from 750 to 3000 kg/m2s and for subcoolings ranging from 10 to 45°C. ONB was identified using a combination of high-speed visual observation, surface temperature measurements, and channel pressure drop measurements. Surface temperature measurements were found to be most reliable in identifying the ONB. For the nominal (native oxide) surface, results indicate that the correlation of Bergles and Rohsenow, when paired with the appropriate single-phase heat transfer correlation, adequately predicts the ONB heat flux. Furthermore, incipience on the oxidized surface occurred at a higher heat flux and superheat than on the plain surface.

  13. Oscillate boiling from microheaters

    NASA Astrophysics Data System (ADS)

    Li, Fenfang; Gonzalez-Avila, S. Roberto; Nguyen, Dang Minh; Ohl, Claus-Dieter

    2017-01-01

    We report about an intriguing boiling regime occurring for small heaters embedded on the boundary in subcooled water. The microheater is realized by focusing a continuous wave laser beam to about 10 μ m in diameter onto a 165-nm-thick layer of gold, which is submerged in water. After an initial vaporous explosion a single bubble oscillates continuously and repeatedly at several 100 kHz albeit with constant laser power input. The microbubble's oscillations are accompanied with bubble pinch-off, leading to a stream of gaseous bubbles in the subcooled water. The self-driven bubble oscillation is explained with a thermally kicked oscillator caused by surface attachment and by the nonspherical collapses. Additionally, Marangoni stresses induce a recirculating streaming flow which transports cold liquid towards the microheater, reducing diffusion of heat along the substrate and therefore stabilizing the phenomenon to many million cycles. We speculate that this oscillate boiling regime may overcome the heat transfer thresholds observed during the nucleate boiling crisis and offers a new pathway for heat transfer under microgravity conditions.

  14. Intraseasonal Forcing of Lightning and Convective Activity in the Southern Amazon as a Function of Cross Equatorial Flow

    NASA Astrophysics Data System (ADS)

    Petersen, W. A.; Fu, R.; Blakeslee, R.; Chen, M.

    2003-12-01

    Recently, Wang and Fu (2002) developed a monsoon-index (V-index; VI), based on changes in cross-equatorial 925 hPa meridional wind flow in the northwest Amazon. This index appears to be a robust metric of seasonal and intraseasonal changes in precipitation regime (e.g., wet vs. dry) across the Amazon and other parts of South America. While the VI identifies continental-scale variability of the monsoon, it yields no information on structural changes in the convective regime. For example, how does the overall three-dimensional structure of convection change as a function of VI-regime? Similarly, how are transitions in VI-regime manifested in lightning trends? In an effort to answer these questions we have examined four wet seasons (Dec.-Mar., 1998-2001) of TRMM satellite Lightning Imaging Sensor (LIS) and Precipitation Radar (PR) data in addition to two wet seasons (2000-2001) of ground-based Brazilian Lightning Detection Network (BLDN) data over South America. Composited LIS data indicate that the most statistically significant wide-spread response to VI-regime changes occurs over the south-central Amazon (SCAMZ), with other noticeable variations observed over portions of the subtropical Altiplano and Parana River basin. Most notably, over the SCAMZ both LIS and BLDN lightning data suggest for the southerly (northerly) VI-regime: 1) a pronounced widespread increase (decrease) in lightning activity; 2) a marked increase (decrease) in the amplitude of the diurnal cycle of lightning; (3) in association with (1) and (2), a factor of two relative increase (decrease) in the probability of any radar reflectivity pixel exceeding 30 dBZ above the freezing level; (4) an associated 20% increase (decrease) in pixel-mean ice water contents between the 7 and 11 km levels; and (5) an increase (decrease) in the relative frequency of occurrence of large rain rates. Interestingly, while our results suggest the presence of more vertically developed convection, lightning, attendant ice

  15. Fast drying of biocompatible polymer films loaded with poorly water-soluble drug nano-particles via low temperature forced convection.

    PubMed

    Susarla, Ramana; Sievens-Figueroa, Lucas; Bhakay, Anagha; Shen, Yueyang; Jerez-Rozo, Jackeline I; Engen, William; Khusid, Boris; Bilgili, Ecevit; Romañach, Rodolfo J; Morris, Kenneth R; Michniak-Kohn, Bozena; Davé, Rajesh N

    2013-10-15

    Fast drying of nano-drug particle laden strip-films formed using water-soluble biocompatible polymers via forced convection is investigated in order to form films having uniform drug distribution and fast dissolution. Films were produced by casting and drying a mixture of poorly water soluble griseofulvin (GF) nanosuspensions produced via media milling with aqueous hydroxypropyl methylcellulose (HPMC E15LV) solutions containing glycerin as a plasticizer. The effects of convective drying parameters, temperature and air velocity, and film-precursor viscosity on film properties were investigated. Two major drying regimes, a constant rate period as a function of the drying conditions, followed by a single slower falling rate period, were observed. Films dried in an hour or less without any irreversible aggregation of GF nanoparticles with low residual water content. Near-infrared chemical imaging (NIR-CI) and the content uniformity analysis indicated a better drug particle distribution when higher viscosity film-precursors were used. Powder X-ray diffraction showed that the GF in the films retained crystallinity and the polymorphic form. USP IV dissolution tests showed immediate release (~20 min) of GF. Overall, the films fabricated from polymer-based suspensions at higher viscosity dried at different conditions exhibited similar mechanical properties, improved drug content uniformity, and achieved fast drug dissolution.

  16. An experimental study of unsteady natural convection in a reservoir model subject to periodic thermal forcing using combined PIV and PIT techniques

    NASA Astrophysics Data System (ADS)

    Bednarz, Tomasz Piotr; Lei, Chengwang; Patterson, John C.

    2009-07-01

    The present experimental investigation is concerned with the transient flow response in a reservoir model to periodic heating and cooling at the water surface. The experiment reveals a stable stratification of the water body during the heating phase and an unsteady mixing flow in the reservoir during the cooling phase. It is shown that thermal instabilities play an important role in breaking up the residual circulation and initiating a reverse flow circulation in deep waters after the switch of thermal forcing from heating to cooling. Moreover, the heating from the water surface results in a stable large-scale convective roll that is clearly observed in the experiment. The present flow visualization is carried out with the application of thermo-chromic liquid crystals. Quantitative temperature and velocity fields are extracted using Particle Image Thermometry and Particle Image Velocimetry techniques. Understanding of the flow mechanisms pertinent to this problem is important for predicting the transport of nutrients and pollutants across reservoirs.

  17. Experimental study of laminar forced convective heat transfer of deionized water based copper (I) oxide nanofluids in a tube with constant wall heat flux

    NASA Astrophysics Data System (ADS)

    Umer, Asim; Naveed, Shahid; Ramzan, Naveed

    2016-10-01

    Nanofluids, having 1-100 nm size particles in any base fluid are promising fluid for heat transfer intensification due to their enhanced thermal conductivity as compared with the base fluid. The forced convection of nanofluids is the major practical application in heat transfer equipments. In this study, heat transfer enhancements at constant wall heat flux under laminar flow conditions were investigated. Nanofluids of different volume fractions (1, 2 and 4 %) of copper (I) oxide nanoparticles in deionized water were prepared using two step technique under mechanical mixing and ultrasonication. The results were investigated by increasing the Reynolds number of the nanofluids at constant heat flux. The trends of Nusselt number variation with dimensionless length (X/D) and Reynolds numbers were studied. It was observed that heat transfer coefficient increases with increases particles volume concentration and Reynolds number. The maximum enhancement in heat transfer coefficient of 61 % was observed with 4 % particle volume concentration at Reynolds number (Re ~ 605).

  18. Heat transport in bubbling turbulent convection

    PubMed Central

    Lakkaraju, Rajaram; Stevens, Richard J. A. M.; Oresta, Paolo; Verzicco, Roberto; Lohse, Detlef; Prosperetti, Andrea

    2013-01-01

    Boiling is an extremely effective way to promote heat transfer from a hot surface to a liquid due to numerous mechanisms, many of which are not understood in quantitative detail. An important component of the overall process is that the buoyancy of the bubble compounds with that of the liquid to give rise to a much-enhanced natural convection. In this article, we focus specifically on this enhancement and present a numerical study of the resulting two-phase Rayleigh–Bénard convection process in a cylindrical cell with a diameter equal to its height. We make no attempt to model other aspects of the boiling process such as bubble nucleation and detachment. The cell base and top are held at temperatures above and below the boiling point of the liquid, respectively. By keeping this difference constant, we study the effect of the liquid superheat in a Rayleigh number range that, in the absence of boiling, would be between 2 × 106 and 5 × 109. We find a considerable enhancement of the heat transfer and study its dependence on the number of bubbles, the degree of superheat of the hot cell bottom, and the Rayleigh number. The increased buoyancy provided by the bubbles leads to more energetic hot plumes detaching from the cell bottom, and the strength of the circulation in the cell is significantly increased. Our results are in general agreement with recent experiments on boiling Rayleigh–Bénard convection. PMID:23696657

  19. Heat transport in bubbling turbulent convection.

    PubMed

    Lakkaraju, Rajaram; Stevens, Richard J A M; Oresta, Paolo; Verzicco, Roberto; Lohse, Detlef; Prosperetti, Andrea

    2013-06-04

    Boiling is an extremely effective way to promote heat transfer from a hot surface to a liquid due to numerous mechanisms, many of which are not understood in quantitative detail. An important component of the overall process is that the buoyancy of the bubble compounds with that of the liquid to give rise to a much-enhanced natural convection. In this article, we focus specifically on this enhancement and present a numerical study of the resulting two-phase Rayleigh-Bénard convection process in a cylindrical cell with a diameter equal to its height. We make no attempt to model other aspects of the boiling process such as bubble nucleation and detachment. The cell base and top are held at temperatures above and below the boiling point of the liquid, respectively. By keeping this difference constant, we study the effect of the liquid superheat in a Rayleigh number range that, in the absence of boiling, would be between 2 × 10(6) and 5 × 10(9). We find a considerable enhancement of the heat transfer and study its dependence on the number of bubbles, the degree of superheat of the hot cell bottom, and the Rayleigh number. The increased buoyancy provided by the bubbles leads to more energetic hot plumes detaching from the cell bottom, and the strength of the circulation in the cell is significantly increased. Our results are in general agreement with recent experiments on boiling Rayleigh-Bénard convection.

  20. Experimental study of laminar flow forced-convection heat transfer in air flowing through offset plates heated by radiation heat flux

    SciTech Connect

    Ali, A.H.H.; Kishinami, Koki; Hanaoka, Yutaka; Suzuki, Jun

    1998-04-01

    An experimental study of the steady state laminar flow forced-convection heat transfer of air flowing through offset plates located between two parallel plates and heated by radiation heat flux was carried out. The ranges of parameters tested were incident radiation heat fluxes of 500, 700, and 1,000 W/m{sup 2}. With Re ranging from 650 to 2,560, the inlet air bulk temperatures changed from 18.2 to 70 C and the tilting angle of the unit with the horizontal ranged from 0 to 90{degree} respectively. The results show that the rate of the increase in the local Nusselt number was observed to be proportional with Re up to 1,900, while it became less sensitive over Re range of 1,900--2,500. Also, in this range of Re, with the inlet air temperature of 20 C, the angle of inclination of the unit has no effect on the local Nusselt number. Increasing the incident radiation heat flux in the case of higher values of Re leads to a slight decrease in the value of the local Nusselt number. The effect of the inlet air bulk temperature on the forced-convection heat transfer coefficient shows, in the case of the horizontal position, an increase in the inlet air bulk temperature leads to slight decreases in the value of the average Nusselt number, while it leads to significant decreases in the value of the average Nusselt number as the tilting angle increases up to the vertical position. This effect is clearer in the case of Re = 650 rather than Re = 2,550. This work has application to solar collectors.

  1. Noninvasive estimation of transmitral pressure drop across the normal mitral valve in humans: importance of convective and inertial forces during left ventricular filling

    NASA Technical Reports Server (NTRS)

    Firstenberg, M. S.; Vandervoort, P. M.; Greenberg, N. L.; Smedira, N. G.; McCarthy, P. M.; Garcia, M. J.; Thomas, J. D.

    2000-01-01

    OBJECTIVES: We hypothesized that color M-mode (CMM) images could be used to solve the Euler equation, yielding regional pressure gradients along the scanline, which could then be integrated to yield the unsteady Bernoulli equation and estimate noninvasively both the convective and inertial components of the transmitral pressure difference. BACKGROUND: Pulsed and continuous wave Doppler velocity measurements are routinely used clinically to assess severity of stenotic and regurgitant valves. However, only the convective component of the pressure gradient is measured, thereby neglecting the contribution of inertial forces, which may be significant, particularly for nonstenotic valves. Color M-mode provides a spatiotemporal representation of flow across the mitral valve. METHODS: In eight patients undergoing coronary artery bypass grafting, high-fidelity left atrial and ventricular pressure measurements were obtained synchronously with transmitral CMM digital recordings. The instantaneous diastolic transmitral pressure difference was computed from the M-mode spatiotemporal velocity distribution using the unsteady flow form of the Bernoulli equation and was compared to the catheter measurements. RESULTS: From 56 beats in 16 hemodynamic stages, inclusion of the inertial term ([deltapI]max = 1.78+/-1.30 mm Hg) in the noninvasive pressure difference calculation significantly increased the temporal correlation with catheter-based measurement (r = 0.35+/-0.24 vs. 0.81+/-0.15, p< 0.0001). It also allowed an accurate approximation of the peak pressure difference ([deltapc+I]max = 0.95 [delta(p)cathh]max + 0.24, r = 0.96, p<0.001, error = 0.08+/-0.54 mm Hg). CONCLUSIONS: Inertial forces are significant components of the maximal pressure drop across the normal mitral valve. These can be accurately estimated noninvasively using CMM recordings of transmitral flow, which should improve the understanding of diastolic filling and function of the heart.

  2. Subcooled Pool Boiling Heat Transfer Mechanisms in Microgravity: Terrier-improved Orion Sounding Rocket Experiment

    NASA Technical Reports Server (NTRS)

    Kim, Jungho; Benton, John; Kucner, Robert

    2000-01-01

    A microscale heater array was used to study boiling in earth gravity and microgravity. The heater array consisted of 96 serpentine heaters on a quartz substrate. Each heater was 0.27 square millimeters. Electronic feedback loops kept each heater's temperature at a specified value. The University of Maryland constructed an experiment for the Terrier-Improved Orion sounding rocket that was delivered to NASA Wallops and flown. About 200 s of high quality microgravity and heat transfer data were obtained. The VCR malfunctioned, and no video was acquired. Subsequently, the test package was redesigned to fly on the KC-135 to obtain both data and video. The pressure was held at atmospheric pressure and the bulk temperature was about 20 C. The wall temperature was varied from 85 to 65 C. Results show that gravity has little effect on boiling heat transfer at wall superheats below 25 C, despite vast differences in bubble behavior between gravity levels. In microgravity, a large primary bubble was surrounded by smaller bubbles, which eventually merged with the primary bubble. This bubble was formed by smaller bubbles coalescing, but had a constant size for a given superheat, indicating a balance between evaporation at the base and condensation on the cap. Most of the heaters under the bubble indicated low heat transfer, suggesting dryout at those heaters. High heat transfer occurred at the contact line surrounding the primary bubble. Marangoni convection formed a "jet" of fluid into the bulk fluid that forced the bubble onto the heater.

  3. How Does Water Boil?

    NASA Astrophysics Data System (ADS)

    Zahn, Dirk

    2004-11-01

    Insight into the boiling of water is obtained from molecular dynamics simulations. The process is initiated by the spontaneous formation of small vacuum cavities in liquid water. By themselves, these defects are very short lived. If, however, several cavities occur at close distances, they are likely to merge into larger vacuum holes. At the liquid-vapor interfaces, single or small groups of water molecules tend to leave the liquid surface. Once the system is propagated beyond the transition state, these evaporation events outnumber the competing reintegration into the hydrogen-bonded network.

  4. Effect of boiling surface vibration on heat transfer

    NASA Astrophysics Data System (ADS)

    Alangar, Sathyabhama

    2017-01-01

    Experimental investigation of effect of forced vertical surface vibration on nucleate pool boiling heat transfer of saturated water at atmospheric pressure is presented in this paper. Vertical vibration was induced externally to the circular copper test surface on which boiling took place, using a vibration exciter. Frequency was varied in the range 0-25 Hz and amplitude of vibration was varied in the range 0-5 mm. Boiling takes place at much lower superheats for the same heat flux, slope of boiling curve decreases remarkably, when the surface is given external excitation. High frequency and high amplitude oscillations lead to more intensive heat transfer. There are some combinations of frequency and vibration amplitude, which cause up to two times increase in heat transfer coefficients.

  5. The influence of nanoparticle migration on forced convective heat transfer of nanofluid under heating and cooling regimes.

    PubMed

    Kozlova, Sofya V; Ryzhkov, Ilya I

    2014-09-01

    In this paper, laminar convective heat transfer of water-alumina nanofluid in a circular tube with uniform heat flux at the tube wall is investigated. The investigation is performed numerically on the basis of two-component model, which takes into account nanoparticle transport by diffusion and thermophoresis. Two thermal regimes at the tube wall, heating and cooling, are considered and the influence of nanoparticle migration on the heat transfer is analyzed comparatively. The intensity of thermophoresis is characterized by a new empirical model for thermophoretic mobility. It is shown that the nanoparticle volume fraction decreases (increases) in the boundary layer near the wall under heating (cooling) due to thermophoresis. The corresponding variations of nanofluid properties and flow characteristics are presented and discussed. The intensity of heat transfer for the model with thermophoresis in comparison to the model without thermophoresis is studied by plotting the dependence of the heat transfer coefficient on the Peclet number. The effectiveness of water-alumina nanofluid is analyzed by plotting the average heat transfer coefficient against the required pumping power. The analysis of the results reveals that the water-alumina nanofluid shows better performance in the heating regime than in the cooling regime due to thermophoretic effect.

  6. Atmospheric forcing during active convection in the Labrador Sea and its impact on mixed-layer depth

    NASA Astrophysics Data System (ADS)

    Schulze, Lena M.; Pickart, Robert S.; Moore, G. W. K.

    2016-09-01

    Hydrographic data from the Labrador Sea collected in February-March 1997, together with atmospheric reanalysis fields, are used to explore relationships between the air-sea fluxes and the observed mixed-layer depths. The strongest winds and highest heat fluxes occurred in February, due to the nature and tracks of the storms. While greater numbers of storms occurred earlier and later in the winter, the storms in February followed a more organized track extending from the Gulf Stream region to the Irminger Sea where they slowed and deepened. The canonical low-pressure system that drives convection is located east of the southern tip of Greenland, with strong westerly winds advecting cold air off the ice edge over the warm ocean. The deepest mixed layers were observed in the western interior basin, although the variability in mixed-layer depth was greater in the eastern interior basin. The overall trend in mixed-layer depth through the winter in both regions of the basin was consistent with that predicted by a 1-D mixed-layer model. We argue that the deeper mixed layers in the west were due to the enhanced heat fluxes on that side of the basin as opposed to oceanic preconditioning.

  7. Magneto-convection.

    PubMed

    Stein, Robert F

    2012-07-13

    Convection is the transport of energy by bulk mass motions. Magnetic fields alter convection via the Lorentz force, while convection moves the fields via the curl(v×B) term in the induction equation. Recent ground-based and satellite telescopes have increased our knowledge of the solar magnetic fields on a wide range of spatial and temporal scales. Magneto-convection modelling has also greatly improved recently as computers become more powerful. Three-dimensional simulations with radiative transfer and non-ideal equations of state are being performed. Flux emergence from the convection zone through the visible surface (and into the chromosphere and corona) has been modelled. Local, convectively driven dynamo action has been studied. The alteration in the appearance of granules and the formation of pores and sunspots has been investigated. Magneto-convection calculations have improved our ability to interpret solar observations, especially the inversion of Stokes spectra to obtain the magnetic field and the use of helioseismology to determine the subsurface structure of the Sun.

  8. Dynamics of Vapour Bubbles in Nucleate Boiling. 1; Basic Equations of Bubble Evolution

    NASA Technical Reports Server (NTRS)

    Buyevich, Yu A.; Webbon, Bruce W.; Callaway, Robert (Technical Monitor)

    1995-01-01

    We consider the behaviour of a vapour bubble formed at a nucleation site on a heated horizontal wall. There is no forced convection of an ambient liquid, and the bubble is presumably separated from the wall by a thin liquid microlayer. The energy conservation law results in a variational equation for the mechanical energy of the whole system consisting of the bubble and liquid. It leads to a set of two strongly nonlinear equations which govern bubble expansion and motion of its centre of mass. A supplementary equation to find out the vapour temperature follows from consideration of heat transfer to the bubble, both from the bulk of surrounding liquid and through the microlayer. The average thickness of the microlayer is shown to increase monotonously with time as the bubble meniscus spreads along the wall. Bubble expansion is driven by the pressure head between vapour inside and liquid far away from the bubble, with due allowance for surface tension and gravity effects. It is resisted by inertia of liquid being placed into motion as the bubble grows. The inertia originates also a force that presses the bubble to the wall. This force is counteracted by the buoyancy and an effective surface tension force that tends to transform the bubble into a sphere. The analysis brings about quite a new formulation of the familiar problem of bubble growth and detachment under conditions of nucleate pool boiling.

  9. Effect of microscale protrusions on local fluid flow and mass transport in the presence of forced convection

    SciTech Connect

    Matzen, Gehard W.

    1997-01-01

    Three-dimensional creeping flow around single, axisymmetric protrusions is studied numerically using the boundary-integral technique. Emphasis is placed upon cylindrical protrusions on plane walls for various height-to-radius (h-to-a) aspect ratios, but cones and sections of spheres protruding from plane walls are also briefly examined. The presented items include shear-stress distributions, shear-stress contours, extents of the fluid-flow disturbance, total forces and torques on the cylinders, streamlines, and skin-friction lines. Also included is a discussion of flow topology around axisymmetric geometries. No flow reversal is observed for cylindrical protrusions with aspect ratios greater than 2.4 to 2.6. At higher aspect ratios, the fluid tends to be swept around cylindrical protrusions with little vertical motion. At lower aspect ratios, the strength of the recirculation increases, and the recirculation region becomes wider in the transverse direction and narrower in the flow direction. Also, the recirculation pattern begins to resemble the closed streamline patterns in two-dimensional flow over square ridges. However, unlike two-dimensional flow, closed streamline patterns are not observed. For arbitrary axisymmetric geometries, the extent of the fluid-flow disturbance can be estimated with the total force that is exerted on the protrusion. When the same force is exerted on protrusions with different aspect ratios, the protrusion with the higher aspect ratio tends to have a greater disturbance in the flow direction and a smaller disturbance in the transverse direction. The total force exerted on cylindrical protrusions with rounded corners is only slightly lower than the total force exerted on cylindrical protrusions with sharp corners.

  10. Boiling Fluids Behave Quite Differently in Space

    NASA Video Gallery

    The boiling process is really different in space, since the vapor phase of a boiling liquid does not rise via buoyancy. Spacecraft and Earth-based systems use boiling to efficiently remove large am...

  11. HORIZONTAL BOILING REACTOR SYSTEM

    DOEpatents

    Treshow, M.

    1958-11-18

    Reactors of the boiling water type are described wherein water serves both as the moderator and coolant. The reactor system consists essentially of a horizontal pressure vessel divided into two compartments by a weir, a thermal neutronic reactor core having vertical coolant passages and designed to use water as a moderator-coolant posltioned in one compartment, means for removing live steam from the other compartment and means for conveying feed-water and water from the steam compartment to the reactor compartment. The system further includes auxiliary apparatus to utilize the steam for driving a turbine and returning the condensate to the feed-water inlet of the reactor. The entire system is designed so that the reactor is self-regulating and has self-limiting power and self-limiting pressure features.

  12. When water does not boil at the boiling point.

    PubMed

    Chang, Hasok

    2007-03-01

    Every schoolchild learns that, under standard pressure, pure water always boils at 100 degrees C. Except that it does not. By the late 18th century, pioneering scientists had already discovered great variations in the boiling temperature of water under fixed pressure. So, why have most of us been taught that the boiling point of water is constant? And, if it is not constant, how can it be used as a 'fixed point' for the calibration of thermometers? History of science has the answers.

  13. Bubble Dynamics, Two-Phase Flow, and Boiling Heat Transfer in Microgravity

    NASA Technical Reports Server (NTRS)

    Chung, Jacob N.

    1996-01-01

    The objective of the research is to study the feasibility of employing an external force to replace the buoyancy force in order to maintain nucleate boiling in microgravity. We have found that a bulk velocity field, an electric field and an acoustic field could each play the role of the gravity field in microgravity. Nucleate boiling could be maintained by any one of the three external force fields in space.

  14. Electrohydrodynamics of boiling on microstructured surfaces for space applications

    NASA Astrophysics Data System (ADS)

    Saccone, Giacomo; Moran, Jeffrey L.; Bucci, Matteo; Buongiorno, Jacopo; di Marco, Paolo; Mit-Nuclear Science; Engineering Team; University Of Pisa-Destec Dept. Team

    2016-11-01

    Surface wettability is a major parameter in boiling heat transfer. It affects the departure of bubbles from the boiling surface and consequently determines the maximum heat flux transferrable in safe conditions, known as critical heat flux (CHF). Surface wettability can be enhanced through passive techniques, including micro-engineered surfaces and coatings, or through active techniques, e.g. by applying a tunable electric field (electrowetting) that modifies the bubble shape in such a way as to drive bubble detachment. The latter technique is particularly interesting for space applications, where the electric field is used to create a body force that compensates for the absence of gravity. The present work is focused on boiling heat transfer on surfaces whose wettability has been modified by passive and active techniques. We have built a pool boiling apparatus composed of a micro-structured heater acting as boiling surface and an axisymmetric electrode High-speed optical and infrared imaging have been used to investigate the dynamics of boiling phenomena. The aims of this project are twofold: to achieve a superior understanding of wetting phenomena, and to improve the efficiency of cooling devices for space applications.

  15. Near-wall measurements of the bubble- and Lorentz-force-driven convection at gas-evolving electrodes

    NASA Astrophysics Data System (ADS)

    Baczyzmalski, Dominik; Weier, Tom; Kähler, Christian J.; Cierpka, Christian

    2015-08-01

    Chemical energy storage systems, e.g., in the form of hydrogen or methanol, have a great potential for the establishment of volatile renewable energy sources due to the large energy density. The efficiency of hydrogen production through water electrolysis is, however, limited by gas bubbles evolving at the electrode's surface and can be enhanced by an accelerated bubble detachment. In order to characterize the complex multi-phase flow near the electrode, simultaneous measurements of the fluid velocities and the size and trajectories of hydrogen bubbles were performed in a water electrolyzer. The liquid phase velocity was measured by PIV/PTV, while shadowgraphy was used to determine the bubble trajectories. Special measurement and evaluation techniques had to be applied as the measurement uncertainty is strongly affected by the high void fraction close to the wall. In particular, the application of an advanced PTV scheme allowed for more precise fluid velocity measurements closer to electrode. Based on these data, stability characteristics of the near-wall flow were evaluated and compared to that of a wall jet. PTV was used as well to investigate the effect of Lorentz forces on the near-wall fluid velocities. The results show a significantly increased wall parallel liquid phase velocity with increasing Lorentz forces. It is presumed that this enhances the detachment of hydrogen bubbles from the electrode surface and, consequently, decreases the fractional bubble coverage and improves the efficiency. In addition, the effect of large rising bubbles with path oscillations on the near-wall flow was investigated. These bubbles can have a strong impact on the mass transfer near the electrode and thus affect the performance of the process.

  16. The Gibbs Energy Basis and Construction of Boiling Point Diagrams in Binary Systems

    ERIC Educational Resources Information Center

    Smith, Norman O.

    2004-01-01

    An illustration of how excess Gibbs energies of the components in binary systems can be used to construct boiling point diagrams is given. The underlying causes of the various types of behavior of the systems in terms of intermolecular forces and the method of calculating the coexisting liquid and vapor compositions in boiling point diagrams with…

  17. Film boiling of mercury droplets

    NASA Technical Reports Server (NTRS)

    Baumeister, K. J.; Schoessow, G. J.; Chmielewski, C. E.

    1975-01-01

    Vaporization times of mercury droplets in Leidenfrost film boiling on a flat horizontal plate are measured in an air atmosphere. Extreme care was used to prevent large amplitude droplet vibrations and surface wetting; therefore, these data can be compared to film boiling theory. Diffusion from the upper surface of the drop appears as a dominant mode of mass transfer from the drop. A closed-form analytical film boiling theory is developed to account for the diffusive evaporation. Reasonable agreement between data and theory is seen.

  18. Film boiling of mercury droplets

    NASA Technical Reports Server (NTRS)

    Baumeister, K. J.; Schoessow, G. J.; Chmielewski, C. E.

    1975-01-01

    Vaporization times of mercury droplets in Leidenfrost film boiling on a flat horizontal plate are measured in an air atmosphere. Extreme care was used to prevent large amplitude droplet vibrations and surface wetting; therefore, these data can be compared to film boiling theory. For these data, diffusion from the upper surface of the drop is a dominant mode of mass transfer from the drop. A closed-form analytical film boiling theory is developed to account for the diffusive evaporation. Reasonable agreement between data and theory is seen.

  19. Measurement and modelling of forced convective heat transfer coefficient and pressure drop of Al2O3- and SiO2-water nanofluids

    NASA Astrophysics Data System (ADS)

    Julia, J. E.; Hernández, L.; Martínez-Cuenca, R.; Hibiki, T.; Mondragón, R.; Segarra, C.; Jarque, J. C.

    2012-11-01

    Forced convective heat transfer coefficient and pressure drop of SiO2- and Al2O3-water nanofluids were characterized. The experimental facility was composed of thermal-hydraulic loop with a tank with an immersed heater, a centrifugal pump, a bypass with a globe valve, an electromagnetic flow-meter, a 18 kW in-line pre-heater, a test section with band heaters, a differential pressure transducer and a heat exchanger. The test section consists of a 1000 mm long aluminium pipe with an inner diameter of 31.2 mm. Eighteen band heaters were placed all along the test section in order to provide a uniform heat flux. Heat transfer coefficient was calculated measuring fluid temperature using immersed thermocouples (Pt100) placed at both ends of the test section and surface thermocouples in 10 axial locations along the test section (Pt1000). The measurements have been performed for different nanoparticles (Al2O3 and SiO2 with primary size of 11 nm and 12 nm, respectively), volume concentrations (1% v., 5% v.), and flow rates (3 103Re<105). Maximum heat transfer coefficient enhancement (300%) and pressure drop penalty (1000%) is obtained with 5% v. SiO2 nanofluid. Existing correlations can predict, at least in a first approximation, the heat transfer coefficient and pressure drop of nanofluids if thermal conductivity, viscosity and specific heat were properly modelled.

  20. Developing the laminar MHD forced convection flow of water/FMWNT carbon nanotubes in a microchannel imposed the uniform heat flux

    NASA Astrophysics Data System (ADS)

    Karimipour, Arash; Taghipour, Abdolmajid; Malvandi, Amir

    2016-12-01

    This paper aims to investigate magnetic field and slip effects on developing laminar forced convection of nanofluids in the microchannels. A novel mixture of water and FMWNT carbon nanotubes is used as the working fluid. To do this, fluid flow and heat transfer through a microchannel is simulated by a computer code in FORTRAN language. The mixture of FMWNT carbon nanotubes suspended in water is considered as the nanofluid. Slip velocity is supposed as the hydrodynamic boundary condition while the microchannel's lower wall is insulated and the top wall is under the effect of a constant heat flux. Moreover, the flow field is subjected to a magnetic field with a constant strength. The results are presented as the velocity, temperature and Nusselt number profiles. It is observed that nanofluid composed of water and carbon nanotubes (FMWNT) can work well to increase the heat transfer rate along the microchannel walls. Furthermore, it is indicated that imposing the magnetic field is very effective at the thermally developing region. In contrast, the magnetic field effect at fully developed region is insignificant, especially at low values of Reynolds number.

  1. Flow Boiling and Condensation Experiment

    NASA Video Gallery

    The Flow Boiling and Condensation Experiment is another investigation that examines the flow of a mixture of liquids and the vapors they produce when in contact with hot space system equipment. Coo...

