Science.gov

Sample records for forced driven disk-ridging

  1. A repulsive magnetic force driven translation micromirror

    NASA Astrophysics Data System (ADS)

    Xue, Yuan; Zuo, Hui; He, Siyuan

    2017-10-01

    This paper presents a repulsive magnetic force driven micromirror with large displacement and high surface quality which well solves the limitation of the previous design, i.e. large variation in translation starting position and low repeatability, caused by the touching points between the moving film and substrate before and in operation. The new design utilizes a driving mechanism, i.e. permanent magnet ring above and electromagnet underneath the moving film, to lift the moving film from touching the substrate and generate a repulsive magnetic force (instead of attractive force in the previous design) to push the moving film up and away from the substrate for translation. Due to the touching, the previous design has to pre-oscillate for 20–30 min at 1 Hz before usage (after resting for a few hours) to reduce the starting position variation from ~15 µm to 3–4 µm. Even after the pre-oscillation, the repeatability is still low, which is 14.2% because of the touching in operation. In the design presented in this paper, the touching between the moving film and the substrate is completely eliminated before and in operation. As a result, the starting position of the translating mirror is constant each time and the repeatability is  <1%. In addition, this design does not need the residual stress gradient to curve up the moving film. The maximum displacement of 144 µm can be achieved when 140 mA current is applied on the electromagnet. As an application, the micromirror is used as the movable mirror in a Michelson interferometer to measure the wavelength of a laser beam. The result shows a measurement accuracy of 2.19% for a 532 nm laser beam.

  2. Harmonic Forcing on the Stratified Square Lid Driven Cavity

    NASA Astrophysics Data System (ADS)

    Yalim, Jason; Welfert, Bruno; Lopez, Juan; Taylor, Stephanie

    2016-11-01

    Stratified fluids that are driven at an interface, such as oceans or seas, can be periodically driven by wind. As a canonical flow, the square lid driven cavity with a harmonic forcing and a linear temperature gradient serves as a idealized model. Resonances of the harmonic forcing with the internal modes of the system aide energy transfer from the surface to the bulk, leading to interesting dynamics. Using a numerical spectral collocation method, the internal waves of the system are investigated, including their possible interaction and annihilation.

  3. Force and torque characteristics for magnetically driven blood pump

    NASA Astrophysics Data System (ADS)

    Zheng, Pan; Haik, Yousef; Kilani, Mohammad; Chen, Ching-Jen

    2002-03-01

    Magnetically driven screw pumps were designed and fabricated for pumping biological fluids. The magnetic field simulations for three different magnetic coupling arrangements were obtained numerically. The force and torque for the three arrangements were computed. The effect of the separation gap between poles and the rotational angle on the force and torque is also presented. The pump characteristics were obtained experimentally.

  4. A measurable force driven by an excitonic condensate

    SciTech Connect

    Hakioğlu, T.; Özgün, Ege; Günay, Mehmet

    2014-04-21

    Free energy signatures related to the measurement of an emergent force (≈10{sup −9}N) due to the exciton condensate (EC) in Double Quantum Wells are predicted and experiments are proposed to measure the effects. The EC-force is attractive and reminiscent of the Casimir force between two perfect metallic plates, but also distinctively different from it by its driving mechanism and dependence on the parameters of the condensate. The proposed experiments are based on a recent experimental work on a driven micromechanical oscillator. Conclusive observations of EC in recent experiments also provide a strong promise for the observation of the EC-force.

  5. Thermophoresis in colloidal suspensions driven by Marangoni forces.

    PubMed

    Würger, Alois

    2007-03-30

    In a hydrodynamic approach to thermophoretic transport in colloidal suspensions, the solute velocity u and the solvent flow v(r) are derived from Stokes' equation, with slip boundary conditions imposed by thermal Marangoni forces. The resulting fluid velocity field v(r) significantly differs from that induced by an externally driven particle. We find, in particular, that thermophoresis due to surface forces is insensitive to hydrodynamic interactions. As a consequence, the thermal diffusion coefficient D(T) of polymer solutions is independent of molecular weight and concentration.

  6. Electron force balance in steady collisionless-driven reconnection.

    PubMed

    Li, Bin; Horiuchi, Ritoku

    2008-11-21

    Steady collisionless-driven reconnection in an open system is investigated by means of full-particle simulations. A long thin electron current sheet extends towards the outflow direction when the system relaxes to a steady state. Although the pressure tensor term along the reconnection electric field contributes to the violation of the electron frozen-in condition, a new force balance in the inflow direction is realized between the Lorentz and electrostatic forces, which is quite different from that in Harris equilibrium. The strong electrostatic field is generated through the combined effect of the Hall term and a driving inflow. This new force balance is more evident in the three-dimensional case due to the growth of an instability along the reconnection electric field. It is also found that the normalized charge density is in proportion to the square of the electron Alfvén velocity averaged over the electron dissipation region.

  7. Rectification of confined diffusion driven by a sinusoidal force

    NASA Astrophysics Data System (ADS)

    Kalinay, Pavol

    2014-04-01

    A particle diffusing in an asymmetric periodic channel, driven by a sinusoidal force F(t )=F0cosωt (the rocking ratchet) is considered. The asymptotic solution of the generalized Fick-Jacobs equation describing the system is studied in the nonadiabatic regime. The leading term of the rectified current, appearing in the order ˜F02, is derived. The method presented enables us to solve the problem analytically for a sawtooth channel and also to look for approximative formulas applicable in a wide range of frequencies ω. Even the simplest approximation qualitatively reproduces the current reversal at higher frequencies as the result of growing phase lag of the rocking density behind the driving force.

  8. Two-dimensional transport model of coupled Brownian particles driven by biharmonic forces and constant forces

    NASA Astrophysics Data System (ADS)

    Wu, Weixia; Meng, Tao

    2017-01-01

    A directed transport model of coupled Brownian particles in a two-dimensional potential is established. In this model, the system of Brownian particles is driven by biharmonic forces and constant forces. By numerical simulation, the cooperative transport behaviours of the system are investigated. The results show that the average velocity of the system is significantly independent of the frequencies and intensities of the harmonic forces, the barrier height of the ratchet potential, coupling strength and noise intensity. The average velocity increases monotonically with increasing the intensities of the harmonic forces, and can reach some maximum values when the two frequencies are equal. In addition, the average velocity presents stochastic resonance and generalized resonance for noise intensity, coupling strength and the barrier height of the ratchet potential. Moreover, when a constant force is exerted on the ratchet potential direction, it will promote the directed transport of the system. But, when on the non-ratchet potential direction, the transport will not be affected.

  9. Depletion force induced collective motion of microtubules driven by kinesin.

    PubMed

    Inoue, Daisuke; Mahmot, Bulbul; Kabir, Arif Md Rashedul; Farhana, Tamanna Ishrat; Tokuraku, Kiyotaka; Sada, Kazuki; Konagaya, Akihiko; Kakugo, Akira

    2015-11-21

    Collective motion is a fascinating example of coordinated behavior of self-propelled objects, which is often associated with the formation of large scale patterns. Nowadays, the in vitro gliding assay is being considered a model system to experimentally investigate various aspects of group behavior and pattern formation by self-propelled objects. In the in vitro gliding assay, cytoskeletal filaments F-actin or microtubules are driven by the surface immobilized associated biomolecular motors myosin or dynein respectively. Although the F-actin/myosin or microtubule/dynein system was found to be promising in understanding the collective motion and pattern formation by self-propelled objects, the most widely used biomolecular motor system microtubule/kinesin could not be successfully employed so far in this regard. Failure in exhibiting collective motion by kinesin driven microtubules is attributed to the intrinsic properties of kinesin, which was speculated to affect the behavior of individual gliding microtubules and mutual interactions among them. In this work, for the first time, we have demonstrated the collective motion of kinesin driven microtubules by regulating the mutual interaction among the gliding microtubules, by employing a depletion force among them. Proper regulation of the mutual interaction among the gliding microtubules through the employment of the depletion force was found to allow the exhibition of collective motion and stream pattern formation by the microtubules. This work offers a universal means for demonstrating the collective motion using the in vitro gliding assay of biomolecular motor systems and will help obtain a meticulous understanding of the fascinating coordinated behavior and pattern formation by self-propelled objects.

  10. Transport driven by biharmonic forces: Impact of correlated thermal noise

    NASA Astrophysics Data System (ADS)

    Machura, L.; Łuczka, J.

    2010-09-01

    We study an inertial Brownian particle moving in a symmetric periodic substrate, driven by a zero-mean biharmonic force and correlated thermal noise. The Brownian motion is described in terms of a generalized Langevin equation with an exponentially correlated Gaussian noise term, obeying the fluctuation-dissipation theorem. We analyze impact of nonzero correlation time of thermal noise on transport properties of the Brownian particle. We identify regimes where the increase of the correlation time intensifies long-time transport of the Brownian particle. The opposite effect is also found: longer correlation time reduces the stationary velocity of the particle. The correlation time induced multiple current reversal is detected. We reveal that thermal noise of nonzero correlation time can radically enhance long-time velocity of the Brownian particle in regimes where in the white noise limit the velocity is extremely small. All transport properties can be tested in the setup consisting of a resistively and capacitively shunted Josephson junction device.

  11. Avalanches and force drops in displacement-driven compression of porous glasses.

    PubMed

    Navas-Portella, Víctor; Corral, Álvaro; Vives, Eduard

    2016-09-01

    Similarities between force-driven compression experiments of porous materials and earthquakes have been recently proposed. In this paper, we measure the acoustic emission during displacement-driven compression of a porous glass. The energy of acoustic-emission events shows that the failure process exhibits avalanche scale-invariance and therefore follows the Gutenberg-Richter law. The resulting exponents do not exhibit significant differences with respect the force-driven case. Furthermore, the force exhibits an avalanche-type behavior for which the force drops are power-law distributed and correlated with the acoustic emission events.

  12. Control of force through feedback in small driven systems.

    PubMed

    Dieterich, E; Camunas-Soler, J; Ribezzi-Crivellari, M; Seifert, U; Ritort, F

    2016-07-01

    Controlling a time-dependent force applied to single molecules or colloidal particles is crucial for many types of experiments. Since in optical tweezers the primary controlled variable is the position of the trap, imposing a target force requires an active feedback process. We analyze this feedback process for the paradigmatic case of a nonequilibrium steady state generated by a dichotomous force protocol, first theoretically for a colloidal particle in a harmonic trap and then with both simulations and experiments for a long DNA hairpin. For the first setup, we find there is an optimal feedback gain separating monotonic from oscillatory response, whereas a too strong feedback leads to an instability. For the DNA molecule, reaching the target force requires substantial feedback gain since weak feedback cannot overcome the tendency to relax towards the equilibrium force.

  13. Heartbeat-driven pericardiac fluid forces contribute to epicardium morphogenesis.

    PubMed

    Peralta, Marina; Steed, Emily; Harlepp, Sébastien; González-Rosa, Juan Manuel; Monduc, Fabien; Ariza-Cosano, Ana; Cortés, Alfonso; Rayón, Teresa; Gómez-Skarmeta, Jose-Luis; Zapata, Agustín; Vermot, Julien; Mercader, Nadia

    2013-09-23

    Hydrodynamic forces play a central role in organ morphogenesis. The role of blood flow in shaping the developing heart is well established, but the role of fluid forces generated in the pericardial cavity surrounding the heart is unknown. Mesothelial cells lining the pericardium generate the proepicardium (PE), the precursor cell population of the epicardium, the outer layer covering the myocardium, which is essential for its maturation and the formation of the heart valves and coronary vasculature. However, there is no evidence from in vivo studies showing how epicardial precursor cells reach and attach to the heart. Using optical tools for real-time analysis in the zebrafish, including high-speed imaging and optical tweezing, we show that the heartbeat generates pericardiac fluid advections that drive epicardium formation. These flow forces trigger PE formation and epicardial progenitor cell release and motion. The pericardial flow also influences the site of PE cell adhesion to the myocardium. We additionally identify novel mesothelial sources of epicardial precursors and show that precursor release and adhesion occur both through pericardiac fluid advections and through direct contact with the myocardium. Two hydrodynamic forces couple cardiac development and function: first, blood flow inside the heart, and second, the pericardial fluid advections outside the heart identified here. This pericardiac fluid flow is essential for epicardium formation and represents the first example of hydrodynamic flow forces controlling organogenesis through an action on mesothelial cells. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Patterning in systems driven by nonlocal external forces.

    PubMed

    Luneville, L; Mallick, K; Pontikis, V; Simeone, D

    2016-11-01

    This work focuses on systems displaying domain patterns resulting from competing external and internal dynamics. To this end, we introduce a Lyapunov functional capable of describing the steady states of systems subject to external forces, by adding nonlocal terms to the Landau Ginzburg free energy of the system. Thereby, we extend the existing methodology treating long-range order interactions, to the case of external nonlocal forces. By studying the quadratic term of this Lyapunov functional, we compute the phase diagram in the temperature versus external field and we determine all possible modulated phases (domain patterns) as a function of the external forces and the temperature. Finally, we investigate patterning in chemical reactive mixtures and binary mixtures under irradiation, and we show that the last case opens the path toward micro-structural engineering of materials.

  15. Force Model for Control of Tendon Driven Hands

    NASA Technical Reports Server (NTRS)

    Pena, Edward; Thompson, David E.

    1997-01-01

    Knowing the tendon forces generated for a given task such as grasping via a model, an artificial hand can be controlled. A two-dimensional force model for the index finger was developed. This system is assumed to be in static equilibrium, therefore, the equations of equilibrium were applied at each joint. Constraint equations describing the tendon branch connectivity were used. Gaussian elimination was used to solve for the unknowns of the Linear system. Results from initial work on estimating tendon forces in post-operative hands during active motion therapy were discussed. The results are important for understanding the effects of hand position on tendon tension, elastic effects on tendon tension, and overall functional anatomy of the hand.

  16. Patterning in systems driven by nonlocal external forces

    NASA Astrophysics Data System (ADS)

    Luneville, L.; Mallick, K.; Pontikis, V.; Simeone, D.

    2016-11-01

    This work focuses on systems displaying domain patterns resulting from competing external and internal dynamics. To this end, we introduce a Lyapunov functional capable of describing the steady states of systems subject to external forces, by adding nonlocal terms to the Landau Ginzburg free energy of the system. Thereby, we extend the existing methodology treating long-range order interactions, to the case of external nonlocal forces. By studying the quadratic term of this Lyapunov functional, we compute the phase diagram in the temperature versus external field and we determine all possible modulated phases (domain patterns) as a function of the external forces and the temperature. Finally, we investigate patterning in chemical reactive mixtures and binary mixtures under irradiation, and we show that the last case opens the path toward micro-structural engineering of materials.

  17. "Magic" surface clustering of borazines driven by repulsive intermolecular forces.

    PubMed

    Kervyn, Simon; Kalashnyk, Nataliya; Riello, Massimo; Moreton, Ben; Tasseroul, Jonathan; Wouters, Johan; Jones, Tim S; De Vita, Alessandro; Costantini, Giovanni; Bonifazi, Davide

    2013-07-15

    It's a kind of magic: Hydroxy pentaaryl borazine molecules self-assemble into small clusters (see structure) on Cu(111) surfaces, whereas with symmetric hexaaryl borazine molecules large islands are obtained. Simulations indicate that the observed "magic" cluster sizes result from long-range repulsive Coulomb forces arising from the deprotonation of the B-OH groups of the hydroxy pentaaryl borazine.

  18. Rhythmic motion of colloidal particles driven by optical force

    NASA Astrophysics Data System (ADS)

    Saito, Keita; Kimura, Yasuyuki

    2017-04-01

    We observed the collective motion of colloidal particles moving along a circular path in water as a model system of artificial active matter. The particles were driven by optical vortex using holographic optical tweezer. They exhibit rhythmic motion with spontaneous formation of clusters and their dissociation by hydrodynamic interaction. The hydrodynamic interaction in spatially confined system alter their rhythmic motion dramatically. For example, we found that the relative magnitude of the angular velocity for a doublet to a singlet reversed in free space and in strongly confined system. The transition of rhythmic motions was observed by varying spatial confinement.

  19. Interface dynamics of a two-component Bose-Einstein condensate driven by an external force

    SciTech Connect

    Kobyakov, D.; Bychkov, V.; Lundh, E.; Bezett, A.; Marklund, M.; Akkerman, V.

    2011-04-15

    The dynamics of an interface in a two-component Bose-Einstein condensate driven by a spatially uniform time-dependent force is studied. Starting from the Gross-Pitaevskii Lagrangian, the dispersion relation for linear waves and instabilities at the interface is derived by means of a variational approach. A number of diverse dynamical effects for different types of driving force is demonstrated, which includes the Rayleigh-Taylor instability for a constant force, the Richtmyer-Meshkov instability for a pulse force, dynamic stabilization of the Rayleigh-Taylor instability and onset of the parametric instability for an oscillating force. Gaussian Markovian and non-Markovian stochastic forces are also considered. It is found that the Markovian stochastic force does not produce any average effect on the dynamics of the interface, while the non-Markovian force leads to exponential perturbation growth.

  20. Magnetostriction-driven cantilevers for dynamic atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Penedo, M.; Fernández-Martínez, I.; Costa-Krämer, J. L.; Luna, M.; Briones, F.

    2009-10-01

    An actuation mode is presented to drive the mechanical oscillation of cantilevers for dynamic atomic force microscopy. The method is based on direct mechanical excitation of the cantilevers coated with amorphous Fe-B-N thin films, by means of the film magnetostriction, i.e., the dimensional change in the film when magnetized. These amorphous magnetostrictive Fe-B-N thin films exhibit soft magnetic properties, excellent corrosion resistance in liquid environments, nearly zero accumulated stress when properly deposited, and good chemical stability. We present low noise and high resolution topographic images acquired in liquid environment to demonstrate the method capability.

  1. A silicon-nanowire memory driven by optical gradient force induced bistability

    SciTech Connect

    Dong, B.; Cai, H. Gu, Y. D.; Kwong, D. L.; Chin, L. K.; Ng, G. I.; Ser, W.; Huang, J. G.; Yang, Z. C.; Liu, A. Q.

    2015-12-28

    In this paper, a bistable optical-driven silicon-nanowire memory is demonstrated, which employs ring resonator to generate optical gradient force over a doubly clamped silicon-nanowire. Two stable deformation positions of a doubly clamped silicon-nanowire represent two memory states (“0” and “1”) and can be set/reset by modulating the light intensity (<3 mW) based on the optical force induced bistability. The time response of the optical-driven memory is less than 250 ns. It has applications in the fields of all optical communication, quantum computing, and optomechanical circuits.

  2. Lift-Force-Driven Microfluidic Droplet Sorting Device

    NASA Astrophysics Data System (ADS)

    Nieuwstadt, Harm; Li, David; Seda, Robinson; Fowlkes, J. Brian; Bull, Joseph

    2009-11-01

    A long (˜ 5-7 centimeters) rectangular micro channel is used to sort perfluorcarbon (PFC) droplets by size.This study is motivated by a novel gas embolotherapy technique which aims to treat cancer by infarcting tumors with gas emboli that are formed by selective acoustic vaporization of ˜6 micrometer, intravascular, PFC droplets. Droplets smaller and larger than ˜6-micrometer proved to be less effective, or even detrimental, in the gas embolotherapy. From a suspension of micro PFC droplets, the sorting device designed in this study eliminates droplets with higher and lower diameters than ˜6-micrometer. This is done by the use of a difference in lateral lift force (which depends on droplet diameter) that is exerted on the droplets. When a mixture of droplets is introduced at the entrance of a straight micro channel, larger droplets will tend to move to an equilibrium position at 0.6R, R being the half width of the channel, in shorter time and distance than smaller droplets. When splitting up the end of the channel in two smaller outer channels (which contain the large droplets) and one smaller inner channel (which contains the small droplets), the droplets can, in theory, be sorted with high accuracy. This work is supported by NIH grant R01EB006476.

  3. Mean meridional circulation driven by eddy forcings of different timescales

    SciTech Connect

    Chang, E.K.M.

    1996-01-01

    In this paper, the mean meridional circulation (MMC) forced by the eddy fluxes of heat and momentum is examined using a simple two-level model of the zonal-mean atmosphere. Analytical solutions have been obtained, which show that analyses of the eddy-induced MMC using the Kuo-Eliassen equations are most appropriate for high-frequency fluctuations. For steady-state or low-frequency fluctuations, the eddy-fluxes will lead to changes in the zonal-mean zonal wind and temperature. These changes in the zonal-mean state will induce changes in frictional dissipation and diabetic heating, which (together with the eddy-fluxes) are constrained to satisfy a generalization of the Eliassen-Palm theorem and will also act as source terms to the Kou-Eliassen equation. The inclusion of these induced terms usually leads to a significant enhancement in the diagnosed intensity of the MMC. This can explain why previous studies of the MMC found a much weaker eddy-induced Ferrel cell than that observed when the induced frictional and diabetic heating terms were left out and the eddy fluxes were only used as source terms. The relevant timescale separating the high- and low-frequency limits is found to be the radiative timescale in the model. 38 refs., 4 fig., 1 tab.

  4. Cold ablation driven by localized forces in alkali halides

    NASA Astrophysics Data System (ADS)

    Hada, Masaki; Zhang, Dongfang; Pichugin, Kostyantyn; Hirscht, Julian; Kochman, Michał A.; Hayes, Stuart A.; Manz, Stephanie; Gengler, Regis Y. N.; Wann, Derek A.; Seki, Toshio; Moriena, Gustavo; Morrison, Carole A.; Matsuo, Jiro; Sciaini, Germán; Miller, R. J. Dwayne

    2014-05-01

    Laser ablation has been widely used for a variety of applications. Since the mechanisms for ablation are strongly dependent on the photoexcitation level, so called cold material processing has relied on the use of high-peak-power laser fluences for which nonthermal processes become dominant; often reaching the universal threshold for plasma formation of ~1 J cm-2 in most solids. Here we show single-shot time-resolved femtosecond electron diffraction, femtosecond optical reflectivity and ion detection experiments to study the evolution of the ablation process that follows femtosecond 400 nm laser excitation in crystalline sodium chloride, caesium iodide and potassium iodide. The phenomenon in this class of materials occurs well below the threshold for plasma formation and even below the melting point. The results reveal fast electronic and localized structural changes that lead to the ejection of particulates and the formation of micron-deep craters, reflecting the very nature of the strong repulsive forces at play.

  5. Microparticle driven by parametric and random forces: Theory and experiment

    NASA Astrophysics Data System (ADS)

    Izmailov, Alexander F.; Arnold, Stephen; Holler, Stephen; Myerson, Allan S.

    1995-08-01

    The confined motion of a charged microparticle within the Paul Trap (also known as the electrodynamic levitator trap) in an atmosphere near the standard temperature T and pressure Patm is studied both theoretically and experimentally. The suggested theoretical model is based on the Mathieu differential equation with damping term and stochastic source. This equation describes the damped microparticle motion subjected to the combined periodic parametric and random external excitations. To solve the equation in an experimentally investigated regime of extremely strong damping and periodic excitations, the singular perturbation theory (WKB theory) is applied. In order to compare experimental data obtained in the long-time imaging limit with an analytical solution obtained for the autocorrelation function, the last is averaged by employing the Bogoliubov general averaging principle. This comparison is performed in terms of the standard deviation of the microparticle confined stochastic motion. It results almost in the perfect agreement between the analytical result and the data obtained experimentally in an entire region of the investigated experimental parameters. The only theoretical restrictions imposed on the model parameters are 1/α<<1 and 4β/α2<<1 (where α and β are the dimensionless drag and drive parameters). It is discovered both experimentally and theoretically that there is a minimum equal to [8kT/(mω2)]1/2 in the standard deviation of the microparticle confined stochastic motion (m is the microparticle mass and ω is the drive force frequency). The presence of this minimum, which takes place at β~=1.518α, reduces the thermal noise effects, providing unique opportunities for the spectroscopic studies. Comparison with the numerical simulation schemes developed in papers [Arnold, Folan, and Korn, J. Appl. Phys. 74, 4291 (1993); Blatt et al., Z. Phys. D 4, 121 (1986); Zerbe, Jung, and Hanggi, Phys. Rev. E 49, 3626 (1994)] is discussed.

  6. Microcontroller-driven fluid-injection system for atomic force microscopy.

    PubMed

    Kasas, S; Alonso, L; Jacquet, P; Adamcik, J; Haeberli, C; Dietler, G

    2010-01-01

    We present a programmable microcontroller-driven injection system for the exchange of imaging medium during atomic force microscopy. Using this low-noise system, high-resolution imaging can be performed during this process of injection without disturbance. This latter circumstance was exemplified by the online imaging of conformational changes in DNA molecules during the injection of anticancer drug into the fluid chamber.

  7. Dynamic analysis of hyperbolic waveguide resonator driven by optical gradient force

    NASA Astrophysics Data System (ADS)

    Zhong, Zuo-Yang; Zhang, Hai-Lian; Zhang, Wen-Ming; Liu, Yan

    2016-08-01

    As a unique type of driving force, the transverse optical gradient force has been extensively studied and applied in the nanowaveguides resonator. Recently, it is demonstrated that the optical forces in slot waveguides of hyperbolic metamaterials can be over two orders of magnitude stronger than that in conventional dielectric slot waveguides. To investigate the nonlinear dynamic characteristic of hyperbolic waveguide resonator driven by optical gradient force, a continuum elastic model of the optoresonator is presented and analytically solved using the methods of Rayleigh-Ritz and multiple scales. The results show that the optical force is strengthened with the increase of the filling ratio of silver in the hyperbolic waveguide. The resonance frequency becomes greater with the increase of the filling ratio of silver no matter what the geometric parameters and physical property parameters are. However, the steady maximum vibration amplitude becomes smaller, and the degree of system stiffness softening also reduces.

  8. Minimum detectable change for knee joint contact force estimates using an EMG-driven model.

    PubMed

    Gardinier, Emily S; Manal, Kurt; Buchanan, Thomas S; Snyder-Mackler, Lynn

    2013-09-01

    Adequate test-retest reliability of model estimates is a necessary precursor to examining treatment effects or longitudinal changes in individuals. The purpose of this study was to establish thresholds for minimal detectable change (MDC) for joint contact forces obtained using a patient specific EMG-driven musculoskeletal model of the knee. A sample of young, active individuals was selected for this study, and subjects were tested on 2 separate days. Three-dimensional motion analysis with electromyography (EMG) was used to obtain data from each subject during gait for model input. An EMG-driven modeling approach was used to estimate joint contact forces at each session. MDC's for contact force variables ranged from 0.30 to 0.66 BW. The lowest MDC was for peak medial compartment force (0.30 BW) and the highest was for peak tibiofemoral contact force (0.66 BW). Test-retest reliability coefficients were also reported for comparison with previous work. Using the present model, changes in joint contact forces between baseline and subsequent measurements that are greater than these MDCs are greater than typical day-to-day variation and can be identified as real change. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Flow control mechanism of capillary driven flow in microchannel using non-mechanical forces

    NASA Astrophysics Data System (ADS)

    Nunna, Bharath Babu; Zhuang, Shiqiang; Lee, Eon Soo

    2016-11-01

    The capillary driven flow in microchannel is a self-driven flow by the natural phenomenon called surface tension of the fluid. The gradients in surface tension force which influence the flow field in microchannel is generated by the modulation of contact angle through a defined hydrophilization of the PDMS (Polydimethylsiloxane) microchannel surface. PDMS which is hydrophobic in nature is treated with various surface treatments in order to convert it to hydrophilic. The contact angle made by the fluid with the PDMS microchannel surface is altered when the surface is converted from hydrophobic to hydrophilic. The flow rate of fluid in the microchannel is directly proportional to the hydrophilicity of that microchannel since the capillary force which is the driving force of the flow is dependent on the contact angle. Flow control mechanism of capillary driven flow in microchannel using non-mechanical forces is developed by treating the microchannel surfaces with various surface treatments. The precise control of the surface characteristics like hydrophilicity and roughness of the miocrochannel helps to control the capillary flow in microchannel. The flow rate variation with respect to the various surface treated channels are studied. Principal Investigator.

  10. The electromechanical behavior of a micro-ring driven by traveling electrostatic force.

    PubMed

    Ye, Xiuqian; Chen, Yibao; Chen, Da-Chih; Huang, Kuo-Yi; Hu, Yuh-Chung

    2012-01-01

    There is no literature mentioning the electromechanical behavior of micro structures driven by traveling electrostatic forces. This article is thus the first to present the dynamics and stabilities of a micro-ring subjected to a traveling electrostatic force. The traveling electrostatic force may be induced by sequentially actuated electrodes which are arranged around the flexible micro-ring. The analysis is based on a linearized distributed model considering the electromechanical coupling effects between electrostatic force and structure. The micro-ring will resonate when the traveling speeds of the electrostatic force approach some critical speeds. The critical speeds are equal to the ratio of the natural frequencies to the wave number of the correlative natural mode of the ring. Apart from resonance, the ring may be unstable at some unstable traveling speeds. The unstable regions appear not only near the critical speeds, but also near some fractions of some critical speeds differences. Furthermore the unstable regions expand with increasing driving voltage. This article may lead to a new research branch on electrostatic-driven micro devices.

  11. A novel MEMS actuator with large lateral stroke driven by Lorentz force

    NASA Astrophysics Data System (ADS)

    Lv, Xingdong; Wei, Weiwei; Mao, Xu; Yang, Jinling; Yang, Fuhua

    2015-02-01

    This paper presents a novel MEMS actuator driven by Lorentz force. The actuator has a structure of folded beams, which is favorable for a large lateral stroke. A displacement of more than 47 μm was achieved with a magnetic field of 0.3 T and a driving current of 8 mA. The actuator can generate a large displacement under a low driving voltage and can easily be integrated with CMOS circuits. Lorentz force is proportional to the magnetic field and the driving current, which results in a linear dependence of the lateral displacement on the driving current.

  12. Compressible Fluids Driven by Stochastic Forcing: The Relative Energy Inequality and Applications

    NASA Astrophysics Data System (ADS)

    Breit, Dominic; Feireisl, Eduard; Hofmanová, Martina

    2017-03-01

    We show the relative energy inequality for the compressible Navier-Stokes system driven by a stochastic forcing. As a corollary, we prove the weak-strong uniqueness property (pathwise and in law) and convergence of weak solutions in the inviscid-incompressible limit. In particular, we establish a Yamada-Watanabe type result in the context of the compressible Navier-Stokes system, that is, pathwise weak-strong uniqueness implies weak-strong uniqueness in law.

  13. The role of turbulence driven by tidal and librational forcing in planetary fluid layers

    NASA Astrophysics Data System (ADS)

    Grannan, Alexander; Favier, Benjamin; Bills, Bruce; Le Bars, Michael; Aurnou, Jonathan

    2016-11-01

    The turbulence generated in the liquid metal cores and oceans of planetary bodies can have profound effects on energy dissipation and magnetic field generation. An important driver of such turbulence is mechanical forcing from precession, libration, and tidal forcing. On Earth, such forcing mechanisms in the oceans are crucial but the role that such forcings play for other planetary bodies also possessing oceans and liquid metal cores are not generally considered. Recent laboratory experimental and numerical studies of Grannan et al., Phys. Fluids 2014, Favier et al., Phys. Fluids 2015, and Grannan et al., Geophys. J. Int. 2016 have shown that turbulent flow is driven by an elliptic instability which is a triadic resonance between two inertial modes and the base flow. Based on the most recent work, a generalized scaling law for the saturated r.m.s. velocity is found, U β , where β is the dimensionless equatorial ellipticity of the body. Using planetary values for tidal and librational forcing parameters, we argue that mechanically forced turbulent flows can play a significant role in dissipative processes, mixing, and magnetic field generation.

  14. The response of subsurface oceans in icy satellites to tidally driven forcing

    NASA Astrophysics Data System (ADS)

    Chen, E. M.; Glatzmaier, G. A.; Nimmo, F.

    2009-12-01

    Observations from the Galileo and Cassini spacecraft suggest that subsurface global water oceans are likely present on multiple icy satellites of Jupiter and Saturn. However, the dynamics of these oceans, under the influence of a time-varying tidal potential and buoyancy and coriolis forces, have not been investigated in detail. We have investigated the large scale ocean flow in two ways. First, we simulate the 3-D global circulation of the subsurface oceans on Europa and Titan driven primarily by a time-varying tidal potential and secondarily by heating at the base of the ocean. Second, we analyze the behavior of tidally-forced subsurface oceans in two-dimensions using quasi-nonlinear shallow water theory. These approaches allow us to predict potentially observable effects, in particular non-synchronous rotation of the ice shell driven by ocean torques and spatial variations in the heat flow supplied to the base of the ice shell, and magnetic induction effects due to the ocean circulation. Time-series analyses suggest that the ocean responds primarily at the tidal frequency; however, there are responses at lower frequencies as well. Preliminary results of full 3-D simulations will be presented, and comparisons will be made to the forced shallow water model.

  15. A novel stability and kinematics-driven trunk biomechanical model to estimate muscle and spinal forces.

    PubMed

    Hajihosseinali, M; Arjmand, N; Shirazi-Adl, A; Farahmand, F; Ghiasi, M S

    2014-10-01

    An anatomically detailed eighteen-rotational-degrees-of-freedom model of the human spine using optimization constrained to equilibrium and stability requirements is developed and used to simulate several symmetric tasks in upright and flexed standing postures. Predictions of this stability and kinematics-driven (S+KD) model for trunk muscle forces and spine compressive/shear loads are compared to those of our existing kinematics-driven (KD) model where both translational and rotational degrees-of-freedom are included but redundancy is resolved using equilibrium conditions alone. Unlike the KD model, the S+KD model predicted abdominal co-contractions that, in agreement with electromyography data, increased as lifting height increased at a constant horizontal moment arm. The S+KD model, however, could not fully explain the CNS strategy in activating antagonistic muscles for most of the remaining tasks. Despite quite distinct activities in individual muscles, both models predicted L4-L5 intradiscal pressure that matched the in vivo data, the L4-S1 compression loads, and the sum of all trunk muscle forces. For modeling applications in ergonomics, where the compressive spine loads are of interest, the two models yielded <15% difference. In the field of rehabilitation, where detailed muscle forces are required, the S+KD model explained more properly the CNS strategy in activating the antagonistic muscles for some tasks. Copyright © 2014 IPEM. Published by Elsevier Ltd. All rights reserved.

  16. Transmission of Force Sensations by Hand of Multi-DOF Master-Slave Robot Using Tendon-Driven Mechanism

    NASA Astrophysics Data System (ADS)

    Nozaki, Takahiro; Suzuki, Yusuke; Ohnishi, Kouhei

    In this study, a bilateral control system for tendon-driven robots is proposed. The rotation angle and torque of the robot joints are controlled by the proposed control system. In addition, a tendon-driven robot hand for haptic applications is developed. The proposed control system is employed by the robot hand to transmit force sensations.

  17. The effect of ac-driven force on superlubricity in a two-dimensional Frenkel-Kontorova model

    NASA Astrophysics Data System (ADS)

    Lin, Mai-Mai

    2010-08-01

    By using the molecular dynamic simulation method with a fourth-order Runge-Kutta algorithm, a two-dimensional dc- and ac-driven Frenkel-Kontorova model with a square symmetry substrate potential for a square lattice layer has been investigated in this paper. For this system, the effects of many different parameters on the static friction force have been studied in detail. It was found that not only the amplitude and frequency of the ac-driven force, but also the direction of dc- and ac-driven forces and the misfit angle between two layers have a strong influence on the static friction force. This indicated that the phenomenon of superlubricity appears easily with larger ac amplitude and smaller ac frequency for some special direction of the external driving force and misfit angle.

  18. The effect of power-law body forces on a thermally driven flow between concentric rotating spheres

    NASA Technical Reports Server (NTRS)

    Macaraeg, M. G.

    1986-01-01

    A numerical study is conducted to determine the effect of power-law body forces on a thermally-driven axisymmetric flow field confined between concentric co-rotating spheres. This study is motivated by Spacelab geophysical fluid-flow experiments, which use an electrostatic force on a dielectric fluid to simulate gravity; this force exhibits a (1/r)sup 5 distribution. Meridional velocity is found to increase when the electrostatic body force is imposed, relative to when the body force is uniform. Correlation among flow fields with uniform, inverse-square, and inverse-quintic force fields is obtained using a modified Grashof number.

  19. The effect of power law body forces on a thermally-driven flow between concentric rotating spheres

    NASA Technical Reports Server (NTRS)

    Macaraeg, M. G.

    1985-01-01

    A numerical study is conducted to determine the effect of power-law body forces on a thermally-driven axisymmetric flow field confined between concentric co-rotating spheres. This study is motivated by Spacelab geophysical fluid-flow experiments, which use an electrostatic force on a dielectric fluid to simulate gravity; this force exhibits a (1/r)sup 5 distribution. Meridional velocity is found to increase when the electrostatic body force is imposed, relative to when the body force is uniform. Correlation among flow fields with uniform, inverse-square, and inverse-quintic force fields is obtained using a modified Grashof number.

  20. Magnetic force driven nanogenerators as a noncontact energy harvester and sensor.

    PubMed

    Cui, Nuanyang; Wu, Weiwei; Zhao, Yong; Bai, Suo; Meng, Leixin; Qin, Yong; Wang, Zhong Lin

    2012-07-11

    Nanogenerator has been a very important energy harvesting technology through directly deforming piezoelectric material. Here, we report a new magnetic force driven contactless nanogenerator (CLNG), which avoids the direct contact between nanogenerator and mechanical movement source. The CLNG can harvest the mechanical movement energy in a noncontact mode to generate electricity. Their output voltage and current can be as large as 3.2 V and 50 nA, respectively, which is large enough to power up a liquid crystal display. We also demonstrate a means by which a magnetic sensor can be built.

  1. Cascaded spin motive force driven by the dynamics of the skyrmion lattice

    SciTech Connect

    Ohe, Jun-ichiro; Shimada, Yuhki

    2013-12-09

    We numerically investigate the spin motive force (SMF) driven by the dynamics of a Skyrmion lattice. The rotating mode of the Skyrmion core excited by the AC magnetic field induces the large spin-dependent electric field near the core. Due to the collective dynamics of Skyrmion lattice, the measurable voltage is enhanced by the cascade effect of the SMF. The amplitude of the AC voltage is estimated to 30 μV in a macroscopic sample, where 100 Skyrmions exist between two probes. We also investigate the SMF due to the dynamics of the helical magnetic state, where the enhancement of the SMF does not occur.

  2. What do proton motive force driven multidrug resistance transporters have in common?

    PubMed

    Mazurkiewicz, Piotr; Driessen, Arnold J M; Konings, Wil N

    2005-01-01

    The extensive progress of genome sequencing projects in recent years has demonstrated that multidrug resistance (MDR) transporters are widely spread among all domains of life. This indicates that they play crucial roles in the survival of organisms. Moreover, antibiotic and chemotherapeutic treatments have revealed that microorganisms and cancer cells may use MDR transporters to fight the cytotoxic action of drugs. Currently, several MDR extrusion systems are being investigated in detail. It is expected that understanding of the molecular basis of multidrug recognition and the transport mechanisms will allow a more rational design of new drugs which either will not be recognized and expelled by or will efficiently inhibit the activity of the MDR transporters. MDR transporters either utilize ATP hydrolysis or an ion motive force as an energy source to drive drugs out of the cell. This review summarizes the recent progress in the field of bacterial proton motive force driven MDR transporters.

  3. Particle orbits in a force-balanced, wave-driven, rotating torus

    NASA Astrophysics Data System (ADS)

    Ochs, I. E.; Fisch, N. J.

    2017-09-01

    A wave-driven rotating torus is a recently proposed fusion concept where the rotational transform is provided by the E × B drift resulting from a minor radial electric field. This field can be produced, for instance, by the RF-wave-mediated extraction of fusion-born alpha particles. In this paper, we discuss how macroscopic force balance, i.e., balance of the thermal hoop force, can be achieved in such a device. We show that this requires the inclusion of a small plasma current and vertical magnetic field and identify the desirable reactor regime through free energy considerations. We then analyze particle orbits in this desirable regime, identifying velocity-space anisotropies in trapped (banana) orbits, resulting from the cancellation of rotational transforms due to the radial electric and poloidal magnetic fields. The potential neoclassical effects of these orbits on the perpendicular conductivity, current drive, and transport are discussed.

  4. Centrifugal Force Based Magnetic Micro-Pump Driven by Rotating Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Kim, S. H.; Hashi, S.; Ishiyama, K.

    2011-01-01

    This paper presents a centrifugal force based magnetic micro-pump for the pumping of blood. Most blood pumps are driven by an electrical motor with wired control. To develop a wireless and battery-free blood pump, the proposed pump is controlled by external rotating magnetic fields with a synchronized impeller. Synchronization occurs because the rotor is divided into multi-stage impeller parts and NdFeB permanent magnet. Finally, liquid is discharged by the centrifugal force of multi-stage impeller. The proposed pump length is 30 mm long and19 mm in diameter which much smaller than currently pumps; however, its pumping ability satisfies the requirement for a blood pump. The maximum pressure is 120 mmHg and the maximum flow rate is 5000ml/min at 100 Hz. The advantage of the proposed pump is that the general mechanical problems of a normal blood pump are eliminated by the proposed driving mechanism.

  5. Research on ultra-fast vacuum mechanical switch driven by repulsive force actuator

    NASA Astrophysics Data System (ADS)

    Yuan, Zhao; He, Junjia; Pan, Yuan; Jing, Xin; Zhong, Canyi; Zhang, Ning; Wei, Xiaoguang; Tang, Guangfu

    2016-12-01

    In order to meet the fast operation demands of DC circuit breakers, a high-speed vacuum mechanical switch (VMS) driven by a repulsive force actuator is focused. To improve the drive speed and energy conversion efficiency (ECE) of the actuators, the dynamic characteristics of the double sided coil repulsive force actuators are investigated, and two generalized optimization design methods focusing on the aspect ratio of the driving coils (defined as ARF) and the electrical parameters (defined as EF) are developed. FEM simulation models' simulation and tests of VMS prototypes are conducted to verify the optimization methods. Results prove that the ARF method could improve the ECE of a VMS from 1.05% to 7.55%, and EF method could improve ECE of the same VMS from 1.05% to 6.61%, the combination of ARF and EF could improve the value of VMS's ECE to 10.50%, thus proving the validity and accuracy of the optimization methods.

  6. Schlieren High Speed Imaging on Fluid Flow in Liquid Induced by Plasma-driven Interfacial Forces

    NASA Astrophysics Data System (ADS)

    Lai, Janis; Foster, John

    2016-10-01

    Effective plasma-based water purification depends heavily on the transport of plasma-derived reactive species from the plasma into the liquid. Plasma interactions at the liquid-gas boundary are known to drive circulation in the bulk liquid. This forced circulation is not well understood. A 2-D plasma- in-liquid water apparatus is currently being investigated as a means to study the plasma-liquid interface to understand not only reactive species flows but to also understand plasma- driven fluid dynamic effects in the bulk fluid. Using Schlieren high speed imaging, plasma-induced density gradients near the interfacial region and into the bulk solution are measured to investigate the nature of these interfacial forces. Plasma-induced flow was also measured using particle imaging velocimetry. NSF CBET 1336375 and DOE DE-SC0001939.

  7. Gravity-driven granular flow in a silo: Characterizing local forces and rearrangements

    NASA Astrophysics Data System (ADS)

    Thackray, Emma; Nordstrom, Kerstin

    2017-06-01

    While the gravity-driven flow of a granular material in a silo geometry can be modeled by the Beverloo equation, the mesoscale-level particle rearrangements and interactions that drive this flow are not wellunderstood. We have constructed a quasi-two-dimensional system of bidisperse, millimeter-scale disks with photoelastic properties that make force networks within the material visible. The system is contained in an acrylic box with an adjustable bottom opening. We can approach the clogging transition by adjusting this opening. By placing the system between cross-polarizers, we can obtain high-speed video of this system during flow, and extract intensity signals that can be used to identify and quantify localized, otherwise indeterminate forces. We can simultaneously track individual particle motions, which can be used to identify shear transformation zones in the system. In this paper, we present our results thus far.

  8. Multiresonance of energy transport and absence of heat pump in a force-driven lattice.

    PubMed

    Zhang, Song; Ren, Jie; Li, Baowen

    2011-09-01

    Energy transport control in low dimensional nanoscale systems has attracted much attention in recent years. In this paper, we investigate the energy transport properties of the Frenkel-Kontorova lattice subject to a periodic driving force, in particular, the resonance behavior of the energy current by varying the external driving frequency. It is discovered that, in certain parameter ranges, multiple resonance peaks, instead of a single resonance, emerge. By comparing the nonlinear lattice model with a harmonic chain, we unravel the underlying physical mechanism for such a resonance phenomenon. Other parameter dependencies of the resonance behavior are examined as well. Finally, we demonstrate that heat pumping is actually absent in this force-driven model.

  9. Stall force of a cargo driven by N interacting motor proteins

    NASA Astrophysics Data System (ADS)

    Bhat, Deepak; Gopalakrishnan, Manoj

    2017-01-01

    We study a generic one-dimensional model for an intracellular cargo driven by N motor proteins against an external applied force. The model includes motor-cargo and motor-motor interactions. The cargo motion is described by an over-damped Langevin equation, while motor dynamics is specified by hopping rates which follow a local detailed balance condition with respect to the change in energy per hopping event. Based on this model, we show that the stall force, the mean external force corresponding to zero mean cargo velocity, is completely independent of the details of the interactions and is, therefore, always equal to the sum of the stall forces of the individual motors. This exact result is arrived on the basis of a simple assumption: the (macroscopic) state of stall of the cargo is analogous to a state of thermodynamic equilibrium, and is characterized by vanishing net probability current between any two microstates, with the latter specified by motor positions relative to the cargo. The corresponding probability distribution of the microstates under stall is also determined. These predictions are in complete agreement with numerical simulations, carried out using specific forms of interaction potentials.

  10. A radiation-driven stellar wind model with a line force cutoff

    NASA Technical Reports Server (NTRS)

    Abbott, Mark J.; Friend, David B.

    1989-01-01

    This paper presents a model for a radiation-driven stellar wind in which the driving force is abruptly cut off at an adjustable distance from the star. The model is intended to give a first approximation of the effects of ionizing shocks in a stellar wind on the terminal velocity and mass-loss rate. As expected, the wind velocity is found to decrease after the line force is cut off. The terminal velocity depends directly on the velocity of the wind at the point where the driving force is cut off. The mass-loss rate is found to be unaffected as long as the cutoff is outside the critical point of the flow. The model is applied to the star Tau Sco, a strong X-ray source with an anomalously low terminal velocity. It is shown that this low terminal velocity can be caused by a cutoff of the line force at a distance which is consistent with the idea that the observed X-rate emission is produced by shocks in the wind.

  11. Modeling the mechanics of cells in the cell-spreading process driven by traction forces

    NASA Astrophysics Data System (ADS)

    Fang, Yuqiang; Lai, King W. C.

    2016-04-01

    Mechanical properties of cells and their mechanical interaction with the extracellular environments are main factors influencing cellular function, thus indicating the progression of cells in different disease states. By considering the mechanical interactions between cell adhesion molecules and the extracellular environment, we developed a cell mechanical model that can characterize the mechanical changes in cells during cell spreading. A cell model was established that consisted of various main subcellular components, including cortical cytoskeleton, nuclear envelope, actin filaments, intermediate filaments, and microtubules. We demonstrated the structural changes in subcellular components and the changes in spreading areas during cell spreading driven by traction forces. The simulation of nanoindentation tests was conducted by integrating the indenting force to the cell model. The force-indentation curve of the cells at different spreading states was simulated, and the results showed that cell stiffness increased with increasing traction forces, which were consistent with the experimental results. The proposed cell mechanical model provides a strategy to investigate the mechanical interactions of cells with the extracellular environments through the adhesion molecules and to reveal the cell mechanical properties at the subcellular level as cells shift from the suspended state to the adherent state.

  12. Modeling the mechanics of cells in the cell-spreading process driven by traction forces.

    PubMed

    Fang, Yuqiang; Lai, King W C

    2016-04-01

    Mechanical properties of cells and their mechanical interaction with the extracellular environments are main factors influencing cellular function, thus indicating the progression of cells in different disease states. By considering the mechanical interactions between cell adhesion molecules and the extracellular environment, we developed a cell mechanical model that can characterize the mechanical changes in cells during cell spreading. A cell model was established that consisted of various main subcellular components, including cortical cytoskeleton, nuclear envelope, actin filaments, intermediate filaments, and microtubules. We demonstrated the structural changes in subcellular components and the changes in spreading areas during cell spreading driven by traction forces. The simulation of nanoindentation tests was conducted by integrating the indenting force to the cell model. The force-indentation curve of the cells at different spreading states was simulated, and the results showed that cell stiffness increased with increasing traction forces, which were consistent with the experimental results. The proposed cell mechanical model provides a strategy to investigate the mechanical interactions of cells with the extracellular environments through the adhesion molecules and to reveal the cell mechanical properties at the subcellular level as cells shift from the suspended state to the adherent state.

  13. Theoretical Model for Cellular Shapes Driven by Protrusive and Adhesive Forces

    PubMed Central

    Kabaso, Doron; Shlomovitz, Roie; Schloen, Kathrin; Stradal, Theresia; Gov, Nir S.

    2011-01-01

    The forces that arise from the actin cytoskeleton play a crucial role in determining the cell shape. These include protrusive forces due to actin polymerization and adhesion to the external matrix. We present here a theoretical model for the cellular shapes resulting from the feedback between the membrane shape and the forces acting on the membrane, mediated by curvature-sensitive membrane complexes of a convex shape. In previous theoretical studies we have investigated the regimes of linear instability where spontaneous formation of cellular protrusions is initiated. Here we calculate the evolution of a two dimensional cell contour beyond the linear regime and determine the final steady-state shapes arising within the model. We find that shapes driven by adhesion or by actin polymerization (lamellipodia) have very different morphologies, as observed in cells. Furthermore, we find that as the strength of the protrusive forces diminish, the system approaches a stabilization of a periodic pattern of protrusions. This result can provide an explanation for a number of puzzling experimental observations regarding cellular shape dependence on the properties of the extra-cellular matrix. PMID:21573201

  14. A phenomenological continuum model for force-driven nano-channel liquid flows

    NASA Astrophysics Data System (ADS)

    Ghorbanian, Jafar; Celebi, Alper T.; Beskok, Ali

    2016-11-01

    A phenomenological continuum model is developed using systematic molecular dynamics (MD) simulations of force-driven liquid argon flows confined in gold nano-channels at a fixed thermodynamic state. Well known density layering near the walls leads to the definition of an effective channel height and a density deficit parameter. While the former defines the slip-plane, the latter parameter relates channel averaged density with the desired thermodynamic state value. Definitions of these new parameters require a single MD simulation performed for a specific liquid-solid pair at the desired thermodynamic state and used for calibration of model parameters. Combined with our observations of constant slip-length and kinematic viscosity, the model accurately predicts the velocity distribution and volumetric and mass flow rates for force-driven liquid flows in different height nano-channels. Model is verified for liquid argon flow at distinct thermodynamic states and using various argon-gold interaction strengths. Further verification is performed for water flow in silica and gold nano-channels, exhibiting slip lengths of 1.2 nm and 15.5 nm, respectively. Excellent agreements between the model and the MD simulations are reported for channel heights as small as 3 nm for various liquid-solid pairs.

  15. Pattern formation, social forces, and diffusion instability in games with success-driven motion

    NASA Astrophysics Data System (ADS)

    Helbing, Dirk

    2009-02-01

    A local agglomeration of cooperators can support the survival or spreading of cooperation, even when cooperation is predicted to die out according to the replicator equation, which is often used in evolutionary game theory to study the spreading and disappearance of strategies. In this paper, it is shown that success-driven motion can trigger such local agglomeration and may, therefore, be used to supplement other mechanisms supporting cooperation, like reputation or punishment. Success-driven motion is formulated here as a function of the game-theoretical payoffs. It can change the outcome and dynamics of spatial games dramatically, in particular as it causes attractive or repulsive interaction forces. These forces act when the spatial distributions of strategies are inhomogeneous. However, even when starting with homogeneous initial conditions, small perturbations can trigger large inhomogeneities by a pattern-formation instability, when certain conditions are fulfilled. Here, these instability conditions are studied for the prisoner’s dilemma and the snowdrift game. Furthermore, it is demonstrated that asymmetrical diffusion can drive social, economic, and biological systems into the unstable regime, if these would be stable without diffusion.

  16. Tropically driven and externally forced patterns of Antarctic sea ice change: reconciling observed and modeled trends

    NASA Astrophysics Data System (ADS)

    Schneider, David P.; Deser, Clara

    2017-09-01

    Recent work suggests that natural variability has played a significant role in the increase of Antarctic sea ice extent during 1979-2013. The ice extent has responded strongly to atmospheric circulation changes, including a deepened Amundsen Sea Low (ASL), which in part has been driven by tropical variability. Nonetheless, this increase has occurred in the context of externally forced climate change, and it has been difficult to reconcile observed and modeled Antarctic sea ice trends. To understand observed-model disparities, this work defines the internally driven and radiatively forced patterns of Antarctic sea ice change and exposes potential model biases using results from two sets of historical experiments of a coupled climate model compared with observations. One ensemble is constrained only by external factors such as greenhouse gases and stratospheric ozone, while the other explicitly accounts for the influence of tropical variability by specifying observed SST anomalies in the eastern tropical Pacific. The latter experiment reproduces the deepening of the ASL, which drives an increase in regional ice extent due to enhanced ice motion and sea surface cooling. However, the overall sea ice trend in every ensemble member of both experiments is characterized by ice loss and is dominated by the forced pattern, as given by the ensemble-mean of the first experiment. This pervasive ice loss is associated with a strong warming of the ocean mixed layer, suggesting that the ocean model does not locally store or export anomalous heat efficiently enough to maintain a surface environment conducive to sea ice expansion. The pervasive upper-ocean warming, not seen in observations, likely reflects ocean mean-state biases.

  17. Global mountain snow and ice loss driven by dust and black carbon radiative forcing

    NASA Astrophysics Data System (ADS)

    Painter, T. H.

    2014-12-01

    Changes in mountain snow and glaciers have been our strongest indicators of the effects of changing climate. Earlier melt of snow and losses of glacier mass have perturbed regional water cycling, regional climate, and ecosystem dynamics, and contributed strongly to sea level rise. Recent studies however have revealed that in some regions, the reduction of albedo by light absorbing impurities in snow and ice such as dust and black carbon can be distinctly more powerful than regional warming at melting snow and ice. In the Rocky Mountains, dust deposition has increased 5 to 7 fold in the last 150 years, leading to ~3 weeks earlier loss of snow cover from forced melt. In absolute terms, in some years dust radiative forcing there can shorten snow cover duration by nearly two months. Remote sensing retrievals are beginning to reveal powerful dust and black carbon radiative forcing in the Hindu Kush through Himalaya. In light of recent ice cores that show pronounced increases in loading of dust and BC during the Anthropocene, these forcings may have contributed far more to glacier retreat than previously thought. For example, we have shown that the paradoxical end of the Little Ice Age in the European Alps beginning around 1850 (when glaciers began to retreat but temperatures continued to decline and precipitation was unchanged) very likely was driven by the massive increases in deposition to snow and ice of black carbon from industrialization in surrounding nations. A more robust understanding of changes in mountain snow and ice during the Anthropocene requires that we move past simplistic treatments (e.g. temperature-index modeling) to energy balance approaches that assess changes in the individual forcings such as the most powerful component for melt - net solar radiation. Remote sensing retrievals from imaging spectrometers and multispectral sensors are giving us more powerful insights into the time-space variation of snow and ice albedo.

  18. Robust Operation of Tendon-Driven Robot Fingers Using Force and Position-Based Control Laws

    NASA Technical Reports Server (NTRS)

    Abdallah, Muhammad E (Inventor); Platt, Jr., Robert J. (Inventor); Reiland, Matthew J (Inventor); Hargrave, Brian (Inventor); Diftler, Myron A (Inventor); Strawser, Philip A (Inventor); Ihrke, Chris A. (Inventor)

    2013-01-01

    A robotic system includes a tendon-driven finger and a control system. The system controls the finger via a force-based control law when a tension sensor is available, and via a position-based control law when a sensor is not available. Multiple tendons may each have a corresponding sensor. The system selectively injects a compliance value into the position-based control law when only some sensors are available. A control system includes a host machine and a non-transitory computer-readable medium having a control process, which is executed by the host machine to control the finger via the force- or position-based control law. A method for controlling the finger includes determining the availability of a tension sensor(s), and selectively controlling the finger, using the control system, via the force or position-based control law. The position control law allows the control system to resist disturbances while nominally maintaining the initial state of internal tendon tensions.

  19. Turbulent Flows Driven by the Mechanical Forcing of an Ellipsoidal Container

    NASA Astrophysics Data System (ADS)

    Favier, Benjamin; Le Bars, Michael; Grannan, Alexander; Ribeiro, Adolfo; Aurnou, Jonathan; Irphe Team; Spinlab Team

    2015-11-01

    We present a combination of laboratory experiments and numerical simulations modelling geophysically relevant mechanical forcings. Libration and tides correspond to the periodic perturbation of a body's rotation rate and shape, and are both due to gravitational interactions with orbiting companions. Such mechanical forcings can convey a fraction of the rotational energy available and generate intense turbulence in the fluid interior of satellites and planets. We investigate the fluid motions inside a librating or tidally deformed triaxial ellipsoidal container filled with an incompressible fluid. In both cases, the turbulent flow is driven by the elliptic instability which is a triadic resonance between two inertial modes and the base flow. We characterize the transition to turbulence as triadic resonances develop while also investigating both intermittent and sustained regimes. It is shown that the flow is largely independent of the properties of the mechanical forcing, hinting at a possible universal behaviour of the saturated elliptical instability. The existence of such intense flows may play an important role in understanding the thermal and magnetic evolution of celestial bodies. This work was funded by the French Agence Nationale pour la Recherche and the National Science Foundation Geophysics Program.

  20. Stochastic Forcing of the North Atlantic Wind-Driven Ocean Circulation

    NASA Astrophysics Data System (ADS)

    Chhak, K. C.; Moore, A. M.; Milliff, R. F.; Branstator, G.; Holland, W. R.; Fisher, M.

    2004-12-01

    At midlatitudes, the magnitude of stochastic wind stress forcing due to atmospheric weather is comparable to that associated with the seasonal cycle. Stochastic forcing is therefore likely to have a significant influence on the ocean circulation. In this work, we examine the influence of the stochastic component of the wind stress forcing on the large-scale, wind-driven circulation of the North Atlantic Ocean. To this end a quasi-geostrophic model of the North Atlantic was forced with estimates of the stochastic component of wind stress curl obtained from the NCAR Community Climate Model. Analysis reveals that much of the stochastically-induced variability in the ocean circulation occurs in the vicinity of the western boundary and some major bathymetric features. Using the ideas of generalized stability theory (GST), we find that the patterns of wind stress curl that are most effective for inducing variability in the model have their largest projection on the most nonnormal eigenmodes of the system. These eigenmodes are confined primarily to the western boundary region and are composed of long Rossby wave packets that are Doppler shifted by the Gulf Stream to have eastward group velocity. Linear interference of these eigenmodes yields transient growth of stochastically-induced perturbations, and it is this process that maintains the variance of the stochastically-induced circulations. By examining the model pseudospectra, we find that the nonnormal nature of the system enhances the transient growth of perturbation enstrophy and therefore elevates and also maintains the variance of the stochastically-induced circulations in the aforementioned regions.

  1. Direct force wall shear measurements in pressure-driven three-dimensional turbulent boundary layers

    NASA Technical Reports Server (NTRS)

    Mcallister, J. E.; Tennant, M. H.; Pierce, F. J.

    1982-01-01

    Unique, simultaneous direct measurements of the magnitude and direction of the local wall shear stress in a pressure-driven three-dimensional turbulent boundary layer are presented. The flow is also described with an oil streak wall flow pattern, a map of the wall shear stress-wall pressure gradient orientations, a comparison of the wall shear stress directions relative to the directions of the nearest wall velocity as measured with a typical, small boundary layer directionally sensitive claw probe, as well as limiting wall streamline directions from the oil streak patterns, and a comparison of the freestream streamlines and the wall flow streamlines. A review of corrections for direct force sensing shear meters for two-dimensional flows is presented with a brief discussion of their applicability to three-dimensional devices.

  2. Entropy evolution of a damped harmonic oscillator driven by quasimonochromatic noise and external periodic force

    NASA Astrophysics Data System (ADS)

    Qin, Jie; Ning, Lijuan

    2017-08-01

    This paper addresses the entropy evolution of a damped harmonic oscillator driven by quasimonochromatic noise (QMN). Due to QMN is distinct from white noise, so this paper studied the effect of QMN noise on the upper bound of time derivative of entropy for a damped harmonic oscillator. Through the comparison of probability density function (PDF) and the upper bound for the time derivative of entropy, we find that the entropy evolution is also a useful tool to describe the system dynamic behavior. Then we discuss the interplay of the parameters of QMN, damping constant, the frequency of oscillator and external periodic force and their effects on the upper bound for the rate of entropy change. Finally, some beneficial conclusions are obtained.

  3. Direct force wall shear measurements in pressure-driven three-dimensional turbulent boundary layers

    NASA Astrophysics Data System (ADS)

    McAllister, J. E.; Tennant, M. H.; Pierce, F. J.

    1982-06-01

    Unique, simultaneous direct measurements of the magnitude and direction of the local wall shear stress in a pressure-driven three-dimensional turbulent boundary layer are presented. The flow is also described with an oil streak wall flow pattern, a map of the wall shear stress-wall pressure gradient orientations, a comparison of the wall shear stress directions relative to the directions of the nearest wall velocity as measured with a typical, small boundary layer directionally sensitive claw probe, as well as limiting wall streamline directions from the oil streak patterns, and a comparison of the freestream streamlines and the wall flow streamlines. A review of corrections for direct force sensing shear meters for two-dimensional flows is presented with a brief discussion of their applicability to three-dimensional devices.

  4. Principles of bone formation driven by biophysical forces in craniofacial surgery.

    PubMed

    Meyer, U; Kruse-Lösler, B; Wiesmann, H P

    2006-08-01

    Biophysical forces, particularly mechanical loading and electromagnetic signals, are important regulators of bone formation. Indeed, the regenerative capacity of bony tissue is largely the result of the bone's capacity to recognise the functional environment required for the emergence and maintenance of a structurally intact bone. Biophysical methods of stimulation have therefore been introduced and have proved successful in clinical practice with craniofacial bones. Distraction osteogenesis, application of ultrasound, calculated transfer of stresses, and exposure to an electromagnetic field are some examples of biophysically driven approaches to influencing bone formation. The purpose of this review is to provide an insight into cellular and tissue models that are used to study the effects of biophysical stimuli on bone.

  5. A mechanical-force-driven physical vapour deposition approach to fabricating complex hydride nanostructures

    NASA Astrophysics Data System (ADS)

    Pang, Yuepeng; Liu, Yongfeng; Gao, Mingxia; Ouyang, Liuzhang; Liu, Jiangwen; Wang, Hui; Zhu, Min; Pan, Hongge

    2014-03-01

    Nanoscale hydrides desorb and absorb hydrogen at faster rates and lower temperatures than bulk hydrides because of their high surface areas, abundant grain boundaries and short diffusion distances. No current methods exist for the direct fabrication of nanoscale complex hydrides (for example, alanates, borohydrides) with unique morphologies because of their extremely high reducibility, relatively low thermodynamic stability and complicated elemental composition. Here, we demonstrate a mechanical-force-driven physical vapour deposition procedure for preparing nanoscale complex hydrides without scaffolds or supports. Magnesium alanate nanorods measuring 20-40 nm in diameter and lithium borohydride nanobelts measuring 10-40 nm in width are successfully synthesised on the basis of the one-dimensional structure of the corresponding organic coordination polymers. The dehydrogenation kinetics of the magnesium alanate nanorods are improved, and the nanorod morphology persists through the dehydrogenation-hydrogenation process. Our findings may facilitate the fabrication of such hydrides with improved hydrogen storage properties for practical applications.

  6. A mechanical-force-driven physical vapour deposition approach to fabricating complex hydride nanostructures.

    PubMed

    Pang, Yuepeng; Liu, Yongfeng; Gao, Mingxia; Ouyang, Liuzhang; Liu, Jiangwen; Wang, Hui; Zhu, Min; Pan, Hongge

    2014-03-24

    Nanoscale hydrides desorb and absorb hydrogen at faster rates and lower temperatures than bulk hydrides because of their high surface areas, abundant grain boundaries and short diffusion distances. No current methods exist for the direct fabrication of nanoscale complex hydrides (for example, alanates, borohydrides) with unique morphologies because of their extremely high reducibility, relatively low thermodynamic stability and complicated elemental composition. Here, we demonstrate a mechanical-force-driven physical vapour deposition procedure for preparing nanoscale complex hydrides without scaffolds or supports. Magnesium alanate nanorods measuring 20-40 nm in diameter and lithium borohydride nanobelts measuring 10-40 nm in width are successfully synthesised on the basis of the one-dimensional structure of the corresponding organic coordination polymers. The dehydrogenation kinetics of the magnesium alanate nanorods are improved, and the nanorod morphology persists through the dehydrogenation-hydrogenation process. Our findings may facilitate the fabrication of such hydrides with improved hydrogen storage properties for practical applications.

  7. Numerical investigations of the force experienced by a wall subject to granular lid-driven flows: regimes and scaling of the mean force

    NASA Astrophysics Data System (ADS)

    Kneib, François; Faug, Thierry; Dufour, Frédéric; Naaim, Mohamed

    2016-07-01

    Discrete element simulations are used to model a two-dimensional gravity-free granular sample, which is trapped between two smooth sidewalls and one bottom rough wall while being subject to a constant shearing velocity at the top under a given confinement pressure. This system, inspired by conventional fluid mechanics, is called a granular lid-driven cavity. Attention is firstly paid to the time-averaged dynamics of the grains once a steady-state is reached. Strong spatial heterogeneities associated with a large-scale vortex formed within the whole volume of the lid-driven cavity are observed. The mean steady force on the sidewall facing the shearing velocity is then investigated in detail for different cavity lengths, shearing velocities and confinement pressures at the top. The ratio of the force on the latter wall to the top confinement pressure force is not constant but depends on both the shearing velocity and the confinement pressure. Above a critical value of the cavity length relative to the wall height and over a wide range of both shearing velocity and top confinement pressure, all data merge into a one-to-one relation between the mean force scaled by the top pressure force and the macroscopic inertial number of the lid-driven cavity. This result reveals the key role played by the inertial rheology of the granular material in the granular force transmission.

  8. Magnetic Force-Driven Graphene Patterns to Direct Synaptogenesis of Human Neuronal Cells.

    PubMed

    Min, Kyung-Joon; Kim, Tae-Hyung; Choi, Jeong-Woo

    2017-10-02

    Precise control of axonal growth and synaptic junction formation are incredibly important to repair and/or to mimic human neuronal network. Here, we report a graphene oxide (GO)-based hybrid patterns that were proven to be excellent for guiding axonal growth and its consequent synapse formation of human neural cells. Unlike the previous method that utilized micro-contacting printing technique to generate GO patterns, here, GO-encapsulated magnetic nanoparticles were first synthesized and utilized as core materials wherein the external magnetic force facilitated the transfer of GO film to the desired substrate. Owing to the intrinsic property of GO that provides stable cell attachment and growth for long-term culture, human neuronal cells could be effectively patterned on the biocompatible polymer substrates with different pattern sizes. By using magnetic force-driven GO hybrid patterns, we demonstrated that accumulation and expression level of Synaptophysin of neurons could be effectively controlled with varying sizes of each pattern. The synaptic network between each neuron could be precisely controlled and matched by guiding axonal direction. This work provides treatment and modeling of brain diseases and spinal cord injuries.

  9. Quasi-cyclic evolution of turbulence driven by a steady force in a periodic cube

    NASA Astrophysics Data System (ADS)

    Yasuda, Tatsuya; Goto, Susumu; Kawahara, Genta

    2014-12-01

    The quasi-cyclic evolution of turbulence driven by a steady force in a periodic cube is investigated by means of large-eddy simulations with vanishing kinematic viscosity. By constraining the domain size so that only a single series of energy cascade events can take place, quasi-cyclic motions of multi-scale coherent vortices with a period of about 20T are realized. (Here, T denotes the turnover time of the largest eddies.) The observed cycle is composed of four periods characterized by activities of the largest- and smallest-resolvable-scale eddies. Vigorous energy cascade events, which last for about 2T, are observed between the two moments when large- and small-scale eddies are active. Even though we have examined only a special case of steady forces, such cyclic behavior of turbulence is likely to capture the essential dynamics of the regeneration cycle of multi-scale coherent structures, that is, the energy cascade in homogeneous isotropic turbulence at high Reynolds numbers.

  10. Translocation dynamics of a short polymer driven by an oscillating force.

    PubMed

    Pizzolato, Nicola; Fiasconaro, Alessandro; Adorno, Dominique Persano; Spagnolo, Bernardo

    2013-02-07

    We study the translocation dynamics of a short polymer moving in a noisy environment and driven by an oscillating force. The dynamics is numerically investigated by solving a Langevin equation in a two-dimensional domain. We consider a phenomenological cubic potential with a metastable state to model the polymer-pore interaction and the entropic free energy barrier characterizing the translocation process. The mean first translocation time of the center of inertia of polymers shows a nonmonotonic behavior, with a minimum, as a function of the number of the monomers. The dependence of the mean translocation time on the polymer chain length shows a monotonically increasing behavior for high values of the number of monomers. Moreover, the translocation time shows a minimum as a function of the frequency of the oscillating forcing field for all the polymer lengths investigated. This finding represents the evidence of the resonant activation phenomenon in the dynamics of polymer translocation, whose occurrence is maintained for different values of the noise intensity.

  11. Sea surface temperature anomalies driven by oceanic local forcing in the Brazil-Malvinas Confluence

    NASA Astrophysics Data System (ADS)

    da Silveira, Isabel Porto; Pezzi, Luciano Ponzi

    2014-03-01

    Sea surface temperature (SST) anomaly events in the Brazil-Malvinas Confluence (BMC) were investigated through wavelet analysis and numerical modeling. Wavelet analysis was applied to recognize the main spectral signals of SST anomaly events in the BMC and in the Drake Passage as a first attempt to link middle and high latitudes. The numerical modeling approach was used to clarify the local oceanic dynamics that drive these anomalies. Wavelet analysis pointed to the 8-12-year band as the most energetic band representing remote forcing between high to middle latitudes. Other frequencies observed in the BMC wavelet analysis indicate that part of its variability could also be forced by low-latitude events, such as El Niño. Numerical experiments carried out for the years of 1964 and 1992 (cold and warm El Niño-Southern Oscillation (ENSO) phases) revealed two distinct behaviors that produced negative and positive sea surface temperature anomalies on the BMC region. The first behavior is caused by northward cold flow, Río de la Plata runoff, and upwelling processes. The second behavior is driven by a southward excursion of the Brazil Current (BC) front, alterations in Río de la Plata discharge rates, and most likely by air-sea interactions. Both episodes are characterized by uncoupled behavior between the surface and deeper layers.

  12. Capillary Force-Driven, Hierarchical Co-Assembly of Dandelion-Like Peptide Microstructures.

    PubMed

    Wang, Yuefei; Huang, Renliang; Qi, Wei; Xie, Yanyan; Wang, Mengfan; Su, Rongxin; He, Zhimin

    2015-06-24

    The wetting and drying of drops on flexible fibers occurs ubiquitously in nature, and the capillary force underlying this phenomenon has motivated our great interest in learning how to direct supramolecular self-assembly. Here, the hierarchical co-assembly of two aromatic peptides, diphenylalanine (FF) and ferrocene-diphenylalanine (Fc-FF), is reported via sequential, combinatorial assembly. The resulting dandelion-like microstructures have highly complex architectures, where FF microtube arrays serve as the scapes and the Fc-FF nanofibers serve as the flower heads. Homogeneous FF microtubes with diameters tailored between 1 and 9 μm and wall thickness ranging from 70 to 950 nm are initially formed by controlling the degree of supersaturation of the FF and the water content. Once the FF microtubes are formed, the growth of the dandelion-like microstructures is then driven by the capillary force, derived from the wetting and drying of the Fc-FF solution on the FF microtubes. This simple and ingenious strategy offers many opportunities to develop new and creative methods for controlling the hierarchical self-assembly of peptides and thus building highly complex nano and microstructures.

  13. How realistic are air quality hindcasts driven by forcings from climate model simulations?

    NASA Astrophysics Data System (ADS)

    Lacressonnière, G.; Peuch, V.-H.; Arteta, J.; Josse, B.; Joly, M.; Marécal, V.; Saint Martin, D.; Déqué, M.; Watson, L.

    2012-12-01

    Predicting how European air quality could evolve over the next decades in the context of changing climate requires the use of climate models to produce results that can be averaged in a climatologically and statistically sound manner. This is a very different approach from the one that is generally used for air quality hindcasts for the present period; analysed meteorological fields are used to represent specifically each date and hour. Differences arise both from the fact that a climate model run results in a pure model output, with no influence from observations (which are useful to correct for a range of errors), and that in a "climate" set-up, simulations on a given day, month or even season cannot be related to any specific period of time (but can just be interpreted in a climatological sense). Hence, although an air quality model can be thoroughly validated in a "realistic" set-up using analysed meteorological fields, the question remains of how far its outputs can be interpreted in a "climate" set-up. For this purpose, we focus on Europe and on the current decade using three 5-yr simulations performed with the multiscale chemistry-transport model MOCAGE and use meteorological forcings either from operational meteorological analyses or from climate simulations. We investigate how statistical skill indicators compare in the different simulations, discriminating also the effects of meteorology on atmospheric fields (winds, temperature, humidity, pressure, etc.) and on the dependent emissions and deposition processes (volatile organic compound emissions, deposition velocities, etc.). Our results show in particular how differing boundary layer heights and deposition velocities affect horizontal and vertical distributions of species. When the model is driven by operational analyses, the simulation accurately reproduces the observed values of O3, NOx, SO2 and, with some bias that can be explained by the set-up, PM10. We study how the simulations driven by climate

  14. How realistic are air quality hindcasts driven by forcings from climate model simulations?

    NASA Astrophysics Data System (ADS)

    Lacressonnière, G.; Peuch, V.-H.; Arteta, J.; Josse, B.; Joly, M.; Marécal, V.; Saint Martin, D.; Déqué, M.; Watson, L.

    2012-07-01

    Predicting how European air quality could evolve over the next decades in the context of changing climate requires the use of climate models to produce results that can be averaged in a climatologically and statistically sound manner. This is a very different approach from the one that is generally used for air quality hindcasts for the present period: analysed meteorological fields are used to represent specifically each date and hour. Differences arise both from the fact that a climate model run is a pure model output, with no influence from observations (which are useful to correct for a range of errors), and that in a "climate" set-up, simulations on a given day, month or even season cannot be related to any specific period of time (but can just be interpreted in a climatological sense). Hence, although an air quality model can be thoroughly validated in a "realistic" set-up using analysed meteorological fields, the question remains of how far its outputs can be interpreted in a "climate" set-up. For this purpose, we focus on Europe and on the current decade using three 6-yr simulations performed with the multiscale chemistry-transport model MOCAGE and use meteorological forcings either from operational meteorological analyses or from climate simulations. We investigate how statistical skill indicators compare in the different simulations, discriminating also the effects of meteorology on atmospheric fields (winds, temperature, humidity, pressure ldots) and on the dependent emissions and deposition processes (volatile organic compound emissions, deposition velocities . . .). Our results show in particular how differing boundary layer heights and deposition velocities affect horizontal and vertical distributions of species. When the model is driven by operational analyses, the simulation accurately reproduces the observed values of O3, NOx, SO2 and, with some bias that can be explained by the set-up, PM10. We study how the simulations driven by climate forcings

  15. A rotating annulus driven by localized convective forcing: a new atmosphere-like experiment

    NASA Astrophysics Data System (ADS)

    Scolan, Hélène; Read, Peter L.

    2017-06-01

    We present an experimental study of flows in a cylindrical rotating annulus convectively forced by local heating in an annular ring at the bottom near the external wall and via a cooled circular disk near the axis at the top surface of the annulus. This new configuration is distinct from the classical thermally driven annulus analogue of the atmosphere circulation, in which thermal forcing is applied uniformly on the sidewalls, but with a similar aim to investigate the baroclinic instability of a rotating, stratified flow subjected to zonally symmetric forcing. Two vertically and horizontally displaced heat sources/sinks are arranged, so that in the absence of background rotation, statically unstable Rayleigh-Bénard convection would be induced above the source and beneath the sink, thereby relaxing strong constraints placed on background temperature gradients in previous experimental configurations based on the conventional rotating annulus. This better emulates local vigorous convection in the tropics and polar regions of the atmosphere while also allowing stably-stratified baroclinic motion in the central zone of the annulus, as in mid-latitude regions in the Earth's atmosphere. Regimes of flow are identified, depending mainly upon control parameters that in turn depend on rotation rate and the strength of differential heating. Several regimes exhibit baroclinically unstable flows which are qualitatively similar to those previously observed in the classical thermally driven annulus. However, in contrast to the classical configuration, they typically exhibit more spatio-temporal complexity. Thus, several regimes of flow demonstrate the equilibrated co-existence of, and interaction between, free convection and baroclinic wave modes. These new features were not previously observed in the classical annulus and validate the new setup as a tool for exploring fundamental atmosphere-like dynamics in a more realistic framework. Thermal structure in the fluid is

  16. A systematic review of resilience and mental health outcomes of conflict-driven adult forced migrants

    PubMed Central

    2014-01-01

    Background The rising global burden of forced migration due to armed conflict is increasingly recognised as an important issue in global health. Forced migrants are at a greater risk of developing mental disorders. However, resilience, defined as the ability of a person to successfully adapt to or recover from stressful and traumatic experiences, has been highlighted as a key potential protective factor. This study aimed to review systematically the global literature on the impact of resilience on the mental health of adult conflict-driven forced migrants. Methodology Both quantitative and qualitative studies that reported resilience and mental health outcomes among forcibly displaced persons (aged 18+) by way of exploring associations, links, pathways and causative mechanisms were included. Fourteen bibliographic databases and seven humanitarian study databases/websites were searched and a four stage screening process was followed. Results Twenty three studies were included in the final review. Ten qualitative studies identified highlighted family and community cohesion, family and community support, individual personal qualities, collective identity, supportive primary relationships and religion. Thirteen quantitative studies were identified, but only two attempted to link resilience with mental disorders, and three used a specific resilience measure. Over-reliance on cross-sectional designs was noted. Resilience was generally shown to be associated with better mental health in displaced populations, but the evidence on this and underlying mechanisms was limited. Discussion The review highlights the need for more epidemiological and qualitative evidence on resilience in forcibly displaced persons as a potential avenue for intervention development, particularly in resource-poor settings. PMID:25177360

  17. An accurate elasto-plastic frictional tangential force displacement model for granular-flow simulations: Displacement-driven formulation

    NASA Astrophysics Data System (ADS)

    Zhang, Xiang; Vu-Quoc, Loc

    2007-07-01

    We present in this paper the displacement-driven version of a tangential force-displacement (TFD) model that accounts for both elastic and plastic deformations together with interfacial friction occurring in collisions of spherical particles. This elasto-plastic frictional TFD model, with its force-driven version presented in [L. Vu-Quoc, L. Lesburg, X. Zhang. An accurate tangential force-displacement model for granular-flow simulations: contacting spheres with plastic deformation, force-driven formulation, Journal of Computational Physics 196(1) (2004) 298-326], is consistent with the elasto-plastic frictional normal force-displacement (NFD) model presented in [L. Vu-Quoc, X. Zhang. An elasto-plastic contact force-displacement model in the normal direction: displacement-driven version, Proceedings of the Royal Society of London, Series A 455 (1991) 4013-4044]. Both the NFD model and the present TFD model are based on the concept of additive decomposition of the radius of contact area into an elastic part and a plastic part. The effect of permanent indentation after impact is represented by a correction to the radius of curvature. The effect of material softening due to plastic flow is represented by a correction to the elastic moduli. The proposed TFD model is accurate, and is validated against nonlinear finite element analyses involving plastic flows in both the loading and unloading conditions. The proposed consistent displacement-driven, elasto-plastic NFD and TFD models are designed for implementation in computer codes using the discrete-element method (DEM) for granular-flow simulations. The model is shown to be accurate and is validated against nonlinear elasto-plastic finite-element analysis.

  18. The dynamics of capillary-driven two-phase flow: the role of nanofluid structural forces.

    PubMed

    Nikolov, Alex; Zhang, Hua

    2015-07-01

    Capillary-driven flows are fundamental phenomena and are involved in many key technological processes, such as oil recovery through porous rocks, ink-jet printing, the bubble dynamics in a capillary, microfluidic devices and labs on chips. Here, we discuss and propose a model for the oil displacement dynamics from the capillary by the nanofluid (which is composed of a liquid suspension of nanoparticles); we elucidate the physics of the novelty of the phenomenon and its application. The oil displacement by the nanofluid flow is a multi-stage phenomenon, first leading to the oil film formation on the capillary wall, its break-up, and retraction over the capillary wall; this lead to the formation of the oil double concave meniscus. With time, the process repeats itself, leading to the formation of a regular "necklace" of oil droplets inside the capillary. Finally, the oil droplets are separated by the nanofluid film from the capillary wall. The light reflected differential interferometry technique is applied to investigate the nanofluid interactions with the glass wall. We find nanoparticles tend to self-structure into multiple layers close to the solid wall, which cause the structural forces to arise that lead to the oil displacement from the capillary. This research is expected to benefit the understanding of nanofluid phenomena in a capillary and promote their use in technological applications. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. A new on-chip whole blood/plasma separator driven by asymmetric capillary forces.

    PubMed

    Lee, Kang Kug; Ahn, Chong H

    2013-08-21

    A new on-chip whole blood/plasma separator driven by asymmetric capillary forces, which are produced through a microchannel with sprayed nanobead multilayers, has been designed, fabricated and fully characterized. The silica nanobead multilayers revealing as superhydrophilic surfaces have been fabricated using a spray layer-by-layer (LbL) nano-assembly method. This new on-chip blood plasma separator has been targeted for a sample-to-answer (S-to-A) microfluidic lab-on-a-chip (LOC) toward point-of-care clinical testing (POCT). Effective plasma separation from undiluted whole blood was achieved through the microchannel which was composed of asymmetric superhydrophilic surfaces with a 10 mm hydrophobic patch. Blood cells were continuously accumulated over the hydrophobic patch while the blood plasma was able to flow over the patch. Therefore, the blood plasma was successfully separated from the whole blood throughout the accumulated blood cells which worked as a so-called 'self-built-in blood cell microfilter'. The separated plasma was approximately 102 nL from a single drop of 3 μL whole blood within 10 min, which is very suitable for single-use disposable POCT devices.

  20. Delineating the Barotropic and Baroclinic Mechanisms in the Midlatitude Eddy-Driven Jet Response to Lower-Tropospheric Thermal Forcing

    NASA Astrophysics Data System (ADS)

    Nie, Yu; Zhang, Yang; Chen, Gang; Yang, Xiuqun

    2016-04-01

    Observations and climate models have shown that the midlatitude eddy-driven jet can exhibit an evident latitudinal shift in response to lower-tropospheric thermal forcing (e.g., the tropical SST warming during El Niño or extratropical SST anomalies associated with the atmosphere-ocean-sea ice coupling). In addition to the direct thermal wind response, the eddy feedbacks - including baroclinic mechanisms, such as lower-level baroclinic eddy generation, and barotropic mechanisms, such as upper-level wave propagation and breaking - can all contribute to the atmospheric circulation response to lower-level thermal forcing, but their individual roles have not been well explained. In this study, using a nonlinear beta-plane multilevel quasigeostrophic channel model, the mechanisms through which the lower-level thermal forcing induces the jet shift are investigated. By diagnosing the finite-amplitude wave activity (FAWA) budget, the baroclinic and barotropic eddy feedbacks to the lower-level thermal forcing are delineated. Particularly, by examining the transient circulation response after thermal forcing is switched on, it is shown that the lower-level thermal forcing affects the eddy-driven jet rapidly by modifying the upper-level zonal thermal wind distribution and the associated meridional wave propagation and breaking. The anomalous baroclinic eddy generation, however, acts to enhance the latitudinal shift of the eddy-driven jet only in the later stage of transient response. Furthermore, the barotropic mechanism is explicated by overriding exper- iments in which the barotropic flow in the vorticity advection is prescribed. Unlike the conventional baroclinic view, the barotropic eddy feedback, particularly the irreversible PV mixing through barotropic vorticity advection and deformation, plays a major role in the atmospheric circulation response to the lower-level thermal forcing.

  1. Irrelevance of the power stroke for the directionality, stopping force, and optimal efficiency of chemically driven molecular machines.

    PubMed

    Astumian, R Dean

    2015-01-20

    A simple model for a chemically driven molecular walker shows that the elastic energy stored by the molecule and released during the conformational change known as the power-stroke (i.e., the free-energy difference between the pre- and post-power-stroke states) is irrelevant for determining the directionality, stopping force, and efficiency of the motor. Further, the apportionment of the dependence on the externally applied force between the forward and reverse rate constants of the power-stroke (or indeed among all rate constants) is irrelevant for determining the directionality, stopping force, and efficiency of the motor. Arguments based on the principle of microscopic reversibility demonstrate that this result is general for all chemically driven molecular machines, and even more broadly that the relative energies of the states of the motor have no role in determining the directionality, stopping force, or optimal efficiency of the machine. Instead, the directionality, stopping force, and optimal efficiency are determined solely by the relative heights of the energy barriers between the states. Molecular recognition--the ability of a molecular machine to discriminate between substrate and product depending on the state of the machine--is far more important for determining the intrinsic directionality and thermodynamics of chemo-mechanical coupling than are the details of the internal mechanical conformational motions of the machine. In contrast to the conclusions for chemical driving, a power-stroke is very important for the directionality and efficiency of light-driven molecular machines and for molecular machines driven by external modulation of thermodynamic parameters.

  2. Irrelevance of the Power Stroke for the Directionality, Stopping Force, and Optimal Efficiency of Chemically Driven Molecular Machines

    PubMed Central

    Astumian, R. Dean

    2015-01-01

    A simple model for a chemically driven molecular walker shows that the elastic energy stored by the molecule and released during the conformational change known as the power-stroke (i.e., the free-energy difference between the pre- and post-power-stroke states) is irrelevant for determining the directionality, stopping force, and efficiency of the motor. Further, the apportionment of the dependence on the externally applied force between the forward and reverse rate constants of the power-stroke (or indeed among all rate constants) is irrelevant for determining the directionality, stopping force, and efficiency of the motor. Arguments based on the principle of microscopic reversibility demonstrate that this result is general for all chemically driven molecular machines, and even more broadly that the relative energies of the states of the motor have no role in determining the directionality, stopping force, or optimal efficiency of the machine. Instead, the directionality, stopping force, and optimal efficiency are determined solely by the relative heights of the energy barriers between the states. Molecular recognition—the ability of a molecular machine to discriminate between substrate and product depending on the state of the machine—is far more important for determining the intrinsic directionality and thermodynamics of chemo-mechanical coupling than are the details of the internal mechanical conformational motions of the machine. In contrast to the conclusions for chemical driving, a power-stroke is very important for the directionality and efficiency of light-driven molecular machines and for molecular machines driven by external modulation of thermodynamic parameters. PMID:25606678

  3. A computational model of cerebrospinal fluid production and reabsorption driven by Starling forces

    PubMed Central

    Buishas, Joel; Gould, Ian G.; Linninger, Andreas A.

    2014-01-01

    Experimental evidence has cast doubt on the classical model of river-like cerebrospinal fluid (CSF) flow from the choroid plexus to the arachnoid granulations. We propose a novel model of water transport through the parenchyma from the microcirculation as driven by Starling forces. This model investigates the effect of osmotic pressure on water transport between the cerebral vasculature, the extracellular space (ECS), the perivascular space (PVS), and the CSF. A rigorous literature search was conducted focusing on experiments which alter the osmolarity of blood or ventricles and measure the rate of CSF production. Investigations into the effect of osmotic pressure on the volume of ventricles and the flux of ions in the blood, choroid plexus epithelium, and CSF are reviewed. Increasing the osmolarity of the serum via a bolus injection completely inhibits nascent fluid flow production in the ventricles. A continuous injection of a hyperosmolar solution into the ventricles can increase the volume of the ventricle by up to 125%. CSF production is altered by 0.231 µL per mOsm in the ventricle and by 0.835 µL per mOsm in the serum. Water flux from the ECS to the CSF is identified as a key feature of intracranial dynamics. A complete mathematical model with all equations and scenarios is fully described, as well as a guide to constructing a computational model of intracranial water balance dynamics. The model proposed in this article predicts the effects the osmolarity of ECS, blood, and CSF on water flux in the brain, establishing a link between osmotic imbalances and pathological conditions such as hydrocephalus and edema. PMID:25358881

  4. A Three-Dimensional Shape-Based Force and Stiffness-Sensing Platform for Tendon-Driven Catheters.

    PubMed

    Kouh Soltani, Minou; Khanmohammadi, Sohrab; Ghalichi, Farzan

    2016-06-28

    This paper presents an efficient shape-based three-axial force and stiffness estimator for active catheters commonly implemented in cardiac ablation. The force-sensing capability provides important feedback for catheterization procedures including real-time control and catheter steering in autonomous navigation systems. The proposed platform is based on the introduced accurate and computationally efficient Cosserat rod model for tendon-driven catheters. The proposed nonlinear Kalman filter formulation for contact force estimation along with the developed catheter model provides a real-time force observer robust to nonlinearities and noise covariance uncertainties. Furthermore, the proposed platform enables stiffness estimation in addition to tip contact force sensing in different operational circumstances. The approach incorporates pose measurements which can be achieved using currently developed pose-sensing systems or imaging techniques. The method makes the approach compatible with the range of forces applied in clinical applications. The simulation and experimental results verify the viability of the introduced force and stiffness-sensing technique.

  5. A Three-Dimensional Shape-Based Force and Stiffness-Sensing Platform for Tendon-Driven Catheters

    PubMed Central

    Kouh Soltani, Minou; Khanmohammadi, Sohrab; Ghalichi, Farzan

    2016-01-01

    This paper presents an efficient shape-based three-axial force and stiffness estimator for active catheters commonly implemented in cardiac ablation. The force-sensing capability provides important feedback for catheterization procedures including real-time control and catheter steering in autonomous navigation systems. The proposed platform is based on the introduced accurate and computationally efficient Cosserat rod model for tendon-driven catheters. The proposed nonlinear Kalman filter formulation for contact force estimation along with the developed catheter model provides a real-time force observer robust to nonlinearities and noise covariance uncertainties. Furthermore, the proposed platform enables stiffness estimation in addition to tip contact force sensing in different operational circumstances. The approach incorporates pose measurements which can be achieved using currently developed pose-sensing systems or imaging techniques. The method makes the approach compatible with the range of forces applied in clinical applications. The simulation and experimental results verify the viability of the introduced force and stiffness-sensing technique. PMID:27367685

  6. Probing the stochastic, motor-driven properties of the cytoplasm using force spectrum microscopy

    PubMed Central

    Guo, Ming; Ehrlicher, Allen J.; Jensen, Mikkel H.; Renz, Malte; Moore, Jeffrey R.; Goldman, Robert D.; Lippincott-Schwartz, Jennifer; Mackintosh, Frederick C.; Weitz, David A.

    2014-01-01

    SUMMARY Molecular motors in cells typically produce highly directed motion; however, the aggregate, incoherent effect of all active processes also creates randomly fluctuating forces, which drive diffusive-like, non-thermal motion. Here we introduce force-spectrum-microscopy (FSM) to directly quantify random forces within the cytoplasm of cells and thereby probe stochastic motor activity. This technique combines measurements of the random motion of probe particles with independent micromechanical measurements of the cytoplasm to quantify the spectrum of force fluctuations. Using FSM, we show that force fluctuations substantially enhance intracellular movement of small and large components. The fluctuations are three times larger in malignant cells than in their benign counterparts. We further demonstrate that vimentin acts globally to anchor organelles against randomly fluctuating forces in the cytoplasm, with no effect on their magnitude. Thus, FSM has broad applications for understanding the cytoplasm and its intracellular processes in relation to cell physiology in healthy and diseased states. PMID:25126787

  7. Chaotic phase synchronization in bursting-neuron models driven by a weak periodic force.

    PubMed

    Ando, Hiroyasu; Suetani, Hiromichi; Kurths, Jürgen; Aihara, Kazuyuki

    2012-07-01

    We investigate the entrainment of a neuron model exhibiting a chaotic spiking-bursting behavior in response to a weak periodic force. This model exhibits two types of oscillations with different characteristic time scales, namely, long and short time scales. Several types of phase synchronization are observed, such as 1:1 phase locking between a single spike and one period of the force and 1:l phase locking between the period of slow oscillation underlying bursts and l periods of the force. Moreover, spiking-bursting oscillations with chaotic firing patterns can be synchronized with the periodic force. Such a type of phase synchronization is detected from the position of a set of points on a unit circle, which is determined by the phase of the periodic force at each spiking time. We show that this detection method is effective for a system with multiple time scales. Owing to the existence of both the short and the long time scales, two characteristic phenomena are found around the transition point to chaotic phase synchronization. One phenomenon shows that the average time interval between successive phase slips exhibits a power-law scaling against the driving force strength and that the scaling exponent has an unsmooth dependence on the changes in the driving force strength. The other phenomenon shows that Kuramoto's order parameter before the transition exhibits stepwise behavior as a function of the driving force strength, contrary to the smooth transition in a model with a single time scale.

  8. Flow in complex domains simulated by Dissipative Particle Dynamics driven by geometry-specific body-forces

    NASA Astrophysics Data System (ADS)

    Yazdani, Alireza; Deng, Mingge; Caswell, Bruce; Karniadakis, George Em

    2016-01-01

    We demonstrate how the quality of simulations by Dissipative Particle Dynamics (DPD) of flows in complex geometries is greatly enhanced when driven by body forces suitably tailored to the geometry. In practice, the body force fields are most conveniently chosen to be the pressure gradient of the corresponding Navier-Stokes (N-S) flow. In the first of three examples, the driving-force required to yield a stagnation-point flow is derived from the pressure field of the potential flow for a lattice of counter-rotating line vortices. Such a lattice contains periodic squares bounded by streamlines with four vortices within them. Hence, the DPD simulation can be performed with periodic boundary conditions to demonstrate the value of a non-uniform driving-force without the need to model real boundaries. The second example is an irregular geometry consisting of a 2D rectangular cavity on one side of an otherwise uniform channel. The Navier-Stokes pressure field for the same geometry is obtained numerically, and its interpolated gradient is then employed as the driving-force for the DPD simulation. Finally, we present a third example, where the proposed method is applied to a complex 3D geometry of an asymmetric constriction. It is shown that in each case the DPD simulations closely reproduce the Navier-Stokes solutions. Convergence rates are found to be much superior to alternative methods; in addition, the range of convergence with respect to Reynolds number and Mach number is greatly extended.

  9. Tooth Eruption Results from Bone Remodelling Driven by Bite Forces Sensed by Soft Tissue Dental Follicles: A Finite Element Analysis

    PubMed Central

    Sarrafpour, Babak; Swain, Michael; Li, Qing; Zoellner, Hans

    2013-01-01

    Intermittent tongue, lip and cheek forces influence precise tooth position, so we here examine the possibility that tissue remodelling driven by functional bite-force-induced jaw-strain accounts for tooth eruption. Notably, although a separate true ‘eruptive force’ is widely assumed, there is little direct evidence for such a force. We constructed a three dimensional finite element model from axial computerized tomography of an 8 year old child mandible containing 12 erupted and 8 unerupted teeth. Tissues modelled included: cortical bone, cancellous bone, soft tissue dental follicle, periodontal ligament, enamel, dentine, pulp and articular cartilage. Strain and hydrostatic stress during incisive and unilateral molar bite force were modelled, with force applied via medial and lateral pterygoid, temporalis, masseter and digastric muscles. Strain was maximal in the soft tissue follicle as opposed to surrounding bone, consistent with follicle as an effective mechanosensor. Initial numerical analysis of dental follicle soft tissue overlying crowns and beneath the roots of unerupted teeth was of volume and hydrostatic stress. To numerically evaluate biological significance of differing hydrostatic stress levels normalized for variable finite element volume, ‘biological response units’ in Nmm were defined and calculated by multiplication of hydrostatic stress and volume for each finite element. Graphical representations revealed similar overall responses for individual teeth regardless if incisive or right molar bite force was studied. There was general compression in the soft tissues over crowns of most unerupted teeth, and general tension in the soft tissues beneath roots. Not conforming to this pattern were the unerupted second molars, which do not erupt at this developmental stage. Data support a new hypothesis for tooth eruption, in which the follicular soft tissues detect bite-force-induced bone-strain, and direct bone remodelling at the inner surface of

  10. Mediolateral force distribution at the knee joint shifts across activities and is driven by tibiofemoral alignment.

    PubMed

    Kutzner, I; Bender, A; Dymke, J; Duda, G; von Roth, P; Bergmann, G

    2017-06-01

    Tibiofemoral alignment is important to determine the rate of progression of osteoarthritis and implant survival after total knee arthroplasty (TKA). Normally, surgeons aim for neutral tibiofemoral alignment following TKA, but this has been questioned in recent years. The aim of this study was to evaluate whether varus or valgus alignment indeed leads to increased medial or lateral tibiofemoral forces during static and dynamic weight-bearing activities. Tibiofemoral contact forces and moments were measured in nine patients with instrumented knee implants. Medial force ratios were analysed during nine daily activities, including activities with single-limb support (e.g. walking) and double-limb support (e.g. knee bend). Hip-knee-ankle angles in the frontal plane were analysed using full-leg coronal radiographs. The medial force ratio strongly correlated with the tibiofemoral alignment in the static condition of one-legged stance (R² = 0.88) and dynamic single-limb loading (R² = 0.59) with varus malalignment leading to increased medial force ratios of up to 88%. In contrast, the correlation between leg alignment and magnitude of medial compartment force was much less pronounced. A lateral shift of force occurred during activities with double-limb support and higher knee flexion angles. The medial force ratio depends on both the tibiofemoral alignment and the nature of the activity involved. It cannot be generalised to a single value. Higher medial ratios during single-limb loading are associated with varus malalignment in TKA. The current trend towards a 'constitutional varus' after joint replacement, in terms of overall tibiofemoral alignment, should be considered carefully with respect to the increased medial force ratio. Cite this article: Bone Joint J 2017;99-B:779-87. ©2017 The British Editorial Society of Bone & Joint Surgery.

  11. Statistical analysis of the influence of forces on particles in EM driven recirculated turbulent flows

    NASA Astrophysics Data System (ADS)

    Ščepanskis, M.; Jakovičs, A.; Baake, E.

    2011-12-01

    The present paper contains an analysis of the statistical distribution of forces affecting non-conducting particles dispersed in an EM induced recirculated flow in induction furnaces. The simulation is conducted adopting the LES-based Euler-Lagrange approach in the limit of dilute conditions (one-way coupling). It is done by means of a development of OpenFOAM software code. The used Lagrange equation for particle tracking includes drag, EM, buoyancy, lift, acceleration and added mass forces. The relevant approximations for the forces are chosen on the basis of the statistical analysis of the non-dimensional parameters (particle Reynolds number, shear stress and acceleration parameter). The effect of force distribution on particle homogenization is described under different density ratios and particle sizes. The recommendations of the consistence of the Lagrange model for the simulation of the particle motion in the laboratory scale induction crucible furnace are given in conclusion.

  12. Probing the stochastic, motor-driven properties of the cytoplasm using force spectrum microscopy.

    PubMed

    Guo, Ming; Ehrlicher, Allen J; Jensen, Mikkel H; Renz, Malte; Moore, Jeffrey R; Goldman, Robert D; Lippincott-Schwartz, Jennifer; Mackintosh, Frederick C; Weitz, David A

    2014-08-14

    Molecular motors in cells typically produce highly directed motion; however, the aggregate, incoherent effect of all active processes also creates randomly fluctuating forces, which drive diffusive-like, nonthermal motion. Here, we introduce force-spectrum-microscopy (FSM) to directly quantify random forces within the cytoplasm of cells and thereby probe stochastic motor activity. This technique combines measurements of the random motion of probe particles with independent micromechanical measurements of the cytoplasm to quantify the spectrum of force fluctuations. Using FSM, we show that force fluctuations substantially enhance intracellular movement of small and large components. The fluctuations are three times larger in malignant cells than in their benign counterparts. We further demonstrate that vimentin acts globally to anchor organelles against randomly fluctuating forces in the cytoplasm, with no effect on their magnitude. Thus, FSM has broad applications for understanding the cytoplasm and its intracellular processes in relation to cell physiology in healthy and diseased states. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Coupled objective function to study the role of abdominal muscle forces in lifting using the kinematics-driven model.

    PubMed

    El Ouaaid, Z; Shirazi-Adl, A; Arjmand, N; Plamondon, A

    2013-01-01

    To circumvent the existing shortcoming of optimisation algorithms in trunk biomechanical models, both agonist and antagonist trunk muscle stresses to different powers are introduced in a novel objective function to evaluate the role of abdominal muscles in trunk stability and spine compression. This coupled objective function is introduced in our kinematics-driven finite element model to estimate muscle forces and to identify the role of abdominal muscles in upright standing while lifting symmetrically a weight at different heights. Predictive equations for the compression and buckling forces are developed. Results are also compared with the conventional objective function that neglects abdominal muscle forces. An overall optimal solution involving smaller spinal compression but higher trunk stability is automatically attained when choosing muscle stress powers at and around 3. Results highlight the internal oblique muscle as the most efficient abdominal muscle during the tasks investigated. The estimated relative forces in abdominal muscles are found to be in good agreement with the respective ratios of recorded electromyography activities.

  14. Force-driven evolution of mesoscale structure in engineered 3D microtissues and the modulation of tissue stiffening

    PubMed Central

    Zhao, Ruogang; Chen, Christopher S.; Reich, Daniel H.

    2014-01-01

    The complex structures of tissues determine their mechanical strength. In engineered tissues formed through self-assembly in a mold, artificially imposed boundary constraints have been found to induce anisotropic clustering of the cells and the extracellular matrix in local regions. To understand how such tissue remodeling at the intermediate length-scale (mesoscale) affects tissue stiffening, we used a novel microtissue mechanical testing system to manipulate the remodeling of the tissue structures and to measure the subsequent changes in tissue stiffness. Microtissues were formed through cell driven self-assembly of collagen matrix in arrays of micro-patterned wells, each containing two flexible micropillars that measured the microtissues’ contractile forces and also their elastic moduli via magnetic actuation. We manipulated tissue remodeling by inducing myofibroblast differentiation with TGF-β1, by varying the micropillar spring constants or by blocking cell contractility with blebbistatin and collagen cross-linking with BAPN. We showed that increased anisotropic compaction of the collagen matrix, caused by increased micropillar spring constant or elevated cell contraction force, contributed to tissue stiffening. Conversely, collagen matrix and tissue stiffness were not affected by inhibition of cell-generated contraction forces.. Together, these measurements showed that mesoscale tissue remodeling is an important middle step linking tissue compaction forces and tissue stiffening. PMID:24630092

  15. The role of turbulent dissipation in planetary fluid interiors driven by tidal and librational forcing

    NASA Astrophysics Data System (ADS)

    Grannan, Alex; Favier, Benjamin; Bills, Bruce; Lemasquerier, Daphne; Le Bars, Michael; Aurnou, Jonathan

    2016-10-01

    The turbulent fluid motions generated in the liquid metal cores and oceans of planetary bodies can have profound effects on energy dissipation and magnetic field generation. An important driver of such fluid motions is mechanical forcing from precession, libration, and tidal forcing. On Earth, the dissipation of energy through tidal forcing occurs primarily in the oceans and may be due, in part, to nonlinear tidally forced resonances. However, the role that such nonlinear resonances play are not generally considered for other planetary bodies also possessing oceans and liquid metal cores.Recent laboratory experimental and numerical studies of Grannan et al. 2014 and Favier et al. 2015 have shown that nonlinear fluid resonances generated by sufficiently strong librational forcing can drive turbulent flows in ellipsoidal containers that mimic gravitational deformations. In Grannan et al. 2016, similar results were found for strong tidal forcing. Thus, a generalized scaling law for the turbulent r.m.s. velocity is derived, U~ɛβE-α, where ɛ is the dimensionless amplitude of the tidal or librational forcing, β is the dimensionless tidal deformation of the body, E is the dimensionless Ekman number characterizing the ratio of viscous to Coriolis forces, and α is a varying exponent.Using planetary values for tidal and librational forcing parameters, the turbulent dissipation is estimated for multiple bodies. For the subsurface oceans of Europa and Enceladus, the amount of nonlinear dissipation is comparable to the dissipation generated from linear resonances of the fluid layer and from upper bounding estimates of the tidal dissipation in the solid icy shell. In addition, our estimates of this turbulent dissipation provide bounds for the stratification in these subsurface oceans. Finally we find that dissipation from these nonlinear resonances in the liquid metal cores of the the early and present Earth, Io, and several exoplanets may help drive the dynamos in these

  16. Stochastic Forcing of the North Atlantic Wind-Driven Ocean Circulation

    NASA Astrophysics Data System (ADS)

    Chhak, K. C.; Moore, A. M.; Milliff, R. F.; Branstator, G.; Holland, W. R.

    2003-12-01

    The magnitude of stochastic wind stress forcing due to atmospheric weather has been observed to be comparable in size to that of the seasonal cycle at mid-latitudes. Stochastic forcing is therefore likely to have a significant influence on the ocean circulation and climate system. In this work, the goal is to determine the effect of the stochastic component of the wind forcing on the North Atlantic ocean circulation. To this end, a quasi-geostrophic model of the North Atlantic was forced with stochastic wind stress curl data obtained from NCAR's Community Climate Model 3. The enstrophy dynamics in model experiments suggests that much of the stochastically induced variability in the ocean circulation occurs via the western boundary current. This localized response occurs even though the stochastic forcing occurs over most of the ocean basin. Using the ideas of generalized stability theory, we are able to conclude that this localized response is due to Rossby waves interacting with the mean flow in the western boundary. We also find, by looking at the model pseudospectra, that the non-normal nature of the model enhances the transient growth of perturbation enstrophy and helps maintain the stochastically induced variance that is produced in the western boundary region.

  17. Mapping of force fields in a capacitively driven radiofrequency plasma discharge

    NASA Astrophysics Data System (ADS)

    Dropmann, Michael; Chen, M.; Sabo, H.; Laufer, R.; Herdrich, G.; Matthews, L. S.; Hyde, T. W.

    2016-08-01

    In this paper a method is described that allows mapping of the forces acting on dust particles in a GEC reference cell. Monodisperse particles are dropped into the plasma environment and their trajectories are tracked using a high-speed camera system to determine local accelerations and respective forces. Collecting data from a large number of particle drops allows the identification of three-dimensional vector fields for the acting forces. The procedure is described and multiple examples in which the method has been applied are given. These examples include a simple plasma sheath, plasmas perturbed by a horizontal and vertical dipole magnet, an array of multiple magnets mimicking the fields found at a lunar swirl, and the fields inside a glass box used for particle confinement. Further applicability in other plasma environments will be discussed shortly.

  18. Spinmotive force due to motion of magnetic bubble arrays driven by magnetic field gradient

    PubMed Central

    Yamane, Yuta; Hemmatiyan, Shayan; Ieda, Jun'ichi; Maekawa, Sadamichi; Sinova, Jairo

    2014-01-01

    Interaction between local magnetization and conduction electrons is responsible for a variety of phenomena in magnetic materials. It has been recently shown that spin current and associated electric voltage can be induced by magnetization that depends on both time and space. This effect, called spinmotive force, provides for a powerful tool for exploring the dynamics and the nature of magnetic textures, as well as a new source for electromotive force. Here we theoretically demonstrate the generation of electric voltages in magnetic bubble array systems subjected to a magnetic field gradient. It is shown by deriving expressions for the electric voltages that the present system offers a direct measure of phenomenological parameter β that describes non-adiabaticity in the current induced magnetization dynamics. This spinmotive force opens a door for new types of spintronic devices that exploit the field-gradient. PMID:25365971

  19. Interplay of RhoA and mechanical forces in collective cell migration driven by leader cells.

    PubMed

    Reffay, M; Parrini, M C; Cochet-Escartin, O; Ladoux, B; Buguin, A; Coscoy, S; Amblard, F; Camonis, J; Silberzan, P

    2014-03-01

    The leading front of a collectively migrating epithelium often destabilizes into multicellular migration fingers where a cell initially similar to the others becomes a leader cell while its neighbours do not alter. The determinants of these leader cells include mechanical and biochemical cues, often under the control of small GTPases. However, an accurate dynamic cartography of both mechanical and biochemical activities remains to be established. Here, by mapping the mechanical traction forces exerted on the surface by MDCK migration fingers, we show that these structures are mechanical global entities with the leader cells exerting a large traction force. Moreover, the spatial distribution of RhoA differential activity at the basal plane strikingly mirrors this force cartography. We propose that RhoA controls the development of these fingers through mechanical cues: the leader cell drags the structure and the peripheral pluricellular acto-myosin cable prevents the initiation of new leader cells.

  20. Design of a Prototype Microcomputer Driven Training Device for an Air Force Maintenance School

    DTIC Science & Technology

    1979-08-01

    digital system." 3. Kargo, Donald W. and Steffen, Dale A. Performance Training Carrel for Electronics Principles Course, Sept 76, AFHRL-TR 76-62(1), pg 1...June 1977 Kargo, Donald W. and Steffen, Dale A. Performance Training Corral for Electronics Principles Course, AFHRL-TR 76-62(i), Air Force Human

  1. Rotordynamic effects driven by fluid forces from a geometrically imperfect labyrinth

    NASA Astrophysics Data System (ADS)

    Williston, William C., Jr.

    1993-12-01

    The forces on a rotor due to asymmetric pressure distributions resulting from a single gland non-circular labyrinth seal in a circular outer casing are analyzed for the purpose of understanding the possible causes of synchronous vibration due to seal intolerance. A lumped parameter model is developed for flow in the azimuthal direction inside the seal gland. The sealing knife imperfections causing the non-circularity may be due to manufacturing defects or in service ware. The resulting continuity and momentum equations are solved using a regular linear perturbation technique. Results from this model indicate under what conditions seal imperfections can generate forces of the same order of magnitude as rotor mass unbalance.

  2. The stretching force on a tethered polymer in pressure-driven flow

    NASA Astrophysics Data System (ADS)

    Szuttor, Kai; Roy, Tamal; Hardt, Steffen; Holm, Christian; Smiatek, Jens

    2017-07-01

    We use mesoscopic lattice-Boltzmann/molecular dynamics simulations to study the stretching behavior of a single tethered polymer in micro- and nanochannels. In particular, we are interested in the connection between fluid flow properties and the force on the polymer chain. An analytical expression for the stretching force is proposed, which linearly depends on the number of monomers and the boundary shear rate. In agreement with theory, the numerical findings reveal that the influence of hydrodynamic interactions can be ignored, which is also supported by results of additional Langevin dynamics simulations. Our simulation data coincide with the analytical expression for the fractional extension of the chain and further indicate that even weak Poiseuille flow profiles induce a strong alignment of the chain along the channel walls. The numerical results are in good agreement with experimental data obtained by microfluidic stretching of tethered λ -DNA.

  3. Heinrich events driven by feedback between ocean forcing and glacial isostatic adjustment

    NASA Astrophysics Data System (ADS)

    Bassis, J. N.; Petersen, S. V.; Cathles, L. M. M., IV

    2015-12-01

    One of the most puzzling glaciological features of the past ice age is the episodic discharge of large volumes of icebergs from the Laurentide Ice Sheet, known as Heinrich events. It has been suggested that Heinrich events are caused by internal instabilities in the ice sheet (e.g. the binge-purge oscillation). A purely ice dynamic cycle, however, is at odds with the fact that every Heinrich event occurs during the cold phase of a DO cycle, implying some regional climate connection. Recent work has pointed to subsurface water warming as a trigger for Heinrich events through increased basal melting of an ice shelf extending across the Hudson Strait and connecting with the Greenland Ice Sheet. Such a large ice shelf, spanning the deepest part of the Labrador Sea, has no modern analog and limited proxy evidence. Here we use a width averaged "flowline" model of the Hudson Strait ice stream to show that Heinrich events can be triggered by ocean forcing of a grounded terminus without the need for an ice shelf. At maximum ice extent, bed topography is depressed and the terminus is more sensitive to a subsurface thermal forcing. Once triggered, the retreat is rapid, and continues until isostatic rebound of the bed causes local sea level to drop sufficiently to arrest retreat. Topography slowly rebounds, decreasing the sensitivity to ocean forcing and the ice stream re-advances at a rate that is an order of magnitude slower than collapse. This simple feedback cycle between a short-lived ocean trigger and slower isostatic adjustment can reproduce the periodicity and timing of observed Heinrich events under a range of glaciological and solid earth parameters. Our results suggest that not only does the solid Earth play an important role in regulating ice sheet stability, but that grounded marine terminating portions of ice sheets may be more sensitive to ocean forcing than previously thought.

  4. Numerics of surface acoustic wave (SAW) driven acoustic streaming and radiation force

    NASA Astrophysics Data System (ADS)

    Nama, Nitesh; Barnkob, Rune; Kahler, Christian; Costanzo, Francesco; Jun Huang, Tony

    2015-11-01

    Recently, surface acoustic wave (SAW) based systems have shown great potential for various lab-on-a-chip applications. However, the physical understanding of the precise acoustic fields and associated acoustophoresis is rather limited. In this work, we present a numerical study of the acoustophoretic particle motion inside a SAW-actuated, liquid-filled polydimethylsiloxane (PDMS) microchannel. We utilize a perturbation approach to divide the flow variables into first- and second-order components. The first-order fields result in a time-averaged acoustic radiation force on suspended particles, as well as the time-averaged body force terms that drive the second-order fields. We model the SAW actuation by a displacement function while we utilize impedance boundary conditions to model the PDMS walls. We identify the precise acoustic fields generated inside the microchannel and investigate a range of particle sizes to characterize the transition from streaming-dominated acoustophoresis to radiation-force-dominated acoustophoresis. Lastly, we demonstrate the ability of SAW devices to tune the position of vertical pressure node inside the microchannel by tuning the phase difference between the two incoming surface acoustic waves.

  5. Simulating Wave-Driven Circulation in Tidal Inlets With Tide and River Forcing Using a Coupled Hydrodynamic-Wave Model

    NASA Astrophysics Data System (ADS)

    Cobb, M.; Blain, C. A.

    2001-12-01

    Tidal inlets are important areas with respect to bio-diversity, sediment transport, and fresh water river outflow. This study examines the 2-D depth-averaged circulation of inlets that are driven by waves, tides, and fresh water river inflow using a coupled hydrodynamic-wave model. The circulation patterns of an ideal embayment and Bay St. Louis, located in the northeastern Gulf of Mexico, are compared under the range of forcing conditions. Wave-current interaction is simulated by iteratively coupling the depth-integrated ADCIRC-2DDI hydrodynamic model to the phase-averaged spectral wave model SWAN. Radiation stress gradients are determined from the wave predictions of SWAN and used to force the circulation model. ADCIRC-2DDI is a fully developed, 2-dimensional, finite element, barotropic hydrodynamic model capable of including wind, wave, and tidal forcing as well as river flux into the domain. The circulation within each inlet is examined during the flood, slack, and ebb phases of the tidal cycles with and without river inflow under different wave conditions. The effects of including/excluding advection and varying the strength of the lateral mixing are examined as well. The influence of the various forcings on bay/inlet circulation is further investigated by the introduction of Lagrangian tracers. Lagrangian tracers are a reasonable indicator of how circulation patterns affect the motion of sediment particles or passive biological organisms such as fish larvae. Lastly, influence of the wave model itself in the hydrodynamic coupling, and in particular the effect of wave diffraction on the wave-induced circulation, is comparatively examined within the ideal inlet by separately coupling the REF/DIF1 and REF/DIFS wave models to ADCIRC-2DDI; REF/DIF1 is a monochromatic phase-resolving wave model capable of simulating wave diffraction and refraction and REF/DIF-S is a multi-spectral version of REF/DIF1.

  6. Self-Assembly of Silver Nanowire Ring Structures Driven by the Compressive Force of a Liquid Droplet.

    PubMed

    Seong, Baekhoon; Park, Hyun Sung; Chae, Ilkyeong; Lee, Hyungdong; Wang, Xiaofeng; Jang, Hyung-Seok; Jung, Jaehyuck; Lee, Changgu; Lin, Liwei; Byun, Doyoung

    2017-04-11

    In a nanowire dispersed in liquid droplets, the interplay between the surface tension of the liquid and the elasticity of the nanowire determines the final morphology of the bent or buckled nanowire. Here, we investigate the fabrication of a silver nanowire ring generated as the nanowire encapsulated inside of fine droplets. We used a hybrid aerodynamic and electrostatic atomization method to ensure the generation of droplets with scalable size in the necessary regime for ring formation. We analytically calculate the compressive force of the droplet driven by surface tension as the key mechanism for the self-assembly of ring structures. Thus, for potential large-scale manufacturing, the droplet size provides a convenient parameter to control the realization of ring structures from nanowires.

  7. Force.

    ERIC Educational Resources Information Center

    Gamble, Reed

    1989-01-01

    Discusses pupil misconceptions concerning forces. Summarizes some of Assessment of Performance Unit's findings on meaning of (1) force, (2) force and motion in one dimension and two dimensions, and (3) Newton's second law. (YP)

  8. Force.

    ERIC Educational Resources Information Center

    Gamble, Reed

    1989-01-01

    Discusses pupil misconceptions concerning forces. Summarizes some of Assessment of Performance Unit's findings on meaning of (1) force, (2) force and motion in one dimension and two dimensions, and (3) Newton's second law. (YP)

  9. Experimental evidence of landscape reorganization under changing external forcing: implications to climate-driven knickpoints

    NASA Astrophysics Data System (ADS)

    Singh, Arvind; Tejedor, Alejandro; Grimaud, Jean-Louis; Foufoula-Georgiou, Efi

    2017-04-01

    Understanding and quantifying geomorphic and topologic re-organization of landscape in response to changing climatic or tectonic forcing is of scientific and practical interest. Although several studies have addressed the large-scale response (e.g., change in mean relief), studies on the smaller-scale drainage pattern re-organization and quantification of landscape vulnerability to the timing, magnitude, and frequency of changing forcing are lacking. To that goal, a series of controlled laboratory experiments were conducted to study the effect of changing precipitation patterns on landscape evolution at the short and long-time scales. High resolution digital elevation (DEM) both in space and time were measured for a range of rainfall patterns and uplift rates. Results from our study show a distinct signature of the precipitation increase on the probabilistic and geometrical structure of landscape features, evident in widening and deepening of channels and valleys, change in drainage patterns within sub-basins and change in the space-time structure of erosional and depositional events. A spatially explicit analysis of the locus of these erosional and depositional events show an acceleration of erosion in the hillslopes when the rainfall intensity is increased, while the incision in fluvial channels is slowed down exhibiting a sediment-flux dependent behavior. Finally, we document the changes in the longitudinal river profiles with increasing precipitation intensity, revealing the formation of knickpoints at certain confluences where large discontinuities in the ratio Qs/Qw are observed.

  10. Delocalization-enhanced Bloch oscillations and driven resonant tunneling in optical lattices for precision force measurements

    NASA Astrophysics Data System (ADS)

    Tarallo, M. G.; Alberti, A.; Poli, N.; Chiofalo, M. L.; Wang, F.-Y.; Tino, G. M.

    2012-09-01

    In this paper, we describe and compare different methods used for the accurate determination of forces acting on matter-wave packets in optical lattices. The quantum interference nature responsible for the production of both Bloch oscillations and coherent delocalization is investigated in detail. We study conditions for the optimal detection of Bloch oscillation for a thermal ensemble of cold atoms with a large velocity spread. We report on the experimental observation of resonant tunneling in an amplitude-modulated optical lattice up to the sixth harmonic with Fourier-limited linewidth. We then explore the fundamental and technical phenomena which limit both the sensitivity and the final accuracy of the atomic force sensor at a 10-7 precision level [Poli , Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.106.038501 106, 038501 (2011)], with an analysis of the coherence time of the system. We address a few simple setup changes to go beyond the current accuracy.

  11. Embbeded dipolar vortices driven by Lorentz forces in a shallow liquid metal layer

    NASA Astrophysics Data System (ADS)

    Lara, Cinthya G.; Cuevas, Sergio

    2014-11-01

    We present an experimental and numerical study of the vortex pattern that results from the action of a localized Lorentz force in a thin liquid metal layer (GaInSn) contained in a square box. The fluid motion is generated by the interaction of a uniform D.C. current and a non-uniform magnetic field produced by square-shaped permanent magnet much smaller that the container. Unlike the simple vortex dipole created by a localized Lorentz force in a layer of electrolyte, a more complex vortex pattern is formed in a liquid metal layer. Experiments show the appearance of two ``embedded'' vortex dipoles with a quasi-stagnat zone in the region of highest magnetic field intensity. The observed pattern can be explained by noticing that the localized magnetic field acts as a magnetic obstacle for the imposed flow. Using the Ultrasonic Doppler Velocimetry technique, we obtained the velocity profiles along the symmetry axis. We developed a quasi-two-dimensional numerical model that takes into account the effect of the boundary layers adhered to the bottom wall, the Hartmann friction and the induced effects. Numerical simulations show a satisfactory qualitative and quantitative agreement with the experimental results. Work supported by CONACYT, Mexico under Project 131399. C. G. Lara acknowledges a grant from CONACYT.

  12. Modeling of an omni-directional electromagnetic acoustic transducer driven by the Lorentz force mechanism

    NASA Astrophysics Data System (ADS)

    Wang, Shen; Huang, Songling; Zhang, Yu; Zhao, Wei

    2016-12-01

    The electromagnetic acoustic transducers (EMATs) are gaining much attention in recent years due to their non-contact operation in ultrasonic wave generation and reception in NDT field. Quite often the transduction efficiency of EMATs is low, so efforts are always necessary to gain a better understanding of their complex and multi-physics transduction mechanism. In this work, we focused on modeling of an omni-directional Lorentz force-based EMAT operating on an aluminum disk and containing a rounded meander coil to generate a pure Lamb wave mode. We introduced an approach to solve the underlying eddy current equations in cylindrical coordinates directly, and applied this approach to a multi-conductor electromagnetic model to investigate the skin and proximity effects. These effects existed both for the complete and incomplete equations. Then we built the omni-directional EMAT model composed of three sub-models and two geometries. The two-geometry structure made it possible to reduce the total number of elements. Time varying spatial distribution of the Lorentz force vector was plotted. Propagation velocity of the simulated wave packet was compared with the group velocity of desired S0 mode Lamb waves. Interaction of the waves with a slot defect with a depth of 50% thickness was studied. The response to high current excitation and dynamic magnetic field was also investigated.

  13. Two millennia of Mesoamerican monsoon variability driven by Pacific and Atlantic synergistic forcing

    NASA Astrophysics Data System (ADS)

    Lachniet, Matthew S.; Asmerom, Yemane; Polyak, Victor; Bernal, Juan Pablo

    2017-01-01

    The drivers of Mesoamerican monsoon variability over the last two millennia remain poorly known because of a lack of precisely-dated and climate-calibrated proxy records. Here, we present a new high resolution (∼2 yrs) and precisely-dated (± 4 yr) wet season hydroclimate reconstruction for the Mesoamerican sector of the North American Monsoon over the past 2250 years based on two aragonite stalagmites from southwestern Mexico which replicate oxygen isotope variations over the 950-1950 CE interval. The reconstruction is quantitatively calibrated to instrumental rainfall variations in the Basin of Mexico. Comparisons to proxy indices of ocean-atmosphere circulation show a synergistic forcing by the North Atlantic and El Niño/Southern Oscillations, whereby monsoon strengthening coincided with a La Niña-like mode and a negative North Atlantic Oscillation, and vice versa for droughts. Our data suggest that weak monsoon intervals are associated with a strong North Atlantic subtropical high pressure system and a weak Intertropical convergence zone in the eastern Pacific Ocean. Population expansions at three major highland Mexico civilization of Teotihuacan, Tula, and Aztec Tenochtitlan were all associated with drought to pluvial transitions, suggesting that urban population growth was favored by increasing freshwater availability in the semi-arid Mexican highlands, and that this hydroclimatic change was controlled by Pacific and Atlantic Ocean forcing.

  14. Dehydration-Driven Solvent Exposure of Hydrophobic Surfaces as a Driving Force in Peptide Folding

    SciTech Connect

    Daidone, Isabella; Ulmschneider, Martin; DiNola, Alfredo; Amadei, Andrea; Smith, Jeremy C

    2007-09-01

    Recent work has shown that the nature of hydration of pure hydrophobic surfaces changes with the length scale considered: water hydrogen-bonding networks adapt to small exposed hydrophobic species, hydrating or 'wetting' them at relatively high densities, whereas larger hydrophobic areas are 'dewetted' [Chandler D (2005), Nature 29:640-647]. Here we determine whether this effect is also present in peptides by examining the folding of a {beta}-hairpin (the 14-residue amyloidogenic prion protein H1 peptide), using microsecond time-scale molecular dynamics simulations. Two simulation models are compared, one explicitly including the water molecules, which may thus adapt locally to peptide configurations, and the other using a popular continuum approximation, the generalized Born/surface area implicit solvent model. The results obtained show that, in explicit solvent, peptide conformers with high solvent-accessible hydrophobic surface area indeed also have low hydration density around hydrophobic residues, whereas a concomitant higher hydration density around hydrophilic residues is observed. This dewetting effect stabilizes the fully folded {beta}-hairpin state found experimentally. In contrast, the implicit solvent model destabilizes the fully folded hairpin, tending to cluster hydrophobic residues regardless of the size of the exposed hydrophobic surface. Furthermore, the rate of the conformational transitions in the implicit solvent simulation is almost doubled with respect to that of the explicit solvent. The results suggest that dehydration-driven solvent exposure of hydrophobic surfaces may be a significant factor determining peptide conformational equilibria.