  2. Force.

    ERIC Educational Resources Information Center

    Gamble, Reed

    1989-01-01

    Discusses pupil misconceptions concerning forces. Summarizes some of Assessment of Performance Unit's findings on meaning of (1) force, (2) force and motion in one dimension and two dimensions, and (3) Newton's second law. (YP)

  3. Characterization of Convective Boiling in Branching Channel Heat Sinks

    DTIC Science & Technology

    2009-05-06

    gas-liquid flows and compared with existing void fraction correlations and regime maps, respectively. Two methods for assessing void fraction were...basis, where regional is defined as a field of view within a single branch of the fractal-like branching heat sink. An epi-fluorescent U.PIV method ...was used to determine time-averaged local liquid phase velocities. The gas phase velocities in gas-liquid flows were determined using a tracking method

  4. Boiling heat transfer and droplet spreading of nanofluids.

    PubMed

    Murshed, S M Sohel; de Castro, C A Nieto

    2013-11-01

    Nanofluids- a new class of heat transfer fluids have recently been a very attractive area of research due to their fascinating thermophysical properties and numerous potential benefits and applications in many important fields. However, there are many controversies and inconsistencies in reported arguments and experimental results on various thermal characteristics such as effective thermal conductivity, convective heat transfer coefficient and boiling heat transfer rate of nanofluids. As of today, researchers have mostly focused on anomalous thermal conductivity of nanofluids. Although investigations on boiling and droplet spreading are very important for practical application of nanofluids as advanced coolants, considerably fewer efforts have been made on these thermal features of nanofluids. In this paper, recent research and development in boiling heat transfer and droplet spreading of nanofluids are reviewed together with summarizing most related patents on nanofluids published in literature. Review reveals that despite some inconsistent results nanofluids exhibit significantly higher boiling heat transfer performance compared to their base fluids and show great promises to be used as advanced heat transfer fluids in numerous applications. However, there is a clear lack of in-depth understanding of heat transport mechanisms during phase change of nanofluids. It is also found that the nanofluids related patents are limited and among them most of the patents are based on thermal conductivity enhancement and synthesising processes of specific type of nanofluids.

  5. Simulated convective systems using a cloud resolving model: Impact of large-scale temperature and moisture forcing using observations and GEOS-3 reanalysis

    NASA Technical Reports Server (NTRS)

    Shie, C.-L.; Tao, W.-K.; Hou, A.; Lin, X.

    2006-01-01

    The GCE (Goddard Cumulus Ensemble) model, which has been developed and improved at NASA Goddard Space Flight Center over the past two decades, is considered as one of the finer and state-of-the-art CRMs (Cloud Resolving Models) in the research community. As the chosen CRM for a NASA Interdisciplinary Science (IDS) Project, GCE has recently been successfully upgraded into an MPI (Message Passing Interface) version with which great improvement has been achieved in computational efficiency, scalability, and portability. By basically using the large-scale temperature and moisture advective forcing, as well as the temperature, water vapor and wind fields obtained from TRMM (Tropical Rainfall Measuring Mission) field experiments such as SCSMEX (South China Sea Monsoon Experiment) and KWAJEX (Kwajalein Experiment), our recent 2-D and 3-D GCE simulations were able to capture detailed convective systems typical of the targeted (simulated) regions. The GEOS-3 [Goddard EOS (Earth Observing System) Version-3] reanalysis data have also been proposed and successfully implemented for usage in the proposed/performed GCE long-term simulations (i.e., aiming at producing massive simulated cloud data -- Cloud Library) in compensating the scarcity of real field experimental data in both time and space (location). Preliminary 2-D or 3-D pilot results using GEOS-3 data have generally showed good qualitative agreement (yet some quantitative difference) with the respective numerical results using the SCSMEX observations. The first objective of this paper is to ensure the GEOS-3 data quality by comparing the model results obtained from several pairs of simulations using the real observations and GEOS-3 reanalysis data. The different large-scale advective forcing obtained from these two kinds of resources (i.e., sounding observations and GEOS-3 reanalysis) has been considered as a major critical factor in producing various model results. The second objective of this paper is therefore to

  6. Anomalously weak solar convection.

    PubMed

    Hanasoge, Shravan M; Duvall, Thomas L; Sreenivasan, Katepalli R

    2012-07-24

    Convection in the solar interior is thought to comprise structures on a spectrum of scales. This conclusion emerges from phenomenological studies and numerical simulations, though neither covers the proper range of dynamical parameters of solar convection. Here, we analyze observations of the wavefield in the solar photosphere using techniques of time-distance helioseismology to image flows in the solar interior. We downsample and synthesize 900 billion wavefield observations to produce 3 billion cross-correlations, which we average and fit, measuring 5 million wave travel times. Using these travel times, we deduce the underlying flow systems and study their statistics to bound convective velocity magnitudes in the solar interior, as a function of depth and spherical-harmonic degree ℓ. Within the wavenumber band ℓ < 60, convective velocities are 20-100 times weaker than current theoretical estimates. This constraint suggests the prevalence of a different paradigm of turbulence from that predicted by existing models, prompting the question: what mechanism transports the heat flux of a solar luminosity outwards? Advection is dominated by Coriolis forces for wavenumbers ℓ < 60, with Rossby numbers smaller than approximately 10(-2) at r/R([symbol: see text]) = 0.96, suggesting that the Sun may be a much faster rotator than previously thought, and that large-scale convection may be quasi-geostrophic. The fact that isorotation contours in the Sun are not coaligned with the axis of rotation suggests the presence of a latitudinal entropy gradient.

  7. Anomalously Weak Solar Convection

    NASA Technical Reports Server (NTRS)

    Hanasoge, Shravan M.; Duvall, Thomas L.; Sreenivasan, Katepalli R.

    2012-01-01

    Convection in the solar interior is thought to comprise structures on a spectrum of scales. This conclusion emerges from phenomenological studies and numerical simulations, though neither covers the proper range of dynamical parameters of solar convection. Here, we analyze observations of the wavefield in the solar photosphere using techniques of time-distance helioseismology to image flows in the solar interior. We downsample and synthesize 900 billion wavefield observations to produce 3 billion cross-correlations, which we average and fit, measuring 5 million wave travel times. Using these travel times, we deduce the underlying flow systems and study their statistics to bound convective velocity magnitudes in the solar interior, as a function of depth and spherical- harmonic degree l..Within the wavenumber band l < 60, convective velocities are 20-100 times weaker than current theoretical estimates. This constraint suggests the prevalence of a different paradigm of turbulence from that predicted by existing models, prompting the question: what mechanism transports the heat flux of a solar luminosity outwards? Advection is dominated by Coriolis forces for wavenumbers l < 60, with Rossby numbers smaller than approximately 10(exp -2) at r/R-solar = 0.96, suggesting that the Sun may be a much faster rotator than previously thought, and that large-scale convection may be quasi-geostrophic. The fact that isorotation contours in the Sun are not coaligned with the axis of rotation suggests the presence of a latitudinal entropy gradient.

  8. Development of Flow Boiling and Condensation Experiment on the International Space Station- Normal and Low Gravity Flow Boiling Experiment Development and Test Results

    NASA Technical Reports Server (NTRS)

    Nahra, Henry K.; Hall, Nancy R.; Hasan, Mohammad M.; Wagner, James D.; May, Rochelle L.; Mackey, Jeffrey R.; Kolacz, John S.; Butcher, Robert L.; Frankenfield, Bruce J.; Mudawar, Issam; Konichi, Chris; Hyounsoon, Lee

    2013-01-01

    Flow boiling and condensation have been identified as two key mechanisms for heat transport that are vital for achieving weight and volume reduction as well as performance enhancement in future space systems. Since inertia driven flows are demanding on power usage, lower flows are desirable. However, in microgravity, lower flows are dominated by forces other than inertia (like the capillary force). It is of paramount interest to investigate limits of low flows beyond which the flow is inertial enough to be gravity independent. One of the objectives of the Flow Boiling and Condensation Flight Experiment sets to investigate these limits for flow boiling and condensation. A two-phase flow loop consisting of a Flow Boiling Module and two Condensation Modules has been developed to experimentally study flow boiling condensation heat transfer in the reduced gravity environment provided by the reduced gravity platform. This effort supports the development of a flow boiling and condensation facility for the International Space Station (ISS). The closed loop test facility is designed to deliver the test fluid, FC-72 to the inlet of any one of the test modules at specified thermodynamic and flow conditions. The zero-g-aircraft tests will provide subcooled and saturated flow boiling critical heat flux and flow condensation heat transfer data over wide range of flow velocities. Additionally, these tests will verify the performance of all gravity sensitive components, such as evaporator, condenser and accumulator associated with the two-phase flow loop. We will present in this paper the breadboard development and testing results which consist of detailed performance evaluation of the heater and condenser combination in reduced and normal gravity. We will also present the design of the reduced gravity aircraft rack and the results of the ground flow boiling heat transfer testing performed with the Flow Boiling Module that is designed to investigate flow boiling heat transfer and

  9. Partial Nucleate Pool Boiling at Low Heat Flux: Preliminary Ground Test for SOBER-SJ10

    NASA Astrophysics Data System (ADS)

    Wu, Ke; Li, Zhen-Dong; Zhao, Jian-Fu; Li, Hui-Xiong; Li, Kai

    2016-05-01

    Focusing on partial nucleate pool boiling at low heat flux, SOBER-SJ10, one of 27 experiments of the program SJ-10, has been proposed to study local convection and heat transfer around an isolated growing vapor bubble during nucleate pool boiling on a well characterized flat surface in microgravity. An integrated micro heater has been developed. By using a local pulse overheating method in the experimental mode of single bubble boiling, a bubble nucleus can be excited with accurate spatial and temporal positioning on the top-side of a quartz glass substrate with a thickness of 2 mm and an effective heating area of 4.5 mm in diameter, and then grows under an approximate constant heat input provided by the main heater on the back-side of the substrate. Ten thin film micro-RTDs are used for local temperature measurements on the heating surface underneath the growing bubble. Normal pool boiling experiments can also be carried out with step-by-step increase of heating voltage. A series of ground test of the flight module of SOBER-SJ10 have been conducted. Good agreement of the measured data of single phase natural convection with the common-used empirical correlation warrants reasonable confidence in the data. It is found that the values of the incipience superheat of pool boiling at different subcooling are consistent with each others, verifying that the influence of subcooling on boiling incipience can be neglected. Pool boiling curves are also obtained, which shows great influence of subcooling on heat transfer of partial nucleate pool boiling, particularly in lower heat flux.

  10. Microscale Heaters Detailed Boiling Behavior in Normal Gravity and Microgravity

    NASA Technical Reports Server (NTRS)

    McQuillen, John B.

    2002-01-01

    Pool boiling in microgravity is an area of both scientific and practical interest. Conducting tests in microgravity, as well as lunar and Martian gravity, makes it possible to assess the effect of the density difference between the vapor and liquid phases on the overall boiling process and to assess the relative magnitude of these effects in comparison to other "forces" and phenomena, such as surface tension forces, liquid momentum forces, and microlayer evaporation. The microscale heater developed under a NASA Glenn Research Center grant serves as a unique tool to probe the fundamental mechanisms associated with pool boiling. An experimental package was designed and built by the University of Maryland and tested on the NASA Johnson Space Center KC-135 experimental aircraft and a NASA WFF Terrier Orion Sounding Rocket under NASA Grants NAG3-2228 and NCC3-783. A square array of 96 microscale heaters was constructed and installed into a special boiling chamber. A fluorinert, FC-72, was used as the test fluid. A variety of tests were conducted at different pressures, heater wall temperatures, bulk fluid temperatures, and gravity levels.

  11. Supergranular Convection

    NASA Astrophysics Data System (ADS)

    Udayashankar, Paniveni

    2015-12-01

    Observation of the Solar photosphere through high resolution instruments have long indicated that the surface of the Sun is not a tranquil, featureless surface but is beset with a granular appearance. These cellular velocity patterns are a visible manifestation of sub- photospheric convection currents which contribute substantially to the outward transport of energy from the deeper layers, thus maintaining the energy balance of the Sun as a whole.Convection is the chief mode of transport in the outer layers of all cool stars such as the Sun (Noyes,1982). Convection zone of thickness 30% of the Solar radius lies in the sub-photospheric layers of the Sun. Here the opacity is so large that heat flux transport is mainly by convection rather than by photon diffusion. Convection is revealed on four scales. On the scale of 1000 km, it is granulation and on the scale of 8-10 arcsec, it is Mesogranulation. The next hierarchial scale of convection , Supergranules are in the range of 30-40 arcsec. The largest reported manifestation of convection in the Sun are ‘Giant Cells’or ‘Giant Granules’, on a typical length scale of about 108 m.'Supergranules' is caused by the turbulence that extends deep into the convection zone. They have a typical lifetime of about 20hr with spicules marking their boundaries. Gas rises in the centre of the supergranules and then spreads out towards the boundary and descends.Broadly speaking supergranules are characterized by the three parameters namely the length L, the lifetime T and the horizontal flow velocity vh . The interrelationships amongst these parameters can shed light on the underlying convective processes and are in agreement with the Kolmogorov theory of turbulence as applied to large scale solar convection (Krishan et al .2002 ; Paniveni et. al. 2004, 2005, 2010).References:1) Noyes, R.W., The Sun, Our Star (Harvard University Press, 1982)2) Krishan, V., Paniveni U., Singh , J., Srikanth R., 2002, MNRAS, 334/1,2303) Paniveni

  12. Numerical Investigation of Microgravity Tank Pressure Rise Due to Boiling

    NASA Technical Reports Server (NTRS)

    Hylton, Sonya; Ibrahim, Mounir; Kartuzova, Olga; Kassemi, Mohammad

    2015-01-01

    The ability to control self-pressurization in cryogenic storage tanks is essential for NASAs long-term space exploration missions. Predictions of the tank pressure rise in Space are needed in order to inform the microgravity design and optimization process. Due to the fact that natural convection is very weak in microgravity, heat leaks into the tank can create superheated regions in the liquid. The superheated regions can instigate microgravity boiling, giving rise to pressure spikes during self-pressurization. In this work, a CFD model is developed to predict the magnitude and duration of the microgravity pressure spikes. The model uses the Schrage equation to calculate the mass transfer, with a different accommodation coefficient for evaporation at the interface, condensation at the interface, and boiling in the bulk liquid. The implicit VOF model was used to account for the moving interface, with bounded second order time discretization. Validation of the models predictions was carried out using microgravity data from the Tank Pressure Control Experiment, which flew aboard the Space Shuttle Mission STS-52. Although this experiment was meant to study pressurization and pressure control, it underwent boiling during several tests. The pressure rise predicted by the CFD model compared well with the experimental data. The ZBOT microgravity experiment is scheduled to fly on February 2016 aboard the ISS. The CFD model was also used to perform simulations for setting parametric limits for the Zero-Boil-Off Tank (ZBOT) Experiments Test Matrix in an attempt to avoid boiling in the majority of the test runs that are aimed to study pressure increase rates during self-pressurization. *Supported in part by NASA ISS Physical Sciences Research Program, NASA HQ, USA

  13. Gravity and Heater Size Effects on Pool Boiling Heat Transfer

    NASA Technical Reports Server (NTRS)

    Kim, Jungho; Raj, Rishi

    2014-01-01

    The current work is based on observations of boiling heat transfer over a continuous range of gravity levels between 0g to 1.8g and varying heater sizes with a fluorinert as the test liquid (FC-72/n-perfluorohexane). Variable gravity pool boiling heat transfer measurements over a wide range of gravity levels were made during parabolic flight campaigns as well as onboard the International Space Station. For large heaters and-or higher gravity conditions, buoyancy dominated boiling and heat transfer results were heater size independent. The power law coefficient for gravity in the heat transfer equation was found to be a function of wall temperature under these conditions. Under low gravity conditions and-or for smaller heaters, surface tension forces dominated and heat transfer results were heater size dependent. A pool boiling regime map differentiating buoyancy and surface tension dominated regimes was developed along with a unified framework that allowed for scaling of pool boiling over a wide range of gravity levels and heater sizes. The scaling laws developed in this study are expected to allow performance quantification of phase change based technologies under variable gravity environments eventually leading to their implementation in space based applications.

  14. Modeling and experiments for wall heat flux partitioning during subcooled flow boiling of water at low pressures

    NASA Astrophysics Data System (ADS)

    Basu, Nilanjana

    Void fraction during subcooled flow boiling depends on the amount of vapor generated at the wall and condensation in the bulk. Partitioning of heat flux at the wall is required to determine the fraction of the energy that is utilized for vapor production. The wall heat flux models currently available in the literature were developed for high-pressure applications and have too much empiricism built into them. As such their deficiencies become pronounced when applied to low pressures (1--5 bar), which are of interest in passively cooled advanced reactors (e.g., AP 600). In this work a mechanistic model for nucleate boiling heat flux as a function of wall superheat has been developed. The premise of the proposed model is that the entire energy from the wall is first transferred to the superheated liquid layer adjacent to the wall, either by transient conduction or forced convection. A fraction of this energy is then utilized for vapor generation. Contribution of each of the heat transfer mechanism---forced convection, transient conduction, and vapor generation, has been quantified in terms of nucleation site densities, bubble departure and lift off diameters, bubble release frequency, flow parameters like velocity, inlet subcooling, wall superheat, and fluid and surface properties, including system pressures. In this work, the vapor generation component at the wall is computed independently and not as factors of other wall heat flux components as has been done in most past studies. To support the model development, subcooled flow boiling experiments were conducted at pressures of 1.03 to 3.2 bar for a wide range of mass fluxes (124 kg/m2s to 926 kg/m2s ), heat fluxes (2.5 W/cm2 to 113 W/cm2) and for contact angles varying from 30° to 90°. These experiments were conducted using a vertical Copper plate and a Zircalloy-4 nine-rod bundle. Experimental data were also utilized for developing empirical correlations for nucleation site density, bubble departure and lift off

  15. Mathematical and experimental modeling of nucleate boiling heat transfer in liquid nitrogen

    NASA Astrophysics Data System (ADS)

    Fusco, Ciro

    The investigation of nucleate boiling heat transfer, because of its complexity, is usually carried out experimentally and by using phenomenological approximations. The purpose of this work is to capture the essential features of nucleate boiling heat transfer in liquid nitrogen and to formulate a theoretical description useful for the prediction of the temperature fluctuations and beat flux. Experimental analysis was coupled with mathematical modeling to elucidate nucleate boiling heat transfer. The experimental setting consists of a platinum wire immersed in liquid nitrogen. A current is passed through the wire while the resistance is measured. The orientation of the wire can be changed from horizontal to vertical. The fluctuations of the wire temperature are measured. Using high-speed analysis, we characterized nucleate boiling heat transfer from the wire as occurring in two distinct phases or regimes: discrete nucleate boiling and transition boiling. We defined discrete nucleate boiling as the phase during which the active nucleation sites are clearly distinguishable from one another with no bubble coalescence occurring between adjacent sites. The high-speed analysis helped also to compute the frequencies, diameters, and nucleation density of departing bubbles as well as the energy loss by a single bubble during the discrete nucleate boiling regime. These parameters were subsequently used to formulate a mathematical model to simulate by discrete time steps the discrete nucleate boiling heat transfer from the platinum wire. The average temperature of the wire can be adequately modeled with only one variable, the power input. In addition to predicting the average temperature of the wire in the discrete nucleate boiling regime the model predicts well the average temperature of the wire in the conduction and convection regime and the transition regime. The model also reproduces the fluctuation of temperature in the discrete nucleate boiling regime. The mathematical

  16. Bubble dynamics, two-phase flow, and boiling heat transfer in a microgravity environment

    NASA Technical Reports Server (NTRS)

    Chung, Jacob N.

    1994-01-01

    The two-phase bubbly flow and boiling heat transfer in microgravity represents a substantial challenge to scientists and engineers and yet there is an urgent need to seek fundamental understanding in this area for future spacecraft design and space missions. At Washington State University, we have successfully designed, built and tested a 2.1 second drop tower with an innovation airbag deceleration system. Microgravity boiling experiments performed in our 0.6 second Drop Tower produced data flow visualizations that agree with published results and also provide some new understanding concerning flow boiling and microgravity bubble behavior. On the analytical and numerical work, the edge effects of finite divergent electrode plates on the forces experienced by bubbles were investigated. Boiling in a concentric cylinder microgravity and an electric field was numerically predicted. We also completed a feasibility study for microgravity boiling in an acoustic field.

  17. The Gibbs Energy Basis and Construction of Boiling Point Diagrams in Binary Systems

    NASA Astrophysics Data System (ADS)

    Smith, Norman O.

    2004-03-01

    Following an earlier paper ( J. Chem. Educ. 1997, 74, 1080-1084 ) on binary melting point diagrams, a method of constructing boiling point diagrams for each of the kinds of behavior of binary miscible liquid pairs (those without an azeotrope, those with a maximum boiling azeotrope, and those with a minimum boiling azeotrope) is described and illustrated. Necessary data are the boiling points and enthalpies of vaporization of the components, and parameters relating the activity coefficients of the liquid components to their concentrations. The procedure requires the solution of pairs of simultaneous equations by the method of successive approximation. It is shown how the resulting diagram reflects the nature of the intermolecular forces and the proximity of the boiling points of the components to each other.

  18. The potential for free and mixed convection in sedimentary basins

    USGS Publications Warehouse

    Raffensperger, J.P.; Vlassopoulos, D.

    1999-01-01

    Free thermal convection and mixed convection are considered as potential mechanisms for mass and heat transport in sedimentary basins. Mixed convection occurs when horizontal flows (forced convection) are superimposed on thermally driven flows. In cross section, mixed convection is characterized by convection cells that migrate laterally in the direction of forced convective flow. Two-dimensional finite-element simulations of variable-density groundwater flow and heat transport in a horizontal porous layer were performed to determine critical mean Rayleigh numbers for the onset of free convection, using both isothermal and semi-conductive boundaries. Additional simulations imposed a varying lateral fluid flux on the free-convection pattern. Results from these experiments indicate that forced convection becomes dominant, completely eliminating buoyancy-driven circulation, when the total forced-convection fluid flux exceeds the total flux possible due to free convection. Calculations of the thermal rock alteration index (RAI=q????T) delineate the patterns of potential diagenesis produced by fluid movement through temperature gradients. Free convection produces a distinct pattern of alternating positive and negative RAIs, whereas mixed convection produces a simpler layering of positive and negative values and in general less diagenetic alteration. ?? Springer-Verlag.

  19. Effect of ice contamination of liquid-nitrogen drops in film boiling

    NASA Technical Reports Server (NTRS)

    Schoessow, G. J.; Chmielewski, C. E.; Baumeister, K. J.

    1977-01-01

    Previously reported vaporization time data of liquid nitrogen drops in film boiling on a flat plate are about 30 percent shorter than predicted from standard laminar film boiling theory. This theory, however, had been found to successfully correlate the data for conventional fluids such as water, ethanol, benzene, or carbon tetrachloride. Experimental evidence that some of the discrepancy for cryogenic fluids results from ice contamination due to condensation is presented. The data indicate a fairly linear decrease in droplet evaporation time with the diameter of the ice crystal residue. After correcting the raw data for ice contamination along with convection, a comparison of theory with experiment shows good agreement.

  20. Effect of ice contamination on liquid-nitrogen drops in film boiling

    NASA Technical Reports Server (NTRS)

    Schoessow, G. J.; Chmielewski, C. E.; Baumeister, K. J.

    1977-01-01

    Previously reported vaporization time data of liquid nitrogen drops in film boiling on a flat plate are about 30 percent shorter than predicted from standard laminar film boiling theory. This theory, however, had been found to successfully correlate the data for conventional fluids such as water, ethanol, benzene, or carbon tetrachloride. This paper presents experimental evidence that some of the discrepancy for cryogenic fluids results from ice contamination due to condensation. The data indicate a fairly linear decrease in droplet evaporation time with the diameter of the ice crystal residue. After correcting the raw data for ice contamination along with convection, a comparison of theory with experiment shows good agreement.

  1. Convection towers

    DOEpatents

    Prueitt, M.L.

    1996-01-16

    Convection towers which are capable of cleaning the pollution from large quantities of air, of generating electricity, and of producing fresh water utilize the evaporation of water sprayed into the towers to create strong airflows and to remove pollution from the air. Turbines in tunnels at the skirt section of the towers generate electricity, and condensers produce fresh water. 6 figs.

  2. Modeling Convection

    ERIC Educational Resources Information Center

    Ebert, James R.; Elliott, Nancy A.; Hurteau, Laura; Schulz, Amanda

    2004-01-01

    Students must understand the fundamental process of convection before they can grasp a wide variety of Earth processes, many of which may seem abstract because of the scales on which they operate. Presentation of a very visual, concrete model prior to instruction on these topics may facilitate students' understanding of processes that are largely…

  3. Convection towers

    DOEpatents

    Prueitt, Melvin L.

    1995-01-01

    Convection towers which are capable of cleaning the pollution from large quantities of air, of generating electricity, and of producing fresh water utilize the evaporation of water sprayed into the towers to create strong airflows and to remove pollution from the air. Turbines in tunnels at the skirt section of the towers generate electricity, and condensers produce fresh water.

  4. Convection towers

    DOEpatents

    Prueitt, Melvin L.

    1996-01-01

    Convection towers which are capable of cleaning the pollution from large quantities of air, of generating electricity, and of producing fresh water utilize the evaporation of water sprayed into the towers to create strong airflows and to remove pollution from the air. Turbines in tunnels at the skirt section of the towers generate electricity, and condensers produce fresh water.

  5. Convection towers

    DOEpatents

    Prueitt, Melvin L.

    1994-01-01

    Convection towers which are capable of cleaning the pollution from large quantities of air and of generating electricity utilize the evaporation of water sprayed into the towers to create strong airflows and to remove pollution from the air. Turbines in tunnels at the skirt section of the towers generate electricity. Other embodiments may also provide fresh water, and operate in an updraft mode.

  6. Marangoni Effects in the Boiling of Binary Fluid Mixtures

    NASA Technical Reports Server (NTRS)

    Ahmed, Sayeed; Carey, Van P.; Motil, Brian

    1996-01-01

    Results of very recent experimental studies indicate that during nucleate boiling in some binary mixture, Marangoni effects augment the gravity driven flow of liquid towards the heated surface. With gravity present, it is impossible to separate the two effects. The reduced gravity environment gives an unique opportunity to explore th role of Marangoni effects on the boiling mechanisms free of gravitational body forces that obscure the role of such effects. However, recent experimental results suggest that under reduced gravity conditions, Marangoni effects is the dominant mechanism of vapor-liquid exchange at the surface for some binary mixture. To further explore such effects, experiments have been conducted with water/2-propanol mixtures at three different concentrations under normal gravity with different orientations of the heater surface and under reduce gravity aboard the DC-9 aircraft at NASA Lewis Research Center. The system pressure was sub atmospheric (approx. 8 kP at 1g(n)) and the bulk liquid temperature varied from low subcooling to near saturation. The molar concentrations of 2-propanol tested were 0.015, 0.025, and 0.1. Boiling curves were obtained both for high gravity (approx. 2g(n)) and reduce gravity (approx. 0.01g(n)). For each concentration of 2-propanol, the critical heat flux has been determined in the flight experiments only for reduced gravity conditions. Comparison of boiling curves and CHF obtained under l-g(n) an reduced gravity indicates that boiling mechanism in this mixtures is nearly independent of gravity. The results also indicate that the Marangoni mechanism is strong enough in these mixtures to sustain the boiling under reduced gravity conditions.

  7. Prediction and rational correlation of thermophoretically reduced particle mass transfer to hot surfaces across laminar or turbulent forced-convection gas boundary layers

    NASA Technical Reports Server (NTRS)

    Gokoglu, Suleyman A.; Rosner, Daniel E.

    1986-01-01

    A formulation previously developed to predict and correlate the thermophoretically-augmented submicron particle mass transfer rate to cold surfaces is found to account for the thermophoretically reduced particle mass transfer rate to overheated surfaces such that thermophoresis brings about a 10-decade reduction below the convective mass transfer rate expected by pure Brownian diffusion and convection alone. Thermophoretic blowing is shown to produce effects on particle concentration boundary-layer (BL) structure and wall mass transfer rates similar to those produced by real blowing through a porous wall. The applicability of the correlations to developing BL-situations is demonstrated by a numerical example relevant to wet-steam technology.

  8. The myth of the boiling point.

    PubMed

    Chang, Hasok

    2008-01-01

    Around 1800, many reputable scientists reported significant variations in the temperature of pure water boiling under normal atmospheric pressure. The reported variations included a difference of over 1 degree C between boiling in metallic and glass vessels (Gay-Lussac), and "superheating" up to 112 degrees C on extracting dissolved air out of water (De Luc). I have confirmed most of these observations in my own experiments, many of which are described in this paper. Water boils at the "boiling point" only under very particular circumstances. Our common-sense intuition about the fixedness of the boiling point is only sustained by our limited experience.

  9. Anomalously weak solar convection

    PubMed Central

    Hanasoge, Shravan M.; Duvall, Thomas L.

    2012-01-01

    Convection in the solar interior is thought to comprise structures on a spectrum of scales. This conclusion emerges from phenomenological studies and numerical simulations, though neither covers the proper range of dynamical parameters of solar convection. Here, we analyze observations of the wavefield in the solar photosphere using techniques of time-distance helioseismology to image flows in the solar interior. We downsample and synthesize 900 billion wavefield observations to produce 3 billion cross-correlations, which we average and fit, measuring 5 million wave travel times. Using these travel times, we deduce the underlying flow systems and study their statistics to bound convective velocity magnitudes in the solar interior, as a function of depth and spherical-harmonic degree ℓ. Within the wavenumber band ℓ < 60, convective velocities are 20–100 times weaker than current theoretical estimates. This constraint suggests the prevalence of a different paradigm of turbulence from that predicted by existing models, prompting the question: what mechanism transports the heat flux of a solar luminosity outwards? Advection is dominated by Coriolis forces for wavenumbers ℓ < 60, with Rossby numbers smaller than approximately 10-2 at r/R⊙ = 0.96, suggesting that the Sun may be a much faster rotator than previously thought, and that large-scale convection may be quasi-geostrophic. The fact that isorotation contours in the Sun are not coaligned with the axis of rotation suggests the presence of a latitudinal entropy gradient. PMID:22665774

  10. Can multiple flow boiling regimes be reduced into a single one in microchannels?

    NASA Astrophysics Data System (ADS)

    Yang, Fanghao; Dai, Xianming; Peles, Yoav; Cheng, Ping; Li, Chen

    2013-07-01

    We report that multiple and transitional flow boiling regimes in microchannels can be reduced into a single annular flow from the onset of nucleate boiling to the critical heat flux condition. Hydrophilic silicon nanowires directly grown on inner walls of microchannels were tailored to create boiling surfaces with optimal submicron pores surrounded by nanogaps through controlling the height and density of silicon nanowires using the nanocarpet effect. A single two-phase regime can be realized by controlling the flow structure in two aspects: reducing bubble size and transforming the dominant surface tension force from the cross-sectional plane to the inner-wall plane.

  11. Convection towers

    DOEpatents

    Prueitt, M.L.

    1994-02-08

    Convection towers which are capable of cleaning the pollution from large quantities of air and of generating electricity utilize the evaporation of water sprayed into the towers to create strong airflows and to remove pollution from the air. Turbines in tunnels at the skirt section of the towers generate electricity. Other embodiments may also provide fresh water, and operate in an updraft mode. 5 figures.

  12. Heat Transfer Performances of Pool Boiling on Metal-Graphite Composite Surfaces

    NASA Technical Reports Server (NTRS)

    Zhang, Nengli; Chao, David F.; Yang, Wen-Jei

    2000-01-01

    Nucleate boiling, especially near the critical heat flux (CHF), can provide excellent economy along with high efficiency of heat transfer. However, the performance of nucleate boiling may deteriorate in a reduced gravity environment and the nucleate boiling usually has a potentially dangerous characteristic in CHF regime. That is, any slight overload can result in burnout of the boiling surface because the heat transfer will suddenly move into the film-boiling regime. Therefore, enhancement of nucleate boiling heat transfer becomes more important in reduced gravity environments. Enhancing nucleate boiling and critical heat flux can be reached using micro-configured metal-graphite composites as the boiling surface. Thermocapillary force induced by temperature difference between the graphite-fiber tips and the metal matrix, which is independent of gravity, will play an important role in bubble detachment. Thus boiling heat transfer performance does not deteriorate in a reduced-gravity environment. Based on the existing experimental data, and a two-tier theoretical model, correlation formulas are derived for nucleate boiling on the copper-graphite and aluminum-graphite composite surfaces, in both the isolated and coalesced bubble regimes. Experimental studies were performed on nucleate pool boiling of pentane on cooper-graphite (Cu-Gr) and aluminum-graphite (Al-Gr) composite surfaces with various fiber volume concentrations for heat fluxes up to 35 W per square centimeter. It is revealed that a significant enhancement in boiling heat transfer performance on the composite surfaces is achieved, due to the presence of micro-graphite fibers embedded in the matrix. The onset of nucleate boiling (the isolated bubble regime) occurs at wall superheat of about 10 C for the Cu-Gr surface and 15 C for the Al-Gr surface, much lower than their respective pure metal surfaces. Transition from an isolated bubble regime to a coalesced bubble regime in boiling occurs at a superheat of

  13. Bubble transport in subcooled flow boiling

    NASA Astrophysics Data System (ADS)

    Owoeye, Eyitayo James

    Understanding the behavior of bubbles in subcooled flow boiling is important for optimum design and safety in several industrial applications. Bubble dynamics involve a complex combination of multiphase flow, heat transfer, and turbulence. When a vapor bubble is nucleated on a vertical heated wall, it typically slides and grows along the wall until it detaches into the bulk liquid. The bubble transfers heat from the wall into the subcooled liquid during this process. Effective control of this transport phenomenon is important for nuclear reactor cooling and requires the study of interfacial heat and mass transfer in a turbulent flow. Three approaches are commonly used in computational analysis of two-phase flow: Eulerian-Lagrangian, Eulerian-Eulerian, and interface tracking methods. The Eulerian- Lagrangian model assumes a spherical non-deformable bubble in a homogeneous domain. The Eulerian-Eulerian model solves separate conservation equations for each phase using averaging and closure laws. The interface tracking method solves a single set of conservation equations with the interfacial properties computed from the properties of both phases. It is less computationally expensive and does not require empirical relations at the fluid interface. Among the most established interface tracking techniques is the volume-of-fluid (VOF) method. VOF is accurate, conserves mass, captures topology changes, and permits sharp interfaces. This work involves the behavior of vapor bubbles in upward subcooled flow boiling. Both laminar and turbulent flow conditions are considered with corresponding pipe Reynolds number of 0 -- 410,000 using a large eddy simulation (LES) turbulence model and VOF interface tracking method. The study was performed at operating conditions that cover those of boiling water reactors (BWR) and pressurized water reactors (PWR). The analysis focused on the life cycle of vapor bubble after departing from its nucleation site, i.e. growth, slide, lift-off, rise

  14. The Role of Deep Convection and Low-Level Jets Forcing Dust Emissions in West Africa: A High-Resolution Regional Dust Modelling Study

    NASA Astrophysics Data System (ADS)

    Heinold, B.; Knippertz, P.; Fiedler, S.; Marsham, J. H.; Tegen, I.