  15. Onset of deglacial warming in West Antarctica driven by local orbital forcing

    USGS Publications Warehouse

    WAIS Divide Project Members,; Steig, Eric J.; Markle, Bradley R.; Schoenemann, Spruce W.; Ding, Qinghua; Taylor, Kendrick C.; McConnell, Joseph R.; Brook, Edward J.; Sowers, Todd; White, James W. C.; Alley, Richard B.; Chen, Hai; Clow, Gary D.; Cole-Dai, Jihong; Conway, Howard; Fitzpatrick, Joan J.; Hargreaves, Geoffrey; ,

    2013-01-01

    The cause of warming in the Southern Hemisphere during the most recent deglaciation remains a matter of debate. Hypotheses for a Northern Hemisphere trigger, through oceanic redistributions of heat, are based in part on the abrupt onset of warming seen in East Antarctic ice cores and dated to 18,000 years ago, which is several thousand years after high-latitude Northern Hemisphere summer insolation intensity began increasing from its minimum, approximately 24,000 years ago. An alternative explanation is that local solar insolation changes cause the Southern Hemisphere to warm independently. Here we present results from a new, annually resolved ice-core record from West Antarctica that reconciles these two views. The records show that 18,000 years ago snow accumulation in West Antarctica began increasing, coincident with increasing carbon dioxide concentrations, warming in East Antarctica and cooling in the Northern Hemisphere associated with an abrupt decrease in Atlantic meridional overturning circulation. However, significant warming in West Antarctica began at least 2,000 years earlier. Circum-Antarctic sea-ice decline, driven by increasing local insolation, is the likely cause of this warming. The marine-influenced West Antarctic records suggest a more active role for the Southern Ocean in the onset of deglaciation than is inferred from ice cores in the East Antarctic interior, which are largely isolated from sea-ice changes.

  16. Onset of deglacial warming in West Antarctica driven by local orbital forcing.

    PubMed

    2013-08-22

    The cause of warming in the Southern Hemisphere during the most recent deglaciation remains a matter of debate. Hypotheses for a Northern Hemisphere trigger, through oceanic redistributions of heat, are based in part on the abrupt onset of warming seen in East Antarctic ice cores and dated to 18,000 years ago, which is several thousand years after high-latitude Northern Hemisphere summer insolation intensity began increasing from its minimum, approximately 24,000 years ago. An alternative explanation is that local solar insolation changes cause the Southern Hemisphere to warm independently. Here we present results from a new, annually resolved ice-core record from West Antarctica that reconciles these two views. The records show that 18,000 years ago snow accumulation in West Antarctica began increasing, coincident with increasing carbon dioxide concentrations, warming in East Antarctica and cooling in the Northern Hemisphere associated with an abrupt decrease in Atlantic meridional overturning circulation. However, significant warming in West Antarctica began at least 2,000 years earlier. Circum-Antarctic sea-ice decline, driven by increasing local insolation, is the likely cause of this warming. The marine-influenced West Antarctic records suggest a more active role for the Southern Ocean in the onset of deglaciation than is inferred from ice cores in the East Antarctic interior, which are largely isolated from sea-ice changes.

  17. Electrothermally driven high-frequency piezoresistive SiC cantilevers for dynamic atomic force microscopy

    SciTech Connect

    Boubekri, R.; Cambril, E.; Couraud, L.; Bernardi, L.; Madouri, A.; Portail, M.; Chassagne, T.; Moisson, C.; Zielinski, M.; Jiao, S.; Michaud, J.-F.; Alquier, D.; Bouloc, J.; Nony, L.; Bocquet, F.; Loppacher, C.

    2014-08-07

    Cantilevers with resonance frequency ranging from 1 MHz to 100 MHz have been developed for dynamic atomic force microscopy. These sensors are fabricated from 3C-SiC epilayers grown on Si(100) substrates by low pressure chemical vapor deposition. They use an on-chip method both for driving and sensing the displacement of the cantilever. A first gold metallic loop deposited on top of the cantilever is used to drive its oscillation by electrothermal actuation. The sensing of this oscillation is performed by monitoring the resistance of a second Au loop. This metallic piezoresistive detection method has distinct advantages relative to more common semiconductor-based schemes. The optimization, design, fabrication, and characteristics of these cantilevers are discussed.

  18. Indian and African plate motions driven by the push force of the Réunion plume head.

    PubMed

    Cande, Steven C; Stegman, Dave R

    2011-07-06

    Mantle plumes are thought to play an important part in the Earth's tectonics, yet it has been difficult to isolate the effect that plumes have on plate motions. Here we analyse the plate motions involved in two apparently disparate events--the unusually rapid motion of India between 67 and 52 million years ago and a contemporaneous, transitory slowing of Africa's motion--and show that the events are coupled, with the common element being the position of the Indian and African plates relative to the location of the Réunion plume head. The synchroneity of these events suggests that they were both driven by the force of the Réunion plume head. The recognition of this plume force has substantial tectonic implications: the speed-up and slowdown of India, the possible cessation of convergence between Africa and Eurasia in the Palaeocene epoch and the enigmatic bends of the fracture zones on the Southwest Indian Ridge can all be attributed to the Réunion plume. ©2011 Macmillan Publishers Limited. All rights reserved

  19. Quantifying submarine landslide processes driven by active tectonic forcing: Cook Strait submarine canyon, New Zealand.

    NASA Astrophysics Data System (ADS)

    Mountjoy, J. J.; Barnes, P. M.; Pettinga, J. R.

    2006-12-01

    The Cook Strait submarine canyon system is a multi-branched, deeply incised and highly sinuous feature of New Zealand's active margin, covering some 1500km2 of sea floor between the North and South Islands and spanning water depths of between 50 and 2700m. The canyon occurs at the transition from the westward dipping oblique subduction zone adjacent to the SE North Island and the zone of continental transpression in NE South Island. The recent acquisition of high resolution (5-10m) SIMRAD EM300 bathymetric data allows active tectonic and geomorphic processes to be assessed and quantified at a level of detail previously not possible. While multiple active submarine fault traces have been identified in the Cook Strait by previous studies, quantitative information on their activity has been limited. Cook Strait is structurally characterized by westward dipping thrust faults and E-W trending dextral strike slip faults. The multiple large magnitude high frequency earthquake sources define zones of very high ground shaking expected to contribute to triggering of extensive submarine slope failures. Landslide activity within the canyon system is widespread and represents the dominant mass movement process affecting canyon heads and walls, redistributing material into valley fills. Complexes of large (km3) multi-stepped, deep-seated (100m) translational bedding plane failures represented by gently sloping (<3°) evacuated slide-scar areas with associated blocky valley fill deposits are numerous. Steep catchment heads, channel walls and the leading edges of asymmetric thrust-fault driven anticlines are dominated by gulley and rill systems with associated eroded and/or incipient slump features. Large (107m3+) slide blocks are recognized in discrete failures with quantifiable displacement vectors. Tsunamigenic landslides in this environment are inevitable. This study will provide quantification of landslide models including triggering mechanisms, discrete geometries and

  20. Proton motive force-driven and ATP-dependent drug extrusion systems in multidrug-resistant Lactococcus lactis.

    PubMed Central

    Bolhuis, H; Molenaar, D; Poelarends, G; van Veen, H W; Poolman, B; Driessen, A J; Konings, W N

    1994-01-01

    Three mutants of Lactococcus lactis subsp. lactis MG1363, termed EthR, DauR, and RhoR, were selected for resistance to high concentrations of ethidium bromide, daunomycin, and rhodamine 6G, respectively. These mutants were found to be cross resistant to a number of structurally and functionally unrelated drugs, among which were typical substrates of the mammalian multidrug transporter (P-glycoprotein) such as daunomycin, quinine, actinomycin D, gramicidin D, and rhodamine 6G. The three multidrug-resistant strains showed an increased rate of energy-dependent ethidium and daunomycin efflux compared with that of the wild-type strain. This suggests that resistance to these toxic compounds is at least partly due to active efflux. Efflux of ethidium from the EthR strain could occur against a 37-fold inwardly directed concentration gradient. In all strains, ethidium efflux was inhibited by reserpine, a well-known inhibitor of P-glycoprotein. Ionophores which selectively dissipate the membrane potential or the pH gradient across the membrane inhibited ethidium and daunomycin efflux in the wild-type strain, corresponding with a proton motive force-driven efflux system. The ethidium efflux system in the EthR strain, on the other hand, was inhibited by ortho-vanadate and not upon dissipation of the proton motive force, which suggests the involvement of ATP in the energization of transport. The partial inhibition of ethidium efflux by ortho-vanadate and nigericin in the DauR and RhoR strains suggest that a proton motive force-dependent and an ATP-dependent system are expressed simultaneously. This is the first report of an ATP-dependent transport system in prokaryotes which confers multidrug resistance to the organism. PMID:7961458

  1. Dielectrophoresis-magnetophoresis force driven magnetic nanoparticle movement in transformer oil based magnetic fluids.

    PubMed

    Lee, Jong-Chul; Lee, Sangyoup

    2013-09-01

    Magnetic fluid is a stable colloidal mixture contained magnetic nanoparticles coated with a surfactant. Recently, it was found that the fluid has properties to increase heat transfer and dielectric characteristics due to the added magnetic nanoparticles in transformer oils. The magnetic nanoparticles in the fluid experience an electrical force directed toward the place of maximum electric field strength when the electric field is applied. And when the external magnetic field is applied, the magnetic nanoparticles form long chains oriented along the direction of the field. The behaviors of magnetic nanoparticles in both the fields must play an important role in changing the heat transfer and dielectric characteristics of the fluids. In this study, we visualized the movement of magnetic nanoparticles influenced by both the fields applied in-situ. It was found that the magnetic nanoparticles travel in the region near the electrode by the electric field and form long chains along the field direction by the magnetic field. It can be inferred that the movement of magnetic nanoparticles appears by both the fields, and the breakdown voltage of transformer oil based magnetic fluids might be influenced according to the dispersion of magnetic nanoparticles.

  2. Lamb Wave-Based Acoustic Radiation Force-Driven Particle Ring Formation Inside a Sessile Droplet.

    PubMed

    Destgeer, Ghulam; Ha, Byunghang; Park, Jinsoo; Sung, Hyung Jin

    2016-04-05

    We demonstrate an acoustofluidic device using Lamb waves (LWs) to manipulate polystyrene (PS) microparticles suspended in a sessile droplet of water. The LW-based acoustofluidic platform used in this study is advantageous in that the device is actuated over a range of frequencies without changing the device structure or electrode pattern. In addition, the device is simple to operate and cheap to fabricate. The LWs, produced on a piezoelectric substrate, attenuate inside the fluid and create acoustic streaming flow (ASF) in the form of a poloidal flow with toroidal vortices. The PS particles experience direct acoustic radiation force (ARF) in addition to being influenced by the ASF, which drive the concentration of particles to form a ring. This phenomenon was previously attributed to the ASF alone, but the present experimental results confirm that the ARF plays an important role in forming the particle ring, which would not be possible in the presence of only the ASF. We used a range of actuation frequencies (45-280 MHz), PS particle diameters (1-10 μm), and droplet volumes (5, 7.5, and 10 μL) to experimentally demonstrate this phenomenon.

  3. A new model for biological effects of radiation and the driven force of molecular evolution

    NASA Astrophysics Data System (ADS)

    Wada, Takahiro; Manabe, Yuichiro; Nakajima, Hiroo; Tsunoyama, Yuichi; Bando, Masako

    We proposed a new mathematical model to estimate biological effects of radiation, which we call Whack-A-Mole (WAM) model. A special feature of WAM model is that it involves the dose rate of radiation as a key ingredient. We succeeded to reproduce the experimental data of various species concerning the radiation induced mutation frequencies. From the analysis of the mega-mouse experiments, we obtained the mutation rate per base-pair per year for mice which is consistent with the so-called molecular clock in evolution genetics, 10-9 mutation/base-pair/year. Another important quantity is the equivalent dose rate for the whole spontaneous mutation, deff. The value of deff for mice is 1.1*10-3 Gy/hour which is much larger than the dose rate of natural radiation (10- (6 - 7) Gy/hour) by several orders of magnitude. We also analyzed Drosophila data and obtained essentially the same numbers. This clearly indicates that the natural radiation is not the dominant driving force of the molecular evolution, but we should look for other factors, such as miscopy of DNA in duplication process. We believe this is the first quantitative proof of the small contribution of the natural radiation in the molecular evolution.

  4. A self-stabilized coherent phonon source driven by optical forces

    PubMed Central

    Navarro-Urrios, D.; Capuj, N. E.; Gomis-Bresco, J.; Alzina, F.; Pitanti, A.; Griol, A.; Martínez, A.; Sotomayor Torres, C. M.

    2015-01-01

    We report a novel injection scheme that allows for “phonon lasing” in a one-dimensional opto-mechanical photonic crystal, in a sideband unresolved regime and with cooperativity values as low as 10−2. It extracts energy from a cw infrared laser source and is based on the triggering of a thermo-optical/free-carrier-dispersion self-pulsing limit-cycle, which anharmonically modulates the radiation pressure force. The large amplitude of the coherent mechanical motion acts as a feedback that stabilizes and entrains the self-pulsing oscillations to simple fractions of the mechanical frequency. A manifold of frequency-entrained regions with two different mechanical modes (at 54 and 122 MHz) are observed as a result of the wide tuneability of the natural frequency of the self-pulsing. The system operates at ambient conditions of pressure and temperature in a silicon platform, which enables its exploitation in sensing, intra-chip metrology or time-keeping applications. PMID:26503448

  5. Holocene warming in western continental Eurasia driven by glacial retreat and greenhouse forcing

    NASA Astrophysics Data System (ADS)

    Baker, Jonathan L.; Lachniet, Matthew S.; Chervyatsova, Olga; Asmerom, Yemane; Polyak, Victor J.

    2017-06-01

    The global temperature evolution during the Holocene is poorly known. Whereas proxy data suggest that warm conditions prevailed in the Early to mid-Holocene with subsequent cooling, model reconstructions show long-term warming associated with ice-sheet retreat and rising greenhouse gas concentrations. One reason for this contradiction could be the under-representation of indicators for winter climate in current global proxy reconstructions. Here we present records of carbon and oxygen isotopes from two U-Th-dated stalagmites from Kinderlinskaya Cave in the southern Ural Mountains that document warming during the winter season from 11,700 years ago to the present. Our data are in line with the global Holocene temperature evolution reconstructed from transient model simulations. We interpret Eurasian winter warming during the Holocene as a response to the retreat of Northern Hemisphere ice sheets until about 7,000 years ago, and to rising atmospheric greenhouse gas concentrations and winter insolation thereafter. We attribute negative δ18O anomalies 11,000 and 8,200 years ago to enhanced meltwater forcing of North Atlantic Ocean circulation, and a rapid decline of δ13C during the Early Holocene with stabilization after about 10,000 years ago to afforestation at our study site. We conclude that winter climate dynamics dominated Holocene temperature evolution in the continental interior of Eurasia, in contrast to regions more proximal to the ocean.

  6. Low-frequency respiratory mechanics using ventilator-driven forced oscillations.

    PubMed

    Lutchen, K R; Kaczka, D W; Suki, B; Barnas, G; Cevenini, G; Barbini, P

    1993-12-01

    We evaluated the potential for using a fast Fourier transform (FFT) analysis applied to a standard ventilator waveform to estimate (< 2 Hz) frequency dependence of respiratory or lung resistance (R) and elastance (E). In four healthy humans we measured pressure and flow at the airway opening while applying sine wave forcing from 0.2 to 0.6 Hz at two tidal volumes (VT; 250 and 500 ml). We then applied a step inspiratory ventilator flow wave with relaxed expiration at the same VT and only 0.2 Hz. Step waveform data were also acquired from nine mechanically ventilated patients under intensive care unit conditions. Finally, we simultaneously measured total respiratory (rs), lung (L), and chest wall (cw) impedance data from two dogs (0.156-2 Hz) before and after severe pulmonary edema. Rrs and Ers were estimated by the FFT approach. Humans displayed a small frequency dependence in Rrs and Ers from 0.2 to 0.6 Hz, and both Rrs and Ers decreased at the higher VT. The spectral estimates of Rrs and Ers with the step ventilator wave were often qualitatively comparable to sine wave results below 0.6 Hz but became extremely erratic above the third harmonic. Conversely, in dogs the step wave produced reliable and stable estimates up to 2 Hz in all conditions. Nevertheless, Ecw and Ers still displayed clear and correlated oscillations with increasing frequency, whereas EL showed none. This suggests that nonlinear processes, most likely at the chest wall, contribute to periodic-like fluctuations in respiratory mechanical properties when estimated by applying FFT to a step ventilator wave. Moreover, in humans, but not dogs, a ventilator flow cycle contains insufficient signal energy beyond the third harmonic. We show that the amount of energy available at higher frequencies is largely governed by the mechanical time constant contributing to passive expiratory flow. In dogs the shorter time constant contributes to increased energy. In essence, the frequency content of the flow is

  7. General circulation driven by baroclinic forcing due to cloud layer heating: Significance of planetary rotation and polar eddy heat transport

    NASA Astrophysics Data System (ADS)

    Yamamoto, Masaru; Takahashi, Masaaki

    2016-04-01

    A high significance of planetary rotation and poleward eddy heat fluxes is determined for general circulation driven by baroclinic forcing due to cloud layer heating. In a high-resolution simplified Venus general circulation model, a planetary-scale mixed Rossby-gravity wave with meridional winds across the poles produces strong poleward heat flux and indirect circulation. This strong poleward heat transport induces downward momentum transport of indirect cells in the regions of weak high-latitude jets. It also reduces the meridional temperature gradient and vertical shear of the high-latitude jets in accordance with the thermal wind relation below the cloud layer. In contrast, strong equatorial superrotation and midlatitude jets form in the cloud layer in the absence of polar indirect cells in an experiment involving Titan's rotation. Both the strong midlatitude jet and meridional temperature gradient are maintained in the situation that eddy horizontal heat fluxes are weak. The presence or absence of strong poleward eddy heat flux is one of the important factors determining the slow or fast superrotation state in the cloud layer through the downward angular momentum transport and the thermal wind relation. For fast Earth rotation, a weak global-scale Hadley circulation of the low-density upper atmosphere maintains equatorial superrotation and midlatitude jets above the cloud layer, whereas multiple meridional circulations suppress the zonal wind speed below the cloud layer.

  8. Generation of Nonlinear Force Driven Blocks from Skin Layer Interaction of Petawatt-Picosecond Laser Pulses for ICF

    NASA Astrophysics Data System (ADS)

    Heinrich, Hora; Cang, Yu; He, Xiantu; Zhang, Jie; F, Osman; J, Badziak; F, P. Boody; S, Gammino; R, Höpfl; K, Jungwirth; B, Kralikova; J, Kraska; L, Laska; Liu, Hong; G, H. Miley; P, Parys; Peng, Hansheng; M, Pfeifer; K, Rohlena; J, Skala; Z, Skladanowski; L, Torrisi; J, Ullschmied; J, Wolowski; Zhang, Weiyan

    2004-02-01

    The discovery of the essential difference of maximum ion energy for TW - ps laser plasma interaction compared with the 100 ns laser pulses [1] led to the theory of a skin layer model [2] where the control of prepulses suppressed the usual relativistic self-focusing. The subsequent generation of two nonlinear force driven blocks has been demonstrated experimentally and in extensive numerical studies where one block moves against the laser light and the other block into the irradiated target. These blocks of nearly solid state density DT plasma correspond to ion beam current densities [3] exceeding 1010 A/cm2 where the ion velocity can be chosen up to highly relativistic values. Using the results of the expected ignition of DT fuel by light ion beams, a self-sustained fusion reaction front may be generated even into uncompressed solid DT fuel similar to the Nuckolls-Wood [4] scheme where 10 kJ laser pulses produce 100 MJ fusion energy. This new and simplified scheme of laser-ICF needs and optimisation of the involved parameters.

  9. An electromyogram-driven musculoskeletal model of the knee to predict in vivo joint contact forces during normal and novel gait patterns.

    PubMed

    Manal, Kurt; Buchanan, Thomas S

    2013-02-01

    Computational models that predict internal joint forces have the potential to enhance our understanding of normal and pathological movement. Validation studies of modeling results are necessary if such models are to be adopted by clinicians to complement patient treatment and rehabilitation. The purposes of this paper are: (1) to describe an electromyogram (EMG)-driven modeling approach to predict knee joint contact forces, and (2) to evaluate the accuracy of model predictions for two distinctly different gait patterns (normal walking and medial thrust gait) against known values for a patient with a force recording knee prosthesis. Blinded model predictions and revised model estimates for knee joint contact forces are reported for our entry in the 2012 Grand Challenge to predict in vivo knee loads. The EMG-driven model correctly predicted that medial compartment contact force for the medial thrust gait increased despite the decrease in knee adduction moment. Model accuracy was high: the difference in peak loading was less than 0.01 bodyweight (BW) with an R(2 )= 0.92. The model also predicted lateral loading for the normal walking trial with good accuracy exhibiting a peak loading difference of 0.04 BW and an R(2 )= 0.44. Overall, the EMG-driven model captured the general shape and timing of the contact force profiles and with accurate input data the model estimated joint contact forces with sufficient accuracy to enhance the interpretation of joint loading beyond what is possible from data obtained from standard motion capture studies.

  10. Towards all-optical quantification of force- and power-based performance metrics in cilia-driven fluid flow physiology (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Huang, Brendan K.; Khokha, Mustafa K.; Loewenberg, Michael; Choma, Michael A.

    2016-03-01

    In pulmonary ciliary physiology, most tissue-level measures of performance focus on flow velocity. However, as with the heart, fluid transport performance requires an understanding of force and power generation under various loading conditions. Here, we present our initial work in quantifying shearing force and net power dissipation from OCT-based cilia-driven fluid flow velocimetry. Typical measurements of force require invasive contact with the ciliated surface, while measurements of power rely on metabolic consumption that reflect energy consumption not just from cilia, but from the entirety of cellular processes. We will present two different approaches to non-contact, all-optical shear force and power dissipation physiology. First, we developed a lumped-parameter model of flow driven by a ciliated surface. The lumped-parameter model yields semi-quantitative, Ohm's law-type relationships (F=U*R and P=U*F) between flow velocity (U), shear force (F), viscous resistance (R), and power dissipation (P). This model allows a lumped (spatially averaged) approach to evaluate force and power performance under viscous loading, an approach we demonstrated using ciliated Xenopus embryos. Second, we numerically estimate shear force and power dissipation using flow velocity fields acquired using OCT. Specifically, the velocity gradient tensor estimated from the flow velocity field contains the required information to estimate both shear force and net power dissipation. We have preliminary data using this numerical approach in Xenopus. Our results support the feasibility of an all-optical approach to estimating mesoscopic measures of force and power in ciliary physiology.

  11. Differences in zero-force and force-driven kinetics of ligand dissociation from beta-galactoside-specific proteins (plant and animal lectins, immunoglobulin G) monitored by plasmon resonance and dynamic single molecule force microscopy.

    PubMed

    Dettmann, W; Grandbois, M; André, S; Benoit, M; Wehle, A K; Kaltner, H; Gabius, H J; Gaub, H E

    2000-11-15

    potential widths of 4 A for RCA and IgG and 6 A for VAA and BHL were obtained. Since the dissociation kinetics at zero force apparently cannot predict the behavior in force-driven experiments, these results reveal new insights into biological functions. The dissociation kinetics under force helps to explain the difference in the toxic potency of VAA and RCA and points to a function of the galectin in cis-crosslinking and in transient trans-bridging.

  12. A Data-driven Approach to Integrate Crop Rotation Agronomic Practices in a Global Gridded Land-use Forcing Dataset

    NASA Astrophysics Data System (ADS)

    Sahajpal, R.; Hurtt, G. C.; Chini, L. P.; Frolking, S. E.; Izaurralde, R. C.

    2016-12-01

    Agro-ecosystems are the dominant land-use type on Earth, covering more than a third of ice-free land surface. Agricultural practices have influenced the Earth's climate system by significantly altering the biogeophysical and biogeochemical properties from hyper-local to global scales. While past work has focused largely on characterizing the effects of net land cover changes, the magnitude and nature of gross transitions and agricultural management practices on climate remains highly uncertain. To address this issue, a new set of global gridded land-use forcing datasets (LUH2) have been developed in a standard format required by climate models for CMIP6. For the first time, this dataset includes information on key agricultural management practices including crop rotations. Crop rotations describe the practice of growing crops on the same land in sequential seasons and are essential to agronomic management as they influence key ecosystem services such as crop yields, water quality, carbon and nutrient cycling, pest and disease control. Here, we present a data-driven approach to infer crop rotations based on crop specific land cover data, derived from moderate resolution satellite imagery and created at an annual time-step for the continental United States. Our approach compresses the more than 100,000 unique crop rotations prevalent in the United States from 2013 - 2015 to about 200 representative crop rotations that account for nearly 80% of the spatio-temporal variability. Further simplification is achieved by mapping individual crops to crop functional types, which identify crops based on their photosynthetic pathways (C3/C4), life strategy (annual/perennial) and whether they are N-fixing or not. The resulting matrix of annual transitions between crop functional types averages 41,000 km2/yr for rotations between C3 and C4 annual crops, and 140,000 km2/yr between C3 N-fixing and C4 annual crops. The crop rotation matrix is combined with information on other land

  13. EMGD-FE: an open source graphical user interface for estimating isometric muscle forces in the lower limb using an EMG-driven model.

    PubMed

    Menegaldo, Luciano Luporini; de Oliveira, Liliam Fernandes; Minato, Kin K

    2014-04-04

    This paper describes the "EMG Driven Force Estimator (EMGD-FE)", a Matlab® graphical user interface (GUI) application that estimates skeletal muscle forces from electromyography (EMG) signals. Muscle forces are obtained by numerically integrating a system of ordinary differential equations (ODEs) that simulates Hill-type muscle dynamics and that utilises EMG signals as input. In the current version, the GUI can estimate the forces of lower limb muscles executing isometric contractions. Muscles from other parts of the body can be tested as well, although no default values for model parameters are provided. To achieve accurate evaluations, EMG collection is performed simultaneously with torque measurement from a dynamometer. The computer application guides the user, step-by-step, to pre-process the raw EMG signals, create inputs for the muscle model, numerically integrate the ODEs and analyse the results. An example of the application's functions is presented using the quadriceps femoris muscle. Individual muscle force estimations for the four components as well the knee isometric torque are shown. The proposed GUI can estimate individual muscle forces from EMG signals of skeletal muscles. The estimation accuracy depends on several factors, including signal collection and modelling hypothesis issues.

  14. EMGD-FE: an open source graphical user interface for estimating isometric muscle forces in the lower limb using an EMG-driven model

    PubMed Central

    2014-01-01

    Background This paper describes the “EMG Driven Force Estimator (EMGD-FE)”, a Matlab® graphical user interface (GUI) application that estimates skeletal muscle forces from electromyography (EMG) signals. Muscle forces are obtained by numerically integrating a system of ordinary differential equations (ODEs) that simulates Hill-type muscle dynamics and that utilises EMG signals as input. In the current version, the GUI can estimate the forces of lower limb muscles executing isometric contractions. Muscles from other parts of the body can be tested as well, although no default values for model parameters are provided. To achieve accurate evaluations, EMG collection is performed simultaneously with torque measurement from a dynamometer. The computer application guides the user, step-by-step, to pre-process the raw EMG signals, create inputs for the muscle model, numerically integrate the ODEs and analyse the results. Results An example of the application’s functions is presented using the quadriceps femoris muscle. Individual muscle force estimations for the four components as well the knee isometric torque are shown. Conclusions The proposed GUI can estimate individual muscle forces from EMG signals of skeletal muscles. The estimation accuracy depends on several factors, including signal collection and modelling hypothesis issues. PMID:24708668

  15. Training implications of maximal forces on a computer-controlled and motor-driven leg press by age group, sex, footplate direction, and speed

    PubMed Central

    Schulz, Brian W.; Hart-Hughes, Stephanie; Gordon, Mark T.; Bulat, Tatjana

    2017-01-01

    Strength training that overloads lengthening muscle fibers may result in greater strength gains with less effort and perceived exertion than conventional training modalities. This study evaluates a device capable of this overloading (a motor-driven and computer-controlled leg press) to develop recommendations for future training interventions. Unimpaired younger and older men and women (7/group, total n=28) performed three maximal-effort trials for both directions of footplate motion (IN and OUT) at three speed profiles (knee rotation speeds of 15, 25, and 35°/s) on a motor-driven and computer-controlled leg press. Normalized forces were tested for effects of age group, sex, direction of footplate motion, and knee rotation speed. Peak forces were 57% greater for younger and 20% greater for IN. Trends of greater IN relative to OUT forces (IN overloading) were present in women, but this was due to an inverse correlation between strength and IN overloading that was independent of age group and sex. Leg press strength training on a device that is capable of overloading lengthening muscle fibers is a promising new training method that appears to have the greatest potential benefits for the weakest participants. Training target profiles on the device tested and others similar to it should be set based on participant-specific maximums across the ROM in both IN and OUT directions at a speed in the middle of the range to be trained. PMID:22289381

  16. Training implications of maximal forces on a computer-controlled and motor-driven leg press by age group, sex, footplate direction, and speed.

    PubMed

    Schulz, Brian W; Hart-Hughes, Stephanie; Gordon, Mark T; Bulat, Tatjana

    2012-04-01

    Strength training that overloads lengthening muscle fibers may result in greater strength gains with less effort and perceived exertion than conventional training modalities. This study evaluates a device capable of this overloading (a motor-driven and computer-controlled leg press) to develop recommendations for future training interventions. Unimpaired younger and older men and women (7/group, total n=28) performed three maximal-effort trials for both directions of footplate motion (IN and OUT) at three speed profiles (knee rotation speeds of 15, 25, and 35°/s) on a motor-driven and computer-controlled leg press. Normalized forces were tested for effects of age group, sex, direction of footplate motion, and knee rotation speed. Peak forces were 57% greater for younger and 20% greater for IN. Trends of greater IN relative to OUT forces (IN overloading) were present in women, but this was due to an inverse correlation between strength and IN overloading that was independent of age group and sex. Leg press strength training on a device that is capable of overloading lengthening muscle fibers is a promising new training method that appears to have the greatest potential benefits for the weakest participants. Training target profiles on the device tested and others similar to it should be set based on participant-specific maximums across the ROM in both IN and OUT directions at a speed in the middle of the range to be trained. Published by Elsevier Inc.

  17. The study of the wedge-shaped vibration-driven robot motion in a viscous fluid forced by different oscillation laws of the internal mass

    NASA Astrophysics Data System (ADS)

    Nuriev, A. N.; Zakharova, O. S.; Zaitseva, O. N.; Yunusova, A. I.

    2016-11-01

    A rectilinear motion of a two-mass system in a viscous incompressible fluid is considered. The system consists of a shell having the form of an equilateral triangular cylinder and a movable internal mass. The motion of the system as a whole is forced by longitudinal oscillations of the internal mass relative to the shell. This mechanical system simulates a vibration-driven robot, i.e. a mobile device capable to move in a resistive medium without external moving parts. Investigation of the system is carried out by a direct numerical simulation. A comparative analysis of the characteristics of the motion and flow regimes around the vibration-driven robot is carried out for different internal mass oscillation laws.

  18. Fo-driven Rotation in the ATP Synthase Direction against the Force of F1 ATPase in the FoF1 ATP Synthase*

    PubMed Central

    Martin, James; Hudson, Jennifer; Hornung, Tassilo; Frasch, Wayne D.

    2015-01-01

    Living organisms rely on the FoF1 ATP synthase to maintain the non-equilibrium chemical gradient of ATP to ADP and phosphate that provides the primary energy source for cellular processes. How the Fo motor uses a transmembrane electrochemical ion gradient to create clockwise torque that overcomes F1 ATPase-driven counterclockwise torque at high ATP is a major unresolved question. Using single FoF1 molecules embedded in lipid bilayer nanodiscs, we now report the observation of Fo-dependent rotation of the c10 ring in the ATP synthase (clockwise) direction against the counterclockwise force of ATPase-driven rotation that occurs upon formation of a leash with Fo stator subunit a. Mutational studies indicate that the leash is important for ATP synthase activity and support a mechanism in which residues aGlu-196 and cArg-50 participate in the cytoplasmic proton half-channel to promote leash formation. PMID:25713065

  19. Convective flow patterns in an eight-box cube driven by combined wind stress, thermal and saline forcing. (Reannouncement with new availability information). Technical report

    SciTech Connect

    Huang, R.X.; Stommel, H.M.

    1992-02-15

    An eight-box cube model ocean, simulating the subpolar gyre in the North Atlantic, is formulated in order to understand how the wind-induced horizontal gyre affects the thermohaline circulation and its catastrophe. The model is forced from above by thermal conduction and freshwater flux. The structure of the thermohaline circulation and its catastrophe during the process of gradually increasing or reducing the evaporation/precipitation are examined. The results indicate that, although adding the third dimension and a wind-driven horizontal gyre of medium strength splits the catastrophe into several separate ones, only some of these catastrophes remain of significant amplitude. With choice of parameters appropriate for the North Atlantic, the model predicts a single stable state, circulating in the thermal sense (sinking at the pole). This can be driven smoothly to a reversed saline sense (sinking at the equator), without catastrophe, by increasing the precipitation/evaporation rate beyond 3 times the present-day value.

  20. Interplay between Switching Driven by the Tunneling Current and Atomic Force of a Bistable Four-Atom Si Quantum Dot.

    PubMed

    Yamazaki, Shiro; Maeda, Keisuke; Sugimoto, Yoshiaki; Abe, Masayuki; Zobač, Vladimír; Pou, Pablo; Rodrigo, Lucia; Mutombo, Pingo; Pérez, Ruben; Jelínek, Pavel; Morita, Seizo

    2015-07-08

    We assemble bistable silicon quantum dots consisting of four buckled atoms (Si4-QD) using atom manipulation. We demonstrate two competing atom switching mechanisms, downward switching induced by tunneling current of scanning tunneling microscopy (STM) and opposite upward switching induced by atomic force of atomic force microscopy (AFM). Simultaneous application of competing current and force allows us to tune switching direction continuously. Assembly of the few-atom Si-QDs and controlling their states using versatile combined AFM/STM will contribute to further miniaturization of nanodevices.

  1. Skin cancer screening: recommendations for data-driven screening guidelines and a review of the US Preventive Services Task Force controversy

    PubMed Central

    Johnson, Mariah M; Leachman, Sancy A; Aspinwall, Lisa G; Cranmer, Lee D; Curiel-Lewandrowski, Clara; Sondak, Vernon K; Stemwedel, Clara E; Swetter, Susan M; Vetto, John; Bowles, Tawnya; Dellavalle, Robert P; Geskin, Larisa J; Grossman, Douglas; Grossmann, Kenneth F; Hawkes, Jason E; Jeter, Joanne M; Kim, Caroline C; Kirkwood, John M; Mangold, Aaron R; Meyskens, Frank; Ming, Michael E; Nelson, Kelly C; Piepkorn, Michael; Pollack, Brian P; Robinson, June K; Sober, Arthur J; Trotter, Shannon; Venna, Suraj S; Agarwala, Sanjiv; Alani, Rhoda; Averbook, Bruce; Bar, Anna; Becevic, Mirna; Box, Neil; E Carson, William; Cassidy, Pamela B; Chen, Suephy C; Chu, Emily Y; Ellis, Darrel L; Ferris, Laura K; Fisher, David E; Kendra, Kari; Lawson, David H; Leming, Philip D; Margolin, Kim A; Markovic, Svetomir; Martini, Mary C; Miller, Debbie; Sahni, Debjani; Sharfman, William H; Stein, Jennifer; Stratigos, Alexander J; Tarhini, Ahmad; Taylor, Matthew H; Wisco, Oliver J; Wong, Michael K

    2017-01-01

    Melanoma is usually apparent on the skin and readily detected by trained medical providers using a routine total body skin examination, yet this malignancy is responsible for the majority of skin cancer-related deaths. Currently, there is no national consensus on skin cancer screening in the USA, but dermatologists and primary care providers are routinely confronted with making the decision about when to recommend total body skin examinations and at what interval. The objectives of this paper are: to propose rational, risk-based, data-driven guidelines commensurate with the US Preventive Services Task Force screening guidelines for other disorders; to compare our proposed guidelines to recommendations made by other national and international organizations; and to review the US Preventive Services Task Force's 2016 Draft Recommendation Statement on skin cancer screening. PMID:28758010

  2. Effects of eddy viscosity and thermal conduction and Coriolis force in the dynamics of gravity wave driven fluctuations in the OH nightglow

    NASA Technical Reports Server (NTRS)

    Hickey, M. P.

    1988-01-01

    The chemical-dynamical model of Walterscheid et al. (1987), which describes wave-driven fluctuations in OH nightglow, was modified to include the effects of both eddy thermal conduction and viscosity, as well as the Coriolis force (with the shallow atmosphere approximation). Using the new model, calculations were performed for the same nominal case as used by Walterscheid et al. but with only wave periods considered. For this case, the Coriolis force was found to be unimportant at any wave period. For wave periods greater than 2 or 3 hours, the inclusion of thermal conduction alone greatly modified the results (in terms of a complex ratio 'eta' which expresses the relationship between the intensity oscillation about the time-averaged intensity and the temperature oscillation about the time-averaged temperature); this effect was reduced with the further inclusion of the eddy viscosity.

  3. The break-up of Ekman theory in a flow subjected to background rotation and driven by a non-conservative body force

    NASA Astrophysics Data System (ADS)

    Duran-Matute, M.; Di Nitto, G.; Trieling, R. R.; Kamp, L. P. J.; van Heijst, G. J. F.

    2012-11-01

    We present an experimental/numerical study of a dipolar flow structure in a shallow layer of electrolyte driven by electromagnetic forcing and subjected to background rotation. The aim of this study is to determine the influence of a non-conservative body force on the range of applicability of the classical Ekman boundary layer theory in rapidly rotating systems. To address this question, we study the response of the flow to the three control parameters: the magnitude of the forcing, the rotation rate of the system, and the shallowness of the layer. This response is quantified taking into account the magnitude of the flow velocity (represented by the Reynolds number), the symmetry between both vortex cores, and the vertical profile of the horizontal velocity. As in the case without background rotation, the response of the flow exhibits two scaling regimes (a linear and a nonlinear regime) in which the flow exhibits different vertical profiles of velocity. The transition between the two regimes occurs when the convective acceleration becomes of the same order as the viscous damping. This suggests that the applicability of the Ekman theory depends on the existence of a balance between the forcing and the damping due to the Ekman layers and does not depend solely on the value of the Rossby number as for decaying flows. On the other hand, the cyclone/anticyclone asymmetry is governed exclusively by the Rossby number.

  4. Data-Driven Modeling of the Coronal Magnetic Field: Comparing Time-Dependent Magnetofrictional Modeling and Nonlinear Force-free Field Extrapolations

    NASA Astrophysics Data System (ADS)

    Pomoell, J.; Lumme, E.; Kilpua, E.; Verbeke, C.; Poedts, S.; Palmerio, E.; Isavnin, A.

    2016-12-01

    Accurate modeling of the coronal magnetic field is of key importance for advancing our understanding of the processes governing the initiation of coronal mass ejections and their potential for causing severe space weather. Currently, the most popular models employed in a data-driven event-based context are time-independent, such as the nonlinear force-free field (NLFFF) model. From a space-weather perspective, however, such modeling might not be sufficient, as time-dependent effects such as rotation, kinking or deflection of the erupting structure can alter the geo-effectivity of the eruption. In this work, we employ a time-dependent data-driven magnetofriction-based coronal model that we have recently developed along with NLFFF modeling. We study how a time-sequence of NLFFF extrapolations compares to a time-dependent magnetofrictional computation that is driven by an electric field inverted from a sequence of photospheric measurements. We employ both synthetic test cases as well as study well-observed eruptions. In particular, we focus on discussing the merits of the two approaches for use in a space weather prediction pipeline.

  5. Wavelength dependence of eddy dissipation and Coriolis force in the dynamics of gravity wave driven fluctuations in the OH nightglow

    NASA Technical Reports Server (NTRS)

    Hickey, M. P.

    1988-01-01

    This paper examines the effect of inclusion of Coriolis force and eddy dissipation in the gravity wave dynamics theory of Walterscheid et al. (1987). It was found that the values of the ratio 'eta' (where eta is a complex quantity describing the ralationship between the intensity oscillation about the time-averaged intensity, and the temperature oscillation about the time-averaged temperature) strongly depend on the wave period and the horizontal wavelength; thus, if comparisons are to be made between observations and theory, horizontal wavelengths will need to be measured in conjunction with the OH nightglow measurements. For the waves with horizontal wavelengths up to 1000 km, the eddy dissipation was found to dominate over the Coriolis force in the gravity wave dynamics and also in the associated values of eta. However, for waves with horizontal wavelengths of 10,000 km or more, the Coriolis force cannot be neglected; it has to be taken into account along with the eddy dissipation.

  6. An accurate tangential force-displacement model for granular-flow simulations: Contacting spheres with plastic deformation, force-driven formulation

    NASA Astrophysics Data System (ADS)

    Vu-Quoc, L.; Lesburg, L.; Zhang, X.

    2004-05-01

    An elasto-plastic frictional tangential force-displacement (TFD) model for spheres in contact for accurate and efficient granular-flow simulations is presented in this paper; the present TFD is consistent with the elasto-plastic normal force-displacement (NFD) model presented in [ASME Journal of Applied Mechanics 67 (2) (2000) 363; Proceedings of the Royal Society of London, Series A 455 (1991) (1999) 4013]. The proposed elasto-plastic frictional TFD model is accurate, and is validated against non-linear finite-element analyses involving plastic flows under both loading and unloading conditions. The novelty of the present TFD model lies in (i) the additive decomposition of the elasto-plastic contact area radius into an elastic part and a plastic part, (ii) the correction of the particles' radii at the contact point, and (iii) the correction of the particles' elastic moduli. The correction of the contact-area radius represents an effect of plastic deformation in colliding particles; the correction of the radius of curvature represents a permanent indentation after impact; the correction of the elastic moduli represents a softening of the material due to plastic flow. The construction of both the present elasto-plastic frictional TFD model and its consistent companion, the elasto-plastic NFD model, parallels the formalism of the continuum theory of elasto-plasticity. Both NFD and TFD models form a coherent set of force-displacement (FD) models not available hitherto for granular-flow simulations, and are consistent with the Hertz, Cattaneo, Mindlin, Deresiewicz contact mechanics theory. Together, these FD models will allow for efficient simulations of granular flows (or granular gases) involving a large number of particles.

  7. Anomalous pinch of turbulent plasmas driven by the magnetic-drift-induced Lorentz force through the Stokes-Einstein relation

    SciTech Connect

    Wang, Shaojie

    2016-07-15

    It is found that the Lorentz force generated by the magnetic drift drives a generic plasma pinch flux of particle, energy and momentum through the Stokes-Einstein relation. The proposed theoretical model applies for both electrons and ions, trapped particles, and passing particles. An anomalous parallel current pinch due to the electrostatic turbulence with long parallel wave-length is predicted.

  8. Laser-optical path to nuclear energy without radioactivity: Fusion of hydrogen-boron by nonlinear force driven plasma blocks

    NASA Astrophysics Data System (ADS)

    Hora, H.; Miley, G. H.; Ghoranneviss, M.; Malekynia, B.; Azizi, N.

    2009-10-01

    Anomalous interaction of terawatt-picosecond laser pulses allows side-on ignition of solid state density fusion fuel with the unexpected possibility of igniting uncompressed hydrogen-boron p- 11B. Suppression of relativistic self-focusing by using very clean laser pulses with an extremely high contrast ratio is essential to achieve ignition thresholds only ten times more difficult than fusion of deuterium-tritium (DT). This opens the possibility for laser driven fusion energy without neutrons and less radioactivity than from burning coal. The complex nonlinear optical properties involved are elaborated.

  9. Floating chip mounting system driven by repulsive force of permanent magnets for multiple on-site SPR immunoassay measurements.

    PubMed

    Horiuchi, Tsutomu; Tobita, Tatsuya; Miura, Toru; Iwasaki, Yuzuru; Seyama, Michiko; Inoue, Suzuyo; Takahashi, Jun-ichi; Haga, Tsuneyuki; Tamechika, Emi

    2012-10-17

    We have developed a measurement chip installation/removal mechanism for a surface plasmon resonance (SPR) immunoassay analysis instrument designed for frequent testing, which requires a rapid and easy technique for changing chips. The key components of the mechanism are refractive index matching gel coated on the rear of the SPR chip and a float that presses the chip down. The refractive index matching gel made it possible to optically couple the chip and the prism of the SPR instrument easily via elastic deformation with no air bubbles. The float has an autonomous attitude control function that keeps the chip parallel in relation to the SPR instrument by employing the repulsive force of permanent magnets between the float and a float guide located in the SPR instrument. This function is realized by balancing the upward elastic force of the gel and the downward force of the float, which experiences a leveling force from the float guide. This system makes it possible to start an SPR measurement immediately after chip installation and to remove the chip immediately after the measurement with a simple and easy method that does not require any fine adjustment. Our sensor chip, which we installed using this mounting system, successfully performed an immunoassay measurement on a model antigen (spiked human-IgG) in a model real sample (non-homogenized milk) that included many kinds of interfering foreign substances without any sample pre-treatment. The ease of the chip installation/removal operation and simple measurement procedure are suitable for frequent on-site agricultural, environmental and medical testing.

  10. Floating Chip Mounting System Driven by Repulsive Force of Permanent Magnets for Multiple On-Site SPR Immunoassay Measurements

    PubMed Central

    Horiuchi, Tsutomu; Tobita, Tatsuya; Miura, Toru; Iwasaki, Yuzuru; Seyama, Michiko; Inoue, Suzuyo; Takahashi, Jun-ichi; Haga, Tsuneyuki; Tamechika, Emi

    2012-01-01

    We have developed a measurement chip installation/removal mechanism for a surface plasmon resonance (SPR) immunoassay analysis instrument designed for frequent testing, which requires a rapid and easy technique for changing chips. The key components of the mechanism are refractive index matching gel coated on the rear of the SPR chip and a float that presses the chip down. The refractive index matching gel made it possible to optically couple the chip and the prism of the SPR instrument easily via elastic deformation with no air bubbles. The float has an autonomous attitude control function that keeps the chip parallel in relation to the SPR instrument by employing the repulsive force of permanent magnets between the float and a float guide located in the SPR instrument. This function is realized by balancing the upward elastic force of the gel and the downward force of the float, which experiences a leveling force from the float guide. This system makes it possible to start an SPR measurement immediately after chip installation and to remove the chip immediately after the measurement with a simple and easy method that does not require any fine adjustment. Our sensor chip, which we installed using this mounting system, successfully performed an immunoassay measurement on a model antigen (spiked human-IgG) in a model real sample (non-homogenized milk) that included many kinds of interfering foreign substances without any sample pre-treatment. The ease of the chip installation/removal operation and simple measurement procedure are suitable for frequent on-site agricultural, environmental and medical testing. PMID:23202030

  11. Attractive force-driven superhardening of graphene membranes as a pin-point breaking of continuum mechanics

    NASA Astrophysics Data System (ADS)

    Ashino, Makoto; Wiesendanger, Roland

    2017-04-01

    Bending at the nanometre scale can substantially modify the mechanical, chemical and electronic properties of graphene membranes. The subsequent response of chemical bonds leads to deviations from plate idealisation in continuum mechanics. However, those phenomena have thus far been investigated exclusively by measuring the electronic properties of graphene deformed by compressing and stretching with local-probe techniques. Here, we report that the interatomic-attractive forces applied on the convexly-curved graphene by the probe tip give rise to a pin-point breaking of the plate idealisation in the continuum mechanics, facilitating atomically-localised enhancements in its chemical reactivity and mechanical strength. Thorough characterisations were conducted by atomic force microscopy and force field spectroscopy on hollow nanotubes, rolled-up graphene, with different diameters. Their topmost parts supplied well-defined curvatures of the convex graphene. We found that a significant enhancement in the out-of-plane Young’s modulus from 13 to 163 GPa, “superhardening”, was realised with the nonlinear transition of bond configurations. Our findings provide a fundamental understanding of the relationships between the structure of atomistic membranes and the dynamic behaviour of approaching exterior atoms or molecules and their subsequent interplay with chemical and mechanical properties. Thus, these results encourage the application of such membranes in functionally-controllable materials or devices.

  12. Effect of substance properties on the appearance and characteristics of repeated surface tension auto-oscillation driven by Marangoni force.

    PubMed

    Kovalchuk, N M; Vollhardt, D

    2004-01-01

    The effect of substance properties (solution viscosity and density, surfactant bulk and surface diffusion coefficient, activity, and solubility) on the appearance and characteristics of surface tension auto-oscillation that occurs by dissolution of a surfactant drop under the water-air interface is considered in the framework of a simple mathematical model, taking into account the convection driven by the Marangoni effect and convective diffusion together with adsorption/desorption processes at the air-water interface. Numerical simulations show that apart from the Marangoni and Schmidt number, the system behavior is governed also by the exchange number, which determines the surfactant exchange with the interface. The criterion for the instability onset in a system with both normal and tangential (with respect to the interface) concentration gradient, the correlation between the global and local Marangoni numbers, as well as a comparison with experiment are discussed.

  13. Magnetic force driven six degree-of-freedom active vibration isolation system using a phase compensated velocity sensor

    SciTech Connect

    Kim, Yongdae; Park, Kyihwan; Kim, Sangyoo

    2009-04-15

    A six-axis active vibration isolation system (AVIS) is developed using voice coil actuators. Point contact configuration is employed to have an easy assembly of eight voice coil actuators to an upper and a base plates. The velocity sensor, using an electromagnetic principle that is commonly used in the vibration control, is investigated since its phase lead characteristic causes an instability problem for a low frequency vibration. The performances of the AVIS are investigated in the frequency domain and finally validated by comparing with the passive isolation system using the atomic force microscope images.

  14. Magnetic force driven six degree-of-freedom active vibration isolation system using a phase compensated velocity sensor.

    PubMed

    Kim, Yongdae; Kim, Sangyoo; Park, Kyihwan

    2009-04-01

    A six-axis active vibration isolation system (AVIS) is developed using voice coil actuators. Point contact configuration is employed to have an easy assembly of eight voice coil actuators to an upper and a base plates. The velocity sensor, using an electromagnetic principle that is commonly used in the vibration control, is investigated since its phase lead characteristic causes an instability problem for a low frequency vibration. The performances of the AVIS are investigated in the frequency domain and finally validated by comparing with the passive isolation system using the atomic force microscope images.

  15. Individual-specific muscle maximum force estimation using ultrasound for ankle joint torque prediction using an EMG-driven Hill-type model.

    PubMed

    de Oliveira, Liliam Fernandes; Menegaldo, Luciano Luporini

    2010-10-19

    EMG-driven models can be used to estimate muscle force in biomechanical systems. Collected and processed EMG readings are used as the input of a dynamic system, which is integrated numerically. This approach requires the definition of a reasonably large set of parameters. Some of these vary widely among subjects, and slight inaccuracies in such parameters can lead to large model output errors. One of these parameters is the maximum voluntary contraction force (F(om)). This paper proposes an approach to find F(om) by estimating muscle physiological cross-sectional area (PCSA) using ultrasound (US), which is multiplied by a realistic value of maximum muscle specific tension. Ultrasound is used to measure muscle thickness, which allows for the determination of muscle volume through regression equations. Soleus, gastrocnemius medialis and gastrocnemius lateralis PCSAs are estimated using published volume proportions among leg muscles, which also requires measurements of muscle fiber length and pennation angle by US. F(om) obtained by this approach and from data widely cited in the literature was used to comparatively test a Hill-type EMG-driven model of the ankle joint. The model uses 3 EMGs (Soleus, gastrocnemius medialis and gastrocnemius lateralis) as inputs with joint torque as the output. The EMG signals were obtained in a series of experiments carried out with 8 adult male subjects, who performed an isometric contraction protocol consisting of 10s step contractions at 20% and 60% of the maximum voluntary contraction level. Isometric torque was simultaneously collected using a dynamometer. A statistically significant reduction in the root mean square error was observed when US-obtained F(om) was used, as compared to F(om) from the literature. Copyright © 2010 Elsevier Ltd. All rights reserved.

  16. Cell Origami: Self-Folding of Three-Dimensional Cell-Laden Microstructures Driven by Cell Traction Force

    PubMed Central

    Kuribayashi-Shigetomi, Kaori; Onoe, Hiroaki; Takeuchi, Shoji

    2012-01-01

    This paper describes a method of generating three-dimensional (3D) cell-laden microstructures by applying the principle of origami folding technique and cell traction force (CTF). We harness the CTF as a biological driving force to fold the microstructures. Cells stretch and adhere across multiple microplates. Upon detaching the microplates from a substrate, CTF causes the plates to lift and fold according to a prescribed pattern. This self-folding technique using cells is highly biocompatible and does not involve special material requirements for the microplates and hinges to induce folding. We successfully produced various 3D cell-laden microstructures by just changing the geometry of the patterned 2D plates. We also achieved mass-production of the 3D cell-laden microstructures without causing damage to the cells. We believe that our methods will be useful for biotechnology applications that require analysis of cells in 3D configurations and for self-assembly of cell-based micro-medical devices. PMID:23251426

  17. Cell origami: self-folding of three-dimensional cell-laden microstructures driven by cell traction force.

    PubMed

    Kuribayashi-Shigetomi, Kaori; Onoe, Hiroaki; Takeuchi, Shoji

    2012-01-01

    This paper describes a method of generating three-dimensional (3D) cell-laden microstructures by applying the principle of origami folding technique and cell traction force (CTF). We harness the CTF as a biological driving force to fold the microstructures. Cells stretch and adhere across multiple microplates. Upon detaching the microplates from a substrate, CTF causes the plates to lift and fold according to a prescribed pattern. This self-folding technique using cells is highly biocompatible and does not involve special material requirements for the microplates and hinges to induce folding. We successfully produced various 3D cell-laden microstructures by just changing the geometry of the patterned 2D plates. We also achieved mass-production of the 3D cell-laden microstructures without causing damage to the cells. We believe that our methods will be useful for biotechnology applications that require analysis of cells in 3D configurations and for self-assembly of cell-based micro-medical devices.

  18. A balanced-force finite-element method for surface-tension-driven interfacial flows using interface-capturing approaches

    NASA Astrophysics Data System (ADS)

    Xie, Zhihua; Pavlidis, Dimitrios; Percival, James; Gomes, Jefferson; Pain, Christopher; Matar, Omar

    2013-11-01

    Interfacial flows with surface tension are often found in industrial and practical engineering applications, including bubbles, droplets, liquid film and jets. Accurate modelling of such flows is challenging due to their highly complex dynamics, which often involve changes of interfacial topology. We present a balanced-force finite-element method with adaptive unstructured meshes for interfacial flows. The method uses a mixed control-volume and finite element formulation, which ensures the surface tension forces, and the resulting pressure gradients, are exactly balanced, minimising the spurious velocities often found in numerical simulations of such flows. A volume-of-fluid-type method is employed for interface capturing based on a compressive control-volume advection method, and second-order finite element methods. A distance function is reconstructed from the volume fraction on the unstructured meshes, which provides accurate estimation of the curvature. Numerical examples of an equilibrium drop and dynamics of bubbles (droplets) are presented to demonstrate the capability of this method.

  19. Changes in Concentrations of Plasma ION-Components In Hotspot Driven By Thermodynamic Forces and their Effects on Implosions

    NASA Astrophysics Data System (ADS)

    Ho, D.; Zimmerman, G.; Kagan, G.; Amendt, P.; Rinderknecht, H.; Haan, S.; Perkins, J.; Salmonson, J.

    2016-10-01

    Changes in relative concentrations of plasma ion components driven by gradients of mass concentration, pressure, and temperature gradients, occur during shock flash and subsequent hotspot formation. This is a universal phenomenon in all laboratory implosions with two-ion component fuels, e.g., DT and D3He, occurring in the central region of the hotspot. Concentration differentials lead to noticeable yield reduction in Omega exploding pusher implosions, but not in NIF ``Symcaps'' where radiation-hydrodynamics simulations are in agreement with shot data. For all our ignition capsules designs that use a high-density carbon ablator and DT fuel adiabat α ranging from 1.5 to 4, substantial concentration differentials occur around shock flash but they are relaxed by the time of ignition resulting in no simulated yield degradation. We will provide explanations and present simulation results for this phenomenon. This work performed under auspices of U.S. DOE by LLNL under Contract DE-AC52-07NA27344.

  20. Near-wall measurements of the bubble- and Lorentz-force-driven convection at gas-evolving electrodes

    NASA Astrophysics Data System (ADS)

    Baczyzmalski, Dominik; Weier, Tom; Kähler, Christian J.; Cierpka, Christian

    2015-08-01

    Chemical energy storage systems, e.g., in the form of hydrogen or methanol, have a great potential for the establishment of volatile renewable energy sources due to the large energy density. The efficiency of hydrogen production through water electrolysis is, however, limited by gas bubbles evolving at the electrode's surface and can be enhanced by an accelerated bubble detachment. In order to characterize the complex multi-phase flow near the electrode, simultaneous measurements of the fluid velocities and the size and trajectories of hydrogen bubbles were performed in a water electrolyzer. The liquid phase velocity was measured by PIV/PTV, while shadowgraphy was used to determine the bubble trajectories. Special measurement and evaluation techniques had to be applied as the measurement uncertainty is strongly affected by the high void fraction close to the wall. In particular, the application of an advanced PTV scheme allowed for more precise fluid velocity measurements closer to electrode. Based on these data, stability characteristics of the near-wall flow were evaluated and compared to that of a wall jet. PTV was used as well to investigate the effect of Lorentz forces on the near-wall fluid velocities. The results show a significantly increased wall parallel liquid phase velocity with increasing Lorentz forces. It is presumed that this enhances the detachment of hydrogen bubbles from the electrode surface and, consequently, decreases the fractional bubble coverage and improves the efficiency. In addition, the effect of large rising bubbles with path oscillations on the near-wall flow was investigated. These bubbles can have a strong impact on the mass transfer near the electrode and thus affect the performance of the process.

  1. Superfluid helium sloshing dynamics induced oscillations and fluctuations of angular momentum, force and moment actuated on spacecraft driven by gravity gradient or jitter acceleration associated with slew motion

    NASA Technical Reports Server (NTRS)

    Hung, R. J.

    1994-01-01

    The generalized mathematical formulation of sloshing dynamics for partially filled liquid of cryogenic superfluid helium II in dewar containers driven by the gravity gradient and jitter accelerations associated with slew motion for the purpose to perform scientific observation during the normal spacecraft operation are investigated. An example is given with the Advanced X-Ray Astrophysics Facility-Spectroscopy (AXAF-S) for slew motion which is responsible for the sloshing dynamics. The jitter accelerations include slew motion, spinning motion, atmospheric drag on the spacecraft, spacecraft attitude motions arising from machinery vibrations, thruster firing, pointing control of spacecraft, crew motion, etc. Explicit mathematical expressions to cover these forces acting on the spacecraft fluid systems are derived. The numerical computation of sloshing dynamics is based on the non-inertia frame spacecraft bound coordinate, and solve time-dependent, three-dimensional formulations of partial differential equations subject to initial and boundary conditions. The explicit mathematical expressions of boundary conditions to cover capillary force effect on the liquid-vapor interface in microgravity environments are also derived. The formulations of fluid moment and angular moment fluctuations in fluid profiles induced by the sloshing dynamics, together with fluid stress and moment fluctuations exerted on the spacecraft dewar containers have also been derived. Examples are also given for cases applicable to the AXAF-S spacecraft sloshing dynamics associated with slew motion.

  2. Climate-driven variations in thermal forcing across a nearshore reef system during a marine heat wave and its potential impact on coral calcification

    NASA Astrophysics Data System (ADS)

    Falter, J.; Zhang, Z.; Lowe, R.; Foster, T.; McCulloch, M. T.

    2016-02-01

    We examined the oceanic and atmospheric forces driving seasonal and spatial variability in water temperature across backreef and lagoonal habitats at Coral Bay at Ningaloo Reef, Western Australia before, during, and after a historically unprecedented marine heat wave and resulting mass bleaching event in 2010-2011. Local deviations in the mean daily temperature of nearshore reef waters from offshore values were a linear function of the combined effect of net atmospheric heating and offshore wave height and period . While intra-annual variation in local heat exchange was driven mainly by seasonal changes in short-wave radiation; intra-annual variation in local cooling was driven mostly by changes in relative humidity (r2 = 0.60) and wind speed (r2 = 0.31) which exhibited no apparent seasonality. We demonstrate good agreement between nearshore reef temperatures modeled from offshore sea surface temperatures (SST), offshore wave forcing, and local atmospheric heat fluxes with observed temperatures using a simple linear model (r2 = 0.31 to 0.69, root-mean-square error = 0.4°C to 0.9°C). Using these modeled nearshore reef temperature records, we show that during the heat wave local thermal stresses across the reef reached as high as 18-34 °C-weeks and were being both intensified and accelerated by regional climate forcing when compared with offshore waters (12.6 °C-weeks max). Measurements of coral calcification made in Coral Bay following the bleaching event appear to lack any distinct seasonality; possibly due to the long-term effects of acute thermal stress. However, similarly minimal seasonality in calcification rates had also been observed in an Acropora-dominated community at Ningaloo years before the heat wave as well as more recently in coral from regions in WA that had avoided mass bleaching. These observations, in conjunction with observations that most of the bleached communities within Coral Bay had recovered their color within 3-6 months of the

  3. A size-dependent model for beam-like MEMS driven by electrostatic and piezoelectric forces: A variational approach

    NASA Astrophysics Data System (ADS)

    Yin, Tenghao; Wang, Binglei; Zhou, Shenjie; Zhao, Moli

    2016-10-01

    A size-dependent model of a micro-electromechanical system (MEMS) actuated by both electrostatic and piezoelectric forces is proposed based on the modified couple stress. The governing equation and boundary conditions are derived with the help of the Hamilton principle and solved numerically by employing the Galerkin method and Newton downhill method. A material length scale parameter (MLSP) is incorporated in the model to capture the size effect in microstructures. An excellent agreement is found between the results of the present model and the experimental data, providing the validity of this model. The results reveal that the introduction of the MLSP stiffens the system and increases the pull-in voltage. The size-effect is significant when the dimension of the beam is comparable to the MLSP but it becomes smaller as the beam size increases. Besides, the static characteristic of the micro-switch is studied. It is found that the piezoelectric material attached on the beam can reduce the pull-in voltage remarkably, which may guide the design of the micro-structure when the system is on the order of micron or submicron.

  4. Dynamics driven by lipophilic force in Langmuir monolayers: In-plane and out-of-plane growth

    NASA Astrophysics Data System (ADS)

    Basak, Uttam Kumar; Datta, Alokmay

    2015-04-01

    While monolayer area fraction versus time (An-t ) curves obtained from surface pressure-area (π -A ) isotherms for desorption-dominated (DD) processes in Langmuir monolayers of fatty acids represent continuous loss, those from Brewster angle microscopy (BAM) also show a two-dimensional (2D) coalescence. For nucleation-dominated (ND) processes both techniques suggest competing processes, with BAM showing 2D coalescence alongside multilayer formation. π enhances both DD and ND processes with a lower cutoff for ND processes, while temperature has a lower cutoff for DD but negligible effect on ND processes. Hydrocarbon chain length has the strongest effect, causing a crossover from DD to ND dynamics. Imaging ellipsometry of horizontally transferred films onto Si(100) shows Stranski-Krastanov-like growth for ND process in an arachidic acid monolayer resulting in successive stages of monolayer, trilayer, and multilayer islands, ridges from lateral island coalescence, and shallow wavelike structures from ridge coalescence on the film surface. These studies show that lipophilic attraction between hydrocarbon chains is the driving force at all stages of long-term monolayer dynamics.