    2012-04-01

    West Africa is the world's most important source of atmospheric mineral dust, which impacts weather and climate through its contribution to the direct and indirect aerosol effects. Mineral dust also has an impact on the biogeochemical and hydrological cycle, and affects human health and air quality. Quantitative estimates of the various effects require an adequate representation of modelled peak-wind generating mechanisms that cause dust emissions. Daytime downward mixing of momentum from nocturnal low-level jets (LLJs) and convective cold pools (haboobs) have been identified as important meteorological drivers of dust emissions in the Sahel and Sahara. Previous work using 10-day continental-scale convection-permitting simulations of summertime West Africa, performed using the UK Met Office Unified model as part of the Cascade project, has shown that these processes dominate the modelled dust-generating winds, with haboobs being very poorly represented in models with parameterised deep convection. This previous work did not, however, model dust emission explicitly. As part of the "Desert Storms" project (funded by the European Research Council), we expand on this work here using newly available 40-day Cascade runs with dust emissions calculated in an offline model driven with the modelled surface winds at 40, 12, 4 and 1.5-km horizontal grid-spacings (6 days only at 1.5 km). These calculations include different versions of dust emission parameterisations and soil surface properties, allowing separation of meteorological and land-surface effects. A major focus is on the statistical analysis of the diurnal cycle of wind speed and dust emission, for which the long simulation period provides a robust basis. The diurnal cycle gives insight into the role of different meteorological processes and is expected to affect the subsequent dust transport in the boundary layer. The high-resolution results show dust emission patterns in fascinating detail. For the first time it

  15. Boiling fluids in a region of rapid uplift, Nanga Parbat Massif, Pakistan

    NASA Astrophysics Data System (ADS)

    Craw, D.; Koons, P. O.; Winslow, D.; Chamberlain, C. P.; Zeitler, P.

    1994-12-01

    The Nanga Parbat massif of northern Pakistan is currently undergoing rapid uplift (approx. 5-10 mm/a), resulting in near-surface elevated temperatures. Numerous quartz veins cut geologically young structures (less than 2 Ma), attesting to widespread young fluid flow. Fluid inclusions in quartz veins are predominantly low density water vapor (down to 0.05 mg/cu m), with some low density carbon dioxide vapor, and the fluid is predominantly meteoric in origin. Fluid inclusions provide evidence for boiling near to the critical points for water and for 5 wt% NaCl solution (up to 410 C). Head-driven meteoric water was convecting in fracture permeability under hydrostatic pressures which followed the boiling point-depth curve and near-boiling springs emanate from the surface. Hydrostatic pressures persisted to depths of about 6 km below the topographic surface, or near to sea level, where the brittle-ductile transition is inferred to lie. Numerical modeling of conductive heat flow in an area of high relief during rapid uplift indicates that the shape of the near-surface conductive geotherm is significantly influenced by topographic relief. Reasonable approximations for topgraphy at Nanga Parbat produce a conductive geotherm which implies high, near-surface geothermal gradients (greater than 100 C/km, and the isotherms describe a giant pillar of heat. Above about 4 km, fluid temperature is greater than conductive rock temperature in permeable zones which carry convecting boiling meteoric fluid.

  16. CONVECTION REACTOR

    DOEpatents

    Hammond, R.P.; King, L.D.P.

    1960-03-22

    An homogeneous nuclear power reactor utilizing convection circulation of the liquid fuel is proposed. The reactor has an internal heat exchanger looated in the same pressure vessel as the critical assembly, thereby eliminating necessity for handling the hot liquid fuel outside the reactor pressure vessel during normal operation. The liquid fuel used in this reactor eliminates the necessity for extensive radiolytic gas rocombination apparatus, and the reactor is resiliently pressurized and, without any movable mechanical apparatus, automatically regulates itself to the condition of criticality during moderate variations in temperature snd pressure and shuts itself down as the pressure exceeds a predetermined safe operating value.

  17. VLA Shows "Boiling" in Atmosphere of Betelgeuse

    NASA Astrophysics Data System (ADS)

    1998-04-01

    progressively outwards. Although its existence was not previously suspected, this lower-temperature gas turns out to be the most abundant constituent of Betelgeuse's atmosphere. "This alters our basic understanding of red-supergiant star atmospheres," explains Lim. "Instead of the star's atmosphere expanding uniformly because of gas heated to very high temperatures near its surface, it now appears that several giant convection cells propel gas from the star's surface into its atmosphere. This creates the complex structure we observe for Betelgeuse's atmosphere." Betelgeuse can be likened to an enormous "boiling" ball of gas heated by the release of energy from nuclear fusion in its core. The circulating boiling pattern -- convection -- appears as large regions of hot upwelling gas on the star's surface. "The idea that red-supergiant stars have enormous convection cells is not new," noted Marson. "This was suggested by Martin Schwarzschild more than 20 years ago, and was seen in optical images of Betelgeuse's surface in 1990." The new picture of Betelgeuse's atmosphere also helps resolve the mystery of how massive amounts of dust and gas are expelled from red supergiant stars, an important source of enrichment for the interstellar medium. If their atmospheres were entirely very hot at lower levels, dust grains would not be able to condense there. Dust grains could possibly condense at higher levels, but there they would not get enough "push" from the star's radiation to explain their outward movement. In the new picture, the relatively cool environment at lower levels allows dust grains to condense effectively; here they can be strongly propelled by the more-intense starlight, carrying gas with them. Indeed, dust has previously been inferred to form sporadically near Betelgeuse's surface, but its presence there was difficult to reconcile with the old picture. "This method for propelling the mass outflows of red giant and supergiant stars was proposed by Sun Kwok in the same year

  18. Hypergravity to Explore the Role of Buoyancy in Boiling in Porous Media

    NASA Astrophysics Data System (ADS)

    Lioumbas, John S.; Krause, Jutta; Karapantsios, Thodoris D.

    2013-02-01

    Boiling in porous media is an active topic of research since it is associated with various applications, e.g. microelectronics cooling, wetted porous media as thermal barriers, food frying. Theoretical expressions customary scale boiling heat and mass transfer rates with the value of gravitational acceleration. Information obtained at low gravity conditions show a deviation from the above scaling law but refers exclusively to non-porous substrates. In addition, the role of buoyancy in boiling at varying gravitational levels (i.e. from microgravity—important to satellites and future Lunar and Martial missions, to high-g body forces—associated with fast aerial maneuvers) is still unknown since most experiments were conducted over a limited range of g-value. The present work aims at providing evidence regarding boiling in porous media over a broad range of hypergravity values. For this, a special device has been constructed for studying boiling inside porous media in the Large Diameter Centrifuge (LDC at ESA/ESTEC). LDC offers the unique opportunity to cancel the shear stresses and study only the effect of increased normal forces on boiling in porous media. The device permits measurement of the temperature field beneath the surface of the porous material and video recordings of bubble activity over the free surface of the porous material. The preliminary results presented from experiments conducted at terrestrial and hypergravity conditions, reveal for the first time the influence of increased levels of gravity on boiling in porous media.

  19. Criticality in the slowed-down boiling crisis at zero gravity.

    PubMed

    Charignon, T; Lloveras, P; Chatain, D; Truskinovsky, L; Vives, E; Beysens, D; Nikolayev, V S

    2015-05-01

    Boiling crisis is a transition between nucleate and film boiling. It occurs at a threshold value of the heat flux from the heater called CHF (critical heat flux). Usually, boiling crisis studies are hindered by the high CHF and short transition duration (below 1 ms). Here we report on experiments in hydrogen near its liquid-vapor critical point, in which the CHF is low and the dynamics slow enough to be resolved. As under such conditions the surface tension is very small, the experiments are carried out in the reduced gravity to preserve the conventional bubble geometry. Weightlessness is created artificially in two-phase hydrogen by compensating gravity with magnetic forces. We were able to reveal the fractal structure of the contour of the percolating cluster of the dry areas at the heater that precedes the boiling crisis. We provide a direct statistical analysis of dry spot areas that confirms the boiling crisis at zero gravity as a scale-free phenomenon. It was observed that, in agreement with theoretical predictions, saturated boiling CHF tends to zero (within the precision of our thermal control system) in zero gravity, which suggests that the boiling crisis may be observed at any heat flux provided the experiment lasts long enough.

  20. Experimental investigation on the phenomena around the onset nucleate boiling during the impacting of a droplet on the hot surface

    NASA Astrophysics Data System (ADS)

    Mitrakusuma, Windy H.; Deendarlianto, Kamal, Samsul; Indarto, Nuriyadi, M.

    2016-06-01

    Onset of nucleate boiling of a droplet when impacted onto hot surface was investigated. Three kinds of surfaces, normal stainless steel (NSS), stainless steel with TiO2 coating (UVN), and stainless steel with TiO2 coating and radiated by ultraviolet ray were employed to examine the effect of wettability. The droplet size was 2.4 mm diameter, and dropped under different We number. The image is generated by high speed camera with the frame speed of 1000 fps. The boiling conditions are identified as natural convection, nucleate boiling, critical heat flux, transition, and film boiling. In the present report, the discussion will be focused on the beginning of nucleate boiling on the droplet. Nucleate boiling occurs when bubbles are generated. These bubbles are probably caused by nucleation on the impurities within the liquid rather than at nucleation sites on the heated surface because the bubbles appear to be in the bulk of the liquid instead of at the liquid-solid interface. In addition, the smaller the contact angle, the fastest the boiling.

  1. ASTRID: A 3D Eulerian software for subcooled boiling modelling - comparison with experimental results in tubes and annuli

    SciTech Connect

    Briere, E.; Larrauri, D.; Olive, J.

    1995-09-01

    For about four years, Electricite de France has been developing a 3-D computer code for the Eulerian simulation of two-phase flows. This code, named ASTRID, is based on the six-equation two-fluid model. Boiling water flows, such as those encountered in nuclear reactors, are among the main applications of ASTRID. In order to provide ASTRID with closure laws and boundary conditions suitable for boiling flows, a boiling model has been developed by EDF and the Institut de Mecanique des Fluides de Toulouse. In the fluid, the heat and mass transfer between a bubble and the liquid is being modelled. At the heating wall, the incipient boiling point is determined according to Hsu`s criterion and the boiling heat flux is split into three additive terms: a convective term, a quenching term and a vaporisation term. This model uses several correlations. EDF`s program in boiling two-phase flows also includes experimental studies, some of which are performed in collaboration with other laboratories. Refrigerant subcooled boiling both in tubular (DEBORA experiment, CEN Grenoble) and in annular geometry (Arizona State University Experiment) have been computed with ASTRID. The simulations show the satisfactory results already obtained on void fraction and liquid temperature. Ways of improvement of the model are drawn especially on the dynamical part.

  2. Boils

    MedlinePlus

    ... Resident Research Award Daniel Koprince Award Resident Research Paper Award Surgery in the Outback CME CME ATTESTATION ... which are usually due to Staph infections. The bacteria are picked up somewhere and then live on ...

  3. Boiling significantly promotes photodegradation of perfluorooctane sulfonate.

    PubMed

    Lyu, Xian-Jin; Li, Wen-Wei; Lam, Paul K S; Yu, Han-Qing

    2015-11-01

    The application of photochemical processes for perfluorooctane sulfonate (PFOS) degradation has been limited by a low treatment efficiency. This study reports a significant acceleration of PFOS photodegradation under boiling condition compared with the non-boiling control. The PFOS decomposition rate increased with the increasing boiling intensity, but declined at a higher hydronium level or under oxygenation. These results suggest that the boiling state of solution resulted in higher effective concentrations of reactants at the gas-liquid interface and enhanced the interfacial mass transfer, thereby accelerating the PFOS decomposition. This study broadens our knowledge of PFOS photodegradation process and may have implications for development of efficient photodegradation technologies.

  4. Convective heat transfer in buildings: Recent research results

    NASA Astrophysics Data System (ADS)

    Bauman, F. S.; Gadgil, A.; Kammerud, R. C.; Altmayer, E.; Nansteel, M.

    1982-04-01

    Small scale water filled enclosures were used to study convective heat transfer in buildings. The convective processes investigated are: (1) natural convective heat transfer between room surfaces and the adjacent air; (2) natural convective heat transfer between adjacent rooms through a doorway or other openings; and (3) forced convection between the building and its external environment (such as, wind driven ventilation through windows, doors, or other openings). Results for surface convection coefficients are compared with existing ASHRAE coorelations and differences of as much as 20% are observed. Numerical simulations of wind driven natural ventilation exhibit good qualitative agreement with published wind tunnel data.

  5. Theoretical modeling of CHF for near-saturated pool boiling and flow boiling from short heaters using the interfacial lift-off criterion

    SciTech Connect

    Mudawar, I.; Galloway, J.E.; Gersey, C.O.

    1995-12-31

    Pool boiling and flow boiling were examined for near-saturated bulk conditions in order to determine the critical heat flux (CHF) trigger mechanism for each. Photographic studies of the wall region revealed features common to both situations. At fluxes below CHF, the vapor coalesces into a wavy layer which permits wetting only in wetting fronts, the portions of the liquid-vapor interface which contact the wall as a result of the interfacial waviness. Close examination of the interfacial features revealed the waves are generated from the lower edge of the heater in pool boiling and the heater`s upstream region in flow boiling. Wavelengths follow predictions based upon the Kelvin-Helmholtz instability criterion. Critical heat flux in both cases occurs when the pressure force exerted upon the interface due to interfacial curvature, which tends to preserve interfacial contact with the wall prior to CHF, is overcome by the momentum of vapor at the site of the first wetting front, causing the interface to lift away from the wall. It is shown this interfacial lift-off criterion facilitates accurate theoretical modeling of CHF in pool boiling and in flow boiling in both straight and curved channels.

  6. Transient Mixed Convection Validation for NGNP

    SciTech Connect

    Smith, Barton; Schultz, Richard

    2015-10-19

    The results of this project are best described by the papers and dissertations that resulted from the work. They are included in their entirety in this document. They are: (1) Jeff Harris PhD dissertation (focused mainly on forced convection); (2) Blake Lance PhD dissertation (focused mainly on mixed and transient convection). This dissertation is in multi-paper format and includes the article currently submitted and one to be submitted shortly; and, (3) JFE paper on CFD Validation Benchmark for Forced Convection.

  7. Pool boiling heat transfer of deionized and degassed water in packed-perforated copper beads

    NASA Astrophysics Data System (ADS)

    Wen, Mao-Yu; Jang, Kuang-Jang; Ho, Ching-Yen

    2016-11-01

    Nucleate pool boiling with porous media made of perforated copper beads as the enhanced structure is conducted in saturated, deionized and degassed water. Data are taken at an atmospheric pressure (saturation temperature of 100 °C) and at heat fluxes from 4500 to 72,300 W/m2 while increasing the heat flux. The bead-packed structure is heated on the bottom. The layer of loose particles on the heated surface is free to move under the action of bulk liquid convection and vapor nucleation. The effects of the weight (number), size and layers of the free particles are experimentally explored using copper particles for different copper bead diameters which were 2, 3, 4 and 5 mm. The boiling enhancement is closely related to the particle weight, size and layers, and the heat flux applied. The results show that free particles are presented to have a distinct advantage in boiling heat transfer, resulting in an average increase in the heat transfer coefficient of 126 % relative to the flat plate without particles. In order to obtain insight into the fluid boiling phenomena, flow visualization is also made to observe the detailed fluid boiling characteristics of the copper particles present. The visualizations show that bubble nucleation preferentially occurs at the narrow corner cavities formed between the free particles and the heated surface.

  8. Saturated flow boiling heat transfer correlation for carbon dioxide for horizontal smooth tubes

    NASA Astrophysics Data System (ADS)

    Turgut, Oguz Emrah; Asker, Mustafa

    2017-01-01

    Literature comprises fewer studies about flow boiling modelling of refrigerants for in tube flows. In addition, researches on two phase flow heat transfer are based on the mathematical models which were derived in a very limited operational condition and correlated for their own measurements. In this study, a new flow boiling model including the superposed effects of nucleate and convective boiling mechanisms is proposed through the minimization of the cumulative error between the proposed mathematical model and actual data by means of artificial cooperative search algorithm and applied to the database of R-744 (carbon dioxide), available from different studies in the literature. Predictions obtained from the proposed model have been compared with those of retained from the literature correlations developed for flow boiling in tubes. The comparison results indicate that the new model outperforms the literature correlations in terms of prediction accuracy. Results of the comparisons reveal that the proposed flow boiling mathematical model has a mean absolute relative error of 14.6% and predicts 76.7% of the experimental data within ±20.0%.

  9. Marangoni Convection and Deviations from Maxwells' Evaporation Model

    NASA Technical Reports Server (NTRS)

    Segre, P. N.; Snell, E. H.; Adamek, D. H.

    2003-01-01

    We investigate the convective dynamics of evaporating pools of volatile liquids using an ultra-sensitive thermal imaging camera. During evaporation, there are significant convective flows inside the liquid due to Marangoni forces. We find that Marangoni convection during evaporation can dramatically affect the evaporation rates of volatile liquids. A simple heat balance model connects the convective velocities and temperature gradients to the evaporation rates.

  10. Flow and Heat Flux Behavior of Micro-bubble Jet Flows Observed in Thin, Twisted-Wire, Subcooled Boiling in Microgravity

    NASA Astrophysics Data System (ADS)

    Munro, Troy R.; Ban, Heng

    2015-02-01

    Thin wire, subcooled boiling experiments were performed onboard an aircraft flying a parabolic trajectory to provide microgravity conditions for improved observation of jet flow phenomena and their behavior in the absence of buoyant forces. A new type of nucleation jet flow was observed in microgravity. This new micro-bubble jet flow is seen at medium to high heat fluxes and is characterized by a region of the wire that forms multiple jet columns which contain micro-bubbles. These columns flow together and penetrate tens of millimeters into the bulk fluid. Bubble behavior on the wire was observed to progress from a dominance of larger isolated bubbles on the wire to a dominance of micro-bubble jet flows on the wire as heat flux was increased. There was also a transient transition from a few large isolated bubbles to micro-bubble jet flow dominance for a set heat flux. A cross correlation calculation provided velocities of micro-bubbles in the flow, which were in the range of 4-14 mm/s. These velocities were used with convection correlations to show that fluid flows induced by jet flows are a significant contributor to the subcooled boiling heat transfer in microgravity, but are not the primary contributor. Additionally, a relative bubble area analysis approximates the direct contribution of these jet flows to the overall heat dissipation. These micro-bubble jet flows, which are only observed on thin wires (not flat surfaces), and the convection currents they induce, have the potential to allow for sustained fluid motion to occur in microgravity.

  11. Convective heater

    DOEpatents

    Thorogood, Robert M.

    1983-01-01

    A convective heater for heating fluids such as a coal slurry is constructed of a tube circuit arrangement which obtains an optimum temperature distribution to give a relatively constant slurry film temperature. The heater is constructed to divide the heating gas flow into two equal paths and the tube circuit for the slurry is arranged to provide a mixed flow configuration whereby the slurry passes through the two heating gas paths in successive co-current, counter-current and co-current flow relative to the heating gas flow. This arrangement permits the utilization of minimum surface area for a given maximum film temperature of the slurry consistent with the prevention of coke formation.

  12. Convective heater

    DOEpatents

    Thorogood, Robert M.

    1986-01-01

    A convective heater for heating fluids such as a coal slurry is constructed of a tube circuit arrangement which obtains an optimum temperature distribution to give a relatively constant slurry film temperature. The heater is constructed to divide the heating gas flow into two equal paths and the tube circuit for the slurry is arranged to provide a mixed flow configuration whereby the slurry passes through the two heating gas paths in successive co-current, counter-current and co-current flow relative to the heating gas flow. This arrangement permits the utilization of minimum surface area for a given maximum film temperature of the slurry consistent with the prevention of coke formation.

  13. Convective heater

    DOEpatents

    Thorogood, R.M.

    1983-12-27

    A convective heater for heating fluids such as a coal slurry is constructed of a tube circuit arrangement which obtains an optimum temperature distribution to give a relatively constant slurry film temperature. The heater is constructed to divide the heating gas flow into two equal paths and the tube circuit for the slurry is arranged to provide a mixed flow configuration whereby the slurry passes through the two heating gas paths in successive co-current, counter-current and co-current flow relative to the heating gas flow. This arrangement permits the utilization of minimum surface area for a given maximum film temperature of the slurry consistent with the prevention of coke formation. 14 figs.

  14. Forced convection heat transfer to a single and two-phase steam/water mixture in a helical coil with radiant heating

    SciTech Connect

    Vafaie, F.N.

    1981-01-01

    The purpose of this study was to perform an analytical and experimental investigation into the heat transfer characteristics for a once-through steam generator with a helical flow geometry. The application is the receiver for a fixed hemispherical mirror solar concentrator on the Crosbyton Solar Power Project. The working fluid, water, goes successively through the single-phase liquid, two-phase and super-heated vapor regimes in a once-through helically wrapped tube bundle subjected to nonuniform asymmetrical radiant heating. Individual segments of the radiation profile for the receiver were simulated using high intensity, line source quartz lamps providing concentrations of up to 240 suns. A segment of the helical coil was instrumented and mounted in the radiation field. A numerical analysis was developed to predict the local internal heat transfer coeffcients and fluid state based on the measurements obtained in the test procedure discussed above. The results show that there is a significant change in the angular variation of the internal heat transfer coefficient at low quality when compared with values for high quality. The integrated average values of the heat transfer coefficient for the subcooled liquid and two-phase were correlated against dimensionless parameters of the flow such as the Reynolds number, Prandtl number, boiling number and tube-to-coil diameter ratio.

  15. Thermo-electro-hydrodynamic convection under microgravity: a review

    NASA Astrophysics Data System (ADS)

    Mutabazi, Innocent; Yoshikawa, Harunori N.; Tadie Fogaing, Mireille; Travnikov, Vadim; Crumeyrolle, Olivier; Futterer, Birgit; Egbers, Christoph

    2016-12-01

    Recent studies on thermo-electro-hydrodynamic (TEHD) convection are reviewed with focus on investigations motivated by the analogy with natural convection. TEHD convection originates in the action of the dielectrophoretic force generated by an alternating electric voltage applied to a dielectric fluid with a temperature gradient. This electrohydrodynamic force is analogous to Archimedean thermal buoyancy and can be regarded as a thermal buoyancy force in electric effective gravity. The review is concerned with TEHD convection in plane, cylindrical, and spherical capacitors under microgravity conditions, where the electric gravity can induce convection without any complexities arising from geometry or the buoyancy force due to the Earth’s gravity. We will highlight the convection in spherical geometry, comparing developed theories and numerical simulations with the GEOFLOW experiments performed on board the International Space Station (ISS).

  16. Boiling of the interface between two immiscible liquids below the bulk boiling temperatures of both components.

    PubMed

    Pimenova, Anastasiya V; Goldobin, Denis S

    2014-11-01

    We consider the problem of boiling of the direct contact of two immiscible liquids. An intense vapour formation at such a direct contact is possible below the bulk boiling points of both components, meaning an effective decrease of the boiling temperature of the system. Although the phenomenon is known in science and widely employed in technology, the direct contact boiling process was thoroughly studied (both experimentally and theoretically) only for the case where one of liquids is becoming heated above its bulk boiling point. On the contrary, we address the case where both liquids remain below their bulk boiling points. In this paper we construct the theoretical description of the boiling process and discuss the actualisation of the case we consider for real systems.

  17. Generalized convective quasi-equilibrium principle

    NASA Astrophysics Data System (ADS)

    Yano, Jun-Ichi; Plant, Robert S.

    2016-03-01

    A generalization of Arakawa and Schubert's convective quasi-equilibrium principle is presented for a closure formulation of mass-flux convection parameterization. The original principle is based on the budget of the cloud work function. This principle is generalized by considering the budget for a vertical integral of an arbitrary convection-related quantity. The closure formulation includes Arakawa and Schubert's quasi-equilibrium, as well as both CAPE and moisture closures as special cases. The formulation also includes new possibilities for considering vertical integrals that are dependent on convective-scale variables, such as the moisture within convection. The generalized convective quasi-equilibrium is defined by a balance between large-scale forcing and convective response for a given vertically-integrated quantity. The latter takes the form of a convolution of a kernel matrix and a mass-flux spectrum, as in the original convective quasi-equilibrium. The kernel reduces to a scalar when either a bulk formulation is adopted, or only large-scale variables are considered within the vertical integral. Various physical implications of the generalized closure are discussed. These include the possibility that precipitation might be considered as a potentially-significant contribution to the large-scale forcing. Two dicta are proposed as guiding physical principles for the specifying a suitable vertically-integrated quantity.

  18. Combined Effect of Buoyancy Force and Navier Slip on MHD Flow of a Nanofluid over a Convectively Heated Vertical Porous Plate

    PubMed Central

    2013-01-01

    We examine the effect of magnetic field on boundary layer flow of an incompressible electrically conducting water-based nanofluids past a convectively heated vertical porous plate with Navier slip boundary condition. A suitable similarity transformation is employed to reduce the governing partial differential equations into nonlinear ordinary differential equations, which are solved numerically by employing fourth-order Runge-Kutta with a shooting technique. Three different water-based nanofluids containing copper (Cu), aluminium oxide (Al2O3), and titanium dioxide (TiO2) are taken into consideration. Graphical results are presented and discussed quantitatively with respect to the influence of pertinent parameters, such as solid volume fraction of nanoparticles (φ), magnetic field parameter (Ha), buoyancy effect (Gr), Eckert number (Ec), suction/injection parameter (fw), Biot number (Bi), and slip parameter (β), on the dimensionless velocity, temperature, skin friction coefficient, and heat transfer rate. PMID:24222749

  19. Combined effect of buoyancy force and Navier slip on MHD flow of a nanofluid over a convectively heated vertical porous plate.

    PubMed

    Mutuku-Njane, Winifred Nduku; Makinde, Oluwole Daniel

    2013-01-01

    We examine the effect of magnetic field on boundary layer flow of an incompressible electrically conducting water-based nanofluids past a convectively heated vertical porous plate with Navier slip boundary condition. A suitable similarity transformation is employed to reduce the governing partial differential equations into nonlinear ordinary differential equations, which are solved numerically by employing fourth-order Runge-Kutta with a shooting technique. Three different water-based nanofluids containing copper (Cu), aluminium oxide (Al2O3), and titanium dioxide (TiO2) are taken into consideration. Graphical results are presented and discussed quantitatively with respect to the influence of pertinent parameters, such as solid volume fraction of nanoparticles (φ), magnetic field parameter (Ha), buoyancy effect (Gr), Eckert number (Ec), suction/injection parameter (f w ), Biot number (Bi), and slip parameter ( β ), on the dimensionless velocity, temperature, skin friction coefficient, and heat transfer rate.

  20. ARM - Midlatitude Continental Convective Clouds

    DOE Data Explorer

    Jensen, Mike; Bartholomew, Mary Jane; Genio, Anthony Del; Giangrande, Scott; Kollias, Pavlos

    2012-01-19

    Convective processes play a critical role in the Earth's energy balance through the redistribution of heat and moisture in the atmosphere and their link to the hydrological cycle. Accurate representation of convective processes in numerical models is vital towards improving current and future simulations of Earths climate system. Despite improvements in computing power, current operational weather and global climate models are unable to resolve the natural temporal and spatial scales important to convective processes and therefore must turn to parameterization schemes to represent these processes. In turn, parameterization schemes in cloud-resolving models need to be evaluated for their generality and application to a variety of atmospheric conditions. Data from field campaigns with appropriate forcing descriptors have been traditionally used by modelers for evaluating and improving parameterization schemes.

  1. Boiling Heat Transfer to Halogenated Hydrocarbon Refrigerants

    NASA Astrophysics Data System (ADS)

    Yoshida, Suguru; Fujita, Yasunobu

    The current state of knowledge on heat transfer to boiling refrigerants (halogenated hydrocarbons) in a pool and flowing inside a horizontal tube is reviewed with an emphasis on information relevant to the design of refrigerant evaporators, and some recommendations are made for future research. The review covers two-phase flow pattern, heat transfer characteristics, correlation of heat transfer coefficient, influence of oil, heat transfer augmentation, boiling from tube-bundle, influence of return bend, burnout heat flux, film boiling, dryout and post-dryout heat transfer.

  2. Nucleate pool boiling in microgravity: Recent progress and future prospects

    NASA Astrophysics Data System (ADS)

    Colin, Catherine; Kannengieser, Olivier; Bergez, Wladimir; Lebon, Michel; Sebilleau, Julien; Sagan, Michaël; Tanguy, Sébastien

    2017-01-01

    Pool boiling on flat plates in microgravity has been studied for more than 50 years. The results of recent experiments performed in sounding rocket are presented and compared to previous results. At low heat flux, the vertical oscillatory motion of the primary bubble is responsible for the increase in the heat transfer coefficient in microgravity compared to ground experiments. The effect of a non-condensable gas on the stabilisation of the large primary bubble on the heater is pointed out. Experiments on isolated bubbles are also performed on ground and in parabolic flight. The effect of a shear flow on the bubble detachment is highlighted. A force balance model allows determining an expression of the capillary force and of the drag force acting on the bubble.

  3. Effect of Spacecraft Rotation on Fluid Convection Under Microgravity

    NASA Technical Reports Server (NTRS)

    Yuferev, Valentin S.; Kolesnikova, Elvira N.; Polovko, Yuri A.; Zhmakin, Alexander I.

    1996-01-01

    The influence of the rotational effects on two-dimensional fluid convection in a rectangular enclosure with rigid walls during the orbital flight is considered. It is shown that the Coriolis force influence both on steady and oscillatory convection becomes significant at Ekman numbers which are quite attainable in the space orbital conditions. In the case of harmonic oscillations of the gravity force appearance of the resonance phenomena is demonstrated. Dependence of the height and shape of the resonance peak on aspect ratio of a rectangular domain and orientation of vectors of the gravity force and the angular rotation velocity is studied. Special attention is given to non-linear effects caused by convective terms of Navier-Stokes equations. The convection produced by variations of the angular rotation velocity of a spacecraft is also discussed. It is shown that in some cases the latter convection can be comparable with another kinds of convection.

  4. Pool boiling of water on nano-structured micro wires at sub-atmospheric conditions

    NASA Astrophysics Data System (ADS)

    Arya, Mahendra; Khandekar, Sameer; Pratap, Dheeraj; Ramakrishna, S. Anantha

    2016-09-01

    Past decades have seen active research in enhancement of boiling heat transfer by surface modifications. Favorable surface modifications are expected to enhance boiling efficiency. Several interrelated mechanisms such as capillarity, surface energy alteration, wettability, cavity geometry, wetting transitions, geometrical features of surface morphology, etc., are responsible for change in the boiling behavior of modified surfaces. Not much work is available on pool boiling at low pressures on microscale/nanoscale geometries; low pressure boiling is attractive in many applications wherein low operating temperatures are desired for a particular working fluid. In this background, an experimental setup was designed and developed to investigate the pool boiling performance of water on (a) plain aluminum micro wire (99.999 % pure) and, (b) nano-porous alumina structured aluminum micro wire, both having diameter of 250 µm, under sub-atmospheric pressure. Nano-structuring on the plain wire surface was achieved via anodization. Two samples, A and B of anodized wires, differing by the degree of anodization were tested. The heater length scale (wire diameter) was much smaller than the capillary length scale. Pool boiling characteristics of water were investigated at three different sub-atmospheric pressures of 73, 123 and 199 mbar (corresponding to T sat = 40, 50 and 60 °C). First, the boiling characteristics of plain wire were measured. It was noticed that at sub-atmospheric pressures, boiling heat transfer performance for plain wire was quite low due to the increased bubble sizes and low nucleation site density. Subsequently, boiling performance of nano-structured wires (both Sample A and Sample B) was compared with plain wire and it was noted that boiling heat transfer for the former was considerably enhanced as compared to the plain wire. This enhancement is attributed to increased nucleation site density, change in wettability and possibly due to enhanced pore scale

  5. Microlayer during boiling in narrow slot channels

    NASA Astrophysics Data System (ADS)

    Diev, Mikhail D.; Leontiev, Alexander I.

    1997-01-01

    An international space station Alpha will have a two-phase thermal control system. Boiling of a liquid ammonia will be a process of heat collection in evaporative heat exchangers. Unfortunately, only little data is available for boiling heat transfer in microgravity. Geometries of boiling channels working good in normal gravity are not appropriate in microgravity, and special means should be worked out to avoid some undesired events. From this point of view, the narrow slot channels may be assumed as a promising geometry for microgravity operation. During boiling in narrow slots, the vapor bubbles are flattened between the channel walls. The vapor phase and the channel wall are separated by a thin liquid film which is known as a microlayer. The paper presents the experimental results compared to the theoretical analysis, the paper also shows the narrow slot channels as a perspective configuration for microgravity applications.

  6. Conceptual design for spacelab pool boiling experiment

    NASA Technical Reports Server (NTRS)

    Lienhard, J. H.; Peck, R. E.

    1978-01-01

    A pool boiling heat transfer experiment to be incorporated with a larger two-phase flow experiment on Spacelab was designed to confirm (or alter) the results of earth-normal gravity experiments which indicate that the hydrodynamic peak and minimum pool boiling heat fluxes vanish at very low gravity. Twelve small sealed test cells containing water, methanol or Freon 113 and cylindrical heaters of various sizes are to be built. Each cell will be subjected to one or more 45 sec tests in which the surface heat flux on the heaters is increased linearly until the surface temperature reaches a limiting value of 500 C. The entire boiling process will be photographed in slow-motion. Boiling curves will be constructed from thermocouple and electric input data, for comparison with the motion picture records. The conduct of the experiment will require no more than a few hours of operator time.

  7. Analysis of boiling flat-plate collectors

    SciTech Connect

    Price, H.W.; Klein, S.A.; Beckman, W.A.

    1986-05-01

    A detailed model for use with TRNSYS, capable of modelling a wide range of boiling collector types, was used to analyze boiling flat-plate collector systems. This model can account for a subcooled liquid entering the collector, heat losses in the vapor and the liquid return line, pressure drops due to friction in the collector and piping, and pressure drops due to the hydrostatic head of the fluid. The model has been used to determine the yearly performance of boiling flat-plate solar collector systems. A simplified approach was also developed which can be used with the f-Chart method to predict yearly performance of boiling flat-plate collector systems.

  8. 21 CFR 872.6710 - Boiling water sterilizer.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Boiling water sterilizer. 872.6710 Section 872...) MEDICAL DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6710 Boiling water sterilizer. (a) Identification. A boiling water sterilizer is an AC-powered device that consists of a container for boiling...

  9. 21 CFR 872.6710 - Boiling water sterilizer.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Boiling water sterilizer. 872.6710 Section 872...) MEDICAL DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6710 Boiling water sterilizer. (a) Identification. A boiling water sterilizer is an AC-powered device that consists of a container for boiling...

  10. 21 CFR 872.6710 - Boiling water sterilizer.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Boiling water sterilizer. 872.6710 Section 872...) MEDICAL DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6710 Boiling water sterilizer. (a) Identification. A boiling water sterilizer is an AC-powered device that consists of a container for boiling...

  11. 21 CFR 872.6710 - Boiling water sterilizer.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Boiling water sterilizer. 872.6710 Section 872...) MEDICAL DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6710 Boiling water sterilizer. (a) Identification. A boiling water sterilizer is an AC-powered device that consists of a container for boiling...

  12. 21 CFR 872.6710 - Boiling water sterilizer.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Boiling water sterilizer. 872.6710 Section 872...) MEDICAL DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6710 Boiling water sterilizer. (a) Identification. A boiling water sterilizer is an AC-powered device that consists of a container for boiling...

  13. SUPERHEATING IN A BOILING WATER REACTOR

    DOEpatents

    Treshow, M.

    1960-05-31

    A boiling-water reactor is described in which the steam developed in the reactor is superheated in the reactor. This is accomplished by providing means for separating the steam from the water and passing the steam over a surface of the fissionable material which is not in contact with the water. Specifically water is boiled on the outside of tubular fuel elements and the steam is superheated on the inside of the fuel elements.

  14. Boiling heat transfer enhancement of nanofluids on a smooth surface with agitation

    NASA Astrophysics Data System (ADS)

    Kong, Xin; Qi, Baojin; Wei, Jinjia; Li, Wei; Ding, Jie; Zhang, Yonghai

    2016-12-01

    The pool boiling heat transfer performance on a smooth silicon chip surface with agitation was experimentally investigated in this study. The nanofluids (Ag/alcohol) of 0.02 % volume concentration and ethyl alcohol with purification over 99.9 % were the two contrast working fluids. For each group, subcoolings of 40, 50 and 60 K were conducted under atmospheric pressure. To enhance the heat transfer performance, an agitating device was fixed above the top of the chip. The experimental results indicated that nanofluids could enhance the heat transfer performance especially in the nucleate boiling region. The heat transfer coefficient was significantly increased with nanofluids, while the critical heat flux (CHF) was nearly not changed. In the agitation Reynolds number of 20,300, the heat transfer performance of nanofluids was significantly enhanced in the convection region, and the CHF was increased by more than 25 % for all groups. This boiling phenomenon was observed for both nanofluids and alcohol groups. Meanwhile, the boiling curves of different liquid subcoolings in the nucleate region were quite similar to each other under agitation.

  15. Transition process leading to microbubble emission boiling on horizontal circular heated surface in subcooled pool

    NASA Astrophysics Data System (ADS)

    Ueno, Ichiro; Ando, Jun; Horiuchi, Kazuna; Saiki, Takahito; Kaneko, Toshihiro

    2016-11-01

    Microbubble emission boiling (MEB) produces a higher heat flux than critical heat flux (CHF) and therefore has been investigated in terms of its heat transfer characteristics as well as the conditions under which MEB occurs. Its physical mechanism, however, is not yet clearly understood. We carried out a series of experiments to examine boiling on horizontal circular heated surfaces of 5 mm and of 10 mm in diameter, in a subcooled pool, paying close attention to the transition process to MEB. High-speed observation results show that, in the MEB regime, the growth, condensation, and collapse of the vapor bubbles occur within a very short time. In addition, a number of fine bubbles are emitted from the collapse of the vapor bubbles. By tracking these tiny bubbles, we clearly visualize that the collapse of the vapor bubbles drives the liquid near the bubbles towards the heated surface, such that the convection field around the vapor bubbles under MEB significantly differs from that under nucleate boiling. Moreover, the axial temperature gradient in a heated block (quasi-heat flux) indicates a clear difference between nucleate boiling and MEB. A combination of quasi-heat flux and the measurement of the behavior of the vapor bubbles allows us to discuss the transition to MEB. This work was financially supported by the 45th Research Grant in Natural Sciences from The Mitsubishi Foundation (2014 - 2015), and by Research Grant for Boiler and Pressurized Vessels from The Japan Boiler Association (2016).

  16. Flash boiling from carbon foams for high-heat-flux transient cooling

    NASA Astrophysics Data System (ADS)

    Engerer, J. D.; Fisher, T. S.

    2016-07-01

    Flash boiling of a liquid pool results in an event characterized by rapid phase change and, as a result, high rates of expansion and cooling. Because of the potential advantages of such characteristics for convective heat transfer, flash boiling is considered here for the purpose of cooling transient heat loads. The event has the positive characteristics mentioned as well as rapid response (˜10 ms) and high initial rates of phase change, and then quickly decays to a steady-state regime analogous to pool boiling. The performance of the cooling mechanism is evaluated using an objective function derived from the effect of temperature on the efficiency of optical transmission in a diode-pumped solid-state laser. Statistical surrogate models based on the experimental results are used to predict optimal run conditions. Experiments using these predicted parameters show that flash boiling can maintain device temperature to within ±6.1 °C through a pulsed 5 s heat flux of 68 W cm-2 and to within ±1.4 °C for a heat flux of 39 W cm-2.

  17. Fundamental Boiling and RP-1 Freezing Experiments

    NASA Technical Reports Server (NTRS)

    Goode, Brian

    2002-01-01

    The prestart thermal conditioning of the hardware in LOX (liquid oxygen) systems involve heat transfer between LOX and metal where boiling plays a large role. Information is easily found on nucleate boiling, maximum heat flux, minimum heat flux and film boiling for common fluids like water. After looking at these standard correlations it was felt more data was needed for the cool down side transition boiling for the LN2 and LOX. In particular interest is the film boiling values, the temperature at which transition begins and the slope as peak heat flux is approached. The ultimate goal is an array of boiling heat transfer coefficient as a function of surface temperature which can be used in the chilldown model of the feed system, engine and bleed system for X-34. The first experiment consisted of an actual MC-1 LOX Impeller which had been machined backwards, that was instrumented with 17 surface thermocouples and submerged in liquid nitrogen. The thermocouples were installed on metal thicknesses varying from the thin inducer to the thick hub.

  18. Correlations for laminar mixed convection flows on vertical, inclined, and horizontal flat plates

    NASA Astrophysics Data System (ADS)

    Chen, T. S.; Armaly, B. F.; Ramachandran, N.

    1986-11-01

    Local Nusselt numbers for laminar mixed convection flows along isothermal vertical, inclined, and horizontal flat plates are presented for the entire mixed convection regime for a wide range of Prandtl numbers. Simple correlation equations for the local and average mixed convection Nusselt numbers are developed, which are found to agree well with the numerically predicted values and available experimental data for both buoyancy assisting and opposing flow conditions. The threshold values of significant buoyancy effects on forced convection and forced flow effects on free convection, as well as the maximum increase in the local mixed convection Nusselt number from the respective pure convection limits, are also presented for all flow configurations. It is found that the buoyancy or forced flow effect can increase the surface heat transfer rate from pure forced or pure free convection by about 20 percent.

  19. Numerical thermal analysis of water's boiling heat transfer based on a turbulent jet impingement on heated surface

    NASA Astrophysics Data System (ADS)

    Toghraie, D.

    2016-10-01

    In this study, a numerical method for simulation of flow boiling through subcooled jet on a hot surface with 800 °C has been presented. Volume fraction (VOF) has been used to simulate boiling heat transfer and investigation of the quench phenomena through fluid jet on a hot horizontal surface. Simulation has been done in a fixed Tsub=55 °C, Re=5000 to Re=50,000 and also in different Tsub =Tsat -Tf between 10 °C and 95 °C. The effect of fluid jet velocity and subcooled temperature on the rewetting temperature, wet zone propagation, cooling rate and maximum heat flux has been investigated. The results of this study show that by increasing the velocity of fluid jet of water, convective heat transfer coefficient at stagnation point increases. More ever, by decreasing the temperature of the fluid jet, convective heat transfer coefficient increases.

  20. Heat transfer performance of engine coolants under sub-cooled boiling conditions

    SciTech Connect

    Bhowmick, S.; Branchi, C.; McAssey, E.V. Jr.; Gollin, M.

    1996-12-31

    An experimental program has been conducted to evaluate the heat transfer performance of two engine cooling fluid mixtures, propylene-glycol/water and ethylene-glycol/water. These tests were performed under conditions closely simulating normal engine operation. For both mixtures, results were obtained over a range of heat transfer regimes from single phase convection to saturated flow boiling. Tests showed that propylene-glycol/water and ethylene-glycol/water have very similar heat transfer performances. Performance is defined as the steady state wall temperature maintained for a given surface heat flux and test section inlet velocity. For the lowest velocity tested, the test section experienced saturated boiling over approximately one-half of its heated length. The experimental results were also compared to analytical predictions based upon the Chen correlation. At higher fluxes, the analytical methods under-predicted the test section wall temperature.

  1. Forced and natural convection in laminar-jet diffusion flames. [normal-gravity, inverted-gravity and zero-gravity flames

    NASA Technical Reports Server (NTRS)

    Haggard, J. B., Jr.

    1981-01-01

    An experimental investigation was conducted on methane, laminar-jet, diffusion flames with coaxial, forced-air flow to examine flame shapes in zero-gravity and in situations where buoyancy aids (normal-gravity flames) or hinders (inverted-gravity flames) the flow velocities. Fuel nozzles ranged in size from 0.051 to 0.305 cm inside radius, while the coaxial, convergent, air nozzle had a 1.4 cm inside radius at the fuel exit plane. Fuel flows ranged from 1.55 to 10.3 cu cm/sec and air flows from 0 to 597 cu cm/sec. A computer program developed under a previous government contract was used to calculate the characteristic dimensions of normal and zero-gravity flames only. The results include a comparison between the experimental data and the computed axial flame lengths for normal gravity and zero gravity which showed good agreement. Inverted-gravity flame width was correlated with the ratio of fuel nozzle radius to average fuel velocity. Flame extinguishment upon entry into weightlessness was studied, and it was found that relatively low forced-air velocities (approximately 10 cm/sec) are sufficient to sustain methane flame combustion in zero gravity. Flame color is also discussed.

  2. Shallow Convection along the Sea Breeze Front and its Interaction with Horizontal Convective Rolls and Convective Cells

    NASA Astrophysics Data System (ADS)

    Khan, B. A.; Stenchikov, G. L.; Abualnaja, Y.

    2014-12-01

    Shallow convection has been studied in the sea breeze frontal zone along the Arabian Red Sea coast. This convection is forced by thermal and dynamic instabilities and generally is capped below 500 hPa. The thermally induced sea breeze modifies the desert Planetary Boundary Layer (PBL) and propagates inland as a density current. The leading edge of the denser marine air rapidly moves inland undercutting the hot and dry desert air mass. The warm air lifts up along the sea breeze front (SBF). Despite large moisture flux from the sea, the shallow convection in SBF does not cause precipitation on the most part of the Arabian coastal plane. The main focus of this research is to study the vertical structure and extent of convective activity in SBF and to differentiate flow regimes that lead to dry and wet convection. The Weather Research and Forecasting Model (WRF) has been employed at a high spatial resolution of 500 m to investigate the thermodynamic structure of the atmospheric column along the SBF. We found that convection occurs during offshore and cross-shore mean wind conditions; precipitation in SBF frequently develops in the southern region of the Red Sea along the high terrain of Al-Sarawat Mountains range, while on most of the days convection is dry in the middle region and further north of the Red Sea. The coherent structures in the PBL, horizontal convective rolls (HCRs) and open convective cells (OCCs), play an important role shaping interaction of SBF with the desert boundary layer. The HCRs develop in the midmorning along the mean wind vector and interact with the SBF. Later in the afternoon HCRs evolve into OCCs. The convection is strongest, where the HCR and OCC updrafts overlap with SBF and is weakest in their downdraft regions.

  3. Experimental Investigation of Pool Boiling Heat Transfer Enhancement in Microgravity in the Presence of Electric Fields

    NASA Technical Reports Server (NTRS)

    Herman, C.

    2000-01-01

    The research carried out in the Heat Transfer Laboratory of the Johns Hopkins University was motivated by previous studies indicating that in terrestrial applications nucleate boiling heat transfer can be increased by a factor of 50 when compared to values obtained for the same system without electric fields. Imposing an external electric field holds the promise to improve pool boiling heat transfer in low gravity, since a phase separation force other than gravity is introduced. The influence of electric fields on bubble formation has been investigated both experimentally and theoretically.

  4. Cryogenic Boil-Off Reduction System

    NASA Astrophysics Data System (ADS)

    Plachta, David W.; Guzik, Monica C.

    2014-03-01

    A computational model of the cryogenic boil-off reduction system being developed by NASA as part of the Cryogenic Propellant Storage and Transfer technology maturation project has been applied to a range of propellant storage tanks sizes for high-performing in-space cryogenic propulsion applications. This effort focuses on the scaling of multi-layer insulation (MLI), cryocoolers, broad area cooling shields, radiators, solar arrays, and tanks for liquid hydrogen propellant storage tanks ranging from 2 to 10 m in diameter. Component scaling equations were incorporated into the Cryogenic Analysis Tool, a spreadsheet-based tool used to perform system-level parametric studies. The primary addition to the evolution of this updated tool is the integration of a scaling method for reverse turbo-Brayton cycle cryocoolers, as well as the development and inclusion of Self-Supporting Multi-Layer Insulation. Mass, power, and sizing relationships are traded parametrically to establish the appropriate loiter period beyond which this boil-off reduction system application reduces mass. The projected benefit compares passive thermal control to active thermal control, where active thermal control is evaluated for reduced boil-off with a 90 K shield, zero boil-off with a single heat interception stage at the tank wall, and zero boil-off with a second interception stage at a 90 K shield. Parametric studies show a benefit over passive storage at loiter durations under one month, in addition to showing a benefit for two-stage zero boil-off in terms of reducing power and mass as compared to single stage zero boil-off. Furthermore, active cooling reduces the effect of varied multi-layer insulation performance, which, historically, has been shown to be significant.

  5. Convective flow patterns in an eight-box cube driven by combined wind stress, thermal and saline forcing. (Reannouncement with new availability information). Technical report

    SciTech Connect

    Huang, R.X.; Stommel, H.M.

    1992-02-15

    An eight-box cube model ocean, simulating the subpolar gyre in the North Atlantic, is formulated in order to understand how the wind-induced horizontal gyre affects the thermohaline circulation and its catastrophe. The model is forced from above by thermal conduction and freshwater flux. The structure of the thermohaline circulation and its catastrophe during the process of gradually increasing or reducing the evaporation/precipitation are examined. The results indicate that, although adding the third dimension and a wind-driven horizontal gyre of medium strength splits the catastrophe into several separate ones, only some of these catastrophes remain of significant amplitude. With choice of parameters appropriate for the North Atlantic, the model predicts a single stable state, circulating in the thermal sense (sinking at the pole). This can be driven smoothly to a reversed saline sense (sinking at the equator), without catastrophe, by increasing the precipitation/evaporation rate beyond 3 times the present-day value.

  6. Structural changes of malt proteins during boiling.

    PubMed

    Jin, Bei; Li, Lin; Liu, Guo-Qin; Li, Bing; Zhu, Yu-Kui; Liao, Liao-Ning

    2009-03-09

    Changes in the physicochemical properties and structure of proteins derived from two malt varieties (Baudin and Guangmai) during wort boiling were investigated by differential scanning calorimetry, SDS-PAGE, two-dimensional electrophoresis, gel filtration chromatography and circular dichroism spectroscopy. The results showed that both protein content and amino acid composition changed only slightly during boiling, and that boiling might cause a gradual unfolding of protein structures, as indicated by the decrease in surface hydrophobicity and free sulfhydryl content and enthalpy value, as well as reduced alpha-helix contents and markedly increased random coil contents. It was also found that major component of both worts was a boiling-resistant protein with a molecular mass of 40 kDa, and that according to the two-dimensional electrophoresis and SE-HPLC analyses, a small amount of soluble aggregates might be formed via hydrophobic interactions. It was thus concluded that changes of protein structure caused by boiling that might influence beer quality are largely independent of malt variety.

  7. Magnetic Control of Solutal Buoyancy Driven Convection

    NASA Technical Reports Server (NTRS)

    Ramachandran, N.; Leslie, F. W.

    2003-01-01

    Volumetric forces resulting from local density variations and gravitational acceleration cause buoyancy induced convective motion in melts and solutions. Solutal buoyancy is a result of concentration differences in an otherwise isothermal fluid. If the fluid also exhibits variations in magnetic susceptibility with concentration then convection control by external magnetic fields can be hypothesized. Magnetic control of thermal buoyancy induced convection in ferrofluids (dispersions of ferromagnetic particles in a carrier fluid) and paramagnetic fluids have been demonstrated. Here we show the nature of magnetic control of solutal buoyancy driven convection of a paramagnetic fluid, an aqueous solution of Manganese Chloride hydrate. We predict the critical magnetic field required for balancing gravitational solutal buoyancy driven convection and validate it through a simple experiment. We demonstrate that gravity driven flow can be completely reversed by a magnetic field but the exact cancellation of the flow is not possible. This is because the phenomenon is unstable. The technique can be applied to crystal growth processes in order to reduce convection and to heat exchanger devices for enhancing convection. The method can also be applied to impose a desired g-level in reduced gravity applications.

  8. Slantwise convection on fluid planets

    NASA Astrophysics Data System (ADS)

    O'Neill, Morgan E.; Kaspi, Yohai

    2016-10-01

    Slantwise convection should be ubiquitous in the atmospheres of rapidly rotating fluid planets. We argue that convectively adjusted lapse rates should be interpreted along constant angular momentum surfaces instead of lines parallel to the local gravity vector. Using Cassini wind observations of Jupiter and different lapse rates to construct toy atmospheres, we explore parcel paths in symmetrically stable and unstable weather layers by the numerically modeled insertion of negatively buoyant bubbles. Low-Richardson number atmospheres are very susceptible to transient symmetric instability upon local diabatic forcing, even outside of the tropics. We explore parcel paths in symmetrically stable and unstable weather layer environments, the latter by adding thermal bubbles to the weather layer. Parcels that cool in Jupiter's belt regions have particularly horizontal paths, with implications for jetward angular momentum fluxes. These considerations may be relevant to the interpretation of Juno's ongoing observations of Jupiter's weather layer.

  9. Combination microwave gas convection oven

    SciTech Connect

    Day, W.J. Jr.

    1984-02-07

    A combination microwave gas convection oven is described having a tubular burner operating in an induced draft environment. A blower system draws air from a combustion chamber forcing it into the heating cavity. The slight pressure created in the combustion chamber draws in air from the heating cavity through perforations communicating therebetween completing the convection recirculation. The negative pressure in the combustion chamber also causes secondary combustion air to be drawn up along the sides of the burner which is positioned adjacent to an aperture in the floor of the combustion chamber. A plurality of top ports in the burner provides low port loading. The structure provides good flame characteristics with low noise of combustion.

  10. Experimental Investigation of Pool Boiling Heat Transfer Enhancement in Microgravity in the Presence of Electric Fields

    NASA Technical Reports Server (NTRS)

    Herman, Cila

    1996-01-01

    Boiling is an effective mode of heat transfer since high heat flux levels are possible driven by relatively small temperature differences. The high heat transfer coefficients associated with boiling have made the use of these processes increasingly attractive to aerospace engineering. Applications of this type include compact evaporators in the thermal control of aircraft avionics and spacecraft environments, heat pipes, and use of boiling to cool electronic equipment. In spite of its efficiency, cooling based on liquid-vapor phase change processes has not yet found wide application in aerospace engineering due to specific problems associated with the low gravity environment. After a heated surface has reached the superheat required for the initiation of nucleate boiling, bubbles will start forming at nucleation sites along the solid interface by evaporation of the liquid. Bubbles in contact with the wall will continue growing by this mechanism until they detach. In terrestrial conditions, bubble detachment is determined by the competition between body forces (e.g. buoyancy) and surface tension forces that act to anchor the bubble along the three phase contact line. For a given body force potential and a balance of tensions along the three phase contact line, bubbles must reach a critical size before the body force can cause them to detach from the wall. In a low gravity environment the critical bubble size for detachment is much larger than under terrestrial conditions, since buoyancy is a less effective means of bubble removal. Active techniques of heat transfer enhancement in single phase and phase change processes by utilizing electric fields have been the subject of intensive research during recent years. The field of electrohydrodynamics (EHD) deals with the interactions between electric fields, flow fields and temperature fields. Previous studies indicate that in terrestrial applications nucleate boiling heat transfer can be increased by a factor of 50 as

  11. A groundwater convection model for Rio Grande rift geothermal resources

    NASA Technical Reports Server (NTRS)

    Morgan, P.; Harder, V.; Daggett, P. H.; Swanberg, C. A.

    1981-01-01

    It has been proposed that forced convection, driven by normal groundwater flow through the interconnected basins of the Rio Grande rift is the primary source mechanism for the numerous geothermal anomalies along the rift. A test of this concept using an analytical model indicates that significant forced convection must occur in the basins even if permeabilities are as low as 50-200 millidarcies at a depth of 2 km. Where groundwater flow is constricted at the discharge areas of the basins forced convection can locally increase the gradient to a level where free convection also occurs, generating surface heat flow anomalies 5-15 times background. A compilation of groundwater data for the rift basins shows a strong correlation between constrictions in groundwater flow and hot springs and geothermal anomalies, giving strong circumstantial support to the convection model.

  12. Turbulent generation and mechanism analysis of forced-convective heat transfer enhancement by applying electric fields in the restricted region near the wall

    SciTech Connect

    Hasegawa, Masato; Yabe, Akira; Nariai, Hideki

    1999-07-01

    The heat transfer enhancement method of applying electric fields only near a heat transfer wall was numerically investigated. Generation of additional turbulence in the near-wall region occurs by the interaction between migrating electric charges and the turbulent flow of weakly electrically conductive fluids such as refrigerants, oils, and chlorofluorocarbon (CFC) alternatives. Based on electrostatic probe experiments, the authors assumed that the current was mainly transferred by the negative charges. They solved the Navier-Stokes equation with a Coulomb force term, the conservation equation of electric current, the Poisson equation of electric potential, and the energy equation. They used the Large Eddy Simulation (LES) method to represent the turbulence. The numerical analysis showed a heat transfer enhancement of 2.8 times for turbulent flow (Re = 1.8 x 10{sup 4}) when applying 5 kV to the near-wall region, 5 mm from the wall. The simulations for different distances between the coupled electrodes showed that an optimum location of the electrodes exists for achieving the lowest electric power input for a given electric field strength. They also evaluated the heat efficiency in a simple heat exchanger system using this heat transfer enhancement method. For the 5 kV/5 mm condition, where 19% of the total input power was consumed by the electric field, they achieved a heat transfer enhancement of 27 times compared to the case when an equivalent, additional amount of input power would be consumed by the pump to increase the flow rate of the heat-transfer fluid.

  13. NUCLEAR SUPERHEATER FOR BOILING WATER REACTOR

    DOEpatents

    Holl, R.J.; Klecker, R.W.; Graham, C.B.

    1962-05-15

    A description is given of a boiling water reactor having a superheating region integral with the core. The core consists essentially of an annular boiling region surrounding an inner superheating region. Both regions contain fuel elements and are separated by a cylindrical wall, perforations being provided in the lower portion of the cylindrical wall to permit circulation of a common water moderator between the two regions. The superheater region comprises a plurality of tubular fuel assemblies through which the steam emanating from the boiling region passes to the steam outlet. Each superheater fuel assembly has an outer double-walled cylinder, the double walls being concentrically spaced and connected together at their upper ends but open at the bottom to provide for differential thermal expansion of the inner and outer walls. Gas is entrapped in the annulus between the walls which acts as an insulating space between the fissionable material inside and the moderator outside. (AEC)

  14. Boiling as household water treatment in Cambodia: a longitudinal study of boiling practice and microbiological effectiveness.

    PubMed

    Brown, Joseph; Sobsey, Mark D

    2012-09-01

    This paper focuses on the consistency of use and microbiological effectiveness of boiling as it is practiced in one study site in peri-urban Cambodia. We followed 60 randomly selected households in Kandal Province over 6 months to collect longitudinal data on water boiling practices and effectiveness in reducing Escherichia coli in household drinking water. Despite > 90% of households reporting that they used boiling as a means of drinking water treatment, an average of only 31% of households had boiled water on hand at follow-up visits, suggesting that actual use may be lower than self-reported use. We collected 369 matched untreated and boiled water samples. Mean reduction of E. coli was 98.5%; 162 samples (44%) of boiled samples were free of E. coli (< 1 colony-forming unit [cfu]/100 mL), and 270 samples (73%) had < 10 cfu/100 mL. Storing boiled water in a covered container was associated with safer product water than storage in an uncovered container.

  15. CONTINUOUS ANALYZER UTILIZING BOILING POINT DETERMINATION

    DOEpatents

    Pappas, W.S.

    1963-03-19

    A device is designed for continuously determining the boiling point of a mixture of liquids. The device comprises a distillation chamber for boiling a liquid; outlet conduit means for maintaining the liquid contents of said chamber at a constant level; a reflux condenser mounted above said distillation chamber; means for continuously introducing an incoming liquid sample into said reflux condenser and into intimate contact with vapors refluxing within said condenser; and means for measuring the temperature of the liquid flowing through said distillation chamber. (AEC)

  16. The boiling point of stratospheric aerosols.

    NASA Technical Reports Server (NTRS)

    Rosen, J. M.

    1971-01-01

    A photoelectric particle counter was used for the measurement of aerosol boiling points. The operational principle involves raising the temperature of the aerosol by vigorously heating a portion of the intake tube. At or above the boiling point, the particles disintegrate rather quickly, and a noticeable effect on the size distribution and concentration is observed. Stratospheric aerosols appear to have the same volatility as a solution of 75% sulfuric acid. Chemical analysis of the aerosols indicates that there are other substances present, but that the sulfate radical is apparently the major constituent.

  17. BOILING SLURRY REACTOR AND METHOD FO CONTROL

    DOEpatents

    Petrick, M.; Marchaterre, J.F.

    1963-05-01

    The control of a boiling slurry nuclear reactor is described. The reactor consists of a vertical tube having an enlarged portion, a steam drum at the top of the vertical tube, and at least one downcomer connecting the steam drum and the bottom of the vertical tube, the reactor being filled with a slurry of fissionabie material in water of such concentration that the enlarged portion of the vertical tube contains a critical mass. The slurry boils in the vertical tube and circulates upwardly therein and downwardly in the downcomer. To control the reactor by controlling the circulation of the slurry, a gas is introduced into the downcomer. (AEC)

  18. A study of flow boiling phenomena using real time neutron radiography

    NASA Astrophysics Data System (ADS)

    Novog, David Raymond

    The operation and safety of both fossil-fuel and nuclear power stations depend on adequate cooling of the thermal source involved. This is usually accomplished using liquid coolants that are forced through the high temperature regions by a pumping system; this fluid then transports the thermal energy to another section of the power station. However, fluids that undergo boiling during this process create vapor that can be detrimental, and influence safe operation of other system components. The behavior of this vapor, or void, as it is generated and transported through the system is critical in predicting the operational and safety performance. This study uses two advanced penetrating radiation techniques, Real Time Neutron Radiography (RTNR), and High Speed X-Ray Tomography (HS-XCT), to examine void generation and transport behavior in a flow boiling system. The geometries studied were tube side flow boiling in a cylindrical configuration, and a similar flow channel with an internal twisted tape swirl flow generator. The heat transfer performance and pressure drop characteristics were monitored in addition to void distribution measurements, so that the impact of void distribution could be determined. The RTNR and heat transfer pipe flow studies were conducted using boiling Refrigerant 134a at pressures from 500 to 700 kPa, inlet subcooling from 3 to 12°C and mass fluxes from 55 to 170kg/m 2-s with heat fluxes up to 40 kW/m2. RTNR and HS-XCT were used to measure the distribution and size of the vapor phases in the channel for cylindrical tube-side flow boiling and swirl-flow boiling geometries. The results clearly show that the averaged void is similar for both geometries, but that there is a significant difference in the void distribution, velocity and transport behavior from one configuration to the next. Specifically, the void distribution during flow boiling in a cylindrical-tube test section showed that the void fraction was largest near the tube center and

  19. A continuous and prognostic convection scheme based on buoyancy, PCMT

    NASA Astrophysics Data System (ADS)

    Guérémy, Jean-François; Piriou, Jean-Marcel

    2016-04-01

    A new and consistent convection scheme (PCMT: Prognostic Condensates Microphysics and Transport), providing a continuous and prognostic treatment of this atmospheric process, is described. The main concept ensuring the consistency of the whole system is the buoyancy, key element of any vertical motion. The buoyancy constitutes the forcing term of the convective vertical velocity, which is then used to define the triggering condition, the mass flux, and the rates of entrainment-detrainment. The buoyancy is also used in its vertically integrated form (CAPE) to determine the closure condition. The continuous treatment of convection, from dry thermals to deep precipitating convection, is achieved with the help of a continuous formulation of the entrainment-detrainment rates (depending on the convective vertical velocity) and of the CAPE relaxation time (depending on the convective over-turning time). The convective tendencies are directly expressed in terms of condensation and transport. Finally, the convective vertical velocity and condensates are fully prognostic, the latter being treated using the same microphysics scheme as for the resolved condensates but considering the convective environment. A Single Column Model (SCM) validation of this scheme is shown, allowing detailed comparisons with observed and explicitly simulated data. Four cases covering the convective spectrum are considered: over ocean, sensitivity to environmental moisture (S. Derbyshire) non precipitating shallow convection to deep precipitating convection, trade wind shallow convection (BOMEX) and strato-cumulus (FIRE), together with an entire continental diurnal cycle of convection (ARM). The emphasis is put on the characteristics of the scheme which enable a continuous treatment of convection. Then, a 3D LAM validation is presented considering an AMMA case with both observations and a CRM simulation using the same initial and lateral conditions as for the parameterized one. Finally, global

  20. Pool Boiling with Non-condensable Gas in Microgravity: Results of a Sounding Rocket Experiment

    NASA Astrophysics Data System (ADS)

    Kannengieser, Olivier; Colin, Catherine; Bergez, Wladimir

    2010-09-01

    Pool boiling experiments in microgravity have been performed in the Sounding Rocket Maser 11. A heated plate of 1 cm 2 was located at the bottom of a small cylindrical tank partly filled with a refrigerant Novec HFE7000 pressurized with Nitrogen. Experiments were performed at different reservoir pressures and wall heat fluxes. The wall heat flux and wall temperature were simultaneously measured during the experiment and the behavior of the bubbles on the heater was filmed with a video camera through the transparent wall of the reservoir. The presence of Nitrogen dissolved inside the liquid led to a strong Marangoni convection around the bubble. The effect of Marangoni convection and evaporation on the wall heat transfer is analyzed in function of the relative values of the wall temperature and saturation temperature.