  5. Investigation of a potential force-generation machinery driven by a cytoskeletal Walker-type ATPase in prokaryotic cells

    NASA Astrophysics Data System (ADS)

    Erbe, Andeas; Hou, Sing-Yi; Chen, Chen-Yun; Lin, Yi-Lih; Shen, Jie-Pan; Lin, Li-Jing; Chou, Chia-Fu; Shih, Yu-Ling

    2008-03-01

    Cytoskeletal proteins are often involved in generating mechanical force to drive various cellular processes. A subgroup of the Walker-type ATPases acts as cytoskeletal proteins that show highly dynamic behavior in bacterial cells. One of the most prominent examples is MinD that works with other cellular components to prevent cell division at unwanted polar sites through cycles of pole-to-pole oscillation in E. coli cells. We use fluorescence microscopy techniques to study the process of MinD assembly and disassembly on a lipid bilayer membrane surface and any possible change of membrane properties caused by MinD association with the membrane. To form a supported bilayer membrane, vesicles of the polar or total extract of E. coli membrane or synthetic lipids of defined composition are adsorbed to a treated glass coverslip. Ca^2+ is added to enable vesicle fusion to form a continuous bilayer on a glass surface. Formation of a bilayer is examined using fluorescence recovery after photobleaching. The results on the protein assembly on membranes present an important step in understanding the intermediate stages that occur during the dynamic movement of MinD in cells.

  6. High sensitive space electric field sensing based on micro fiber interferometer with field force driven gold nanofilm.

    PubMed

    Zhu, Tao; Zhou, Liming; Liu, Min; Zhang, Jingdong; Shi, Leilei

    2015-10-28

    The traditional electrical field sensing can be realized by utilizing electro-optic materials or liquid crystals, and has limitations of easy breakdown, free assembly and difficult measurement of low-frequency. Here, we propose a new method to realize safe measurement of spatial dynamic electric field by using a micro fiber interferometer integrated with gold nanofilm. The energy of the electric charge received through antenna forms the intrinsic electric field with two micro electrodes, one of which is the 120 nm gold film vibration beam micromachined by femtosecond lasers and integrated with the micro fiber. The change of the intrinsic electric field force due to the spatial electric field will cause the vibration of the film beam. By demodulating the output signal of the micro fiber interferometer, the electric field can be measured. We demonstrate the detectable frequency ranges from tens of Hz to tens of KHz, and the minimum electric field intensity is ~200 V/m at 1 KHz. Our electric field measurement technology combining optical fiber interference with gold nanostructures shows the advantages of security, high sensitivity, compact size, and multiplexed multi-point and remote detection.

  7. High sensitive space electric field sensing based on micro fiber interferometer with field force driven gold nanofilm

    PubMed Central

    Zhu, Tao; Zhou, Liming; Liu, Min; Zhang, Jingdong; Shi, Leilei

    2015-01-01

    The traditional electrical field sensing can be realized by utilizing electro-optic materials or liquid crystals, and has limitations of easy breakdown, free assembly and difficult measurement of low-frequency. Here, we propose a new method to realize safe measurement of spatial dynamic electric field by using a micro fiber interferometer integrated with gold nanofilm. The energy of the electric charge received through antenna forms the intrinsic electric field with two micro electrodes, one of which is the 120 nm gold film vibration beam micromachined by femtosecond lasers and integrated with the micro fiber. The change of the intrinsic electric field force due to the spatial electric field will cause the vibration of the film beam. By demodulating the output signal of the micro fiber interferometer, the electric field can be measured. We demonstrate the detectable frequency ranges from tens of Hz to tens of KHz, and the minimum electric field intensity is ~200 V/m at 1 KHz. Our electric field measurement technology combining optical fiber interference with gold nanostructures shows the advantages of security, high sensitivity, compact size, and multiplexed multi-point and remote detection. PMID:26507680

  8. High sensitive space electric field sensing based on micro fiber interferometer with field force driven gold nanofilm

    NASA Astrophysics Data System (ADS)

    Zhu, Tao; Zhou, Liming; Liu, Min; Zhang, Jingdong; Shi, Leilei

    2015-10-01

    The traditional electrical field sensing can be realized by utilizing electro-optic materials or liquid crystals, and has limitations of easy breakdown, free assembly and difficult measurement of low-frequency. Here, we propose a new method to realize safe measurement of spatial dynamic electric field by using a micro fiber interferometer integrated with gold nanofilm. The energy of the electric charge received through antenna forms the intrinsic electric field with two micro electrodes, one of which is the 120 nm gold film vibration beam micromachined by femtosecond lasers and integrated with the micro fiber. The change of the intrinsic electric field force due to the spatial electric field will cause the vibration of the film beam. By demodulating the output signal of the micro fiber interferometer, the electric field can be measured. We demonstrate the detectable frequency ranges from tens of Hz to tens of KHz, and the minimum electric field intensity is ~200 V/m at 1 KHz. Our electric field measurement technology combining optical fiber interference with gold nanostructures shows the advantages of security, high sensitivity, compact size, and multiplexed multi-point and remote detection.

  9. The Birth of Kinetic Electrostatic Electron Nonlinear (KEEN) Waves Weakly Driven by the Ponderomotive Force of Crossing Laser Beams in High Energy Density Plasmas Compared to Strongly Driven KEEN Waves

    NASA Astrophysics Data System (ADS)

    Mehrenberger, Michel; Afeyan, Bedros; Dodhy, Adila; Sonnendrüker, Eric

    2014-10-01

    We vary the amplitude and duration of the ponderomotive force driving KEEN waves in Vlasov-Poisson simulations. We use variable-resolution velocity-grids, so as to maintain accuracy, no matter how small the driven waves get at weak drive. We further accelerate the long time simulations by the use of a large time step which is allowed by a sixth-order time-splitting symplectic scheme. How KEEN waves are born, the fragmentation into vorticlets and their subsequent (sometimes successful and sometimes unsuccessful) merger in the case of weak and/or short duration drives is compared to longer duration and to larger amplitude drives. Our aim is to extract the scaling laws dictating how multiple harmonic, phase locked electric field structures which are the essential feature of KEEN waves are related to the ponderomotive drive properties and how they vary at different locations in the Brillouin diagram. New diagnostics revealing partitioning of phase space, particle orbit statistics and partial mode reconstructions are used to demonstrate the nonstationary and intricate yet robust physics of KEEN wave self-organization in phase space. This work was supported by DOE OFES HEDP Grant.

  10. Aerosol size distribution and radiative forcing response to anthropogenically driven historical changes in biogenic secondary organic aerosol formation

    NASA Astrophysics Data System (ADS)

    D'Andrea, S. D.; Acosta Navarro, J. C.; Farina, S. C.; Scott, C. E.; Rap, A.; Farmer, D. K.; Spracklen, D. V.; Riipinen, I.; Pierce, J. R.

    2015-03-01

    Emissions of biogenic volatile organic compounds (BVOCs) have changed in the past millennium due to changes in land use, temperature, and CO2 concentrations. Recent reconstructions of BVOC emissions have predicted that global isoprene emissions have decreased, while monoterpene and sesquiterpene emissions have increased; however, all three show regional variability due to competition between the various influencing factors. In this work, we use two modeled estimates of BVOC emissions from the years 1000 to 2000 to test the effect of anthropogenic changes to BVOC emissions on secondary organic aerosol (SOA) formation, global aerosol size distributions, and radiative effects using the GEOS-Chem-TOMAS (Goddard Earth Observing System; TwO-Moment Aerosol Sectional) global aerosol microphysics model. With anthropogenic emissions (e.g., SO2, NOx, primary aerosols) turned off and BVOC emissions changed from year 1000 to year 2000 values, decreases in the number concentration of particles of size Dp > 80 nm (N80) of > 25% in year 2000 relative to year 1000 were predicted in regions with extensive land-use changes since year 1000 which led to regional increases in the combined aerosol radiative effect (direct and indirect) of > 0.5 W m-2 in these regions. We test the sensitivity of our results to BVOC emissions inventory, SOA yields, and the presence of anthropogenic emissions; however, the qualitative response of the model to historic BVOC changes remains the same in all cases. Accounting for these uncertainties, we estimate millennial changes in BVOC emissions cause a global mean direct effect of between +0.022 and +0.163 W m-2 and the global mean cloud-albedo aerosol indirect effect of between -0.008 and -0.056 W m-2. This change in aerosols, and the associated radiative forcing, could be a largely overlooked and important anthropogenic aerosol effect on regional climates.

  11. "FACILS 2014: Microbially-driven facilitation systems in environmental biotechnology" (hereafter "FACILS") presented here by the European Commission (EC)-United States (US) Task Force on Biotechnology Research

    SciTech Connect

    Methe, Barbara

    2016-02-03

    As we enter the 21st century, the sustainability of the biosphere is a global challenge that can best be met with a global response. This includes how we train and promote our next generation of research scientists in the emerging arenas of genome-enabled biology and a bio-based economy. It is this fundamental issue that formed the motivation for designing and conducting a shortcourse entitled “FACILIS 2014: Microbially-driven facilitation systems in environmental biotechnology” (hereafter “FACILIS”) presented here by the European Commission (EC)-United States (US) Task Force on Biotechnology Research. This WG was established in 1994 under the umbrella of the US-EC Task Force on Biotechnology Research, a transatlantic collaborative group overseen by the US Office of Science and Technology Policy (OSTP) and the EC. The Environmental Biotechnology Working Group maintains several goals, including establishing research links between scientists in EU countries and the US and fostering the careers of junior scientists from both sides of the Atlantic to the global nature of scientific cooperation. To that end, a shortcourse was held at the University of Milan in Italy on July 12-25 2014 organized around cross-cutting themes of genomic science and designed to attract a stellar group of interdisciplinary early carrier researchers. A total of 22 students, 10 from the US and 12 from the EU participated. The course provided them with hands-on experience with the latest scientific methods in genomics and bioinformatics; using a format that combines lectures, laboratory research and field work with the final goal to enable researchers to finally turn data into knowledge.

  12. Testing the validity of the Ehrenfest theorem beyond simple static systems: Caldirola-Kanai oscillator driven by a time-dependent force

    NASA Astrophysics Data System (ADS)

    Medjber, Salim; Bekkar, Hacene; Menouar, Salah; Ryeol Choi, Jeong

    2016-08-01

    The relationship between quantum mechanics and classical mechanics is investigated by taking a Gaussian-type wave packet as a solution of the Schrödinger equation for the Caldirola-Kanai oscillator driven by a sinusoidal force. For this time-dependent system, quantum properties are studied by using the invariant theory of Lewis and Riesenfeld. In particular, we analyze time behaviors of quantum expectation values of position and momentum variables and compare them to those of the counterpart classical ones. Based on this, we check whether the Ehrenfest theorem which was originally developed in static quantum systems can be extended to such time-varying systems without problems. Project supported by Fund from the Algerian Ministry of Higher Education and Scientific Research (Grant No. CNEPRU/ D01220120010) and the Basic Science Research Program of the year 2015 through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (Grant No. NRF-2013R1A1A2062907).

  13. Simulation of sloshing dynamics induced forces and torques actuated on dewar container driven by gravity gradient and jitter accelerations in microgravity

    NASA Technical Reports Server (NTRS)

    Hung, R. J.; Pan, H. L.

    1993-01-01

    three levels of gravity jitter (10(exp -6), 10(exp -7), and 10(exp -8) g(sub 0)) each at three predominant frequencies (0.1, 1.0, and 10 Hz), combined with a gravity gradient appropriate for the GP-B orbit. Dynamical evolution of sloshing dynamics excited fluid forces and torque fluctuations exerted on the dewar container driven by the combined gravity gradient and jitter accelerations are also investigated and simulated.

  14. Time-dependent measure of a nanoscale force-pulse driven by the axonemal dynein motors in individual live sperm cells.

    PubMed

    Allen, Michael J; Rudd, Robert E; McElfresh, Mike W; Balhorn, Rod

    2010-08-01

    Nanoscale mechanical forces generated by motor proteins are crucial to normal cellular and organismal functioning. The ability to measure and exploit such forces is important to developing motile biomimetic nanodevices powered by biological motors for nanomedicine. Axonemal dynein motors positioned inside the sperm flagellum drive microtubule sliding and give rise to rhythmic beating. This force-generating action pushes the sperm cell through viscous media. Here we report new nanoscale information on how the propulsive force is generated by the sperm flagellum and how this force varies over time. Using a modified atomic force microscope, single-cell recordings reveal discrete approximately 50-ms pulses oscillating with amplitude 9.8 +/- 2.6 nN independent of pulse frequency (3.5-19.5 Hz). The average work carried out by each cell is 4.6 x 10(-16) J per pulse, equivalent to the hydrolysis of approximately 5500 molecules of adenosine triphosphate. The mechanochemical coupling at each active dynein head is approximately 2.2 pN per adenosine triphosphate molecule and approximately 3.9 pN per dynein arm. From the clinical editor: In this paper, nanoscale mechanical forces generated by axonemal dynein motors derived from sperm flagellum are examined and reported. These motor proteins are crucial to normal cellular and organismal functioning. The ability to measure and exploit such forces is important to developing motile biomimetic nanodevices powered by biological motors for nanomedicine.

  15. Modeling of the in situ state of stress in elastic layered rock subject to stress and strain-driven tectonic forces

    NASA Astrophysics Data System (ADS)

    Roche, Vincent; van der Baan, Mirko

    2017-04-01

    In this study we describe and compare eight different strategies to predict the depth variation of stress within a layered rock formation. This reveals the inherent uncertainties in stress prediction from elastic properties and stress measurements, as well as the geologic implications of the different models. The predictive strategies are based on well log data and in some cases on in situ stress measurements, combined with the weight of the overburden rock, the pore pressure, the depth variation in rock properties, and tectonic effects. We contrast and compare stresses predicted purely using theoretical models with those constrained by in situ measurements. We also explore the role of the applied boundary conditions that mimic two fundamental models of tectonic effects, namely the stress- or strain-driven models. In both models, layer-to-layer tectonic stress variations are added to initial predictions due to vertical variation in rock elasticity, consistent with natural observations, yet describe very different controlling mechanisms. Layer-to-layer stress variations are caused by either local elastic strain accommodation for the strain-driven model, or stress transfers for the stress-driven model. As a consequence, stress predictions can depend strongly on the implemented prediction philosophy and the underlying implicit and explicit assumptions, even for media with identical elastic parameters and stress measurements. This implies that stress predictions have large uncertainties, even if local measurements and boundary conditions are honored.

  16. Time-Dependent Measure of a Nano-Scale Force-Pulse Driven by the Axonemal Dynein Motors in Individual Live Sperm Cells

    SciTech Connect

    Allen, M J; Rudd, R E; McElfresh, M W; Balhorn, R

    2009-04-23

    Nano-scale mechanical forces generated by motor proteins are crucial to normal cellular and organismal functioning. The ability to measure and exploit such forces would be important to developing motile biomimetic nanodevices powered by biological motors for Nanomedicine. Axonemal dynein motors positioned inside the sperm flagellum drive microtubule sliding giving rise to rhythmic beating of the flagellum. This force-generating action makes it possible for the sperm cell to move through viscous media. Here we report new nano-scale information on how the propulsive force is generated by the sperm flagellum and how this force varies over time. Single cell recordings reveal discrete {approx}50 ms pulses oscillating with amplitude 9.8 {+-} 2.6 nN independent of pulse frequency (3.5-19.5 Hz). The average work carried out by each cell is 4.6 x 10{sup -16} J per pulse, equivalent to the hydrolysis of {approx}5,500 ATP molecules. The mechanochemical coupling at each active dynein head is {approx}2.2 pN/ATP, and {approx}3.9 pN per dynein arm, in agreement with previously published values obtained using different methods.

  17. Orthogonal optical force separation simulation of particle and molecular species mixtures under direct current electroosmotic driven flow for applications in biological sample preparation.

    PubMed

    Staton, Sarah J R; Terray, Alex; Collins, Greg E; Hart, Sean J

    2013-04-01

    Presented here are the results from numerical simulations applying optical forces orthogonally to electroosmotically induced flow containing both molecular species and particles. Simulations were conducted using COMSOL v4.2a Multiphysics® software including the particle tracking module. The study addresses the application of optical forces to selectively remove particulates from a mixed sample stream that also includes molecular species in a pinched flow microfluidic device. This study explores the optimization of microfluidic cell geometry, magnitude of the applied direct current electric field, EOF rate, diffusion, and magnitude of the applied optical forces. The optimized equilibrium of these various contributing factors aids in the development of experimental conditions and geometry for future experimentation as well as directing experimental expectations, such as diffusional losses, separation resolution, and percent yield. The result of this work generated an optimized geometry with flow conditions leading to negligible diffusional losses of the molecular species while also being able to produce particle removal at near 100% levels. An analytical device, such as the one described herein with the capability to separate particulate and molecular species in a continuous, high-throughput fashion would be valuable by minimizing sample preparation and integrating gross sample collection seamlessly into traditional analytical detection methods.

  18. Capillary Force Driven Self-Assembly of Anisotropic Hierarchical Structures Prepared by Femtosecond Laser 3D Printing and Their Applications in Crystallizing Microparticles.

    PubMed

    Lao, Zhaoxin; Hu, Yanlei; Zhang, Chenchu; Yang, Liang; Li, Jiawen; Chu, Jiaru; Wu, Dong

    2015-12-22

    The hierarchical structures are the derivation of various functionalities in the natural world and have inspired broad practical applications in chemical systhesis and biological manipulation. However, traditional top-down fabrication approaches suffered from low complexity. We propose a laser printing capillary-assisted self-assembly (LPCS) strategy for fabricating regular periodic structures. Microscale pillars are first produced by the localized femtosecond laser polymerization and are subsequently self-assembled into periodic hierarchical architectures with the assistance of controlled capillary force. Moreover, based on anisotropic assemblies of micropillars, the LPCS method is further developed for the preparation of more complicated and advanced functional microstructures. Pillars cross section, height, and spatial arrangement can be tuned to guide capillary force, and diverse assemblies with different configurations are thus achieved. Finally, we developed a strategy for growing micro/nanoparticles in designed spatial locations through solution-evaporation self-assembly induced by morphology. Due to the high flexibility of LPCS method, the special arrangements, sizes, and distribution density of the micro/nanoparticles can be controlled readily. Our method will be employed not only to fabricate anisotropic hierarchical structures but also to design and manufacture organic/inorganic microparticles.

  19. Short to long-term evolution of the shoreline and the subaerial sand beach driven by extreme forcings : Wan-Tzu-Liao, Taïwan

    NASA Astrophysics Data System (ADS)

    Campmas, Lucie; Bouchette, Frederic; Meulé, Samuel; Sous, Damien; Liou, Jiing-Yih; Leroux-Mallouf, Romain; Sabatier, François; Hwung, Hwung-Hweng

    2015-04-01

    This study aims at investigating the interactions between wave conditions, water level and morphology of a sand barrier driven by paroxysmal conditions over instantaneous swash event, storm event, monsoon/typhoons seasons and decadal time scales. In the framework of the KUN-SHEN project, 7 months of monitoring (2011-2012) provided 20 topobathymetric surveys (from the subtidal zone to the back-barrier) and acquisitions of offshore, nearshore and shallow water hydrodynamics including velocity profiling, free surface measurement and absolute pressure. Offshore waves were extracted at Cigu buoy (18 m of water depth). Nearshore waves were acquired from the current profiler deployed 400 m off the coast in 4 m of water depth and water level on the subaerial beach were acquired from pressure sensors deployed from the subtidal zone to the dune crest. Morphologic changes of the emerged beach were monitored using D-GPS each week during the winter monsoon season and just before and after each event during the summer typhoons season. The long-term shoreline changes (1993-2009) of the sand barrier is based on aerial photographs and satellites images. The short-term study focus on the sand bed elevation changes associated with individual swash events during the most energetic storm recorded. During this Talim tropical storm (offshore significant wave height up to 10.3 m with period about 14.6 s), pressure sensors deployed in the subaerial beach display a sand bed nourishment about +3.02 cm/h during the storm rising. The numerous swash-swash interactions during the falling period of the storm appear more erosive. Morphological changes of Talim storm in the whole emerged beach included 6.7 m of dunefoot retreat and a sand transfer from a dune breach to wash-over deposits in the lagoon. Additionally, the foreshore was nourished +2261 m3 +/-268 m3 as well as the whole sand barrier (+1920 m3 +/-1071 m3). The summer season of typhoons appears to be an accretive period (3556 m3 +/-1071

  20. Climate-driven increase in the variability and multi-year mean level of severe thunderstorm-related losses and thunderstorm forcing environments in the U.S. since 1970

    NASA Astrophysics Data System (ADS)

    Sander, Julia; Eichner, Jan; Faust, Eberhard; Steuer, Markus

    2013-04-01

    In the year 2011, direct losses from thunderstorms reached US 26 billion (insured) and US 47 billion (economic), thus equalling the dimension of losses caused by Hurricane Sandy in the New York area 2012. Beyond doubt the 2011 damages had outlier characteristics due to two cities hit by tornadoes. Nonetheless a substantial increase in the variability of normalised direct economic and insured severe thunderstorm-related losses in the U.S. east of the Rocky Mountains over the period 1970-2009 (March - September) has been detected. Besides the annual variability, also the multi-year mean level of losses has strongly increased. Our study focused on sizeable severe thunderstorm events causing at least US 250 million in normalized economic losses. The high threshold guarantees homogeneity over time, because those events regularly covered several states and thus are very unlikely to have been missed at any time due to reporting variability. To shed light on the question whether the strong increase was driven by an external climate driver, the time series of normalized losses (annual counts and annual loss aggregate) was correlated with the time series of thunderstorm forcing environments. The latter were inferred from NCEP/NCAR reanalysis data and comprise 6-hourly CAPE and vertical wind shear data combined to form a variable called Thunderstorm Severity Potential (TSP). From the notable correlation found between the time series of normalized thunderstorm-related losses and meteorologically registered thunderstorm forcing environments (TSP) it could be inferred that climate was the dominant driver for the increase in variability and average level of thunderstorm-related losses over the period 1970-2009. An important component in the rise of TSP over time could be identified in CAPE, as we found a substantial rise in the annual number of exceedances of a high CAPE threshold in the reanalysis data. Recent studies imply that the changes observed in our study, particularly

  1. Nanointerstice-driven microflow.

    PubMed

    Chung, Seok; Yun, Hoyoung; Kamm, Roger D

    2009-03-01

    To generate flow in microchannels, various actuation schemes such as electrokinetic, pressure-driven, and capillary-driven flow have been suggested. Capillary-driven flow is widely used in plastic disposable diagnostic platforms due to its simplicity and because it requires no external power. However, plastics such as poly(methyl methacrylate) (PMMA), generally used in microfluidics, are hydrophobic, which inhibits capillary force generation and requires surface enhancement that deteriorates with age. It is shown that the microchannels made of PMMA lose their acquired hydrophilicity by oxygen plasma treatment in long-term storage and tend to generate slow capillary flow exhibiting large variability. To promote consistency and drive flow in the microchannel, nanointerstices (NI) are introduced at the side wall of the microchannel, which results in capillary flow that is less dependent on surface characteristics. The results show that NI flow generation can be a useful alternative technique to create long-term predictable flow in commercialized products with microchannels.

  2. Entropically Driven Helix Formation

    NASA Astrophysics Data System (ADS)

    Snir, Yehuda; Kamien, Randall

    2004-03-01

    We model the entropically driven self-assembly of a long polymer chain in the presence of non interacting spherical colloids. The polymer is forced to bend due to the thermodynamic interaction with the colloids. We model the polymer as a long bendable tube and find the equilibrium position by minimizing the depletion volume of this tube. We find that the minimal position of the tube is a helix of radius and pitch that depends only on the size of the spherical colloids.

  3. Massive endocytosis driven by lipidic forces originating in the outer plasmalemmal monolayer: a new approach to membrane recycling and lipid domains.

    PubMed

    Fine, Michael; Llaguno, Marc C; Lariccia, Vincenzo; Lin, Mei-Jung; Yaradanakul, Alp; Hilgemann, Donald W

    2011-02-01

    , when unbridled by triggers, can drive endocytosis by lipidic forces.

  4. Century-long increasing trend and variability of dissolved organic carbon export from the Mississippi River basin driven by natural and anthropogenic forcing

    NASA Astrophysics Data System (ADS)

    Ren, Wei; Tian, Hanqin; Cai, Wei-Jun; Lohrenz, Steven E.; Hopkinson, Charles S.; Huang, Wei-Jen; Yang, Jia; Tao, Bo; Pan, Shufen; He, Ruoying

    2016-09-01

    There has been considerable debate as to how natural forcing and anthropogenic activities alter the timing and magnitude of the delivery of dissolved organic carbon (DOC) to the coastal ocean, which has ramifications for the ocean carbon budget, land-ocean interactions, and coastal life. Here we present an analysis of DOC export from the Mississippi River to the Gulf of Mexico during 1901-2010 as influenced by changes in climate, land use and management practices, atmospheric CO2, and nitrogen deposition, through the integration of observational data with a coupled hydrologic/biogeochemical land model. Model simulations show that DOC export in the 2000s increased more than 40% since the 1900s. For the recent three decades (1981-2010), however, our simulated DOC export did not show a significant increasing trend, which is consistent with observations by U.S. Geological Survey. Our factorial analyses suggest that land use and land cover change, including land management practices (LMPs: i.e., fertilization, irrigation, tillage, etc.), were the dominant contributors to the century-scale trend of rising total riverine DOC export, followed by changes in atmospheric CO2, nitrogen deposition, and climate. Decadal and interannual variations of DOC export were largely attributed to year-to-year climatic variability and extreme flooding events, which have been exacerbated by human activity. LMPs show incremental contributions to DOC increase since the 1960s, indicating the importance of sustainable agricultural practices in coping with future environmental changes such as extreme flooding events. Compared to the observational-based estimate, the modeled DOC export was 20% higher, while DOC concentrations were slightly lower. Further refinements in model structure and input data sets should enable reductions in uncertainties in our prediction of century-long trends in DOC.

  5. Quantum thermal machines driven by vacuum forces.

    PubMed

    Terças, Hugo; Ribeiro, Sofia; Pezzutto, Marco; Omar, Yasser

    2017-02-01

    We propose a quantum thermal machine composed of two nanomechanical resonators (two membranes suspended over a trench in a substrate) placed a few μm from each other. The quantum thermodynamical cycle is powered by the Casimir interaction between the resonators and the working fluid is the polariton resulting from the mixture of the flexural (out-of-plane) vibrations. With the help of piezoelectric cells, we select and sweep the polariton frequency cyclically. We calculate the performance of the proposed quantum thermal machines and show that high efficiencies are achieved thanks to (i) the strong coupling between the resonators and (ii) the large difference between the membrane stiffnesses. Our findings can be of particular importance for applications in nanomechanical technologies where a sensitive control of temperature is needed.

  6. Quantum thermal machines driven by vacuum forces

    NASA Astrophysics Data System (ADS)

    Terças, Hugo; Ribeiro, Sofia; Pezzutto, Marco; Omar, Yasser

    2017-02-01

    We propose a quantum thermal machine composed of two nanomechanical resonators (two membranes suspended over a trench in a substrate) placed a few μ m from each other. The quantum thermodynamical cycle is powered by the Casimir interaction between the resonators and the working fluid is the polariton resulting from the mixture of the flexural (out-of-plane) vibrations. With the help of piezoelectric cells, we select and sweep the polariton frequency cyclically. We calculate the performance of the proposed quantum thermal machines and show that high efficiencies are achieved thanks to (i) the strong coupling between the resonators and (ii) the large difference between the membrane stiffnesses. Our findings can be of particular importance for applications in nanomechanical technologies where a sensitive control of temperature is needed.

  7. Water-driven micromotors.

    PubMed

    Gao, Wei; Pei, Allen; Wang, Joseph

    2012-09-25

    We demonstrate the first example of a water-driven bubble-propelled micromotor that eliminates the requirement for the common hydrogen peroxide fuel. The new water-driven Janus micromotor is composed of a partially coated Al-Ga binary alloy microsphere prepared via microcontact mixing of aluminum microparticles and liquid gallium. The ejection of hydrogen bubbles from the exposed Al-Ga alloy hemisphere side, upon its contact with water, provides a powerful directional propulsion thrust. Such spontaneous generation of hydrogen bubbles reflects the rapid reaction between the aluminum alloy and water. The resulting water-driven spherical motors can move at remarkable speeds of 3 mm s(-1) (i.e., 150 body length s(-1)), while exerting large forces exceeding 500 pN. Factors influencing the efficiency of the aluminum-water reaction and the resulting propulsion behavior and motor lifetime, including the ionic strength and environmental pH, are investigated. The resulting water-propelled Al-Ga/Ti motors move efficiently in different biological media (e.g., human serum) and hold considerable promise for diverse biomedical or industrial applications.

  8. Qplus AFM driven nanostencil.

    PubMed

    Grévin, B; Fakir, M; Hayton, J; Brun, M; Demadrille, R; Faure-Vincent, J

    2011-06-01

    We describe the development of a novel setup, in which large stencils with suspended silicon nitride membranes are combined with atomic force microscopy (AFM) regulation by using tuning forks. This system offers the possibility to perform separate AFM and nanostencil operations, as well as combined modes when using stencil chips with integrated tips. The flexibility and performances are demonstrated through a series of examples, including wide AFM scans in closed loop mode, probe positioning repeatability of a few tens of nanometer, simultaneous evaporation of large (several hundred of micron square) and nanoscopic metals and fullerene patterns in static, multistep, and dynamic modes. This approach paves the way for further developments, as it fully combines the advantages of conventional stenciling with the ones of an AFM driven shadow mask. © 2011 American Institute of Physics

  9. Heat driven pulse pump

    NASA Technical Reports Server (NTRS)

    Benner, Steve M (Inventor); Martins, Mario S. (Inventor)

    2000-01-01

    A heat driven pulse pump includes a chamber having an inlet port, an outlet port, two check valves, a wick, and a heater. The chamber may include a plurality of grooves inside wall of the chamber. When heated within the chamber, a liquid to be pumped vaporizes and creates pressure head that expels the liquid through the outlet port. As liquid separating means, the wick, disposed within the chamber, is to allow, when saturated with the liquid, the passage of only liquid being forced by the pressure head in the chamber, preventing the vapor from exiting from the chamber through the outlet port. A plurality of grooves along the inside surface wall of the chamber can sustain the liquid, which is amount enough to produce vapor for the pressure head in the chamber. With only two simple moving parts, two check valves, the heat driven pulse pump can effectively function over the long lifetimes without maintenance or replacement. For continuous flow of the liquid to be pumped a plurality of pumps may be connected in parallel.

  10. Quantized Casimir force.

    PubMed

    Tse, Wang-Kong; MacDonald, A H

    2012-12-07

    We investigate the Casimir effect between two-dimensional electron systems driven to the quantum Hall regime by a strong perpendicular magnetic field. In the large-separation (d) limit where retardation effects are essential, we find (i) that the Casimir force is quantized in units of 3ħcα(2)/8π(2)d(4) and (ii) that the force is repulsive for mirrors with the same type of carrier and attractive for mirrors with opposite types of carrier. The sign of the Casimir force is therefore electrically tunable in ambipolar materials such as graphene. The Casimir force is suppressed when one mirror is a charge-neutral graphene system in a filling factor ν=0 quantum Hall state.

  11. Smart friction driven systems

    NASA Astrophysics Data System (ADS)

    Nitsche, Rainer; Gaul, Lothar

    2005-02-01

    Vibration properties of most assembled mechanical systems depend on frictional damping in joints. The nonlinear transfer behavior of the frictional interfaces often provides the dominant damping mechanism in a built-up structure and plays an important role in the vibratory response of the structure (Gaul and Nitsche 2001 Appl. Mech. Rev. 54 93-105). For improving the performance of systems, many studies have been carried out to predict, measure and/or enhance the energy dissipation of friction. To enhance the friction damping in joint connections a semi-active joint is investigated. A rotational joint connection is designed and manufactured such that the normal force in the friction interface can be influenced with a piezoelectric stack disc. With the piezoelectric device the normal force and thus the friction damping in the joint connection can be controlled. A control design method, namely semi-active control, is investigated. The recently developed LuGre friction model is used to describe the nonlinear transfer behavior of joints. This model is based on a bristle model and turns out to be highly suitable for systems assembled by such smart joints. Those systems can also be regarded as friction driven systems, since the energy flow is controlled by smart joints. The semi-active method is well suited for large space structures since the friction damping in joints turned out to be a major source of damping. To show the applicability of the proposed concept to large space structures a two-beam system representing a part of a large space structure is considered. Two flexible beams are connected with a semi-active joint connection. It can be shown that the damping of the system can be improved significantly by controlling the normal force in the semi-active joint connection. Experimental results validate the damping improvement due to the semi-active friction damping.

  12. Simulations of driven overdamped frictionless hard spheres

    NASA Astrophysics Data System (ADS)

    Lerner, Edan; Düring, Gustavo; Wyart, Matthieu

    2013-03-01

    We introduce an event-driven simulation scheme for overdamped dynamics of frictionless hard spheres subjected to external forces, neglecting hydrodynamic interactions. Our event-driven approach is based on an exact equation of motion which relates the driving force to the resulting velocities through the geometric information characterizing the underlying network of contacts between the hard spheres. Our method allows for a robust extraction of the instantaneous coordination of the particles as well as contact force statistics and dynamics, under any chosen driving force, in addition to shear flow and compression. It can also be used for generating high-precision jammed packings under shear, compression, or both. We present a number of additional applications of our method.

  13. Predictability of Forced Lorenz Systems

    NASA Astrophysics Data System (ADS)

    Li, Baosheng; Ding, Ruiqiang; Li, Jianping; Zhong, Quanjia

    2017-04-01

    Based on the nonlinear local Lyapunov exponent (NLLE) approach, the influences of external forcing on the predictability are studied in the Lorenz systems with constant and quasi-periodic forces in this paper. The results indicate that for the Lorenz systems with constant and quasi-periodic forces, their predictability limits increase with the forcing strength. With the same magnitude and different directions, the constant or quasi-periodic forcing shows different effects on the predictability limit in the Lorenz system, and these effects become significant with the increase of the forcing strength. Generally speaking, the positive forcing leads to a higher predictability limit than the negative forcing. Therefore, when we think about the effects of positive and negative elements and phases in the atmosphere and ocean research, the predictability problems driven by different phases should be considered separately. In addition, the influences of constant and quasi-periodic forces on the predictability are different in the Lorenz system. The effect of the constant forcing on the predictability is mainly reflected in the linear phase of error growth, while the nonlinear phase should also be considered for the situation of the quasi-periodic forcing. The predictability limit of the system under constant forcing is longer than the system under quasi-periodic forcing. These results based on simple chaotic model could provide insight into the studies of the actual atmosphere predictability.

  14. Dynamic signatures of driven vortex motion.

    SciTech Connect

    Crabtree, G. W.; Kwok, W. K.; Lopez, D.; Olsson, R. J.; Paulius, L. M.; Petrean, A. M.; Safar, H.

    1999-09-16

    We probe the dynamic nature of driven vortex motion in superconductors with a new type of transport experiment. An inhomogeneous Lorentz driving force is applied to the sample, inducing vortex velocity gradients that distinguish the hydrodynamic motion of the vortex liquid from the elastic and-plastic motion of the vortex solid. We observe elastic depinning of the vortex lattice at the critical current, and shear induced plastic slip of the lattice at high Lorentz force gradients.

  15. Wind driven air pump

    SciTech Connect

    Beisel, V.A.

    1983-05-31

    An improved pump for lifting water from an underground source utilizes a wind motor for driving an oil-less air compressor eliminating oil contamination of ground water which is forced to the surface. The wind motor is movable to face the wind by means of a novel swivel assembly which also eliminates the formation and freezing of condensate within the airline from the compressor. The propeller blades of the wind motor and the tail section are formed from a pair of opposed convex air foil shaped surfaces which provide the propeller blades and the tail section with fast sensitivity to slight changes in wind direction and speed. A novel well tower for supporting the wind motor and compressor and for lifting the water from the underground source is an optional modification which requires no welding and eliminates the problem of condensate freezing in the airline going to the well. The wind driven air pump disclosed is lightweight, can be easily installed, is relatively inexpensive to produce and is virtually maintenance-free and capable of operating in winds exceeding 100 miles per hour.

  16. Impulse-driven Micromechanism Capsule

    NASA Astrophysics Data System (ADS)

    Ito, Takahiro; Ishimori, Shohei; Hayashi, Teru

    We have developed a traveling small capsule, which has a smooth outer surface and is driven by inertia force and friction force. Measuring only 7 mm in diameter and 12 mm in length, it is sufficiently small to be placed in the human gullet or intestines. The capsule contains a small magnet and a coil, and an electric pulse drives the magnet to move the capsule. We performed an experimental investigation on making our capsule travel on a plastic material, which has similar elasticity characteristics to the living body. We also showed that it can travel on the surface of a pig's intestine. Our capsule may be useful for medical treatments such as inspection, drug delivery and operation.

  17. Solvent-driven chemical motor

    NASA Astrophysics Data System (ADS)

    Mitsumata, Tetsu; Ikeda, Kazuo; Gong, Jian Ping; Osada, Yoshihito

    1998-10-01

    A solvent-driven chemical motor using amphiphilic polymer gel has been fabricated. The driving force of the gel originates from the surface tension of spreading organic fluid which is pumped out by osmotic and hydrostatic pressures in the gel. A tetrahydrofurane-swollen gel equipped with a spouting hole made a controlled translational motion with a velocity of 77 mm/s or rotational motion with a maximum speed of 400 rpm and a torque of 10-9-10-7 Nm on the water surface. A generator to produce an electric power with a maximum electromotive force of 15 mV and electric power of 0.2 μW has also been constructed. The successful fabrication of gel motor may produce a new era of soft machine systems which work without pollution and unnecessary intermediates.

  18. Labor Force

    ERIC Educational Resources Information Center

    Occupational Outlook Quarterly, 2012

    2012-01-01

    The labor force is the number of people ages 16 or older who are either working or looking for work. It does not include active-duty military personnel or the institutionalized population, such as prison inmates. Determining the size of the labor force is a way of determining how big the economy can get. The size of the labor force depends on two…

  19. Measurements in a pressure-driven and a shear-driven three-dimensional turbulent boundary layer

    NASA Astrophysics Data System (ADS)

    Pierce, F. J.; McAllister, J. E.

    Results of mean velocity field, wall static pressure field and simultaneous, direct force measurements of the local wall shear stress magnitude and direction are reported for a pressure-driven and a shear-driven three-dimensional turbulent boundary layer. These data, particularly the direct force local wall shear data, were obtained to test the validity of several of the near-wall similarity models proposed in the literature for such flows.

  20. Force cycles and force chains.

    PubMed

    Tordesillas, Antoinette; Walker, David M; Lin, Qun

    2010-01-01

    We examine the coevolution of N cycles and force chains as part of a broader study which is designed to quantitatively characterize the role of the laterally supporting contact network to the evolution of force chains. Here, we elucidate the rheological function of these coexisting structures, especially in the lead up to failure. In analogy to force chains, we introduce the concept of force cycles: N cycles whose contacts each bear above average force. We examine their evolution around force chains in a discrete element simulation of a dense granular material under quasistatic biaxial loading. Three-force cycles are shown to be stabilizing structures that inhibit relative particle rotations and provide strong lateral support to force chains. These exhibit distinct behavior from other cycles. Their population decreases rapidly during the initial stages of the strain-hardening regime-a trend that is suddenly interrupted and reversed upon commencement of force chain buckling prior to peak shear stress. Results suggest that the three-force cycles are called upon for reinforcements to ward off failure via shear banding. Ultimately though, the resistance to buckling proves futile; buckling wins under the combined effects of dilatation and increasing compressive load. The sudden increase in three-force cycles may thus be viewed as an indicator of imminent failure via shear bands.

  1. Entropic forces in Brownian motion

    NASA Astrophysics Data System (ADS)

    Roos, Nico

    2014-12-01

    Interest in the concept of entropic forces has risen considerably since Verlinde proposed in 2011 to interpret the force in Newton's second law and gravity as entropic forces. Brownian motion—the motion of a small particle (pollen) driven by random impulses from the surrounding molecules—may be the first example of a stochastic process in which such forces are expected to emerge. In this article, it is shown that at least two types of entropic force can be identified in three-dimensional Brownian motion. This analysis yields simple derivations of known results of Brownian motion, Hooke's law, and—applying an external (non-radial) force—Curie's law and the Langevin-Debye equation.

  2. Inter-daily variability of a strong thermally-driven wind system over the Atacama Desert of South America: synoptic forcing and short-term predictability using the GFS global model

    NASA Astrophysics Data System (ADS)

    Jacques-Coper, Martín; Falvey, Mark; Muñoz, Ricardo C.

    2015-07-01

    Crucial aspects of a strong thermally-driven wind system in the Atacama Desert in northern Chile during the extended austral winter season (May-September) are studied using 2 years of measurement data from the Sierra Gorda 80-m meteorological mast (SGO, 22° 56' 24″ S; 69° 7' 58″ W, 2,069 m above sea level (a.s.l.)). Daily cycles of atmospheric variables reveal a diurnal (nocturnal) regime, with northwesterly (easterly) flow and maximum mean wind speed of 8 m/s (13 m/s) on average. These distinct regimes are caused by pronounced topographic conditions and the diurnal cycle of the local radiative balance. Wind speed extreme events of each regime are negatively correlated at the inter-daily time scale: High diurnal wind speed values are usually observed together with low nocturnal wind speed values and vice versa. The associated synoptic conditions indicate that upper-level troughs at the coastline of southwestern South America reinforce the diurnal northwesterly wind, whereas mean undisturbed upper-level conditions favor the development of the nocturnal easterly flow. We analyze the skill of the numerical weather model Global Forecast System (GFS) in predicting wind speed at SGO. Although forecasted wind speeds at 800 hPa do show the diurnal and nocturnal phases, observations at 80 m are strongly underestimated by the model. This causes a pronounced daily cycle of root-mean-squared error (RMSE) and bias in the forecasts. After applying a simple Model Output Statistics (MOS) post-processing, we achieve a good representation of the wind speed intra-daily and inter-daily variability, a first step toward reducing the uncertainties related to potential wind energy projects in the region.

  3. Labor Force

    ERIC Educational Resources Information Center

    Occupational Outlook Quarterly, 2010

    2010-01-01

    The labor force is the number of people aged 16 or older who are either working or looking for work. It does not include active-duty military personnel or institutionalized people, such as prison inmates. Quantifying this total supply of labor is a way of determining how big the economy can get. Labor force participation rates vary significantly…

  4. Micromechanism linear actuator with capillary force sealing

    DOEpatents

    Sniegowski, Jeffry J.

    1997-01-01

    A class of micromachine linear actuators whose function is based on gas driven pistons in which capillary forces are used to seal the gas behind the piston. The capillary forces also increase the amount of force transmitted from the gas pressure to the piston. In a major subclass of such devices, the gas bubble is produced by thermal vaporization of a working fluid. Because of their dependence on capillary forces for sealing, such devices are only practical on the sub-mm size scale, but in that regime they produce very large force times distance (total work) values.

  5. Force sensor

    DOEpatents

    Grahn, Allen R.

    1993-01-01

    A force sensor and related method for determining force components. The force sensor includes a deformable medium having a contact surface against which a force can be applied, a signal generator for generating signals that travel through the deformable medium to the contact surface, a signal receptor for receiving the signal reflected from the contact surface, a generation controller, a reception controller, and a force determination apparatus. The signal generator has one or more signal generation regions for generating the signals. The generation controller selects and activates the signal generation regions. The signal receptor has one or more signal reception regions for receiving signals and for generating detections signals in response thereto. The reception controller selects signal reception regions and detects the detection signals. The force determination apparatus measures signal transit time by timing activation and detection and, optionally, determines force components for selected cross-field intersections. The timer which times by activation and detection can be any means for measuring signal transit time. A cross-field intersection is defined by the overlap of a signal generation region and a signal reception region.

  6. Force sensor

    DOEpatents

    Grahn, A.R.

    1993-05-11

    A force sensor and related method for determining force components is described. The force sensor includes a deformable medium having a contact surface against which a force can be applied, a signal generator for generating signals that travel through the deformable medium to the contact surface, a signal receptor for receiving the signal reflected from the contact surface, a generation controller, a reception controller, and a force determination apparatus. The signal generator has one or more signal generation regions for generating the signals. The generation controller selects and activates the signal generation regions. The signal receptor has one or more signal reception regions for receiving signals and for generating detections signals in response thereto. The reception controller selects signal reception regions and detects the detection signals. The force determination apparatus measures signal transit time by timing activation and detection and, optionally, determines force components for selected cross-field intersections. The timer which times by activation and detection can be any means for measuring signal transit time. A cross-field intersection is defined by the overlap of a signal generation region and a signal reception region.

  7. Design Considerations for Plasma Accelerators Driven by Lasers or Particle Beams

    SciTech Connect

    Schroeder, C. B.; Esarey, E.; Benedetti, C.; Toth, Cs.; Geddes, C. G. R.; Leemans, W.P.

    2010-06-01

    Plasma accelerators may be driven by the ponderomotive force of an intense laser or the space-charge force of a charged particle beam. The implications for accelerator design and the different physical mechanisms of laser-driven and beam-driven plasma acceleration are discussed. Driver propagation is examined, as well as the effects of the excited plasma wave phase velocity. The driver coupling to subsequent plasma accelerator stages for high-energy physics applications is addressed.

  8. Paradoxical stabilization of forced oscillations by strong nonlinear friction

    NASA Astrophysics Data System (ADS)

    Esirkepov, Timur Zh.; Bulanov, Sergei V.

    2017-08-01

    In a dissipative dynamic system driven by an oscillating force, a strong nonlinear highly oscillatory friction force can create a quasi-steady tug, which is always directed opposite to the ponderomotive force induced due to a spatial inhomogeneity of oscillations. When the friction-induced tug exceeds the ponderomotive force, the friction stabilizes the system oscillations near the maxima of the oscillation spatial amplitude of the driving force.

  9. Osmotically driven shape-dependent colloidal separations

    NASA Astrophysics Data System (ADS)

    Mason, T. G.

    2002-12-01

    The thermally induced motion of nanometer-sized surfactant micelles in water is used to create strong attractive forces between micron-sized disks of wax in a mixed aqueous dispersion of microdisks and microspheres. The short-ranged attractive force due to the depletion of micelles from between the microdisks is much stronger than that between two microspheres of similar size, and is largest when the disks approach face to face, so columns of microdisks form. These columns cream, whereas the spheres remain dispersed, providing a means for shape-dependent colloidal separations driven by an applied micellar osmotic pressure.

  10. Fluctuation relations for a driven Brownian particle.

    PubMed

    Imparato, A; Peliti, L

    2006-08-01

    We consider a driven Brownian particle, subject to both conservative and nonconservative applied forces, whose probability evolves according to the Kramers equation. We derive a general fluctuation relation, expressing the ratio of the probability of a given Brownian path in phase space with that of the time-reversed path, in terms of the entropy flux to the heat reservoir. This fluctuation relation implies those of Seifert, Jarzynski, and Gallavotti-Cohen in different special cases.

  11. Fluctuation relations for a driven Brownian particle

    NASA Astrophysics Data System (ADS)

    Imparato, A.; Peliti, L.

    2006-08-01

    We consider a driven Brownian particle, subject to both conservative and nonconservative applied forces, whose probability evolves according to the Kramers equation. We derive a general fluctuation relation, expressing the ratio of the probability of a given Brownian path in phase space with that of the time-reversed path, in terms of the entropy flux to the heat reservoir. This fluctuation relation implies those of Seifert, Jarzynski, and Gallavotti-Cohen in different special cases.

  12. Molecular force spectroscopy on cells.

    PubMed

    Liu, Baoyu; Chen, Wei; Zhu, Cheng

    2015-04-01

    Molecular force spectroscopy has become a powerful tool to study how mechanics regulates biology, especially the mechanical regulation of molecular interactions and its impact on cellular functions. This force-driven methodology has uncovered a wealth of new information of the physical chemistry of molecular bonds for various biological systems. The new concepts, qualitative and quantitative measures describing bond behavior under force, and structural bases underlying these phenomena have substantially advanced our fundamental understanding of the inner workings of biological systems from the nanoscale (molecule) to the microscale (cell), elucidated basic molecular mechanisms of a wide range of important biological processes, and provided opportunities for engineering applications. Here, we review major force spectroscopic assays, conceptual developments of mechanically regulated kinetics of molecular interactions, and their biological relevance. We also present current challenges and highlight future directions.

  13. Self-driven jamming in growing microbial populations

    NASA Astrophysics Data System (ADS)

    Delarue, Morgan; Hartung, Jörn; Schreck, Carl; Gniewek, Pawel; Hu, Lucy; Herminghaus, Stephan; Hallatschek, Oskar

    2016-08-01

    In natural settings, microbes tend to grow in dense populations where they need to push against their surroundings to accommodate space for new cells. The associated contact forces play a critical role in a variety of population-level processes, including biofilm formation, the colonization of porous media, and the invasion of biological tissues. Although mechanical forces have been characterized at the single-cell level, it remains elusive how collective pushing forces result from the combination of single-cell forces. Here, we reveal a collective mechanism of confinement, which we call self-driven jamming, that promotes the build-up of large mechanical pressures in microbial populations. Microfluidic experiments on budding yeast populations in space-limited environments show that self-driven jamming arises from the gradual formation and sudden collapse of force chains driven by microbial proliferation, extending the framework of driven granular matter. The resulting contact pressures can become large enough to slow down cell growth, to delay the cell cycle in the G1 phase, and to strain or even destroy the micro-environment through crack propagation. Our results suggest that self-driven jamming and build-up of large mechanical pressures is a natural tendency of microbes growing in confined spaces, contributing to microbial pathogenesis and biofouling.

  14. Self-Driven Jamming in Growing Microbial Populations

    PubMed Central

    Delarue, Morgan; Hartung, Jörn; Schreck, Carl; Gniewek, Pawel; Hu, Lucy; Herminghaus, Stephan; Hallatschek, Oskar

    2016-01-01

    In natural settings, microbes tend to grow in dense populations [1–4] where they need to push against their surroundings to accommodate space for new cells. The associated contact forces play a critical role in a variety of population-level processes, including biofilm formation [5–7], the colonization of porous media [8, 9], and the invasion of biological tissues [10–12]. Although mechanical forces have been characterized at the single cell level [13–16], it remains elusive how collective pushing forces result from the combination of single cell forces. Here, we reveal a collective mechanism of confinement, which we call self-driven jamming, that promotes the build-up of large mechanical pressures in microbial populations. Microfluidic experiments on budding yeast populations in space-limited environments show that self-driven jamming arises from the gradual formation and sudden collapse of force chains driven by microbial proliferation, extending the framework of driven granular matter [17–20]. The resulting contact pressures can become large enough to slow down cell growth, to delay the cell cycle in the G1 phase, and to strain or even destroy the microenvironment through crack propagation. Our results suggest that self-driven jamming and build-up of large mechanical pressures is a natural tendency of microbes growing in confined spaces, contributing to microbial pathogenesis and biofouling [21–26]. PMID:27642362

  15. Self-Driven Jamming in Growing Microbial Populations.

    PubMed

    Delarue, Morgan; Hartung, Jörn; Schreck, Carl; Gniewek, Pawel; Hu, Lucy; Herminghaus, Stephan; Hallatschek, Oskar

    2016-08-01

    In natural settings, microbes tend to grow in dense populations [1-4] where they need to push against their surroundings to accommodate space for new cells. The associated contact forces play a critical role in a variety of population-level processes, including biofilm formation [5-7], the colonization of porous media [8, 9], and the invasion of biological tissues [10-12]. Although mechanical forces have been characterized at the single cell level [13-16], it remains elusive how collective pushing forces result from the combination of single cell forces. Here, we reveal a collective mechanism of confinement, which we call self-driven jamming, that promotes the build-up of large mechanical pressures in microbial populations. Microfluidic experiments on budding yeast populations in space-limited environments show that self-driven jamming arises from the gradual formation and sudden collapse of force chains driven by microbial proliferation, extending the framework of driven granular matter [17-20]. The resulting contact pressures can become large enough to slow down cell growth, to delay the cell cycle in the G1 phase, and to strain or even destroy the microenvironment through crack propagation. Our results suggest that self-driven jamming and build-up of large mechanical pressures is a natural tendency of microbes growing in confined spaces, contributing to microbial pathogenesis and biofouling [21-26].

  16. Laser-Driven Fusion.

    ERIC Educational Resources Information Center

    Gibson, A. F.

    1980-01-01

    Discusses the present status and future prospects of laser-driven fusion. Current research (which is classified under three main headings: laser-matter interaction processes, compression, and laser development) is also presented. (HM)

  17. Laser-Driven Fusion.

    ERIC Educational Resources Information Center

    Gibson, A. F.

    1980-01-01

    Discusses the present status and future prospects of laser-driven fusion. Current research (which is classified under three main headings: laser-matter interaction processes, compression, and laser development) is also presented. (HM)

  18. ISOTROPICALLY DRIVEN VERSUS OUTFLOW DRIVEN TURBULENCE: OBSERVATIONAL CONSEQUENCES FOR MOLECULAR CLOUDS

    SciTech Connect

    Carroll, Jonathan J.; Frank, Adam; Blackman, Eric G.

    2010-10-10

    Feedback from protostellar outflows can influence the nature of turbulence in star-forming regions even if they are not the primary source of velocity dispersion for all scales of molecular clouds. For the rate and power expected in star-forming regions, we previously (Carroll et al.) demonstrated that outflows could drive supersonic turbulence at levels consistent with the scaling relations from Matzner although with a steeper velocity power spectrum than expected for an isotropically driven supersonic turbulent cascade. Here, we perform higher resolution simulations and combine simulations of outflow driven turbulence with those of isotropically forced turbulence. We find that the presence of outflows within an ambient isotropically driven turbulent environment produces a knee in the velocity power spectrum at the outflow scale and a steeper slope at sub-outflow scales than for a purely isotropically forced case. We also find that the presence of outflows flattens the density spectrum at large scales effectively reducing the formation of large-scale turbulent density structures. These effects are qualitatively independent of resolution. We have also carried out Principal Component Analysis (PCA) for synthetic data from our simulations. We find that PCA as a tool for identifying the driving scale of turbulence has a misleading bias toward low amplitude large-scale velocity structures even when they are not necessarily the dominant energy containing scales. This bias is absent for isotropically forced turbulence but manifests strongly for collimated outflow driven turbulence.

  19. Isotropically Driven Versus Outflow Driven Turbulence: Observational Consequences for Molecular Clouds

    NASA Astrophysics Data System (ADS)

    Carroll, Jonathan J.; Frank, Adam; Blackman, Eric G.

    2010-10-01

    Feedback from protostellar outflows can influence the nature of turbulence in star-forming regions even if they are not the primary source of velocity dispersion for all scales of molecular clouds. For the rate and power expected in star-forming regions, we previously (Carroll et al.) demonstrated that outflows could drive supersonic turbulence at levels consistent with the scaling relations from Matzner although with a steeper velocity power spectrum than expected for an isotropically driven supersonic turbulent cascade. Here, we perform higher resolution simulations and combine simulations of outflow driven turbulence with those of isotropically forced turbulence. We find that the presence of outflows within an ambient isotropically driven turbulent environment produces a knee in the velocity power spectrum at the outflow scale and a steeper slope at sub-outflow scales than for a purely isotropically forced case. We also find that the presence of outflows flattens the density spectrum at large scales effectively reducing the formation of large-scale turbulent density structures. These effects are qualitatively independent of resolution. We have also carried out Principal Component Analysis (PCA) for synthetic data from our simulations. We find that PCA as a tool for identifying the driving scale of turbulence has a misleading bias toward low amplitude large-scale velocity structures even when they are not necessarily the dominant energy containing scales. This bias is absent for isotropically forced turbulence but manifests strongly for collimated outflow driven turbulence.

  20. Forced Snaking

    NASA Astrophysics Data System (ADS)

    Ponedel, Benjamin; Knobloch, Edgar

    2016-11-01

    We study spatial localization in the real subcritical Ginzburg-Landau equation ut =m0 u +m1 cos2/π l x u +uxx +d | u | 2 u -| u | 4 u with spatially periodic forcing. When d > 0 and m1 = 0 this equation exhibits bistability between the trivial state u = 0 and a homogeneous nontrivial state u =u0 with stationary localized structures which accumulate at the Maxwell point m0 = - 3d2 / 16 . When spatial forcing is included its wavelength is imprinted on u0 creating conditions favorable to front pinning and hence spatial localization. We use numerical continuation to show that under appropriate conditions such forcing generates a sequence of localized states organized within a snakes-and-ladders structure centered on the Maxwell point, and refer to this phenomenon as forced snaking. We determine the stability properties of these states and show that longer lengthscale forcing leads to stationary trains consisting of a finite number of strongly localized, weakly interacting pulses exhibiting foliated snaking.

  1. Eccentric Inspirals with Self-Force and Spin-Force

    NASA Astrophysics Data System (ADS)

    Evans, Charles; Osburn, Thomas; Warburton, Niels

    2017-01-01

    Eccentric inspirals of a small mass about a more massive Schwarzschild black hole (EMRIs or IMRIs) are calculated using the gravitational self-force and the Mathisson-Papapetrou spin-force. These calculations include all dissipative and conservative effects that are first order in the mass ratio. We compute systems with initial eccentricities as high as e = 0.8, initial separations as large as 50 M, and arbitrary spin orientations. Including the spin-force causes the orbital plane to precess. Inspirals are calculated using an osculating-orbits scheme that is driven by self-force data from a hybrid self-force code and time-domain spin-force calculations. The hybrid approach uses both self-force data from a Lorenz gauge code and highly accurate flux data from a Regge-Wheeler-Zerilli code, allowing the hybrid model to track orbital phase of inspirals to within 0.1 radians or better over hundreds or thousands of orbits. NSF PHY15-06182.

  2. Intermolecular forces.

    PubMed

    Buckingham, A D

    1975-11-06

    The nature of molecular interactions is examined. Intermolecular forces are divided into long-range and short-range components; the former operate at distances where the effects of electron exchange are negligible and decrease as an inverse power of the separation. The long-range interactions may be subdividied into electrostatic, induction and dispersion contributions, where the electrostatic component is the interaction of the permanent charge distributions and the others originate in the fluctuations in the distributions. Typical magnitudes of the various contributions are given. The forces between macroscopic bodies are briefly considered, as are the effects of a medium. Some of the manifestations of molecular interactions are discussed.

  3. Cosmic ray driven Galactic winds

    NASA Astrophysics Data System (ADS)

    Recchia, S.; Blasi, P.; Morlino, G.

    2016-11-01

    The escape of cosmic rays from the Galaxy leads to a gradient in the cosmic ray pressure that acts as a force on the background plasma, in the direction opposite to the gravitational pull. If this force is large enough to win against gravity, a wind can be launched that removes gas from the Galaxy, thereby regulating several physical processes, including star formation. The dynamics of these cosmic ray driven winds is intrinsically non-linear in that the spectrum of cosmic rays determines the characteristics of the wind (velocity, pressure, magnetic field) and in turn the wind dynamics affects the cosmic ray spectrum. Moreover, the gradient of the cosmic ray distribution function causes excitation of Alfvén waves, that in turn determines the scattering properties of cosmic rays, namely their diffusive transport. These effects all feed into each other so that what we see at the Earth is the result of these non-linear effects. Here, we investigate the launch and evolution of such winds, and we determine the implications for the spectrum of cosmic rays by solving together the hydrodynamical equations for the wind and the transport equation for cosmic rays under the action of self-generated diffusion and advection with the wind and the self-excited Alfvén waves.

  4. Torque Control of Underactuated Tendon-driven Robotic Fingers

    NASA Technical Reports Server (NTRS)

    Abdallah, Muhammad E. (Inventor); Ihrke, Chris A. (Inventor); Reiland, Matthew J. (Inventor); Wampler, Charles W. (Inventor); Diftler, Myron A. (Inventor); Platt, Robert (Inventor); Bridgwater, Lyndon (Inventor)

    2013-01-01

    A robotic system includes a robot having a total number of degrees of freedom (DOF) equal to at least n, an underactuated tendon-driven finger driven by n tendons and n DOF, the finger having at least two joints, being characterized by an asymmetrical joint radius in one embodiment. A controller is in communication with the robot, and controls actuation of the tendon-driven finger using force control. Operating the finger with force control on the tendons, rather than position control, eliminates the unconstrained slack-space that would have otherwise existed. The controller may utilize the asymmetrical joint radii to independently command joint torques. A method of controlling the finger includes commanding either independent or parameterized joint torques to the controller to actuate the fingers via force control on the tendons.

  5. The mechanics of gravity-driven faulting

    NASA Astrophysics Data System (ADS)

    Barrows, L.; Barrows, V.

    2010-04-01

    Faulting can result from either of two different mechanisms. These involve fundamentally different energetics. In elastic rebound, locked-in elastic strain energy is transformed into the earthquake (seismic waves plus work done in the fault zone). In force-driven faulting, the forces that create the stress on the fault supply work or energy to the faulting process. Half of this energy is transformed into the earthquake and half goes into an increase in locked-in elastic strain. In elastic rebound the locked-in elastic strain drives slip on the fault. In force-driven faulting it stops slip on the fault. Tectonic stress is reasonably attributed to gravity acting on topography and the Earth's lateral density variations. This includes the thermal convection that ultimately drives plate tectonics. Mechanical analysis has shown the intensity of the gravitational tectonic stress that is associated with the regional topography and lateral density variations that actually exist is comparable with the stress drops that are commonly associated with tectonic earthquakes; both are in the range of tens of bar to several hundred bar. The gravity collapse seismic mechanism assumes the fault fails and slips in direct response to the gravitational tectonic stress. Gravity collapse is an example of force-driven faulting. In the simplest case, energy that is released from the gravitational potential of the stress-causing topography and lateral density variations is equally split between the earthquake and the increase in locked-in elastic strain. The release of gravitational potential energy requires a change in the Earth's density distribution. Gravitational body forces are solely dependent on density so a change in the density distribution requires a change in the body forces. This implies the existence of volumetric body-force displacements. The volumetric body-force displacements are in addition to displacements generated by slip on the fault. They must exist if gravity

  6. The Energetics of Gravity Driven Faulting

    NASA Astrophysics Data System (ADS)

    Barrows, L.

    2007-12-01

    Faulting can result from either of two different mechanisms. These involve fundamentally different energetics. In displacement-bounded faulting, locked-in elastic strain energy is transformed into seismic waves plus work done in the fault zone. Elastic rebound is an example of displacement-bounded faulting. In force-driven faulting, the forces that create the stress on the fault supply work or energy to the faulting process. Half of this energy is transformed into seismic waves plus work done in the fault zone and half goes into an increase in locked-in elastic strain. In displacement-bounded faulting the locked-in elastic strain drives slip on the fault. In force-driven faulting it stops slip on the fault. Tectonic stress is reasonably attributed to gravity acting on topography and the Earth's lateral density variations. This includes the thermal convection that ultimately drives plate tectonics. The gravity collapse seismic mechanism assumes the fault fails and slips in direct response to the gravitational tectonic stress. Gravity collapse is an example of force-driven faulting. In the simplest case, energy that is released from the gravitational potential of the topography and internal stress-causing density variations is equally split between the seismic waves plus work done in the fault zone and the increase in locked-in elastic strain. The release of gravitational potential energy requires a change in the Earth's density distribution. Gravitational body forces are solely dependent on density so a change in the density distribution requires a change in the body forces. This implies the existence of volumetric body-force displacements. The volumetric body-force displacements are in addition to displacements generated by slip on the fault. They must exist if gravity participates in the energetics of the faulting process. From the perspective of gravitational tectonics, the gravity collapse mechanism is direct and simple. The related mechanics are a little more

  7. Nucleation in periodically driven electrochemical systems

    NASA Astrophysics Data System (ADS)

    Smelyanskiy, V. N.; Dykman, M. I.; Rabitz, H.; Vugmeister, B. E.; Bernasek, S. L.; Bocarsly, A. B.

    1999-06-01

    We calculate both the exponent and the prefactor in the nucleation rate of a periodically driven system. Nucleation dynamics is described by the Fokker-Planck equation for the probability distribution of the nuclei over their size. This distribution is found using the concept of the most probable (optimal) nucleation path. The results apply in a broad range of driving force amplitudes, from weak to moderately strong forces where the nucleation rate is changed exponentially strongly, and also in the broad range of the driving frequencies, from low-frequency driving, where the system follows the force adiabatically, to high-frequency nonadiabatic driving. For strong driving forces, the time dependence of the nucleation rate changes from strongly nonsinusoidal to a weak with the increasing frequency of driving. The response of the nucleation rate to the driving force is described in terms of logarithmic susceptibility (LS), which can be obtained from the optimal nucleation path in the absence of the driving. LS is a smooth function of frequency, and therefore even a driving force with comparatively high frequency can change the modulation rate exponentially strongly. LS and the Faraday current are calculated for simple models of electrochemical systems, where the ac driving is produced by modulation of the electrode potential. We also suggest how to find LS from measurements of the average nucleation rate.

  8. Periodically driven holographic superconductor

    NASA Astrophysics Data System (ADS)

    Li, Wei-Jia; Tian, Yu; Zhang, Hongbao

    2013-07-01

    As a first step towards our holographic investigation of the far-from-equilibrium physics of periodically driven systems at strong coupling, we explore the real time dynamics of holographic superconductor driven by a monochromatically alternating electric field with various frequencies. As a result, our holographic superconductor is driven to the final oscillating state, where the condensate is suppressed and the oscillation frequency is controlled by twice of the driving frequency. In particular, in the large frequency limit, the three distinct channels towards the final steady state are found, namely under damped to superconducting phase, over damped to superconducting and normal phase, which can be captured essentially by the low lying spectrum of quasi-normal modes in the time averaged approximation, reminiscent of the effective field theory perspective.

  9. The driven spinning top

    NASA Astrophysics Data System (ADS)

    Grosu, Ioan; Featonby, David

    2016-05-01

    This driven top is quite a novelty and can, with some trials, be made using the principles outlined here. This new top has many applications in developing both understanding and skills and these are detailed in the article. Depending on reader’s available time and motivation they may feel an urge to make one themselves, or simply invest a few pounds in the one that has been designed, tested and manufactured to a high standard. Either way the unique design of the driven top can provide several hours of interesting experimentation. Our aim here is simply to inform and inspire readers to further investigation and experimentation.

  10. Force decomposition in robot force control

    NASA Technical Reports Server (NTRS)

    Murphy, Steve H.; Wen, John T.

    1991-01-01

    The unit inconsistency in force decomposition has motivated an investigation into the force control problem in multiple-arm manipulation. Based on physical considerations, it is argued that the force that should be controlled is the internal force at the specified frame in the payload. This force contains contributions due to both applied forces from the arms and the inertial force from the payload and the arms. A least-squares scheme free of unit inconsistency for finding this internal force is presented. The force control issue is analyzed, and an integral force feedback controller is proposed.

  11. Strategic forces

    SciTech Connect

    Not Available

    1990-10-01

    The Air Force now plans to retain the Minuteman II and III missile force through fiscal year 2008. Introduced about 25 years ago, these missiles have served as a nuclear deterrence for longer than initially envisioned. Over the extended lives of the systems, questions have arisen over their continued reliability and operational effectiveness, particularly the Minuteman II system. Limited flight testing, due to a shortage of test missiles, and reduced reliability caused by age-related deterioration of guidance computers and propulsion motors are two factors undermining confidence in the Minuteman II. GAO believes that the Minuteman II could be retired before 1998 as presently contemplated under an assumption of a Strategic Arms Reduction Talks agreement. An alternative would be to reinstate the Air Force's plans to replace deteriorated missile components and acquire the assets needed to resume flight testing at rates necessary to restore and sustain confidence in the system's performance through fiscal year 2008. However, on the basis of current test schedules, GAO is concerned that components to test the missile's warheads will be depleted by about 1999.

  12. Electrically Driven Prosthetic Elbow.

    DTIC Science & Technology

    The invention relates to an improved electrically driven prosthetic elbow wherein the elbow is capable of being rigidly locked into place in any...desired position, and upon driving the arm to the fully extended position, the elbow is automatically unlocked.

  13. The Driven Spinning Top

    ERIC Educational Resources Information Center

    Grosu, Ioan; Featonby, David

    2016-01-01

    This driven top is quite a novelty and can, with some trials, be made using the principles outlined here. This new top has many applications in developing both understanding and skills and these are detailed in the article. Depending on reader's available time and motivation they may feel an urge to make one themselves, or simply invest a few…

  14. Argument-Driven Inquiry

    ERIC Educational Resources Information Center

    Sampson, Victor; Grooms, Jonathon; Walker, Joi

    2009-01-01

    Argument-Driven Inquiry (ADI) is an instructional model that enables science teachers to transform a traditional laboratory activity into a short integrated instructional unit. To illustrate how the ADI instructional model works, this article describes an ADI lesson developed for a 10th-grade chemistry class. This example lesson was designed to…

  15. The Driven Spinning Top

    ERIC Educational Resources Information Center

    Grosu, Ioan; Featonby, David

    2016-01-01

    This driven top is quite a novelty and can, with some trials, be made using the principles outlined here. This new top has many applications in developing both understanding and skills and these are detailed in the article. Depending on reader's available time and motivation they may feel an urge to make one themselves, or simply invest a few…

  16. Argument-Driven Inquiry

    ERIC Educational Resources Information Center

    Sampson, Victor; Grooms, Jonathon; Walker, Joi

    2009-01-01

    Argument-Driven Inquiry (ADI) is an instructional model that enables science teachers to transform a traditional laboratory activity into a short integrated instructional unit. To illustrate how the ADI instructional model works, this article describes an ADI lesson developed for a 10th-grade chemistry class. This example lesson was designed to…

  17. The Glass Transition of Driven Molecular Materials

    NASA Astrophysics Data System (ADS)

    Descamps, M.; Willart, J. F.; Aumelas, A.

    2008-02-01

    There are many cases of practical interest where materials are maintained in nonequilibrium conditions by some external dynamical forcing: typical examples of these driven materials are provided by irradiation, grinding, extrusion…Contrary to usual phase transitions which are properly addressed by thermal equilibrium states, equilibrium and irreversible thermodynamics, no such general framework is available for driven systems. The purpose of this paper is to show some examples of phase transformations in driven molecular materials. These materials are considered because they are extremely sensitive to external disturbances and are generally very good glass formers. This allows investigating more easily a broad range of the parameters which possibly influence the nature of the end product. We will examine mainly the effect of grinding. Contrary to other materials, metals or minerals, systematic investigations of transformations induced by grinding of molecular materials have not yet been done despite the practical and fundamental interests of such investigations in pharmaceutical and agro-chemical science. We will address several modes of interconversions between crystalline and glassy states of the same compound. We will further discuss specific processing effects on the physical state of the glass itself. It will be shown from these investigations that rationalization and possibilities of prediction are emerging. The use of effective temperature concepts to describe the end product of milling will be discussed. These findings may be of general concern for driven materials of any chemical nature.

  18. Current-induced forces: a simple derivation

    NASA Astrophysics Data System (ADS)

    Todorov, Tchavdar N.; Dundas, Daniel; Lü, Jing-Tao; Brandbyge, Mads; Hedegård, Per

    2014-11-01

    We revisit the problem of forces on atoms under current in nanoscale conductors. We derive and discuss the five principal kinds of force under steady-state conditions from a simple standpoint that—with the help of background literature—should be accessible to physics undergraduates. The discussion aims at combining methodology with an emphasis on the underlying physics through examples. We discuss and compare two forces present only under current—the non-conservative electron wind force and a Lorentz-like velocity-dependent force. It is shown that in metallic nanowires both display significant features at the wire surface, making it a candidate for the nucleation of current-driven structural transformations and failure. Finally we discuss the problem of force noise and the limitations of Ehrenfest dynamics.

  19. Experimental Study on Current-Driven Domain Wall Motion

    NASA Astrophysics Data System (ADS)

    Ono, T.; Yamaguchi, A.; Tanigawa, H.; Yano, K.; Kasai, S.

    2006-06-01

    Current-driven domain wall (DW) motion for a well-defined single DW in a micro-fabricated magnetic wire with submicron width was investigated by real-space observation with magnetic force microscopy. Magnetic force microscopy visualizes that a single DW introduced in a wire is displaced back and forth by positive and negative pulsed-current, respectively. Effect of the Joule heating, reduction of the threshold current density by shape control, and magnetic ratchet effect are also presented.

  20. Hydrodynamic synchronisation of optically driven rotors

    NASA Astrophysics Data System (ADS)

    Debono, Luke J.; Box, Stuart; Phillips, David B.; Simpson, Stephen H.; Hanna, Simon

    2015-08-01

    Hydrodynamic coupling is thought to play a role in the coordinated beating of cilia and flagella, and may inform the future design of artificial swimmers and pumps. In this study, optical tweezers are used to investigate the hydrodynamic coupling between a pair of driven oscillators. The theoretical model of Lenz and Ryskin [P. Lenz and A. Ryskin, Phys. Biol. 3, 285{294 (2006)] is experimentally recreated, in which each oscillator consists of a sphere driven in a circular trajectory. The optical trap position is maintained ahead of the sphere to provide a tangential driving force. The trap is also moved radially to harmonically constrain the sphere to the circular trajectory. Analytically, it has been shown that two oscillators of this type are able to synchronise or phase-lock under certain conditions. We explore the interplay between synchronisation mechanisms and find good agreement between experiment, theory and Brownian dynamics simulations.

  1. Position Control of Tendon-Driven Fingers

    NASA Technical Reports Server (NTRS)

    Abdallah, Muhammad E.; Platt, Robert, Jr.; Hargrave, B.; Pementer, Frank

    2011-01-01

    Conventionally, tendon-driven manipulators implement some force control scheme based on tension feedback. This feedback allows the system to ensure that the tendons are maintained taut with proper levels of tensioning at all times. Occasionally, whether it is due to the lack of tension feedback or the inability to implement sufficiently high stiffnesses, a position control scheme is needed. This work compares three position controllers for tendon-driven manipulators. A new controller is introduced that achieves the best overall performance with regards to speed, accuracy, and transient behavior. To compensate for the lack of tension feedback, the controller nominally maintains the internal tension on the tendons by implementing a two-tier architecture with a range-space constraint. These control laws are validated experimentally on the Robonaut-2 humanoid hand. I

  2. Sensing Position With Approximately Constant Contact Force

    NASA Technical Reports Server (NTRS)

    Sturdevant, Jay

    1996-01-01

    Computer-controlled electromechanical system uses number of linear variable-differential transformers (LVDTs) to measure axial positions of selected points on surface of lens, mirror, or other precise optical component with high finish. Pressures applied to pneumatically driven LVDTs adjusted to maintain small, approximately constant contact forces as positions of LVDT tips vary.

  3. Measurements of gravity driven granular channel flows

    NASA Astrophysics Data System (ADS)

    Facto, Kevin

    This dissertation presents experiments that studied two gravity driven granular channel flows. The first experiment used magnetic resonance imaging to measure the density and displacement distributions of poppy seeds flowing in a rough walled channel. Time-averaged measurements of normalized velocity and density showed little flow speed dependence. Instantaneous measurements, however, showed marked velocity dependence in the displacement distributions. There was evidence of aperiodic starting and stopping at lower flow speeds and the onset of density waves on a continuous flow at higher speeds. The second experiment measured forces in all three spatial directions at the boundary of a flow of steel balls. The relationship between the normal and the tangential forces were examined statistically and compared to the Coulomb friction model. For both large and small forces, the tangential and normal forces are unrelated, as there appears to be a strong tendency for the tangential force to maintain a value that will bear the weight the weight of the particles in flow.

  4. Forced motion near black holes

    SciTech Connect

    Gair, Jonathan R.; Flanagan, Eanna E.; Drasco, Steve; Hinderer, Tanja; Babak, Stanislav

    2011-02-15

    We present two methods for integrating forced geodesic equations in the Kerr spacetime. The methods can accommodate arbitrary forces. As a test case, we compute inspirals caused by a simple drag force, mimicking motion in the presence of gas. We verify that both methods give the same results for this simple force. We find that drag generally causes eccentricity to increase throughout the inspiral. This is a relativistic effect qualitatively opposite to what is seen in gravitational-radiation-driven inspirals, and similar to what others have observed in hydrodynamic simulations of gaseous binaries. We provide an analytic explanation by deriving the leading order relativistic correction to the Newtonian dynamics. If observed, an increasing eccentricity would thus provide clear evidence that the inspiral was occurring in a nonvacuum environment. Our two methods are especially useful for evolving orbits in the adiabatic regime. Both use the method of osculating orbits, in which each point on the orbit is characterized by the parameters of the geodesic with the same instantaneous position and velocity. Both methods describe the orbit in terms of the geodesic energy, axial angular momentum, Carter constant, azimuthal phase, and two angular variables that increase monotonically and are relativistic generalizations of the eccentric anomaly. The two methods differ in their treatment of the orbital phases and the representation of the force. In the first method, the geodesic phase and phase constant are evolved together as a single orbital phase parameter, and the force is expressed in terms of its components on the Kinnersley orthonormal tetrad. In the second method, the phase constants of the geodesic motion are evolved separately and the force is expressed in terms of its Boyer-Lindquist components. This second approach is a direct generalization of earlier work by Pound and Poisson [A. Pound and E. Poisson, Phys. Rev. D 77, 044013 (2008).] for planar forces in a

  5. Sparsity driven ultrasound imaginga)

    PubMed Central

    Tuysuzoglu, Ahmet; Kracht, Jonathan M.; Cleveland, Robin O.; C¸etin, Müjdat; Karl, W. Clem

    2012-01-01

    An image formation framework for ultrasound imaging from synthetic transducer arrays based on sparsity-driven regularization functionals using single-frequency Fourier domain data is proposed. The framework involves the use of a physics-based forward model of the ultrasound observation process, the formulation of image formation as the solution of an associated optimization problem, and the solution of that problem through efficient numerical algorithms. The sparsity-driven, model-based approach estimates a complex-valued reflectivity field and preserves physical features in the scene while suppressing spurious artifacts. It also provides robust reconstructions in the case of sparse and reduced observation apertures. The effectiveness of the proposed imaging strategy is demonstrated using experimental data. PMID:22352501

  6. Test-driven programming

    NASA Astrophysics Data System (ADS)

    Georgiev, Bozhidar; Georgieva, Adriana

    2013-12-01

    In this paper, are presented some possibilities concerning the implementation of a test-driven development as a programming method. Here is offered a different point of view for creation of advanced programming techniques (build tests before programming source with all necessary software tools and modules respectively). Therefore, this nontraditional approach for easier programmer's work through building tests at first is preferable way of software development. This approach allows comparatively simple programming (applied with different object-oriented programming languages as for example JAVA, XML, PYTHON etc.). It is predictable way to develop software tools and to provide help about creating better software that is also easier to maintain. Test-driven programming is able to replace more complicated casual paradigms, used by many programmers.

  7. Electrically driven optical antennas

    NASA Astrophysics Data System (ADS)

    Kern, Johannes; Kullock, René; Prangsma, Jord; Emmerling, Monika; Kamp, Martin; Hecht, Bert

    2015-09-01

    Unlike radiowave antennas, so far optical nanoantennas cannot be fed by electrical generators. Instead, they are driven by light or indirectly via excited discrete states in active materials in their vicinity. Here we demonstrate the direct electrical driving of an in-plane optical antenna by the broadband quantum-shot noise of electrons tunnelling across its feed gap. The spectrum of the emitted photons is determined by the antenna geometry and can be tuned via the applied voltage. Moreover, the direction and polarization of the light emission are controlled by the antenna resonance, which also improves the external quantum efficiency by up to two orders of magnitude. The one-material planar design offers facile integration of electrical and optical circuits and thus represents a new paradigm for interfacing electrons and photons at the nanometre scale, for example for on-chip wireless communication and highly configurable electrically driven subwavelength photon sources.

  8. Laser driven radiography

    SciTech Connect

    Perry, M.D.; Sefcik, J.; Cowan, T.

    1997-12-20

    Intense laser (> 1021 W/cm{sup 3}) driven hard x-ray sources offer a new alternative to conventional electron accelerator Bremsstrahlung sources. These laser driven sources offer considerable simplicity in design and potential cost advantage for multiple axis views. High spatial and temporal resolution is achievable as a result of the very small source size (<100 um) and short-duration of the laser pulse. We have begun a series of experiments with the Petawatt laser at LLNL to determine the photon flux achievable with these sources and assess their potential for Stewardship applications. Additionally, we are developing a conceptual design and cost estimate of a multi-pulse, multi-axis (up to five) radiographic facility utilizing the Contained Firing Facility at site 300 and existing laser hardware.

  9. Adiabatically driven Brownian pumps.

    PubMed

    Rozenbaum, Viktor M; Makhnovskii, Yurii A; Shapochkina, Irina V; Sheu, Sheh-Yi; Yang, Dah-Yen; Lin, Sheng Hsien

    2013-07-01

    We investigate a Brownian pump which, being powered by a flashing ratchet mechanism, produces net particle transport through a membrane. The extension of the Parrondo's approach developed for reversible Brownian motors [Parrondo, Phys. Rev. E 57, 7297 (1998)] to adiabatically driven pumps is given. We demonstrate that the pumping mechanism becomes especially efficient when the time variation of the potential occurs adiabatically fast or adiabatically slow, in perfect analogy with adiabatically driven Brownian motors which exhibit high efficiency [Rozenbaum et al., Phys. Rev. E 85, 041116 (2012)]. At the same time, the efficiency of the pumping mechanism is shown to be less than that of Brownian motors due to fluctuations of the number of particles in the membrane.

  10. Gas-driven microturbine

    SciTech Connect

    Sniegowski, J.J.; Rodgers, M.S.; McWhorter, P.J.; Aeschliman, D.P.; Miller, W.M.

    1996-06-27

    This paper describes an invention which relates to microtechnology and the fabrication process for developing microelectrical systems. It describes a means for fabricating a gas-driven microturbine capable of providing autonomous propulsion in which the rapidly moving gases are directed through a micromachined turbine to power devices by direct linkage or turbo-electric generators components in a domain ranging from tenths of micrometers to thousands of micrometers.

  11. Light-driven polymer actuator

    NASA Astrophysics Data System (ADS)

    Sarkisov, Sergey S.; Curley, Michael J.; Fields, Aisha; Adamovsky, Grigory

    2004-09-01

    We describe new light-driven actuator based on films of the polymer polyvinylidene fluoride known as PVDF. The actuator employs the photomechanic effect of bending of the polymer film caused by low power (10 mW and less) laser radiation. The photomechanic effect combines various physical mechanisms, such as thermal expansion, converse piezoelectric along with photogalvanic and pyrolelectric, while the thermal mechanism is prevailing. The force applied by the actuator to external objects was measured with a torsion balance. It is proportional to the power of laser beam and could be as high as 10-4 N for a 50-micron film illuminated with a 10-mW beam. We demonstrated mechanical oscillations of a 1-mm by 10-mm actuator at a frequency of 0.3 kHz. The frequency could reach 1 MHz and higher for actuators of micron size. The actuators could be easily made of various shapes. Illumination could be in multiple regions of the actuator body with various time delays between laser pulses in different regions. All this can provide a lot of flexibility in terms of the trajectory of mechanical motion. As an example, we demonstrated an actuator with elliptical motion that could drive inner workings of a conventional mechanical alarm clock. The proposed actuator has a potential of being used as a core element of future optical micro- and nanomotors.

  12. Zero curvature-surface driven small objects

    NASA Astrophysics Data System (ADS)

    Dou, Xiaoxiao; Li, Shanpeng; Liu, Jianlin

    2017-08-01

    In this study, we investigate the spontaneous migration of small objects driven by surface tension on a catenoid, formed by a layer of soap constrained by two rings. Although the average curvature of the catenoid is zero at each point, the small objects always migrate to the position near the ring. The force and energy analyses have been performed to uncover the mechanism, and it is found that the small objects distort the local shape of the liquid film, thus making the whole system energetically favorable. These findings provide some inspiration to design microfluidics, aquatic robotics, and miniature boats.

  13. Light sailboats: Laser driven autonomous microrobots

    NASA Astrophysics Data System (ADS)

    Búzás, Anrdás; Kelemen, Lóránd; Mathesz, Anna; Oroszi, László; Vizsnyiczai, Gaszton; Vicsek, Tamás; Ormos, Pál

    2012-07-01

    We introduce a system of light driven microscopic autonomous moving particles that move on a flat surface. The design is simple, yet effective: Micrometer sized objects with wedge shape are produced by photopolymerization, and they are covered with a reflective surface. When the area of motion is illuminated perpendicularly from above, the light is deflected to the side by the wedge shaped objects, in the direction determined by the position and orientation of the particles. The momentum change during reflection provides the driving force for an effectively autonomous motion. The system is an efficient tool to study self propelled microscopic robots.

  14. Energy-beam-driven rapid fabrication system

    DOEpatents

    Keicher, David M.; Atwood, Clinton L.; Greene, Donald L.; Griffith, Michelle L.; Harwell, Lane D.; Jeantette, Francisco P.; Romero, Joseph A.; Schanwald, Lee P.; Schmale, David T.

    2002-01-01

    An energy beam driven rapid fabrication system, in which an energy beam strikes a growth surface to form a molten puddle thereon. Feed powder is then injected into the molten puddle from a converging flow of feed powder. A portion of the feed powder becomes incorporated into the molten puddle, forcing some of the puddle contents to freeze on the growth surface, thereby adding an additional layer of material. By scanning the energy beam and the converging flow of feed powder across the growth surface, complex three-dimensional shapes can be formed, ready or nearly ready for use. Nearly any class of material can be fabricated using this system.

  15. Global Forces in Eruptive Solar Flares: The Lorentz Force Acting on the Solar Atmosphere and the Solar Interior

    NASA Astrophysics Data System (ADS)

    Fisher, George H.; Bercik, D. J.; Welsch, B. T.; Hudson, H. S.

    2012-05-01

    We compute the change in the Lorentz force integrated over the outer solar atmosphere implied by observed changes in vector magnetograms that occur during large, eruptive solar flares. This force perturbation should be balanced by an equal and opposite force perturbation acting on the solar photosphere and solar interior. The resulting expression for the estimated force change in the solar interior generalizes the earlier expression presented by Hudson, Fisher, and Welsch, providing horizontal as well as vertical force components, and provides a more accurate result for the vertical component of the perturbed force. We show that magnetic eruptions should result in the magnetic field at the photosphere becoming more horizontal, and hence should result in a downward (toward the solar interior) force change acting on the photosphere and solar interior, as recently argued from an analysis of magnetogram data by Wang and Liu. We suggest the existence of an observational relationship between the force change computed from changes in the vector magnetograms, the outward momentum carried by the ejecta from the flare, and the properties of the helioseismic disturbance driven by the downward force change. We use the impulse driven by the Lorentz-force change in the outer solar atmosphere to derive an upper limit to the mass of erupting plasma that can escape from the Sun. Finally, we compare the expected Lorentz-force change at the photosphere with simple estimates from flare-driven gasdynamic disturbances and from an estimate of the perturbed pressure from radiative backwarming of the photosphere in flaring conditions.

  16. Parametric resonance induced chaos in magnetic damped driven pendulum

    NASA Astrophysics Data System (ADS)

    Khomeriki, Giorgi

    2016-07-01

    A damped driven pendulum with a magnetic driving force, appearing from a solenoid, where ac current flows is considered. The solenoid acts on the magnet, which is located at a free end of the pendulum. In this system the existence and interrelation of chaos and parametric resonance is theoretically examined. Derived analytical results are supported by numerical simulations and conducted experiments.

  17. Driven superconducting quantum circuits

    NASA Astrophysics Data System (ADS)

    Nakamura, Yasunobu

    2014-03-01

    Driven nonlinear quantum systems show rich phenomena in various fields of physics. Among them, superconducting quantum circuits have very attractive features such as well-controlled quantum states with design flexibility, strong nonlinearity of Josephson junctions, strong coupling to electromagnetic driving fields, little internal dissipation, and tailored coupling to the electromagnetic environment. We have investigated properties and functionalities of driven superconducting quantum circuits. A transmon qubit coupled to a transmission line shows nearly perfect spatial mode matching between the incident and scattered microwave field in the 1D mode. Dressed states under a driving field are studied there and also in a semi-infinite 1D mode terminated by a resonator containing a flux qubit. An effective Λ-type three-level system is realized under an appropriate driving condition. It allows ``impedance-matched'' perfect absorption of incident probe photons and down conversion into another frequency mode. Finally, the weak signal from the qubit is read out using a Josephson parametric amplifier/oscillator which is another nonlinear circuit driven by a strong pump field. This work was partly supported by the Funding Program for World-Leading Innovative R&D on Science and Technology (FIRST), Project for Developing Innovation Systems of MEXT, MEXT KAKENHI ``Quantum Cybernetics,'' and the NICT Commissioned Research.

  18. Exponential Mixing of the 3D Stochastic Navier-Stokes Equations Driven by Mildly Degenerate Noises

    SciTech Connect

    Albeverio, Sergio; Debussche, Arnaud; Xu Lihu

    2012-10-15

    We prove the strong Feller property and exponential mixing for 3D stochastic Navier-Stokes equation driven by mildly degenerate noises (i.e. all but finitely many Fourier modes being forced) via a Kolmogorov equation approach.

  19. Coriolis Force

    NASA Astrophysics Data System (ADS)

    Marciuc, Daly; Solschi, Viorel

    2017-04-01

    Understanding the Coriolis effect is essential for explaining the movement of air masses and ocean currents. The lesson we propose aims to familiarize students with the manifestation of the Coriolis effect. Students are guided to build, using the GeoGebra software, a simulation of the motion of a body, related to a rotating reference system. The mathematical expression of the Coriolis force is deduced, for particular cases, and the Foucault's pendulum is presented and explained. Students have the opportunity to deepen the subject, by developing materials related to topics such as: • Global Wind Pattern • Ocean Currents • Coriolis Effect in Long Range Shooting • Finding the latitude with a Foucault Pendulum

  20. Stochastically forced zonal flows

    NASA Astrophysics Data System (ADS)

    Srinivasan, Kaushik

    This thesis investigates the dynamics of multiple zonal jets, that spontaneously emerge on the barotropic beta-plane, driven by a homogenous and rapidly decorrelating forcing and damped by bottom drag. Decomposing the barotropic vorticity equation into the zonal-mean and eddy equations, and neglecting the eddy-eddy interactions, defines the quasi-linear (QL) system. Numerical solution of the QL system shows zonal jets with length scales comparable to jets obtained by solving the nonlinear (NL) system. Starting with the QL system, one can construct a deterministic equation for the evolution of the two-point single-time correlation function of the vorticity, from which one can obtain the Reynolds stress that drives the zonal mean flow. This deterministic system has an exact nonlinear solution, which is a homogenous eddy field with no jets. When the forcing is also isotropic in space, we characterize the linear stability of this jetless solution by calculating the critical stability curve in the parameter space and successfully comparing this analytic result with numerical solutions of the QL system. But the critical drag required for the onset of NL zonostrophic instability is up to a factor of six smaller than that for QL zonostrophic instability. The constraint of isotropic forcing is then relaxed and spatially anisotropic forcing is used to drive the jets. Meridionally drifting jets are observed whenever the forcing breaks an additional symmetry that we refer to as mirror, or reflexional symmetry. The magnitude of drift speed in our results shows a strong variation with both mu and beta: while the drift speed decreases almost linearly with decreasing mu, it actually increases as beta decreases. Similar drifting jets are also observed in QL, with the same direction (i.e. northward or southward) and similar magnitude as NL jet-drift. Starting from the laminar solution, and assuming a mean-flow that varies slowly with reference to the scale of the eddies, we obtain

  1. Forces driving epithelial wound healing

    NASA Astrophysics Data System (ADS)

    Brugués, Agustí; Anon, Ester; Conte, Vito; Veldhuis, Jim H.; Gupta, Mukund; Colombelli, Julien; Muñoz, José J.; Brodland, G. Wayne; Ladoux, Benoit; Trepat, Xavier

    2014-09-01

    A fundamental feature of multicellular organisms is their ability to self-repair wounds through the movement of epithelial cells into the damaged area. This collective cellular movement is commonly attributed to a combination of cell crawling and `purse-string’ contraction of a supracellular actomyosin ring. Here we show by direct experimental measurement that these two mechanisms are insufficient to explain force patterns observed during wound closure. At early stages of the process, leading actin protrusions generate traction forces that point away from the wound, showing that wound closure is initially driven by cell crawling. At later stages, we observed unanticipated patterns of traction forces pointing towards the wound. Such patterns have strong force components that are both radial and tangential to the wound. We show that these force components arise from tensions transmitted by a heterogeneous actomyosin ring to the underlying substrate through focal adhesions. The structural and mechanical organization reported here provides cells with a mechanism to close the wound by cooperatively compressing the underlying substrate.

  2. Forces driving epithelial wound healing

    PubMed Central

    Veldhuis, Jim H.; Gupta, Mukund; Colombelli, Julien; Muñoz, José J.; Brodland, G. Wayne; Ladoux, Benoit; Trepat, Xavier

    2015-01-01

    A fundamental feature of multicellular organisms is their ability to self-repair wounds through the movement of epithelial cells into the damaged area. This collective cellular movement is commonly attributed to a combination of cell crawling and “purse-string” contraction of a supracellular actomyosin ring. Here we show by direct experimental measurement that these two mechanisms are insufficient to explain force patterns observed during wound closure. At early stages of the process, leading actin protrusions generate traction forces that point away from the wound, showing that wound closure is initially driven by cell crawling. At later stages, we observed unanticipated patterns of traction forces pointing towards the wound. Such patterns have strong force components that are both radial and tangential to the wound. We show that these force components arise from tensions transmitted by a heterogeneous actomyosin ring to the underlying substrate through focal adhesions. The structural and mechanical organization reported here provides cells with a mechanism to close the wound by cooperatively compressing the underlying substrate. PMID:27340423

  3. The evolution of cross helicity in driven/dissipative two-dimensional magnetohydrodynamics

    NASA Technical Reports Server (NTRS)

    Ghosh, S.; Matthaeus, W. H.; Montgomery, D.

    1988-01-01

    The paper presents a series of incompressible two-dimensional simulations of driven/dissipative MHD turbulence where the amount of correlation between the kinetic and magnetic forcing is regulated, thereby controlling the amount of cross helicity injection. It is shown that correlated forcing provides a strong source of magnetofluid cross helicity. The clear appearance of the 'minority species effect,' which is the most striking and systematic effect during this driven dynamic alignment process, is discussed.

  4. Glacial cycles and astronomical forcing

    SciTech Connect

    Muller, R.A.; MacDonald, G.J.

    1997-07-11

    Narrow spectral features in ocean sediment records offer strong evidence that the cycles of glaciation were driven by astronomical forces. Two million years ago, the cycles match the 41,000-year period of Earth`s obliquity. This supports the Croll/Milankovitch theory, which attributes the cycles to variations in insolation. But for the past million years, the spectrum is dominated by a single 100,000-year feature and is a poor match to the predictions of insolation models. The spectrum can be accounted for by a theory that derives the cycles of glaciation from variations in the inclination of Earth`s orbital plane.

  5. Mechanochemistry: A Force of Synthesis

    PubMed Central

    2016-01-01

    The past decade has seen a reawakening of solid-state approaches to chemical synthesis, driven by the search for new, cleaner synthetic methodologies. Mechanochemistry, i.e., chemical transformations initiated or sustained by mechanical force, has been advancing particularly rapidly, from a laboratory curiosity to a widely applicable technique that not only enables a cleaner route to chemical transformations but offers completely new opportunities in making and screening for molecules and materials. This Outlook provides a brief overview of the recent achievements and opportunities created by mechanochemistry, including access to materials, molecular targets, and synthetic strategies that are hard or even impossible to access by conventional means. PMID:28149948

  6. Theoretical study of enhancing the piezoelectric nanogenerator's output power by optimizing the external force's shape

    NASA Astrophysics Data System (ADS)

    Xu, Qi; Qin, Yong

    2017-07-01

    The average power is one of the key parameters of piezoelectric nanogenerators (PENGs). In this paper, we demonstrate that the PENG's output can be gigantically improved by choosing driving force with an appropriate shape. When the load resistance is 100 MΩ and the driven forces have a magnitude of 19.6 nN, frequency of 10 Hz, the average power of PENG driven by square shaped force is six orders of magnitude higher than that driven by triangular shaped and sinusoidal shaped forces. These results are of importance for optimizing the average power of the PENGs in practical applications.

  7. Manipulating bubbles with secondary Bjerknes forces

    SciTech Connect

    Lanoy, Maxime; Derec, Caroline; Leroy, Valentin; Tourin, Arnaud

    2015-11-23

    Gas bubbles in a sound field are submitted to a radiative force, known as the secondary Bjerknes force. We propose an original experimental setup that allows us to investigate in detail this force between two bubbles, as a function of the sonication frequency, as well as the bubbles radii and distance. We report the observation of both attractive and, more interestingly, repulsive Bjerknes force, when the two bubbles are driven in antiphase. Our experiments show the importance of taking multiple scatterings into account, which leads to a strong acoustic coupling of the bubbles when their radii are similar. Our setup demonstrates the accuracy of secondary Bjerknes forces for attracting or repealing a bubble, and could lead to new acoustic tools for noncontact manipulation in microfluidic devices.

  8. Nanoparticle movement: plasmonic forces and physical constraints.

    PubMed

    Batson, P E; Reyes-Coronado, A; Barrera, R G; Rivacoba, A; Echenique, P M; Aizpurua, J

    2012-12-01

    Nanoparticle structures observed in aberration-corrected electron microscopes exhibit many types of behavior, some of which are dominated by intrinsic conditions, unrelated to the microscope environment. Some behaviors are clearly driven by the electron beam, however, and the question arises as to whether these are similar to intrinsic mechanisms, useful for understanding nanoscale behavior, or whether they should be regarded as unwanted modification of as-built specimens. We have studied a particular kind of beam-specimen interaction - plasmon dielectric forces caused by the electric fields imposed by a passing swift electron - identifying four types of forced motion, including both attractive and repulsive forces on single nanoparticles, and coalescent and non-coalescent forces in groups of two or more nanoparticles. We suggest that these forces might be useful for deliberate electron beam guided movement of nanoparticles. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. System Driven Workarounds

    NASA Technical Reports Server (NTRS)

    Connell, Linda; Wichner, David; Jakey, Abegael Marie

    2013-01-01

    The Aviation Safety Reporting System (ASRS) in a partnership between the National Aeronautics and Space Administration (NASA), the Federal Aviation Administration (FAA), participating carriers, and labor organizations. It is designed to improve the National Airspace System by collecting and studying reports detailing unsafe conditions and events in the aviation industry. Employees are able to report safety issues or concerns with confidentiality and without fear of discipline. Safety reports highlighting system driven workarounds for the aviation community highlight the human workaround for the complex aviation system.

  10. Electrostatically Driven Nanoballoon Actuator.

    PubMed

    Barzegar, Hamid Reza; Yan, Aiming; Coh, Sinisa; Gracia-Espino, Eduardo; Dunn, Gabriel; Wågberg, Thomas; Louie, Steven G; Cohen, Marvin L; Zettl, Alex

    2016-11-09

    We demonstrate an inflatable nanoballoon actuator based on geometrical transitions between the inflated (cylindrical) and collapsed (flattened) forms of a carbon nanotube. In situ transmission electron microscopy experiments employing a nanoelectromechanical manipulator show that a collapsed carbon nanotube can be reinflated by electrically charging the nanotube, thus realizing an electrostatically driven nanoballoon actuator. We find that the tube actuator can be reliably cycled with only modest control voltages (few volts) with no apparent wear or fatigue. A complementary theoretical analysis identifies critical parameters for nanotube nanoballoon actuation.

  11. Information-Driven Inspections

    SciTech Connect

    Laughter, Mark D; Whitaker, J Michael; Lockwood, Dunbar

    2010-01-01

    New uranium enrichment capacity is being built worldwide in response to perceived shortfalls in future supply. To meet increasing safeguards responsibilities with limited resources, the nonproliferation community is exploring next-generation concepts to increase the effectiveness and efficiency of safeguards, such as advanced technologies to enable unattended monitoring of nuclear material. These include attribute measurement technologies, data authentication tools, and transmission and security methods. However, there are several conceptual issues with how such data would be used to improve the ability of a safeguards inspectorate such as the International Atomic Energy Agency (IAEA) to reach better safeguards conclusions regarding the activities of a State. The IAEA is pursuing the implementation of information-driven safeguards, whereby all available sources of information are used to make the application of safeguards more effective and efficient. Data from continuous, unattended monitoring systems can be used to optimize on-site inspection scheduling and activities at declared facilities, resulting in fewer, better inspections. Such information-driven inspections are the logical evolution of inspection planning - making use of all available information to enhance scheduled and randomized inspections. Data collection and analysis approaches for unattended monitoring systems can be designed to protect sensitive information while enabling information-driven inspections. A number of such inspections within a predetermined range could reduce inspection frequency while providing an equal or greater level of deterrence against illicit activity, all while meeting operator and technology holder requirements and reducing inspector and operator burden. Three options for using unattended monitoring data to determine an information-driven inspection schedule are to (1) send all unattended monitoring data off-site, which will require advances in data analysis techniques to

  12. A data driven model for dune morphodynamics

    NASA Astrophysics Data System (ADS)

    Palmsten, M.; Brodie, K.; Spore, N.

    2016-12-01

    Dune morphology results from a number of competing feedbacks between wave, Aeolian, and biologic processes. Only now are conceptual and numerical models for dunes beginning to incorporate all aspects of the processes driving morphodynamics. Drawing on a 35-year record of observations of dune morphology and forcing conditions at the Army Corps of Engineers Field Research Facility (FRF) at Duck, NC, USA, we hypothesize that local dune morphology results from the competition between dune growth during dry windy periods and erosion during storms. We test our hypothesis by developing a data driven model using a Bayesian network to hindcast dune-crest elevation change, dune position change, and shoreline position change. Model inputs include a description of dune morphology from dune-crest elevation, dune-base elevation, dune width, and beach width. Wave forcing and the effect of moisture is parameterized in terms of the maximum total water level and period that waves impact the dunes, along with precipitation. Aeolian forcing is parameterized in terms of maximum wind speed, direction and period that wind exceeds a critical value for sediment transport. We test the sensitivity of our model to forcing parameters and hindcast the 35-year record of dune morphodynamics at the FRF. We also discuss the role of vegetation on dune morphologic differences observed at the FRF.

  13. Dissipative adaptation in driven self-assembly.

    PubMed

    England, Jeremy L

    2015-11-01

    In a collection of assembling particles that is allowed to reach thermal equilibrium, the energy of a given microscopic arrangement and the probability of observing the system in that arrangement obey a simple exponential relationship known as the Boltzmann distribution. Once the same thermally fluctuating particles are driven away from equilibrium by forces that do work on the system over time, however, it becomes significantly more challenging to relate the likelihood of a given outcome to familiar thermodynamic quantities. Nonetheless, it has long been appreciated that developing a sound and general understanding of the thermodynamics of such non-equilibrium scenarios could ultimately enable us to control and imitate the marvellous successes that living things achieve in driven self-assembly. Here, I suggest that such a theoretical understanding may at last be emerging, and trace its development from historic first steps to more recent discoveries. Focusing on these newer results, I propose that they imply a general thermodynamic mechanism for self-organization via dissipation of absorbed work that may be applicable in a broad class of driven many-body systems.

  14. Magnetic Control of Solutal Buoyancy Driven Convection

    NASA Technical Reports Server (NTRS)

    Ramachandran, N.; Leslie, F. W.

    2003-01-01

    Volumetric forces resulting from local density variations and gravitational acceleration cause buoyancy induced convective motion in melts and solutions. Solutal buoyancy is a result of concentration differences in an otherwise isothermal fluid. If the fluid also exhibits variations in magnetic susceptibility with concentration then convection control by external magnetic fields can be hypothesized. Magnetic control of thermal buoyancy induced convection in ferrofluids (dispersions of ferromagnetic particles in a carrier fluid) and paramagnetic fluids have been demonstrated. Here we show the nature of magnetic control of solutal buoyancy driven convection of a paramagnetic fluid, an aqueous solution of Manganese Chloride hydrate. We predict the critical magnetic field required for balancing gravitational solutal buoyancy driven convection and validate it through a simple experiment. We demonstrate that gravity driven flow can be completely reversed by a magnetic field but the exact cancellation of the flow is not possible. This is because the phenomenon is unstable. The technique can be applied to crystal growth processes in order to reduce convection and to heat exchanger devices for enhancing convection. The method can also be applied to impose a desired g-level in reduced gravity applications.

  15. Magnetic Control of Solutal Buoyancy Driven Convection

    NASA Technical Reports Server (NTRS)

    Ramachandran, N.; Leslie, F. W.

    2003-01-01

    Volumetric forces resulting from local density variations and gravitational acceleration cause buoyancy induced convective motion in melts and solutions. Solutal buoyancy is a result of concentration differences in an otherwise isothermal fluid. If the fluid also exhibits variations in magnetic susceptibility with concentration then convection control by external magnetic fields can be hypothesized. Magnetic control of thermal buoyancy induced convection in ferrofluids (dispersions of ferromagnetic particles in a carrier fluid) and paramagnetic fluids have been demonstrated. Here we show the nature of magnetic control of solutal buoyancy driven convection of a paramagnetic fluid, an aqueous solution of Manganese Chloride hydrate. We predict the critical magnetic field required for balancing gravitational solutal buoyancy driven convection and validate it through a simple experiment. We demonstrate that gravity driven flow can be completely reversed by a magnetic field but the exact cancellation of the flow is not possible. This is because the phenomenon is unstable. The technique can be applied to crystal growth processes in order to reduce convection and to heat exchanger devices for enhancing convection. The method can also be applied to impose a desired g-level in reduced gravity applications.

  16. Simulation of a force-on-force exercise

    SciTech Connect

    Terhune, R.; Van Slyke, D.; Sheppard, T.; Brandrup, M.

    1988-07-10

    The Security Exercise Evaluation System (SEES) is under development for use in planning force-on-force exercises and as an aid in post- exercise evaluation. SEES is an event-driven, stochastic computer program that simulates individual movement and combat within an urban terrain environment. The simulator models the physics of movement, line of sight, and weapon effects. It relies on controllers to provide all knowledge of security tactics, which are entered by controllers during the simulation using interactive color-graphic workstations. They are able to develop, modify and implement plans promptly as the simulator maintains real time. In this article, we describe how SEES is used to develop an intrusion plan, test the security response tactics, and develop observer logistics. A force-on-force field exercise is then executed to follow the plan and record observations. Finally, the model is analyzed by comparing the plan and events of the simulation with the field exercise, modifying the simulation plan to match the actual field exercise, and then running the simulation to develop a distribution of possible outcomes. 1 ref., 5 figs.

  17. THERMALLY DRIVEN ATMOSPHERIC ESCAPE

    SciTech Connect

    Johnson, Robert E.

    2010-06-20

    Accurately determining the escape rate from a planet's atmosphere is critical for determining its evolution. A large amount of Cassini data is now available for Titan's upper atmosphere and a wealth of data is expected within the next decade on escape from Pluto, Mars, and extra-solar planets. Escape can be driven by upward thermal conduction of energy deposited well below the exobase, as well as by nonthermal processes produced by energy deposited in the exobase region. Recent applications of a model for escape driven by upward thermal conduction, called the slow hydrodynamic escape model, have resulted in surprisingly large loss rates for the atmosphere of Titan, Saturn's largest moon. Based on a molecular kinetic simulation of the exobase region, these rates appear to be orders of magnitude too large. Therefore, the slow hydrodynamic model is evaluated here. It is shown that such a model cannot give a reliable description of the atmospheric temperature profile unless it is coupled to a molecular kinetic description of the exobase region. Therefore, the present escape rates for Titan and Pluto must be re-evaluated using the atmospheric model described here.

  18. Market Driven Space Exploration

    NASA Astrophysics Data System (ADS)

    Gavert, Raymond B.

    2004-02-01

    Market driven space exploration will have the opportunity to develop to new levels with the coming of space nuclear power and propulsion. NASA's recently established Prometheus program is expected to receive several billion dollars over the next five years for developing nuclear power and propulsion systems for future spacecraft. Not only is nuclear power and propulsion essential for long distance Jupiter type missions, but it also important for providing greater access to planets and bodies nearer to the Earth. NASA has been working with industrial partners since 1987 through its Research Partnerships Centers (RPCs) to utilize the attributes of space in Low Earth Orbit (LEO). Plans are now being made to utilize the RPCs and industrial partners in extending the duration and boundaries of human space flight to create new opportunities for exploration and discovery. Private investors are considering setting up shops in LEO for commercial purposes. The trend is for more industrial involvement in space. Nuclear power and propulsion will hasten the progress. The objective of this paper is to show the progression of space market driven research and its potential for supporting space exploration given nuclear power and propulsion capabilities.

  19. Hydrodynamic boundary conditions and dynamic forces between bubbles and surfaces.

    PubMed

    Manor, Ofer; Vakarelski, Ivan U; Tang, Xiaosong; O'Shea, Sean J; Stevens, Geoffrey W; Grieser, Franz; Dagastine, Raymond R; Chan, Derek Y C

    2008-07-11

    Dynamic forces between a 50 microm radius bubble driven towards and from a mica plate using an atomic force microscope in electrolyte and in surfactant exhibit different hydrodynamic boundary conditions at the bubble surface. In added surfactant, the forces are consistent with the no-slip boundary condition at the mica and bubble surfaces. With no surfactant, a new boundary condition that accounts for the transport of trace surface impurities explains variations of dynamic forces at different speeds and provides a direct connection between dynamic forces and surface transport effects at the air-water interface.

  20. Hydrodynamic Boundary Conditions and Dynamic Forces between Bubbles and Surfaces

    NASA Astrophysics Data System (ADS)

    Manor, Ofer; Vakarelski, Ivan U.; Tang, Xiaosong; O'Shea, Sean J.; Stevens, Geoffrey W.; Grieser, Franz; Dagastine, Raymond R.; Chan, Derek Y. C.

    2008-07-01

    Dynamic forces between a 50μm radius bubble driven towards and from a mica plate using an atomic force microscope in electrolyte and in surfactant exhibit different hydrodynamic boundary conditions at the bubble surface. In added surfactant, the forces are consistent with the no-slip boundary condition at the mica and bubble surfaces. With no surfactant, a new boundary condition that accounts for the transport of trace surface impurities explains variations of dynamic forces at different speeds and provides a direct connection between dynamic forces and surface transport effects at the air-water interface.

  1. On the thermally-driven ocean

    NASA Astrophysics Data System (ADS)

    Gjermundsen, Ada; LaCasce, Joseph Henry; Denstad, Liv

    2017-04-01

    How will the ocean circulation respond to extensive temperature change? Warming over the Arctic Ocean due to the loss of sea ice and snow cover will impact the surface air temperature (Serreze and Farncis, 2006; Screen and Simmonds, 2010) and thereby the Northern Hemisphere (NH) temperature gradient. The ocean circulation will respond, but freshwater from ice melting and shifting storm tracks make it hard to determine the ocean response to temperature changes alone. Attempts have been made to separate the impact of wind, thermal and freshwater forcings on the large scale ocean circulation (Cai, 1994; Saenko et al., 2002; Nycander et al. 2007), but our understanding remains incomplete. Here we examine numerical solutions of the global circulation with realistic bathymetry, driven solely by surface buoyancy forcing. Explicit wind forcing is excluded, although vertical mixing is retained. The character of the resulting flow is consistent in many ways with the observed ocean circulation,with inflow to and sinking in the Nordic Seas, baroclinic western boundary currents and an overturning streamfunction which closely resembles those obtained in full GCMs and in observations. The overturning circulation exhibits two thermally-driven cells: one in the Southern Ocean (SO) and one in the Atlantic. We investigate the inter-basin transports, the relative importance of the two overturning cells for the global ocean circulation, as well as the sensitivity of the ocean circulation to changes in buoyancy forcing. We find that reduced Atlantic overturning accelerates the SO circulation, while a reduced SO circulation strengthens the Atlantic overturning considerably. References: Cai, W. (1994). Circulation driven by observed surface thermohaline fields in a coarse resolution ocean general circulation model. J. Geophys. Res.: Oceans, 99, 10163-10181. Nycander, J. et al. (2007). Thermodynamic Analysis of Ocean Circulation, J. Phys. Oceanogr., 37, 2038-2052. Saenko, O. A. et al

  2. Current-driven plasma acceleration versus current-driven energy dissipation. I - Wave stability theory

    NASA Technical Reports Server (NTRS)

    Kelly, A. J.; Jahn, R. G.; Choueiri, E. Y.

    1990-01-01

    The dominant unstable electrostatic wave modes of an electromagnetically accelerated plasma are investigated. The study is the first part of a three-phase program aimed at characterizing the current-driven turbulent dissipation degrading the efficiency of Lorentz force plasma accelerators such as the MPD thruster. The analysis uses a kinetic theory that includes magnetic and thermal effects as well as those of an electron current transverse to the magnetic field and collisions, thus combining all the features of previous models. Analytical and numerical solutions allow a detailed description of threshold criteria, finite growth behavior, destabilization mechanisms and maximized-growth characteristics of the dominant unstable modes. The lower hybrid current-driven instability is implicated as dominant and was found to preserve its character in the collisional plasma regime.

  3. Atomic Force Microscope Mediated Chromatography

    NASA Technical Reports Server (NTRS)

    Anderson, Mark S.

    2013-01-01

    The atomic force microscope (AFM) is used to inject a sample, provide shear-driven liquid flow over a functionalized substrate, and detect separated components. This is demonstrated using lipophilic dyes and normal phase chromatography. A significant reduction in both size and separation time scales is achieved with a 25-micron-length column scale, and one-second separation times. The approach has general applications to trace chemical and microfluidic analysis. The AFM is now a common tool for ultra-microscopy and nanotechnology. It has also been demonstrated to provide a number of microfluidic functions necessary for miniaturized chromatography. These include injection of sub-femtoliter samples, fluidic switching, and sheardriven pumping. The AFM probe tip can be used to selectively remove surface layers for subsequent microchemical analysis using infrared and tip-enhanced Raman spectroscopy. With its ability to image individual atoms, the AFM is a remarkably sensitive detector that can be used to detect separated components. These diverse functional components of microfluidic manipulation have been combined in this work to demonstrate AFM mediated chromatography. AFM mediated chromatography uses channel-less, shear-driven pumping. This is demonstrated with a thin, aluminum oxide substrate and a non-polar solvent system to separate a mixture of lipophilic dyes. In conventional chromatographic terms, this is analogous to thin-layer chromatography using normal phase alumina substrate with sheardriven pumping provided by the AFM tip-cantilever mechanism. The AFM detection of separated components is accomplished by exploiting the variation in the localized friction of the separated components. The AFM tip-cantilever provides the mechanism for producing shear-induced flows and rapid pumping. Shear-driven chromatography (SDC) is a relatively new concept that overcomes the speed and miniaturization limitations of conventional liquid chromatography. SDC is based on a

  4. Response to reflected-force feedback to fingers in teleoperations

    NASA Technical Reports Server (NTRS)

    Sutter, P. H.; Iatridis, J. C.; Thakor, N. V.

    1989-01-01

    Reflected-force feedback is an important aspect of teleoperations. The objective is to determine the ability of the human operator to respond to that force. Telerobotics operation is simulated by computer control of a motor-driven device with capabilities for programmable force feedback and force measurement. A computer-controlled motor drive is developed that provides forces against the fingers as well as (angular) position control. A load cell moves in a circular arc as it is pushed by a finger and measures reaction forces on the finger. The force exerted by the finger on the load cell and the angular position are digitized and recorded as a function of time by the computer. Flexure forces of the index, long and ring fingers of the human hand in opposition to the motor driven load cell are investigated. Results of the following experiments are presented: (1) Exertion of maximum finger force as a function of angle; (2) Exertion of target finger force against a computer controlled force; and (3) Test of the ability to move to a target force against a force that is a function of position. Averaged over ten individuals, the maximum force that could be exerted by the index or long finger is about 50 Newtons, while that of the ring finger is about 40 Newtons. From the tests of the ability of a subject to exert a target force, it was concluded that reflected-force feedback can be achieved with the direct kinesthetic perception of force without the use of tactile or visual clues.

  5. Consistent model driven architecture

    NASA Astrophysics Data System (ADS)

    Niepostyn, Stanisław J.

    2015-09-01

    The goal of the MDA is to produce software systems from abstract models in a way where human interaction is restricted to a minimum. These abstract models are based on the UML language. However, the semantics of UML models is defined in a natural language. Subsequently the verification of consistency of these diagrams is needed in order to identify errors in requirements at the early stage of the development process. The verification of consistency is difficult due to a semi-formal nature of UML diagrams. We propose automatic verification of consistency of the series of UML diagrams originating from abstract models implemented with our consistency rules. This Consistent Model Driven Architecture approach enables us to generate automatically complete workflow applications from consistent and complete models developed from abstract models (e.g. Business Context Diagram). Therefore, our method can be used to check practicability (feasibility) of software architecture models.

  6. Evaporatively driven morphological instability

    NASA Astrophysics Data System (ADS)

    Style, Robert W.; Wettlaufer, J. S.

    2007-07-01

    Simple observations of evaporating solutions reveal a complex hierarchy of spatiotemporal instabilities. We analyze one such instability suggested by the qualitative observations of Du and Stone and find that it is driven by a variant of the classical morphological instability in alloy solidification. In the latter case a moving solid-liquid interface is accompanied by a solutally enriched boundary layer that is thermodynamically metastable due to constitutional supercooling. Here, we consider the evaporation of an impure film adjacent to a solid composed of the nonvolatile species. In this case, constitutional supercooling within the film is created by evaporation at the solution-vapor interface and this drives the corrugation of the solid-solution interface across the thickness of the film. The principal points of this simple theoretical study are to suggest an instability mechanism that is likely operative across a broad range of technological and natural systems and to focus future quantitative experimental searches.

  7. Muscle-driven nanogenerators

    DOEpatents

    Wang, Zhong L [Marietta, GA; Yang, Rusen [Atlanta, GA

    2011-03-01

    In a method of generating electricity, a plurality of living cells are grown on an array of piezoelectric nanowires so that the cells engage the piezoelectric nanowires. Induced static potentials are extracted from at least one of the piezoelectric nanowires when at least one of the cells deforms the at least one of the piezoelectric nanowires. A cell-driven electrical generator that includes a substrate and a plurality of spaced-apart piezoelectric nanowires disposed on the substrate. A plurality of spaced-apart conductive electrodes interact with the plurality of piezoelectric nanowires. A biological buffer layer that is configured to promote growth of cells is disposed on the substrate so that cells placed on the substrate will grow and engage the piezoelectric nanowires.

  8. Multilane driven diffusive systems

    NASA Astrophysics Data System (ADS)

    Curatolo, A. I.; Evans, M. R.; Kafri, Y.; Tailleur, J.

    2016-03-01

    We consider networks made of parallel lanes along which particles hop according to driven diffusive dynamics. The particles also hop transversely from lane to lane, hence indirectly coupling their longitudinal dynamics. We present a general method for constructing the phase diagram of these systems which reveals that in many cases their physics reduce to that of single-lane systems. The reduction to an effective single-lane description legitimizes, for instance, the use of a single TASEP to model the hopping of molecular motors along the many tracks of a single microtubule. Then, we show how, in quasi-2D settings, new phenomena emerge due to the presence of non-zero transverse currents, leading, for instance, to strong ‘shear localization’ along the network.

  9. Temperature-Driven Convection

    NASA Astrophysics Data System (ADS)

    Bohan, Richard J.; Vandegrift, Guy

    2003-02-01

    Warm air aloft is stable. This explains the lack of strong winds in a warm front and how nighttime radiative cooling can lead to motionless air that can trap smog. The stability of stratospheric air can be attributed to the fact that it is heated from above as ultraviolet radiation strikes the ozone layer. On the other hand, fluid heated from below is unstable and can lead to Bernard convection cells. This explains the generally turbulent nature of the troposphere, which receives a significant fraction of its heat directly from the Earth's warmer surface. The instability of cold fluid aloft explains the violent nature of a cold front, as well as the motion of Earth's magma, which is driven by radioactive heating deep within the Earth's mantle. This paper describes how both effects can be demonstrated using four standard beakers, ice, and a bit of food coloring.

  10. Steady Capillary Driven Flow

    NASA Technical Reports Server (NTRS)

    Weislogel, Mark M.

    1996-01-01

    A steady capillary driven flow is developed for a liquid index in a circular tube which is partially coated with a surface modifier to produce a discontinuous wetting condition from one side of the tube to the other. The bulk flow is novel in that it is truly steady, and controlled solely by the physics associated with dynamic wetting. The influence of gravity on the flow is minimized through the use of small diameter tubes approximately O(1 mm) tested horizontally in a laboratory and larger tubes approximately O(10 mm) tested in the low gravity environment of a drop tower. Average steady velocities are predicted and compared against a large experimental data set which includes the effects of tube dimensions and fluid properties. The sensitivity of the velocity to surface cleanliness is dramatic and the advantages of experimentation in a microgravity environment are discussed.

  11. Soliton driven angiogenesis

    NASA Astrophysics Data System (ADS)

    Bonilla, L. L.; Carretero, M.; Terragni, F.; Birnir, B.

    2016-08-01

    Angiogenesis is a multiscale process by which blood vessels grow from existing ones and carry oxygen to distant organs. Angiogenesis is essential for normal organ growth and wounded tissue repair but it may also be induced by tumours to amplify their own growth. Mathematical and computational models contribute to understanding angiogenesis and developing anti-angiogenic drugs, but most work only involves numerical simulations and analysis has lagged. A recent stochastic model of tumour-induced angiogenesis including blood vessel branching, elongation, and anastomosis captures some of its intrinsic multiscale structures, yet allows one to extract a deterministic integropartial differential description of the vessel tip density. Here we find that the latter advances chemotactically towards the tumour driven by a soliton (similar to the famous Korteweg-de Vries soliton) whose shape and velocity change slowly. Analysing these collective coordinates paves the way for controlling angiogenesis through the soliton, the engine that drives this process.

  12. Pressure driven particulate flows

    SciTech Connect

    Ingher, M.S.; Mondy, L.A.

    1996-03-01

    Numerical simulations of pressure-driven particulate Stokes flows are performed in cylindrical and rectangular conduits using a parallel boundary element code. Spherical particles are randomly placed in the conduits and a pressure drop between the ends of the conduits is imposed by the boundary conditions to induce a Poiseuille-like flow field. The instantaneous velocities of the particles are then calculated, as well as the additional pressure drop necessary to maintain a constant flow rate. Because the results depend on the spatial distribution of the particles, several random configurations of particles are examined for each case. Depending on two different interpretations of the numerical results, the solid phase can be represented as either leading or lagging the fluid phase. Both of the analyses and interpretations are presented.

  13. Optically driven nanotube actuators

    NASA Astrophysics Data System (ADS)

    Lu, Shaoxin; Panchapakesan, Balaji

    2005-11-01

    Optically driven actuators have been fabricated from single-wall carbon nanotube-polymer composite sheets. Like natural muscles, the millimetre-scale actuators are assemblies of millions of individual nanotube actuators processed into macroscopic length scales and bonded to an acrylic elastomer sheet to form an actuator that have been shown to generate higher stress than natural muscles and higher strains than high-modulus piezoelectric materials. Strain measurements revealed 0.01%-0.3% elastic strain generated due to electrostatic and thermal effects under visible light intensities of 5-120 mW cm-2. An optically actuated nanotube gripper is demonstrated to show manipulation of small objects. This actuation technology overcomes some of the fundamental limitations such as the use of high voltages or electrochemical solutions for actuation, opening up possibilities for remote light-induced actuation technologies.

  14. Surface tension driven flow in glass melts and model fluids

    NASA Technical Reports Server (NTRS)

    Mcneil, T. J.; Cole, R.; Subramanian, R. S.

    1982-01-01

    Surface tension driven flow has been investigated analytically and experimentally using an apparatus where a free column of molten glass or model fluids was supported at its top and bottom faces by solid surfaces. The glass used in the experiments was sodium diborate, and the model fluids were silicone oils. In both the model fluid and glass melt experiments, conclusive evidence was obtained to prove that the observed flow was driven primarily by surface tension forces. The experimental observations are in qualitative agreement with predictions from the theoretical model.

  15. Climate-driven regime shift of a temperate marine ecosystem.

    PubMed

    Wernberg, Thomas; Bennett, Scott; Babcock, Russell C; de Bettignies, Thibaut; Cure, Katherine; Depczynski, Martial; Dufois, Francois; Fromont, Jane; Fulton, Christopher J; Hovey, Renae K; Harvey, Euan S; Holmes, Thomas H; Kendrick, Gary A; Radford, Ben; Santana-Garcon, Julia; Saunders, Benjamin J; Smale, Dan A; Thomsen, Mads S; Tuckett, Chenae A; Tuya, Fernando; Vanderklift, Mathew A; Wilson, Shaun

    2016-07-08

    Ecosystem reconfigurations arising from climate-driven changes in species distributions are expected to have profound ecological, social, and economic implications. Here we reveal a rapid climate-driven regime shift of Australian temperate reef communities, which lost their defining kelp forests and became dominated by persistent seaweed turfs. After decades of ocean warming, extreme marine heat waves forced a 100-kilometer range contraction of extensive kelp forests and saw temperate species replaced by seaweeds, invertebrates, corals, and fishes characteristic of subtropical and tropical waters. This community-wide tropicalization fundamentally altered key ecological processes, suppressing the recovery of kelp forests.

  16. Surface tension driven flow in glass melts and model fluids

    NASA Technical Reports Server (NTRS)

    Mcneil, T. J.; Cole, R.; Subramanian, R. S.

    1982-01-01

    Surface tension driven flow has been investigated analytically and experimentally using an apparatus where a free column of molten glass or model fluids was supported at its top and bottom faces by solid surfaces. The glass used in the experiments was sodium diborate, and the model fluids were silicone oils. In both the model fluid and glass melt experiments, conclusive evidence was obtained to prove that the observed flow was driven primarily by surface tension forces. The experimental observations are in qualitative agreement with predictions from the theoretical model.

  17. Traveling pulse on a periodic background in parametrically driven systems.

    PubMed

    León, Alejandro O; Clerc, Marcel G; Coulibaly, Saliya

    2015-05-01

    Macroscopic systems with dissipation and time-modulated injection of energy, parametrically driven systems, can self-organize into localized states and/or patterns. We investigate a pulse that travels over a one-dimensional pattern in parametrically driven systems. Based on a minimal prototype model, we show that the pulses emerge through a subcritical Andronov-Hopf bifurcation of the underlying pattern. We describe a simple physical system, a magnetic wire forced with a transverse oscillatory magnetic field, which displays these traveling pulses.

  18. Stochastic regimes in the driven oscillator with a step-like nonlinearity

    SciTech Connect

    Bulanov, S. V.; Esirkepov, T. Zh.; Koga, J. K.; Kondo, K.; Kando, M.; Yogo, A.; Bulanov, S. S.

    2015-06-15

    A nonlinear oscillator with an abruptly inhomogeneous restoring force driven by an uniform oscillating force exhibits stochastic properties under specific resonance conditions. This behaviour elucidates the elementary mechanism of the electron energization in the strong electromagnetic wave interaction with thin targets.

  19. Transition to chaos in a driven dusty plasma

    SciTech Connect

    Sheridan, T. E.; Theisen, W. L.