  1. REVIEWS OF TOPICAL PROBLEMS: Free convection in geophysical processes

    NASA Astrophysics Data System (ADS)

    Alekseev, V. V.; Gusev, A. M.

    1983-10-01

    A highly significant geophysical process, free convection, is examined. Thermal convection often controls the dynamical behavior in several of the earth's envelopes: the atmosphere, ocean, and mantle. Section 2 sets forth the thermohydrodynamic equations that describe convection in a compressible or incompressible fluid, thermochemical convection, and convection in the presence of thermal diffusion. Section 3 reviews the mechanisms for the origin of the global atmospheric and oceanic circulation. Interlatitudinal convection and jet streams are discussed, as well as monsoon circulation and the mean meridional circulation of ocean waters due to the temperature and salinity gradients. Also described are the hypotheses for convective motion in the mantle and the thermal-wave (moving flame) mechanism for inducing global circulation (the atmospheres of Venus and Mars provide illustrations). Eddy formation by convection in a centrifugal force field is considered. Section 4 deals with medium- and small-scale convective processes, including hurricane systems with phase transitions, cellular cloud structure, and convection penetrating into the ocean, with its stepped vertical temperature and salinity microstructure. Self-oscillatory processes involving convection in fresh-water basins are discussed, including effects due to the anomalous (p,T) relation for water.

  2. The Measurement and Prediction of Rotordynamic Forces for Labyrinth Seals

    DTIC Science & Technology

    1988-03-01

    Rhode prepared for Air Force Office of Scientific Research Boiling Air Force Base Washington, D. C. 20332 Contract F49620-82-K083’ DTIC ELECTE JUN 2 9...by D. W. Childs D. L. Rhode prepared for Air Force Office of Scientific Research Boiling Air Force Base Washington, D. C. 20332 Contract F49620-82...S. . -° .. :... &ii:~:--&.c..-:&. -~ , 4 TEST APPARATUS . The test results reported here were obtained using the Texas A&M Air Seal Test

  3. Laser-induced natural convection and thermophoresis

    NASA Astrophysics Data System (ADS)

    Wang, C. Y.; Morse, T. F.; Cipolla, J. W., Jr.

    1985-02-01

    The influence of axial laser volumetric heating and forced convection on the motion of aerosol particles in a vertical tube has been studied using the Boussinesq approximation. For constant wall temperature, an asymptotic case provides simple temperature and velocity profiles that determine the convection and thermophoretic motion of small aerosol particles. Laser heating induces upward buoyant motion near the tube center, and when forced convection is downward, there may be an inflection in the velocity profile. For constant laser heating (a small absorption limit), a velocity profile may be found that will minimize the distance over which particles are deposited on the wall. Such an observation may have some bearing on the manufacture of preforms from which optical fibers are drawn.

  4. An Investigation of Graduate Scientists' Understandings of Evaporation and Boiling.

    ERIC Educational Resources Information Center

    Goodwin, Alan; Orlik, Yuri

    2000-01-01

    Uses a video presentation of six situations relating to the evaporation and boiling of liquids and the escape of dissolved gases from solution and investigates graduate scientists' understanding of the concepts of boiling and evaporation. (Author/YDS)

  5. Free convection in the Matian atmosphere

    NASA Technical Reports Server (NTRS)

    Clow, G. D.; Haberle, R. M.

    1990-01-01

    The 'free convective' regime for the Martian atmospheric boundary layer (ABL) was investigated. This state occurs when the mean windspeed at the top of the ABL drops below some critical value U(sub c) and positive buoyant forces are present. Such forces can arise either from vertical temperature or water vapor gradients across the atmospheric surface layer. During free convection, buoyant forces drive narrow plumes that ascend to the inversion height with a return circulation consisting of broad slower-moving downdraughts. Horizontal pressure, temperature, windspeed, and water vapor fluctuations resulting form this circulation pattern can be quite large adjacent to the ground (within the surface layer). The local turbulent fluctuations cause non-zero mean surface stresses, sensible heat fluxes, and latent heat fluxes, even when the mean regional windspeed is zero. Although motions above the surface layer are insensitive to the nature of the surface, the sensible and latent heat fluxes are primarily controlled by processes within the interfacial sublayer immediately adjacent to the ground during free convection. Thus the distinction between aerodynamically smooth and rough airflow within the interfacial sublayer is more important than for the more typical situation where the mean regional windspeed is greater than U(sub c). Buoyant forces associated with water vapor gradients are particularly large on Mars at low pressures and high temperatures when the surface relative humidity is 100 percent, enhancing the likelihood of free convection under these conditions. On this basis, Ingersol postulated the evaporative heat losses from an icy surface on Mars at 237 K and current pressures would exceed the available net radiative flux at the surface, thus prohibiting ice from melting at low atmospheric pressures. Schumann has developed equations describing the horizontal fluctuations and mean vertical gradients occurring during free convection. Schumann's model was

  6. The Plausibility of Boiling Geysers on Triton

    NASA Technical Reports Server (NTRS)

    Duxbury, N. S.; Brown, R. H.

    1995-01-01

    A mechanism is suggested and modeled whereby there may be boiling geysers on Triton. The geysers would be of nitrogen considering that Voyager detected cryovolcanic activity, that solid nitrogen conducts heat much less than water ice, and that there is internal heat on Triton.

  7. Cryogenic Propellant Boil-Off Reduction System

    NASA Astrophysics Data System (ADS)

    Plachta, D. W.; Christie, R. J.; Carlberg, E.; Feller, J. R.

    2008-03-01

    Lunar missions under consideration would benefit from incorporation of high specific impulse propellants such as LH2 and LO2, even with their accompanying boil-off losses necessary to maintain a steady tank pressure. This paper addresses a cryogenic propellant boil-off reduction system to minimize or eliminate boil-off. Concepts to do so were considered under the In-Space Cryogenic Propellant Depot Project. Specific to that was an investigation of cryocooler integration concepts for relatively large depot sized propellant tanks. One concept proved promising—it served to efficiently move heat to the cryocooler even over long distances via a compressed helium loop. The analyses and designs for this were incorporated into NASA Glenn Research Center's Cryogenic Analysis Tool. That design approach is explained and shown herein. Analysis shows that, when compared to passive only cryogenic storage, the boil-off reduction system begins to reduce system mass if durations are as low as 40 days for LH2, and 14 days for LO2. In addition, a method of cooling LH2 tanks is presented that precludes development issues associated with LH2 temperature cryocoolers.

  8. Cryogenic Boil-Off Reduction System Testing

    NASA Technical Reports Server (NTRS)

    Plachta, David W.; Johnson, Wesley L.; Feller, Jeffery

    2014-01-01

    The Cryogenic Boil-Off Reduction System was tested with LH2 and LOX in a vacuum chamber to simulate space vacuum and the temperatures of low Earth orbit. Testing was successful and results validated the scaling study model that predicts active cooling reduces upper stage cryogenic propulsion mass for loiter periods greater than 2 weeks.

  9. Big Bubbles in Boiling Liquids: Students' Views

    ERIC Educational Resources Information Center

    Costu, Bayram

    2008-01-01

    The aim of this study was to elicit students' conceptions about big bubbles in boiling liquids (water, ethanol and aqueous CuSO[subscript 4] solution). The study is based on twenty-four students at different ages and grades. The clinical interviews technique was conducted to solicit students' conceptions and the interviews were analyzed to…

  10. Electrically Driven Liquid Film Boiling Experiment

    NASA Technical Reports Server (NTRS)

    Didion, Jeffrey R.

    2016-01-01

    This presentation presents the science background and ground based results that form the basis of the Electrically Driven Liquid Film Boiling Experiment. This is an ISS experiment that is manifested for 2021. Objective: Characterize the effects of gravity on the interaction of electric and flow fields in the presence of phase change specifically pertaining to: a) The effects of microgravity on the electrically generated two-phase flow. b) The effects of microgravity on electrically driven liquid film boiling (includes extreme heat fluxes). Electro-wetting of the boiling section will repel the bubbles away from the heated surface in microgravity environment. Relevance/Impact: Provides phenomenological foundation for the development of electric field based two-phase thermal management systems leveraging EHD, permitting optimization of heat transfer surface area to volume ratios as well as achievement of high heat transfer coefficients thus resulting in system mass and volume savings. EHD replaces buoyancy or flow driven bubble removal from heated surface. Development Approach: Conduct preliminary experiments in low gravity and ground-based facilities to refine technique and obtain preliminary data for model development. ISS environment required to characterize electro-wetting effect on nucleate boiling and CHF in the absence of gravity. Will operate in the FIR - designed for autonomous operation.

  11. Electrohydrodynamic Pool Boiling in Reduced Gravity

    NASA Technical Reports Server (NTRS)

    Shaw, Benjamin D.; Stahl, S. L.

    1996-01-01

    This research is concerned with studying the effects of applied electric fields on pool boiling in a reduced-gravity environment. Experiments are conducted at the NASA Lewis 2.2 sec Drop tower using a drop rig constructed at UC Davis. In the experiments, a platinum wire is heated while immersed in saturated liquid refrigerants (FC-72 and FC-87), or water, causing vapor formation at the wire surface. Electric fields are applied between the wire surface and an outer screen electrode that surrounds the wire. Preliminary normal-gravity experiments with water have demonstrated that applied electric fields generated by the rig electronics can influence boiling characteristics. Reduced-gravity experiments will be performed in the summer of 1996. The experiments will provide fundamental data on electric field strengths required to disrupt film boiling (for various wire heat generation input rates) in reduced gravity for a cylindrical geometry. The experiments should also shed light on the roles of characteristic bubble generation times and charge relaxation times in determining the effects of electric fields on pool boiling. Normal-gravity comparison experiments will also be performed.

  12. Convective heat transfer to low-temperature fluids

    NASA Technical Reports Server (NTRS)

    Graham, R. W.; Hendricks, R. C.; Simoneau, R. J.

    1974-01-01

    Research into forced and natural convection processes in low-temperature (cryogenic) fluids is reviewed with primary emphasis on forced convection. Boundaries of the near-critical region are defined, fluid properties near the critical state are discussed, and heat-transfer processes around the critical point are described. The thermodynamics of the critical point is analyzed together with transport properties of a near-critical fluid, and the quantum states of low-temperature molecular hydrogen (para and ortho) are discussed. Experimental work on heat transfer in free, natural, and forced convection systems is briefly summarized. Graham's (1969) penetration model for near-critical fluids is outlined, near-critical heat transfer is discussed in relation to conventional geometric effects, and the effects of curvature on the properties of near-critical hydrogen are noted. Theoretical considerations in free and forced convection are examined.

  13. A new regime of nucleate boiling in microsphere mesostructures: Jumping pool boiling

    NASA Astrophysics Data System (ADS)

    Dmitriev, A. S.; Makarov, P. G.; El Bouz, M. A.

    2015-03-01

    We have studied a new regime of nucleate boiling in distilled water on substrates representing mesostructures of monodisperse and/or polydisperse microspheres made of various materials. It is experimentally established that, under some conditions of nucleate boiling, there appear "jumping pool boiling" regimes in which bubbles do not reach the surface of underheated liquid. In addition, bubbles may capture a certain number of microspheres, lift them up to some height, and then sink together down to the vessel bottom. Alternatively, microspheres may trap a certain number of bubbles, float up toward the evaporating surface, and then (without reaching the surface) sink back to the bottom layer where the nucleate bubbling takes place. Subregimes of this boiling mechanism involving microspheres of various densities and dimensions have also been observed.

  14. Environmental qualification testing of the prototype pool boiling experiment

    NASA Technical Reports Server (NTRS)

    Sexton, J. Andrew

    1992-01-01

    The prototype Pool Boiling Experiment (PBE) flew on the STS-47 mission in September 1992. This report describes the purpose of the experiment and the environmental qualification testing program that was used to prove the integrity of the prototype hardware. Component and box level vibration and thermal cycling tests were performed to give an early level of confidence in the hardware designs. At the system level, vibration, thermal extreme soaks, and thermal vacuum cycling tests were performed to qualify the complete design for the expected shuttle environment. The system level vibration testing included three axis sine sweeps and random inputs. The system level hot and cold soak tests demonstrated the hardware's capability to operate over a wide range of temperatures and gave the project team a wider latitude in determining which shuttle thermal altitudes were compatible with the experiment. The system level thermal vacuum cycling tests demonstrated the hardware's capability to operate in a convection free environment. A unique environmental chamber was designed and fabricated by the PBE team and allowed most of the environmental testing to be performed within the project's laboratory. The completion of the test program gave the project team high confidence in the hardware's ability to function as designed during flight.

  15. Enhanced Boiling on Micro-Configured Composite Surfaces Under Microgravity Conditions

    NASA Technical Reports Server (NTRS)

    Zhang, Nengli; Chai, An-Ti

    1999-01-01

    In order to accommodate the growing thermal management needs of future space platforms, several two-phase active thermal control systems (ATCSs) have evolved and were included in the designs of space stations. Compared to the pumped single-phase liquid loops used in the conventional Space Transportation System and Spacelab, ATCSs offer significant benefits that may be realized by adopting a two-phase fluid-loop system. Alternately, dynamic power systems (DPSs), based on the Rankine cycle, seem inevitably to be required to supply the electrical power requirements of expanding space activities. Boiling heat transfer is one of the key technologies for both ATCSs and DPSs. Nucleate boiling near critical heat flux (CHF) can transport very large thermal loads with much smaller device size and much lower pumping power. However, boiling performance deteriorates in a reduced gravity environment and operation in the CHF regime is precarious because any slight overload will cause the heat transfer to suddenly move to the film boiling regime, which in turn, will result in burnout of the heat transfer surfaces. New materials, such as micro-configured metal-graphite composites, can provide a solution for boiling enhancement. It has been shown experimentally that this type of material manifests outstanding boiling heat transfer performance and their CHF is also extended to higher values. Due to the high thermal conductivity of graphite fiber (up to 1,200 W/m-K in the fiber direction), the composite surfaces are non-isothermal during the boiling process. The composite surfaces are believed to have a much wider safe operating region (a more uniform boiling curve in the CHF regime) because non-isothermal surfaces have been found to be less sensitive to variations of wall superheat in the CHF regime. The thermocapillary forces formed by the temperature difference between the fiber tips and the metal matrix play a more important role than the buoyancy in the bubble detachment, for the

  16. Cryogenic Boil-Off Reduction System Testing

    NASA Technical Reports Server (NTRS)

    Plachta, David W.; Johnson, Wesley L.; Feller, Jeffrey R.

    2014-01-01

    Cryogenic propellants such as liquid hydrogen (LH2) and liquid oxygen (LO2) are a part of NASA's future space exploration due to the high specific impulse that can be achieved using engines suitable for moving 10's to 100's of metric tons of payload mass to destinations outside of low earth orbit. However, the low storage temperatures of LH2 and LO2 cause substantial boil-off losses for missions with durations greater than several days. The losses can be greatly reduced by incorporating high performance cryocooler technology to intercept heat load to the propellant tanks and by the integration of self-supporting multi-layer insulation. The active thermal control technology under development is the integration of the reverse turbo- Brayton cycle cryocooler to the propellant tank through a distributed cooling network of tubes coupled to a shield in the tank insulation and to the tank wall itself. Also, the self-supporting insulation technology was utilized under the shield to obtain needed tank applied LH2 performance. These elements were recently tested at NASA Glenn Research Center in a series of three tests, two that reduced LH2 boil-off and one to eliminate LO2 boil-off. This test series was conducted in a vacuum chamber that replicated the vacuum of space and the temperatures of low Earth orbit. The test results show that LH2 boil-off was reduced 60% by the cryocooler system operating at 90K and that robust LO2 zero boil-off storage, including full tank pressure control was achieved.

  17. Numerical Simulation on Single Bubble Pool Boiling with Influence of Heater Thermal Capacity

    NASA Astrophysics Data System (ADS)

    Zhao, Jian-Fu; Zhang, Liang; Li, Zhen-Dong

    The model of single bubble pool boiling is used to simulate nucleate pool boiling phenomenon in the present paper. Local convection and heat transfer around a single vapour bubble which is growing from a nucleus bubble planted artificially on the surface of heaters with different thicknesses, as well as transient heat conduction inside the heater’s wall, are simulated numerically with sharp interface representation. Multi-cycle simulation is adopted to eliminate the effect of un-physical initial conditions. It’s found that the thermal response of wall is found to affect the bubble growth and boiling heat transfer. During the process of bubble growth, a sharp temperature drop inside the solid wall is evident near the contact line underneath the growing bubble because of the strong evaporation in micro-region. The temperature and heat flux profiles change with the move of the contact line, and twice sharp temperature drops at a certain location are observed, which correspond to the expanding and recoiling processes, respectively. During the waiting period after the bubble detached from the wall, the temperature field is recovered by heat conduction inside the solid wall. As a part of preparation of the SOBER project onboard the Chinese recoverable satellite SJ-10, which will be launched in the end of 2015, the gravity influence is also studied.

  18. Comparison of simulated and observed convective gravity waves

    NASA Astrophysics Data System (ADS)

    Kalisch, S.; Chun, H.-Y.; Ern, M.; Preusse, P.; Trinh, Q. T.; Eckermann, S. D.; Riese, M.

    2016-11-01

    Gravity waves (GWs) from convection have horizontal wavelengths typically shorter than 100 km. Resolving these waves in state-of-the-art atmospheric models still remains challenging. Also, their time-dependent excitation process cannot be represented by a common GW drag parametrization with static launch distribution. Thus, the aim of this paper is to investigate the excitation and three-dimensional propagation of GWs forced by deep convection in the troposphere and estimate their influence on the middle atmosphere. For that purpose, the GW ray tracer Gravity-wave Regional Or Global Ray Tracer (GROGRAT) has been coupled to the Yonsei convective GW source model. The remaining free model parameters have been constrained by measurements. This work led to a coupled convective GW model representing convective GWs forced from small cells of deep convection up to large-scale convective clusters. In order to compare our simulation results with observed global distributions of momentum flux, limitations of satellite instruments were taken into account: The observational filter of a limb-viewing satellite instrument restricts measurements of GWs to waves with horizontal wavelengths longer than 100 km. Convective GWs, however, often have shorter wavelengths. This effect is taken into account when comparing simulated and observable GW spectra. We find good overall agreement between simulated and observed GW global distributions, if superimposed with a nonorographic background spectrum for higher-latitude coverage. Our findings indicate that parts of the convective GW spectrum can indeed be observed by limb-sounding satellites.

  19. EFFECTS OF PENETRATIVE CONVECTION ON SOLAR DYNAMO

    SciTech Connect

    Masada, Youhei; Yamada, Kohei; Kageyama, Akira

    2013-11-20

    Spherical solar dynamo simulations are performed. A self-consistent, fully compressible magnetohydrodynamic system with a stably stratified layer below the convective envelope is numerically solved with a newly developed simulation code based on the Yin-Yang grid. The effects of penetrative convection are studied by comparing two models with and without the stable layer. The differential rotation profile in both models is reasonably solar-like with equatorial acceleration. When considering the penetrative convection, a tachocline-like shear layer is developed and maintained beneath the convection zone without assuming any forcing. While the turbulent magnetic field becomes predominant in the region where the convective motion is vigorous, mean-field components are preferentially organized in the region where the convective motion is less vigorous. Particularly in the stable layer, the strong, large-scale field with a dipole symmetry is spontaneously built up. The polarity reversal of the mean-field component takes place globally and synchronously throughout the system regardless of the presence of the stable layer. Our results suggest that the stably stratified layer is a key component for organizing the large-scale strong magnetic field, but is not essential for the polarity reversal.

  20. Modeling deep convection in the Greenland Sea

    NASA Technical Reports Server (NTRS)

    Hakkinen, S.; Mellor, G. L.; Kantha, L. H.

    1992-01-01

    The development of deep convective events in the high-latitude ocean is studied using a three-dimensional, coupled ice-ocean model. Oceanic mixing is described according to the level 2.5 turbulence closure scheme in which convection occurs in a continuous way, i.e., convective adjustment is not invoked. The model is forced by strong winds and surface cooling. Strong upwelling at the multilyear ice edge and consequent entrainment of warm Atlantic waters into the mixed layer is produced by winds parallel to the ice edge. Concomitant cooling drives deep convection and produces chimneylike structures. Inclusion of a barotropic mean flow over topography to the model provides important preconditioning and selects the location of deep convection. The most efficient preconditioning occurs at locations where the flow ascends a slope. In a stratified environment similar to the Greenland Sea with a 12 m/s wind the model simulations show that localized deep convection takes place after about 10 days to depths of 1000 m.

  1. Convection in Condensible-rich Atmospheres

    NASA Astrophysics Data System (ADS)

    Ding, F.; Pierrehumbert, R. T.

    2016-05-01

    Condensible substances are nearly ubiquitous in planetary atmospheres. For the most familiar case—water vapor in Earth’s present climate—the condensible gas is dilute, in the sense that its concentration is everywhere small relative to the noncondensible background gases. A wide variety of important planetary climate problems involve nondilute condensible substances. These include planets near or undergoing a water vapor runaway and planets near the outer edge of the conventional habitable zone, for which CO2 is the condensible. Standard representations of convection in climate models rely on several approximations appropriate only to the dilute limit, while nondilute convection differs in fundamental ways from dilute convection. In this paper, a simple parameterization of convection valid in the nondilute as well as dilute limits is derived and used to discuss the basic character of nondilute convection. The energy conservation properties of the scheme are discussed in detail and are verified in radiative-convective simulations. As a further illustration of the behavior of the scheme, results for a runaway greenhouse atmosphere for both steady instellation and seasonally varying instellation corresponding to a highly eccentric orbit are presented. The latter case illustrates that the high thermal inertia associated with latent heat in nondilute atmospheres can damp out the effects of even extreme seasonal forcing.

  2. Heterogeneous nanofluids: natural convection heat transfer enhancement

    PubMed Central

    2011-01-01

    Convective heat transfer using different nanofluid types is investigated. The domain is differentially heated and nanofluids are treated as heterogeneous mixtures with weak solutal diffusivity and possible Soret separation. Owing to the pronounced Soret effect of these materials in combination with a considerable solutal expansion, the resulting solutal buoyancy forces could be significant and interact with the initial thermal convection. A modified formulation taking into account the thermal conductivity, viscosity versus nanofluids type and concentration and the spatial heterogeneous concentration induced by the Soret effect is presented. The obtained results, by solving numerically the full governing equations, are found to be in good agreement with the developed solution based on the scale analysis approach. The resulting convective flows are found to be dependent on the local particle concentration φ and the corresponding solutal to thermal buoyancy ratio N. The induced nanofluid heterogeneity showed a significant heat transfer modification. The heat transfer in natural convection increases with nanoparticle concentration but remains less than the enhancement previously underlined in forced convection case. PMID:21711755

  3. Enhancement of Pool Boiling Heat Transfer and Control of Bubble Motion in Microgravity Using Electric Fields (BCOEL)

    NASA Technical Reports Server (NTRS)

    Herman, Cila; Iacona, Estelle; Acquaviva, Tom; Coho, Bill; Grant, Nechelle; Nahra, Henry; Taylor, Al; Julian, Ed; Robinson, Dale; VanZandt, Dave

    2001-01-01

    The BCOEL project focuses on improving pool boiling heat transfer and bubble control in microgravity by exposing the fluid to electric fields. The electric fields induce a body force that can replace gravity in the low gravity environment, and enhance bubble removal from the heated surface. A better understanding of microgravity effects on boiling with and without electric fields is critical to the proper design of the phase-change-heat-removal equipment for use in spacebased applications. The microgravity experiments will focus on the visualization of bubble formation and shape during boiling. Heat fluxes on the boiling surface will be measured, and, together with the measured driving temperature differences, used to plot boiling curves for different electric field magnitudes. Bubble formation and boiling processes were found to be extremely sensitive to g-jitter. The duration of the experimental run is critical in order to achieve steady state in microgravity experiments. The International Space Station provides conditions suitable for such experiments. The experimental apparatus to be used in the study is described in the paper. The apparatus will be tested in the KC-135 first, and microgravity experiments will be conducted on board of the International Space Station using the Microgravity Science Glovebox as the experimental platform.

  4. High-intensity focused ultrasound monitoring using harmonic motion imaging for focused ultrasound (HMIFU) under boiling or slow denaturation conditions.

    PubMed

    Hou, Gary Y; Marquet, Fabrice; Wang, Shutao; Apostolakis, Iason-Zacharias; Konofagou, Elisa E

    2015-07-01

    Harmonic motion imaging for focused ultrasound (HMIFU) is a recently developed high-intensity focused ultrasound (HIFU) treatment monitoring method that utilizes an amplitude-modulated therapeutic ultrasound beam to induce an oscillatory radiation force at the HIFU focus and estimates the focal tissue displacement to monitor the HIFU thermal treatment. In this study, the performance of HMIFU under acoustic, thermal, and mechanical effects was investigated. The performance of HMIFU was assessed in ex vivo canine liver specimens (n = 13) under slow denaturation or boiling regimes. A passive cavitation detector (PCD) was used to assess the acoustic cavitation activity, and a bare-wire thermocouple was used to monitor the focal temperature change. During lesioning with slow denaturation, high quality displacements (correlation coefficient above 0.97) were observed under minimum cavitation noise, indicating the tissue initial-softening-then- stiffening property change. During HIFU with boiling, HMIFU monitored a consistent change in lesion-to-background displacement contrast (0.46 ± 0.37) despite the presence of strong cavitation noise due to boiling during lesion formation. Therefore, HMIFU effectively monitored softening-then-stiffening during lesioning under slow denaturation, and detected lesioning under boiling with a distinct change in displacement contrast under boiling in the presence of cavitation. In conclusion, HMIFU was shown under both boiling and slow denaturation regimes to be effective in HIFU monitoring and lesioning identification without being significantly affected by cavitation noise.

  5. Enhancement of Pool Boiling Heat Transfer and Control of Bubble Motion in Microgravity Using Electric Fields - BCOEL

    NASA Technical Reports Server (NTRS)

    Herman, Cila; Iacona, Estelle; Acquaviva, Tom; Coho, Bill; Grant, Nechelle; Nahra, Henry; Sankaran, Subramanian; Taylor, Al; Julian, Ed; Robinson, Dale; VanZandt, Dave

    2001-01-01

    The BCOEL project focuses on improving pool boiling heat transfer and bubble control in microgravity by exposing the fluid to electric fields. The electric fields induce a body force that can replace gravity in the low gravity environment, and enhance bubble removal from thc heated surface. A better understanding of microgravity effects on boiling with and without electric fields is critical to the proper design of the phase-change-heat-removal equipment for use in space-based applications. The microgravity experiments will focus on the visualization of bubble formation and shape during boiling. Heat fluxes on the boiling surface will be measured, and, together with the measured driving temperature differences, used to plot boiling curvcs for different electric field magnitudes. Bubble formation and boiling processes were found to be extremely sensitive to g-jitter. The duration of the experimental run is critical in order to achieve steady state in microgravity experiments. The International Space Station provides conditions suitable for such experiments. The experimental appararus to be used in the study is described in the paper. The apparatus will be tested in the KC-135 first, and microgravity experiments will be conducted on board of the International Space Station using the Microgravity Science Glovebox as the experimental platform.

  6. Forced convective heat transfer in curved diffusers

    NASA Technical Reports Server (NTRS)

    Rojas, J.; Whitelaw, J. H.; Yianneskis, M.

    1987-01-01

    Measurements of the velocity characteristics of the flows in two curved diffusers of rectangular cross section with C and S-shaped centerlines are presented and related to measurements of wall heat transfer coefficients along the heated flat walls of the ducts. The velocity results were obtained by laser-Doppler anemometry in a water tunnel and the heat transfer results by liquid crystal thermography in a wind tunnel. The thermographic technique allowed the rapid and inexpensive measurement of wall heat transfer coefficients along flat walls of arbitrary boundary shapes with an accuracy of about 5 percent. The results show that an increase in secondary flow velocities near the heated wall causes an increase in the local wall heat transfer coefficient, and quantify the variation for maximum secondary-flow velocities in a range from 1.5 to 17 percent of the bulk flow velocity.

  7. Stochastic Convection Parameterizations

    NASA Technical Reports Server (NTRS)

    Teixeira, Joao; Reynolds, Carolyn; Suselj, Kay; Matheou, Georgios

    2012-01-01

    computational fluid dynamics, radiation, clouds, turbulence, convection, gravity waves, surface interaction, radiation interaction, cloud and aerosol microphysics, complexity (vegetation, biogeochemistry, radiation versus turbulence/convection stochastic approach, non-linearities, Monte Carlo, high resolutions, large-Eddy Simulations, cloud structure, plumes, saturation in tropics, forecasting, parameterizations, stochastic, radiation-clod interaction, hurricane forecasts

  8. Thermohydrodynamics of boiling in a van der Waals fluid.

    PubMed

    Laurila, T; Carlson, A; Do-Quang, M; Ala-Nissila, T; Amberg, G

    2012-02-01

    We present a modeling approach that enables numerical simulations of a boiling Van der Waals fluid based on the diffuse interface description. A boundary condition is implemented that allows in and out flux of mass at constant external pressure. In addition, a boundary condition for controlled wetting properties of the boiling surface is also proposed. We present isothermal verification cases for each element of our modeling approach. By using these two boundary conditions we are able to numerically access a system that contains the essential physics of the boiling process at microscopic scales. Evolution of bubbles under film boiling and nucleate boiling conditions are observed by varying boiling surface wettability. We observe flow patters around the three-phase contact line where the phase change is greatest. For a hydrophilic boiling surface, a complex flow pattern consistent with vapor recoil theory is observed.

  9. Solutal Convection in a Magnetic Fluid

    NASA Technical Reports Server (NTRS)

    Leslie, Fred; Ramachandran, N.

    2003-01-01

    A theoretical and experimental study is presented on the stability of solutal convection of a magnetized fluid in the presence of a magnetic field. The total force on the fluid is derived and equilibrium positions are computed establishing the field necessary to counter fluid buoyancy. The requirements for stability are developed and compared with experiments with a paramagnetic fluid. The experiments are in good agreement not only with the theoretical predictions for equilibrium but also verify the stability theory which predicts both horizontal and vertical stability. Analogous to results for levitation, the theory indicates that solutal convection in paramagnetic fluids cannot be completely stabilized while that in diamagnetic liquid are possible.

  10. Pool Boiling Heat Transfer on structured Surfaces

    NASA Astrophysics Data System (ADS)

    Addy, J.; Olbricht, M.; Müller, B.; Luke, A.

    2016-09-01

    The development in the process and energy sector shows the importance of efficient utilization of available resources to improve thermal devices. To achieve this goal, all thermal components have to be optimized continuously. Various applications of multi-phase heat and mass transfer have to be improved. Therefore, the heat transfer and the influence of surface roughness in nucleate boiling with the working fluid propane is experimentally investigated on structured mild steel tubes, because only few data are available in the literature. The mild steel tube is sandblasted to obtain different surface roughness. The measurements are carried out over wide ranges of heat flux and pressure. The experimental results are compared with correlations from literature and the effect of surface roughness on the heat transfer is discussed. It is shown that the heat transfer coefficient increases with increasing surface roughness, heat flux and reduced pressure at nucleate pool boiling.

  11. Enhanced Droplet Control by Transition Boiling

    NASA Astrophysics Data System (ADS)

    Grounds, Alex; Still, Richard; Takashina, Kei

    2012-10-01

    A droplet of water on a heated surface can levitate over a film of gas produced by its own evaporation in the Leidenfrost effect. When the surface is prepared with ratchet-like saw-teeth topography, these droplets can self-propel and can even climb uphill. However, the extent to which the droplets can be controlled is limited by the physics of the Leidenfrost effect. Here, we show that transition boiling can be induced even at very high surface temperatures and provide additional control over the droplets. Ratchets with acute protrusions enable droplets to climb steeper inclines while ratchets with sub-structures enable their direction of motion to be controlled by varying the temperature of the surface. The droplets' departure from the Leidenfrost regime is assessed by analysing the sound produced by their boiling. We anticipate these techniques will enable the development of more sophisticated methods for controlling small droplets and heat transfer.

  12. Reduced Boil-Off System Sizing

    NASA Technical Reports Server (NTRS)

    Guzik, Monica C.; Plachta, David W.; Feller, Jeffrey R.

    2015-01-01

    NASA is currently developing cryogenic propellant storage and transfer systems for future space exploration and scientific discovery missions by addressing the need to raise the technology readiness level of cryogenic fluid management technologies. Cryogenic propellants are baselined in many propulsion systems due to their inherently high specific impulse; however, their low boiling points can cause substantial boil-off losses over time. Recent efforts such as the Reduced Boil-off Testing and the Active Thermal Control Scaling Study provide important information on the benefit of an active cooling system applied to LH2 propellant storage. Findings show that zero-boil off technologies can reduce overall mass in LH2 storage systems when low Earth orbit loiter periods extend beyond two months. A significant part of this mass reduction is realized by integrating two stages of cooling: a 20 K stage to intercept heat at the tank surface, and a 90 K stage to reduce the heat entering the less efficient 20 K stage. A missing element in previous studies, which is addressed in this paper, is the development of a direct method for sizing the 90 K cooling stage. Such a method requires calculation of the heat entering both the 90 K and 20 K stages as compared to the overall system masses, and is reliant upon the temperature distribution, performance, and unique design characteristics of the system in question. By utilizing the known conductance of a system without active thermal control, the heat being intercepted by a 90 K stage can be calculated to find the resultant lift and mass of each active thermal control stage. Integral to this is the thermal conductance of the cooling straps and the broad area cooling shield, key parts of the 90 K stage. Additionally, a trade study is performed to show the ability of the 90 K cooling stage to reduce the lift on the 20 K cryocooler stage, which is considerably less developed and efficient than 90 K cryocoolers.

  13. Steady State Vapor Bubble in Pool Boiling

    PubMed Central

    Zou, An; Chanana, Ashish; Agrawal, Amit; Wayner, Peter C.; Maroo, Shalabh C.

    2016-01-01

    Boiling, a dynamic and multiscale process, has been studied for several decades; however, a comprehensive understanding of the process is still lacking. The bubble ebullition cycle, which occurs over millisecond time-span, makes it extremely challenging to study near-surface interfacial characteristics of a single bubble. Here, we create a steady-state vapor bubble that can remain stable for hours in a pool of sub-cooled water using a femtosecond laser source. The stability of the bubble allows us to measure the contact-angle and perform in-situ imaging of the contact-line region and the microlayer, on hydrophilic and hydrophobic surfaces and in both degassed and regular (with dissolved air) water. The early growth stage of vapor bubble in degassed water shows a completely wetted bubble base with the microlayer, and the bubble does not depart from the surface due to reduced liquid pressure in the microlayer. Using experimental data and numerical simulations, we obtain permissible range of maximum heat transfer coefficient possible in nucleate boiling and the width of the evaporating layer in the contact-line region. This technique of creating and measuring fundamental characteristics of a stable vapor bubble will facilitate rational design of nanostructures for boiling enhancement and advance thermal management in electronics. PMID:26837464

  14. Fundamental Boiling and RP-1 Freezing Experiments

    NASA Technical Reports Server (NTRS)

    Goode, Brian; Turner, Larry D. (Technical Monitor)

    2001-01-01

    This paper describes results from experiments performed to help understand certain aspects of the MC-1 engine prestart thermal conditioning procedure. The procedure was constrained by the fact that the engine must chill long enough to get quality LOX at the LOX pump inlet but must be short enough to prevent freezing of RP-1 in the fuel pump. A chill test of an MC-1 LOX impeller was performed in LN2 to obtain data on film boiling, transition boiling and impeller temperature histories. The transition boiling data was important to the chill time so a subsequent experiment was performed chilling simple steel plates in LOX to obtain similar data for LOX. To address the fuel freezing concern, two experiments were performed. First, fuel was frozen in a tray and its physical characteristics were observed and temperatures of the fuel were measured. The result was physical characteristics as a function of temperature. Second was an attempt to measure the frozen thickness of RP-1 on a cold wall submerged in warm RP-1 and to develop a method for calculating that thickness for other conditions.

  15. Flow boiling test of GDP replacement coolants

    SciTech Connect

    Park, S.H.

    1995-08-01

    The tests were part of the CFC replacement program to identify and test alternate coolants to replace CFC-114 being used in the uranium enrichment plants at Paducah and Portsmouth. The coolants tested, C{sub 4}F{sub 10} and C{sub 4}F{sub 8}, were selected based on their compatibility with the uranium hexafluoride process gas and how well the boiling temperature and vapor pressure matched that of CFC-114. However, the heat of vaporization of both coolants is lower than that of CFC-114 requiring larger coolant mass flow than CFC-114 to remove the same amount of heat. The vapor pressure of these coolants is higher than CFC-114 within the cascade operational range, and each coolant can be used as a replacement coolant with some limitation at 3,300 hp operation. The results of the CFC-114/C{sub 4}F{sub 10} mixture tests show boiling heat transfer coefficient degraded to a minimum value with about 25% C{sub 4}F{sub 10} weight mixture in CFC-114 and the degree of degradation is about 20% from that of CFC-114 boiling heat transfer coefficient. This report consists of the final reports from Cudo Technologies, Ltd.

  16. Steady State Vapor Bubble in Pool Boiling.

    PubMed

    Zou, An; Chanana, Ashish; Agrawal, Amit; Wayner, Peter C; Maroo, Shalabh C

    2016-02-03

    Boiling, a dynamic and multiscale process, has been studied for several decades; however, a comprehensive understanding of the process is still lacking. The bubble ebullition cycle, which occurs over millisecond time-span, makes it extremely challenging to study near-surface interfacial characteristics of a single bubble. Here, we create a steady-state vapor bubble that can remain stable for hours in a pool of sub-cooled water using a femtosecond laser source. The stability of the bubble allows us to measure the contact-angle and perform in-situ imaging of the contact-line region and the microlayer, on hydrophilic and hydrophobic surfaces and in both degassed and regular (with dissolved air) water. The early growth stage of vapor bubble in degassed water shows a completely wetted bubble base with the microlayer, and the bubble does not depart from the surface due to reduced liquid pressure in the microlayer. Using experimental data and numerical simulations, we obtain permissible range of maximum heat transfer coefficient possible in nucleate boiling and the width of the evaporating layer in the contact-line region. This technique of creating and measuring fundamental characteristics of a stable vapor bubble will facilitate rational design of nanostructures for boiling enhancement and advance thermal management in electronics.

  17. Film boiling heat transfer from a wire to upward flow of liquid hydrogen and liquid nitrogen

    NASA Astrophysics Data System (ADS)

    Shiotsu, M.; Shirai, Y.; Horie, Y.; Shigeta, H.; Higa, D.; Tatsumoto, H.; Hata, K.; Kobayashi, H.; Nonaka, S.; Naruo, Y.; Inatani, Y.

    2015-11-01

    Film boiling heat transfer coefficients in liquid hydrogen were measured for the heater surface superheats to 300 K under pressures from 0.4 to 1.1 MPa, liquid subcoolings to 11 K and flow velocities to 8 m/s. Two test wires were both 1.2 mm in diameter, 120 mm and 200 mm in lengths and were made of PtCo alloy. The test wires were located on the center of 8 mm and 5 mm diameter conduits of FRP (Fiber Reinforced Plastics). Furthermore film boiling heat transfer coefficients in liquid nitrogen were measured only for the 200 mm long wire. The film boiling heat transfer coefficients are higher for higher pressure, higher subcooling, and higher flow velocity. The experimental data were compared with a conventional equation for forced flow film boiling in a wide channel. The data for the 8 mm diameter conduit were about 1.7 times and those for the 5 mm conduit were about 1.9 times higher than the predicted values by the equation. A new equation was presented modifying the conventional equation based on the liquid hydrogen and liquid nitrogen data. The experimental data were expressed well by the equation.

  18. Acoustic field interaction with a boiling system under terrestrial gravity and microgravity.

    PubMed

    Sitter, J S; Snyder, T J; Chung, J N; Marston, P L

    1998-11-01

    Pool boiling experiments from a platinum wire heater in FC-72 liquid were conducted under terrestrial and microgravity conditions, both with and without the presence of a high-intensity acoustic standing wave within the fluid. The purpose of this research was to study the interaction between an acoustic field and a pool boiling system in normal gravity and microgravity. The absence of buoyancy in microgravity complicates the process of boiling. The acoustic force on a vapor bubble generated from a heated wire in a standing wave was shown to be able to play the role of buoyancy in microgravity. The microgravity environment was achieved with 0.6 and 2.1-s drop towers. The sound was transmitted through the fluid medium by means of a half wavelength sonic transducer driven at 10.18 kHz. At high enough acoustic pressure amplitudes cavitation and streaming began playing an important role in vapor bubble dynamics and heat transfer. Several different fixed heat fluxes were chosen for the microgravity experiment and the effects of acoustics on the surface temperature of the heater were recorded and the vapor bubble movement was filmed. Video images of the pool boiling processes and heat transfer data are presented.

  19. The effect of heating direction on flow boiling heat transfer of R134a in micro-channels

    NASA Astrophysics Data System (ADS)

    Xu, Mingchen; Jia, Li; Dang, Chao; Peng, Qi

    2017-04-01

    This paper presents effects of heating directions on heat transfer performance of R134a flow boiling in micro- channel heat sink. The heat sink has 30 parallel rectangular channels with cross-sectional dimensions of 500μm width 500μm depth and 30mm length. The experimental operation condition ranges of the heat flux and the mass flux were 13.48 to 82.25 W/cm2 and 373.3 to 1244.4 kg/m2s respectively. The vapor quality ranged from 0.07 to 0.93. The heat transfer coefficients of top heating and bottom heating both were up to 25 kW/m2 K. Two dominate transfer mechanisms of nucleate boiling and convection boiling were observed according to boiling curves. The experimental results indicated that the heat transfer coefficient of bottom heating was 13.9% higher than top heating in low heat flux, while in high heat flux, the heat transfer coefficient of bottom heating was 9.9%.higher than the top heating, because bubbles were harder to divorce the heating wall. And a modified correlation was provided to predict heat transfer of top heating.

  20. Microgravity Boiling Enhancement Using Vibration-Based Fluidic Technologies

    NASA Astrophysics Data System (ADS)

    Smith, Marc K.; Glezer, Ari; Heffington, Samuel N.

    2002-11-01

    Thermal management is an important subsystem in many devices and technologies used in a microgravity environment. The increased power requirements of new Space technologies and missions mean that the capacity and efficiency of thermal management systems must be improved. The current work addresses this need through the investigation and development of a direct liquid immersion heat transfer cell for microgravity applications. The device is based on boiling heat transfer enhanced by two fluidic technologies developed at Georgia Tech. The first of these fluidic technologies, called vibration-induced bubble ejection, is shown in Fig. 1. Here, an air bubble in water is held against a vibrating diaphragm by buoyancy. The vibrations at 440 Hz induce violent oscillations of the air/water interface that can result in small bubbles being ejected from the larger air bubble (Fig. 1a) and, simultaneously, the collapse of the air/water interface against the solid surface (Fig. 1b). Both effects would be useful during a heat transfer process. Bubble ejection would force vapor bubbles back into the cooler liquid so that they can condense. Interfacial collapse would tend to keep the hot surface wet thereby increasing liquid evaporation and heat transfer to the bulk liquid. Figure 2 shows the effect of vibrating the solid surface at 7.6 kHz. Here, small-scale capillary waves appear on the surface of the bubble near the attachment point on the solid surface (the grainy region). The vibration produces a net force on the bubble that pushes it away from the solid surface. As a result, the bubble detaches from the solid and is propelled into the bulk liquid. This force works against buoyancy and so it would be even more effective in a microgravity environment. The benefit of the force in a boiling process would be to push vapor bubbles off the solid surface, thus helping to keep the solid surface wet and increasing the heat transfer. The second fluidic technology to be employed in this

  1. The Effect of Numerical Diffusion on Oscillatory Flow in Two-Phase Boiling Channel

    SciTech Connect

    Chaiwat Muncharoen; Tatchai Sumitra; Takatoshi Takemoto; Masanori Aritomi

    2002-07-01

    The purpose of this paper is to study the effect of numerical diffusion on the ill-posedness and the accuracy of the model simulated the thermal-hydraulic instabilities in boiling water reactor channels. The model of the upward flow system in two-phase boiling channel simulating BWR core was developed to investigate the oscillatory flow, which was caused by flow instabilities, by using the drift-flux model. The time step was fixed at 1 millisecond at all time and the mesh size was varied as follows: 400, 200, 100, 50 and 20 mm. Then the numerical diffusion in the conservation equations was analyzed in reference to spatial mesh size. The maximums of the absolute ratios of the first order and the second order approximations of the time derivative terms (A/B) and the convective terms (C/D), including the summations of the second power of the ratios of the second order and the first order approximations of the time derivative terms ({sigma}(B/A){sup 2}) and the convective terms ({sigma}(D/C){sup 2}) were calculated to investigate the ill-posedness and the accuracy of numerical calculation of this model. The results from the model showed that the numerical diffusion in the time derivative term and the convective term play the important role in the drift-flux model for the small mesh size and may cause the ill-posedness and degrade the accuracy of the model. It was found that the A/B, the C/D, the {sigma}(B/A){sup 2} and the {sigma}(D/C){sup 2} in the drift-flux model highly fluctuated at the small mesh size of 50 and 20 mm. More importantly, the numerical diffusion due to the oscillation flow and the mesh size variation may have an effect on the amplitude of the pressure drop of the oscillatory flow at the small mesh size. (authors)

  2. Radiative-convective instability

    NASA Astrophysics Data System (ADS)

    Emanuel, Kerry; Wing, Allison A.; Vincent, Emmanuel M.

    2014-03-01

    equilibrium (RCE) is a simple paradigm for the statistical equilibrium the earth's climate would exhibit in the absence of lateral energy transport. It has generally been assumed that for a given solar forcing and long-lived greenhouse gas concentration, such a state would be unique, but recent work suggests that more than one stable equilibrium may be possible. Here we show that above a critical specified sea surface temperature, the ordinary RCE state becomes linearly unstable to large-scale overturning circulations. The instability migrates the RCE state toward one of the two stable equilibria first found by Raymond and Zeng (2000). It occurs when the clear-sky infrared opacity of the lower troposphere becomes so large, owing to high water vapor concentration, that variations of the radiative cooling of the lower troposphere are governed principally by variations in upper tropospheric water vapor. We show that the instability represents a subcritical bifurcation of the ordinary RCE state, leading to either a dry state with large-scale descent, or to a moist state with mean ascent; these states may be accessed by finite amplitude perturbations to ordinary RCE in the subcritical state, or spontaneously in the supercritical state. As first suggested by Raymond (2000) and Sobel et al. (2007), the latter corresponds to the phenomenon of self-aggregation of moist convection, taking the form of cloud clusters or tropical cyclones. We argue that the nonrobustness of self-aggregation in cloud system resolving models may be an artifact of running such models close to the critical temperature for instability.

  3. Experimental investigation on thermo-magnetic convection inside cavities.

    PubMed

    Gontijo, R G; Cunha, F R

    2012-12-01

    This paper presents experimental results on thermo-magnetic convection inside cavities. We examine the flow induced by convective currents inside a cavity with aspect ratio near the unity and the heat transfer rates measurements inside a thin cavity with aspect ratio equal to twelve. The convective unstable currents are formed when a magnetic suspension is subjected to a temperature gradient combined with a gradient of an externally imposed magnetic field. Under these conditions, stratifications in the suspension density and susceptibility are both important effects to the convective motion. We show a comparison between flow patterns of magnetic and gravitational convections. The impact of the presence of a magnetic field on the amount of heat extracted from the system when magnetic and gravitational effects are combined inside the test cell is evaluated. The convection state is largely affected by new instability modes produced by stratification in susceptibility. The experiments reveal that magnetic field enhances the instability in the convective flow leading to a more effective mixing and consequently to a more statistically homogenous temperature distribution inside the test cell. The experimental results allow the validation of the scaling law proposed in a previous theoretical work that has predicted that the Nusselt number scales with the magnetic Rayleigh number to the power of 1/3, in the limit in which magnetic force balances viscous force in the convective flow.

  4. Microwave-Assisted Superheating and/or Microwave-Specific Superboiling (Nucleation-Limited Boiling) of Liquids Occurs under Certain Conditions but is Mitigated by Stirring.

    PubMed

    Ferrari, Anthony; Hunt, Jacob; Stiegman, Albert; Dudley, Gregory B

    2015-12-04

    Temporary superheating and sustained nucleation-limited "superboiling" of unstirred liquids above the normal atmospheric boiling point have been documented during microwave heating. These phenomena are reliably observed under prescribed conditions, although the duration (of superheating) and magnitude (of superheating and superboiling) vary according to system parameters such as volume of the liquid and the size and shape of the vessel. Both phenomena are mitigated by rapid stirring with an appropriate stir bar and/or with the addition of boiling chips, which provide nucleation sites to support the phase-change from liquid to gas. With proper experimental design and especially proper stirring, the measured temperature of typical organic reaction mixtures heated at reflux will be close to the normal boiling point temperature of the solvent, whether heated using microwave radiation or conventional convective heat transfer. These observations are important to take into consideration when comparing reaction rates under conventional and microwave heating.

  5. Microscale schlieren visualization of near-bubble mass transport during boiling of 2-propanol/water mixtures in a square capillary

    NASA Astrophysics Data System (ADS)

    Sun, Chen-li; Huang, Chien-Yuan

    2014-07-01

    In this study, we successfully utilize the microscale schlieren method to visualize the microscale mass transport near the vapor-liquid interface during boiling of 2-propanol/water mixtures in a square capillary. Because the variation in the refractive index with composition is much greater than that with temperature, the microscale schlieren method proves to be a powerful tool for investigating the solutocapillary convection without the interference of thermocapillarity. When the difference between the equilibrium vapor and liquid mole fractions is large, we observe high concentration gradients near the vapor-liquid interface due to both mass diffusion and the solutocapillary effects. Although the solutocapillary convection is decidedly affected by the eruptive nature of the boiling process, the near-bubble mass transport still plays a vital role in boiling heat transfer. In a square capillary of d = 900 μm, mass diffusion dominates and the depletion of 2-propanol near the vapor-liquid interface increases. This leads to an increase in the local bubble point causing the deterioration of heat transfer for 2-propanol/water mixtures. However, in the smaller square capillary of d = 500 μm, the solutocapillary effect becomes more important. The induced convection near the contact line helps to augment the boiling heat transfer at x = 0.015, despite the fact that mass diffusion tends to cause a higher concentration gradient normal to the bubble front during the boiling process. Herein, we prove that the microscale schlieren method is able to provide valuable insight into the leverage between different mechanisms in heat transfer during the vaporization process of 2-propanol/water mixtures in a square capillary.

  6. Pcr by Thermal Convection

    NASA Astrophysics Data System (ADS)

    Braun, Dieter

    The Polymerase Chain Reaction (PCR) allows for highly sensitive and specific amplification of DNA. It is the backbone of many genetic experiments and tests. Recently, three labs independently uncovered a novel and simple way to perform a PCR reaction. Instead of repetitive heating and cooling, a temperature gradient across the reaction vessel drives thermal convection. By convection, the reaction liquid circulates between hot and cold regions of the chamber. The convection triggers DNA amplification as the DNA melts into two single strands in the hot region and replicates into twice the amount in the cold region. The amplification progresses exponentially as the convection moves on. We review the characteristics of the different approaches and show the benefits and prospects of the method.

  7. Nonlinear anelastic modal theory for solar convection

    NASA Technical Reports Server (NTRS)

    Latour, J.; Toomre, J.; Zahn, J.-P.

    1983-01-01

    Solar envelope models are developed using single-mode anelastic equations as a description of turbulent convection which provide estimates for the variation with depth of the largest convective cellular flows, with horizontal sizes comparable to the total depth of the convection zone. These models can be used to describe compressible motions occurring over many density scale heights. Single-mode anelastic solutions are obtained for a solar envelope whose mean stratification is nearly adiabatic over most of its vertical extent because of the enthalpy flux explicitly carried by the big cell, while a subgrid scale representation of turbulent heat transport is incorporated into the treatment near the surface. It is shown that the single-mode equations allow two solutions for the same horizontal wavelength which are distinguished by the sense of the vertical velocity at the center of the three-dimensional cell. It is found that the upward directed flow experiences large pressure effects which can modify the density fluctuations so that the sense of the buoyancy force is changed, with buoyancy braking actually achieved near the top of the convection zone. It is suggested that such dynamical processes may explain why the amplitudes of flows related to the largest scales of convection are so weak in the solar atmosphere.

  8. Convection in Oblate Late-Type Stars

    NASA Astrophysics Data System (ADS)

    Wang, Junfeng

    2015-08-01

    In this talk, we present recent investigations of the convection, oblateness and differential rota-tion in rapidly rotating late-type stars with a novel and powerful Compressible High-ORder Un-structured Spectral-difference (CHORUS) code (J. Comput. Physics Vol. 290, 190-211, 2015). Recent observations have revealed the drastic effects of rapid rotation on stellar structure, including centrifugal deformation and gravity darkening. The centrifugal force counteracts gravity, causing the equatorial region to expand. Consequently, rapidly rotating stars are oblate and cannot be described by an one-dimensional spherically symmetric model. If convection establishes a substantial differential rotation, as in the envelopes of late-type stars, this can considerably increase the oblateness. We have successfully extended the CHORUS code to model rapidly rotating stars on fixed unstructured grids. In the CHORUS code, the hydrodynamic equations are discretized by a robust and efficient high-order Spectral Difference Method (SDM). The discretization stencil of the spectral difference method is compact and advantageous for parallel processing. CHORUS has been verified by comparing to spherical anelastic convection simulations on benchmark problems. This talk will be centred on the first global simulations by CHORUS for convection in oblate stars with different rotating rates. We quantify the influence of the oblateness on the mean flows and the thermal structure of the convection zone through these new simulations and implications of these results for stellar observations will be discussed.

  9. Parameterization of Oceanic Convection In Primary Production

    NASA Astrophysics Data System (ADS)

    Wehde, Henning

    The influence of Oceanic Convection in Primary Production was investigated in a numerical model study. Lagrangian tracers were introduced to a 2.5 dimensional non- hydrostatic convection model. Model domain is a vertical ocean slice with an isotropic grid size of 5 meters, vanishing gradients normal to the plane and cyclic lateral bound- ary conditions. The horizontal dimension is chosen according to the expected convec- tive aspect ratios that vary between 1 and 3. For each tracer a simple phytoplankton model predicts growth dependent on light conditions. The mean amount of light avail- able for growth for a plankton cell depends on the thickness of the mixed layer and the convective activity. The model was applied to several shelf and open ocean strat- ifications and forced with varying atmospheric conditions to study the sensitivity and to quantify the contact duration and return frequency of plankton into the euphotic zone. The phytoplankton concentration is closely related to the depth of the convec- tively mixed layer. The oceanic convection forms the actual mixed layer depth and was found to heavily influence the contact duration and return frequency of a plank- ton cell into the euphotic zone. Phytoplankton is dispersed by convection in vertical orbit cells. The vertical motion allow for the frequent return of plankton cells to the euphotic zone.

  10. Actively convected liquid metal divertor

    NASA Astrophysics Data System (ADS)

    Shimada, Michiya; Hirooka, Yoshi

    2014-12-01

    The use of actively convected liquid metals with j × B force is proposed to facilitate heat handling by the divertor, a challenging issue associated with magnetic fusion experiments such as ITER. This issue will be aggravated even more for DEMO and power reactors because the divertor heat load will be significantly higher and yet the use of copper would not be allowed as the heat sink material. Instead, reduced activation ferritic/martensitic steel alloys with heat conductivities substantially lower than that of copper, will be used as the structural materials. The present proposal is to fill the lower part of the vacuum vessel with liquid metals with relatively low melting points and low chemical activities including Ga and Sn. The divertor modules, equipped with electrodes and cooling tubes, are immersed in the liquid metal. The electrode, placed in the middle of the liquid metal, can be biased positively or negatively with respect to the module. The j × B force due to the current between the electrode and the module provides a rotating motion for the liquid metal around the electrodes. The rise in liquid temperature at the separatrix hit point can be maintained at acceptable levels from the operation point of view. As the rotation speed increases, the current in the liquid metal is expected to decrease due to the v × B electromotive force. This rotating motion in the poloidal plane will reduce the divertor heat load significantly. Another important benefit of the convected liquid metal divertor is the fast recovery from unmitigated disruptions. Also, the liquid metal divertor concept eliminates the erosion problem.

  11. Mesoscale/convective interaction

    NASA Technical Reports Server (NTRS)

    Haines, P. A.; Sun, W. Y.

    1988-01-01

    A novel cumulus parameterization scheme (CPS) has been developed in order to account for mesoscale/convective-scale interaction which considers both the mesoscale and convective scale mass and moisture budgets, under the assumption that the heating rate is a maximum for given environmental conditions. The basis of the CPS is a detailed, quasi-one-dimensional cloud model that calculates mass and moisture fluxes similar to those calculated by the Schlesinger (1978) three-dimensional model.

  12. Complex spatiotemporal convection patterns

    NASA Astrophysics Data System (ADS)

    Pesch, W.

    1996-09-01

    This paper reviews recent efforts to describe complex patterns in isotropic fluids (Rayleigh-Bénard convection) as well as in anisotropic liquid crystals (electro-hydrodynamic convection) when driven away from equilibrium. A numerical scheme for solving the full hydrodynamic equations is presented that allows surprisingly well for a detailed comparison with experiments. The approach can also be useful for a systematic construction of models (order parameter equations).

  13. Heat transfer mechanisms in bubbly Rayleigh-Bénard convection.

    PubMed

    Oresta, Paolo; Verzicco, Roberto; Lohse, Detlef; Prosperetti, Andrea

    2009-08-01

    The heat transfer mechanism in Rayleigh-Bénard convection in a liquid with a mean temperature close to its boiling point is studied through numerical simulations with pointlike vapor bubbles, which are allowed to grow or shrink through evaporation and condensation and which act back on the flow both thermally and mechanically. It is shown that the effect of the bubbles is strongly dependent on the ratio of the sensible heat to the latent heat as embodied in the Jakob number Ja. For very small Ja the bubbles stabilize the flow by absorbing heat in the warmer regions and releasing it in the colder regions. With an increase in Ja, the added buoyancy due to the bubble growth destabilizes the flow with respect to single-phase convection and considerably increases the Nusselt number.

  14. Water boiling inside carbon nanotubes: toward efficient drug release.

    PubMed

    Chaban, Vitaly V; Prezhdo, Oleg V

    2011-07-26

    We show using molecular dynamics simulation that spatial confinement of water inside carbon nanotubes (CNTs) substantially increases its boiling temperature and that a small temperature growth above the boiling point dramatically raises the inside pressure. Capillary theory successfully predicts the boiling point elevation down to 2 nm, below which large deviations between the theory and atomistic simulation take place. Water behaves qualitatively different inside narrow CNTs, exhibiting transition into an unusual phase, where pressure is gas-like and grows linearly with temperature, while the diffusion constant is temperature-independent. Precise control over boiling by CNT diameter, together with the rapid growth of inside pressure above the boiling point, suggests a novel drug delivery protocol. Polar drug molecules are packaged inside CNTs; the latter are delivered into living tissues and heated by laser. Solvent boiling facilitates drug release.

  15. Physical interpretation of geysering phenomena and periodic boiling instability at low flows

    SciTech Connect

    Duffey, R.B.; Rohatgi, U.S.

    1996-03-01

    Over 30 years ago, Griffith showed that unstable and periodic initial boiling occurred in stagnant liquids in heated pipes coupled to a cooler or condensing plenum volume. This was called ``geysering``, and is a similar phenomenon to the rapid nucleation and voiding observed in tubes filled with superheated liquid. It is also called ``bumping`` when non-uniformly heated water or a chemical suddenly boils in laboratory glassware. In engineering, the stability and predictability has importance to the onset of bulk boiling in a natural and forced circulation loops. The latest available data show the observed stability and periodicity of the onset of boiling flow when there is a plenum, multiple heated channels, and a sustained subcooling in a circulating loop. We examine the available data, both old and new, and develop a new theory to illustrate the simple physics causing the observed periodicity of the flow. We examine the validity of the theory by comparison to all the geysering data, and develop a useful and simple correlation. We illustrate the equivalence of the onset of geysering to the onset of static instability in subcooled boiling. We also derive the stability boundary for geysering, utilizing turbulent transport analysis to determine the effects of pressure and other key parameters. This new result explains the greater stability region observed at higher pressures. The paper builds on the 30 years of quite independent thermal hydraulic work that is still fresh and useful today. We discuss the physical interpretation of geysering onset with a consistent theory, and show where refinements would be useful to the data correlations.

  16. Convective scale interaction: Arc cloud lines and the development and evolution of deep convection

    NASA Technical Reports Server (NTRS)

    Purdom, James Francis Whitehurst

    1986-01-01

    Information is used from satellite data and research aircraft data to provide new insights concerning the mesoscale development and evolution of deep convection in an atmosphere typified by weak synoptic-scale forcing. The importance of convective scale interaction in the development and evolution of deep convection is examined. This interaction is shown to manifest itself as the merger and intersection of thunderstorm outflow boundaries (arc cloud lines) with other convective lines, areas or boundaries. Using geostationary satellite visible and infrared data convective scale interaction is shown to be responsible for over 85 percent of the intense convection over the southeast U.S. by late afternoon, and a majority of that area's afternoon rainfall. The aircraft observations provided valuable information concerning critically important regions of the arc cloud line: (1) the cool outflow region, (2) the density surge line interface region; and (3) the sub-cloud region above the surge line. The observations when analyzed with rapid scan satellite data, helped in defining the arc cloud line's life cycle as 3 evolving stages.

  17. Zero Boil-Off System Testing

    NASA Technical Reports Server (NTRS)

    Plachta, David W.; Johnson, Wesley L.; Feller, Jeffrey R.

    2015-01-01

    Cryogenic propellants such as liquid hydrogen (LH2) and liquid oxygen (LO2) are a part of NASA's future space exploration due to their high specific impulse for rocket motors of upper stages suitable for transporting 10s to 100s of metric tons of payload mass to destinations outside of low earth orbit and for their return. However, the low storage temperatures of LH2 and LO2 cause substantial boil-off losses for missions with durations greater than several months. These losses can be eliminated by incorporating high performance cryocooler technology to intercept heat load to the propellant tanks and modulating the cryocooler to control tank pressure. The active thermal control technology being developed by NASA is the reverse turbo-Brayton cycle cryocooler and its integration to the propellant tank through a distributed cooling tubing network coupled to the tank wall. This configuration was recently tested at NASA Glenn Research Center, in a vacuum chamber and cryoshroud that simulated the essential thermal aspects of low Earth orbit, its vacuum and temperature. Testing consisted of three passive tests with the active cryocooler system off, and 7 active tests, with the cryocooler powered up. The test matrix included zero boil-off tests performed at 90 full and 25 full, and several demonstrations at excess cooling capacity and reduced cooling capacity. From this, the tank pressure response with varied cryocooler power inputs was determined. This test series established that the active cooling system integrated with the propellant tank eliminated boil-off and robustly controlled tank pressure.

  18. The origin of granular convection in vertically vibrated particle beds: The differential shear flow field.

    PubMed

    Xue, Kun; Zheng, Yixin; Fan, Baolong; Li, Fangfang; Bai, Chunhua

    2013-01-01

    This paper investigates the particle scale dynamics of granular convection in vertically vibrated granular beds. The onset of the convection is found to coincide with the noticeable particle transverse migrations from the side walls towards the centre of the bed, which only take place in the wake of the gravity wave front dividing the upward moving particles and the falling ones. The mechanism driving the particle inward flows and thus sustaining the complete convection rolls can be understood in light of a convection model based on void penetration. This stochastic convection model reveals that the underlying driving force is a distinctive differential shear flow field arising from the combined effect of frictional holdback by the walls and the downward pull of gravity. The changes of the convection pattern with inceasing acceleration amplitude, in terms of the convection strength and the thickness of the bottom of the convection rolls, can be accounted for by this model.

  19. Entropy generation analysis for film boiling: A simple model of quenching

    NASA Astrophysics Data System (ADS)

    Lotfi, Ali; Lakzian, Esmail

    2016-04-01

    In this paper, quenching in high-temperature materials processing is modeled as a superheated isothermal flat plate. In these phenomena, a liquid flows over the highly superheated surfaces for cooling. So the surface and the liquid are separated by the vapor layer that is formed because of the liquid which is in contact with the superheated surface. This is named forced film boiling. As an objective, the distribution of the entropy generation in the laminar forced film boiling is obtained by similarity solution for the first time in the quenching processes. The PDE governing differential equations of the laminar film boiling including continuity, momentum, and energy are reduced to ODE ones, and a dimensionless equation for entropy generation inside the liquid boundary and vapor layer is obtained. Then the ODEs are solved by applying the 4th-order Runge-Kutta method with a shooting procedure. Moreover, the Bejan number is used as a design criterion parameter for a qualitative study about the rate of cooling and the effects of plate speed are studied in the quenching processes. It is observed that for high speed of the plate the rate of cooling (heat transfer) is more.

  20. A Generalized Convective Inhibition Energy

    NASA Astrophysics Data System (ADS)

    Tailleux, R.

    2002-12-01

    The common view about preconvecting soundings is that they possess both CAPE (Convective Available Potential Energy) and CINE (Convective INhibition Energy), the latter preventing the former to be spontaneously released. The two concepts of CAPE and CINE are ambiguous, however, because they depend upon the parcel used to compute the work of buoyancy forces, as well as upon the thermodynamic transformation (adiabatic, pseudo-adiabatic) assumed in lifting the parcel. To remove the ambiguity intrinsically associated with CAPE, Randall and Wang (1992) introduced the concept of GCAPE (Generalized CAPE), defined as the minimum achievable energy difference between the total nonkinetic energy (NKE) of the column of air considered minus the total NKE of a reference soundings obtained by reorganizing the parcels along the vertical by conserving mass. Because the method focuses on how to achieve a global energy minimum without addressing the issue of whether it is achievable or how to achieve it, the concept of CINE is lost. The present work shows how to remedy to this problem, and how to define a Generalized CINE within the same framework serving to define the GCAPE.