    2010-01-15

    Dynamical chaos has previously been observed experimentally in a driven dusty plasma with three particles [T. E. Sheridan, Phys. Plasmas 12, 080701 (2005)]. In the present work, the transition to chaos in this system is studied as a function of the amplitude of a periodic driving force for two different driving frequencies f{sub d}. It is found that the system follows a quasiperiodic route to chaos. The dusty plasma's center-of-mass modes are driven by the first harmonic of f{sub d} and lock to the driving force for small driving amplitudes. The breathing mode is driven by the second harmonic of f{sub d} and shows asymmetric spectral features indicating quasiperiodic dynamics for intermediate driving amplitudes. For large driving forces both the center-of-mass and breathing modes are entrained and a region of low-dimensional chaotic dynamics due to a resonance overlap is observed. In the chaotic regime the correlation dimension and Lyapunov exponent are found to increase with the driving force.

  20. Dynamic joint and muscle forces during knee isokinetic exercise.

    PubMed

    Wei, S H

    2000-10-01

    Isokinetic exercise has been commonly used in knee rehabilitation, conditioning and research in the past two decades. Although many investigators have used various experimental and theoretical approaches to study the muscle and joint force involved in isokinetic knee extension and flexion exercises, only a few of these studies have actually distinguished between the tibiofemoral joint forces and muscle forces. Therefore, the objective of this study was to specify, via an eletromyography(EMG)-driven muscle force model of the knee, the magnitude of the tibiofemoral joint and muscle forces acting during isokinetic knee extension and flexion exercises. Fifteen subjects ranging from 21 to 36 years of age volunteered to participate in this study. A Kin Com exercise machine (Chattecx Corporation, Chattanooga, TN, U.S.A.) was used as the loading device. An EMG-driven muscle force model was used to predict muscle forces, and a biomechanical model was used to analyze two knee joint constraint forces; compression and shear force. The methods used in this study were shown to be valid and reliable (r > 0.84 andp < 0.05). The effects on the tibiofemoral joint force during knee isokinetic exercises were compared with several functional activities that were investigated by earlier researchers. The muscle forces generated during knee isokinetic exercise were also obtained. Based on the findings obtained in this study, several therapeutic justifications for knee rehabilitation are proposed.

  1. Hydrophobic-hydrophilic forces in protein folding.

    PubMed

    Durell, Stewart R; Ben-Naim, Arieh

    2017-08-01

    The process of protein folding is obviously driven by forces exerted on the atoms of the amino-acid chain. These forces arise from interactions with other parts of the protein itself (direct forces), as well as from interactions with the solvent (solvent-induced forces). We present a statistical-mechanical formalism that describes both these direct and indirect, solvent-induced thermodynamic forces on groups of the protein. We focus on 2 kinds of protein groups, commonly referred to as hydrophobic and hydrophilic. Analysis of this result leads to the conclusion that the forces on hydrophilic groups are in general stronger than on hydrophobic groups. This is then tested and verified by a series of molecular dynamics simulations, examining both hydrophobic alkanes of different sizes and hydrophilic moieties represented by polar-neutral hydroxyl groups. The magnitude of the force on assemblies of hydrophilic groups is dependent on their relative orientation: with 2 to 4 times larger forces on groups that are able to form one or more direct hydrogen bonds. © 2017 Wiley Periodicals, Inc.

  2. Shear-Driven Reconnection in Kinetic Models

    NASA Astrophysics Data System (ADS)

    Black, C.; Antiochos, S. K.; Germaschewski, K.; Karpen, J. T.; DeVore, C. R.; Bessho, N.

    2015-12-01

    The explosive energy release in solar eruptive phenomena is believed to be due to magnetic reconnection. In the standard model for coronal mass ejections (CME) and/or solar flares, the free energy for the event resides in the strongly sheared magnetic field of a filament channel. The pre-eruption force balance consists of an upward force due to the magnetic pressure of the sheared field countered by a downward tension due to overlying unsheared field. Magnetic reconnection disrupts this force balance; therefore, it is critical for understanding CME/flare initiation, to model the onset of reconnection driven by the build-up of magnetic shear. In MHD simulations, the application of a magnetic-field shear is a trivial matter. However, kinetic effects are dominant in the diffusion region and thus, it is important to examine this process with PIC simulations as well. The implementation of such a driver in PIC methods is challenging, however, and indicates the necessity of a true multiscale model for such processes in the solar environment. The field must be sheared self-consistently and indirectly to prevent the generation of waves that destroy the desired system. Plasma instabilities can arise nonetheless. In the work presented here, we show that we can control this instability and generate a predicted out-of-plane magnetic flux. This material is based upon work supported by the National Science Foundation under Award No. AGS-1331356.

  3. Protein mechanics: how force regulates molecular function.

    PubMed

    Seifert, Christian; Gräter, Frauke

    2013-10-01

    Regulation of proteins is ubiquitous and vital for any organism. Protein activity can be altered chemically, by covalent modifications or non-covalent binding of co-factors. Mechanical forces are emerging as an additional way of regulating proteins, by inducing a conformational change or by partial unfolding. We review some advances in experimental and theoretical techniques to study protein allostery driven by mechanical forces, as opposed to the more conventional ligand driven allostery. In this respect, we discuss recent single molecule pulling experiments as they have substantially augmented our view on the protein allostery by mechanical signals in recent years. Finally, we present a computational analysis technique, Force Distribution Analysis, that we developed to reveal allosteric pathways in proteins. Any kind of external perturbation, being it ligand binding or mechanical stretching, can be viewed as an external force acting on the macromolecule, rendering force-based experimental or computational techniques, a very general approach to the mechanics involved in protein allostery. This unifying view might aid to decipher how complex allosteric protein machineries are regulated on the single molecular level. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. The swim force as a body force

    NASA Astrophysics Data System (ADS)

    Yan, Wen; Brady, John

    2015-11-01

    Net (as opposed to random) motion of active matter results from an average swim (or propulsive) force. It is shown that the average swim force acts like a body force - an internal body force [Yan and Brady, Soft Matter, DOI:10.1039/C5SM01318F]. As a result, the particle-pressure exerted on a container wall is the sum of the swim pressure [Takatori et al., Phys. Rev. Lett., 2014, 113, 028103] and the `weight' of the active particles. A continuum mechanical description is possible when variations occur on scales larger than the run length of the active particles and gives a Boltzmann-like distribution from a balance of the swim force and the swim pressure. Active particles may also display `action at a distance' and accumulate adjacent to (or be depleted from) a boundary without any external forces. In the momentum balance for the suspension - the mixture of active particles plus fluid - only external body forces appear.

  5. Compositionally Driven Dynamos

    NASA Astrophysics Data System (ADS)

    Soderlund, K. M.; Schubert, G.

    2014-12-01

    It is generally believed that compositional convection driven by inner core solidification is the main driver of the geodynamo. Thermal evolution considerations make it likely that compositional convection is also behind the present dynamos of Mercury and Ganymede as well as the early dynamos in the Moon, Mars and smaller solar system bodies. Compositional buoyancy can arise in several different ways, for example, through inner core solidification and FeS flotation with upward mixing and through freezing out and sinking of iron snow near the core-mantle boundary or deeper within the core. The mode of core cooling and freezing depends on conditions of temperature and pressure in the core and the concentration of light elements such as sulfur. Different distributions of compositional buoyancy will give rise to different patterns of core convection and dynamo magnetic fields. We report here the first results of a systematic study of the distribution of compositional buoyancy on the dynamo-generated magnetic fields, with an emphasis on Mars' core evolution due to iron rain.

  6. Invention-driven marketing

    NASA Technical Reports Server (NTRS)

    Carlson, William E.

    1994-01-01

    Suppose you have just created a revolutionary bicycle suspension which allows a bike to be ridden over rough terrain at 60 miles per hour. In addition, suppose that you are deeply concerned about the plight of hungry children. Which should you do: be sure all hungry children have bicycles; transfer the technology for your new suspension to bicycle manufacturers worldwide; or start a company to supply premium sports bicycle based on your patented technology, and donate the profits to a charity which feeds hungry children? Woven through this somewhat trivial example is the paradox of technology transfer - the supplier (owner) may want to transfer technology; but to succeed, he or she must reformulate the problem as a user need for which there is a new and better solution. Successful technology transfer is little more than good marketing applied to an existing invention, process, or capability. You must identify who needs the technology, why they need it, why the new technology is better than alternatives, how much the customers are willing and able to pay for these benefits, and how to distribute products based on the technology tc the target customers. In market-driven development, the term 'technology transfer' is rarely used. The developers focus on studying user needs and designing solution They may have technology needs, but they don't have technology in search of a use.

  7. Beam Driven Stratospheric Airship

    NASA Astrophysics Data System (ADS)

    Onda, Masahiko

    2003-05-01

    Even though satellite, balloons and aircraft have served admirably as aerospace platforms for remote sensing and telecommunication, requirements for a new kind of platforms - an easily modifiable, sub-orbital platform - have been widely identified. The High-Altitude Long-Range Observational Platform(HALROP) was at first conceptualized as a solar power driven unmanned LTA (Lighter-Than-Air) vehicle or an airship to maintain a station-keeping position in the lower stratosphere for long-durations and to carry out missions such as high-resolution monitoring and high-speed informational relays. Nevertheless solar power is not available in winter seasons in the high-latitudinal regions. Therefore, alternative power sources are necessary and the candidates are surface-to-air transmission of microwave energy and high-power laser beams. The author introduces a wireless power transmission test by microwave carried in 1995 in Kobe, Japan, and then, discusses possibilities of using laser beam for powering such LTA platforms.

  8. Gradient Driven Fluctuations

    NASA Technical Reports Server (NTRS)

    Cannell, David

    2005-01-01

    We have worked with our collaborators at the University of Milan (Professor Marzio Giglio and his group-supported by ASI) to define the science required to measure gradient driven fluctuations in the microgravity environment. Such a study would provide an accurate test of the extent to which the theory of fluctuating hydrodynamics can be used to predict the properties of fluids maintained in a stressed, non-equilibrium state. As mentioned above, the results should also provide direct visual insight into the behavior of a variety of fluid systems containing gradients or interfaces, when placed in the microgravity environment. With support from the current grant, we have identified three key systems for detailed investigation. These three systems are: 1) A single-component fluid to be studied in the presence of a temperature gradient; 2) A mixture of two organic liquids to be studied both in the presence of a temperature gradient, which induces a steady-state concentration gradient, and with the temperature gradient removed, but while the concentration gradient is dying by means of diffusion; 3) Various pairs of liquids undergoing free diffusion, including a proteidbuffer solution and pairs of mixtures having different concentrations, to allow us to vary the differences in fluid properties in a controlled manner.

  9. Driven Boson Sampling

    NASA Astrophysics Data System (ADS)

    Barkhofen, Sonja; Bartley, Tim J.; Sansoni, Linda; Kruse, Regina; Hamilton, Craig S.; Jex, Igor; Silberhorn, Christine

    2017-01-01

    Sampling the distribution of bosons that have undergone a random unitary evolution is strongly believed to be a computationally hard problem. Key to outperforming classical simulations of this task is to increase both the number of input photons and the size of the network. We propose driven boson sampling, in which photons are input within the network itself, as a means to approach this goal. We show that the mean number of photons entering a boson sampling experiment can exceed one photon per input mode, while maintaining the required complexity, potentially leading to less stringent requirements on the input states for such experiments. When using heralded single-photon sources based on parametric down-conversion, this approach offers an ˜e -fold enhancement in the input state generation rate over scattershot boson sampling, reaching the scaling limit for such sources. This approach also offers a dramatic increase in the signal-to-noise ratio with respect to higher-order photon generation from such probabilistic sources, which removes the need for photon number resolution during the heralding process as the size of the system increases.

  10. Electromagnetically driven liquid iris

    NASA Astrophysics Data System (ADS)

    Jang, Deasung; Jeong, Jin Won; Lee, Dae Young; Kim, Dae Geun; Chung, Sang Kug

    2016-11-01

    This paper describes a tunable liquid iris driven by electromagnetic actuation for miniature cameras. To examine the magnetic effect on a ferrofluid, the contact angle modification of a sessile ferrofluid droplet is tested using a neodymium magnet and an electric coil which 2.5 A current is applied to. The contact angle variations of the ferrofluid droplet for each test are 21.3 and 18.1 degrees, respectively. As a proof of concept, a pretest of a tunable iris actuated by electromagnetic effect is performed by using a hollow cylinder cell. As applying the current, the aperture diameter is adjusted from 4.06 mm at 0A to 3.21 mm at 2.0A. Finally, a tunable liquid iris (9 x 9 x 2 mm3) , consisting of two connected circular microchannels, is realized using MEMS technology. the aperture diameter of the tunable liquid iris is able to be modified from 1.72 mm at 0 A to 1.15 mm at 2.6 A. This tunable optical iris has potential applications not only for portable electronic devices but also in biomedical fields such as optical coherence tomography and microsurgery. This work was supported by 2016 Research Fund of Myongji University.

  11. Fluid driven recipricating apparatus

    DOEpatents

    Whitehead, John C.

    1997-01-01

    An apparatus comprising a pair of fluid driven pump assemblies in a back-to-back configuration to yield a bi-directional pump. Each of the pump assemblies includes a piston or diaphragm which divides a chamber therein to define a power section and a pumping section. An intake-exhaust valve is connected to each of the power sections of the pump chambers, and function to direct fluid, such as compressed air, into the power section and exhaust fluid therefrom. At least one of the pistons or diaphragms is connected by a rod assembly which is constructed to define a signal valve, whereby the intake-exhaust valve of one pump assembly is controlled by the position or location of the piston or diaphragm in the other pump assembly through the operation of the rod assembly signal valve. Each of the pumping sections of the pump assemblies are provided with intake and exhaust valves to enable filling of the pumping section with fluid and discharging fluid therefrom when a desired pressure has been reached.

  12. Fluid driven reciprocating apparatus

    DOEpatents

    Whitehead, J.C.

    1997-04-01

    An apparatus is described comprising a pair of fluid driven pump assemblies in a back-to-back configuration to yield a bi-directional pump. Each of the pump assemblies includes a piston or diaphragm which divides a chamber therein to define a power section and a pumping section. An intake-exhaust valve is connected to each of the power sections of the pump chambers, and function to direct fluid, such as compressed air, into the power section and exhaust fluid therefrom. At least one of the pistons or diaphragms is connected by a rod assembly which is constructed to define a signal valve, whereby the intake-exhaust valve of one pump assembly is controlled by the position or location of the piston or diaphragm in the other pump assembly through the operation of the rod assembly signal valve. Each of the pumping sections of the pump assemblies are provided with intake and exhaust valves to enable filling of the pumping section with fluid and discharging fluid therefrom when a desired pressure has been reached. 13 figs.

  13. Fluid driven reciprocating apparatus

    SciTech Connect

    Whitehead, J.C.

    1997-04-01

    An apparatus is described comprising a pair of fluid driven pump assemblies in a back-to-back configuration to yield a bi-directional pump. Each of the pump assemblies includes a piston or diaphragm which divides a chamber therein to define a power section and a pumping section. An intake-exhaust valve is connected to each of the power sections of the pump chambers, and function to direct fluid, such as compressed air, into the power section and exhaust fluid therefrom. At least one of the pistons or diaphragms is connected by a rod assembly which is constructed to define a signal valve, whereby the intake-exhaust valve of one pump assembly is controlled by the position or location of the piston or diaphragm in the other pump assembly through the operation of the rod assembly signal valve. Each of the pumping sections of the pump assemblies are provided with intake and exhaust valves to enable filling of the pumping section with fluid and discharging fluid therefrom when a desired pressure has been reached. 13 figs.

  14. Exchange-driven growth.

    PubMed

    Ben-Naim, E; Krapivsky, P L

    2003-09-01

    We study a class of growth processes in which clusters evolve via exchange of particles. We show that depending on the rate of exchange there are three possibilities: (I) Growth-clusters grow indefinitely, (II) gelation-all mass is transformed into an infinite gel in a finite time, and (III) instant gelation. In regimes I and II, the cluster size distribution attains a self-similar form. The large size tail of the scaling distribution is Phi(x) approximately exp(-x(2-nu)), where nu is a homogeneity degree of the rate of exchange. At the borderline case nu=2, the distribution exhibits a generic algebraic tail, Phi(x) approximately x(-5). In regime III, the gel nucleates immediately and consumes the entire system. For finite systems, the gelation time vanishes logarithmically, T approximately [lnN](-(nu-2)), in the large system size limit N--> infinity. The theory is applied to coarsening in the infinite range Ising-Kawasaki model and in electrostatically driven granular layers.

  15. Mechanically driven centrifugal pyrolyzer

    DOEpatents

    Linck, Martin Brendan [Mount Prospect, IL; Bush, Phillip Vann [Bartlett, IL

    2012-03-06

    An apparatus for fast pyrolysis of biomass and other solid organic materials including a vertically oriented cylindrical vessel having a solids outlet proximate the bottom thereof, a vapor outlet, a top wall forming at least one opening, and an adjacent heated side wall. Disposed within the cylindrical vessel and extending through the at least one opening in the top wall is a rotor having a rotatable shaft coincident with the longitudinal axis of the cylindrical vessel to which is attached at least one substantially vertically oriented blade having one edge connected directly or indirectly with the rotatable shaft and having an opposite edge spaced apart from the heated side wall, whereby a non-radial, preferably tangential, force is imparted on the feedstock in the cylindrical vessel. Also disclosed is a method for fast pyrolysis of biomass and other solid organic materials.

  16. Force Regulation in Tissue Mechanics

    NASA Astrophysics Data System (ADS)

    Edwards, Glenn

    2005-03-01

    We have investigated tissue mechanics in live fly embryos perturbed by a UV microbeam and imaged with confocal microscopy. The actin cytoskeletons of these transgenic flies are labeled with green fluorescent protein to provide contrast without compromising biological function. We concentrate on dorsal closure, a model system for development and wound healing, to identify connections between forces, genetics, and morphogenesis. Dorsal closure is proving to be an attractive system for research in biological physics since key cell boundaries lie in a plane and exhibit multiple symmetries, which facilitates modeling. We find that four spatially and temporally coordinated processes are responsible for the dynamics of dorsal closure. The bulk of progress is driven by contractility in supracellular ``purse strings'' and in the amnioserosa, whereas adhesion-medicated zipping coordinates the forces produced by the purse strings. When the UV microbeam was used to block adhesion mediated zipping, altered dynamics preserve closure, attributed to an upregulation of the force produced by the remaining amnioserosa. In addition, the modeling of wild type and mutant phenotypes is predictive; although closure in myospheroid mutants ultimately fails when the cell sheets rip themselves apart, our analysis indicates that βps--integrin has an earlier, important role in zipping.

  17. Pressure-driven flow in a channel with porous walls

    NASA Astrophysics Data System (ADS)

    Liu, Qianlong; Prosperetti, Andrea

    2010-11-01

    The finite-Reynolds-number three-dimensional flow in a channel bounded by one and two parallel porous walls is studied numerically. The porous medium is modelled by spheres in a simple cubic arrangement. The results for the slip velocity at the surface of the porous layers are compared with the phenomenological Beavers-Joseph model. It is found that the value of the slip coefficient is different for pressure-driven and shear-driven flow. A modification of the relation is suggested to deal with this feature. Furthermore, detailed results on the flow structure and the hydrodynamic forces and couple acting on the sphere layer bounding the porous medium are reported and their dependence on the Reynolds number illustrated. It is shown that, at finite Reynolds numbers, a lift force acts on the spheres, which may be expected to contribute to the the mobilization of bottom sediments.

  18. Translocation of a polymer chain driven by a dichotomous noise

    NASA Astrophysics Data System (ADS)

    Fiasconaro, Alessandro; José Mazo, Juan; Falo, Fernando

    2011-11-01

    We consider the translocation of a one-dimensional polymer through a pore channel helped by a motor driven by a dichotomous noise with time exponential correlation. We are interested in the study of the translocation time, mean velocity and stall force of the system as a function of the mean driving frequency. We find a monotonic translocation time, in contrast with the mean velocity which shows a pronounced maximum at a given frequency. Interestingly, the stall force shows a nonmonotonic behavior with the presence of a minimum. The influence of the spring elastic constant on the mean translocation times and velocities is also presented.

  19. Salinity driven oceanographic upwelling

    DOEpatents

    Johnson, D.H.

    1984-08-30

    The salinity driven oceanographic upwelling is maintained in a mariculture device that includes a long main duct in the general shape of a cylinder having perforated cover plates at each end. The mariculture device is suspended vertically in the ocean such that one end of the main duct is in surface water and the other end in relatively deep water that is cold, nutrient rich and relatively fresh in comparison to the surface water which is relatively warm, relatively nutrient deficient and relatively saline. A plurality of elongated flow segregating tubes are disposed in the main duct and extend from the upper cover plate beyond the lower cover plate into a lower manifold plate. The lower manifold plate is spaced from the lower cover plate to define a deep water fluid flow path to the interior space of the main duct. Spacer tubes extend from the upper cover plate and communicate with the interior space of the main duct. The spacer tubes are received in an upper manifold plate spaced from the upper cover plate to define a surface water fluid flow path into the flow segregating tubes. A surface water-deep water counterflow is thus established with deep water flowing upwardly through the main duct interior for discharge beyond the upper manifold plate while surface water flows downwardly through the flow segregating tubes for discharge below the lower manifold plate. During such counterflow heat is transferred from the downflowing warm water to the upflowing cold water. The flow is maintained by the difference in density between the deep water and the surface water due to their differences in salinity. The upwelling of nutrient rich deep water is used for marifarming by fertilizing the nutrient deficient surface water. 1 fig.

  20. Salinity driven oceanographic upwelling

    DOEpatents

    Johnson, David H.

    1986-01-01

    The salinity driven oceanographic upwelling is maintained in a mariculture device that includes a long main duct in the general shape of a cylinder having perforated cover plates at each end. The mariculture device is suspended vertically in the ocean such that one end of the main duct is in surface water and the other end in relatively deep water that is cold, nutrient rich and relatively fresh in comparison to the surface water which is relatively warm, relatively nutrient deficient and relatively saline. A plurality of elongated flow segregating tubes are disposed in the main duct and extend from the upper cover plate beyond the lower cover plate into a lower manifold plate. The lower manifold plate is spaced from the lower cover plate to define a deep water fluid flow path to the interior space of the main duct. Spacer tubes extend from the upper cover plate and communicate with the interior space of the main duct. The spacer tubes are received in an upper manifold plate spaced from the upper cover plate to define a surface water fluid flow path into the flow segregating tubes. A surface water-deep water counterflow is thus established with deep water flowing upwardly through the main duct interior for discharge beyond the upper manifold plate while surface water flows downwardly through the flow segregating tubes for discharge below the lower manifold plate. During such counterflow heat is transferred from the downflowing warm water to the upflowing cold water. The flow is maintained by the difference in density between the deep water and the surface water due to their differences in salinity. The upwelling of nutrient rich deep water is used for marifarming by fertilizing the nutrient deficient surface water.

  1. Lorentz Body Force Induced by Traveling Magnetic Fields

    NASA Technical Reports Server (NTRS)

    Volz, M. P.; Mazuruk, K.

    2003-01-01

    The Lorentz force induced by a traveling magnetic field (TMF) in a cylindrical container has been calculated. The force can be used to control flow in dectrically conducting melts and the direction of the magnetic field and resulting flow can be reversed. A TMF can be used to partially cancel flow driven by buoyancy. The penetration of the field into the cylinder decreases as the frequency increases, and there exists an optimal value of frequency for which the resulting force is a maximum. Expressions for the Lorentz force in the limiting cases of low frequency and infinite cylinder are also given and compared to the numerical calculations.

  2. Laser-Driven Mini-Thrusters

    SciTech Connect

    Sterling, Enrique; Lin Jun; Sinko, John; Kodgis, Lisa; Porter, Simon; Pakhomov, Andrew V.; Larson, C. William; Mead, Franklin B. Jr.

    2006-05-02

    Laser-driven mini-thrusters were studied using Delrin registered and PVC (Delrin registered is a registered trademark of DuPont) as propellants. TEA CO2 laser ({lambda} = 10.6 {mu}m) was used as a driving laser. Coupling coefficients were deduced from two independent techniques: force-time curves measured with a piezoelectric sensor and ballistic pendulum. Time-resolved ICCD images of the expanding plasma and combustion products were analyzed in order to determine the main process that generates the thrust. The measurements were also performed in a nitrogen atmosphere in order to test the combustion effects on thrust. A pinhole transmission experiment was performed for the study of the cut-off time when the ablation/air breakdown plasma becomes opaque to the incoming laser pulse.

  3. Zonostrophic instability driven by discrete particle noise

    DOE PAGES

    St-Onge, D. A.; Krommes, J. A.

    2017-04-01

    The consequences of discrete particle noise for a system possessing a possibly unstable collective mode are discussed. It is argued that a zonostrophic instability (of homogeneous turbulence to the formation of zonal flows) occurs just below the threshold for linear instability. The scenario provides a new interpretation of the random forcing that is ubiquitously invoked in stochastic models such as the second-order cumulant expansion or stochastic structural instability theory; neither intrinsic turbulence nor coupling to extrinsic turbulence is required. A representative calculation of the zonostrophic neutral curve is made for a simple two-field model of toroidal ion-temperature-gradient-driven modes. To themore » extent that the damping of zonal flows is controlled by the ion-ion collision rate, the point of zonostrophic instability is independent of that rate. Published by AIP Publishing.« less

  4. Power-stroke-driven actomyosin contractility

    NASA Astrophysics Data System (ADS)

    Sheshka, R.; Truskinovsky, L.

    2014-01-01

    In ratchet-based models describing actomyosin contraction the activity is usually associated with actin binding potential while the power-stroke mechanism, residing inside myosin heads, is viewed as passive. To show that contraction can be propelled directly through a conformational change, we propose an alternative model where the power stroke is the only active mechanism. The asymmetry, ensuring directional motion, resides in steric interaction between the externally driven power-stroke element and the passive nonpolar actin filament. The proposed model can reproduce all four discrete states of the minimal actomyosin catalytic cycle even though it is formulated in terms of continuous Langevin dynamics. We build a conceptual bridge between processive and nonprocessive molecular motors by demonstrating that not only the former but also the latter can use structural transformation as the main driving force.

  5. Edge convection driven by externally applied potentials

    SciTech Connect

    D'Ippolito, D. A.; Myra, J. R.

    2000-08-01

    A theoretical model of convection in collisional tokamak edge and scrape-off-layer plasmas is described. In the linear theory, any mechanism for poloidal and toroidal symmetry breaking of the equilibrium will drive ExB flows; this result stems from the parallel thermal and pressure forces in Ohm's law. In the nonlinear theory, the quadratic coupling of the perturbations leads to quasilinear-type fluxes in the vorticity, density, and temperature equations. If the convection is strong enough, these fluxes lead to an ambipolarity constraint on the equilibrium electric field and to increased transport of particles and energy. The theory shows qualitative agreement with some tokamak experiments in which potential perturbations are externally driven by radio frequency antennas. (c) 2000 American Institute of Physics.

  6. Bistability in a Driven-Dissipative Superfluid.

    PubMed

    Labouvie, Ralf; Santra, Bodhaditya; Heun, Simon; Ott, Herwig

    2016-06-10

    We experimentally study a driven-dissipative Josephson junction array, realized with a weakly interacting Bose-Einstein condensate residing in a one-dimensional optical lattice. Engineered losses on one site act as a local dissipative process, while tunneling from the neighboring sites constitutes the driving force. We characterize the emerging steady states of this atomtronic device. With increasing dissipation strength γ the system crosses from a superfluid state, characterized by a coherent Josephson current into the lossy site, to a resistive state, characterized by an incoherent hopping transport. For intermediate values of γ, the system exhibits bistability, where a superfluid and an incoherent branch coexist. We also study the relaxation dynamics towards the steady state, where we find a critical slowing down, indicating the presence of a nonequilibrium phase transition.

  7. Bistability in a Driven-Dissipative Superfluid

    NASA Astrophysics Data System (ADS)

    Labouvie, Ralf; Santra, Bodhaditya; Heun, Simon; Ott, Herwig

    2016-06-01

    We experimentally study a driven-dissipative Josephson junction array, realized with a weakly interacting Bose-Einstein condensate residing in a one-dimensional optical lattice. Engineered losses on one site act as a local dissipative process, while tunneling from the neighboring sites constitutes the driving force. We characterize the emerging steady states of this atomtronic device. With increasing dissipation strength γ the system crosses from a superfluid state, characterized by a coherent Josephson current into the lossy site, to a resistive state, characterized by an incoherent hopping transport. For intermediate values of γ , the system exhibits bistability, where a superfluid and an incoherent branch coexist. We also study the relaxation dynamics towards the steady state, where we find a critical slowing down, indicating the presence of a nonequilibrium phase transition.

  8. Flaming 2 π kinks in parametrically driven systems

    NASA Astrophysics Data System (ADS)

    Berrios-Caro, E.; Clerc, M. G.; Leon, A. O.

    2016-11-01

    Macroscopic extended systems with dissipation and injection of energy can exhibit particlelike solutions. Dissipative kinks with an oscillatory cloak and a family of localized states that connect uniform symmetric states in a magnetic wire forced with a transversal oscillatory magnetic field and in a parametrically driven damped pendula chain are studied. The oscillatory cloak is composed of evanescent waves emitted at the kink position and generated by a resonant mechanism. These waves mediate the kink interaction and generate a family of localized states.

  9. Construction, Analysis, and Data-Driven Augmentation of Supersaturated Designs

    DTIC Science & Technology

    2013-09-01

    DRIVEN AUGMENTATION OF SUPERSATURATED DESIGNS DISSERTATION Presented to the Faculty Graduate School of Engineering and Management Air Force Institute...Dean, Graduate School of Engineering and Management AFIT-ENC-DS-13-S-02 Abstract Screening designs are used in the early stages of industrial and...completing a PhD is certainly not an individual effort. It takes a team of teachers , mentors, friends, and family - all of whom deserve tremendous thanks

  10. Nanoassemblies driven by cyclodextrin-based inclusion complexation.

    PubMed

    Kang, Yang; Guo, Kun; Li, Bang-Jing; Zhang, Sheng

    2014-10-04

    Nanoscaled supramolecular systems have attracted significant attention because of their promising applications in many fields. This review focuses on recent advances in the construction of nanoassemblies driven by cyclodextrin (CD)-based inclusion complexation and their application in biomedical and biomimetic fields. As a result of the reversibility of the CD-based host-guest interactions, CD-based driving forces provide the opportunity to generate complex and sophisticated nanoassemblies with tunable properties.

  11. Flaming 2π kinks in parametrically driven systems.

    PubMed

    Berrios-Caro, E; Clerc, M G; Leon, A O

    2016-11-01

    Macroscopic extended systems with dissipation and injection of energy can exhibit particlelike solutions. Dissipative kinks with an oscillatory cloak and a family of localized states that connect uniform symmetric states in a magnetic wire forced with a transversal oscillatory magnetic field and in a parametrically driven damped pendula chain are studied. The oscillatory cloak is composed of evanescent waves emitted at the kink position and generated by a resonant mechanism. These waves mediate the kink interaction and generate a family of localized states.

  12. Ultrasensitive hysteretic force sensing with parametric nonlinear oscillators

    NASA Astrophysics Data System (ADS)

    Papariello, Luca; Zilberberg, Oded; Eichler, Alexander; Chitra, R.

    2016-08-01

    We propose a method for linear detection of weak forces using parametrically driven nonlinear resonators. The method is based on a peculiar feature in the response of the resonator to a near resonant periodic external force. This feature stems from a complex interplay among the parametric drive, external force, and nonlinearities. For weak parametric drive, the response exhibits the standard Duffing-like single jump hysteresis. For stronger drive amplitudes, we find a qualitatively new double jump hysteresis which arises from stable solutions generated by the cubic Duffing nonlinearity. The additional jump exists only if the external force is present and the frequency at which it occurs depends linearly on the amplitude of the external force, permitting a straightforward ultrasensitive detection of weak forces. With state-of-the-art nanomechanical resonators, our scheme should permit force detection in the attonewton range.

  13. Ultrasensitive hysteretic force sensing with parametric nonlinear oscillators.

    PubMed

    Papariello, Luca; Zilberberg, Oded; Eichler, Alexander; Chitra, R

    2016-08-01

    We propose a method for linear detection of weak forces using parametrically driven nonlinear resonators. The method is based on a peculiar feature in the response of the resonator to a near resonant periodic external force. This feature stems from a complex interplay among the parametric drive, external force, and nonlinearities. For weak parametric drive, the response exhibits the standard Duffing-like single jump hysteresis. For stronger drive amplitudes, we find a qualitatively new double jump hysteresis which arises from stable solutions generated by the cubic Duffing nonlinearity. The additional jump exists only if the external force is present and the frequency at which it occurs depends linearly on the amplitude of the external force, permitting a straightforward ultrasensitive detection of weak forces. With state-of-the-art nanomechanical resonators, our scheme should permit force detection in the attonewton range.

  14. Collisional effects on nonlinear ion drag force for small grains

    SciTech Connect

    Hutchinson, I. H.; Haakonsen, C. B.

    2013-08-15

    The ion drag force arising from plasma flow past an embedded spherical grain is calculated self-consistently and non-linearly using particle in cell codes, accounting for ion-neutral collisions. Using ion velocity distribution appropriate for ion drift driven by a force field gives wake potential and force greatly different from a shifted Maxwellian distribution, regardless of collisionality. The low-collisionality forces are shown to be consistent with estimates based upon cross-sections for scattering in a Yukawa (shielded) grain field, but only if non-linear shielding length is used. Finite collisionality initially enhances the drag force, but only by up to a factor of 2. Larger collisionality eventually reduces the drag force. In the collisional regime, the drift distribution gives larger drag than the shift distribution even at velocities where their collisionless drags are equal. Comprehensive practical analytic formulas for force that fit the calculations are provided.

  15. Valveless micropump driven by acoustic streaming

    NASA Astrophysics Data System (ADS)

    Choe, Youngki; Sok Kim, Eun

    2013-04-01

    This paper describes two valveless micropumps built on a 260 µm thick PZT with 20 µm thick parylene acoustic Fresnel lenses with air cavities. The micropumps produce in-plane body force through acoustic streaming effect of high-intensity acoustic beam that is generated by acoustic wave interference. The fabricated micropumps were shown to move microspheres, which have a diameter of 70-90 µm and a density of 0.99 g cm-3, on the water surface to form U-shape streams of microspheres with a drift velocity of 7.3 cm s-1 when the micropumps were located 4 mm below the water surface and driven by 160 Vpeak-to-peak pulsed sinusoidal waves. The driven microspheres formed U-shape streaming even without any fluidic channel according to the serial connection of the pie-shaped lenses and top electrodes. A micropump with a straight-lined fluidic channel was also fabricated and tested to show a 9.2 cm s-1 microspheres' drift velocity and a 9.5 mL min-1 volume pumping rate when combined with the acrylic acoustic wave reflector. Both the Fresnel lens and top electrode were patterned in a pie-shape with its apex angle of 90° to form asymmetric acoustic pressure distribution at the focal plane of the acoustic Fresnel lenses in order to push water in one direction.

  16. Distinctive features of internally driven magnetotail reconnection

    NASA Astrophysics Data System (ADS)

    Sitnov, M. I.; Merkin, V. G.; Pritchett, P. L.; Swisdak, M.

    2017-04-01

    Onset of reconnection in a tail-like equilibrium with a finite Bz magnetic field component is studied using 3-D explicit particle-in-cell simulations. Due to a region of a tailward Bz gradient the onset develops spontaneously as the magnetic flux release instability with dominant earthward ion flows. The instability drives the change of magnetic field topology internally, without any external forcing. The distinctive features of this regime are: previously unreported Hall magnetic field patterns; energy conversion near the dipolarization front prior to the X line formation; asymmetry of the energy conversion, plasma heating, and anisotropy relative to the X line, with regions of ion and electron heating out of phase both along and across the tail. These features distinguish the internally driven reconnection regime from similar processes in antiparallel magnetic field configurations as well as interchange and externally driven magnetotail reconnection regimes and can be used to identify the different regimes in upcoming Magnetospheric Multiscale (MMS) mission tail season observations.

  17. Optimal plane changes using third-body forces.

    PubMed

    Villac, B F; Scheeres, D J

    2004-05-01

    The fuel optimality of third-body driven plane changes (i.e., plane changes performed by using third-body forces) over one-impulse transfers is investigated numerically and analytically. In particular, the range of third-body driven plane changes that are realizable is shown to be restricted and one impulse must be used in the uncovered regions. However, when third-body driven plane changes are realizable, it is shown that they are always optimal above a certain critical value (about 40 degrees ) that depends on the initial condition. Contour plots of optimal DeltaV values to perform a desired plane changes are given.

  18. Blast Wave Formation by Laser-Sustained Nonequilibrium Plasma in the Laser-Driven In-Tube Accelerator Operation

    SciTech Connect

    Ogino, Yousuke; Ohnishi, Naofumi; Sawada, Keisuke; Sasoh, Akihiro

    2006-05-02

    Understanding the dynamics of laser-produced plasma is essentially important for increasing available thrust force in a gas-driven laser propulsion system such as laser-driven in-tube accelerator. A computer code is developed to explore the formation of expanding nonequilibrium plasma produced by laser irradiation. Various properties of the blast wave driven by the nonequilibrium plasma are examined. It is found that the blast wave propagation is substantially affected by radiative cooling effect for lower density case.

  19. Gravity Driven Universe

    NASA Astrophysics Data System (ADS)

    Masters, Roy

    2010-03-01

    Flowing global gravitation initially produced space without time or mass. Space-time and mass are properties of flowing global gravitation. From its fabric, primal mass spins spontaneously giving rise to local gravitational space-time curvatures. Global gravity is the unifying background field. Gravity began flowing from its singularity with a big whoosh. It curves with angular rotational precession, creating a spatial geometry similar to the windings of a ball of string. Three-dimensional global gravity swirls locally into massive densities. Concurrently with these densities, local gravity curvatures of space-time arise. The expanse between celestial objects is not completely empty, void space as generally believed; it is antecedent gravity, a prerequisite associated field necessary for originating the first quantum particles. Gravity is dark energy; gravity's spin, as the second fundamental force, is electromagnetic dark matter. Electromagnetic masses attract then gravity compresses hot, dense and small---then bang, the first hydrogen star of which there are many. There may have been many big bangs, but no Big Bang that ultimately created the universe.

  20. Comments on event driven animation

    NASA Technical Reports Server (NTRS)

    Gomez, Julian E.

    1987-01-01

    Event driven animation provides a general method of describing controlling values for various computer animation techniques. A definition and comments are provided on genralizing motion description with events. Additional comments are also provided about the implementation of twixt.

  1. Forced wetting and hydrodynamic assist

    NASA Astrophysics Data System (ADS)

    Blake, Terence D.; Fernandez-Toledano, Juan-Carlos; Doyen, Guillaume; De Coninck, Joël

    2015-11-01

    Wetting is a prerequisite for coating a uniform layer of liquid onto a solid. Wetting failure and air entrainment set the ultimate limit to coating speed. It is well known in the coating art that this limit can be postponed by manipulating the coating flow to generate what has been termed "hydrodynamic assist," but the underlying mechanism is unclear. Experiments have shown that the conditions that postpone air entrainment also reduce the apparent dynamic contact angle, suggesting a direct link, but how the flow might affect the contact angle remains to be established. Here, we use molecular dynamics to compare the outcome of steady forced wetting with previous results for the spontaneous spreading of liquid drops and apply the molecular-kinetic theory of dynamic wetting to rationalize our findings and place them on a quantitative footing. The forced wetting simulations reveal significant slip at the solid-liquid interface and details of the flow immediately adjacent to the moving contact line. Our results confirm that the local, microscopic contact angle is dependent not simply only on the velocity of wetting but also on the nature of the flow that drives it. In particular, they support an earlier suggestion that during forced wetting, an intense shear stress in the vicinity of the contact line can assist surface tension forces in promoting dynamic wetting, thus reducing the velocity-dependence of the contact angle. Hydrodynamic assist then appears as a natural consequence of wetting that emerges when the contact line is driven by a strong and highly confined flow. Our theoretical approach also provides a self-consistent model of molecular slip at the solid-liquid interface that enables its magnitude to be estimated from dynamic contact angle measurements. In addition, the model predicts how hydrodynamic assist and slip may be influenced by liquid viscosity and solid-liquid interactions.

  2. Quantum dynamics of light-driven chiral molecular motors.

    PubMed

    Yamaki, Masahiro; Nakayama, Shin-ichiro; Hoki, Kunihito; Kono, Hirohiko; Fujimura, Yuichi

    2009-03-21

    The results of theoretical studies on quantum dynamics of light-driven molecular motors with internal rotation are presented. Characteristic features of chiral motors driven by a non-helical, linearly polarized electric field of light are explained on the basis of symmetry argument. The rotational potential of the chiral motor is characterized by a ratchet form. The asymmetric potential determines the directional motion: the rotational direction is toward the gentle slope of the asymmetric potential. This direction is called the intuitive direction. To confirm the unidirectional rotational motion, results of quantum dynamical calculations of randomly-oriented molecular motors are presented. A theoretical design of the smallest light-driven molecular machine is presented. The smallest chiral molecular machine has an optically driven engine and a running propeller on its body. The mechanisms of transmission of driving forces from the engine to the propeller are elucidated by using a quantum dynamical treatment. The results provide a principle for control of optically-driven molecular bevel gears. Temperature effects are discussed using the density operator formalism. An effective method for ultrafast control of rotational motions in any desired direction is presented with the help of a quantum control theory. In this method, visible or UV light pulses are applied to drive the motor via an electronic excited state. A method for driving a large molecular motor consisting of an aromatic hydrocarbon is presented. The molecular motor is operated by interactions between the induced dipole of the molecular motor and the electric field of light pulses.

  3. Six axis force feedback input device

    NASA Technical Reports Server (NTRS)

    Ohm, Timothy (Inventor)

    1998-01-01

    The present invention is a low friction, low inertia, six-axis force feedback input device comprising an arm with double-jointed, tendon-driven revolute joints, a decoupled tendon-driven wrist, and a base with encoders and motors. The input device functions as a master robot manipulator of a microsurgical teleoperated robot system including a slave robot manipulator coupled to an amplifier chassis, which is coupled to a control chassis, which is coupled to a workstation with a graphical user interface. The amplifier chassis is coupled to the motors of the master robot manipulator and the control chassis is coupled to the encoders of the master robot manipulator. A force feedback can be applied to the input device and can be generated from the slave robot to enable a user to operate the slave robot via the input device without physically viewing the slave robot. Also, the force feedback can be generated from the workstation to represent fictitious forces to constrain the input device's control of the slave robot to be within imaginary predetermined boundaries.

  4. Global Forces in Eruptive Solar Flares: The Lorentz Force Acting on the Solar Atmosphere and the Solar Interior

    NASA Astrophysics Data System (ADS)

    Fisher, G. H.; Bercik, D. J.; Welsch, B. T.; Hudson, H. S.

    2012-03-01

    We compute the change in the Lorentz force integrated over the outer solar atmosphere implied by observed changes in vector magnetograms that occur during large, eruptive solar flares. This force perturbation should be balanced by an equal and opposite force perturbation acting on the solar photosphere and solar interior. The resulting expression for the estimated force change in the solar interior generalizes the earlier expression presented by Hudson, Fisher, and Welsch ( Astron. Soc. Pac. CS-383, 221, 2008), providing horizontal as well as vertical force components, and provides a more accurate result for the vertical component of the perturbed force. We show that magnetic eruptions should result in the magnetic field at the photosphere becoming more horizontal, and hence should result in a downward (toward the solar interior) force change acting on the photosphere and solar interior, as recently argued from an analysis of magnetogram data by Wang and Liu ( Astrophys. J. Lett. 716, L195, 2010). We suggest the existence of an observational relationship between the force change computed from changes in the vector magnetograms, the outward momentum carried by the ejecta from the flare, and the properties of the helioseismic disturbance driven by the downward force change. We use the impulse driven by the Lorentz-force change in the outer solar atmosphere to derive an upper limit to the mass of erupting plasma that can escape from the Sun. Finally, we compare the expected Lorentz-force change at the photosphere with simple estimates from flare-driven gasdynamic disturbances and from an estimate of the perturbed pressure from radiative backwarming of the photosphere in flaring conditions.

  5. Effect of Forcing Function on Nonlinear Acoustic Standing Waves

    NASA Technical Reports Server (NTRS)

    Finkheiner, Joshua R.; Li, Xiao-Fan; Raman, Ganesh; Daniels, Chris; Steinetz, Bruce

    2003-01-01

    Nonlinear acoustic standing waves of high amplitude have been demonstrated by utilizing the effects of resonator shape to prevent the pressure waves from entering saturation. Experimentally, nonlinear acoustic standing waves have been generated by shaking an entire resonating cavity. While this promotes more efficient energy transfer than a piston-driven resonator, it also introduces complicated structural dynamics into the system. Experiments have shown that these dynamics result in resonator forcing functions comprised of a sum of several Fourier modes. However, previous numerical studies of the acoustics generated within the resonator assumed simple sinusoidal waves as the driving force. Using a previously developed numerical code, this paper demonstrates the effects of using a forcing function constructed with a series of harmonic sinusoidal waves on resonating cavities. From these results, a method will be demonstrated which allows the direct numerical analysis of experimentally generated nonlinear acoustic waves in resonators driven by harmonic forcing functions.

  6. Statistical forces from close-to-equilibrium media

    NASA Astrophysics Data System (ADS)

    Basu, Urna; Maes, Christian; Netočný, Karel

    2015-11-01

    We discuss the physical meaning and significance of statistical forces on quasi-static probes in first order around detailed balance for driven media. Exploiting the quasi-static energetics and the structure of (McLennan) steady nonequilibrium ensembles, we find that the statistical force obtains a nonequilibrium correction deriving from the excess work of driving forces on the medium in its relaxation after probe displacement. This reformulates, within a more general context, the recent result by Nakagawa (2014 Phys. Rev. E 90 022108) on thermodynamic aspects of weakly nonequilibrium adiabatic pumping. It also proposes a possible operational tool for accessing some excess quantities in steady state thermodynamics. Furthermore, we show that the point attractors of a (macroscopic) probe coupled to a weakly driven medium realize the predictions of the minimum entropy production principle. Finally, we suggest a method to measure the relative dynamical activity through different transition channels, via the measurement of the statistical force induced by a suitable driving.

  7. Effect of Forcing Function on Nonlinear Acoustic Standing Waves

    NASA Technical Reports Server (NTRS)

    Finkheiner, Joshua R.; Li, Xiao-Fan; Raman, Ganesh; Daniels, Chris; Steinetz, Bruce

    2003-01-01

    Nonlinear acoustic standing waves of high amplitude have been demonstrated by utilizing the effects of resonator shape to prevent the pressure waves from entering saturation. Experimentally, nonlinear acoustic standing waves have been generated by shaking an entire resonating cavity. While this promotes more efficient energy transfer than a piston-driven resonator, it also introduces complicated structural dynamics into the system. Experiments have shown that these dynamics result in resonator forcing functions comprised of a sum of several Fourier modes. However, previous numerical studies of the acoustics generated within the resonator assumed simple sinusoidal waves as the driving force. Using a previously developed numerical code, this paper demonstrates the effects of using a forcing function constructed with a series of harmonic sinusoidal waves on resonating cavities. From these results, a method will be demonstrated which allows the direct numerical analysis of experimentally generated nonlinear acoustic waves in resonators driven by harmonic forcing functions.

  8. Stable electroosmotically driven actuators

    NASA Astrophysics Data System (ADS)

    Sritharan, Deepa; Motsebo, Mylene; Tumbic, Julia; Smela, Elisabeth

    2013-04-01

    We have previously presented "nastic" actuators based on electroosmotic (EO) pumping of fluid in microchannels using high electric fields for potential application in soft robotics. In this work we address two challenges facing this technology: applying EO to meso-scale devices and the stability of the pumping fluid. The hydraulic pressure achieved by EO increases with as 1/d2, where d is the depth of the microchannel, but the flow rate (which determines the stroke and the speed) is proportional to nd, where n is the number of channels. Therefore to get high force and high stroke the device requires a large number of narrow channels, which is not readily achievable using standard microfabrication techniques. Furthermore, for soft robotics the structure must be soft. In this work we present a method of fabricating a three-dimensional porous elastomer to serve as the array of channels based on a sacrificial sugar scaffold. We demonstrate the concept by fabricating small pumps. The flexible devices were made from polydimethylsiloxane (PDMS) and comprise the 3D porous elastomer flanked on either side by reservoirs containing electrodes. The second issue addressed here involves the pumping fluid. Typically, water is used for EO, but water undergoes electrolysis even at low voltages. Since EO takes place at kV, these systems must be open to release the gases. We have recently reported that propylene carbonate (PC) is pumped at a comparable rate as water and is also stable for over 30 min at 8 kV. Here we show that PC is, however, degraded by moisture, so future EO systems must prevent water from reaching the PC.

  9. Directly Driven Ion Outflow

    NASA Technical Reports Server (NTRS)

    Elliott, H. A.; Comfort, R. H.; Craven, P. D.; Moore, T. E.; Russell, C. T.; Rose, M. Franklin (Technical Monitor)

    2001-01-01

    We examine ionospheric outflows in the high altitude magnetospheric polar cap during the POLAR satellite's apogee on April 19, 1996 using the Thermal Ion Dynamics Experiment (TIDE) instrument. The elevated levels of O(+) observed in this pass may be due to the geophysical conditions during and prior to the apogee pass. In addition to the high abundance of O(+) relative to H(+), several other aspects of this data are noteworthy. We observe relationships between the density, velocity, and temperature which appear to be associated with perpendicular heating and the mirror force, rather than adiabatic expansion. The H(+) outflow is at a fairly constant flux which is consistent with being source limited by charge exchange at lower altitudes. Local centrifugal acceleration in the polar cap is found to be insufficient to account for the main variations we observe in the outflow velocity. The solar wind speed is high during this pass approximately 700 kilometers per second, and there are Alfve'n waves present in the solar wind such that the solar wind speed and IMF Bx are correlated. In this pass both the H(+) and O(+) outflow velocities correlate with both the solar wind speed and IMF fluctuations. Polar cap magnetometer and Hydra electron data show the same long period wave structure as found in the solar wind and polar cap ion outflow. In addition, the polar cap Poynting flux along the magnetic field direction correlates well with the H(+) temperature (R=0.84). We conclude that the solar wind can drive polar cap ion outflow particularly during polar squalls by setting up a parallel drop that is tens of eV which then causes the ion outflow velocity of O(+) and H(+), the electrons, and magnetic perturbations to vary in a similar fashion.

  10. Numerical study of thermal driven buoyancy flow effect on solidification process of continuous slab caster

    NASA Astrophysics Data System (ADS)

    JAMBHULKAR, ROHIT Y.; SINGH, V.; MISHRA, P.; KRISHNAMURTHY, R.

    2016-09-01

    The main aim of the present research is to study the role of thermal driven buoyancy flow in solidification process of continues slab caster. A 3-D fluid flow, heat transfer and solidification model was developed. The result from the model combined with nondimensional number to study the effect of thermal driven buoyancy flow on fluid flow and temperature distribution. For mushy region Kozeny-Carman is applicable. Observations show the relative strength between thermal driven buoyancy flow and forced flow and steel flow through mushy region. It is observed that buoyancy force in mould and sub mould region depend on the characteristic flow velocity, temperature difference and porosity of mushy zone. The most effect zone of thermal driven buoyancy flow is mushy zone and centre of mould where inertial flow is inferior. The convection flow creates by thermal buoyancy cause appearance of local turbulence.

  11. Diffusion Driven Combustion Waves in Porous Media

    NASA Technical Reports Server (NTRS)

    Aldushin, A. P.; Matkowsky, B. J.

    2000-01-01

    Filtration of gas containing oxidizer, to the reaction zone in a porous medium, due, e.g., to a buoyancy force or to an external pressure gradient, leads to the propagation of Filtration combustion (FC) waves. The exothermic reaction occurs between the fuel component of the solid matrix and the oxidizer. In this paper, we analyze the ability of a reaction wave to propagate in a porous medium without the aid of filtration. We find that one possible mechanism of propagation is that the wave is driven by diffusion of oxidizer from the environment. The solution of the combustion problem describing diffusion driven waves is similar to the solution of the Stefan problem describing the propagation of phase transition waves, in that the temperature on the interface between the burned and unburned regions is constant, the combustion wave is described by a similarity solution which is a function of the similarity variable x/square root of(t) and the wave velocity decays as 1/square root of(t). The difference between the two problems is that in the combustion problem the temperature is not prescribed, but rather, is determined as part of the solution. We will show that the length of samples in which such self-sustained combustion waves can occur, must exceed a critical value which strongly depends on the combustion temperature T(sub b). Smaller values of T(sub b) require longer sample lengths for diffusion driven combustion waves to exist. Because of their relatively small velocity, diffusion driven waves are considered to be relevant for the case of low heat losses, which occur for large diameter samples or in microgravity conditions, Another possible mechanism of porous medium combustion describes waves which propagate by consuming the oxidizer initially stored in the pores of the sample. This occurs for abnormally high pressure and gas density. In this case, uniformly propagating planar waves, which are kinetically controlled, can propagate, Diffusion of oxidizer decreases

  12. Forcing Mechanisms of Thunderstorm Downdrafts.

    NASA Astrophysics Data System (ADS)

    Wurman, Joshua Michael Aaron Ryder

    The role of various forcing mechanisms of thunderstorm downdrafts has been explored. Four case studies of downdrafts are presented. Radar data from five closely spaced radars are used to conduct direct triple Doppler calculations of the full three-dimensional wind field in three of the cases; data from three closely spaced radars are used in the remaining case. Differential reflectivity measurements are used to diagnose the presence of ice in the downdraft regions. Data from a dense array of surface mesonet stations are used to diagnose the thermodynamic characteristics and origin levels of outflow air from the downdrafts. A one-dimensional parcel-following model, which incorporates evaporation, melting and entrainment, and which is strongly constrained by detailed radar and surface observations, is used to diagnose the relative importance of various forcing mechanisms. The studied downdrafts, while originating at different altitudes, ranging from 2 km to 4.5 km, are found to be forced by the same basic mechanisms: cooling due to the evaporation of precipitation inside the cell and precipitation loading. The deeper downdrafts are nearly neutrally thermally buoyant above 2 km and are driven downwards by precipitation loading. The evaporation of precipitation is crucial to the maintenance of neutral buoyancy. The intensity of the modelled downdrafts is insensitive to whether the entrainment source is cloudy or outside environmental air. This is because the positive bouyancy of entrained cloudy air is offset by the supply of rapidly evaporating cloud droplets into the downdraft. Cloud droplet evaporation is found to contribute about 40% of the total evaporation if entrainment occurs from primarily inside the cloud. In the two downdrafts with deep origins, near 4.5 km AGL, engulfment of outside air into the upper levels of the downdrafts is observed. Ice phase precipitation is found to be unimportant in the forcing of these downdrafts. A very narrow, less than 1 km

  13. Varying the effective buoyancy of cells using magnetic force

    NASA Astrophysics Data System (ADS)

    Guevorkian, Karine; Valles, James M.

    2004-06-01

    We introduce a magnetic force buoyancy variation (MFBV) technique that employs intense inhomogeneous magnetic fields to vary the effective buoyancy of cells and other diamagnetic systems in solution. Nonswimming Paramecia have been suspended, forced to sediment and driven to rise in solution using MFBV. Details of their response to MFBV have been used to determine the magnetic susceptibility of a single Paramecium. The use of MFBV as a means by which to suspend cell cultures indefinitely is also described.

  14. Optimized free energies from bidirectional single-molecule force spectroscopy.

    PubMed

    Minh, David D L; Adib, Artur B

    2008-05-09

    An optimized method for estimating path-ensemble averages using data from processes driven in opposite directions is presented. Based on this estimator, bidirectional expressions for reconstructing free energies and potentials of mean force from single-molecule force spectroscopy-valid for biasing potentials of arbitrary stiffness-are developed. Numerical simulations on a model potential indicate that these methods perform better than unidirectional strategies.

  15. Screened Casimir forces

    NASA Astrophysics Data System (ADS)

    Tomaš, M. S.

    2005-06-01

    We demonstrate that a very recently obtained formula for the force on a slab in a material planar cavity based on the calculation of the vacuum Lorentz force [C. Raabe and D.-G. Welsch, Phys. Rev. A 71, 013814 (2005)] describes a (medium) modified Casimir force and, in addition to it, a medium-assisted force. The latter force also describes the force on the cavity medium. For dilute media, it implies the atom-mirror interaction of the Casimir-Polder type at large and of the Coulomb type at small atom-mirror distances of which the sign is insensitive to the polarizability type (electric or magnetic) of the atom.

  16. Tendon-driven manipulators: Analysis, synthesis, and control

    NASA Astrophysics Data System (ADS)

    Lee, Jyh-Jone

    structures having pseudo-triangular structure matrix is enumerated. Thirdly, a method for assessing the kinematic/static performance of tendon-driven manipulators is developed. Transmission ellipsoids of the manipulators are investigated. A criterion for differentiating force transmission characteristics and a procedure for identifying least maximum-tendon-force are established.

  17. Observation and simulation of an optically driven micromotor

    NASA Astrophysics Data System (ADS)

    Metzger, N. K.; Mazilu, M.; Kelemen, L.; Ormos, P.; Dholakia, K.

    2011-04-01

    In the realm of low Reynolds number flow there is a need to find methods to pump, move and mix minute amounts of analyte. Interestingly, micro-devices performing such actuation can be initiated by means of the light-matter interaction. Light induced forces and torques are exerted on such micro-objects, which are then driven by the optical gradient or scattering force. Here, different driving geometries can be realized to harness the light induced force. For example, the scattering force enables micro-gears to be operated in a tangential setup where the micromotor rotors are in line with an optical waveguide. The operational geometry we investigate has the advantage that it reduces the complexity of the driving of such a device in a microfluidic environment by delivering the actuating light by means of a waveguide or fiber optic. In this paper we explore the case of a micromotor being driven by a fiber optically delivered light beam. We experimentally investigate how the driving light interacts with and diffracts from the motor, utilizing two-photon imaging. The micromotor rotation rate dependence on the light field parameters is explored. Additionally, a theoretical model based on the paraxial approximation is used to simulate the torque and predict the rotation rate of such a device and compare it with experiment. The results presented show that our model can be used to optimize the micromotor performance and some example motor designs are evaluated.

  18. Apparatus for controlling an engine in a hydraulically driven vehicle

    SciTech Connect

    Kitada, T.

    1987-01-27

    An apparatus is described for controlling the internal combustion engine of a hydraulically driven vehicle comprising: a transmission mechanism for transmitting the operation of a fuel control lever to a governor control lever and having a loose spring mechanism with a loose spring therein: a hydraulic decelerator cylinder connected to the transmission mechanism and having a spring and piston therein. The deceleration cylinder spring has a slightly larger spring force than the loose spring in the loose spring mechanism and applies a force absorbing action, in the absence of hydraulic force acting on the piston, to set the governor control lever in its deceleration position when the fuel control lever is moved to its full engine speed position and for moving the governor control lever to its full engine speed position when hydraulic force is applied to the piston; an electromagnetic valve for applying fluid pressure from a control pump driven by the engine to the piston in the decelerator cylinder and releasing the fluid pressure; and an electric circuit including switches operationally associated with levers for operating a hydraulic valve.

  19. Electrostatically driven complexation

    NASA Astrophysics Data System (ADS)

    Netz, Roland

    2004-03-01

    Many biological and synthetic systems are electrically charged, which makes them soluble in aqueous environments. Often, electrostatic interactions are dominant, and lead to complexation (i.e. tight aggregation) of oppositely charged objects. As an example, charged polymers such as DNA exhibit a number of different complexation modes when mixed with other charged objects such as spheres or cylinders. A simple model for the complexation of semiflexible polyelectrolytes with oppositely charged spheres is considered, which can exhibit tightly wrapped polymer structures. Using the appropriate parameters for DNA-histone complexes, one finds complete wrapping for intermediate salt concentrations only, in agreement with experiments. The forces needed to pull the DNA off from histones show a plateau at 10-40 pN (depending on salt concentration). We also consider the interaction between such complexes, which have been measured using osmometry, and found to be attractive for intermediate salt concentration (suggesting precipitation) and repulsive elsewhere. Chain fluctuations can be treated within a normal-mode analysis and distinguish associated-unwrapped from dissociated structures. Since some time it is known that also similarly charged objects attract each other for sufficiently large surface-charge densities and/or in the presence of multivalent ions, a phenomenon not explicable within standard (Poisson-Boltzmann) approaches. The so-called strong-coupling theory, valid in the limit of large surface charge densities and for multi-valent ions, yields attraction between similarly charged walls, cylinders, and spheres in quantitative agreement with Monte-Carlo simulations. Charged complexes can be destroyed by applying an electric field, which is an important factor in understanding their electrophoresis. By performing dynamic simulations, the relation between the electrophoretic mobility and the non-equilibrium perturbation of the complex structure is investigated. 1

  20. Spatiotemporal Patterns of Noise-Driven Confined Actin Waves in Living Cells

    NASA Astrophysics Data System (ADS)

    Bernitt, Erik; Döbereiner, Hans-Günther

    2017-01-01

    Cells utilize waves of polymerizing actin to reshape their morphologies, which is central to physiological and pathological processes alike. Here, we force dorsal actin waves to propagate on one-dimensional domains with periodic boundary conditions, which results in striking spatiotemporal patterns with a clear signature of noise-driven dynamics. We show that these patterns can be very closely reproduced with a noise-driven active medium at coherence resonance.

  1. The stiffness variation of a micro-ring driven by a traveling piecewise-electrode.

    PubMed

    Li, Yingjie; Yu, Tao; Hu, Yuh-Chung

    2014-09-16

    In the practice of electrostatically actuated micro devices; the electrostatic force is implemented by sequentially actuated piecewise-electrodes which result in a traveling distributed electrostatic force. However; such force was modeled as a traveling concentrated electrostatic force in literatures. This article; for the first time; presents an analytical study on the stiffness variation of microstructures driven by a traveling piecewise electrode. The analytical model is based on the theory of shallow shell and uniform electrical field. The traveling electrode not only applies electrostatic force on the circular-ring but also alters its dynamical characteristics via the negative electrostatic stiffness. It is known that; when a structure is subjected to a traveling constant force; its natural mode will be resonated as the traveling speed approaches certain critical speeds; and each natural mode refers to exactly one critical speed. However; for the case of a traveling electrostatic force; the number of critical speeds is more than that of the natural modes. This is due to the fact that the traveling electrostatic force makes the resonant frequencies of the forward and backward traveling waves of the circular-ring different. Furthermore; the resonance and stability can be independently controlled by the length of the traveling electrode; though the driving voltage and traveling speed of the electrostatic force alter the dynamics and stabilities of microstructures. This paper extends the fundamental insights into the electromechanical behavior of microstructures driven by electrostatic forces as well as the future development of MEMS/NEMS devices with electrostatic actuation and sensing.

  2. Nanonet Force Microscopy for Measuring Cell Forces.

    PubMed

    Sheets, Kevin; Wang, Ji; Zhao, Wei; Kapania, Rakesh; Nain, Amrinder S

    2016-07-12

    The influence of physical forces exerted by or felt by cells on cell shape, migration, and cytoskeleton arrangement is now widely acknowledged and hypothesized to occur due to modulation of cellular inside-out forces in response to changes in the external fibrous environment (outside-in). Our previous work using the non-electrospinning Spinneret-based Tunable Engineered Parameters' suspended fibers has revealed that cells are able to sense and respond to changes in fiber curvature and structural stiffness as evidenced by alterations to focal adhesion cluster lengths. Here, we present the development and application of a suspended nanonet platform for measuring C2C12 mouse myoblast forces attached to fibers of three diameters (250, 400, and 800 nm) representing a wide range of structural stiffness (3-50 nN/μm). The nanonet force microscopy platform measures cell adhesion forces in response to symmetric and asymmetric external perturbation in single and cyclic modes. We find that contractility-based, inside-out forces are evenly distributed at the edges of the cell, and that forces are dependent on fiber structural stiffness. Additionally, external perturbation in symmetric and asymmetric modes biases cell-fiber failure location without affecting the outside-in forces of cell-fiber adhesion. We then extend the platform to measure forces of (1) cell-cell junctions, (2) single cells undergoing cyclic perturbation in the presence of drugs, and (3) cancerous single-cells transitioning from a blebbing to a pseudopodial morphology. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  3. Aerodynamic Lifting Force.

    ERIC Educational Resources Information Center

    Weltner, Klaus

    1990-01-01

    Describes some experiments showing both qualitatively and quantitatively that aerodynamic lift is a reaction force. Demonstrates reaction forces caused by the acceleration of an airstream and the deflection of an airstream. Provides pictures of demonstration apparatus and mathematical expressions. (YP)

  4. Aerodynamic Lifting Force.

    ERIC Educational Resources Information Center

    Weltner, Klaus

    1990-01-01

    Describes some experiments showing both qualitatively and quantitatively that aerodynamic lift is a reaction force. Demonstrates reaction forces caused by the acceleration of an airstream and the deflection of an airstream. Provides pictures of demonstration apparatus and mathematical expressions. (YP)

  5. The Strong Nuclear Force

    SciTech Connect

    Lincoln, Don

    2016-05-24

    Scientists are aware of four fundamental forces- gravity, electromagnetism, and the strong and weak nuclear forces. Most people have at least some familiarity with gravity and electromagnetism, but not the other two. How is it that scientists are so certain that two additional forces exist? In this video, Fermilab’s Dr. Don Lincoln explains why scientists are so certain that the strong force exists.

  6. Fluid force transducer

    DOEpatents

    Jendrzejczyk, Joseph A.

    1982-01-01

    An electrical fluid force transducer for measuring the magnitude and direction of fluid forces caused by lateral fluid flow, includes a movable sleeve which is deflectable in response to the movement of fluid, and a rod fixed to the sleeve to translate forces applied to the sleeve to strain gauges attached to the rod, the strain gauges being connected in a bridge circuit arrangement enabling generation of a signal output indicative of the magnitude and direction of the force applied to the sleeve.

  7. The Strong Nuclear Force

    ScienceCinema

    Lincoln, Don

    2016-07-12

    Scientists are aware of four fundamental forces- gravity, electromagnetism, and the strong and weak nuclear forces. Most people have at least some familiarity with gravity and electromagnetism, but not the other two. How is it that scientists are so certain that two additional forces exist? In this video, Fermilab’s Dr. Don Lincoln explains why scientists are so certain that the strong force exists.

  8. Forces in General Relativity

    ERIC Educational Resources Information Center

    Ridgely, Charles T.

    2010-01-01

    Many textbooks dealing with general relativity do not demonstrate the derivation of forces in enough detail. The analyses presented herein demonstrate straightforward methods for computing forces by way of general relativity. Covariant divergence of the stress-energy-momentum tensor is used to derive a general expression of the force experienced…

  9. Crossflow force transducer. [LMFBR

    SciTech Connect

    Mulcahy, T M

    1982-05-01

    A force transducer for measuring lift and drag coefficients for a circular cylinder in turbulent water flow is presented. In addition to describing the actual design and construction of the strain-gauged force- ring based transducer, requirements for obtained valid fluid force test data are discussed, and pertinent flow test experience is related.

  10. Debunking Coriolis Force Myths

    ERIC Educational Resources Information Center

    Shakur, Asif

    2014-01-01

    Much has been written and debated about the Coriolis force. Unfortunately, this has done little to demystify the paradoxes surrounding this fictitious force invoked by an observer in a rotating frame of reference. It is the purpose of this article to make another valiant attempt to slay the dragon of the Coriolis force! This will be done without…

  11. Debunking Coriolis Force Myths

    ERIC Educational Resources Information Center

    Shakur, Asif

    2014-01-01

    Much has been written and debated about the Coriolis force. Unfortunately, this has done little to demystify the paradoxes surrounding this fictitious force invoked by an observer in a rotating frame of reference. It is the purpose of this article to make another valiant attempt to slay the dragon of the Coriolis force! This will be done without…

  12. Forces in General Relativity

    ERIC Educational Resources Information Center

    Ridgely, Charles T.

    2010-01-01

    Many textbooks dealing with general relativity do not demonstrate the derivation of forces in enough detail. The analyses presented herein demonstrate straightforward methods for computing forces by way of general relativity. Covariant divergence of the stress-energy-momentum tensor is used to derive a general expression of the force experienced…

  13. Acoustic radiation force control: Pulsating spherical carriers.

    PubMed

    Rajabi, Majid; Mojahed, Alireza

    2017-06-13

    power supply for distinct cases of zero, negative and positive radiation force states along with the frequency dependent asymmetry index. In addition, considering the effect of phase difference between the incident wave field and the pulsating object, and its possible variation with respect to spatial position of object, some practical points about the spatial average of generated radiation force, the optimal state of operation, the stability of zero radiation force states and the possibly of precise motion control are discussed. This work would extend the novel concept of smart carriers to and may be helpful for robust single-beam acoustic handling techniques. Furthermore, the shown capability of precise motion control may be considered as a new way toward smart acoustic driven micro-mechanisms and micro-machines. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Data-driven batch schuduling

    SciTech Connect

    Bent, John; Denehy, Tim; Arpaci - Dusseau, Remzi; Livny, Miron; Arpaci - Dusseau, Andrea C

    2009-01-01

    In this paper, we develop data-driven strategies for batch computing schedulers. Current CPU-centric batch schedulers ignore the data needs within workloads and execute them by linking them transparently and directly to their needed data. When scheduled on remote computational resources, this elegant solution of direct data access can incur an order of magnitude performance penalty for data-intensive workloads. Adding data-awareness to batch schedulers allows a careful coordination of data and CPU allocation thereby reducing the cost of remote execution. We offer here new techniques by which batch schedulers can become data-driven. Such systems can use our analytical predictive models to select one of the four data-driven scheduling policies that we have created. Through simulation, we demonstrate the accuracy of our predictive models and show how they can reduce time to completion for some workloads by as much as 80%.

  15. Equilibrium capillary forces with atomic force microscopy.

    PubMed

    Sprakel, J; Besseling, N A M; Leermakers, F A M; Cohen Stuart, M A

    2007-09-07

    We present measurements of equilibrium forces resulting from capillary condensation. The results give access to the ultralow interfacial tensions between the capillary bridge and the coexisting bulk phase. We demonstrate this with solutions of associative polymers and an aqueous mixture of gelatin and dextran, with interfacial tensions around 10 microN/m. The equilibrium nature of the capillary forces is attributed to the combination of a low interfacial tension and a microscopic confinement geometry, based on nucleation and growth arguments.

  16. Forced versus internal variability in Northern Hemisphere climate

    NASA Astrophysics Data System (ADS)

    Balcerak, Ernie

    2014-11-01

    Some commonly used procedures do not correctly isolate the internal variability in the Northern Hemisphere climate system, a recent study argues. Mann et al. sought to separate the variability internal to the Northern Hemisphere temperature system from the external, or forced, variability driven by natural factors such as volcanic eruptions and anthropogenic factors such as greenhouse gas emissions.

  17. Surface tension driven convection experiment

    NASA Technical Reports Server (NTRS)

    Ostrach, Simon; Kamotani, Yasuhiro

    1988-01-01

    Thermocapillary flow is driven by a thermally induced surface tension variation along a liquid free surface. In the Earth-gravity environment such flows are usually overshadowed by buoyancy driven flows, but at reduced gravity conditions their influence could be significant. A comprehensive theoretical and experimental research program was stated 12 years ago and is still being continued. Past work done at Case Western Reserve University as well as work done by others is reviewed. The justification for low-gravity experiments is presented.

  18. Test Driven Development: Performing Art

    NASA Astrophysics Data System (ADS)

    Bache, Emily

    The art of Test Driven Development (TDD) is a skill that needs to be learnt, and which needs time and practice to master. In this workshop a select number of conference participants with considerable skill and experience are invited to perform code katas [1]. The aim is for them to demonstrate excellence and the use of Test Driven Development, and result in some high quality code. This would be for the benefit of the many programmers attending the conference, who could come along and witness high quality code being written using TDD, and get a chance to ask questions and provide feedback.

  19. Magnetically driven quantum heat engine

    NASA Astrophysics Data System (ADS)

    Muñoz, Enrique; Peña, Francisco J.

    2014-05-01

    We studied the efficiency of two different schemes for a magnetically driven quantum heat engine, by considering as the "working substance" a single nonrelativistic particle trapped in a cylindrical potential well, in the presence of an external magnetic field. The first scheme is a cycle, composed of two adiabatic and two isoenergetic reversible trajectories in configuration space. The trajectories are driven by a quasistatic modulation of the external magnetic-field intensity. The second scheme is a variant of the former, where the isoenergetic trajectories are replaced by isothermal ones, along which the system is in contact with macroscopic thermostats. This second scheme constitutes a quantum analog of the classical Carnot cycle.

  20. Programming of sensor driven pacemakers.

    PubMed

    Strobel, J S; Kay, G N

    2000-02-01

    The chronotropic response is the most important means by which cardiac output is increased and oxygen delivery is maintained in response to increased oxygen consumption during exercise or stress. When the chronotropic response is suboptimal or absent, exercise intolerance results. This condition, called chronotropic incompetence can be treated effectively with a sensor-driven rate-responsive pacemaker. The effectiveness of this therapy assumes that the pacemaker is programmed appropriately. This article focuses on the programming of sensor-driven pacemakers and provides additional suggestions for follow-up testing to ensure maximal benefit from these devices.

  1. Magnetically driven quantum heat engine.

    PubMed

    Muñoz, Enrique; Peña, Francisco J

    2014-05-01

    We studied the efficiency of two different schemes for a magnetically driven quantum heat engine, by considering as the "working substance" a single nonrelativistic particle trapped in a cylindrical potential well, in the presence of an external magnetic field. The first scheme is a cycle, composed of two adiabatic and two isoenergetic reversible trajectories in configuration space. The trajectories are driven by a quasistatic modulation of the external magnetic-field intensity. The second scheme is a variant of the former, where the isoenergetic trajectories are replaced by isothermal ones, along which the system is in contact with macroscopic thermostats. This second scheme constitutes a quantum analog of the classical Carnot cycle.

  2. Driven optical matter: Dynamics of electrodynamically coupled nanoparticles in an optical ring vortex.

    PubMed

    Figliozzi, Patrick; Sule, Nishant; Yan, Zijie; Bao, Ying; Burov, Stanislav; Gray, Stephen K; Rice, Stuart A; Vaikuntanathan, Suriyanarayanan; Scherer, Norbert F

    2017-02-01

    To date investigations of the dynamics of driven colloidal systems have focused on hydrodynamic interactions and often employ optical (laser) tweezers for manipulation. However, the optical fields that provide confinement and drive also result in electrodynamic interactions that are generally neglected. We address this issue with a detailed study of interparticle dynamics in an optical ring vortex trap using 150-nm diameter Ag nanoparticles. We term the resultant electrodynamically interacting nanoparticles a driven optical matter system. We also show that a superior trap is created by using a Au nanoplate mirror in a retroreflection geometry, which increases the electric field intensity, the optical drive force, and spatial confinement. Using nanoparticles versus micron sized colloids significantly reduces the surface hydrodynamic friction allowing us to access small values of optical topological charge and drive force. We quantify a further 50% reduction of hydrodynamic friction when the nanoparticles are driven over the Au nanoplate mirrors versus over a mildly electrostatically repulsive glass surface. Further, we demonstrate through experiments and electrodynamics-Langevin dynamics simulations that the optical drive force and the interparticle interactions are not constant around the ring for linearly polarized light, resulting in a strong position-dependent variation in the nanoparticle velocity. The nonuniformity in the optical drive force is also manifest as an increase in fluctuations of interparticle separation, or effective temperature, as the optical driving force is increased. Finally, we resolve an open issue in the literature on periodic modulation of interparticle separation with comparative measurements of driven 300-nm-diameter polystyrene beads that also clearly reveal the significance of electrodynamic forces and interactions in optically driven colloidal systems. Therefore, the modulations in the optical forces and electrodynamic interactions

  3. Driven optical matter: Dynamics of electrodynamically coupled nanoparticles in an optical ring vortex

    NASA Astrophysics Data System (ADS)

    Figliozzi, Patrick; Sule, Nishant; Yan, Zijie; Bao, Ying; Burov, Stanislav; Gray, Stephen K.; Rice, Stuart A.; Vaikuntanathan, Suriyanarayanan; Scherer, Norbert F.

    2017-02-01

    To date investigations of the dynamics of driven colloidal systems have focused on hydrodynamic interactions and often employ optical (laser) tweezers for manipulation. However, the optical fields that provide confinement and drive also result in electrodynamic interactions that are generally neglected. We address this issue with a detailed study of interparticle dynamics in an optical ring vortex trap using 150-nm diameter Ag nanoparticles. We term the resultant electrodynamically interacting nanoparticles a driven optical matter system. We also show that a superior trap is created by using a Au nanoplate mirror in a retroreflection geometry, which increases the electric field intensity, the optical drive force, and spatial confinement. Using nanoparticles versus micron sized colloids significantly reduces the surface hydrodynamic friction allowing us to access small values of optical topological charge and drive force. We quantify a further 50% reduction of hydrodynamic friction when the nanoparticles are driven over the Au nanoplate mirrors versus over a mildly electrostatically repulsive glass surface. Further, we demonstrate through experiments and electrodynamics-Langevin dynamics simulations that the optical drive force and the interparticle interactions are not constant around the ring for linearly polarized light, resulting in a strong position-dependent variation in the nanoparticle velocity. The nonuniformity in the optical drive force is also manifest as an increase in fluctuations of interparticle separation, or effective temperature, as the optical driving force is increased. Finally, we resolve an open issue in the literature on periodic modulation of interparticle separation with comparative measurements of driven 300-nm-diameter polystyrene beads that also clearly reveal the significance of electrodynamic forces and interactions in optically driven colloidal systems. Therefore, the modulations in the optical forces and electrodynamic interactions

  4. Localized structures and spatiotemporal chaos: comparison between the driven damped sine-Gordon and the Lugiato-Lefever model

    NASA Astrophysics Data System (ADS)

    Ferré, Michel A.; Clerc, Marcel G.; Coulibally, Saliya; Rojas, René G.; Tlidi, Mustapha

    2017-06-01

    Driven damped coupled oscillators exhibit complex spatiotemporal dynamics. An archetype model is the driven damped sine-Gordon equation, which can describe several physical systems such as coupled pendula, extended Josephson junction, optical systems and driven magnetic wires. Close to resonance an enveloped model in the form Lugiato-Lefever equation can be derived from the driven damped sine-Gordon equation. We compare the dynamics obtained from both models. Unexpectedly, qualitatively similar dynamical behaviors are obtained for both models including homogeneous steady states, localized structures, and pattern waves. For large forcing, both systems share similar spatiotemporal chaos.

  5. Approaching a realistic force balance in geodynamo simulations

    PubMed Central

    Yadav, Rakesh K.; Gastine, Thomas; Christensen, Ulrich R.; Wolk, Scott J.; Poppenhaeger, Katja

    2016-01-01

    Earth sustains its magnetic field by a dynamo process driven by convection in the liquid outer core. Geodynamo simulations have been successful in reproducing many observed properties of the geomagnetic field. However, although theoretical considerations suggest that flow in the core is governed by a balance between Lorentz force, rotational force, and buoyancy (called MAC balance for Magnetic, Archimedean, Coriolis) with only minute roles for viscous and inertial forces, dynamo simulations must use viscosity values that are many orders of magnitude larger than in the core, due to computational constraints. In typical geodynamo models, viscous and inertial forces are not much smaller than the Coriolis force, and the Lorentz force plays a subdominant role; this has led to conclusions that these simulations are viscously controlled and do not represent the physics of the geodynamo. Here we show, by a direct analysis of the relevant forces, that a MAC balance can be achieved when the viscosity is reduced to values close to the current practical limit. Lorentz force, buoyancy, and the uncompensated (by pressure) part of the Coriolis force are of very similar strength, whereas viscous and inertial forces are smaller by a factor of at least 20 in the bulk of the fluid volume. Compared with nonmagnetic convection at otherwise identical parameters, the dynamo flow is of larger scale and is less invariant parallel to the rotation axis (less geostrophic), and convection transports twice as much heat, all of which is expected when the Lorentz force strongly influences the convection properties. PMID:27790991

  6. Approaching a realistic force balance in geodynamo simulations.

    PubMed

    Yadav, Rakesh K; Gastine, Thomas; Christensen, Ulrich R; Wolk, Scott J; Poppenhaeger, Katja

    2016-10-25

    Earth sustains its magnetic field by a dynamo process driven by convection in the liquid outer core. Geodynamo simulations have been successful in reproducing many observed properties of the geomagnetic field. However, although theoretical considerations suggest that flow in the core is governed by a balance between Lorentz force, rotational force, and buoyancy (called MAC balance for Magnetic, Archimedean, Coriolis) with only minute roles for viscous and inertial forces, dynamo simulations must use viscosity values that are many orders of magnitude larger than in the core, due to computational constraints. In typical geodynamo models, viscous and inertial forces are not much smaller than the Coriolis force, and the Lorentz force plays a subdominant role; this has led to conclusions that these simulations are viscously controlled and do not represent the physics of the geodynamo. Here we show, by a direct analysis of the relevant forces, that a MAC balance can be achieved when the viscosity is reduced to values close to the current practical limit. Lorentz force, buoyancy, and the uncompensated (by pressure) part of the Coriolis force are of very similar strength, whereas viscous and inertial forces are smaller by a factor of at least 20 in the bulk of the fluid volume. Compared with nonmagnetic convection at otherwise identical parameters, the dynamo flow is of larger scale and is less invariant parallel to the rotation axis (less geostrophic), and convection transports twice as much heat, all of which is expected when the Lorentz force strongly influences the convection properties.

  7. Approaching a realistic force balance in geodynamo simulations

    NASA Astrophysics Data System (ADS)

    Yadav, Rakesh K.; Gastine, Thomas; Christensen, Ulrich R.; Wolk, Scott J.; Poppenhaeger, Katja

    2016-10-01

    Earth sustains its magnetic field by a dynamo process driven by convection in the liquid outer core. Geodynamo simulations have been successful in reproducing many observed properties of the geomagnetic field. However, although theoretical considerations suggest that flow in the core is governed by a balance between Lorentz force, rotational force, and buoyancy (called MAC balance for Magnetic, Archimedean, Coriolis) with only minute roles for viscous and inertial forces, dynamo simulations must use viscosity values that are many orders of magnitude larger than in the core, due to computational constraints. In typical geodynamo models, viscous and inertial forces are not much smaller than the Coriolis force, and the Lorentz force plays a subdominant role; this has led to conclusions that these simulations are viscously controlled and do not represent the physics of the geodynamo. Here we show, by a direct analysis of the relevant forces, that a MAC balance can be achieved when the viscosity is reduced to values close to the current practical limit. Lorentz force, buoyancy, and the uncompensated (by pressure) part of the Coriolis force are of very similar strength, whereas viscous and inertial forces are smaller by a factor of at least 20 in the bulk of the fluid volume. Compared with nonmagnetic convection at otherwise identical parameters, the dynamo flow is of larger scale and is less invariant parallel to the rotation axis (less geostrophic), and convection transports twice as much heat, all of which is expected when the Lorentz force strongly influences the convection properties.

  8. Efficacy of climate forcings

    NASA Astrophysics Data System (ADS)

    Hansen, J.; Sato, M.; Ruedy, R.; Nazarenko, L.; Lacis, A.; Schmidt, G. A.; Russell, G.; Aleinov, I.; Bauer, M.; Bauer, S.; Bell, N.; Cairns, B.; Canuto, V.; Chandler, M.; Cheng, Y.; Del Genio, A.; Faluvegi, G.; Fleming, E.; Friend, A.; Hall, T.; Jackman, C.; Kelley, M.; Kiang, N.; Koch, D.; Lean, J.; Lerner, J.; Lo, K.; Menon, S.; Miller, R.; Minnis, P.; Novakov, T.; Oinas, V.; Perlwitz, Ja.; Perlwitz, Ju.; Rind, D.; Romanou, A.; Shindell, D.; Stone, P.; Sun, S.; Tausnev, N.; Thresher, D.; Wielicki, B.; Wong, T.; Yao, M.; Zhang, S.

    2005-09-01

    We use a global climate model to compare the effectiveness of many climate forcing agents for producing climate change. We find a substantial range in the "efficacy" of different forcings, where the efficacy is the global temperature response per unit forcing relative to the response to CO2 forcing. Anthropogenic CH4 has efficacy ˜110%, which increases to ˜145% when its indirect effects on stratospheric H2O and tropospheric O3 are included, yielding an effective climate forcing of ˜0.8 W/m2 for the period 1750-2000 and making CH4 the largest anthropogenic climate forcing other than CO2. Black carbon (BC) aerosols from biomass burning have a calculated efficacy ˜58%, while fossil fuel BC has an efficacy ˜78%. Accounting for forcing efficacies and for indirect effects via snow albedo and cloud changes, we find that fossil fuel soot, defined as BC + OC (organic carbon), has a net positive forcing while biomass burning BC + OC has a negative forcing. We show that replacement of the traditional instantaneous and adjusted forcings, Fi and Fa, with an easily computed alternative, Fs, yields a better predictor of climate change, i.e., its efficacies are closer to unity. Fs is inferred from flux and temperature changes in a fixed-ocean model run. There is remarkable congruence in the spatial distribution of climate change, normalized to the same forcing Fs, for most climate forcing agents, suggesting that the global forcing has more relevance to regional climate change than may have been anticipated. Increasing greenhouse gases intensify the Hadley circulation in our model, increasing rainfall in the Intertropical Convergence Zone (ITCZ), Eastern United States, and East Asia, while intensifying dry conditions in the subtropics including the Southwest United States, the Mediterranean region, the Middle East, and an expanding Sahel. These features survive in model simulations that use all estimated forcings for the period 1880-2000. Responses to localized forcings, such

  9. Buoyancy-Driven Polymerase Chain Reaction (PCR) Devices

    SciTech Connect

    Ness, K D; Wheeler, E K; Benett, W; Stratton, P; Christian, A; Chen, A; Ortega, J; Weisgraber, T H; Goodson, K E

    2004-09-28

    Polymerase chain reaction (PCR) facilitates DNA detection by significantly increasing the concentration of specific DNA segments. A new class of PCR instruments uses a buoyancy-driven re-circulating flow to thermally cycle the DNA sample and benefits from reduced cycle times, low sample volumes, a miniaturized format, and low power consumption. This paper analyzes a specific buoyancy PCR device in a micro-channel ''race-track'' geometry to determine key parameters about PCR cycle times and other figures of merit as functions of device dimensions. The 1-D model balances the buoyancy driving force with frictional losses. A hydrostatic pressure imbalance concept is used between the left and right sides of the fluid loop to calculate the buoyancy driving force. Velocity and temperature distributions within the channels are determined from two-dimensional analysis of the channel section, with developing region effects included empirically through scaled values of the local Nusselt number. Good agreement between four independent verification steps validate the 1-D simulation approach: (1) analytical expressions for the thermal entrance length are compared against, (2) comparison with a full 3-D finite element simulation, (3) comparison with an experimental flow field characterization, and (4) calculation of the minimum PCR runtime required to get a positive PCR signal from the buoyancy-driven PCR device. The 1-D approach closely models an actual buoyancy-driven PCR device and can further be used as a rapid design tool to simulate buoyancy PCR flows and perform detailed design optimizations studies.

  10. Dynamics of antiferromagnetic skyrmion driven by the spin Hall effect

    NASA Astrophysics Data System (ADS)

    Jin, Chendong; Song, Chengkun; Wang, Jianbo; Liu, Qingfang

    2016-10-01

    Magnetic skyrmion moved by the spin-Hall effect is promising for the application of the generation racetrack memories. However, the Magnus force causes a deflected motion of skyrmion, which limits its application. Here, we create an antiferromagnetic skyrmion by injecting a spin-polarized pulse in the nanostripe and investigate the spin Hall effect-induced motion of antiferromagnetic skyrmion by micromagnetic simulations. In contrast to ferromagnetic skyrmion, we find that the antiferromagnetic skyrmion has three evident advantages: (i) the minimum driving current density of antiferromagnetic skyrmion is about two orders smaller than the ferromagnetic skyrmion; (ii) the velocity of the antiferromagnetic skyrmion is about 57 times larger than the ferromagnetic skyrmion driven by the same value of current density; (iii) antiferromagnetic skyrmion can be driven by the spin Hall effect without the influence of Magnus force. In addition, antiferromagnetic skyrmion can move around the pinning sites due to its property of topological protection. Our results present the understanding of antiferromagnetic skyrmion motion driven by the spin Hall effect and may also contribute to the development of antiferromagnetic skyrmion-based racetrack memories.

  11. Flow Field Measurement of Mixing Driven by Buoyancy

    NASA Technical Reports Server (NTRS)

    Batur, C.; Zhong, H.

    2003-01-01

    Mixing driven by buoyancy-induced flows inside a cavity consists of stretching and folding of an interface. Measurement of the flow field using particle imaging velocimetry shows that during stretching the flow field has a single elliptic point, thus dominated by a single vortex. However, global bifurcation that results in folding introduces a hyperbolic point whereby the flow field degenerates to multiple vortex interactions. The short-lived coherent structure observed during mixing which results in the Rayleigh- Taylor morphology is attributed to vortex interactions. The mixing characteristics of non-homogeneous fluids driven by buoyancy are important towards understanding transport phenomenon in a microgravity environment. Mixing consists of stretching and folding of an interface due to a flow field whose intensity depends on the body force. For miscible liquids, the characteristic of the flow field determines whether mass transport is governed by diffusion or bulk stirring which induces mixing. For technologically important processes, transport of mass is governed by the coupling of the body force to scalar gradients such as concentration and or temperature' 2 3 . In order to lend insight into these classes of problems we consider a model experimental system to study mixing driven by buoyancy-induced flows. The characteristics of mixing is addressed from detail measurements of the flow field using particle imaging velocimetry (PIV), and its corresponding interface dynamics using image processing techniques.

  12. Entropic force between biomembranes

    NASA Astrophysics Data System (ADS)

    Li, Long; Song, Fan

    2016-10-01

    Undulation force, an entropic force, stems from thermally excited fluctuations, and plays a key role in the essential interactions between neighboring surfaces of objects. Although the characteristics of the undulation force have been widely studied theoretically and experimentally, the distance dependence of the force, which constitutes its most fundamental characteristic, remains poorly understood. In this paper, first, we obtain a novel expression for the undulation force by employing elasticity and statistical mechanics and prove it to be in good agreement with existing experimental results. Second, we clearly demonstrate that the two representative forms of the undulation force proposed by Helfrich and Freund were respectively the upper and lower bounds of the present expression when the separation between membranes is sufficiently small, which was intrinsically different from the existing results where Helfrich's and Freund's forms of the undulation force were only suitable for the intermediate and small separations. The investigations show that only in a sufficiently small separation does Helfrich's result stand for the undulation force with a large wave number and Freund's result express the force with a small wave number. Finally, a critical acting distance of the undulation force, beyond which the entropic force will rapidly decay approaching zero, is presented.

  13. Force-Measuring Clamps

    NASA Technical Reports Server (NTRS)

    Nunnelee, Mark

    2003-01-01

    Force-measuring clamps have been invented to facilitate and simplify the task of measuring the forces or pressures applied to clamped parts. There is a critical need to measure clamping forces or pressures in some applications for example, while bonding sensors to substrates or while clamping any sensitive or delicate parts. Many manufacturers of adhesives and sensors recommend clamping at specific pressures while bonding sensors or during adhesive bonding between parts in general. In the absence of a force-measuring clamp, measurement of clamping force can be cumbersome at best because of the need for additional load sensors and load-indicating equipment. One prior method of measuring clamping force involved the use of load washers or miniature load cells in combination with external power sources and load-indicating equipment. Calibrated spring clamps have also been used. Load washers and miniature load cells constitute additional clamped parts in load paths and can add to the destabilizing effects of loading mechanisms. Spring clamps can lose calibration quickly through weakening of the springs and are limited to the maximum forces that the springs can apply. The basic principle of a force-measuring clamp can be implemented on a clamp of almost any size and can enable measurement of a force of almost any magnitude. No external equipment is needed because the component(s) for transducing the clamping force and the circuitry for supplying power, conditioning the output of the transducers, and displaying the measurement value are all housed on the clamp. In other words, a force-measuring clamp is a complete force-application and force-measurement system all in one package. The advantage of unitary packaging of such a system is that it becomes possible to apply the desired clamping force or pressure with precision and ease.

  14. Topographic-driven instabilities in terrestrial bodies

    NASA Astrophysics Data System (ADS)

    Vantieghem, S.; Cebron, D.; Herreman, W.; Lacaze, L.

    2013-12-01

    Models of internal planetary fluid layers (core flows, subsurface oceans) commonly assume that these fluid envelopes have a spherical shape. This approximation however entails a serious restriction from the fluid dynamics point of view. Indeed, in the presence of mechanical forcings (precession, libration, nutation or tides) due to gravitational interaction with orbiting partners, boundary topography (e.g. of the core-mantle boundary) may excite flow instabilities and space-filling turbulence. These phenomena may affect heat transport and dissipation at the main order. Here, we focus on instabilities driven by longitudinal libration. Using a suite of theoretical tools and numerical simulations, we are able to discern a parameter range for which instability may be excited. We thereby consider deformations of different azimuthal order. This study gives the first numerical evidence of the tripolar instability. Furthermore, we explore the non-linear regime and investigate the amplitude as well as the dissipation of the saturated instability. Indeed, these two quantities control the torques on the solid layers and the thermal transport. Furthermore, based on this results, we address the issue of magnetic field generation associated with these flows (by induction or by dynamo process). This instability mechanism applies to both synchronized as non-synchronized bodies. As such, our results show that a tripolar instability might be present in various terrestrial bodies (Early Moon, Gallilean moons, asteroids, etc.), where it could participate in dynamo action. Simulation of a libration-driven tripolar instability in a deformed spherical fluid layer: snapshot of the velocity magnitude, where a complex 3D flow pattern is established.

  15. Force Limited Vibration Testing

    NASA Technical Reports Server (NTRS)

    Scharton, Terry; Chang, Kurng Y.

    2005-01-01

    This slide presentation reviews the concept and applications of Force Limited Vibration Testing. The goal of vibration testing of aerospace hardware is to identify problems that would result in flight failures. The commonly used aerospace vibration tests uses artificially high shaker forces and responses at the resonance frequencies of the test item. It has become common to limit the acceleration responses in the test to those predicted for the flight. This requires an analysis of the acceleration response, and requires placing accelerometers on the test item. With the advent of piezoelectric gages it has become possible to improve vibration testing. The basic equations have are reviewed. Force limits are analogous and complementary to the acceleration specifications used in conventional vibration testing. Just as the acceleration specification is the frequency spectrum envelope of the in-flight acceleration at the interface between the test item and flight mounting structure, the force limit is the envelope of the in-flight force at the interface . In force limited vibration tests, both the acceleration and force specifications are needed, and the force specification is generally based on and proportional to the acceleration specification. Therefore, force limiting does not compensate for errors in the development of the acceleration specification, e.g., too much conservatism or the lack thereof. These errors will carry over into the force specification. Since in-flight vibratory force data are scarce, force limits are often derived from coupled system analyses and impedance information obtained from measurements or finite element models (FEM). Fortunately, data on the interface forces between systems and components are now available from system acoustic and vibration tests of development test models and from a few flight experiments. Semi-empirical methods of predicting force limits are currently being developed on the basis of the limited flight and system test

  16. A combined Event-Driven/Time-Driven molecular dynamics algorithm for the simulation of shock waves in rarefied gases

    SciTech Connect

    Valentini, Paolo Schwartzentruber, Thomas E.

    2009-12-10

    A novel combined Event-Driven/Time-Driven (ED/TD) algorithm to speed-up the Molecular Dynamics simulation of rarefied gases using realistic spherically symmetric soft potentials is presented. Due to the low density regime, the proposed method correctly identifies the time that must elapse before the next interaction occurs, similarly to Event-Driven Molecular Dynamics. However, each interaction is treated using Time-Driven Molecular Dynamics, thereby integrating Newton's Second Law using the sufficiently small time step needed to correctly resolve the atomic motion. Although infrequent, many-body interactions are also accounted for with a small approximation. The combined ED/TD method is shown to correctly reproduce translational relaxation in argon, described using the Lennard-Jones potential. For densities between {rho}=10{sup -4}kg/m{sup 3} and {rho}=10{sup -1}kg/m{sup 3}, comparisons with kinetic theory, Direct Simulation Monte Carlo, and pure Time-Driven Molecular Dynamics demonstrate that the ED/TD algorithm correctly reproduces the proper collision rates and the evolution toward thermal equilibrium. Finally, the combined ED/TD algorithm is applied to the simulation of a Mach 9 shock wave in rarefied argon. Density and temperature profiles as well as molecular velocity distributions accurately match DSMC results, and the shock thickness is within the experimental uncertainty. For the problems considered, the ED/TD algorithm ranged from several hundred to several thousand times faster than conventional Time-Driven MD. Moreover, the force calculation to integrate the molecular trajectories is found to contribute a negligible amount to the overall ED/TD simulation time. Therefore, this method could pave the way for the application of much more refined and expensive interatomic potentials, either classical or first-principles, to Molecular Dynamics simulations of shock waves in rarefied gases, involving vibrational nonequilibrium and chemical reactivity.

  17. Data-Driven Proficiency Profiling

    ERIC Educational Resources Information Center

    Mostafavi, Behrooz; Liu, Zhongxiu; Barnes, Tiffany

    2015-01-01

    Deep Thought is a logic tutor where students practice constructing deductive logic proofs. Within Deep Thought is a data-driven mastery learning system (DDML), which calculates student proficiency based on rule scores weighted by expert-decided weights in order to assign problem sets of appropriate difficulty. In this study, we designed and tested…

  18. Driven shielding capacitive proximity sensor

    NASA Technical Reports Server (NTRS)

    Vranish, John M. (Inventor); McConnell, Robert L. (Inventor)

    2000-01-01

    A capacitive proximity sensing element, backed by a reflector driven at the same voltage as and in phase with the sensor, is used to reflect the field lines away from a grounded robot arm towards an intruding object, thus dramatically increasing the sensor's range and sensitivity.

  19. Work(er)-Driven Innovation

    ERIC Educational Resources Information Center

    Smith, Raymond

    2017-01-01

    Purpose: The focus on innovation as a foundational element of enhanced organisational performance has led to the promoting and valuing of greater levels of employee participation in innovation processes. An emergent concept of employee-driven innovation could be argued to have hindered understandings of the creative and transformative nature of…

  20. Patron-Driven Ebook Acquisition

    ERIC Educational Resources Information Center

    Breitbach, William; Lambert, Joy E.

    2011-01-01

    Selecting the most appropriate content for a community is a challenge librarians have faced since the dawn of libraries. Formal patron-driven acquisition (PDA) models have been around for at least a decade. These models attempt to collect materials based on known patron demand. Some libraries simply use a suggestion form, while others use…

  1. Wind-driven lateral variability in a partially mixed estuary

    NASA Astrophysics Data System (ADS)

    Reynolds-Fleming, Janelle V.; Luettich, Richard A.

    2004-07-01

    A circulation study of the upper Neuse River Estuary (NRE) was initiated to characterize the nature of motion in the lateral dimension and to understand the role that this motion may play in the occurrences of warm weather fish kills. Low frequency wind-driven variability in across channel bottom salinity was identified and attributed to variability in the synoptic wind band. Diurnal variability in bottom salinity appeared to be driven by diurnal wind variability, presumably associated with the local sea breeze. In both cases the lateral response of the system was driven predominantly by across channel wind forcing and not by Ekman setup associated with along channel winds. Additional variability at near diurnal periods may have been due to baroclinic seiches. A lateral, barotropic seiche with a period of ˜30 min was also identified. High salinity water was found to be a good marker for low DO water across the estuary. Wind-driven upwelling of low DO/high salinity water and downwelling of high DO/low salinity water was documented and provides a plausible causal mechanism for the death of pelagic fish in the upper NRE.

  2. Database Driven 6-DOF Trajectory Simulation for Debris Transport Analysis

    NASA Technical Reports Server (NTRS)

    West, Jeff

    2008-01-01

    Debris mitigation and risk assessment have been carried out by NASA and its contractors supporting Space Shuttle Return-To-Flight (RTF). As a part of this assessment, analysis of transport potential for debris that may be liberated from the vehicle or from pad facilities prior to tower clear (Lift-Off Debris) is being performed by MSFC. This class of debris includes plume driven and wind driven sources for which lift as well as drag are critical for the determination of the debris trajectory. As a result, NASA MSFC has a need for a debris transport or trajectory simulation that supports the computation of lift effect in addition to drag without the computational expense of fully coupled CFD with 6-DOF. A database driven 6-DOF simulation that uses aerodynamic force and moment coefficients for the debris shape that are interpolated from a database has been developed to meet this need. The design, implementation, and verification of the database driven six degree of freedom (6-DOF) simulation addition to the Lift-Off Debris Transport Analysis (LODTA) software are discussed in this paper.

  3. Light driven microactuators: Design, fabrication, and mathematical modeling

    NASA Astrophysics Data System (ADS)

    Han, Li-Hsin

    This dissertation is concerned with design, fabrication, and mathematical modeling of three different microactuators driven by light. Compared to electricity, electromagnetic wave is a wireless source of power. A distant light source can be delivered, absorbed, and converted to generate a driving force for a microactuator. The study of light-driven microsystems, still at its early stage, is already expanding the horizon for the research of microsystems. The microactuators of this dissertation include micro-cantilevers driven by pulsed laser, photo-deformable microshells coated with gold nanospheres, and a nano-particles coated micro-turbine driven by visible light. Experimental investigation and theoretical analysis of these microactuators showed interesting results. These microactuators were functioned based on cross-linked, multiple physics phenomenon, such as photo-heating, thermal expansion, photo-chemistry effect, plasomonics enhancement, and thermal convection in rarefied gas. These multiple physics effects dominate the function of a mechanical system, when the system size becomes small. The modeling results of the microactuators suggest that, to simulate a microscale mechanical system accurately, one has to take account the minimum dimension of the system and to consider the validity of a theoretical model. Examples of the building of different microstructures were shown to demonstrate the capacity of a digital-micromirror-device (DMD) based apparatus for three-dimensional, heterogeneous fabrication of polymeric microstructures.

  4. Development of a miniature motor-driven pulsatile LVAD driven by a fuzzy controller.

    PubMed

    Okamoto, Eiji; Makino, Tsutomu; Tanaka, Shuji; Yasuda, Takahiko; Akasaka, Yuta; Tani, Makiko; Inoue, Yusuke; Mitoh, Ayumu; Mitamura, Yoshinori

    2007-01-01

    We have been developing a small, lightweight motor-driven pulsatile left ventricular assist device (LVAD) with a ball screw. The motor-driven LVAD consists of a brushless DC motor and a ball screw. The attractive magnetic force between Nd-Fe-B magnets (with a diameter of 5 mm and a thickness of 1.5 mm) mounted in holes in a silicone rubber sheet (thickness 2 mm) and an iron plate adhered onto the a diaphragm of the blood pump can provide optimum active blood filling during the pump filling phase. The LVAD has a stroke volume of 55 ml and an overall volume of 285 ml; it weighs 360 g. The controller mainly consists of a fuzzy logic position and velocity controller to apply doctors' and engineers' knowledge to control the LVAD. Each unit of the controller consists of a functionally independent program module for easy improvement of the controller's performance. The LVAD was evaluated in in vitro experiments using a mock circulation. A maximum pump outflow of 5.1 l/min was obtained at a drive rate of 95 bpm against an afterload of 95 mmHg, and active filling using the attractive magnetic force provided a pump output of 3.6 l/min at a drive rate of 75 bpm under a preload of 0 mmHg. The operating efficiency of the LVAD was measured at between 8% and 10.5%. While the LVAD can provide adequate pump outflow for cardiac assistance, further upgrading of the software and improvement of the blood pump are required to improve pump performance and efficiency.

  5. Self-repairing symmetry in jellyfish through mechanically driven reorganization

    PubMed Central

    Abrams, Michael J.; Basinger, Ty; Yuan, William; Guo, Chin-Lin; Goentoro, Lea

    2015-01-01

    What happens when an animal is injured and loses important structures? Some animals simply heal the wound, whereas others are able to regenerate lost parts. In this study, we report a previously unidentified strategy of self-repair, where moon jellyfish respond to injuries by reorganizing existing parts, and rebuilding essential body symmetry, without regenerating what is lost. Specifically, in response to arm amputation, the young jellyfish of Aurelia aurita rearrange their remaining arms, recenter their manubria, and rebuild their muscular networks, all completed within 12 hours to 4 days. We call this process symmetrization. We find that symmetrization is not driven by external cues, cell proliferation, cell death, and proceeded even when foreign arms were grafted on. Instead, we find that forces generated by the muscular network are essential. Inhibiting pulsation using muscle relaxants completely, and reversibly, blocked symmetrization. Furthermore, we observed that decreasing pulse frequency using muscle relaxants slowed symmetrization, whereas increasing pulse frequency by lowering the magnesium concentration in seawater accelerated symmetrization. A mathematical model that describes the compressive forces from the muscle contraction, within the context of the elastic response from the mesoglea and the ephyra geometry, can recapitulate the recovery of global symmetry. Thus, self-repair in Aurelia proceeds through the reorganization of existing parts, and is driven by forces generated by its own propulsion machinery. We find evidence for symmetrization across species of jellyfish (Chrysaora pacifica, Mastigias sp., and Cotylorhiza tuberculata). PMID:26080418

  6. A natural light-driven inward proton pump

    PubMed Central

    Inoue, Keiichi; Ito, Shota; Kato, Yoshitaka; Nomura, Yurika; Shibata, Mikihiro; Uchihashi, Takayuki; Tsunoda, Satoshi P.; Kandori, Hideki

    2016-01-01

    Light-driven outward H+ pumps are widely distributed in nature, converting sunlight energy into proton motive force. Here we report the characterization of an oppositely directed H+ pump with a similar architecture to outward pumps. A deep-ocean marine bacterium, Parvularcula oceani, contains three rhodopsins, one of which functions as a light-driven inward H+ pump when expressed in Escherichia coli and mouse neural cells. Detailed mechanistic analyses of the purified proteins reveal that small differences in the interactions established at the active centre determine the direction of primary H+ transfer. Outward H+ pumps establish strong electrostatic interactions between the primary H+ donor and the extracellular acceptor. In the inward H+ pump these electrostatic interactions are weaker, inducing a more relaxed chromophore structure that leads to the long-distance transfer of H+ to the cytoplasmic side. These results demonstrate an elaborate molecular design to control the direction of H+ transfers in proteins. PMID:27853152

  7. Classical chaos and harmonic generation in laser driven nanorings

    NASA Astrophysics Data System (ADS)

    Castiglia, Giuseppe; Corso, Pietro Paolo; Cricchio, Dario; De Giovannini, Umberto; Frusteri, Biagio; Fiordilino, Emilio

    2016-12-01

    A quantum ring driven by an intense laser field emits light in the form of high-harmonic radiation resulting from the strong acceleration experienced by the active electrons forced to move on a curved trajectory. The spectrum of the emitted light is rich and strongly dependent on the parameters of the problem. In order to investigate the physical origin of such variability, we focus on the seemingly simple problem of a laser-driven charge constrained to a ring from a classical standpoint. As it turns out, the dynamics of such a classical electron is governed by a nonlinear equation which results into a chaotic motion—by nature depending on the initial conditions in an unpredictable way. Our results indicate that the quantum harmonic spectra are reminiscent of the classical counterpart and suggest the existence of a line connecting the quantum and classical realms.

  8. Bénard-Marangoni instability driven by moisture absorption

    NASA Astrophysics Data System (ADS)

    Shin, Sangwoo; Jacobi, Ian; Stone, Howard A.

    2016-01-01

    Glycerol is a viscous liquid widely used in industry and known for its strong hygroscopic nature. While this unusual property has been well documented from the perspective of solution chemistry, its impact on the mechanical properties of glycerol remains largely unknown. Here, we report a spontaneous Bénard-Marangoni instability in pure glycerol driven by absorption of water vapor. Even under standard laboratory conditions, ambient humidity is sufficient to drive distinct Bénard-Marangoni convection cells for hours. We describe the mechanism of this instability in terms of the vapor transport process and competition between solutal and thermal Marangoni forces, and provide insight into potential uses and impact of this aspect of dynamics driven by moisture absorption in various common settings.

  9. Coaxial needle insertion assistant with enhanced force feedback.

    PubMed

    De Lorenzo, Danilo; Koseki, Yoshihiko; De Momi, Elena; Chinzei, Kiyoyuki; Okamura, Allison M

    2013-02-01

    Many medical procedures involving needle insertion into soft tissues, such as anesthesia, biopsy, brachytherapy, and placement of electrodes, are performed without image guidance. In such procedures, haptic detection of changing tissue properties at different depths during needle insertion is important for needle localization and detection of subsurface structures. However, changes in tissue mechanical properties deep inside the tissue are difficult for human operators to sense, because the relatively large friction force between the needle shaft and the surrounding tissue masks the smaller tip forces. A novel robotic coaxial needle insertion assistant, which enhances operator force perception, is presented. This one-degree-of-freedom cable-driven robot provides to the operator a scaled version of the force applied by the needle tip to the tissue, using a novel design and sensors that separate the needle tip force from the shaft friction force. The ability of human operators to use the robot to detect membranes embedded in artificial soft tissue was tested under the conditions of 1) tip force and shaft force feedback, and 2) tip force only feedback. The ratio of successful to unsuccessful membrane detections was significantly higher (up to 50%) when only the needle tip force was provided to the user.

  10. Brownian forces in sheared granular matter.

    PubMed

    Baldassarri, A; Dalton, F; Petri, A; Zapperi, S; Pontuale, G; Pietronero, L

    2006-03-24

    We present results from a series of experiments on a granular medium sheared in a Couette geometry and show that their statistical properties can be computed in a quantitative way from the assumption that the resultant from the set of forces acting in the system performs a Brownian motion. The same assumption has been utilized, with success, to describe other phenomena, such as the Barkhausen effect in ferromagnets, and so the scheme suggests itself as a more general description of a wider class of driven instabilities.

  11. Shadow-driven 4D haptic visualization.

    PubMed

    Zhang, Hui; Hanson, Andrew

    2007-01-01

    Just as we can work with two-dimensional floor plans to communicate 3D architectural design, we can exploit reduced-dimension shadows to manipulate the higher-dimensional objects generating the shadows. In particular, by taking advantage of physically reactive 3D shadow-space controllers, we can transform the task of interacting with 4D objects to a new level of physical reality. We begin with a teaching tool that uses 2D knot diagrams to manipulate the geometry of 3D mathematical knots via their projections; our unique 2D haptic interface allows the user to become familiar with sketching, editing, exploration, and manipulation of 3D knots rendered as projected imageson a 2D shadow space. By combining graphics and collision-sensing haptics, we can enhance the 2D shadow-driven editing protocol to successfully leverage 2D pen-and-paper or blackboard skills. Building on the reduced-dimension 2D editing tool for manipulating 3D shapes, we develop the natural analogy to produce a reduced-dimension 3D tool for manipulating 4D shapes. By physically modeling the correct properties of 4D surfaces, their bending forces, and their collisions in the 3D haptic controller interface, we can support full-featured physical exploration of 4D mathematical objects in a manner that is otherwise far beyond the experience accessible to human beings. As far as we are aware, this paper reports the first interactive system with force-feedback that provides "4D haptic visualization" permitting the user to model and interact with 4D cloth-like objects.

  12. Relativistic Linear Restoring Force

    ERIC Educational Resources Information Center

    Clark, D.; Franklin, J.; Mann, N.

    2012-01-01

    We consider two different forms for a relativistic version of a linear restoring force. The pair comes from taking Hooke's law to be the force appearing on the right-hand side of the relativistic expressions: d"p"/d"t" or d"p"/d["tau"]. Either formulation recovers Hooke's law in the non-relativistic limit. In addition to these two forces, we…

  13. Lathe tool force

    SciTech Connect

    Emery, J.D.

    1993-02-01

    This report describes a computer program that computes the forces exerted on a lathe tool as a part is being machined. The program is based on a mechanistic model which assumes that the normal force on the tool face is proportional to the cross-sectional area of the chip that is being removed from the part. This report gives transcripts of program runs, a comparison with experimentally measured forces, a bibliography, and a listing of the program.

  14. Relativistic Linear Restoring Force

    ERIC Educational Resources Information Center

    Clark, D.; Franklin, J.; Mann, N.

    2012-01-01

    We consider two different forms for a relativistic version of a linear restoring force. The pair comes from taking Hooke's law to be the force appearing on the right-hand side of the relativistic expressions: d"p"/d"t" or d"p"/d["tau"]. Either formulation recovers Hooke's law in the non-relativistic limit. In addition to these two forces, we…

  15. Cases in Joint Force Development

    DTIC Science & Technology

    2001-10-01

    forces in the future. 15. SUBJECT TERMS Force Development; Joint Force Development; Air War College Curriculum; Force Planning; Military Planning; Joint...6 1. Class Participation .....................................................................................7 2. Term ...Paper Prospectus ..............................................................................7 3. Term Paper

  16. Kinetochore-independent chromosome segregation driven by lateral microtubule bundles

    PubMed Central

    Muscat, Christina C; Torre-Santiago, Keila M; Tran, Michael V; Powers, James A; Wignall, Sarah M

    2015-01-01

    During cell division, chromosomes attach to spindle microtubules at sites called kinetochores, and force generated at the kinetochore-microtubule interface is the main driver of chromosome movement. Surprisingly, kinetochores are not required for chromosome segregation on acentrosomal spindles in Caenorhabditis elegans oocytes, but the mechanism driving chromosomes apart in their absence is not understood. In this study, we show that lateral microtubule–chromosome associations established during prometaphase remain intact during anaphase to facilitate separation, defining a novel form of kinetochore-independent segregation. Chromosome dynamics during congression and segregation are controlled by opposing forces; plus-end directed forces are mediated by a protein complex that forms a ring around the chromosome center and dynein on chromosome arms provides a minus-end force. At anaphase onset, ring removal shifts the balance between these forces, triggering poleward movement along lateral microtubule bundles. This represents an elegant strategy for controlling chromosomal movements during cell division distinct from the canonical kinetochore-driven mechanism. DOI: http://dx.doi.org/10.7554/eLife.06462.001 PMID:26026148

  17. No fifth force?

    NASA Astrophysics Data System (ADS)

    Maggs, William Ward

    Hopes that geophysicists might be able to document a fifth force of nature have diminished, as new measurements and analyses of earlier geodetic experiments have yielded no solid evidence of a non-Newtonian component of gravity.Modern physics recognizes four fundamental forces with distinct spheres of influence: The strong and weak nuclear forces operate over the range of one atom, while gravity and electromagnetism have an infinite range. Gravity measurements over a few centimeters in laboratories and over millions of kilometers in space continue to buttress Issac Newton's conclusion that the gravitational force between two objects decreases as the square of the distance between them.

  18. Non-Equilibrium Casimir Force between Vibrating Plates

    PubMed Central

    Hanke, Andreas

    2013-01-01

    We study the fluctuation-induced, time-dependent force between two plates confining a correlated fluid which is driven out of equilibrium mechanically by harmonic vibrations of one of the plates. For a purely relaxational dynamics of the fluid we calculate the fluctuation-induced force generated by the vibrating plate on the plate at rest. The time-dependence of this force is characterized by a positive lag time with respect to the driving. We obtain two distinctive contributions to the force, one generated by diffusion of stress in the fluid and another related to resonant dissipation in the cavity. The relation to the dynamic Casimir effect of the electromagnetic field and possible experiments to measure the time-dependent Casimir force are discussed. PMID:23326401

  19. Direct Cytoskeleton Forces Cause Membrane Softening in Red Blood Cells

    PubMed Central

    Rodríguez-García, Ruddi; López-Montero, Iván; Mell, Michael; Egea, Gustavo; Gov, Nir S.; Monroy, Francisco

    2015-01-01

    Erythrocytes are flexible cells specialized in the systemic transport of oxygen in vertebrates. This physiological function is connected to their outstanding ability to deform in passing through narrow capillaries. In recent years, there has been an influx of experimental evidence of enhanced cell-shape fluctuations related to metabolically driven activity of the erythroid membrane skeleton. However, no direct observation of the active cytoskeleton forces has yet been reported to our knowledge. Here, we show experimental evidence of the presence of temporally correlated forces superposed over the thermal fluctuations of the erythrocyte membrane. These forces are ATP-dependent and drive enhanced flickering motions in human erythrocytes. Theoretical analyses provide support for a direct force exerted on the membrane by the cytoskeleton nodes as pulses of well-defined average duration. In addition, such metabolically regulated active forces cause global membrane softening, a mechanical attribute related to the functional erythroid deformability. PMID:26083919

  20. On the Transition from Thermally-driven to Ponderomotively-driven Stimulated Brillouin Scattering and Filamentation of Light in Plasma

    SciTech Connect

    R.L. Berger; E.J. Valeo; S. Brunner

    2005-04-04

    The dispersion properties of ion acoustic waves and their nonlinear coupling to light waves through ponderomotive and thermal forces are sensitive to the strength of electron-ion collisions. Here, we consider the growth rate of stimulated Brillouin scattering (SBS) when the driven acoustic wave frequency and wavelength span the range of small to large compared to electron-ion collision frequency and mean free path respectively. We find in all cases the thermal contributions to the SBS growth rate are insignificant if the ion acoustic wave frequency is greater than the electron-ion collision frequency and the wavelength is much shorter than the electron-ion mean free path. On the other hand, the purely growing filamentation instability remains thermally driven for shorter wavelengths than SBS even when the growth rate is larger than the acoustic frequency.

  1. Parameterization of the Lorentz to Coriolis Force Ratio in Planetary Dynamos

    NASA Astrophysics Data System (ADS)

    Soderlund, K. M.; Sheyko, A. A.; King, E. M.; Aurnou, J. M.

    2015-12-01

    The Lorentz to Coriolis force ratio is an important parameter for the dynamics of planetary cores: it is expected that dynamos with dominant Coriolis forces will be driven by fundamentally different archetypes of fluid motions than those with co-dominant Lorentz forces. Using a suite of geodynamo simulations, we have tested several parameterizations of the Lorentz to Coriolis force ratio against direct calculations and developed a scaling estimate to predict this ratio for planetary cores. Our results suggest that the Earth's core is likely to be in magnetostrophic balance where the Lorentz and Coriolis forces are comparable. The Lorentz force may also be significant in Jupiter's core, where it is predicted to be approximately a factor of ten less than the Coriolis force. Magnetic fields become increasingly sub-dominant for the other planets: the Coriolis force is predicted to exceed the Lorentz force by at least two orders of magnitude within the cores of Saturn, Uranus/Neptune, Ganymede, and Mercury.

  2. Pulsed Power Driven Fusion Energy

    SciTech Connect

    SLUTZ,STEPHEN A.

    1999-11-22

    Pulsed power is a robust and inexpensive technology for obtaining high powers. Considerable progress has been made on developing light ion beams as a means of transporting this power to inertial fusion capsules. However, further progress is hampered by the lack of an adequate ion source. Alternatively, z-pinches can efficiently convert pulsed power into thermal radiation, which can be used to drive an inertial fusion capsule. However, a z-pinch driven fusion explosion will destroy a portion of the transmission line that delivers the electrical power to the z-pinch. They investigate several options for providing standoff for z-pinch driven fusion. Recyclable Transmission Lines (RTLs) appear to be the most promising approach.

  3. A WEIGHT-DRIVEN KYMOGRAPH.

    PubMed

    McLaughlin, A R

    1928-07-20

    (1) Herein has been described a stand for supporting the drum, a device for starting and stopping the drum and a circuit-breaker for a weight-driven kymograph (2) This device has proved satisfactory for recording simple muscular contractions, for securing data for the determination of the speed of the nerve-impulse and for determining reaction times (3) With but a little training in technic, college freshmen have secured very good graphs with this apparatus (4) This machine, exclusive of the drum, has been constructed at less than one third the cost of a spring-driven kymograph, and the drum of the latter may readily be used for either, since but a few minutes are required to make the shift.

  4. Artificial cognitive memory—changing from density driven to functionality driven

    NASA Astrophysics Data System (ADS)

    Shi, L. P.; Yi, K. J.; Ramanathan, K.; Zhao, R.; Ning, N.; Ding, D.; Chong, T. C.

    2011-03-01

    Increasing density based on bit size reduction is currently a main driving force for the development of data storage technologies. However, it is expected that all of the current available storage technologies might approach their physical limits in around 15 to 20 years due to miniaturization. To further advance the storage technologies, it is required to explore a new development trend that is different from density driven. One possible direction is to derive insights from biological counterparts. Unlike physical memories that have a single function of data storage, human memory is versatile. It contributes to functions of data storage, information processing, and most importantly, cognitive functions such as adaptation, learning, perception, knowledge generation, etc. In this paper, a brief review of current data storage technologies are presented, followed by discussions of future storage technology development trend. We expect that the driving force will evolve from density to functionality, and new memory modules associated with additional functions other than only data storage will appear. As an initial step toward building a future generation memory technology, we propose Artificial Cognitive Memory (ACM), a memory based intelligent system. We also present the characteristics of ACM, new technologies that can be used to develop ACM components such as bioinspired element cells (silicon, memristor, phase change, etc.), and possible methodologies to construct a biologically inspired hierarchical system.

  5. Climate forcings and feedbacks

    NASA Technical Reports Server (NTRS)

    Hansen, James

    1993-01-01

    Global temperature has increased significantly during the past century. Understanding the causes of observed global temperature change is impossible in the absence of adequate monitoring of changes in global climate forcings and radiative feedbacks. Climate forcings are changes imposed on the planet's energy balance, such as change of incoming sunlight or a human-induced change of surface properties due to deforestation. Radiative feedbacks are radiative changes induced by climate change, such as alteration of cloud properties or the extent of sea ice. Monitoring of global climate forcings and feedbacks, if sufficiently precise and long-term, can provide a very strong constraint on interpretation of observed temperature change. Such monitoring is essential to eliminate uncertainties about the relative importance of various climate change mechanisms including tropospheric sulfate aerosols from burning of coal and oil smoke from slash and burn agriculture, changes of solar irradiance changes of several greenhouse gases, and many other mechanisms. The considerable variability of observed temperature, together with evidence that a substantial portion of this variability is unforced indicates that observations of climate forcings and feedbacks must be continued for decades. Since the climate system responds to the time integral of the forcing, a further requirement is that the observations be carried out continuously. However, precise observations of forcings and feedbacks will also be able to provide valuable conclusions on shorter time scales. For example, knowledge of the climate forcing by increasing CFC's relative to the forcing by changing ozone is important to policymakers, as is information on the forcing by CO2 relative to the forcing by sulfate aerosols. It will also be possible to obtain valuable tests of climate models on short time scales, if there is precise monitoring of all forcings and feedbacks during and after events such as a large volcanic eruption

  6. Libration-driven multipolar instabilities

    NASA Astrophysics Data System (ADS)

    Cébron, D.; Vantieghem, S.; Herreman, W.

    2014-01-01

    We consider rotating flows in non-axisymmetric enclosures that are driven by libration, i.e. by a small periodic modulation of the rotation rate. Thanks to its simplicity, this model is relevant to various contexts, from industrial containers (with small oscillations of the rotation rate) to fluid layers of terrestial planets (with length-of-day variations). Assuming a multipolar $n$-fold boundary deformation, we first obtain the two-dimensional basic flow. We then perform a short-wavelength local stability analysis of the basic flow, showing that an instability may occur in three dimensions. We christen it the Libration Driven Multipolar Instability (LDMI). The growth rates of the LDMI are computed by a Floquet analysis in a systematic way, and compared to analytical expressions obtained by perturbation methods. We then focus on the simplest geometry allowing the LDMI, a librating deformed cylinder. To take into account viscous and confinement effects, we perform a global stability analysis, which shows that the LDMI results from a parametric resonance of inertial modes. Performing numerical simulations of this librating cylinder, we confirm that the basic flow is indeed established and report the first numerical evidence of the LDMI. Numerical results, in excellent agreement with the stability results, are used to explore the non-linear regime of the instability (amplitude and viscous dissipation of the driven flow). We finally provide an example of LDMI in a deformed spherical container to show that the instability mechanism is generic. Our results show that the previously studied libration driven elliptical instability simply corresponds to the particular case $n=2$ of a wider class of instabilities. Summarizing, this work shows that any oscillating non-axisymmetric container in rotation may excite intermittent, space-filling LDMI flows, and this instability should thus be easy to observe experimentally.

  7. Mission Driven Science at Argonne

    SciTech Connect

    Thackery, Michael; Wang, Michael; Young, Linda

    2012-01-01

    Mission driven science at Argonne means applying science and scientific knowledge to a physical and "real world" environment. Examples include testing a theoretical model through the use of formal science or solving a practical problem through the use of natural science. At the laboratory, our materials scientists are leading the way in producing energy solutions today that could help reduce and remove the energy crisis of tomorrow.

  8. Driven optical matter (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Figliozzi, Patrick; Sule, Nishant; Yan, Zijie; Vaikuntanathan, Suriyanarayanan; Rice, Stuart A.; Scherer, Norbert F.

    2016-09-01

    Optical trapping has enabled studying a wide variety of questions and systems in chemistry, biology, physics, and materials science. For example, optical trapping has been used to understand hydrodynamic interactions in dilute and dense colloidal fluids and discover connections to granular materials. In this presentation we show that shaped optical fields and gradients can be used to study the electrodynamic interactions amongst nanoparticles (NPs) and drive them into new ordered states. We demonstrate the formation and use of NP-based optical matter to study a range of nonequilibrium phenomena in solution; field-driven barrier crossing phenomena and noise-driven ordering. Optical matter, a material that forms only in the presence of an optical field, involves NP interactions by optical scattering and interference. Metal NPs can be formed into regular arrangements in minimally shaped fields; e.g., in focused Gaussian beams, line traps, and optical ring traps. Inter-particle interactions and motions are also affected when the optical matter is driven. Particles recirculate in an optical ring vortex trap allowing long term measurements to examine rare events. In particular, particles can hop between optical binding sites, move past electrodynamic obstacles or pass each other while moving around the ring. The polarization state of the optical beam can be used to produce periodic variations of the NP electrodynamic interactions. As particles circulate this "noise" causes NP clusters to be less stable as if the temperature of the system is increased. Conversely, we observe noise-driven ordering in dense systems. We will explain these phenomena using simulations and theory.

  9. Inflation driven by unification energy

    NASA Astrophysics Data System (ADS)

    Hertzberg, Mark P.; Wilczek, Frank

    2017-03-01

    We examine the hypothesis that inflation is primarily driven by vacuum energy at a scale indicated by gauge coupling unification. Concretely, we consider a class of hybrid inflation models wherein the vacuum energy associated with a grand unified theory condensate provides the dominant energy during inflation, while a second "inflaton" scalar slow rolls. We show that it is possible to obtain significant tensor-to-scalar ratios while fitting the observed spectral index.