  1. The link between extreme precipitation and convective organization in a warming climate: Global radiative-convective equilibrium simulations

    NASA Astrophysics Data System (ADS)

    Pendergrass, Angeline G.; Reed, Kevin A.; Medeiros, Brian

    2016-11-01

    The rate of increase of extreme precipitation in response to global warming varies dramatically across climate model simulations, particularly over the tropics, for reasons that have yet to be established. Here we propose one potential mechanism: changing organization of convection with climate. We analyze a set of simulations with the Community Atmosphere Model version 5 with an idealized global radiative-convective equilibrium configuration forced by fixed sea surface temperatures varying in 2° increments from 285 to 307 K. In these simulations, convective organization varies from semiorganized in cold simulations, disorganized in warm simulations, and abruptly becomes highly organized at just over 300 K. The change in extreme precipitation with warming also varies across these simulations, including a large increase at the transition from disorganized to organized convection. We develop an extreme precipitation-focused metric for convective organization and use this to explore their connection.

  2. Driving factors of electro-convective instability in concentration polarization

    NASA Astrophysics Data System (ADS)

    Abu-Rjal, Ramadan; Rubinstein, Isaak; Zaltzman, Boris

    2016-06-01

    Until recently, based on the analysis pertaining to a perfectly charge selective interface, electro-convective instability in concentration polarization was attributed to the nonequilibrium mechanism related to the extended space charge which forms next to that of the electric double layer near the limiting current. More recently it was shown that imperfect charge selectivity of the interface makes equilibrium instability possible, driven by either equilibrium electro-osmosis or bulk electro-convection, or both. In this paper we identify and analyze the major surface and bulk factors affecting the electro-convective instability. These factors, some known previously under the names of diffusio-osmosis, electro-osmosis, or bulk electro-convection, and some newly identified in this paper are manifestations of the electric force and pressure gradient, balanced by the viscous force acting in various locations in solution. The contribution of these factors to hydrodynamic stability in concentration polarization is analyzed for a varying charge selectivity of the interface.

  3. A Mechanistic Study of Nucleate Boiling Under Microgravity Conditions

    NASA Technical Reports Server (NTRS)

    Dhir, V. K.; Warrier, G. R.; Hasan, M. M.

    2002-01-01

    The overall objective of this work is to study nucleate boiling heat transfer under microgravity conditions in such a way that while providing basic knowledge of the phenomena, it also leads to development of simulation models and correlations that can be used as design tools for a wide range of gravity levels. In the study a building block type of approach is used and both pool and low velocity flow boiling are investigated. Starting with experiments using a single bubble, the complexity of the experiments is increased to two or three inline bubbles, to five bubbles placed on a two-dimensional grid. Finally, experiments are conducted where a large number of prescribed cavities nucleate on the heater and when a commercial surface is used. So far experiments have been conducted at earth normal gravity and in the reduced gravity environment of the KC-135 aircraft whereas experiments on the space station are planned. Modeling/complete numerical simulation of the boiling process is an integral part of the total effort. Experiments conducted with single bubbles formed on a nucleation site microfabricated on a polished silicon wafer show that for gravity levels (g) varying from 1.5g(sub e) to 0.01g(sub e), the bubble diameter at departure varies approximately as (g(sub e)/g)(exp 1/2) and the growth period as (g(sub e)/g). When bubbles merge either inline or in a plane, the bubble diameter at departure is found to be smaller than that obtained for a single bubble and shows a weaker dependence on the level of gravity. The possible reason is that as the bubbles merge they create fluid circulation around the bubbles, which in turn induces a lift force that is responsible for the earlier departure of the bubbles. The verification of this proposition is being sought through numerical simulations. There is a merger of two inline, three inline, and several bubbles in a plane in the low gravity environment of the KC-135 aircraft. After merger and before departure, a mushroom type

  4. High Intensity Focused Ultrasound Monitoring using Harmonic Motion Imaging for Focused Ultrasound (HMIFU) under boiling or slow denaturation conditions

    PubMed Central

    Hou, Gary Y.; Marquet, Fabrice; Wang, Shutao; Apostolakis, Iason-Zacharias; Konofagou, Elisa E.

    2015-01-01

    Harmonic Motion Imaging for Focused Ultrasound (HMIFU) is a recently developed High-Intensity Focused Ultrasound (HIFU) treatment monitoring method that utilizes an amplitude-modulated therapeutic ultrasound beam to induce an oscillatory radiation force at the HIFU focus and estimates the focal tissue displacement to monitor the HIFU thermal treatment. In this study, the performance of HMIFU under acoustic, thermal and mechanical effects were investigated. The performance of HMIFU was assessed in ex vivo canine liver specimens (n=13) under slow denaturation or boiling regimes. Passive Cavitation Detector (PCD) was used to assess the acoustic cavitation activity while a bare-wire thermocouple was used to monitor the focal temperature change. During lesioning with slow denaturation, high quality displacements (correlation coefficient above 0.97) were observed under minimum cavitation noise, indicating tissue the initial-softening-then-stiffening property change. During HIFU with boiling, HMIFU monitored a consistent change in lesion-to-background displacement contrast (0.46±0.37) despite the presence of strong cavitation noise due to boiling during lesion formation. Therefore, HMIFU effectively monitored softening-then-stiffening during lesioning under slow denaturation, and detected lesioning under boiling with a distinct change in displacement contrast under boiling in the presence of cavitation. In conclusion, HMIFU was shown effective in HIFU monitoring and lesioning identification without being significantly affected by cavitation noise. PMID:26168177

  5. Convective Regimes in Crystallizing Basaltic Magma Chambers

    NASA Astrophysics Data System (ADS)

    Gilbert, A. J.; Neufeld, J. A.; Holness, M. B.

    2015-12-01

    Cooling through the chamber walls drives crystallisation in crustal magma chambers, resulting in a cumulate pile on the floor and mushy regions at the walls and roof. The liquid in many magma chambers, either the bulk magma or the interstitial liquid in the mushy regions, may convect, driven either thermally, due to cooling, or compositionally, due to fractional crystallization. We have constructed a regime diagram of the possible convective modes in a system containing a basal mushy layer. These modes depend on the large-scale buoyancy forcing characterised by a global Rayleigh number and the proportion of the chamber height constituting the basal mushy region. We have tested this regime diagram using an analogue experimental system composed of a fluid layer overlying a pile of almost neutrally buoyant inert particles. Convection in this system is driven thermally, simulating magma convection above and within a porous cumulate pile. We observe a range of possible convective regimes, enabling us to produce a regime diagram. In addition to modes characterised by convection of the bulk and interstitial fluid, we also observe a series of regimes where the crystal pile is mobilised by fluid motions. These regimes feature saltation and scouring of the crystal pile by convection in the bulk fluid at moderate Rayleigh numbers, and large crystal-rich fountains at high Rayleigh numbers. For even larger Rayleigh numbers the entire crystal pile is mobilised in what we call the snowglobe regime. The observed mobilisation regimes may be applicable to basaltic magma chambers. Plagioclase in basal cumulates crystallised from a dense magma may be a result of crystal mobilisation from a plagioclase-rich roof mush. Compositional convection within such a mush could result in disaggregation, enabling the buoyant plagioclase to be entrained in relatively dense descending liquid plumes and brought to the floor. The phenocryst load in porphyritic lavas is often interpreted as a

  6. Supergranulation, a convective phenomenon

    NASA Astrophysics Data System (ADS)

    Udayashankar, Paniveni

    2015-08-01

    Observation of the Solar photosphere through high resolution instruments have long indicated that the surface of the Sun is not a tranquil, featureless surface but is beset with a granular appearance. These cellular velocity patterns are a visible manifestation of sub- photospheric convection currents which contribute substantially to the outward transport of energy from the deeper layers, thus maintaining the energy balance of the Sun as a whole.Convection is the chief mode of transport in the outer layers of all cool stars such as the Sun (Noyes,1982). Convection zone of thickness 30% of the Solar radius lies in the sub-photospheric layers of the Sun. Convection is revealed on four scales. On the scale of 1000 km, it is granulation and on the scale of 8-10 arcsec, it is Mesogranulation. The next hierarchial scale of convection ,Supergranules are in the range of 30-40 arcsec. The largest reported manifestation of convection in the Sun are ‘Giant Cells’or ‘Giant Granules’, on a typical length scale of about 108 m.'Supergranules' is caused by the turbulence that extends deep into the convection zone. They have a typical lifetime of about 20hr with spicules marking their boundaries. Gas rises in the centre of the supergranules and then spreads out towards the boundary and descends.Broadly speaking supergranules are characterized by the three parameters namely the length L, the lifetime T and the horizontal flow velocity vh . The interrelationships amongst these parameters can shed light on the underlying convective processes and are in agreement with the Kolmogorov theory of turbulence as applied to large scale solar convection (Krishan et al .2002 ; Paniveni et. al. 2004, 2005, 2010).References:1) Noyes, R.W., The Sun, Our Star (Harvard University Press, 1982)2) Krishan, V., Paniveni U., Singh , J., Srikanth R., 2002, MNRAS, 334/1,2303) Paniveni , U., Krishan, V., Singh, J., Srikanth, R., 2004, MNRAS, 347, 1279-12814) Paniveni , U., Krishan, V., Singh, J

  7. Convection in White Dwarfs

    NASA Astrophysics Data System (ADS)

    Provencal, Judith L.; Shipman, H.; Dalessio, J.; M, M.

    2012-01-01

    Convection is one of the largest sources of theoretical uncertainty in our understanding of stellar physics. Current studies of convective energy transport are based on the mixing length theory. Originally intended to depict turbulent flows in engineering situations, MLT enjoys moderate success in describing stellar convection. However, problems arising from MLT's incompleteness are apparent in studies ranging from determinations of the ages of massive stars, to understanding the structure F and early A stars, to predicting the pulsation periods of solar stars, to understanding the atmosphere of Titan. As an example for white dwarfs, Bergeron et al. (1995) show that model parameters such as flux, line profiles, energy distribution, color indices, and equivalent widths are extremely sensitive to the assumed MLT parameterization. The authors find systematic uncertainties ranging from 25% for effective temperatures to 11% for mass and radius. The WET is engaged in a long term project to empirically determine the physical properties of convection in the atmospheres of pulsating white dwarfs. The technique, outlined by Montgomery et al. (2010), uses information from nonlinear (non-sinusoidal) pulse shapes of the target star to empirically probe the physical properties of its convection zone. Approximately two thirds of all white dwarfs show nonlinear characteristics in their light curves. We present current results from WET targets in 2008-2011.

  8. Convection in containerless processing.

    PubMed

    Hyers, Robert W; Matson, Douglas M; Kelton, Kenneth F; Rogers, Jan R

    2004-11-01

    Different containerless processing techniques have different strengths and weaknesses. Applying more than one technique allows various parts of a problem to be solved separately. For two research projects, one on phase selection in steels and the other on nucleation and growth of quasicrystals, a combination of experiments using electrostatic levitation (ESL) and electromagnetic levitation (EML) is appropriate. In both experiments, convection is an important variable. The convective conditions achievable with each method are compared for two very different materials: a low-viscosity, high-temperature stainless steel, and a high-viscosity, low-temperature quasicrystal-forming alloy. It is clear that the techniques are complementary when convection is a parameter to be explored in the experiments. For a number of reasons, including the sample size, temperature, and reactivity, direct measurement of the convective velocity is not feasible. Therefore, we must rely on computation techniques to estimate convection in these experiments. These models are an essential part of almost any microgravity investigation. The methods employed and results obtained for the projects levitation observation of dendrite evolution in steel ternary alloy rapid solidification (LODESTARS) and quasicrystalline undercooled alloys for space investigation (QUASI) are explained.

  9. Phenomenology of turbulent convection

    NASA Astrophysics Data System (ADS)

    Verma, Mahendra; Chatterjee, Anando; Kumar, Abhishek; Samtaney, Ravi

    2016-11-01

    We simulate Rayleigh-Bénard convection (RBC) in which a fluid is confined between two thermally conducting plates. We report results from direct numerical simulation (DNS) of RBC turbulence on 40963 grid, the highest resolution hitherto reported, on 65536 cores of Cray XC40, Shaheen II, at KAUST. The non-dimensional parameters of our simulation are: the Rayleigh number Ra = 1 . 1 ×1011 (the highest ever for a pseudo-spectral simulation) and Prandtl number of unity. We present energy flux diagnostics of shell-to-shell (in wave number space) transfer. Furthermore, noting that convective flows are anisotropic due to buoyancy, we quantify anisotropy by subdividing each wavenumber shell into rings and quantify ring energy spectrum. An outstanding question in convective turbulence is the wavenumber scaling of the energy spectrum. Our pseudo-spectral simulations of turbulent thermal convection coupled with novel energy transfer diagnostics have provided a definitive answer to this question. We conclude that convective turbulence exhibits behavior similar to fluid turbulence, that is, Kolmogorov's k - 5 / 3 spectrum with forward and local energy transfers, along with a nearly isotropic energy distribution. The supercomputer Shaheen at KAUST was utilized for the simulations.

  10. Zero Boil-Off System Testing

    NASA Technical Reports Server (NTRS)

    Plachta, D. W.; Johnson, W. L.; Feller, J. R.

    2015-01-01

    Cryogenic propellants such as liquid hydrogen (LH2) and liquid oxygen (LO2) are a part of NASA's future space exploration plans due to their high specific impulse for rocket motors of upper stages. However, the low storage temperatures of LH2 and LO2 cause substantial boil-off losses for long duration missions. These losses can be eliminated by incorporating high performance cryocooler technology to intercept heat load to the propellant tanks and modulating the cryocooler temperature to control tank pressure. The technology being developed by NASA is the reverse turbo-Brayton cycle cryocooler and its integration to the propellant tank through a distributed cooling tubing network coupled to the tank wall. This configuration was recently tested at NASA Glenn Research Center in a vacuum chamber and cryoshroud that simulated the essential thermal aspects of low Earth orbit, its vacuum and temperature. This test series established that the active cooling system integrated with the propellant tank eliminated boil-off and robustly controlled tank pressure.

  11. (Boiling water reactor (BWR) CORA experiments)

    SciTech Connect

    Ott, L.J.

    1990-10-16

    To participate in the 1990 CORA Workshop at Kernforschungszentrum Karlsruhe (KfK) GmbH, Karlsruhe, FRG, on October 1--4, and to participate in detailed discussions on October 5 with the KfK CORA Boiling Water Reactor (BWR) experiments. The traveler attended the 1990 CORA Workshop at KfK, FRG. Participation included the presentation of a paper on work performed by the Boiling Water Reactor Core Melt Progression Phenomena Program at Oak Ridge National Laboratory (ORNL) on posttest analyses of CORA BWR experiments. The Statement of Work (November 1989) for the BWR Core Melt Progression Phenomena Program provides for pretest and posttest analyses of the BWR CORA experiments performed at KfK. Additionally, it is intended that ORNL personnel participate in the planning process for future CORA BWR experiments. For these purposes, meetings were held with KfK staff to discuss such topics as (1) experimental test schedule, (2) BWR test conduct, (3) perceived BWR experimental needs, and (4) KfK operational staff needs with respect to ORNL support. 19 refs.

  12. Zero boil-off system testing

    NASA Astrophysics Data System (ADS)

    Plachta, D. W.; Johnson, W. L.; Feller, J. R.

    2016-03-01

    Cryogenic propellants such as liquid hydrogen (LH2) and liquid oxygen (LO2) are a part of NASA's future space exploration plans due to their high specific impulse for rocket motors of upper stages. However, the low storage temperatures of LH2 and LO2 cause substantial boil-off losses for long duration missions. These losses can be eliminated by incorporating high performance cryocooler technology to intercept heat load to the propellant tanks and modulating the cryocooler temperature to control tank pressure. The technology being developed by NASA is the reverse turbo-Brayton cycle cryocooler and its integration to the propellant tank through a distributed cooling tubing network coupled to the tank wall. This configuration was recently tested at NASA Glenn Research Center in a vacuum chamber and cryoshroud that simulated the essential thermal aspects of low Earth orbit, its vacuum and temperature. This test series established that the active cooling system integrated with the propellant tank eliminated boil-off and robustly controlled tank pressure.

  13. Zero Boil-Off Tank (ZBOT) Experiment

    NASA Technical Reports Server (NTRS)

    Mcquillen, John

    2016-01-01

    The Zero-Boil-Off Tank (ZBOT) experiment has been developed as a small scale ISS experiment aimed at delineating important fluid flow, heat and mass transport, and phase change phenomena that affect cryogenic storage tank pressurization and pressure control in microgravity. The experiments use a simulant transparent low boiling point fluid (PnP) in a sealed transparent Dewar to study and quantify: (a) fluid flow and thermal stratification during pressurization; (b) mixing, thermal destratification, depressurization, and jet-ullage penetration during pressure control by jet mixing. The experiment will provide valuable microgravity empirical two-phase data associated with the above-mentioned physical phenomena through highly accurate local wall and fluid temperature and pressure measurements, full-field phase-distribution and flow visualization. Moreover, the experiments are performed under tightly controlled and definable heat transfer boundary conditions to provide reliable high-fidelity data and precise input as required for validation verification of state-of-the-art two-phase CFD models developed as part of this research and by other groups in the international scientific and cryogenic fluid management communities.

  14. A laboratory model of planetary and stellar convection

    NASA Technical Reports Server (NTRS)

    Hart, J. E.; Toomre, J.; Deane, A. E.; Hurlburt, N. E.; Glatzmaier, G. A.; Fichtl, G. H.; Leslie, F.; Fowlis, W. W.; Gilman, P. A.

    1987-01-01

    Experiments on thermal convection in a rotating, differentially-heated spherical shell with a radial buoyancy force were conducted in an orbiting microgravity laboratory. A variety of convective structures, or planforms, were observed depending on the magnitude of the rotation and the nature of the imposed heating distribution. The results are in agreement with numerical simulations that can be conducted at modest parameter values, and suggest possible regimes of motion in rotating planets and stars.

  15. Factors governing the total rainfall yield from continental convective clouds

    NASA Technical Reports Server (NTRS)

    Rosenfeld, Daniel; Gagin, Abraham

    1989-01-01

    Several important factors that govern the total rainfall from continental convective clouds were investigated by tracking thousands of convective cells in Israel and South Africa. The rainfall volume yield (Rvol) of the individual cells that build convective rain systems has been shown to depend mainly on the cloud-top height. There is, however, considerable variability in this relationship. The following factors that influence the Rvol were parameterized and quantitatively analyzed: (1) cloud base temperature, (2)atmospheric instability, and (3) the extent of isolation of the cell. It is also shown that a strong low level forcing increases the duration of Rvol of clouds reaching the same vertical extent.

  16. Double Diffusive Natural Convection in a Nuclear Waste Repository

    SciTech Connect

    Hao, Y; Nitao, J J; Buscheck, T A; Sun, Y

    2006-07-24

    In this study, we conduct a two dimensional numerical analysis of double diffusive natural convection in an emplacement drift for a nuclear waste repository. In-drift heat and moisture transport is driven by combined thermal- and compositional-induced buoyancy forces. Numerical results demonstrate buoyancy-driven convective flow patterns and configurations during both repository heat-up and cool-down phases. It is also shown that boundary conditions, particularly on the drip-shield surface, have a strong impact on in-drift convective flow and transport.

  17. The influence of convection parameterisations under alternate climate conditions

    NASA Astrophysics Data System (ADS)

    Rybka, Harald; Tost, Holger

    2013-04-01

    the cloud radiative forcing a huge spread of the cloud-induced radiative flux change is found in the warm pool region due to a change of the convection parameterisation.

  18. Convective boiling of ammonia and Freon 22 in plate heat exchangers

    NASA Astrophysics Data System (ADS)

    Panchal, C. B.; Hillis, D. L.; Thomas, A.

    An Alfa-Laval plate heat exchanger, previously used as a small ocean thermal energy conversion (OTEC) evaporator, was refurbished and tested. Several series of tests were carried out with ammonia as the working fluid, followed by one with Freon 22. Configurations utilizing all high angle plates and all low angle plates, and alternate high and low angle plates, were tested to determine the optimum combination for OTEC applications. The effects of ammonia contaminated by water on the thermal performance of the heat exchanger were evaluated. The use of the Linde High-Flux Surface on the working-fluid side of a Transfer plate heat exchanger was investigated to determine its effect on performance.

  19. Plains Elevated Convection at Night (PECAN) Experiment Science Plan

    SciTech Connect

    Turner, D; Parsons, D; Geerts, B

    2015-03-01

    The Plains Elevated Convection at Night (PECAN) experiment is a large field campaign that is being supported by the National Science Foundation (NSF) with contributions from the National Oceanic and Atmospheric Administration (NOAA), the National Atmospheric and Space Administration (NASA), and the U.S. Department of Energy (DOE). The overarching goal of the PECAN experiment is to improve the understanding and simulation of the processes that initiate and maintain convection and convective precipitation at night over the central portion of the Great Plains region of the United States (Parsons et al. 2013). These goals are important because (1) a large fraction of the yearly precipitation in the Great Plains comes from nocturnal convection, (2) nocturnal convection in the Great Plains is most often decoupled from the ground and, thus, is forced by other phenomena aloft (e.g., propagating bores, frontal boundaries, low-level jets [LLJ], etc.), (3) there is a relative lack of understanding how these disturbances initiate and maintain nocturnal convection, and (4) this lack of understanding greatly hampers the ability of numerical weather and climate models to simulate nocturnal convection well. This leads to significant uncertainties in predicting the onset, location, frequency, and intensity of convective cloud systems and associated weather hazards over the Great Plains.

  20. Gravity wave initiated convection

    NASA Technical Reports Server (NTRS)

    Hung, R. J.

    1990-01-01

    The vertical velocity of convection initiated by gravity waves was investigated. In one particular case, the convective motion-initiated and supported by the gravity wave-induced activity (excluding contributions made by other mechanisms) reached its maximum value about one hour before the production of the funnel clouds. In another case, both rawinsonde and geosynchronous satellite imagery were used to study the life cycles of severe convective storms. Cloud modelling with input sounding data and rapid-scan imagery from GOES were used to investigate storm cloud formation, development and dissipation in terms of growth and collapse of cloud tops, as well as, the life cycles of the penetration of overshooting turrets above the tropopause. The results based on these two approaches are presented and discussed.

  1. Active control of convection

    SciTech Connect

    Bau, H.H.

    1995-12-31

    Using stability theory, numerical simulations, and in some instances experiments, it is demonstrated that the critical Rayleigh number for the bifurcation (1) from the no-motion (conduction) state to the motion state and (2) from time-independent convection to time-dependent, oscillatory convection in the thermal convection loop and Rayleigh-Benard problems can be significantly increased or decreased. This is accomplished through the use of a feedback controller effectuating small perturbations in the boundary data. The controller consists of sensors which detect deviations in the fluid`s temperature from the motionless, conductive values and then direct actuators to respond to these deviations in such a way as to suppress the naturally occurring flow instabilities. Actuators which modify the boundary`s temperature/heat flux are considered. The feedback controller can also be used to control flow patterns and generate complex dynamic behavior at relatively low Rayleigh numbers.

  2. Hydrodynamic stability in the presence of a stochastic source: convection as a case study

    NASA Astrophysics Data System (ADS)

    Whitehead, Jared; Foldes, Juraj; Glatt-Holtz, Nathan; Richards, Geordie

    2016-11-01

    We quantify the stability of a conductive state in Rayleigh-Benard convection when the fluid is driven not only by an enforced temperature gradient, but also by a mean zero stochastic (in time) internal heat source, a modeled system applicable to situations such as convection in stars, nuclear reactors, and the earth's mantle. We explore the effects of such a mean zero forcing on the onset of convection. The methods applied to the convection problem here, are applicable to any other question of hydrodynamic stability where a stochastic forcing is present.

  3. On the sensitivity of the diurnal cycle in the Amazon to convective intensity.

    PubMed

    Itterly, Kyle F; Taylor, Patrick C; Dodson, Jason B; Tawfik, Ahmed B

    2016-07-27

    Climate and reanalysis models contain large water and energy budget errors over tropical land related to the misrepresentation of diurnally forced moist convection. Motivated by recent work suggesting that the water and energy budget is influenced by the sensitivity of the convective diurnal cycle to atmospheric state, this study investigates the relationship between convective intensity, the convective diurnal cycle, and atmospheric state in a region of frequent convection-the Amazon. Daily, 3-hourly satellite observations of top of atmosphere (TOA) fluxes from Clouds and the Earth's Radiant Energy System Ed3a SYN1DEG and precipitation from Tropical Rainfall Measuring Mission 3B42 data sets are collocated with twice daily Integrated Global Radiosonde Archive observations from 2002 to 2012 and hourly flux tower observations. Percentiles of daily minimum outgoing longwave radiation are used to define convective intensity regimes. The results indicate a significant increase in the convective diurnal cycle amplitude with increased convective intensity. The TOA flux diurnal phase exhibits 1-3 h shifts with convective intensity, and precipitation phase is less sensitive. However, the timing of precipitation onset occurs 2-3 h earlier and the duration lasts 3-5 h longer on very convective compared to stable days. While statistically significant changes are found between morning atmospheric state and convective intensity, variations in upper and lower tropospheric humidity exhibit the strongest relationships with convective intensity and diurnal cycle characteristics. Lastly, convective available potential energy (CAPE) is found to vary with convective intensity but does not explain the variations in Amazonian convection, suggesting that a CAPE-based convective parameterization will not capture the observed behavior without incorporating the sensitivity of convection to column humidity.

  4. Dynamo action in stratified convection with overshoot

    NASA Technical Reports Server (NTRS)

    Nordlund, Ake; Brandenburg, Axel; Jennings, Richard L.; Rieutord, Michel; Ruokolainen, Juha; Stein, Robert F.; Tuominen, Ilkka

    1992-01-01

    Results are presented from direct simulations of turbulent compressible hydromagnetic convection above a stable overshoot layer. Spontaneous dynamo action occurs followed by saturation, with most of the generated magnetic field appearing as coherent flux tubes in the vicinity of strong downdrafts, where both the generation and destruction of magnetic field is most vigorous. Whether or not this field is amplified depends on the sizes of the magnetic Reynolds and magnetic Prandtl numbers. Joule dissipation is balanced mainly by the work done against the magnetic curvature force. It is this curvature force which is also responsible for the saturation of the dynamo.

  5. Magnetospheric convection at Uranus

    NASA Technical Reports Server (NTRS)

    Selesnick, R. S.

    1987-01-01

    The unusual configuration of the Uranian magnetosphere leads to differences in the relative effects of solar wind induced magnetospheric convection and plasma corotation from those at the other planets. At the present epoch the orientation of the rotation axis of Uranus with respect to the solar wind flow direction leads to a decoupling of the convective and corotational flows, allowing plasma from the tail to move unimpeded through the inner magnetosphere. As Uranus progresses in its orbit around the sun, corotation plays a gradually more important role and the plasma residence times within the magnetosphere increase. When the rotation axis finally becomes perpendicular to the solar wind flow, corotation is dominant.

  6. Boiling treatment of ABS and PS plastics for flotation separation.

    PubMed

    Wang, Chong-qing; Wang, Hui; Wu, Bao-xin; Liu, Qun

    2014-07-01

    A new physical method, namely boiling treatment, was developed to aid flotation separation of acrylonitrile-butadiene-styrene (ABS) and polystyrene (PS) plastics. Boiling treatment was shown to be effective in producing a hydrophilic surface on ABS plastic. Fourier Transform Infrared analysis was conducted to investigate the mechanism of boiling treatment of ABS. Surface rearrangement of polymer may be responsible for surface change of boiling treated ABS, and the selective influence of boiling treatment on the floatability of boiling treated plastics may be attributed to the difference in the molecular mobility of polymer chains. The effects of flotation time, frother concentration and particle size on flotation behavior of simple plastic were investigated. Based on flotation behavior of simple plastic, flotation separation of boiling treatment ABS and PS with different particle sizes was achieved efficiently. The purity of ABS and PS was up to 99.78% and 95.80%, respectively; the recovery of ABS and PS was up to 95.81% and 99.82%, respectively. Boiling treatment promotes the industrial application of plastics flotation and facilitates plastic recycling.

  7. Explosive Boiling at Very Low Heat Fluxes: A Microgravity Phenomenon

    NASA Technical Reports Server (NTRS)

    Hasan, M. M.; Lin, C. S.; Knoll, R. H.; Bentz, M. D.

    1993-01-01

    The paper presents experimental observations of explosive boiling from a large (relative to bubble sizes) flat heating surface at very low heat fluxes in microgravity. The explosive boiling is characterized as either a rapid growth of vapor mass over the entire heating surface due to the flashing of superheated liquid or a violent boiling spread following the appearance of single bubbles on the heating surface. Pool boiling data with saturated Freon 113 was obtained in the microgravity environment of the space shuttle. The unique features of the experimental results are the sustainability of high liquid superheat for long periods and the occurrence of explosive boiling at low heat fluxes (0.2 to 1.2 kW/sq m). For a heat flux of 1.0 kW/sq m a wall superheat of 17.9 degrees C was attained in ten minutes of heating. This was followed by an explosive boiling accompanied with a pressure spike and a violent bulk liquid motion. However, at this heat flux the vapor blanketing the heating surface could not be sustained. Stable nucleate boiling continued following the explosive boiling.

  8. 18. RW Meyer Sugar Mill: 18761889. Boiling House Interior, 1878. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    18. RW Meyer Sugar Mill: 1876-1889. Boiling House Interior, 1878. View: Detail of floor with molasses pits below floor level. The remaining floor boards indicate the structure of the floor covering the entire inside of the boiling house. In the left background the base of the centrifugals are in view. - R. W. Meyer Sugar Mill, State Route 47, Kualapuu, Maui County, HI

  9. 17. RW Meyer Sugar Mill: 18761889. Boiling House, 1878. View: ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    17. RW Meyer Sugar Mill: 1876-1889. Boiling House, 1878. View: Southwest corner of boiling house. The amimal-powered cane mill is located in the undergrowth in the right foreground, - R. W. Meyer Sugar Mill, State Route 47, Kualapuu, Maui County, HI

  10. Influence of Pressure on Stable Film Boiling of Subcooled Liquid

    NASA Astrophysics Data System (ADS)

    Zabirov, A. R.; Yagov, V. V.; Kaban'kov, O. N.; Leksin, M. A.; Kanin, P. K.

    2016-11-01

    Film boiling of subcooled liquids is an integral part of the hardening process. Understanding of the mechanisms underlying film boiling is important for modeling processes in atomic power engineering and cryogenic technology. Stationary processes of film boiling of subcooled liquids under conditions of their free motion near cylindrical heaters, just as subcooled liquid turbulent flow past high-temperature surfaces, represent quite a different type of process. In cooling metal spheres heated to a high temperature by a subcooled water, a special regime of film boiling is observed (microbubble boiling) distinguished by high intensity of heat transfer. Such a regime has not been revealed up to now for nonaqueous liquids. The paper presents new experimental data on heat transfer regimes in cooling nickel spheres in subcooled isopropanol and perfluorohexane at pressures of up to 1 MPa. It has been established that stable film boiling is the main regime of heat transfer that accounts for the larger part of the total time of cooling. The regimes of highly intensive film boiling heat transfer were not observed in the entire range of operational parameters even in the case of extreme subcoolings of liquid below their saturation temperature (to 170 K). The intensity of heat transfer in stable film boiling increases noticeably with subcooling of a chilling liquid.

  11. Prospective Primary School Teachers' Perceptions on Boiling and Freezing

    ERIC Educational Resources Information Center

    Senocak, Erdal

    2009-01-01

    The aim of this study was to investigate the perceptions of prospective primary school teachers on the physical state of water during the processes of boiling and freezing. There were three stages in the investigation: First, open-ended questions concerning the boiling and freezing of water were given to two groups of prospective primary school…

  12. Heat transfer coefficient for flow boiling in an annular mini gap

    NASA Astrophysics Data System (ADS)

    Hożejowska, Sylwia; Musiał, Tomasz; Piasecka, Magdalena

    2016-03-01

    The aim of this paper was to present the concept of mathematical models of heat transfer in flow boiling in an annular mini gap between the metal pipe with enhanced exterior surface and the external glass pipe. The one- and two-dimensional mathematical models were proposed to describe stationary heat transfer in the gap. A set of experimental data governed both the form of energy equations in cylindrical coordinates and the boundary conditions. The models were formulated to minimize the number of experimentally determined constants. Known temperature distributions in the enhanced surface and in the fluid helped to determine, from the Robin condition, the local heat transfer coefficients at the enhanced surface - fluid contact. The Trefftz method was used to find two-dimensional temperature distributions for the thermal conductive filler layer, enhanced surface and flowing fluid. The method of temperature calculation depended on whether the area of single-phase convection ended with boiling incipience in the gap or the two-phase flow region prevailed, with either fully developed bubbly flow or bubbly-slug flow. In the two-phase flow, the fluid temperature was calculated by Trefftz method. Trefftz functions for the Laplace equation and for the energy equation were used in the calculations.