  10. Heterogeneity in motor driven transport

    NASA Astrophysics Data System (ADS)

    Tabei, Ali

    2015-03-01

    I will discuss quantitative analysis of particle tracking data for motor driven vesicles inside an insulin secreting cell. We use this method to study the dynamical and structural heterogeneity inside the cell. I will discuss our effort to explain the origin of observed heterogeneity in intracellular transport. Finally, I will explain how analyzing directional correlations in transport trajectories reveals self-similarity in the diffusion media.

  11. Deformation Driven Alloying and Transformation

    DTIC Science & Technology

    2015-03-03

    OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. University of Wisconsin - Madison RESERACH & SPONSORED PROGRAMS 21 N. PARK ...Research Triangle Park , NC 27709-2211 Deformation Alloying, Mechanochemical Transduction, Multilayer, Driven System REPORT DOCUMENTATION PAGE 11...Styczynski A, Hartig C, Bohlen J, Letzig D. Scripta Mater 2004;50:943. [17] Sieber H, Park J, Weissmüller J, Perepezko J. Acta Mater 2001;49:1139

  12. Driven one-component plasmas

    SciTech Connect

    Rizzato, Felipe B.; Pakter, Renato; Levin, Yan

    2009-08-15

    A statistical theory is presented that allows the calculation of the stationary state achieved by a driven one-component plasma after a process of collisionless relaxation. The stationary Vlasov equation with appropriate boundary conditions is reduced to an ordinary differential equation, which is then solved numerically. The solution is then compared with the molecular-dynamics simulation. A perfect agreement is found between the theory and the simulations. The full current-voltage phase diagram is constructed.

  13. Kinetics of accelerator driven devices

    SciTech Connect

    Perry, R.T.; Buksa, J.; Houts, M.

    1994-09-01

    Kinetic calculations were made to show that subcritical accelerator driven devices are robust and stable. The calculations show that large changes in reactivity that would lead to an uncontrollable excursion in a reactor would lead only to a new power level in subcritical device. Calculations were also made to show the rate of power changes resulting from startup and shutdown, and that methods also exist for continuously monitoring the reactivity of a subcritical system.

  14. Designing and operating electrostatically driven microengines

    SciTech Connect

    Rodgers, M.S.; Sniegowski, J.J.; Miller, S.L.; LaVigne, G.F.

    1998-02-01

    Microelectromechanical engines that convert the linear outputs from dual orthogonal electrostatic actuators to rotary motion were first developed in 1993. Referred to as microengines, these early devices demonstrated the potential of microelectromechanical technology, but, as expected from any first-of-its-kind device, were not yet optimized. Yield was relatively low, and the 10 micronewtons of force generated by the actuators was not always enough to ensure reliable operation. Since initial development, these engines have undergone a continuous series of significant improvements on three separate fronts: design, fabrication, and electrical activation. Although all three areas will be discussed, emphasis will be on aspects related to mechanical design and generation of the electrical waveforms used to drive these devices. Microtransmissions that dramatically increase torque will also be discussed. Electrostatically driven microengines can be operated at hundreds of thousands of revolutions per minute making large gear reduction ratios feasible; overall ratios of 3,000,000:1 have been successfully demonstrated. Today`s microengines have evolved into high endurance (one test device has seen over 7,000,000,000 revolutions), high yield, robust devices that have become the primary actuation source for MicroElectroMechanical Systems (MEMS) at Sandia National Laboratories.

  15. Transient Mixing Driven by Buoyancy Flows

    NASA Technical Reports Server (NTRS)

    Duval, W. M. B.; Batur, C.; Zhong, H.

    2002-01-01

    Mixing driven by buoyancy-induced flows is of particular interest to microgravity processes, as the body force that governs the intensity of flow fields can be directly controlled. We consider a model experimental system to explore the dynamics of mixing which employs two miscible liquids inside a cavity separated initially by a divider. The two liquids are oriented vertically inside a rectangular cavity with constant width and height, and varying depths to span the range of a Hele-Shaw cell to a 3-D configuration. The two miscible liquids can be sufficiently diluted and died, for example water and deuterium oxide, such that a distinct interface exists across the divider. The transient mixing characteristic of the two fluids is addressed by following the Lagrangian history of the interface for various aspect ratios in the z-plane (depth variation) as well as a range of pulling velocities of the divider. The mixing characteristics of the two fluids are quantified from measurement of the length stretch of the interface and its flow field using respectively image processing techniques and Particle Imaging Velocimetry. Scaling analysis shows that the length stretch depends on four governing parameters, namely the Grashof number (Gr), Schmidt number (Sc), aspect ratio (Ar), and Reynolds number (Re). Variation of the Schmidt number is taken into account through thermophysical property variation. Thus our problem reduces to a codimension three bifurcation in parametric space for Gr, Ar, and Re.

  16. A quasilinear formulation of turbulence driven current

    SciTech Connect

    McDevitt, C. J.; Tang, Xian-Zhu; Guo, Zehua

    2014-02-15

    Non-inductive current drive mechanisms, such as the familiar neoclassical bootstrap current correspond to an essential component to the realization of steady state tokamak operation. In this work, we discuss a novel collisionless mechanism through which a mean plasma current may be driven in the presence of microturbulence. In analogy with the traditional neoclassical bootstrap current drive mechanism, in which the collisional equilibrium established between trapped and passing electrons results in the formation of a steady state plasma current, here we show that resonant scattering of electrons by drift wave microturbulence provides an additional means of determining the equilibrium between trapped and passing electrons. The resulting collisionless equilibrium is shown to result in the formation of an equilibrium current whose magnitude is a function of the thermodynamic forces. A mean field formulation is utilized to incorporate the above components into a unified framework through which both collisional as well as collisionless current drive mechanisms may be self-consistently treated. Utilizing a linearized Fokker-Planck collision operator, the plasma current in the presence of both collisions as well as turbulent stresses is computed, allowing for the relative strength of these two mechanisms to be quantified as a function of collisionality and fluctuation amplitude.

  17. A swing driven by liquid crystals

    NASA Astrophysics Data System (ADS)

    Cheng, Cheng

    Angular momentum in liquid crystals exists as flow, director reorientation, etc. However, it is hard to observe and measure angular momentum in liquid crystals by a direct mechanical approach. Torsion pendulum is a general tool to measure angular momentum by torque balance. Our torsion pendulum can harvest the angular momentum in liquid crystals to make it observable. The oscillation of the pendulum keeps increasing by constructively adding a small angular momentum of liquid crystals each period at the resonant frequency of the pendulum. Its similar to a swing driven by a force at its resonant frequency. For the torsion pendulum, a cage made of two aluminum discs, in which a liquid crystal cell is placed, is suspended between two thin tungsten wires. A gold mirror, which is a part of the optical lever system, is attached on one tungsten wire. As first demonstration, we fabricate a circular hybrid liquid crystal cell, which can induce concentric backflows to generate angular momentum. The alignment on the planar substrate is concentric and tangential. Due to the coupling between director rotation and flow, the induced backflow goes around the cell when we add electrical pulses between top and bottom substrates. The oscillation is observed by a position sensitive detector and analyzed on the basis of Eriksen-Leslie theory. With vacuum condition and synchronous driving system, the oscillation signal is improved. We demonstrate that this torsion pendulum can sensitively detect the angular momentum in liquid crystals.

  18. Driven Polymer Translocation into a Crosslinked Gel

    NASA Astrophysics Data System (ADS)

    Sean, David; Slater, Gary

    2015-03-01

    In a typical polymer translocation setup, a thin membrane is used to separate two chambers and a polyelectrolyte is driven by an electric field to translocate from one side of the membrane to the other via a small nanopore. However, the high translocation rate that results from the forces required to drive this process makes optical and/or electrical analysis of the translocating polymer challenging. Using coarse-grained Langevin Dynamics simulations we investigate how the translocation process can be slowed down by placing a crosslinked gel on the trans-side of the membrane. Since the driving electric field is localized in the neighborhood of the nanopore, electrophoretic migration is only achieved by a ``pushing'' action from the polymer segment residing in the nanopore. For the case of a flexible polymer we find that the polymer fills the gel pores via multiple ``herniation'' processes, whereas for a semi-flexible chain in a tight gel there are no hernias and the polymer follows a smooth curvilinear path. Moreover, for the case of a semi-flexible polymer the gel makes the translocation process more uniform by reducing the acceleration at the end of the process.

  19. Walking machine driven by a light beam

    NASA Astrophysics Data System (ADS)

    Yoshizawa, Toru; Hayashi, Daisuke; Yamamoto, Masayuki; Otani, Yukitoshi

    2001-10-01

    Optically driven small machines have such features as easily miniaturized in fabrication and as controlled by optical energy supplied in wireless. We report an optically controlled machine which moves like a catepillar on the basis of photo-thermal effect. This miniaturized machine fundamentally consists of two parts: a body made of shape memory alloys and springs and feet made of magnets and temperature-sensitive ferrites. Th effect can stick to the carbon steel floor due to magnetic force balance caused by projected beam, and the body repeats stretching and shrinking using deformation of shape memory alloys caused by switching on and off of projected beam. A prototype is fabricated in trial with a size of 35 mm by 12 mm. As an experimental result, it proved that they could move at the speed of 8.7 mm per cycle on a ceiling as well as on a horizontal floor and it could climb a slope as steep as 50 degree. To improve the ability of this prototype, we newly developed a smaller machine with the total length of 20 mm by 15 mm and the weight of 1.1 g. Because of lighter weight of this machine, it could climb any slope including a vertical wall.

  20. Reconnection rates in driven magnetic reconnection

    SciTech Connect

    Birn, J.; Hesse, M.

    2007-08-15

    Using resistive magnetohydrodynamic simulations, we investigate the influence of various parameters on the reconnection rate in two scenarios of magnetic reconnection. The first scenario consists of the ''Newton Challenge'' problem [Birn et al., Geophys. Res. Lett. 32, L06105 (2005)]. In this scenario, reconnection is initiated in a plane Harris-type current sheet by temporally limited, spatially varying, inflow of magnetic flux. The second scenario consists of the well-studied island coalescence problem. This scenario starts from an equilibrium containing periodic magnetic islands with parallel current filaments. Due to the attraction between parallel currents, pairs of islands may move toward each other, forming a current sheet in between. This leads to reconnection and ultimately the merging of islands. In either scenario, magnetic reconnection may be considered as being driven by external or internal forcing. Consistent with that interpretation we find that in either case the maximum reconnection rate (electric field) depends approximately linearly on the maximum driving electric field, when other parameters remain unchanged. However, this can be understood mostly from the change of characteristic background parameters; particularly, the increase of the magnetic field strength in the inflow region due to the added magnetic flux. This interpretation is consistent with the result that the maximum of the reconnection electric field is assumed significantly later (tens of Alfven times) than the maximum driving and typically does not match the instantaneous driving electric field. Furthermore, the reconnection rate also depends on the resistivity and the time scale of the driving.

  1. Interface dynamics of capillary driven flow in a tube

    NASA Astrophysics Data System (ADS)

    Ichikawa, Naoki; Satoda, Yoko; Nakada, Takeshi

    This paper describes the dynamics of a liquid driven by capillary force in a tube. The movement of a gas-liquid interface in a horizontal tube as a result of capillary action has been investigated. A theoretical analysis of the interface dynamics is presented where dimensionless numbers representing time and distance scales are introduced, and a unique functional relation is derived. Experiments were carried out with distilled water as the test liquid in glass tubes of inner diameter from 0.5 mm to 4.0 mm. The position of the gas-liquid interface as a function of time was observed. The experimental results agree well with theory.

  2. People Get Ready...A Call for Data-Driven Instruction

    ERIC Educational Resources Information Center

    Dyck, Brenda A.

    2006-01-01

    Fueled by a culture fascinated by numbers and increased accountability, data-driven instruction has become a mighty force as it joins with the tools of technology to handle the mammoth task of gathering, sorting, analyzing, and synthesizing data. Success stories from districts all over the country attest to the positive results of implementing…

  3. Wind driven power generating apparatus

    SciTech Connect

    Andruszkiw, W.; Andrushkiw, R.

    1986-10-14

    A vertically adjustable wind driven power generating apparatus comprised of, in combination, a well in which is vertically movably mounted a wind driven power generating apparatus comprised of: (i) a wind driven power generating means comprised of a tubular housing having rotatably mounted therein a horizontally extending shaft. The shaft has a centrally disposed bevel gear fixedly attached thereto and helical vanes disposed longitudinally on both sides of the bevel gear; (ii) means for vertical movement of the tubular housing within the well comprised of (a) a hollow vertical support column having a circular cross section and having one end thereof attached to the bottom of the tubular housing and (b) a vertically extending hollow tubular member having a hollow interior fixedly mounted at its bottom end in the floor of the well and being open at its other end, the tubular member adapted to telescopically receive the vertical support column in its open end; (iii) vertical movement control means comprised of (a) downward movement control means comprising an inverted wing system generating inverse-lift mounted on the tubular housing, and (b) upward movement control means comprising a cylinder having an axially movable piston therein; (iv) power transmission means comprising a vertically extending power transmitting shaft that drives a power generator.

  4. Novelty-Driven Cooperative Coevolution.

    PubMed

    Gomes, Jorge; Mariano, Pedro; Christensen, Anders Lyhne

    2015-12-14

    Cooperative coevolutionary algorithms (CCEAs) rely on multiple coevolving populations for the evolution of solutions composed of coadapted components. CCEAs enable, for instance, the evolution of cooperative multiagent systems composed of heterogeneous agents, where each agent is modelled as a component of the solution. Previous works have, however, shown that CCEAs are biased toward stability: the evolutionary process tends to converge prematurely to stable states instead of (near-)optimal solutions. In this study, we show how novelty search can be used to avoid the counterproductive attraction to stable states in coevolution. Novelty search is an evolutionary technique that drives evolution toward behavioural novelty and diversity rather than exclusively pursuing a static objective. We evaluate three novelty-based approaches that rely on, respectively (1) the novelty of the team as a whole, (2) the novelty of the agents' individual behaviour, and (3) the combination of the two. We compare the proposed approaches with traditional fitness-driven cooperative coevolution in three simulated multirobot tasks. Our results show that team-level novelty scoring is the most effective approach, significantly outperforming fitness-driven coevolution at multiple levels. Novelty-driven cooperative coevolution can substantially increase the potential of CCEAs while maintaining a computational complexity that scales well with the number of populations.

  5. Edge-driven microplate kinematics

    USGS Publications Warehouse

    Schouten, Hans; Klitgord, Kim D.; Gallo, David G.

    1993-01-01

    It is known from plate tectonic reconstructions that oceanic microplates undergo rapid rotation about a vertical axis and that the instantaneous rotation axes describing the microplate's motion relative to the bounding major plates are frequently located close to its margins with those plates, close to the tips of propagating rifts. We propose a class of edge-driven block models to illustrate how slip across the microplate margins, block rotation, and propagation of rifting may be related to the relative motion of the plates on either side. An important feature of these edge-driven models is that the instantaneous rotation axes are always located on the margins between block and two bounding plates. According to those models the pseudofaults or traces of disrupted seafloor resulting from the propagation of rifting between microplate and major plates may be used independently to approximately trace the continuous kinematic evolution of the microplate back in time. Pseudofault geometries and matching rotations of the Easter microplate show that for most of its 5 m.y. history, block rotation could be driven by the drag of the Nazca and Pacific plates on the microplate's edges rather than by a shear flow of mantle underneath.

  6. Edge-driven microplate kinematics

    USGS Publications Warehouse

    Schouten, Hans; Klitgord, Kim D.; Gallo, David G.

    1993-01-01

    It is known from plate tectonic reconstructions that oceanic microplates undergo rapid rotation about a vertical axis and that the instantaneous rotation axes describing the microplate's motion relative to the bounding major plates are frequently located close to its margins with those plates, close to the tips of propagating rifts. We propose a class of edge-driven block models to illustrate how slip across the microplate margins, block rotation, and propagation of rifting may be related to the relative motion of the plates on either side. An important feature of these edge-driven models is that the instantaneous rotation axes are always located on the margins between block and two bounding plates. According to those models the pseudofaults or traces of disrupted seafloor resulting from the propagation of rifting between microplate and major plates may be used independently to approximately trace the continuous kinematic evolution of the microplate back in time. Pseudofault geometries and matching rotations of the Easter microplate show that for most of its 5 m.y. history, block rotation could be driven by the drag of the Nazca and Pacific plates on the microplate's edges rather than by a shear flow of mantle underneath.

  7. Characterization of an induced pressure pumping force for microfluidics

    NASA Astrophysics Data System (ADS)

    Jiang, Hai; Fan, Na; Peng, Bei; Weng, Xuan

    2017-05-01

    The electro-osmotic pumping and pressure-driven manipulation of fluids are considered as the most common strategies in microfluidic devices. However, both of them exhibit major disadvantages such as hard integration and high reagent consumption, and they are destructive methods for detection and photo bleaching. In this paper, an electric field-effect flow control approach, combining the electro-osmotic pumping force and the pressure-driven pumping force, was developed to generate the induced pressure-driven flow in a T-shaped microfluidic chip. Electro-osmotic flow between the T-intersection and two reservoirs was demonstrated, and it provided a stable, continuous, and electric field-free flow in the section of the microchannel without the electrodes. The velocity of the induced pressure-driven flow was linearly proportional to the applied voltages. Both numerical and experimental investigations were conducted to prove the concept, and the experimental results showed good agreement with the numerical simulations. In comparison to other induced pressure pumping methods, this approach can induce a high and controllable pressure drop in the electric field-free segment, subsequently causing an induced pressure-driven flow for transporting particles or biological cells. In addition, the generation of bubbles and the blocking of the microchannel are avoided.

  8. Is "Market-Driven" Good Enough?

    ERIC Educational Resources Information Center

    Kaufman, Roger

    1995-01-01

    Discusses marketing and management strategies and evaluates the path most traveled; going beyond market-driven; proactive and reactive organizational positioning; ways to manage human and physical resources to make both market-driven and market-making contributions; and values necessary for an organization to move from market-driven to…

  9. Elementary Particles and Forces.

    ERIC Educational Resources Information Center

    Quigg, Chris

    1985-01-01

    Discusses subatomic particles (quarks, leptons, and others) revealed by higher accelerator energies. A connection between forces at this subatomic level has been established, and prospects are good for a description of forces that encompass binding atomic nuclei. Colors, fundamental interactions, screening, camouflage, electroweak symmetry, and…

  10. New force in nature

    SciTech Connect

    Fischbach, E.; Sudarsky, D.; Szafer, A.; Talmadge, C.; Aronson, S.H.

    1986-10-15

    We review recent experimental and theoretical work dealing with the proposed fifth force. Further analysis of the original Eoetvoes experiments has uncovered no challenges to our original assertion that these data evidence a correlation characteristic of the presence of a new coupling to baryon number or hypercharge. Various models suggest that the proposed fifth force could be accomodated naturally into the existing theoretical framework.

  11. Air Force Officer Cohesion

    DTIC Science & Technology

    1989-05-01

    and Staff College, 1980. 11. Craver , M.L., "No Surprise in Why Pilots Leave Service." Air Force Times, June 4, 1979, p. 23. 12. Wood, Frank R., U.S...34Institution Building In The All- Volunteer Force." Air University Review, September- October 1983, pp. 38-49. Craver , M.L., "No Surprise In Why Pilots Leave

  12. Manning the Future Force

    DTIC Science & Technology

    2004-05-03

    Marnane source. 21 48Michael L. Waclawski , Recruiting a Quality Force for the 21 st Century Army…Challenges and Opportunities, Strategy Research Project...the 21st Century. Strategy Research Project. Carlisle Barracks: U.S. Army War College, 12 March 2000. Waclawski , Michael L. Recruiting a Quality Force

  13. SCM-Forcing Data

    SciTech Connect

    Xie, Shaocheng; Tang, Shuaiqi; Zhang, Yunyan; Zhang, Minghua

    2016-07-01

    Single-Column Model (SCM) Forcing Data are derived from the ARM facility observational data using the constrained variational analysis approach (Zhang and Lin 1997 and Zhang et al., 2001). The resulting products include both the large-scale forcing terms and the evaluation fields, which can be used for driving the SCMs and Cloud Resolving Models (CRMs) and validating model simulations.

  14. Elementary Particles and Forces.

    ERIC Educational Resources Information Center

    Quigg, Chris

    1985-01-01

    Discusses subatomic particles (quarks, leptons, and others) revealed by higher accelerator energies. A connection between forces at this subatomic level has been established, and prospects are good for a description of forces that encompass binding atomic nuclei. Colors, fundamental interactions, screening, camouflage, electroweak symmetry, and…

  15. Forces in yeast flocculation

    NASA Astrophysics Data System (ADS)

    El-Kirat-Chatel, Sofiane; Beaussart, Audrey; Vincent, Stéphane P.; Abellán Flos, Marta; Hols, Pascal; Lipke, Peter N.; Dufrêne, Yves F.

    2015-01-01

    In the baker's yeast Saccharomyces cerevisiae, cell-cell adhesion (``flocculation'') is conferred by a family of lectin-like proteins known as the flocculin (Flo) proteins. Knowledge of the adhesive and mechanical properties of flocculins is important for understanding the mechanisms of yeast adhesion, and may help controlling yeast behaviour in biotechnology. We use single-molecule and single-cell atomic force microscopy (AFM) to explore the nanoscale forces engaged in yeast flocculation, focusing on the role of Flo1 as a prototype of flocculins. Using AFM tips labelled with mannose, we detect single flocculins on Flo1-expressing cells, showing they are widely exposed on the cell surface. When subjected to force, individual Flo1 proteins display two distinct force responses, i.e. weak lectin binding forces and strong unfolding forces reflecting the force-induced extension of hydrophobic tandem repeats. We demonstrate that cell-cell adhesion bonds also involve multiple weak lectin interactions together with strong unfolding forces, both associated with Flo1 molecules. Single-molecule and single-cell data correlate with microscale cell adhesion behaviour, suggesting strongly that Flo1 mechanics is critical for yeast flocculation. These results favour a model in which not only weak lectin-sugar interactions are involved in yeast flocculation but also strong hydrophobic interactions resulting from protein unfolding.

  16. Nanofluids mediating surface forces.

    PubMed

    Pilkington, Georgia A; Briscoe, Wuge H

    2012-11-01

    Fluids containing nanostructures, known as nanofluids, are increasingly found in a wide array of applications due to their unique physical properties as compared with their base fluids and larger colloidal suspensions. With several tuneable parameters such as the size, shape and surface chemistry of nanostructures, as well as numerous base fluids available, nanofluids also offer a new paradigm for mediating surface forces. Other properties such as local surface plasmon resonance and size dependent magnetism of nanostructures also present novel mechanisms for imparting tuneable surface interactions. However, our fundamental understanding, experimentally and theoretically, of how these parameters might affect surface forces remains incomplete. Here we review recent results on equilibrium and dynamic surface forces between macroscopic surfaces in nanofluids, highlighting the overriding trends in the correlation between the physical parameters that characterise nanofluids and the surface forces they mediate. We also discuss the challenges that confront existing surface force knowledge as a result of this new paradigm.

  17. Fluctuations and noise signatures of driven magnetic skyrmions

    NASA Astrophysics Data System (ADS)

    Díaz, Sebastián A.; Reichhardt, C. J. O.; Arovas, Daniel P.; Saxena, Avadh; Reichhardt, C.

    2017-08-01

    Magnetic skyrmions are particlelike objects with topologically protected stability which can be set into motion with an applied current. Using a particle-based model we simulate current-driven magnetic skyrmions interacting with random quenched disorder and examine the skyrmion velocity fluctuations parallel and perpendicular to the direction of motion as a function of increasing drive. We show that the Magnus force contribution to skyrmion dynamics combined with the random pinning produces an isotropic effective shaking temperature. As a result, the skyrmions form a moving crystal at large drives instead of the moving smectic state observed in systems with a negligible Magnus force where the effective shaking temperature is anisotropic. We demonstrate that spectral analysis of the velocity noise fluctuations can be used to identify dynamical phase transitions and to extract information about the different dynamic phases, and show how the velocity noise fluctuations are correlated with changes in the skyrmion Hall angle, transport features, and skyrmion lattice structure.

  18. Analysis of surface tension driven flow in floating zone melting

    NASA Technical Reports Server (NTRS)

    Chang, C. E.; Wilcox, W. R.

    1976-01-01

    Surface tension driven flow in a cylindrical melt suspended between two rods was investigated by numerical solution of the steady state differential equations for heat and momentum transfer. Radiation heating and electron beam heating were considered approximately. For small values of the driving force, one rotating ring was formed in the top half of the zone, and its mirror image in the bottom half. At larger driving forces, secondary cells form which probably would undergo oscillatory motion. The influence of Prandtl number, zone movement, and buoyancy on the convection was also studied. The primary resistance to mass transfer in the laminar regime was in the center of the zone rather than at the solid-liquid interfaces.

  19. Two-dimensional localized chaotic patterns in parametrically driven systems

    NASA Astrophysics Data System (ADS)

    Urzagasti, Deterlino; Laroze, David; Pleiner, Harald

    2017-05-01

    We study two-dimensional localized patterns in weakly dissipative systems that are driven parametrically. As a generic model for many different physical situations we use a generalized nonlinear Schrödinger equation that contains parametric forcing, damping, and spatial coupling. The latter allows for the existence of localized pattern states, where a finite-amplitude uniform state coexists with an inhomogeneous one. In particular, we study numerically two-dimensional patterns. Increasing the driving forces, first the localized pattern dynamics is regular, becomes chaotic for stronger driving, and finally extends in area to cover almost the whole system. In parallel, the spatial structure of the localized states becomes more and more irregular, ending up as a full spatiotemporal chaotic structure.

  20. Controlled drop emission by wetting properties in driven liquid filaments.

    PubMed

    Ledesma-Aguilar, R; Nistal, R; Hernández-Machado, A; Pagonabarraga, I

    2011-05-01

    The controlled formation of micrometre-sized drops is of great importance to many technological applications. Here we present a wetting-based destabilization mechanism of forced microfilaments on either hydrophilic or hydrophobic stripes that leads to the periodic emission of droplets. The drop emission mechanism is triggered above the maximum critical forcing at which wetting, capillarity, viscous friction and gravity can balance to sustain a stable driven contact line. The corresponding critical filament velocity is predicted as a function of the static wetting angle, which can be tuned through the substrate behaviour, and shows a strong dependence on the filament size. This sensitivity explains the qualitative difference in the critical velocity between hydrophilic and hydrophobic stripes, and accounts for previous experimental results of splashing solids. We demonstrate that this mechanism can be used to control independently the drop size and emission period, opening the possibility of highly monodisperse and flexible drop production techniques in open microfluidic geometries.

  1. Passive and active inertia forces in flexible body dynamics

    NASA Astrophysics Data System (ADS)

    Hsu, W. C.; Shabana, A. A.

    1992-12-01

    Passive and active inertia forces of a kinematically driven beam which rotates with specified angular velocities are considered. The passive inertia forces include the passive Coriolis forces and the passive centrifugal forces. It is shown that the dynamics of rotating beam can be described by a set of decoupled equations if the assumed displacement field is defined using a set of orthogonal functions and if the passive Coriolis force is equal to zero. Based on the analysis of inertia forces three systems are identified including active partially active, and passive systems. The active system is based on a mathematical model in which both passive and active inertia forces are fully presented. The partially active system is based on a model in which the passive and active inertia forces are presented partially. The effect of the inertia forces of the passive system appear as a time varying modification of the system parameters. A rotating beam model in which the axial deformation is neglected is shown to be a partially active or passive system.

  2. Multidomain proteins under force.

    PubMed

    Valle-Orero, Jessica; Rivas-Pardo, Jaime Andrés; Popa, Ionel

    2017-04-28

    Advancements in single-molecule force spectroscopy techniques such as atomic force microscopy and magnetic tweezers allow investigation of how domain folding under force can play a physiological role. Combining these techniques with protein engineering and HaloTag covalent attachment, we investigate similarities and differences between four model proteins: I10 and I91-two immunoglobulin-like domains from the muscle protein titin, and two α + β fold proteins-ubiquitin and protein L. These proteins show a different mechanical response and have unique extensions under force. Remarkably, when normalized to their contour length, the size of the unfolding and refolding steps as a function of force reduces to a single master curve. This curve can be described using standard models of polymer elasticity, explaining the entropic nature of the measured steps. We further validate our measurements with a simple energy landscape model, which combines protein folding with polymer physics and accounts for the complex nature of tandem domains under force. This model can become a useful tool to help in deciphering the complexity of multidomain proteins operating under force.

  3. Multidomain proteins under force

    NASA Astrophysics Data System (ADS)

    Valle-Orero, Jessica; Andrés Rivas-Pardo, Jaime; Popa, Ionel

    2017-04-01

    Advancements in single-molecule force spectroscopy techniques such as atomic force microscopy and magnetic tweezers allow investigation of how domain folding under force can play a physiological role. Combining these techniques with protein engineering and HaloTag covalent attachment, we investigate similarities and differences between four model proteins: I10 and I91—two immunoglobulin-like domains from the muscle protein titin, and two α + β fold proteins—ubiquitin and protein L. These proteins show a different mechanical response and have unique extensions under force. Remarkably, when normalized to their contour length, the size of the unfolding and refolding steps as a function of force reduces to a single master curve. This curve can be described using standard models of polymer elasticity, explaining the entropic nature of the measured steps. We further validate our measurements with a simple energy landscape model, which combines protein folding with polymer physics and accounts for the complex nature of tandem domains under force. This model can become a useful tool to help in deciphering the complexity of multidomain proteins operating under force.

  4. Linearly Forced Isotropic Turbulence

    NASA Technical Reports Server (NTRS)

    Lundgren, T. S.

    2003-01-01

    Stationary isotropic turbulence is often studied numerically by adding a forcing term to the Navier-Stokes equation. This is usually done for the purpose of achieving higher Reynolds number and longer statistics than is possible for isotropic decaying turbulence. It is generally accepted that forcing the Navier-Stokes equation at low wave number does not influence the small scale statistics of the flow provided that there is wide separation between the largest and smallest scales. It will be shown, however, that the spectral width of the forcing has a noticeable effect on inertial range statistics. A case will be made here for using a broader form of forcing in order to compare computed isotropic stationary turbulence with (decaying) grid turbulence. It is shown that using a forcing function which is directly proportional to the velocity has physical meaning and gives results which are closer to both homogeneous and non-homogeneous turbulence. Section 1 presents a four part series of motivations for linear forcing. Section 2 puts linear forcing to a numerical test with a pseudospectral computation.

  5. OOTW Force Design Tools

    SciTech Connect

    Bell, R.E.; Hartley, D.S.III; Packard, S.L.

    1999-05-01

    This report documents refined requirements for tools to aid the process of force design in Operations Other Than War (OOTWs). It recommends actions for the creation of one tool and work on other tools relating to mission planning. It also identifies the governmental agencies and commands with interests in each tool, from whom should come the user advisory groups overseeing the respective tool development activities. The understanding of OOTWs and their analytical support requirements has matured to the point where action can be taken in three areas: force design, collaborative analysis, and impact analysis. While the nature of the action and the length of time before complete results can be expected depends on the area, in each case the action should begin immediately. Force design for OOTWs is not a technically difficult process. Like force design for combat operations, it is a process of matching the capabilities of forces against the specified and implied tasks of the operation, considering the constraints of logistics, transport and force availabilities. However, there is a critical difference that restricts the usefulness of combat force design tools for OOTWs: the combat tools are built to infer non-combat capability requirements from combat capability requirements and cannot reverse the direction of the inference, as is required for OOTWs. Recently, OOTWs have played a larger role in force assessment, system effectiveness and tradeoff analysis, and concept and doctrine development and analysis. In the first Quadrennial Defense Review (QDR), each of the Services created its own OOTW force design tool. Unfortunately, the tools address different parts of the problem and do not coordinate the use of competing capabilities. These tools satisfied the immediate requirements of the QDR, but do not provide a long-term cost-effective solution.

  6. Manual discrimination of force

    NASA Technical Reports Server (NTRS)

    Pang, Xiao-Dong; Tan, HONG-Z.; Durlach, Nathaniel I.

    1991-01-01

    Optimal design of human-machine interfaces for teleoperators and virtual-environment systems which involve the tactual and kinesthetic modalities requires knowledge of the human's resolving power in these modalities. The resolution of the interface should be appropriately matched to that of the human operator. We report some preliminary results on the ability of the human hand to distinguish small differences in force under a variety of conditions. Experiments were conducted on force discrimination with the thumb pushing an interface that exerts a constant force over the pushing distance and the index finger pressing against a fixed support. The dependence of the sensitivity index d' on force increment can be fit by a straight line through the origin and the just-noticeable difference (JND) in force can thus be described by the inverse of the slope of this line. The receiver operating characteristic (ROC) was measured by varying the a priori probabilities of the two alternatives, reference force and reference force plus an increment, in one-interval, two-alternative, forced-choice experiments. When plotted on normal deviate coordinates, the ROC's were roughly straight lines of unit slope, thus supporting the assumption of equal-variance normal distributions and the use of the conventional d' measure. The JND was roughly 6-8 percent for reference force ranging from 2.5 to 10 newtons, pushing distance from 5 to 30 mm, and initial finger-span from 45 to 125 mm. Also, the JND remained the same when the subjects were instructed to change the average speed of pushing from 23 to 153 mm/sec. The pushing was terminated by reaching either a wall or a well, and the JND's were essentially the same in both cases.

  7. Air Force Research Laboratory

    DTIC Science & Technology

    2009-06-08

    Air Force Research Laboratory 8 June 2009 Mr. Leo Marple Ai F R h L b t r orce esearc a ora ory Leo.Marple@wpafb.af.mil DISTRIBUTION STATEMENT A...TITLE AND SUBTITLE Air Force Research Laboratory 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER...5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Air Force Research Laboratory ,Wright

  8. Dynamic analysis of a grid-connected induction generator driven by a wave-energy turbine through hunting networks

    SciTech Connect

    Narayanan, S.S.Y.; Murthy, B.K.; Rao, G.S.

    1995-12-31

    The presence of forced oscillations occurring in a Wells Turbine driven grid-connected induction generator enables one to seek a solution by considering the analogy between the dynamics of the Wells turbine driven systems with those associated with diesel-engine driven generators or electric motors driving reciprocating compressors, where also such forced oscillations occur, although there they occur in synchronism with shaft-position or speed. This difference is taken into account and the hunting network theory, which has hitherto been applied to the dynamic analysis of motors driving reciprocating compressors, is here applied to analyze the dynamics of a Wells Turbine driven grid-connected induction generator. The method enables the generator current, power and slip to be predicted from a knowledge of the shaft-torque harmonics. The result is compared with that obtained through d-q analysis.

  9. Ontology-Driven Information Integration

    NASA Technical Reports Server (NTRS)

    Tissot, Florence; Menzel, Chris

    2005-01-01

    Ontology-driven information integration (ODII) is a method of computerized, automated sharing of information among specialists who have expertise in different domains and who are members of subdivisions of a large, complex enterprise (e.g., an engineering project, a government agency, or a business). In ODII, one uses rigorous mathematical techniques to develop computational models of engineering and/or business information and processes. These models are then used to develop software tools that support the reliable processing and exchange of information among the subdivisions of this enterprise or between this enterprise and other enterprises.

  10. Actively driven thermal radiation shield

    DOEpatents

    Madden, Norman W.; Cork, Christopher P.; Becker, John A.; Knapp, David A.

    2002-01-01

    A thermal radiation shield for cooled portable gamma-ray spectrometers. The thermal radiation shield is located intermediate the vacuum enclosure and detector enclosure, is actively driven, and is useful in reducing the heat load to mechanical cooler and additionally extends the lifetime of the mechanical cooler. The thermal shield is electrically-powered and is particularly useful for portable solid-state gamma-ray detectors or spectrometers that dramatically reduces the cooling power requirements. For example, the operating shield at 260K (40K below room temperature) will decrease the thermal radiation load to the detector by 50%, which makes possible portable battery operation for a mechanically cooled Ge spectrometer.

  11. Catastrophe-driven vs what?

    SciTech Connect

    Stever, H.G.

    1995-12-31

    The author notes that much has been accomplished by catastrophe-driven scientific effort. Examples include World War II and the social wars against crime, poverty and hunger and famine. A positive approach is suggested to be more appropriate as the drivers of science. Three tables are presented and outline a positive base for justifying scientific endeavor: (1) Examples of Major Societal Goals to Which Science and Technology Contribute. (2) Policy Areas That Would Benefit from the Articulation of Long-Term S&T Goals; and (3) Major Components of the Science and Technology Base.

  12. A wind-driven circulation model of the Tyrrhenian Sea area

    NASA Astrophysics Data System (ADS)

    Pierini, S.; Simioli, A.

    1998-12-01

    The wind-driven component of the circulation in the Tyrrhenian Sea area was analyzed by means of a free-surface, barotropic primitive equation model implemented in the whole Mediterranean Sea. The `National Meteorological Center' (NMC) wind data covering the period 1980-1988 were used to force the model. Both the seasonal and the high frequency variability were studied. For the first case, a perpetual wind forcing was constructed by instantaneously averaging the wind stresses over the 9 years, and the response was Fourier filtered in order to get rid of the residual rapid fluctuations. The daily variability was then produced for the test years 1981 and 1987 by making use of the instantaneous forcing. The main features of the wind-driven climatological Tyrrhenian circulation known from data and general circulation modelling were found to be reproduced by this process model. The winter cyclonic circulation induced by the strong positive wind vorticity input evolved into a much weaker, partially reversed circulation in summer months. A mainly northward flux through the strait of Corsica and a horizontally sheared current in the strait of Sicily were found. The rapid fluctuations that the wind was able to induce in the ocean were then studied. The instantaneous currents were found to be up to 10 times larger than the corresponding climatological ones, with episodes of reversal over a period of few days. The experimental evidence of the existence of these rapid wind-driven fluctuations is discussed. The analysis of the daily variability provides a realistic picture of the character of the wind-driven circulation in the Tyrrhenian Sea that differs considerably from the classical seasonal dynamics. As an indicator of the Tyrrhenian Sea dynamics, the mass transport through the strait of Corsica was evaluated for the year 1987 and compared with available experimental data. As a result, the low-passed wind-driven transport reflects the seasonal trend and accounts for 15

  13. Magnetic Fluctuation-Driven Intrinsic Flow in a Toroidal Plasma

    NASA Astrophysics Data System (ADS)

    Brower, D. L.; Ding, W. X.; Lin, L.; Almagri, A. F.; den Hartog, D. J.; Sarff, J. S.

    2012-10-01

    Magnetic fluctuations have been long observed in various magnetic confinement configurations. These perturbations may arise naturally from plasma instabilities such as tearing modes and energetic particle driven modes, but they can also be externally imposed by error fields or external magnetic coils. It is commonly observed that large MHD modes lead to plasma locking (no rotation) due to torque produced by eddy currents on the wall, and it is predicted that stochastic field induces flow damping where the radial electric field is reduced. Flow generation is of great importance to fusion plasma research, especially low-torque devices like ITER, as it can act to improve performance. Here we describe new measurements in the MST reversed field pinch (RFP) showing that the coherent interaction of magnetic and particle density fluctuations can produce a turbulent fluctuation-induced kinetic force, which acts to drive intrinsic plasma rotation. Key observations include; (1) the average kinetic force resulting from density fluctuations, ˜ 0.5 N/m^3, is comparable to the intrinsic flow acceleration, and (2) between sawtooth crashes, the spatial distribution of the kinetic force is directed to create a sheared parallel flow profile that is consistent with the measured flow profile in direction and amplitude, suggesting the kinetic force is responsible for intrinsic plasma rotation.

  14. Reentrant dynamics of driven pancake vortices in layered superconductors

    NASA Astrophysics Data System (ADS)

    Zhao, H. J.; Wu, Wenjuan; Zhou, Wei; Shi, Z. X.; Misko, V. R.; Peeters, F. M.

    2016-07-01

    The dynamics of driven pancake vortices in layered superconductors is studied using molecular-dynamics simulations. We found that, with increasing driving force, for strong interlayer coupling, the preexisted vortex lines either directly depin or first transform to two-dimensional (2D) pinned states before they are depinned, depending on the pinning strength. In a narrow region of pinning strengths, we found an interesting repinning process, which results in a negative differential resistance. For weak interlayer coupling, individually pinned pancake vortices first form disordered 2D flow and then transform to ordered three-dimensional (3D) flow with increasing driving force. However, for extremely strong pinning, the random pinning-induced thermal-like Langevin forces melt 3D vortex lines, which results in a persistent 2D flow in the fast-sliding regime. In the intermediate regime, the peak effect is found: With increasing driving force, the moving pancake vortices first crystallize to moving 3D vortex lines, and then these 3D vortex lines are melted, leading to the appearance of a reentrant 2D flow state. Our results are summarized in a dynamical phase diagram.

  15. Forces in Motion.

    ERIC Educational Resources Information Center

    Goodsell, David; And Others

    1995-01-01

    Describes an activity to give students experience with the variables and forces impacting a moving body on an inclined plane by observing a ball as it rolls down an inclined PVC pipe of fixed length. Includes a student worksheet. (MKR)

  16. Air Force Junior ROTC

    ERIC Educational Resources Information Center

    McDonnell, James A., Jr.

    1974-01-01

    Describes the Junior Air Force Reserve Officers Training Corps (AFROTC) program presently being operated in 275 units across the country. It is basically a three year course in aerospace studies and leadership education. (BR)

  17. Forces in Motion.

    ERIC Educational Resources Information Center

    Goodsell, David; And Others

    1995-01-01

    Describes an activity to give students experience with the variables and forces impacting a moving body on an inclined plane by observing a ball as it rolls down an inclined PVC pipe of fixed length. Includes a student worksheet. (MKR)

  18. Riveting-force gage

    NASA Technical Reports Server (NTRS)

    Rotta, J. W., Jr.

    1979-01-01

    Gage monitors riveting forces applied when components are mounted on printed-circuit boards. Correct swaging pressures have been established for specific substrate materials such as phenolics and ceramics.

  19. Nongravitational forces on comets

    NASA Technical Reports Server (NTRS)

    Marsden, B. G.

    1976-01-01

    Methods are presented and discussed for determining the effects of nongravitational forces on the orbits of comets. These methods are applied to short-period and long-period comets. Results are briefly described.

  20. Relativistic linear restoring force

    NASA Astrophysics Data System (ADS)

    Clark, D.; Franklin, J.; Mann, N.

    2012-09-01

    We consider two different forms for a relativistic version of a linear restoring force. The pair comes from taking Hooke’s law to be the force appearing on the right-hand side of the relativistic expressions: dp/dt or dp/dτ. Either formulation recovers Hooke’s law in the non-relativistic limit. In addition to these two forces, we introduce a form of retardation appropriate for the description of a linear (in displacement) force arising from the interaction of a pair of particles with a relativistic field. The procedure is akin to replacing Coulomb’s law in electromagnetism with a retarded form (the first correction in the full relativistic case). This retardation leads to the expected oscillation, but with amplitude growth in both its relativistic and non-relativistic incarnations.

  1. Causal reasoning with forces

    PubMed Central

    Wolff, Phillip; Barbey, Aron K.

    2015-01-01

    Causal composition allows people to generate new causal relations by combining existing causal knowledge. We introduce a new computational model of such reasoning, the force theory, which holds that people compose causal relations by simulating the processes that join forces in the world, and compare this theory with the mental model theory (Khemlani et al., 2014) and the causal model theory (Sloman et al., 2009), which explain causal composition on the basis of mental models and structural equations, respectively. In one experiment, the force theory was uniquely able to account for people's ability to compose causal relationships from complex animations of real-world events. In three additional experiments, the force theory did as well as or better than the other two theories in explaining the causal compositions people generated from linguistically presented causal relations. Implications for causal learning and the hierarchical structure of causal knowledge are discussed. PMID:25653611

  2. Effects of Carpal Tunnel Syndrome on adaptation of multi-digit forces to object texture

    PubMed Central

    Afifi, Mostafa; Santello, Marco; Johnston, Jamie A.

    2012-01-01

    Objective The ability to adapt digit forces to object properties requires both anticipatory and feedback-driven control mechanisms which can be disrupted in individuals with a compromised sensorimotor system. Carpal Tunnel Syndrome (CTS) is a median nerve compression neuropathy affecting sensory and motor function in a subset of digits in the hand. Our objective was to examine how CTS patients coordinate anticipatory and feedback-driven control for multi-digit grip force adaptation. Methods We asked CTS patients and healthy controls to grasp, lift, and hold an object with different textures. Results CTS patients effectively adapted their digit forces to changes in object texture, but produced excessive grip forces. CTS patients also produced larger peak force rate profiles with fewer modulations of normal force prior to lift onset than did controls and continued to increase grip force throughout the lift whereas forces were set at lift onset for the controls. Conclusions These findings suggest that CTS patients use less online sensory feedback for fine-tuning their grip forces, relying more on anticipatory control than do healthy controls. Significance These characteristics in force adaptation in CTS patients indicate impaired sensorimotor control which leads to excessive grip forces with the potential to further exacerbate their median nerve compression. PMID:22627019

  3. Nonlinear response and bistability of driven ion acoustic waves

    NASA Astrophysics Data System (ADS)

    Akbari-Moghanjoughi, M.

    2017-08-01

    The hydrodynamic model is used to obtain a generalized pseudoforce equation through which the nonlinear response of periodically driven ion acoustic waves is studied in an electron-ion plasma with isothermal and adiabatic ion fluids. The pseudotime series, corresponding to different driving frequencies, indicates that nonlinearity effects appear more strongly for smaller frequency values. The existence of extra harmonic resonances in the nonlinear amplitude spectrum is a clear indication of the interaction of an external force with harmonic components of the nonlinear ion acoustic waves. It is shown that many plasma parameters significantly and differently affect the nonlinear resonance spectrum of ion acoustic excitations. A heuristic but accurate model for the foldover effect is used which quite satisfactorily predicts the bistability of driven plasma oscillations. It is remarked that the characteristic resonance peak of isothermal ion plasma oscillations appears at lower frequencies but is stronger compared to that of adiabatic ions. Comparison of the exact numerical results for fully nonlinear and approximate (weakly nonlinear) models indicates that a weakly nonlinear model exaggerates the hysteresis and jump phenomenon for higher values of the external force amplitude.

  4. Entropy-driven self-assembly of dimers

    NASA Astrophysics Data System (ADS)

    Nakamura, Issei; Shi, An-Chang

    2008-03-01

    Supramolecular self-assembly is an important phenomenon with applications ranging from chemical synthesis to biological systems. Although the driving force of assembly is the weak non-covalent intermolecular interaction such as hydrogen bonding and dispersion force, the self-assembly is a result from balancing the enthalpic and entropic contributions. In general, the disassembled/disordered phase is expected as temperature is raised because of the entropic gain from the components of the aggregate. However, it has been observed that the self-assembled/ordered phase can be promoted with increasing temperature. This implies that the self-assembly is driven by entropy. In order to provide a better understanding of this entropy-driven transition, we have studied a statistical mechanical model for the aggregation of macromolecular dimers immersed in solvents. The model demonstrates that solvent molecules absorbed on the surface of the solute are released with increasing temperature, leading to an increase of the total entropy of the system. Consequently, the cooperative stability of the dimeric state is induced. The thermodynamic features of this transition are analyzed.

  5. Superflow of resonantly driven polaritons against a defect

    NASA Astrophysics Data System (ADS)

    Cancellieri, E.; Marchetti, F. M.; Szymańska, M. H.; Tejedor, C.

    2010-12-01

    In the linear-response approximation, coherently driven microcavity polaritons in the pump-only configuration are expected to satisfy the Landau criterion for superfluidity at either strong enough pump powers or small flow velocities. Here, we solve nonperturbatively the time-dependent Gross-Pitaevskii equation describing the resonantly driven polariton system. We show that, even in the limit of asymptotically large densities, where in linear-response approximation the system satisfies the Landau criterion, the fluid always experiences a residual drag force when flowing through the defect. We explain the result in terms of the polariton lifetime being finite, finding that the equilibrium limit of zero drag can only be recovered in the case of perfect microcavities. In general, both the drag force exerted by the defect on the fluid, as well as the height of Cherenkov radiation, and the percentage of particles scattered by the defect, show a smooth crossover rather than a sharp thresholdlike behavior typical of superfluids which obey the Landau criterion.

  6. Electromagnetically driven, fast opening and closing gas jet valve

    NASA Astrophysics Data System (ADS)

    Krishnan, Mahadevan; Elliott, Kristi Wilson; Geddes, C. G. R.; van Mourik, R. A.; Leemans, W. P.; Murphy, H.; Clover, M.

    2011-03-01

    The design and performance are presented of an electromagnetically driven gas valve [M. Krishnan, J. Wright, and T. Ma, Proceedings of the 13th Advanced Accelerator Concepts Workshop, Santa Cruz, CA, AIP Conf. Proc. No. 1086 (AIP, New York, 2008)] that opens in <100μs, closes in <500μs, and can operate at pressures of ˜1000psia to drive supersonic nozzles. Such a valve has applications to laser-plasma accelerators, where the fast opening and closing would allow sharper edges to the flow and also allow higher rep-rate operation without loading the vacuum chamber. The valve action is effected by a flyer plate accelerated by the electromagnetic impulse of a low inductance, spiral wound, strip-line coil driven by a capacitor. Gas flows out of the valve when the seal between this flyer plate and the valve seat is broken. The electromagnetic force greatly exceeds the restoring forces provided by a spring and the gas pressure against the valve seat. Piezoresistive sensor and laser interferometer measurements of flow show that the valve opens in ˜100μs for all pressures up to 800 psia. The closing time is 500μs, set by the spring constant and mass. The prototype valve has been operated with helium at 0.5 Hz and at 500 psia for ˜1 hour at a time with no cooling.

  7. Eastern Indian Ocean microcontinent formation driven by plate motion changes

    NASA Astrophysics Data System (ADS)

    Whittaker, J. M.; Williams, S. E.; Halpin, J. A.; Wild, T. J.; Stilwell, J. D.; Jourdan, F.; Daczko, N. R.

    2016-11-01

    The roles of plate tectonic or mantle dynamic forces in rupturing continental lithosphere remain controversial. Particularly enigmatic is the rifting of microcontinents from mature continental rifted margins, with plume-driven thermal weakening commonly inferred to facilitate calving. However, a role for plate tectonic reorganisations has also been suggested. Here, we show that a combination of plate tectonic reorganisation and plume-driven thermal weakening were required to calve the Batavia and Gulden Draak microcontinents in the Cretaceous Indian Ocean. We reconstruct the evolution of these two microcontinents using constraints from new paleontological samples, 40Ar/39Ar ages, and geophysical data. Calving from India occurred at 101-104 Ma, coinciding with the onset of a dramatic change in Indian plate motion. Critically, Kerguelen plume volcanism does not appear to have directly triggered calving. Rather, it is likely that plume-related thermal weakening of the Indian passive margin preconditioned it for microcontinent formation but calving was triggered by changes in plate tectonic boundary forces.

  8. Numerical simulations of a precession driven flow in a cylinder.

    NASA Astrophysics Data System (ADS)

    Giesecke, Andre; Gundrum, Thomas; Herault, Johann; Stefani, Frank

    2015-04-01

    Precession has long been discussed as a complementary energy source for driving the geodynamo. A fluid flow of liquid sodium in a cylindrical container, solely driven by precession, is considered as a source for magnetic field generation in the next generation dynamo experiment currently under development in the framework of DRESDYN (DREsden Sodium facility for DYNamo and thermohydraulic studies). We present results from three-dimensional non-linear hydrodynamic simulations of a precession driven flow in cylindrical geometry. The main focus will be on non-axisymmetric time-dependent flow structures that could be responsible for dynamo action. Promising candidates may be triadic resonances that are caused by non-linear interaction of three distinct inertial modes. These modes have a comparable structure as the columnar convection cells that are responsible for dynamo action in geodynamo simulations, and it seems reasonable to expect similar properties in case of precessional forcing. Our simulations reveal clear triads at aspect ratios close to predictions from the linear theory. However, the emergence of these structures requires a remarkable long time-span of the order of a few hundred rotation periods till a (quasi-)steady state is reached. Furthermore, the amplitude of the waves with higher azimuthal wavenumbers remains well below the forced m=1 mode. Their ability for dynamo action will have to be verified in future simulations of the magnetic induction equation.

  9. Consumer control of salt marshes driven by human disturbance.

    PubMed

    Bertness, Mark D; Silliman, Brian R

    2008-06-01

    Salt marsh ecosystems are widely considered to be controlled exclusively by bottom-up forces, but there is mounting evidence that human disturbances are triggering consumer control in western Atlantic salt marshes, often with catastrophic consequences. In other marine ecosystems, human disturbances routinely dampen (e.g., coral reefs, sea grass beds) and strengthen (e.g., kelps) consumer control, but current marsh theory predicts little potential interaction between humans and marsh consumers. Thus, human modification of top-down control in salt marshes was not anticipated and was even discounted in current marsh theory, despite loud warnings about the potential for cascading human impacts from work in other marine ecosystems. In spite of recent experiments that have challenged established marsh dogma and demonstrated consumer-driven die-off of salt marsh ecosystems, government agencies and nongovernmental organizations continue to manage marsh die-offs under the old theoretical framework and only consider bottom-up forces as causal agents. This intellectual dependency of many coastal ecologists and managers on system-specific theory (i.e., marsh bottom-up theory) has the potential to have grave repercussions for coastal ecosystem management and conservation in the face of increasing human threats. We stress that marine vascular plant communities (salt marshes, sea grass beds, mangroves) are likely more vulnerable to runaway grazing and consumer-driven collapse than is currently recognized by theory, particularly in low-diversity ecosystems like Atlantic salt marshes.

  10. Electric field-driven currents in the ionosphere of Mars

    NASA Astrophysics Data System (ADS)

    Fillingim, M. O.; Lillis, R. J.; Ma, Y.

    2011-10-01

    Mars has a complex magnetic topology. Crustal magnetic fields can interact with the solar wind magnetic field to form magnetic cusps. On the nightside, solar wind electron precipitation can produce regions of enhanced ionization at cusps while closed field regions adjacent to cusps can be devoid of significant ionization. Previously, using an electron transport model, we calculated the electron density and spatial structure of the nightside ionosphere of Mars using Mars Global Surveyor electron measurements as input. Localized regions of enhanced ionospheric density were found to occur at magnetic cusps adjacent to low density voids [1]. Additionally, we calculated the horizontal ionospheric currents driven by strong plasma gradients and by thermospheric neutral winds. In the dynamo region of the ionosphere, the collisional ions move in the direction of the applied force (the plasma gradient or neutral wind) while the magnetized electrons move perpendicular to both the applied force and ambient magnetic field. This difference in motion drives horizontal currents. Subsequently, we considered the existence of wind-driven cusp electrojets created by secondary currents arising from polarization electric fields which form in the presence of strong conductivity gradients [2]. At Earth, ionospheric currents at high latitudes are driven predominantly by externally imposed (magnetospheric) electric fields. Here, we compute the horizontal ionospheric currents in the vicinity of magnetic cusps resulting from external electric fields. In the absence of electric field observations, we use the electric field calculated from a global model of the Mars-solar wind interaction as input. We compare the magnitude of these currents with those driven by neutral winds and plasma gradients. Additionally, we estimate the magnitude of the electric field-driven electrojets, analogous to Earth's auroral electrojets. These enhanced currents can lead to localized, enhanced Joule heating

  11. Force-Measuring Clamp

    NASA Technical Reports Server (NTRS)

    Nunnelee, Mark (Inventor)

    2004-01-01

    A precision clamp that accurately measures force over a wide range of conditions is described. Using a full bridge or other strain gage configuration. the elastic deformation of the clamp is measured or detected by the strain gages. Thc strain gages transmit a signal that corresponds to the degree of stress upon the clamp. Thc strain gage signal is converted to a numeric display. Calibration is achieved by ero and span potentiometers which enable accurate measurements by the force-measuring clamp.

  12. Force user's manual, revised

    NASA Technical Reports Server (NTRS)

    Jordan, Harry F.; Benten, Muhammad S.; Arenstorf, Norbert S.; Ramanan, Aruna V.

    1987-01-01

    A methodology for writing parallel programs for shared memory multiprocessors has been formalized as an extension to the Fortran language and implemented as a macro preprocessor. The extended language is known as the Force, and this manual describes how to write Force programs and execute them on the Flexible Computer Corporation Flex/32, the Encore Multimax and the Sequent Balance computers. The parallel extension macros are described in detail, but knowledge of Fortran is assumed.

  13. New force in nature

    SciTech Connect

    Fischbach, E.; Sudarsky, D.; Szafer, A.; Talmadge, C.; Aronson, S.H.

    1986-01-01

    We review recent experimental and theoretical work dealing with the proposed fifth force. Further analysis of the original Eotvos experiments has uncovered no challenges to our original assertion that these data evidence a correlation characteristic of the presence of a new coupling to baryon number or hypercharge. Various models suggest that the proposed fifth force could be accommodated naturally into the existing theoretical framework. 40 refs.

  14. Health of the Force

    DTIC Science & Technology

    2015-11-01

    disease exacts a toll on one’s quality of life, requiring sustained clinical management to avoid severe health outcomes or complications. The six...been avoided with the delivery of high- quality outpatient treatment and disease management. They can serve as potential markers of health sys- tem...Create a healthier force for tomorrow. HEALTH FORCE OF THE NOVEMBER 2015 Introduction Performance Triad Sleep Activity Nutrition

  15. Strategic forces briefing

    SciTech Connect

    Bing, G.; Chrzanowski, P.; May, M.; Nordyke, M.

    1989-04-06

    The Strategic Forces Briefing'' is our attempt, accomplished over the past several months, to outline and highlight the more significant strategic force issues that must be addressed in the near future. Some issues are recurrent: the need for an effective modernized Triad and a constant concern for force survivability. Some issues derive from arms control: the Strategic Arms Reduction Talks (SALT) are sufficiently advanced to set broad numerical limits on forces, but not so constraining as to preclude choices among weapon systems and deployment modes. Finally, a new administration faced with serious budgetary problems must strive for the most effective strategic forces limited dollars can buy and support. A review of strategic forces logically begins with consideration of the missions the forces are charged with. We begin the briefing with a short review of targeting policy and implementation within the constraints of available unclassified information. We then review each element of the Triad with sections on SLBMs, ICBMs, and Air-Breathing (bomber and cruise missile) systems. A short section at the end deals with the potential impact of strategic defense on offensive force planning. We consider ABM, ASAT, and air defense; but we do not attempt to address the technical issues of strategic defense per se. The final section gives a brief overview of the tritium supply problem. We conclude with a summary of recommendations that emerge from our review. The results of calculation on the effectiveness of various weapon systems as a function of cost that are presented in the briefing are by Paul Chrzanowski.

  16. Force-Measuring Clamp

    NASA Technical Reports Server (NTRS)

    Nunnelee, Mark (Inventor)

    2004-01-01

    A precision clamp that accurately measures force over a wide range of conditions is described. Using a full bridge or other strain gage configuration. the elastic deformation of the clamp is measured or detected by the strain gages. Thc strain gages transmit a signal that corresponds to the degree of stress upon the clamp. Thc strain gage signal is converted to a numeric display. Calibration is achieved by ero and span potentiometers which enable accurate measurements by the force-measuring clamp.

  17. Optical ``Bernoulli'' forces

    NASA Astrophysics Data System (ADS)

    Movassagh, Ramis; Johnson, Steven

    2015-03-01

    By Bernoulli's law, an increase in the relative speed of a fluid around a body is accompanies by a decrease in the pressure. Therefore, a rotating body in a fluid stream experiences a force perpendicular to the motion of the fluid because of the unequal relative speed of the fluid across its surface. It is well known that light has a constant speed irrespective of the relative motion. Does a rotating body immersed in a stream of photons experience a Bernoulli-like force? We show that, indeed, a rotating dielectric cylinder experiences such a lateral force from an electromagnetic wave. In fact, the sign of the lateral force is the same as that of the fluid-mechanical analogue as long as the electric susceptibility is positive (ɛ >ɛ0), but for negative-susceptibility materials (e.g. metals) we show that the lateral force is in the opposite direction. Because these results are derived from a classical electromagnetic scattering problem, Mie-resonance enhancements that occur in other scattering phenomena also enhance the lateral force. [This talk is based on Phys. Rev. A 88, 023829 (2013).] Supported in part by the U.S. Army Research Office under contract W911NF-13-D-0001.

  18. The missing climate forcing

    PubMed Central

    Hansen, J.; Sato, M.; Lacis, A.; Ruedy, R.

    1997-01-01

    Observed climate change is consistent with radiative forcings on several time-scales for which the dominant forcings are known, ranging from the few years after a large volcanic eruption to glacial-to-interglacial changes. In the period with most detailed data, 1979 to the present, climate observations contain clear signatures of both natural and anthropogenic forcings. But in the full period since the industrial revolution began, global warming is only about half of that expected due to the principal forcing, increasing greenhouse gases. The direct radiative effect of anthropogenic aerosols contributes only little towards resolving this discrepancy. Unforced climate variability is an unlikely explanation. We argue on the basis of several lines of indirect evidence that aerosol effects on clouds have caused a large negative forcing, at least -1 Wm-2, which has substantially offset greenhouse warming. The tasks of observing this forcing and determining the microphysical mechanisms at its basis are exceptionally difficult, but they are essential for the prognosis of future climate change.

  19. Driven fragmentation of granular gases.

    PubMed

    Cruz Hidalgo, Raúl; Pagonabarraga, Ignacio

    2008-06-01

    The dynamics of homogeneously heated granular gases which fragment due to particle collisions is analyzed. We introduce a kinetic model which accounts for correlations induced at the grain collisions and analyze both the kinetics and relevant distribution functions these systems develop. The work combines analytical and numerical studies based on direct simulation Monte Carlo calculations. A broad family of fragmentation probabilities is considered, and its implications for the system kinetics are discussed. We show that generically these driven materials evolve asymptotically into a dynamical scaling regime. If the fragmentation probability tends to a constant, the grain number diverges at a finite time, leading to a shattering singularity. If the fragmentation probability vanishes, then the number of grains grows monotonously as a power law. We consider different homogeneous thermostats and show that the kinetics of these systems depends weakly on both the grain inelasticity and driving. We observe that fragmentation plays a relevant role in the shape of the velocity distribution of the particles. When the fragmentation is driven by local stochastic events, the long velocity tail is essentially exponential independently of the heating frequency and the breaking rule. However, for a Lowe-Andersen thermostat, numerical evidence strongly supports the conjecture that the scaled velocity distribution follows a generalized exponential behavior f(c) approximately exp(-cn) , with n approximately 1.2 , regarding less the fragmentation mechanisms.

  20. Magnetically driven quantum heat engine

    NASA Astrophysics Data System (ADS)

    Munoz, Enrique; Pena, Francisco

    2015-03-01

    In analogy with classical thermodynamics, a quantum heat engine generates useful mechanical work from heat, by means of a reversible sequence of transformations (trajectories), where the ``working substance'' is of quantum mechanical nature. Several theoretical implementations for a quantum heat engine have been discussed in the literature, such as entangled states in a qubit, quantum mechanical versions of the Otto cycle, and photocells. In this work, we propose yet a different alternative by introducing the concept of a magnetically driven quantum heat engine. We studied the efficiency of such system, by considering as the ``working substance'' a single nonrelativistic particle trapped in a cylindrical potential well, as a model for a semiconductor quantum dot, in the presence of an external magnetic field. The trajectories are driven by a quasistatic modulation of the external magnetic-field intensity, while the system is in contact with macroscopic thermostats. The external magnetic field modulation allows to modify the effective geometric confinement, in analogy with a piston in a classical gas. E. Munoz acknowledges financial support from Fondecyt under Contract 1141146.