  13. Conversion of direct process high-boiling residue to monosilanes

    DOEpatents

    Brinson, Jonathan Ashley; Crum, Bruce Robert; Jarvis, Jr., Robert Frank

    2000-01-01

    A process for the production of monosilanes from the high-boiling residue resulting from the reaction of hydrogen chloride with silicon metalloid in a process typically referred to as the "direct process." The process comprises contacting a high-boiling residue resulting from the reaction of hydrogen chloride and silicon metalloid, with hydrogen gas in the presence of a catalytic amount of aluminum trichloride effective in promoting conversion of the high-boiling residue to monosilanes. The present process results in conversion of the high-boiling residue to monosilanes. At least a portion of the aluminum trichloride catalyst required for conduct of the process may be formed in situ during conduct of the direct process and isolation of the high-boiling residue.

  14. Turning bubbles on and off during boiling using charged surfactants

    NASA Astrophysics Data System (ADS)

    Cho, H. Jeremy; Mizerak, Jordan P.; Wang, Evelyn N.

    2015-10-01

    Boiling--a process that has powered industries since the steam age--is governed by bubble formation. State-of-the-art boiling surfaces often increase bubble nucleation via roughness and/or wettability modification to increase performance. However, without active in situ control of bubbles, temperature or steam generation cannot be adjusted for a given heat input. Here we report the ability to turn bubbles `on and off' independent of heat input during boiling both temporally and spatially via molecular manipulation of the boiling surface. As a result, we can rapidly and reversibly alter heat transfer performance up to an order of magnitude. Our experiments show that this active control is achieved by electrostatically adsorbing and desorbing charged surfactants to alter the wettability of the surface, thereby affecting nucleation. This approach can improve performance and flexibility in existing boiling technologies as well as enable emerging or unprecedented energy applications.

  15. Microbiological effectiveness of disinfecting water by boiling in rural Guatemala.

    PubMed

    Rosa, Ghislaine; Miller, Laura; Clasen, Thomas

    2010-03-01

    Boiling is the most common means of treating water in the home and the benchmark against which alternative point-of-use water treatment options must be compared. In a 5-week study in rural Guatemala among 45 households who claimed they always or almost always boiled their drinking water, boiling was associated with a 86.2% reduction in geometric mean thermotolerant coliforms (TTC) (N = 206, P < 0.0001). Despite consistent levels of fecal contamination in source water, 71.2% of stored water samples from self-reported boilers met the World Health Organization guidelines for safe drinking water (0 TTC/100 mL), and 10.7% fell within the commonly accepted low-risk category of (1-10 TTC/100 mL). As actually practiced in the study community, boiling significantly improved the microbiological quality of drinking water, though boiled and stored drinking water is not always free of fecal contaminations.

  16. Influence of the wettability on the boiling onset.

    PubMed

    Bourdon, B; Rioboo, R; Marengo, M; Gosselin, E; De Coninck, J

    2012-01-17

    Experimental investigation of pool boiling is conducted in stationary conditions over very smooth bronze surfaces covered by a very thin layer of gold presenting various surface treatments to isolate the role of wettability. We show that even with surfaces presenting mean roughness amplitudes below 10 nm the role of surface topography is of importance. The study shows also that wettability alone can trigger the boiling and that the boiling position on the surface can be controlled by chemical grafting using for instance alkanethiol. Moreover, boiling curves, that is, heat flux versus the surface superheat (which is the difference between the solid surface temperature and the liquid saturation temperature), are recorded and enabled to quantify, for this case, the significant reduction of the superheat at the onset of incipient boiling due to wettability.

  17. Turning bubbles on and off during boiling using charged surfactants.

    PubMed

    Cho, H Jeremy; Mizerak, Jordan P; Wang, Evelyn N

    2015-10-21

    Boiling--a process that has powered industries since the steam age--is governed by bubble formation. State-of-the-art boiling surfaces often increase bubble nucleation via roughness and/or wettability modification to increase performance. However, without active in situ control of bubbles, temperature or steam generation cannot be adjusted for a given heat input. Here we report the ability to turn bubbles 'on and off' independent of heat input during boiling both temporally and spatially via molecular manipulation of the boiling surface. As a result, we can rapidly and reversibly alter heat transfer performance up to an order of magnitude. Our experiments show that this active control is achieved by electrostatically adsorbing and desorbing charged surfactants to alter the wettability of the surface, thereby affecting nucleation. This approach can improve performance and flexibility in existing boiling technologies as well as enable emerging or unprecedented energy applications.

  18. Meniscus height controlled convective self-assembly

    NASA Astrophysics Data System (ADS)

    Choudhary, Satyan; Crosby, Alfred

    Convective self-assembly techniques based on the 'coffee-ring effect' allow for the fabrication of materials with structural hierarchy and multi-functionality across a wide range of length scales. The coffee-ring effect describes deposition of non-volatiles at the edge of droplet due to capillary flow and pattern formations due to pinning and de-pinning of meniscus with the solvent evaporation. We demonstrate a novel convective self-assembly method which uses a piezo-actuated bending motion for driving the de-pinning step. In this method, a dilute solution of nanoparticles or polymers is trapped by capillary forces between a blade and substrate. As the blade oscillates with a fixed frequency and amplitude and the substrate translates at a fixed velocity, the height of the capillary meniscus oscillates. The meniscus height controls the contact angle of three phase contact line and at a critical angle de-pinning occurs. The combination of convective flux and continuously changing contact angle drives the assembly of the solute and subsequent de-pinning step, providing a direct means for producing linear assemblies. We demonstrate a new method for convective self-assembly at an accelerated rate when compared to other techniques, with control over deposit dimensions. Army Research Office (W911NF-14-1-0185).

  19. Convective mixing in homogeneous porous media flow

    NASA Astrophysics Data System (ADS)

    Ching, Jia-Hau; Chen, Peilong; Tsai, Peichun Amy

    2017-01-01

    Inspired by the flow processes in the technology of carbon dioxide (CO2) storage in saline formations, we modeled a homogeneous porous media flow in a Hele-Shaw cell to investigate density-driven convection due to dissolution. We used an analogy of the fluid system to mimic the diffusion and subsequent convection when CO2 dissolves in brine, which generates a heavier solution. By varying the permeability, we examined the onset of convection, the falling dynamics, the wavelengths of fingers, and the rate of dissolution, for the Rayleigh number Ra (a dimensionless forcing term which is the ratio of buoyancy to diffusivity) in the range of 2.0 ×104≤Ra≤8.26 ×105 . Our results reveal that the effect of permeability influences significantly the initial convective speed, as well as the later coarsening dynamics of the heavier fingering plumes. However, the total dissolved mass, characterized by a nondimensional Nusselt number Nu, has an insignificant dependence on Ra. This implies that the total dissolution rate of CO2 is nearly constant in high Ra geological porous structures.

  20. Size-exclusion chromatography for the determination of the boiling point distribution of high-boiling petroleum fractions.

    PubMed

    Boczkaj, Grzegorz; Przyjazny, Andrzej; Kamiński, Marian

    2015-03-01

    The paper describes a new procedure for the determination of boiling point distribution of high-boiling petroleum fractions using size-exclusion chromatography with refractive index detection. Thus far, the determination of boiling range distribution by chromatography has been accomplished using simulated distillation with gas chromatography with flame ionization detection. This study revealed that in spite of substantial differences in the separation mechanism and the detection mode, the size-exclusion chromatography technique yields similar results for the determination of boiling point distribution compared with simulated distillation and novel empty column gas chromatography. The developed procedure using size-exclusion chromatography has a substantial applicability, especially for the determination of exact final boiling point values for high-boiling mixtures, for which a standard high-temperature simulated distillation would have to be used. In this case, the precision of final boiling point determination is low due to the high final temperatures of the gas chromatograph oven and an insufficient thermal stability of both the gas chromatography stationary phase and the sample. Additionally, the use of high-performance liquid chromatography detectors more sensitive than refractive index detection allows a lower detection limit for high-molar-mass aromatic compounds, and thus increases the sensitivity of final boiling point determination.

  1. Boiling water reactor licensing basis transient

    SciTech Connect

    Cheng, H. S.; Lu, M. S.; Shier, W. G.; Diamond, D. J.; Levine, M. M.; Odar, F.

    1980-01-01

    An analysis is presented of the licensing basis transient for a boiling water reactor where a turbine trip occurs without steam bypass. The analysis was performed by means of the two-dimensional (R,Z) core dynamics code BNL-TWIGL in conjunction with the system transient code RELAP-3B. Two plant models were used and produced similar results for the analysis of the Peach Bottom turbine trip tests. The models differed in the representation of the steam separator. The analysis of the licensing basis transient produced somewhat different results. The results of sensitivity studies to help explain the differences are presented as well as an analysis of the licensing basis transient with recirculation pump trip. 2 refs., 17 figs., 1 tab.

  2. The Physics of Boiling at Burnout

    NASA Technical Reports Server (NTRS)

    Theofanous, T. G.; Tu, J. P.; Dinh, T. N.; Salmassi, T.; Dinh, A. T.; Gasljevic, K.

    2000-01-01

    The basic elements of a new experimental approach for the investigation of burnout in pool boiling are presented. The approach consists of the combined use of ultrathin (nano-scale) heaters and high speed infrared imaging of the heater temperature pattern as a whole, in conjunction with highly detailed control and characterization of heater morphology at the nano and micron scales. It is shown that the burnout phenomenon can be resolved in both space and time. Ultrathin heaters capable of dissipating power levels, at steady-state, of over 1 MW/square m are demonstrated. A separation of scales is identified and it is used to transfer the focus of attention from the complexity of the two-phase mixing layer in the vicinity of the heater to a micron-scaled microlayer and nucleation and associated film-disruption processes within it.

  3. Enceladus Plumes: A Boiling Liquid Model

    NASA Astrophysics Data System (ADS)

    Nakajima, Miki; Ingersoll, A. P.

    2012-10-01

    Following the discovery of H2O vapor and particle plumes from the tiger stripes at the south pole of Enceladus (Porco et al., 2006), observational and theoretical studies have been conducted to understand the plume mechanism (e.g., Schmidt et al., 2008; Kieffer et al., 2009; Ingersoll and Pankine, 2010). Although the “Ice Chamber Model”, which assumes that ice sublimation under the stripes causes the plumes, has successfully explained the plume mass flux (e.g., Nimmo et al., 2007; Ingersoll and Pankine, 2010), it cannot explain the high salinity in the plume (Postberg et al., 2009). Ice particles condensing from a vapor are relatively salt free, but ice particles derived from a salty liquid can have high salinity. Therefore we have investigated the “Boiling Liquid Model”, which assumes that liquid H2O under the stripes causes the plumes. With conservation of mass, momentum and energy, we built a simple atmospheric model that includes controlled boiling and gas-ice wall interaction. We first assumed that the heat radiated to space comes entirely from the heat generated by condensation of the gas onto the ice wall. We varied the width (0.1-1 m) and the height (5-4000 m) of the crack as parameters. We find that the escaping vapor flux can be relatively close to the observed value (250±100 kg/s, Hansen et al., 2006, 2008) but the radiated heat flux is only 1 GW, which is much less than the observed value (15.8 GW, Howett et al., 2011). Other models (Nimmo et al., 2007; Abramov and Spencer, 2009) also have the same difficulty accounting for the observed value. We then investigated the additional heat radiated by the particles after they come out of the crack. We built a simple model to estimate the size distributions of these condensed ice particles and their radiative properties.

  4. Computation of three-dimensional mixed convective boundary layer flow

    NASA Technical Reports Server (NTRS)

    Gadepalli, Prashandt; Rahman, Muhammad M.

    1995-01-01

    The paper presents the numerical solution of heat and mass transfer during cross-flow (orthogonal) mixed convection. In this class of flow, a buoyancy-driven transport in the vertical direction and a forced convective flow in the horizontal direction results in a three-dimensional boundary layer structure adjacent to the plate. The rates of heat and mass transfer are determined by a combined influence of the two transport processes. The equations for the conservation of mass, momentum, energy, and species concentration were solved along with appropriate boundary conditions to determine the distributions of velocity components, temperature, and concentration across the thickness of the boundary layer at different locations on the plate. Results were expressed in dimensionless form using Reynolds number, Richardson number for heat transfer, Richardson number for mass transfer, Prandtl number, and Schmidt number as parameters. It was found that the transport is dominated by buoyancy at smaller vertical locations and at larger distances away from the forced convection leading edge. Effects of forced convection appeared to be very strong at smaller horizontal distances from the leading edge. The cross stream forced convection enhanced the rate of heat and mass transfer by a very significant amount.

  5. Model for boiling and dryout in particle beds. [LMFBR

    SciTech Connect

    Lipinski, R. J.

    1982-06-01

    Over the last ten years experiments and modeling of dryout in particle beds have produced over fifty papers. Considering only volume-heated beds, over 250 dryout measurements have been made, and are listed in this work. In addition, fifteen models to predict dryout have been produced and are discussed. A model is developed in this report for one-dimensional boiling and dryout in a porous medium. It is based on conservation laws for mass, momentum, and energy. The initial coupled differential equations are reduced to a single first-order differential equation with an algebraic equation for the upper boundary condition. The model includes the effects of both laminar and turbulent flow, two-phase friction, and capillary force. The boundary condition at the bed bottom includes the possibility of inflowing liquid and either an adiabatic or a bottom-cooled support structure. The top of the bed may be either channeled or subcooled. In the first case the channel length and the saturation at the base of the channels are predicted. In the latter case, a criterion for penetration of the subcooled zone by channels is obtained.

  6. Boiling-Water Reactor internals aging degradation study. Phase 1

    SciTech Connect

    Luk, K.H.

    1993-09-01

    This report documents the results of an aging assessment study for boiling water reactor (BWR) internals. Major stressors for BWR internals are related to unsteady hydrodynamic forces generated by the primary coolant flow in the reactor vessel. Welding and cold-working, dissolved oxygen and impurities in the coolant, applied loads and exposures to fast neutron fluxes are other important stressors. Based on results of a component failure information survey, stress corrosion cracking (SCC) and fatigue are identified as the two major aging-related degradation mechanisms for BWR internals. Significant reported failures include SCC in jet-pump holddown beams, in-core neutron flux monitor dry tubes and core spray spargers. Fatigue failures were detected in feedwater spargers. The implementation of a plant Hydrogen Water Chemistry (HWC) program is considered as a promising method for controlling SCC problems in BWR. More operating data are needed to evaluate its effectiveness for internal components. Long-term fast neutron irradiation effects and high-cycle fatigue in a corrosive environment are uncertainty factors in the aging assessment process. BWR internals are examined by visual inspections and the method is access limited. The presence of a large water gap and an absence of ex-core neutron flux monitors may handicap the use of advanced inspection methods, such as neutron noise vibration measurements, for BWR.

  7. Pool film boiling experiments on a wire in low gravity: preliminary results.

    PubMed

    Di Marco, P; Grassi, W; Trentavizi, F

    2002-10-01

    This paper reports preliminary results for pool film boiling on a wire immersed in almost saturated FC72 recently obtained during an experimental campaign performed in low gravity on the European Space Agency Zero-G airplane, (reduced gravity level 10(-2)). This is part of a long-term research program on the effect of gravitational and electric forces on boiling. The reported data set refers to experiments performed under the following conditions: (1) Earth gravity without electric field, (2) Earth gravity with electric field, (3) low gravity without electric field, and (4) low gravity with electric field. Although a decrease of gravity causes a heat transfer degradation, the electric field markedly improves heat exchange. This improvement is so effective that, beyond a certain field value, the heat flux is no longer sensitive to gravity. Two main film boiling regimes have been identified, both in normal and in low gravity: one is affected by the electric field and the other is practically insensitive to the field influence.

  8. On the sensitivity of the diurnal cycle in the Amazon to convective intensity

    PubMed Central

    Taylor, Patrick C.; Dodson, Jason B.; Tawfik, Ahmed B.

    2016-01-01

    Abstract Climate and reanalysis models contain large water and energy budget errors over tropical land related to the misrepresentation of diurnally forced moist convection. Motivated by recent work suggesting that the water and energy budget is influenced by the sensitivity of the convective diurnal cycle to atmospheric state, this study investigates the relationship between convective intensity, the convective diurnal cycle, and atmospheric state in a region of frequent convection—the Amazon. Daily, 3‐hourly satellite observations of top of atmosphere (TOA) fluxes from Clouds and the Earth's Radiant Energy System Ed3a SYN1DEG and precipitation from Tropical Rainfall Measuring Mission 3B42 data sets are collocated with twice daily Integrated Global Radiosonde Archive observations from 2002 to 2012 and hourly flux tower observations. Percentiles of daily minimum outgoing longwave radiation are used to define convective intensity regimes. The results indicate a significant increase in the convective diurnal cycle amplitude with increased convective intensity. The TOA flux diurnal phase exhibits 1–3 h shifts with convective intensity, and precipitation phase is less sensitive. However, the timing of precipitation onset occurs 2–3 h earlier and the duration lasts 3–5 h longer on very convective compared to stable days. While statistically significant changes are found between morning atmospheric state and convective intensity, variations in upper and lower tropospheric humidity exhibit the strongest relationships with convective intensity and diurnal cycle characteristics. Lastly, convective available potential energy (CAPE) is found to vary with convective intensity but does not explain the variations in Amazonian convection, suggesting that a CAPE‐based convective parameterization will not capture the observed behavior without incorporating the sensitivity of convection to column humidity. PMID:27867784

  9. On the sensitivity of the diurnal cycle in the Amazon to convective intensity

    NASA Astrophysics Data System (ADS)

    Itterly, Kyle F.; Taylor, Patrick C.; Dodson, Jason B.; Tawfik, Ahmed B.

    2016-07-01

    Climate and reanalysis models contain large water and energy budget errors over tropical land related to the misrepresentation of diurnally forced moist convection. Motivated by recent work suggesting that the water and energy budget is influenced by the sensitivity of the convective diurnal cycle to atmospheric state, this study investigates the relationship between convective intensity, the convective diurnal cycle, and atmospheric state in a region of frequent convection—the Amazon. Daily, 3-hourly satellite observations of top of atmosphere (TOA) fluxes from Clouds and the Earth's Radiant Energy System Ed3a SYN1DEG and precipitation from Tropical Rainfall Measuring Mission 3B42 data sets are collocated with twice daily Integrated Global Radiosonde Archive observations from 2002 to 2012 and hourly flux tower observations. Percentiles of daily minimum outgoing longwave radiation are used to define convective intensity regimes. The results indicate a significant increase in the convective diurnal cycle amplitude with increased convective intensity. The TOA flux diurnal phase exhibits 1-3 h shifts with convective intensity, and precipitation phase is less sensitive. However, the timing of precipitation onset occurs 2-3 h earlier and the duration lasts 3-5 h longer on very convective compared to stable days. While statistically significant changes are found between morning atmospheric state and convective intensity, variations in upper and lower tropospheric humidity exhibit the strongest relationships with convective intensity and diurnal cycle characteristics. Lastly, convective available potential energy (CAPE) is found to vary with convective intensity but does not explain the variations in Amazonian convection, suggesting that a CAPE-based convective parameterization will not capture the observed behavior without incorporating the sensitivity of convection to column humidity.

  10. Eye formation in rotating convection

    NASA Astrophysics Data System (ADS)

    Oruba, L.; Davidson, P. A.; Dormy, E.

    2017-02-01

    We consider rotating convection in a shallow, cylindrical domain. We examine the conditions under which the resulting vortex develops an eye at its core; that is, a region where the poloidal flow reverses and the angular momentum is low. For simplicity, we restrict ourselves to steady, axisymmetric flows in a Boussinesq fluid. Our numerical experiments show that, in such systems, an eye forms as a passive response to the development of a so-called eyewall, a conical annulus of intense, negative azimuthal vorticity that can form near the axis and separates the eye from the primary vortex. We also observe that the vorticity in the eyewall comes from the lower boundary layer, and relies on the fact the poloidal flow strips negative vorticity out of the boundary layer and carries it up into the fluid above as it turns upward near the axis. This process is effective only if the Reynolds number is sufficiently high for the advection of vorticity to dominate over diffusion. Finally we observe that, in the vicinity of the eye and the eyewall, the buoyancy and Coriolis forces are negligible, and so although these forces are crucial to driving and shaping the primary vortex, they play no direct role in eye formation in a Boussinesq fluid.

  11. Magnetic Control of Convection in Electrically Nonconducting Fluids

    NASA Technical Reports Server (NTRS)

    Huang, Jie; Gray, Donald D.; Edwards, Boyd F.

    1999-01-01

    Inhomogeneous magnetic fields exert a body force on electrically nonconducting, magnetically permeable fluids. This force can be used to compensate for gravity and to control convection. The effects of uniform and nonuniform magnetic fields on a laterally unbounded fluid layer heated from below or above are studied using a linear stability analysis of the Navier-Stokes equations supplemented by Maxwell's equations and the appropriate magnetic body force. For a uniform oblique field, the analysis shows that longitudinal rolls with axes parallel to the horizontal component of the field are the rolls most unstable to convection. The corresponding critical Rayleigh number and critical wavelength for the onset of such rolls are less than the well-known Rayleigh-Benard values in the absence of magnetic fields. Vertical fields maximize these deviations, which vanish for horizontal fields. Horizontal fields increase the critical Rayleigh number and the critical wavelength for all rolls except longitudinal rolls. For a nonuniform field, our analysis shows that the magnetic effect on convection is represented by a dimensionless vector parameter which measures the relative strength of the induced magnetic buoyancy force due to the applied field gradient. The vertical component of this parameter competes with the gravitational buoyancy effect, and a critical relationship between this component and the Rayleigh number is identified for the onset of convection. Therefore, Rayleigh-Benard convection in such fluids can be enhanced or suppressed by the field. It also shows that magnetothermal convection is possible in both paramagnetic and diamagnetic fluids. Our theoretical predictions for paramagnetic fluids agree with experiments. Magnetically driven convection in diamagnetic fluids should be observable even in pure water using current technology.

  12. A mesoscale gravity wave event observed during CCOPE. II - Interactions between mesoscale convective systems and the antecedent waves. [Cooperative Convection Precipitation Experiment

    NASA Technical Reports Server (NTRS)

    Koch, Steven E.; Golus, Robert E.; Dorian, Paul B.

    1988-01-01

    The interactions between preexisting gravity waves and convective systems were investigated using data obtained by the Cooperative Convection Precipitation Experiment observational network in Montana on July 11-12, 1981. The results indicate that strong convection substantially affects gravity waves locally by augmenting the wave amplitude, reducing its wavelength, distorting the wave shape, altering the wave phase velocity, and greatly weakening the in-phase covariance between the perturbation wind and pressure fields. These convective effects upon gravity waves are explained in terms of hydrostatic and nonhydrostatic pressure forces and gust front processes associated with thunderstorms.

  13. Self-propulsion via natural convection

    NASA Astrophysics Data System (ADS)

    Ardekani, Arezoo; Mercier, Matthieu; Allshouse, Michael; Peacock, Thomas

    2014-11-01

    Natural convection of a fluid due to a heated or cooled boundary has been studied within a myriad of different contexts due to the prevalence of the phenomenon in environmental systems such as glaciers, katabatic winds, or magmatic chambers; and in engineered problems like natural ventilation of buildings, or cooling of electronic components. It has, however, hitherto gone unrecognized that boundary-induced natural convection can propel immersed objects. We experimentally investigate the motion of a wedge-shaped object, immersed within a two-layer fluid system, due to a heated surface. The wedge resides at the interface between the two fluid layers of different density, and its concomitant motion provides the first demonstration of the phenomenon of propulsion via boundary-induced natural convection. Established theoretical and numerical models are used to rationalize the propulsion speed by virtue of balancing the propulsion force against the appropriate drag force. We successfully verified the influence of various fluid and heat parameters on the predicted speed. now at IMFT (Institut de Mécanique des Fluides de Toulouse).

  14. Thermocapillary Convection in Liquid Droplets

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The purpose of this video is to understand the effects of surface tension on fluid convection. The fluid system chosen is the liquid sessile droplet to show the importance in single crystal growth, the spray drying and cooling of metal, and the advance droplet radiators of the space stations radiators. A cross sectional representation of a hemispherical liquid droplet under ideal conditions is used to show internal fluid motion. A direct simulation of buoyancy-dominant convection and surface tension-dominant convection is graphically displayed. The clear differences between two mechanisms of fluid transport, thermocapillary convection, and bouncy dominant convection is illustrated.

  15. Transition boiling heat transfer and the film transition regime

    NASA Technical Reports Server (NTRS)

    Ramilison, J. M.; Lienhard, J. H.

    1987-01-01

    The Berenson (1960) flat-plate transition-boiling experiment has been recreated with a reduced thermal resistance in the heater, and an improved access to those portions of the transition boiling regime that have a steep negative slope. Tests have been made in Freon-113, acetone, benzene, and n-pentane boiling on horizontal flat copper heaters that have been mirror-polished, 'roughened', or teflon-coated. The resulting data reproduce and clarify certain features observed by Berenson: the modest surface finish dependence of boiling burnout, and the influence of surface chemistry on both the minimum heat flux and the mode of transition boiling, for example. A rational scheme of correlation yields a prediction of the heat flux in what Witte and Lienhard (1982) previously identified as the 'film-transition boiling' region. It is also shown how to calculate the heat flux at the boundary between the pure-film, and the film-transition, boiling regimes, as a function of the advancing contact angle.

  16. Smoothed particle hydrodynamics simulations of evaporation and explosive boiling of liquid drops in microgravity.

    PubMed

    Sigalotti, Leonardo Di G; Troconis, Jorge; Sira, Eloy; Peña-Polo, Franklin; Klapp, Jaime

    2015-07-01

    The rapid evaporation and explosive boiling of a van der Waals (vdW) liquid drop in microgravity is simulated numerically in two-space dimensions using the method of smoothed particle hydrodynamics. The numerical approach is fully adaptive and incorporates the effects of surface tension, latent heat, mass transfer across the interface, and liquid-vapor interface dynamics. Thermocapillary forces are modeled by coupling the hydrodynamics to a diffuse-interface description of the liquid-vapor interface. The models start from a nonequilibrium square-shaped liquid of varying density and temperature. For a fixed density, the drop temperature is increased gradually to predict the point separating normal boiling at subcritical heating from explosive boiling at the superheat limit for this vdW fluid. At subcritical heating, spontaneous evaporation produces stable drops floating in a vapor atmosphere, while at near-critical heating, a bubble is nucleated inside the drop, which then collapses upon itself, leaving a smaller equilibrated drop embedded in its own vapor. At the superheat limit, unstable bubble growth leads to either fragmentation or violent disruption of the liquid layer into small secondary drops, depending on the liquid density. At higher superheats, explosive boiling occurs for all densities. The experimentally observed wrinkling of the bubble surface driven by rapid evaporation followed by a Rayleigh-Taylor instability of the thin liquid layer and the linear growth of the bubble radius with time are reproduced by the simulations. The predicted superheat limit (T(s)≈0.96) is close to the theoretically derived value of T(s)=1 at zero ambient pressure for this vdW fluid.

  17. Criteria for approximating certain microgravity flow boiling characteristics in Earth gravity.

    PubMed

    Merte, Herman; Park, Jaeseok; Shultz, William W; Keller, Robert B

    2002-10-01

    The forces governing flow boiling, aside from system pressure, are buoyancy, liquid momentum, interfacial surface tensions, and liquid viscosity. Guidance for approximating certain aspects of the flow boiling process in microgravity can be obtained in Earth gravity research by the imposition of a liquid velocity parallel to a flat heater surface in the inverted position, horizontal, or nearly horizontal, by having buoyancy hold the heated liquid and vapor formed close to the heater surface. Bounds on the velocities of interest are obtained from several dimensionless numbers: a two-phase Richardson number, a two-phase Weber number, and a Bond number. For the fluid used in the experimental work here, liquid velocities in the range U = 5-10cm/sec are judged to be critical for changes in behavior of the flow boiling process. Experimental results are presented for flow boiling heat transfer, concentrating on orientations that provide the largest reductions in buoyancy parallel to the heater surface, varying +/-5 degrees from facing horizontal downward. Results are presented for velocity, orientation, and subcooling effects on nucleation, dryout, and heat transfer. Two different heater surfaces were used: a thin gold film on a polished quartz substrate, acting as a heater and resistance thermometer, and a gold-plated copper heater. Both transient and steady measurements of surface heat flux and superheat were made with the quartz heater; only steady measurements were possible with the copper heater. R-113 was the fluid used; the velocity varied over the interval 4-16cm/sec; bulk liquid subcooling varied over 2-20 degrees C; heat flux varied over 4-8W/cm(2).

  18. Smoothed particle hydrodynamics simulations of evaporation and explosive boiling of liquid drops in microgravity

    NASA Astrophysics Data System (ADS)

    Sigalotti, Leonardo Di G.; Troconis, Jorge; Sira, Eloy; Peña-Polo, Franklin; Klapp, Jaime

    2015-07-01

    The rapid evaporation and explosive boiling of a van der Waals (vdW) liquid drop in microgravity is simulated numerically in two-space dimensions using the method of smoothed particle hydrodynamics. The numerical approach is fully adaptive and incorporates the effects of surface tension, latent heat, mass transfer across the interface, and liquid-vapor interface dynamics. Thermocapillary forces are modeled by coupling the hydrodynamics to a diffuse-interface description of the liquid-vapor interface. The models start from a nonequilibrium square-shaped liquid of varying density and temperature. For a fixed density, the drop temperature is increased gradually to predict the point separating normal boiling at subcritical heating from explosive boiling at the superheat limit for this vdW fluid. At subcritical heating, spontaneous evaporation produces stable drops floating in a vapor atmosphere, while at near-critical heating, a bubble is nucleated inside the drop, which then collapses upon itself, leaving a smaller equilibrated drop embedded in its own vapor. At the superheat limit, unstable bubble growth leads to either fragmentation or violent disruption of the liquid layer into small secondary drops, depending on the liquid density. At higher superheats, explosive boiling occurs for all densities. The experimentally observed wrinkling of the bubble surface driven by rapid evaporation followed by a Rayleigh-Taylor instability of the thin liquid layer and the linear growth of the bubble radius with time are reproduced by the simulations. The predicted superheat limit (Ts≈0.96 ) is close to the theoretically derived value of Ts=1 at zero ambient pressure for this vdW fluid.

  19. A Fundamental Study of Nucleate Pool Boiling Under Microgravity

    NASA Technical Reports Server (NTRS)

    Ervin, Jamie S.; Merte, Herman, Jr.

    1996-01-01

    An experimental study of incipient boiling in short-term microgravity and with a/g = +/- 1 for pool boiling was performed. Calibrated thin gold films sputtered on a smoothly polished quartz surface were used simultaneously for thermal-resistance measurements and heating of the boiling surface. The gold films were used for both transient and quasi-steady heating surface temperature measurements. Two test vessels were constructed for precise measurement and control of fluid temperature and pressure: a laboratory pool boiling vessel for the a/g = +/- 1 experiments and a pool boiling vessel designed for the 131 m free-fall in the NASA Lewis Research Center Microgravity Research Facility for the microgravity tests. Measurements included the heater surface temperature, the pressure near the heating surface, the bulk liquid temperatures. High speed photography (up to 1,000 frames per second) was used in the experiments. With high quality microgravity and the measured initial temperature of the quiescent test fluid, R113, the temperature distribution in the liquid at the moment of boiling inception resulting from an imposed step in heat flux is known with a certainty not possible previously. The types of boiling propagation across the large flat heating surface, some observed here for the first time, are categorized; the conditions necessary for their occurrence are described. Explosive boiling propagation with a striking pattern of small scale protuberances over the entire vapor mass periphery not observed previously at low heat flux levels (on the order of 5 W/cm(exp 2)) is described. For the heater surface with a/g = -1, a step in the heater surface temperature of short duration was imposed. The resulting liquid temperature distribution at the moment of boiling inception was different from that obtained with a step in heat flux.

  20. A fundamental study of nucleate pool boiling under microgravity

    NASA Technical Reports Server (NTRS)

    Ervin, Jamie S.; Merte, Herman, Jr.

    1991-01-01

    An experimental study of incipient boiling in short-term microgravity and with a/g = +/- 1 for pool boiling was performed. Calibrated thin gold films sputtered on a smoothly polished quartz surface were used simultaneously for thermal resistance measurements and heating of the boiling surface. The gold films were used for both transient and quasi-steady heating surface temperature measurements. Two test vessels were constructed for precise measurement and control of fluid temperature and pressure: a laboratory pool boiling vessel for the a/g = +/- experiments and a pool boiling vessel designed for the 131 m free-fall in the NASA Lewis Research Center Microgravity Research Facility for the microgravity tests. Measurements included the heater surface temperature, the pressure near the heating surface, and the bulk liquid temperatures. High speed photography was used in the experiments. With high quality microgravity and the measured initial temperature of the quiescent test fluid, R113, the temperature distribution in the liquid at the moment of boiling inception resulting from an imposed step in heat flux is known with a certainty not possible previously. The types of boiling propagation across the large flat heating surface are categorized; the conditions necessary for their occurrence are described. Explosive boiling propagation with a striking pattern of small scale protuberances over the entire vapor mass periphery not observed previously at low heat flux levels is described. For the heater surface with a/g = -1, a step in the heater surface temperature of short duration was imposed. The resulting liquid temperature distribution at the moment of boiling inception was different from that obtained with a step in heat flux.